WorldWideScience

Sample records for anharmonic vibrational models

  1. Anharmonic double-{gamma} vibrations in nuclei and their description in the interacting boson model

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Ramos, J.E.; Alonso, C.E.; Arias, J.M. [Sevilla Univ. (Spain). Departamento de Fisica Atomica, Molecular y Nuclear; Van Isacker, P. [Grand Accelerateur National d`Ions Lourds, 14 - Caen (France)

    1998-07-01

    Double-{gamma} vibrations in deformed nuclei are studied in the context of the interacting boson model with special reference to their anharmonic character. It is shown that large anharmonicities can be obtained with interactions that are (at least) of three-body nature between the bosons. As an example the {gamma} vibrations of the nucleus {sub 68}{sup 166}Er{sub 98} are studied in detail. (author) 28 refs.

  2. Anharmonic vibrations in nuclei

    CERN Document Server

    Fallot, M; Andrés, M V; Catara, F; Lanza, E G; Scarpaci, J A; Chomaz, Ph.

    2003-01-01

    In this letter, we show that the non-linearitites of large amplitude motions in atomic nuclei induce giant quadrupole and monopole vibrations. As a consequence, the main source of anharmonicity is the coupling with configurations including one of these two giant resonances on top of any state. Two-phonon energies are often lowered by one or two MeV because of the large matrix elements with such three phonon configurations. These effects are studied in two nuclei, 40Ca and 208Pb.

  3. Anharmonic Vibrational Dynamics of DNA Oligomers

    CERN Document Server

    Kühn, O; Krishnan, G M; Fidder, H; Heyne, K

    2008-01-01

    Combining two-color infared pump-probe spectroscopy and anharmonic force field calculations we characterize the anharmonic coupling patterns between fingerprint modes and the hydrogen-bonded symmetric NH$_2$ stretching vibration in adenine-thymine dA$_{20}$-dT$_{20}$ DNA oligomers. Specifically, it is shown that the anharmonic coupling between the NH$_2$ bending and the CO stretching vibration, both absorbing around 1665 cm-1, can be used to assign the NH$_2$ fundamental transition at 3215 cm-1 despite the broad background absorption of water.

  4. A local anharmonic treatment of vibrations of methane

    OpenAIRE

    Arias Carrasco, José Miguel; Pérez Bernal, Francisco; A. Frank; Lemus Casillas, Renato; Bijker, R.

    1996-01-01

    The stretching and bending vibrations of methane are studied in a local anharmonic model of molecular vibrations. The use of symmetry-adapted operators reduces the eigenvalue problem to block diagonal form. For the 44 observed energies we obtain a fit with a standard deviation of 0.81 cm$^{-1}$ (and a r.m.s. deviation of 1.16 cm$^{-1}$).

  5. Anharmonic collective excitation in a solvable model

    International Nuclear Information System (INIS)

    We apply the time-dependent variational principle, the nuclear field theory, and the boson expansion method to the Lipkin model to discuss anharmonicities of collective vibrational excitations. It is shown that all of these approaches lead to the same anharmonicity to leading order in the number of particles. Comparison with the exact solution of the Lipkin model shows that these theories reproduce quite well

  6. Anharmonic Decay of Vibrational States in Amorphous Silicon

    OpenAIRE

    Fabian, Jaroslav; Allen, Philip B.

    1996-01-01

    Anharmonic decay rates are calculated for a realistic atomic model of amorphous silicon. The results show that the vibrational states decay on picosecond timescales and follow the two-mode density of states, similar to crystalline silicon, but somewhat faster. Surprisingly little change occurs for localized states. These results disagree with a recent experiment.

  7. Vibrational spectroscopy via the Caldeira-Leggett model with anharmonic system potentials

    CERN Document Server

    Gottwald, Fabian; Kühn, Oliver

    2016-01-01

    The Caldeira-Leggett (CL) model, which describes a system bi-linearly coupled to a harmonic bath, has enjoyed popularity in condensed phase spectroscopy owing to its utmost simplicity. However, the applicability of the model to cases with anharmonic system potentials, as it is required for the description of realistic systems in solution, is questionable due to the presence of the invertibility problem [J. Phys. Chem. Lett., \\textbf{6}, 2722 (2015)] unless the system itself resembles the CL model form. This might well be the case at surfaces or in the solid regime, which we here confirm for a particular example of an iodine molecule in the atomic argon environment under high pressure. For this purpose we extend the recently proposed Fourier method for parameterizing linear generalized Langevin dynamics[J. Chem. Phys., \\textbf{142}, 244110 (2015)] to the non-linear case based on the CL model and perform an extensive error analysis. In order to judge on the applicability of this model in advance, we give handy ...

  8. Anharmonicities in vibrational spectra of deformed nuclei discussed in a simple model

    International Nuclear Information System (INIS)

    Some microscopic treatments of the nuclear vibrational spectra are analyzed in terms of a model allowing an exact solution for a many-body nucleon system interacting via pairing plus quadrupole force. The multi-phonon approach -exact diagonalization in the restricted space of 1, 2, 3, .. collective phonons- appears satisfactory for the few lowest lying vibrational Ksup(π)=0+ states in deformed nuclei. The non conservation of the number of particles and coupling between collective and non collective states seem to be main sources of the discrepancies, that occur for the higher states. On the other hand, the lowest order contributions suggested by nuclear field theory lead to serious disagreement as compared with the exact solutions

  9. Optimized coordinates for anharmonic vibrational structure theories.

    Science.gov (United States)

    Yagi, Kiyoshi; Keçeli, Murat; Hirata, So

    2012-11-28

    A procedure to determine optimal vibrational coordinates is developed on the basis of an earlier idea of Thompson and Truhlar [J. Chem. Phys. 77, 3031 (1982)]. For a given molecule, these coordinates are defined as the unitary transform of the normal coordinates that minimizes the energy of the vibrational self-consistent-field (VSCF) method for the ground state. They are justified by the fact that VSCF in these coordinates becomes exact in two limiting cases: harmonic oscillators, where the optimized coordinates are normal, and noninteracting anharmonic oscillators, in which the optimized coordinates are localized on individual oscillators. A robust and general optimization algorithm is developed, which decomposes the transformation matrix into a product of Jacobi matrices, determines the rotation angle of each Jacobi matrix that minimizes the energy, and iterates the process until a minimum in the whole high dimension is reached. It is shown that the optimized coordinates are neither entirely localized nor entirely delocalized (or normal) in any of the molecules (the water, water dimer, and ethylene molecules) examined (apart from the aforementioned limiting cases). Rather, high-frequency stretching modes tend to be localized, whereas low-frequency skeletal vibrations remain normal. On the basis of these coordinates, we introduce two new vibrational structure methods: optimized-coordinate VSCF (oc-VSCF) and optimized-coordinate vibrational configuration interaction (oc-VCI). For the modes that become localized, oc-VSCF is found to outperform VSCF, whereas, for both classes of modes, oc-VCI exhibits much more rapid convergence than VCI with respect to the rank of excitations. We propose a rational configuration selection for oc-VCI when the optimized coordinates are localized. The use of the optimized coordinates in VCI with this configuration selection scheme reduces the mean absolute errors in the frequencies of the fundamentals and the first overtones

  10. Effective harmonic oscillator description of anharmonic molecular vibrations

    Indian Academy of Sciences (India)

    Tapta Kanchan Roy; M Durga Prasad

    2009-09-01

    The validity of an effective harmonic oscillator approximation for anharmonic molecular vibrations is tested and compared with vibrational self consistent field and vibrational configurational interaction results. The effective harmonic oscillator is constructed variationally, by taking the trial wave function as a harmonic oscillator eigenfunction with the centroid and width parameter as variational paraeters. It is found that the effective harmonic oscillator approximation provides a description of the anharmonic eigenstates very similar to the vibrational self consistent field results. Coriolis coupling is also included in these studies.

  11. Phenomenological anharmonic vibrational models description for the ground state band energies of even-even nuclei

    CERN Document Server

    Mansour, N A

    2003-01-01

    The results from the cubic polynomial (CP) formula of the square of the angular velocity and the nuclear moments of inertia are compared with those from the variable moment of inertia (VMI) model and the available experimental information on transition energies for yrast line in even-even nuclei. The evaluated model parameters lead to an excellent fit for all energy levels ( I approx 24). The calculated critical spin for backbending in the zeta - omega sup 2 plot is found to be in agreement with the experimental data. (author)

  12. Solvent effect on the anharmonic vibrational frequencies in guanine-cytosine base pair

    Science.gov (United States)

    Bende, A.; Muntean, C. M.

    2012-02-01

    We present an ab initio study of the vibrational properties of cytosine and guanine in the Watson-Crick and Hoogsteen base pair configurations. The results are obtained by considering the DFT method together with the Polarizable Continuum Model (PCM) using PBE and B3PW91 exchange-correlation functionals and triple-ζ valence basis set. We investigate the importance of anharmonic corrections for the vibrational modes taking into account the solvent effect of the water environment. In particular, the unusual anharmonic effect of the H+ vibration in the case of the Hoogsteen base pair configuration is discussed.

  13. Transition from the Seniority to the Anharmonic Vibrator Regime in Nuclei

    CERN Document Server

    Bijker, R; Pittel, S

    1996-01-01

    A recent analysis of experimental energy systematics suggests that all collective nuclei fall into one of three classes -- seniority, anharmonic vibrational, or rotational -- with sharp phase transitions between them. We investigate the transition from the seniority to the anharmonic vibrator regime within a shell model framework involving a single large j-orbit. The calculations qualitatively reproduce the observed transitional behavior, both for U(5) like and O(6) like nuclei. They also confirm the preeminent role played by the neutron-proton interaction in producing the phase transition.

  14. Vibrational Spectra of the Azabenzenes Revisited: Anharmonic Force Fields

    CERN Document Server

    Boese, A D; Martin, Jan M.L.

    2003-01-01

    Anharmonic force fields and vibrational spectra of the azabenzene series (pyridine, pyridazine, pyrimidine, pyrazine, s-triazine, 1,2,3-triazine, 1,2,4-triazine and s-tetrazine) and benzene are obtained using density functional theory (DFT) with the B97-1 exchange-correlation functional and a triple-zeta plus double polarization (TZ2P) basis set. Overall, the fundamental frequencies computed by second-order rovibrational perturbation theory are in excellent agreement with experiment. The resolution of the presently calculated anharmonic spectra is such that they represent an extremely useful tool for the assignment and interpretation of the experimental spectra, especially where resonances are involved.

  15. Probing anharmonic properties of nuclear surface vibration by heavy-ion fusion reactions

    OpenAIRE

    Takigawa, N.; Hagino, K.; Kuyucak, S

    1997-01-01

    Describing fusion reactions between ^{16}O and ^{154}Dy and, between ^{16}O and ^{144}Sm by the $sd-$ and $sdf-$ interacting boson model, we show that heavy-ion fusion reactions are strongly affected by anharmonic properties of nuclear surface vibrations and nuclear shape, and thus provide a powerful method to study details of nuclear structure and dynamics.

  16. Vibration-translation energy transfer in anharmonic diatomic molecules. II - The vibrational quantum-number dependence

    Science.gov (United States)

    Mckenzie, R. L.

    1976-01-01

    A semiclassical model of the inelastic collision between a vibrationally excited anharmonic oscillator and a structureless atom is used to predict the variation of thermally averaged vibrational-translational rate coefficients with temperature and initial-state quantum number. Multiple oscillator states are included in a numerical solution for collinear encounters. The results are compared with CO-He experimental values for both ground and excited initial states using several simplified forms of the interaction potential. The numerical model is also used as a basis for evaluating several less complete, but analytic, models. Two computationally simple analytic approximations are found that successfully reproduce the numerical rate coefficients for a wide range of molecular properties and collision partners. Their limitations are identified, and the relative rates of multiple-quantum transitions from excited states are evaluated for several molecular types.

  17. Vibration-translation energy transfer in anharmonic diatomic molecules. 2: The vibrational quantum number dependence

    Science.gov (United States)

    Mckenzie, R. L.

    1975-01-01

    A semiclassical model of the inelastic collision between a vibrationally excited anharmonic oscillator and a structureless atom was used to predict the variation of thermally averaged vibration-translation rate coefficients with temperature and initial-state quantum number. Multiple oscillator states were included in a numerical solution for collinear encounters. The results are compared with CO-He experimental values for both ground and excited initial states using several simplified forms of the interaction potential. The numerical model was also used as a basis for evaluating several less complete but analytic models. Two computationally simple analytic approximations were found that successfully reproduced the numerical rate coefficients for a wide range of molecular properties and collision partners. Their limitations were also identified. The relative rates of multiple-quantum transitions from excited states were evaluated for several molecular types.

  18. On the benefits of localized modes in anharmonic vibrational calculations for small molecules.

    Science.gov (United States)

    Panek, Paweł T; Jacob, Christoph R

    2016-04-28

    Anharmonic vibrational calculations can already be computationally demanding for relatively small molecules. The main bottlenecks lie in the construction of the potential energy surface and in the size of the excitation space in the vibrational configuration interaction (VCI) calculations. To address these challenges, we use localized-mode coordinates to construct potential energy surfaces and perform vibrational self-consistent field and L-VCI calculations [P. T. Panek and C. R. Jacob, ChemPhysChem 15, 3365 (2014)] for all vibrational modes of two prototypical test cases, the ethene and furan molecules. We find that the mutual coupling between modes is reduced when switching from normal-mode coordinates to localized-mode coordinates. When using such localized-mode coordinates, we observe a faster convergence of the n-mode expansion of the potential energy surface. This makes it possible to neglect higher-order contributions in the n-mode expansion of the potential energy surface or to approximate higher-order contributions in hybrid potential energy surfaces, which reduced the computational effort for the construction of the anharmonic potential energy surface significantly. Moreover, we find that when using localized-mode coordinates, the convergence with respect to the VCI excitation space proceeds more smoothly and that the error at low orders is reduced significantly. This makes it possible to devise low-cost models for obtaining a first approximation of anharmonic corrections. This demonstrates that the use of localized-mode coordinates can be beneficial already in anharmonic vibrational calculations of small molecules and provides a possible avenue for enabling such accurate calculations also for larger molecules. PMID:27131535

  19. On the benefits of localized modes in anharmonic vibrational calculations for small molecules

    Science.gov (United States)

    Panek, Paweł T.; Jacob, Christoph R.

    2016-04-01

    Anharmonic vibrational calculations can already be computationally demanding for relatively small molecules. The main bottlenecks lie in the construction of the potential energy surface and in the size of the excitation space in the vibrational configuration interaction (VCI) calculations. To address these challenges, we use localized-mode coordinates to construct potential energy surfaces and perform vibrational self-consistent field and L-VCI calculations [P. T. Panek and C. R. Jacob, ChemPhysChem 15, 3365 (2014)] for all vibrational modes of two prototypical test cases, the ethene and furan molecules. We find that the mutual coupling between modes is reduced when switching from normal-mode coordinates to localized-mode coordinates. When using such localized-mode coordinates, we observe a faster convergence of the n-mode expansion of the potential energy surface. This makes it possible to neglect higher-order contributions in the n-mode expansion of the potential energy surface or to approximate higher-order contributions in hybrid potential energy surfaces, which reduced the computational effort for the construction of the anharmonic potential energy surface significantly. Moreover, we find that when using localized-mode coordinates, the convergence with respect to the VCI excitation space proceeds more smoothly and that the error at low orders is reduced significantly. This makes it possible to devise low-cost models for obtaining a first approximation of anharmonic corrections. This demonstrates that the use of localized-mode coordinates can be beneficial already in anharmonic vibrational calculations of small molecules and provides a possible avenue for enabling such accurate calculations also for larger molecules.

  20. Vibrational anharmonicity of small gold and silver clusters using the VSCF method.

    Science.gov (United States)

    Mancera, Luis A; Benoit, David M

    2016-01-01

    We study the vibrational spectra of small neutral gold (Au2-Au10) and silver (Ag2-Au5) clusters using the vibrational self-consistent field method (VSCF) in order to account for anharmonicity. We report harmonic, VSCF, and correlation-corrected VSCF calculations obtained using a vibrational configuration interaction approach (VSCF/VCI). Our implementation of the method is based on an efficient calculation of the potential energy surfaces (PES), using periodic density functional theory (DFT) with a plane-wave pseudopotential basis. In some cases, we use an efficient technique (fast-VSCF) assisted by the Voter-Chen potential in order to get an efficient reduction of the number of pair-couplings between modes. This allows us to efficiently reduce the computing time of 2D-PES without degrading the accuracy. We found that anharmonicity of the gold clusters is very small with maximum rms deviations of about 1 cm(-1), although for some particular modes anharmonicity reaches values slightly larger than 2 cm(-1). Silver clusters show slightly larger anharmonicity. In both cases, large differences between calculated and experimental vibrational frequencies (when available) stem more likely from the quality of the electronic structure method used than from vibrational anharmonicity. We show that noble gas embedding often affects the vibrational properties of these clusters more than anharmonicity, and discuss our results in the context of experimental studies. PMID:26619274

  1. Anharmonic contributions to the inversion vibration in 2-aminopyrimidine

    Science.gov (United States)

    McCarthy, W. J.; Lapinski, L.; Nowak, M. J.; Adamowicz, L.

    1995-07-01

    The out-of-plane vibrations of the amino group in 2-aminopyrimidine have large amplitudes, and cannot be properly described within the harmonic approximation. The normal mode analysis carried out at this level of approximation at the restricted Hartree-Fock level and at the second-order Møller-Plesset perturbation theory level failed to match the experimental transition frequency of ν≊200 cm-1 of the inversion vibration in this compound. In an effort to better understand this vibration motion, we went beyond the harmonic approximation. The inversion vibration was treated as being uncoupled from all other nuclear degrees of freedom. An internal coordinate (ω) was chosen whose displacement mimicked the out-of-plane distortion of the amino group during the inversion vibration. Electronic energy was calculated at the second-order Møller-Plesset perturbation theory level at selected values of ω to form a double-well curve describing a model potential within which the nuclei move during the vibration. This potential was incorporated into a one-dimensional Hamiltonian, and vibrational energy expectation values were variationally determined by utilizing the harmonic wavefunctions as the basis set. Two sets of calculations were performed: one in which the mirror plane of symmetry was preserved throughout the vibrational deformation limiting the internal coordinates to 17, and another in which the symmetry was unconstrained permitting description by 3N-6=30 internal coordinates. These calculations resulted in prediction of the v=0→v=1 transition energy of ν=130.1 cm-1 and ν=206.7 cm-1, respectively, reasonably matching the experimental value of ≊200 cm-1.

  2. Anharmonic contributions to the inversion vibration in 2-aminopyrimidine

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, W.J. [Department of Chemistry, University of Arizona, Tucson, Arizona 85721 (United States); Lapinski, L.; Nowak, M.J. [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668, Warsaw (Poland); Adamowicz, L. [Department of Chemistry, University of Arizona, Tucson, Arizona 85721 (United States)

    1995-07-08

    The out-of-plane vibrations of the amino group in 2-aminopyrimidine have large amplitudes, and cannot be properly described within the harmonic approximation. The normal mode analysis carried out at this level of approximation at the restricted Hartree--Fock level and at the second-order Moller--Plesset perturbation theory level failed to match the experimental transition frequency of {nu}{approx}200 cm{sup {minus}1} of the inversion vibration in this compound. In an effort to better understand this vibration motion, we went beyond the harmonic approximation. The inversion vibration was treated as being uncoupled from all other nuclear degrees of freedom. An internal coordinate ({omega}) was chosen whose displacement mimicked the out-of-plane distortion of the amino group during the inversion vibration. Electronic energy was calculated at the second-order Moller--Plesset perturbation theory level at selected values of {omega} to form a double-well curve describing a model potential within which the nuclei move during the vibration. This potential was incorporated into a one-dimensional Hamiltonian, and vibrational energy expectation values were variationally determined by utilizing the harmonic wavefunctions as the basis set. Two sets of calculations were performed: one in which the mirror plane of symmetry was preserved throughout the vibrational deformation limiting the internal coordinates to 17, and another in which the symmetry was unconstrained permitting description by 3{ital N}{minus}6=30 internal coordinates. These calculations resulted in prediction of the {ital v}=0{r_arrow}{ital v}=1 transition energy of {nu}=130.1 cm{sup {minus}1} and {nu}=206.7 cm{sup {minus}1}, respectively, reasonably matching the experimental value of {approx}200 cm{sup {minus}1}. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  3. Numerical calculation of vibrational transition probability for the forced morse oscillator by use of the anharmonic boson operators

    International Nuclear Information System (INIS)

    The vibrational transition probability expressions for the forced Morse oscillator have been derived using the commutation relations of the anharmonic Boson operators. The formulation is based on the collinear collision model with the exponential repulsive potential in the framework of semiclassical collision dynamics. The sample calculation results for H2 + He collision system, where the anharmonicity is large, are in excellent agreement with those from an exact, numerical quantum mechanical study by Clark and Dickinson, using the reactance matrix. Our results,however, are markedly different from those of Ree, Kim, and Shin's in which they approximate the commutation operator Io as unity, the harmonic oscillator limit. We have concluded that the quantum number dependence in Io must be retained to get accurate vibrational transition probabilities for the Morse oscillator

  4. Theoretical study of anharmonicity in the vibrational spectrum of the perfluorocyclopropenyl cation

    Science.gov (United States)

    Xie, Yaoming; Boggs, James E.

    1989-07-01

    Complete theoretical calculations for the structure, anharmonic force field up to partial sixth order, and anharmonic vibrational frequencies of C3F+3 have been carried out. The procedure included ab initio calculation of the vibrational potential-energy surface at the 6-311G plus double polarization plus local MP4(SDQ) level, followed by a complete, 12-mode variational solution of the vibrational Schrödinger equation using a configuration-interaction (CI) expansion from a large, well-selected harmonic oscillator basis. The geometric parameters of C3F+3 (D3h) were optimized as 1.3796 Å for the CC bond lengths and 1.2615 Å for the CF distances. Localized orbitals show strong π-bond character for the CF linkages, conjugated with the ring π orbital. The fundamental vibrational frequencies of C3F+3 are 1999.5, 742.8 (a'1); 767.3 (a2); 1596.9, 998.9, 271.3 (e'); 250.0 (a`2); and 664.1 (e`). These frequencies agree with condensed phase measurements of Raman and infrared spectra with a ±11.5 cm-1 average deviation, the largest difference appearing for the CF bending and wagging frequencies. The first vibrational overtone frequencies of C3F+3 are also predicted. This completely ab initio calculation of anharmonic frequencies also leads to detailed bond characterization and full information on all intermode interactions.

  5. Application of scaling theory to vibrational relaxation in linear anharmonic triatomic molecules

    Science.gov (United States)

    Clary, D. C.; DePristo, Andrew E.

    1983-09-01

    The energy-corrected-sudden (ECS) scaling theory is extended to vibrational relaxation in the collisions of anharmonic linear triatomic molecules with atoms. Application is made to the collisions of He atoms with 12C 16O2, 14C 16O2, and 12C 18O2. By combining the rate constants for the (0110 → 0000) transitions, calculated using the vibrational close-coupling rotational infinite-order-sudden (VCC-IOS) method, with the ECS scaling theory, we predict rate constants for the transitions (1000 → 0110), (0220 → 0110) and (0200 → 0110). These agree very well with the rate constants computed directly using the VCC-IOS technique. This comparison presents a particularly severe test of the accuracy of the ECS scaling theory for anharmonic polyatomics since Fermi resonance effects are large for the 1000 and 0200 levels in CO2.

  6. Structure, Anharmonic Vibrational Frequencies, and Intensities of NNHNN(+).

    Science.gov (United States)

    Yu, Qi; Bowman, Joel M; Fortenberry, Ryan C; Mancini, John S; Lee, Timothy J; Crawford, T Daniel; Klemperer, William; Francisco, Joseph S

    2015-11-25

    A semiglobal potential energy surface (PES) and quartic force field (QFF) based on fitting high-level electronic structure energies are presented to describe the structures and spectroscopic properties of NNHNN(+). The equilibrium structure of NNHNN(+) is linear with the proton equidistant between the two nitrogen groups and thus of D(∞h) symmetry. Vibrational second-order perturbation theory (VPT2) calculations based on the QFF fails to describe the proton "rattle" motion, i.e., the antisymmetric proton stretch, due to the very flat nature of PES around the global minimum but performs properly for other modes with sharper potential wells. Vibrational self-consistent field/virtual state configuration interaction (VSCF/VCI) calculations using a version of MULTIMODE without angular momentum terms successfully describe this motion and predict the fundamental to be at 759 cm(-1). This is in good agreement with the value of 746 cm(-1) from a fixed-node diffusion Monte Carlo calculation and the experimental Ar-tagged result of 743 cm(-1). Other VSCF/VCI energies are in good agreement with other experimentally reported ones. Both double-harmonic intensity and rigorous MULTIMODE intensity calculations show the proton-transfer fundamental has strong intensity. PMID:26529262

  7. On the benefits of localized modes in anharmonic vibrational calculations for small molecules

    CERN Document Server

    Panek, Pawel T

    2016-01-01

    Anharmonic vibrational calculations can already be computationally demanding for relatively small molecules. The main bottlenecks lie in the construction of the potential energy surface and in the size of the excitation space in the vibrational configuration interaction (VCI) calculations. To address these challanges, we use localized-mode coordinates to construct potential energy surfaces and perform vibrational self-consistent field (L-VSCF) and L-VCI calculations [P. T. Panek, Ch. R. Jacob, ChemPhysChem 15, 3365 (2014)] for all vibrational modes of two prototypical test cases, the ethene and furan molecules. We find that the mutual coupling between modes is reduced when switching from normal-mode coordinates to localized-mode coordinates. When using such localized-mode coordinates, we observe a faster convergence of the $n$-mode expansion of the potential energy surface. This makes it possible to neglect higher-order contributions in the $n$-mode expansion of the potential energy surface or to approximate ...

  8. Anharmonicities and coherent vibrational dynamics of phosphate ions in bulk H2O.

    Science.gov (United States)

    Costard, Rene; Tyborski, Tobias; Fingerhut, Benjamin P

    2015-11-28

    Phosphates feature prominently in the energetics of metabolism and are important solvation sites of DNA and phospholipids. Here we investigate the ion H2PO4(-) in aqueous solution combining 2D IR spectroscopy of phosphate stretching vibrations in the range from 900-1300 cm(-1) with ab initio calculations and hybrid quantum-classical molecular dynamics based simulations of the non-linear signal. While the line shapes of diagonal peaks reveal ultrafast frequency fluctuations on a sub-100 fs timescale caused by the fluctuating hydration shell, an analysis of the diagonal and cross-peak frequency positions allows for extracting inter-mode couplings and anharmonicities of 5-10 cm(-1). The excitation with spectrally broad pulses generates a coherent superposition of symmetric and asymmetric PO2(-) stretching modes resulting in the observation of a quantum beat in aqueous solution. We follow its time evolution through the time-dependent amplitude and the shape of the cross peaks. The results provide a complete characterization of the H2PO4(-) vibrational Hamiltonian including fluctuations induced by the native water environment. PMID:26488541

  9. Phonon-state mixing in the lowest two $I^{\\pi}=2^+$ states of anharmonic vibration nuclei

    CERN Document Server

    Qin, Z Z

    2016-01-01

    The phonon-configuration mixing in $2^+_1$ and $2^+_2$ states beyond the anharmonic-vibration collectivity explains the universal correlations of $Q(2^+_1)=-Q(2^+_2)$. It also suggests another strong magnetic-moment correlation of $\\mu(2^+_1)=\\mu(2^+_2)$ for the anharmonic-vibration nuclei, which is further confirmed by our experimental-data survey. The global relation between $|Q(2^+)|$, $E_{2^+_1}$ and $E_{2^+_2}$ is analytically established according to the phonon-configuration mixing scheme, and roughly agrees with experiments. This relation may provide a convenient estimation of $|Q(2^+)|$ only with spectral input. The $N_pN_n$ scheme suggests that the phonon-configuration mixing may be driven by the neutron-proton interaction.

  10. Catalytic mechanism of LENR in quasicrystals based on localized anharmonic vibrations and phasons

    CERN Document Server

    Dubinko, Volodymyr; Irwin, Klee

    2016-01-01

    Quasicrystals (QCs) are a novel form of matter, which are neither crystalline nor amorphous. Among many surprising properties of QCs is their high catalytic activity. We propose a mechanism explaining this peculiarity based on unusual dynamics of atoms at special sites in QCs, namely, localized anharmonic vibrations (LAVs) and phasons. In the former case, one deals with a large amplitude (~ fractions of an angstrom) time-periodic oscillations of a small group of atoms around their stable positions in the lattice, known also as discrete breathers, which can be excited in regular crystals as well as in QCs. On the other hand, phasons are a specific property of QCs, which are represented by very large amplitude (~angstrom) oscillations of atoms be-tween two quasi-stable positions determined by the geometry of a QC. Large amplitude atomic motion in LAVs and phasons results in time-periodic driving of adjacent potential wells occupied by hydrogen ions (protons or deuterons) in case of hydrogenated QCs. This drivin...

  11. Thermoelectric materials: The anharmonicity blacksmith

    Science.gov (United States)

    Heremans, Joseph P.

    2015-12-01

    Anharmonicity is a property of lattice vibrations governing how they interact and how well they conduct heat. Experiments on tin selenide, the most efficient thermoelectric material known, now provide a link between anharmonicity and electronic orbitals.

  12. Anharmonic force field and vibrational dynamics of CH2F2 up to 5000 cm(-1) studied by Fourier transform infrared spectroscopy and state-of-the-art ab initio calculations.

    Science.gov (United States)

    Tasinato, Nicola; Regini, Giorgia; Stoppa, Paolo; Pietropolli Charmet, Andrea; Gambi, Alberto

    2012-06-01

    Difluoromethane (CH(2)F(2), HFC-32) is a molecule used in refrigerant mixtures as a replacement of the more environmentally hazardous, ozone depleting, chlorofluorocarbons. On the other hand, presenting strong vibration-rotation bands in the 9 μm atmospheric window, it is a greenhouse gas which contributes to global warming. In the present work, the vibrational and ro-vibrational properties of CH(2)F(2), providing basic data for its atmospheric modeling, are studied in detail by coupling medium resolution Fourier transform infrared spectroscopy to high-level electronic structure ab initio calculations. Experimentally a full quantum assignment and accurate integrated absorption cross sections are obtained up to 5000 cm(-1). Ab initio calculations are carried out by using CCSD(T) theory and large basis sets of either the correlation consistent or atomic natural orbital hierarchies. By using vibrational perturbation theory to second order a complete set of vibrational and ro-vibrational parameters is derived from the ab initio quartic anharmonic force fields, which well compares with the spectroscopic constants retrieved experimentally. An excellent agreement between theory and experiment is achieved for vibrational energy levels and integrated absorption cross sections: transition frequencies up to four quanta of vibrational excitation are reproduced with a root mean square deviation (RMSD) of 7 cm(-1) while intensities are predicted within few km mol(-1) from the experiment. Basis set performances and core correlation effects are discussed throughout the paper. Particular attention is focused in the understanding of the anharmonic couplings which rule the vibrational dynamics of the |ν(1)>, |2ν(8)>, |2ν(2)> three levels interacting system. The reliability of the potential energy and dipole moment surfaces in reproducing the vibrational eigenvalues and intensities as well as in modeling the vibrational and ro-vibrational mixings over the whole 400-5000 cm(-1

  13. Third-order elastic constants, vibrational anharmonicity, and the Invar behavior of the Fe72Pt28 alloy

    Science.gov (United States)

    Saunders, G. A.; Senin, H. B.; Sidek, H. A. A.; Pelzl, J.

    1993-12-01

    In the ferromagnetic state the alloy Fe72Pt28 shows strong Invar effects governed by magnetoelastic interactions, including a negative hydrostatic pressure dependence of the bulk modulus: it becomes easier to squeeze under pressure. This remarkable behavior has prompted study of its nonlinear acoustic properties by determining its third-order elastic stiffness tensor components (TOEC) from measurements of the influence of uniaxial stress on the velocities of ultrasonic waves between 230 and 370 K, covering the range in which Fe72Pt28 has a negative thermal expansion, a property central to the Invar behavior. To obtain complete sets of the TOEC from 230 K up to the Curie point (367 K), the results have been combined with data for the hydrostatic pressure dependences of ultrasonic wave velocities. The TOEC quantify the first-order anharmonic terms in the interatomic potential and hence the long-wavelength acoustic phonon anharmonicities which are central to the Invar properties of this alloy. The tensor components C111, C112, and C123 are anomalously positive, in accord with the negative values previously determined for the hydrostatic pressure derivatives (∂C11/∂P)T,P=0 and (∂BS/∂P)T,P=0. Thus, the large stress-induced longitudinal-acoustic-mode softening in the ferromagnetic phase is confirmed, reinforcing the suggestion that the vibrational anharmonicities of the longitudinal acoustic modes, which have large negative mode Grüneisen parameters, play an important part in causing the thermal expansion of Fe72Pt28 to be negative.

  14. PT-Symmetric Cubic Anharmonic Oscillator as a Physical Model

    CERN Document Server

    Mostafazadeh, A

    2004-01-01

    We perform a perturbative calculation of the physical observables, in particular pseudo-Hermitian position and momentum operators, the equivalent Hermitian Hamiltonian operator, and the classical Hamiltonian for the PT-symmetric cubic anharmonic oscillator, $ H=p^1/(2m)+\\mu^2x^2/2+i\\epsilon x^3 $. Ignoring terms of order $ \\epsilon^4 $ and higher, we show that this system describes an ordinary quartic anharmonic oscillator with a position-dependent mass and real and positive coupling constants. This observation elucidates the classical origin of the reality and positivity of the energy spectrum. We also discuss the quantum-classical correspondence for this PT-symmetric system, compute the associated conserved probability density, and comment on the issue of factor-ordering in the pseudo-Hermitian canonical quantization of the underlying classical system.

  15. Systematic studies of molecular vibrational anharmonicity and vibration-rotation interaction by self-consistent-field higher derivative methods: Applications to asymmetric and symmetric top and linear polyatomic molecules

    International Nuclear Information System (INIS)

    Inclusion of the anharmonicity normal mode vibrations [i.e., the third and fourth (and higher) derivatives of a molecular Born-Oppenheimer potential energy surface] is necessary in order to theoretically reproduce experimental fundamental vibrational frequencies of a molecule. Although ab initio determinations of harmonic vibrational frequencies may give errors of only a few percent by the inclusion of electron correlation within a large basis set for small molecules, in general, molecular fundamental vibrational frequencies are more often available from high resolution vibration-rotation spectra. Recently developed analytic third derivatives methods for self-consistent-field (SCF) wavefunctions have made it possible to examine with previously unavailable accuracy and computational efficiency the anharmonic force fields of small molecules

  16. Vibrational properties and phonon anharmonicity in ZnS{sub 1−x}Se{sub x}: Inelastic neutron scattering, Raman scattering, X-ray diffraction measurements and lattice dynamical studies

    Energy Technology Data Exchange (ETDEWEB)

    Basak, Tista, E-mail: tistabasak1@gmail.com [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra (India); Rao, Mala N.; Chaplot, S.L.; Salke, Nilesh; Rao, Rekha [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra (India); Dhanasekaran, R. [Crystal Growth Centre, Anna University, SP Road, Chennai 600025 (India); Rajarajan, A.K. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra (India); Rols, S. [Institut Laue-Langevin, BP 156, 38042 Grenoble Cedex 9, Grenoble (France); Mittal, R.; Jayakrishnan, V.B.; Sastry, P.U. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra (India)

    2014-01-15

    Inelastic neutron scattering, Raman and X-ray diffraction measurements coupled with lattice dynamical calculations (employing a semi-empirical transferable potential model) have been carried out to gain a detailed understanding of the peculiar vibrational spectrum exhibited by the mixed crystal ZnS{sub 1−x}Se{sub x}. Raman scattering measurements performed over a varying range of temperature (100–800 K) and pressure (up to 13 GPa) have confirmed that the additional mode observed in the spectra are visible over the entire range of temperature and pressure. Correlation of the individual motions of atoms (obtained from computed total and partial phonon density of states) with the inelastic neutron scattering measurements (carried out over the entire Brillouin zone) have then indicated that the existence of the additional mode in ZnS{sub 1−x}Se{sub x} is due to the vibrations of the Se atom being in resonance with that of the S atom. Further, it has been shown that the presence of this additional mode can be tuned by varying the mass of the atom at the Se site. In addition, an analysis of bond-length distribution with increasing Se concentration have elucidated that bond-length spread is not responsible for the presence of the additional mode. An analysis of the peak shifts of the Raman modes with temperature and pressure indicate that the anharmonicity of the vibrational modes increases with increasing compositional disorder. This is attributed to the fact that increasing Se concentration gives rise to a distribution of bond-lengths in ZnS{sub 1−x}Se{sub x}, which is responsible for this compositional disorder induced anharmonicity. Our computations have thus revealed that mass of the anion is responsible for the presence of additional mode while bond-length distribution gives rise to the existence of compositional disorder induced anharmonicity in ZnS{sub 1−x}Se{sub x}. Further, it is observed that the contribution of explicit anharmonicity to the total

  17. Anharmonic Vibrational Treatment Exclusively in Curvilinear Valence Coordinates: The Case of Formamide.

    Science.gov (United States)

    Richter, F; Thaunay, F; Lauvergnat, D; Carbonnière, P

    2015-12-01

    A highly correlated approach using curvilinear valence coordinates is applied to calculate the vibrational fundamentals and some combination modes of the formamide molecule with high accuracy. A series of potential energy surfaces (PESs) has been generated by AGAPES, a program for adaptive generation of adiabatic PESs, at various electronic structure qualities until excellent nonaccidental agreement with the experimentally assigned fundamental transitions was reached at the CCSDT(T)-F12a/aug-cc-pVTZ level of theory using the improved relaxation method of the Heidelberg multiconfiguration time-dependent Hartree (MCTDH) package in connection with an exact expression for the kinetic energy in valence coordinates generated by the TANA program. By comparison of the overtone series ν1-3ν1 to experiment, we demonstrate that the known problems concerning the floppy ν1 wagging motion are solved within this approach. The potential energy coupling as well as the vibrational coupling in curvilinear coordinates is discussed together with the efficiency of this approach.

  18. Anharmonic vibrations around a triaxial nuclear deformation “frozen” to γ = 30°

    Energy Technology Data Exchange (ETDEWEB)

    Buganu, Petrica, E-mail: buganu@theory.nipne.ro; Budaca, Radu [Department of Theoretical Physics, National Institute of Physics and Nuclear Engineering, Str. Reactorului 30, RO-077125, POB-MG6, Bucharest-Magurele (Romania)

    2015-12-07

    The Davydov-Chaban Hamiltonian with a sextic oscillator potential for the variable β and γ fixed to 30° is exactly solved for the ground and β bands and approximately for the γ band. The model is called Z(4)-Sextic in connection with the already established Z(4) solution. The energy spectra, normalized to the energy of the first excited state, and several B(E2) transition probabilities, normalized to the B(E2) transition from the first excited state to the ground state, depend on a single parameter α. By varying α within a sufficiently large interval, a shape phase transition from an approximately spherical shape to a deformed one is evidenced.

  19. Predicting the structure and vibrational frequencies of ethylene using harmonic and anharmonic approaches at the Kohn-Sham complete basis set limit.

    Science.gov (United States)

    Buczek, Aneta; Kupka, Teobald; Broda, Małgorzata A; Żyła, Adriana

    2016-01-01

    In this work, regular convergence patterns of the structural, harmonic, and VPT2-calculated anharmonic vibrational parameters of ethylene towards the Kohn-Sham complete basis set (KS CBS) limit are demonstrated for the first time. The performance of the VPT2 scheme implemented using density functional theory (DFT-BLYP and DFT-B3LYP) in combination with two Pople basis sets (6-311++G** and 6-311++G(3df,2pd)), the polarization-consistent basis sets pc-n, aug-pc-n, and pcseg-n (n = 0, 1, 2, 3, 4), and the correlation-consistent basis sets cc-pVXZ and aug-cc-pVXZ (X = D, T, Q, 5, 6) was tested.The BLYP-calculated harmonic frequencies were found to be markedly closer than the B3LYP-calculated harmonic frequencies to the experimentally derived values, while the calculated anharmonic frequencies consistently underestimated the observed wavenumbers. The different basis set families gave very similar estimated values for the CBS parameters. The anharmonic frequencies calculated with B3LYP/aug-pc-3 were consistently significantly higher than those obtained with the pc-3 basis set; applying the aug-pcseg-n basis set family alleviated this problem. Utilization of B3LYP/aug-pcseg-n basis sets instead of B3LYP/aug-cc-pVXZ, which is computationally less expensive, is suggested for medium-sized molecules. Harmonic BLYP/pc-2 calculations produced fairly accurate ethylene frequencies. Graphical Abstract In this study, the performance of the VPT2 scheme implemented using density functional theory (DFT-BLYP and DFT-B3LYP) in combination with the polarization-consistent basis sets pc-n, aug-pc-n, and pcseg-n (n = 0, 1, 2, 3, 4), and the correlation-consistent basis sets cc-pVXZ and aug-cc-pVXZ (X = D, T, Q, 5, and 6) was tested. For the first time, we demonstrated regular convergence patterns of the structural, harmonic, and VPT2-calculated anharmonic vibrational parameters of ethylene towards the Kohn-Sham complete basis set (KS CBS) limit.

  20. The theoretical-cum-statistical approach for the investigation of reaction NO2 + O(3P) → NO + O2 using SCTST and a full anharmonic VPT2 model

    Science.gov (United States)

    Shiekh, Bilal Ahmad; Kaur, Damanjit; Seth, Bharti; Mahajan, Shalagha

    2016-10-01

    The study of the titled reaction has been carried out using high-level quantum mechanics in conjugation with SCTST and VPT2 model. The many quantum mechanical methods have been employed in combinatory approach to find out the various properties such as energy, anharmonic vibrational coefficients and ro-vibrational parameters for the stationary points including the transition state of the reaction. Then the thermal rate coefficients were computed over a temperature regime of 150-1500 K and the corresponding results were compared with the available literature. In this temperature regime, our computed results are in excellent contrast with the experiment.

  1. The vibration states of the Skyrme model

    International Nuclear Information System (INIS)

    In the paper an algebraic method for the construction of the collective Hamiltonian of the Skyrme model is treated. The Skyrme model has some phenomenological success in describing the static properties of nucleon and their interactions. The vibration spectra in the framework of the subgroup SU(5) have been discussed. Exploiting the related symmetry group it is possible to obtain the simple analytic expressions for the eigenvalues of boson Hamiltonian and for intraband transition matrix elements as well as for side feeding from one band to the other. Back-bending occurs naturally as the crossing of two bands and it can be predicted from the relative spacing of the low excited states. The algebraic properties of collective variables lead to a new quantum number N which implies in the boson representation the maximum number of phonons contained in vibrational states. Because the boson-boson interaction in SU(5) invariant Hamiltonian splits the degeneracy of the multiplets, this limits describes an anharmonic vibrator. It should be noted, we describe finite dimensional system in contrast with the geometrical description in which N→∞. It is worth noting that the knowledge of the invariance properties of Hamiltonian provides directly a solution to the eigenvalue problem. The transformation into intrinsic frame of reference has been performed explicitly. Thus, the formulae for the potential energy, the quadrupole moments are obtained as well as the spectroscopic factors for 0+ state excitation in the two nucleon transfer reactions. The proposed collective Hamiltonian is applied to the transformational nuclei Sm, Gd and Dy. The agreement between the experimental data and the theoretical description is good

  2. Generation of discrete superpositions of coherent states in the anharmonic oscillator model

    CERN Document Server

    Miranowicz, A; Kielich, S; 10.1088/0954-8998/2/3/006

    2011-01-01

    The problem of generating discrete superpositions of coherent states in the process of light propagation through a nonlinear Kerr medium, which is modelled by the anharmonic oscillator, is discussed. It is shown that under an appropriate choice of the length (time) of the medium the superpositions with both even and odd numbers of coherent states can appear. Analytical formulae for such superpositions with a few components are given explicitly. General rules governing the process of generating discrete superpositions of coherent states are also given. The maximum number of well distinguished states that can be obtained for a given number of initial photons is estimated. The quasiprobability distribution $Q(\\alpha,\\alpha^*,t)$ representing the superposition states is illustrated graphically, showing regular structures when the component states are well separated.

  3. Anharmonic modeling of the conformation-specific IR spectra of ethyl, n-propyl, and n-butylbenzene

    Science.gov (United States)

    Tabor, Daniel P.; Hewett, Daniel M.; Bocklitz, Sebastian; Korn, Joseph A.; Tomaine, Anthony J.; Ghosh, Arun K.; Zwier, Timothy S.; Sibert, Edwin L.

    2016-06-01

    Conformation-specific UV-IR double resonance spectra are presented for ethyl, n-propyl, and n-butylbenzene. With the aid of a local mode Hamiltonian that includes the effects of stretch-scissor Fermi resonance, the spectra can be accurately modeled for specific conformers. These molecules allow for further development of a first principles method for calculating alkyl stretch spectra. Across all chain lengths, certain dihedral patterns impart particular spectral motifs at the quadratic level. However, the anharmonic contributions are consistent from molecule to molecule and conformer to conformer. This transferability of anharmonicities allows for the Hamiltonian to be constructed from only a harmonic frequency calculation, reducing the cost of the model. The phenyl ring alters the frequencies of the CH2 stretches by about 15 cm-1 compared to their n-alkane counterparts in trans configurations. Conformational changes in the chain can lead to shifts in frequency of up to 30 cm-1.

  4. Langevin model of the temperature and hydration dependence of protein vibrational dynamics.

    Science.gov (United States)

    Moritsugu, Kei; Smith, Jeremy C

    2005-06-23

    The modification of internal vibrational modes in a protein due to intraprotein anharmonicity and solvation effects is determined by performing molecular dynamics (MD) simulations of myoglobin, analyzing them using a Langevin model of the vibrational dynamics and comparing the Langevin results to a harmonic, normal mode model of the protein in vacuum. The diagonal and off-diagonal Langevin friction matrix elements, which model the roughness of the vibrational potential energy surfaces, are determined together with the vibrational potentials of mean force from the MD trajectories at 120 K and 300 K in vacuum and in solution. The frictional properties are found to be describable using simple phenomenological functions of the mode frequency, the accessible surface area, and the intraprotein interaction (the displacement vector overlap of any given mode with the other modes in the protein). The frictional damping of a vibrational mode in vacuum is found to be directly proportional to the intraprotein interaction of the mode, whereas in solution, the friction is proportional to the accessible surface area of the mode. In vacuum, the MD frequencies are lower than those of the normal modes, indicating intramolecular anharmonic broadening of the associated potential energy surfaces. Solvation has the opposite effect, increasing the large-amplitude vibrational frequencies relative to in vacuum and thus vibrationally confining the protein atoms. Frictional damping of the low-frequency modes is highly frequency dependent. In contrast to the damping effect of the solvent, the vibrational frequency increase due to solvation is relatively temperature independent, indicating that it is primarily a structural effect. The MD-derived vibrational dynamic structure factor and density of states are well reproduced by a model in which the Langevin friction and potential of mean force parameters are applied to the harmonic normal modes. PMID:16852503

  5. Mechanical Vibrations Modeling and Measurement

    CERN Document Server

    Schmitz, Tony L

    2012-01-01

    Mechanical Vibrations:Modeling and Measurement describes essential concepts in vibration analysis of mechanical systems. It incorporates the required mathematics, experimental techniques, fundamentals of modal analysis, and beam theory into a unified framework that is written to be accessible to undergraduate students,researchers, and practicing engineers. To unify the various concepts, a single experimental platform is used throughout the text to provide experimental data and evaluation. Engineering drawings for the platform are included in an appendix. Additionally, MATLAB programming solutions are integrated into the content throughout the text. This book also: Discusses model development using frequency response function measurements Presents a clear connection between continuous beam models and finite degree of freedom models Includes MATLAB code to support numerical examples that are integrated into the text narrative Uses mathematics to support vibrations theory and emphasizes the practical significanc...

  6. Spontaneous and stimulated Raman studies of vibrational dephasing in condensed phases

    International Nuclear Information System (INIS)

    Vibrational dephasing in condensed phases is studied from both a theoretical and experimental standpoint. A theory is presented which describes the dynamics of motional or exchange processes in weakly perturbed systems. This general formalism, which has been previously used to describe motional narrowing in magnetic resonance, is applied to vibrational spectroscopy. The model treats the case of a high frequency vibration anharmonically coupled to a low-frequency vibration. Intermolecular exchange of low frequency vibrational quanta results in a temperature dependent broadening and frequency shift of the high frequency vibration. Analysis of experimental data by this model yields both the exchange rates and the anharmonic couplings

  7. Source model for blasting vibration

    Institute of Scientific and Technical Information of China (English)

    DING; Hua(丁桦); ZHENG; Zhemin(郑哲敏)

    2002-01-01

    By analyzing and comparing the experimental data, the point source moment theory and the cavity theory, it is concluded that the vibrating signals away from the blasting explosive come mainly from the natural vibrations of the geological structures near the broken blasting area. The source impulses are not spread mainly by the inelastic properties (such as through media damping, as believed to be the case by many researchers) of the medium in the propagation pass, but by this structure. Then an equivalent source model for the blasting vibrations of a fragmenting blasting is proposed, which shows the important role of the impulse of the source's time function under certain conditions. For the purpose of numerical simulation, the model is realized in FEM, The finite element results are in good agreement with the experimental data.

  8. Anharmonicity effects in Cu-doped ZnO nanocombs by temperature-dependent Raman scattering

    Science.gov (United States)

    Kong, J. F.; Fan, D. H.; Shen, W. Z.

    2016-09-01

    Micro-Raman spectra of E 2(high) phonon mode in Cu-doped ZnO nanocombs have been presented in detail with different Cu compositions under the temperature ranging from 83 to 443 K grown by a simple catalyst-free chemical vapor deposition method. The alloy disorder effect has been investigated by analyzing the asymmetric broadening of E 2(high) phonon mode and Cu-induced localized vibration mode at room temperature. In addition, we resort to a theory model including the lattice thermal expansion and anharmonic phonon-phonon interaction, which can well describe the temperature dependence of Raman shift and linewidth of E 2(high) phonon. In combining with the theory model, we have revealed an increasing anharmonic effect on the Raman shift and linewidth behaviors with increasing Cu composition. Furthermore, it is found that the lifetime of E 2(high) phonon mode shortens with enhancing the anharmonicity.

  9. Breathers in strongly anharmonic lattices.

    Science.gov (United States)

    Rosenau, Philip; Pikovsky, Arkady

    2014-02-01

    We present and study a family of finite amplitude breathers on a genuinely anharmonic Klein-Gordon lattice embedded in a nonlinear site potential. The direct numerical simulations are supported by a quasilinear Schrodinger equation (QLS) derived by averaging out the fast oscillations assuming small, albeit finite, amplitude vibrations. The genuinely anharmonic interlattice forces induce breathers which are strongly localized with tails evanescing at a doubly exponential rate and are either close to a continuum, with discrete effects being suppressed, or close to an anticontinuum state, with discrete effects being enhanced. Whereas the D-QLS breathers appear to be always stable, in general there is a stability threshold which improves with spareness of the lattice.

  10. Anharmonicity and hydrogen bonding in electrooptic sucrose crystal

    Science.gov (United States)

    Szostak, M. M.; Giermańska, J.

    1990-03-01

    The polarized absorption spectra of the sucrose crystal in the 5300 - 7300 cm -1 region have been measured. The assignments of all the eight OH stretching overtones are proposed and their mechanical anharmonicities are estimated. The discrepancies from the oriented gas model (OGM) in the observed relative band intensities, especially of the -CH vibrations, are assumed to be connected with vibronic couplings enhanced by the helical arrangement of molecules joined by hydrogen bondings. It seems that this kind of interactions might be important for the second harmonic generation (SHG) by the sucrose crystal.

  11. On the particular importance of vibrational contributions to the static electrical properties of model linear molecules under spatial confinement.

    Science.gov (United States)

    Zaleśny, Robert; Góra, Robert W; Luis, Josep M; Bartkowiak, Wojciech

    2015-09-14

    The influence of the spatial confinement on the electronic and vibrational contributions to longitudinal electric-dipole properties of model linear molecules including HCN, HCCH and CO2 is discussed. The effect of confinement is represented by two-dimensional harmonic oscillator potential of cylindrical symmetry, which mimics the key features of various types of trapping environments like, for instance, nanotubes or quantum well wires. Our results indicate that in general both (electronic and vibrational) contributions to (hyper)polarizabilities diminish upon spatial confinement. However, since the electronic term is particularly affected, the relative importance of vibrational contributions is larger for confined species. This effect increases also with the degree of anharmonicity of vibrational motion. PMID:26247540

  12. Ground states and excitation spectra of baryons in a non-relativistic model with the anharmonic potential

    International Nuclear Information System (INIS)

    In this work the mass spectra for some of the baryon resonances of the particle data group with three and four star status are obtained, and a unified description of the ground states and excitation spectra of baryons are provided in the framework of a non-relativistic potential model. For this goal we have analytically solved the radial Schroedinger equation for three identical interacting particles with the anharmonic potential by using the Ansatz method and then we have calculated the baryon resonances spectrum by using the Goursey Radicati mass formula (GR) and with generalized Goursey Radicati mass formula (GGR). The results of our model show that the calculated masses of baryon resonances by using the generalized Goursey Radicati mass formula are found to be in good agreement with the tabulations of the Particle Data Group. The overall good description of the spectrum which we obtain shows that our model can also be used to give a fair description of the energies of the excited multiples up to 3 GeV mass and negative-parity resonance. Moreover, we have shown that our model reproduces the position of the Roper resonance of the nucleon. (authors)

  13. Material Model Research on Rubber Vibration Isolators

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A viscohyperelastic constitutive model is proposed to describe the mechanical behaviour of vibration isolation rubber under broad-band vibration. This constitutive model comprises two parts: a component with three parameters to characterize the hyperelastic static properties of rubber materials,and the other component incorporating two relaxation time parameters, corresponding to high and low strain rates, respectively, to describe the dynamic response under vibration and impact loadings. Based on this proposed constitutive model, a series of experiments were performed on two types of rubber materials over a wide strain rate range. The results predicted from this model are in good agreement with the experimental data.

  14. Improvements in a Curvilinear Internal Coordinate Model for the CH Stretching and Bending Vibrations in Trihalomethanes

    Science.gov (United States)

    Kauppi, E.

    1994-10-01

    The interactions between the CH stretching and bending vibrations in CH X3-type symmetric-top molecules have been studied. The previous curvilinear internal coordinate vibrational Hamiltonian (E. Kauppi and L. Halonen, J. Chem. Phys.90, 6980-6992, 1989) has been improved by including contributions arising from the nonlinearity of the redundancy relation between the curvilinear internal coordinates. This affects the anharmonic kinetic energy terms of the pure CH bending Hamiltonian. Vibrational energy levels have been calculated variationally. The model has been applied to data for CHF 3, CHCl 3, CHBr 3, and (CF 3) 3CH. The potential energy parameters have been optimized by a nonlinear least-squares method using vibrational term values as data. In the cases of CHF 3, CHCl 3, and CHBr 3 data for bath 12C and 13C isotopomers have been treated with one set of isotope invariant potential energy parameters. Good fits have been obtained by using five or six adjustable parameters. The values for the quartic bending force constants change considerably from the values obtained by ignoring the nonlinear redundancy contributions.

  15. Alcohol dimers--how much diagonal OH anharmonicity?

    Science.gov (United States)

    Kollipost, Franz; Papendorf, Kim; Lee, Yu-Fang; Lee, Yuan-Pern; Suhm, Martin A

    2014-08-14

    The OH bond of methanol, ethanol and t-butyl alcohol becomes more anharmonic upon hydrogen bonding and the infrared intensity ratio between the overtone and the fundamental transition of the bridging OH stretching mode decreases drastically. FTIR spectroscopy of supersonic slit jet expansions allows to quantify these effects for isolated alcohol dimers, enabling a direct comparison to anharmonic vibrational predictions. The diagonal anharmonicity increase amounts to 15-18%, growing with increasing alkyl substitution. The overtone/fundamental IR intensity ratio, which is on the order of 0.1 or more for isolated alcohols, drops to 0.004-0.001 in the hydrogen-bonded OH group, making overtone detection very challenging. Again, alkyl substitution enhances the intensity suppression. Vibrational second order perturbation theory appears to capture these effects in a semiquantitative way. Harmonic quantum chemistry predictions for the hydrogen bond-induced OH stretching frequency shift (the widely used infrared signature of hydrogen bonding) are insufficient, and diagonal anharmonicity corrections from experiment make the agreement between theory and experiment worse. Inclusion of anharmonic cross terms between hydrogen bond modes and the OH stretching mode is thus essential, as is a high level electronic structure theory. The isolated molecule results are compared to matrix isolation data, complementing earlier studies in N2 and Ar by the more weakly interacting Ne and p-H2 matrices. Matrix effects on the hydrogen bond donor vibration are quantified.

  16. Anomalous dynamical scaling in anharmonic chains and plasma models with multi-particle collisions

    CERN Document Server

    Di Cintio, Pierfrancesco; Bufferand, Hugo; Ciraolo, Guido; Lepri, Stefano; Straka, Mika J

    2015-01-01

    We study the anomalous dynamical scaling of equilibrium correlations in one dimensional systems. Two different models are compared: the Fermi-Pasta-Ulam chain with cubic and quartic nonlinearity and a gas of point particles interacting stochastically through the Multi-Particle Collision dynamics. For both models -that admit three conservation laws- by means of detailed numerical simulations we verify the predictions of Nonlinear Fluctuating Hydrodynamics for the structure factors of density and energy fluctuations at equilibrium. Despite of this, violations of the expected scaling in the currents correlation are found in some regimes, hindering the observation of the asymptotic scaling predicted by the theory. In the case of the gas model this crossover is clearly demonstrated upon changing the coupling constant.

  17. The origin of phonon anharmonicity in MgB{sub 2} and related compounds

    Energy Technology Data Exchange (ETDEWEB)

    Boeri, L [INFM Center for Statistical Mechanics and Complexity and Dipartimento di Fisica, Universita di Roma ' La Sapienza' , Piazzale A. Moro 2, 00185 Rome (Italy); Bachelet, G B [INFM Center for Statistical Mechanics and Complexity and Dipartimento di Fisica, Universita di Roma ' La Sapienza' , Piazzale A. Moro 2, 00185 Rome (Italy); Cappelluti, E [INFM Center for Statistical Mechanics and Complexity and Dipartimento di Fisica, Universita di Roma ' La Sapienza' , Piazzale A. Moro 2, 00185 Rome (Italy); Pietronero, L [INFM Center for Statistical Mechanics and Complexity and Dipartimento di Fisica, Universita di Roma ' La Sapienza' , Piazzale A. Moro 2, 00185 Rome (Italy)

    2003-02-01

    The recent discovery of a superconducting transition at 39 K in MgB{sub 2} - made of alternating Mg and graphene-like B planes - has raised great interest, for both its technological and theoretical implications. It was clear since the very beginning that the properties of this material are related to an anomalous coupling between the charge carriers in the {sigma} bands - due to in-plane bonds between Boron atoms - and the phonon mode (E{sub 2g}) which involves in-plane vibrations of the B ions. Theoretical studies have thus been focused on the search for possible anomalies in the e-ph coupling: one of the first results was the discovery that the E{sub 2g} phonon is highly anharmonic, but the connection between anharmonicity and T{sub c} in this material is still a controversial point. We first present a detailed first-principles study of the E{sub 2g} phonon anharmonicity in MgB{sub 2} and analogous compounds which are not superconducting, AlB{sub 2} and graphite, and in a hypothetical hole-doped graphite (C{sup 2+}{sub 2}); we then introduce an analytical model which allows us to relate the onset of anharmonicity with the small Fermi energy of the carriers in {sigma} bands. Our study suggests a possible relation between anharmonicity and non-adiabaticity; non-adiabatic effects, which can lead to a sensible increase of T{sub c} with respect to values predicted by conventional theory, become in fact relevant when phonon frequencies are comparable to electronic energy scales.

  18. E x circle ε Jahn-Teller anharmonic coupling for an octahedral system

    International Nuclear Information System (INIS)

    The coupling between doubly degenerate electronic states and doubly degenerate vibrations is analyzed for an octahedral system on the basis of the introduction of an anharmonic Morse potential for the vibronic part. The vibrations are described by anharmonic coherent states and their linear coupling with the electronic states is considered. The matrix elements of the vibronic interaction are built and the energy levels corresponding to the interaction Hamiltonian are derived. (authors)

  19. Modelling chaotic vibrations using NASTRAN

    Science.gov (United States)

    Sheerer, T. J.

    1993-09-01

    Due to the unavailability and, later, prohibitive cost of the computational power required, many phenomena in nonlinear dynamic systems have in the past been addressed in terms of linear systems. Linear systems respond to periodic inputs with periodic outputs, and may be characterized in the time domain or in the frequency domain as convenient. Reduction to the frequency domain is frequently desireable to reduce the amount of computation required for solution. Nonlinear systems are only soluble in the time domain, and may exhibit a time history which is extremely sensitive to initial conditions. Such systems are termed chaotic. Dynamic buckling, aeroelasticity, fatigue analysis, control systems and electromechanical actuators are among the areas where chaotic vibrations have been observed. Direct transient analysis over a long time period presents a ready means of simulating the behavior of self-excited or externally excited nonlinear systems for a range of experimental parameters, either to characterize chaotic behavior for development of load spectra, or to define its envelope and preclude its occurrence.

  20. Nonlinear network model analysis of vibrational energy transfer and localisation in the Fenna-Matthews-Olson complex

    CERN Document Server

    Morgan, Sarah E; Chin, Alex W

    2016-01-01

    Collective protein modes are expected to be important for facilitating energy transfer in the Fenna-Matthews-Olson (FMO) complex, however to date little work has focussed on the microscopic details of these vibrations. The nonlinear network model (NNM) provides a computationally inexpensive approach to studying vibrational modes at the microscopic level, whilst incorporating anharmonicity in the inter-residue interactions which can influence protein dynamics. We apply the NNM to the FMO complex and find evidence for the existence of nonlinear discrete breather modes. These modes tend to transfer energy to the highly connected core pigments, potentially opening up alternative excitation energy transfer routes. Incorporating localised modes based on these discrete breathers in the optical spectra calculations for FMO using ab initio site energies and excitonic couplings can substantially improve their agreement with experimental results.

  1. FTIR spectra of CH2F2 in the 1000-1300 cm-1 region: Rovibrational analysis and modeling of the Coriolis and anharmonic resonances in the ν3, ν5, ν7, ν9 and 2ν4 polyad

    Science.gov (United States)

    Stoppa, Paolo; Tasinato, Nicola; Baldacci, Agostino; Pietropolli Charmet, Andrea; Giorgianni, Santi; Tamassia, Filippo; Cané, Elisabetta; Villa, Mattia

    2016-05-01

    The FTIR spectra of CH2F2 have been investigated in a region of atmospheric interest (1000-1300 cm-1) where four fundamentals ν3, ν5, ν7 and ν9 occur. These vibrations perturb each other by different Coriolis interactions and the forbidden ν5 borrows intensity from the neighboring levels. Furthermore, the v4=2 state has been found to interact with the v3=1 and v9=1 states by anharmonic and c-type Coriolis resonances, respectively. The spectral analysis resulted in the assignment of about 7500 rovibrational transitions which have been simultaneously fitted, together with microwave data available in literature (Hirota E. J Mol Spectrosc 1978; 69: 409-420) [15] using the Watson's A-reduction Hamiltonian in the Ir representation and the relevant perturbation operators. The model employed includes eight types of resonances within the pentad ν3/ν5/ν7/ν9/2ν4. A set of spectroscopic constants for the four fundamentals as well as parameters for the v4=2 state and eighteen coupling terms have been determined. The simulations performed in different spectral regions well reproduce the experimental data.

  2. Lattice Vibrations in Chlorobenzenes:

    DEFF Research Database (Denmark)

    Reynolds, P. A.; Kjems, Jørgen; White, J. W.

    1974-01-01

    Lattice vibrational dispersion curves for the ``intermolecular'' modes in the triclinic, one molecule per unit cell β phase of p‐C6D4Cl2 and p‐C6H4Cl2 have been obtained by inelastic neutron scattering. The deuterated sample was investigated at 295 and at 90°K and a linear extrapolation to 0°K...... by consideration of electrostatic forces or by further anisotropy in the dispersion forces not described in the atom‐atom model. Anharmonic effects are shown to be large, but the dominant features in the temperature variation of frequencies are describable by a quasiharmonic model....

  3. Global modeling of vibration-rotation spectra of the acetylene molecule

    Science.gov (United States)

    Lyulin, O. M.; Perevalov, V. I.

    2016-07-01

    The global modeling of both line positions and intensities of the acetylene molecule in the 50-9900 cm-1 region has been performed using the effective operators approach. The parameters of the polyad model of effective Hamiltonian have been fitted to the line positions collected from the literature. The used polyad model of effective Hamiltonian takes into account the centrifugal distortion, rotational and vibrational ℓ-doubling terms and both anharmonic and Coriolis resonance interaction operators arising due to the approximate relations between the harmonic frequencies: ω1≈ω3≈5ω4≈5ω5 and ω2≈3ω4≈3ω5. The dimensionless weighted standard deviation of the fit is 2.8. The fitted set of 237 effective Hamiltonian parameters allowed reproducing 24,991 measured line positions of 494 bands with a root mean squares deviation 0.0037 cm-1. The eigenfunctions of the effective Hamiltonian corresponding to the fitted set of parameters were used to fit the observed line intensities collected from the literature for 15 series of transitions: ΔP = 0-13,15, where P=5V1+5V3 +3V2+V4+V5 is the polyad number (Vi are the principal vibrational quantum numbers). The fitted sets of the effective dipole moment parameters reproduce the observed line intensities within their experimental uncertainties 2-20%.

  4. An approach to global rovibrational analysis based on anharmonic ladder operators: Application to Hydrogen Selenide (H280Se)

    International Nuclear Information System (INIS)

    Graphical abstract: Schematic diagram of a bent triatomic molecule, depicting the atom numbering, and molecular axis system. An algebraic approach to perform global rovibrational analysis is presented. Highlights: ► Novel approach for a global rovibrational analysis of polyatomic molecules spectra. ► One-dimensional vibron model limit combined with rotational degrees of freedom. ► Phase space Hamiltonian written in terms of anharmonic ladder operators. ► Algebraic calculations performed with a symmetry-adapted rovibrational basis. ► Description of the rovibrational spectrum of H2Se in the ground electronic state. - Abstract: An algebraic approach to perform global rovibrational analysis of molecular spectra is presented. The approach combines the one-dimensional limit of the vibron model with rotational degrees of freedom. The model is based on the expression of the phase space Hamiltonian in terms of anharmonic ladder operators and the use of a symmetry-adapted basis set given by the linear combination of products of local vibrational and rotational wavefunctions. As an example we model the rovibrational spectra of a bent triatomic molecule, providing a global analysis for vibrational bands up to polyad 12 and Jmax = 5 of Hydrogen Selenide (H2Se). Satisfactory fits of vibrational and rovibrational energies are obtained. A prediction of 2579 rovibrational energies up to J ⩽ 5 and polyad 12 for the 140 lowest vibrational bands is also obtained. A possible extension of the model to reach spectroscopic quality results in larger molecular systems is also given.

  5. A symmetry adapted approach to vibrational excitations in atomic clusters

    CERN Document Server

    Frank, A I; Bijker, R; Lemus, R; Pérez-Bernal, F

    1998-01-01

    An algebraic method especially suited to describe strongly anharmonic vibrational spectra in molecules may be an appropriate framework to study vibrational spectra of Na$^+_n$ clusters, where nearly flat potential energy surfaces and the appearance of close lying isomers have been reported. As an illustration we describe the model and apply it to the Be$_4$, H$_3^+$, Be$_3$ and Na$_3^+$ clusters.

  6. Monitoring Vibration of A Model of Rotating Machine

    Directory of Open Access Journals (Sweden)

    Arko Djajadi

    2012-03-01

    Full Text Available Mechanical movement or motion of a rotating machine normally causes additional vibration. A vibration sensing device must be added to constantly monitor vibration level of the system having a rotating machine, since the vibration frequency and amplitude cannot be measured quantitatively by only sight or touch. If the vibration signals from the machine have a lot of noise, there are possibilities that the rotating machine has defects that can lead to failure. In this experimental research project, a vibration structure is constructed in a scaled model to simulate vibration and to monitor system performance in term of vibration level in case of rotation with balanced and unbalanced condition. In this scaled model, the output signal of the vibration sensor is processed in a microcontroller and then transferred to a computer via a serial communication medium, and plotted on the screen with data plotter software developed using C language. The signal waveform of the vibration is displayed to allow further analysis of the vibration. Vibration level monitor can be set in the microcontroller to allow shutdown of the rotating machine in case of excessive vibration to protect the rotating machine from further damage. Experiment results show the agreement with theory that unbalance condition on a rotating machine can lead to larger vibration amplitude compared to balance condition. Adding and reducing the mass for balancing can be performed to obtain lower vibration level. 

  7. Model Predictive Vibration Control Efficient Constrained MPC Vibration Control for Lightly Damped Mechanical Structures

    CERN Document Server

    Takács, Gergely

    2012-01-01

    Real-time model predictive controller (MPC) implementation in active vibration control (AVC) is often rendered difficult by fast sampling speeds and extensive actuator-deformation asymmetry. If the control of lightly damped mechanical structures is assumed, the region of attraction containing the set of allowable initial conditions requires a large prediction horizon, making the already computationally demanding on-line process even more complex. Model Predictive Vibration Control provides insight into the predictive control of lightly damped vibrating structures by exploring computationally efficient algorithms which are capable of low frequency vibration control with guaranteed stability and constraint feasibility. In addition to a theoretical primer on active vibration damping and model predictive control, Model Predictive Vibration Control provides a guide through the necessary steps in understanding the founding ideas of predictive control applied in AVC such as: ·         the implementation of ...

  8. Optimizing Vibrational Coordinates To Modulate Intermode Coupling.

    Science.gov (United States)

    Zimmerman, Paul M; Smereka, Peter

    2016-04-12

    The choice of coordinate system strongly affects the convergence properties of vibrational structure computations. Two methods for efficient generation of improved vibrational coordinates are presented and justified by analysis of a model anharmonic two-mode Hessian and numerical computations on polyatomic molecules. To produce optimal coordinates, metrics which quantify off-diagonal couplings over a grid of Hessian matrices are minimized through unitary rotations of the vibrational basis. The first proposed metric minimizes the total squared off-diagonal coupling, and the second minimizes the total squared change in off-diagonal coupling. In this procedure certain anharmonic modes tend to localize, for example X-H stretches. The proposed methods do not rely on prior fitting of the potential energy, vibrational structure computations, or localization metrics, so they are unique from previous vibrational coordinate generation algorithms and are generally applicable to polyatomic molecules. Fitting the potential to the approximate n-mode representation in the optimized bases for all-trans polyenes shows that off-diagonal anharmonic couplings are substantially reduced by the new choices of coordinate system. Convergence of vibrational energies is examined in detail for ethylene, and it is shown that coupling-optimized modes converge in vibrational configuration interaction computations to within 1 cm(-1) using only 3-mode couplings, where normal modes require 4-mode couplings for convergence. Comparison of the vibrational configuration interaction convergence with respect to excitation level for the two proposed metrics shows that minimization of the total off-diagonal coupling is most effective for low-cost vibrational structure computations.

  9. 非简谐振动对石墨烯杨氏模量与声子频率的影响∗%Influence of the anharmonic vibration on the Young mo dulus and the phonon frequency of the graphene

    Institute of Scientific and Technical Information of China (English)

    程正富; 郑瑞伦

    2016-01-01

    perpendicular to the bond-length direction and the longitudinal vibrations along the bond-length direction, in which the longitudinal vibrations are dominant. The nonharmonic effect of the longitudinal vibration is much larger than that of the transverse vibration. The first and the second non-harmonic coeffcient of the transverse vibration are both much less than those of the longitudinal vibration, where ε0/ε′0 ≈8.477 and ε2/ε′2 ≈156. The above five physical quantities are constant at different temperatures if the first and second nonhamonic effects are omitted, which does not conform to the experimental results. After the first and second nonhamonic effects are considered, they all increase with temperature and results are in good agreement with experimental data. The anharmonic effect increases with temperature.

  10. Studying and Modeling Vibration Transducers and Accelerometers

    Directory of Open Access Journals (Sweden)

    Katalin Ágoston

    2010-12-01

    Full Text Available This paper presents types and operating mode of vibration sensors. Piezoelectric sensing elements are often used in accelerometers. It will be investigate the structure and transfer function of the seismic mass type sensing element. The article presents how the piezoelectric sensing element works and how can be modeled with an electronic circuit. The transfer functions of the electronic circuit models are studied in Matlab and the results are presented. It will be presented the influence of the seismic mass on the accelerometer’s working frequency domain.

  11. Nonlinear (Anharmonic Casimir Oscillator

    Directory of Open Access Journals (Sweden)

    Habibollah Razmi

    2011-01-01

    Full Text Available We want to study the dynamics of a simple linear harmonic micro spring which is under the influence of the quantum Casimir force/pressure and thus behaves as a (an nonlinear (anharmonic Casimir oscillator. Generally, the equation of motion of this nonlinear micromechanical Casimir oscillator has no exact solvable (analytical solution and the turning point(s of the system has (have no fixed position(s; however, for particular values of the stiffness of the micro spring and at appropriately well-chosen distance scales and conditions, there is (are approximately sinusoidal solution(s for the problem (the variable turning points are collected in a very small interval of positions. This, as a simple and elementary plan, may be useful in controlling the Casimir stiction problem in micromechanical devices.

  12. Numerical Modelling of Rubber Vibration Isolators: identification of material parameters

    NARCIS (Netherlands)

    Beijers, Clemens; Noordman, Bram; Boer, de André

    2004-01-01

    Rubber vibration isolators are used for vibration isolation of engines at high frequencies. To make a good prediction regarding the characteristics of a vibration isolator in the design process, numerical models can be used. However, for a reliable prediction of the dynamic behavior of the isolator,

  13. Fermi resonance-algebraic model for molecular vibrational spectra

    Institute of Scientific and Technical Information of China (English)

    侯喜文; 董世海; 谢汨; 马中骐

    1999-01-01

    A Fermi resonance-algebraic model is proposed for molecular vibrations, where a U(2) algebra is used for describing the vibrations of each bond, and Fermi resonances between stretching and bending modes are taken into account. The model for a bent molecule XY2 and a molecule XY3 is successfully applied to fitting the recently observed vibrational spectrum of the water molecule and arsine (AsH3), respectively, and the results are compared with those of other models. Calculations show that algebraic approaches can be used as an effective method to describe molecular vibrations with small standard deviations.

  14. A vibration model for centrifugal contactors

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, R.A.; Wasserman, M.O.; Wygmans, D.G.

    1992-11-01

    Using the transfer matrix method, we created the Excel worksheet ``Beam`` for analyzing vibrations in centrifugal contactors. With this worksheet, a user can calculate the first natural frequency of the motor/rotor system for a centrifugal contactor. We determined a typical value for the bearing stiffness (k{sub B}) of a motor after measuring the k{sub B} value for three different motors. The k{sub B} value is an important parameter in this model, but it is not normally available for motors. The assumptions that we made in creating the Beam worksheet were verified by comparing the calculated results with those from a VAX computer program, BEAM IV. The Beam worksheet was applied to several contactor designs for which we have experimental data and found to work well.

  15. Anharmonic densities of states: A general dynamics-based solution

    Science.gov (United States)

    Jellinek, Julius; Aleinikava, Darya

    2016-06-01

    Density of states is a fundamental physical characteristic that lies at the foundation of statistical mechanics and theoretical constructs that derive from them (e.g., kinetic rate theories, phase diagrams, and others). Even though most real physical systems are anharmonic, the vibrational density of states is customarily treated within the harmonic approximation, or with some partial, often limited, account for anharmonicity. The reason for this is that the problem of anharmonic densities of states stubbornly resisted a general and exact, yet convenient and straightforward in applications, solution. Here we formulate such a solution within both classical and quantum mechanics. It is based on actual dynamical behavior of systems as a function of energy and as observed, or monitored, on a chosen time scale, short or long. As a consequence, the resulting anharmonic densities of states are fully dynamically informed and, in general, time-dependent. As such, they lay the ground for formulation of new statistical mechanical frameworks that incorporate time and are ergodic, by construction, with respect to actual dynamical behavior of systems.

  16. Detecting anharmonicity at a glance

    Science.gov (United States)

    Giliberti, M.; Stellato, M.; Barbieri, S.; Cavinato, M.; Rigon, E.; Tamborini, M.

    2014-11-01

    Harmonic motion is generally presented in such a way that most of the students believe that the small oscillations of a body are all harmonic. Since the situation is not actually so simple, and since the comprehension of harmonic motion is essential in many physical contexts, we present here some suggestions, addressed to undergraduate students and pre-service teachers, that allow one to find out at a glance the anharmonicity of a motion. Starting from a didactically motivated definition of harmonic motion, and stressing the importance of the interplay between mathematics and experiments, we give a four-point criterion for anharmonicity together with some emblematic examples. The role of linear damping is also analysed in relation to the gradual changing of harmonicity into anharmonicity when the ratio between the damping coefficient and the zero-friction angular frequency increases.

  17. HOF分子非谐性力场、光谱常数和振动能级的迭代三激发耦合簇计算%The study of anharmonic force fields, spectroscopic constants and vibrational levels of HOF using iterative triplet couple cluster approach

    Institute of Scientific and Technical Information of China (English)

    陈恒杰; 方旺; 刘丰奎; 薛善增

    2014-01-01

    采用包含迭代三激发的耦合簇理论( CC3和CCSDT-3),在aug-cc-pVTZ基组水平上对HOF分子几何构型进行优化。通过解析二阶导数结合有限差分技术获得HOF二阶、完全三阶和半对角四阶力场。通过非谐性分析,得到其基频、旋振相互作用常数、非谐性常数和离心畸变光谱常数。应用二阶振动微扰理论(VPT2)得到HOF多个泛频峰位置。目前计算值与实验及其它文献结果符合良好。%The molecular equilibrium structure of HOF has been optimized using iterative triplet coupled cluster approach (CC3 and CCSDT-3) together with aug-cc-pVTZ basis set.Quadratic, full cubic and semidiagonal part of the quartic force field have been obtained by the analytic second derivatives and finite difference techniques. Fundamental frequencies, vibration-rotation interaction constants, anharmonic constants and centrifugal distor-tion constants have been evaluated according to the anharmonic analytics.Several overtones have been expected by the vibrational second-order perturbation theory ( VPT2 ) .The present calculation values are in good agree-ment with others theoretical and experimental results.

  18. Vibration induced flow in hoppers: DEM 2D polygon model

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A two-dimensional discrete element model (DEM) simulation of cohesive polygonal particles has been developed to assess the benefit of point source vibration to induce flow in wedge-shaped hoppers. The particle-particle interaction model used is based on a multi-contact principle.The first part of the study investigated particle discharge under gravity without vibration to determine the critical orifice size (Be) to just sustain flow as a function of particle shape. It is shown that polygonal-shaped particles need a larger orifice than circular particles. It is also shown that Be decreases as the number of particle vertices increases. Addition of circular particles promotes flow of polygons in a linear manner.The second part of the study showed that vibration could enhance flow, effectively reducing Be. The model demonstrated the importance of vibrator location (height), consistent with previous continuum model results, and vibration amplitude in enhancing flow.

  19. High-resolution IR absorption spectroscopy of polycyclic aromatic hydrocarbons: the realm of anharmonicity

    CERN Document Server

    Maltseva, Elena; Candian, Alessandra; Mackie, Cameron J; Huang, Xinchuan; Lee, Timothy J; Tielens, Alexander G G M; Oomens, Jos; Buma, Wybren Jan

    2015-01-01

    We report on an experimental and theoretical investigation of the importance of anharmonicity in the 3 micron CH stretching region of Polycyclic Aromatic Hydrocarbon (PAH) molecules. We present mass-resolved, high-resolution spectra of the gas-phase cold (~4K) linear PAH molecules naphthalene, anthracene, and tetracene. The measured IR spectra show a surprisingly high number of strong vibrational bands. For naphthalene, the observed bands are well separated and limited by the rotational contour, revealing the band symmetries. Comparisons are made to the harmonic and anharmonic approaches of the widely used Gaussian software. We also present calculated spectra of these acenes using the computational program SPECTRO, providing anharmonic predictions enhanced with a Fermi-resonance treatment that utilises intensity redistribution. We demonstrate that the anharmonicity of the investigated acenes is strong, dominated by Fermi resonances between the fundamental and double combination modes, with triple combination ...

  20. Positive Anharmonicities: The Oxonide Anion as an Example

    Science.gov (United States)

    Lee, Timothy J.; Arnold, James O. (Technical Monitor)

    1997-01-01

    An accurate ab initio quartic force field for the ozonide anion has been determined at the singles and doubles coupled-cluster level of theory that includes a perturbational estimate of the effects of connected triple excitations, denoted CCSD(T), using the augmented valence triple-zeta correlation consistent one-particle basis set. Convergence of the harmonic frequencies with respect to the one-particle basis set has been demonstrated by computing quadratic force fields at the CCSD(T) level using augmented valence double-zeta and quadruple-zeta basis sets. Fundamental vibrational frequencies have been determined via second-order ro-vibrational perturbation theory and also using exact variational methods. Agreement is very good, and they both show that the antisymmetric O-O stretch, v 3, possesses a positive anharmonic correction (that is, the fundamental frequency is predicted to be higher in energy than the harmonic frequency). Comparison of the O_3 and O3 quartic force fields shows that the positive anharmonic correction is the result of a particularly large F3333 symmetry internal coordinate force constant. The reasonableness of this force constant has been tested by computing both F33 and F3333 at the CCSD, CCSD(T), and CASPT2 levels of theory. A discussion of known positive anharmonicities for stretching modes is presented.

  1. THEORETICAL MODEL OF VIBRATING OBJECT TRANSMITTING NOISE TOWARDS EXTERNAL SOUND

    Institute of Scientific and Technical Information of China (English)

    姚志远

    2002-01-01

    On the basic theory of modal method, the coupling relation between the vibration of objects and external sound was analyzed, the theoretical model solving the vibration and noise was provided, the corresponding calculation formula was given. The calculating results show out that this calculation formula is correct.

  2. Phonon anharmonicity in bulk Td-MoTe2

    Science.gov (United States)

    Joshi, Jaydeep; Stone, Iris R.; Beams, Ryan; Krylyuk, Sergiy; Kalish, Irina; Davydov, Albert V.; Vora, Patrick M.

    2016-07-01

    We examine anharmonic contributions to the optical phonon modes in bulk Td-MoTe2 through temperature-dependent Raman spectroscopy. At temperatures ranging from 100 K to 200 K, we find that all modes redshift linearly with temperature in agreement with the Grüneisen model. However, below 100 K, we observe nonlinear temperature-dependent frequency shifts in some modes. We demonstrate that this anharmonic behavior is consistent with the decay of an optical phonon into multiple acoustic phonons. Furthermore, the highest frequency Raman modes show large changes in intensity and linewidth near T ≈ 250 K that correlate well with the T d → 1 T ' structural phase transition. These results suggest that phonon-phonon interactions can dominate anharmonic contributions at low temperatures in bulk Td-MoTe2, an experimental regime that is currently receiving attention in efforts to understand Weyl semimetals.

  3. Additional compact formulas for vibrational dynamic dipole polarizabilities and hyperpolarizabilities

    OpenAIRE

    Bishop, David M.; Luis Luis, Josep Maria; Kirtman, Bernard

    1998-01-01

    Compact expressions, complete through second order in electrical and/or mechanical anharmonicity, are given for the dynamic dipole vibrational polarizability and dynamic first and second vibrational hyperpolarizabilities. Certain contributions not previously formulated are now included

  4. Numerical modelling of rubber vibration isolators

    NARCIS (Netherlands)

    Beijers, Clemens A.J.; Boer, de André; Nilsson, A.; Boden, H.

    2003-01-01

    An important cause for interior noise in vehicles is structure-borne sound from the engine. The vibrations of the source (engine) are transmitted to the receiver structure (the vehicle) causing interior noise in the vehicle. For this reason the engine is supported by rubber isolators for passive iso

  5. Vibration Response of Multi Storey Building Using Finite Element Modelling

    Science.gov (United States)

    Chik, T. N. T.; Zakaria, M. F.; Remali, M. A.; Yusoff, N. A.

    2016-07-01

    Interaction between building, type of foundation and the geotechnical parameter of ground may trigger a significant effect on the building. In general, stiffer foundations resulted in higher natural frequencies of the building-soil system and higher input frequencies are often associated with other ground. Usually, vibrations transmitted to the buildings by ground borne are often noticeable and can be felt. It might affect the building and become worse if the vibration level is not controlled. UTHM building is prone to the ground borne vibration due to closed distance from the main road, and the construction activities adjacent to the buildings. This paper investigates the natural frequency and vibration mode of multi storey office building with the presence of foundation system and comparison between both systems. Finite element modelling (FEM) package software of LUSAS is used to perform the vibration analysis of the building. The building is modelled based on the original plan with the foundation system on the structure model. The FEM results indicated that the structure which modelled with rigid base have high natural frequency compare to the structure with foundation system. These maybe due to soil structure interaction and also the damping of the system which related to the amount of energy dissipated through the foundation soil. Thus, this paper suggested that modelling with soil is necessary to demonstrate the soil influence towards vibration response to the structure.

  6. Origin of the large anharmonicity in the phonon modes of LiBH{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Gremaud, R.; Züttel, A. [Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory 505 (Hydrogen and Energy), Überlandstrasse 129, CH-8600 Dübendorf (Switzerland); Borgschulte, A., E-mail: andreas.borgschulte@empa.ch [Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory 505 (Hydrogen and Energy), Überlandstrasse 129, CH-8600 Dübendorf (Switzerland); Ramirez-Cuesta, A.J.; Refson, K. [Chemical and Engineering Materials Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, PO Box 2008, MS 6473 Oak Ridge (United States); Colognesi, D. [Istituto dei Sistemi Complessi – sezione di Firenze, Consiglio Nazionale delle Ricerche, via Madonna del piano 10, 50019 Sesto Fiorentino (Italy)

    2013-12-12

    Highlights: • IR, Raman, and INS spectroscopy data and corresponding DFT-calculations on LiBH4. • Mismatch between experiment and theory are due to anharmonicity. • Strong anharmonic effects can be expected for vibrations with high H amplitude. - Abstract: The dynamics and bonding of the complex hydride LiBH{sub 4} have been investigated by vibrational spectroscopy and density functional theory (DFT). The combination of infrared, Raman, and inelastic neutron-scattering (INS) spectroscopies on hydrided and deuterated samples reveals a complete picture of the dynamics of the BH{sub 4}{sup −} ions as well as of the lattice. Particular emphasis is laid on a comparison between experiment and theory, revealing significant discrepancy between the two approaches for vibrations with high anharmonicity, which is related to large vibrational amplitudes. The latter is typical for librational modes in molecular crystals and pseudo-ionic crystals such as complex hydrides. The presented strategy for anharmonic frequency corrections might thus be generally applicable for this kind of materials.

  7. Stereovision vibration measurement test of a masonry building model

    Science.gov (United States)

    Shan, Baohua; Gao, Yunli; Shen, Yu

    2016-04-01

    To monitor 3D deformations of structural vibration response, a stereovision-based 3D deformation measurement method is proposed in paper. The world coordinate system is established on structural surface, and 3D displacement equations of structural vibration response are acquired through coordinate transformation. The algorithms of edge detection, center fitting and matching constraint are developed for circular target. A shaking table test of a masonry building model under Taft and El Centro earthquake at different acceleration peak is performed in lab, 3D displacement time histories of the model are acquired by the integrated stereovision measurement system. In-plane displacement curves obtained by two methods show good agreement, this suggests that the proposed method is reliable for monitoring structural vibration response. Out-of-plane displacement curves indicate that the proposed method is feasible and useful for monitoring 3D deformations of vibration response.

  8. Mathematical modeling of mechanical vibration assisted conductivity imaging

    CERN Document Server

    Ammari, Habib; Kwon, Hyeuknam; Seo, Jin Keun; Woo, Eung Je

    2014-01-01

    This paper aims at mathematically modeling a new multi-physics conductivity imaging system incorporating mechanical vibrations simultaneously applied to an imaging object together with current injections. We perturb the internal conductivity distribution by applying time-harmonic mechanical vibrations on the boundary. This enhances the effects of any conductivity discontinuity on the induced internal current density distribution. Unlike other conductivity contrast enhancing frameworks, it does not require a prior knowledge of a reference data. In this paper, we provide a mathematical framework for this novel imaging modality. As an application of the vibration-assisted impedance imaging framework, we propose a new breast image reconstruction method in electrical impedance tomography (EIT). As its another application, we investigate a conductivity anomaly detection problem and provide an efficient location search algorithm. We show both analytically and numerically that the applied mechanical vibration increas...

  9. Anharmonic-potential-effective-charge approach for computing Raman cross sections of a gas

    Science.gov (United States)

    Kutteh, Ramzi; van Zandt, L. L.

    1993-05-01

    An anharmonic-potential-effective-charge approach for computing relative Raman intensities of a gas is developed. The equations of motion are set up and solved for the driven anharmonic molecular vibrations. An explicit expression for the differential polarizability tensor is derived and its properties discussed. This expression is then used within the context of Placzek's theory [Handbuch der Radiologie (Akademische Verlagsgesellschaft, Leipzig, 1934), Vol. VI] to compute the Raman cross section and depolarization ratio of a gas. The computation is carried out for the small molecules CO2, CS2, SO2, and CCl4; results are compared with experimental measurements and discussed.

  10. Methyl group dynamics and the onset of anharmonicity in myoglobin

    International Nuclear Information System (INIS)

    The role of methyl groups in the onset of low-temperature anharmonic dynamics in a crystalline protein at low temperature is investigated using atomistic molecular dynamics (MD) simulation. Anharmonicity appears at 150 ∼ K, far below the much-studied solvent-activated dynamical transition at ∼ 220 K. A significant fraction of methyl groups exhibit nanosecond time scale rotational jump diffusion at 150 K. The splitting and shift in peak position of both the librational band (around 100 cm-1) and the torsional band (around 270?300 cm-1) also differ significantly among methyl groups, depending on the local environment. The simulation results provide no evidence for a correlation between methyl dynamics and solvent exposure, consistent with the hydration-independence of the low-temperature anharmonic dynamics observed in neutron scattering experiments. The calculated proton mean-square fluctuation and methyl NMR order parameters show a systematic nonlinear dependence on the rotational barrier which can be described using model functions. The methyl groups that exhibit many rotational excitations are located near xenon cavities, suggesting that cavities in proteins act as activation centers of anharmonic dynamics. The dynamic heterogeneity and the environmental sensitivity of motional parameters and low-frequency spectral bands of CH3 groups found here suggest that methyl dynamics may be used as a probe to investigate the relation between low-energy structural fluctuations and packing defects in proteins

  11. Anharmonicity and infrared bands of Polycyclic Aromatic Hydrocarbon (PAH) molecules

    Science.gov (United States)

    Petrignani, Annemieke; Maltseva, Elena; Candian, Alessandra; Mackie, Cameron; Huang, Xinchuan; Lee, Timothy J.; Tielens, Alexander; Oomens, Jos; Buma, Wybren Jan

    2015-08-01

    We present a systematic laboratory study of the CH stretching region in Polycyclic Aromatic Hydrocarbon (PAH) molecules of different shapes and sizes to investigate anharmonic behaviour and address the reliability of the never-validated but universally accepted scaling factors employed in astronomical PAH models. At the same time, new anharmonic theoretical quantum chemistry studies have been performed with the software program Spectro using our experimental data as benchmark. We performed mass and conformational-resolved, high-resolution spectroscopy of cold (~10K) linear and compact PAH molecules starting with naphthalene (C10H8) in the 3-µm CH stretching region. Surprisingly, the measured infrared spectra show many more strong modes than expected. Measurements of the deuterated counterparts demonstrate that these bands are the result of Fermi Resonances. First comparisons with harmonic and anharmonic DFT calculations using Gaussian 09 show that both approximations are not able to reproduce in detail the observed molecular reality. The improved anharmonic calculations performed with Spectro now include the effects of Fermi resonances and have been applied to PAHs for the first time. The analysis of the experimental data is greatly aided by these new theoretical quantum chemistry studies. Preliminary assignments are presented, aided by comparison between the observed rotational contour and the symmetry of candidate bands.

  12. The Modeling of Vibration Damping in SMA Wires

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, D R; Kloucek, P; Seidman, T I

    2003-09-16

    Through a mathematical and computational model of the physical behavior of shape memory alloy wires, this study shows that localized heating and cooling of such materials provides an effective means of damping vibrational energy. The thermally induced pseudo-elastic behavior of a shape memory wire is modeled using a continuum thermodynamic model and solved computationally as described by the authors in [23]. Computational experiments confirm that up to 80% of an initial shock of vibrational energy can be eliminated at the onset of a thermally-induced phase transformation through the use of spatially-distributed transformation regions along the length of a shape memory alloy wire.

  13. Prediction Model for Vortex-Induced Vibration of Circular Cylinder with Data of Forced Vibration

    Institute of Scientific and Technical Information of China (English)

    PAN Zhi-yuan; CUI Wei-cheng; LIU Ying-zhong

    2007-01-01

    A model based on the data from forced vibration experiments is developed for predicting the vortex-induced vibrations (VIV) of elastically mounted circular cylinders in flow. The assumptions for free and forced vibration tests are explored briefly. Energy equilibrium is taken into account to set up the relationship between the dynamic response of self-excited oscillations and the force coefficients from forced vibration experiments. The gap between these two cases is bridged straightforwardly with careful treatment of key parameters. Given reduced mass m* and material damping ratio ζ of an elastically mounted circular cylinder in flow, the response characteristics such as amplitude, frequency, lock-in range, added mass coefficient, cross-flow fluid force and the corresponding phase angle can be predicted all at once. Instances with different combination of reduced mass and material damping ratio are compared to investigate their effects on VIV. The hysteresis phenomenon can be interpreted reasonably. The predictions and the results from recent experiments carried out by Williamson's group are in rather good agreement.

  14. Multiphonon method applied to the Ksup(π)=0+ and Ksup(π)=0- vibrational coupling study in the framework of an exactly solvable model

    International Nuclear Information System (INIS)

    The multiphonon method, which is an exact diagonalization in the restricted space of collective phonons of different types, is tested in a simple two shell model allowing an exact solution for a many body system of fermions interacting via pairing plus quadrupole and octupole forces. It appears satisfactory for the description of the anharmonicities of the lowest-lying vibrational Ksup(π) = 0+ and 0- states in deformed nuclei. In particular, it allows electromagnetic transitions between the different one phonon states, which are completely forbidden in any harmonic treatment as TDA or RPA. It seems also that a restriction to the space spanned by the two lowest collective phonons of different type is sufficient for the description of the spectroscopic properties of the corresponding levels

  15. Non-classical method of modelling of vibrating mechatronic systems

    Science.gov (United States)

    Białas, K.; Buchacz, A.

    2016-08-01

    This work presents non-classical method of modelling of mechatronic systems by using polar graphs. The use of such a method enables the analysis and synthesis of mechatronic systems irrespective of the type and number of the elements of such a system. The method id connected with algebra of structural numbers. The purpose of this paper is also introduces synthesis of mechatronic system which is the reverse task of dynamics. The result of synthesis is obtaining system meeting the defined requirements. This approach is understood as design of mechatronic systems. The synthesis may also be applied to modify the already existing systems in order to achieve a desired result. The system was consisted from mechanical and electrical elements. Electrical elements were used as subsystem reducing unwanted vibration of mechanical system. The majority of vibration occurring in devices and machines is harmful and has a disadvantageous effect on their condition. Harmful impact of vibration is caused by the occurrence of increased stresses and the loss of energy, which results in faster wear machinery. Vibration, particularly low-frequency vibration, also has a negative influence on the human organism. For this reason many scientists in various research centres conduct research aimed at the reduction or total elimination of vibration.

  16. Quantum statistics and anharmonicity in the thermodynamics of spin waves in ferromagnetic metals

    Science.gov (United States)

    Wen, Haohua; Woo, C. H.

    2016-09-01

    The average energy needed to create a magnon is high in ferromagnetic metals due to the high-strength spin stiffness, which results in strong quantization effects that could be important even at thousands of degrees. To take into account quantum statistics at such high temperatures, the associated effects of anharmonicity of the spin vibrations must be taken into account. In addition to the complex nature of such effects, anharmonicity also affects the occupation of the density of state of the vibration states in the context of quantum statistics. Thus, an unoccupied vibration state might become occupied when its spring stiffness is substantially reduced with anharmonicity. Combined effects of quantum statistics and anharmonicity are expected. In this regard, the thermodynamics of ferromagnetic metals are investigated in this paper through the example of bcc iron between 10 and 1400 K. Theoretical analysis and spin-lattice dynamic simulations are performed, through which the physics behind the complex and dramatic temperature dependence of the thermodynamic functions of bcc iron is understood.

  17. Noise, vibration, harshness model of a rotating tyre

    Science.gov (United States)

    Bäcker, Manfred; Gallrein, Axel; Roller, Michael

    2016-04-01

    The tyre plays a fundamental role in the generation of acoustically perceptible driving noise and vibrations inside the vehicle. An essential part of these vibrations is induced by the road excitation and transferred via the tyre into the vehicle. There are two basic ways to study noise, vibration, harshness (NVH) behaviour: Simulations in time and frequency domains. Modelling the tyre transfer behaviour in frequency domain requires special attention to the rotation of the tyre. This paper shows the approach taken by the authors to include the transfer behaviour in the frequency range up to 250 Hz from geometric road excitations to resulting spindle forces in frequency domain. This paper validates the derived NVH tyre model by comparison with appropriate transient simulations of the base transient model.

  18. Vibrational spectrum of CF4 isotopes in an algebraic model

    Indian Academy of Sciences (India)

    Joydeep Choudhury; Srinivasa Rao Karumuri; Nirmal Kumar Sarkar; Ramendu Bhattacharjee

    2009-11-01

    n this paper the stretching vibrational modes of CF4 isotopes are calculated up to first overtone using the one-dimensional vibron model for the first time. The model Hamiltonian so constructed seems to describe the C–F stretching modes accurately using a relatively small set of well-defined parameters.

  19. Ground state properties of a Bose-Einstein condensate confined in an anharmonic external potential

    Institute of Scientific and Technical Information of China (English)

    Wang Deng-Long; Yan Xiao-Hong; Tang Yi

    2004-01-01

    In light of the interference experiment of Bose-Einstein condensates, we present an anharmonic external potential model to study ground state properties of Bose-Einstein condensates. The ground state energy and the chemical potential have been analytically obtained, which are lower than those in harmonic trap. Additionally, it is found that the anharmonic strength of the external potential has an important effect on density and velocity distributions of the ground state for the Thomas-Fermi model.

  20. First-principles analysis of anharmonic nuclear motion and thermal transport in thermoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Tadano, Terumasa [Department of Applied Physics, The University of Tokyo, Tokyo 113-8656 (Japan); Tsuneyuki, Shinji [Department of Physics, The University of Tokyo, Tokyo 113-0033 (Japan); Institute for Solid State Physics, The University of Tokyo, Kashiwa 277-8581 (Japan)

    2015-12-31

    We show a first-principles approach for analyzing anharmonic properties of lattice vibrations in solids. We firstly extract harmonic and anharmonic force constants from accurate first-principles calculations based on the density functional theory. Using the many-body perturbation theory of phonons, we then estimate the phonon scattering probability due to anharmonic phonon-phonon interactions. We show the validity of the approach by computing the lattice thermal conductivity of Si, a typical covalent semiconductor, and selected thermoelectric materials PbTe and Bi{sub 2}Te{sub 3} based on the Boltzmann transport equation. We also show that the phonon lifetime and the lattice thermal conductivity of the high-temperature phase of SrTiO{sub 3} can be estimated by employing the perturbation theory on top of the solution of the self-consistent phonon equation.

  1. Scale modeling flow-induced vibrations of reactor components

    International Nuclear Information System (INIS)

    Similitude relationships currently employed in the design of flow-induced vibration scale-model tests of nuclear reactor components are reviewed. Emphasis is given to understanding the origins of the similitude parameters as a basis for discussion of the inevitable distortions which occur in design verification testing of entire reactor systems and in feature testing of individual component designs for the existence of detrimental flow-induced vibration mechanisms. Distortions of similitude parameters made in current test practice are enumerated and selected example tests are described. Also, limitations in the use of specific distortions in model designs are evaluated based on the current understanding of flow-induced vibration mechanisms and structural response

  2. High-Resolution IR Absorption Spectroscopy of Polycyclic Aromatic Hydrocarbons: The Realm of Anharmonicity

    Science.gov (United States)

    Maltseva, Elena; Petrignani, Annemieke; Candian, Alessandra; Mackie, Cameron J.; Huang, Xinchuan; Lee, Timothy J.; Tielens, Alexander G. G. M.; Oomens, Jos; Buma, Wybren Jan

    2016-01-01

    We report on an experimental and theoretical investigation of the importance of anharmonicity in the 3 micrometers CH stretching region of Polycyclic Aromatic Hydrocarbon (PAH) molecules. We present mass-resolved, high-resolution spectra of the gas-phase cold ((is) approximately 4K) linear PAH molecules naphthalene, anthracene, and tetracene. The measured IR spectra show a surprisingly high number of strong vibrational bands. For naphthalene, the observed bands are well separated and limited by the rotational contour, revealing the band symmetries. Comparisons are made to the harmonic and anharmonic approaches of the widely used Gaussian software. We also present calculated spectra of these acenes using the computational program SPECTRO, providing anharmonic predictions enhanced with a Fermi-resonance treatment that utilizes intensity redistribution. We demonstrate that the anharmonicity of the investigated acenes is strong, dominated by Fermi resonances between the fundamental and double combination modes, with triple combination bands as possible candidates to resolve remaining discrepancies. The anharmonic spectra as calculated with SPECTRO lead to predictions of the main modes that fall within 0.5% of the experimental frequencies. The implications for the Aromatic Infrared Bands, specifically the 3-m band are discussed.

  3. Modeling vibration response and damping of cables and cabled structures

    Science.gov (United States)

    Spak, Kaitlin S.; Agnes, Gregory S.; Inman, Daniel J.

    2015-02-01

    In an effort to model the vibration response of cabled structures, the distributed transfer function method is developed to model cables and a simple cabled structure. The model includes shear effects, tension, and hysteretic damping for modeling of helical stranded cables, and includes a method for modeling cable attachment points using both linear and rotational damping and stiffness. The damped cable model shows agreement with experimental data for four types of stranded cables, and the damped cabled beam model shows agreement with experimental data for the cables attached to a beam structure, as well as improvement over the distributed mass method for cabled structure modeling.

  4. Dynamical response functions in models of vibrated granular media

    OpenAIRE

    Nicodemi, Mario

    1998-01-01

    In recently introduced schematic lattice gas models for vibrated dry granular media, we study the dynamical response of the system to small perturbations of shaking amplitudes and its relations with the characteristic fluctuations. Strong off equilibrium features appear and a generalized version of the fluctuation dissipation theorem is introduced. The relations with thermal glassy systems and the role of Edwards' compactivity are discussed.

  5. Modeling of cable vibration effects of cable-stayed bridges

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The analysis of dynamic responses of cable-stayed bridges subjected to wind and earthquake loads generallyconsiders only the motions of the bridge deck and pylons. The influence of the stay cable vibration on the responses of the bridgeis either ignored or considered by approximate procedures. The transverse vibration of the stay cables, which can be significant insome cases, are usually neglected in previous research. In the present study, a new three-node cable element has been developed tomodel the transverse motions of the cables. The interactions between the cable behavior and the other parts of the bridgesuperstructure are considered by the concept of dynamic stiffness. The nonlinear effect of the cable caused by its self-weight isincluded in the formulation. Numerical examples are presented to demonstrate the accuracy and efficiency of the proposed model.The impact of cable vibration behavior on the dynamic characteristics of cable-stayed bridges is discussed.

  6. Vibration testing of a 1/4-scale containment model

    International Nuclear Information System (INIS)

    This paper presents programs for the validation of soil-structure interaction (SSI) analysis methods with data that include ground and structural response motions during natural earthquakes and structural response from low-level vibration tests. The primary source of the data is the 1/4-scale containment building situated in Lotung in a seismically active region of Taiwan. The analysis validation program involves blind predictions of site and structural response to the vibration test excitations and to a selected strong-motion seismic event, and the subsequent comparison of predictions with corresponding measurements. This paper focuses on the vibration testing of the model containment structure and the determination of its dynamic characteristics from the experimental data. The 1/4-scale reinforced concrete containment structure, built by EPRI in cooperation with Taiwan Power Company, is located within an array of strong-motion seismographs, known as the SMART-1 array

  7. Anharmonic effects in the optical and acoustic bending modes of graphene

    Science.gov (United States)

    Ramírez, R.; Chacón, E.; Herrero, C. P.

    2016-06-01

    The out-of-plane fluctuations of carbon atoms in a graphene sheet have been studied by means of classical molecular dynamic simulations with an empirical force field as a function of temperature. The Fourier analysis of the out-of-plane fluctuations often applied to characterize the acoustic bending mode of graphene is extended to the optical branch, whose polarization vector is perpendicular to the graphene layer. This observable is inaccessible in a continuous elastic model of graphene but it is readily obtained by the atomistic treatment. Our results suggest that the long-wavelength limit of the acoustic out-of-plane fluctuations of a free layer without stress is qualitatively similar to that predicted by a harmonic model under a tensile stress. This conclusion is a consequence of the anharmonicity of both in-plane and out-of-plane vibrational modes of the lattice. The most striking anharmonic effect is the presence of a linear term, ωA=vAk , in the dispersion relation of the acoustic bending band of graphene at long wavelengths (k →0 ). This term implies a strong reduction of the amplitude of out-of-plane oscillations in comparison to a flexural mode with a k2 dependence in the long-wavelength limit. Our simulations show an increase of the sound velocity associated to the bending mode, as well as an increase of its bending constant, κ , as the temperature increases. Moreover, the frequency of the optical bending mode, ωO(Γ ), also increases with the temperature. Our results are in agreement with recent analytical studies of the bending modes of graphene using either perturbation theory or an adiabatic approximation in the framework of continuous layer models.

  8. Modeling and vibration control of an active membrane mirror

    Science.gov (United States)

    Ruggiero, Eric J.; Inman, Daniel J.

    2009-09-01

    The future of space satellite technology lies in ultra-large mirrors and radar apertures for significant improvements in imaging and communication bandwidths. The availability of optical-quality membranes drives a parallel effort for structural models that can capture the dominant dynamics of large, ultra-flexible satellite payloads. Unfortunately, the inherent flexibility of membrane mirrors wreaks havoc with the payload's on-orbit stability and maneuverability. One possible means of controlling these undesirable dynamics is by embedding active piezoelectric ceramics near the boundary of the membrane mirror. In doing so, active feedback control can be used to eliminate detrimental vibration, perform static shape control, and evaluate the health of the structure. The overall motivation of the present work is to design a control system using distributed bimorph actuators to eliminate any detrimental vibration of the membrane mirror. As a basis for this study, a piezoceramic wafer was attached in a bimorph configuration near the boundary of a tensioned rectangular membrane sample. A finite element model of the system was developed to capture the relevant system dynamics from 0 to 300 Hz. The finite element model was compared against experimental results, and fair agreement found. Using the validated finite element models, structural control using linear quadratic regulator control techniques was then used to numerically demonstrate effective vibration control. Typical results show that less than 12 V of actuation voltage is required to eliminate detrimental vibration of the membrane samples in less than 15 ms. The functional gains of the active system are also derived and presented. These spatially descriptive control terms dictate favorable regions within the membrane domain for placing sensors and can be used as a design guideline for structural control applications. The results of the present work demonstrate that thin plate theory is an appropriate modeling

  9. Insight into structural phase transitions from the decoupled anharmonic mode approximation

    Science.gov (United States)

    Adams, Donat J.; Passerone, Daniele

    2016-08-01

    We develop a formalism (decoupled anharmonic mode approximation, DAMA) that allows calculation of the vibrational free energy using density functional theory even for materials which exhibit negative curvature of the potential energy surface with respect to atomic displacements. We investigate vibrational modes beyond the harmonic approximation and approximate the potential energy surface with the superposition of the accurate potential along each normal mode. We show that the free energy can stabilize crystal structures at finite temperatures which appear dynamically unstable at T  =  0. The DAMA formalism is computationally fast because it avoids statistical sampling through molecular dynamics calculations, and is in principle completely ab initio. It is free of statistical uncertainties and independent of model parameters, but can give insight into the mechanism of a structural phase transition. We apply the formalism to the perovskite cryolite, and investigate the temperature-driven phase transition from the P21/n to the Immm space group. We calculate a phase transition temperature between 710 and 950 K, in fair agreement with the experimental value of 885 K. This can be related to the underestimation of the interaction of the vibrational states. We also calculate the main axes of the thermal ellipsoid and can explain the experimentally observed increase of its volume for the fluorine by 200-300% throughout the phase transition. Our calculations suggest the appearance of tunneling states in the high temperature phase. The convergence of the vibrational DOS and of the critical temperature with respect of reciprocal space sampling is investigated using the polarizable-ion model.

  10. Insight into structural phase transitions from the decoupled anharmonic mode approximation.

    Science.gov (United States)

    Adams, Donat J; Passerone, Daniele

    2016-08-01

    We develop a formalism (decoupled anharmonic mode approximation, DAMA) that allows calculation of the vibrational free energy using density functional theory even for materials which exhibit negative curvature of the potential energy surface with respect to atomic displacements. We investigate vibrational modes beyond the harmonic approximation and approximate the potential energy surface with the superposition of the accurate potential along each normal mode. We show that the free energy can stabilize crystal structures at finite temperatures which appear dynamically unstable at T  =  0. The DAMA formalism is computationally fast because it avoids statistical sampling through molecular dynamics calculations, and is in principle completely ab initio. It is free of statistical uncertainties and independent of model parameters, but can give insight into the mechanism of a structural phase transition. We apply the formalism to the perovskite cryolite, and investigate the temperature-driven phase transition from the P21/n to the Immm space group. We calculate a phase transition temperature between 710 and 950 K, in fair agreement with the experimental value of 885 K. This can be related to the underestimation of the interaction of the vibrational states. We also calculate the main axes of the thermal ellipsoid and can explain the experimentally observed increase of its volume for the fluorine by 200-300% throughout the phase transition. Our calculations suggest the appearance of tunneling states in the high temperature phase. The convergence of the vibrational DOS and of the critical temperature with respect of reciprocal space sampling is investigated using the polarizable-ion model. PMID:27269514

  11. Insight into structural phase transitions from the decoupled anharmonic mode approximation

    Science.gov (United States)

    Adams, Donat J.; Passerone, Daniele

    2016-08-01

    We develop a formalism (decoupled anharmonic mode approximation, DAMA) that allows calculation of the vibrational free energy using density functional theory even for materials which exhibit negative curvature of the potential energy surface with respect to atomic displacements. We investigate vibrational modes beyond the harmonic approximation and approximate the potential energy surface with the superposition of the accurate potential along each normal mode. We show that the free energy can stabilize crystal structures at finite temperatures which appear dynamically unstable at T  =  0. The DAMA formalism is computationally fast because it avoids statistical sampling through molecular dynamics calculations, and is in principle completely ab initio. It is free of statistical uncertainties and independent of model parameters, but can give insight into the mechanism of a structural phase transition. We apply the formalism to the perovskite cryolite, and investigate the temperature-driven phase transition from the P21/n to the Immm space group. We calculate a phase transition temperature between 710 and 950 K, in fair agreement with the experimental value of 885 K. This can be related to the underestimation of the interaction of the vibrational states. We also calculate the main axes of the thermal ellipsoid and can explain the experimentally observed increase of its volume for the fluorine by 200–300% throughout the phase transition. Our calculations suggest the appearance of tunneling states in the high temperature phase. The convergence of the vibrational DOS and of the critical temperature with respect of reciprocal space sampling is investigated using the polarizable-ion model.

  12. Anharmonic resonances with recursive delay feedback

    OpenAIRE

    Goldobin, Denis S.

    2011-01-01

    We consider application of the multiple time delayed feedback for control of anharmonic (nonlinear) oscillators subject to noise. In contrast to the case of a single delay feedback, the multiple one exhibits resonances between feedback and nonlinear harmonics, leading to a resonantly strong or weak oscillation coherence even for a small anharmonicity. Analytical results are confirmed numerically for van der Pol and van der Pol-Duffing oscillators. Highlights: > We construct general theory of ...

  13. Vibration analysis with MADYMO human models

    NARCIS (Netherlands)

    Verver, M.M.; Hoof, J.F.A.M. van

    2002-01-01

    The importance of comfort for the automotive industry is increasing. Car manufacturers use comfort to distinguish their products from their competitors. However, the development and design of a new car seat or interior is very time consuming and expensive. The introduction of computer models of huma

  14. Perturbation Theory of Anharmonicity Effects in Slow Neutron Inelastic Scattering by Crystals

    International Nuclear Information System (INIS)

    An earlier perturbation treatment of the corresponding X-ray scattering problem is generalized into a calculation of the effect of vibrational anharmonicity on the scattering of slow neutrons by crystals. Of an expansion of the lattice potential in powers of the deviations from the thermally averaged sites, the cubic terms are taken into account up to second order; only first order terms are kept in the quartic anharmonicities. All higher terms are neglected. In particular, formulae for the shifts and broadenings of the one-phonon peaks in coherent scattering are derived in terms of the third and fourth order coupling coefficients. As in X-ray scattering, a simple quadratic relation exists between the shifted ''effective frequencies'' of the long wavelength lattice vibrations and the isothermal elastic constants of the crystal. The lattice frequencies of the harmonic approximation may be obtained by extrapolating to absolute zero the linear dependence on temperature shown by the shifted frequencies above the Debye temperature. (author)

  15. Forced vibration test of the Hualien large scale SSI model

    International Nuclear Information System (INIS)

    A Large-Scale Seismic Test (LSST) Program has been conducted at Hualien, Taiwan (Tang et al., 1991), to obtain earthquake-induced soil-structure interaction (SSI) data in a stiff soil site environment The Hualien program is a follow on of the Lotung program which is of soft soil site. Forced vibration tests of the Hualien 1/4-scale containment SSI test model were conducted in October, 1992 before backfill (without embedment) and in February, 1993 after backfill (with embedment) for the purpose of defining basic dynamic characteristics of the soil-structure system. Two horizontal directions excitation (NS, EW) are applied on the roof floor and on the basemat. Vertical excitation is applied on the basemat only. This paper describes the results of the forced vibration tests of the model without embedment. (author)

  16. Simulation of à 1B1→X˜ 1A1 CF2 single vibronic level emissions: Including anharmonic and Duschinsky effects

    Science.gov (United States)

    Chau, Foo-Tim; Dyke, John M.; Lee, Edmond P. F.; Mok, Daniel K. W.

    2001-10-01

    CASSCF/MRCI/aug-cc-pVQZ(no g) and RCCSD(T)/aug-cc-pVQZ potential energy functions were reported for the à 1B1 and X˜ 1A1 states of CF2, respectively. Vibrational wave functions of the symmetric stretching and bending modes of the two states of CF2 were obtained in variational calculations, employing Watson's Hamiltonian for a nonlinear molecule and anharmonic vibrational wave functions expressed as linear combinations of harmonic basis functions. Franck-Condon factors (FCFs) were computed for à 1B1→X˜ 1A1 CF2 single vibronic level (SVL) emissions and the SVL emission spectra were simulated with the computed FCFs. When compared with the observed spectra, the simulated spectra obtained in the present investigation, which include allowance for anharmonicity and the Duschinsky effect, were found to be significantly superior to those reported previously, based on the harmonic oscillator model. Using the iterative Franck-Condon analysis procedure, with the geometry of the X˜ 1A1 state fixed at the recently determined experimental equilibrium geometry, the geometry of the à 1B1 state of CF2, which gave the best match between simulated and observed spectra, was found to be re(CF)=1.317 Å and θe(FCF)=121.25 °.

  17. Model reduction and analysis of a vibrating beam microgyroscope

    KAUST Repository

    Ghommem, Mehdi

    2012-05-08

    The present work is concerned with the nonlinear dynamic analysis of a vibrating beam microgyroscope composed of a rotating cantilever beam with a tip mass at its end. The rigid mass is coupled to two orthogonal electrodes in the drive and sense directions, which are attached to the rotating base. The microbeam is driven by an AC voltage in the drive direction, which induces vibrations in the orthogonal sense direction due to rotation about the microbeam axis. The electrode placed in the sense direction is used to measure the induced motions and extract the underlying angular speed. A reduced-order model of the gyroscope is developed using the method of multiple scales and used to examine its dynamic behavior. © The Author(s) 2012 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  18. Electron-vibration energy exchange models in nitrogen-containing plasma flows

    CERN Document Server

    Laporta, V; 10.1063/1.4794690

    2013-01-01

    The physics of vibrational kinetics in nitrogen-containing plasma produced by collisions with electrons is studied on the basis of recently derived cross sections and rate coefficients for the resonant vibrational-excitation by electron-impact. The temporal relaxation of the vibrational energy and of the vibrational distribution function is analyzed in a state-to-state approach. The electron and vibrational temperature are varied in the range of [0,50000] K. Conclusions are drawn with respect to the derivation of reduced models and to the accuracy of a relaxation time formalism. A analytical fit of the vibrational relaxation time is given.

  19. Comprehensive modeling approach of axial ultrasonic vibration grinding force

    Institute of Scientific and Technical Information of China (English)

    HE Yu-hui; ZHOU Qun; ZHOU Jian-jie; LANG Xian-jun

    2016-01-01

    The theoretical model of axial ultrasonic vibration grinding force is built on the basis of a mathematical model of cutting deforming force deduced from the assumptions of thickness of the undeformed debris under Rayleigh distribution and a mathematical model of friction based on the theoretical analysis of relative sliding velocity of abrasive and workpiece. Then, the coefficients of the ultrasonic vibration grinding force model are calculated through analysis of nonlinear regression of the theoretical model by using MATLAB, and the law of influence of grinding depth, workpiece speed, frequency and amplitude of the mill on the grinding force is summarized after applying the model to analyze the ultrasonic grinding force. The result of the above-mentioned law shows that the grinding force decreases as frequency and amplitude increase, while increases as grinding depth and workpiece speed increase; the maximum relative error of prediction and experimental values of the normal grinding force is 11.47% and its average relative error is 5.41%; the maximum relative error of the tangential grinding force is 10.14% and its average relative error is 4.29%. The result of employing regression equation to predict ultrasonic grinding force approximates to the experimental data, therefore the accuracy and reliability of the model is verified.

  20. Non-linear vibrational modes in biomolecules: A periodic orbits description

    Energy Technology Data Exchange (ETDEWEB)

    Kampanarakis, Alexandros [Department of Chemistry, University of Crete, and Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (FORTH), Vasilika Vouton, Heraklion 71110, Crete (Greece); Farantos, Stavros C., E-mail: farantos@iesl.forth.gr [Department of Chemistry, University of Crete, and Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (FORTH), Vasilika Vouton, Heraklion 71110, Crete (Greece); Daskalakis, Vangelis; Varotsis, Constantinos [Department of Environmental Science and Technology, Cyprus University of Technology, 31 Archbishop Kyprianos St., P.O. Box 50329, 3603 Lemesos (Cyprus)

    2012-05-03

    Graphical abstract: Vibrational frequency shifts in Fe{sup IV} = O species of the active site of cytochrome c oxidase are attributed to changes in the surrounding Coulomb field. Periodic orbits analysis assists to find the most anharmonic modes in model biomolecules. Highlights: Black-Right-Pointing-Pointer Periodic orbits are extended to multidimensional potentials of biomolecules. Black-Right-Pointing-Pointer Highly anharmonic vibrational modes and center-saddle bifurcations are detected. Black-Right-Pointing-Pointer Vibrational frequencies shifts in Oxoferryl species of CcO are observed. - Abstract: The vibrational harmonic normal modes of a molecule, which are valid at energies close to an equilibrium point (a minimum, maximum or saddle of the potential energy surface), are extended by periodic orbits to high energies where anharmonicity and coupling of the degrees of freedom are significant. In this way the assignment of the spectra, and thus the extraction of dynamics in highly excited molecules, can be obtained. New vibrational modes emanating from bifurcations of periodic orbits and long living localized trajectories signal the birth and localization of new quantum states. In this article we review and further study non-linear vibrational modes for model biomolecules such as alanine dipeptide and the active site in the oxoferryl oxidation state of the enzyme cytochrome c oxidase. We locate periodic orbits which exhibit high anhamonicity and lead to center-saddle bifurcations. These modes are associated to an isomerization process in alanine dipeptide and to frequency shifts in the oxoferryl observed by modifying the Coulomb field around the Imidazole-Fe{sup IV} = O species.

  1. A modal approach to modeling spatially distributed vibration energy dissipation.

    Energy Technology Data Exchange (ETDEWEB)

    Segalman, Daniel Joseph

    2010-08-01

    The nonlinear behavior of mechanical joints is a confounding element in modeling the dynamic response of structures. Though there has been some progress in recent years in modeling individual joints, modeling the full structure with myriad frictional interfaces has remained an obstinate challenge. A strategy is suggested for structural dynamics modeling that can account for the combined effect of interface friction distributed spatially about the structure. This approach accommodates the following observations: (1) At small to modest amplitudes, the nonlinearity of jointed structures is manifest primarily in the energy dissipation - visible as vibration damping; (2) Correspondingly, measured vibration modes do not change significantly with amplitude; and (3) Significant coupling among the modes does not appear to result at modest amplitudes. The mathematical approach presented here postulates the preservation of linear modes and invests all the nonlinearity in the evolution of the modal coordinates. The constitutive form selected is one that works well in modeling spatially discrete joints. When compared against a mathematical truth model, the distributed dissipation approximation performs well.

  2. Model-based design approach to reducing mechanical vibrations

    Directory of Open Access Journals (Sweden)

    P. Czop

    2013-09-01

    Full Text Available Purpose: The paper presents a sensitivity analysis method based on a first-principle model in order to reduce mechanical vibrations of a hydraulic damper. Design/methodology/approach: The first-principle model is formulated using a system of continuous ordinary differential equations capturing usually nonlinear relations among variables of the hydraulic damper model. The model applies three categories of parameters: geometrical, physical and phenomenological. Geometrical and physical parameters are deduced from construction and operational documentation. The phenomenological parameters are the adjustable ones, which are estimated or adjusted based on their roughly known values, e.g. friction/damping coefficients. Findings: The sensitivity analysis method provides major contributors and their magnitude that cause vibrations Research limitations/implications: The method accuracy is limited by the model accuracy and inherited nonlinear effects. Practical implications: The proposed model-based sensitivity method can be used to optimize prototypes of hydraulic dampers. Originality/value: The proposed sensitivity-analysis method minimizes a risk that a hydraulic damper does not meet the customer specification.

  3. Modeling and control of vibration in mechanical structures

    OpenAIRE

    Nauclér, Peter

    2005-01-01

    All mechanical systems exhibit vibrational response when exposed to external disturbances. In many engineering applications vibrations are undesirable and may even have harmful effects. Therefore, control of mechanical vibration is an important topic and extensive research has been going on in the field over the years. In active control of vibration, the ability to actuate the system in a controlled manner is incorporated into the structure. Sensors are used to measure the vibrations and seco...

  4. Living systems as coherent anharmonic oscillators

    Science.gov (United States)

    Molski, M.

    2011-12-01

    A model of living systems considered as coherent, time-dependent anharmonic oscillators is presented. It is based on the concept of space-like coherent states minimizing the time-energy uncertainty relation, adapted to the case of biological systems whose growth is described by the Gompertz or West-Brown-Enquist functions. The coherent states of biological growth evolve coherently in space being localized along the classical time trajectory; hence, the growth is predicted to be coherent in space. It is proven that the Gompertz function is a special solution of the space-like Horodecki-Feinberg equation for the time-dependent Morse oscillator in the dissociation state. Its eigenvalue represents the momentum of biological growth, associated with a space-like component whose properties resemble those attributed by vitalists to the life momentum or vital impulse. The physical characteristics of the life energy and momentum and their connection with the concept of zero-point momentum of vacuum are presented.

  5. Living systems as coherent anharmonic oscillators

    International Nuclear Information System (INIS)

    A model of living systems considered as coherent, time-dependent anharmonic oscillators is presented. It is based on the concept of space-like coherent states minimizing the time-energy uncertainty relation, adapted to the case of biological systems whose growth is described by the Gompertz or West-Brown-Enquist functions. The coherent states of biological growth evolve coherently in space being localized along the classical time trajectory; hence, the growth is predicted to be coherent in space. It is proven that the Gompertz function is a special solution of the space-like Horodecki-Feinberg equation for the time-dependent Morse oscillator in the dissociation state. Its eigenvalue represents the momentum of biological growth, associated with a space-like component whose properties resemble those attributed by vitalists to the life momentum or vital impulse. The physical characteristics of the life energy and momentum and their connection with the concept of zero-point momentum of vacuum are presented.

  6. Interval process model and non-random vibration analysis

    Science.gov (United States)

    Jiang, C.; Ni, B. Y.; Liu, N. Y.; Han, X.; Liu, J.

    2016-07-01

    This paper develops an interval process model for time-varying or dynamic uncertainty analysis when information of the uncertain parameter is inadequate. By using the interval process model to describe a time-varying uncertain parameter, only its upper and lower bounds are required at each time point rather than its precise probability distribution, which is quite different from the traditional stochastic process model. A correlation function is defined for quantification of correlation between the uncertain-but-bounded variables at different times, and a matrix-decomposition-based method is presented to transform the original dependent interval process into an independent one for convenience of subsequent uncertainty analysis. More importantly, based on the interval process model, a non-random vibration analysis method is proposed for response computation of structures subjected to time-varying uncertain external excitations or loads. The structural dynamic responses thus can be derived in the form of upper and lower bounds, providing an important guidance for practical safety analysis and reliability design of structures. Finally, two numerical examples and one engineering application are investigated to demonstrate the feasibility of the interval process model and corresponding non-random vibration analysis method.

  7. On the nonlinear models of the vibrating string

    Science.gov (United States)

    Watzky, Alexandre

    2005-09-01

    Vibrations of strings (threads, wires, cables...) are of great interest because of their various domains of application. In musical acoustics, phenomena which could have been neglected elsewhere take a particular importance since perception, which is very sensitive to nonlinear effects, is involved. Some phenomena can also be emphasized when a string is coupled to a sound-radiating structure. Reliable physical models are thus necessary to account for these phenomena, and to understand the true behavior of a vibrating string. Despite the fact that the first nonlinear models were published more than one century ago, and that accurate equations of motion can be naturally achieved within a finite displacement continuum mechanics framework, general models never received the attention they deserved, most authors focusing on particular phenomena and often settling on approximate models. This can be explained by the awkward multiplicity of the involved phenomena. The aim of this presentation is to discuss the consequences of some common assumptions and the true nature of some observed couplings. Particular attention will be paid to the preponderance of the spatial shape of the modes, which are usually underestimated with respect to their temporal form.

  8. Vibrational spectra and intramolecular vibrational redistribution in highly excited deuterobromochlorofluoromethane CDBrClF: Experiment and theory

    Science.gov (United States)

    Beil, Andreas; Hollenstein, Hans; Monti, Oliver L. A.; Quack, Martin; Stohner, Jürgen

    2000-08-01

    The rovibrational spectra of deuterobromochlorofluoromethane (CDBrClF) were measured at intermediate (0.1 cm-1) and high resolution (0.0024 cm-1 full bandwidth, half-maximum) by interferometric Fourier transform infrared spectroscopy in the range from the far infrared at 200 cm-1 to the near infrared (12 000 cm-1) covering all the fundamentals and CD stretching overtones up to polyad N=5. The spectra are completely analyzed in terms of their vibrational assignments to fundamentals, combinations and overtones. At high excitation the analysis reveals the dominant anharmonic coupling between four high frequency vibrational modes; the CD stretching (ν1), two CD bending (ν2,ν3), and the CF stretching mode (ν4). The analysis is carried out using effective model Hamiltonians including three and four vibrational degrees of freedom. We also present vibrational variational calculations on a grid in a four-dimensional normal coordinate subspace. The potential energy and the dipole moment function are calculated ab initio on this grid using self-consistent field second order Møller-Plesset perturbation theory (MP2). Experimental and theoretical results for band positions and integrated intensities as well as effective spectroscopic parameters are found to be in good agreement. The important anharmonic coupling between the CD chromophore and the CF stretching vibration can be described by an effective cubic Fermi resonance coupling constant ksff'≈(50±10) cm-1, which leads to intramolecular vibrational redistribution between the CD and CF chromophores on the femtosecond time scale. Time dependent intramolecular vibrational redistribution processes in CDBrClF are derived in various representations, including time dependent probability densities ("wave packets") in coordinate space and finally time dependent entropy.

  9. Self-Ratcheting Stokes Drops Driven by Oblique Vibrations

    Science.gov (United States)

    John, Karin; Thiele, Uwe

    2010-03-01

    We develop and analyze a minimal hydrodynamic model to understand why a drop climbs a smooth homogeneous incline that is harmonically vibrated at an angle different from the substrate normal [P. Brunet, J. Eggers, and R. D. Deegan, Phys. Rev. Lett. 99, 144501 (2007)PRLTAO0031-900710.1103/PhysRevLett.99.144501]. We find that the vibration component orthogonal to the substrate induces a nonlinear (anharmonic) response in the drop shape. This results in an asymmetric response of the drop to the parallel vibration and, as a consequence, in the observed net motion. In addition to establishing the basic mechanism, we identify scaling laws valid in a broad frequency range and a flow reversal at high frequencies.

  10. Analytical modelling and free vibration analysis of piezoelectric bimorphs

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yan-guo; CHEN Yun-min; DING Hao-jiang

    2005-01-01

    An efficient and accurate analytical model for piezoelectric bimorph based on the improved first-order shear deformation theory (FSDT) is developed in this work. The model combines the equivalent single-layer approach for mechanical displacements and a layerwise-type modelling of the electric potential. Particular attention is devoted to the boundary conditions on the outside faces and to the interface continuity conditions of the bimorphs for the electromechanical variables. Shear correction factor (k) is introduced to modify both the shear stress and the electric displacement of each layer. And the detailed mathematical derivations are presented. Free vibration problem of simply supported piezoelectric bimorphs with series or parallel arrangement is investigated for the closed circuit condition, and the results for different length-to-thickness ratios are compared with those obtained from the exact 2D solution. Excellent agreements between the present model prediction with k=8/9 and the exact solutions are observed for the resonant frequencies.

  11. The anharmonic effect study of coupled Morse oscillators for the unimolecular reaction

    Institute of Scientific and Technical Information of China (English)

    YAO Li; LIN Sheng-Hsien

    2008-01-01

    The importance of anharmonic effect in dissociation of molecular systems especially clusters has been noted. In this paper, we shall study the effect of coupled anharmonic oscillator of the standard bilinear form (SBF) Morse oscillator (MO) potential on unimolecular reaction. We shall use the systematic theoretical approach, YL method, proposed by Yao and Lin (YAO L, et. al. J Phys Chem A, 2007, 111(29): 6722-6729), which can evaluate anharmonic effects on the rate constants based on the transition state theory. In treating the anharmonic effect with the Morse oscillator potential on unimolecular reactions under collision-free conditions by using the RRKM (Rice-Ramsperger-Kassel-Marcus) theory, the in-verse Laplace transformation of the partition functions was used to obtain the total amount of state and density of state by using the first-order and the second-order approximations of the saddle-point method. To demonstrate the anharmonic effect of the SBF Morse model, we choose some model sys-tems and a real reaction as examples.

  12. The anharmonic effect study of coupled Morse oscillators for the unimolecular reaction

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The importance of anharmonic effect in dissociation of molecular systems especially clusters has been noted. In this paper, we shall study the effect of coupled anharmonic oscillator of the standard bilinear form (SBF) Morse oscillator (MO) potential on unimolecular reaction. We shall use the systematic theoretical approach, YL method, proposed by Yao and Lin (YAO L, et. al. J Phys Chem A, 2007, 111(29): 6722-6729), which can evaluate anharmonic effects on the rate constants based on the transition state theory. In treating the anharmonic effect with the Morse oscillator potential on unimolecular reactions under collision-free conditions by using the RRKM (Rice-Ramsperger-Kassel-Marcus) theory, the in-verse Laplace transformation of the partition functions was used to obtain the total amount of state and density of state by using the first-order and the second-order approximations of the saddle-point method. To demonstrate the anharmonic effect of the SBF Morse model, we choose some model systems and a real reaction as examples.

  13. Fourth-Order Vibrational Transition State Theory and Chemical Kinetics

    Science.gov (United States)

    Stanton, John F.; Matthews, Devin A.; Gong, Justin Z.

    2015-06-01

    Second-order vibrational perturbation theory (VPT2) is an enormously successful and well-established theory for treating anharmonic effects on the vibrational levels of semi-rigid molecules. Partially as a consequence of the fact that the theory is exact for the Morse potential (which provides an appropriate qualitative model for stretching anharmonicity), VPT2 calculations for such systems with appropriate ab initio potential functions tend to give fundamental and overtone levels that fall within a handful of wavenumbers of experimentally measured positions. As a consequence, the next non-vanishing level of perturbation theory -- VPT4 -- offers only slight improvements over VPT2 and is not practical for most calculations since it requires information about force constants up through sextic. However, VPT4 (as well as VPT2) can be used for other applications such as the next vibrational correction to rotational constants (the ``gammas'') and other spectroscopic parameters. In addition, the marriage of VPT with the semi-classical transition state theory of Miller (SCTST) has recently proven to be a powerful and accurate treatment for chemical kinetics. In this talk, VPT4-based SCTST tunneling probabilities and cumulative reaction probabilities are give for the first time for selected low-dimensional model systems. The prospects for VPT4, both practical and intrinsic, will also be discussed.

  14. Impeller leakage flow modeling for mechanical vibration control

    Science.gov (United States)

    Palazzolo, Alan B.

    1996-01-01

    HPOTP and HPFTP vibration test results have exhibited transient and steady characteristics which may be due to impeller leakage path (ILP) related forces. For example, an axial shift in the rotor could suddenly change the ILP clearances and lengths yielding dynamic coefficient and subsequent vibration changes. ILP models are more complicated than conventional-single component-annular seal models due to their radial flow component (coriolis and centrifugal acceleration), complex geometry (axial/radial clearance coupling), internal boundary (transition) flow conditions between mechanical components along the ILP and longer length, requiring moment as well as force coefficients. Flow coupling between mechanical components results from mass and energy conservation applied at their interfaces. Typical components along the ILP include an inlet seal, curved shroud, and an exit seal, which may be a stepped labyrinth type. Von Pragenau (MSFC) has modeled labyrinth seals as a series of plain annular seals for leakage and dynamic coefficient prediction. These multi-tooth components increase the total number of 'flow coupled' components in the ILP. Childs developed an analysis for an ILP consisting of a single, constant clearance shroud with an exit seal represented by a lumped flow-loss coefficient. This same geometry was later extended to include compressible flow. The objective of the current work is to: supply ILP leakage-force impedance-dynamic coefficient modeling software to MSFC engineers, base on incompressible/compressible bulk flow theory; design the software to model a generic geometry ILP described by a series of components lying along an arbitrarily directed path; validate the software by comparison to available test data, CFD and bulk models; and develop a hybrid CFD-bulk flow model of an ILP to improve modeling accuracy within practical run time constraints.

  15. Coupled mode parametric resonance in a vibrating screen model

    CERN Document Server

    Slepyan, Leonid I

    2013-01-01

    We consider a simple dynamic model of the vibrating screen operating in the parametric resonance (PR) mode. This model was used in the course of designing and setting of such a screen in LPMC. The PR-based screen compares favorably with conventional types of such machines, where the transverse oscillations are excited directly. It is characterized by larger values of the amplitude and by insensitivity to damping in a rather wide range. The model represents an initially strained system of two equal masses connected by a linearly elastic string. Self-equilibrated, longitudinal, harmonic forces act on the masses. Under certain conditions this results in transverse, finite-amplitude oscillations of the string. The problem is reduced to a system of two ordinary differential equations coupled by the geometric nonlinearity. Damping in both the transverse and longitudinal oscillations is taken into account. Free and forced oscillations of this mass-string system are examined analytically and numerically. The energy e...

  16. On the Elastic Vibration Model for High Length-Diameter Ratio Rocket with Attitude Control System

    Institute of Scientific and Technical Information of China (English)

    朱伯立; 杨树兴

    2003-01-01

    An elastic vibration model for high length-diameter ratio spinning rocket with attitude control system which can be used for trajectory simulation is established. The basic theory of elastic dynamics and vibration dynamics were both used to set up the elastic vibration model of rocket body. In order to study the problem more conveniently, the rocket's body was simplified to be an even beam with two free ends. The model was validated by simulation results and the test data.

  17. Modelling nuclear fuel vibrations in horizontal CANDU reactors

    International Nuclear Information System (INIS)

    Flow-induced fuel vibrations in the pressure tubes of CANDU reactors are of vital interest to designers because fretting damage may result. Computer simulation is being used to study how bundles vibrate and to identify bundle design features which will reduce vibration and hence fretting. (author)

  18. Comparative study of quantum anharmonic potentials

    Energy Technology Data Exchange (ETDEWEB)

    Amore, Paolo [Facultad de Ciencias, Universidad de Colima, Bernal Diaz del Castillo 340, Colima (Mexico)]. E-mail: paolo@ucol.mx; Aranda, Alfredo [Facultad de Ciencias, Universidad de Colima, Bernal Diaz del Castillo 340, Colima (Mexico); De Pace, Arturo [Istituto Nazionale di Fisica Nucleare, Sezione di Torino, via P. Giuria 1, I-10125 Torino (Italy); Lopez, Jorge A. [Physics Department, University of Texas at El Paso, El Paso, TX (United States)

    2004-09-06

    We perform a study of various anharmonic potentials using a recently developed method. We calculate both the wave functions and the energy eigenvalues for the ground and first excited states of the quartic, sextic and octic potentials with high precision, comparing the results with other techniques available in the literature.

  19. Coupled channel analysis of the 142Ce (α,α)142Ce* reaction: study of a vibrational-rotational transition nucleus

    International Nuclear Information System (INIS)

    The angular distribution of the elastic and inelastic scattering of a particles corresponding to the excitation of the low-lying collective states of 142Ce were measured at an incident energy of 18.0 MeV. The angular distribution of the following excited states were obtained: 641, 1.219, 1.450, 1.536, 1.653, 1.742, 2.004, 2.043, 2.114, 2.125, 2.279, 2.364, 2.542, 2.604 e 3.067 MeV. The angular distributions of the ground state and the first six excited states were analysed within the flamework of the Anharmonic Vibrational and Symmetric Rotational Models, with the Coupled Channel Theory. The Anharmonic Vibrational Model gave the best and most complete description of the experimental data. The wave functions and the deformation parameters of the analysed states were determined. (Author)

  20. Quantum-mechanical study of energies, structures, and vibrational spectra of the H(D)Cl complexed with dimethyl ether

    Energy Technology Data Exchange (ETDEWEB)

    Boda, Łukasz, E-mail: lboda@chemia.uj.edu.pl; Boczar, Marek; Gług, Maciej; Wójcik, Marek J. [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Kraków (Poland)

    2015-11-28

    Interaction energies, molecular structure and vibrational frequencies of the binary complex formed between H(D)Cl and dimethyl ether have been obtained using quantum-chemical methods. Equilibrium and vibrationally averaged structures, harmonic and anharmonic wavenumbers of the complex and its deuterated isotopomer were calculated using harmonic and anharmonic second-order perturbation theory procedures with Density Functional Theory B3LYP and B2PLYP-D and ab initio Møller-Plesset second-order methods, and a 6-311++G(3d,3p) basis set. A phenomenological model describing anharmonic-type vibrational couplings within hydrogen bonds was developed to explain the unique broadening and fine structure, as well as the isotope effect of the Cl–H and Cl–D stretching IR absorption bands in the gaseous complexes with dimethyl ether, as an effect of hydrogen bond formation. Simulations of the rovibrational structure of the Cl–H and Cl–D stretching bands were performed and the results were compared with experimental spectra.

  1. Crystal anharmonicity in Li(H,D) and Na(H,D) systems

    International Nuclear Information System (INIS)

    The reliability of our recently developed potential model is tested by extending the study to various anharmonic properties, e.g., third order elastic constants, fourth order elastic constants, Grueneisen parameters, and the pressure derivatives of second order elastic constants of hydrides and deuterides of lithium and sodium. A comparison of the calculated properties with the available experimental results and other theoretical estimates shows the validity and reliability of the derived potential in the study of crystal anharmonicities also. (author). 43 refs, 2 figs, 4 tabs

  2. 1/N-expansion and nonclassical state generation in higher-order anharmonic oscillators

    CERN Document Server

    Alekseev, K N; Perina, J; Alekseev, Kirill N.; Alekseeva, Natasha V.; Perina, Jan

    1998-01-01

    We consider the nonclassical states generation in weakly dissipative high-order anharmonic oscillators in the limit of large number of photons. We find the explicit time dependences of squeezing and Fano factor in the short-time approximation and for a finite temperature of reservoir. We show that the rate of squeezing is determined by an interplay between the polarization of the nonlinear medium modelled by the anharmonic oscillator and the thermal fluctuations of a reservoir. We demonstrate that photon statistics is super-Poissonian for any degree of the nonlinearity and determine the critical temperature of reservoir destroying light squeezing.

  3. A Spin Glass Model with Vibrations of Crystal Lattices

    Institute of Scientific and Technical Information of China (English)

    SHANG Yu-Min; CHENG Li-Min; YAO Kai-Lun

    2005-01-01

    @@ With the help of the replica method and imaginary-time functional-integrate technique, the spin glas s model with the vibrations of crystal lattices is investigated. In the limit of the replica symmetry and the imaginary-time staticapproximation, the magnetic and thermodynamic quantities have been obtained. By the numerical calculations,we found that the magnetization of the system has the typical spin-glass behaviour. A peak is found in the susceptibility-temperature curve and is shifted to lower temperature with increasing applied field. Due to the lattice contribution, the specific heat increas es strongly at high temperature. Due to the magnetic contribution,the anomaly in the specific heat-temperature curve forms a λ-type peak, which agrees with the observation ofRojo et al. [Phys. Rev. B 66 (2002) 094406].

  4. Nonlinear Models for Transverse Forced Vibration of Axially Moving Viscoelastic Beams

    Directory of Open Access Journals (Sweden)

    Hu Ding

    2011-01-01

    Full Text Available Nonlinear models of transverse vibration of axially moving viscoelastic beams subjected external transverse loads via steady-state periodical response are numerically investigated. An integro-partial-differential equation and a partial-differential equation of transverse motion can be derived respectively from a model of the coupled planar vibration for an axially moving beam. The finite difference scheme is developed to calculate steady-state response for the model of coupled planar and the two models of transverse motion under the simple support boundary. Numerical results indicate that the amplitude of the steady-state response for the model of coupled vibration and two models of transverse vibration predict qualitatively the same tendencies with the changing parameters and the integro-partial-differential equation gives results more closely to the coupled planar vibration.

  5. Torsional Vibrations at Guide-Vane Shaft of Pump–Turbine Model

    Directory of Open Access Journals (Sweden)

    Andrej Predin

    1997-01-01

    Full Text Available This article focuses on the problem of guide-vane vibrations of reversible pump–turbines, especially, in the pump mode. These vibrations are transmitted to the guide-vane shaft torque. The guide-vane vibrations are caused by the impeller exit flow, which has a turbulent and partly nondeterministic property. Experimentally determined flow velocities at the impeller exit are given. The mathematical models for theoretical torsional vibration prediction formulated using linear and nonlinear differential equations are presented. The results of theoretical calculations are compared with measurement results. The possibility of transferring the parameters from the model to the prototype is discussed.

  6. Modelling and Analysis of Vibrations in a UAV Helicopter with a Vision System

    OpenAIRE

    G. Nicolás Marichal Plasencia; María Tomás Rodríguez; Salvador Castillo Rivera; Ángela Hernández López

    2012-01-01

    The analysis of the nature and damping of unwanted vibrations on Unmanned Aerial Vehicle (UAV) helicopters are important tasks when images from on‐board vision systems are to be obtained. In this article, the authors model a UAV system, generate a range of vibrations originating in the main rotor and design a control methodology in order to damp these vibrations. The UAV is modelled using VehicleSim, the vibrations that appear on the fuselage are analysed to study their effects on the on‐boar...

  7. ANALYSIS AND MODELLING OF BIODYNAMIC RESPONSE TO HAND ARM VIBRATION SYSTEM

    Directory of Open Access Journals (Sweden)

    Mohod Chandrashekhar D

    2016-01-01

    Full Text Available Hand operated tools are widely used in industrial and commercial sector. These tools generate vibrations which have impact on health of an operator. Hence study of Hand Vibration Syndrome is one of the key areas where major researchers are attracted. This study considers the literature review for hand operated vibration measurement and analysis that are extensively used. Objective of this review was to understand results and effects of hand vibration transmission on health. The review could be used to develop a prediction model with use of Adaptive Neuro Fuzzy Inference System hence another objective is to represent the applicability of ANFIS in development of the model

  8. Quantum anharmonic oscillator: The airy function approach

    Energy Technology Data Exchange (ETDEWEB)

    Maiz, F., E-mail: fethimaiz@gmail.com [King Khalid University, Faculty of Science, Physics Department, PO Box 9004, Abha 61413, Asseer (Saudi Arabia); University of Cartage, Nabeul Engineering Preparatory Institute, Merazka, 8000 Nabeul (Tunisia); AlFaify, S. [King Khalid University, Faculty of Science, Physics Department, PO Box 9004, Abha 61413, Asseer (Saudi Arabia)

    2014-05-15

    New and simple numerical method is being reported to solve anharmonic oscillator problems. The method is setup to approach the real potential V(x) of the anharmonic oscillator system as a piecewise linear potential u(x) and to solve the Schrödinger equation of the system using the Airy function. Then, solutions continuity conditions lead to the energy quantification condition, and consequently, the energy eigenvalues. For testing purpose, the method was applied on the sextic and octic oscillators systems. The proposed method is found to be realistic, computationally simple, and having high degrees of accuracy. In addition, it can be applied to any form of potential. The results obtained by the proposed method were seen closely agreeing with results reached by other complicated methods.

  9. Two-phase CFD modeling of flow causing the heater vibration

    International Nuclear Information System (INIS)

    Vibrations of heater rods were observed in a heated annulus with water flow under boiling conditions. In order to find out the cause of such vibrations, CFD model of this annulus has been prepared in CFD code STAR-CCM+. Two-phase flow in the annulus was described using a two-fluid model with number of sub-models to describe the mass, momentum and energy transfer between phases. The model was validated using experimental data from reference. The validated model was used to perform a steady state calculation of flow parameters under different conditions. Results of CFD simulations were compared to experimentally detected vibration offset. It was found out that vibration increase caused by heating the channel is connected with the vibration offset. The results and their extension to nuclear safety were discussed. (author)

  10. A simple model to predict train-induced vibration: theoretical formulation and experimental validation

    International Nuclear Information System (INIS)

    No suitable handy tool is available to predict train-induced vibration on environmental impact assessment. A simple prediction model is proposed which has been calibrated for high speed trains. The model input data are train characteristics, train speed and track properties; model output data are soil time-averaged velocity and velocity level. Model results have been compared with numerous vibration data retrieved from measurement campaigns led along the most important high-speed European rail tracks. Model performances have been tested by comparing measured and predicted vibration values

  11. Modeling of fluid-induced vibrations and identification of hydrodynamic forces on flow control valves

    Institute of Scientific and Technical Information of China (English)

    Samad Mehrzad; Ilgar Javanshir; Ahmad Rahbar Ranji; Seyyed Hadi Taheri

    2015-01-01

    Dynamics and vibration of control valves under flow-induced vibration are analyzed. Hydrodynamic load characteristics and structural response under flow-induced vibration are mainly influenced by inertia, damping, elastic, geometric characteristics and hydraulic parameters. The purpose of this work is to investigate the dynamic behavior of control valves in the response to self-excited fluid flow. An analytical and numerical method is developed to simulate the dynamic and vibrational behavior of sliding dam valves, in response to flow excitation. In order to demonstrate the effectiveness of proposed model, the simulation results are validated with experimental ones. Finally, to achieve the optimal valve geometry, numerical results for various shapes of valves are compared. Rounded valve with the least amount of flow turbulence obtains lower fluctuations and vibration amplitude compared with the flat and steep valves. Simulation results demonstrate that with the optimal design requirements of valves, vibration amplitude can be reduced by an average to 30%.

  12. Vibrations of liquid drops in film boiling phenomena: the mathematical model

    CERN Document Server

    Casal, Pierre

    2008-01-01

    Flattened liquid drops poured on a very hot surface evaporate quite slowly and float on a film of their own vapour. In the cavities of a surface, an unusual type of vibrational motions occurs. Large vibrations take place and different forms of dynamic drops are possible. They form elliptic patterns with two lobes or hypotrochoid patterns with three lobes or more. The lobes are turning relatively to the hot surface. We present a model of vibrating motions of the drops. Frequencies of the vibrations are calculated regarding the number of lobes. The computations agree with experiments.

  13. Harmonic and anharmonic quantum-mechanical oscillators in noninteger dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Sandev, Trifce, E-mail: trifce.sandev@drs.gov.mk [Radiation Safety Directorate, Partizanski odredi 143, P.O. Box 22, 1020 Skopje (Macedonia, The Former Yugoslav Republic of); Petreska, Irina, E-mail: irina.petreska@pmf.ukim.mk [Institute of Physics, Faculty of Natural Sciences and Mathematics, Ss Cyril and Methodius University, P.O. Box 162, 1001 Skopje (Macedonia, The Former Yugoslav Republic of); Lenzi, Ervin K., E-mail: eklenzi@dfi.uem.br [Departamento de Fisica, Universidade Estadual de Maringá, Avenida Colombo 5790, Maringá, 87020-900, PR (Brazil)

    2014-01-10

    We present new results for time-independent solutions for a Schrödinger equation with noninteger dimension by considering different, harmonic and anharmonic, forms for the potential energy. The solutions obtained for these potentials are exact and expressed in terms of the special functions such as Laguerre and Gegenbauer polynomials, associated Legendre functions, and hypergeometric functions. Graphical comparison of the probability density function with the ones for two-dimensional and three-dimensional case is given. We derive the mean values r{sup β}sin{sup δ}θ{sup ¯} for the harmonic oscillator in noninteger dimensions, which may be of interest in the perturbation theory for calculation of energy corrections. We consider anharmonic Kratzer potential energy function and we obtain bound and scattering states. Exact results in case of different forms of θ-dependent potentials are presented. In addition, they can be connected to rich variety of situations which enable us to model anisotropic interactions in real space.

  14. Implementation of a vibrationally linked chemical reaction model for DSMC

    Science.gov (United States)

    Carlson, A. B.; Bird, Graeme A.

    1994-01-01

    A new procedure closely linking dissociation and exchange reactions in air to the vibrational levels of the diatomic molecules has been implemented in both one- and two-dimensional versions of Direct Simulation Monte Carlo (DSMC) programs. The previous modeling of chemical reactions with DSMC was based on the continuum reaction rates for the various possible reactions. The new method is more closely related to the actual physics of dissociation and is more appropriate to the particle nature of DSMC. Two cases are presented: the relaxation to equilibrium of undissociated air initially at 10,000 K, and the axisymmetric calculation of shuttle forebody heating during reentry at 92.35 km and 7500 m/s. Although reaction rates are not used in determining the dissociations or exchange reactions, the new method produces rates which agree astonishingly well with the published rates derived from experiment. The results for gas properties and surface properties also agree well with the results produced by earlier DSMC models, equilibrium air calculations, and experiment.

  15. Vibration modeling of structural fuzzy with continuous boundary.

    Science.gov (United States)

    Friis, Lars; Ohlrich, Mogens

    2008-02-01

    From experiments it is well known that the vibration response of a main structure with many attached substructures often shows more damping than structural losses in the components can account for. In practice, these substructures, which are not attached in an entirely rigid manner, behave like a multitude of different sprung masses each strongly resisting any motion of the main structure (master) at their base antiresonance. The "theory of structural fuzzy" is intended for modeling such high damping. In the present article the theory of fuzzy structures is briefly outlined and a method of modeling fuzzy substructures examined. This is done by new derivations and physical interpretations are provided. Further, the method is extended and simplified by introducing a simple deterministic approach to determine the boundary impedance of the structural fuzzy. By using this new approach, the damping effect of the fuzzy with spatial memory is demonstrated by numerical simulations of a main beam structure with fuzzy attachments. It is shown that the introduction of spatial memory reduces the damping effect of the fuzzy and in certain cases the damping effect may even be eliminated completely. PMID:18247876

  16. Active control of structural vibration with on-line secondary path modeling

    Institute of Scientific and Technical Information of China (English)

    YANG Tiejun; GU Zhongquan

    2004-01-01

    An active control strategy with on-line secondary path modeling is proposed and applied in active control of helicopter structural vibration. Computer simulations of the secondary path modeling performance demonstrate the superiorities of the active control strategy. A 2-input 4-output active control simulation for a helicopter model is performed and great reduction of structural vibration is achieved. 2-input 2-output and 2-input 4-output experimental studies of structural vibration control for a free-free beam are also carried out in laboratory to simulate a flying helicopter. The experimental results also show better reduction of the structural vibration, which verifies that the proposed method is effective and practical in structural vibration reduction.

  17. Vibration Signal Forecasting on Rotating Machinery by means of Signal Decomposition and Neurofuzzy Modeling

    Directory of Open Access Journals (Sweden)

    Daniel Zurita-Millán

    2016-01-01

    Full Text Available Vibration monitoring plays a key role in the industrial machinery reliability since it allows enhancing the performance of the machinery under supervision through the detection of failure modes. Thus, vibration monitoring schemes that give information regarding future condition, that is, prognosis approaches, are of growing interest for the scientific and industrial communities. This work proposes a vibration signal prognosis methodology, applied to a rotating electromechanical system and its associated kinematic chain. The method combines the adaptability of neurofuzzy modeling with a signal decomposition strategy to model the patterns of the vibrations signal under different fault scenarios. The model tuning is performed by means of Genetic Algorithms along with a correlation based interval selection procedure. The performance and effectiveness of the proposed method are validated experimentally with an electromechanical test bench containing a kinematic chain. The results of the study indicate the suitability of the method for vibration forecasting in complex electromechanical systems and their associated kinematic chains.

  18. Model of Head-Positioning Error Due to Rotational Vibration of Hard Disk Drives

    Science.gov (United States)

    Matsuda, Yasuhiro; Yamaguchi, Takashi; Saegusa, Shozo; Shimizu, Toshihiko; Hamaguchi, Tetsuya

    An analytical model of head-positioning error due to rotational vibration of a hard disk drive is proposed. The model takes into account the rotational vibration of the base plate caused by the reaction force of the head-positioning actuator, the relationship between the rotational vibration and head-track offset, and the sensitivity function of track-following feedback control. Error calculated by the model agrees well with measured error. It is thus concluded that this model can predict the data transfer performance of a disk drive in read mode.

  19. Electron diffraction studies of hot molecules. III. Stretching and bending anharmonicity in CF3Cl

    Science.gov (United States)

    Bartell, Lawrence S.; Vance, William; Goates, Steven R.

    1984-05-01

    Bond lengths, amplitudes of vibration, and asymmetries in distribution of nonbonded atom pairs were determined for CF3Cl at temperatures ranging from 300 to 1220 K. The CF but not the CCl bond length followed the commonly invoked approximation Δr=(3a/2)Δl2+ΔK+Δδr. The coefficients of skewness of nonbonded radial distribution peaks revealed substantial bending anharmonicity comparable to that detected in a previous study of binary fluorides and accounted for by the valence-shell-electron-pair repulsion force field in its points-on-a-sphere representation.

  20. Wind Turbine Tower Vibration Modeling and Monitoring by the Nonlinear State Estimation Technique (NSET

    Directory of Open Access Journals (Sweden)

    Peng Guo

    2012-12-01

    Full Text Available With appropriate vibration modeling and analysis the incipient failure of key components such as the tower, drive train and rotor of a large wind turbine can be detected. In this paper, the Nonlinear State Estimation Technique (NSET has been applied to model turbine tower vibration to good effect, providing an understanding of the tower vibration dynamic characteristics and the main factors influencing these. The developed tower vibration model comprises two different parts: a sub-model used for below rated wind speed; and another for above rated wind speed. Supervisory control and data acquisition system (SCADA data from a single wind turbine collected from March to April 2006 is used in the modeling. Model validation has been subsequently undertaken and is presented. This research has demonstrated the effectiveness of the NSET approach to tower vibration; in particular its conceptual simplicity, clear physical interpretation and high accuracy. The developed and validated tower vibration model was then used to successfully detect blade angle asymmetry that is a common fault that should be remedied promptly to improve turbine performance and limit fatigue damage. The work also shows that condition monitoring is improved significantly if the information from the vibration signals is complemented by analysis of other relevant SCADA data such as power performance, wind speed, and rotor loads.

  1. Vibration measurements of a wire scanner - Experimental setup and models

    Science.gov (United States)

    Herranz, Juan; Barjau, Ana; Dehning, Bernd

    2016-03-01

    In the next years the luminosity of the LHC will be significantly increased. This will require a much higher accuracy of beam profile measurement than actually achievable by the current wire scanner. The new performance demands a wire travelling speed up to 20 m s-1 and a position measurement accuracy of the order of 1 μm. The vibrations of the mechanical parts of the system and particularly the vibrations of the thin carbon wire have been identified as the major error sources of wire position uncertainty. Therefore the understanding of the wire vibrations has been given high priority for the design and operation of the new device. This article presents a new strategy to measure the wire vibrations based on the piezoresistive effect of the wire itself. An electronic readout system based on a Wheatstone bridge is used to measure the variation of the carbon wire resistance, which is directly proportional to the wire elongation caused by the oscillations.

  2. Modeling for IFOG Vibration Error Based on the Strain Distribution of Quadrupolar Fiber Coil.

    Science.gov (United States)

    Gao, Zhongxing; Zhang, Yonggang; Zhang, Yunhao

    2016-01-01

    Improving the performance of interferometric fiber optic gyroscope (IFOG) in harsh environment, especially in vibrational environment, is necessary for its practical applications. This paper presents a mathematical model for IFOG to theoretically compute the short-term rate errors caused by mechanical vibration. The computational procedures are mainly based on the strain distribution of quadrupolar fiber coil measured by stress analyzer. The definition of asymmetry of strain distribution (ASD) is given in the paper to evaluate the winding quality of the coil. The established model reveals that the high ASD and the variable fiber elastic modulus in large strain situation are two dominant reasons that give rise to nonreciprocity phase shift in IFOG under vibration. Furthermore, theoretical analysis and computational results indicate that vibration errors of both open-loop and closed-loop IFOG increase with the raise of vibrational amplitude, vibrational frequency and ASD. Finally, an estimation of vibration-induced IFOG errors in aircraft is done according to the proposed model. Our work is meaningful in designing IFOG coils to achieve a better anti-vibration performance. PMID:27455257

  3. Modelling flow-induced vibrations of gates in hydraulic structures

    OpenAIRE

    Erdbrink, C.D.

    2014-01-01

    The dynamic behaviour of gates in hydraulic structures caused by passing flow poses a potential threat to flood protection. Complex interactions between the turbulent flow and the suspended gate body may induce undesired vibrations. This thesis contributes to a better understanding and prevention of gate vibrations by employing a variety of computational approaches. Simulations with the finite-element method are used to analyse the fluid-structure interaction of a new underflow gate type whic...

  4. Numerical modelling of longitudinal vibrations of a sucker rod string

    Science.gov (United States)

    Shardakov, I. N.; Wasserman, I. N.

    2010-03-01

    A new technique for analyzing the dynamic behavior of a sucker rod string used in the oil well industry is presented. The main difficulty in the numerical calculation of the examined structure is a multivalued velocity—force relation determined by Coulomb's friction and by loads generated during operation of pump valves. Both the monotonic and nonmonotonic velocity—force relations are considered. A quasi-variational inequality formulation of the problem is proposed. The solution of the inequality amounts to finding the minimum of a convex nonsmooth functional at each time step by means of the Newmark difference time scheme, successive iterations and finite element discretization. The problem of functional minimization is reduced to construction of a sequence of smooth nonlinear programming problems by introducing the auxiliary variables and applying the augmented Lagrangian method. The proposed approach is used to study the longitudinal vibrations of sucker rod strings under near-real conditions. In such systems the most commonly occurring vibration modes are the stick-slip vibrations and the vibrations with natural force excited twice a cycle. The nonmonotonic character of the friction law leads to intensification of these vibrations. In the case of nonmonotonic friction law the stick-slip vibrations can occur even under the action of constant external forces.

  5. Modeling and analysis of vibration effects on signal quality for angular multiplexed holographic data storage

    Science.gov (United States)

    Ishii, Toshiki; Shimada, Ken-ichi; Hoshizawa, Taku; Takashima, Yuzuru

    2016-09-01

    A practical optical system design that takes into account environmental factors is highly desirable. However, it is in general a time-consuming process, which requires a massive iterations of simulations. This is also one of the bottlenecks of the optical design of angular multiplexed holographic data storage systems. To develop a practical method to evaluate the effect of vibrations, a three-dimensional vibration model is developed. The model describes the vibration effect on normalized intensity on the basis of a single statistical figure of merit. Such a single figure of merits is adopted for designing a robust and efficient write strategy, which is applicable to a wide range of vibration waveforms to increase write data transfer rate. Also, optimum optical system parameters are identified. We propose a numerical aperture of 0.572 and a pixel pitch of 6.9 µm which can improve capacity and data transfer rate without sacrificing the vibration margin.

  6. A microscopic nuclear collective rotation-vibration model: 2D submodel

    OpenAIRE

    Gulshani, Parviz

    2016-01-01

    The previous microscopic collective rotation-vibration model is improved to include interaction between collective oscillations in a pair of spatial directions, and to remove many of the previous-model approximations. As in the previous model, the nuclear Schrodinger equation (instead of the Hamiltonian) is canonically transformed to obtain a Schrodinger equation for collective rotation and vibration of a nucleus coupled to an intrinsic motion, with the related constraints imposed on the wave...

  7. Toward feasible and comprehensive computational protocol for simulation of the spectroscopic properties of large molecular systems: the anharmonic infrared spectrum of uracil in the solid state by the reduced dimensionality/hybrid VPT2 approach.

    Science.gov (United States)

    Fornaro, Teresa; Carnimeo, Ivan; Biczysko, Malgorzata

    2015-05-28

    Feasible and comprehensive computational protocols for simulating the spectroscopic properties of large and complex molecular systems are very sought after. Indeed, due to the great variety of intra- and intermolecular interactions that may take place, the interpretation of experimental data becomes more and more difficult as the system under study increases in size or is placed in a complex environment, such as condensed phases. In this framework, we are actively developing a comprehensive and robust computational protocol aimed at quantitative reproduction of the spectra of nucleic acid base complexes, with increasing complexity toward condensed phases and monolayers of biomolecules on solid supports. We have resorted to fully anharmonic quantum mechanical computations within the generalized second-order vibrational perturbation theory (GVPT2) approach, combined with the cost-effective B3LYP-D3 method, in conjunction with basis sets of double-ζ plus polarization quality. Such an approach has been validated in a previous work ( Phys. Chem. Chem. Phys. 2014 , 16 , 10112 - 10128 ) for simulating the IR spectra of the monomers of nucleobases and some of their dimers. In the present contribution we have extended such computational protocol to simulate spectroscopic properties of a molecular solid, namely polycrystalline uracil. First we have selected a realistic molecular model for representing the spectroscopic properties of uracil in the solid state, the uracil heptamer, and then we have computed the relative anharmonic frequencies combining less demanding approaches such as the hybrid B3LYP-D3/DFTBA one, in which the harmonic frequencies are computed at a higher level of theory (B3LYP-D3/N07D) whereas the anharmonic shifts are evaluated at a lower level of theory (DFTBA), and the reduced dimensionality VPT2 (RD-VPT2) approach, where only selected vibrational modes are computed anharmonically along with the couplings with other modes. The good agreement between the

  8. Equivalent linearization technique for quantum anharmonic oscillators

    International Nuclear Information System (INIS)

    Quantum dynamics means studying the evolution of an initially prescribed wave function. This is analytically tractable for special wavefunctions for the simplest of the situations—free particle and simple harmonic oscillator. The purely anharmonic oscillators are virtually impossible to handle. We show here that the study of Ehrenfest's equation provides an alternative route to studying quantum dynamics. It does not give exact answers but clarifies some basic aspects of quantum dynamics by providing a prescription for constructing equivalent simple harmonic oscillators. (paper)

  9. Quantum dissipative effect of one dimension coupled anharmonic oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Sulaiman, A. [Badan Pengkajian dan Penerapan Teknologi, BPPT Bld. II (19thfloor), Jl. M.H. Thamrin 8, Jakarta 10340 (Indonesia); Indonesia Center for Theoretical and Mathematical Physics (ICTMP), Jl. Ganesha 10, Bandung 40132 (Indonesia); Zen, Freddy P. [Theoretical Physics Laboratory (THEPI), Department of Physics, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia); Indonesia Center for Theoretical and Mathematical Physics (ICTMP), Jl. Ganesha 10, Bandung 40132 (Indonesia)

    2015-04-16

    Quantum dissipative effect of one dimension coupled anharmonic oscillator is investigated. The systems are two coupled harmonic oscillator with the different masses. The dissipative effect is studied based on the quantum state diffusion formalism. The result show that the anharmonic effect increase the amplitude but the lifetime of the oscillation depend on the damping coefficient and do not depend on the temperature.

  10. Fault Detection of Reciprocating Compressors using a Model from Principles Component Analysis of Vibrations

    Science.gov (United States)

    Ahmed, M.; Gu, F.; Ball, A. D.

    2012-05-01

    Traditional vibration monitoring techniques have found it difficult to determine a set of effective diagnostic features due to the high complexity of the vibration signals originating from the many different impact sources and wide ranges of practical operating conditions. In this paper Principal Component Analysis (PCA) is used for selecting vibration feature and detecting different faults in a reciprocating compressor. Vibration datasets were collected from the compressor under baseline condition and five common faults: valve leakage, inter-cooler leakage, suction valve leakage, loose drive belt combined with intercooler leakage and belt loose drive belt combined with suction valve leakage. A model using five PCs has been developed using the baseline data sets and the presence of faults can be detected by comparing the T2 and Q values from the features of fault vibration signals with corresponding thresholds developed from baseline data. However, the Q -statistic procedure produces a better detection as it can separate the five faults completely.

  11. CALCULATIONS OF STRETCHING VIBRATIONAL ENERGYLEVELS OF THE CH3I MOLECULE BY A NONLINEAR MODEL

    Institute of Scientific and Technical Information of China (English)

    ZHU JUN; GOU QING-QUAN

    2001-01-01

    A nonlinear model, i.e. the quantized discrete self-trapping equation, is applied to calculate the highly excited CH stretching vibrational energy levels of the CH3I molecule in the liquid phase at the electronic ground state up to n=8. The obtained results agree well with the experimental data and with those obtained from local mode model calculations. We note that the dominant feature of the methyl CH stretching vibrational energy levels of the CH3I molecule is a pattern of local mode pairs. When n > 7, all the vibrational energy of the CH3 group can nearly be localized on a single CH bond.

  12. Vibration analysis of continuous maglev guideways with a moving distributed load model

    Energy Technology Data Exchange (ETDEWEB)

    Teng, N G; Qiao, B P [Department of Civil Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 (China)

    2008-02-15

    A model of moving distributed load with a constant speed is established for vertical vibration analysis of a continuous guideway in maglev transportation system. The guideway is considered as a continuous structural system and the action of maglev vehicles on guideways is considered as a moving distributed load. Vibration of the continuous guideways used in Shanghai maglev line is analyzed with this model. The factors that affect the vibration of the guideways, such as speeds, guideway's spans, frequency and damping, are discussed.

  13. Simplified vibration analysis method of shells of revolution using beam model

    International Nuclear Information System (INIS)

    A simplified vibration analysis method for the shells of revolution using the beam model is now under consideration. In the beam model, the relations between the shear forces and horizontal deformations are used for the calculations of the shear area and the relations between the overturning moments and rotation angles are for those of the inertia moment. The calculations of the vibration characteristics of the cylindrical shell, spherical shell and the cylindrical shell with the spherical cap were conducted to verify the accuracy of the beam model. The natural frequencies and the vibration modes of the proposed method are in good agreement with that of the FEM analysis using the axisymmetrical shell model. The proposed method is easily applicable to the vibration analysis of actual shell structures. (author)

  14. Structure and vibrational spectra of a model of a-Si:H with periodic boundary conditions

    Energy Technology Data Exchange (ETDEWEB)

    Winer, K.; Wooten, F.

    1983-08-01

    A ball-and -stick model of a-Si:H with periodic boundary conditions has been constructed. A computer replica of the structure has been relaxed and the density, radial distribution function and vibrational spectra calculated.

  15. Analysis and Modelling of Muscles Motion during Whole Body Vibration

    Directory of Open Access Journals (Sweden)

    La Gatta A

    2010-01-01

    Full Text Available The aim of the study is to characterize the local muscles motion in individuals undergoing whole body mechanical stimulation. In this study we aim also to evaluate how subject positioning modifies vibration dumping, altering local mechanical stimulus. Vibrations were delivered to subjects by the use of a vibrating platform, while stimulation frequency was increased linearly from 15 to 60 Hz. Two different subject postures were here analysed. Platform and muscles motion were monitored using tiny MEMS accelerometers; a contra lateral analysis was also presented. Muscle motion analysis revealed typical displacement trajectories: motion components were found not to be purely sinusoidal neither in phase to each other. Results also revealed a mechanical resonant-like behaviour at some muscles, similar to a second-order system response. Resonance frequencies and dumping factors depended on subject and his positioning. Proper mechanical stimulation can maximize muscle spindle solicitation, which may produce a more effective muscle activation.

  16. Estimation of Reversed Flow in Long Pipeline Based on Axial Vibration Model of Dense Paste

    Directory of Open Access Journals (Sweden)

    Fuyan Lyu

    2016-01-01

    Full Text Available Intense axial vibration of the paste and the reversed flow make damage to the transportation system and lag the transport progress. This paper analyzed the axial vibration of the paste by building the vibration model according to the working situations of the system. The amount of the reversed flow share is then estimated based on the formed axial vibration model. The estimation of the reversed flow is carried out by counting the amount of the decompressed paste in certain time, which is being relative to the displacement in a single process of the vibration in numerical. The estimation of the reversed flow share of coal slime paste under certain transportation conditions was given and compared with the result based on the wave velocity method. It is evident that the introduction of axial vibration model into the study of the pipeline transportation system is feasible and reasonable, which also supplements the theoretical foundation for the analysis of dense paste vibrations in pipeline transportation system and its impacts on the system.

  17. Vibrational relaxation in liquids: Comparisons between gas phase and liquid phase theories

    International Nuclear Information System (INIS)

    The vibrational relaxation of iodine in liquid xenon was studied to understand what processes are important in determining the density dependence of the vibrational relaxation. This examination will be accomplished by taking simple models and comparing the results to both experimental outcomes and the predictions of molecular dynamics simulations. The vibration relaxation of iodine is extremely sensitive to the iodine potential. The anharmonicity of iodine causes vibrational relaxation to be much faster at the top of the iodine well compared to the vibrational relaxation at the bottom. A number of models are used in order to test the ability of the Isolated Binary Collision theory's ability to predict the density dependence of the vibrational relaxation of iodine in liquid xenon. The models tested vary from the simplest incorporating only the fact that the solvent occupies volume to models that incorporate the short range structure of the liquid in the radial distribution function. None of the models tested do a good job of predicting the actual relaxation rate for a given density. This may be due to a possible error in the choice of potentials to model the system

  18. Approximation methods for the partition functions of anharmonic systems

    Energy Technology Data Exchange (ETDEWEB)

    Lew, P.; Ishida, T.

    1979-07-01

    The analytical approximations for the classical, quantum mechanical and reduced partition functions of the diatomic molecule oscillating internally under the influence of the Morse potential have been derived and their convergences have been tested numerically. This successful analytical method is used in the treatment of anharmonic systems. Using Schwinger perturbation method in the framework of second quantization formulism, the reduced partition function of polyatomic systems can be put into an expression which consists separately of contributions from the harmonic terms, Morse potential correction terms and interaction terms due to the off-diagonal potential coefficients. The calculated results of the reduced partition function from the approximation method on the 2-D and 3-D model systems agree well with the numerical exact calculations.

  19. Cohesive and anharmonic elastic properties of mixed fluorite crystals

    International Nuclear Information System (INIS)

    The cohesive and anharmonic elastic properties of four mixed fluorite crystals (CaxSr1-xF2, SrxBa1-xF2, BaxCa1-xF2 and CdxPb1-xF2) have been investigated by means of a three-body potential (TBP) model which consists of the long-range Coulomb and three-body interactions and the short-range van der Waals attraction and overlap repulsion effective upto the second neighbour ions. Due to the lack of measured data on cohesive energy, third-order elastic constants and pressure derivatives of the second-order elastic constants of mixed fluorites, the accuracy of the present results has been tested by comparing them with the so-called experimental results generated by the application of Vegard's law to their corresponding experimental values for the host fluorites. (author). 32 refs, 3 figs, 1 tab

  20. Approximation methods for the partition functions of anharmonic systems

    International Nuclear Information System (INIS)

    The analytical approximations for the classical, quantum mechanical and reduced partition functions of the diatomic molecule oscillating internally under the influence of the Morse potential have been derived and their convergences have been tested numerically. This successful analytical method is used in the treatment of anharmonic systems. Using Schwinger perturbation method in the framework of second quantization formulism, the reduced partition function of polyatomic systems can be put into an expression which consists separately of contributions from the harmonic terms, Morse potential correction terms and interaction terms due to the off-diagonal potential coefficients. The calculated results of the reduced partition function from the approximation method on the 2-D and 3-D model systems agree well with the numerical exact calculations

  1. Anharmonicity of multi-octupole-phonon excitations in $^{208}$Pb: analysis with multi-reference covariant density functional theory and subbarrier fusion of $^{16}$O+$^{208}$Pb

    CERN Document Server

    Yao, J M

    2016-01-01

    We discuss anharmonicity of the multi-octupole-phonon states in $^{208}$Pb based on a covariant density functional theory, by fully taking into account the interplay between the quadrupole and the octupole degrees of freedom. Our results indicate the existence of a large anharmonicity in the transition strengths, even though the excitation energies are similar to those in the harmonic limit. We also show that the quadrupole-shape fluctuation significantly enhances the fragmentation of the two-octupole-phonon states in $^{208}$Pb. Using those transition strengths as inputs to coupled channels calculations, we then discuss the fusion reaction of $^{16}$O+$^{208}$Pb at energies around the Coulomb barrier. We show that the anharmonicity of the octupole vibrational excitation considerably improves previous coupled-channels calculations in the harmonic oscillator limit, significantly reducing the height of the main peak in the fusion barrier distribution.

  2. RESEARCH ON ACTIVE VIBRATION CONTROL BASED ON COMBINED MODEL FOR COUPLED SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    Niu Junchuan; Zhao Guoqun; Song Kongjie

    2004-01-01

    A novel combined model of the vibration control for the coupled flexible system and its general mathematic description are developed. In presented model, active and passive controls as well as force and moment controls are combined into a single unit to achieve the efficient vibration control of the flexible structures by multi-approaches. Considering the complexity of the energy transmission in the vibrating system, the transmission channels of the power flow transmitted into the foundation are discussed, and the general forces and the corresponding velocities are combined into a single function, respectively. Under the control strategy of the minimum power flow, the transmission characteristics of the power flow are investigated. From the presented numerical examples, it is obvious that the analytical model is effective, and both force and moment controls are able to depress vibration energy substantially.

  3. Finite Element Modeling of Vibrations in Canvas Paintings

    NARCIS (Netherlands)

    Chiriboga Arroyo, P.G.

    2013-01-01

    Preventing vibration damage from occurring to valuable and sensitive canvas paintings is of main concern for museums and art conservation institutions. This concern has grown in recent years due to the increasing demand of paintings for exhibitions worldwide and the concomitant need for their handli

  4. Electroelastic modeling and experimental validations of piezoelectric energy harvesting from broadband random vibrations of cantilevered bimorphs

    Science.gov (United States)

    Zhao, S.; Erturk, A.

    2013-01-01

    We present electroelastic modeling, analytical and numerical solutions, and experimental validations of piezoelectric energy harvesting from broadband random vibrations. The modeling approach employed herein is based on a distributed-parameter electroelastic formulation to ensure that the effects of higher vibration modes are included, since broadband random vibrations, such as Gaussian white noise, might excite higher vibration modes. The goal is to predict the expected value of the power output and the mean-square shunted vibration response in terms of the given power spectral density (PSD) or time history of the random vibrational input. The analytical method is based on the PSD of random base excitation and distributed-parameter frequency response functions of the coupled voltage output and shunted vibration response. The first of the two numerical solution methods employs the Fourier series representation of the base acceleration history in an ordinary differential equation solver while the second method uses an Euler-Maruyama scheme to directly solve the resulting electroelastic stochastic differential equations. The analytical and numerical simulations are compared with several experiments for a brass-reinforced PZT-5H bimorph under different random excitation levels. The simulations exhibit very good agreement with the experimental measurements for a range of resistive electrical boundary conditions and input PSD levels. It is also shown that lightly damped higher vibration modes can alter the expected power curve under broadband random excitation. Therefore, the distributed-parameter modeling and solutions presented herein can be used as a more accurate alternative to the existing single-degree-of-freedom solutions for broadband random vibration energy harvesting.

  5. Influence of tyre-road contact model on vehicle vibration response

    Science.gov (United States)

    Múčka, Peter; Gagnon, Louis

    2015-09-01

    The influence of the tyre-road contact model on the simulated vertical vibration response was analysed. Three contact models were compared: tyre-road point contact model, moving averaged profile and tyre-enveloping model. In total, 1600 real asphalt concrete and Portland cement concrete longitudinal road profiles were processed. The linear planar model of automobile with 12 degrees of freedom (DOF) was used. Five vibration responses as the measures of ride comfort, ride safety and dynamic load of cargo were investigated. The results were calculated as a function of vibration response, vehicle velocity, road quality and road surface type. The marked differences in the dynamic tyre forces and the negligible differences in the ride comfort quantities were observed among the tyre-road contact models. The seat acceleration response for three contact models and 331 DOF multibody model of the truck semi-trailer was compared with the measured response for a known profile of test section.

  6. Anharmonicity, mechanical instability, and thermodynamic properties of the Cr-Re σ-phase

    Energy Technology Data Exchange (ETDEWEB)

    Palumbo, Mauro, E-mail: mauro.palumbo@rub.de; Fries, Suzana G. [ICAMS, Ruhr University Bochum, Universität Str. 150, D-44801 Bochum (Germany); Pasturel, Alain [SIMAP, UMR CNRS-INPG-UJF 5266, BP 75, F-38402 Saint Martin d’Hères (France); Alfè, Dario [Department of Earth Sciences, Department of Physics and Astronomy, London Centre for Nanotechnology and Thomas Young Centre-UCL, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2014-04-14

    Using density-functional theory in combination with the direct force method and molecular dynamics we investigate the vibrational properties of a binary Cr-Re σ-phase. In the harmonic approximation, we have computed phonon dispersion curves and density of states, evidencing structural and chemical effects. We found that the σ-phase is mechanically unstable in some configurations, for example, when all crystallographic sites are occupied by Re atoms. By using a molecular-dynamics-based method, we have analysed the anharmonicity in the system and found negligible effects (∼0.5 kJ/mol) on the Helmholtz energy of the binary Cr-Re σ-phase up to 2000 K (∼0.8T{sub m}). Finally, we show that the vibrational contribution has significant consequences on the disordering of the σ-phase at high temperature.

  7. Full counting statistics of vibrationally assisted electronic conduction: Transport and fluctuations of thermoelectric efficiency

    Science.gov (United States)

    Agarwalla, Bijay Kumar; Jiang, Jian-Hua; Segal, Dvira

    2015-12-01

    We study the statistical properties of charge and energy transport in electron conducting junctions with electron-phonon interactions, specifically, the thermoelectric efficiency and its fluctuations. The system comprises donor and acceptor electronic states, representing a two-site molecule or a double-quantum-dot system. Electron transfer between metals through the two molecular sites is coupled to a particular vibrational mode which is taken to be either harmonic or anharmonic, a truncated (two-state) spectrum. Considering these models we derive the cumulant generating function in steady state for charge and energy transfer, correct to second order in the electron-phonon interaction, but exact to all orders in the metal-molecule coupling strength. This is achieved by using the nonequilibrium Green's function approach (harmonic mode) and a kinetic quantum master-equation method (anharmonic mode). From the cumulant generating function we calculate the charge current and its noise and the large-deviation function for the thermoelectric efficiency. We demonstrate that at large bias the charge current, differential conductance, and the current noise can identify energetic and structural properties of the junction. We further examine the operation of the junction as a thermoelectric engine and show that while the macroscopic thermoelectric efficiency is indifferent to the nature of the mode (harmonic or anharmonic), efficiency fluctuations do reflect this property.

  8. Experimental and Numerical Investigations on Vibration Characteristics of a Loaded Ship Model

    Institute of Scientific and Technical Information of China (English)

    Pu Liang; Ming Hong; Zheng Wang

    2015-01-01

    In this paper, the vibration characteristics of the structure in the finite fluid domain are analyzed using a coupled finite element method. The added mass matrix is calculated with finite element method (FEM) by 8-node acoustic fluid elements. The vibration characteristics of the structure in the finite fluid domain are calculated combining structure FEM mass matrix. By writing relevant programs, the numerical analysis on vibration characteristics of a submerged cantilever rectangular plate in finite fluid domain and loaded ship model is performed. A modal identification experiment for the loaded ship model in air and in water is conducted and the experiment results verify the reliability of the numerical analysis. The numerical method can be used for further research on vibration characteristics and acoustic radiation problems of the structure in the finite fluid domain.

  9. Large-amplitude motion in the Suzuki model

    International Nuclear Information System (INIS)

    The classical and quantum aspects for the analytically solvable one-dimensional pure monopole Suzuki model are studied to clarify the problem of quantization of classical collective motion. A set of nonlinear dynamic equations for a monopole moment of a nucleus are derived from the TDHF equation using the Wigner function moments model. It provides to describe large-amplitude monopole vibrations. The corresponding collective Hamiltonian is constructed and quantized. The anharmonicity of the collective spectra is analyzed in detal

  10. Stabilization for the Vibrations Modeled by the `Standard Linear Model' of Viscoelasticity

    Indian Academy of Sciences (India)

    Ganesh C Gorain

    2010-09-01

    We study the stabilization of vibrations of a flexible structure modeled by the `standard linear model’ of viscoelasticity in a bounded domain in $\\mathbb{R}^n$ with a smooth boundary. We prove that amplitude of the vibrations remains bounded in the sense of a suitable norm in a space $\\mathbb{X}$, defined explicitly in (22) subject to a restriction on the uncertain disturbing forces on $\\mathbb{X}$. We also estimate the total energy of the system over time interval [0,] for any >0, with a tolerance level of the disturbances. Finally, when the input disturbances are insignificant, uniform exponential stabilization is obtained and an explicit form for the energy decay rate is derived. These results are achieved by a direct method under undamped mixed boundary conditions.

  11. Free Vibration Analysis for Cracked FGM Beams by Means of a Continuous Beam Model

    OpenAIRE

    E Chuan Yang; Xiang Zhao; Ying Hui Li

    2015-01-01

    Based on Euler-Bernoulli beam theory and a continuous stiffness beam model, the free vibration of rectangular-section beams made of functionally graded materials (FGMs) containing open edge cracks is studied. Assuming the material gradients follow exponential distribution along beam thickness direction, the conversion relation between the vibration governing equations of a FGM beam and that of an isotropic homogenous beam is deduced. A continuous function is used to characterize the bending s...

  12. Modelling vibrational coherence in the primary rhodopsin photoproduct

    Science.gov (United States)

    Weingart, O.; Garavelli, M.

    2012-12-01

    Molecular dynamics simulations of the rhodopsin photoreaction reveal coherent low frequency oscillations in the primary photoproduct (photorhodopsin), with frequencies slightly higher than observed in the experiment. The coherent molecular motions in the batho-precursor can be attributed to the activation of ground state vibrational modes in the hot photo-product, involving out-of-plane deformations of the carbon skeleton. Results are discussed and compared with respect to spectroscopic data and suggested reaction mechanisms.

  13. New Perturbation Theory for Nonstationary Anharmonic Oscillator

    CERN Document Server

    Bogdanov, A V; Bogdanov, Alexander V.; Gevorkyan, Ashot S.

    1997-01-01

    The new perturbation theory for the problem of nonstationary anharmonic oscillator with polynomial nonstationary perturbation is proposed. As a zero order approximation the exact wave function of harmonic oscillator with variable frequency in external field is used. Based on some intrinsic properties of unperturbed wave function the variational-iterational method is proposed, that make it possible to correct both the amplitude and the phase of wave function. As an application the first order correction are proposed both for wave function and S-matrix elements for asymmetric perturbation potential of type $V(x,\\tau)=\\alpha (\\tau)x^3+\\beta (\\tau)x^4.$ The transition amplitude ''ground state - ground state'' $W_{00}(\\lambda ;\\rho)$ is analyzed in detail depending on perturbation parameter $\\lambda $ (including strong coupling region $% \\lambda $ $\\sim 1$) and one-dimensional refraction coefficient $\\rho $.

  14. Ice-shelf forced vibrations modelled with a full 3-D elastic model

    Directory of Open Access Journals (Sweden)

    Y. V. Konovalov

    2014-12-01

    Full Text Available Ice-shelf forced vibrations modelling was performed using a full 3-D finite-difference elastic model, which takes into account sub-ice seawater flow. The sub-ice seawater flow was described by the wave equation, so the ice-shelf flexures result from the hydrostatic pressure perturbations in sub-ice seawater layer. The numerical experiments were performed for idealized ice-shelf geometry, which was considered in the numerical experiments in Holdsworth and Glynn (1978. The ice-plate vibrations were modelled for harmonic ingoing pressure perturbations and for a wide spectrum of the ocean swell periodicities, ranging from infragravity wave periods down to periods of a few seconds (0.004–0.2 Hz. The spectrums for the vibration amplitudes were obtained in this range and are published in this manuscript. The spectrums contain distinct resonant peaks, which corroborate the ability of resonant-like motion in suitable conditions of the forcing. The impact of local irregularities in the ice-shelf geometry to the amplitude spectrums was investigated for idealized sinusoidal perturbations of the ice surface and the sea bottom. The results of the numerical experiments presented in this manuscript, are approximately in agreement with the results obtained by the thin-plate model in the research carried out by Holdsworth and Glynn (1978. In addition, the full model allows to observe 3-D effects, for instance, vertical distribution of the stress components in the plate. In particular, the model reveals the increasing in shear stress, which is neglected in the thin-plate approximation, from the terminus towards the grounding zone with the maximum at the grounding line in the case of considered high-frequency forcing. Thus, the high-frequency forcing can reinforce the tidal impact to the ice-shelf grounding zone additionally exciting the ice fracture there.

  15. A theory of the strain-dependent critical field in Nb3Sn, based on anharmonic phonon generation

    CERN Document Server

    Valentinis, D F; Bordini, B; Rossi, L

    2014-01-01

    We propose a theory to explain the strain dependence of the critical properties in A15 superconductors. Starting from the strong-coupling formula for the critical temperature, and assuming that the strain sensitivity stems mostly from the electron-phonon alpha F-2 function, we link the strain dependence of the critical properties to a widening of alpha F-2. This widening is attributed to the nonlinear generation of phonons, which takes place in the anharmonic deformation potential induced by the strain. Based on the theory of sum- and difference-frequency wave generation in nonlinear media, we obtain an explicit connection between the widening of alpha F-2 and the anharmonic energy. The resulting model is fit to experimental datasets for Nb3Sn, and the anharmonic energy extracted from the fits is compared with first-principles calculations.

  16. Model-based failure detection for cylindrical shells from noisy vibration measurements.

    Science.gov (United States)

    Candy, J V; Fisher, K A; Guidry, B L; Chambers, D H

    2014-12-01

    Model-based processing is a theoretically sound methodology to address difficult objectives in complex physical problems involving multi-channel sensor measurement systems. It involves the incorporation of analytical models of both physical phenomenology (complex vibrating structures, noisy operating environment, etc.) and the measurement processes (sensor networks and including noise) into the processor to extract the desired information. In this paper, a model-based methodology is developed to accomplish the task of online failure monitoring of a vibrating cylindrical shell externally excited by controlled excitations. A model-based processor is formulated to monitor system performance and detect potential failure conditions. The objective of this paper is to develop a real-time, model-based monitoring scheme for online diagnostics in a representative structural vibrational system based on controlled experimental data. PMID:25480059

  17. Identifying damage locations under ambient vibrations utilizing vector autoregressive models and Mahalanobis distances

    Science.gov (United States)

    Mosavi, A. A.; Dickey, D.; Seracino, R.; Rizkalla, S.

    2012-01-01

    This paper presents a study for identifying damage locations in an idealized steel bridge girder using the ambient vibration measurements. A sensitive damage feature is proposed in the context of statistical pattern recognition to address the damage detection problem. The study utilizes an experimental program that consists of a two-span continuous steel beam subjected to ambient vibrations. The vibration responses of the beam are measured along its length under simulated ambient vibrations and different healthy/damage conditions of the beam. The ambient vibration is simulated using a hydraulic actuator, and damages are induced by cutting portions of the flange at two locations. Multivariate vector autoregressive models were fitted to the vibration response time histories measured at the multiple sensor locations. A sensitive damage feature is proposed for identifying the damage location by applying Mahalanobis distances to the coefficients of the vector autoregressive models. A linear discriminant criterion was used to evaluate the amount of variations in the damage features obtained for different sensor locations with respect to the healthy condition of the beam. The analyses indicate that the highest variations in the damage features were coincident with the sensors closely located to the damages. The presented method showed a promising sensitivity to identify the damage location even when the induced damage was very small.

  18. Dynamic Properties of Proton Transfer in the Anharmonic-Interaction Hydrogen Bond Systems

    Institute of Scientific and Technical Information of China (English)

    YAN Xun-Ling; DONG Rui-Xin; PANG Xiao-Feng

    2001-01-01

    We analyze the properties of the excited solitary-wave model in the case of anharmonic-interaction of heavy ionic lattice in hydrogen bond systems.In this case,some new phenomena appear.We find different types of solutions for the proton displacement and influences on the kinks and pulse solitary waves by numerical calculation.For each of them we have presented a direct relation with the effective potential of the system.

  19. Linear delta expansion technique for the solution of anharmonic oscillations

    Indian Academy of Sciences (India)

    P K Bera; J Datta

    2007-01-01

    The linear delta expansion technique has been developed for solving the differential equation of motion for symmetric and asymmetric anharmonic oscillators. We have also demonstrated the sophistication and simplicity of this new perturbation technique.

  20. Exact and approximate expressions for the period of anharmonic oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Amore, Paolo [Facultad de Ciencias, Universidad de Colima, Bernal DIaz del Castillo 340, Colima (Mexico); Fernandez, Francisco M [INIFTA (Conicet, UNLP), Blvd. 113 y 64 S/N, Sucursal 4, Casilla de Correo 16, 1900 La Plata (Argentina)

    2005-07-01

    In this paper, we present a straightforward systematic method for the exact and approximate calculation of integrals that appear in formulae for the period of anharmonic oscillators and other problems of interest in classical mechanics.

  1. MODELING INFLUENCE OF ROLLING BEARING BUSH AND VIBRATION DAMPING IN CATCHING OF TOOTHED WHEELS

    Directory of Open Access Journals (Sweden)

    P. V. Diachenko

    2010-11-01

    Full Text Available On the base of dynamic scheme of toothing, a mathematical model for study of the influence of constructive parameters of radial bearings such as a factor of friction, reduced masses and stiffnesses on damping the vibrations in gearing is developed. The solution for the model is obtained using a simulation modeling in the Simulink environment with checking the validity of results in the system MathCad. The oscillograms of the vibrations under investigation and the conclusions on the base of their analysis are presented.

  2. Electromechanical coupling model and analysis of transient behavior for inertial vibrating machines

    Institute of Scientific and Technical Information of China (English)

    HU Ji-yun; YU Cui-ping; YIN Xue-gang

    2004-01-01

    A mathematical model of electromechanical coupling system for a planar inertial vibrating machine is built by setting up dynamical equations of discrete systems with a matrix methodology proposed. The substance of the transient behavior of the machine is unveiled by analyzing the results of the computer simulation to the model, and new methods are presented for diminishing the transient amplitude of the vibrating machine and improving the transient behavior. The reliable mathematical model is provided for intelligent control of the transient behavior of the equipment.

  3. Genuine Quantum Signatures in Synchronization of Anharmonic Self-Oscillators

    Science.gov (United States)

    Lörch, Niels; Amitai, Ehud; Nunnenkamp, Andreas; Bruder, Christoph

    2016-08-01

    We study the synchronization of a Van der Pol self-oscillator with Kerr anharmonicity to an external drive. We demonstrate that the anharmonic, discrete energy spectrum of the quantum oscillator leads to multiple resonances in both phase locking and frequency entrainment not present in the corresponding classical system. Strong driving close to these resonances leads to nonclassical steady-state Wigner distributions. Experimental realizations of these genuine quantum signatures can be implemented with current technology.

  4. IIR filtering based adaptive active vibration control methodology with online secondary path modeling using PZT actuators

    Science.gov (United States)

    Boz, Utku; Basdogan, Ipek

    2015-12-01

    Structural vibrations is a major cause for noise problems, discomfort and mechanical failures in aerospace, automotive and marine systems, which are mainly composed of plate-like structures. In order to reduce structural vibrations on these structures, active vibration control (AVC) is an effective approach. Adaptive filtering methodologies are preferred in AVC due to their ability to adjust themselves for varying dynamics of the structure during the operation. The filtered-X LMS (FXLMS) algorithm is a simple adaptive filtering algorithm widely implemented in active control applications. Proper implementation of FXLMS requires availability of a reference signal to mimic the disturbance and model of the dynamics between the control actuator and the error sensor, namely the secondary path. However, the controller output could interfere with the reference signal and the secondary path dynamics may change during the operation. This interference problem can be resolved by using an infinite impulse response (IIR) filter which considers feedback of the one or more previous control signals to the controller output and the changing secondary path dynamics can be updated using an online modeling technique. In this paper, IIR filtering based filtered-U LMS (FULMS) controller is combined with online secondary path modeling algorithm to suppress the vibrations of a plate-like structure. The results are validated through numerical and experimental studies. The results show that the FULMS with online secondary path modeling approach has more vibration rejection capabilities with higher convergence rate than the FXLMS counterpart.

  5. Nonlocal plate model for free vibrations of single-layered graphene sheets

    Science.gov (United States)

    Ansari, R.; Sahmani, S.; Arash, B.

    2010-11-01

    Vibration analysis of single-layered graphene sheets (SLGSs) is investigated using nonlocal continuum plate model. To this end, Eringens's nonlocal elasticity equations are incorporated into the classical Mindlin plate theory for vibrations of rectangular nanoplates. In contrast to the classical model, the nonlocal model developed in this study has the capability to evaluate the natural frequencies of the graphene sheets with considering the size-effects on the vibrational characteristics of them. Solutions for frequencies of the free vibration of simply-supported and clamped SLGSs are computed using generalized differential quadrature (GDQ) method. Then, molecular dynamics (MD) simulations for the free vibration of various SLGSs with different values of side length and chirality are employed, the results of which are matched with the nonlocal model ones to derive the appropriate values of the nonlocal parameter relevant to each boundary condition. It is found that the value of the nonlocal parameter is independent of the magnitude of the geometrical variables of the system.

  6. Nonlocal plate model for free vibrations of single-layered graphene sheets

    Energy Technology Data Exchange (ETDEWEB)

    Ansari, R., E-mail: r_ansari@guilan.ac.i [Department of Mechanical Engineering, University of Guilan, P.O. Box 3756, Rasht (Iran, Islamic Republic of); Sahmani, S.; Arash, B. [Department of Mechanical Engineering, University of Guilan, P.O. Box 3756, Rasht (Iran, Islamic Republic of)

    2010-11-15

    Vibration analysis of single-layered graphene sheets (SLGSs) is investigated using nonlocal continuum plate model. To this end, Eringens's nonlocal elasticity equations are incorporated into the classical Mindlin plate theory for vibrations of rectangular nanoplates. In contrast to the classical model, the nonlocal model developed in this study has the capability to evaluate the natural frequencies of the graphene sheets with considering the size-effects on the vibrational characteristics of them. Solutions for frequencies of the free vibration of simply-supported and clamped SLGSs are computed using generalized differential quadrature (GDQ) method. Then, molecular dynamics (MD) simulations for the free vibration of various SLGSs with different values of side length and chirality are employed, the results of which are matched with the nonlocal model ones to derive the appropriate values of the nonlocal parameter relevant to each boundary condition. It is found that the value of the nonlocal parameter is independent of the magnitude of the geometrical variables of the system.

  7. Nonlocal plate model for free vibrations of single-layered graphene sheets

    International Nuclear Information System (INIS)

    Vibration analysis of single-layered graphene sheets (SLGSs) is investigated using nonlocal continuum plate model. To this end, Eringens's nonlocal elasticity equations are incorporated into the classical Mindlin plate theory for vibrations of rectangular nanoplates. In contrast to the classical model, the nonlocal model developed in this study has the capability to evaluate the natural frequencies of the graphene sheets with considering the size-effects on the vibrational characteristics of them. Solutions for frequencies of the free vibration of simply-supported and clamped SLGSs are computed using generalized differential quadrature (GDQ) method. Then, molecular dynamics (MD) simulations for the free vibration of various SLGSs with different values of side length and chirality are employed, the results of which are matched with the nonlocal model ones to derive the appropriate values of the nonlocal parameter relevant to each boundary condition. It is found that the value of the nonlocal parameter is independent of the magnitude of the geometrical variables of the system.

  8. System Modeling and Operational Characteristic Analysis for an Orbital Friction Vibration Actuator Used in Orbital Vibration Welding

    Directory of Open Access Journals (Sweden)

    XU, F.

    2013-05-01

    Full Text Available Orbital Friction Vibration Actuator (OFVA is a core component of Orbital Friction Welding (OFW, which is a novel apertureless welding technology utilizing friction heat to implement solid-state joining. In this paper, topology and operational principle of OFVA are introduced, the analytical formulas of the electromagnetic force for the x and y directions, which can drive the mover to generate a circular motion trajectory, are derived, and the characteristic of static electromagnetic force is predicted by analytical method and 2-D (two-dimensional FEM (finite element method, 3-D and measurement. The coupled magnetic field-circuit-motion simulation models which are driven by current and voltage source are established, respectively, and some of its operational characteristics are analyzed. Simulation and experiment validate theoretical analysis and the feasibility of the fabricated prototype, demonstrate the good performance of the OFVA, and provide valuable reference for engineering applications.

  9. Unsteady Vibration Aerodynamic Modeling and Evaluation of Dynamic Derivatives Using Computational Fluid Dynamics

    Directory of Open Access Journals (Sweden)

    Xu Liu

    2015-01-01

    Full Text Available Unsteady aerodynamic system modeling is widely used to solve the dynamic stability problems encountering aircraft design. In this paper, single degree-of-freedom (SDF vibration model and forced simple harmonic motion (SHM model for dynamic derivative prediction are developed on the basis of modified Etkin model. In the light of the characteristics of SDF time domain solution, the free vibration identification methods for dynamic stability parameters are extended and applied to the time domain numerical simulation of blunted cone calibration model examples. The dynamic stability parameters by numerical identification are no more than 0.15% deviated from those by experimental simulation, confirming the correctness of SDF vibration model. The acceleration derivatives, rotary derivatives, and combination derivatives of Army-Navy Spinner Rocket are numerically identified by using unsteady N-S equation and solving different SHV patterns. Comparison with the experimental result of Army Ballistic Research Laboratories confirmed the correctness of the SHV model and dynamic derivative identification. The calculation result of forced SHM is better than that by the slender body theory of engineering approximation. SDF vibration model and SHM model for dynamic stability parameters provide a solution to the dynamic stability problem encountering aircraft design.

  10. Kinetic model of vibrational relaxation in a humid-air pulsed corona discharge

    Energy Technology Data Exchange (ETDEWEB)

    Komuro, Atsushi; Ono, Ryo [Department of Advanced Energy, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 227-8568 (Japan); Oda, Tetsuji, E-mail: komuro@streamer.t.u-tokyo.ac.j, E-mail: ryo-ono@k.u-tokyo.ac.j [Department of Electrical Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656 (Japan)

    2010-10-15

    The effect of humidity on the vibrational relaxation of O{sub 2}(v) and N{sub 2}(v) in a humid-air pulsed corona discharge is studied using a kinetic model. We previously showed that humidity markedly increases the vibration-to-translation (V-T) rate of molecules in a humid-air pulsed corona discharge by measuring O{sub 2}(v) density (Ono et al 2010 Plasma Sources Sci. Technol. 19 015009). In this paper, we numerically calculate the vibrational kinetics of O{sub 2}, N{sub 2} and H{sub 2}O to study the reason behind the acceleration of V-T in the presence of humidity. The calculation closely reproduces the measured acceleration of V-T due to humidity, and shows that the increase in the V-T rate is caused by the fast vibration-to-vibration (V-V) processes of O{sub 2}-H{sub 2}O and N{sub 2}-H{sub 2}O and the subsequent rapid V-T process of H{sub 2}O-H{sub 2}O. In addition, it is shown that O atom density is also important in the vibrational kinetics owing to the rapid V-T process of O{sub 2}-O.

  11. Lattice anharmonicity and thermal properties of strongly correlated Fe1- x Co x Si alloys

    Science.gov (United States)

    Povzner, A. A.; Nogovitsyna, T. A.; Filanovich, A. N.

    2015-10-01

    The temperature dependences of the thermal and elastic properties of strongly correlated metal alloys Fe1- x Co x Si ( x = 0.1, 0.3, 0.5) with different atomic chiralities have been calculated in the framework of the self-consistent thermodynamic model taking into account the influence of lattice anharmonicity. The lattice contributions to the heat capacity and thermal expansion coefficient of the alloys have been determined using the experimental data. It has been demonstrated that the invar effect in the thermal expansion of the lattice observed in the magnetically ordered region of Fe0.7Co0.3Si and Fe0.5Co0.5Si is not related to the lattice anharmonicity, even though its appearance correlates with variations in the atomic chirality.

  12. A Simplified Model for Vibration Analysis of Diesel Engine Crankshaft System

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A spatial finite element model for vibration analysis of crankshaft system was proposed. The crankshaft body was simplified as spatial rigid frame by using beam elements based on Timoshenko beam theory. The main bearings in system were simplified as linear springs and dashpots. The natural frequencies of the crankshaft system of a four in-line cylinder engine were calculated and compared with the analytical and experimental values available in other publications. In order to simulate the motion of operating crankshaft system, the gas forces, rotating masses and reciprocating masses were considered, the crankshaft and main bearings were coupled in a rotating coordinate system, and a dynamic model for vibration analysis of crankshaft system was established. By applying the dynamic model, the influence of the mass and moment of inertia of front pulley on the behavior of crankshaft vibration was investigated.

  13. Deriving Vibration Modes of Semi-infinite Chain Model by "Invariant Eigen-operator"Method

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lin-Na; FAN Hong-Yi; FU Zun-Tao; and WU Hao; LIU Shi-Kuo

    2008-01-01

    For the first time, we introduce a fully quantum mechanical Hamiltonian for a semi-infinite chain model of atoms. We then derive the vibration modes of this model by virtue of the "invariant eigen-operator" method in two different cases, which is concise and revealing.

  14. Modelling and experimental validation of two-dimensional transverse vibrations in a flexible robot link

    DEFF Research Database (Denmark)

    Sørensen, Paul Haase; Baungaard, Jens Rane

    1996-01-01

    A general model for a rotating homogenous flexible robot link is developed. The model describes two-dimensional transverse vibrations induced by the actuator due to misalignment of the actuator axis of rotation relative to the link symmetry axis and due to translational acceleration of the link...

  15. Modeling of wave propagation in drill strings using vibration transfer matrix methods.

    Science.gov (United States)

    Han, Je-Heon; Kim, Yong-Joe; Karkoub, Mansour

    2013-09-01

    In order to understand critical vibration of a drill bit such as stick-slip and bit-bounce and their wave propagation characteristics through a drill string system, it is critical to model the torsional, longitudinal, and flexural waves generated by the drill bit vibration. Here, a modeling method based on a vibration transfer matrix between two sets of structural wave variables at the ends of a constant cross-sectional, hollow, circular pipe is proposed. For a drill string system with multiple pipe sections, the total vibration transfer matrix is calculated by multiplying all individual matrices, each is obtained for an individual pipe section. Since drill string systems are typically extremely long, conventional numerical analysis methods such as a finite element method (FEM) require a large number of meshes, which makes it computationally inefficient to analyze these drill string systems numerically. The proposed "analytical" vibration transfer matrix method requires significantly low computational resources. For the validation of the proposed method, experimental and numerical data are obtained from laboratory experiments and FEM analyses conducted by using a commercial FEM package, ANSYS. It is shown that the modeling results obtained by using the proposed method are well matched with the experimental and numerical results.

  16. Modeling of wave propagation in drill strings using vibration transfer matrix methods.

    Science.gov (United States)

    Han, Je-Heon; Kim, Yong-Joe; Karkoub, Mansour

    2013-09-01

    In order to understand critical vibration of a drill bit such as stick-slip and bit-bounce and their wave propagation characteristics through a drill string system, it is critical to model the torsional, longitudinal, and flexural waves generated by the drill bit vibration. Here, a modeling method based on a vibration transfer matrix between two sets of structural wave variables at the ends of a constant cross-sectional, hollow, circular pipe is proposed. For a drill string system with multiple pipe sections, the total vibration transfer matrix is calculated by multiplying all individual matrices, each is obtained for an individual pipe section. Since drill string systems are typically extremely long, conventional numerical analysis methods such as a finite element method (FEM) require a large number of meshes, which makes it computationally inefficient to analyze these drill string systems numerically. The proposed "analytical" vibration transfer matrix method requires significantly low computational resources. For the validation of the proposed method, experimental and numerical data are obtained from laboratory experiments and FEM analyses conducted by using a commercial FEM package, ANSYS. It is shown that the modeling results obtained by using the proposed method are well matched with the experimental and numerical results. PMID:23967925

  17. High resolution IR diode laser study of collisional energy transfer between highly vibrationally excited monofluorobenzene and CO2: the effect of donor fluorination on strong collision energy transfer.

    Science.gov (United States)

    Kim, Kilyoung; Johnson, Alan M; Powell, Amber L; Mitchell, Deborah G; Sevy, Eric T

    2014-12-21

    Collisional energy transfer between vibrational ground state CO2 and highly vibrationally excited monofluorobenzene (MFB) was studied using narrow bandwidth (0.0003 cm(-1)) IR diode laser absorption spectroscopy. Highly vibrationally excited MFB with E' = ∼41,000 cm(-1) was prepared by 248 nm UV excitation followed by rapid radiationless internal conversion to the electronic ground state (S1→S0*). The amount of vibrational energy transferred from hot MFB into rotations and translations of CO2 via collisions was measured by probing the scattered CO2 using the IR diode laser. The absolute state specific energy transfer rate constants and scattering probabilities for single collisions between hot MFB and CO2 were measured and used to determine the energy transfer probability distribution function, P(E,E'), in the large ΔE region. P(E,E') was then fit to a bi-exponential function and extrapolated to the low ΔE region. P(E,E') and the biexponential fit data were used to determine the partitioning between weak and strong collisions as well as investigate molecular properties responsible for large collisional energy transfer events. Fermi's Golden rule was used to model the shape of P(E,E') and identify which donor vibrational motions are primarily responsible for energy transfer. In general, the results suggest that low-frequency MFB vibrational modes are primarily responsible for strong collisions, and govern the shape and magnitude of P(E,E'). Where deviations from this general trend occur, vibrational modes with large negative anharmonicity constants are more efficient energy gateways than modes with similar frequency, while vibrational modes with large positive anharmonicity constants are less efficient at energy transfer than modes of similar frequency.

  18. Quartic oscillator potential in the γ-rigid regime of the collective geometrical model

    International Nuclear Information System (INIS)

    A prolate γ-rigid version of the Bohr-Mottelson Hamiltonian with a quartic anharmonic oscillator potential in β collective shape variable is used to describe the spectra for a variety of vibrational-like nuclei. Speculating the exact separation between the two Euler angles and the β variable, one arrives at a differential Schroedinger equation with a quartic anharmonic oscillator potential and a centrifugal-like barrier. The corresponding eigenvalue is approximated by an analytical formula depending only on a single parameter up to an overall scaling factor. The applicability of the model is discussed in connection to the existence interval of the free parameter, which is limited by the accuracy of the approximation, and by comparison with the predictions of the related X(3) and X(3)-β 2 models. The model is applied to qualitatively describe the spectra for nine nuclei which exhibit near-vibrational features. (orig.)

  19. Dynamics Modelling of a Plate Vibrating in a Perfect Fluid

    Directory of Open Access Journals (Sweden)

    Bouarroudj Nadra

    2007-01-01

    Full Text Available We deal with the interaction problem of a plate vibrating within a perfect fluid. We establish the equations describing the dynamics behaviour of the plate using the general equations of the elasto-dynamic. The fluid flow described by the equation of Euler’s low amplitude. We presented results of the existence, the unicity and the regularity of the problem verified by the plate as well as by the fluid We used the integral equations for the numerical resolution of the problem that allowed us to determine the coupling term between the fluid and the plate. The numerical results were obtained using finite element method coupled with an implicit diagram in time.

  20. On the modeling of vibration transmission over a spatially curved cable with casing

    Science.gov (United States)

    Otrin, Miha; Boltežar, Miha

    2009-09-01

    We propose an approach to the vibration modeling of spatially curved steel wires with a casing and a contact between the outer casing and the inner steel wire. For the mathematical model of the steel wire and the outer casing, the Euler-Bernoulli beam theory with no axial pre-load is used, and for the discretisation, finite elements are used. The excitation of the steel wire and the outer casing is in the form of random kinematic excitation. For the energy dissipation the proportional viscous damping model and the structural damping model are used. The damping parameters are identified from the Nyquist diagram and from the continuous wavelet transform. For the identification of the frequency dependence of the dynamic modulus of elasticity a method is proposed that uses the measured natural frequencies and the experimentally determined natural modes. The contact between the steel wire and the outer casing is modelled using the penalty method with the friction in a tangential direction. We show that higher values of the friction coefficient have a significant influence on lowering the level of vibration transmission. The model also predicts that the dynamic modulus of the elasticity of a steel wire does not have a major influence on the level of vibration transmission, which was also validated by experiment. On the basis of an experimental validation the model of a steel wire with an outer casing proved to be suitable for the prediction of the vibration transmission.

  1. Frustrated quantum-spin system on a triangle coupled with e{sub g} lattice vibrations: correspondence to Longuet-Higgins et al' s Jahn-Teller model

    Energy Technology Data Exchange (ETDEWEB)

    Yamasaki, Hisatsugu [Department of Applied Physics, Osaka City University, Osaka 558-8585 (Japan); Natsume, Yuhei [Graduate School of Science and Technology, Chiba University, Chiba 263-8522 (Japan); Terai, Akira [Department of Applied Physics, Osaka City University, Osaka 558-8585 (Japan); Nakamura, Katsuhiro [Department of Applied Physics, Osaka City University, Osaka 558-8585 (Japan)

    2004-09-01

    We investigate the frustrated quantum three-spin model (S{sub 1},S{sub 2},S{sub 3}) of spin = 1/2 on a triangle, in which spins are coupled with lattice-vibrational modes through the antiferromagnetic exchange interaction depending on distances between spin sites. The present model corresponds to the dynamic Jahn-Teller system E{sub g} - e{sub g} proposed by Longuet-Higgins et al (1958 Proc. R. Soc. A 244 1). This correspondence is revealed by using the transformation to Nakamura-Bishop's bases used in Phys. Rev. Lett. 54 861 (1985). Furthermore, we elucidate the relationship between a chiral order parameter {chi}-circumflex = S{sub 1}{center_dot}(S{sub 2}xS{sub 3}) in the spin system and the electronic orbital angular momentum l-circumflex{sub z} in E{sub g} - e{sub g} vibronic model: the regular oscillatory behaviour of the expectation value <{chi}-circumflex> with increasing energy can be found as in the case of for vibronic structures. The increase of the additional anharmonicity(chaoticity) is found to yield a rapidly decaying irregular oscillation of <{chi}-circumflex>. (letter to the editor)

  2. Simple vibration modeling of structural fuzzy with continuous boundary by including two-dimensional spatial memory

    DEFF Research Database (Denmark)

    Friis, Lars; Ohlrich, Mogens

    2008-01-01

    -dimensional continuous boundary. Additionally, a simple method for determining the so-called equivalent coupling factor is presented. The validity of this method is demonstrated by numerical simulations of the vibration response of a master plate structure with fuzzy attachments. It is revealed that the method performs......Many complicated systems of practical interest consist basically of a well-defined outer shell-like master structure and a complicated internal structure with uncertain dynamic properties. Using the "fuzzy structure theory" for predicting audible frequency vibration, the internal structure......-dimensional continuous boundary was examined in a companion paper (L. Friis and M. Ohlrich, "Vibration modeling of structural fuzzy with continuous boundary," J. Acoust. Soc. Am. 123, 718-728 (2008)). In the present paper, this method is extended, such that it allows modeling of fuzzy substructures with a two...

  3. Effect of ultrasonic vibration on wedge indentation of a model elastoviscoplastic material

    Science.gov (United States)

    Huang, Zhihong; Lucas, Margaret; Adams, Michael J.

    2002-05-01

    A wedge indentation test has been carried out, in which an ultrasonic vibration was superimposed at a frequency of 20 kHz to investigate the effects of ultrasonic vibration on the indentation mechanics of Plasticine. A finite element simulation was employed as basis for interpreting the experimental data. The model incorporated material and geometric non-linearity and the slide line method for modeling contact problems. The finite element results show that stress superposition only accounts for part of the load reduction measured under superimposed ultrasonic vibration, and that there are no temperature changes during the process. Consequently, the reduction in indentation load may be attributed to a combination of stress superposition and friction reduction.

  4. The Origin of Ultralow Thermal Conductivity in InTe: Lone-Pair-Induced Anharmonic Rattling.

    Science.gov (United States)

    Jana, Manoj K; Pal, Koushik; Waghmare, Umesh V; Biswas, Kanishka

    2016-06-27

    Understanding the origin of intrinsically low thermal conductivity is fundamentally important to the development of high-performance thermoelectric materials, which can convert waste-heat into electricity. Herein, we report an ultralow lattice thermal conductivity (ca. 0.4 W m(-1)  K(-1) ) in mixed valent InTe (that is, In(+) In(3+) Te2 ), which exhibits an intrinsic bonding asymmetry with coexistent covalent and ionic substructures. The phonon dispersion of InTe exhibits, along with low-energy flat branches, weak instabilities associated with the rattling vibrations of In(+) atoms along the columnar ionic substructure. These weakly unstable phonons originate from the 5s(2) lone pair of the In(+) atom and are strongly anharmonic, which scatter the heat-carrying acoustic phonons through strong anharmonic phonon-phonon interactions, as evident in anomalously high mode Grüneisen parameters. A maximum thermoelectric figure of merit (z T) of about 0.9 is achieved at 600 K for the 0.3 mol % In-deficient sample, making InTe a promising material for mid-temperature thermoelectric applications.

  5. Dynamic model of vibrating-sliding-uplift rocking coupled motion and dynamic design method of caisson breakwaters

    Institute of Scientific and Technical Information of China (English)

    WANG; Yuanzhan; HUA; Leina; DONG; Shaowei

    2004-01-01

    Vibrating, sliding and uplift rocking are three elementary motion types of caisson breakwaters. The dynamic model and the numerical simulation method of vibrating-sliding-uplift rocking coupled motion of caisson breakwaters are developed. The histories of displacement, rotation, sliding force and overturning moment of a caisson breakwater under the excitation of breaking wave impact are calculated for the motion models of vibrating, vibrating-sliding, vibrating-uplift rocking and vibrating-sliding-uplift rocking. The effects of various motion models on the stability of caisson breakwaters are investigated. The feasibility of the dynamic design idea that the sliding motion and the uplift rocking motion of caisson breakwaters are allowed under the excitation of breaking wave impact is discussed.

  6. Does more sophisticated modeling reduce model uncertainty? A case study on vibration predictions

    NARCIS (Netherlands)

    Waarts, P.H.; Wit, M.S. de

    2004-01-01

    In this paper, the reliability of vibration predictions in civil engineering is quantified. Emphasis is laid on the vibration predictions for road- and rail traffic and vibrations from building activities such as (sheet)pile driving. Several kinds of prediction techniques were investigated: expert o

  7. Vibrations inside buildings due to subway railway traffic. Experimental validation of a comprehensive prediction model.

    Science.gov (United States)

    Lopes, Patrícia; Ruiz, Jésus Fernández; Alves Costa, Pedro; Medina Rodríguez, L; Cardoso, António Silva

    2016-10-15

    The present paper focuses on the experimental validation of a numerical approach previously proposed by the authors for the prediction of vibrations inside buildings due to railway traffic in tunnels. The numerical model is based on the concept of dynamic substructuring and is composed by three autonomous models to simulate the following main parts of the problem: i) generation of vibrations (train-track interaction); ii) propagation of vibrations (track-tunnel-ground system); iii) reception of vibrations (building coupled to the ground). The experimental validation consists in the comparison between the results predicted by the proposed numerical model and the measurements performed inside a building due to the railway traffic in a shallow tunnel located in Madrid. Apart from the brief description of the numerical model and of the case study, the main options and simplifications adopted on the numerical modeling strategy are discussed. The balance adopted between accuracy and simplicity of the numerical approach proved to be a path to follow in order to transfer knowledge to engineering practice. Finally, the comparison between numerical and experimental results allowed finding a good agreement between both, fact that ensures the ability of the proposed modeling strategy to deal with real engineering practical problems.

  8. Vibrations inside buildings due to subway railway traffic. Experimental validation of a comprehensive prediction model.

    Science.gov (United States)

    Lopes, Patrícia; Ruiz, Jésus Fernández; Alves Costa, Pedro; Medina Rodríguez, L; Cardoso, António Silva

    2016-10-15

    The present paper focuses on the experimental validation of a numerical approach previously proposed by the authors for the prediction of vibrations inside buildings due to railway traffic in tunnels. The numerical model is based on the concept of dynamic substructuring and is composed by three autonomous models to simulate the following main parts of the problem: i) generation of vibrations (train-track interaction); ii) propagation of vibrations (track-tunnel-ground system); iii) reception of vibrations (building coupled to the ground). The experimental validation consists in the comparison between the results predicted by the proposed numerical model and the measurements performed inside a building due to the railway traffic in a shallow tunnel located in Madrid. Apart from the brief description of the numerical model and of the case study, the main options and simplifications adopted on the numerical modeling strategy are discussed. The balance adopted between accuracy and simplicity of the numerical approach proved to be a path to follow in order to transfer knowledge to engineering practice. Finally, the comparison between numerical and experimental results allowed finding a good agreement between both, fact that ensures the ability of the proposed modeling strategy to deal with real engineering practical problems. PMID:26589136

  9. Modeling the benefits of an artificial gravity countermeasure coupled with exercise and vibration

    Science.gov (United States)

    Goel, Rahul; Kaderka, Justin; Newman, Dava

    2012-01-01

    The current, system-specific countermeasures to space deconditioning have limited success with the musculoskeletal system in long duration missions. Artificial gravity (AG) that is produced by short radius centrifugation has been hypothesized as an effective countermeasure because it reintroduces an acceleration field in space; however, AG alone might not be enough stimuli to preserve the musculoskeletal system. A novel combination of AG coupled with one-legged squats on a vibrating platform may preserve muscle and bone in the lower limbs to a greater extent than the current exercise paradigm. The benefits of the proposed countermeasure have been analyzed through the development of a simulation platform. Ground reaction force data and motion data were collected using a motion capture system while performing one-legged and two-legged squats in 1-G. The motion was modeled in OpenSim, an open-source software, and inverse dynamics were applied in order to determine the muscle and reaction forces of lower limb joints. Vibration stimulus was modeled by adding a 20 Hz sinusoidal force of 0.5 body weight to the force plate data. From the numerical model in a 1-G acceleration field, muscle forces for quadriceps femoris, plantar flexors and glutei increased substantially for one-legged squats with vibration compared to one- or two-legged squats without vibration. Additionally, joint reaction forces for one-legged squats with vibration also increased significantly compared to two-legged squats with or without vibration. Higher muscle forces and joint reaction forces might help to stimulate muscle activation and bone modeling and thus might reduce musculoskeletal deconditioning. These results indicate that the proposed countermeasure might surpass the performance of the current space countermeasures and should be further studied as a method of mitigating musculoskeletal deconditioning.

  10. Influence of subglottic stenosis on the flow-induced vibration of a computational vocal fold model

    Science.gov (United States)

    Smith, Simeon L.; Thomson, Scott L.

    2013-04-01

    The effect of subglottic stenosis on vocal fold vibration is investigated. An idealized stenosis is defined, parameterized, and incorporated into a two-dimensional, fully coupled finite element model of the vocal folds and laryngeal airway. Flow-induced responses of the vocal fold model to varying severities of stenosis are compared. The model vibration was not appreciably affected by stenosis severities of up to 60% occlusion. Model vibration was altered by stenosis severities of 90% or greater, evidenced by decreased superior model displacement, glottal width amplitude, and flow rate amplitude. Predictions of vibration frequency and maximum flow declination rate were also altered by high stenosis severities. The observed changes became more pronounced with increasing stenosis severity and inlet pressure, and the trends correlated well with flow resistance calculations. Flow visualization was used to characterize subglottal flow patterns in the space between the stenosis and the vocal folds. Underlying mechanisms for the observed changes, possible implications for human voice production, and suggestions for future work are discussed.

  11. Three-dimensional modeling of supine human and transport system under whole-body vibration.

    Science.gov (United States)

    Wang, Yang; Rahmatalla, Salam

    2013-06-01

    The development of predictive computer human models in whole-body vibration has shown some success in predicting simple types of motion, mostly for seated positions and in the uniaxial vertical direction. The literature revealed only a handful of papers that tackled supine human modeling in response to vertical vibration. The objective of this work is to develop a predictive, multibody, three-dimensional human model to simulate the supine human and underlying transport system in response to multidirectional whole-body vibration. A three-dimensional dynamic model of a supine human and its underlying transport system is presented in this work to predict supine-human biodynamic response under three-dimensional input random whole-body vibration. The proposed supine-human model consists of three interconnected segments representing the head, torso-arms, and pelvis-legs. The segments are connected via rotational and translational joints that have spring-damper components simulating the three-dimensional muscles and tissuelike connecting elements in the three x, y, and z directions. Two types of transport systems are considered in this work, a rigid support and a long spinal board attached to a standard military litter. The contact surfaces between the supine human and the underlying transport system are modeled using spring-damper components. Eight healthy supine human subjects were tested under combined-axis vibration files with a magnitude of 0.5 m/s2 (rms) and a frequency content of 0.5-16 Hz. The data from seven subjects were used in parameter identification for the dynamic model using optimization schemes in the frequency domain that minimize the differences between the magnitude and phase of the predicted and experimental transmissibility. The predicted accelerations in the time and frequency domains were comparable to those gathered from experiments under different anthropometric, input vibration, and transport conditions under investigation. Based on the

  12. Incorporating Vibration Test Results for the Advanced Stirling Convertor into the System Dynamic Model

    Science.gov (United States)

    Meer, David W.; Lewandowski, Edward J.

    2010-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin Corporation (LM), and NASA Glenn Research Center (GRC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. As part of the extended operation testing of this power system, the Advanced Stirling Convertors (ASC) at NASA GRC undergo a vibration test sequence intended to simulate the vibration history that an ASC would experience when used in an ASRG for a space mission. During these tests, a data system collects several performance-related parameters from the convertor under test for health monitoring and analysis. Recently, an additional sensor recorded the slip table position during vibration testing to qualification level. The System Dynamic Model (SDM) integrates Stirling cycle thermodynamics, heat flow, mechanical mass, spring, damper systems, and electrical characteristics of the linear alternator and controller. This Paper presents a comparison of the performance of the ASC when exposed to vibration to that predicted by the SDM when exposed to the same vibration.

  13. Mathematical modelling of friction-vibration interactions of nuclear fuel rods

    Directory of Open Access Journals (Sweden)

    Zeman V.

    2016-06-01

    Full Text Available Nuclear fuel rods (FRs are transverselly linked to each other by three spacer grid cells at several vertical levels inside a fuel assembly (FA. Vibration of FA components, caused by the motion of FA support plates in the reactor core, generates variable contact forces between FRs and spacer grid cells. Friction effects in contact surfaces have an influence on the expected lifetime period of nuclear FA in terms of FR cladding fretting wear. This paper introduces an original approach to mathematical modelling and simulation analysis of FR nonlinear vibrations and fretting wear taking into consideration friction forces at all levels of spacer grids.

  14. Wind-Tunnel Tests of a Bridge Model with Active Vibration Control

    DEFF Research Database (Denmark)

    Hansen, H. I.; Thoft-Christensen, Palle; Mendes, P. A.;

    The application of active control systems to reduce wind vibrations in bridges is a new area of research. This paper presents the results that were obtained on a set of wind tunnel tests of a bridge model equipped with active movable flaps. Based on the monitored position and motion of the deck...

  15. Static and Vibration Analyses of General Wing Structures Using Equivalent Plate Models

    Science.gov (United States)

    Kapania, Rakesh K.; Liu, Youhua

    1999-01-01

    An efficient method, using equivalent plate model, is developed for studying the static and vibration analyses of general built-up wing structures composed of skins, spars, and ribs. The model includes the transverse shear effects by treating the built-up wing as a plate following the Reissner-Mindlin theory, the so-called First-order Shear Deformation Theory (FSDT). The Ritz method is used with the Legendre polynomials being employed as the trial functions. This is in contrast to previous equivalent plate model methods which have used simple polynomials, known to be prone to numerical ill-conditioning, as the trial functions. The present developments are evaluated by comparing the results with those obtained using MSC/NASTRAN, for a set of examples. These examples are: (i) free-vibration analysis of a clamped trapezoidal plate with (a) uniform thickness, and (b) non-uniform thickness varying as an airfoil, (ii) free-vibration and static analyses (including skin stress distribution) of a general built-up wing, and (iii) free-vibration and static analyses of a swept-back box wing. The results obtained by the present equivalent plate model are in good agreement with those obtained by the finite element method.

  16. An analytical model for a piezoelectric vibration energy harvester with resonance frequency tunability

    Directory of Open Access Journals (Sweden)

    Yun Wang

    2015-06-01

    Full Text Available This article conceptually proposes a new method to tune the resonance frequency of piezoelectric vibration energy harvesters, in which the supporting position of the vibrator can be adjusted for frequency tuning. The corresponding analytical model is established to predict the performances of the harvester based on the principles of energy. First, the equivalent stiffness and mass of the vibrator in bending mode are derived explicitly for the different supporting positions. A simple analysis method is then established for the frequency, output voltage, and output power. Finally, some numerical examples are given to demonstrate the presented method. The results are also compared with those by finite element method and good agreement is observed.

  17. Fractal Theory and Contact Dynamics Modeling Vibration Characteristics of Damping Blade

    Directory of Open Access Journals (Sweden)

    Ruishan Yuan

    2014-01-01

    Full Text Available The contact surface structure of dry friction damper is complicate, irregular, and self-similar. In this paper, contact surface structure is described with the fractal theory and damping blade is simplified as 2-DOF cantilever beam model with lumped masses. By changing the position of the damper, lacing and shroud structure are separately simulated to study vibration absorption effect of damping blade. The results show that both shroud structure and lacing could not only dissipate energy but also change stiffness of blade. Under the same condition of normal pressure and contact surface, the damping effect of lacing is stronger than that of shroud structure. Meanwhile, the effect on changing blade stiffness of shroud structure is stronger than that of lacing. This paper proposed that there is at least one position of the blade, at which the damper dissipates the most vibration energy during a vibration cycle.

  18. Stochastic Response of Energy Balanced Model for Vortex-Induced Vibration

    DEFF Research Database (Denmark)

    Nielsen, Søren R.K.; Krenk, S.

    A double oscillator model for vortex-induced oscillations of structural elements based on exact power exchange between fluid and structure, recently proposed by authors, is extended to include the effect of the turbulent component of the wind. In non-turbulent flow vortex-induced vibrations...... of lightly damped structures are found on two branches, with the highest amplification branch on the low-frequency branch. The effect free wind turbulence is to destabilize the vibrations on the high amplification branch, thereby reducing the oscillation amplitude. The effect is most pronounced for very...... lightly damped structures. The character of the structural vibrations changes with increasing turbulence and damping from nearly regular harmonic oscillation to typical narrow-banded stochastic response, closely resembling observed behaviour in experiments and full-scale structures....

  19. A study of neutron noise physical model for in core vibration

    International Nuclear Information System (INIS)

    It is important to monitor in core vibration with the neutron noise method. The perturbed theory (system equation and perturbed noise source), control theory (transfer function) and the reactor dynamics (point kinetic equations) have been used to build the physical model. The model has been used to interpret the power spectral density of the zero power reactor simulated experiment. In the model, a low frequency noise term has been introduced to describe the abnormal increase of low frequency part of PSD curve

  20. Vibrational ladder climbing in NO using ultrashort IR laser pulses

    NARCIS (Netherlands)

    Maas, D. J.; Duncan, D. I.; van der Meer, A. F. G.; van der Zande, W. J.; Noordam, L. D.; Lambropoulos, P.; Walther, H.

    1997-01-01

    Chirped excitation of an electronic ladder system has shown complete transfer of the population to the top-level of the ladder system. Similar excitation of vibrational ladders in molecules may provide a tool for state-selective chemistry. Experimental results on the climbing of the anharmonic vibra

  1. Hybrid predictions of railway induced ground vibration using a combination of experimental measurements and numerical modelling

    Science.gov (United States)

    Kuo, K. A.; Verbraken, H.; Degrande, G.; Lombaert, G.

    2016-07-01

    Along with the rapid expansion of urban rail networks comes the need for accurate predictions of railway induced vibration levels at grade and in buildings. Current computational methods for making predictions of railway induced ground vibration rely on simplifying modelling assumptions and require detailed parameter inputs, which lead to high levels of uncertainty. It is possible to mitigate against these issues using a combination of field measurements and state-of-the-art numerical methods, known as a hybrid model. In this paper, two hybrid models are developed, based on the use of separate source and propagation terms that are quantified using in situ measurements or modelling results. These models are implemented using term definitions proposed by the Federal Railroad Administration and assessed using the specific illustration of a surface railway. It is shown that the limitations of numerical and empirical methods can be addressed in a hybrid procedure without compromising prediction accuracy.

  2. Identification of cascade of Hammerstein models for the description of nonlinearities in vibrating devices

    Science.gov (United States)

    Rébillat, Marc; Hennequin, Romain; Corteel, Étienne; Katz, Brian F. G.

    2011-02-01

    In a number of vibration applications, systems under study are slightly nonlinear. It is thus of great importance to have a way to model and to measure these nonlinearities in the frequency range of use. Cascade of Hammerstein models conveniently allows one to describe a large class of nonlinearities. A simple method based on a phase property of exponential sine sweeps is proposed to identify the structural elements of such a model from only one measured response of the system. Mathematical foundations and practical implementation of the method are discussed. The method is afterwards validated on simulated and real systems. Vibrating devices such as acoustical transducers are well approximated by cascade of Hammerstein models. The harmonic distortion generated by those transducers can be predicted by the model over the entire audio frequency range for any desired input amplitude. Agreement with more time consuming classical distortion measurement methods was found to be good.

  3. Vibrational Heat Transport in Molecular Junctions

    Science.gov (United States)

    Segal, Dvira; Agarwalla, Bijay Kumar

    2016-05-01

    We review studies of vibrational energy transfer in a molecular junction geometry, consisting of a molecule bridging two heat reservoirs, solids or large chemical compounds. This setup is of interest for applications in molecular electronics, thermoelectrics, and nanophononics, and for addressing basic questions in the theory of classical and quantum transport. Calculations show that system size, disorder, structure, dimensionality, internal anharmonicities, contact interaction, and quantum coherent effects are factors that combine to determine the predominant mechanism (ballistic/diffusive), effectiveness (poor/good), and functionality (linear/nonlinear) of thermal conduction at the nanoscale. We review recent experiments and relevant calculations of quantum heat transfer in molecular junctions. We recount the Landauer approach, appropriate for the study of elastic (harmonic) phononic transport, and outline techniques that incorporate molecular anharmonicities. Theoretical methods are described along with examples illustrating the challenge of reaching control over vibrational heat conduction in molecules.

  4. From Exact to Partial Dynamical Symmetries: Lessons From the Interacting Boson Model

    CERN Document Server

    Leviatan, A

    2012-01-01

    We exploit the rich algebraic structure of the interacting boson model to explain the notion of partial dynamical symmetry (PDS), and present a procedure for constructing Hamiltonians with this property. We demonstrate the relevance of PDS to various topics in nuclear spectroscopy, including K-band splitting, odd-even staggering in the gamma-band and anharmonicity of excited vibrational bands. Special emphasis in this construction is paid to the role of higher-order terms.

  5. Development of linear and nonlinear hand-arm vibration models using optimization and linearization techniques.

    Science.gov (United States)

    Rakheja, S; Gurram, R; Gouw, G J

    1993-10-01

    Hand-arm vibration (HAV) models serve as an effective tool to assess the vibration characteristics of the hand-tool system and to evaluate the attenuation performance of vibration isolation mechanisms. This paper describes a methodology to identify the parameters of HAV models, whether linear or nonlinear, using mechanical impedance data and a nonlinear programming based optimization technique. Three- and four-degrees-of-freedom (DOF) linear, piecewise linear and nonlinear HAV models are formulated and analyzed to yield impedance characteristics in the 5-1000 Hz frequency range. A local equivalent linearization algorithm, based upon the principle of energy similarity, is implemented to simulate the nonlinear HAV models. Optimization methods are employed to identify the model parameters, such that the magnitude and phase errors between the computed and measured impedance characteristics are minimum in the entire frequency range. The effectiveness of the proposed method is demonstrated through derivations of models that correlate with the measured X-axis impedance characteristics of the hand-arm system, proposed by ISO. The results of the study show that a linear model cannot predict the impedance characteristics in the entire frequency range, while a piecewise linear model yields an accurate estimation. PMID:8253830

  6. Complex mathematical model and optimisation of vibration volumetric treatment for surfaces of machine parts

    Directory of Open Access Journals (Sweden)

    Z.A. Stotsko

    2007-09-01

    Full Text Available Purpose: The objective of this work is to develop the principles of the theoretical investigation of vibration volumetric treatment for the surfaces of articles manufactured by friable dry medium and to create the method for choice and optimization of machine parameters.Design/methodology/approach: Theoretical investigations are based on using the analytic methods of theory of non-linear oscillations and asymptotic methods of solving non-linear differential equations for describing dynamic processes of volumetric vibration treatment. Experimental investigations of dynamic processes that take place in the vibromachines were carried out with using the computer and vibration measuring system.Findings: Complex non-linear mathematic model of the system “vibromachine – treating medium” is created. Due to their non-linearity, models of such kind are adequate to real situation of vibrotreatment, they can also be applied in investigation of dynamics of the vibromachine and its medium.Research limitations/implications: Processes of vibration volumetric treatment need additional investigations.Practical implications: The obtained complex mathematical model of the system “vibromachine – trading medium” enables us to analytically determine the influence of its parameters upon the intensity of articles treatment in it according to the chosen criterion; thus it saves us from carrying out time taking cumbersome experiments both for designing a vibromachine and for selecting modes of treating articles in it.Originality/value: The new approach to the investigations of volumetric vibration treatment by means non-linear mathematic model of the system “vibromachine – treating medium” have been shown.

  7. A modeling and vibration analysis of a piezoelectric micro-pump diaphragm

    Science.gov (United States)

    Kaviani, Samira; Bahrami, Mohsen; Esfahani, Amir Monemian; Parsi, Behzad

    2014-12-01

    The vibration analysis of a micro-pump diaphragm is presented. A piezoelectric micro-pump is studied. For this purpose, a dynamic model of the micro-pump is derived. The micro-pump diaphragm is modeled as circular double membranes, a piezoelectric one as actuator and a silicon one for representing the membrane for pumping action. The damping effect of the fluid is introduced into the equations. Vibration analysis is established by explicitly solving the dynamic model. The natural frequencies and mode shapes are calculated. The orthogonality conditions of the system are discussed. To verify the results, the finite-element micro-pump model is developed in ANSYS software package. The results show that the two methods are well comparable.

  8. Adaptive Neuro-Fuzzy Modeling of UH-60A Pilot Vibration

    Science.gov (United States)

    Kottapalli, Sesi; Malki, Heidar A.; Langari, Reza

    2003-01-01

    Adaptive neuro-fuzzy relationships have been developed to model the UH-60A Black Hawk pilot floor vertical vibration. A 200 point database that approximates the entire UH-60A helicopter flight envelope is used for training and testing purposes. The NASA/Army Airloads Program flight test database was the source of the 200 point database. The present study is conducted in two parts. The first part involves level flight conditions and the second part involves the entire (200 point) database including maneuver conditions. The results show that a neuro-fuzzy model can successfully predict the pilot vibration. Also, it is found that the training phase of this neuro-fuzzy model takes only two or three iterations to converge for most cases. Thus, the proposed approach produces a potentially viable model for real-time implementation.

  9. A microscopic nuclear collective rotation-vibration model: 2D submodel

    CERN Document Server

    Gulshani, Parviz

    2016-01-01

    The previous microscopic collective rotation-vibration model is improved to include interaction between collective oscillations in a pair of spatial directions, and to remove many of the previous-model approximations. As in the previous model, the nuclear Schrodinger equation (instead of the Hamiltonian) is canonically transformed to obtain a Schrodinger equation for collective rotation and vibration of a nucleus coupled to an intrinsic motion, with the related constraints imposed on the wavefunction (rather than on the particle co-ordinates). The resulting equation is then effectively linearized into three self-consistent, time-reversal invariant, cranking-type equations using a variational method. The relation of the equations to the phenomenological hydrodynamic collective Bohr-Davydov-Faessler-Greiner model is discussed. To facilitate the solution of the equations and enhance physical insight, we consider in this article the collective oscillations in only two space directions. For harmonic oscillator mea...

  10. Adaptive Model Predictive Vibration Control of a Cantilever Beam with Real-Time Parameter Estimation

    Directory of Open Access Journals (Sweden)

    Gergely Takács

    2014-01-01

    Full Text Available This paper presents an adaptive-predictive vibration control system using extended Kalman filtering for the joint estimation of system states and model parameters. A fixed-free cantilever beam equipped with piezoceramic actuators serves as a test platform to validate the proposed control strategy. Deflection readings taken at the end of the beam have been used to reconstruct the position and velocity information for a second-order state-space model. In addition to the states, the dynamic system has been augmented by the unknown model parameters: stiffness, damping constant, and a voltage/force conversion constant, characterizing the actuating effect of the piezoceramic transducers. The states and parameters of this augmented system have been estimated in real time, using the hybrid extended Kalman filter. The estimated model parameters have been applied to define the continuous state-space model of the vibrating system, which in turn is discretized for the predictive controller. The model predictive control algorithm generates state predictions and dual-mode quadratic cost prediction matrices based on the updated discrete state-space models. The resulting cost function is then minimized using quadratic programming to find the sequence of optimal but constrained control inputs. The proposed active vibration control system is implemented and evaluated experimentally to investigate the viability of the control method.

  11. Response prediction for large scale model structure under forced vibration test

    International Nuclear Information System (INIS)

    This paper presents the analytical prediction for the responses of the forced vibration test on a quarter-scale containment model structure built at Hualien, Taiwan. The prediction is performed blindly by using the computer program HASSI-8 which is developed for solving the soil-structure interaction problem using the method of hybrid modeling. The results obtained show very good correlation with the field test results

  12. Modeling study of vibrational photochemical isotope enrichment. [HBr + Cl/sub 2/; HCl + Br/sub 2/

    Energy Technology Data Exchange (ETDEWEB)

    Badcock, C.C.; Hwang, W.C.; Kalsch, J.F.

    1978-09-29

    Chemical kinetic modeling studies of vibrational-photochemical isotope enrichment have been performed on two systems: Model (I), H/sup 79/Br(H/sup 81/Br) + Cl/sub 2/ and, Model (II), H/sup 37/Cl(H/sup 35/Cl) + Br. Pulsed laser excitation was modeled to the first excited vibrational level of H/sup 79/Br in Model I and the first and second excited vibrational levels of both HCl isotopes in Model II. These are prototype systems of exoergic (Model I) and endoergic (Model II) reactions. The effects on enrichment of varying the external parameters (pressure, laser intensity) and the internal parameters (rate constants for V-V exchange and excited-state reactions) were examined. Studies of these prototype systems indicate that a favorable reaction for enrichment, with isotopically-specific excitation and a significantly accelerated vibrationally-excited-state reaction should have the following properties: the reaction from v = 0 should be only moderately exoergic, and the most favorable coreactant should be a polyatomic species, such as alkyl radical. Direct excitation of the reacting vibrational level is at least an order of magnitude more favorable for enrichment than is population by energy transfer. Enrichment of the minor isotope by these processes is more effective than is major isotope enrichment. Within limits, increased laser intensity is beneficial. However, for sequential excitation of a second vibrational level, major isotope enrichment can be diminished by high populations of the first vibrational level.

  13. Analytical Model of Underground Train Induced Vibrations on Nearby Building Structures in Cameroon: Assessment and Prediction

    Directory of Open Access Journals (Sweden)

    Lezin Seba MINSILI

    2013-11-01

    Full Text Available The purpose of this research paper was to assess and predict the effect of vibrations induced by an underground railway on nearby-existing buildings prior to the construction of projected new railway lines of the National Railway Master Plan of Cameroon and after upgrading of the railway conceded to CAMRAIL linking the two most densely populated cities of Cameroon: Douala and Yaoundé. With the source-transmitter-receiver mathematical model as the train-soil-structure interaction model, taking into account sub-model parameters such as type of the train-railway system, typical geotechnical conditions of the ground and the sensitivity of the nearby buildings, the analysis is carried out over the entire system using the dynamic finite element method in the time domain. This subdivision of the model is a powerful tool that allows to consider different alternatives of sub-models with different characteristics, and thus to determine any critical excessive vibration impact. Based on semi-empirical analytical results obtained from presented models, the present work assesses and predicts characteristics of traffic-induced vibrations as a function of time duration, intensity and vehicle speed, as well as their influence on buildings at different levels.

  14. Anharmonic exciton dynamics and energy dissipation in liquid water from two-dimensional infrared spectroscopy

    Science.gov (United States)

    De Marco, Luigi; Fournier, Joseph A.; Thämer, Martin; Carpenter, William; Tokmakoff, Andrei

    2016-09-01

    Water's extended hydrogen-bond network results in rich and complex dynamics on the sub-picosecond time scale. In this paper, we present a comprehensive analysis of the two-dimensional infrared (2D IR) spectrum of O-H stretching vibrations in liquid H2O and their interactions with bending and intermolecular vibrations. By exploring the dependence of the spectrum on waiting time, temperature, and laser polarization, we refine our molecular picture of water's complex ultrafast dynamics. The spectral evolution following excitation of the O-H stretching resonance reveals vibrational dynamics on the 50-300 fs time scale that are dominated by intermolecular delocalization. These O-H stretch excitons are a result of the anharmonicity of the nuclear potential energy surface that arises from the hydrogen-bonding interaction. The extent of O-H stretching excitons is characterized through 2D depolarization measurements that show spectrally dependent delocalization in agreement with theoretical predictions. Furthermore, we show that these dynamics are insensitive to temperature, indicating that the exciton dynamics alone set the important time scales in the system. Finally, we study the evolution of the O-H stretching mode, which shows highly non-adiabatic dynamics suggestive of vibrational conical intersections. We argue that the so-called heating, commonly observed within ˜1 ps in nonlinear IR spectroscopy of water, is a nonequilibrium state better described by a kinetic temperature rather than a Boltzmann distribution. Our conclusions imply that the collective nature of water vibrations should be considered in describing aqueous solvation.

  15. Anharmonic exciton dynamics and energy dissipation in liquid water from two-dimensional infrared spectroscopy.

    Science.gov (United States)

    De Marco, Luigi; Fournier, Joseph A; Thämer, Martin; Carpenter, William; Tokmakoff, Andrei

    2016-09-01

    Water's extended hydrogen-bond network results in rich and complex dynamics on the sub-picosecond time scale. In this paper, we present a comprehensive analysis of the two-dimensional infrared (2D IR) spectrum of O-H stretching vibrations in liquid H2O and their interactions with bending and intermolecular vibrations. By exploring the dependence of the spectrum on waiting time, temperature, and laser polarization, we refine our molecular picture of water's complex ultrafast dynamics. The spectral evolution following excitation of the O-H stretching resonance reveals vibrational dynamics on the 50-300 fs time scale that are dominated by intermolecular delocalization. These O-H stretch excitons are a result of the anharmonicity of the nuclear potential energy surface that arises from the hydrogen-bonding interaction. The extent of O-H stretching excitons is characterized through 2D depolarization measurements that show spectrally dependent delocalization in agreement with theoretical predictions. Furthermore, we show that these dynamics are insensitive to temperature, indicating that the exciton dynamics alone set the important time scales in the system. Finally, we study the evolution of the O-H stretching mode, which shows highly non-adiabatic dynamics suggestive of vibrational conical intersections. We argue that the so-called heating, commonly observed within ∼1 ps in nonlinear IR spectroscopy of water, is a nonequilibrium state better described by a kinetic temperature rather than a Boltzmann distribution. Our conclusions imply that the collective nature of water vibrations should be considered in describing aqueous solvation. PMID:27608998

  16. Transient Two-Dimensional Infrared Spectroscopy in a Vibrational Ladder.

    Science.gov (United States)

    Kemlin, Vincent; Bonvalet, Adeline; Daniault, Louis; Joffre, Manuel

    2016-09-01

    We report on transient 2D Fourier transform infrared spectroscopy (2DIR) after vibrational ladder climbing induced in the CO-moiety longitudinal stretch of carboxyhemoglobin. The population distribution, spreading up to seven vibrational levels, results in a nonequilibrium 2DIR spectrum evidencing a large number of peaks that can be easily attributed to individual transitions thanks to the anharmonicity of the vibrational potential. We discuss the physical origin of the observed peaks as well as the qualitative behavior of the subsequent dynamics governed by population relaxation in the vibrational ladder. PMID:27508408

  17. PREDICTION OF SITE RESPONSE SPECTRUM UNDER EARTHQUAKE VIBRATION USING AN OPTIMIZED DEVELOPED ARTIFICIAL NEURAL NETWORK MODEL

    Directory of Open Access Journals (Sweden)

    Reza Esmaeilabadi

    2016-06-01

    Full Text Available Site response spectrum is one of the key factors to determine the maximum acceleration and displacement, as well as structure behavior analysis during earthquake vibrations. The main objective of this paper is to develop an optimized model based on artificial neural network (ANN using five different training algorithms to predict nonlinear site response spectrum subjected to Silakhor earthquake vibrations is. The model output was tested for a specified area in west of Iran. The performance and quality of optimized model under all training algorithms have been examined by various statistical, analytical and graph analyses criteria as well as a comparison with numerical methods. The observed adaptabilities in results indicate a feasible and satisfactory engineering alternative method for predicting the analysis of nonlinear site response.

  18. Vibrational characteristics of graphene sheets elucidated using an elastic network model.

    Science.gov (United States)

    Kim, Min Hyeok; Kim, Daejoong; Choi, Jae Boong; Kim, Moon Ki

    2014-08-01

    Recent studies of graphene have demonstrated its great potential for highly sensitive resonators. In order to capture the intrinsic vibrational characteristics of graphene, we propose an atomistic modeling method called the elastic network model (ENM), in which a graphene sheet is modeled as a mass-spring network of adjacent atoms connected by various linear springs with specific bond ratios. Normal mode analysis (NMA) reveals the various vibrational features of bi-layer graphene sheets (BLGSs) clamped at two edges. We also propose a coarse-graining (CG) method to extend our graphene study into the meso- and macroscales, at which experimental measurements and synthesis of graphene become practical. The simulation results show good agreement with experimental observations. Therefore, the proposed ENM approach will not only shed light on the theoretical study of graphene mechanics, but also play an important role in the design of highly-sensitive graphene-based resonators.

  19. Advances in simulated modeling of vibration systems based on computational intelligence

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Computational intelligence is the computational simulation of the bio-intelligence, which includes artificial neural networks, fuzzy systems and evolutionary computations. This article summarizes the state of the art in the field of simulated modeling of vibration systems using methods of computational intelligence, based on some relevant subjects and the authors' own research work. First, contributions to the applications of computational intelligence to the identification of nonlinear characteristics of packaging are reviewed. Subsequently, applications of the newly developed training algorithms for feedforward neural networks to the identification of restoring forces in multi-degree-of-freedom nonlinear systems are discussed. Finally, the neural-network-based method of model reduction for the dynamic simulation of microelectromechanical systems (MEMS) using generalized Hebbian algorithm (GHA) and robust GHA is outlined. The prospects of the simulated modeling of vibration systems using techniques of computational intelligence are also indicated.

  20. High resolution IR diode laser study of collisional energy transfer between highly vibrationally excited monofluorobenzene and CO{sub 2}: The effect of donor fluorination on strong collision energy transfer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kilyoung; Johnson, Alan M.; Powell, Amber L.; Mitchell, Deborah G.; Sevy, Eric T., E-mail: esevy@byu.edu [Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602 (United States)

    2014-12-21

    Collisional energy transfer between vibrational ground state CO{sub 2} and highly vibrationally excited monofluorobenzene (MFB) was studied using narrow bandwidth (0.0003 cm{sup −1}) IR diode laser absorption spectroscopy. Highly vibrationally excited MFB with E′ = ∼41 000 cm{sup −1} was prepared by 248 nm UV excitation followed by rapid radiationless internal conversion to the electronic ground state (S{sub 1}→S{sub 0}*). The amount of vibrational energy transferred from hot MFB into rotations and translations of CO{sub 2} via collisions was measured by probing the scattered CO{sub 2} using the IR diode laser. The absolute state specific energy transfer rate constants and scattering probabilities for single collisions between hot MFB and CO{sub 2} were measured and used to determine the energy transfer probability distribution function, P(E,E′), in the large ΔE region. P(E,E′) was then fit to a bi-exponential function and extrapolated to the low ΔE region. P(E,E′) and the biexponential fit data were used to determine the partitioning between weak and strong collisions as well as investigate molecular properties responsible for large collisional energy transfer events. Fermi's Golden rule was used to model the shape of P(E,E′) and identify which donor vibrational motions are primarily responsible for energy transfer. In general, the results suggest that low-frequency MFB vibrational modes are primarily responsible for strong collisions, and govern the shape and magnitude of P(E,E′). Where deviations from this general trend occur, vibrational modes with large negative anharmonicity constants are more efficient energy gateways than modes with similar frequency, while vibrational modes with large positive anharmonicity constants are less efficient at energy transfer than modes of similar frequency.

  1. Modeling and experimental vibration analysis of nanomechanical cantilever active probes

    International Nuclear Information System (INIS)

    Nanomechanical cantilever (NMC) active probes have recently received increased attention in a variety of nanoscale sensing and measurement applications. Current modeling practices call for a uniform cantilever beam without considering the intentional jump discontinuities associated with the piezoelectric layer attachment and the NMC cross-sectional step. This paper presents a comprehensive modeling framework for modal characterization and dynamic response analysis of NMC active probes with geometrical discontinuities. The entire length of the NMC is divided into three segments of uniform beams followed by applying appropriate continuity conditions. The characteristics matrix equation is then used to solve for system natural frequencies and mode shapes. Using an equivalent electromechanical moment of a piezoelectric layer, forced motion analysis of the system is carried out. An experimental setup consisting of a commercial NMC active probe from Veeco and a state-of-the-art microsystem analyzer, the MSA-400 from Polytec, is developed to verify the theoretical developments proposed here. Using a parameter estimation technique based on minimizing the modeling error, optimal values of system parameters are identified. Mode shapes and the modal frequency response of the system for the first three modes determined from the proposed model are compared with those obtained from the experiment and commonly used theory for uniform beams. Results indicate that the uniform beam model fails to accurately predict the actual system response, especially in multiple-mode operation, while the proposed discontinuous beam model demonstrates good agreement with the experimental data. Such detailed and accurate modeling framework can lead to significant enhancement in the sensitivity of piezoelectric-based NMC sensors for use in variety of sensing and imaging applications

  2. Optomechanical self-oscillations in an anharmonic potential: engineering a nonclassical steady state

    Science.gov (United States)

    Grimm, Manuel; Bruder, Christoph; Lörch, Niels

    2016-09-01

    We study self-oscillations of an optomechanical system, where coherent mechanical oscillations are induced by a driven optical or microwave cavity, for the case of an anharmonic mechanical oscillator potential. A semiclassical analytical model is developed to characterize the limit cycle for large mechanical amplitudes corresponding to a weak nonlinearity. As a result, we predict conditions to achieve subpoissonian phonon statistics in the steady state, indicating classically forbidden behavior. We compare with numerical simulations and find very good agreement. Our model is quite general and can be applied to other physical systems such as trapped ions or superconducting circuits.

  3. Kinetic model for the vibrational energy exchange in flowing molecular gas mixtures. Ph.D. Thesis

    Science.gov (United States)

    Offenhaeuser, F.

    1987-01-01

    The present study is concerned with the development of a computational model for the description of the vibrational energy exchange in flowing gas mixtures, taking into account a given number of energy levels for each vibrational degree of freedom. It is possible to select an arbitrary number of energy levels. The presented model uses values in the range from 10 to approximately 40. The distribution of energy with respect to these levels can differ from the equilibrium distribution. The kinetic model developed can be employed for arbitrary gaseous mixtures with an arbitrary number of vibrational degrees of freedom for each type of gas. The application of the model to CO2-H2ON2-O2-He mixtures is discussed. The obtained relations can be utilized in a study of the suitability of radiation-related transitional processes, involving the CO2 molecule, for laser applications. It is found that the computational results provided by the model agree very well with experimental data obtained for a CO2 laser. Possibilities for the activation of a 16-micron and 14-micron laser are considered.

  4. Modeling of plasma-based CO2 conversion: lumping of the vibrational levels

    Science.gov (United States)

    Berthelot, Antonin; Bogaerts, Annemie

    2016-08-01

    Although CO2 conversion by plasma technology is gaining increasing interest, the underlying mechanisms for an energy-efficient process are still far from understood. In this work, a reduced non-equilibrium CO2 plasma chemistry set, based on level lumping of the vibrational levels, is proposed and the reliability of this level-lumping method is tested by a self-consistent zero-dimensional code. A severe reduction of the number of equations to be solved is achieved, which is crucial to be able to model non-equilibrium CO2 plasmas by 2-dimensional models. Typical conditions of pressure and power used in a microwave plasma for CO2 conversion are investigated. Several different sets, using different numbers of lumped groups, are considered. The lumped models with 1, 2 or 3 groups are able to reproduce the gas temperature, electron density and electron temperature profiles, as calculated by the full model treating all individual excited levels, in the entire pressure range investigated. Furthermore, a 3-groups model is also able to reproduce the shape of the vibrational distribution function (VDF) and gives the most reliable prediction of the CO2 conversion. A strong influence of the vibrational excitation on the plasma characteristics is observed. Finally, the limitations of the lumped-levels method are discussed.

  5. MODELLING AND VIBRATION ANALYSIS OF A ROAD PROFILE MEASURING SYSTEM

    Directory of Open Access Journals (Sweden)

    C. B. Patel

    2010-06-01

    Full Text Available During a vehicle development program, load data representing severe customer usage is required. The dilemma faced by a design engineer during the design process is that during the initial stage, only predicted loads estimated from historical targets are available, whereas the actual loads are available only at the fag end of the process. At the same time, changes required, if any, are easier and inexpensive during the initial stages of the design process whereas they are extremely costly in the latter stages of the process. The use of road profiles and vehicle models to predict the load acting on the whole vehicle is currently being researched. This work hinges on the ability to accurately measure road profiles. The objective of the work is to develop an algorithm, using MATLAB Simulink software, to convert the input signals into measured road profile. The algorithm is checked by the MATLAB Simulink 4 degrees of freedom half car model. To make the whole Simulink model more realistic, accelerometer and laser sensor properties are introduced. The present work contains the simulation of the mentioned algorithm with a half car model and studies the results in distance, time, and the frequency domain.

  6. Modeling, actuator optimization, and simultaneous precision positioning and vibration suppression of smart composite panels

    Science.gov (United States)

    Yan, Su

    2007-12-01

    To improve the fuel consumption of a satellite, maintain the position and orientation and eliminate the unwanted thruster vibration, intelligent composite structure technology was proposed in the ADPICAS (Adaptive Damping and Positioning using Intelligent Composite Active Structures) project funded by the ONR (Office of Naval Research) in collaboration with the NRL (Naval Research Laboratory) in 2000. This dissertation introduces the author's research achievements in developing smart composite panels for the ADPICAS project, including modeling, actuator optimization, and vibration control. The method of separation of variables is presented to derive the analytical shape functions for complex composite structures with asymmetric constraints, i.e., the 2-D Adaptive Composite Circular Plate (ACCP) in cylindrical coordinates and the 3-D Adaptive Composite Satellite Dish (ACSD) in spherical coordinates. Following these solutions, two modeling approaches are developed to obtain the models of adaptive composite panels including an adaptive composite beam, the ACCP, and the ACSD. One model approach is to employ the Lagrange-Rayleigh-Ritz method based on the developed analytical shape functions. Meanwhile, the transfer function estimation technique, combining the finite element analyses, is applied to obtain the numerical model of the composite panels. Aiming at improving the actuation efficiency, a Genetic Algorithm is presented to optimize the piezoelectric actuator placement on the composite panels. Taking the inertia and stiffness characteristics of the piezoelectric actuators into account, this algorithm defines the performance index as a weighted summation of control error and control energy consumption, and obtained the optimal solution that minimizes the performance index. Furthermore, an adaptive disturbance observer/feed-forward (ADOB/FF) controller is proposed to achieve simultaneous precision positioning and vibration suppression of the adaptive composite panels

  7. Dissipative vibrational model for chiral recognition in olfaction

    Science.gov (United States)

    Tirandaz, Arash; Taher Ghahramani, Farhad; Shafiee, Afshin

    2015-09-01

    We examine the olfactory discrimination of left- and right-handed enantiomers of chiral odorants based on the odorant-mediated electron transport from a donor to an acceptor of the olfactory receptors embodied in a biological environment. The chiral odorant is effectively described by an asymmetric double-well potential whose minima are associated to the left- and right-handed enantiomers. The introduced asymmetry is considered an overall measure of chiral interactions. The biological environment is conveniently modeled as a bath of harmonic oscillators. The resulting spin-boson model is adapted by a polaron transformation to derive the corresponding Born-Markov master equation with which we obtain the elastic and inelastic electron tunneling rates. We show that the inelastic tunneling through left- and right-handed enantiomers occurs with different rates. The discrimination mechanism depends on the ratio of tunneling frequency to localization frequency.

  8. Fuzzy Model-based Pitch Stabilization and Wing Vibration Suppression of Flexible Wing Aircraft.

    Science.gov (United States)

    Ayoubi, Mohammad A.; Swei, Sean Shan-Min; Nguyen, Nhan T.

    2014-01-01

    This paper presents a fuzzy nonlinear controller to regulate the longitudinal dynamics of an aircraft and suppress the bending and torsional vibrations of its flexible wings. The fuzzy controller utilizes full-state feedback with input constraint. First, the Takagi-Sugeno fuzzy linear model is developed which approximates the coupled aeroelastic aircraft model. Then, based on the fuzzy linear model, a fuzzy controller is developed to utilize a full-state feedback and stabilize the system while it satisfies the control input constraint. Linear matrix inequality (LMI) techniques are employed to solve the fuzzy control problem. Finally, the performance of the proposed controller is demonstrated on the NASA Generic Transport Model (GTM).

  9. Nonlinear modeling of tuned liquid dampers (TLDs) in rotating wind turbine blades for damping edgewise vibrations

    DEFF Research Database (Denmark)

    Zhang, Zili; Nielsen, Søren R. K.; Basu, Biswajit;

    2015-01-01

    in the rotating coordinate system. A formulation has been proposed leading to coupled nonlinear ordinary differential equations, which have been obtained through the Galerkin variational approach together with the modal expansion technique. Two models, with one sloshing mode and three sloshing modes, have been......Tuned liquid dampers (TLDs) utilize the sloshing motion of the fluid to suppress structural vibrations and become a natural candidate for damping vibrations in rotating wind turbine blades. The centrifugal acceleration at the tip of a wind turbine blade can reach a magnitude of 7–8g...... studied in the numerical simulation. It is shown that the one-mode model is able to predict the sloshing force and the damped structural response accurately, since the primary damping effect on the structure is achieved by the first sloshing mode of the fluid. Although it is unable to predict the fluid...

  10. Modelling and Quasilinear Control of Compressor Surge and Rotating Stall Vibrations

    Directory of Open Access Journals (Sweden)

    Ranjan Vepa

    2010-01-01

    Full Text Available An unsteady nonlinear and extended version of the Moore-Greitzer model is developed to facilitate the synthesis of a quasilinear stall vibration controller. The controller is synthesised in two steps. The first step defines the equilibrium point and ensures that the desired equilibrium point is stable. In the second step, the margin of stability at the equilibrium point is tuned or increased by an appropriate feedback of change in the mass flow rate about the steady mass flow rate at the compressor exit. The relatively simple and systematic non-linear modelling and linear controller synthesis approach adopted in this paper clearly highlights the main features on the controller that is capable of inhibiting compressor surge and rotating stall vibrations. Moreover, the method can be adopted for any axial compressor provided its steady-state compressor and throttle maps are known.

  11. A Grey Prediction Model on Vibration Severity Development of a Pump

    Institute of Scientific and Technical Information of China (English)

    ZHAO Rong-zhen; ZHANG You-yun

    2004-01-01

    The method to enhance the precision of a grey model GM ( 1, 1 ) for predicting the development of vibration severity of a pump is investigated. The rectifying procedures involve the strtcture and the parameters regarding GM( 1,1 ). A new model based on GM ( 1, 1 ), which is GM ( E, 1,1 ), is proposed. In GM(E, 1, 1), the distribution of relative errors ratios between the original series and predicting series obtained by the mean of GM( 1,1 ) are considered in special points to set up the threshold and adjusting coefficients to control the modified action and the rectified amount based on distribution of the original series.The case shows that GM(E, 1, 1 ) is good at predicting the vibration severity development of the pump.

  12. Torsional vibrations of helically buckled drill-strings: experiments and FE modelling

    Science.gov (United States)

    Kapitaniak, M.; Hamaneh, V. V.; Wiercigroch, M.

    2016-05-01

    This paper presents investigations of a complex drill-string vibrations on a novel experimental rig, developed by the Centre for Applied Dynamics Research at the University of Aberdeen. The rig is capable of exhibiting of all major types of drill-string vibrations, including torsional, axial and lateral modes. The importance of this work lies in the fact, that the experimental rig utilizes real industrial drill-bits and rock samples, which after careful identification of Torque On Bit (TOB) speed curves, allows to use an equivalent friction model to accommodate for both frictional and cutting components of the bit-rock interactions. Moreover, the proposed Finite Element model, after a careful calibration, is capable of replicating experimental results, for the prebuckled configuration of the drill-string. This allows us to observe the effect of winding and unwinding of the helical deformation during stick-slip motion.

  13. Modeling and control of flow-induced vibrations of a flexible hydrofoil in viscous flow

    Science.gov (United States)

    Caverly, Ryan James; Li, Chenyang; Chae, Eun Jung; Forbes, James Richard; Young, Yin Lu

    2016-06-01

    In this paper, a reduced-order model (ROM) of the flow-induced vibrations of a flexible cantilevered hydrofoil is developed and used to design an active feedback controller. The ROM is developed using data from high-fidelity viscous fluid-structure interaction (FSI) simulations and includes nonlinear terms to accurately capture the effect of lock-in. An active linear quadratic Gaussian (LQG) controller is designed based on a linearization of the ROM and is implemented in simulation with the ROM and the high-fidelity viscous FSI model. A controller saturation method is also presented that ensures that the control force applied to the system remains within a prescribed range. Simulation results demonstrate that the LQG controller successfully suppresses vibrations in both the ROM and viscous FSI simulations using a reasonable amount of control force.

  14. The Rocker (An Easy Anharmonic Oscillator for Classroom Demonstration)

    Science.gov (United States)

    Lieberherr, Martin

    2013-01-01

    Every instructor should know some easy examples of anharmonic oscillations. The rocking of an empty wine bottle or a slender beer glass is one of those: The angle is not a sinusoidal function of time and the period is not independent of the amplitude, not even for small amplitudes. But care has to be taken that the glass does not slip or rotate…

  15. Harmonic and Anharmonic Behaviour of a Simple Oscillator

    Science.gov (United States)

    O'Shea, Michael J.

    2009-01-01

    We consider a simple oscillator that exhibits harmonic and anharmonic regimes and analyse its behaviour over the complete range of possible amplitudes. The oscillator consists of a mass "m" fixed at the midpoint of a horizontal rope. For zero initial rope tension and small amplitude the period of oscillation, tau, varies as tau is approximately…

  16. Vibration tests on some models of PEC reactor core elements

    International Nuclear Information System (INIS)

    This paper describes the aims of the experimental tests carried out at ISMES, within an agreement with the Department of Fast Reactors of ENEA, on some models of the elements of PEC Fast Nuclear Reactor Core in the frame of the activities for the seismic verification of the PEC core. The seismic verification is briefly described with particular attention to the problems arising from the shocks among the various elements during an earthquake, as well as the computer code used, the purpose and the techniques used to perform tests, some results and the first comparison between the theory and the experimental data

  17. Active vibration control using state space LQG and internal model control methods

    DEFF Research Database (Denmark)

    Mørkholt, Jakob; Elliott, S.J.

    1998-01-01

    Two ways of designing discrete time robust H2-controllers for feedback broadband active vibration control are compared through computer simulations. The methods are based on different models of disturbance and plant transfer functions, but yield controllers with identical properties. Two simple...... ways of introducing robustness into the H2-design are compared, and finally an efficient way of designing a practical IIR-controller is proposed....

  18. Soil-Pile Interaction in the Pile Vertical Vibration Based on Fictitious Soil-Pile Model

    OpenAIRE

    Guodong Deng; Jiasheng Zhang; Wenbing Wu; Xiong Shi; Fei Meng

    2014-01-01

    By introducing the fictitious soil-pile model, the soil-pile interaction in the pile vertical vibration is investigated. Firstly, assuming the surrounding soil of pile to be viscoelastic material and considering its vertical wave effect, the governing equations of soil-pile system subjected to arbitrary harmonic dynamic force are founded based on the Euler-Bernoulli rod theory. Secondly, the analytical solution of velocity response in frequency domain and its corresponding semianalytical solu...

  19. A microscopic derivation of nuclear collective rotation-vibration model, axially symmetric case

    OpenAIRE

    Gulshani, Parviz

    2015-01-01

    We derive a microscopic version of the successful phenomenological hydrodynamic model of Bohr-Davydov-Faessler-Greiner for collective rotation-vibration motion of an axially symmetric deformed nucleus. The derivation is not limited to small oscillation amplitude. The nuclear Schrodinger equation is canonically transformed the to collective co-ordinates, which is then linearized using a constrained variational method. The associated constraints are imposed on the wavefunction rather than on th...

  20. Analysis modeling for plate buckling load of vibration test

    Institute of Scientific and Technical Information of China (English)

    SUNG Wen-pei; LIN Cheng-I; SHIH Ming-hsiang; GO Cheer-germ

    2005-01-01

    In view of the recent technological development, the pursuit of safe high-precision structural designs has been the goal of most structural designers. To bridge the gap between the construction theories and the actual construction techniques, safety factors are adopted for designing the strength loading of structural members. If safety factors are too conservative, the extra building materials necessary will result in high construction cost. Thus, there has been a tendency in the construction field to derive a precise buckling load analysis model of member in order to establish accurate safety factors. A numerical analysis model, using modal analysis to acquire the dynamic function calculated by dynamic parameter to get the buckling load of member, is proposed in this paper. The fixed and simple supports around the circular plate are analyzed by this proposed method. And then, the Monte Carlo method and the normal distribution method are used for random sampling and measuring errors of numerical simulation respectively. The analysis results indicated that this proposed method only needs to apply modal parameters of 7×7 test points to obtain a theoretical value of buckling load. Moreover, the analysis method of inequality-distant test points produces better analysis results than the other methods.

  1. Modeling of Tool Wear in Vibration Assisted Nano Impact-Machining by Loose Abrasives

    Directory of Open Access Journals (Sweden)

    Sagil James

    2014-01-01

    Full Text Available Vibration assisted nano impact-machining by loose abrasives (VANILA is a novel nanomachining process that combines the principles of vibration assisted abrasive machining and tip-based nanomachining, to perform target specific nanoabrasive machining of hard and brittle materials. An atomic force microscope (AFM is used as a platform in this process wherein nanoabrasives, injected in slurry between the workpiece and the vibrating AFM probe which is the tool, impact the workpiece and cause nanoscale material removal. The VANILA process are conducted such that the tool tip does not directly contact the workpiece. The level of precision and quality of the machined features in a nanomachining process is contingent on the tool wear which is inevitable. Initial experimental studies have demonstrated reduced tool wear in the VANILA process as compared to indentation process in which the tool directly contacts the workpiece surface. In this study, the tool wear rate during the VANILA process is analytically modeled considering impacts of abrasive grains on the tool tip surface. Experiments are conducted using several tools in order to validate the predictions of the theoretical model. It is seen that the model is capable of accurately predicting the tool wear rate within 10% deviation.

  2. Vibrational dynamics of the bifluoride ion. I. Construction of a model potential surface

    Science.gov (United States)

    Epa, V. C.; Choi, J. H.; Klobukowski, M.; Thorson, W. R.

    1990-01-01

    Construction of an extended model potential surface for the bifluoride ion [FHF-] is described, based on ab initio calculations for the free ion at the CID (configuration interaction, double replacement) level with a Huzinaga-Dunning double-zeta basis set. 710 data points were generated, for displacements in the three noncyclic vibrational coordinates exploring the potential surface to a height at least 30 000 cm-1 above its minimum, and giving a realistic account of the dissociation into HF+F-. Analogous calculations were made for HF and F- using the same basis. The predicted hydrogen bond energy (De) is 48.13 kcal/mol, with equilibrium F-F separation Re =4.2905 a.u., in good agreement with other recent calculations. A model potential has been constructed, based on a superposition of Morse potentials associated with each H-F distance plus a fairly structureless correction function expressible as a 36-term least-squares polynomial in the prolate spheroidal coordinates used to describe vibrational displacements. The resulting model surface fits all 710 ab initio data points with an r.m.s. deviation of 65.6 cm-1, and points less than 15 000 cm-1 above the minimum with a deviation of 26.3 cm-1. This surface provides the basis for a series of vibrational dynamics studies on the FHF- system being done in this laboratory.

  3. Anharmonic Noninertial Lattice Dynamics during Ultrafast Nonthermal Melting of InSb

    Science.gov (United States)

    Zijlstra, Eeuwe S.; Walkenhorst, Jessica; Garcia, Martin E.

    2008-09-01

    We compute the potential energy surface of femtosecond-laser-excited InSb along the directions in which the crystal becomes soft. Using dynamical simulations the time dependence of the atomic coordinates is obtained. We find that at high excitation densities the anharmonicity of the potential energy surface becomes significant after ˜100fs. On the basis of our results we explain recent time-resolved x-ray diffraction experiments. We point out that an alternative model for ultrafast melting [A. M. Lindenberg , Science 308, 392 (2005)SCIEAS0036-807510.1126/science.1107996] is inconsistent with our calculations.

  4. Rotational-vibrational coupling in the BPS Skyrme model of baryons

    CERN Document Server

    Adam, C; Sanchez-Guillen, J; Wereszczynski, A

    2013-01-01

    We calculate the rotational-vibrational spectrum in the BPS Skyrme model for the hedgehog skyrmion with baryon number one. The resulting excitation energies for the nucleon and delta Roper resonances are slightly above their experimental values. Together with the fact that in the standard Skyrme model these excitation energies are significantly lower than the experimental ones, this provides strong evidence for the conjecture that the inclusion of the BPS Skyrme model is necessary for a successful quantitative description of physical properties of baryons and nuclei.

  5. Rotational-vibrational coupling in the BPS Skyrme model of baryons

    Energy Technology Data Exchange (ETDEWEB)

    Adam, C.; Naya, C.; Sanchez-Guillen, J. [Departamento de Física de Partículas, Universidad de Santiago de Compostela and Instituto Galego de Física de Altas Enerxias (IGFAE), E-15782 Santiago de Compostela (Spain); Wereszczynski, A. [Institute of Physics, Jagiellonian University, Reymonta 4, Kraków (Poland)

    2013-11-04

    We calculate the rotational-vibrational spectrum in the BPS Skyrme model for the hedgehog skyrmion with baryon number one. The resulting excitation energies for the nucleon and delta Roper resonances are slightly above their experimental values. Together with the fact that in the standard Skyrme model these excitation energies are significantly lower than the experimental ones, this provides strong evidence for the conjecture that the inclusion of the BPS Skyrme model is required for a successful quantitative description of physical properties of baryons and nuclei.

  6. Uncertainty modeling in vibration, control and fuzzy analysis of structural systems

    CERN Document Server

    Halder, Achintya; Ayyub, Bilal M

    1997-01-01

    This book gives an overview of the current state of uncertainty modeling in vibration, control, and fuzzy analysis of structural and mechanical systems. It is a coherent compendium written by leading experts and offers the reader a sampling of exciting research areas in several fast-growing branches in this field. Uncertainty modeling and analysis are becoming an integral part of system definition and modeling in many fields. The book consists of ten chapters that report the work of researchers, scientists and engineers on theoretical developments and diversified applications in engineering sy

  7. Certain Type Turbofan Engine Whole Vibration Model with Support Looseness Fault and Casing Response Characteristics

    Directory of Open Access Journals (Sweden)

    H. F. Wang

    2014-01-01

    Full Text Available Support looseness fault is a type of common fault in aeroengine. Serious looseness fault would emerge under larger unbalanced force, which would cause excessive vibration and even lead to rubbing fault, so it is important to analyze and recognize looseness fault effectively. In this paper, based on certain type turbofan engine structural features, a rotor-support-casing whole model for certain type turbofan aeroengine is established. The rotor and casing systems are modeled by means of the finite element beam method; the support systems are modeled by lumped-mass model; the support looseness fault model is also introduced. The coupled system response is obtained by numerical integral method. In this paper, based on the casing acceleration signals, the impact characteristics of symmetrical stiffness and asymmetric stiffness models are analyzed, finding that the looseness fault would lead to the longitudinal asymmetrical characteristics of acceleration time domain wave and the multiple frequency characteristics, which is consistent with the real trial running vibration signals. Asymmetric stiffness looseness model is verified to be fit for aeroengine looseness fault model.

  8. Towards a comprehensive model for the electronic and vibrational structure of the Creutz-Taube ion.

    Science.gov (United States)

    Reimers, Jeffrey R; Wallace, Brett B; Hush, Noel S

    2008-01-13

    Since the synthesis of the Creutz-Taube ion, the nature of its charge localization has been of immense scientific interest, this molecule providing a model system for the understanding of the operation of biological photosynthetic and electron-transfer processes. However, recent work has shown that its nature remains an open question. Many systems of this type, including photosynthetic reaction centres, are of current research interest, and thereby the Creutz-Taube ion provides an important chemical paradigm: the key point of interest is the details of how such molecules behave. We lay the groundwork for the construction of a comprehensive model for its chemical and spectroscopic properties. Advances are described in some of the required areas including: simulation of electronic absorption spectra; quantitative depiction of the large interaction of the ion's electronic description with solvent motions; and the physics of Ru-NH3 spectator-mode vibrations. We show that details of the solvent electron-phonon coupling are critical in the interpretation of the spectator-mode vibrations, as these strongly mix with solvent motions when 0.75<2J/lambda<1. In this regime, a double-well potential exists which does not support localized zero-point vibration, and many observed properties of the Creutz-Taube ion are shown to be consistent with the hypothesis that the ion has this character.

  9. Modeling and dynamic properties of dual-chamber solid and liquid mixture vibration isolator

    Science.gov (United States)

    Li, F. S.; Chen, Q.; Zhou, J. H.

    2016-07-01

    The dual-chamber solid and liquid mixture (SALiM) vibration isolator, mainly proposed for vibration isolation of heavy machines with low frequency, consists of four principle parts: SALiM working media including elastic elements and incompressible oil, multi-layers bellows container, rigid reservoir and the oil tube connecting the two vessels. The isolation system under study is governed by a two-degrees-of-freedom (2-DOF) nonlinear equation including quadratic damping. Simplifying the nonlinear damping into viscous damping, the equivalent stiffness and damping model is derived from the equation for the response amplitude. Theoretical analysis and numerical simulation reveal that the isolator's stiffness and damping have multiple properties with different parameters, among which the effects of exciting frequency, vibrating amplitude, quadratic damping coefficient and equivalent stiffness of the two chambers on the isolator's dynamics are discussed in depth. Based on the boundary characteristics of stiffness and damping and the main causes for stiffness hardening effect, improvement strategies are proposed to obtain better dynamic properties. At last, experiments were implemented and the test results were generally consistent with the theoretical ones, which verified the reliability of the nonlinear dynamic model.

  10. Analysis of bit-rock interaction during stick-slip vibrations using PDC cutting force model

    Energy Technology Data Exchange (ETDEWEB)

    Patil, P.A.; Teodoriu, C. [Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). ITE

    2013-08-01

    Drillstring vibration is one of the limiting factors maximizing the drilling performance and also causes premature failure of drillstring components. Polycrystalline diamond compact (PDC) bit enhances the overall drilling performance giving the best rate of penetrations with less cost per foot but the PDC bits are more susceptible to the stick slip phenomena which results in high fluctuations of bit rotational speed. Based on the torsional drillstring model developed using Matlab/Simulink for analyzing the parametric influence on stick-slip vibrations due to drilling parameters and drillstring properties, the study of relations between weight on bit, torque on bit, bit speed, rate of penetration and friction coefficient have been analyzed. While drilling with the PDC bits, the bit-rock interaction has been characterized by cutting forces and the frictional forces. The torque on bit and the weight on bit have both the cutting component and the frictional component when resolved in horizontal and vertical direction. The paper considers that the bit is undergoing stick-slip vibrations while analyzing the bit-rock interaction of the PDC bit. The Matlab/Simulink bit-rock interaction model has been developed which gives the average cutting torque, T{sub c}, and friction torque, T{sub f}, values on cutters as well as corresponding average weight transferred by the cutting face, W{sub c}, and the wear flat face, W{sub f}, of the cutters value due to friction.

  11. In Situ Experiment and Modelling of RC-Structure Using Ambient Vibration and Timoshenko Beam

    CERN Document Server

    Michel, Clotaire; Guéguen, Philippe; Boutin, Claude

    2007-01-01

    Recently, several experiments were reported using ambient vibration surveys in buildings to estimate the modal parameters of buildings. Their modal properties are full of relevant information concerning its dynamic behaviour in its elastic domain. The main scope of this paper is to determine relevant, though simple, beam modelling whose validity could be easily checked with experimental data. In this study, we recorded ambient vibrations in 3 buildings in Grenoble selected because of their vertical structural homogeneity. First, a set of recordings was done using a 18 channels digital acquisition system (CityShark) connected to six 3C Lennartz 5s sensors. We used the Frequency Domain Decomposition (FDD) technique to extract the modal parameters of these buildings. Second, it is shown in the following that the experimental quasi-elastic behaviour of such structure can be reduced to the behaviour of a vertical continuous Timoshenko beam. A parametric study of this beam shows that a bijective relation exists bet...

  12. Suppression of chaotic vibrations in a nonlinear half-car model

    Energy Technology Data Exchange (ETDEWEB)

    Tusset, Ângelo Marcelo, E-mail: tusset@utfpr.edu.br, E-mail: piccirillo@utfpr.edu.br, E-mail: fcjanzen@utfpr.edu.br, E-mail: wagner-barth@hotmail.com; Piccirillo, Vinícius, E-mail: tusset@utfpr.edu.br, E-mail: piccirillo@utfpr.edu.br, E-mail: fcjanzen@utfpr.edu.br, E-mail: wagner-barth@hotmail.com; Janzen, Frederic Conrad, E-mail: tusset@utfpr.edu.br, E-mail: piccirillo@utfpr.edu.br, E-mail: fcjanzen@utfpr.edu.br, E-mail: wagner-barth@hotmail.com; Lenz, Wagner Barth, E-mail: tusset@utfpr.edu.br, E-mail: piccirillo@utfpr.edu.br, E-mail: fcjanzen@utfpr.edu.br, E-mail: wagner-barth@hotmail.com [UTFPR- PONTA GROSSA, PR (Brazil); Balthazar, José Manoel, E-mail: jmbaltha@rc.unesp.br [UNESP-BAURU, SP (Brazil); Fonseca Brasil, Reyolando M. L. R. da, E-mail: reyolando.brasil@ufabc.edu.br [UFABC-SANTO ANDRE, SP (Brazil)

    2014-12-10

    The present work investigates the nonlinear response of a half-car model. The disturbances of the road are assumed to be sinusoidal. After constructing the bifurcation diagram, we using the 0-1 test for identify the chaotic motion. The principal objective of this study is to eliminate the chaotic behaviour of the chassis and reduce its vibration, and for this reason a control system for semi-active vehicle suspension with magnetorheological damper is proposed. The control mechanism is designed based on SDRE technique, where the control parameter is the voltage applied to the coil of the damper. Numerical results show that the proposed control method is effective in significantly reducing of the chassis vibration, increasing therefore, passenger comfort.

  13. Model Test Study on Ice Induced Vibration of A Compliant Conical Structure

    Institute of Scientific and Technical Information of China (English)

    HUNAG Yan; SHI Qing-zeng; SONG An

    2005-01-01

    The problem of ice induced vibration is common to ocean engineering of cold region countries. To study the ice induced vibration of a compliant conical structure, a series of model tests have been performed and some breakthrough progresses made. The ice sheet before the compliant conical structure is found to fail by two-time breaking in the tests. The process of two-time breaking behaves in two modes, and the general control of the ice and structural conditions determine the mode in which the ice force would behave. Two dynamic ice force functions are established respectively for the two modes of two-time breaking process in this paper. The numerical simulation results are in good agreement with the measured results, indicating that the dynamic ice force functions given in this paper can fully reflect the real situation of the dynamic ice force on a compliant conical structure.

  14. A microscopic derivation of nuclear collective rotation-vibration model and its application to nuclei

    Science.gov (United States)

    Gulshani, P.

    2016-07-01

    We derive a microscopic version of the successful phenomenological hydrodynamic model of Bohr-Davydov-Faessler-Greiner for collective rotation-vibration motion of an axially symmetric deformed nucleus. The derivation is not limited to small oscillation amplitude. The nuclear Schrodinger equation is canonically transformed to collective co-ordinates, which is then linearized using a constrained variational method. The associated constraints are imposed on the wavefunction rather than on the particle co-ordinates. The approach yields three self-consistent, time-reversal invariant, cranking-type Schrodinger equations for the rotation-vibration and intrinsic motions, and a self-consistency equation. For harmonic oscillator mean-field potentials, these equations are solved in closed forms for excitation energy, cut-off angular momentum, and other nuclear properties for the ground-state rotational band in some deformed nuclei. The results are compared with measured data.

  15. Controlling flow-induced vibrations of flood barrier gates with data-driven and finite-element modelling

    OpenAIRE

    Erdbrink, C.D.; Krzhizhanovskaya, V.V.; Sloot, P. M. A.

    2012-01-01

    Operation of flood barrier gates is sometimes hampered by flow-induced vibrations. Although the physics is understood for specific gate types, it remains challenging to judge dynamic gate behaviour for unanticipated conditions. This paper presents a hybrid modelling system for predicting vibrations by combining machine learning with physics-based modelling so that critical situations can be avoided. In the outlined data-driven approach gate response data is acquired by sensors and stored in a...

  16. Modeling of a seated human body exposed to vertical vibrations in various automotive postures.

    Science.gov (United States)

    Liang, Cho-Chung; Chiang, Chi-Feng

    2008-04-01

    Although much research has been devoted to constructing specific models or to measuring the response characteristics of seated subjects, investigations on a mathematical human model on a seat with a backrest to evaluate vehicular riding comfort have not yet attracted the same level of attention. For the responses of a seated body to vertical vibrations, mathematical models of the mechanisms must be at least two-dimensional in the sagittal plane. In describing the motions of a seated body, two multibody models representative of the automotive postures found in the literature were investigated, one with and the other without a backrest support. Both models were modified to suitably represent the different automotive postures with and without backrest supports, and validated by various experimental data from the published literature pertaining to the same postural conditions. On the basis of the analytical study and the experimental validation, the fourteen-degrees-of-freedom model proposed in this research was found to be best fitted to the test results; therefore, this model is recommended for studying the biodynamic responses of a seated human body exposed to vertical vibrations in various automotive postures.

  17. Low dimensional models for stick-slip vibration of drill-strings

    Energy Technology Data Exchange (ETDEWEB)

    Silveira, M; Wiercigroch, M, E-mail: m.silveira@abdn.ac.u, E-mail: m.wiercigroch@abdn.ac.u [Centre for Applied Dynamics Research, School of Engineering, University of Aberdeen, Aberdeen, AB24 3UE (United Kingdom)

    2009-08-01

    Effective reduction of drill-string vibration is still a major problem in drilling industry and therefore robust predictive tools need to be developed. In this paper we study two low dimensional nonlinear models. The first is a 1-DOF torsional model of the botom-hole assembly (BHA). The second model is a 3-DOF torsional system having in addition to the BHA a rotary table, which allows simulation of interactions for which there is experimental evidence. Three different friction models with increasing levels of complexity are applied to determine their influence in the dynamical responses. Comparison between the dynamic responses for three friction models shows that the dangerous stick-slip limit-cycles do not change qualitatively. Simulations show that, if appropriately controlled, large amplitude stick-slip limit-cycles can change to small amplitude limit-cycles in Model 2. In Model 1, with constant velocity of the rotary table, it goes from a large amplitude stick-slip limit-cycle to a fixed point. Bifurcation diagrams confirm the existence of a set of parameters in which the system operates without stick-slip vibration.

  18. Low dimensional models for stick-slip vibration of drill-strings

    International Nuclear Information System (INIS)

    Effective reduction of drill-string vibration is still a major problem in drilling industry and therefore robust predictive tools need to be developed. In this paper we study two low dimensional nonlinear models. The first is a 1-DOF torsional model of the botom-hole assembly (BHA). The second model is a 3-DOF torsional system having in addition to the BHA a rotary table, which allows simulation of interactions for which there is experimental evidence. Three different friction models with increasing levels of complexity are applied to determine their influence in the dynamical responses. Comparison between the dynamic responses for three friction models shows that the dangerous stick-slip limit-cycles do not change qualitatively. Simulations show that, if appropriately controlled, large amplitude stick-slip limit-cycles can change to small amplitude limit-cycles in Model 2. In Model 1, with constant velocity of the rotary table, it goes from a large amplitude stick-slip limit-cycle to a fixed point. Bifurcation diagrams confirm the existence of a set of parameters in which the system operates without stick-slip vibration.

  19. Nanoscale finite element models for vibrations of single-walled carbon nanotubes:atomistic versus continuum

    Institute of Scientific and Technical Information of China (English)

    R ANSARI; S ROUHI; M ARYAYI

    2013-01-01

    By the atomistic and continuum finite element models, the free vibration behavior of single-walled carbon nanotubes (SWCNTs) is studied. In the atomistic finite element model, the bonds and atoms are modeled by the beam and point mass elements, respectively. The molecular mechanics is linked to structural mechanics to determine the elastic properties of the mentioned beam elements. In the continuum finite element approach, by neglecting the discrete nature of the atomic structure of the nanotubes, they are modeled with shell elements. By both models, the natural frequencies of SWCNTs are computed, and the effects of the geometrical parameters, the atomic structure, and the boundary conditions are investigated. The accuracy of the utilized methods is verified in comparison with molecular dynamic simulations. The molecular structural model leads to more reliable results, especially for lower aspect ratios. The present analysis provides valuable information about application of continuum models in the investigation of the mechanical behaviors of nanotubes.

  20. A Nonlocal Model of Dissociative Electron Attachment andVibrational Excitation of NO

    Energy Technology Data Exchange (ETDEWEB)

    Trevisan, Cynthia S.; Houfek, Karel; Zhang, Z.; Orel, Ann E.; McCurdy, C. William; Rescigno, Thomas N.

    2005-01-01

    We present the results of a study of elastic scattering and vibrational excitation of NO by electron impact in the low-energy (0-2eV) region where the cross sections are dominated by resonance contributions. The {sup 3}{Sigma}{sup -}, {sup 1}{Delta} and {sup 1}{Sigma}{sup +} NO{sup -} resonance lifetimes are taken from our earlier study [Phys. Rev. A 69, 062711(2004)], but the resonance energies used here are obtained from new configuration-interaction studies. Here we employ a more elaborate nonlocal treatment of the nuclear dynamics, which is found to remedy the principal deficiencies of the local complex potential model we employed in our earlier study, and gives cross sections in better agreement with the most recent experiments. We also present cross sections for dissociative electron attachment to NO leading to ground state products, O{sup -}({sup 2}P) + N({sup 4}S). The calculations show that, while the peak cross sections starting from NO in its ground vibrational state are very small ({approx} 10{sup -20}cm{sup 2}), the cross sections are extremely sensitive to vibrational excitation of the target and should be readily observable for target NO molecules excited to {nu} = 10 and above.

  1. A nonlocal, ab initio model of dissociative electron attachment and vibrational excitation of NO

    Energy Technology Data Exchange (ETDEWEB)

    Trevisan, Cynthia S.; Houfek, Karel; Zhang, Zhiyong; Orel, Ann E.; McCurdy, C. William; Rescigno, Thomas N.

    2005-02-01

    We present the results of an ab initio study of elastic scattering and vibrational excitation of NO by electron impact in the low-energy (0-2 eV) region where the cross sections are dominated by resonance contributions. The 3Sigma-, 1Delta and 1Sigma+ NO- resonance lifetimes are taken from our earlier study [Phys. Rev. A 69, 062711 (2004)], but the resonance energies used here are obtained from new configuration-interaction studies. Here we employ a more elaborate nonlocal treatment of the nuclear dynamics, which is found to remedy the principal deficiencies of the local complex potential model we employed in our earlier study, and gives cross sections in better agreement with the most recent experiments. We also present cross sections for dissociative electron attachment to NO leading to groundstate products. The calculations show that, while the peak cross sections starting from NO in its ground vibrational state are very small, the cross sections are extremely sensitive to vibrational excitation of the target and should be readily observable for target NO molecules excited to v = 10 and above.

  2. Subthreshold and suprathreshold vibrational resonance in the FitzHugh-Nagumo neuron model

    Science.gov (United States)

    Zhu, Jinjie; Kong, Chen; Liu, Xianbin

    2016-09-01

    We study the subthreshold and suprathreshold vibrational resonance in the FitzHugh-Nagumo neuron model. For the subthreshold situation, two cases where the stationary states are equilibrium point and limit cycle are considered, where different natures of vibrational resonance are observed via theoretical and numerical methods. Especially when the frequency of the high-frequency driving force is near the so-called canard-resonance frequency, the firing rate can be significantly enhanced at the presence of noise. For the suprathreshold situation, we show that the local maxima of the response amplitude are located at the transition boundaries of different phase-locking patterns. The minimal required forcing amplitudes of high-frequency signal of the firing onset are just multiples of the spiking frequency. Furthermore, phase portraits and time series show that the presence of the global maxima of the response results from not only the suprathreshold but also the subthreshold phase-locking modes. In spite of the distinct characteristics for two stationary states on subthreshold oscillation, the suprathreshold vibrational resonance showed no qualitative difference between the two cases.

  3. Structural optimization for the avoidance of self-excited vibrations based on analytical models

    Science.gov (United States)

    Spelsberg-Korspeter, Gottfried

    2010-11-01

    Self-excited vibrations are a severe problem in many technical applications. In many cases they are caused by friction as for example in disk and drum brakes, clutches, saws and paper calenders. The goal to suppress self-excited vibrations can be reached by active and passive techniques, the latter ones being preferable due to the lower costs. Among design engineers it is known that breaking the symmetries of structures is sometimes helpful to avoid self-excited vibrations. This has been verified from an analytical point of view in a recent paper. The goal of the present paper is to use this analytical insight for a systematic structural optimization of rotors in frictional contact. The first system investigated is a simple discrete model of a rotor in frictional contact. As a continuous example a rotating beam in frictional contact is considered and optimized with respect to its bending stiffness. Finally a brake disk is optimized giving some attention to the feasibility of the modifications for the production process.

  4. Thermal weights for semiclassical vibrational response functions

    Energy Technology Data Exchange (ETDEWEB)

    Moberg, Daniel R.; Alemi, Mallory; Loring, Roger F., E-mail: roger.loring@cornell.edu [Baker Laboratory, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853 (United States)

    2015-08-28

    Semiclassical approximations to response functions can allow the calculation of linear and nonlinear spectroscopic observables from classical dynamics. Evaluating a canonical response function requires the related tasks of determining thermal weights for initial states and computing the dynamics of these states. A class of approximations for vibrational response functions employs classical trajectories at quantized values of action variables and represents the effects of the radiation-matter interaction by discontinuous transitions. Here, we evaluate choices for a thermal weight function which are consistent with this dynamical approximation. Weight functions associated with different semiclassical approximations are compared, and two forms are constructed which yield the correct linear response function for a harmonic potential at any temperature and are also correct for anharmonic potentials in the classical mechanical limit of high temperature. Approximations to the vibrational linear response function with quantized classical trajectories and proposed thermal weight functions are assessed for ensembles of one-dimensional anharmonic oscillators. This approach is shown to perform well for an anharmonic potential that is not locally harmonic over a temperature range encompassing the quantum limit of a two-level system and the limit of classical dynamics.

  5. An Improved Lumped Parameter Model for a Piezoelectric Energy Harvester in Transverse Vibration

    Directory of Open Access Journals (Sweden)

    Guang-qing Wang

    2014-01-01

    Full Text Available An improved lumped parameter model (ILPM is proposed which predicts the output characteristics of a piezoelectric vibration energy harvester (PVEH. A correction factor is derived for improving the precisions of lumped parameter models for transverse vibration, by considering the dynamic mode shape and the strain distribution of the PVEH. For a tip mass, variations of the correction factor with PVEH length are presented with curve fitting from numerical solutions. The improved governing motion equations and exact analytical solution of the PVEH excited by persistent base motions are developed. Steady-state electrical and mechanical response expressions are derived for arbitrary frequency excitations. Effects of the structural parameters on the electromechanical outputs of the PVEH and important characteristics of the PVEH, such as short-circuit and open-circuit behaviors, are analyzed numerically in detail. Accuracy of the output performances of the ILPM is identified from the available lumped parameter models and the coupled distributed parameter model. Good agreement is found between the analytical results of the ILPM and the coupled distributed parameter model. The results demonstrate the feasibility of the ILPM as a simple and effective means for enhancing the predictions of the PVEH.

  6. Numerical modeling of free field vibrations due to pile driving using a dynamic soil-structure interaction formulation

    Science.gov (United States)

    Masoumi, H. R.; Degrande, G.

    2008-06-01

    This paper presents a numerical model for the prediction of free field vibrations due to vibratory and impact pile driving. As the focus is on the response in the far field, where deformations are relatively small, a linear elastic constitutive behavior is assumed for the soil. The free field vibrations are calculated by means of a coupled FE-BE model using a subdomain formulation. The results show that, in the near field, the response of the soil is dominated by a vertically polarized shear wave, whereas in the far field, Rayleigh waves dominate the ground vibration and body waves are importantly attenuated. Finally, the computed ground vibrations are compared with the results of field measurements reported in the literature.

  7. Expansion Hamiltonian model for a diatomic molecule adsorbed on a surface: Vibrational states of the CO/Cu(100) system including surface vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Qingyong, E-mail: mengqingyong@dicp.ac.cn [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, 116023 Dalian (China); Meyer, Hans-Dieter, E-mail: hans-dieter.meyer@pci.uni-heidelberg.de [Theoretische Chemie, Physikalisch-Chemisches Institut, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg (Germany)

    2015-10-28

    Molecular-surface studies are often done by assuming a corrugated, static (i.e., rigid) surface. To be able to investigate the effects that vibrations of surface atoms may have on spectra and cross sections, an expansion Hamiltonian model is proposed on the basis of the recently reported [R. Marquardt et al., J. Chem. Phys. 132, 074108 (2010)] SAP potential energy surface (PES), which was built for the CO/Cu(100) system with a rigid surface. In contrast to other molecule-surface coupling models, such as the modified surface oscillator model, the coupling between the adsorbed molecule and the surface atoms is already included in the present expansion SAP-PES model, in which a Taylor expansion around the equilibrium positions of the surface atoms is performed. To test the quality of the Taylor expansion, a direct model, that is avoiding the expansion, is also studied. The latter, however, requests that there is only one movable surface atom included. On the basis of the present expansion and direct models, the effects of a moving top copper atom (the one to which CO is bound) on the energy levels of a bound CO/Cu(100) system are studied. For this purpose, the multiconfiguration time-dependent Hartree calculations are carried out to obtain the vibrational fundamentals and overtones of the CO/Cu(100) system including a movable top copper atom. In order to interpret the results, a simple model consisting of two coupled harmonic oscillators is introduced. From these calculations, the vibrational levels of the CO/Cu(100) system as function of the frequency of the top copper atom are discussed.

  8. Expansion Hamiltonian model for a diatomic molecule adsorbed on a surface: Vibrational states of the CO/Cu(100) system including surface vibrations

    International Nuclear Information System (INIS)

    Molecular-surface studies are often done by assuming a corrugated, static (i.e., rigid) surface. To be able to investigate the effects that vibrations of surface atoms may have on spectra and cross sections, an expansion Hamiltonian model is proposed on the basis of the recently reported [R. Marquardt et al., J. Chem. Phys. 132, 074108 (2010)] SAP potential energy surface (PES), which was built for the CO/Cu(100) system with a rigid surface. In contrast to other molecule-surface coupling models, such as the modified surface oscillator model, the coupling between the adsorbed molecule and the surface atoms is already included in the present expansion SAP-PES model, in which a Taylor expansion around the equilibrium positions of the surface atoms is performed. To test the quality of the Taylor expansion, a direct model, that is avoiding the expansion, is also studied. The latter, however, requests that there is only one movable surface atom included. On the basis of the present expansion and direct models, the effects of a moving top copper atom (the one to which CO is bound) on the energy levels of a bound CO/Cu(100) system are studied. For this purpose, the multiconfiguration time-dependent Hartree calculations are carried out to obtain the vibrational fundamentals and overtones of the CO/Cu(100) system including a movable top copper atom. In order to interpret the results, a simple model consisting of two coupled harmonic oscillators is introduced. From these calculations, the vibrational levels of the CO/Cu(100) system as function of the frequency of the top copper atom are discussed

  9. Numerical modelling of ground vibration caused by elevated high-speed railway lines considering structure-soil-structure interaction

    DEFF Research Database (Denmark)

    Bucinskas, Paulius; Andersen, Lars Vabbersgaard; Persson, Kent

    2016-01-01

    densely populated urban areas with the collateral effect of increased noise and vibrations levels. This paper aims to quantify the vibrations levels in the area surrounding an elevated railway line built as a multi-span bridge structure. The proposed model employs finite-element analysis to model...... the bridge structure, including a multi-degree-of-freedom vehicle model and accounting for the track unevenness via a nonlinear contact model. The foundations are implemented as rigid footings resting on the ground surface, while the soil is modelled utilizing Green’s function for a horizontally layered half...

  10. ANALYTIC EQUATION OF STATE FOR GENERALIZED LENNARD-JONES SOLID INCLUDING LOWEST-ORDER ANHARMONIC AND CORRELATION CORRECTIONS

    Institute of Scientific and Technical Information of China (English)

    Cheng Jian-zheng; Zhang De-jun; Lan Cong-qing; Ye Chao-hui

    2000-01-01

    Based on the cell model, the general formula for the free energy of solids is derived analytically with the lowest order anharmonic modification and correlation effect taken into account. Combining a method of summing over lattice sites, the analytic equation of state for generalized Lennard-Jones solid is derived. The calculations show that the agreement between theory and computer simulation is quite good and is significantly improved as compared with the numerical results in literature. The comparison of different effects shows the theory including all neighbors but only considering the lowest anharmonic and correlation effects may be a good and convenient approximation for practical solids. The approximation can be easily extended to the quantum case and other generalized potentials.

  11. Superfluid Fermi Gases in a Rotating Anharmonic Trap

    Institute of Scientific and Technical Information of China (English)

    MA Juan; XUE Ju-Kui

    2011-01-01

    The quadrupole mode frequency, the monopole mode frequency, and the critical rotational frequency for stirring a single vortex nucleation along the BEC-BCS crossover are obtained. The results show that, in a rotating anisotropic anharmonic trap, the quadrupole mode frequency and the critical rotational frequency for stirring a single vortex nucleation are modified significantly when the system crosses from the BEC side to the BCS side: the anisotropy of the trap induces a downshift of the quadrupole mode frequency and the critical rotational frequency and helps the vortex formation in the system, while an anharmonic trap induces an upshift of the quadrupole mode frequency and the critical rotational frequency and suppresses the vortex formation in the system.

  12. Effect of higher frequency components and duration of vibration on bone tissue alterations in the rat-tail model.

    Science.gov (United States)

    Peelukhana, Srikara V; Goenka, Shilpi; Kim, Brian; Kim, Jay; Bhattacharya, Amit; Stringer, Keith F; Banerjee, Rupak K

    2015-01-01

    To formulate more accurate guidelines for musculoskeletal disorders (MSD) linked to Hand-Arm Vibration Syndrome (HAVS), delineation of the response of bone tissue under different frequencies and duration of vibration needs elucidation. Rat-tails were vibrated at 125 Hz (9 rats) and 250 Hz (9 rats), at 49 m/s(2), for 1D (6 rats), 5D (6 rats) and 20D (6 rats); D=days (4 h/d). Rats in the control group (6 rats for the vibration groups; 2 each for 1D, 5D, and 20D) were left in their cages, without being subjected to any vibration. Structural and biochemical damages were quantified using empty lacunae count and nitrotyrosine signal-intensity, respectively. One-way repeated-measure mixed-model ANOVA at pbone, structural damage quantified through empty lacunae count was significant (pbone while the trabecular bone showed significant (pbone tissue are dependent upon higher vibration frequencies of 125 Hz, 250 Hz and the duration of vibration (5D, 20D).

  13. Computer Simulation Study of Thermal Conduction in 1D Chains of Anharmonic Oscillators

    Institute of Scientific and Technical Information of China (English)

    Tejal N.Shah; P.N.Gajjar

    2013-01-01

    In this work thermal conduction in one-dimensional (1D) chains of anharmonic oscillators are studied using computer simulation.The temperature profile,heat flux and thermal conductivity are investigated for chain length N =100,200,400,800 and 1600.In the computer simulation anharmonicity is introduced due to Fermi-Pasta-Ulam-β (FPU-β) model For substrate interaction,an onsite potential due to Frenkel-Kontorova (FK) model has been used.Numerical simulations demonstrate that temperature gradient scales behave as N-1 linearly with the relation J =0.1765/N.For the thermal conductivity K,KN to N obey the linear relation of the type KN =0.8805N.It is shown that thermal transport is dependent on phonon-phonon interaction as well as phonon-lattice interaction.The thermal conductivity increaseslinearly with increase inanharmonicity and predicts relation κ =0.133 + 0.804β.It is also concluded that for higher value of the strength of the onsite potential system tends to a thermal insulator.

  14. Systematics of nuclear densities, deformations and excitation energies within the context of the generalized rotation-vibration model

    Energy Technology Data Exchange (ETDEWEB)

    Chamon, L.C., E-mail: luiz.chamon@dfn.if.usp.b [Departamento de Fisica Nuclear, Instituto de Fisica da Universidade de Sao Paulo, Caixa Postal 66318, 05315-970, Sao Paulo, SP (Brazil); Carlson, B.V. [Departamento de Fisica, Instituto Tecnologico de Aeronautica, Centro Tecnico Aeroespacial, Sao Jose dos Campos, SP (Brazil)

    2010-11-30

    We present a large-scale systematics of charge densities, excitation energies and deformation parameters for hundreds of heavy nuclei. The systematics is based on a generalized rotation-vibration model for the quadrupole and octupole modes and takes into account second-order contributions of the deformations as well as the effects of finite diffuseness values for the nuclear densities. We compare our results with the predictions of classical surface vibrations in the hydrodynamical approximation.

  15. Modelling the effects of solar particle events on vibrationally excited hydroxyl

    Science.gov (United States)

    Winkler, Holger; Maik Wissing, Jan; Teiser, Georg; von Savigny, Christian; Notholt, Justus

    2016-04-01

    The main source of vibrationally excited hydroxyl molecules in the Earth's mesosphere is the reaction H + O3 → OH(v) + O2. The exothermicity of this process leads to excitations of hydroxyl up to the 9th vibrational state. During solar particle events (SPEs), energetic protons and electrons can enter the polar atmosphere and cause ion-chemical perturbations. It is well established that both ozone and hydrogen are affected by SPEs. As a result, the production rate of OH(v) changes. Additionally, the quenching rates of OH(v) change due to increasing concentrations of atomic oxygen. Furthermore, SPE induced temperature changes influence the chemistry of OH(v). We use a one-dimensional atmospheric chemistry model in combination with the University of Bremen Ion Chemistry (UBIC) model to simulate the impact of major SPEs on mesospheric OH(v = 0…9). For this purpose, SPE ionisation rates from AIMOS (Atmospheric Ionization Module Osnabrück) are used. Temperature changes are considered by predictions of the MSIS-E-90 atmosphere model as well as by data from the SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) satellite instrument. The modelled radiative emissions of OH(v) are compared to satellite observations (SABER and SCIAMACHY = Scanning Imaging Absorption Spectrometer for Atmospheric CHartographY).

  16. Structure-borne transmissibility evaluation through modeling and analysis of aircraft vibration dampers

    Directory of Open Access Journals (Sweden)

    Isabel Lima Hidalgo

    2011-05-01

    Full Text Available In the aircraft industry a great practical relevance is given to the extensive use of vibration dampers between fuselage and interior panels. The proper representation of these isolators in computer models is of vital importance for the accurate evaluation of the vibration transmission paths for interior noise prediction. In general, simplified models are not able to predict the component performance at mid and high frequencies, since they do not take into account the natural frequencies of the damper. Experimental tests are carried out to evaluate the dynamic stiffness and the identification of the material properties for a damper available in the market. Different approaches for its modeling are analyzed via FEA, resulting in distinct dynamic responses as function of frequency. The dynamic behavior, when the damper natural mode are considered jointly with the high modal density of the plate that represents the fuselage, required the averaging of results in the high frequency range. At this aim, the statistical energy analysis is then used to turn the comparison between models easier by considering the averaged energy parameters. From simulations, it is possible to conclude how the damper natural modes influence the dynamic response of aircraft interior panels for high frequencies.

  17. Role of energy exchange in vibrational dephasing processes in liquids and solids

    International Nuclear Information System (INIS)

    Three theories which claim relevance to the dephasing of molecular vibrations in condensed phase matter are presented. All of these theories predict (in certain limiting cases) that the widths and shifts of molecular vibrations will obey an Arrhenius temperature dependence. The basic tenets of the theories are detailed so that the differences between them may be used in an experiment to distinguish between them. One model, based on intermolecular energy exchange of low-frequency modes, results in dephasing the high-frequency modes when anharmonic coupling is present. A computer analysis of temperature dependent experimental lineshapes can result in the extraction of various parameters such as the anharmonic shifts and the exchange rates. It is shown that, in order to properly assess the relative validity of the three models, other evidence must be obtained such as the spectral parameters of the low-frequency modes, the combination bands, and the isotopic dilution behavior. This evidence is presented for d14-durene (perdeutero-1,2,4,5-tetramethylbenzene) and compared to previous data obtained on pure h14-durene. An extension of the (HSC) intermolecular energy exchange model which allows for the possibility of partial delocalization of the low-frequency modes gives an adequate description of the experimental evidence. Isotopic dilution experiments, in particular, have resulted in a detailed picture of the energy transfer dynamics of the low-frequency modes. A section in which some spontaneous Raman spectra support a model of inhomogeneous broadening in liquids based on results of picosecond stimulated Raman spectroscopy is presented. The model is that a distribution of environmental sites is created by a distribution in the local density and thus creates inhomogeneous broadening

  18. Path Integral Solution for an Angle-Dependent Anharmonic Oscillator

    Institute of Scientific and Technical Information of China (English)

    S.Haouat

    2012-01-01

    We have given a straightforward method to solve the problem of noncentral anharmonic oscillator in three dimensions. The relative propagator is presented by means of path integrals in spherical coordinates. By making an adequate change of time we are able to separate the angular motion from the radial one. The relative propagator is then exactly calculated. The energy spectrum and the corresponding wave functions are obtained.

  19. A resurgence analysis for cubic and quartic anharmonic potentials

    CERN Document Server

    Gahramanov, Ilmar

    2016-01-01

    In this work we explicitly show resurgence relations between perturbative and one instanton sectors of the resonance energy levels for cubic and quartic anharmonic potentials in one-dimensional quantum mechanics. Both systems satisfy the Dunne-Unsal relation and hence we are able to derive one-instanton non-perturbative contributions with the fluctuation terms to the energy merely from the perturbative data. We confirm our results with previous results obtained by Zinn-Justin et al.

  20. Modelling framework for dynamic interaction between multiple pedestrians and vertical vibrations of footbridges

    Science.gov (United States)

    Venuti, Fiammetta; Racic, Vitomir; Corbetta, Alessandro

    2016-09-01

    After 15 years of active research on the interaction between moving people and civil engineering structures, there is still a lack of reliable models and adequate design guidelines pertinent to vibration serviceability of footbridges due to multiple pedestrians. There are three key issues that a new generation of models should urgently address: pedestrian "intelligent" interaction with the surrounding people and environment, effect of human bodies on dynamic properties of unoccupied structure and inter-subject and intra-subject variability of pedestrian walking loads. This paper presents a modelling framework of human-structure interaction in the vertical direction which addresses all three issues. The framework comprises two main models: (1) a microscopic model of multiple pedestrian traffic that simulates time varying position and velocity of each individual pedestrian on the footbridge deck, and (2) a coupled dynamic model of a footbridge and multiple walking pedestrians. The footbridge is modelled as a SDOF system having the dynamic properties of the unoccupied structure. Each walking pedestrian in a group or crowd is modelled as a SDOF system with an adjacent stochastic vertical force that moves along the footbridge following the trajectory and the gait pattern simulated by the microscopic model of pedestrian traffic. Performance of the suggested modelling framework is illustrated by a series of simulated vibration responses of a virtual footbridge due to light, medium and dense pedestrian traffic. Moreover, the Weibull distribution is shown to fit well the probability density function of the local peaks in the acceleration response. Considering the inherent randomness of the crowd, this makes it possible to determine the probability of exceeding any given acceleration value of the occupied bridge.

  1. Phonon anharmonicity and negative thermal expansion in SnSe

    Science.gov (United States)

    Bansal, Dipanshu; Hong, Jiawang; Li, Chen W.; May, Andrew F.; Porter, Wallace; Hu, Michael Y.; Abernathy, Douglas L.; Delaire, Olivier

    2016-08-01

    The anharmonic phonon properties of SnSe in the P n m a phase were investigated with a combination of experiments and first-principles simulations. Using inelastic neutron scattering (INS) and nuclear resonant inelastic X-ray scattering (NRIXS), we have measured the phonon dispersions and density of states (DOS) and their temperature dependence, which revealed a strong, inhomogeneous shift and broadening of the spectrum on warming. First-principles simulations were performed to rationalize these measurements, and to explain the previously reported anisotropic thermal expansion, in particular the negative thermal expansion within the Sn-Se bilayers. Including the anisotropic strain dependence of the phonon free energy, in addition to the electronic ground state energy, is essential to reproduce the negative thermal expansion. From the phonon DOS obtained with INS and additional calorimetry measurements, we quantify the harmonic, dilational, and anharmonic components of the phonon entropy, heat capacity, and free energy. The origin of the anharmonic phonon thermodynamics is linked to the electronic structure.

  2. Vibrational behavior of adaptive aircraft wing structures modelled as composite thin-walled beams

    Science.gov (United States)

    Song, O.; Librescu, L.; Rogers, C. A.

    1992-01-01

    The vibrational behavior of cantilevered aircraft wings modeled as thin-walled beams and incorporating piezoelectric effects is studied. Based on the converse piezoelectric effect, the system of piezoelectric actuators conveniently located on the wing yield the control of its associated vertical and lateral bending eigenfrequencies. The possibility revealed by this study enabling one to increase adaptively the eigenfrequencies of thin-walled cantilevered beams could play a significant role in the control of the dynamic response and flutter of wing and rotor blade structures.

  3. On the low-temperature behavior of the critical specific heat capacity of an anharmonic crystal with long-range interaction

    Science.gov (United States)

    Pisanova, Ekaterina S.; Krushkov, Angel Y.

    2016-03-01

    An exactly solvable lattice model describing structural phase transitions in an anharmonic crystal with long-range interaction (decreasing at large distances r as r-d-σ, where d is the space dimensionality and 0 power and (b) quantum disordered region - exponentially.

  4. Vibrations and Stability

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    and physics. This edition includes a new chapter on the useful effects of fast vibrations and many new exercise problems. Written for: Students in mechanical or structural engineering. Keywords: Nonlinear Vibrations, Bifurcations, Chaotic Vibrations, Vibrations and Stability.......About this textbook An ideal text for students that ties together classical and modern topics of advanced vibration analysis in an interesting and lucid manner. It provides students with a background in elementary vibrations with the tools necessary for understanding and analyzing more complex...... dynamical phenomena that can be encountered in engineering and scientific practice. It progresses steadily from linear vibration theory over various levels of nonlinearity to bifurcation analysis, global dynamics and chaotic vibrations. It trains the student to analyze simple models, recognize nonlinear...

  5. On the Free Vibration Modeling of Spindle Systems: A Calibrated Dynamic Stiffness Matrix

    Directory of Open Access Journals (Sweden)

    Omar Gaber

    2014-01-01

    Full Text Available The effect of bearings on the vibrational behavior of machine tool spindles is investigated. This is done through the development of a calibrated dynamic stiffness matrix (CDSM method, where the bearings flexibility is represented by massless linear spring elements with tuneable stiffness. A dedicated MATLAB code is written to develop and to assemble the element stiffness matrices for the system’s multiple components and to apply the boundary conditions. The developed method is applied to an illustrative example of spindle system. When the spindle bearings are modeled as simply supported boundary conditions, the DSM model results in a fundamental frequency much higher than the system’s nominal value. The simply supported boundary conditions are then replaced by linear spring elements, and the spring constants are adjusted such that the resulting calibrated CDSM model leads to the nominal fundamental frequency of the spindle system. The spindle frequency results are also validated against the experimental data. The proposed method can be effectively applied to predict the vibration characteristics of spindle systems supported by bearings.

  6. Carbonic acid revisited: Vibrational spectra, energetics and the possibility of detecting an elusive molecule

    Directory of Open Access Journals (Sweden)

    Stefan E. Huber

    2012-09-01

    Full Text Available We calculate harmonic frequencies of the three most abundant carbonic acid conformers. For this, different model chemistries are investigated with respect to their benefits and shortcomings. Based on these results we use perturbation theory to calculate anharmonic corrections at the ωB97XD/aug-cc-pVXZ, X = D, T, Q, level of theory and compare them with recent experimental data and theoretical predictions. A discrete variable representation method is used to predict the large anharmonic contributions to the frequencies of the stretching vibrations in the hydrogen bonds in the carbonic acid dimer. Moreover, we re-investigate the energetics of the formation of the carbonic acid dimer from its constituents water and carbon dioxide using a high-level extrapolation method. We find that the ωB97XD functional performs well in estimating the fundamental frequencies of the carbonic acid conformers. Concerning the reaction energetics, the accuracy of ωB97XD is even comparable to the high-level extrapolation method. We discuss possibilities to detect carbonic acid in various natural environments such as Earth's and Martian atmospheres.

  7. Non-Gaussian wave packet dynamics in anharmonic potential: Cumulant expansion treatment

    Science.gov (United States)

    Toutounji, Mohamad

    2015-03-01

    This manuscript utilizes cumulant expansion as an alternative algebraic approach to evaluating integrals and solving a system of nonlinear differential equations for probing anharmonic dynamics in condensed phase systems using Morse oscillator. These integrals and differential equations become harder to solve as the anharmonicity of the system goes beyond that of Morse oscillator description. This algebraic approach becomes critically important in case of Morse oscillator as it tends to exhibit divergent dynamics and numerical uncertainties at low temperatures. The autocorrelation function is calculated algebraically and compared to the exact one for they match perfectly. It is also compared to the approximate autocorrelation function using the differential equations technique reported in Toutounji (2014) for weak and strong electron-phonon coupling cases. It is found that the present cumulant method is more efficient, and easier to use, than the exact expression. Deviation between the approximate autocorrelation function and the exact autocorrelation function starts to arise as the electron-phonon coupling strength increases. The autocorrelation function obtained using cumulants identically matches the exact autocorrelation function, thereby surpassing the approach presented in Toutounji (2014). The advantage of the present methodology is its applicability to various types of electron-phonon coupling cases. Additionally, the herein approach only uses algebraic techniques, thereby avoiding both the divergence integral and solving a set of linear first- and second-order partial differential equations as was done in previous work. Model calculations are presented to demonstrate the accuracy of the herein work.

  8. Airy function approach and Numerov method to study the anharmonic oscillator potentials V(x = Ax2α + Bx2

    Directory of Open Access Journals (Sweden)

    N. Al Sdran

    2016-06-01

    Full Text Available The numerical solutions of the time independent Schrödinger equation of different one-dimensional potentials forms are sometime achieved by the asymptotic iteration method. Its importance appears, for example, on its efficiency to describe vibrational system in quantum mechanics. In this paper, the Airy function approach and the Numerov method have been used and presented to study the oscillator anharmonic potential V(x = Ax2α + Bx2, (A>0, B<0, with (α = 2 for quadratic, (α =3 for sextic and (α =4 for octic anharmonic oscillators. The Airy function approach is based on the replacement of the real potential V(x by a piecewise-linear potential v(x, while, the Numerov method is based on the discretization of the wave function on the x-axis. The first energies levels have been calculated and the wave functions for the sextic system have been evaluated. These specific values are unlimited by the magnitude of A, B and α. It’s found that the obtained results are in good agreement with the previous results obtained by the asymptotic iteration method for α =3.

  9. Radiation thermo-chemical models of protoplanetary discs. IV Modelling CO ro-vibrational emission from Herbig Ae discs

    CERN Document Server

    Thi, Wing-Fai; Woitke, Peter; Plas, Gerrit van des; Bertelsen, Rosina; Wiesenfeld, Laurent

    2012-01-01

    The carbon monoxide rovibrational emission from discs around Herbig Ae stars and T Tauri stars with strong ultraviolet emissions suggests that fluorescence pumping from the ground X1 Sigma+ to the electronic A1 Pi state of CO should be taken into account in disc models. We implemented a CO model molecule that includes up to 50 rotational levels within nine vibrational levels for the ground and A excited states in the radiative photochemical code ProDiMo. We took CO collisions with hydrogen molecules, hydrogen atoms, helium, and electrons into account. We estimated the missing collision rates using standard scaling laws and discussed their limitations. UV fluorescence and IR pumping impact on the population of ro-vibrational v > 1 levels. The v = 1 rotational levels are populated at rotational temperatures between the radiation temperature around 4.6 micron and the gas kinetic temperature. The UV pumping efficiency increases with decreasing disc mass. The consequence is that the vibrational temperatures, which...

  10. Rail Shock and Vibration Pre-Test Modeling of a Used Nuclear Fuel Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Steven B.; Klymyshyn, Nicholas A.; Jensen, Philip J.; Best, Ralph E.; Maheras, Steven J.; McConnell, Paul E.; Orchard, John

    2015-04-01

    The U.S. Department of Energy Office of Nuclear Energy (DOE-NE), Office of Fuel Cycle Technology, has established the Used Fuel Disposition Campaign (UFDC) to conduct the research and development activities related to storage, transportation, and disposal of used nuclear fuel (UNF) and high-level radioactive waste (HLW). The mission of the UFDC is to identify alternatives and conduct scientific research and technology development to enable storage, transportation and disposal of used nuclear fuel and HLW generated by existing and future nuclear fuel cycles. The Storage and Transportation staff within the UFDC is responsible for addressing issues regarding the long-term or extended storage (ES) of UNF and its subsequent transportation. Available information is not sufficient to determine the ability of ES UNF, including high-burnup fuel, to withstand shock and vibration forces that could occur when the UNF is shipped by rail from nuclear power plant sites to a storage or disposal facility. There are three major gaps in the available information – 1) the forces that UNF assemblies would be subjected to when transported by rail, 2) the mechanical characteristics of fuel rod cladding, which is an essential structure for controlling the geometry of the UNF, a safety related feature, and 3) modeling methodologies to evaluate multiple possible degradation or damage mechanisms over the UNF lifetime. In order to address the first gap, options for tests to determine the physical response of surrogate UNF assemblies subjected to shock and vibration forces that are expected to be experienced during normal conditions of transportation (NCT) by rail must be identified and evaluated. The objective of the rail shock and vibration tests is to obtain data that will help researchers understand the mechanical loads that ES UNF assemblies would be subjected to under normal conditions of transportation and to fortify the computer modeling that will be necessary to evaluate the impact

  11. A Modular Finite Element Model for Analysis of Vibration Transmission in Multi-Storey Lightweight Buildings

    DEFF Research Database (Denmark)

    Andersen, Lars Vabbersgaard; Kirkegaard, Poul Henning; Persson, K.;

    2012-01-01

    Transmission of sound and vibrations in the built environment is a nuisance to people working and living in buildings.......Transmission of sound and vibrations in the built environment is a nuisance to people working and living in buildings....

  12. Vibration Propagation of Gear Dynamics in a Gear-Bearing-Housing System Using Mathematical Modeling and Finite Element Analysis

    Science.gov (United States)

    Parker, Robert G.; Guo, Yi; Eritenel, Tugan; Ericson, Tristan M.

    2012-01-01

    Vibration and noise caused by gear dynamics at the meshing teeth propagate through power transmission components to the surrounding environment. This study is devoted to developing computational tools to investigate the vibro-acoustic propagation of gear dynamics through a gearbox using different bearings. Detailed finite element/contact mechanics and boundary element models of the gear/bearing/housing system are established to compute the system vibration and noise propagation. Both vibration and acoustic models are validated by experiments including the vibration modal testing and sound field measurements. The effectiveness of each bearing type to disrupt vibration propagation is speed-dependent. Housing plays an important role in noise radiation .It, however, has limited effects on gear dynamics. Bearings are critical components in drivetrains. Accurate modeling of rolling element bearings is essential to assess vibration and noise of drivetrain systems. This study also seeks to fully describe the vibro-acoustic propagation of gear dynamics through a power-transmission system using rolling element and fluid film wave bearings. Fluid film wave bearings, which have higher damping than rolling element bearings, could offer an energy dissipation mechanism that reduces the gearbox noise. The effectiveness of each bearing type to disrupt vibration propagation in explored using multi-body computational models. These models include gears, shafts, rolling element and fluid film wave bearings, and the housing. Radiated noise is mapped from the gearbox surface to surrounding environment. The effectiveness of rolling element and fluid film wave bearings in breaking the vibro-acoustic propagation path from the gear to the housing is investigated.

  13. Understanding Anharmonicity in fcc Materials: From its Origin to ab initio Strategies beyond the Quasiharmonic Approximation.

    Science.gov (United States)

    Glensk, A; Grabowski, B; Hickel, T; Neugebauer, J

    2015-05-15

    We derive the Gibbs energy including the anharmonic contribution due to phonon-phonon interactions for an extensive set of unary fcc metals (Al, Ag, Au, Cu, Ir, Ni, Pb, Pd, Pt, Rh) by combining density-functional-theory (DFT) calculations with efficient statistical sampling approaches. We show that the anharmonicity of the macroscopic system can be traced back to the anharmonicity in local pairwise interactions. Using this insight, we derive and benchmark a highly efficient approach which allows the computation of anharmonic contributions using a few T=0 K DFT calculations only.

  14. Equation of state for solids considering cohesive energy and anharmonic effect and its application to MgO

    Institute of Scientific and Technical Information of China (English)

    Zhang Da; Sun Jiu-Xun

    2012-01-01

    A simple equation of state (EOS) in wide ranges of pressure and temperature is constructed within the MieGrüneisen-Debye framework.Instead of the popular Birch-Murnaghan and Vinet EOS,we employ a five-parameter cold energy expression to represent the static EOS term,which can correctly produce cohesive energy without any spurious oscillations in the extreme compression and expansion regions.We developed a Padé approximation-based analytic Debye quasiharmonic model with high accuracy which improves the performance of EOS in the low temperature region.The anharmonic effect is taken into account by using a semi-empirical approach.Its reasonability is verified by the fact that the total thermal pressure tends to the lowest-order anharmonic expansion in the literature at low temperature,and tends to ideal-gas limitation at high temperature,which is physically correct.Besides,based on this approach,the anharmonic thermal pressure can be expressed in the Grüineisen form,which is convenient for applications.The proposed EOS is used to study the thermodynamic properties of MgO including static and shock compression conditions,and the results are very satisfactory as compared with the experimental data.

  15. Dynamic test and finite element model updating of bridge structures based on ambient vibration

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The dynamic characteristics of bridge structures are the basis of structural dynamic response and seismic analysis,and are also an important target of health condition monitoring.In this paper,a three-dimensional finite-element model is first established for a highway bridge over a railroad on No.312 National Highway.Based on design drawings,the dynamic characteristics of the bridge are studied using finite element analysis and ambient vibration measurements.Thus,a set of data is selected based on sensitivity analysis and optimization theory;the finite element model of the bridge is updated.The numerical and experimental results show that the updated method is more simple and effective,the updated finite element model can reflect the dynamic characteristics of the bridge better,and it can be used to predict the dynamic response under complex external forces.It is also helpful for further damage identification and health condition monitoring.

  16. Size-dependent vibrational behavior of a Jeffcott model for micro-rotor systems

    Energy Technology Data Exchange (ETDEWEB)

    Hashemi, Mehdi; Asghari, Mohsen [Sharif University of Technology, Tehran (Iran, Islamic Republic of)

    2016-01-15

    In this study, several analytical expressions are obtained for the vibrational characteristics of a Jeffcott model for micro-rotor systems based on the strain gradient theory to investigate the small-scale effects on the model. The Jeffcott model consists of a massless microrotating shaft and a disk as a rotor with eccentricity. The disk is mounted on the middle of the shaft. Two second-order differential equations associated with the oscillating motion of the rotor in the plane perpendicular to the longitudinal axis are presented and transformed into a complex form. The stiffness of the system is determined by obtaining the deflection of a strain-gradient-based nonrotating microbeam subjected to a concentrated force at the rotor position. Numerical results illustrate the effect of higher-order material constants on the natural frequency and the response of the Jeffcott micro-rotor system with eccentricity.

  17. Nonlinear model for condition monitoring of non-stationary vibration signals in ship driveline application

    Science.gov (United States)

    Cardona-Morales, O.; Avendaño, L. D.; Castellanos-Domínguez, G.

    2014-02-01

    Condition monitoring of mechanical systems is an important topic for industry since it improves machine maintenance and reduce the total associated operational cost. In this sense, vibration analysis is a useful tool for failure prevention in rotating machines, and its main challenge is to perform on-line estimation of dynamic behavior, due to non-stationary operating conditions. To this, estimation of both, amplitude and instantaneous frequency, holding most of process information should be carried out. Nevertheless, approaches for estimating those parameters require to have the shaft speed reference signal, which is not always provided in several industrial applications. In this paper, a novel Order Tracking (OT) scheme of estimation is proposed that is based on the state space model that avoids the shaft speed reference signal. The nonlinear oscillatory model designed as frequency tracker is adapted for estimating the phase and the amplitude of each particular harmonic component. Specifically, nonlinear filtering (namely, the Square-Root Cubature Kalman Filter) is used to estimate the spectral components from the vibration signal. The proposed approach is tested and compared with baseline Vold-Kalman Filtering over four different datasets. The obtained results show that proposed approach is robust and it performs with high accuracy estimation of the order component and the instantaneous frequency under different operating conditions; both allow capturing machine dynamic behavior.

  18. Reliability estimation for cutting tools based on logistic regression model using vibration signals

    Science.gov (United States)

    Chen, Baojia; Chen, Xuefeng; Li, Bing; He, Zhengjia; Cao, Hongrui; Cai, Gaigai

    2011-10-01

    As an important part of CNC machine, the reliability of cutting tools influences the whole manufacturing effectiveness and stability of equipment. The present study proposes a novel reliability estimation approach to the cutting tools based on logistic regression model by using vibration signals. The operation condition information of the CNC machine is incorporated into reliability analysis to reflect the product time-varying characteristics. The proposed approach is superior to other degradation estimation methods in that it does not necessitate any assumption about degradation paths and probability density functions of condition parameters. The three steps of new reliability estimation approach for cutting tools are as follows. First, on-line vibration signals of cutting tools are measured during the manufacturing process. Second, wavelet packet (WP) transform is employed to decompose the original signals and correlation analysis is employed to find out the feature frequency bands which indicate tool wear. Third, correlation analysis is also used to select the salient feature parameters which are composed of feature band energy, energy entropy and time-domain features. Finally, reliability estimation is carried out based on logistic regression model. The approach has been validated on a NC lathe. Under different failure threshold, the reliability and failure time of the cutting tools are all estimated accurately. The positive results show the plausibility and effectiveness of the proposed approach, which can facilitate machine performance and reliability estimation.

  19. Model-free fuzzy control of a magnetorheological elastomer vibration isolation system: analysis and experimental evaluation

    Science.gov (United States)

    Fu, Jie; Li, Peidong; Wang, Yuan; Liao, Guanyao; Yu, Miao

    2016-03-01

    This paper addresses the problem of micro-vibration control of a precision vibration isolation system with a magnetorheological elastomer (MRE) isolator and fuzzy control strategy. Firstly, a polyurethane matrix MRE isolator working in the shear-compression mixed mode is introduced. The dynamic characteristic is experimentally tested, and the range of the frequency shift and the model parameters of the MRE isolator are obtained from experimental results. Secondly, a new semi-active control law is proposed, which uses isolation structure displacement and relative displacement between the isolation structure and base as the inputs. Considering the nonlinearity of the MRE isolator and the excitation uncertainty of an isolation system, the designed semi-active fuzzy logic controller (FLC) is independent of a system model and is robust. Finally, the numerical simulations and experiments are conducted to evaluate the performance of the FLC with single-frequency and multiple-frequency excitation, respectively, and the experimental results show that the acceleration transmissibility is reduced by 54.04% at most, which verifies the effectiveness of the designed semi-active FLC. Moreover, the advantages of the approach are demonstrated in comparison to the passive control and ON-OFF control.

  20. A distributed parameter electromechanical and statistical model for energy harvesting from turbulence-induced vibration

    International Nuclear Information System (INIS)

    Extensive research has been done on the topics of both turbulence-induced vibration and vibration based energy harvesting; however, little effort has been put into bringing these two topics together. Preliminary experimental studies have shown that piezoelectric structures excited by turbulent flow can produce significant amounts of useful power. This research could serve to benefit applications such as powering remote, self-sustained sensors in small rivers or air ventilation systems where turbulent fluid flow is a primary source of ambient energy. A novel solution for harvesting energy in these unpredictable fluid flow environments was explored by the authors in previous work, and a harvester prototype was developed. This prototype, called piezoelectric grass, has been the focus of many experimental studies. In this paper the authors present a theoretical analysis of the piezoelectric grass harvester modeled as a single unimorph cantilever beam exposed to turbulent cross-flow. This distributed parameter model was developed using a combination of both analytical and statistical techniques. The analytical portion uses a Rayleigh–Ritz approximation method to describe the beam dynamics, and utilizes piezoelectric constitutive relationships to define the electromechanical coupling effects. The statistical portion of the model defines the turbulence-induced forcing function distributed across the beam surface. The model presented in this paper was validated using results from several experimental case studies. Preliminary results show that the model agrees quite well with experimental data. A parameter optimization study was performed with the proposed model. This study demonstrated how a new harvester could be designed to achieve maximum power output in a given turbulent fluid flow environment. (paper)

  1. Vibrational mode assignment of finite temperature infrared spectra using the AMOEBA polarizable force field.

    Science.gov (United States)

    Thaunay, Florian; Dognon, Jean-Pierre; Ohanessian, Gilles; Clavaguéra, Carine

    2015-10-21

    The calculation of infrared spectra by molecular dynamics simulations based on the AMOEBA polarizable force field has recently been demonstrated [Semrouni et al., J. Chem. Theory Comput., 2014, 10, 3190]. While this approach allows access to temperature and anharmonicity effects, band assignment requires additional tools, which we describe in this paper. The Driven Molecular Dynamics approach, originally developed by Bowman, Kaledin et al. [Bowman et al. J. Chem. Phys., 2003, 119, 646, Kaledin et al. J. Chem. Phys., 2004, 121, 5646] has been adapted and associated with AMOEBA. Its advantages and limitations are described. The IR spectrum of the Ac-Phe-Ala-NH2 model peptide is analyzed in detail. In addition to differentiation of conformations by reproducing frequency shifts due to non-covalent interactions, DMD allows visualizing the temperature-dependent vibrational modes.

  2. Modeling and analysis of a micromachined piezoelectric energy harvester stimulated by ambient random vibrations

    Science.gov (United States)

    Alamin Dow, Ali B.; Al-Rubaye, Hasan A.; Koo, David; Schneider, Michael; Bittner, Achim; Schmid, Ulrich; Kherani, Nazir P.

    2011-06-01

    Piezoelectric energy microgenerators are devices that continuously generate electricity when they are subjected to varying mechanical strain due to vibrations. They can generate electrical power up to 100 μW which can be used to drive various sensing and actuating MEMS devices. Today, piezoelectric energy harvesters are considered autonomous and reliable energy sources to actuate low power microdevices such as wireless sensor networks, indoor-outdoor monitoring, facility management and biomedical applications. The advantages of piezoelectric energy harvesters including high power density, moderate output power and CMOS compatible fabrication in particular with aluminum nitride (AlN) have fuelled and motivated researchers to develop MEMS based energy harvesters. Recently, the use of AlN as a piezoelectric material has increased fabrication compatibility, enabling the realization of smart integrated systems on chip which include sensors, actuators and energy storage. Piezoelectric MEMS energy microgenerator is used to capture and transform the available ambient mechanical vibrations into usable electric energy via resonant coupling in the thin film piezoelectric material. Analysis and modeling of piezoelectric energy generators are very important aspects for improved performance. Aluminum nitride as the piezoelectric material is sandwiched between two electrodes. The device design includes a silicon cantilever on which the AlN film is deposited and which features a seismic mass at the end of the cantilever. Beam theory and lumped modeling with circuit elements are applied for modeling and analysis of the device operation at various acceleration values. The model shows good agreement with the experimental findings, thus giving confidence in the model.

  3. Modeling Stretching Modes of Common Organic Molecules with the Quantum Mechanical Harmonic Oscillator: An Undergraduate Vibrational Spectroscopy Laboratory Exercise

    Science.gov (United States)

    Parnis, J. Mark; Thompson, Matthew G. K.

    2004-01-01

    An introductory undergraduate physical organic chemistry exercise that introduces the harmonic oscillator's use in vibrational spectroscopy is developed. The analysis and modeling exercise begins with the students calculating the stretching modes of common organic molecules with the help of the quantum mechanical harmonic oscillator (QMHO) model.

  4. Analysis of an algebraic model for the chromophore vibrations of CF$_3$CHFI

    CERN Document Server

    Jung, C; Taylor, H S

    2004-01-01

    We extract the dynamics implicit in an algebraic fitted model Hamiltonian for the hydrogen chromophore's vibrational motion in the molecule $CF_3CHFI$. The original model has 4 degrees of freedom, three positions and one representing interbond couplings. A conserved polyad allows the reduction to 3 degrees of freedom. For most quantum states we can identify the underlying motion that when quantized gives the said state. Most of the classifications, identifications and assignments are done by visual inspection of the already available wave function semiclassically transformed from the number representation to a representation on the reduced dimension toroidal configuration space corresponding to the classical action and angle variables. The concentration of the wave function density to lower dimensional subsets centered on idealized simple lower dimensional organizing structures and the behavior of the phase along such organizing centers already reveals the atomic motion. Extremely little computational work is...

  5. Modeling and optimal vibration control of conical shell with piezoelectric actuators

    Institute of Scientific and Technical Information of China (English)

    Wang Weiyuan; Wei Yingjie; Wang Cong; Zou Zhenzhu

    2008-01-01

    In this paper numerical simulations of active vibration control for conical shell structure with distributed piezoelectric actuators is presented. The dynamic equations of conical shell structure are derived using the finite element model (FEM) based on Mindlin's plate theory. The results of modal calculations with FEM model are accurate enough for engineering applications in comparison with experiment results. The Electromechanical influence of distributed piezoelectric actuators is treated as a boundary condition for estimating the control force. The independent modal space control (IMSC) method is adopted and the optimal linear quadratic state feedback control is implemented so that the best control performance with the least control cost can be achieved. Optimal control effects are compared with controlled responses with other non-optimal control parameters. Numerical simulation results are given to demonstrate the effectiveness of the control scheme.

  6. Thermodynamics of Anharmonic Systems: Uncoupled Mode Approximations for Molecules.

    Science.gov (United States)

    Li, Yi-Pei; Bell, Alexis T; Head-Gordon, Martin

    2016-06-14

    The partition functions, heat capacities, entropies, and enthalpies of selected molecules were calculated using uncoupled mode (UM) approximations, where the full-dimensional potential energy surface for internal motions was modeled as a sum of independent one-dimensional potentials for each mode. The computational cost of such approaches scales the same with molecular size as standard harmonic oscillator vibrational analysis using harmonic frequencies (HO(hf)). To compute thermodynamic properties, a computational protocol for obtaining the energy levels of each mode was established. The accuracy of the UM approximation depends strongly on how the one-dimensional potentials of each modes are defined. If the potentials are determined by the energy as a function of displacement along each normal mode (UM-N), the accuracies of the calculated thermodynamic properties are not significantly improved versus the HO(hf) model. Significant improvements can be achieved by constructing potentials for internal rotations and vibrations using the energy surfaces along the torsional coordinates and the remaining vibrational normal modes, respectively (UM-VT). For hydrogen peroxide and its isotopologs at 300 K, UM-VT captures more than 70% of the partition functions on average. By contrast, the HO(hf) model and UM-N can capture no more than 50%. For a selected test set of C2 to C8 linear and branched alkanes and species with different moieties, the enthalpies calculated using the HO(hf) model, UM-N, and UM-VT are all quite accurate comparing with reference values though the RMS errors of the HO model and UM-N are slightly higher than UM-VT. However, the accuracies in entropy calculations differ significantly between these three models. For the same test set, the RMS error of the standard entropies calculated by UM-VT is 2.18 cal mol(-1) K(-1) at 1000 K. By contrast, the RMS error obtained using the HO model and UM-N are 6.42 and 5.73 cal mol(-1) K(-1), respectively. For a test set

  7. Vocal fold and ventricular fold vibration in period-doubling phonation: physiological description and aerodynamic modeling.

    Science.gov (United States)

    Bailly, Lucie; Henrich, Nathalie; Pelorson, Xavier

    2010-05-01

    Occurrences of period-doubling are found in human phonation, in particular for pathological and some singing phonations such as Sardinian A Tenore Bassu vocal performance. The combined vibration of the vocal folds and the ventricular folds has been observed during the production of such low pitch bass-type sound. The present study aims to characterize the physiological correlates of this acoustical production and to provide a better understanding of the physical interaction between ventricular fold vibration and vocal fold self-sustained oscillation. The vibratory properties of the vocal folds and the ventricular folds during phonation produced by a professional singer are analyzed by means of acoustical and electroglottographic signals and by synchronized glottal images obtained by high-speed cinematography. The periodic variation in glottal cycle duration and the effect of ventricular fold closing on glottal closing time are demonstrated. Using the detected glottal and ventricular areas, the aerodynamic behavior of the laryngeal system is simulated using a simplified physical modeling previously validated in vitro using a larynx replica. An estimate of the ventricular aperture extracted from the in vivo data allows a theoretical prediction of the glottal aperture. The in vivo measurements of the glottal aperture are then compared to the simulated estimations. PMID:21117769

  8. Resummation of divergent perturbation series: Application to the vibrational states of H2CO molecule

    International Nuclear Information System (INIS)

    Large-order Rayleigh–Schrödinger perturbation theory (RSPT) is applied to the calculation of anharmonic vibrational energy levels of H2CO molecule. We use the model of harmonic oscillators perturbed by anharmonic terms of potential energy. Since the perturbation series typically diverge due to strong couplings, we apply the algebraic approximation technique because of its effectiveness shown earlier by Goodson and Sergeev [J. Chem. Phys. 110, 8205 (1999); ibid. 124, 094111 (2006)] and in our previous articles [A. D. Bykov et al. Opt. Spectrosc. 114, 396 (2013); ibid. 116, 598 (2014)]. To facilitate the resummation of terms contributing to perturbed states, when resonance mixing between states is especially strong and perturbation series diverge very quick, we used repartition of the Hamiltonian by shifting the normal mode frequencies. Energy levels obtained by algebraic approximants were compared with the results of variational calculation. It was found that for low energy states (up to ∼5000 cm−1), algebraic approximants gave accurate values of energy levels, which were in excellent agreement with the variational method. For highly excited states, strong and multiple resonances complicate series resummation, but a suitable change of normal mode frequencies allows one to reduce the resonance mixing and to get accurate energy levels. The theoretical background of the problem of RSPT series divergence is discussed along with its numerical analysis. For these purposes, the vibrational energy is considered as a function of a complex perturbation parameter. Layout and classification of its singularities allow us to model the asymptotic behavior of the perturbation series and prove the robustness of the algorithm

  9. Vibration-rotation alchemy in acetylene (12C2H2), ? at low vibrational excitation: from high resolution spectroscopy to fast intramolecular dynamics

    Science.gov (United States)

    Perry, David S.; Miller, Anthony; Amyay, Badr; Fayt, André; Herman, Michel

    2010-04-01

    The link between energy-resolved spectra and time-resolved dynamics is explored quantitatively for acetylene (12C2H2), ? with up to 8600 cm-1 of vibrational energy. This comparison is based on the extensive and reliable knowledge of the vibration-rotation energy levels and on the model Hamiltonian used to fit them to high precision [B. Amyay, S. Robert, M. Herman, A. Fayt, B. Raghavendra, A. Moudens, J. Thiévin, B. Rowe, and R. Georges, J. Chem. Phys. 131, 114301 (2009)]. Simulated intensity borrowing features in high resolution absorption spectra and predicted survival probabilities in intramolecular vibrational redistribution (IVR) are first investigated for the v 4 + v 5 and v 3 bright states, for J = 2, 30 and 100. The dependence of the results on the rotational quantum number and on the choice of vibrational bright state reflects the interplay of three kinds of off-diagonal resonances: anharmonic, rotational l-type, and Coriolis. The dynamical quantities used to characterize the calculated time-dependent dynamics are the dilution factor φ d, the IVR lifetime τ IVR , and the recurrence time τ rec. For the two bright states v 3 + 2v 4 and 7v 4, the collisionless dynamics for thermally averaged rotational distributions at T = 27, 270 and 500 K were calculated from the available spectroscopic data. For the 7v 4 bright state, an apparent irreversible decay of is found. In all cases, the model Hamiltonian allows a detailed calculation of the energy flow among all of the coupled zeroth-order vibration-rotation states.

  10. Vibration of hydraulic machinery

    CERN Document Server

    Wu, Yulin; Liu, Shuhong; Dou, Hua-Shu; Qian, Zhongdong

    2013-01-01

    Vibration of Hydraulic Machinery deals with the vibration problem which has significant influence on the safety and reliable operation of hydraulic machinery. It provides new achievements and the latest developments in these areas, even in the basic areas of this subject. The present book covers the fundamentals of mechanical vibration and rotordynamics as well as their main numerical models and analysis methods for the vibration prediction. The mechanical and hydraulic excitations to the vibration are analyzed, and the pressure fluctuations induced by the unsteady turbulent flow is predicted in order to obtain the unsteady loads. This book also discusses the loads, constraint conditions and the elastic and damping characters of the mechanical system, the structure dynamic analysis, the rotor dynamic analysis and the system instability of hydraulic machines, including the illustration of monitoring system for the instability and the vibration in hydraulic units. All the problems are necessary for vibration pr...

  11. Lattice anharmonicity and thermal conductivity from compressive sensing of first-principles calculations.

    Science.gov (United States)

    Zhou, Fei; Nielson, Weston; Xia, Yi; Ozoliņš, Vidvuds

    2014-10-31

    First-principles prediction of lattice thermal conductivity κ(L) of strongly anharmonic crystals is a long-standing challenge in solid-state physics. Making use of recent advances in information science, we propose a systematic and rigorous approach to this problem, compressive sensing lattice dynamics. Compressive sensing is used to select the physically important terms in the lattice dynamics model and determine their values in one shot. Nonintuitively, high accuracy is achieved when the model is trained on first-principles forces in quasirandom atomic configurations. The method is demonstrated for Si, NaCl, and Cu(12)Sb(4)S(13), an earth-abundant thermoelectric with strong phonon-phonon interactions that limit the room-temperature κ(L) to values near the amorphous limit.

  12. Anharmonicity of internal atomic oscillation and effective antineutrino mass evaluation from gaseous molecular tritium \\beta -decay

    CERN Document Server

    Lokhov, Alexey V

    2016-01-01

    Data analysis of the next generation effective antineutrino mass measurement experiment KATRIN requires reliable knowledge of systematic corrections. In particular, the width of the daughter molecular ion excitation spectrum rovibrational band should be known with a better then 1% precision. Very precise ab initio quantum calculations exist, and we compare them with the well known tritium molecule parameters within the framework of a phenomenological model. The rovibrational band width with accuracy of a few percent is interpreted as a result of the zero-point atomic oscillation in the harmonic potential. The Morse interatomic potential is used to investigate the impact of anharmonic atomic oscillations. The calculated corrections cannot account for the difference between the ab initio quantum calculations and the phenomenological model.

  13. Lattice Anharmonicity and Thermal Conductivity from Compressive Sensing of First-Principles Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Fei [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Nielson, Weston [Univ. of California, Los Angeles, CA (United States); Xia, Yi [Univ. of California, Los Angeles, CA (United States); Ozoliņš, Vidvuds [Univ. of California, Los Angeles, CA (United States)

    2014-10-01

    First-principles prediction of lattice thermal conductivity κL of strongly anharmonic crystals is a long-standing challenge in solid-state physics. Making use of recent advances in information science, we propose a systematic and rigorous approach to this problem, compressive sensing lattice dynamics. Compressive sensing is used to select the physically important terms in the lattice dynamics model and determine their values in one shot. Nonintuitively, high accuracy is achieved when the model is trained on first-principles forces in quasirandom atomic configurations. The method is demonstrated for Si, NaCl, and Cu12Sb4S13, an earth-abundant thermoelectric with strong phonon-phonon interactions that limit the room-temperature κL to values near the amorphous limit.

  14. Multi-phonon gamma-vibrational bands in odd-mass nuclei studied by triaxial projected shell model approach

    Energy Technology Data Exchange (ETDEWEB)

    Sheikh, J.A. [Department of Physics, University of Kashmir, Srinagar 190 006 (India); Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996 (United States); Bhat, G.H. [Department of Physics, University of Kashmir, Srinagar 190 006 (India); Sun, Y., E-mail: sunyang@sjtu.edu.c [Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China); Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996 (United States); Palit, R. [Department of Nuclear and Atomic Physics, Tata Institute of Fundamental Research, Colaba, Mumbai (India)

    2010-05-10

    Inspired by the recent experimental data [J.-G. Wang, et al., Phys. Lett. B 675 (2009) 420], we extend the triaxial projected shell model approach to study the gamma-band structure in odd-mass nuclei. As a first application of the new development, the gamma-vibrational structure of {sup 103}Nb is investigated. It is demonstrated that the model describes the ground-state band and multi-phonon gamma-vibrations quite satisfactorily, supporting the interpretation of the data as one of the few experimentally-known examples of simultaneous occurrence of one- and two-gamma-phonon vibrational bands. This generalizes the well-known concept of the surface gamma-oscillation in deformed nuclei built on the ground-state in even-even systems to gamma-bands based on quasiparticle configurations in odd-mass systems.

  15. A simplified model to explore the root cause of stick slip vibrations in drilling systems with drag bits

    Science.gov (United States)

    Richard, Thomas; Germay, Christophe; Detournay, Emmanuel

    2007-08-01

    In this paper a study of the self-excited stick-slip oscillations of a rotary drilling system with a drag bit, using a discrete model that takes into consideration the axial and torsional vibration modes of the system, is described. Coupling between these two vibration modes takes place through a bit-rock interaction law, which accounts for both the frictional contact and the cutting processes. The cutting process introduces a delay in the equations of motion that is responsible for the existence of self-excited vibrations, which can degenerate into stick-slip oscillations and/or bit bouncing under certain conditions. From analysis of this new model it is concluded that the experimentally observed decrease of the reacting torque with the angular velocity is actually an expression of the system response, rather than an intrinsic rate dependence of the interface laws between the rock and the drill bit, as is commonly assumed.

  16. On the classical dynamics of strongly driven anharmonic oscillators

    Science.gov (United States)

    Breuer, H. P.; Dietz, K.; Holthaus, M.

    1990-12-01

    We investigate the dynamics of periodically driven anharmonic oscillators. In particular, we consider values of the coupling strength which are orders of magnitude higher than those required for the overlap of primary resonances. We observe a division of phase space into a regular and a stochastic region. Both regions are separated by a sharp chaos border which sets an upper limit to the stochastic heating of particles; its dependence on the coupling strength is studied. We construct perpetual adiabatic invariants governing regular motion. A bifurcation mechanism leading to the annihilation of resonances is explained.

  17. Origin of anomalous anharmonic lattice dynamics of lead telluride

    CERN Document Server

    Shiga, Takuma; Hori, Takuma; Delaire, Olivier; Shiomi, Junichiro

    2015-01-01

    The origin of the anomalous anharmonic lattice dynamics of lead telluride is investigated using molecular dynamics simulations with interatomic force constants (IFCs) up to quartic terms obtained from first principles. The calculations reproduce the peak asymmetry of the radial distribution functions and the double peaks of transverse optical phonon previously observed with neutron diffraction and scattering experiments. They are identified to be due to the extremely large nearest-neighbor cubic IFCs in the [100] direction. The outstanding strength of the nearest-neighbor cubic IFCs relative to the longer-range ones explains the reason why the distortion in the radial distribution function is local.

  18. Development of a Refined Quarter Car Model for the Analysis of Discomfort due to Vibration

    Directory of Open Access Journals (Sweden)

    A. N. Thite

    2012-01-01

    Full Text Available In the automotive industry, numerous expensive and time-consuming trials are used to “optimize” the ride and handling performance. Ideally, a reliable virtual prototype is a solution. The practical usage of a model is linked and restricted by the model complexity and reliability. The object of this study is development and analysis of a refined quarter car suspension model, which includes the effect of series stiffness, to estimate the response at higher frequencies; resulting Maxwell's model representation does not allow straightforward calculation of performance parameters. Governing equations of motion are manipulated to calculate the effective stiffness and damping values. State space model is arranged in a novel form to find eigenvalues, which is a unique contribution. Analysis shows the influence of suspension damping and series stiffness on natural frequencies and regions of reduced vibration response. Increase in the suspension damping coefficient beyond optimum values was found to reduce the modal damping and increase the natural frequencies. Instead of carrying out trial simulations during performance optimization for human comfort, an expression is developed for corresponding suspension damping coefficient. The analysis clearly shows the influence of the series stiffness on suspension dynamics and necessity to incorporate the model in performance predictions.

  19. Sandwich beam model for free vibration analysis of bilayer graphene nanoribbons with interlayer shear effect

    Energy Technology Data Exchange (ETDEWEB)

    Nazemnezhad, Reza, E-mail: rnazemnezhad@iust.ac.ir, E-mail: rnazemnezhad@du.ac.ir [School of Mechanical Engineering, Iran University of Science and Technology, Narmak, Tehran (Iran, Islamic Republic of); Shokrollahi, Hassan [School of Mechanical Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Hosseini-Hashemi, Shahrokh [School of Mechanical Engineering, Iran University of Science and Technology, Narmak, Tehran (Iran, Islamic Republic of); Center of Excellence in Railway Transportation, Iran University of Science and Technology, Narmak, Tehran (Iran, Islamic Republic of)

    2014-05-07

    In this study, sandwich beam model (SM) is proposed for free vibration analysis of bilayer graphene nanoribbons (BLGNRs) with interlayer shear effect. This model also takes into account the intralayer (in-plane) stretch of graphene nanoribbons. The molecular dynamics (MD) simulations using the software LAMMPS and Adaptive Intermolecular Reactive Empirical Bond Order (AIREBO) potential are done to validate the accuracy of the sandwich model results. The MD simulation results include the two first frequencies of cantilever BLGNRs with different lengths and two interlayer shear moduli, i.e., 0.25 and 4.6 GPa. These two interlayer shear moduli, 0.25 and 4.6 GPa, can be obtained by sliding a small flake of graphene on a large graphene substrate when the parameter of E-LJ term in AIREBO potential, epsilon-CC, is set to be 2.84 and 45.44 meV, respectively. The SM results for a wide range of bending rigidity values show that the proposed model, i.e., the SM, predicts much better than the previous beam model in which the intralayer stretch is ignored. In addition, it is observed that the model can properly predict the natural frequencies of BLGNRs for various values of the bending rigidity and the interlayer shear modulus.

  20. Soil-Pile Interaction in the Pile Vertical Vibration Based on Fictitious Soil-Pile Model

    Directory of Open Access Journals (Sweden)

    Guodong Deng

    2014-01-01

    Full Text Available By introducing the fictitious soil-pile model, the soil-pile interaction in the pile vertical vibration is investigated. Firstly, assuming the surrounding soil of pile to be viscoelastic material and considering its vertical wave effect, the governing equations of soil-pile system subjected to arbitrary harmonic dynamic force are founded based on the Euler-Bernoulli rod theory. Secondly, the analytical solution of velocity response in frequency domain and its corresponding semianalytical solution of velocity response in time domain are derived by means of Laplace transform technique and separation of variables technique. Based on the obtained solutions, the influence of parameters of pile end soil on the dynamic response is studied in detail for different designing parameters of pile. Lastly, the fictitious soil-pile model and other pile end soil supporting models are compared. It is shown that the dynamic response obtained by the fictitious soil-pile model is among the dynamic responses obtained by other existing models if there are appropriate material parameters and thickness of pile end soil for the fictitious soil-pile model.

  1. Nonlinear spectroscopy of superconducting anharmonic resonators

    CERN Document Server

    DiVincenzo, David P

    2011-01-01

    We formulate a model for the steady state response of a nonlinear quantum oscillator structure, such as those used in a variety of superconducting qubit experiments, when excited by a steady, but not necessarily small, ac tone. We show that this model can be derived directly from a circuit description of some recent qubit experiments in which the state of the qubit is read out directly, without a SQUID magnetometer. The excitation profile has a rich structure depending on the detuning of the tone from the small-signal resonant frequency, on the degree of damping, and on the excitation amplitude. We explore two regions in detail: First, at high damping there is a trough in the excitation response as a function of detuning, near where the classical Duffing bifurcation occurs. This trough has been understood as a classical interference between two metastable responses with opposite phase. We use Wigner function studies to show that while this picture is roughly correct, there are also more quantum mechanical asp...

  2. Nonlinear spectroscopy of superconducting anharmonic resonators

    International Nuclear Information System (INIS)

    We formulate a model for the steady state response of a nonlinear quantum oscillator structure, such as those used in a variety of superconducting qubit experiments, when excited by a steady, but not necessarily small, ac tone. We show that this model can be derived directly from a circuit description of some recent qubit experiments in which the state of the qubit is read out directly, without a superconducting quantum interference device (SQUID) magnetometer. The excitation profile has a rich structure depending on the detuning of the tone from the small-signal resonant frequency, on the degree of damping and on the excitation amplitude. We explore two regions in detail. Firstly, at high damping there is a trough in the excitation response as a function of detuning, near where the classical Duffing bifurcation occurs. This trough has been understood as a classical interference between two metastable responses with opposite phase. We use Wigner function studies to show that while this picture is roughly correct, there are also more quantum mechanical aspects to this feature. Secondly, at low damping we study the emergence of sharp, discrete spectral features from a continuum response. We show that these the structures, associated with discrete transitions between different excited-state eigenstates of the oscillator, provide an interesting example of a quantum Fano resonance. The trough in the Fano response evolves continuously from the ‘classical’ trough at high damping. (paper)

  3. Hybrid Optimized and Localized Vibrational Coordinates.

    Science.gov (United States)

    Klinting, Emil Lund; König, Carolin; Christiansen, Ove

    2015-11-01

    We present a new type of vibrational coordinates denoted hybrid optimized and localized coordinates (HOLCs) aiming at a good set of rectilinear vibrational coordinates supporting fast convergence in vibrational stucture calculations. The HOLCs are obtained as a compromise between the recently promoted optimized coordinates (OCs) and localized coordinates (LCs). The three sets of coordinates are generally different from each other and differ from standard normal coordinates (NCs) as well. In determining the HOLCs, we optimize the vibrational self-consistent field (VSCF) energy with respect to orthogonal transformation of the coordinates, which is similar to determining OCs but for HOLCs we additionally introduce a penalty for delocalization, by using a measure of localization similar to that employed in determining LCs. The same theory and implementation covers OCs, LCs, and HOLCs. It is shown that varying one penalty parameter allows for connecting OCs and LCs. The HOLCs are compared to NCs, OCs, and LCs in their nature and performance as basis for vibrational coupled cluster (VCC) response calculations of vibrational anharmonic energies for a small set of simple systems comprising water, formaldehyde, and ethylene. It is found that surprisingly good results can be obtained with HOLCs by using potential energy surfaces as simple as quadratic Taylor expansions. Quite similar coordinates are found for the already established OCs but obtaining these OCs requires much more elaborate and expensive potential energy surfaces and localization is generally not guaranteed. The ability to compute HOLCs for somewhat larger systems is demonstrated for coumarin and the alanine quadramer. The good agreement between HOLCs and OCs, together with the much easier applicability of HOLCs for larger systems, suggests that HOLCs may be a pragmatically very interesting option for anharmonic calculations on medium to large molecular systems.

  4. NONLINEAR FLUID DAMPING IN STRUCTURE-WAKE OSCILLATORS IN MODELING VORTEX-INDUCED VIBRATIONS

    Institute of Scientific and Technical Information of China (English)

    LIN Li-ming; LING Guo-can; WU Ying-xiang; ZENG Xiao-hui

    2009-01-01

    A Nonlinear Fluid Damping(NFD)in the form of the square-velocity is applied in the response analysis of Vortex-Induced Vibrations(VIV).Its nonlinear hydrodynamic effects on the coupled wake and structure oscillators are investigated.A comparison between the coupled systems with the linear and nonlinear fluid dampings and experiments shows that the NFD model can well describe response characteristics,such as the amplification of body displacement at lock-in and frequency lock-in,both at high and low mass ratios.Particularly,the predicted peak amplitude of the body in the Griffin plot is in good agreement with experimental data and empirical equation,indicating the significant effect of the NFD on the structure motion.

  5. Vibration monitoring of a helicopter blade model using the optical fiber distributed strain sensing technique.

    Science.gov (United States)

    Wada, Daichi; Igawa, Hirotaka; Kasai, Tokio

    2016-09-01

    We demonstrate a dynamic distributed monitoring technique using a long-length fiber Bragg grating (FBG) interrogated by optical frequency domain reflectometry (OFDR) that measures strain at a speed of 150 Hz, spatial resolution of 1 mm, and measurement range of 20 m. A 5 m FBG is bonded to a 5.5 m helicopter blade model, and vibration is applied by the step relaxation method. The time domain responses of the strain distributions are measured, and the blade deflections are calculated based on the strain distributions. Frequency response functions are obtained using the time domain responses of the calculated deflection induced by the preload release, and the modal parameters are retrieved. Experimental results demonstrated the dynamic monitoring performances and the applicability to the modal analysis of the OFDR-FBG technique. PMID:27607270

  6. Application of Tube-Packaged FBG Strain Sensor in Vibration Experiment of Submarine Pipeline Model

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Optical fiber sensors have received increasing attention in the fields of aeronautic and civil engineering for their superior ability to stand explosion, immunity to electromagnetic interference and high accuracy, especially fit for measurement applications in harsh environment. In this study, a novel FBG (fiber Bragg grating) strain sensor, which is packaged in a 1.2 mm stainless steel tube with epoxy resin, is developed. Experiments are conducted on the universal material testing machine to calibrate its strain transferring characteristics. The sensor has the advantages of small size, high precision and flexible use, and exhibits promising potentials. Five tube-packaged strain FBG sensors have been applied to the vibration experiment of a submarine pipeline model. The strain measured with the FBG sensor agrees well with that measured with the electric resistance strain sensor.

  7. Dynamic response of electronic systems to shocks and vibrations: Application of analytical (mathematical modeling

    Directory of Open Access Journals (Sweden)

    Suhir E.

    2012-08-01

    Full Text Available Some basic problems of the dynamic response of electronic and photonic (E&P systems to shocks and vibrations are addressed and discussed. The emphasis is on analytical (mathematical modeling, the reliability physics behind the addressed phenomena, and design-for-reliability (DfR issues and challenges. The addressed problems include 1 linear response: effect of viscous damping, shock tests vs. drop tests, role of compliant interfaces, and maximum acceleration and maximum dynamic stress as a suitable reliability criterion; 2 nonlinear response: printed circuit board (PCB experiencing an impact load applied to its support contour and ball-grid-array (BGA testing on the board level; 3 shock protection of portable electronics, including the possible use of nano-wires as a suitable protective “cushion”. The fruitfulness of the probabilistic DfR (PDfR concept to quantify and assure the field (operational reliability of E&P devices and systems is also indicated.

  8. Corrections to vibrational transition probabilities calculated from a three-dimensional model.

    Science.gov (United States)

    Stallcop, J. R.

    1972-01-01

    Corrections to the collision-induced vibration transition probability calculated by Hansen and Pearson from a three-dimensional semiclassical model are examined. These corrections come from the retention of higher order terms in the expansion of the interaction potential and the use of the actual value of the deflection angle in the calculation of the transition probability. It is found that the contribution to the transition cross section from previously neglected potential terms can be significant for short range potentials and for the large relative collision velocities encountered at high temperatures. The correction to the transition cross section obtained from the use of actual deflection angles will not be appreciable unless the change in the rotational quantum number is large.

  9. Anharmonicity in Light Scattering by Optical Phonons in GaAs1-xBix

    Energy Technology Data Exchange (ETDEWEB)

    Joshya, R. S.; Rajaji, V.; Narayana, Chandrabhas; Mascarenhas, Angelo; Kini, R. N.

    2016-05-28

    We present a Raman spectroscopic study of GaAs 1-xBix epilayers grown by molecular beam epitaxy. We have investigated the anharmonic effect on the GaAs-like longitudinal optical phonon mode (LO'GaAs) of GaAs 1-xBix for different Bi concentrations at various temperatures. The results are analyzed in terms of the anharmonic damping effect induced by thermal and compositional disorder. We have observed that the anharmonicity increases with Bi concentration in GaAs 1-xBix as evident from the increase in the anharmonicity constants. In addition, the anharmonic lifetime of the optical phonon decreases with increasing Bi concentration in GaAs 1-xBix.

  10. Anharmonicity in light scattering by optical phonons in GaAs1-xBix

    Science.gov (United States)

    Joshya, R. S.; Rajaji, V.; Narayana, Chandrabhas; Mascarenhas, A.; Kini, R. N.

    2016-05-01

    We present a Raman spectroscopic study of GaAs1-xBix epilayers grown by molecular beam epitaxy. We have investigated the anharmonic effect on the GaAs-like longitudinal optical phonon mode ( LOGaAs' ) of GaAs1-xBix for different Bi concentrations at various temperatures. The results are analyzed in terms of the anharmonic damping effect induced by thermal and compositional disorder. We have observed that the anharmonicity increases with Bi concentration in GaAs1-xBix as evident from the increase in the anharmonicity constants. In addition, the anharmonic lifetime of the optical phonon decreases with increasing Bi concentration in GaAs1-xBix.

  11. A direct pedestrian-structure interaction model to characterize the human induced vibrations on slender footbridges

    Directory of Open Access Journals (Sweden)

    Jiménez-Alonso, J. F.

    2014-12-01

    Full Text Available Although the scientific community had knowledge of the human induced vibration problems in structures since the end of the 19th century, it was not until the occurrence of the vibration phenomenon happened in the Millennium Bridge (London, 2000 that the importance of the problem revealed and a higher level of attention devoted. Despite the large advances achieved in the determination of the human-structure interaction force, one of the main deficiencies of the existing models is the exclusion of the effect of changes in the footbridge dynamic properties due to the presence of pedestrians. In this paper, the formulation of a human-structure interaction model, addresses these limitations, is carried out and its reliability is verified from previously published experimental results.Aunque la comunidad científica tenía conocimiento de los problemas vibratorios inducidos por peatones en estructuras desde finales del siglo xix, no fue hasta la ocurrencia de los eventos vibratorios acontecidos en la pasarela del Milenio (Londres, 2000, cuando la importancia del problema se puso de manifiesto y se le comenzó a dedicar un mayor nivel de atención. A pesar de los grandes avances alcanzados en la caracterización de la fuerza de interacción peatón-estructura una de las principales deficiencias de los modelos existentes es la exclusión del cambio en las propiedades dinámicas de la pasarela por la presencia de peatones. En este artículo, se presenta la formulación de un modelo de interacción peatón-estructura que intenta dar respuesta a dichas limitaciones, y su validación a partir de resultados experimentales previamente publicados por otros autores.

  12. Modelling and passive correction investigation of vibration induced machining errors on CNC machine tools

    OpenAIRE

    Widiyarto, Muhammad Helmi Nur

    2006-01-01

    Machine tool vibration is a complex subject requiring a multi-disciplinary approach involving the identification and analysis of the vibration sources and characteristics, as well as its direct and indirect effects. Machine tool vibration is influenced and can be characterised by the machine's structural dynamics, the drive system performance and the cutting force generation. Its effect materialises in the form of poor surface finish of the workpiece, accelerated cuttingtool we...

  13. Formulation of human-structure interaction system models for vertical vibration

    Science.gov (United States)

    Caprani, Colin C.; Ahmadi, Ehsan

    2016-09-01

    In this paper, human-structure interaction system models for vibration in the vertical direction are considered. This work assembles various moving load models from the literature and proposes extension of the single pedestrian to a crowd of pedestrians for the FE formulation for crowd-structure interaction systems. The walking pedestrian vertical force is represented as a general time-dependent force, and the pedestrian is in turn modelled as moving force, moving mass, and moving spring-mass-damper. The arbitrary beam structure is modelled using either a formulation in modal coordinates or finite elements. In each case, the human-structure interaction (HSI) system is first formulated for a single walking pedestrian and then extended to consider a crowd of pedestrians. Finally, example applications for single pedestrian and crowd loading scenarios are examined. It is shown how the models can be used to quantify the interaction between the crowd and bridge structure. This work should find use for the evaluation of existing and new footbridges.

  14. Analytical model of vertical vibrations in piles for different tip boundary conditions: parametric study and applications

    Institute of Scientific and Technical Information of China (English)

    Ning WANG; Kui-hua WANG; Wen-bing WU

    2013-01-01

    In this paper,a model named fictitious soil pile was introduced to solve the boundary coupled problem at the pile tip.In the model,the soil column between pile tip and bedrock was treated as a fictitious pile,which has the same properties as the local soil.The tip of the fictitious soil pile was assumed to rest on a rigid rock and no tip movement was allowed.In combination with the plane strain theory,the analytical solutions of vertical vibration response of piles in a frequency domain and the corresponding semi-analytical solutions in a time domain were obtained using the Laplace transforms and inverse Fourier transforms.A parametric study of pile response at the pile tip and head showed that the thickness and layering of the stratum between pile tip and bedrock have a significant influence on the complex impedances.Finally,two applications of the analytical model were presented.One is to identify the defects of the pile shaft,in which the proposed model was proved to be accurate to identify the location as well as the length of pile defects.Another application of the model is to identify the sediment thickness under the pile tip.The results showed that the sediment can lead to the decrease of the pile stiffness and increase of the damping,especially when the pile is under a low frequency load.

  15. New insights into the vibrational and optical signatures of trans-stilbene via integrated experimental and quantum mechanical approaches.

    Science.gov (United States)

    Massuyeau, Florian; Faulques, Eric; Latouche, Camille; Barone, Vincenzo

    2016-07-28

    The structure, spectroscopic parameters and optical properties of stilbene have been investigated by a computational protocol including suitable treatment of anharmonic contributions together with new experimental results. A full reproduction of the 500-3500 cm(-1) IR spectrum has been possible using the VPT2 approach and new insights are provided in the 6000 cm(-1) region where typical signatures have been characterized as a set of overtones and combination bands. Vibrational contributions to electronic transitions have been taken into account to simulate the optical (absorption and emission) properties of stilbene. Spectra simulated by employing the state-of-the-art Adiabatic Hessian model coupled to global hybrid functionals are in remarkable agreement with their experimental counterparts and the inclusion of Herzberg-Teller contributions further improves the results with respect to those delivered by the basic Franck-Condon model. PMID:27373560

  16. Anharmonic lattice interactions in improper ferroelectrics for multiferroic design

    International Nuclear Information System (INIS)

    The design and discovery of new multiferroics, or materials that display both ferroelectricity and long-range magnetic order, is of fundamental importance for new electronic technologies based on low-power consumption. Far too often, however, the mechanisms causing these properties to arise are incompatible or occur at ordering temperatures below room temperature. One design strategy which has gained considerable interest is to begin with a magnetic material, and find novel ways to induce a spontaneous electric polarization within the structure. To this end, anharmonic interactions coupling multiple lattice modes have been used to lift inversion symmetry in magnetic dielectrics. Here we provide an overview of the microscopic mechanisms by which various types of cooperative atomic displacements result in ferroelectricity through anharmonic multi-mode coupling, as well as the types of materials most conducive to these lattice instabilities. The review includes a description of the origins of the displacive modes, a classification of possible non-polar lattice modes, as well as how their coupling can produce spontaneous polarizations. We then survey the recent improper ferroelectric literature, and describe how the materials discussed fall within a proposed classification scheme, offering new directions for the theoretical design of magnetic ferroelectrics. Finally, we offer prospects for the future discovery of new magnetic improper ferroelectrics, as well as detail remaining challenges and open questions facing this exciting new field. (topical review)

  17. Computational Modeling of the Size Effects on the Optical Vibrational Modes of H-Terminated Ge Nanostructures

    Directory of Open Access Journals (Sweden)

    Miguel Cruz-Irisson

    2013-04-01

    Full Text Available The vibrational dispersion relations of porous germanium (pGe and germanium nanowires (GeNWs were calculated using the ab initio density functional perturbation theory with a generalized gradient approximation with norm-conserving pseudopotentials. Both pores and nanowires were modeled using the supercell technique. All of the surface dangling bonds were saturated with hydrogen atoms. To address the difference in the confinement between the pores and the nanowires, we calculated the vibrational density of states of the two materials. The results indicate that there is a slight shift in the highest optical mode of the Ge-Ge vibration interval in all of the nanostructures due to the phonon confinement effects. The GeNWs exhibit a reduced phonon confinement compared with the porous Ge due to the mixed Ge-dihydride vibrational modes around the maximum bulk Ge optical mode of approximately 300 cm−1; however, the general effects of such confinements could still be noticed, such as the shift to lower frequencies of the highest optical mode belonging to the Ge vibrations.

  18. Contribution to Experimental Validation of Linear and Non-Linear Dynamic Models for Representing Rotor-Blade Parametric Coupled Vibrations

    DEFF Research Database (Denmark)

    Santos, Ilmar; Saracho, C.M.; Smith, J.T.;

    2004-01-01

    , it is possible to highlight some dynamic effects and experimentally simulate the structural behavior of a windmill in two dimensions (2D-model). Only lateral displacement of the rotor in the horizontal direction is taken into account. Gyroscopic effect due to rotor angular vibrations is eliminated in the test...... linear, non-linear and time-depending terms in a very transparent way. Although neither gyroscopic effect due to rotor angular vibrations nor higher blade mode shapes are considered in the analysis, the equations of motion of the rotor-blades system are still general enough for the purpose of the work...

  19. Carrier relaxation in (In,Ga)As quantum dots with magnetic field-induced anharmonic level structure

    Science.gov (United States)

    Kurtze, H.; Bayer, M.

    2016-07-01

    Sophisticated models have been worked out to explain the fast relaxation of carriers into quantum dot ground states after non-resonant excitation, overcoming the originally proposed phonon bottleneck. We apply a magnetic field along the quantum dot heterostructure growth direction to transform the confined level structure, which can be approximated by a Fock-Darwin spectrum, from a nearly equidistant level spacing at zero field to strong anharmonicity in finite fields. This changeover leaves the ground state carrier population rise time unchanged suggesting that fast relaxation is maintained upon considerable changes of the level spacing. This corroborates recent models explaining the relaxation by polaron formation in combination with quantum kinetic effects.

  20. Nonlinear Gap Modes in a 1D Alternating Bond Monatomic Lattice with Anharmonicity

    Institute of Scientific and Technical Information of China (English)

    PAN Liu-Xian; ZHOU Guang-Hui; XIA Qing-Lin; YAN Jia-Ren

    2001-01-01

    We analytically study the nonlinear localized gap modes in a one-dimensional atomic chain with uniform atomic mass but two periodically alternating force constants between the nearest neighbors by means ofa quasi-continuum approximation.This model simulates a row of atoms in the direction of a diamond-structure type of crystals or molecular crystals with alternating double and single bonds.For this lattice system,we find that the harmonic plus quartic anharmonic terms of inter-site potential produce a new type of nonlinear localized gap modes with a slightly asymmetry distribution of atomic displacements.These localized gap modes are somewhat different from widely studied localized gap modes with a symmetry atomic displacement distribution in diatomic ion lattices.

  1. Origin of long-lived oscillations in 2D-spectra of a Quantum Vibronic Model: Electronic vs Vibrational coherence

    CERN Document Server

    Plenio, M B; Huelga, S F

    2013-01-01

    We demonstrate that the coupling of excitonic and vibrational motion in biological complexes can provide mechanisms to explain the long-lived oscillations that have been obtained in non linear spectroscopic signals of different photosynthetic pigment protein complexes and we discuss the contributions of excitonic versus purely vibrational components to these oscillatory features. Considering a dimer model coupled to a structured spectral density we exemplify the fundamental aspects of the electron-phonon dynamics, and by analyzing separately the different contributions to the non linear signal, we show that for realistic parameter regimes purely electronic coherence is of the same order as purely vibrational coherence in the electronic ground state. Moreover, we demonstrate how the latter relies upon the excitonic interaction to manifest. These results link recently proposed microscopic, non-equilibrium mechanisms to support long lived coherence at ambient temperatures with actual experimental observations of...

  2. An approach for modeling the influence of wheel tractor loads and vibration frequencies on soil compaction

    Science.gov (United States)

    Verotti, M.; Servadio, P.; Belfiore, N. P.; Bergonzoli, S.

    2012-04-01

    Both soil compaction and ground vibration are forms of environmental degradation that may be understood in the context of the vehicle-soil interaction process considered (Hildebrand et al., 2008). The transit of tractors on agricultural soil is often the main cause of soil compaction increasing. As known, this can be a serious problems for tillage and sowing and therefore the influence of all the affecting factors have been extensively studied in the last decades in order to understand their impact on the biosystem. There are factors related to the climate, namely to the rainfalls and temperature, and many others. Hence, it is not simple to figure out a complete model for predicting an index of compaction, for a given situation. Soil compaction models are important tools for controlling soil compaction due to agricultural field traffic and they are potentially useful technique to provide information concerning correct soil management. By means of such models, strategies and recommendations for prevention of soil compaction may be developed and specific advice may be given to farmers and advisers. In order to predict field wheeled and tracked vehicle performance, some empirical methods, used for off-road vehicle, were applied by Servadio (2010) on agricultural soil. The empirical indexes included, besides the soil strength, the load carried by the tire or track, some technical characteristics of the tire or track of the vehicle (tire or track width, tire or track wheel diameter, unloaded tire section height, number of wheel station in one track, tire deflection, total length of the belt track, the track pitch) as well as the vehicle passes. They have been validated with the tests results of agricultural vehicles over a range of soil in central Italy. Among the parameters which affect soil compaction, the water content of the soil, the axle load and number of vehicle passes proved to be the most important ones. The present paper concerns mainly vehicle

  3. Nonlinear numerical modelling and experimental validation of multilayer piezoelectric vibration energy scavengers

    Science.gov (United States)

    Blažević, D.; Zelenika, S.

    2015-05-01

    Scavenging of low-level ambient vibrations i.e. the conversion of kinetic into electric energy, is proven as effective means of powering low consumption electronic devices such as wireless sensor nodes. Cantilever based scavengers are characterised by several advantages and thus thoroughly investigated; analytical models based on a distributed parameter approach, Euler-Bernoulli beam theory and eigenvalue analysis have thus been developed and experimentally verified. Finite element models (FEM) have also been proposed employing different modelling approaches and commercial software packages with coupled analysis capabilities. An approach of using a FEM analysis of a piezoelectric cantilever bimorph under harmonic excitation is used in this work. Modal, harmonic and linear and nonlinear transient analyses are performed. Different complex dynamic effects are observed and compared to the results obtained by using a distributed parameter model. The influence of two types of finite elements and three mesh densities is also investigated. A complex bimorph cantilever, based on commercially available Midé Technology® Volture energy scavengers, is then considered. These scavengers are characterised by an intricate multilayer structure not investigated so far in literature. An experimental set-up is developed to evaluate the behaviour of the considered class of devices. The results of the modal and the harmonic FEM analyses of the behaviour of the multilayer scavengers are verified experimentally for three different tip masses and 12 different electrical load values. A satisfying agreement between numerical and experimental results is achieved.

  4. Vibrational dynamics of the bifluoride ion. II. Adiabatic separation and proton dynamics

    Science.gov (United States)

    Epa, V. C.; Thorson, W. R.

    1990-01-01

    Vibrational dynamics of the bifluoride ion FHF-, which exhibits strongly anharmonic and nonseparable vibrations, is studied using the extended ab initio model potential surface described in the first paper of this series. Adiabatic separation of the proton motion from the F-F (ν1) motion forms a zero-order basis for description, although strong coupling of adiabatic states by the ν1 motion is important in higher vibrational levels and must be considered to understand the spectrum. The adiabatic protonic eigenstates at F-F separations R from 3.75 to 6.40 a.u. have been determined using the self-consistent field approximation in prolate spheroidal coordinates to provide a basis set for configuration interaction expansion of the exact eigenstates. 78 SCF eigenstates (21 σg, 21 σu, 21 πu, and 15 πg) were computed by ``exact'' numerical solution of the SCF equations. The adiabatic CI eigenstates are shown to be converged in energy to better than 1.0 cm-1 for the ground state of each symmetry type and usually better than 10 cm-1 for the lowest three to five states, and pass critical tests of accuracy such as the Hellmann-Feynman theorem. The resulting CI potential energy curves closely resemble corresponding SCF energy curves and justify the concept of mode separation even in this very anharmonic system. The adiabatic CI potential energy curves explain most aspects of the dynamics relevant to the IR and Raman spectra of FHF- (e.g., in KHF2), and calculations of ν1 dynamics within the adiabatic approximation suffice to assign most of the observed IR spectrum of KHF2(s) (to about 6000 cm-1). States corresponding qualitatively to modal overtone and combination levels such as 3ν2 and (ν2+2ν3) however exhibit avoided crossings in the neighborhood of the equilibrium configuration and ``Fermi resonance'' involving interactions of two or more such adiabatic states via the ν1 motion must be treated by close-coupling to predict both frequencies and intensities in the

  5. The Modeling and Analysis for the Self-Excited Vibration of the Maglev Vehicle-Bridge Interaction System

    Directory of Open Access Journals (Sweden)

    Jinhui Li

    2015-01-01

    Full Text Available This paper addresses the self-excited vibration problems of maglev vehicle-bridge interaction system which greatly degrades the stability of the levitation control, decreases the ride comfort, and restricts the cost of the whole system. Firstly, two levitation models with different complexity are developed, and the comparison of the energy curves associated with the two models is carried out. We conclude that the interaction model with a single levitation control unit is sufficient for the study of the self-excited vibration. Then, the principle underlying the self-excited vibration is explored from the standpoint of work acting on the bridge done by the levitation system. Furthermore, the influences of the parameters, including the modal frequency and modal damping of bridge, the gain of the controller, the sprung mass, and the unsprung mass, on the stability of the interaction system are carried out. The study provides a theoretical guidance for solving the self-excited vibration problems of the vehicle-bridge interaction systems.

  6. Analysis and modeling of unsteady aerodynamics with application to wind turbine blade vibration at standstill conditions

    DEFF Research Database (Denmark)

    Skrzypinski, Witold Robert

    -motion and elasticallymounted airfoil suspensions. 2D and 3D prescribed-motion CFD computations performed on a DU96-W-180 airfoil predicted vortex-induced vibrations at 90 degrees angle of attack at the frequency close to the stationary vortex shedding frequency predicted by 2D CFD computations. Significant discrepancies were......Wind turbine blade vibrations at standstill conditions were investigated in the present work. These included vortex-induced and stall-induced vibrations. Thus, it was investigated whether the stand still vibrations are vortex-induced, stall-induced or a combination of both types. The work comprised...... limits. The motivation for it was that the standard aerodynamics existing in state-of-the-art aeroelastic codes is effectively quasi-steady in deep stall. If such an assumption was incorrect, these codes could predict stall-induced vibrations inaccurately. The main conclusion drawn from these analyzes...

  7. Positron-attachment to small molecules: Vibrational enhancement of positron affinities with configuration interaction level of multi-component molecular orbital approach

    Energy Technology Data Exchange (ETDEWEB)

    Tachikawa, Masanori [Quantum Chemistry Division, Graduate School of NanoBioScience, Yokohama City University, 22-2 Seto, Kanazawa, Yokohama 236-0027 (Japan)

    2015-12-31

    To theoretically demonstrate the binding of a positron to small polarized molecules, we have calculated the vibrational averaged positron affinity (PA) values along the local vibrational contribution with the configuration interaction level of multi-component molecular orbital method. This method can take the electron-positron correlation contribution into account through single electronic - single positronic excitation configurations. The PA values are enhanced by including the local vibrational contribution from vertical PA values due to the anharmonicity of the potential.

  8. Simplified Prediction Model for Vortex-Induced Vibrations of Top Tensioned Risers

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    According to the characteristics of deepwater top tensioned risers, a simplified model is presented to predict the multi-modal response of vortex-induced vibration (VIV) in non-uniform flow based on energy equilibrium theory and the experimental data from VIV self-excited and forced oscillations of rigid cylinders. The response amplitude of each mode is determined by a balance between the energy fed into the riser over the lock-in regions and the energy dissipated by the fluid damping over the remainders. Compared with the previous prediction models, this method can take fully account of the intrinsic nature of VIV for low mass ratio structures on lock-in regions, added mass and nonlinear fluid damping effect, etc. Moreover, it is the first time to propose the accurate calculating procedure for VIV amplitude correction factor by solving energy equilibrium equation and a closed form solution is presented for the case of a riser of uniform mass and cross-section oscillating in a uniform flow. The predicted values show a reasonable agreement with VIV experiments of riser models in stepped and sheared currents.

  9. Structural and vibrational study of graphene oxide via coronene based models: theoretical and experimental results

    Science.gov (United States)

    Almeida de Mendonça, João Paulo; Henrique de Lima, Alessandro; Amaral Junqueira, Georgia Maria; Gianini Quirino, Welber; Legnani, Cristiano; Oliveira Maciel, Indhira; Sato, Fernando

    2016-05-01

    We use the Coronene (C24H12), a simple and finite molecule, to make a model to study the spectroscopic and structural alterations generated by oxygenated groups in graphene oxide (GO). Based on the Lerf-Klinowski model, we chose the hydroxyl [OH-], the carboxyl [COOH-] and the epoxy [the ring C2O inside the molecule] as our radicals of interest and study their collective and isolated effects. We perform geometry optimization, vibrational IR (via AM1 and DFT-B3LYP) and Raman spectra (via DFT-B3LYP) of a series of functionalized coronene molecules. As results, we obtain some useful data for the analysis of IR and Raman spectra of GO, which facilitate the understanding and identification of the peaks found in the experiment. Finally, we suggest a new model to study GO, producing an accurate signature when compared to our experimental data. Such molecule shows in more details of the structural effects caused by functionalization when compared to experimental data.

  10. Nonlocal-integro-differential modeling of vibration of elastically supported nanorods

    Science.gov (United States)

    Kiani, Keivan

    2016-09-01

    In the previously established nonlocal continuum-based models, small characteristic length was commonly incorporated into the mass matrix and the driving force vector which is a bit in contradiction with our sense regarding these factors. Herein, a nonlocal-integro-differential version of the constitutive relations is employed for the bulk and the surface layer of the nanorod. By adopting Hamilton's principle, integro-partial differential equations of motion of elastically supported nanorods are established accounting for both nonlocality and surface energy effects. Then, these are solved by an efficient meshless methodology. For fixed-fixed and fixed-free nanorods, modal analysis of the problem is also performed and the explicit expressions of the mass and stiffness matrices are derived. For these special cases, the obtained results by the meshless technique are successfully verified with those of the modal solution. In the newly developed numerical model, the small-scale parameter is only incorporated into the stiffness matrix which gives us a more realistic sense about the nonlocality effect. Subsequently, the roles of the surface energy, small-scale parameter, elastic supports, and kernel function on natural frequencies of the nanostructure are discussed and explained. This work can be considered as a pivotal step towards a more reasonable nonlocal modeling of vibration of nanoscale structures.

  11. Research on the equivalent circuit model of a circular flexural-vibration-research on the equivalent circuit model of a circular flexural-vibration-mode piezoelectric transformer with moderate thickness.

    Science.gov (United States)

    Huang, Yihua; Huang, Wenjin; Wang, Qinglei; Su, Xujian

    2013-07-01

    The equivalent circuit model of a piezoelectric transformer is useful in designing and optimizing the related driving circuits. Based on previous work, an equivalent circuit model for a circular flexural-vibration-mode piezoelectric transformer with moderate thickness is proposed and validated by finite element analysis. The input impedance, voltage gain, and efficiency of the transformer are determined through computation. The basic behaviors of the transformer are shown by numerical results.

  12. Effective field theory for nuclear vibrations with quantified uncertainties

    Science.gov (United States)

    Coello Pérez, E. A.; Papenbrock, T.

    2015-12-01

    We develop an effective field theory (EFT) for nuclear vibrations. The key ingredients—quadrupole degrees of freedom, rotational invariance, and a breakdown scale around the three-phonon level—are taken from data. The EFT is developed for spectra and electromagnetic moments and transitions. We employ tools from Bayesian statistics for the quantification of theoretical uncertainties. The EFT consistently describes spectra and electromagnetic transitions for 62Ni,100,98Ru,108,106Pd, 110,112,114Cd, and 118,120,122Te within the theoretical uncertainties. This suggests that these nuclei can be viewed as anharmonic vibrators.

  13. Four Dimensional (4-D BioChemInfoPhysics Models of Cardiac Cellular and Sub-Cellular Vibrations (Oscillations

    Directory of Open Access Journals (Sweden)

    Chang-Hua Zou

    2009-01-01

    Full Text Available Problem statement: Cardiovascular Diseases (CVD continued to be the leading cause of death. Failure or abnormal cardiac cellular or sub-cellular vibrations (oscillations could lead failure or abnormal heart beats that could cause CVD. Understanding the mechanisms of the vibrations (oscillations could help to prevent or to treat the diseases. Scientists have studied the mechanisms for more than 100 years. To our knowledge, the mechanisms are still unclear today. In this investigation, based on published data or results, conservation laws of the momentum as well as the energy, in views of biology, biochemistry, informatics and physics (BioChemInfoPhysics, we proposed our models of cardiac cellular and sub-cellular vibrations (oscillations of biological components, such as free ions in Biological Fluids (BF, Biological Membranes (BM, Ca++H+ (Ca++ and Na+K+ ATPases, Na+Ca++ exchangers (NCX, Ca++ carriers and myosin heads. Approach: Our models were described with 4-D (x, y, z, t or r, ?, z, t momentum transfer equations in mathematical physics. Results: The momentum transfer equations were solved with free and forced, damped, un-damped and over-damped, vibrations (oscillations. The biological components could be modeled as resonators or vibrators (oscillators, such as liquid plasmas, membranes, active springs, passive springs and active swings. Conclusion: We systematically provided new insights of automation (ignition and maintain, transportation, propagation and orientation of the cardiac cellular and sub-cellular vibrations (oscillations and resonances, with our BioChemInfoPhysics models of 4-D momentum transfer equations. Our modeling results implied: Auto-rhythmic cells (Sinoatrial Node Cells (SANC, Atrioventricular Node Cells (AVNC, Purkinje fibers, non-Auto-rhythmic ventricular myocytes and their Sarcoplasmic Reticulums (SR work as Biological Liquid Plasma Resonators (BLPR. The resonators were

  14. Variational and coupled-cluster calculations of the spectra of anharmonic oscillators

    International Nuclear Information System (INIS)

    Using the general anharmonic oscillator as a case study, we examine the coupled-cluster method (CCM) in some detail. Emphasis is specially placed on the accuracy of the standard ground-state energy calculation and the excitation spectrum as derived via the Emrich ansatz. We are particularly interested in problems that can arise from large differences between the exact wave function and its model counterpart that forms the starting point of the CCM. To this end we begin with a variational Hartree approximation applied to three particular anharmonic-oscillator Hamiltonians that contain, respectively, pure quartic, equally weighted cubic and quartic, and double-well perturbations. These are chosen to provide increasingly stringent tests for the CCM in the above sense. Considerable attention is paid to the variational description of the double-well case, where the various possible solutions to the Hartree equations are considered and a further calculation on the energy-level splitting is performed. The CCM is then used to improve systematically upon our chosen starting point and is shown, particularly for the ground state, both to produce extremely accurate results and to be rather resilient to even gross deficiencies in the starting wave function. The main problem is the double-well system, where the CCM shows its lack of intrinsic inbuilt tunneling mechanisms via the absence of level splitting. Even here the CCM still produces very accurate average energies for very deep wells. While clearly needing some modification in such extreme cases, the CCM is shown to be quite adaptable and robust with regard to inaccurate starting wave functions

  15. Vibrationally high-resolved electronic spectra of MCl2 (M=C, Si, Ge, Sn, Pb) and photoelectron spectra of MCl2(.).

    Science.gov (United States)

    Ran, Yibin; Pang, Min; Shen, Wei; Li, Ming; He, Rongxing

    2016-10-01

    We systematically studied the vibrational-resolved electronic spectra of group IV dichlorides using the Franck-Condon approximation combined with the Duschinsky and Herzberg-Teller effects in harmonic and anharmonic frameworks (only the simulation of absorption spectra includes the anharmonicity). Calculated results showed that the band shapes of simulated spectra are in accordance with those of the corresponding experimental or theoretical ones. We found that the symmetric bend mode in progression of absorption is the most active one, whereas the main contributor in photoelectron spectra is the symmetric stretching mode. Moreover, the Duschinsky and anharmonic effects exert weak influence on the absorption spectra, except for PbCl2 molecule. The theoretical insights presented in this work are significant in understanding the photophysical properties of MCl2 (M=C, Si, Ge, Sn, Pb) and studying the Herzberg-Teller and the anharmonic effects on the absorption spectra of new dichlorides of this main group. PMID:27280730

  16. Vibrationally high-resolved electronic spectra of MCl2 (M = C, Si, Ge, Sn, Pb) and photoelectron spectra of MCl2-

    Science.gov (United States)

    Ran, Yibin; Pang, Min; Shen, Wei; Li, Ming; He, Rongxing

    2016-10-01

    We systematically studied the vibrational-resolved electronic spectra of group IV dichlorides using the Franck-Condon approximation combined with the Duschinsky and Herzberg-Teller effects in harmonic and anharmonic frameworks (only the simulation of absorption spectra includes the anharmonicity). Calculated results showed that the band shapes of simulated spectra are in accordance with those of the corresponding experimental or theoretical ones. We found that the symmetric bend mode in progression of absorption is the most active one, whereas the main contributor in photoelectron spectra is the symmetric stretching mode. Moreover, the Duschinsky and anharmonic effects exert weak influence on the absorption spectra, except for PbCl2 molecule. The theoretical insights presented in this work are significant in understanding the photophysical properties of MCl2 (M = C, Si, Ge, Sn, Pb) and studying the Herzberg-Teller and the anharmonic effects on the absorption spectra of new dichlorides of this main group.

  17. Vibrational properties of uracil

    Institute of Scientific and Technical Information of China (English)

    WANG Zhiping; ZHANG Fengshou; ZENG Xianghua; ZHOU Hongyu; GU Bin; CHENG Wei

    2006-01-01

    A semiempirical molecular dynamics model is developed to study the vibrational frequencies of uracil at very low kinetic temperature by using the Fourier transform of velocity autocorrelation function of trajectories of molecular dynamics simulations. The finite difference harmonic method is used to assign the vibrational frequency of each mode. The calculated frequencies are found to be in good agreement with experimental measurements. Moreover, we make up for the lost vibrational modes in experiments self-consistently. A total of 30 vibrational modes and their corresponding frequencies are reported.

  18. Numerical Investigation of the Effects of Wind Tunnel Model Vibrations on the Measured Aerodynamic Properties of Airfoils and Wings

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    This paper presents a numerical prediction of the unsteady flow field around oscillating airfoils at high angles of attack by solving unsteady Reynolds-averaged Navier-Stokes equations with SST turbulence model in order to simulate the effects of wind tunnel model vibrations on the aerodynamic properties of airfoils,especially high-aspect-ratio wings in a wind tunnel.The effects of the phase lagging between different modes of oscillations,i.e.,the airfoil plunging oscillation mode,the pitching oscillation mode,and the forward-backward oscillation mode,are also studied.It is shown that the vibrations (oscillations) of airfoils can cause the unsteady shedding of large-size separated vortex to precede the stationary stall incidence,hence lead to a stall onset at some earlier (lower) incidence than that in the steady sense.The different phase lagging has different effect on the flow field.When the pitching oscillation mode has small phase lagging behind the plunging oscillation mode,the effect of vibrations is large.Besides,if the amplitude of the oscillations is large enough,and the different modes of vibrations match or combine appropriately,the unsteady stall may occur 2° earlier in angle of attack than the case where airfoils keep stationary.

  19. Bose–Einstein Condensates with Two- and Three-Body Interactions in an Anharmonic Trap at Finite Temperature

    International Nuclear Information System (INIS)

    The transition temperature, the depletion of the condensate atoms and the collective excitations of a Bose–Einstein condensation (BEC) with two- and three-body interactions in an anharmonic trap at finite temperature are studied in detail. By using the Popov version of the Hartree–Fock–Bogoliubov (HFB) approximation, an extended self-consistent model describing BEC with both two- and three-body interactions in a distorted harmonic potential at finite temperature is obtained and solved numerically. The results show that the transition temperature, the condensed atom number and the collective excitations are modified dramatically by the atomic three-body interactions and the distortion of the harmonic trap. (general)

  20. Blasting Vibration Safety Criterion Analysis with Equivalent Elastic Boundary: Based on Accurate Loading Model

    Directory of Open Access Journals (Sweden)

    Qingwen Li

    2015-01-01

    Full Text Available In the tunnel and underground space engineering, the blasting wave will attenuate from shock wave to stress wave to elastic seismic wave in the host rock. Also, the host rock will form crushed zone, fractured zone, and elastic seismic zone under the blasting loading and waves. In this paper, an accurate mathematical dynamic loading model was built. And the crushed zone as well as fractured zone was considered as the blasting vibration source thus deducting the partial energy for cutting host rock. So this complicated dynamic problem of segmented differential blasting was regarded as an equivalent elastic boundary problem by taking advantage of Saint-Venant’s Theorem. At last, a 3D model in finite element software FLAC3D accepted the constitutive parameters, uniformly distributed mutative loading, and the cylindrical attenuation law to predict the velocity curves and effective tensile curves for calculating safety criterion formulas of surrounding rock and tunnel liner after verifying well with the in situ monitoring data.

  1. Vibration energy harvesting by a Timoshenko beam model and piezoelectric transducer

    Science.gov (United States)

    Stoykov, S.; Litak, G.; Manoach, E.

    2015-11-01

    An electro-mechanical system of vibrational energy harvesting is studied. The beam is excited by external and kinematic periodic forces and damped by an electrical resistor through the coupled piezoelectric transducer. Nonlinearities are introduced by stoppers limiting the transverse displacements of the beam. The interaction between the beam and the stoppers is modeled as Winkler elastic foundation. The mechanical properties of the piezoelectric layer are taken into account and the beam is modeled as a composite structure. For the examined composite beam, the geometrically nonlinear version of the Timoshenko's beam theory is assumed. The equations of motion are derived by the principle of virtual work considering large deflections. An isogeometric approach is applied for space discretization and B-Splines are used as shape functions. Finally, the power output and the efficiency of the system due to harmonic excitations are discussed. The influence of the position of the stoppers and their length on the dynamics of the beam and consequently on the power output are analyzed and presented.

  2. SIMULATION OF VIBRATION STRESS RELIEF AFTER WELDING BASED ON FEM

    Institute of Scientific and Technical Information of China (English)

    X.C.Zhao; Y.D.Zhang; H.W.Zhang; Q.Wu

    2008-01-01

    A finite element model is developed for the simulation of vibration stress relief (VSR) after welding.For the nonresonant vibration,the reduction in stress strongly depends on the amplitude of vibration.For the resonant vibration,the vibration frequency is the key for stress relief.The vibration frequency should be close to the structure natural frequency for the desired vibration mode.Only small vibration amplitude is required,which will be amplified during vibration.Vibration time does not have a major impact on vibration stress relief.When the amplitude of vibration stress relief is large,the treatment will be more effective.

  3. ADVANCES IN RENEWAL DECISION-MAKING UTILISING THE PROPORTIONAL HAZARDS MODEL WITH VIBRATION COVARIATES

    Directory of Open Access Journals (Sweden)

    Pieter-Jan Vlok

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: Increased competitiveness in the production world necessitates improved maintenance strategies to increase availabilities and drive down cost . The maintenance engineer is thus faced with the need to make more intelligent pre ventive renewal decisions . Two of the main techniques to achieve this is through Condition Monitoring (such as vibrat ion monitoring and oil anal ysis and Statistical Failure Analysis (typically using probabilistic techniques . The present paper discusses these techniques, their uses and weaknesses and then presents th e Proportional Hazard Model as an solution to most of these weaknesses. It then goes on to compare the results of the different techniques in monetary terms, using a South African case study. This comparison shows clearly that the Proportional Hazards Model is sup erior to the present t echniques and should be the preferred model for many actual maintenance situations.

    AFRIKAANSE OPSOMMING: Verhoogde vlakke van mededinging in die produksie omgewing noodsaak verbeterde instandhouding strategies om beskikbaarheid van toerusting te verhoog en koste te minimeer. Instandhoudingsingenieurs moet gevolglik meer intellegente voorkomende hernuwings besluite neem. Twee prominente tegnieke om hierdie doelwit te bereik is Toestandsmonitering (soos vibrasie monitering of olie analise en Statistiese Falingsanalise (gewoonlik m.b.v. probabilistiese metodes. In hierdie artikel beskou ons beide hierdie tegnieke, hulle gebruike en tekortkominge en stel dan die Proporsionele Gevaarkoers Model voor as 'n oplossing vir meeste van die tekortkominge. Die artikel vergelyk ook die verskillende tegnieke in geldelike terme deur gebruik te maak van 'n Suid-Afrikaanse gevalle studie. Hierdie vergelyking wys duidelik-uit dat die Proporsionele Gevaarkoers Model groter beloft e inhou as die huidige tegni eke en dat dit die voorkeur oplossing behoort te wees in baie werklike instandhoudings situasies.

  4. Vibration model of rolling element bearings in a rotor-bearing system for fault diagnosis

    Science.gov (United States)

    Cong, Feiyun; Chen, Jin; Dong, Guangming; Pecht, Michael

    2013-04-01

    Rolling element bearing faults are among the main causes of breakdown in rotating machines. In this paper, a rolling bearing fault model is proposed based on the dynamic load analysis of a rotor-bearing system. The rotor impact factor is taken into consideration in the rolling bearing fault signal model. The defect load on the surface of the bearing is divided into two parts, the alternate load and the determinate load. The vibration response of the proposed fault signal model is investigated and the fault signal calculating equation is derived through dynamic and kinematic analysis. Outer race and inner race fault simulations are realized in the paper. The simulation process includes consideration of several parameters, such as the gravity of the rotor-bearing system, the imbalance of the rotor, and the location of the defect on the surface. The simulation results show that different amplitude contributions of the alternate load and determinate load will cause different envelope spectrum expressions. The rotating frequency sidebands will occur in the envelope spectrum in addition to the fault characteristic frequency. This appearance of sidebands will increase the difficulty of fault recognition in intelligent fault diagnosis. The experiments given in the paper have successfully verified the proposed signal model simulation results. The test rig design of the rotor bearing system simulated several operating conditions: (1) rotor bearing only; (2) rotor bearing with loader added; (3) rotor bearing with loader and rotor disk; and (4) bearing fault simulation without rotor influence. The results of the experiments have verified that the proposed rolling bearing signal model is important to the rolling bearing fault diagnosis of rotor-bearing systems.

  5. Development of a finite element model for the identification of mechanical and piezoelectric properties through gradient optimisation and experimental vibration data

    DEFF Research Database (Denmark)

    Araujo, A.; Soares, C.; Herskovits, J.;

    2002-01-01

    the structural behaviour and implement efficient control algorithms for active noise and vibration control. To address this issue we propose a discrete finite element model, associated to gradient optimisation and to an inverse method using experimental vibration data to carry out the identification...

  6. Experimental Investigation of Wave-Induced Ship Hydroelastic Vibrations by Large-Scale Model Measurement in Coastal Waves

    Directory of Open Access Journals (Sweden)

    Jialong Jiao

    2016-01-01

    Full Text Available Ship hydroelastic vibration is an issue involving mutual interactions among inertial, hydrodynamic, and elastic forces. The conventional laboratory tests for wave-induced hydroelastic vibrations of ships are performed in tank conditions. An alternative approach to the conventional laboratory basin measurement, proposed in this paper, is to perform tests by large-scale model measurement in real sea waves. In order to perform this kind of novel experimental measurement, a large-scale free running model and the experiment scheme are proposed and introduced. The proposed testing methodology is quite general and applicable to a wide range of ship hydrodynamic experimental research. The testing procedure is presented by illustrating a 5-hour voyage trial of the large-scale model carried out at Huludao harbor of China in August 2015. Hammer tests were performed to identify the natural frequencies of the ship model at the beginning of the tests. Then a series of tests under different sailing conditions were carried out to investigate the vibrational characteristics of the model. As a postvoyage analysis, load, pressure, acceleration, and motion responses of the model are studied with respect to different time durations based on the measured data.

  7. New perturbation theory for the nonstationary anharmonic oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Bogdanov, Alexander V. [Instiutute for High-Performance Computing and Data Bases, St. Petersburg (Russian Federation); Gevorkyan, Ashot S. [Instiutute for High-Performance Computing and Data Bases, St. Petersburg (Russian Federation); Institute of Applied Problems of Physics NAS of Armenia, Yerevan (Armenia)

    1997-11-07

    The new perturbation theory for the problem of the nonstationary anharmonic oscillator with polynomial nonstationary perturbation is proposed. As a zeroth-order approximation, the exact wavefunction of the harmonic oscillator with variable frequency in external field is used. Based on some intrinsic properties of unperturbed wavefunctions, the variational-iterational method is proposed, which makes it possible to correct both the amplitude and phase of the wavefunction. As an application, the first-order corrections are proposed for both the wavefunction and S-matrix elements for asymmetric perturbation potential of the type V({chi}, {tau})={alpha}({tau}){chi}{sup 3}+{beta}({tau}){chi}{sup 4}. The transition amplitude 'ground state-ground state' W{sub 00}({lambda}:{rho}) is analysed in detail depending on the perturbation parameter {lambda} (including the strong coupling region {lambda}{approx}1) and the one-dimensional refraction coefficient {rho}. (author)

  8. Critical rotation of an anharmonically trapped Bose-Einstein condensate

    Institute of Scientific and Technical Information of China (English)

    Ma Juan; Li Zhi; Xue Ju-Kui

    2009-01-01

    We consider rotational motion of an interacting atomic Bose-Einstein condensate (BEC) with both two- and threebody interactions in a quadratic-plus-quartic and harmonic-plus-Gaussian trap. By using the variational method, the influence of the three-body interaction and the anharmonicity of the trap on the lowest energy surface mode excitation and the spontaneous shape deformation (responsible for the vortex formation) in a rotating BEC is discussed in detail. It is found that the repulsive three-body interaction helps the formation of the vortex and reduces the lowest energy surface mode frequency and the critical rotational frequency of the system. Moreover, the critical rotational frequency for the vortex formation in the harmonic-plus-Gaussian potential is lower than that in the quadratic-plus-quartic potential.

  9. Resummation of divergent perturbation series: Application to the vibrational states of H{sub 2}CO molecule

    Energy Technology Data Exchange (ETDEWEB)

    Duchko, A. N. [National Research Tomsk Polytechnic University, Tomsk (Russian Federation); V.E. Zuev Institute of Atmospheric Optics, Tomsk (Russian Federation); Bykov, A. D., E-mail: adbykov@rambler.ru [V.E. Zuev Institute of Atmospheric Optics, Tomsk (Russian Federation)

    2015-10-21

    Large-order Rayleigh–Schrödinger perturbation theory (RSPT) is applied to the calculation of anharmonic vibrational energy levels of H{sub 2}CO molecule. We use the model of harmonic oscillators perturbed by anharmonic terms of potential energy. Since the perturbation series typically diverge due to strong couplings, we apply the algebraic approximation technique because of its effectiveness shown earlier by Goodson and Sergeev [J. Chem. Phys. 110, 8205 (1999); ibid. 124, 094111 (2006)] and in our previous articles [A. D. Bykov et al. Opt. Spectrosc. 114, 396 (2013); ibid. 116, 598 (2014)]. To facilitate the resummation of terms contributing to perturbed states, when resonance mixing between states is especially strong and perturbation series diverge very quick, we used repartition of the Hamiltonian by shifting the normal mode frequencies. Energy levels obtained by algebraic approximants were compared with the results of variational calculation. It was found that for low energy states (up to ∼5000 cm{sup −1}), algebraic approximants gave accurate values of energy levels, which were in excellent agreement with the variational method. For highly excited states, strong and multiple resonances complicate series resummation, but a suitable change of normal mode frequencies allows one to reduce the resonance mixing and to get accurate energy levels. The theoretical background of the problem of RSPT series divergence is discussed along with its numerical analysis. For these purposes, the vibrational energy is considered as a function of a complex perturbation parameter. Layout and classification of its singularities allow us to model the asymptotic behavior of the perturbation series and prove the robustness of the algorithm.

  10. Improved Models for Prediction of Locally Intense Aeroacoustic Loads and Vibration Environments Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ATA Engineering, Inc. proposes an STTR program to develop innovative tools and methods that will significantly improve the accuracy of random vibration response...

  11. Mathematical Modelling and Parameter Identification of an Electro-Magneto-Mechanical Actuator for Vibration Control

    DEFF Research Database (Denmark)

    Darula, Radoslav; Stein, George Juraj; Kallesøe, Carsten Skovmose;

    2012-01-01

    of the electromagnetic circuit in its various operational regimes. The parametric identification supplements mathematical derivations. The analyzed mechanical system is essentially a Single Degree-Of-Freedom (SDOF) oscillatory system augmented by magnetic force influence. The additional magnetic force is generated....... The electric circuit is closed with a shunt resistance connected to the electromagnet. The current induced in the circuit generates additional alternating magnetic force. This force counteracts the original vibration and damps it. In this way the coupled electro-magneto-mechanical system suppresses the forced...... vibration. The mechanical energy is converted into electric one and dissipated in the shunt resistance external to the oscillatory system. Hence, the described system can be used as vibration controller to reduce excessive vibration of large machines and/or structures in semi-active way....

  12. Vibrational Energy Flow Analysis of Corrected Flexural Waves in Timoshenko Beam – Part I: Theory of an Energetic Model

    Directory of Open Access Journals (Sweden)

    Young-Ho Park

    2006-01-01

    Full Text Available In this paper, an energy flow model is developed to analyze transverse vibration including the effects of rotatory inertia as well as shear distortion, which are very important in the Timoshenko beam transversely vibrating in the medium-to-high frequency ranges. The energy governing equations for this energy flow model are newly derived by using classical displacement solutions of the flexural motion for the Timoshenko beam, in detail. The derived energy governing equations are in the general form incorporating not only the Euler-Bernoulli beam theory used for the conventional energy flow model but also the Rayleigh, shear, and Timoshenko beam theories. Finally, to verify the validity and accuracy of the derived model, numerical analyses for simple finite Timoshenko beams were performed. The results obtained by the derived energy flow model for simple finite Timoshenko beams are compared with those of the classical solutions for the Timoshenko beam, the energy flow solution, and the classical solution for the Euler-Bernoulli beam with various excitation frequencies and damping loss factors of the beam. In addition, the vibrational energy flow analyses of coupled Timoshenko beams are described in the other companion paper.

  13. Research on modeling of nonlinear vibration isolation system based on Bouc–Wen model

    Directory of Open Access Journals (Sweden)

    Zhi-ling Peng

    2014-12-01

    Full Text Available A feedforword neural network of multi-layer topologies for systems with hysteretic nonlinearity is constructed based on Bouc–Wen differential model. It not only reflects the hysteresis force characteristics of the Bouc–Wen model, but also determines its corresponding parameters. The simulation results show that restoring force–displacement curve hysteresis loop is very close to the real curve. The model trained can accurately predict the time response of system. The model is checked under the noise level. The result shows that the model has higher modeling precision, good generalization capability and a certain anti-interference ability.

  14. Modeling the vibrational spectrum of 4,4'-diphenylmethane- bis(methyl)carbamate

    Science.gov (United States)

    Shundalau, M. B.; Pitsevich, G. A.; Ksenofontov, M. A.; Umreiko, D. S.

    2010-07-01

    We present results of ab initio calculations of the structure and vibrational IR spectrum for 4,4'-diphenylmethane-bis(methyl)carbamate (DPMC). Calculations were carried out in the HF/6-311G approximation with subsequent force-field scaling. The calculated characteristics of the vibrational spectrum of DPMC show satisfactory agreement with experimental values, which permits them to be used in spectral and structural analysis

  15. Modeling and Vibration Suppression for Telescopic Systems of Structural Members with Clearance

    OpenAIRE

    Arnold, Dieter; Mittwollen, Martin; Schönung, Frank; Wauer, Jörg; Barthels, Pierre

    2006-01-01

    Telescopic systems of structural members with clearance are found in many applications, e.g., mobile cranes, rack feeders, fork lifters, stacker cranes (see Figure 1). Operating these machines, undesirable vibrations may reduce the performance and increase safety problems. Therefore, this contribution has the aim to reduce these harmful vibrations. For a better understanding, the dynamic behaviour of these constructions is analysed. The main interest is the overlapping area of each two sectio...

  16. Ambient Vibration Tests of an Arch Dam with Different Reservoir Water Levels: Experimental Results and Comparison with Finite Element Modelling

    Directory of Open Access Journals (Sweden)

    Sergio Vincenzo Calcina

    2014-01-01

    Full Text Available This paper deals with the ambient vibration tests performed in an arch dam in two different working conditions in order to assess the effect produced by two different reservoir water levels on the structural vibration properties. The study consists of an experimental part and a numerical part. The experimental tests were carried out in two different periods of the year, at the beginning of autumn (October 2012 and at the end of winter (March 2013, respectively. The measurements were performed using a fast technique based on asynchronous records of microtremor time-series. In-contact single-station measurements were done by means of one single high resolution triaxial tromometer and two low-frequency seismometers, placed in different points of the structure. The Standard Spectral Ratio method has been used to evaluate the natural frequencies of vibration of the structure. A 3D finite element model of the arch dam-reservoir-foundation system has been developed to verify analytically determined vibration properties, such as natural frequencies and mode shapes, and their changes linked to water level with the experimental results.

  17. Multivariable wavelet finite element-based vibration model for quantitative crack identification by using particle swarm optimization

    Science.gov (United States)

    Zhang, Xingwu; Gao, Robert X.; Yan, Ruqiang; Chen, Xuefeng; Sun, Chuang; Yang, Zhibo

    2016-08-01

    Crack is one of the crucial causes of structural failure. A methodology for quantitative crack identification is proposed in this paper based on multivariable wavelet finite element method and particle swarm optimization. First, the structure with crack is modeled by multivariable wavelet finite element method (MWFEM) so that the vibration parameters of the first three natural frequencies in arbitrary crack conditions can be obtained, which is named as the forward problem. Second, the structure with crack is tested to obtain the vibration parameters of first three natural frequencies by modal testing and advanced vibration signal processing method. Then, the analyzed and measured first three natural frequencies are combined together to obtain the location and size of the crack by using particle swarm optimization. Compared with traditional wavelet finite element method, MWFEM method can achieve more accurate vibration analysis results because it interpolates all the solving variables at one time, which makes the MWFEM-based method to improve the accuracy in quantitative crack identification. In the end, the validity and superiority of the proposed method are verified by experiments of both cantilever beam and simply supported beam.

  18. Relationship between sound radiation from sound-induced and force-excited vibration: Analysis using an infinite elastic plate model.

    Science.gov (United States)

    Yairi, Motoki; Sakagami, Kimihiro; Nishibara, Kosuke; Okuzono, Takeshi

    2016-07-01

    Although sound radiation from sound-induced vibration and from force-excited vibration of solid structures are similar phenomena in terms of radiating from vibrating structures, the general relationship between them has not been explicitly studied to date. In particular, airborne sound transmission through walls and sound radiation from structurally vibrating surfaces in buildings are treated as different issues in architectural acoustics. In this paper, a fundamental relationship is elucidated through the use of a simple model. The transmission coefficient for random-incidence sound and the radiated sound power under point force excitation of an infinite elastic plate are both analyzed. Exact and approximate solutions are derived for the two problems, and the relationship between them is theoretically discussed. A conversion function that relates the transmission coefficient and radiated sound power is obtained in a simple closed form through the approximate solutions. The exact solutions are also related by the same conversion function. It is composed of the specific impedance and the wavenumber, and is independent of any elastic plate parameters. The sound radiation due to random-incidence sound and point force excitation are similar phenomena, and the only difference is the gradient of those characteristics with respect to the frequency. PMID:27475169

  19. Forced vibration test of the Hualien large scale soil structure interaction model (pt. 2)

    International Nuclear Information System (INIS)

    A large-scale seismic test (LSST) programme conducted at Hualien (stiff soil site), Taiwan, has started (Tang et al., 1991) to provide earthquake-induced soil-structure interaction (SSI) data as an extension of the same kind of program conducted at Lotung (soft soil site) (EPRI, 1989). Two tests have been performed: a forced vibration test (FVT) without embedment (Morishita et al., 1993) and the same test with embedment. Horizontal excitations were applied in two different directions both on the roof slab and on the basemat of a 1/4-scale containment model. Vertical excitations were applied on the basemat only. The concept of 'principal axes (D1, D2)' was introduced for the SSI system, and the basic dynamic characteristics of the soil-structure system were obtained for D1 and D2. As an example, resonance frequencies for horizontal excitations were 4.1 and 4.6 Hz without embedment, and 6.1 and 6.3 Hz with embedment for D1 and D2 based on results transformed to principal axes. Finally, a soil impedance function was obtained by a newly defined error minimizing method. This function also simulates the classic embedment effect. (orig.)

  20. Forced vibration test of the Hualien large scale soil structure interaction model (pt. 2)

    Energy Technology Data Exchange (ETDEWEB)

    Sugawara, Y.; Uetake, T. [Tokyo Electr. Power Co., Yokohama (Japan); Kobayashi, T.; Yamaya, H. [Kajima Technical Res. Inst., Tokyo (Japan)

    1997-10-01

    A large-scale seismic test (LSST) programme conducted at Hualien (stiff soil site), Taiwan, has started (Tang et al., 1991) to provide earthquake-induced soil-structure interaction (SSI) data as an extension of the same kind of program conducted at Lotung (soft soil site) (EPRI, 1989). Two tests have been performed: a forced vibration test (FVT) without embedment (Morishita et al., 1993) and the same test with embedment. Horizontal excitations were applied in two different directions both on the roof slab and on the basemat of a 1/4-scale containment model. Vertical excitations were applied on the basemat only. The concept of `principal axes (D{sub 1}, D{sub 2})` was introduced for the SSI system, and the basic dynamic characteristics of the soil-structure system were obtained for D{sub 1} and D{sub 2}. As an example, resonance frequencies for horizontal excitations were 4.1 and 4.6 Hz without embedment, and 6.1 and 6.3 Hz with embedment for D{sub 1} and D{sub 2} based on results transformed to principal axes. Finally, a soil impedance function was obtained by a newly defined error minimizing method. This function also simulates the classic embedment effect. (orig.) 4 refs.

  1. Forced vibration test of the Hualien large scale soil-structure interaction (SSI) model: part 2

    Energy Technology Data Exchange (ETDEWEB)

    Sugawara, Y.; Uetake, T. [Tokyo Electric Power Co., Inc. (Japan); Kobayashi, T.; Yamaya, H. [Kajima Technical Research Inst., Tokyo (Japan)

    1995-12-31

    A Large-Scale Seismic Test (LSST) Program conducted at Hualien (stiff soil site). Taiwan, has started to obtain earthquake-induced soil-structure interaction (SSI) data as an extension of the same kind of program conducted at Lotung (soft soil site). Two tests have been performed: a Forced Vibration Test without embedment and the same test with embedment. Horizontal excitations were applied in two different directions both on the roof slab and on the basemat of a 1/4-scale containment model. Vertical excitations were applied on the basemat only. The concept of Principal Axes (D{sub 1}, D{sub 2}) was introduced for the SSI system, and the basic dynamic characteristics of the soil-structure system were obtained for D{sub 1} and D{sub 2}. As an example, peak frequencies for horizontal excitation were 4.1 and 4.6 Hz without embedment, and 6.1 and 6.3 Hz with embedment for D{sub 1} and D{sub 2} based on results transformed to principal axes. Finally, a soil impedance function was obtained by a newly defined error minimizing method. This function also simulates the classic embedment effect. (author). 5 refs., 9 figs., 1 tab.

  2. Modeling and simulation of vortex induced vibration on the subsea riser/pipeline (GRP pipe)

    Science.gov (United States)

    Raja Adli, Raja Nor Fauziah bt; Ibrahim, Idris

    2012-06-01

    This paper presents the research work conducted to investigate the dynamics characteristics of the offshore riser pipeline due to vortex flow and to develop a model that could predict its vortex induced responses. Glass-fiber reinforced plastic (GRP) pipe is used for this study which has smaller density from the steel. A two-dimensional finite element computational method is implemented to describe the dynamic behavior of the riser. The governing equation of motion was based on Hamilton's principle, consists of the strain energy due to bending and axial deformation, kinetic energy due to both riser and internal fluid movement and also external force from currents and waves. A direct integration method namely Newmark integration scheme is proposed to solve the equation of motion. A MATLAB program code was developed to obtain the simulation results. The natural frequency and damping ratio are presented for each mode. Dynamic response of riser is shown in time-domain and the numerical results are discussed. Several parameter effects are used to investigate dynamic responses and the results show an agreement with the theory. Vortex shedding phenomenon also has been discussed in this paper. As a conclusion, the simulation results have successfully shown the vortex induced vibration responses for GRP pipeline.

  3. Modeling and new equipment definition for the vibration isolation box equipment system

    Science.gov (United States)

    Sani, Robert L.

    1993-01-01

    Our MSAD-funded research project is to provide numerical modeling support for the VIBES (Vibration Isolation Box Experiment System) which is an IML2 flight experiment being built by the Japanese research team of Dr. H. Azuma of the Japanese National Aerospace Laboratory. During this reporting period, the following have been accomplished: A semi-consistent mass finite element projection algorithm for 2D and 3D Boussinesq flows has been implemented on Sun, HP And Cray Platforms. The algorithm has better phase speed accuracy than similar finite difference or lumped mass finite element algorithms, an attribute which is essential for addressing realistic g-jitter effects as well as convectively-dominated transient systems. The projection algorithm has been benchmarked against solutions generated via the commercial code FIDAP. The algorithm appears to be accurate as well as computationally efficient. Optimization and potential parallelization studies are underway. Our implementation to date has focused on execution of the basic algorithm with at most a concern for vectorization. The initial time-varying gravity Boussinesq flow simulation is being set up. The mesh is being designed and the input file is being generated. Some preliminary 'small mesh' cases will be attempted on our HP9000/735 while our request to MSAD for supercomputing resources is being addressed. The Japanese research team for VIBES was visited, the current set up and status of the physical experiment was obtained and ongoing E-Mail communication link was established.

  4. Measurement Model and Precision Analysis of Accelerometers for Maglev Vibration Isolation Platforms

    Directory of Open Access Journals (Sweden)

    Qianqian Wu

    2015-08-01

    Full Text Available High precision measurement of acceleration levels is required to allow active control for vibration isolation platforms. It is necessary to propose an accelerometer configuration measurement model that yields such a high measuring precision. In this paper, an accelerometer configuration to improve measurement accuracy is proposed. The corresponding calculation formulas of the angular acceleration were derived through theoretical analysis. A method is presented to minimize angular acceleration noise based on analysis of the root mean square noise of the angular acceleration. Moreover, the influence of installation position errors and accelerometer orientation errors on the calculation precision of the angular acceleration is studied. Comparisons of the output differences between the proposed configuration and the previous planar triangle configuration under the same installation errors are conducted by simulation. The simulation results show that installation errors have a relatively small impact on the calculation accuracy of the proposed configuration. To further verify the high calculation precision of the proposed configuration, experiments are carried out for both the proposed configuration and the planar triangle configuration. On the basis of the results of simulations and experiments, it can be concluded that the proposed configuration has higher angular acceleration calculation precision and can be applied to different platforms.

  5. Measurement Model and Precision Analysis of Accelerometers for Maglev Vibration Isolation Platforms.

    Science.gov (United States)

    Wu, Qianqian; Yue, Honghao; Liu, Rongqiang; Zhang, Xiaoyou; Ding, Liang; Liang, Tian; Deng, Zongquan

    2015-01-01

    High precision measurement of acceleration levels is required to allow active control for vibration isolation platforms. It is necessary to propose an accelerometer configuration measurement model that yields such a high measuring precision. In this paper, an accelerometer configuration to improve measurement accuracy is proposed. The corresponding calculation formulas of the angular acceleration were derived through theoretical analysis. A method is presented to minimize angular acceleration noise based on analysis of the root mean square noise of the angular acceleration. Moreover, the influence of installation position errors and accelerometer orientation errors on the calculation precision of the angular acceleration is studied. Comparisons of the output differences between the proposed configuration and the previous planar triangle configuration under the same installation errors are conducted by simulation. The simulation results show that installation errors have a relatively small impact on the calculation accuracy of the proposed configuration. To further verify the high calculation precision of the proposed configuration, experiments are carried out for both the proposed configuration and the planar triangle configuration. On the basis of the results of simulations and experiments, it can be concluded that the proposed configuration has higher angular acceleration calculation precision and can be applied to different platforms. PMID:26287203

  6. Study on Impeller Fracture Model Based on Vibration Characteristics and Fractal Theory

    Directory of Open Access Journals (Sweden)

    Xiaolong Zhang

    2015-01-01

    Full Text Available During the operation of centrifugal compressor, failure easily occurs in the presence of complicated external forces. The failure process characterizes with strong nonlinearity, and hence it is difficult to be described by conventional methods. In this paper, firstly, the cracks in different positions are described using crack fractal theory. The basic failure modes of the impeller are summarized. Secondly, a three-dimensional finite element model of the impeller is constructed. Then the von Mises stress under the centrifugal force is calculated, and the corresponding impeller failure process is simulated by “element life and death technology” in ANSYS. Finally, the impeller failure mechanism is analyzed. It can be found that the static stress is not the main cause of the impeller failure, and the dynamic characteristics of the impeller are not perfect because of the pitch vibration modes which appeared in the investigated frequency range. Meanwhile, the natural frequency of the impeller also cannot avoid the frequency of the excitation force.

  7. Forced vibration test of the Hualien large scale soil-structure interaction (SSI) model: part 2

    International Nuclear Information System (INIS)

    A Large-Scale Seismic Test (LSST) Program conducted at Hualien (stiff soil site). Taiwan, has started to obtain earthquake-induced soil-structure interaction (SSI) data as an extension of the same kind of program conducted at Lotung (soft soil site). Two tests have been performed: a Forced Vibration Test without embedment and the same test with embedment. Horizontal excitations were applied in two different directions both on the roof slab and on the basemat of a 1/4-scale containment model. Vertical excitations were applied on the basemat only. The concept of Principal Axes (D1, D2) was introduced for the SSI system, and the basic dynamic characteristics of the soil-structure system were obtained for D1 and D2. As an example, peak frequencies for horizontal excitation were 4.1 and 4.6 Hz without embedment, and 6.1 and 6.3 Hz with embedment for D1 and D2 based on results transformed to principal axes. Finally, a soil impedance function was obtained by a newly defined error minimizing method. This function also simulates the classic embedment effect. (author). 5 refs., 9 figs., 1 tab

  8. Study on forced vibration tests for large scale SSI model. Test results and their analysis

    International Nuclear Information System (INIS)

    A Large-Scale Seismic Test (LSST) Program has been conducted at Hualien, Taiwan, to obtain earthquake-induced soil-structure interaction (SSI) data in a stiff soil site environment. Forced vibration tests of the Hualien 1/4-scale containment SSI test model were conducted in October, 1992 before backfill (without embedment) and in February, 1993 after backfill (with embedment) for the purpose of defining basic dynamic characteristics of the soil-structure system. As results, peak frequencies were obtained as 4.1 and 4.3 Hz with twin peaks for both NS and EW horizontal excitation before backfill and as 6.1 and 6.3 Hz for NS and EW excitation respectively after backfill and orthogonal components were rather large. This results suggested existence of principal axes which were different from excitation directions. They were estimated 34 degree before backfill and 30 degree after backfill counterclockwise from NS direction, respectively. After transformed to the principal axes, each resonance curve had single peak and the orthogonal component became negligible. Based on this transformed results, the basic dynamic characteristics of the soil-structure system were obtained, namely, natural frequencies and damping factors. Soil impedances were also obtained by the method minimizing error function defined newly. (author)

  9. Vibrational analysis of phenol/(methanol)1

    Science.gov (United States)

    Gerhards, M.; Beckmann, K.; Kleinermanns, K.

    1994-09-01

    Ab initio calculations at the Hartree-Fock 4-31G* level were performed in order to calculate binding energies and vibrational frequencies of the phenol/CH3OH-cluster and two deuterated isotopomers ( d-phenol/CH3OD, d-phenol-CD3OD). The minimum energy structure is trans-linear, as for the phenol/H2O-cluster. The calculated frequencies of phenol and methanol as well as the intramolecular frequencies of the phenol/CH3OH-cluster are assigned to experimental values. The calculated intermolecular frequencies of the phenol/CH3OH-cluster are compared with the available experimental frequencies of the S 0 (and S 1)-state of the phenol/methanol-cluster and the similar p-cresol/methanol-cluster. Assignments are suggested for the σ and p 1-mode. In order to clarify the assignment of the low frequency vibration at 22 cm-1 anharmonic corrections for the β2-mode of the phenol/CH3OH-cluster are calculated. These calculations show only slight anharmonicity compared with the β2-mode calculations carried out for the phenol/H2O-cluster.

  10. Vibration Propagation in Spider Webs

    Science.gov (United States)

    Hatton, Ross; Otto, Andrew; Elias, Damian

    Due to their poor eyesight, spiders rely on web vibrations for situational awareness. Web-borne vibrations are used to determine the location of prey, predators, and potential mates. The influence of web geometry and composition on web vibrations is important for understanding spider's behavior and ecology. Past studies on web vibrations have experimentally measured the frequency response of web geometries by removing threads from existing webs. The full influence of web structure and tension distribution on vibration transmission; however, has not been addressed in prior work. We have constructed physical artificial webs and computer models to better understand the effect of web structure on vibration transmission. These models provide insight into the propagation of vibrations through the webs, the frequency response of the bare web, and the influence of the spider's mass and stiffness on the vibration transmission patterns. Funded by NSF-1504428.

  11. Structure and vibrational spectra of benzidine

    Science.gov (United States)

    Akalin, Elif; Akyüz, Sevim

    2003-06-01

    The geometry and vibrational spectrum of benzidine have been computed by ab initio calculations using the DFT/B3LYP method with 6-31+G(d,p) basis set. In the most stable geometry, the dihedral angle between the two phenyl rings was found to be around 38°. Calculated wavenumbers were scaled by a single factor 0.965 to approximately correct for vibrational anharmonicity as well as for overestimation of the force constants. Normal coordinate analysis of benzidine and some of its deuterated derivatives have also been performed in valance force field approximation in order to demonstrate the transferability of the force field of aniline. Good agreements between the two different calculation results (ab initio and force field refinement methods) and between the calculated and observed values are found.

  12. Fermi-Decay Law of Bose—Einstein Condensate Trapped in an Anharmonic Potential

    International Nuclear Information System (INIS)

    The Fermi-decay law of Bose—Einstein condensate, which is trapped by a cigar-shaped anharmonic trap and subjected to a weak random perturbation, is investigated by numerically calculating quantum fidelity (Loschmidt echo), to reveal the coherence loss of the condensate. We find that there are three indispensable factors, anharmonic trap, weak random perturbation and nonlinear interaction, in charging of the Fermi-decay law. The anharmonic trap creates anharmonic oscillations, and the weak random perturbation causes coherence loss by disturbing their coherent oscillations, while the nonlinear interaction enhances the loss to the Fermi-decay law. Based on the Fermi-decay law, some suggestions are presented to prolong the coherent time during coherently manipulating condensates. (general)

  13. First-principles study of anharmonic phonon effects in tetrahedral semiconductors via an external electric field

    Science.gov (United States)

    Dabiri, Zohreh; Kazempour, Ali; Sadeghzadeh, Mohammad Ali

    2016-11-01

    The strength of phonon anharmonicity is investigated in the framework of the Density Functional Perturbation Theory via an applied constant electric field. In contrast to routine approaches, we have employed the electric field as an effective probe to quest after the quasi-harmonic and anharmonic effects. Two typical tetrahedral semiconductors (diamond and silicon) have been selected to test the efficiency of this approach. In this scheme the applied field is responsible for establishing the perturbation and also inducing the anharmonicity in systems. The induced polarization is a result of changing the electronic density while ions are located at their ground state coordinates or at a specified strain. Employing this method, physical quantities of the semiconductors are calculated in presence of the electron-phonon interaction directly and, phonon-phonon interaction, indirectly. The present approach, which is in good agreement with previous theoretical and experimental studies, can be introduced as a benchmark to simply investigate the anharmonicity and pertinent consequences in materials.

  14. Natural vibration response based damage detection for an operating wind turbine via Random Coefficient Linear Parameter Varying AR modelling

    Science.gov (United States)

    Avendaño-Valencia, L. D.; Fassois, S. D.

    2015-07-01

    The problem of damage detection in an operating wind turbine under normal operating conditions is addressed. This is characterized by difficulties associated with the lack of measurable excitation(s), the vibration response non-stationary nature, and its dependence on various types of uncertainties. To overcome these difficulties a stochastic approach based on Random Coefficient (RC) Linear Parameter Varying (LPV) AutoRegressive (AR) models is postulated. These models may effectively represent the non-stationary random vibration response under healthy conditions and subsequently used for damage detection through hypothesis testing. The performance of the method for damage and fault detection in an operating wind turbine is subsequently assessed via Monte Carlo simulations using the FAST simulation package.

  15. Very low-energy nucleon + 16O coupled-channel scattering: results with a phenomenological vibrational model

    CERN Document Server

    Svenne, J P; Amos, K; Fraser, P R; Karataglidis, S; Pisent, G; van der Knijff, D

    2016-01-01

    We employ a collective vibration coupled-channel model to describe the nucleon-16O cluster systems, obtaining low-excitation spectra for 17O and 17F. Bound and resonance states of the compound systems have been deduced, showing good agreement with experimental spectra. Low energy scattering cross sections of neutrons and protons from 16O also have been calculated and the results compare well with available experimental data.

  16. Peculiarities of anharmonic effects in the lattice thermodynamics of fcc metals

    OpenAIRE

    Katsnelson, M. I.; Maksyutov, A. F.; Trefilov, A. V.

    2002-01-01

    Explicit expressions for anharmonic contributions to the thermodynamic properties with allowance for higher-order phonon-phonon interactions for closed-packed crystals are given, and the calculations for some fcc metals near the melting (Ir, Rh) and martensite phase transition (Ca, Sr) points are carried out. A detailed comparison of anharmonic and electron contributions to the heat capacity of these metals is carried out. The computational results for high-temperature heat capacity agree wel...

  17. A comprehensive flow-induced vibration model to predict crack growth and leakage potential in steam generator tubes

    Energy Technology Data Exchange (ETDEWEB)

    El Bouzidi, Salim [School of Engineering, University of Guelph, Guelph, Ontario N1G 2W1 (Canada); Hassan, Marwan, E-mail: mahassan@uoguelph.ca [School of Engineering, University of Guelph, Guelph, Ontario N1G 2W1 (Canada); Riznic, Jovica [Operational Engineering Assessment Division, Canadian Nuclear Safety Commission, Ottawa, Ontario K1P 5S9 (Canada)

    2015-10-15

    Highlights: • Comprehensive flow induced vibrations time domain model was developed. • Simulations of fluidelastic instability and turbulence were conducted. • Nonlinear effect due to the clearances at the supports was studied. • Prediction of stresses due to fluid excitation was obtained. • Deterministic and stochastic analyses for crack and leakage rate were conducted. - Abstract: Flow-induced vibrations (FIVs) are a major threat to the operation of nuclear steam generators. Turbulence and fluidelastic instability are the two main excitation mechanisms leading to tube vibrations. The consequences to the operation of steam generators are premature wear of the tubes, as well as development of cracks that may leak hazardous fluids. This paper investigates the effect of tube support clearance on the integrity of tube bundles within steam generators. Special emphasis will be placed on crack propagation and leakage rates. A crack growth model is used to simulate the growth of surface flaws and through-wall cracks of various initial sizes due to a wide range of support clearances. Leakage rates are predicted using a two-phase flow leakage model. Nonlinear finite element analysis is used to simulate a full U-bend subjected to fluidelastic and turbulence forces. Monte Carlo simulations are then used to conduct a probabilistic assessment of steam generator life due to crack development.

  18. Structures, energetics and vibrational spectra of (H2O)32 clusters: a journey from model potentials to correlated theory

    Science.gov (United States)

    Sahu, Nityananda; Khire, Subodh S.; Gadre, Shridhar R.

    2015-10-01

    Empirical model potentials are found to be very useful for generating most competitive minima of large water clusters, whereas correlated (e.g. second order-Møller-Plesset perturbation (MP2) theory or higher) calculations are necessary for predicting their accurate energetics and vibrational features. The present study reports the structures and energetics of (H2O)32 clusters at MP2 level using aug-cc-pvDZ basis set, starting with low-lying structures generated from model potentials. Such high-end and accurate calculations are made feasible by the cost-effective fragment-based molecular tailoring approach (MTA) in conjunction with the grafting procedure. The latter is found to yield electronic energies with a sub-millihartree accuracy with reference to their full calculation counterparts. The vibrational spectra of nine low-lying (H2O)32 isomers are obtained from the corresponding MTA-based Hessian matrix. All these low-lying isomers show almost similar spectral features, which are in fair agreement with the experiment. The experimental spectrum of (H2O)32 is thus better understood from the vibrational features of this set of very closely spaced isomers. The present case study of (H2O)32 clearly demonstrates the efficacy in obtaining accurate structures, energetics and spectra at correlated level of theory by combining model potential-based structures with fragmentation methods.

  19. Time-frequency representation based on time-varying autoregressive model with applications to non-stationary rotor vibration analysis

    Indian Academy of Sciences (India)

    Long Zhang; Guoliang Xiong; Hesheng Liu; Huijun Zou; Weizhong Guo

    2010-04-01

    A parametric time-frequency representation is presented based on timevarying autoregressive model (TVAR), followed by applications to non-stationary vibration signal processing. The identification of time-varying model coefficients and the determination of model order, are addressed by means of neural networks and genetic algorithms, respectively. Firstly, a simulated signal which mimic the rotor vibration during run-up stages was processed for a comparative study on TVAR and other non-parametric time-frequency representations such as Short Time Fourier Transform, Continuous Wavelet Transform, Empirical Mode Decomposition, Wigner–Ville Distribution and Choi–Williams Distribution, in terms of their resolutions, accuracy, cross term suppression as well as noise resistance. Secondly, TVAR was applied to analyse non-stationary vibration signals collected from a rotor test rig during run-up stages, with an aim to extract fault symptoms under non-stationary operating conditions. Simulation and experimental results demonstrate that TVAR is an effective solution to non-stationary signal analysis and has strong capability in signal time-frequency feature extraction.

  20. Crack modelling and detection in Timoshenko FGM beam under transverse vibration using frequency contour and response surface model with GA

    Science.gov (United States)

    Banerjee, Amit; Panigrahi, Brajesh; Pohit, G.

    2016-04-01

    In the present work, dynamic response of cracked Timoshenko beam with functionally graded material properties are obtained by a numerical technique using Ritz approximation. In order to verify the applicability and performance of the formulation, comparisons of the present numerical method with three-dimensional FEM models are made. Crack is assumed to be transverse and open throughout the vibration cycle. Two different crack detection techniques have been proposed. Results obtained by the numerical technique are used in both of the crack detection techniques. In the first technique, the frequency contours with respect to crack location and size are plotted and the intersection of contours of different modes helps in the prediction of crack location and size. In the second technique, crack is modelled using response surface methodology (RSM). The sum of the squared errors between the numerical and RSM regression model natural frequencies is used as the objective function. This objective function is minimised using genetic algorithm optimisation technique. Both the crack detection techniques and the numerical analysis have shown good agreement with each other.

  1. Nuclear structure of 150Sm in the DPPQ model and IBM

    International Nuclear Information System (INIS)

    The decay pattern of the low lying levels in the shape transitional nucleus 150Sm is analyzed in terms of the quasi-vibrational and quasi-rotational collective model. The Dynamic Pairing plus quadrupole Model in the microscopic theory of the collective model is employed to predict extensive structure characteristics. The potential energy surface (PES), the spectroscopic factors and the E2, E0 transition rates from the DPPQ model are illustrated. Comparison is made with the predictions in the Interacting Boson Model (IBM-1). A correspondence is demonstrated of the effect of the control parameter in the two models on the calculated nuclear structure. The study of the wave functions of the two spin I = 2 excited states in IBM is carried out. The alternative view of an anharmonic vibrator and a soft rotor is discussed in terms of the E2 transition rates and other structural characteristics. (author)

  2. Theoretical Study of Vibrationally Averaged Dipole Moments for the Ground and Excited C═O Stretching States of trans-Formic Acid.

    Science.gov (United States)

    Paulson, Leif O; Kaminský, Jakub; Anderson, David T; Bouř, Petr; Kubelka, Jan

    2010-03-01

    Recent experimental studies of trans-formic acid (FA) in solid para-hydrogen (pH2) highlighted the importance of vibrationally averaged dipole moments for the interpretation of the high-resolution infrared (IR) spectra, in particular for the C═O stretch (ν3) mode. In this report, dipole moments for the ν3 ground (v = 0) and excited (v = 1, 2, 3, and 4) anharmonic vibrational states in trans-FA are investigated using two different approaches: a single mode approximation, where the vibrational states are obtained from the solution of the one-dimensional Schrödinger equation for the harmonic normal coordinate, and a limited vibrational configuration interaction (VCI) approximation. Density functional theory (B3LYP, BPW91) and correlated ab initio (MP2 and CCSD(T)) electronic methods were employed with a number of double- and triple-ζ and correlation consistent basis sets. Both single mode and VCI approaches show comparable agreement with experimental data, which is more dependent on the level of theory used. In particular, the BPW91/cc-pVDZ level appears to perform remarkably well. Effects of solvation of FA in solid state Ar and pH2 matrices were simulated at the BPW91/cc-pVDZ level using a conductor-like polarized continuum model (CPCM). The Ar and pH2 solid-state matrices cause quite a substantial increase in the FA dipole moments. Compared to gas-phase calculations, the CPCM model for pH2 better reproduces the experimental FA spectral shifts caused by interaction with traces of ortho-hydrogen (oH2) species in solid pH2. The validity of the single mode approach is tested against the multidimensional VCI results, suggesting that the isolated (noninteracting) mode approximation is valid up to the third vibrationally excited state (v = 3). Finally, the contribution of the ground anharmonic vibrational states of the remaining modes to the resulting ν3 single mode dipole moments is examined and discussed.

  3. Anharmonic and Quantum Fluctuations in Molecular Crystals: A First-Principles Study of the Stability of Paracetamol

    Science.gov (United States)

    Rossi, Mariana; Gasparotto, Piero; Ceriotti, Michele

    2016-09-01

    Molecular crystals often exist in multiple competing polymorphs, showing significantly different physicochemical properties. Computational crystal structure prediction is key to interpret and guide the search for the most stable or useful form, a real challenge due to the combinatorial search space, and the complex interplay of subtle effects that work together to determine the relative stability of different structures. Here we take a comprehensive approach based on different flavors of thermodynamic integration in order to estimate all contributions to the free energies of these systems with density-functional theory, including the oft-neglected anharmonic contributions and nuclear quantum effects. We take the two main stable forms of paracetamol as a paradigmatic example. We find that anharmonic contributions, different descriptions of van der Waals interactions, and nuclear quantum effects all matter to quantitatively determine the stability of different phases. Our analysis highlights the many challenges inherent in the development of a quantitative and predictive framework to model molecular crystals. However, it also indicates which of the components of the free energy can benefit from a cancellation of errors that can redeem the predictive power of approximate models, and suggests simple steps that could be taken to improve the reliability of ab initio crystal structure prediction.

  4. Application of the collective model to determine the rotation bands and vibrational bands of 152Sm and 152Gd nucleus

    International Nuclear Information System (INIS)

    The research of nuclear reactions is necessary to identify the specific characteristics of nucleus and it is the most effective experimental method up to now. However, in order to explain the properties of nuclear structures, in addition to the study of the nuclear reactions, nuclear structure models to explain experimental dat and its theory must be used. There are many nuclear structure models to solve those properties of nucleus. This paper presents a collective model application to identify some of rotational bands and vibrational bands of 152 Sm and 152Gd nucleus which result from beta decay of 152Eu source the. (author)

  5. Adaptive Model-Based Mine Detection/Localization using Noisy Laser Doppler Vibration Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, E J; Xiang, N; Candy, J V

    2009-04-06

    The acoustic detection of buried mines is hampered by the fact that at the frequencies required for obtaining useful penetration, the energy is quickly absorbed by the ground. A recent approach which avoids this problem, is to excite the ground with a high-level low frequency sound, which excites low frequency resonances in the mine. These resonances cause a low-level vibration on the surface which can be detected by a Laser Doppler Vibrometer. This paper presents a method of quickly and efficiently detecting these vibrations by sensing a change in the statistics of the signal when the mine is present. Results based on real data are shown.

  6. Flow-induced vibration test of an advanced water reactor model. Part 2: Turbulence-induced structural response

    International Nuclear Information System (INIS)

    A 1/9-scale model flow-induced vibration test of a proposed advanced water reactor (AWR) was performed. The main objectives of the test program were: (1) to derive an empirical equation for the turbulence-induced forcing function that can be applied to the full-sized prototype; (2) to study the effect of viscosity on the turbulence forcing function generation and dissipation and to verify the superposition assumption widely used in dynamic analysis of weakly coupled fluid-shell systems; (3) to measure the shell response due to turbulence-induced excitation so that the data can be used to verify methods and computer programs used in the flow-induced vibration design analysis of the prototype. This paper describes Objective (3) of the test program

  7. Accurate calculation of vibrational frequencies using explicitly correlated coupled-cluster theory.

    Science.gov (United States)

    Rauhut, Guntram; Knizia, Gerald; Werner, Hans-Joachim

    2009-02-01

    The recently proposed explicitly correlated CCSD(T)-F12x (x = a,b) approximations [T. B. Adler, G. Knizia, and H.-J. Werner, J. Chem. Phys. 127, 221106 (2007)] are applied to compute equilibrium structures and harmonic as well as anharmonic vibrational frequencies for H(2)O, HCN, CO(2), CH(2)O, H(2)O(2), C(2)H(2), CH(2)NH, C(2)H(2)O, and the trans-isomer of 1,2-C(2)H(2)F(2). Using aug-cc-pVTZ basis sets, the CCSD(T)-F12a equilibrium geometries and harmonic vibrational frequencies are in very close agreement with CCSD(T)/aug-cc-pV5Z values. The anharmonic frequencies are evaluated using vibrational self-consistent field and vibrational configuration interaction methods based on automatically generated potential energy surfaces. The mean absolute deviation of the CCSD(T)-F12a/aug-cc-pVTZ anharmonic frequencies from experimental values amounts to only 4.0 cm(-1). PMID:19206956

  8. Benchmark ab initio thermochemistry of the isomers of diimide, $N_{2}H_2$, using accurate computed structures and anharmonic force fields

    CERN Document Server

    Martin, J M L; Martin, Jan M.L.; Taylor, Peter R.

    1999-01-01

    A benchmark ab initio study on the thermochemistry of the trans-HNNH, cis-HNNH, and H$_2$NN isomers of diazene has been carried out using the CCSD(T) coupled cluster method, basis sets as large as $[7s6p5d4f3g2h/5s4p3d2f1g]$, and extrapolations towards the 1-particle basis set limit. The effects on inner-shell correlation and of anharmonicity in the zero-point energy were taken into account: accurate geometries and anharmonic force fields were thus obtained as by-products. Our best computed $\\Delta H^\\circ_{f,0}$ for trans-HNNH, 49.2 \\pm 0.3 kcal/mol, is in very good agreement with a recent experimental lower limit of 48.8 \\pm 0.5 kcal/mol. CCSD(T) basis set limit values for the isomerization energies at 0 K are 5.2 \\pm 0.2 kcal/mol (cis-trans) and 24.1 \\pm 0.2 kcal/mol (iso-trans). Our best computed geometry for trans-HNNH, $r_e$(NN)=1.2468 Å, $r_e$(NH)=1.0283 Å, and rotational constants of trans-HNNH to within better than 0.1 %. The rotation-vibration spectra of both cis-HNNH and H$_2$NN are dominated by ...

  9. Economic benefits of CAD-models for compressor manifold vibration analyses according to API 618

    NARCIS (Netherlands)

    Eijk, A.; Samland, G.; Retz, N.; Sauter, D.

    2003-01-01

    Reciprocating compressors, including pulsation dampers and the connected pipe system, are often the heart of an installation and should therefore operate reliable. Compressor manifold vibrations can contribute to fatigue failure of the system which can lead to unsafe situations, loss of capacity and

  10. Vibration analysis of a trimorph plate as a precursor model for smart automotive bodywork

    Science.gov (United States)

    Big-Alabo, A.; Cartmell, M. P.

    2012-08-01

    This study investigates the vibration characteristics of a proposed candidate structure for smarter car bodies. The material is conceived as a three-layer laminated structure in the form of a trimorph plate. The vibration response of the plate is investigated for large deflections by considering the effects of geometric nonlinearity. First, the governing equation for the mid-point deflection of the plate is developed based on classical laminate plate theory (CLPT). The governing equation is solved, and a simulation is run for different possible layer-stacking sequences. Comparisons are made between the nonlinear vibration response of this trimorph plate both with and without the effects of the von Kármán geometric nonlinearity. The results show that for the same material properties the different layer-stacking sequences produce different vibration responses, and from there it is concluded that layer-stacking sequencing is a basis for the definition of a suitable material configuration for high performance automotive applications.

  11. Numerical Modelling of Rain-Wind-Induced Vibration: Erasmus Bridge, Rotterdam

    NARCIS (Netherlands)

    Geurts, C.; Vrouwenvelder, T.; Staalduinen, P.C. van; Reusink, J.

    1998-01-01

    Shortly after completion, the main span cables of the Erasmus Bridge in Rotterdam showed aerodynamic instabilities with large amplitudes. These instabilities were recognised as rain-wind-induced vibrations. Temporary measures were installed on the bridge, and a year later, tuned hydraulic dampers we

  12. Reconsidering harmonic and anharmonic coherent states: Partial differential equations approach

    Energy Technology Data Exchange (ETDEWEB)

    Toutounji, Mohamad, E-mail: Mtoutounji@uaeu.ac.ae

    2015-02-15

    This article presents a new approach to dealing with time dependent quantities such as autocorrelation function of harmonic and anharmonic systems using coherent states and partial differential equations. The approach that is normally used to evaluate dynamical quantities involves formidable operator algebra. That operator algebra becomes insurmountable when employing Morse oscillator coherent states. This problem becomes even more complicated in case of Morse oscillator as it tends to exhibit divergent dynamics. This approach employs linear partial differential equations, some of which may be solved exactly and analytically, thereby avoiding the cumbersome noncommutative algebra required to manipulate coherent states of Morse oscillator. Additionally, the arising integrals while using the herein presented method feature stability and high numerical efficiency. The correctness, applicability, and utility of the above approach are tested by reproducing the partition and optical autocorrelation function of the harmonic oscillator. A closed-form expression for the equilibrium canonical partition function of the Morse oscillator is derived using its coherent states and partial differential equations. Also, a nonequilibrium autocorrelation function expression for weak electron–phonon coupling in condensed systems is derived for displaced Morse oscillator in electronic state. Finally, the utility of the method is demonstrated through further simplifying the Morse oscillator partition function or autocorrelation function expressions reported by other researchers in unevaluated form of second-order derivative exponential. Comparison with exact dynamics shows identical results.

  13. Reconsidering harmonic and anharmonic coherent states: Partial differential equations approach

    Science.gov (United States)

    Toutounji, Mohamad

    2015-02-01

    This article presents a new approach to dealing with time dependent quantities such as autocorrelation function of harmonic and anharmonic systems using coherent states and partial differential equations. The approach that is normally used to evaluate dynamical quantities involves formidable operator algebra. That operator algebra becomes insurmountable when employing Morse oscillator coherent states. This problem becomes even more complicated in case of Morse oscillator as it tends to exhibit divergent dynamics. This approach employs linear partial differential equations, some of which may be solved exactly and analytically, thereby avoiding the cumbersome noncommutative algebra required to manipulate coherent states of Morse oscillator. Additionally, the arising integrals while using the herein presented method feature stability and high numerical efficiency. The correctness, applicability, and utility of the above approach are tested by reproducing the partition and optical autocorrelation function of the harmonic oscillator. A closed-form expression for the equilibrium canonical partition function of the Morse oscillator is derived using its coherent states and partial differential equations. Also, a nonequilibrium autocorrelation function expression for weak electron-phonon coupling in condensed systems is derived for displaced Morse oscillator in electronic state. Finally, the utility of the method is demonstrated through further simplifying the Morse oscillator partition function or autocorrelation function expressions reported by other researchers in unevaluated form of second-order derivative exponential. Comparison with exact dynamics shows identical results.

  14. Anomalous transport of subdiffusing cargos by single kinesin motors: the role of mechanochemical coupling and anharmonicity of tether

    CERN Document Server

    Goychuk, Igor

    2014-01-01

    Here we generalize our previous model of molecular motors trafficking subdiffusing cargos in viscoelastic cytosol by (i) including mechanochemical coupling between cyclic conformational fluctuations of the motor protein driven by the reaction of ATP hydrolysis and its translational motion within the simplest two-state model of hand-over-hand motion of kinesin, and also (ii) by taking into account the anharmonicity of the tether between the motor and cargo (its maximally possible extension length). It is shown that the major earlier results such as occurrence of normal versus anomalous transport depending on the amplitude of binding potential, cargo size and the motor turnover frequency not only survive in this more realistic model, but the results also look very similar for the correspondingly adjusted parameters. However, this more realistic model displays a substantially larger thermodynamic efficiency due to a bidirectional mechanochemical coupling. For realistic parameters, the maximal thermodynamic effic...

  15. Embedding human annoyance rate models in wireless smart sensors for assessing the influence of subway train-induced ambient vibration

    Science.gov (United States)

    Sun, Ke; Zhang, Wei; Ding, Huaping; Kim, Robin E.; Spencer, Billie F., Jr.

    2016-10-01

    The operation of subway trains induces ambient vibrations, which may cause annoyance and other adverse effects on humans, eventually leading to physical, physiological, and psychological problems. In this paper, the human annoyance rate (HAR) models, used to assess the human comfort under the subway train-induced ambient vibrations, were deduced and the calibration curves for 5 typical use circumstances were addressed. An autonomous measurement system, based on the Imote2, wireless smart sensor (WSS) platform, plus the SHM-H, high-sensitivity accelerometer board, was developed for the HAR assessment. The calibration curves were digitized and embedded in the computational core of the WSS unit. Experimental validation was conducted, using the developed system on a large underground reinforced concrete frame structure adjoining the subway station. The ambient acceleration of both basement floors was measured; the embedded computation was implemented and the HAR assessment results were wirelessly transmitted to the central server, all by the WSS unit. The HAR distributions of the testing areas were identified, and the extent to which both basements will be influenced by the close-up subway-train’s operation, in term of the 5 typical use circumstances, were quantitatively assessed. The potential of the WSS-based autonomous system for the fast environment impact assessment of the subway train-induced ambient vibration was well demonstrated.

  16. Cluster Indexes and Vibrational Components in CF 4

    Science.gov (United States)

    Larsen, S. G.; Brodersen, S.

    1993-01-01

    The rotation-vibrational energies of the 10 lowest vibrational states for 12CF4, 13CF4, and 14CF4 have been calculated for J ≤ 70 from an anharmonic potential function fitted to all experimental data. It is shown that the rotation-vibrational states belonging to a certain vibrational state may be divided into vibrational components, equal in number to the degeneracy of the vibrational state. Each vibrational component is characterized by a symmetry D(J+Δ)g or D(J+Δ)u, in the point group O3, where Δ is a small integer. The correlation from O3 to Td then indicates the symmetries in Td of all the rotation-vibrational states present in the vibrational component for a given J. Each cluster of rotation-vibrational states is characterized by a cluster index τ, defined by means of the k-distribution of the computed wavefunctions. A table is presented allowing a prediction of the symmetry of any cluster from the τ value. All clusters within the manifold of rotation-vibrational states for a given vibrational component and a certain J value may be ordered into at the most three series of clusters, one consisting of 6-fold clusters, one of 8-fold clusters, and one of 12-fold clusters, the cluster index τ increasing from 0 upward within each series. In exceptional cases, even 24-fold clusters appear. Examples are given of the use of the cluster index to order series in which the energy bends as a function of the cluster index, and to split overlapping vibrational components.

  17. Selective excitation of branched vibrational ladder in uranium hexafluoride laser isotope separation

    International Nuclear Information System (INIS)

    Theoretical investigation was made on the dynamics of initial excitation process in molecular laser isotope separation for uranium hexafluoride (UF6) based on the generalized N-level density-matrix equation derived by Goodman et al. Branched vibrational model due to anharmonic-splitting components for the ν3 mode of UF6 molecule were formalized and phase interferences of density-matrix elements were considered to analyze the selective excitation. Because of a power-broadening effect, no more than 0.05J/cm2 fluence of a laser pulse completely masks high enrichment peaks in broadband (Δν = 2GHz) pumping case. Even when matching the laser frequency with ν3 band (n = 0 → 1) of 238UF6, the enrichment factor (α ≡ Rproduct/Rfeed, R ≡ [235UF6]/[238UF6]; R is the abundance ratio and [ ] means the mole fraction.) does not decrease. A narrow spectral linewidth (Δν = 400MHz) is shown to be essential to achieve a high concentration ratio in the system with a branched N-level ladder as expected from a general two-level system. The exciting frequency, which does not necessarily accord with the ν3 band of 235UF6, gives the maximum enrichment peak. Both the detuning of the optimum frequency and the sharp enrichment peak suggest a direct excitation due to multiphoton resonance. Spectral stability of the laser pulse is also required to excite only the desired isotope for the system with complicated anharmonic-splittings. (author)

  18. A new analytical model for vibration of a cylindrical shell and cardboard liner with focus on interfacial distributed damping

    Science.gov (United States)

    Plattenburg, Joseph; Dreyer, Jason T.; Singh, Rajendra

    2016-06-01

    This paper proposes a new analytical model for a thin cylindrical shell that utilizes a homogeneous cardboard liner to increase modal damping. Such cardboard liners are frequently used as noise and vibration control devices for cylindrical shell-like structures in automotive drive shafts. However, most prior studies on such lined structures have only investigated the associated damping mechanisms in an empirical manner. Only finite element models and experimental methods have been previously used for characterization, whereas no analytical studies have addressed sliding friction interaction at the shell-liner interface. The proposed theory, as an extension of a prior experimental study, uses the Rayleigh-Ritz method and incorporates material structural damping along with frequency-dependent viscous and Coulomb interfacial damping formulations for the shell-liner interaction. Experimental validation of the proposed model, using a thin cylindrical shell with three different cardboard liner thicknesses, is provided to validate the new model, and to characterize the damping parameters. Finally, the model is used to investigate the effect of the liner and the damping parameters on the modal attenuation of the shell vibration, in particular for the higher-order coupled shell modes.

  19. MODELING OF EQUIVALENT STIFFNESS OF A MAGNETIC SPRING OF VIBRATION EXCITER BASED ON COAXIAL-LINEAR MOTOR

    Directory of Open Access Journals (Sweden)

    G.M. Golenkov

    2015-12-01

    Full Text Available Purpose. The research of the influence of value and direction of current on the equivalent spring magnetic force based on coaxial-linear motor (CLM – MS. Methodology. We carried out investigation of the equivalent harshness of magnetic spring with determination of electromechanical propulsion performance characteristics by the methods of computer modeling and experimental research of physical model of CLM – MS. The modeling of magnetic spring of CLM – MS is carried out by the finite-element method. The challenge is met as an axisymmetric challenge in cylindrical co-ordinates in magnetostatic approach. The experimental investigattion of the propulsion performance characteristics of magnetic spring is carried out on the test bench. Results. After the computer modeling and the experimental investigation of the electromechanical propulsion performance characteristics of magnetic spring the expressions of equivalent stiffness coefficient depending on the current in winding are obtained. The results of computer modeling are confirmed experimentally. Originality. The determination of equivalent stiffness coefficient of magnetic spring of vibration exciter based on coaxial-linear motor. Practical value. The obtained determination of equivalent stiffness coefficient of magnetic spring may be used in process of designing of vibration machines with devices for change of natural oscillation frequency.

  20. Nightmare from which you will never awake: Electronic to vibrational spectra!

    Energy Technology Data Exchange (ETDEWEB)

    De Silva, Nuwon [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    The theoretical background of ab initio methods and density functional theory is provided. The anharmonicity associated with weakly bound metal cation dihydrogen complexes is examined using the vibrational self-consistent field (VSCF) method and the interaction between a hydrogen molecule and a metal cation is characterized. A study of molecular hydrogen clustering around the lithium cation and their accompanied vibrational anharmonicity employing VSCF is illustrated. A qualitative interpretation is provided of solvent-induced shifts of amides and simulated electronic absorption spectra using the combined time-dependent density functional theory/effective fragment potential method (TDDFT/EFP). An excited-state solvent assisted quadruple hydrogen atom transfer reaction of a coumarin derivative is elucidated using micro solvated quantum mechanical (QM) water and macro solvated EFP water. A dispersion correction to the QM-EFP1 interaction energy is presented.

  1. Vibration enhanced quantum transport

    CERN Document Server

    Semião, F L; Milburn, G J

    2009-01-01

    In this paper, we study the role of a collective vibrational motion in the phenomenon of electronic energy transfer (EET) between chromophores with different electronic transition frequencies. Previous experimental work on EET in conjugated polymer samples has suggested that the common structural framework of the macromolecule introduce correlations in the energy gap fluctuations which cause coherent EET. We present a simple model describing the coupling between the chromophores and a common vibrational mode, and find that vibration can indeed lead to an enhancement in the transport of excitations across the quantum network. Furthermore, in our model phase information is partially retained in the transfer process from a donor to an acceptor, as experimentally demonstrated in the conjugated polymer system. Consequently, this mechanism of vibration enhanced quantum transport might find applications in quantum information transfer of qubit states or entanglement.

  2. Ship Vibrations

    DEFF Research Database (Denmark)

    Sørensen, Herman

    1997-01-01

    Methods for calculating natural frequencies for ship hulls and for plates and panels.Evaluation of the risk for inconvenient vibrations on board......Methods for calculating natural frequencies for ship hulls and for plates and panels.Evaluation of the risk for inconvenient vibrations on board...

  3. Effect of vibrating electrode on temperature profiles, fluid flow, and pool shape in ESR system based on a comprehensive coupled model

    Directory of Open Access Journals (Sweden)

    Fang Wang

    2015-07-01

    Full Text Available The vibrating electrode method was proposed in the electro-slag remelting (ESR process in this paper, and the effect of vibrating electrode on the solidification structure of ingot was studied. A transient three-dimensional (3D coupled mathematical model was established to simulate the electromagnetic phenomenon, fluid flow as well as pool shape in the ESR process with the vibrating electrode. The finite element volume method is developed to solve the electromagnetic field using ANSYS mechanical APDL software. Moreover, the electromagnetic force and Joule heating are interpolated as the source term of the momentum and energy equations. The multi-physical fields have been investigated and compared between the traditional electrode and the vibrating electrode in the ESR process. The results show that the drop process of metal droplets with the traditional electrode is scattered randomly. However, the drop process of metal droplets with the vibrating electrode is periodic. The highest temperature of slag layer with the vibrating electrode is higher than that with the traditional electrode, which can increase the melting rate due to the enhanced heat transfer in the vicinity of the electrode tip. The results also show that when the amplitude and frequency of the vibrating electrode increase, the cycle of drop process of metal droplets decreases significantly.

  4. Effect of vibrating electrode on temperature profiles, fluid flow, and pool shape in ESR system based on a comprehensive coupled model

    Institute of Scientific and Technical Information of China (English)

    Fang Wang; Yan-chun Lou; Rui Chen; Zhao-wei Song; Bao-kuan Li

    2015-01-01

    The vibrating electrode method was proposed in the electro-slag remelting (ESR) process in this paper, and the effect of vibrating electrode on the solidiifcation structure of ingot was studied. A transient three-dimensional (3D) coupled mathematical model was established to simulate the electromagnetic phenomenon, fluid flow as well as pool shape in the ESR process with the vibrating electrode. The finite element volume method is developed to solve the electromagnetic field using ANSYS mechanical APDL software. Moreover, the electromagnetic force and Joule heating are interpolated as the source term of the momentum and energy equations. The multi-physical fields have been investigated and compared between the traditional electrode and the vibrating electrode in the ESR process. The results show that the drop process of metal droplets with the traditional electrode is scattered randomly. However, the drop process of metal droplets with the vibrating electrode is periodic. The highest temperature of slag layer with the vibrating electrode is higher than that with the traditional electrode, which can increase the melting rate due to the enhanced heat transfer in the vicinity of the electrode tip. The results also show that when the amplitude and frequency of the vibrating electrode increase, the cycle of drop process of metal droplets decreases signiifcantly.

  5. Continuum elastic sphere vibrations as a model for low lying optical modes in icosahedral quasicrystals

    International Nuclear Information System (INIS)

    The nearly dispersionless, so-called 'optical' vibrational modes observed by inelastic neutron scattering from icosahedral Al-Pd-Mn and Zn-Mg-Y quasicrystals are found to correspond well to modes of a continuum elastic sphere that has the same diameter as the corresponding icosahedral basic units of the quasicrystal. When the sphere is considered as free, most of the experimentally found modes can be accounted for, in both systems. Taking into account the mechanical connection between the clusters and the remainder of the quasicrystal allows a complete assignment of all optical modes in the case of Al-Pd-Mn. This approach provides support to the relevance of clusters in the vibrational properties of quasicrystals

  6. The far-infrared spectrum of azulene and isoquinoline and supporting anharmonic density functional theory calculations to high resolution spectroscopy of polycyclic aromatic hydrocarbons and derivatives

    Science.gov (United States)

    Goubet, Manuel; Pirali, Olivier

    2014-01-01

    In the laboratory, the acquisition and analysis of the rotationally resolved spectra of large molecular systems remain challenging. We report in this paper the rotational analysis of the ν30-GS band of azulene and the ν41-GS band of isoquinoline recorded with synchrotron-based Fourier transform absorption spectroscopy in the far-IR. As a support to rotational analyses, we employed a method based on standard density functional theory calculations performed at the anharmonic level which accurately reproduced the rotational constants of 28 vibrational states of 16 Polycyclic Aromatic Hydrocarbons (PAHs) and aza-derivatives. This method appears as an invaluable support for the spectral assignment of the very congested rotational structures of the infrared bands of PAH species and should be very helpful in the active search of these molecules in space through their pure rotational or rovibrational spectra.

  7. Dynamic Modelling and Vibration Control of a Planar Parallel Manipulator with Structurally Flexible Linkages

    OpenAIRE

    Kang, Bongsoo; Mills, James K.

    2008-01-01

    In this chapter, the equations of motion for the planar parallel manipulator are formulated by applying the Lagrangian equation of the first type. Introducing Lagrangian multipliers simplifies the complexities due to multiple closed loop chains of the parallel mechanism and the structurally flexible linkages. An active damping approach applied to two different piezoelectric materials, which are used as actuators to damp unwanted vibrations of flexible

  8. Using model order reduction for design optimization of structures and vibrations

    OpenAIRE

    Yue, Yao; Meerbergen, Karl

    2010-01-01

    In many engineering problems, the behavior of dynamical systems depends on physical parameters. In design optimization, these parameters are determined so that an objective function is minimized. For applications in vibrations and structures, the objective function depends on the frequency response function over a given frequency range and we optimize it in the parameter space. Due to the large size of the system, numerical optimization is expensive. In this paper, we propose the combination ...

  9. Calculations of lattice vibrational mode lifetimes using Jazz: a Python wrapper for LAMMPS

    Science.gov (United States)

    Gao, Y.; Wang, H.; Daw, M. S.

    2015-06-01

    Jazz is a new python wrapper for LAMMPS [1], implemented to calculate the lifetimes of vibrational normal modes based on forces as calculated for any interatomic potential available in that package. The anharmonic character of the normal modes is analyzed via the Monte Carlo-based moments approximation as is described in Gao and Daw [2]. It is distributed as open-source software and can be downloaded from the website http://jazz.sourceforge.net/.

  10. Two-Dimensional Vibrational Spectroscopy of a Dissipative System with the Optimized Mean-Trajectory Approximation

    OpenAIRE

    Alemi, Mallory; Loring, Roger F

    2014-01-01

    The optimized mean-trajectory (OMT) approximation is a semiclassical method for computing vibrational response functions from action-quantized classical trajectories connected by discrete transitions representing radiation–matter interactions. Here we apply this method to an anharmonic chromophore coupled to a harmonic bath. A forward–backward trajectory implementation of the OMT method is described that addresses the numerical challenges of applying the OMT to large systems with disparate fr...

  11. Flow-induced vibration test of an advanced water reactor model. Part 1: Turbulence-induced forcing function

    International Nuclear Information System (INIS)

    A 1/9 scale model of a proposed advanced water reactor was tested for flow-induced vibration. The main objectives of this test were to (1) derive an empirical equation for the turbulence forcing function which can be applied to the full-sized prototype; (2) study the effect of viscosity on the turbulence; (3) verify the superposition assumption widely used in dynamic analysis of weakly coupled fluid-shell systems; and (4) measure the shell responses to verify methods and computer programs used in the flow-induced vibration analysis of the prototype. This paper describes objectives (1), (2), and (3). Objective (4) will be discussed in a companion paper. The turbulence-induced fluctuating pressure was measured at 49 locations over the surface of a thick-walled, non-responsive scale model of the reactor vessel/core support cylinders. An empirical equation relating the fluctuating pressure, the frequency, and the distance from the inlet nozzle center line was derived to fit the test data. This equation involves only non-dimensional, fluid mechanical parameters that are postulated to represent the full-sized, geometrically similar prototype. While this postulate cannot be verified until similar measurements are taken on the full-sized unit, a similar approach using a 1/6 scale model of a commercial pressurized water reactor was verified in the mid-seventies by field measurements on the full-sized reactor

  12. Automatic Generation of Analytic Equations for Vibrational and Rovibrational Constants from Fourth-Order Vibrational Perturbation Theory

    Science.gov (United States)

    Matthews, Devin A.; Gong, Justin Z.; Stanton, John F.

    2014-06-01

    The derivation of analytic expressions for vibrational and rovibrational constants, for example the anharmonicity constants χij and the vibration-rotation interaction constants α^B_r, from second-order vibrational perturbation theory (VPT2) can be accomplished with pen and paper and some practice. However, the corresponding quantities from fourth-order perturbation theory (VPT4) are considerably more complex, with the only known derivations by hand extensively using many layers of complicated intermediates and for rotational quantities requiring specialization to orthorhombic cases or the form of Watson's reduced Hamiltonian. We present an automatic computer program for generating these expressions with full generality based on the adaptation of an existing numerical program based on the sum-over-states representation of the energy to a computer algebra context. The measures taken to produce well-simplified and factored expressions in an efficient manner are discussed, as well as the framework for automatically checking the correctness of the generated equations.

  13. Anharmonicity of internal atomic oscillation and effective antineutrino mass evaluation from gaseous molecular tritium β-decay

    Science.gov (United States)

    Lokhov, Alexey V.; Titov, Nikita A.

    2016-07-01

    Data analysis of the next-generation effective antineutrino mass measurement experiment KATRIN requires reliable knowledge of systematic corrections. In particular, the width of the daughter molecular ion excitation spectrum rovibrational band should be known with better than 1% precision. Very precise ab initio quantum calculations exist, and we compare them with the well-known tritium molecule parameters within the framework of a phenomenological model. The rovibrational band width with accuracy of a few percent is interpreted as a result of the zero-point atomic oscillation in the harmonic potential. The Morse interatomic potential is used to investigate the impact of anharmonic atomic oscillations. The calculated corrections cannot account for the difference between the ab initio quantum calculations and the phenomenological model.

  14. Interpreting nonlinear vibrational spectroscopy with the classical mechanical analogs of double-sided Feynman diagrams.

    Science.gov (United States)

    Noid, W G; Loring, Roger F

    2004-10-15

    Observables in coherent, multiple-pulse infrared spectroscopy may be computed from a vibrational nonlinear response function. This response function is conventionally calculated quantum-mechanically, but the challenges in applying quantum mechanics to large, anharmonic systems motivate the examination of classical mechanical vibrational nonlinear response functions. We present an approximate formulation of the classical mechanical third-order vibrational response function for an anharmonic solute oscillator interacting with a harmonic solvent, which establishes a clear connection between classical and quantum mechanical treatments. This formalism permits the identification of the classical mechanical analog of the pure dephasing of a quantum mechanical degree of freedom, and suggests the construction of classical mechanical analogs of the double-sided Feynman diagrams of quantum mechanics, which are widely applied to nonlinear spectroscopy. Application of a rotating wave approximation permits the analytic extraction of signals obeying particular spatial phase matching conditions from a classical-mechanical response function. Calculations of the third-order response function for an anharmonic oscillator coupled to a harmonic solvent are compared to numerically correct classical mechanical results.

  15. Controlling of Fusion of Two Solitons in a Two-Component Condensate by an Anharmonic External Potential

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhi-Qiang; WANG Deng-Long; LUO Xiao-Qing; HE Zhang-Ming; DING Jian-Wen

    2011-01-01

    By using the multiple-scale method, we analytically study dynamical properties of two-component Bose-Einstein condensates trapped in a harmonic plus quartic anharmonic potential.It is shown that the anharmonic potential has an important effect on the dark solitons of the condensates.In particular, when the strength of the anharmonic external potential increases, the fusion of the two solitons becomes faster.This implies that the fusion of the two solitons can be controlled by an anharmonic potential.%@@ By using the multiple-scale method,we analytically study dynamical properties of two-component Bose-Einstein condensates trapped in a harmonic plus quartic anharmonic potential.It is shown that the anharmonic potential has an important effect on the dark solitons of the condensates.In particular,when the strength of the anharmonic external potential increases,the fusion of the two solitons becomes faster.This implies that the fusion of the two solitons can be controlled by an anharmonic potential.

  16. Equation of state, nonlinear elastic response, and anharmonic properties of diamond-cubic silicon and germanium. First-principles investigation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chenju [Sichuan Univ., Chengdu (China). Inst. of Atomic and Molecular Physics; Institute of Fluid Physics, Sichuan (China). National Key Laboratory of Shock Wave and Detonation Physics; Gu, Jianbing [Institute of Fluid Physics, Sichuan (China). National Key Laboratory of Shock Wave and Detonation Physics; Sichuan Univ., Chengdu (China). College of Physical Science and Technology; Kuang, Xiaoyu [Sichuan Univ., Chengdu (China). Inst. of Atomic and Molecular Physics; Xiang, Shikai [Institute of Fluid Physics, Sichuan (China). National Key Laboratory of Shock Wave and Detonation Physics

    2015-10-01

    Nonlinear elastic properties of diamond-cubic silicon and germanium have not been investigated sufficiently to date. Knowledge of these properties not only can help us to understand nonlinear mechanical effects but also can assist us to have an insight into the related anharmonic properties, so we investigate the nonlinear elastic behaviour of single silicon and germanium by calculating their second- and third-order elastic constants. All the results of the elastic constants show good agreement with the available experimental data and other theoretical calculations. Such a phenomenon indicates that the present values of the elastic constants are accurate and can be used to further study the related anharmonic properties. Subsequently, the anharmonic properties such as the pressure derivatives of the second-order elastic constants, Grueneisen constants of long-wavelength acoustic modes, and ultrasonic nonlinear parameters are explored. All the anharmonic properties of silicon calculated in the present work also show good agreement with the existing experimental results; this consistency not only reveals that the calculation method of the anharmonic properties is feasible but also illuminates that the anharmonic properties obtained in the present work are reliable. For the anharmonic properties of germanium, since there are no experimental result and other theoretical data till now, we hope that the anharmonic properties of germanium first offered in this work would serve as a reference for future studies.

  17. Forced vibration analysis of composite laminates using a discrete layer stress based model

    Energy Technology Data Exchange (ETDEWEB)

    Chang, C.J.; Butalia, T.S.; Wolfe, W.E. [Ohio State Univ., Columbus, OH (United States)

    1995-12-31

    Although modern displacement based plate theories are capable of predicting the deflected shape and lower frequencies of a loaded plate with a high degree of precision, their ability to predict stresses, particularly interlaminar stresses, has been poor. A discrete layer stress based theory for composite laminates that assumes a linear distribution of in-plane stresses across each lamina was presented and showed good prediction of interlaminar stresses. The present study extends that work to forced vibration response of a composite plate subjected to a time varying transverse load.

  18. Development of a Debye heat capacity model for vibrational modes with a gap in the density of states

    International Nuclear Information System (INIS)

    Low-energy vibrational modes that have a gap in the density of states (DOS) have often been observed in heat capacity data in the form of ‘boson’ peaks, but the functions used to model these modes are often inadequate or are not physically meaningful. We have adapted the Debye model to represent these gapped modes and have derived the heat capacity equations for these modes in one, two, and three dimensions. Applying these equations to the low-temperature heat capacity data fitting for a large variety of materials substantially improves the fit quality relative to conventional fits. From the fitting parameters, the underlying DOS were estimated, which we show to be comparable to those reported in the literature. This model expands the methods of theoretical low-temperature heat capacity data analysis and improves the procedure of approximating a material’s DOS from its low-temperature heat capacity. (paper)

  19. Effect of subglottic stenosis on the flow-induced vibration of a self-oscillating computational vocal fold model

    Science.gov (United States)

    Smith, Simeon L.; Thomson, Scott L.

    2010-11-01

    The subglottis plays an important role in voice production; however, in general the role of subglottal geometry in phonation is not well understood. This research focuses on studying how subglottic stenosis, or a narrowing of the airway below the vocal folds, affects the response of a self-oscillating computational vocal fold model. Methods are described for computational model development, including stenotic geometry definition from CT scan images, incorporation of the stenosis into a finite element fluid-structure interaction model, and parametric variation of the degree of stenosis severity. Results are presented for a normal (no stenosis) case and five cases of varying degrees of stenosis severity. Qualitative and quantitative comparisons of vocal fold vibratory motion and of flow behavior for the six cases are made, including characterization of flow patterns in the subglottis, glottal width and flow rate time histories, vibration frequency, and airway resistance.

  20. Electro-Mechanical Modeling and Performance Analysis of Floating Wave Energy Converters Utilizing Yo-Yo Vibrating System

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Kyuho; Park, Jisu [Seoul National University, Seoul (Korea, Republic of); Jang, Seon-Jun [Innovation KR, Seoul (Korea, Republic of)

    2015-01-15

    This paper proposes a floating-type wave energy conversion system that consists of a mechanical part (yo-yo vibrating system, motion rectifying system, and power transmission system) and electrical part (power generation system). The yo-yo vibrating system, which converts translational input to rotational motion, is modeled as a single degree-of-freedom system. It can amplify the wave input via the resonance phenomenon and enhance the energy conversion efficiency. The electromechanical model is established from impedance matching of the mechanical part to the electrical system. The performance was analyzed at various wave frequencies and damping ratios for a wave input acceleration of 0.14 g. The maximum output occurred at the resonance frequency and optimal load resistance, where the power conversion efficiency and electrical output power reached 48% and 290 W, respectively. Utilizing the resonance phenomenon was found to greatly enhance the performance of the wave energy converter, and there exists a maximum power point at the optimum load resistance.

  1. Railway vibrations induced into the soil: experiments, modelling and isolation. - Vibrations induites dans les sols par le trafic ferroviaire : exp\\'erimentations, mod\\'elisations et isolation

    CERN Document Server

    Semblat, Jean-François; Jacqueline, Delphine; Leblond, Jean-Jacques; Grasso, Eva

    2011-01-01

    Railway traffic induces cyclic and dynamic loadings in the track structure but also in the close environment (Degrande et al. 2006, Fran\\c{c}ois et al. 2007, Kausel 2008, Lefeuve-Mesgouez et al 2002, Paolucci et Spinelli 2006). The analysis of such excitations and their effects (e.g. vibrations, waves, etc) is fundamental to estimate their level and mitigate their potential consequences (settlements, nuisances, etc). After a brief summary of the current regulations, in situ experiments show the variability of the parameters characterizing the main phenomena (wave propagation into the soil, induced vibrations, etc). The main dynamic laboratory experiments are then discussed. They allow the estimation of the dynamic features of the materials (e.g. resonant column test), but also a simplified analysis of the main phenomena under controlled conditions (e.g. experiments in a geotechnical pit, centrifuge tests). The vibratory sources and the impedance ratios between the various soil layers (or some inclusions) bein...

  2. Design of blade-shaped-electrode linear ion traps with reduced anharmonic contributions

    Energy Technology Data Exchange (ETDEWEB)

    Deng, K.; Che, H.; Ge, Y. P.; Xu, Z. T.; Yuan, W. H.; Zhang, J.; Lu, Z. H., E-mail: zehuanglu@mail.hust.edu.cn [MOE Key Laboratory of Fundamental Physical Quantities Measurement, School of Physics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074 (China); Lan, Y. [MOE Key Laboratory of Fundamental Physical Quantities Measurement, School of Physics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074 (China); Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1 (Canada)

    2015-09-21

    RF quadrupole linear Paul traps are versatile tools in quantum physics experiments. Linear Paul traps with blade-shaped electrodes have the advantages of larger solid angles for fluorescence collection. But with these kinds of traps, the existence of higher-order anharmonic terms of the trap potentials can cause large heating rate for the trapped ions. In this paper, we theoretically investigate the dependence of higher-order terms of trap potentials on the geometry of blade-shaped traps, and offer an optimized design. A modified blade electrodes trap is proposed to further reduce higher-order anharmonic terms while still retaining large fluorescence collection angle.

  3. Design of blade-shaped-electrode linear ion traps with reduced anharmonic contributions

    International Nuclear Information System (INIS)

    RF quadrupole linear Paul traps are versatile tools in quantum physics experiments. Linear Paul traps with blade-shaped electrodes have the advantages of larger solid angles for fluorescence collection. But with these kinds of traps, the existence of higher-order anharmonic terms of the trap potentials can cause large heating rate for the trapped ions. In this paper, we theoretically investigate the dependence of higher-order terms of trap potentials on the geometry of blade-shaped traps, and offer an optimized design. A modified blade electrodes trap is proposed to further reduce higher-order anharmonic terms while still retaining large fluorescence collection angle

  4. Experimental modeling of flow-induced vibration of multi-span U-tubes in a CANDU steam generator

    International Nuclear Information System (INIS)

    Flow-induced vibration of the tubes in a nuclear steam generator is a concern for designers who are trying to increase the life span of these units. The dominant excitation mechanisms are fluidelastic instability and random turbulence excitation. The outermost U-bend region of the tubes is of greatest concern because the flow is almost perpendicular to the tube axis and the unsupported span is relatively long. The support system in this region must be well designed in order to minimize fretting wear of the tubes at the support locations. Much of the previous testing was conducted on straight single-span or cantilevered tubes in cross-flow. However, the dynamic response of steam generator multi-span U-tubes with clearance supports is expected to be different. Accurate modeling of the tube dynamics is important to properly simulate the dynamic interaction of the tube and supports. This paper describes a test program that was developed to measure the dynamic response of a bundle of steam generator U-tubes with Anti-Vibration Bar (AVB) supports, subjected to Freon two-phase cross-flow. The tube bundle has similar geometrical conditions to those expected for future CANDU steam generators. Future steam generators will be larger than previous CANDU steam generators, nearly twice the heat transfer area, with significant changes in process conditions in the U-bend region, such as increased steam quality and a broader range of flow velocities. This test program was initiated at AECL to demonstrate that the tube support design for future CANDU steam generators will meet the stringent requirements associated with a 60 year design life. The main objective of the tests is to address the issue of in-plane and out-of-plane fluidelastic instability and random turbulent excitation of a U-tube bundle with Anti-Vibration Bar (AVB) supports. Details of the test rig, measurement techniques and preliminary instrumentation results are described in the paper. (author)

  5. Nonlinear effects in infrared action spectroscopy of silicon and vanadium oxide clusters: experiment and kinetic modeling.

    Science.gov (United States)

    Calvo, Florent; Li, Yejun; Kiawi, Denis M; Bakker, Joost M; Parneix, Pascal; Janssens, Ewald

    2015-10-21

    For structural assignment of gas phase compounds, infrared action spectra are usually compared to computed linear absorption spectra. However, action spectroscopy is highly nonlinear owing to the necessary transfer of the excitation energy and its subsequent redistribution leading to statistical ionization or dissociation. Here, we examine by joint experiment and dedicated modeling how such nonlinear effects affect the spectroscopic features in the case of selected inorganic clusters. Vibrational spectra of neutral silicon clusters are recorded by tunable IR-UV two-color ionization while IR spectra for cationic vanadium oxide clusters are obtained by IR multiphoton absorption followed by dissociation of the bare cluster or of its complex with Xe. Our kinetic modeling accounts for vibrational anharmonicities, for the laser interaction through photon absorption and stimulated emission rates, as well as for the relevant ionization or dissociation rates, all based on input parameters from quantum chemical calculations. Comparison of the measured and calculated spectra indicates an overall agreement as far as trends are concerned, except for the photodissociation of the V3O7(+)-Xe messenger complex, for which anharmonicities are too large and poorly captured by the perturbative anharmonic model. In all systems studied, nonlinear effects are essentially manifested by variations in the intensities as well as spectral broadenings. Differences in some band positions originate from inaccuracies of the quantum chemical data rather than specific nonlinear effects. The simulations further yield information on the average number of photons absorbed, which is otherwise unaccessible information: several to several tens of photons need to be absorbed to observe a band through dissociation, while three to five photons can be sufficient for detection of a band via IR-UV ionization. PMID:26208251

  6. Optimal piezoelectric beam shape for single and broadband vibration energy harvesting: Modeling, simulation and experimental results

    Science.gov (United States)

    Muthalif, Asan G. A.; Nordin, N. H. Diyana

    2015-03-01

    Harvesting energy from the surroundings has become a new trend in saving our environment. Among the established ones are solar panels, wind turbines and hydroelectric generators which have successfully grown in meeting the world's energy demand. However, for low powered electronic devices; especially when being placed in a remote area, micro scale energy harvesting is preferable. One of the popular methods is via vibration energy scavenging which converts mechanical energy (from vibration) to electrical energy by the effect of coupling between mechanical variables and electric or magnetic fields. As the voltage generated greatly depends on the geometry and size of the piezoelectric material, there is a need to define an optimum shape and configuration of the piezoelectric energy scavenger. In this research, mathematical derivations for unimorph piezoelectric energy harvester are presented. Simulation is done using MATLAB and COMSOL Multiphysics software to study the effect of varying the length and shape of the beam to the generated voltage. Experimental results comparing triangular and rectangular shaped piezoelectric beam are also presented.

  7. Classical and Quantum Vibration in a Nonseparable, Nonharmonic System

    Science.gov (United States)

    McDonald, Karen Marie

    Studies of vibrational dynamics have been performed on a two-dimensional model potential surface V(x,z; R), adapted from the ab initio surface previously used in this laboratory to analyze dynamics of the bifluoride ion (FHF) ^-. The model potential has C _{2v} symmetry, but is strongly anharmonic and nonseparable in the dynamical variables (x,z); its character changes as the parameter R is varied. Quantum and classical descriptions of vibrational states in this system are compared with corresponding Self-Consistent Field (SCF) approximations. Insights provided by each approach are assessed. Systematic Fermi resonances appear in the quantum mechanical states (at energies up to approximately 10,000 cm^{-1}) arising from crossings of quantum SCF levels with two quanta of vibration exchanged between x and z modes. The lowest quantum states of each symmetry are well described by the SCF approximation except near such crossings. Calculations using Configuration Interaction were done to obtain accurate eigenstates and examine correlations in the quantum mechanics. The Classical Self-Consistent Field (CSCF) method provides a description of the mechanics similar to that given by its quantum counterpart. Classical bound state methods based on semiclassical quantization of quasiperiodic trajectories are unable to give a corresponding description. At energies as low as the quantum ground state, the true classical dynamics is strongly disturbed by resonant interactions. At higher energies the number and strength of these disruptions is so great that the motion is largely irregular. The most prominent effect is a 1:1 frequency resonance associated with strong reorganization of the classical motion along pronounced valleys of the potential surface lying at +/-26^circ to the x-axis. This phenomenon has been studied by analysis of the true dynamics and by application of classical canonical perturbation theory to the zero-order CSCF description. It is found that the latter gives a

  8. Analytical modeling and experimental verification of vibration-based piezoelectric bimorph beam with a tip-mass for power harvesting

    Science.gov (United States)

    Wang, Hongjin; Meng, Qingfeng

    2013-03-01

    Power harvesting techniques that convert vibration energy into electrical energy through piezoelectric transducers show strong potential for powering smart wireless sensor devices in applications of structural health monitoring. This paper presents an analytical model of the dynamic behavior of an electromechanical piezoelectric bimorph cantilever harvester connected with an AC-DC circuit based on the Euler-Bernoulli beam theory and Hamiltonian theorem. A new cantilevered piezoelectric bimorph structure is proposed in which the plug-type connection between support layer and tip-mass ensures that the gravity center of the tip-mass is collinear with the gravity center of the beam so that the brittle fracture of piezoelectric layers can also be avoided while vibrating with large amplitude. The tip-mass is equated by the inertial force and inertial moment acting at the end of the piezoelectric bimorph beam based on D'Alembert's principle. An AC-DC converting circuit soldered with the piezoelectric elements is also taken into account. A completely new analytic expression of the global behavior of the electromechanical piezoelectric bimorph harvesting system with AC-DC circuit under input base transverse excitation is derived. Moreover, an experimental energy harvester is fabricated and the theoretical analysis and experimental results of the piezoelectric harvester under the input base transverse displacement excitation are validated by using measurements of the absolute tip displacement, electric voltage response, electric current response and electric power harvesting.

  9. Theoretical Modelling and Effectiveness Study of Slotted Stand-Off Layer Damping Treatment for Rail Vibration and Noise Control

    Directory of Open Access Journals (Sweden)

    Caiyou Zhao

    2015-01-01

    Full Text Available A promising means of reducing railway noise is to increase the damping of the rail, which decreases the vibration of the rail to reduce noise. To achieve this goal, a slotted stand-off layer damping treatment has been developed, and a compound track model with this treatment is developed for investigating the effectiveness of this treatment in terms of the vibration reduction. Through the dynamic analysis of the track undergoing the slotted stand-off layer damping treatment, some guidelines are proposed on the selection of materials and structure parameters for this treatment. In addition, the prototype of the optimal slotted stand-off layer damping treatment has been built and tested in the laboratory. It is found that the slotted stand-off damping treatment shows significant effects in decreasing the amplitude of the accelerance of the rail and a significant reduction of sound emission reflected as the radiation sound pressure level decreases by 8.2 and 9.4 dB at vertical excitation and lateral excitation, respectively, in the frequency range of 0–4000 Hz.

  10. A computational model of pile vertical vibration in saturated soil based on the radial disturbed zone of pile driving

    Science.gov (United States)

    Li, Qiang; Shi, Qian; Wang, Kuihua

    2010-06-01

    In this study, a simplified computational model of pile vertical vibration was developed. The model was based on the inhomogeneous radial disturbed zone of soil in the vicinity of a pile disturbed by pile driving. The model contained two regions: the disturbed zone, which was located in the immediate vicinity of the pile, and the undisturbed region, external to the disturbed zone. In the model, excess pore pressure in the disturbed zone caused by pile driving was assumed to follow a logarithmic distribution. The relationships of stress and strain in the disturbed zone were based on the principle of effective stress under plain strain conditions. The external zone was governed by the poroelastic theory proposed by Biot. With the use of a variable separation method, an analytical solution in the frequency domain was obtained. Furthermore, a semi-analytical solution was attained by employing a numerical convolution method. Numerical results from the frequency and time domain indicated that the equivalent radius of the disturbed zone and the ratio of excess pore pressure had a significant effect on pile dynamic response. However, actual interactions between pile and soil will be weaker due to the presence of the radial disturbed zone, which is caused by pile driving. Consequently, the ideal undisturbed model overestimates the interaction between pile and soil; however, the proposed model reflects the interaction of pile and soil better than the perfect contact model. Numerical results indicate that the model can account for the time effect of pile dynamic tests.

  11. System-Level Coupled Modeling of Piezoelectric Vibration Energy Harvesting Systems by Joint Finite Element and Circuit Analysis

    Directory of Open Access Journals (Sweden)

    Congcong Cheng

    2016-01-01

    Full Text Available A practical piezoelectric vibration energy harvesting (PVEH system is usually composed of two coupled parts: a harvesting structure and an interface circuit. Thus, it is much necessary to build system-level coupled models for analyzing PVEH systems, so that the whole PVEH system can be optimized to obtain a high overall efficiency. In this paper, two classes of coupled models are proposed by joint finite element and circuit analysis. The first one is to integrate the equivalent circuit model of the harvesting structure with the interface circuit and the second one is to integrate the equivalent electrical impedance of the interface circuit into the finite element model of the harvesting structure. Then equivalent circuit model parameters of the harvesting structure are estimated by finite element analysis and the equivalent electrical impedance of the interface circuit is derived by circuit analysis. In the end, simulations are done to validate and compare the proposed two classes of system-level coupled models. The results demonstrate that harvested powers from the two classes of coupled models approximate to theoretic values. Thus, the proposed coupled models can be used for system-level optimizations in engineering applications.

  12. Vibrational and Stochastic Resonance in the FitzHugh-Nagumo Neural Model with Multiplicative and Additive Noise

    Institute of Scientific and Technical Information of China (English)

    HE Zheng-You; ZHOU Yu-Rong

    2011-01-01

    The vibrational resonance and stochastic resonance phenomena in the FitzHugh-Nagumo (FHN) neural model,driven by a high-frequency (HF) signal and a low-frequency (LF) signal and by coupled multiplicative and additive noises,is investigated.For the case that the frequency of the HF signal is much higher than that of the LF signal,under the adiabatic approximation condition,the expression of the signal-to-noise ratio (SNR) with respect to the LF signal is obtained.It is shown that the SNR is a non-monotonous function of the amplitude and frequency of the HF signal In addition,the SNR varies non-monotonically with the increasing intensities of the multiplicative and additive noise as well as with the increasing system parameters of the FHN model The influence of the coupling strength between the multiplicative and additive noises on the SNR is discussed.Stochastic resonance (SR) describes the phenomenon where an appropriate amount of noise is of constructive use in the sense that a weak signal becomes amplified upon harvesting the ambient noise in nonlinear systems.[1] Since its first discovery in the early eighties,SR has been observed in a great variety of systems pertaining to different disciplines such as physics,chemistry,engineering,biology and biomedical sciences.[1-4] The phenomenon vibrational resonance (VR) was named by Landa and McClintock.[5]%The vibrational resonance and stochastic resonance phenomena in the FitzHugh-Nagumo (FHN) neural model, driven by a high-frequency (HF) signal and a low-frequency (LF) signal and by coupled multiplicative and additive noises, is investigated. For the case that the frequency of the HF signal is much higher than that of the LF signal, under the adiabatic approximation condition, the expression of the signal-to-noise ratio (SNR) with respect to the LF signal is obtained. It is shown that the SNR is a non-monotonous function of the amplitude and frequency of the HF signal. In addition, the SNR varies non

  13. Modeling and simulation of vibrational breathing-like modes in individual multiwalled carbon nanotubes

    Science.gov (United States)

    Sbai, K.; Rahmani, A.; Fakrach, B.; Chadli, H.; Benhamou, M.

    2014-02-01

    We study the collective vibrational breathing modes in the Raman spectrum of multiwalled carbon nanotubes (MCNTs). First, a bond polarization theory and the spectral moment's method (SMM) are used to calculate the non-resonant Raman frequencies of the breathing-like modes (BLMs) and the tangential-like ones (TLMs). Second, the Raman active modes of MCNTs are computed for different diameters and numbers of layers. The obtained low frequency modes in MCNTs can be identified to each single-walled carbon nanotubes. These modes that originate from the radial breathing ones of the individual walls are strongly coupled through the concentric tube-tube van der Waals interaction. The calculated BLMs in the low-frequency region are compared with the experimental Raman data obtained from other studies. Finally, special attention is given to the comparison with Raman data on MCNTs composed of six layers.

  14. Vibration of quadrilateral embedded multilayered graphene sheets based on noniocal continuum models using the Galerkin method

    Institute of Scientific and Technical Information of China (English)

    H. Babaei; A.R. Shahidi

    2011-01-01

    Free vibration analysis of quadrilateral multilayered graphene sheets (MLGS) embedded in polymer matrix is carried out employing nonlocal continuum mechanics.The principle of virtual work is employed to derive the equations of motion.The Galerkin method in conjunction with the natural coordinates of the nanoplate is used as a basis for the analysis.The dependence of small scale effect on thickness,elastic modulus,polymer matrix stiffness and interaction coefficient between two adjacent sheets is illustrated.The non-dimensional natural frequencies of skew,rhombic,trapezoidal and rectangular MLGS are obtained with various geometrical parameters and mode numbers taken into account,and for each case the effects of the small length scale are investigated.

  15. Predicting Statistical Distributions of Footbridge Vibrations

    DEFF Research Database (Denmark)

    Pedersen, Lars; Frier, Christian

    2009-01-01

    The paper considers vibration response of footbridges to pedestrian loading. Employing Newmark and Monte Carlo simulation methods, a statistical distribution of bridge vibration levels is calculated modelling walking parameters such as step frequency and stride length as random variables...

  16. Impact of the chosen turbulent flow empirical model on the prediction of sound radiation and vibration by aircraft panels

    Science.gov (United States)

    Rocha, Joana

    2016-07-01

    A precise definition of the turbulent boundary layer excitation is required to accurately predict the sound radiation and surface vibration levels, produced by an aircraft panel excited turbulent flow during flight. Hence, any existing inaccuracy on turbulent boundary layer excitation models leads to an inaccurate prediction of the panel response. A number of empirical models have been developed over the years to provide the turbulent boundary layer wall pressure spectral density. However, different empirical models provide dissimilar predictions for the wall pressure spectral density. The objective of the present study is to investigate and quantify the impact of the chosen empirical model on the predicted radiated sound power, and on the predicted panel surface acceleration levels. This study provides a novel approach and a detailed analysis on the use of different turbulent boundary layer wall pressure empirical models, and impact on mathematical predictions. Closed-form mathematical relationships are developed, and recommendations are provided for the level of deviation and uncertainty associated to different models, in relation to a baseline model, both for panel surface acceleration and radiated sound power.

  17. Fluid structure interaction modelling for the vibration of tube bundles, part II: homogenization method based on the Navier Stokes equations

    International Nuclear Information System (INIS)

    It is well known that a fluid may strongly influence the dynamic behaviour of a structure. Many different physical phenomena may take place, depending on the conditions: fluid at rest, fluid flow, little or high displacements of the structure. Inertial effects can take place, with lower vibration frequencies, dissipative effects also, with damping, instabilities due to the fluid flow (Fluid Induced Vibration). In this last case the structure is excited by the fluid. The paper deals with the vibration of tube bundles in a fluid, under a seismic excitation or an impact. In this case the structure moves under an external excitation, and the movement is influenced by the fluid. The main point in such system is that the geometry is complex, and could lead to very huge sizes for a numerical analysis. Many works has been made in the last years to develop homogenization methods for the dynamic behaviour of tube bundles. The size of the problem is reduced, and it is possible to make numerical simulations on wide tubes bundles with reasonable computer times. These homogenization methods are valid for 'little displacements' of the structure (the tubes), in a fluid at rest. The fluid movement is governed by the linear Euler equations (without the convective term). In this case, only 'inertial effects' will take place, with globally lower frequencies. It is well known that dissipative effects due to the fluid may take place, even if the displacements of the tube are no so high, or if the fluid is not still. Such effects may be described in the homogenized models by using a Rayleigh damping, but the basic assumption of the model remains the 'perfect fluid' hypothesis. It seem necessary, in order to get a best description of the physical phenomena, to build a more general model, based on the general Navier Stokes equation for the fluid. The homogenization of such system will be much more complex than for the Euler equations. The paper presents the first step in the building of a

  18. Vibrations and waves

    CERN Document Server

    Kaliski, S

    2013-01-01

    This book gives a comprehensive overview of wave phenomena in different media with interacting mechanical, electromagnetic and other fields. Equations describing wave propagation in linear and non-linear elastic media are followed by equations of rheological models, models with internal rotational degrees of freedom and non-local interactions. Equations for coupled fields: thermal, elastic, electromagnetic, piezoelectric, and magneto-spin with adequate boundary conditions are also included. Together with its companion volume Vibrations and Waves. Part A: Vibrations this work provides a wealth

  19. Application of quasiexactly solvable potential method to the $N$-body problem of anharmonic oscillators

    Indian Academy of Sciences (India)

    PANAHI H; GAVABAR M MOHAMMADKAZEMI

    2016-05-01

    The quasiexactly solvable potential method is used to determine the energies and the corresponding exact eigenfunctions for a system of N particles with equal mass interacting via an anharmonic potential. For systems with five and seven particles, we compute the ground state and the first excited state only, and compare the spectrums with the results obtained by Ritz approximation method.

  20. Generalized Nonanalytic Expansions, PT-Symmetry and Large-Order Formulas for Odd Anharmonic Oscillators

    Directory of Open Access Journals (Sweden)

    Ulrich D. Jentschura

    2009-01-01

    Full Text Available The concept of a generalized nonanalytic expansion which involves nonanalytic combinations of exponentials, logarithms and powers of a coupling is introduced and its use illustrated in various areas of physics. Dispersion relations for the resonance energies of odd anharmonic oscillators are discussed, and higher-order formulas are presented for cubic and quartic potentials.