Sample records for anharmonic vibrational models

  1. Anharmonic Theoretical Vibrational Spectroscopy of Polypeptides. (United States)

    Panek, Paweł T; Jacob, Christoph R


    Because of the size of polypeptides and proteins, the quantum-chemical prediction of their vibrational spectra presents an exceptionally challenging task. Here, we address one of these challenges, namely, the inclusion of anharmonicities. By performing the expansion of the potential energy surface in localized-mode coordinates instead of the normal-mode coordinates, it becomes possible to calculate anharmonic vibrational spectra of polypeptides efficiently and reliably. We apply this approach to calculate the infrared, Raman, and Raman optical activity spectra of helical alanine polypeptides consisting of up to 20 amino acids. We find that while anharmonicities do not alter the band shapes, simple scaling procedures cannot account for the different shifts found for the individual bands. This closes an important gap in theoretical vibrational spectroscopy by making it possible to quantify the anharmonic contributions and opens the door to a first-principles calculation of multidimensional vibrational spectra.

  2. Anharmonic model for high-Tc superconductors

    International Nuclear Information System (INIS)

    Plakida, N.M.; Aksenov, V.L.; Drechsler, S.L.


    A considerable enhancement of the superconducting transition temperature T c in perovskite oxide compounds is explained in the framework of the anharmonic model for superconductors with structurally unstable lattices. It is shown that anharmonic local excitations with fluctuation amplitudes much greater than harmonic vibrations amplitudes lead to a considerable enhancement of the coupling constant λ. The obtained estimations for T c are in agreement with experimental data for La(Y)BaCuO systems

  3. Vibration-translation energy transfer in anharmonic diatomic molecules. 2: The vibrational quantum number dependence (United States)

    Mckenzie, R. L.


    A semiclassical model of the inelastic collision between a vibrationally excited anharmonic oscillator and a structureless atom was used to predict the variation of thermally averaged vibration-translation rate coefficients with temperature and initial-state quantum number. Multiple oscillator states were included in a numerical solution for collinear encounters. The results are compared with CO-He experimental values for both ground and excited initial states using several simplified forms of the interaction potential. The numerical model was also used as a basis for evaluating several less complete but analytic models. Two computationally simple analytic approximations were found that successfully reproduced the numerical rate coefficients for a wide range of molecular properties and collision partners. Their limitations were also identified. The relative rates of multiple-quantum transitions from excited states were evaluated for several molecular types.

  4. Stochastic many-body perturbation theory for anharmonic molecular vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Hermes, Matthew R. [Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801 (United States); Hirata, So, E-mail: [Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801 (United States); CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan)


    A new quantum Monte Carlo (QMC) method for anharmonic vibrational zero-point energies and transition frequencies is developed, which combines the diagrammatic vibrational many-body perturbation theory based on the Dyson equation with Monte Carlo integration. The infinite sums of the diagrammatic and thus size-consistent first- and second-order anharmonic corrections to the energy and self-energy are expressed as sums of a few m- or 2m-dimensional integrals of wave functions and a potential energy surface (PES) (m is the vibrational degrees of freedom). Each of these integrals is computed as the integrand (including the value of the PES) divided by the value of a judiciously chosen weight function evaluated on demand at geometries distributed randomly but according to the weight function via the Metropolis algorithm. In this way, the method completely avoids cumbersome evaluation and storage of high-order force constants necessary in the original formulation of the vibrational perturbation theory; it furthermore allows even higher-order force constants essentially up to an infinite order to be taken into account in a scalable, memory-efficient algorithm. The diagrammatic contributions to the frequency-dependent self-energies that are stochastically evaluated at discrete frequencies can be reliably interpolated, allowing the self-consistent solutions to the Dyson equation to be obtained. This method, therefore, can compute directly and stochastically the transition frequencies of fundamentals and overtones as well as their relative intensities as pole strengths, without fixed-node errors that plague some QMC. It is shown that, for an identical PES, the new method reproduces the correct deterministic values of the energies and frequencies within a few cm{sup −1} and pole strengths within a few thousandths. With the values of a PES evaluated on the fly at random geometries, the new method captures a noticeably greater proportion of anharmonic effects.

  5. Anharmonic thermal vibrations of be metal found in the MEM nuclear density map

    International Nuclear Information System (INIS)

    Takata, Masaki; Sakata, Makoto; Larsen, F.K.; Kumazawa, Shintaro; Iversen, B.B.


    A direct observation of the thermal vibrations of Be metal was performed by the Maximum Entropy Method (MEM) using neutron single crystal data. In the previous study, the existence of the small but significant cubic anharmonicity of Be has been found by the conventional least squares refinement of the observed structure factors [Larsen, Lehmann and Merisalo (1980) Acta Cryst. A36, 159-163]. In the present study, the same data were used for the MEM analysis which are comprised of 48 reflections up to sinθ/λ = 1.41A -1 in order to obtain the high resolution nuclear density of Be without using any thermal vibrational model. It was directly visible in the MEM map that not only the cubic terms but also quartic anharmonicities exist in the thermal vibrations of Be nuclei. In order to evaluate thermal parameters of Be including anharmonic terms quantitatively, the least squares refinement of the effective one-particle potential (OPP) parameters up to quartic term was carried out by using the MEM nuclear densities around atomic sites as the data set to be fitted. It was found that the present treatment has a great advantage to decide the most appropriate model of OPP by visually comparing the model with MEM density map. As a result of the least squares refinement, the anharmonic thermal parameters are obtained as α 33 = -0.340(5)[eV/A 3 ], α 40 = 0, β 20 = 9.89(1)[eV/A 4 ] and γ 00 = 0. No other anharmonic term was significant. (author)

  6. Anharmonic vibrational properties in periodic systems: energy, electron-phonon coupling, and stress


    Monserrat, Bartomeu; Drummond, N. D.; Needs, R. J.


    A unified approach is used to study vibrational properties of periodic systems with first-principles methods and including anharmonic effects. Our approach provides a theoretical basis for the determination of phonon-dependent quantities at finite temperatures. The low-energy portion of the Born-Oppenheimer energy surface is mapped and used to calculate the total vibrational energy including anharmonic effects, electron-phonon coupling, and the vibrational contribution to the stress tensor. W...

  7. Investigating vibrational anharmonic couplings in cyanide-bridged transition metal mixed valence complexes using two-dimensional infrared spectroscopy (United States)

    Slenkamp, Karla M.; Lynch, Michael S.; Van Kuiken, Benjamin E.; Brookes, Jennifer F.; Bannan, Caitlin C.; Daifuku, Stephanie L.; Khalil, Munira


    Using polarization-selective two-dimensional infrared (2D IR) spectroscopy, we measure anharmonic couplings and angles between the transition dipole moments of the four cyanide stretching (νCN) vibrations found in [(NH3)5RuIIINCFeII(CN)5]- (FeRu) dissolved in D2O and formamide and [(NC)5FeIICNPtIV(NH3)4NCFeII(CN)5]4- (FePtFe) dissolved in D2O. These cyanide-bridged transition metal complexes serve as model systems for studying the role of high frequency vibrational modes in ultrafast photoinduced charge transfer reactions. Here, we focus on the spectroscopy of the νCN modes in the electronic ground state. The FTIR spectra of the νCN modes of the bimetallic and trimetallic systems are strikingly different in terms of frequencies, amplitudes, and lineshapes. The experimental 2D IR spectra of FeRu and FePtFe and their fits reveal a set of weakly coupled anharmonic νCN modes. The vibrational mode anharmonicities of the individual νCN modes range from 14 to 28 cm-1. The mixed-mode anharmonicities range from 2 to 14 cm-1. In general, the bridging νCN mode is most weakly coupled to the radial νCN mode, which involves the terminal CN ligands. Measurement of the relative transition dipole moments of the four νCN modes reveal that the FeRu molecule is almost linear in solution when dissolved in formamide, but it assumes a bent geometry when dissolved in D2O. The νCN modes are modelled as bilinearly coupled anharmonic oscillators with an average coupling constant of 6 cm-1. This study elucidates the role of the solvent in modulating the molecular geometry and the anharmonic vibrational couplings between the νCN modes in cyanide-bridged transition metal mixed valence complexes.

  8. Ab initio calculations of anharmonic vibrational circular dichroism intensities of trans-2,3-dideuteriooxirane

    DEFF Research Database (Denmark)

    Bak, KL; Bludsky, O.; Jorgensen, P


    A priori theory is derived for anharmonic calculations of vibrational circular dichroism (VCD). The anharmonic VCD expression is gauge origin independent and reduce to the magnetic field perturbation theory expression in the double-harmonic approximation. The theory has been implemented using...... for the atomic axial tensors and using second-order Moller-Plesset theory for the atomic polar tensors and the force fields, The changes of the vibrational rotatory strengths from anharmonicities are small, and do not explain the previously observed large discrepancies between the double-harmonic results...

  9. Numerical solutions of anharmonic vibration of BaO and SrO molecules (United States)

    Pramudito, Sidikrubadi; Sanjaya, Nugraha Wanda; Sumaryada, Tony


    The Morse potential is a potential model that is used to describe the anharmonic behavior of molecular vibration between atoms. The BaO and SrO molecules, which are two almost similar diatomic molecules, were investigated in this research. Some of their properties like the value of the dissociation energy, the energy eigenvalues of each energy level, and the profile of the wavefunctions in their correspondence vibrational states were presented in this paper. Calculation of the energy eigenvalues and plotting the wave function's profiles were performed using Numerov method combined with the shooting method. In general we concluded that the Morse potential solved with numerical methods could accurately produce the vibrational properties and the wavefunction behavior of BaO and SrO molecules from the ground state to the higher states close to the dissociation level.

  10. Vibrational spectroscopy of triacetone triperoxide (TATP): Anharmonic fundamentals, overtones and combination bands (United States)

    Brauer, Brina; Dubnikova, Faina; Zeiri, Yehuda; Kosloff, Ronnie; Gerber, R. Benny


    The vibrational spectrum of triacetone triperoxide (TATP) is studied by the correlation-corrected vibrational self-consistent field (CC-VSCF) method which incorporates anharmonic effects. Fundamental, overtone, and combination band frequencies are obtained by using a potential based on the PM3 method and yielding the same harmonic frequencies as DFT/cc-pVDZ calculations. Fundamentals and overtones are also studied with anharmonic single-mode (without coupling) DFT/cc-pVDZ calculations. Average deviations from experiment are similar for all methods: 2.1-2.5%. Groups of degenerate vibrations form regions of numerous combination bands with low intensity: the 5600-5800 cm -1 region contains ca. 70 overtones and combinations of CH stretches. Anharmonic interactions are analyzed.

  11. A study of anharmonic al and nonlinear behaviours of vibrations of atomic nuclei

    International Nuclear Information System (INIS)

    Volpe, M.C.


    Double Giant Resonances, vibrational states in which a Giant Resonance is excited on top of another Giant Resonance, have been in the last years the object of many theories and studies. Whereas the measured energies and widths of these states agree with a theoretical predictions, the measured excitation cross sections on the other hand are almost always larger than the calculated ones. The standard theoretical approaches are based both on a harmonic approximation for the collective motion on the nucleus and on its linear response to an external field. In this work the influence of anharmonicities and non-linearities in the external field on the excitation of Double Giant Resonances are studied. First, an oscillator model and an extension of the Lipkin-Meshkow-Glick model are used to study the effects of anharmonicities and non-linearities on the excitation probabilities. The results show that these terms can influence the excitation probability of the second excited state in a significant way. Secondly, these exactly soluble schematic models are used to study some of the approximations made in microscopic calculations based on boson expansion methods and also some aspects on the time-dependent mean field approach. Finally, a microscopic calculation of the Coulomb excitation cross sections of Double Giant Resonances is presented for several nuclei. It is found that, for 208 Pb, the inclusion of anharmonicities and non-linearities and the consideration of many states that play a role in the excitation process give a satisfactory agreement between calculated and observed cross sections. (author)

  12. Anharmonic Vibrations of an "Ideal" Hooke's Law Oscillator (United States)

    Thomchick, John; McKelvey, J. P.


    Presents a model describing the vibrations of a mass connected to fixed supports by "ideal" Hooke's law springs which may serve as a starting point in the study of the properties of irons in a crystal undergoing soft mode activated transition. (SL)

  13. Anharmonicity of lattice vibrations induced by charged nickel additions in A sup 2 B sup 6 semiconductors

    CERN Document Server

    Sokolov, V I; Shirokov, E A; Kislov, A N


    Paper presents the results of investigations into lattice vibrations induced by nickel impurities charged negatively as to the lattice in ZnSe:Ni, ZnO:Ni, ZnS:Ni, CdS:Ni semiconductors. To investigate into vibrations one applies a sensitive technique of field exciton-oscillation spectroscopy. One observes experimentally oscillating reiterations of the impurity exciton head line including the intensive peaks of combined repetitions up to the 8-th order. The experimental results are discussed on the basis of the model estimations of oscillations of a lattice with a charged impurity centre, as well as, on the ground of calculations for oscillations of monoatomic chain with high anharmonicity. Charged impurity centres are shown to induce new oscillations of lattice - impurity anharmonic modes

  14. Polaron dynamics in a two-dimensional anharmonic Holstein model

    DEFF Research Database (Denmark)

    Zolotaryuk, Yaroslav; Christiansen, Peter Leth; Juul Rasmussen, Jens


    A generalized two-dimensional semiclassical :Holstein model with a realistic on-site potential that contains anharmonicity is studied. More precisely, the lattice subsystem of anharmonic on-site oscillators is supposed to have a restricting core. The core plays the role of an effective saturation...

  15. Improved models of dense anharmonic lattices

    Energy Technology Data Exchange (ETDEWEB)

    Rosenau, P., E-mail:; Zilburg, A.


    We present two improved quasi-continuous models of dense, strictly anharmonic chains. The direct expansion which includes the leading effect due to lattice dispersion, results in a Boussinesq-type PDE with a compacton as its basic solitary mode. Without increasing its complexity we improve the model by including additional terms in the expanded interparticle potential with the resulting compacton having a milder singularity at its edges. A particular care is applied to the Hertz potential due to its non-analyticity. Since, however, the PDEs of both the basic and the improved model are ill posed, they are unsuitable for a study of chains dynamics. Using the bond length as a state variable we manipulate its dispersion and derive a well posed fourth order PDE. - Highlights: • An improved PDE model of a Newtonian lattice renders compacton solutions. • Compactons are classical solutions of the improved model and hence amenable to standard analysis. • An alternative well posed model enables to study head on interactions of lattices' solitary waves. • Well posed modeling of Hertz potential.

  16. Vibrational spectroscopy of the G...C base pair: Experiment, harmonic and anharmonic calculations, and the nature of the anharmonic couplings

    Czech Academy of Sciences Publication Activity Database

    Brauer, B.; Gerber, R. B.; Kabeláč, Martin; Hobza, Pavel; Bakker, J. M.; Abo-Riziq, A.; Vries de, M. S.


    Roč. 109, - (2005), s. 6974-6984 ISSN 1089-5639 Grant - others:NSF(US) CHE-0244341 Institutional research plan: CEZ:AV0Z40550506 Keywords : nucleic acids bases * vibrational spectrum * frequencies anharmonicity Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.898, year: 2005

  17. Catalytic mechanism of LENR in quasicrystals based on localized anharmonic vibrations and phasons


    Dubinko, Volodymyr; Laptev, Denis; Irwin, Klee


    Quasicrystals (QCs) are a novel form of matter, which are neither crystalline nor amorphous. Among many surprising properties of QCs is their high catalytic activity. We propose a mechanism explaining this peculiarity based on unusual dynamics of atoms at special sites in QCs, namely, localized anharmonic vibrations (LAVs) and phasons. In the former case, one deals with a large amplitude (~ fractions of an angstrom) time-periodic oscillations of a small group of atoms around their stable posi...

  18. Anharmonic force field and vibrational frequencies of tetrafluoromethane (CF$_4$) and tetrafluorosilane (SiF$_4$)


    Wang, Xiao-Gang; Sibert III, Edwin L.; Martin, Jan M. L.


    Accurate quartic anharmonic force fields for CF$_4$ and SiF$_4$ have been calculated using the CCSD(T) method and basis sets of $spdf$ quality. Based on the {\\it ab initio} force field with a minor empirical adjustment, the vibrational energy levels of these two molecules and their isotopomers are calculated by means of high order Canonical Van Vleck Perturbation Theory(CVPT) based on curvilinear coordinates. The calculated energies agree very well with the experimental data. The full quadrat...

  19. First-principles calculations on anharmonic vibrational frequencies of polyethylene and polyacetylene in the Gamma approximation. (United States)

    Keçeli, Murat; Hirata, So; Yagi, Kiyoshi


    The frequencies of the infrared- and/or Raman-active (k=0) vibrations of polyethylene and polyacetylene are computed by taking account of the anharmonicity in the potential energy surfaces (PESs) and the resulting phonon-phonon couplings explicitly. The electronic part of the calculations is based on Gaussian-basis-set crystalline orbital theory at the Hartree-Fock and second-order Møller-Plesset (MP2) perturbation levels, providing one-, two-, and/or three-dimensional slices of the PES (namely, using the so-called n-mode coupling approximation with n=3), which are in turn expanded in the fourth-order Taylor series with respect to the normal coordinates. The vibrational part uses the vibrational self-consistent field, vibrational MP2, and vibrational truncated configuration-interaction (VCI) methods within the Gamma approximation, which amounts to including only k=0 phonons. It is shown that accounting for both electron correlation and anharmonicity is essential in achieving good agreement (the mean and maximum absolute deviations less than 50 and 90 cm(-1), respectively, for polyethylene and polyacetylene) between computed and observed frequencies. The corresponding values for the calculations including only one of such effects are in excess of 120 and 300 cm(-1), respectively. The VCI calculations also reproduce semiquantitatively the frequency separation and intensity ratio of the Fermi doublet involving the nu(2)(0) fundamental and nu(8)(pi) first overtone in polyethylene.

  20. Investigation of the vibration spectrum of SbSI crystals in harmonic and in anharmonic approximations

    International Nuclear Information System (INIS)

    Audzijonis, A.; Zigas, L.; Vinokurova, I.V.; Farberovic, O.V.; Zaltauskas, R.; Cijauskas, E.; Pauliukas, A.; Kvedaravicius, A.


    The force constants of SbSI crystal have been calculated by the pseudo-potential method. The frequencies and normal coordinates of SbSI vibration modes along the c (z) direction have been determined in harmonic approximation. The potential energies of SbSI normal modes dependence on normal coordinates along the c (z) direction V(z) have been determined in anharmonic approximation, taking into account the interaction between the phonons. It has been found, that in the range of 30-120 cm -1 , the vibrational spectrum is determined by a V(z) double-well normal mode, but in the range of 120-350 cm -1 , it is determined by a V(z) single-well normal mode

  1. Polyad quantum numbers and multiple resonances in anharmonic vibrational studies of polyatomic molecules. (United States)

    Krasnoshchekov, Sergey V; Stepanov, Nikolay F


    In the theory of anharmonic vibrations of a polyatomic molecule, mixing the zero-order vibrational states due to cubic, quartic and higher-order terms in the potential energy expansion leads to the appearance of more-or-less isolated blocks of states (also called polyads), connected through multiple resonances. Such polyads of states can be characterized by a common secondary integer quantum number. This polyad quantum number is defined as a linear combination of the zero-order vibrational quantum numbers, attributed to normal modes, multiplied by non-negative integer polyad coefficients, which are subject to definition for any particular molecule. According to Kellman's method [J. Chem. Phys. 93, 6630 (1990)], the corresponding formalism can be conveniently described using vector algebra. In the present work, a systematic consideration of polyad quantum numbers is given in the framework of the canonical Van Vleck perturbation theory (CVPT) and its numerical-analytic operator implementation for reducing the Hamiltonian to the quasi-diagonal form, earlier developed by the authors. It is shown that CVPT provides a convenient method for the systematic identification of essential resonances and the definition of a polyad quantum number. The method presented is generally suitable for molecules of significant size and complexity, as illustrated by several examples of molecules up to six atoms. The polyad quantum number technique is very useful for assembling comprehensive basis sets for the matrix representation of the Hamiltonian after removal of all non-resonance terms by CVPT. In addition, the classification of anharmonic energy levels according to their polyad quantum numbers provides an additional means for the interpretation of observed vibrational spectra.

  2. Renormalized Phonon Microstructures at High Temperatures from First-Principles Calculations: Methodologies and Applications in Studying Strong Anharmonic Vibrations of Solids

    Directory of Open Access Journals (Sweden)

    Tian Lan


    Full Text Available While the vibrational thermodynamics of materials with small anharmonicity at low temperatures has been understood well based on the harmonic phonons approximation, at high temperatures, this understanding must accommodate how phonons interact with other phonons or with other excitations. To date the anharmonic lattice dynamics is poorly understood despite its great importance, and most studies still rely on the quasiharmonic approximations. We shall see that the phonon-phonon interactions give rise to interesting coupling problems and essentially modify the equilibrium and nonequilibrium properties of materials, for example, thermal expansion, thermodynamic stability, heat capacity, optical properties, thermal transport, and other nonlinear properties of materials. The review aims to introduce some recent developements of computational methodologies that are able to efficiently model the strong phonon anharmonicity based on quantum perturbation theory of many-body interactions and first-principles molecular dynamics simulations. The effective potential energy surface of renormalized phonons and structures of the phonon-phonon interaction channels can be derived from these interdependent methods, which provide both macroscopic and microscopic perspectives in analyzing the strong anharmonic phenomena while the traditional harmonic models fail dramatically. These models have been successfully performed in the studies on the temperature-dependent broadenings of Raman and neutron scattering spectra, high temperature phase stability, and negative thermal expansion of rutile and cuprite structures, for example.

  3. A study of anharmonic al and nonlinear behaviours of vibrations of atomic nuclei; Etude des comportements anharmonioques et non lineaires des vibrations des noyaux atomiques

    Energy Technology Data Exchange (ETDEWEB)

    Volpe, M.C. [Caen Univ., 14 (France)


    Double Giant Resonances, vibrational states in which a Giant Resonance is excited on top of another Giant Resonance, have been in the last years the object of many theories and studies. Whereas the measured energies and widths of these states agree with a theoretical predictions, the measured excitation cross sections on the other hand are almost always larger than the calculated ones. The standard theoretical approaches are based both on a harmonic approximation for the collective motion on the nucleus and on its linear response to an external field. In this work the influence of anharmonicities and non-linearities in the external field on the excitation of Double Giant Resonances are studied. First, an oscillator model and an extension of the Lipkin-Meshkow-Glick model are used to study the effects of anharmonicities and non-linearities on the excitation probabilities. The results show that these terms can influence the excitation probability of the second excited state in a significant way. Secondly, these exactly soluble schematic models are used to study some of the approximations made in microscopic calculations based on boson expansion methods and also some aspects on the time-dependent mean field approach. Finally, a microscopic calculation of the Coulomb excitation cross sections of Double Giant Resonances is presented for several nuclei. It is found that, for {sup 208} Pb, the inclusion of anharmonicities and non-linearities and the consideration of many states that play a role in the excitation process give a satisfactory agreement between calculated and observed cross sections. (author). 113 refs.

  4. Anharmonic force field and vibrational frequencies of tetrafluoromethane (CF4) and tetrafluorosilane (SiF4) (United States)

    Wang, Xiao-Gang; Sibert, Edwin L.; Martin, Jan M. L.


    Accurate quartic anharmonic force fields for CF4 and SiF4 have been calculated using the CCSD(T) method and basis sets of spdf quality. Based on the ab initio force field with a minor empirical adjustment, the vibrational energy levels of these two molecules and their isotopomers are calculated by means of high order Canonical Van Vleck Perturbation Theory (CVPT) based on curvilinear coordinates. The calculated energies agree very well with the experimental data. The full quadratic force field of CF4 is further refined to the experimental data. The symmetrization of the Cartesian basis for arbitrary combination bands of Td group molecules is discussed using the circular promotion operator for the doubly degenerate modes, together with tabulated vector coupling coefficients. The extraction of the spectroscopic constants from our second order transformed Hamiltonian in curvilinear coordinates is discussed, and compared to a similar procedure in rectilinear coordinates.

  5. Jacobian elliptic wave solutions in an anharmonic molecular crystal model

    International Nuclear Information System (INIS)

    Teh, C.G.R.; Lee, B.S.; Koo, W.K.


    Explicit Jacobian elliptic wave solutions are found in the anharmonic molecular crystal model for both the continuum limit and discrete modes. This class of wave solutions include the famous pulse-like and kink-like solitary modes. We would also like to report on the existence of some highly discrete staggered solitary wave modes not found in the continuum limit. (author). 9 refs, 1 fig

  6. A quantum anharmonic oscillator model for the stock market (United States)

    Gao, Tingting; Chen, Yu


    A financially interpretable quantum model is proposed to study the probability distributions of the stock price return. The dynamics of a quantum particle is considered an analog of the motion of stock price. Then the probability distributions of price return can be computed from the wave functions that evolve according to Schrodinger equation. Instead of a harmonic oscillator in previous studies, a quantum anharmonic oscillator is applied to the stock in liquid market. The leptokurtic distributions of price return can be reproduced by our quantum model with the introduction of mixed-state and multi-potential. The trend following dominant market, in which the price return follows a bimodal distribution, is discussed as a specific case of the illiquid market.

  7. Investigation of the vibrational spectrum of SbSeI crystals in harmonic and in the anharmonic approximations

    International Nuclear Information System (INIS)

    Audzijonis, A.; Klingshirn, C.; Zigas, L.; Goppert, M.; Pauliukas, A.; Zaltauskas, R.; Cerskus, A.; Kvedaravicius, A.


    The reflectivity spectrum R(ω) of SbSeI crystals was experimentally studied in the spectral range of 10-300cm -1 over a wide range of temperatures (10-297K) with light polarization E-c and E-c . The spectra of optical constants and optical functions were calculated using the Kramers-Kronig and optical parameter fitting methods. The dependence of the frequencies ω T and ω L of the low-frequency B 1u mode (for E-c) on temperature was obtained from the experiment. From spectra ll (ω) and Im( -1 )(ω) the frequencies ω L and ω T of B 1u normal modes were found at temperatures 10-297K. The frequencies of normal modes and amplitudes of normal coordinates were calculated by diagonalization of the dynamical matrix in harmonic approximation. The properties of the low-frequency B 1u mode are explained in anharmonic approximation by employing the average potential energy function V(z). The latter is strongly anharmonic and thus causes the frequency of this mode to show a quite strong temperature dependence. The interaction between phonons creates the anharmonicity of low-frequency B 1u vibrational mode

  8. Infrared and Raman Spectroscopy of Eugenol, Isoeugenol, and Methyl Eugenol: Conformational Analysis and Vibrational Assignments from Density Functional Theory Calculations of the Anharmonic Fundamentals. (United States)

    Chowdhry, Babur Z; Ryall, John P; Dines, Trevor J; Mendham, Andrew P


    IR and Raman spectra of eugenol, isoeugenol and methyl eugenol have been obtained in the liquid phase. Vibrational spectroscopic results are discussed in relation to computed structures and spectra of the low energy conformations of these molecules obtained from DFT calculations at the B3LYP/cc-pVTZ level. Although computed differences in vibrational spectra for the different conformers were generally small, close examination, in conjunction with the experimental spectra, enabled conformational analysis of all three molecules. Anharmonic contributions to computed vibrational spectra were obtained from calculations of cubic and quartic force constants at the B3LYP/DZ level. This permitted the determination of the anharmonic fundamentals for comparison with the experimental IR and Raman band positions, leading to an excellent fit between calculated and experimental spectra. Band assignments were obtained in terms of potential energy distributions (ped's).

  9. Systematic studies of molecular vibrational anharmonicity and vibration-rotation interaction by self-consistent-field higher derivative methods: Applications to asymmetric and symmetric top and linear polyatomic molecules

    Energy Technology Data Exchange (ETDEWEB)

    Clabo, D.A. Jr.


    Inclusion of the anharmonicity normal mode vibrations (i.e., the third and fourth (and higher) derivatives of a molecular Born-Oppenheimer potential energy surface) is necessary in order to theoretically reproduce experimental fundamental vibrational frequencies of a molecule. Although ab initio determinations of harmonic vibrational frequencies may give errors of only a few percent by the inclusion of electron correlation within a large basis set for small molecules, in general, molecular fundamental vibrational frequencies are more often available from high resolution vibration-rotation spectra. Recently developed analytic third derivatives methods for self-consistent-field (SCF) wavefunctions have made it possible to examine with previously unavailable accuracy and computational efficiency the anharmonic force fields of small molecules.

  10. Systematic studies of molecular vibrational anharmonicity and vibration-rotation interaction by self-consistent-field higher derivative methods: Applications to asymmetric and symmetric top and linear polyatomic molecules

    International Nuclear Information System (INIS)

    Clabo, D.A. Jr.


    Inclusion of the anharmonicity normal mode vibrations [i.e., the third and fourth (and higher) derivatives of a molecular Born-Oppenheimer potential energy surface] is necessary in order to theoretically reproduce experimental fundamental vibrational frequencies of a molecule. Although ab initio determinations of harmonic vibrational frequencies may give errors of only a few percent by the inclusion of electron correlation within a large basis set for small molecules, in general, molecular fundamental vibrational frequencies are more often available from high resolution vibration-rotation spectra. Recently developed analytic third derivatives methods for self-consistent-field (SCF) wavefunctions have made it possible to examine with previously unavailable accuracy and computational efficiency the anharmonic force fields of small molecules

  11. Near IR overtone spectral investigations of cyclohexanol using local mode model--evidence for variation of anharmonicity with concentration due to hydrogen bonding. (United States)

    John, Usha; Nair, K P R


    The near infrared vibrational overtone absorption spectrum of liquid phase cyclohexanol in carbon tetrachloride in different concentrations are examined in the region Deltav=2, 3 and 4. The free and bonded OH local mode mechanical frequency values and anharmonicity values obtained from fitting the overtones are analysed. The observation supports the conclusions drawn from earlier experimental studies on anharmonicity variation of OH-stretching vibrations of alcohols due to intermolecular hydrogen bonding. Our observation is also in agreement with the ab initio calculations on water dimer and trimer. Mechanical anharmonicity of bonded OH-stretching bands tends to increase as a consequence of strong hydrogen bonding at higher concentrations.

  12. The Transition from Hydrogen Bonding to Ionization in (HCI)n(NH3)n and (HCI)n(H2O)n Clusters: Consequences for Anharmonic Vibrational Spectroscopy (United States)

    Chaban, Galina M.; Gerber, R. Benny; Janda, Kenneth C.; Kwak, Dochan (Technical Monitor)


    Anharmonic vibrational frequencies and intensities are calculated for 1:1 and 2:2 (HCl)(sub n)(NH3)(sub n) and (HCl)(sub n)(H2O)(sub n) complexes, employing the correlation-corrected vibrational self-consistent field method with ab initio potential surfaces at the MP2/TZP computational level. In this method, the anharmonic coupling between all vibrational modes is included, which is found to be important for the systems studied. For the 4:4 (HCl)(sub n)(H2O)(sub n) complex, the vibrational spectra are calculated at the harmonic level, and anharmonic effects are estimated. Just as the (HCl)(sub n)(NH3)(sub n) structure switches from hydrogen-bonded to ionic for n=2, the (HCl)(sub n)(H2O)(sub n) switches to ionic structure for n=4. For (HCl)2(H2O)2, the lowest energy structure corresponds to the hydrogen-bonded form. However, configurations of the ionic form are separated from this minimum by a barrier of less than an O-H stretching quantum. This suggests the possibility of experiments on ionization dynamics using infrared excitation of the hydrogen-bonded form. The strong cooperative effects on the hydrogen bonding, and concomitant transition to ionic bonding, makes an accurate estimate of the large anharmonicity crucial for understanding the infrared spectra of these systems. The anharmonicity is typically of the order of several hundred wave numbers for the proton stretching motions involved in hydrogen or ionic bonding, and can also be quite large for the intramolecular modes. In addition, the large cooperative effects in the 2:2 and higher order (HCl(sub n)(H2O)(sub n) complexes may have interesting implications for solvation of hydrogen halides at ice surfaces.

  13. Kinematic anharmonicity of internal rotation of molecules

    International Nuclear Information System (INIS)

    Bataev, V.A.; Pupyshev, V.I.; Godunov, I.A.


    The methods of analysis the strongly coupled vibrations are proposed for a number of molecules of aromatic and heterocyclic carbonyl (and some others) compounds. The qualitative principles are formulated for molecular systems with a significant kinematic anharmonicity.

  14. Fermi resonance and strong anharmonic effects in the absorption spectra of the ν-OH ( ν-OD) vibration of solid H- and D-benzoic acid (United States)

    Yaremko, A. M.; Ratajczak, H.; Barnes, A. J.; Baran, J.; Durlak, P.; Latajka, Z.


    The vibrational spectra of polycrystalline benzoic acid (BA) and its deuterated derivative were studied over the wide frequency region 4000-10 cm -1 by IR and Raman methods. A theoretical analysis of the hydrogen bond frequency region and calculations at the B3LYP/6-311++G(2d, 2p) level for the benzoic acid cyclic dimer in the gas phase were made. In order to study the dynamics of proton transfer two formalisms were applied: Car-Parrinello Molecular Dynamics (CPMD) and Path Integrals Molecular Dynamics (PIMD). It was shown that the experimentally observed very broad ν-OH band absorption is the result of complex anharmonic interaction: Fermi resonance between the OH-stretching and bending vibrations and strong interaction of the ν-OH stretching with the low frequency phonons. The theoretical analysis in the framework of such an approach gave a good correlation with experiment. From the CPMD calculations it was confirmed that the O-H⋯O bridge is not rigid, with the O⋯O distance being described by a large amplitude motion. For the benzoic acid dimer we observed stepwise (asynchronous) proton transfer.

  15. Anharmonic vibrational analysis of s-trans and s-cis conformers of acryloyl fluoride using numerical-analytic Van Vleck operator perturbation theory (United States)

    Krasnoshchekov, Sergey V.; Craig, Norman C.; Koroleva, Lidiya A.; Stepanov, Nikolay F.


    A new gas-phase infrared (IR) spectrum of acryloyl fluoride (ACRF, CH2dbnd CHsbnd CFdbnd O) with a resolution of 0.1 cm- 1 in the range 4000-450 cm- 1 was measured. Theoretical ab initio molecular structures, full quartic potential energy surfaces (PES), and cubic surfaces of dipole moments and polarizability tensor components (electro-optical properties, EOP) of the s-trans and s-cis conformers of the ACRF were calculated by the second-order Møller-Plesset electronic perturbation theory with a correlation consistent Dunning triple-ζ basis set. The numerical-analytic implementation of the second-order operator canonical Van Vleck perturbation theory was employed for predicting anharmonic IR and Raman scattering (RS) spectra of ACRF. To improve the anharmonic predictions, harmonic frequencies were replaced by their counterparts evaluated with the higher-level CCSD(T)/cc-pVTZ model, to form a ;hybrid; PES. The original operator representation of the Hamiltonian is analytically reduced to a quasi-diagonal form, integrated in the harmonic oscillator basis and diagonalized to account for strong resonance couplings. Double canonical transformations of EOP expansions enabled prediction of integral intensities of both fundamental and multi-quanta transitions in IR/RS spectra. Enhanced band shape analysis reinforced the assignments. A thorough interpretation of the new IR experimental spectra and existing matrix-isolation literature data for the mixture of two conformers of ACRF was accomplished, and a number of assignments clarified.

  16. Model Indepedent Vibration Control


    Yuan, Jing


    A NMIFC system is proposed for broadband vibration control. It has two important features. Feature F1 is that the NMIFC is stable without introducing any invasive effects, such as probing signals or controller perturbations, into the vibration system; feature F2 is

  17. Anharmonic contributions in ZnS powder diagrams

    International Nuclear Information System (INIS)

    Boysen, H.; Steger, G.; Hewat, A.W.; Buevoz, J.L.


    In ZnS contributions from third order anharmonic thermal vibrations are important at high temperatures being proportional to T 2 . Neutron powder measurements at different temperatures confirm this behavior. The magnitude of the temperature independent anharmonicity parameter is similar to that from a single crystal determination at room temperature

  18. Effective harmonic oscillator description of anharmonic molecular ...

    Indian Academy of Sciences (India)

    ... a harmonic oscillator eigenfunction with the centroid and width parameter as variational paraeters. It is found that the effective harmonic oscillator approximation provides a description of the anharmonic eigenstates very similar to the vibrational self consistent field results. Coriolis coupling is also included in these studies.

  19. Effective harmonic oscillator description of anharmonic molecular ...

    Indian Academy of Sciences (India)


    function as a harmonic oscillator eigenfunction with the centroid and width parameter as variational para- eters. It is found that the effective harmonic oscillator approximation provides a description of the anharmonic eigenstates very similar to the vibrational self consistent field results. Coriolis coupling is also included in ...

  20. Anharmonicity and hydrogen bonding in electrooptic sucrose crystal (United States)

    Szostak, M. M.; Giermańska, J.


    The polarized absorption spectra of the sucrose crystal in the 5300 - 7300 cm -1 region have been measured. The assignments of all the eight OH stretching overtones are proposed and their mechanical anharmonicities are estimated. The discrepancies from the oriented gas model (OGM) in the observed relative band intensities, especially of the -CH vibrations, are assumed to be connected with vibronic couplings enhanced by the helical arrangement of molecules joined by hydrogen bondings. It seems that this kind of interactions might be important for the second harmonic generation (SHG) by the sucrose crystal.

  1. Quantum effects and anharmonicity in the H2-Li(+)-benzene complex: a model for hydrogen storage materials. (United States)

    Kolmann, Stephen J; D'Arcy, Jordan H; Jordan, Meredith J T


    Quantum and anharmonic effects are investigated in H2-Li(+)-benzene, a model for hydrogen adsorption in metal-organic frameworks and carbon-based materials. Three- and 8-dimensional quantum diffusion Monte Carlo (QDMC) and rigid-body diffusion Monte Carlo (RBDMC) simulations are performed on potential energy surfaces interpolated from electronic structure calculations at the M05-2X/6-31+G(d,p) and M05-2X/6-311+G(2df,p) levels of theory using a three-dimensional spline or a modified Shepard interpolation. These calculations investigate the intermolecular interactions in this system, with three- and 8-dimensional 0 K H2 binding enthalpy estimates, ΔH(bind) (0 K), being 16.5 kJ mol(-1) and 12.4 kJ mol(-1), respectively: 0.1 and 0.6 kJ mol(-1) higher than harmonic values. Zero-point energy effects are 35% of the value of ΔH(bind) (0 K) at M05-2X/6-311+G(2df,p) and cannot be neglected; uncorrected electronic binding energies overestimate ΔHbind (0 K) by at least 6 kJ mol(-1). Harmonic intermolecular binding enthalpies can be corrected by treating the H2 "helicopter" and "ferris wheel" rotations as free and hindered rotations, respectively. These simple corrections yield results within 2% of the 8-dimensional anharmonic calculations. Nuclear ground state probability density histograms obtained from the QDMC and RBDMC simulations indicate the H2 molecule is delocalized above the Li(+)-benzene system at 0 K.

  2. Quantum effects and anharmonicity in the H2-Li+-benzene complex: A model for hydrogen storage materials (United States)

    Kolmann, Stephen J.; D'Arcy, Jordan H.; Jordan, Meredith J. T.


    Quantum and anharmonic effects are investigated in H2-Li+-benzene, a model for hydrogen adsorption in metal-organic frameworks and carbon-based materials. Three- and 8-dimensional quantum diffusion Monte Carlo (QDMC) and rigid-body diffusion Monte Carlo (RBDMC) simulations are performed on potential energy surfaces interpolated from electronic structure calculations at the M05-2X/6-31+G(d,p) and M05-2X/6-311+G(2df,p) levels of theory using a three-dimensional spline or a modified Shepard interpolation. These calculations investigate the intermolecular interactions in this system, with three- and 8-dimensional 0 K H2 binding enthalpy estimates, ΔHbind (0 K), being 16.5 kJ mol-1 and 12.4 kJ mol-1, respectively: 0.1 and 0.6 kJ mol-1 higher than harmonic values. Zero-point energy effects are 35% of the value of ΔHbind (0 K) at M05-2X/6-311+G(2df,p) and cannot be neglected; uncorrected electronic binding energies overestimate ΔHbind (0 K) by at least 6 kJ mol-1. Harmonic intermolecular binding enthalpies can be corrected by treating the H2 "helicopter" and "ferris wheel" rotations as free and hindered rotations, respectively. These simple corrections yield results within 2% of the 8-dimensional anharmonic calculations. Nuclear ground state probability density histograms obtained from the QDMC and RBDMC simulations indicate the H2 molecule is delocalized above the Li+-benzene system at 0 K.

  3. Pressure dependence of the elastic constants and vibrational anharmonicity of Pd sub 3 sub 9 Ni sub 1 sub 0 Cu sub 3 sub 0 P sub 2 sub 1 bulk metallic glass

    CERN Document Server

    Wang Li; Sun, L L; Wang, W H; Wang, W K


    The pressure dependence of the acoustic velocities of a Pd sub 3 sub 9 Ni sub 1 sub 0 Cu sub 3 sub 0 P sub 2 sub 1 bulk metallic glass have been investigated up to 0.5 GPa at room temperature with the pulse echo overlap method. Two independent second-order elastic coefficients C sub 1 sub 1 and C sub 4 sub 4 and their pressure derivatives are yielded. The vibrational anharmonicity is shown by calculating both the acoustic mode Grueneisen parameters in the long-wavelength limit and the thermal Grueneisen parameter, and this result is compared with that for the Pd sub 4 sub 0 Ni sub 4 sub 0 P sub 2 sub 0 bulk glass.

  4. Low-temperature anharmonicity in cesium chloride (CsCl)

    Energy Technology Data Exchange (ETDEWEB)

    Sist, Mattia; Faerch Fischer, Karl Frederik; Brummerstedt Iversen, Bo [Center for Materials Crystallography, Department of Chemistry and iNANO, Aarhus University (Denmark); Kasai, Hidetaka [Center for Materials Crystallography, Department of Chemistry and iNANO, Aarhus University (Denmark); Faculty of Pure and Applied Sciences, TIMS and CiRfSE, University of Tsukuba (Japan)


    Anharmonic lattice vibrations govern heat transfer in materials, and anharmonicity is commonly assumed to be dominant at high temperature. The textbook cubic ionic defect-free crystal CsCl is shown to have an unexplained low thermal conductivity at room temperature (ca. 1 W/(m K)), which increases to around 13 W/(m K) at 25 K. Through high-resolution X-ray diffraction it is unexpectedly shown that the Cs atomic displacement parameter becomes anharmonic at 20 K. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Anharmonic bend-stretch coupling in neat liquid water

    NARCIS (Netherlands)

    Lindner, Joerg; Cringus, Dan; Pshenichnikov, Maxim S.; Voehringer, Peter


    Femtosecond mid-IR spectroscopy is used to study the vibrational relaxation dynamics in neat liquid water. By exciting the bending vibration and probing the stretching mode, it is possible to reliably determine the bending and librational lifetimes of water. The anharmonic coupling between the

  6. Modeling Displacement Measurement using Vibration Transducers

    Directory of Open Access Journals (Sweden)

    AGOSTON Katalin


    Full Text Available This paper presents some aspects regarding to small displacement measurement using vibration transducers. Mechanical faults, usages, slackness’s, cause different noises and vibrations with different amplitude and frequency against the normal sound and movement of the equipment. The vibration transducers, accelerometers and microphone are used for noise and/or sound and vibration detection with fault detection purpose. The output signal of the vibration transducers or accelerometers is an acceleration signal and can be converted to either velocity or displacement, depending on the preferred measurement parameter. Displacement characteristics are used to indicate when the machine condition has changed. There are many problems using accelerometers to measure position or displacement. It is important to determine displacement over time. To determinate the movement from acceleration a double integration is needed. A transfer function and Simulink model was determinate for accelerometers with capacitive sensing element. Using these models the displacement was reproduced by low frequency input.

  7. The modelling of industrial robot manipulator vibration

    Energy Technology Data Exchange (ETDEWEB)

    Marcham, L.J.; Rao, B.K.N.; Noroozi, S.; Penson, R.P. [Southampton Inst. (United Kingdom). Systems Engineering Research Centre


    The work reported in this paper addresses the modelling of robot manipulator vibration, with the specific aim of producing a model suitable to be employed within an active compensation controller. An overview of existing work on the modelling of robot dynamics, both mathematically and empirically, is reported. A model of the dynamics of an industrial manipulator, inclusive of vibration, derived using Lagrangian mechanics is presented and further developed through the application of experimental modal analysis, by which the position dependent modal parameters of an industrial robot manipulator are determined. The model results are compared with experimental vibration data taken from the end-effector of a PUMA562C industrial manipulator using laser interferometry. Control of an end-effector located, active compensator for vibration suppression, based upon the derived model is discussed and recommendations which form the basis of further investigations, currently being undertaken, are presented.

  8. On Kinetics Modeling of Vibrational Energy Transfer (United States)

    Gilmore, John O.; Sharma, Surendra P.; Cavolowsky, John A. (Technical Monitor)


    Two models of vibrational energy exchange are compared at equilibrium to the elementary vibrational exchange reaction for a binary mixture. The first model, non-linear in the species vibrational energies, was derived by Schwartz, Slawsky, and Herzfeld (SSH) by considering the detailed kinetics of vibrational energy levels. This model recovers the result demanded at equilibrium by the elementary reaction. The second model is more recent, and is gaining use in certain areas of computational fluid dynamics. This model, linear in the species vibrational energies, is shown not to recover the required equilibrium result. Further, this more recent model is inconsistent with its suggested rate constants in that those rate constants were inferred from measurements by using the SSH model to reduce the data. The non-linear versus linear nature of these two models can lead to significant differences in vibrational energy coupling. Use of the contemporary model may lead to significant misconceptions, especially when integrated in computer codes considering multiple energy coupling mechanisms.

  9. Phonon density of states and anharmonicity of UO2 (United States)

    Pang, Judy W. L.; Chernatynskiy, Aleksandr; Larson, Bennett C.; Buyers, William J. L.; Abernathy, Douglas L.; McClellan, Kenneth J.; Phillpot, Simon R.


    Phonon density of states (PDOS) measurements have been performed on polycrystalline UO2 at 295 and 1200 K using time-of-flight inelastic neutron scattering to investigate the impact of anharmonicity on the vibrational spectra and to benchmark ab initio PDOS simulations performed on this strongly correlated Mott insulator. Time-of-flight PDOS measurements include anharmonic linewidth broadening, inherently, and the factor of ˜7 enhancement of the oxygen spectrum relative to the uranium component by the increased neutron sensitivity to the oxygen-dominated optical phonon modes. The first-principles simulations of quasiharmonic PDOS spectra were neutron weighted and anharmonicity was introduced in an approximate way by convolution with wave-vector-weighted averages over our previously measured phonon linewidths for UO2, which are provided in numerical form. Comparisons between the PDOS measurements and the simulations show reasonable agreement overall, but they also reveal important areas of disagreement for both high and low temperatures. The discrepancies stem largely from a ˜10 meV compression in the overall bandwidth (energy range) of the oxygen-dominated optical phonons in the simulations. A similar linewidth-convoluted comparison performed with the PDOS spectrum of Dolling et al. obtained by shell-model fitting to their historical phonon dispersion measurements shows excellent agreement with the time-of-flight PDOS measurements reported here. In contrast, we show by comparisons of spectra in linewidth-convoluted form that recent first-principles simulations for UO2 fail to account for the PDOS spectrum determined from the measurements of Dolling et al. These results demonstrate PDOS measurements to be stringent tests for ab inito simulations of phonon physics in UO2 and they indicate further the need for advances in theory to address the lattice dynamics of UO2.

  10. E x circle epsilon Jahn-Teller anharmonic coupling for an octahedral system

    CERN Document Server

    Avram, N M; Kibler, M R


    The coupling between doubly degenerate electronic states and doubly degenerate vibrations is analyzed for an octahedral system on the basis of the introduction of an anharmonic Morse potential for the vibronic part. The vibrations are described by anharmonic coherent states and their linear coupling with the electronic states is considered. The matrix elements of the vibronic interaction are built and the energy levels corresponding to the interaction Hamiltonian are derived.

  11. Modelling chaotic vibrations using NASTRAN (United States)

    Sheerer, T. J.


    Due to the unavailability and, later, prohibitive cost of the computational power required, many phenomena in nonlinear dynamic systems have in the past been addressed in terms of linear systems. Linear systems respond to periodic inputs with periodic outputs, and may be characterized in the time domain or in the frequency domain as convenient. Reduction to the frequency domain is frequently desireable to reduce the amount of computation required for solution. Nonlinear systems are only soluble in the time domain, and may exhibit a time history which is extremely sensitive to initial conditions. Such systems are termed chaotic. Dynamic buckling, aeroelasticity, fatigue analysis, control systems and electromechanical actuators are among the areas where chaotic vibrations have been observed. Direct transient analysis over a long time period presents a ready means of simulating the behavior of self-excited or externally excited nonlinear systems for a range of experimental parameters, either to characterize chaotic behavior for development of load spectra, or to define its envelope and preclude its occurrence.

  12. Nonlinear (Anharmonic Casimir Oscillator

    Directory of Open Access Journals (Sweden)

    Habibollah Razmi


    Full Text Available We want to study the dynamics of a simple linear harmonic micro spring which is under the influence of the quantum Casimir force/pressure and thus behaves as a (an nonlinear (anharmonic Casimir oscillator. Generally, the equation of motion of this nonlinear micromechanical Casimir oscillator has no exact solvable (analytical solution and the turning point(s of the system has (have no fixed position(s; however, for particular values of the stiffness of the micro spring and at appropriately well-chosen distance scales and conditions, there is (are approximately sinusoidal solution(s for the problem (the variable turning points are collected in a very small interval of positions. This, as a simple and elementary plan, may be useful in controlling the Casimir stiction problem in micromechanical devices.

  13. Monitoring Vibration of A Model of Rotating Machine

    Directory of Open Access Journals (Sweden)

    Arko Djajadi


    Full Text Available Mechanical movement or motion of a rotating machine normally causes additional vibration. A vibration sensing device must be added to constantly monitor vibration level of the system having a rotating machine, since the vibration frequency and amplitude cannot be measured quantitatively by only sight or touch. If the vibration signals from the machine have a lot of noise, there are possibilities that the rotating machine has defects that can lead to failure. In this experimental research project, a vibration structure is constructed in a scaled model to simulate vibration and to monitor system performance in term of vibration level in case of rotation with balanced and unbalanced condition. In this scaled model, the output signal of the vibration sensor is processed in a microcontroller and then transferred to a computer via a serial communication medium, and plotted on the screen with data plotter software developed using C language. The signal waveform of the vibration is displayed to allow further analysis of the vibration. Vibration level monitor can be set in the microcontroller to allow shutdown of the rotating machine in case of excessive vibration to protect the rotating machine from further damage. Experiment results show the agreement with theory that unbalance condition on a rotating machine can lead to larger vibration amplitude compared to balance condition. Adding and reducing the mass for balancing can be performed to obtain lower vibration level. 

  14. Quantum effects and anharmonicity in the H{sub 2}-Li{sup +}-benzene complex: A model for hydrogen storage materials

    Energy Technology Data Exchange (ETDEWEB)

    Kolmann, Stephen J.; D' Arcy, Jordan H.; Jordan, Meredith J. T., E-mail: [School of Chemistry, The University of Sydney, NSW 2006 (Australia)


    Quantum and anharmonic effects are investigated in H{sub 2}-Li{sup +}-benzene, a model for hydrogen adsorption in metal-organic frameworks and carbon-based materials. Three- and 8-dimensional quantum diffusion Monte Carlo (QDMC) and rigid-body diffusion Monte Carlo (RBDMC) simulations are performed on potential energy surfaces interpolated from electronic structure calculations at the M05-2X/6-31+G(d,p) and M05-2X/6-311+G(2df,p) levels of theory using a three-dimensional spline or a modified Shepard interpolation. These calculations investigate the intermolecular interactions in this system, with three- and 8-dimensional 0 K H{sub 2} binding enthalpy estimates, ΔH{sub bind} (0 K), being 16.5 kJ mol{sup −1} and 12.4 kJ mol{sup −1}, respectively: 0.1 and 0.6 kJ mol{sup −1} higher than harmonic values. Zero-point energy effects are 35% of the value of ΔH{sub bind} (0 K) at M05-2X/6-311+G(2df,p) and cannot be neglected; uncorrected electronic binding energies overestimate ΔH{sub bind} (0 K) by at least 6 kJ mol{sup −1}. Harmonic intermolecular binding enthalpies can be corrected by treating the H{sub 2} “helicopter” and “ferris wheel” rotations as free and hindered rotations, respectively. These simple corrections yield results within 2% of the 8-dimensional anharmonic calculations. Nuclear ground state probability density histograms obtained from the QDMC and RBDMC simulations indicate the H{sub 2} molecule is delocalized above the Li{sup +}-benzene system at 0 K.

  15. Model Predictive Vibration Control Efficient Constrained MPC Vibration Control for Lightly Damped Mechanical Structures

    CERN Document Server

    Takács, Gergely


    Real-time model predictive controller (MPC) implementation in active vibration control (AVC) is often rendered difficult by fast sampling speeds and extensive actuator-deformation asymmetry. If the control of lightly damped mechanical structures is assumed, the region of attraction containing the set of allowable initial conditions requires a large prediction horizon, making the already computationally demanding on-line process even more complex. Model Predictive Vibration Control provides insight into the predictive control of lightly damped vibrating structures by exploring computationally efficient algorithms which are capable of low frequency vibration control with guaranteed stability and constraint feasibility. In addition to a theoretical primer on active vibration damping and model predictive control, Model Predictive Vibration Control provides a guide through the necessary steps in understanding the founding ideas of predictive control applied in AVC such as: ·         the implementation of ...

  16. Lattice Vibrations in Chlorobenzenes:

    DEFF Research Database (Denmark)

    Reynolds, P. A.; Kjems, Jørgen; White, J. W.


    Lattice vibrational dispersion curves for the ``intermolecular'' modes in the triclinic, one molecule per unit cell β phase of p‐C6D4Cl2 and p‐C6H4Cl2 have been obtained by inelastic neutron scattering. The deuterated sample was investigated at 295 and at 90°K and a linear extrapolation to 0°K...... was applied in order to correct for anharmonic effects. Calculations based on the atom‐atom model for van der Waals' interaction and on general potential parameters for the aromatic compounds agree reasonably well with the experimental observations. There is no substantial improvement in fit obtained either...

  17. Studying and Modeling Vibration Transducers and Accelerometers

    Directory of Open Access Journals (Sweden)

    Katalin Ágoston


    Full Text Available This paper presents types and operating mode of vibration sensors. Piezoelectric sensing elements are often used in accelerometers. It will be investigate the structure and transfer function of the seismic mass type sensing element. The article presents how the piezoelectric sensing element works and how can be modeled with an electronic circuit. The transfer functions of the electronic circuit models are studied in Matlab and the results are presented. It will be presented the influence of the seismic mass on the accelerometer’s working frequency domain.

  18. Numerical Modelling of Rubber Vibration Isolators: identification of material parameters

    NARCIS (Netherlands)

    Beijers, C.A.J.; Noordman, Bram; de Boer, Andries; Ivanov, N.I.; Crocker, M.J.


    Rubber vibration isolators are used for vibration isolation of engines at high frequencies. To make a good prediction regarding the characteristics of a vibration isolator in the design process, numerical models can be used. However, for a reliable prediction of the dynamic behavior of the isolator,

  19. Nuclear surface vibrations in bag models

    International Nuclear Information System (INIS)

    Tomio, L.


    The main difficulties found in the hadron bag models are reviewed from the original version of the MIT bag model. Following, with the aim to answer two of the main difficulties in bag models, viz., the parity and the divergence illness, a dynamical model is presented. In the model, the confinement surface of the quarks (bag) is treated like a real physical object which interacts with the quarks and is exposed to vibrations. The model is applied to the nucleon, being observed that his spectrum, in the first excited levels, can be reproduced with resonable precision and obeying to the correct parity order. In the same way that in a similar work of Brown et al., it is observed to be instrumental the inclusion of the effect due to pions. (L.C.) [pt


    Directory of Open Access Journals (Sweden)

    Mathieu LADONNE


    Full Text Available The number of multi-materials staking configurations for aeronautical structures is increasing, with the evolution of composite and metallic materials. For drilling the fastening holes, the processes of Vibration Assisted Drilling (VAD expand rapidly, as it permits to improve reliability of drilling operations on multilayer structures. Among these processes of VAD, the solution with forced vibrations added to conventional feed to create a discontinuous cutting is the more developed in industry. The back and forth movement allows to improve the evacuation of chips by breaking it. This technology introduces two new operating parameters, the frequency and the amplitude of the oscillation. To optimize the process, the choice of those parameters requires first to model precisely the operation cutting and dynamics. In this paper, a kinematic modelling of the process is firstly proposed. The limits of the model are analysed through comparison between simulations and measurements. The proposed model is used to develop a cutting force model that allows foreseeing the operating conditions which ensure good chips breaking and tool life improvement.

  1. Detecting anharmonicity at a glance

    International Nuclear Information System (INIS)

    Giliberti, M; Stellato, M; Barbieri, S; Cavinato, M; Rigon, E; Tamborini, M


    Harmonic motion is generally presented in such a way that most of the students believe that the small oscillations of a body are all harmonic. Since the situation is not actually so simple, and since the comprehension of harmonic motion is essential in many physical contexts, we present here some suggestions, addressed to undergraduate students and pre-service teachers, that allow one to find out at a glance the anharmonicity of a motion. Starting from a didactically motivated definition of harmonic motion, and stressing the importance of the interplay between mathematics and experiments, we give a four-point criterion for anharmonicity together with some emblematic examples. The role of linear damping is also analysed in relation to the gradual changing of harmonicity into anharmonicity when the ratio between the damping coefficient and the zero-friction angular frequency increases. (paper)

  2. Noise and Vibration Modeling for Anti-Lock Brake Systems (United States)

    Zhan, Wei

    A new methodology is proposed for noise and vibration analysis for Anti-Lock Brake Systems (ABS). First, a correlation between noise and vibration measurement data and simulation results need to be established. This relationship allows the engineers to focus on modeling and simulation instead of noise and vibration testing. A comprehensive ABS model is derived for noise and vibration study. The model can be set up to do different types of simulations for noise and vibration analysis. If some data is available from actual testing, then the test data can be easily imported into the model as an input to replace the corresponding part in the model. It is especially useful when the design needs to be modified, or trade-off between ABS performance and noise and vibration is necessary. The model can greatly reduce the time to market for ABS products. It also makes system level optimization possible.

  3. Diffusion mobility of the hydrogen atom with allowance for the anharmonic attenuation of migrating atom state

    Energy Technology Data Exchange (ETDEWEB)

    Kashlev, Y.A., E-mail:


    Evolution of vibration relaxation of hydrogen atoms in metals with the close-packed lattice at high and medium temperatures is investigated based on non-equilibrium statistical thermodynamics, in that number on using the retarded two-time Green function method. In accordance with main kinetic equation – the generalized Fokker- Plank- Kolmogorov equation, anharmonism of hydrogen atoms vibration in potential wells does not make any contribution to collision effects. It influences the relaxation processes at the expense of interference of fourth order anharmonism with single-phonon scattering on impurity hydrogen atoms. Therefore, the total relaxation time of vibration energy of system metal-hydrogen is written as a product of two factors: relaxation time of system in harmonic approximation and dimensionless anharmonic attenuation of quantum hydrogen state.

  4. Two-dimensional infrared spectroscopy of vibrational polaritons. (United States)

    Xiang, Bo; Ribeiro, Raphael F; Dunkelberger, Adam D; Wang, Jiaxi; Li, Yingmin; Simpkins, Blake S; Owrutsky, Jeffrey C; Yuen-Zhou, Joel; Xiong, Wei


    We report experimental 2D infrared (2D IR) spectra of coherent light-matter excitations--molecular vibrational polaritons. The application of advanced 2D IR spectroscopy to vibrational polaritons challenges and advances our understanding in both fields. First, the 2D IR spectra of polaritons differ drastically from free uncoupled excitations and a new interpretation is needed. Second, 2D IR uniquely resolves excitation of hybrid light-matter polaritons and unexpected dark states in a state-selective manner, revealing otherwise hidden interactions between them. Moreover, 2D IR signals highlight the impact of molecular anharmonicities which are applicable to virtually all molecular systems. A quantum-mechanical model is developed which incorporates both nuclear and electrical anharmonicities and provides the basis for interpreting this class of 2D IR spectra. This work lays the foundation for investigating phenomena of nonlinear photonics and chemistry of molecular vibrational polaritons which cannot be probed with traditional linear spectroscopy.

  5. Partial dynamical symmetry and anharmonicity in γ-soft nuclei

    International Nuclear Information System (INIS)

    Leviatan, A.


    The concept of dynamical symmetry (DS) is now widely accepted to be of central importance in our understanding of many-body systems, such as nuclei. Its hallmarks are the solvability of the complete spectrum, and the existence of exact quantum numbers for all eigenstates. However, in most applications to realistic systems, the predictions of an exact DS are rarely fulfilled and one is compelled to break it. More often one finds that the assumed symmetry is not obeyed uniformly, i.e., is fulfilled by only some states but not by others. The need to address such situations has led to the introduction of partial dynamical symmetries (PDSs). The essential idea is to relax the stringent conditions of complete solvability, so that the DS is broken, but part of the eigen spectrum remains solvable with good symmetry. Various types of bosonic and fermionic PDS, have been shown to be relevant to nuclear spectroscopy [1-7] and to quantum phase transitions [8]. In the present contribution we extend the notion of PDS to encompass Hamiltonians with higher-order terms. We present a systematic procedure for constructing such PDS Hamiltonians and demonstrate their relevance to the anharmonicity of excited bands in the -soft nucleus 1 96P t. The work, to be reported, was done in collaboration with J.E. Garcfa-Ramos (Huelva) and P. Van backer (GANIL) [9]. The SO(6)-DS limit of the interacting boson model (IBM) [10], provides a good description of the rotational spectrum and E2 rates for states in the ground band of 1 96P t [11]. However, the resulting fit to energies of excited bands is quite poor. The empirical anharmonicity of excited vibrational bands is large and negative. On the other hand, in the SO(6)-DS limit, the calculated anharmonicity is fixed by the number of valence nucleons, and is found to be in marked disagreement with the empirical value. A detailed study of double-phonon excitations within the IBM, has concluded that large anharmonicities can be incorporated only by

  6. Anharmonic Rovibrational Partition Functions for Fluxional Species at High Temperatures via Monte Carlo Phase Space Integrals

    Energy Technology Data Exchange (ETDEWEB)

    Jasper, Ahren W. [Chemical Sciences and Engineering; Gruey, Zackery B. [Chemical Sciences and Engineering; Harding, Lawrence B. [Chemical Sciences and Engineering; Georgievskii, Yuri [Chemical Sciences and Engineering; Klippenstein, Stephen J. [Chemical Sciences and Engineering; Wagner, Albert F. [Chemical Sciences and Engineering


    Monte Carlo phase space integration (MCPSI) is used to compute full dimensional and fully anharmonic, but classical, rovibrational partition functions for 22 small- and medium-sized molecules and radicals. Several of the species considered here feature multiple minima and low-frequency nonlocal motions, and efficiently sampling these systems is facilitated using curvilinear (stretch, bend, and torsion) coordinates. The curvilinear coordinate MCPSI method is demonstrated to be applicable to the treatment of fluxional species with complex rovibrational structures and as many as 21 fully coupled rovibrational degrees of freedom. Trends in the computed anharmonicity corrections are discussed. For many systems, rovibrational anharmonicities at elevated temperatures are shown to vary consistently with the number of degrees of freedom and with temperature once rovibrational coupling and torsional anharmonicity are accounted for. Larger corrections are found for systems with complex vibrational structures, such as systems with multiple large-amplitude modes and/or multiple minima.

  7. A vibration model for centrifugal contactors

    International Nuclear Information System (INIS)

    Leonard, R.A.; Wasserman, M.O.; Wygmans, D.G.


    Using the transfer matrix method, we created the Excel worksheet ''Beam'' for analyzing vibrations in centrifugal contactors. With this worksheet, a user can calculate the first natural frequency of the motor/rotor system for a centrifugal contactor. We determined a typical value for the bearing stiffness (k B ) of a motor after measuring the k B value for three different motors. The k B value is an important parameter in this model, but it is not normally available for motors. The assumptions that we made in creating the Beam worksheet were verified by comparing the calculated results with those from a VAX computer program, BEAM IV. The Beam worksheet was applied to several contactor designs for which we have experimental data and found to work well

  8. A vibration model for centrifugal contactors

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, R.A.; Wasserman, M.O.; Wygmans, D.G.


    Using the transfer matrix method, we created the Excel worksheet ``Beam`` for analyzing vibrations in centrifugal contactors. With this worksheet, a user can calculate the first natural frequency of the motor/rotor system for a centrifugal contactor. We determined a typical value for the bearing stiffness (k{sub B}) of a motor after measuring the k{sub B} value for three different motors. The k{sub B} value is an important parameter in this model, but it is not normally available for motors. The assumptions that we made in creating the Beam worksheet were verified by comparing the calculated results with those from a VAX computer program, BEAM IV. The Beam worksheet was applied to several contactor designs for which we have experimental data and found to work well.

  9. Transient vibration analytical modeling and suppressing for vibration absorber system under impulse excitation (United States)

    Wang, Xi; Yang, Bintang; Yu, Hu; Gao, Yulong


    The impulse excitation of mechanism causes transient vibration. In order to achieve adaptive transient vibration control, a method which can exactly model the response need to be proposed. This paper presents an analytical model to obtain the response of the primary system attached with dynamic vibration absorber (DVA) under impulse excitation. The impulse excitation which can be divided into single-impulse excitation and multi-impulse excitation is simplified as sinusoidal wave to establish the analytical model. To decouple the differential governing equations, a transform matrix is applied to convert the response from the physical coordinate to model coordinate. Therefore, the analytical response in the physical coordinate can be obtained by inverse transformation. The numerical Runge-Kutta method and experimental tests have demonstrated the effectiveness of the analytical model proposed. The wavelet of the response indicates that the transient vibration consists of components with multiple frequencies, and it shows that the modeling results coincide with the experiments. The optimizing simulations based on genetic algorithm and experimental tests demonstrate that the transient vibration of the primary system can be decreased by changing the stiffness of the DVA. The results presented in this paper are the foundations for us to develop the adaptive transient vibration absorber in the future.

  10. Anharmonic effects in the quantum cluster equilibrium method (United States)

    von Domaros, Michael; Perlt, Eva


    The well-established quantum cluster equilibrium (QCE) model provides a statistical thermodynamic framework to apply high-level ab initio calculations of finite cluster structures to macroscopic liquid phases using the partition function. So far, the harmonic approximation has been applied throughout the calculations. In this article, we apply an important correction in the evaluation of the one-particle partition function and account for anharmonicity. Therefore, we implemented an analytical approximation to the Morse partition function and the derivatives of its logarithm with respect to temperature, which are required for the evaluation of thermodynamic quantities. This anharmonic QCE approach has been applied to liquid hydrogen chloride and cluster distributions, and the molar volume, the volumetric thermal expansion coefficient, and the isobaric heat capacity have been calculated. An improved description for all properties is observed if anharmonic effects are considered.

  11. Comparison of Degrees of Potential-Energy-Surface Anharmonicity for Complexes and Clusters with Hydrogen Bonds (United States)

    Kozlovskaya, E. N.; Doroshenko, I. Yu.; Pogorelov, V. E.; Vaskivskyi, Ye. V.; Pitsevich, G. A.


    Previously calculated multidimensional potential-energy surfaces of the MeOH monomer and dimer, water dimer, malonaldehyde, formic acid dimer, free pyridine-N-oxide/trichloroacetic acid complex, and protonated water dimer were analyzed. The corresponding harmonic potential-energy surfaces near the global minima were constructed for series of clusters and complexes with hydrogen bonds of different strengths based on the behavior of the calculated multidimensional potential-energy surfaces. This enabled the introduction of an obvious anharmonicity parameter for the calculated potential-energy surfaces. The anharmonicity parameter was analyzed as functions of the size of the analyzed area near the energy minimum, the number of points over which energies were compared, and the dimensionality of the solved vibrational problem. Anharmonicity parameters for potential-energy surfaces in complexes with strong, medium, and weak H-bonds were calculated under identical conditions. The obtained anharmonicity parameters were compared with the corresponding diagonal anharmonicity constants for stretching vibrations of the bridging protons and the lengths of the hydrogen bridges.

  12. Fragility, anharmonicity and anelasticity of silver borate glasses

    International Nuclear Information System (INIS)

    Carini, Giovanni; Carini, Giuseppe; D'Angelo, Giovanna; Tripodo, Gaspare; Bartolotta, Antonio; Marco, Gaetano Di


    The fragility and the anharmonicity of (Ag 2 O) x (B 2 O 3 ) 1-x borate glasses have been quantified by measuring the change in the specific heat capacity at the glass transition temperature T g and the room-temperature thermodynamic Grueneisen parameter. Increasing the silver oxide content above X = 0.10 leads to an increase of both the parameters, showing that a growing fragility of a glass-forming liquid is predictive of an increasing overall anharmonicity of its glassy state. The attenuation and velocity of ultrasonic waves of frequencies in the range of 10-70 MHz have also been measured in silver borate glasses as a function of temperature between 1.5 and 300 K. The experimental data reveal anelastic behaviours which are governed by (i) quantum-mechanical tunnelling below 20 K (ii) thermally activated relaxations between 20 and 200 K and (iii) vibrational anharmonicity at even higher temperatures. Evaluation of tunnelling (C) and relaxation (C * ) strengths shows that C is independent of the structural changes affecting the borate network with increasing metal oxide content and is at least one order of magnitude smaller than C * . The latter observation implies that only a small fraction of the locally mobile defects are subjected to tunnelling motions

  13. Methyl group dynamics and the onset of anharmonicity in myoglobin. (United States)

    Krishnan, M; Kurkal-Siebert, V; Smith, Jeremy C


    The role of methyl groups in the onset of low-temperature anharmonic dynamics in a crystalline protein at low temperature is investigated using atomistic molecular dynamics (MD) simulation. Anharmonicity appears at approximately 150 K, far below the much-studied solvent-activated dynamical transition at approximately 220 K. A significant fraction of methyl groups exhibit nanosecond time scale rotational jump diffusion at 150 K. The splitting and shift in peak position of both the librational band (around 100 cm(-1)) and the torsional band (around 270-300 cm(-1)) also differ significantly among methyl groups, depending on the local environment. The simulation results provide no evidence for a correlation between methyl dynamics and solvent exposure, consistent with the hydration-independence of the low-temperature anharmonic dynamics observed in neutron scattering experiments. The calculated proton mean-square fluctuation and methyl NMR order parameters show a systematic nonlinear dependence on the rotational barrier which can be described using model functions. The methyl groups that exhibit many rotational excitations are located near xenon cavities, suggesting that cavities in proteins act as activation centers of anharmonic dynamics. The dynamic heterogeneity and the environmental sensitivity of motional parameters and low-frequency spectral bands of CH(3) groups found here suggest that methyl dynamics may be used as a probe to investigate the relation between low-energy structural fluctuations and packing defects in proteins.

  14. Vibration Response of Multi Storey Building Using Finite Element Modelling (United States)

    Chik, T. N. T.; Zakaria, M. F.; Remali, M. A.; Yusoff, N. A.


    Interaction between building, type of foundation and the geotechnical parameter of ground may trigger a significant effect on the building. In general, stiffer foundations resulted in higher natural frequencies of the building-soil system and higher input frequencies are often associated with other ground. Usually, vibrations transmitted to the buildings by ground borne are often noticeable and can be felt. It might affect the building and become worse if the vibration level is not controlled. UTHM building is prone to the ground borne vibration due to closed distance from the main road, and the construction activities adjacent to the buildings. This paper investigates the natural frequency and vibration mode of multi storey office building with the presence of foundation system and comparison between both systems. Finite element modelling (FEM) package software of LUSAS is used to perform the vibration analysis of the building. The building is modelled based on the original plan with the foundation system on the structure model. The FEM results indicated that the structure which modelled with rigid base have high natural frequency compare to the structure with foundation system. These maybe due to soil structure interaction and also the damping of the system which related to the amount of energy dissipated through the foundation soil. Thus, this paper suggested that modelling with soil is necessary to demonstrate the soil influence towards vibration response to the structure.

  15. Infrared and Raman Spectra of and Isotopomers: A DFT-PT2 Anharmonic Study

    Directory of Open Access Journals (Sweden)

    Andrea Alparone


    Full Text Available IR and Raman spectra of selenophene and of its perdeuterated isotopomer have been obtained in gas phase through density-functional theory (DFT computations. Vibrational wavenumbers have been calculated using harmonic and anharmonic second-order perturbation theory (PT2 procedures with the B3LYP method and the 6-311 basis set. Anharmonic overtones have been determined by means of the PT2 method. The introduction of anharmonic terms decreases the harmonic wavenumbers, giving a significantly better agreement with the experimental data. The most significant anharmonic effects occur for the C–H and C–D stretching modes, the observed H/D isotopic wavenumber redshifts being satisfactorily reproduced by the PT2 computations within 6–20 cm−1 (1–3%. In the spectral region between 500 cm−1 and 1500 cm−1, the IR spectra are dominated by the out-of-plane C–H (C–D bending transition, whereas the Raman spectra are mainly characterized by a strong peak mainly attributed to the C=C + C–C bonds stretching vibration with the contribution of the in-plane C–H (C–D bending deformation. The current results confirm that the PT2 approach combined with the B3LYP/6-311 level of calculation is a satisfactory choice for predicting vibrational spectra of cyclic molecules.

  16. Model independent control of lightly damped noise/vibration systems. (United States)

    Yuan, Jing


    Feedforward control is a popular strategy of active noise/vibration control. In well-damped noise/vibration systems, path transfer functions from actuators to sensors can be modeled by finite impulse response (FIR) filters with negligible errors. It is possible to implement noninvasive model independent feedforward control by a recently proposed method called orthogonal adaptation. In lightly damped noise/vibration systems, however, path transfer functions have infinite impulse responses (IIRs) that cause difficulties in design and implementation of broadband feedforward controllers. A major source of difficulties is model error if IIR path transfer functions are approximated by FIR filters. In general, active control performance deteriorates as model error increases. In this study, a new method is proposed to design and implement model independent feedforward controllers for broadband in lightly damped noise/vibration systems. It is shown analytically that the proposed method is able to drive the convergence of a noninvasive model independent feedforward controller to improve broadband control in lightly damped noise/vibration systems. The controller is optimized in the minimum H2 norm sense. Experiment results are presented to verify the analytical results.

  17. Fuzzy Multicriteria Model for Selection of Vibration Technology

    Directory of Open Access Journals (Sweden)

    María Carmen Carnero


    Full Text Available The benefits of applying the vibration analysis program are well known and have been so for decades. A large number of contributions have been produced discussing new diagnostic, signal treatment, technical parameter analysis, and prognosis techniques. However, to obtain the expected benefits from a vibration analysis program, it is necessary to choose the instrumentation which guarantees the best results. Despite its importance, in the literature, there are no models to assist in taking this decision. This research describes an objective model using Fuzzy Analytic Hierarchy Process (FAHP to make a choice of the most suitable technology among portable vibration analysers. The aim is to create an easy-to-use model for processing, manufacturing, services, and research organizations, to guarantee adequate decision-making in the choice of vibration analysis technology. The model described recognises that judgements are often based on ambiguous, imprecise, or inadequate information that cannot provide precise values. The model incorporates judgements from several decision-makers who are experts in the field of vibration analysis, maintenance, and electronic devices. The model has been applied to a Health Care Organization.

  18. Signatures of vibronic coupling in two-dimensional electronic-vibrational and vibrational-electronic spectroscopies (United States)

    Gaynor, James D.; Khalil, Munira


    Two-Dimensional Electronic-Vibrational (2D EV) spectroscopy and Two-Dimensional Vibrational-Electronic (2D VE) spectroscopy are new coherent four-wave mixing spectroscopies that utilize both electronically resonant and vibrationally resonant field-matter interactions to elucidate couplings between electronic and vibrational degrees of freedom. A system Hamiltonian is developed here to lay a foundation for interpreting the 2D EV and 2D VE signals that arise from a vibronically coupled molecular system in the condensed phase. A molecular system consisting of one anharmonic vibration and two electronic states is modeled. Equilibrium displacement of the vibrational coordinate and vibrational frequency shifts upon excitation to the first electronic excited state are included in our Hamiltonian through linear and quadratic vibronic coupling terms. We explicitly consider the nuclear dependence of the electronic transition dipole moment and demonstrate that these spectroscopies are sensitive to non-Condon effects. A series of simulations of 2D EV and 2D VE spectra obtained by varying parameters of the system, system-bath, and interaction Hamiltonians demonstrate that one of the following conditions must be met to observe signals: (1) non-zero linear and/or quadratic vibronic coupling in the electronic excited state, (2) vibrational-coordinate dependence of the electronic transition dipole moment, or (3) electronic-state-dependent vibrational dephasing dynamics. We explore how these vibronic interactions are manifested in the positions, amplitudes, and line shapes of the peaks in 2D EV and 2D VE spectroscopies.

  19. Modeling of the Archery Bow and Arrow Vibrations

    Directory of Open Access Journals (Sweden)

    I. Zaniewski


    Full Text Available Vibration processes in the compound and open kinematical chain with an external link, as a model of an archery bow and arrow system, are evaluated. A mechanical and mathematical model of bend oscillations of the system during accelerate motion of the external link is proposed. Correlation between longitudinal acceleration and natural frequencies is obtained. There are recommendations regarding determination of virtual forms to study arrow vibrations and buckling. The models and methods have been adapted for realization into the engineering method using well-known mathematical software packages.

  20. Comparison of the local binding motifs in the imidazolium-based ionic liquids [EMIM][BF{sub 4}] and [EMMIM][BF{sub 4}] through cryogenic ion vibrational predissociation spectroscopy: Unraveling the roles of anharmonicity and intermolecular interactions

    Energy Technology Data Exchange (ETDEWEB)

    Fournier, Joseph A.; Wolke, Conrad T.; Johnson, Christopher J.; Johnson, Mark A., E-mail:, E-mail: [Sterling Chemistry Laboratory, Yale University, New Haven, Connecticut 06520 (United States); McCoy, Anne B., E-mail:, E-mail: [Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210 (United States)


    We clarify the role of the critical imidazolium C{sub (2)}H position (the central C between N atoms in the heterocycle) in the assembly motif of the [EMIM][BF{sub 4}] ionic liquid by analyzing the vibrational spectra of the bare EMIM{sup +} ion as well as that of the cationic [EMIM]{sub 2}[BF{sub 4}]{sup +} (EMIM{sup +} = 1-ethyl-3-methylimidazolium, C{sub 6}H{sub 11}N{sub 2}{sup +}) cluster. Vibrational spectra of the cold, mass-selected ions are obtained using cryogenic ion vibrational predissociation of weakly bound D{sub 2} molecules formed in a 10 K ion trap. The C{sub (2)}H behavior is isolated by following the evolution of key vibrational features when the C{sub (2)} hydrogen, the proposed binding location of the anion to the imidazolium ring, is replaced by either deuterium or a methyl group (i.e., in the EMMIM{sup +} analogue). Strong features in the ring CH stretching region of the bare ion are traced to Fermi resonances with overtones of lower frequency modes. Upon incorporation into the EMIM{sup +} ⋅ ⋅ ⋅ BF{sub 4}{sup −} ⋅ ⋅ ⋅ EMIM{sup +} ternary complex, the C{sub (2)}H oscillator strength is dramatically increased, accounting for the much more complicated patterns derived from the EMIM{sup +} ring CH stretches in the light isotopomer, which are strongly suppressed in the deuterated analogue. Further changes in the spectra that occur when the C{sub (2)}H is replaced by a methyl group are consistent with BF{sub 4}{sup −} attachment directly to the imidazolium ring in an arrangement that maximizes the electrostatic interaction between the molecular ions.

  1. Modelling of magnetostriction of transformer magnetic core for vibration analysis

    Directory of Open Access Journals (Sweden)

    Marks Janis


    Full Text Available Magnetostriction is a phenomenon occurring in transformer core in normal operation mode. Yet in time, it can cause the delamination of magnetic core resulting in higher level of vibrations that are measured on the surface of transformer tank during diagnostic tests. The aim of this paper is to create a model for evaluating elastic deformations in magnetic core that can be used for power transformers with intensive vibrations in order to eliminate magnetostriction as a their cause. Description of the developed model in Matlab and COMSOL software is provided including restrictions concerning geometry and properties of materials, and the results of performed research on magnetic core anisotropy are provided. As a case study modelling of magnetostriction for 5-legged 200 MVA power transformer with the rated voltage of 13.8/137kV is conducted, based on which comparative analysis of vibration levels and elastic deformations is performed.

  2. Orientational anharmonicity of interatomic interaction in cubic monocrystals

    International Nuclear Information System (INIS)

    Belomestnykh, Vladimir N.; Tesleva, Elena P.


    Anharmonicity of interatomic interaction from a position of physical acoustics under the standard conditions is investigated. It is shown that the measure of anharmonicity of interatomic interaction (Grilneisen parameter) is explicitly expressed through velocities of sound. Calculation results of orientation anharmonicity are shown on the example of 116 cubic monocrystals with different lattice structural type and type of chemical bond. Two types of anharmonicity interatomic interaction anisotropy are determined. Keywords: acoustics, orientational anharmonicity, Gruneisen parameter, velocity of sound

  3. Vibrational spectrum of CF4 isotopes in an algebraic model

    Indian Academy of Sciences (India)

    n this paper the stretching vibrational modes of CF4 isotopes are calculated up to first overtone using the one-dimensional vibron model for the first time. The model Hamiltonian so constructed seems to describe the C–F stretching modes accurately using a relatively small set of well-defined parameters.

  4. Modeling of flexible waveguides for ultrasonic vibrations transmission: longitudinal and flexural vibrations of non-deformed waveguide. (United States)

    Stepanenko, Dmitry A; Minchenya, Vladimir T


    The article presents the mathematical model allowing to investigate longitudinal and flexural vibrations of stepped flexible waveguides with transitional section without regard to various vibration modes interaction. The model uses original numerical-analytic calculations based on analytical solutions of the equation of waveguide steps vibrations and their continuous matching with numerical solution of the equation of transitional section vibrations. The proposed model can be considered as an initial approximation to the solution of the problem of flexible waveguides design, which makes it possible to determine and validate effective methods of its addressing. Resonant curves of longitudinal and flexural vibrations of two-step waveguide are traced for the given vibration frequency. Step lengths values providing simultaneous resonance of longitudinal and flexural vibrations for the given frequency are determined. Validity of the proposed model is proved by the results of finite elements method (FEM) modeling using ANSYS software. Application of Timoshenko's model instead of Euler-Bernoulli's model for description of flexural vibrations enabled reduction of relative deviation of resonant frequencies calculated using ANSYS from the value specified during resonant curves tracing down to negligible value (0.17%). 2009 Elsevier B.V. All rights reserved.

  5. Scale modeling flow-induced vibrations of reactor components

    International Nuclear Information System (INIS)

    Mulcahy, T.M.


    Similitude relationships currently employed in the design of flow-induced vibration scale-model tests of nuclear reactor components are reviewed. Emphasis is given to understanding the origins of the similitude parameters as a basis for discussion of the inevitable distortions which occur in design verification testing of entire reactor systems and in feature testing of individual component designs for the existence of detrimental flow-induced vibration mechanisms. Distortions of similitude parameters made in current test practice are enumerated and selected example tests are described. Also, limitations in the use of specific distortions in model designs are evaluated based on the current understanding of flow-induced vibration mechanisms and structural response

  6. Anharmonicity effects in the frictionlike mode of graphite (United States)

    Menéndez, C.; Lobato, A.; Abbasi-Pérez, D.; Fernández-Núñez, J.; Baonza, V. G.; Recio, J. M.


    Graphite is a prototypical solid lubricant demanding a thorough understanding of its low-friction behavior. The E2 g(1) Raman active vibrational mode of graphite is associated with the rigid-layer relative movement of its graphene sheets. Thus, this mode can provide a good means of exploring the low resistance of graphene layers to slip with respect to each other. To take advantage of this fact, the anharmonicity of the E2 g(1) mode has to be carefully characterized and evaluated since the atomic arrangement of carbon atoms in the ambient condition ABA stacking of graphite evidences potential asymmetry. The calculated one-dimensional energetic profile of the E2 g(1) mode reveals this local anisotropy around the energy minima and can be microscopically interpreted in terms of electron density interactions. Morse-type potentials accurately fit the energetic profiles at different interlayer separations, and provide simple analytical expressions for evaluating harmonic and anharmonic contributions to the Γ -point E2 g(1) frequency ωE2g(1 ) under a perturbative algebraic treatment. We quantify how the anharmonic contribution increases with the available energy (E ) at zero pressure, and how this contribution decreases as hydrostatic pressure (p ) or uniaxial stress is applied for a given available energy. The calculated ωE2g(1 )-p and ωE2g(1 )-E trends indicate an increasing (decreasing) of frictional forces in graphite with pressure (temperature). Our conclusions are supported by the good agreement of the calculated frequencies with existing Raman experiments under hydrostatic pressure conditions.

  7. Modeling vibration response and damping of cables and cabled structures (United States)

    Spak, Kaitlin S.; Agnes, Gregory S.; Inman, Daniel J.


    In an effort to model the vibration response of cabled structures, the distributed transfer function method is developed to model cables and a simple cabled structure. The model includes shear effects, tension, and hysteretic damping for modeling of helical stranded cables, and includes a method for modeling cable attachment points using both linear and rotational damping and stiffness. The damped cable model shows agreement with experimental data for four types of stranded cables, and the damped cabled beam model shows agreement with experimental data for the cables attached to a beam structure, as well as improvement over the distributed mass method for cabled structure modeling.

  8. Quantum theory of anharmonic oscillators

    International Nuclear Information System (INIS)

    Yamazaki, K.; Kyoto Univ.


    This in investigation of an anharmonic oscillator characterized by the potential ωsub(o) 2 /2 g 2 + lambda'q 4 . By using the equations of motion and the relations obtained by evaluating where O is an arbitrary operator, H is our total Hamiltonian and |i> and |j> are exact eigenstates of H, we derive an exact recurrence formula. This formula allows us to express tau-functions with a higher power of the variables through tau-functions with a lower power of the variables and energy eigenvalues. In this way we derive several exact relations, which are, in a sense, generalizations of the virial theorem and sum rules. These exact relations are the central equations of this paper. On the basis of these exact relations we propose our 'nearest neighbour level' (N.N.L.) approximation, which seems to provide a good approximation scheme. We can also use our exact relations to test the validity of various approximation methods, and as an example, we discuss the 'New-Tamm-Dancoff' (N.T.D)-type of approximation in detail. (Author)

  9. Anomalous phase behavior and apparent anharmonicity of the pump-probe signal in a two-dimensional harmonic potential system

    International Nuclear Information System (INIS)

    Taneichi, T.; Kobayashi, T.


    Discussion on wavelength dependent 'anharmonic' effects in a pump-probe signal for a system of wavepacket on one- and two-dimensional harmonic potentials was given. The Fourier power spectrum of the signal, calculated for a model composed of a three-state electronic system coupled to a set of displaced harmonic oscillators, depends on the pulse duration. Condition under which the wavepacket motion in the harmonic potential substantially deviates from that of the classical point mass is derived. The Fourier power spectrum has enhanced components with frequencies of harmonics even in a system composed of ideally harmonic potentials. Utility of the Fourier analysis of the spectrum for clarification of the squeezed molecular vibrational state is discussed. Calculated oscillatory behavior in phase of a pump-probe signal, as a function of probe frequency, was discussed in terms of a two-dimensional effect on a pump-probe signal

  10. High Pressure, Anharmonic Thermoelasticity of Tantalum (United States)

    Orlikowski, Daniel; Soderlind, Per; Moriarty, John A.


    The elastic moduli for bcc tantalum have been investigated over broad ranges of pressure (10 Mbar) and temperature (12,000 K), using first-principles methods that account for the cold, electron- and ion-thermal contributions. In this approach, the full potential linear muffin-tin orbital (FP-LMTO) method for the cold and electron-thermal contributions is combined with closely coupled atomistic simulations for the ion-thermal contribution, using quantum-based interatomic potentials derived from model generalized pseudopotential theory (MGPT) for the latter. While the harmonic part of the ion-thermal contribution can be readily obtained from strain derivatives of quasi-harmonic phonons, we have developed a more general Monte Carlo (MC) simulation method for the corresponding anharmonic part. The MC method directly calculates the elastic moduli through a fluctuation formula comprised of averages in the canonical distribution. Available results will be compared with ultrasonic measurements and diamond-anvil-cell compression experiments as functions of temperature and pressure. Also, the importance of these results in context to larger-scale constitutive models like the Steinberg-Guinan strength model will be discussed. This work was performed under the auspices of the U.S. Department of Energy by the University of California Lawrence Livermore National Laboratory under contract W-7405-Eng-48.

  11. Computer modeling of flow induced in-reactor vibrations

    International Nuclear Information System (INIS)

    Turula, P.; Mulcahy, T.M.


    An assessment of the reliability of finite element method computer models, as applied to the computation of flow induced vibration response of components used in nuclear reactors, is presented. The prototype under consideration was the Fast Flux Test Facility reactor being constructed for US-ERDA. Data were available from an extensive test program which used a scale model simulating the hydraulic and structural characteristics of the prototype components, subjected to scaled prototypic flow conditions as well as to laboratory shaker excitations. Corresponding analytical solutions of the component vibration problems were obtained using the NASTRAN computer code. Modal analyses and response analyses were performed. The effect of the surrounding fluid was accounted for. Several possible forcing function definitions were considered. Results indicate that modal computations agree well with experimental data. Response amplitude comparisons are good only under conditions favorable to a clear definition of the structural and hydraulic properties affecting the component motion. 20 refs

  12. Basic equations for odd spherical nuclei in the quasiparticle-phonon nuclear model

    International Nuclear Information System (INIS)

    Dao Tien Khoa; Vdovin, A.I.; Voronov, V.V.


    The system of basic equations in the general form is obtained for odd spherical nuclei within the quasiparticle-model. The anharmonics of vibrations of even-even core and Pauli principle corrections are included into these equations. It has been shown that the derived system of equations contains all versions of approximate equations used in the calculation within the quasiparticle-phonon model

  13. Model reduction and analysis of a vibrating beam microgyroscope

    KAUST Repository

    Ghommem, Mehdi


    The present work is concerned with the nonlinear dynamic analysis of a vibrating beam microgyroscope composed of a rotating cantilever beam with a tip mass at its end. The rigid mass is coupled to two orthogonal electrodes in the drive and sense directions, which are attached to the rotating base. The microbeam is driven by an AC voltage in the drive direction, which induces vibrations in the orthogonal sense direction due to rotation about the microbeam axis. The electrode placed in the sense direction is used to measure the induced motions and extract the underlying angular speed. A reduced-order model of the gyroscope is developed using the method of multiple scales and used to examine its dynamic behavior. © The Author(s) 2012 Reprints and permissions:

  14. Electric field dependent structural and vibrational properties of the Si(100)-H(2 x 1) surface and its implications for STM induced hydrogen desorption

    DEFF Research Database (Denmark)

    Stokbro, Kurt


    We report a first principles study of the structure and the vibrational properties of the Si(100)-H(2 x 1) surface in an electric field. The calculated vibrational parameters are used to model the vibrational modes in the presence of the electric field corresponding to a realistic scanning...... tunneling microscopy tip-surface geometry. We find that local one-phonon excitations have short lifetimes (10 ps at room temperature) due to incoherent lateral diffusion, while diffusion of local multi-phonon excitations are suppressed due to anharmonic frequency shifts and have much longer lifetimes (10 ns...... in the desorption process. (C) 1999 Elsevier Science B.V. All rights reserved....

  15. Effective harmonic oscillator description of anharmonic molecular ...

    Indian Academy of Sciences (India)


    The effective harmonic oscillator is constructed variationally, by taking the trial wave function as a harmonic oscillator eigenfunction with the centroid and width parameter as variational para- eters. It is found that the effective harmonic oscillator approximation provides a description of the anharmonic eigenstates very similar ...

  16. Anharmonic Bend-Stretch Coupling in Water

    NARCIS (Netherlands)

    Lindner, Jörg; Vöhringer, Peter; Pshenichnikov, Maxim S.; Cringus, Dan; Wiersma, Douwe A.; Corkum, Paul; Jonas, David M.; Miller, R.J. Dwayne.; Weiner, Andrew M.


    Following excitation of the H-O-H bending mode of water molecules in solution the stretching mode region is monitored over its entire width. The anharmonic coupling between the two modes results in a substantial change of the transient stretch absorption that decays with the bend depopulation time.

  17. Physical model study of neutron noise induced by vibration of reactor internals

    International Nuclear Information System (INIS)

    Liu Jinhui; Gu Fangyu


    The author presents a physical model of neutron noise induced by reactor internals vibration in frequency domain. Based on system control theory, the reactor dynamic equations are coupled with random vibration equation, and non-linear terms are also taken into accounted while treating the random vibration. Experiments carried out on a zero-power reactor show that the model can be used to describe dynamic character of neutron noise induced by internals' vibration. The model establishes a method to help to determine internals'vibration features, and to diagnosis anomalies through neutron noise

  18. Force Limited Random Vibration Test of TESS Camera Mass Model (United States)

    Karlicek, Alexandra; Hwang, James Ho-Jin; Rey, Justin J.


    The Transiting Exoplanet Survey Satellite (TESS) is a spaceborne instrument consisting of four wide field-of-view-CCD cameras dedicated to the discovery of exoplanets around the brightest stars. As part of the environmental testing campaign, force limiting was used to simulate a realistic random vibration launch environment. While the force limit vibration test method is a standard approach used at multiple institutions including Jet Propulsion Laboratory (JPL), NASA Goddard Space Flight Center (GSFC), European Space Research and Technology Center (ESTEC), and Japan Aerospace Exploration Agency (JAXA), it is still difficult to find an actual implementation process in the literature. This paper describes the step-by-step process on how the force limit method was developed and applied on the TESS camera mass model. The process description includes the design of special fixtures to mount the test article for properly installing force transducers, development of the force spectral density using the semi-empirical method, estimation of the fuzzy factor (C2) based on the mass ratio between the supporting structure and the test article, subsequent validating of the C2 factor during the vibration test, and calculation of the C.G. accelerations using the Root Mean Square (RMS) reaction force in the spectral domain and the peak reaction force in the time domain.

  19. A modal approach to modeling spatially distributed vibration energy dissipation.

    Energy Technology Data Exchange (ETDEWEB)

    Segalman, Daniel Joseph


    The nonlinear behavior of mechanical joints is a confounding element in modeling the dynamic response of structures. Though there has been some progress in recent years in modeling individual joints, modeling the full structure with myriad frictional interfaces has remained an obstinate challenge. A strategy is suggested for structural dynamics modeling that can account for the combined effect of interface friction distributed spatially about the structure. This approach accommodates the following observations: (1) At small to modest amplitudes, the nonlinearity of jointed structures is manifest primarily in the energy dissipation - visible as vibration damping; (2) Correspondingly, measured vibration modes do not change significantly with amplitude; and (3) Significant coupling among the modes does not appear to result at modest amplitudes. The mathematical approach presented here postulates the preservation of linear modes and invests all the nonlinearity in the evolution of the modal coordinates. The constitutive form selected is one that works well in modeling spatially discrete joints. When compared against a mathematical truth model, the distributed dissipation approximation performs well.

  20. Vibration acceleration promotes bone formation in rodent models.

    Directory of Open Access Journals (Sweden)

    Ryohei Uchida

    Full Text Available All living tissues and cells on Earth are subject to gravitational acceleration, but no reports have verified whether acceleration mode influences bone formation and healing. Therefore, this study was to compare the effects of two acceleration modes, vibration and constant (centrifugal accelerations, on bone formation and healing in the trunk using BMP 2-induced ectopic bone formation (EBF mouse model and a rib fracture healing (RFH rat model. Additionally, we tried to verify the difference in mechanism of effect on bone formation by accelerations between these two models. Three groups (low- and high-magnitude vibration and control-VA groups were evaluated in the vibration acceleration study, and two groups (centrifuge acceleration and control-CA groups were used in the constant acceleration study. In each model, the intervention was applied for ten minutes per day from three days after surgery for eleven days (EBF model or nine days (RFH model. All animals were sacrificed the day after the intervention ended. In the EBF model, ectopic bone was evaluated by macroscopic and histological observations, wet weight, radiography and microfocus computed tomography (micro-CT. In the RFH model, whole fracture-repaired ribs were excised with removal of soft tissue, and evaluated radiologically and histologically. Ectopic bones in the low-magnitude group (EBF model had significantly greater wet weight and were significantly larger (macroscopically and radiographically than those in the other two groups, whereas the size and wet weight of ectopic bones in the centrifuge acceleration group showed no significant difference compared those in control-CA group. All ectopic bones showed calcified trabeculae and maturated bone marrow. Micro-CT showed that bone volume (BV in the low-magnitude group of EBF model was significantly higher than those in the other two groups (3.1±1.2mm3 v.s. 1.8±1.2mm3 in high-magnitude group and 1.3±0.9mm3 in control-VA group, but

  1. Fourth-Order Vibrational Transition State Theory and Chemical Kinetics (United States)

    Stanton, John F.; Matthews, Devin A.; Gong, Justin Z.


    Second-order vibrational perturbation theory (VPT2) is an enormously successful and well-established theory for treating anharmonic effects on the vibrational levels of semi-rigid molecules. Partially as a consequence of the fact that the theory is exact for the Morse potential (which provides an appropriate qualitative model for stretching anharmonicity), VPT2 calculations for such systems with appropriate ab initio potential functions tend to give fundamental and overtone levels that fall within a handful of wavenumbers of experimentally measured positions. As a consequence, the next non-vanishing level of perturbation theory -- VPT4 -- offers only slight improvements over VPT2 and is not practical for most calculations since it requires information about force constants up through sextic. However, VPT4 (as well as VPT2) can be used for other applications such as the next vibrational correction to rotational constants (the ``gammas'') and other spectroscopic parameters. In addition, the marriage of VPT with the semi-classical transition state theory of Miller (SCTST) has recently proven to be a powerful and accurate treatment for chemical kinetics. In this talk, VPT4-based SCTST tunneling probabilities and cumulative reaction probabilities are give for the first time for selected low-dimensional model systems. The prospects for VPT4, both practical and intrinsic, will also be discussed.

  2. Quartic Anharmonicity of Rattlers and Its Effect on Lattice Thermal Conductivity of Clathrates from First Principles (United States)

    Tadano, Terumasa; Tsuneyuki, Shinji


    We investigate the role of the quartic anharmonicity in the lattice dynamics and thermal transport of the type-I clathrate Ba8 Ga16 Ge30 based on ab initio self-consistent phonon calculations. We show that the strong quartic anharmonicity of rattling guest atoms causes the hardening of vibrational frequencies of low-lying optical modes and thereby affects calculated lattice thermal conductivities κL significantly, resulting in an improved agreement with experimental results including the deviation from κL∝T-1 at high temperature. Moreover, our static simulations with various different cell volumes shows a transition from crystal-like to glasslike κL around 20 K. Our analyses suggest that the resonance dip of κL observed in clathrates with large guest free spaces is attributed mainly to the strong three-phonon scattering of acoustic modes along with the presence of higher-frequency dispersive optical modes.

  3. A Shell Model for Free Vibration Analysis of Carbon Nanoscroll

    Directory of Open Access Journals (Sweden)

    Amin Taraghi Osguei


    Full Text Available Carbon nanoscroll (CNS is a graphene sheet rolled into a spiral structure with great potential for different applications in nanotechnology. In this paper, an equivalent open shell model is presented to study the vibration behavior of a CNS with arbitrary boundary conditions. The equivalent parameters used for modeling the carbon nanotubes are implemented to simulate the CNS. The interactions between the layers of CNS due to van der Waals forces are included in the model. The uniformly distributed translational and torsional springs along the boundaries are considered to achieve a unified solution for different boundary conditions. To study the vibration characteristics of CNS, total energy including strain energy, kinetic energy, and van der Waals energy are minimized using the Rayleigh-Ritz technique. The first-order shear deformation theory has been utilized to model the shell. Chebyshev polynomials of first kind are used to obtain the eigenvalue matrices. The natural frequencies and corresponding mode shapes of CNS in different boundary conditions are evaluated. The effect of electric field in axial direction on the natural frequencies and mode shapes of CNS is investigated. The results indicate that, as the electric field increases, the natural frequencies decrease.

  4. Coupled channel analysis of the 142Ce (α,α)142Ce* reaction: study of a vibrational-rotational transition nucleus

    International Nuclear Information System (INIS)

    Appoloni, C.R.


    The angular distribution of the elastic and inelastic scattering of a particles corresponding to the excitation of the low-lying collective states of 142 Ce were measured at an incident energy of 18.0 MeV. The angular distribution of the following excited states were obtained: 641, 1.219, 1.450, 1.536, 1.653, 1.742, 2.004, 2.043, 2.114, 2.125, 2.279, 2.364, 2.542, 2.604 e 3.067 MeV. The angular distributions of the ground state and the first six excited states were analysed within the flamework of the Anharmonic Vibrational and Symmetric Rotational Models, with the Coupled Channel Theory. The Anharmonic Vibrational Model gave the best and most complete description of the experimental data. The wave functions and the deformation parameters of the analysed states were determined. (Author) [pt

  5. Nonlinear Absorptions in Liquids Studied by Laser - Anharmonic Thermal Gratings. (United States)

    Zhu, Xiao-Rong

    In an absorbing medium, nonlinear absorption at a crossed-beam interference pattern creates, through absorptive heating, a temperature modulation containing harmonics of the spatial frequency of the excitation interference pattern, and the temperature dependence of the refractive index then results in an anharmonic volume index grating. A probe beam incident at the Bragg angle for a given spatial harmonic grating will produce a single diffraction order. By measuring the excitation intensity dependence of diffraction efficiencies at several Bragg angles, one can distinguish between various mechanisms of nonlinear absorption. In this dissertation, nonlinear absorption by organic molecules in liquids, with a focus on the sequential two-step absorption, has been studied by a laser-induced anharmonic thermal grating techniques. The nonlinear absorption of all-trans- beta-carotene, a biologically important natural product, in liquids is first investigated, and the results indicate that nonlinear absorption of beta -carotene in hexane is caused by the excited-state absorption, and while the saturation observed in chloroform is due to formation of a long-lived photoisomer. The effect of photoisomerization on saturated absorption of the cyanine laser dye DODCI in alcohols is then examined. It is found that the weaker absorption by the photoisomer and reverse -photoisomerization have made saturation of optical absorption of DODCI difficult. A general numerical method is developed for the first time to treat rigorously the problem of diffraction from anharmonic Gaussian volume gratings. It shows that the previously developed quasi-plane wave approximation (QPWA) theory is valid only at the weak saturation limit for a saturation absorption model. Finally, anomalous dependence of diffraction intensities on the excitation intensity for two tricarbocyanine dyes is observed. A careful analysis shows that it is caused by diffraction from multiple thermal gratings with a 180^ circ

  6. Coupled electromechanical model of an imperfect piezoelectric vibrating cylinder gyroscope

    CSIR Research Space (South Africa)

    Loveday, PW


    Full Text Available Coupled electromechanical equations of motion, describing the dynamics of a vibrating cylinder gyroscope, are derived using Hamilton's principle and the Rayleigh-Ritz method. The vibrating cylinder gyroscope comprises a thin walled steel cylinder...

  7. Crystal anharmonicity in Li(H,D) and Na(H,D) systems

    International Nuclear Information System (INIS)

    Islam, A.K.M.A.; Haque, E.; Azad, A.S.


    The reliability of our recently developed potential model is tested by extending the study to various anharmonic properties, e.g., third order elastic constants, fourth order elastic constants, Grueneisen parameters, and the pressure derivatives of second order elastic constants of hydrides and deuterides of lithium and sodium. A comparison of the calculated properties with the available experimental results and other theoretical estimates shows the validity and reliability of the derived potential in the study of crystal anharmonicities also. (author). 43 refs, 2 figs, 4 tabs

  8. Quantum anharmonic oscillator: The airy function approach

    Energy Technology Data Exchange (ETDEWEB)

    Maiz, F., E-mail: [King Khalid University, Faculty of Science, Physics Department, PO Box 9004, Abha 61413, Asseer (Saudi Arabia); University of Cartage, Nabeul Engineering Preparatory Institute, Merazka, 8000 Nabeul (Tunisia); AlFaify, S. [King Khalid University, Faculty of Science, Physics Department, PO Box 9004, Abha 61413, Asseer (Saudi Arabia)


    New and simple numerical method is being reported to solve anharmonic oscillator problems. The method is setup to approach the real potential V(x) of the anharmonic oscillator system as a piecewise linear potential u(x) and to solve the Schrödinger equation of the system using the Airy function. Then, solutions continuity conditions lead to the energy quantification condition, and consequently, the energy eigenvalues. For testing purpose, the method was applied on the sextic and octic oscillators systems. The proposed method is found to be realistic, computationally simple, and having high degrees of accuracy. In addition, it can be applied to any form of potential. The results obtained by the proposed method were seen closely agreeing with results reached by other complicated methods.

  9. Stochastic modeling of friction force and vibration analysis of a mechanical system using the model

    International Nuclear Information System (INIS)

    Kang, Won Seok; Choi, Chan Kyu; Yoo, Hong Hee


    The squeal noise generated from a disk brake or chatter occurred in a machine tool primarily results from friction-induced vibration. Since friction-induced vibration is usually accompanied by abrasion and lifespan reduction of mechanical parts, it is necessary to develop a reliable analysis model by which friction-induced vibration phenomena can be accurately analyzed. The original Coulomb's friction model or the modified Coulomb friction model employed in most commercial programs employs deterministic friction coefficients. However, observing friction phenomena between two contact surfaces, one may observe that friction coefficients keep changing due to the unevenness of contact surface, temperature, lubrication and humidity. Therefore, in this study, friction coefficients are modeled as random parameters that keep changing during the motion of a mechanical system undergoing friction force. The integrity of the proposed stochastic friction model was validated by comparing the analysis results obtained by the proposed model with experimental results.

  10. Fast vibrational configuration interaction using generalized curvilinear coordinates and self-consistent basis. (United States)

    Scribano, Yohann; Lauvergnat, David M; Benoit, David M


    In this paper, we couple a numerical kinetic-energy operator approach to the direct-vibrational self-consistent field (VSCF)/vibrational configuration interaction (VCI) method for the calculation of vibrational anharmonic frequencies. By combining this with fast-VSCF, an efficient direct evaluation of the ab initio potential-energy surface (PES), we introduce a general formalism for the computation of vibrational bound states of molecular systems exhibiting large-amplitude motion such as methyl-group torsion. We validate our approach on an analytical two-dimensional model and apply it to the methanol molecule. We show that curvilinear coordinates lead to a significant improvement in the VSCF/VCI description of the torsional frequency in methanol, even for a simple two-mode coupling expansion of the PES. Moreover, we demonstrate that a curvilinear formulation of the fast-VSCF/VCI scheme improves its speed by a factor of two and its accuracy by a factor of 3.

  11. FEMVib, an ab initio multi-dimensional solver for probing vibrational dynamics in polyatomic molecules and free radicals (United States)

    Xu, Dong

    Accurate prediction of the vibrational spectra in polyatomic molecules and free radicals depends on obtaining high quality solutions to the vibrational Schrodinger equation. The quantum simple harmonic oscillator provides the traditional first approximation for modeling molecular vibrational states. Rarely does a vibrational analysis extend beyond this first approximation, and harmonic energy levels are routinely used to predict the infrared spectra and other dynamical properties of molecules. However, there are many large-amplitude molecular motions that are extremely anharmonic, including internal torsions about atom-atom single bonds, bending and stretching of weak bonds in van der Waals complexes, and isomerization along relocalization coordinates in free radicals. In these cases, the harmonic treatment provided by electronic structure quantum chemistry packages is completely inadequate. Furthermore, the anharmonicity often includes strong coupling among two or more distinct vibrational coordinates, necessitating a multi-dimensional analysis of the vibrational Schrodinger equation along the coupled coordinates. A novel ab initio solver package, FEMVib, is developed within the finite element method (FEM) framework. A mixed programming paradigm that combines C++, Fortran and Python is employed to take advantage of existing numerical libraries. FEMVib has been rigorously tested to resolve the eigenvalues and wavefunctions of hundreds of vibrational energy states to high accuracy and precision. It may be used to calculate the complete vibrational spectra of triatomic molecules or to approximate larger systems through a "relaxed" model that allows complete coupling of up to three selected vibrational coordinates. FEMVib provides physical chemists with a general, robust and accurate computational tool for molecular vibrational analysis.

  12. Including Torsional Anharmonicity in Canonical and Microcanonical Reaction Path Calculations. (United States)

    Zheng, Jingjing; Truhlar, Donald G


    We reformulate multistructural variational transition state theory by removing the approximation of calculating torsional anharmonicity only at stationary points. The multistructural method with torsional anharmonicity is applied to calculate the reaction-path free energy of the hydrogen abstraction from the carbon-1 position in isobutanol by OH radical. The torsional potential anharmonicity along the reaction path is taken into account by a coupled torsional potential. The calculations show that it can be critical to include torsional anharmonicity in searching for canonical and microcanonical variational transition states. The harmonic-oscillator approximation fails to yield reasonable free energy curves along the reaction path.

  13. Anharmonic Materials and Thermoelasticity at High Temperatures and Pressures (United States)

    Orlikowski, Daniel


    For large-scale constitutive strength models, the shear modulus is typically assumed to be linearly dependent on temperature. However, for materials compressed along or beyond the Hugoniot into high pressure and temperature regimes where there is no experimental measurement or very little, accurate and validated models must be used. To this end, we have investigated and compared, as a function of temperature (Steinberg-Guinan strength model. These results give an indication that anharmonic effects are negligible in tantalum but not in molybdenum for high pressures and temperatures up to melt. This work was performed under the auspices of the U.S. Department of Energy by the University of California Lawrence Livermore National Laboratory under contract W-7405-Eng-48.

  14. Modeling and Mechanism of Rain-Wind Induced Vibration of Bundled Conductors

    Directory of Open Access Journals (Sweden)

    Chao Zhou


    Full Text Available Under the certain rain-wind conditions, bundled conductors exhibit a rain-wind induced large-amplitude vibration. This type of vibration can cause the fatigue fractures of conductors and fatigue failures of spacers, which threaten the safety operation and serviceability of high-voltage transmission line. To reveal the mechanism of rain-wind induced vibration of bundled conductors, a series of 2-dimensional CFD models about the twin bundled conductors with rivulets are developed to obtain the curves of aerodynamic coefficients with the upper rivulet angle. The influences of the forward conductor’s aerodynamic shielding and the upper rivulet’s aerodynamic characteristics on the leeward conductor are discussed. Furthermore, a 2-dimensional 3DOF model for the rain-wind induced vibration of the leeward conductor is established. The model is solved by finite element method and Newmark method, and the effects of the wind velocity and the upper rivulet’s motion on vibration amplitude of the leeward conductor are analyzed. By contrast with the wake-induced vibration, it can easily find that the characteristics of rain-wind vibration are obviously different from those of the wake-induced vibration, and the main reason of the rain-induced vibration may be due to the upper rivulet’s motion.

  15. Quantum stabilization in anharmonic crystals. (United States)

    Albeverio, Sergio; Kondratiev, Yuri; Kozitsky, Yuri; Röckner, Michael


    For a model of interacting quantum particles of mass m oscillating in a double-well crystalline field, a mechanism of its stabilization by quantum effects is described. In particular, a stability condition involving m, the interaction intensity, and the parameters of the crystalline field is given. It is independent of the temperature and is satisfied if m is small enough and/or the tunneling frequency is big enough. It is shown that under this condition the infinite-volume free energy density is an analytic function of the external field and the displacement-displacement correlation function decays exponentially; hence, no phase transitions can arise at all temperatures. This gives a complete and rigorous answer to the question about the influence of quantum effects on structural phase transitions, the discussion of which was initiated in [T. Schneider, H. Beck, and E. Stoll, Phys. Rev. B 13, 1123 (1976)

  16. Modeling and optical characterization of vibrating micro- and nanostructures (United States)

    Aksnes, Astrid; Leirset, Erlend; Martinussen, Hanne; Engan, Helge E.


    The lack of commercial equipment for characterization of vibrating micro- and nanostructures has motivated the development of a heterodyne interferometer. The setup is designed to measure phase and absolute amplitude in the entire frequency range 0-1.2 GHz. Its transverse resolution is CMUTs) are being developed for diagnostic imaging of vulnerable plaques in the coronary arteries. The CMUTs have 5.7 μm radii, 100 nm membrane thickness and ~30 MHz center frequency. Arrays of ~7500 CMUTs have been fabricated. Frequency scan measurements along a row of CMUTs reveal a variation in resonance frequency. This may be due to variations of material properties, dimensions such as thickness and transverse dimensions, and other manufacturing variance. The frequency scan revealed the fundamental mode and two closely spaced higher order modes. Modeling of individual CMUT elements was performed using the commercial program COMSOL. A finite element model (FEM) based on symmetry assumptions predicted only one higher order mode. After closer analysis it was found that the symmetry assumptions were insufficient. By using a complete physical model two higher order modes were predicted in agreement with the measurements. Simulations are able to predict transducer characteristics in great detail but are dependent on accurate input parameters. The optical measurements contribute to validate or complement simulations and assumptions they rely on. The heterodyne interferometer is therefore a valuable tool for quality control in the conception, design and manufacturing of new acoustic devices.

  17. A mechanistic ultrasonic vibration amplitude model during rotary ultrasonic machining of CFRP composites. (United States)

    Ning, Fuda; Wang, Hui; Cong, Weilong; Fernando, P K S C


    Rotary ultrasonic machining (RUM) has been investigated in machining of brittle, ductile, as well as composite materials. Ultrasonic vibration amplitude, as one of the most important input variables, affects almost all the output variables in RUM. Numerous investigations on measuring ultrasonic vibration amplitude without RUM machining have been reported. In recent years, ultrasonic vibration amplitude measurement with RUM of ductile materials has been investigated. It is found that the ultrasonic vibration amplitude with RUM was different from that without RUM under the same input variables. RUM is primarily used in machining of brittle materials through brittle fracture removal. With this reason, the method for measuring ultrasonic vibration amplitude in RUM of ductile materials is not feasible for measuring that in RUM of brittle materials. However, there are no reported methods for measuring ultrasonic vibration amplitude in RUM of brittle materials. In this study, ultrasonic vibration amplitude in RUM of brittle materials is investigated by establishing a mechanistic amplitude model through cutting force. Pilot experiments are conducted to validate the calculation model. The results show that there are no significant differences between amplitude values calculated by model and those obtained from experimental investigations. The model can provide a relationship between ultrasonic vibration amplitude and input variables, which is a foundation for building models to predict other output variables in RUM. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Vibration Signal Forecasting on Rotating Machinery by means of Signal Decomposition and Neurofuzzy Modeling

    Directory of Open Access Journals (Sweden)

    Daniel Zurita-Millán


    Full Text Available Vibration monitoring plays a key role in the industrial machinery reliability since it allows enhancing the performance of the machinery under supervision through the detection of failure modes. Thus, vibration monitoring schemes that give information regarding future condition, that is, prognosis approaches, are of growing interest for the scientific and industrial communities. This work proposes a vibration signal prognosis methodology, applied to a rotating electromechanical system and its associated kinematic chain. The method combines the adaptability of neurofuzzy modeling with a signal decomposition strategy to model the patterns of the vibrations signal under different fault scenarios. The model tuning is performed by means of Genetic Algorithms along with a correlation based interval selection procedure. The performance and effectiveness of the proposed method are validated experimentally with an electromechanical test bench containing a kinematic chain. The results of the study indicate the suitability of the method for vibration forecasting in complex electromechanical systems and their associated kinematic chains.

  19. Implementation of a vibrationally linked chemical reaction model for DSMC (United States)

    Carlson, A. B.; Bird, Graeme A.


    A new procedure closely linking dissociation and exchange reactions in air to the vibrational levels of the diatomic molecules has been implemented in both one- and two-dimensional versions of Direct Simulation Monte Carlo (DSMC) programs. The previous modeling of chemical reactions with DSMC was based on the continuum reaction rates for the various possible reactions. The new method is more closely related to the actual physics of dissociation and is more appropriate to the particle nature of DSMC. Two cases are presented: the relaxation to equilibrium of undissociated air initially at 10,000 K, and the axisymmetric calculation of shuttle forebody heating during reentry at 92.35 km and 7500 m/s. Although reaction rates are not used in determining the dissociations or exchange reactions, the new method produces rates which agree astonishingly well with the published rates derived from experiment. The results for gas properties and surface properties also agree well with the results produced by earlier DSMC models, equilibrium air calculations, and experiment.

  20. Wind Turbine Tower Vibration Modeling and Monitoring by the Nonlinear State Estimation Technique (NSET

    Directory of Open Access Journals (Sweden)

    Peng Guo


    Full Text Available With appropriate vibration modeling and analysis the incipient failure of key components such as the tower, drive train and rotor of a large wind turbine can be detected. In this paper, the Nonlinear State Estimation Technique (NSET has been applied to model turbine tower vibration to good effect, providing an understanding of the tower vibration dynamic characteristics and the main factors influencing these. The developed tower vibration model comprises two different parts: a sub-model used for below rated wind speed; and another for above rated wind speed. Supervisory control and data acquisition system (SCADA data from a single wind turbine collected from March to April 2006 is used in the modeling. Model validation has been subsequently undertaken and is presented. This research has demonstrated the effectiveness of the NSET approach to tower vibration; in particular its conceptual simplicity, clear physical interpretation and high accuracy. The developed and validated tower vibration model was then used to successfully detect blade angle asymmetry that is a common fault that should be remedied promptly to improve turbine performance and limit fatigue damage. The work also shows that condition monitoring is improved significantly if the information from the vibration signals is complemented by analysis of other relevant SCADA data such as power performance, wind speed, and rotor loads.

  1. Sound attenuation and anharmonic damping in solids with correlated disorder

    Directory of Open Access Journals (Sweden)

    W. Schirmacher


    Full Text Available We study via self-consistent Born approximation a model for sound waves in a disordered environment, in which the local fluctuations of the shear modulus G are spatially correlated with a certain correlation length ξ. The theory predicts an enhancement of the density of states over Debye's ω2 law (boson peak whose intensity increases for increasing correlation length, and whose frequency position is shifted downwards as 1/ξ. Moreover, the predicted disorder-induced sound attenuation coefficient Γ(k obeys a universal scaling law ξ Γ(k = f(kξ for a given variance of G. Finally, the inclusion of the lowest-order contribution to the anharmonic sound damping into the theory allows us to reconcile apparently contradictory recent experimental data in amorphous SiO2.

  2. Approximation methods for the partition functions of anharmonic systems

    Energy Technology Data Exchange (ETDEWEB)

    Lew, P.; Ishida, T.


    The analytical approximations for the classical, quantum mechanical and reduced partition functions of the diatomic molecule oscillating internally under the influence of the Morse potential have been derived and their convergences have been tested numerically. This successful analytical method is used in the treatment of anharmonic systems. Using Schwinger perturbation method in the framework of second quantization formulism, the reduced partition function of polyatomic systems can be put into an expression which consists separately of contributions from the harmonic terms, Morse potential correction terms and interaction terms due to the off-diagonal potential coefficients. The calculated results of the reduced partition function from the approximation method on the 2-D and 3-D model systems agree well with the numerical exact calculations.

  3. The effect of whole-body resonance vibration in a porcine model of spinal cord injury. (United States)

    Streijger, Femke; Lee, Jae H T; Chak, Jason; Dressler, Dan; Manouchehri, Neda; Okon, Elena B; Anderson, Lisa M; Melnyk, Angela D; Cripton, Peter A; Kwon, Brian K


    Whole-body vibration has been identified as a potential stressor to spinal cord injury (SCI) patients during pre-hospital transportation. However, the effect that such vibration has on the acutely injured spinal cord is largely unknown, particularly in the frequency domain of 5 Hz in which resonance of the spine occurs. The objective of the study was to investigate the consequences of resonance vibration on the injured spinal cord. Using our previously characterized porcine model of SCI, we subjected animals to resonance vibration (5.7±0.46 Hz) or no vibration for a period of 1.5 or 3.0 h. Locomotor function was assessed weekly and cerebrospinal fluid (CSF) samples were collected to assess different inflammatory and injury severity markers. Spinal cords were evaluated histologically to quantify preserved white and gray matter. No significant differences were found between groups for CSF levels of monocyte chemotactic protein-1, interleukin 6 (IL-6) and lL-8. Glial fibrillary acidic protein levels were lower in the resonance vibration group, compared with the non-vibrated control group. Spared white matter tissue was increased within the vibrated group at 7 d post-injury but this difference was not apparent at the 12-week time-point. No significant difference was observed in locomotor recovery following resonance vibration of the spine. Here, we demonstrate that exposure to resonance vibration for 1.5 or 3 h following SCI in our porcine model is not detrimental to the functional or histological outcomes. Our observation that a 3.0-h period of vibration at resonance frequency induces modest histological improvement at one week post-injury warrants further study.

  4. Vertical Vibration Model for Unsteady Lubrication in Rolls-Strip Interface of Cold Rolling Mills

    Directory of Open Access Journals (Sweden)

    Xu Yang


    Full Text Available According to the vertical vibration phenomena existing in cold rolling mills, the unsteady lubrication mechanism in roll gap and its influence to rolling stability was chosen as the case for analysis. On the basis of rolling theory, lubrication and friction theory, and mechanic vibration theory, the vertical vibration model for unsteady lubrication in rolls-strip interface was presented. The Geometry model of roll gap, the unsteady lubrication model of roller-strip working interface, the distribution model of normal rolling stress and friction stress, and the rolling vertical structure model were taken into account. Based on the rolling equipment and process parameters of aluminium mill, the rolling force curve and dynamic response of working roll displacement variation was simulated on Matlab/Simulink platform. A comparison with actual production data shows the validity of this vibration model.

  5. Anharmonicity, mechanical instability, and thermodynamic properties of the Cr-Re σ-phase

    Energy Technology Data Exchange (ETDEWEB)

    Palumbo, Mauro, E-mail:; Fries, Suzana G. [ICAMS, Ruhr University Bochum, Universität Str. 150, D-44801 Bochum (Germany); Pasturel, Alain [SIMAP, UMR CNRS-INPG-UJF 5266, BP 75, F-38402 Saint Martin d’Hères (France); Alfè, Dario [Department of Earth Sciences, Department of Physics and Astronomy, London Centre for Nanotechnology and Thomas Young Centre-UCL, University College London, Gower Street, London WC1E 6BT (United Kingdom)


    Using density-functional theory in combination with the direct force method and molecular dynamics we investigate the vibrational properties of a binary Cr-Re σ-phase. In the harmonic approximation, we have computed phonon dispersion curves and density of states, evidencing structural and chemical effects. We found that the σ-phase is mechanically unstable in some configurations, for example, when all crystallographic sites are occupied by Re atoms. By using a molecular-dynamics-based method, we have analysed the anharmonicity in the system and found negligible effects (∼0.5 kJ/mol) on the Helmholtz energy of the binary Cr-Re σ-phase up to 2000 K (∼0.8T{sub m}). Finally, we show that the vibrational contribution has significant consequences on the disordering of the σ-phase at high temperature.

  6. Thermal vibration of rectangular single-layered black phosphorus predicted by orthotropic plate model (United States)

    Zhang, Yiqing; Wang, Lifeng; Jiang, Jingnong


    Vibrational behavior is very important for nanostructure-based resonators. In this work, an orthotropic plate model together with a molecular dynamics (MD) simulation is used to investigate the thermal vibration of rectangular single-layered black phosphorus (SLBP). Two bending stiffness, two Poisson's ratios, and one shear modulus of SLBP are calculated using the MD simulation. The natural frequency of the SLBP predicted by the orthotropic plate model agrees with the one obtained from the MD simulation very well. The root of mean squared (RMS) amplitude of the SLBP is obtained by MD simulation and the orthotropic plate model considering the law of energy equipartition. The RMS amplitude of the thermal vibration of the SLBP is predicted well by the orthotropic plate model compared to the MD results. Furthermore, the thermal vibration of the SLBP with an initial stress is also well-described by the orthotropic plate model.

  7. Optimal sinusoidal modelling of gear mesh vibration signals for gear diagnosis and prognosis (United States)

    Man, Zhihong; Wang, Wenyi; Khoo, Suiyang; Yin, Juliang


    In this paper, the synchronous signal average of gear mesh vibration signals is modelled with the multiple modulated sinusoidal representations. The signal model parameters are optimised against the measured signal averages by using the batch learning of the least squares technique. With the optimal signal model, all components of a gear mesh vibration signal, including the amplitude modulations, the phase modulations and the impulse vibration component induced by gear tooth cracking, are identified and analysed with insight of the gear tooth crack development and propagation. In particular, the energy distribution of the impulse vibration signal, extracted from the optimal signal model, provides sufficient information for monitoring and diagnosing the evolution of the tooth cracking process, leading to the prognosis of gear tooth cracking. The new methodologies for gear mesh signal modelling and the diagnosis of the gear tooth fault development and propagation are validated with a set of rig test data, which has shown excellent performance.

  8. An electromechanical coupling model of a bending vibration type piezoelectric ultrasonic transducer. (United States)

    Zhang, Qiang; Shi, Shengjun; Chen, Weishan


    An electromechanical coupling model of a bending vibration type piezoelectric ultrasonic transducer is proposed. The transducer is a Langevin type transducer which is composed of an exponential horn, four groups of PZT ceramics and a back beam. The exponential horn can focus the vibration energy, and can enlarge vibration amplitude and velocity efficiently. A bending vibration model of the transducer is first constructed, and subsequently an electromechanical coupling model is constructed based on the vibration model. In order to obtain the most suitable excitation position of the PZT ceramics, the effective electromechanical coupling coefficient is optimized by means of the quadratic interpolation method. When the effective electromechanical coupling coefficient reaches the peak value of 42.59%, the optimal excitation position (L1=22.52 mm) is found. The FEM method and the experimental method are used to validate the developed analytical model. Two groups of the FEM model (the Group A center bolt is not considered, and but the Group B center bolt is considered) are constructed and separately compared with the analytical model and the experimental model. Four prototype transducers around the peak value are fabricated and tested to validate the analytical model. A scanning laser Doppler vibrometer is employed to test the bending vibration shape and resonance frequency. Finally, the electromechanical coupling coefficient is tested indirectly through an impedance analyzer. Comparisons of the analytical results, FEM results and experiment results are presented, and the results show good agreement. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Theoretical study of the C-H/O-H stretching vibrations in malonaldehyde (United States)

    Pitsevich, G. A.; Malevich, A. E.; Kozlovskaya, E. N.; Doroshenko, I. Yu.; Pogorelov, V. E.; Sablinskas, V.; Balevicius, V.


    IR and Raman spectra of the malonaldehyde molecule and its deuterated analogues were calculated in the B3LYP/cc-pVQZ approximation. Anharmonicity effects were taken into account both in the context of a standard model of the second order perturbation theory and by constructing the potential energy surfaces (PES) with a limited number of dimensions using the Cartesian coordinates of the hydroxyl hydrogen atom and the stretching coordinates of С-Н, C-D, O-H, and O-D bonds. It was shown that in each of the two equivalent forms of the molecule, besides the global minimum, an additional local minimum at the PES is formed with the energy more than 3000 cm-1 higher than the energy in the global minimum. Calculations carried out by constructing the 2D and 3D PESs indicate a high anharmonicity level and multiple manifestations of the stretching О-Н vibrations, despite the fact that the model used does not take into account the splitting of the ground-state and excited vibrational energy levels. In particular, the vibration with the frequency 3258 cm-1 may be associated with proton transfer to the region of a local minimum of energy. Comparing the results obtained with the experimental data presented in the literature allowed us to propose a new variant of bands assignments in IR and Raman spectra of the molecule in the spectral region 2500-3500 cm-1.

  10. Vibrational relaxation in liquids: Comparisons between gas phase and liquid phase theories

    International Nuclear Information System (INIS)

    Russell, D.J.


    The vibrational relaxation of iodine in liquid xenon was studied to understand what processes are important in determining the density dependence of the vibrational relaxation. This examination will be accomplished by taking simple models and comparing the results to both experimental outcomes and the predictions of molecular dynamics simulations. The vibration relaxation of iodine is extremely sensitive to the iodine potential. The anharmonicity of iodine causes vibrational relaxation to be much faster at the top of the iodine well compared to the vibrational relaxation at the bottom. A number of models are used in order to test the ability of the Isolated Binary Collision theory's ability to predict the density dependence of the vibrational relaxation of iodine in liquid xenon. The models tested vary from the simplest incorporating only the fact that the solvent occupies volume to models that incorporate the short range structure of the liquid in the radial distribution function. None of the models tested do a good job of predicting the actual relaxation rate for a given density. This may be due to a possible error in the choice of potentials to model the system

  11. Anharmonic potential in the oscillator representation

    International Nuclear Information System (INIS)

    Dineykhan, M.; Efimov, G.V.


    In the non relativistic and relativized Schroedinger equation the Wick ordering method called the oscillator representation is proposed to calculate the energy spectrum for a wide class of potentials allowing the existence of a bound state. The oscillator representation method gives a unique regular way to describe and calculate the energy levels of ground as well as orbital and radial excitation states for a wide class of potentials. The results of the zeroth approximation oscillator representation are in good agreement with the exact values for the anharmonic potentials. The oscillator representation method was applied to the relativized Schroedinger equation too. The perturbation series converges fairly fast, i.e., the highest perturbation corrections over the interaction Hamiltonian are small enough. 29 refs.; 4 tabs. (author)

  12. Analysis of whole-body vibration on rheological models for tissues (United States)

    Neamţu, A.; Simoiu, D.; Nyaguly, E.; Crastiu, I.; Bereteu, L.


    Whole body vibrations have become a very popular method in recent years, both in physical therapy and in sports. This popularity is due to the fact that, as a result of analyzing the groups of subjects, the effects of small amplitude vibration and low frequency vibration, it was found an increase in the force developed by the feet, a hardening of bone strength or an increase in bone density. In this paper we propose to give a possible explanation of the stress relieving in muscle and/or bone after whole body vibration treatment. To do this we consider some rheological models which after whole body vibrations and after the analysis of their response lead to various experiments.

  13. Research on torsional vibration modelling and control of printing cylinder based on particle swarm optimization (United States)

    Wang, Y. M.; Xu, W. C.; Wu, S. Q.; Chai, C. W.; Liu, X.; Wang, S. H.


    The torsional oscillation is the dominant vibration form for the impression cylinder of printing machine (printing cylinder for short), directly restricting the printing speed up and reducing the quality of the prints. In order to reduce torsional vibration, the active control method for the printing cylinder is obtained. Taking the excitation force and moment from the cylinder gap and gripper teeth open & closing cam mechanism as variable parameters, authors establish the dynamic mathematical model of torsional vibration for the printing cylinder. The torsional active control method is based on Particle Swarm Optimization(PSO) algorithm to optimize input parameters for the serve motor. Furthermore, the input torque of the printing cylinder is optimized, and then compared with the numerical simulation results. The conclusions are that torsional vibration active control based on PSO is an availability method to the torsional vibration of printing cylinder.

  14. Modeling and Design of Anti-Impact Vibration System for Clamp-On Optical Current Transformers (United States)

    Ye, Yuan-bo; Zheng, Hao; Wang, Wei; Wang, Gui-zhong; Li, Hong-bo; Zhang, Guo-qing


    Optical current transformers, which possess excellent transient characteristics, are able to accurately reflect the full waveform of primary current, and have a wide range of potential applications. The clamp is the sensing unit of the optical current transformer that is mounted directly to the gas-insulated switchgear (GIS) casing and has advantages such as simple structure and ease of maintenance. However, vibration of the casing due to the operation of the GIS circuit breaker has a significant effect on the output of the optical current transformer, and may cause the malfunction of protective relays. This paper proposes the use of damping rubber as the main means of reducing vibration in transformers. A vibration damping system for the clamp-on optical current transformer was designed using the optimal parameters obtained from the modeling and analysis of an anti-impact vibration system. A test system was set up to perform experiments on the designed vibration damping system.

  15. Vibration analysis of continuous maglev guideways with a moving distributed load model

    Energy Technology Data Exchange (ETDEWEB)

    Teng, N G; Qiao, B P [Department of Civil Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 (China)


    A model of moving distributed load with a constant speed is established for vertical vibration analysis of a continuous guideway in maglev transportation system. The guideway is considered as a continuous structural system and the action of maglev vehicles on guideways is considered as a moving distributed load. Vibration of the continuous guideways used in Shanghai maglev line is analyzed with this model. The factors that affect the vibration of the guideways, such as speeds, guideway's spans, frequency and damping, are discussed.

  16. Modeling of the interaction between grip force and vibration transmissibility of a finger. (United States)

    Wu, John Z; Welcome, Daniel E; McDowell, Thomas W; Xu, Xueyan S; Dong, Ren G


    It is known that the vibration characteristics of the fingers and hand and the level of grip action interacts when operating a power tool. In the current study, we developed a hybrid finger model to simulate the vibrations of the hand-finger system when gripping a vibrating handle covered with soft materials. The hybrid finger model combines the characteristics of conventional finite element (FE) models, multi-body musculoskeletal models, and lumped mass models. The distal, middle, and proximal finger segments were constructed using FE models, the finger segments were connected via three flexible joint linkages (i.e., distal interphalangeal joint (DIP), proximal interphalangeal joint (PIP), and metacarpophalangeal (MCP) joint), and the MCP joint was connected to the ground and handle via lumped parameter elements. The effects of the active muscle forces were accounted for via the joint moments. The bone, nail, and hard connective tissues were assumed to be linearly elastic whereas the soft tissues, which include the skin and subcutaneous tissues, were considered as hyperelastic and viscoelastic. The general trends of the model predictions agree well with the previous experimental measurements in that the resonant frequency increased from proximal to the middle and to the distal finger segments for the same grip force, that the resonant frequency tends to increase with increasing grip force for the same finger segment, especially for the distal segment, and that the magnitude of vibration transmissibility tends to increase with increasing grip force, especially for the proximal segment. The advantage of the proposed model over the traditional vibration models is that it can predict the local vibration behavior of the finger to a tissue level, while taking into account the effects of the active musculoskeletal force, the effects of the contact conditions on vibrations, the global vibration characteristics. Published by Elsevier Ltd.

  17. Electromagnetic Vibration Energy Harvesting Devices Architectures, Design, Modeling and Optimization

    CERN Document Server

    Spreemann, Dirk


    Electromagnetic vibration transducers are seen as an effective way of harvesting ambient energy for the supply of sensor monitoring systems. Different electromagnetic coupling architectures have been employed but no comprehensive comparison with respect to their output performance has been carried out up to now. Electromagnetic Vibration Energy Harvesting Devices introduces an optimization approach which is applied to determine optimal dimensions of the components (magnet, coil and back iron). Eight different commonly applied coupling architectures are investigated. The results show that correct dimensions are of great significance for maximizing the efficiency of the energy conversion. A comparison yields the architectures with the best output performance capability which should be preferably employed in applications. A prototype development is used to demonstrate how the optimization calculations can be integrated into the design–flow. Electromagnetic Vibration Energy Harvesting Devices targets the design...

  18. Parallel two-phase-flow-induced vibrations in fuel pin model

    International Nuclear Information System (INIS)

    Hara, Fumio; Yamashita, Tadashi


    This paper reports the experimental results of vibrations of a fuel pin model -herein meaning the essential form of a fuel pin from the standpoint of vibration- in a parallel air-and-water two-phase flow. The essential part of the experimental apparatus consisted of a flat elastic strip made of stainless steel, both ends of which were firmly supported in a circular channel conveying the two-phase fluid. Vibrational strain of the fuel pin model, pressure fluctuation of the two-phase flow and two-phase-flow void signals were measured. Statistical measures such as power spectral density, variance and correlation function were calculated. The authors obtained (1) the relation between variance of vibrational strain and two-phase-flow velocity, (2) the relation between variance of vibrational strain and two-phase-flow pressure fluctuation, (3) frequency characteristics of variance of vibrational strain against the dominant frequency of the two-phase-flow pressure fluctuation, and (4) frequency characteristics of variance of vibrational strain against the dominant frequency of two-phase-flow void signals. The authors conclude that there exist two kinds of excitation mechanisms in vibrations of a fuel pin model inserted in a parallel air-and-water two-phase flow; namely, (1) parametric excitation, which occurs when the fundamental natural frequency of the fuel pin model is related to the dominant travelling frequency of water slugs in the two-phase flow by the ratio 1/2, 1/1, 3/2 and so on; and (2) vibrational resonance, which occurs when the fundamental frequency coincides with the dominant frequency of the two-phase-flow pressure fluctuation. (auth.)

  19. DFT calculations for anharmonic force field and spectroscopic constants of YC2 and its 13C isotopologues (United States)

    Zhao, Yanliang; Wang, Meishan; Yang, Chuanlu; Ma, Xiaoguang; Li, Jing


    The construction of the complete third and the semi-diagonal quartic force fields including the anharmonicity of the ground state (X˜2A1) for yttrium dicarbide (YC2) is carried out employing the vibrational second-order perturbation theory (VPT2) in combination with the density functional theory (DFT). The equilibrium geometries optimization, anharmonic force field and vibrational spectroscopic constants of YC2 are calculated by B3LYP, B3PW91 and B3P86 methods. Aug-cc-pVnZ (n = D, T, Q) and cc-pVnZ-PP (n = D, T, Q) basis sets are chosen for C and Y atoms, respectively. The calculated geometry parameters of YC2 agree well with the corresponding experimental and previous theoretical results. The bonding characters of Ysbnd C2 or Csbnd C are discussed. Based on the optimized equilibrium geometries, the spectroscopic constants and anharmonic force field of YC2 are calculated. Comparing with the spectroscopic constants of YC2 derived from the experiment, the calculated results show that the B3PW91 and B3P86 methods are superior to B3LYP for YC2. The Coriolis coupling constants, cubic and quartic force constants of YC2 are reasonably predicted. Besides, the spectroscopic constants and anharmonic force field of Y13C2 (X˜2A1) and Y13CC (X˜2A‧) are calculated for the first time, which are expected to guide the high resolution experimental work for YC2 and its 13C isotopologues.

  20. DFT calculations for anharmonic force field and spectroscopic constants of YC2and its13C isotopologues. (United States)

    Zhao, Yanliang; Wang, Meishan; Yang, Chuanlu; Ma, Xiaoguang; Li, Jing


    The construction of the complete third and the semi-diagonal quartic force fields including the anharmonicity of the ground state (X˜ 2 A 1 ) for yttrium dicarbide (YC 2 ) is carried out employing the vibrational second-order perturbation theory (VPT2) in combination with the density functional theory (DFT). The equilibrium geometries optimization, anharmonic force field and vibrational spectroscopic constants of YC 2 are calculated by B3LYP, B3PW91 and B3P86 methods. Aug-cc-pVnZ (n=D, T, Q) and cc-pVnZ-PP (n=D, T, Q) basis sets are chosen for C and Y atoms, respectively. The calculated geometry parameters of YC 2 agree well with the corresponding experimental and previous theoretical results. The bonding characters of YC 2 or CC are discussed. Based on the optimized equilibrium geometries, the spectroscopic constants and anharmonic force field of YC 2 are calculated. Comparing with the spectroscopic constants of YC 2 derived from the experiment, the calculated results show that the B3PW91 and B3P86 methods are superior to B3LYP for YC 2 . The Coriolis coupling constants, cubic and quartic force constants of YC 2 are reasonably predicted. Besides, the spectroscopic constants and anharmonic force field of Y 13 C 2 (X˜ 2 A 1 ) and Y 13 CC (X˜ 2 A ' ) are calculated for the first time, which are expected to guide the high resolution experimental work for YC 2 and its 13 C isotopologues. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. A numerical model for calculating vibration from a railway tunnel embedded in a full-space (United States)

    Hussein, M. F. M.; Hunt, H. E. M.


    Vibration generated by underground railways transmits to nearby buildings causing annoyance to inhabitants and malfunctioning to sensitive equipment. Vibration can be isolated through countermeasures by reducing the stiffness of railpads, using floating-slab tracks and/or supporting buildings on springs. Modelling of vibration from underground railways has recently gained more importance on account of the need to evaluate accurately the performance of vibration countermeasures before these are implemented. This paper develops an existing model, reported by Forrest and Hunt, for calculating vibration from underground railways. The model, known as the Pipe-in-Pipe model, has been developed in this paper to account for anti-symmetrical inputs and therefore to model tangential forces at the tunnel wall. Moreover, three different arrangements of supports are considered for floating-slab tracks, one which can be used to model directly-fixed slabs. The paper also investigates the wave-guided solution of the track, the tunnel, the surrounding soil and the coupled system. It is shown that the dynamics of the track have significant effect on the results calculated in the wavenumber-frequency domain and therefore an important role on controlling vibration from underground railways.

  2. A modified wake oscillator model for predicting vortex induced vibration of heat exchanger tube

    International Nuclear Information System (INIS)

    Feng Zhipeng; Zang Fenggang; Zhang Yixiong; Ye Xianhui


    Base on the classical wake oscillator model, a new modified wake oscillator model is proposed, for predicting vortex induced vibration of heat exchanger tube in uniform current. The comparison between the new wake oscillator model and experimental show that the present model can simulate the characteristics of vortex induced vibration of tube. Firstly, the research shows that the coupled fluid-structure dynamical system should be modeled by combined displacement and acceleration mode. Secondly, the empirical parameter in wake oscillator model depends on the material properties of the structure, instead of being a universal constant. Lastly, the results are compared between modified wake oscillator model and fluid-structure interaction numerical model. It shows the present, predicted results are compared to the fluid-structure interaction numerical data. The new modified wake oscillator model can predict the vortex induced heat exchanger tube vibration feasibly. (authors)

  3. Advances in theoretical and experimental XAFS studies of thermodynamic properties, anharmonic effects and structural determination of fcc crystals (United States)

    Hung, Nguyen Van; Thang, Cu Sy; Duc, Nguyen Ba; Vuong, Dinh Quoc; Tien, Tong Sy


    Thermodynamic properties, anharmonic effects and structural determination of fcc crystals have been studied based on the theoretical and experimental Debye-Waller factors presented in terms of cumulant expansion up to the third order, thermal expansion coefficient, X-ray absorption fine structure (XAFS) spectra and their Fourier transform magnitudes. The advances in these studies are performed by the further development of the anharmonic correlated Einstein model primary only for approximating three first XAFS cumulants into the method using that all the considered theoretical and experimental XAFS parameters have been provided based on only the calculated and measured second cumulants. The obtained cumulants describe the anharmonic effects in XAFS contributing to the accurate structural determination. Numerical results for Cu are found to be in good agreement with the experimental values extracted by using the present advanced method and with those obtained by the other measurements.

  4. A theory of the strain-dependent critical field in Nb3Sn, based on anharmonic phonon generation

    CERN Document Server

    Valentinis, D F; Bordini, B; Rossi, L


    We propose a theory to explain the strain dependence of the critical properties in A15 superconductors. Starting from the strong-coupling formula for the critical temperature, and assuming that the strain sensitivity stems mostly from the electron-phonon alpha F-2 function, we link the strain dependence of the critical properties to a widening of alpha F-2. This widening is attributed to the nonlinear generation of phonons, which takes place in the anharmonic deformation potential induced by the strain. Based on the theory of sum- and difference-frequency wave generation in nonlinear media, we obtain an explicit connection between the widening of alpha F-2 and the anharmonic energy. The resulting model is fit to experimental datasets for Nb3Sn, and the anharmonic energy extracted from the fits is compared with first-principles calculations.

  5. Studying the Vocal Fold Vibration Using a Nonlinear Finite-Element Model (United States)

    Tao, Chao; Jiang, Jack. J.; Zhang, Yu


    The vocal fold vibration and voice production are highly complex nonlinear processes. Nonlinear relationship of glottal pressure to airflow and the nonlinearities of vocal fold collision are two important nonlinear factors of vocal fold vibration. In this paper, we will study the vocal fold vibration using a nonlinear finite-element model. In this model, the nonlinear relationship of glottal pressure to airflow, the nonlinearities of vocal fold collision, and the interaction between the airflow and vocal folds are taken into account. The impact pressure, vocal fold vibration, and glottal pressure under various lung pressures are studies. The results show that the nonlinear finite-element model is a useful tool for studying the voice production and predicting mechanical trauma leading to injurious abuse, misuse of the voice and vocal nodule.

  6. Finite Element Modeling of Vibrations in Canvas Paintings

    NARCIS (Netherlands)

    Chiriboga Arroyo, P.G.


    Preventing vibration damage from occurring to valuable and sensitive canvas paintings is of main concern for museums and art conservation institutions. This concern has grown in recent years due to the increasing demand of paintings for exhibitions worldwide and the concomitant need for their

  7. Dynamic of cold-atom tips in anharmonic potentials (United States)

    Menold, Tobias; Federsel, Peter; Rogulj, Carola; Hölscher, Hendrik; Fortágh, József


    Background: Understanding the dynamics of ultracold quantum gases in an anharmonic potential is essential for applications in the new field of cold-atom scanning probe microscopy. Therein, cold atomic ensembles are used as sensitive probe tips to investigate nanostructured surfaces and surface-near potentials, which typically cause anharmonic tip motion. Results: Besides a theoretical description of this anharmonic tip motion, we introduce a novel method for detecting the cold-atom tip dynamics in situ and real time. In agreement with theory, the first measurements show that particle interactions and anharmonic motion have a significant impact on the tip dynamics. Conclusion: Our findings will be crucial for the realization of high-sensitivity force spectroscopy with cold-atom tips and could possibly allow for the development of advanced spectroscopic techniques such as Q-control. PMID:28144505

  8. Time evolution of gibbs states for an anharmonic lattice

    International Nuclear Information System (INIS)

    Marchioro, C.; Pellegrinotti, A.; Suhov, Y.; Pulvirenti, M.; Rome Univ.


    In this paper we study the time evolution of a regular class of states of an infinite classical system of anharmonic oscillators. The conditional probabilities are investigated and an explicit form for these is given. (orig.) [de

  9. A two scale modeling and computational framework for vibration-induced Raynaud syndrome. (United States)

    Hua, Yue; Lemerle, Pierre; Ganghoffer, Jean-François


    Hand-Arm Vibration syndrome (HAVS), usually caused by long-term use of hand-held power tools, can in certain manifestations alter the peripheral blood circulation in the hand-arm region. HAVS typically occurs after exposure to cold, causing an abnormally strong vasoconstriction of blood vessels. A pathoanatomical mechanism suggests that a reduction of the lumen of the blood vessels in VWF (Vibration White Finger) subjects, due to either hypertrophy or thickening of the vessel wall, may be at the origin of the disease. However, the direct and indirect effects of the load of the hand-held tools on the structure of blood vessels remain hypothesis is the mechanical action of vibration on the local acral dysregulation and/or on the vessel histomorphological modifications. Another hypothesis is the participation of the sympathetic nervous system to this dysregulation. In this paper, we assume the modifications as mechanobiological growth and the load-effect relationship may be interpreted as directly or indirectly induced. This work is the first attempt to model the effect of vibration through soft tissues onto the distal capillaries, addressing the double paradigm of multi space-time scales, i.e. low period vibration versus high time constant of the growth phenomenon as well as vibrations propagating in the macroscopic tissue including the microscopic capillary structures subjected to a pathological microstructural evolution. The objective is to lay down the theoretical basis of growth modeling for the small distal artery, with the ability to predict the geometrical and structural changes of the arterial walls caused by vibration exposure. We adopt the key idea of splitting the problem into one global vibration problem at the macroscopic scale and one local growth problem at the micro level. The macroscopic hyperelastic viscous dynamic model of the fingertip cross-section is validated by fitting experimental data. It is then used in steady

  10. Effects of hypersonic field and anharmonic interactions on channelling radiation

    International Nuclear Information System (INIS)

    George, Juby; Pathak, Anand P; Goteti, L N S Prakash; Nagamani, G


    The effects of a hypersonic field on positron channelling radiation are considered. Anharmonic effects of the transverse potential induced by these longitudinal fields are incorporated and the wavefunction of the planar channelled positron is found by the solution of Dirac equation under the resonant influence of hypersound. An expression for the resonant frequency is estimated. The transition probabilities and the intensity of the channelling radiation are also calculated. It is found that the anharmonic effects change the spectral distributions considerably

  11. Ground state energy values and moments of the anharmonic oscillator

    International Nuclear Information System (INIS)

    Seetharaman, M.; Raghavan, Sekhar; Subba Rao, G.


    It is shown that a very satisfactory estimate of the energy values (for all values of the anharmonicity) and moments of the ground state of the quartic anharmonic oscillator can be obtained in the variational method, by considering trial wavefunctions which have the correct asymptotic properties. The results derived with a single variational parameter are a considerable improvement over the recent results of C.A. Ginsburg and E.W. Montroll (1978). (author)

  12. Solution of the anharmonic quartic potential oscillator problem (United States)

    Sánchez, A. Martín; Bejarano, J. Díaz; Marzal, D. Caceres


    The problem of the one-dimensional generalized anharmonic quartic potential oscillator is studied in full. Solutions of the classical equations of motion for the different types of potential are given in terms of the Jacobi elliptic functions, in both classically allowed and forbidden regions of each potential for physically interesting initial conditions. The solutions and some of their properties are also given by means of bilinear transformations of the corresponding anharmonic symmetric oscillator solutions for similar regions or initial conditions.

  13. Nonlinear modeling of tuned liquid dampers (TLDs) in rotating wind turbine blades for damping edgewise vibrations

    DEFF Research Database (Denmark)

    Zhang, Zili; Nielsen, Søren R. K.; Basu, Biswajit


    Tuned liquid dampers (TLDs) utilize the sloshing motion of the fluid to suppress structural vibrations and become a natural candidate for damping vibrations in rotating wind turbine blades. The centrifugal acceleration at the tip of a wind turbine blade can reach a magnitude of 7–8g. This facilit......Tuned liquid dampers (TLDs) utilize the sloshing motion of the fluid to suppress structural vibrations and become a natural candidate for damping vibrations in rotating wind turbine blades. The centrifugal acceleration at the tip of a wind turbine blade can reach a magnitude of 7–8g...... free-surface elevation equally well, the one-mode model can still be utilized for the design of TLD. Parametric optimization of the TLD is carried out based on the one-mode model, and the optimized damper effectively improves the dynamic response of wind turbine blades....

  14. Dynamic modeling and simulation of a two-stage series-parallel vibration isolation system

    Directory of Open Access Journals (Sweden)

    Rong Guo


    Full Text Available A two-stage series-parallel vibration isolation system is already widely used in various industrial fields. However, when the researchers analyze the vibration characteristics of a mechanical system, the system is usually regarded as a single-stage one composed of two substructures. The dynamic modeling of a two-stage series-parallel vibration isolation system using frequency response function–based substructuring method has not been studied. Therefore, this article presents the source-path-receiver model and the substructure property identification model of such a system. These two models make up the transfer path model of the system. And the model is programmed by MATLAB. To verify the proposed transfer path model, a finite element model simulating a vehicle system, which is a typical two-stage series-parallel vibration isolation system, is developed. The substructure frequency response functions and system level frequency response functions can be obtained by MSC Patran/Nastran and LMS Virtual.lab based on the finite element model. Next, the system level frequency response functions are substituted into the transfer path model to predict the substructural frequency response functions and the system response of the coupled structure can then be further calculated. By comparing the predicted results and exact value, the model proves to be correct. Finally, the random noise is introduced into several relevant system level frequency response functions for error sensitivity analysis. The system level frequency response functions that are most sensitive to the random error are found. Since a two-stage series-parallel system has not been well studied, the proposed transfer path model improves the dynamic theory of the multi-stage vibration isolation system. Moreover, the validation process of the model here actually provides an example for acoustic and vibration transfer path analysis based on the proposed model. And it is worth noting that the

  15. Lumped Parameter Modeling for Rapid Vibration Response Prototyping and Test Correlation for Electronic Units (United States)

    Van Dyke, Michael B.


    Present preliminary work using lumped parameter models to approximate dynamic response of electronic units to random vibration; Derive a general N-DOF model for application to electronic units; Illustrate parametric influence of model parameters; Implication of coupled dynamics for unit/board design; Demonstrate use of model to infer printed wiring board (PWB) dynamics from external chassis test measurement.

  16. Non-linear journal bearing model for analysis of superharmonic vibrations of rotor systems

    Energy Technology Data Exchange (ETDEWEB)

    Hannukainen, P.


    A rotating machine usually consists of a rotor and bearings that supports it. The nonidealities in these components may excite vibration of the rotating system. The uncontrolled vibrations may lead to excessive wearing of the components of the rotating machine or reduce the process quality. Vibrations may be harmful even when amplitudes are seemingly low, as is usually the case in superharmonic vibration that takes place below the first critical speed of the rotating machine. Superharmonic vibration is excited when the rotational velocity of the machine is a fraction of the natural frequency of the system. In such a situation, a part of the machineAEs rotational energy is transformed into vibration energy. The amount of vibration energy should be minimised in the design of rotating machines. The superharmonic vibration phenomena can be studied by analysing the coupled rotor-bearing system employing a multibody simulation approach. This research is focused on the modelling of hydrodynamic journal bearings and rotorbearing systems supported by journal bearings. In particular, the non-idealities affecting the rotor-bearing system and their effect on the superharmonic vibration of the rotating system are analysed. A comparison of computationally efficient journal bearing models is carried out in order to validate one model for further development. The selected bearing model is improved in order to take the waviness of the shaft journal into account. The improved model is implemented and analyzed in a multibody simulation code. A rotor-bearing system that consists of a flexible tube roll, two journal bearings and a supporting structure is analysed employing the multibody simulation technique. The modelled non-idealities are the shell thickness variation in the tube roll and the waviness of the shaft journal in the bearing assembly. Both modelled non-idealities may cause subharmonic resonance in the system. In multibody simulation, the coupled effect of the non

  17. Modelling and processing of data from a fibre-optic sensor of vibrations

    International Nuclear Information System (INIS)

    Morawski, R Z; Makowski, P L; Michalik, L; Domanski, A W


    A new technique of vibration sensing, based on a polarimetric fibre-optic strain sensor, is presented; it is designed for localisation of multiple sources of disturbances in a broad spectrum without using fibre gratings. A mathematical model of the sensor is used for development of a variational method for estimation of amplitudes of component vibrations on the basis of noisy samples of the voltage at the output of the sensor.

  18. Raman scattering study of the anharmonic effects in CeO2-y nanocrystals (United States)

    Popović, Z. V.; Dohčević-Mitrović, Z.; Cros, A.; Cantarero, A.


    We have studied the temperature dependence of the F2g Raman mode phonon frequency and broadening in CeO2-y nanocrystals. The phonon softening and phonon linewidth are calculated using a model which takes into account the three-and four-phonon anharmonic processes. A detailed comparison of the experimental data with theoretical calculations revealed the predominance of four-phonon anharmonic processes in the temperature dependence of the phonon energy and broadening of the nanocrystals. On the other hand, three-phonon processes dominate the temperature behavior of phonons in polycrystalline samples. The anti-Stokes/Stokes peak intensity ratio was also investigated and found to be smaller for nanosized CeO2 powders than in the bulk counterpart.

  19. Raman scattering study of the anharmonic effects in CeO2-y nanocrystals

    International Nuclear Information System (INIS)

    Popovic, Z V; Dohcevic-Mitrovic, Z; Cros, A; Cantarero, A


    We have studied the temperature dependence of the F 2g Raman mode phonon frequency and broadening in CeO 2-y nanocrystals. The phonon softening and phonon linewidth are calculated using a model which takes into account the three-and four-phonon anharmonic processes. A detailed comparison of the experimental data with theoretical calculations revealed the predominance of four-phonon anharmonic processes in the temperature dependence of the phonon energy and broadening of the nanocrystals. On the other hand, three-phonon processes dominate the temperature behavior of phonons in polycrystalline samples. The anti-Stokes/Stokes peak intensity ratio was also investigated and found to be smaller for nanosized CeO 2 powders than in the bulk counterpart

  20. Raman scattering study of the anharmonic effects in CeO{sub 2-y} nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Popovic, Z V [Center for Solid State Physics and New Materials, Institute of Physics, Pregrevica 118, 11080 Belgrade (Serbia); Dohcevic-Mitrovic, Z [Center for Solid State Physics and New Materials, Institute of Physics, Pregrevica 118, 11080 Belgrade (Serbia); Cros, A [Materials Science Institute, University of Valencia, P O Box 22085, E-46071, Valencia (Spain); Cantarero, A [Materials Science Institute, University of Valencia, P O Box 22085, E-46071, Valencia (Spain)


    We have studied the temperature dependence of the F{sub 2g} Raman mode phonon frequency and broadening in CeO{sub 2-y} nanocrystals. The phonon softening and phonon linewidth are calculated using a model which takes into account the three-and four-phonon anharmonic processes. A detailed comparison of the experimental data with theoretical calculations revealed the predominance of four-phonon anharmonic processes in the temperature dependence of the phonon energy and broadening of the nanocrystals. On the other hand, three-phonon processes dominate the temperature behavior of phonons in polycrystalline samples. The anti-Stokes/Stokes peak intensity ratio was also investigated and found to be smaller for nanosized CeO{sub 2} powders than in the bulk counterpart.

  1. Lattice anharmonicity and thermal properties of strongly correlated Fe1- x Co x Si alloys (United States)

    Povzner, A. A.; Nogovitsyna, T. A.; Filanovich, A. N.


    The temperature dependences of the thermal and elastic properties of strongly correlated metal alloys Fe1- x Co x Si ( x = 0.1, 0.3, 0.5) with different atomic chiralities have been calculated in the framework of the self-consistent thermodynamic model taking into account the influence of lattice anharmonicity. The lattice contributions to the heat capacity and thermal expansion coefficient of the alloys have been determined using the experimental data. It has been demonstrated that the invar effect in the thermal expansion of the lattice observed in the magnetically ordered region of Fe0.7Co0.3Si and Fe0.5Co0.5Si is not related to the lattice anharmonicity, even though its appearance correlates with variations in the atomic chirality.

  2. Lumped mass model of a 1D metastructure for vibration suppression with no additional mass (United States)

    Reichl, Katherine K.; Inman, Daniel J.


    The article examines the effectiveness of metastructures for vibration suppression from a weight standpoint. Metastructures, a metamaterial inspired concept, are structures with distributed vibration absorbers. In automotive and aerospace industries, it is critical to have low levels of vibrations while also using lightweight materials. Previous work has shown that metastructures are effective at mitigating vibrations, but do not consider the effects of mass. This work takes mass into consideration by comparing a structure with vibration absorbers to a structure of equal mass with no absorbers. These structures are modeled as one-dimensional lumped mass models, chosen for simplicity. Results compare both the steady-state and the transient responses. As a quantitative performance measure, the H2 norm, which is related to the area under the frequency response function, is calculated and compared for both the metastructure and the baseline structure. These results show that it is possible to obtain a favorable vibration response without adding additional mass to the structure. Additionally, the performance measure is utilized to optimize the geometry of the structure, determine the optimal ratio of mass in the absorber to mass of the host structure, and determine the frequencies of the absorbers. The dynamic response of this model is verified using a finite element analysis.

  3. Model vibration experiment of the seawater pipe duct in a nuclear power station

    International Nuclear Information System (INIS)

    Toma, Junichi; Iwatate, Takahiro; Otomo, Keizo; Kokusho, Takeharu.


    In the model vibration experiment in the duct structure buried underground, characteristic behaviors in the earth quake response on sectional plane were revealed. Vibration responses in the ground and the structure were examined for the different burying depths and input waves. So, in the non-linear region with ground shearing strain on 10 -3 order, new information was obtained on the seismic load and the structure strain. (1) Acceleration response in the duct is little different from that in the ground. (2) Wall face shearing force and dynamic earth pressure are predominant in the vibration load. (3) The production mechanism of dynamic earth pressure is based on relative displacements of the ground and duct. (4) Because of the ground non-linear vibration, at large input levels the response is small as compared with the case of the linear response. (Mori, K.)

  4. Imaging acoustic vibrations in an ear model using spectrally encoded interferometry (United States)

    Grechin, Sveta; Yelin, Dvir


    Imaging vibrational patterns of the tympanic membrane would allow an accurate measurement of its mechanical properties and provide early diagnosis of various hearing disorders. Various optical technologies have been suggested to address this challenge and demonstrated in vitro using point scanning and full-field interferometry. Spectrally encoded imaging has been previously demonstrated capable of imaging tissue acoustic vibrations with high spatial resolution, including two-dimensional phase and amplitude mapping. In this work, we demonstrate a compact optical apparatus for imaging acoustic vibrations that could be incorporated into a commercially available digital otoscope. By transmitting harmonic sound waves through the otoscope insufflation port and analyzing the spectral interferograms using custom-built software, we demonstrate high-resolution vibration imaging of a circular rubber membrane within an ear model.

  5. Numerical Modelling and Simulation of Dynamic Parameters for Vibration Driven Mobile Robot: Preliminary Study (United States)

    Baharudin, M. E.; Nor, A. M.; Saad, A. R. M.; Yusof, A. M.


    The motion of vibration-driven robots is based on an internal oscillating mass which can move without legs or wheels. The oscillation of the unbalanced mass by a motor is translated into vibration which in turn produces vertical and horizontal forces. Both vertical and horizontal oscillations are of the same frequency but the phases are shifted. The vertical forces will deflect the bristles which cause the robot to move forward. In this paper, the horizontal motion direction caused by the vertically vibrated bristle is numerically simulated by tuning the frequency of their oscillatory actuation. As a preliminary work, basic equations for a simple off-centered vibration location on the robot platform and simulation model for vibration excitement are introduced. It involves both static and dynamic vibration analysis of robots and analysis of different type of parameters. In addition, the orientation of the bristles and oscillators are also analysed. Results from the numerical integration seem to be in good agreement with those achieved from the literature. The presented numerical integration modeling can be used for designing the bristles and controlling the speed and direction of the robot.

  6. Parametrization of an anharmonic Kirkwood–Keating potential for AlxGa1?xAs alloys

    NARCIS (Netherlands)

    Sim, E.; Beckers, J.; De Leeuw, S.; Thorpe, M.; Ratner, M.A.


    We introduce a simple semiempirical anharmonic Kirkwood–Keating potential to model AxB1?xC-type semiconductors. The potential consists of the Morse strain energy and Coulomb interaction terms. The optical constants of pure components, AB and BC, were employed to fit the potential parameters such as

  7. Prediction of powerplant vibration using FRF data of FE model; Dentatsu kansu wo mochiita power plant shindo yosoku

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, T.; Tsukahara, M.; Sakaguchi, M.; Takahashi, Y. [Honda R and D Co. Ltd., Tokyo (Japan)


    For the purpose of shortening the development period, the estimation of powerplant vibration has become more important in the early design stage, and eigenvalue analysis by FEM is commonly used to solve this problem. Eigenvalue Analysis cannot directly predict vibration levels under running conditions that affect the durability of each component and the vibration of a car body. This paper presents a new approach using FRF data from FE models for accurate prediction of engine vibration under running conditions. By applying this approach to an in-line four cylinder engine, the predicted vibration is reasonably comparable with experimental results. 3 refs., 8 figs.

  8. Determination of acoustic vibration in watermelon by finite element modeling (United States)

    Nourain, Jamal; Ying, Yibin B.; Wang, Jianping; Rao, Xiuqin


    The analysis of the vibration responses of a fruit is suggested to measure firmness non-destructively. A wooden ball excited the fruits and the response signals were captured using an accelerometer sensor. The method has been well studied and understood on ellipsoidal shaped fruit (watermelon). In this work, using the finite element simulations, the applicability of the method on watermelon was investigated. The firmness index is dependent on the mass, density, and natural frequency of the lowest spherical modes (under free boundary conditions). This developed index extends the firmness estimation for fruits or vegetables from a spherical to an ellipsoidal shape. The mode of Finite element analysis (FEA) of watermelon was generated based on measured geometry, and it can be served as a theoretical reference for predicting the modal characteristics as a function of design parameters such as material, geometrical, and physical properties. It was found that there were four types of mode shapes. The 1st one was first-type longitudinal mode, the 2nd one was the second-type longitudinal mode, the 3rd one was breathing mode or pure compression mode, and the fourth was flexural or torsional mode shape. As suggested in many references, the First-type spherical vibration mode or oblate-Prolate for watermelon is the lowest bending modes, it's most likely related to fruit firmness. Comparisons of finite element and experimental modal parameters show that both results were agreed in mode shape as well as natural frequencies. In order to measure the vibration signal of the mode, excitation and sensors should be placed on the watermelon surface far away from the nodal lines. The excitation and the response sensors should be in accordance with vibration directions. The correlations between the natural frequency and firmness was 0.856, natural frequency and Young's modulus was 0.800, and the natural frequency and stiffness factor (SF) was 0.862. The stiffness factor (SF) is adequate

  9. Vibration modeling of structural fuzzy with continuous boundary

    DEFF Research Database (Denmark)

    Friis, Lars; Ohlrich, Mogens


    From experiments it is well known that the vibration response of a main structure with many attached substructures often shows more damping than structural losses in the components can account for. In practice, these substructures, which are not attached in an entirely rigid manner, behave like...... effect of the fuzzy with spatial memory is demonstrated by numerical simulations of a main beam structure with fuzzy attachments. It is shown that the introduction of spatial memory reduces the damping effect of the fuzzy and in certain cases the damping effect may even be eliminated completely....

  10. High resolution IR diode laser study of collisional energy transfer between highly vibrationally excited monofluorobenzene and CO2: the effect of donor fluorination on strong collision energy transfer. (United States)

    Kim, Kilyoung; Johnson, Alan M; Powell, Amber L; Mitchell, Deborah G; Sevy, Eric T


    Collisional energy transfer between vibrational ground state CO2 and highly vibrationally excited monofluorobenzene (MFB) was studied using narrow bandwidth (0.0003 cm(-1)) IR diode laser absorption spectroscopy. Highly vibrationally excited MFB with E' = ∼41,000 cm(-1) was prepared by 248 nm UV excitation followed by rapid radiationless internal conversion to the electronic ground state (S1→S0*). The amount of vibrational energy transferred from hot MFB into rotations and translations of CO2 via collisions was measured by probing the scattered CO2 using the IR diode laser. The absolute state specific energy transfer rate constants and scattering probabilities for single collisions between hot MFB and CO2 were measured and used to determine the energy transfer probability distribution function, P(E,E'), in the large ΔE region. P(E,E') was then fit to a bi-exponential function and extrapolated to the low ΔE region. P(E,E') and the biexponential fit data were used to determine the partitioning between weak and strong collisions as well as investigate molecular properties responsible for large collisional energy transfer events. Fermi's Golden rule was used to model the shape of P(E,E') and identify which donor vibrational motions are primarily responsible for energy transfer. In general, the results suggest that low-frequency MFB vibrational modes are primarily responsible for strong collisions, and govern the shape and magnitude of P(E,E'). Where deviations from this general trend occur, vibrational modes with large negative anharmonicity constants are more efficient energy gateways than modes with similar frequency, while vibrational modes with large positive anharmonicity constants are less efficient at energy transfer than modes of similar frequency.

  11. Artificial Neural Network Modelling of Vibration in the Milling of AZ91D Alloy

    Directory of Open Access Journals (Sweden)

    Ireneusz Zagórski


    Full Text Available The paper reports the results of artificial neural network modelling of vibration in. a milling process of magnesium alloy AZ91D by a TiAlN-coated carbide tool. Vibrations in machining processes are regarded as an additional, absolute machinability index. The modelling was performed using the so-called “black box” model. The best fit was determined for the input and output data obtained from the machining process. The simulations were performed by the Statistica software using two types of neural networks: RBF (Radial Basis Function and MLP (Multi-Layered Perceptron.

  12. System Modeling and Operational Characteristic Analysis for an Orbital Friction Vibration Actuator Used in Orbital Vibration Welding

    Directory of Open Access Journals (Sweden)

    XU, F.


    Full Text Available Orbital Friction Vibration Actuator (OFVA is a core component of Orbital Friction Welding (OFW, which is a novel apertureless welding technology utilizing friction heat to implement solid-state joining. In this paper, topology and operational principle of OFVA are introduced, the analytical formulas of the electromagnetic force for the x and y directions, which can drive the mover to generate a circular motion trajectory, are derived, and the characteristic of static electromagnetic force is predicted by analytical method and 2-D (two-dimensional FEM (finite element method, 3-D and measurement. The coupled magnetic field-circuit-motion simulation models which are driven by current and voltage source are established, respectively, and some of its operational characteristics are analyzed. Simulation and experiment validate theoretical analysis and the feasibility of the fabricated prototype, demonstrate the good performance of the OFVA, and provide valuable reference for engineering applications.

  13. Research on vibration characteristics of gun barrel based on contact model (United States)

    Zhao, Yang; Zhou, Qizheng; Yue, Pengfei


    In order to study vibration characteristics of the gun barrel under the action of moving projectile, the gun barrel is simplified to cross sectional cantilever beam such as Euler. Considering contact conditions of inertia effect and projectile with the gun barrel, the equation of lateral vibration of the gun barrel is established under the projectile-gun coupling effect; the modal analysis method is used to give the analytic solutions of equation series. The effect of the motion parameters the projectile on the vibration of gun barrel is discussed, and characteristics of vibration of gun barrel are further studied under two conditions of repeating and projectile with mass eccentricity. The research results show that reasonable control of the acceleration of the projectile in the gun bore, and reduction of projectile mass eccentricity can help reduce the muzzle vibration at the gun firing. The research results can provide reference for overall design of the gun, and the modeling and analysis method used in the paper can be promoted for the solution of vibration of other related projects under the moving excitation.

  14. Kinetic model of vibrational relaxation in a humid-air pulsed corona discharge

    International Nuclear Information System (INIS)

    Komuro, Atsushi; Ono, Ryo; Oda, Tetsuji


    The effect of humidity on the vibrational relaxation of O 2 (v) and N 2 (v) in a humid-air pulsed corona discharge is studied using a kinetic model. We previously showed that humidity markedly increases the vibration-to-translation (V-T) rate of molecules in a humid-air pulsed corona discharge by measuring O 2 (v) density (Ono et al 2010 Plasma Sources Sci. Technol. 19 015009). In this paper, we numerically calculate the vibrational kinetics of O 2 , N 2 and H 2 O to study the reason behind the acceleration of V-T in the presence of humidity. The calculation closely reproduces the measured acceleration of V-T due to humidity, and shows that the increase in the V-T rate is caused by the fast vibration-to-vibration (V-V) processes of O 2 -H 2 O and N 2 -H 2 O and the subsequent rapid V-T process of H 2 O-H 2 O. In addition, it is shown that O atom density is also important in the vibrational kinetics owing to the rapid V-T process of O 2 -O.

  15. Vibrational spectroscopy modeling of a drug in molecular solvents and enzymes (United States)

    Devereux, Christian J.; Fulfer, Kristen D.; Zhang, Xiaoliu; Kuroda, Daniel G.


    Modeling of drugs in enzymes is of immensurable value to many areas of science. We present a theoretical study on the vibrational spectroscopy of Rilpivirine, a HIV reverse transcriptase inhibitor, in conventional solvents and in clinically relevant enzymes. The study is based on vibrational spectroscopy modeling of the drug using molecular dynamics simulations, DFT frequency maps, and theory. The modeling of the infrared lineshape shows good agreement with experimental data for the drug in molecular solvents where the local environment motions define the vibrational band lineshape. On the other hand, the theoretical description of the drug in the different enzymes does not match previous experimental findings indicating that the utilized methodology might not apply to heterogeneous environments. Our findings show that the lack of reproducibility might be associated with the development of the frequency map which does not contain all of the possible interactions observed in such systems.

  16. Temperature Dependence in the Terahertz Spectrum of Nicotinamide: Anharmonicity and Hydrogen-Bonded Network. (United States)

    Takahashi, Masae; Okamura, Nubuyuki; Fan, Xinyi; Shirakawa, Hitoshi; Minamide, Hiroaki


    We have investigated the terahertz-spectral property of nicotinamide focusing on the temperature dependence in the range of 14-300 K. We observed that almost all peaks in the terahertz spectrum of the nicotinamide crystal showed a remarkable shift with temperature, whereas the lowest-frequency peak at 34.8 cm -1 showed a negligible shift with temperature. By analyzing the terahertz spectrum with the dispersion-corrected density functional theory calculations, we found that the difference in the temperature dependence of the peak shift is well understood in terms of the presence/absence of stretching vibration of the intermolecular hydrogen bond in the mode and the change of cell parameters. The anharmonicity in the dissociation potential energy of very weak intermolecular hydrogen bonding causes the remarkable peak shift with temperature in the terahertz spectrum of nicotinamide. This finding suggests that the assignment and identification of peaks in the terahertz spectrum are systematically enabled by temperature-dependent measurements.

  17. Modelling and experimental validation of two-dimensional transverse vibrations in a flexible robot link

    DEFF Research Database (Denmark)

    Sørensen, Paul Haase; Baungaard, Jens Rane


    A general model for a rotating homogenous flexible robot link is developed. The model describes two-dimensional transverse vibrations induced by the actuator due to misalignment of the actuator axis of rotation relative to the link symmetry axis and due to translational acceleration of the link...

  18. Dynamic modeling and adaptive vibration suppression of a high-speed macro-micro manipulator (United States)

    Yang, Yi-ling; Wei, Yan-ding; Lou, Jun-qiang; Fu, Lei; Fang, Sheng; Chen, Te-huan


    This paper presents a dynamic modeling and microscopic vibration suppression for a flexible macro-micro manipulator dedicated to high-speed operation. The manipulator system mainly consists of a macro motion stage and a flexible micromanipulator bonded with one macro-fiber-composite actuator. Based on Hamilton's principle and the Bouc-Wen hysteresis equation, the nonlinear dynamic model is obtained. Then, a hybrid control scheme is proposed to simultaneously suppress the elastic vibration during and after the motor motion. In particular, the hybrid control strategy is composed of a trajectory planning approach and an adaptive variable structure control. Moreover, two optimization indices regarding the comprehensive torques and synthesized vibrations are designed, and the optimal trajectories are acquired using a genetic algorithm. Furthermore, a nonlinear fuzzy regulator is used to adjust the switching gain in the variable structure control. Thus, a fuzzy variable structure control with nonlinear adaptive control law is achieved. A series of experiments are performed to verify the effectiveness and feasibility of the established system model and hybrid control strategy. The excited vibration during the motor motion and the residual vibration after the motor motion are decreased. Meanwhile, the settling time is shortened. Both the manipulation stability and operation efficiency of the manipulator are improved by the proposed hybrid strategy.

  19. Forced vibration test on large scale model on soft rock site

    International Nuclear Information System (INIS)

    Kobayashi, Toshio; Fukuoka, Atsunobu; Izumi, Masanori; Miyamoto, Yuji; Ohtsuka, Yasuhiro; Nasuda, Toshiaki.


    Forced vibration tests were conducted in order to investigate the embedment effect on dynamic soil-structure interaction. Two model structures were constructed on actual soil about 60 m apart, after excavating the ground to 5 m depth. For both models, the sinusoidal forced vibration tests were performed with the conditions of different embedment depth, namely non-embedment, half-embedment and full-embedment. As the test results, the increase in both natural frequency and damping factor due to the embedment effects can be observed, and the soil impedances calculated from test results are discussed. (author)

  20. Quantum versus semiclassical description of selftrapping: anharmonic effects

    International Nuclear Information System (INIS)

    Raghavan, S.; Bishop, A.R.; Kenkre, V.M.


    Selftrapping has been traditionally studied on the assumption that quasiparticles interact with harmonic phonons and that this interaction is linear in the displacement of the phonon. To complement recent semiclassical studies of anharmonicity and nonlinearity in this context, we present below a fully quantum mechanical analysis of a two-site system, where the oscillator is described by a tunably anharmonic potential, with a square well with infinite walls and the harmonic potential as its extreme limits, and wherein the interaction is nonlinear in the oscillator displacement. We find that even highly anharmonic polarons behave similar to their harmonic counterparts in that selftrapping is preserved for long times in the limit of strong coupling, and that the polaronic tunneling time scale depends exponentially on the polaron binding energy. Further, in agreement with earlier results related to harmonic polarons, the semiclassical approximation agrees with the full quantum result in the massive oscillator limit of small oscillator frequency and strong quasiparticle-oscillator coupling. (author)

  1. First-Principles Lattice Dynamics Method for Strongly Anharmonic Crystals (United States)

    Tadano, Terumasa; Tsuneyuki, Shinji


    We review our recent development of a first-principles lattice dynamics method that can treat anharmonic effects nonperturbatively. The method is based on the self-consistent phonon theory, and temperature-dependent phonon frequencies can be calculated efficiently by incorporating recent numerical techniques to estimate anharmonic force constants. The validity of our approach is demonstrated through applications to cubic strontium titanate, where overall good agreement with experimental data is obtained for phonon frequencies and lattice thermal conductivity. We also show the feasibility of highly accurate calculations based on a hybrid exchange-correlation functional within the present framework. Our method provides a new way of studying lattice dynamics in severely anharmonic materials where the standard harmonic approximation and the perturbative approach break down.

  2. Modeling of forced vibration phenomenon by making an electrical analogy with ANSYS finite element software

    Directory of Open Access Journals (Sweden)

    Myriam Rocío Pallares Muñoz


    Full Text Available Designing mechanical systems which are submitted to vibration requires calculation methods which are very different to those u-sed in other disciplines because, when this occurs, the magnitude of the forces becomes secondary and the frequency with which the force is repeated becomes the most important aspect. It must be taken care of, given that smaller periodic forces can prompt disasters than greater static forces. The article presents a representative problem regarding systems having forced vibration, the mathematical treatment of differential equations from an electrical and mechanical viewpoint, an electrical analogy, numerical modeling of circuits using ANSYS finite element software, analysis and comparison of numerical modeling results compared to test values, the post-processing of results and conclusions regarding electrical analogy methodology when analysing forced vibra-tion systems.

  3. Numerical investigation of vortex shedding and vortex-induced vibration for flexible riser models

    Directory of Open Access Journals (Sweden)

    Zheng-Shou Chen


    Full Text Available The numerical study about the vortex-induced vibration and vortex shedding in the wake has been presented. Prior to the numerical simulation of flexible riser systems concerning engineering conditions, efficiency validating of the proposed FSI solution method have been performed. The comparison between numerical simulation and published experimental data shows that the CFD method designed for FSI solution could give acceptable result for the VIV prediction of flexible riser/pipe system. As meaningful study on VIV and vortex shedding mode with the focus on flexible riser model systems, two kinds of typical simulation cases have been carried out. One was related to the simulation of vortex visualization in the wake for a riser model subject to forced oscillation, and another was related to the simulation of fluid-structure interaction between the pipes of coupled multi-assembled riser system. The result from forced oscillation simulation shows that the vortex-induced vibration with high response frequency but small instantaneous vibration amplitude contributes to vortex conformation as much as the forced oscillation with large normalized amplitude does, when the frequency of forced oscillation was relatively high. In the multi-assembled riser systems, it has been found that the external current velocity and the distance between two pipes are the critical factors to determine the vibration state and the steady vibration state emerging in quad-pipe system may be destroyed more easily than dual-pipe system.

  4. An Improved Model of a Pneumatic Vibration Isolator: Theory and Experiment (United States)

    Erin, C.; Wilson, B.; Zapfe, J.


    The design of an active controller for a vibration isolation table employing pneumatic vibration isolators requires an accurate mathematical model of the isolator. An experimental investigation of the validity of available models has been performed and indicates significant errors between predicted and observed behavior. An analysis of the model and the data suggested that a previously ignored component of the isolator, the diaphragm, plays a significant role in isolator response. This paper develops the modification to the standard isolator model that incorporates the effects of the diaphragm. When the diaphragm is included in the isolator model, the modified model predicts time-domain and frequency-domain behavior quite closely. We conclude that the modified model of the pneumatic isolator improves markedly the accuracy of the predictions provided by the model.

  5. Center deviation of localized modes in a one-dimension anharmonic single impurity chain (United States)

    Chen, Xuan-Lin; Zhu, Gang-Bei; Jiang, Ze-Hui; Yang, Yan-Qiang


    A 1D anharmonic chain with a single impurity particle is used to study the center deviation and stability of the localized modes. The displacement patterns of the localized modes for a variable impurity mass and anharmonic parameter are studied. The pattern center is shifted away from the impurity with decreasing anharmonic parameter for both symmetric and asymmetric anharmonic impurity modes. In the limit of a heavy-mass impurity, the energy localization is constrained to the three particles nearest to the impurity.

  6. On the nature of highly vibrationally excited states of thiophosgene

    Indian Academy of Sciences (India)

    Understanding the nature of the highly excited molecu- lar eigenstates is equivalent to deciphering the mecha- nism of intramolecular vibrational energy redistribution. (IVR) occurring in the molecule.1 However, the assign- ment of eigenstates is far from simple. The existence of and interplay of several strong anharmonic ...

  7. Dynamic modeling and experiments on the coupled vibrations of building and elevator ropes (United States)

    Yang, Dong-Ho; Kim, Ki-Young; Kwak, Moon K.; Lee, Seungjun


    This study is concerned with the theoretical modelling and experimental verification of the coupled vibrations of building and elevator ropes. The elevator ropes consist of a main rope which supports the cage and the compensation rope which is connected to the compensation sheave. The elevator rope is a flexible wire with a low damping, so it is prone to vibrations. In the case of a high-rise building, the rope length also increases significantly, so that the fundamental frequency of the elevator rope approaches the fundamental frequency of the building thus increasing the possibility of resonance. In this study, the dynamic model for the analysis of coupled vibrations of building and elevator ropes was derived by using Hamilton's principle, where the cage motion was also considered. An experimental testbed was built to validate the proposed dynamic model. It was found that the experimental results are in good agreement with the theoretical predictions thus validating the proposed dynamic model. The proposed model was then used to predict the vibrations of real building and elevator ropes.

  8. Deducing Electronic Unit Internal Response During a Vibration Test Using a Lumped Parameter Modeling Approach (United States)

    Van Dyke, Michael B.


    During random vibration testing of electronic boxes there is often a desire to know the dynamic response of certain internal printed wiring boards (PWBs) for the purpose of monitoring the response of sensitive hardware or for post-test forensic analysis in support of anomaly investigation. Due to restrictions on internally mounted accelerometers for most flight hardware there is usually no means to empirically observe the internal dynamics of the unit, so one must resort to crude and highly uncertain approximations. One common practice is to apply Miles Equation, which does not account for the coupled response of the board in the chassis, resulting in significant over- or under-prediction. This paper explores the application of simple multiple-degree-of-freedom lumped parameter modeling to predict the coupled random vibration response of the PWBs in their fundamental modes of vibration. A simple tool using this approach could be used during or following a random vibration test to interpret vibration test data from a single external chassis measurement to deduce internal board dynamics by means of a rapid correlation analysis. Such a tool might also be useful in early design stages as a supplemental analysis to a more detailed finite element analysis to quickly prototype and analyze the dynamics of various design iterations. After developing the theoretical basis, a lumped parameter modeling approach is applied to an electronic unit for which both external and internal test vibration response measurements are available for direct comparison. Reasonable correlation of the results demonstrates the potential viability of such an approach. Further development of the preliminary approach presented in this paper will involve correlation with detailed finite element models and additional relevant test data.

  9. On the Modeling of a MEMS Based Capacitive Accelerometer for Measurement of Tractor Seat Vibration

    Directory of Open Access Journals (Sweden)

    M. Alidoost


    Full Text Available Drivers of heavy vehicles often face with higher amplitudes of frequencies range between 1-80 Hz. Hence, this range of frequency results in temporary or even sometimes permanent damages to the health of drivers. Examples for these problems are damages to the vertebral column and early tiredness, which both reduce the driver’s performance significantly. One solution to this problem is to decrease the imposed vibration to the driver’s seat by developing an active seat system. These systems require an online measuring unit to sense vibrations transferred to the seat. The measuring unit can include a capacitive micro-accelerometer on the basis of MEMS which measure online vibrations on the seat. In this study, the mechanical behavior of a capacitive micro-accelerometer for the vibration range applied to a tractor seat has been simulated. The accelerometer is capable to measure step, impact and harmonic external excitations applied to the system. The results of the study indicate that, with increasing the applied voltage, the system sensitivity also increases, but the measuring range of vibrations decreases and vice versa. The modeled accelerometer, at damping ratio of 0.67 is capable to measure accelerations within the frequency range of lower than 130 Hz.

  10. Sole vibration improves locomotion through the recovery of joint movements in a mouse cast model.

    Directory of Open Access Journals (Sweden)

    Atsushi Doi

    Full Text Available We investigated the effects of a vibratory stimulus on the plantar surface of the hind limb for motor, sensory, and locomotive function using a mouse cast model. The right knee joint of C57BL/6 male mice (7 weeks, 20 g, n = 31 was flexed with aluminum splint and tape for 6 weeks. These mice were randomly divided into 2 groups (control group, n = 11 and vibration group, n = 12. The mice in the vibration group received vibration on the sole of the ankle for 15 minutes per day, 5 days per week. After the knee joint cast was removed, we measured the range of motion (ROM of both knee and ankle joints and the sensory threshold of the sole. Further, both walking and swimming movements were analyzed with a digital video. The sole vibration did not affect the passive ROM of the knee joint and sensory threshold after cast removal. However, it increased the ankle dorsiflexion range and improved free walking, swimming, and active movement of the knee joint. In conclusion, we show that the vibration recovered both walking and swimming movements, which resulted from improvements in both the passive ankle dorsiflexion and active knee movement.

  11. Modeling fluid forces and response of a tube bundle in cross-flow induced vibrations

    International Nuclear Information System (INIS)

    Khushnood, Shahab; Khan, Zaffar M.; Malik, M. Afzaal; Koreshi, Zafarullah; Khan, Mahmood Anwar


    Flow induced vibrations occur in process heat exchangers, condensers, boilers and nuclear steam generators. Under certain flow conditions and fluid velocities, the fluid forces result in tube vibrations and possible damage of tube, tube sheet or baffle due to fretting and fatigue. Prediction of these forces is an important consideration. The characteristics of vibration depend greatly on the fluid dynamic forces and structure of the tube bundle. It is undesirable for the tube bundles to vibrate excessively under normal operating conditions because tubes wear and eventual leakage can occur leading to costly shutdowns. In this paper modeling of fluid forces and vibration response of a tube in a heat exchanger bundle has been carried out. Experimental validation has been performed on an existing refinery heat exchanger tube bundle. The target tube has been instrumented with an accelerometer and strain gages. The bundle has been studied for pulse, sinusoidal and random excitations. Natural frequencies and damping of the tubes have also been computed. Experimental fluid forces and response shows a reasonable agreement with the predictions. (author)

  12. Incorporating Vibration Test Results for the Advanced Stirling Convertor into the System Dynamic Model (United States)

    Meer, David W.; Lewandowski, Edward J.


    The U.S. Department of Energy (DOE), Lockheed Martin Corporation (LM), and NASA Glenn Research Center (GRC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. As part of the extended operation testing of this power system, the Advanced Stirling Convertors (ASC) at NASA GRC undergo a vibration test sequence intended to simulate the vibration history that an ASC would experience when used in an ASRG for a space mission. During these tests, a data system collects several performance-related parameters from the convertor under test for health monitoring and analysis. Recently, an additional sensor recorded the slip table position during vibration testing to qualification level. The System Dynamic Model (SDM) integrates Stirling cycle thermodynamics, heat flow, mechanical mass, spring, damper systems, and electrical characteristics of the linear alternator and controller. This Paper presents a comparison of the performance of the ASC when exposed to vibration to that predicted by the SDM when exposed to the same vibration.

  13. Vibration Noise Modeling for Measurement While Drilling System Based on FOGs (United States)

    Zhang, Chunxi; Wang, Lu; Gao, Shuang; Lin, Tie; Li, Xianmu


    Aiming to improve survey accuracy of Measurement While Drilling (MWD) based on Fiber Optic Gyroscopes (FOGs) in the long period, the external aiding sources are fused into the inertial navigation by the Kalman filter (KF) method. The KF method needs to model the inertial sensors’ noise as the system noise model. The system noise is modeled as white Gaussian noise conventionally. However, because of the vibration while drilling, the noise in gyros isn’t white Gaussian noise any more. Moreover, an incorrect noise model will degrade the accuracy of KF. This paper developed a new approach for noise modeling on the basis of dynamic Allan variance (DAVAR). In contrast to conventional white noise models, the new noise model contains both the white noise and the color noise. With this new noise model, the KF for the MWD was designed. Finally, two vibration experiments have been performed. Experimental results showed that the proposed vibration noise modeling approach significantly improved the estimated accuracies of the inertial sensor drifts. Compared the navigation results based on different noise model, with the DAVAR noise model, the position error and the toolface angle error are reduced more than 90%. The velocity error is reduced more than 65%. The azimuth error is reduced more than 50%. PMID:29039815

  14. Vibration Noise Modeling for Measurement While Drilling System Based on FOGs

    Directory of Open Access Journals (Sweden)

    Chunxi Zhang


    Full Text Available Aiming to improve survey accuracy of Measurement While Drilling (MWD based on Fiber Optic Gyroscopes (FOGs in the long period, the external aiding sources are fused into the inertial navigation by the Kalman filter (KF method. The KF method needs to model the inertial sensors’ noise as the system noise model. The system noise is modeled as white Gaussian noise conventionally. However, because of the vibration while drilling, the noise in gyros isn’t white Gaussian noise any more. Moreover, an incorrect noise model will degrade the accuracy of KF. This paper developed a new approach for noise modeling on the basis of dynamic Allan variance (DAVAR. In contrast to conventional white noise models, the new noise model contains both the white noise and the color noise. With this new noise model, the KF for the MWD was designed. Finally, two vibration experiments have been performed. Experimental results showed that the proposed vibration noise modeling approach significantly improved the estimated accuracies of the inertial sensor drifts. Compared the navigation results based on different noise model, with the DAVAR noise model, the position error and the toolface angle error are reduced more than 90%. The velocity error is reduced more than 65%. The azimuth error is reduced more than 50%.

  15. Mathematical Modelling and Parameter Identification of an Electro-Magneto-Mechanical Actuator for Vibration Control

    DEFF Research Database (Denmark)

    Darula, Radoslav; Stein, George Juraj; Kallesøe, Carsten Skovmose


    Electromechanical systems for vibration control exhibit complex non-linear behaviour. Therefore advanced mathematical tools and appropriate simplifications are required for their modelling. To properly understand the dynamics of such a non-linear system, it is necessary to identify the parameters....... The electric circuit is closed with a shunt resistance connected to the electromagnet. The current induced in the circuit generates additional alternating magnetic force. This force counteracts the original vibration and damps it. In this way the coupled electro-magneto-mechanical system suppresses the forced...

  16. On thermal vibration effects in diffusion model calculations of blocking dips

    International Nuclear Information System (INIS)

    Fuschini, E.; Ugozzoni, A.


    In the framework of the diffusion model, a method for calculating blocking dips is suggested that takes into account thermal vibrations of the crystal lattice. Results of calculations of the diffusion factor and the transverse energy distribution taking into accoUnt scattering of the channeled particles at thermal vibrations of lattice nuclei, are presented. Calculations are performed for α-particles with the energy of 2.12 MeV at 300 K scattered by Al crystal. It is shown that calculations performed according to the above method prove the necessity of taking into account effects of multiple scattering under blocking conditions

  17. Spectra-structure correlations in NIR region: Spectroscopic and anharmonic DFT study of n-hexanol, cyclohexanol and phenol. (United States)

    Beć, Krzysztof B; Grabska, Justyna; Czarnecki, Mirosław A


    We investigated near-infrared (7500-4000 cm -1 ) spectra of n-hexanol, cyclohexanol and phenol in CCl 4 (0.2 M) by using anharmonic quantum calculations. These molecules represent three major kinds of alcohols; linear and cyclic aliphatic, and aromatic ones. Vibrational second-order perturbation theory (VPT2) was employed to calculate the first overtones and binary combination modes and to reproduce the experimental NIR spectra. The level of conformational flexibility of these three alcohols varies from one stable conformer of phenol through four conformers of cyclohexanol to few hundreds conformers in the case of n-hexanol. To take into account the most relevant conformational population of n-hexanol, a systematic conformational search was performed. Accurate reproduction of the experimental NIR spectra was achieved and detailed spectra-structure correlations were obtained for these three alcohols. VPT2 approach provides less reliable description of highly anharmonic modes, i.e. OH stretching. In the present work this limitation was manifested in erroneous results yielded by VPT2 for 2νOH mode of cyclohexanol. To study the anharmonicity of this mode we solved the corresponding time-independent Schrödinger equation based on a dense-grid probing of the relevant vibrational potential. These results allowed for significant improvement of the agreement between the calculated and experimental 2νOH band of cyclohexanol. Various important biomolecules include similar structural units to the systems investigated here. A detailed knowledge on spectral properties of these three types of alcohols is therefore essential for advancing our understanding of NIR spectroscopy of biomolecules. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Stochastic Response of Energy Balanced Model for Vortex-Induced Vibration

    DEFF Research Database (Denmark)

    Nielsen, Søren R.K.; Krenk, S.

    A double oscillator model for vortex-induced oscillations of structural elements based on exact power exchange between fluid and structure, recently proposed by authors, is extended to include the effect of the turbulent component of the wind. In non-turbulent flow vortex-induced vibrations...... of lightly damped structures are found on two branches, with the highest amplification branch on the low-frequency branch. The effect free wind turbulence is to destabilize the vibrations on the high amplification branch, thereby reducing the oscillation amplitude. The effect is most pronounced for very...... lightly damped structures. The character of the structural vibrations changes with increasing turbulence and damping from nearly regular harmonic oscillation to typical narrow-banded stochastic response, closely resembling observed behaviour in experiments and full-scale structures....

  19. Hydroelastic model of PWR reactor internals SAFRAN 1 - Validation of a vibration calculation method

    International Nuclear Information System (INIS)

    Epstein, A.; Gibert, R.J.; Jeanpierre, F.; Livolant, M.


    The SAFRAN 1 test loop consists of an hydroelastic similitude of a 1/8 scale model of a 3 loop P.W.R. Vibrations of the main internals (thermal shield and core barrel) and pressure fluctuations in water thin sections between vessel and internals, and in inlet and outlet pipes, have been measured. The calculation method consists of: an evaluation of the main vibration and acoustic sources owing to the flow (unsteady jet impingement on the core barrel, turbulent flow in a water thin section). A calculation of the internal modal parameters taking into account the inertial effects of fluid (the computer codes AQUAMODE and TRISTANA have been used). A calculation of the acoustic response of the circuit (the computer code VIBRAPHONE has been used). The good agreement between the calculation and the experimental results allows using this method with better security for the prediction of the vibration levels of full scale P.W.R. internals

  20. An approach for modelling CANDU Fuel string vibration induced by unsteady flow

    Energy Technology Data Exchange (ETDEWEB)

    Fadaee, M.; Yu, S.D., E-mail:, E-mail: [Ryerson Univ., Dept. of Mechanical and Industrial Engineering, Toronto, ON (Canada)


    A comprehensive dynamical model is presented in this paper to handle vibration a string of 12 CANDU6 fuel bundles inside a pressure tube under operating conditions. A finite element based computer program is developed at Ryerson University in collaboration with Candu Energy Inc. to simulate fuel string vibration and vibration induced wear in the pressure tube. The focus of this paper is dynamic frictional contact among fuel elements via spacer pads, between fuel elements and the pressure tube via bearing pads, and between neighboring fuel bundles via endplates. The types of deformations are bending, torsion and axial for the fuel elements, and in-plane and out-of-plane bending for the endplates. The system equations of motion are discretized in the time-domain by means of the Bozzak-Newmark scheme; the contact problem is handled using an iterative LCP algorithm. The unsteady flow and flow induced excitations are obtained using the FLUENT-LES. (author)

  1. Fractal Theory and Contact Dynamics Modeling Vibration Characteristics of Damping Blade

    Directory of Open Access Journals (Sweden)

    Ruishan Yuan


    Full Text Available The contact surface structure of dry friction damper is complicate, irregular, and self-similar. In this paper, contact surface structure is described with the fractal theory and damping blade is simplified as 2-DOF cantilever beam model with lumped masses. By changing the position of the damper, lacing and shroud structure are separately simulated to study vibration absorption effect of damping blade. The results show that both shroud structure and lacing could not only dissipate energy but also change stiffness of blade. Under the same condition of normal pressure and contact surface, the damping effect of lacing is stronger than that of shroud structure. Meanwhile, the effect on changing blade stiffness of shroud structure is stronger than that of lacing. This paper proposed that there is at least one position of the blade, at which the damper dissipates the most vibration energy during a vibration cycle.


    Directory of Open Access Journals (Sweden)

    Asan Gani


    Full Text Available Active vibration control of the first three modes of a vibrating cantilever beam using collocated piezoelectric sensor and actuator is examined in this paper. To achieve this, a model based on Euler-Bernoulli beam equation is adopted and extended to the case of three bonded piezoelectric patches that act as sensor, actuator and exciter respectively. A compensated inverse PID controller has been designed and developed to damp first three modes of vibration. Controllers have been designed for each mode and these are later combined in parallel to damp any of the three modes. Individual controller gives better reduction in sensor output for the second and third modes while the combined controller performs better for the first mode. Simulation studies are carried out using MATLAB. These results are compared and verified experimentally and the real-time implementation is carried out with xPC-target toolbox in MATLAB

  3. Small scale effect on vibration of embedded multilayered graphene sheets based on nonlocal continuum models

    Energy Technology Data Exchange (ETDEWEB)

    Pradhan, S.C. [Department of Aerospace Engineering Indian Institute of Technology, Kharagpur West Bengal, 721 302 (India)], E-mail:; Phadikar, J.K. [Department of Aerospace Engineering Indian Institute of Technology, Kharagpur West Bengal, 721 302 (India)


    In the present work, vibration analysis of multilayered graphene sheets embedded in polymer matrix has been carried out employing nonlocal continuum mechanics. Governing equations have been derived using the principle of virtual work. It has been shown that nonlocal effect is quite significant and needs to be included in the continuum model of graphene sheet.

  4. Wind-Tunnel Tests of a Bridge Model with Active Vibration Control

    DEFF Research Database (Denmark)

    Hansen, H. I.; Thoft-Christensen, Palle; Mendes, P. A.

    The application of active control systems to reduce wind vibrations in bridges is a new area of research. This paper presents the results that were obtained on a set of wind tunnel tests of a bridge model equipped with active movable flaps. Based on the monitored position and motion of the deck...


    Directory of Open Access Journals (Sweden)

    Yevgeniy Tolbatov


    Full Text Available Numerical modeling dynamic behavior of a pipe containing inner nonhomogeneous flows of a boiling fluid has been carried out. The system vibrations at different values of the parameters of the flow nonhomogeneity and its velocity are observed. The possibility of forming stable and unstable flows depending on the character ofnonhomogeneity and the velocity of fluid clots has been found.

  6. The vibrating reed frequency meter : digital investigation of an early cochlear model

    NARCIS (Netherlands)

    Bell, Andrew; Wit, Hero P.


    The vibrating reed frequency meter, originally employed by Bekesy and later by Wilson as a cochlear model, uses a set of tuned reeds to represent the cochlea's graded bank of resonant elements and an elastic band threaded between them to provide nearest-neighbour coupling. Here the system,

  7. A study of modelling simplifications in ground vibration predictions for railway traffic at grade (United States)

    Germonpré, M.; Degrande, G.; Lombaert, G.


    Accurate computational models are required to predict ground-borne vibration due to railway traffic. Such models generally require a substantial computational effort. Therefore, much research has focused on developing computationally efficient methods, by either exploiting the regularity of the problem geometry in the direction along the track or assuming a simplified track structure. This paper investigates the modelling errors caused by commonly made simplifications of the track geometry. A case study is presented investigating a ballasted track in an excavation. The soil underneath the ballast is stiffened by a lime treatment. First, periodic track models with different cross sections are analyzed, revealing that a prediction of the rail receptance only requires an accurate representation of the soil layering directly underneath the ballast. A much more detailed representation of the cross sectional geometry is required, however, to calculate vibration transfer from track to free field. Second, simplifications in the longitudinal track direction are investigated by comparing 2.5D and periodic track models. This comparison shows that the 2.5D model slightly overestimates the track stiffness, while the transfer functions between track and free field are well predicted. Using a 2.5D model to predict the response during a train passage leads to an overestimation of both train-track interaction forces and free field vibrations. A combined periodic/2.5D approach is therefore proposed in this paper. First, the dynamic axle loads are computed by solving the train-track interaction problem with a periodic model. Next, the vibration transfer to the free field is computed with a 2.5D model. This combined periodic/2.5D approach only introduces small modelling errors compared to an approach in which a periodic model is used in both steps, while significantly reducing the computational cost.

  8. Vibrational Spectroscopy and Astrobiology (United States)

    Chaban, Galina M.; Kwak, D. (Technical Monitor)


    Role of vibrational spectroscopy in solving problems related to astrobiology will be discussed. Vibrational (infrared) spectroscopy is a very sensitive tool for identifying molecules. Theoretical approach used in this work is based on direct computation of anharmonic vibrational frequencies and intensities from electronic structure codes. One of the applications of this computational technique is possible identification of biological building blocks (amino acids, small peptides, DNA bases) in the interstellar medium (ISM). Identifying small biological molecules in the ISM is very important from the point of view of origin of life. Hybrid (quantum mechanics/molecular mechanics) theoretical techniques will be discussed that may allow to obtain accurate vibrational spectra of biomolecular building blocks and to create a database of spectroscopic signatures that can assist observations of these molecules in space. Another application of the direct computational spectroscopy technique is to help to design and analyze experimental observations of ice surfaces of one of the Jupiter's moons, Europa, that possibly contains hydrated salts. The presence of hydrated salts on the surface can be an indication of a subsurface ocean and the possible existence of life forms inhabiting such an ocean.

  9. Anharmonic asymmetric oscillator: A classical and quantum treatment (United States)

    Bejarano, J. Díaz; Sánchez, A. Martin; Rodríguez, C. Miró


    The nonrelativistic anharmonic-asymmetrical-oscillator (AAO) is studied in full. The classical equation of motion is solved using Jacobi elliptic functions which have both real and imaginary periods. The imaginary period is connected with the imaginary part of the energy in quantum mechanics. The resonances (Siegert states) are calculated in the JWKB approximation.

  10. The Rocker (An Easy Anharmonic Oscillator for Classroom Demonstration) (United States)

    Lieberherr, Martin


    Every instructor should know some easy examples of anharmonic oscillations. The rocking of an empty wine bottle or a slender beer glass is one of those: The angle is not a sinusoidal function of time and the period is not independent of the amplitude, not even for small amplitudes. But care has to be taken that the glass does not slip or rotate…

  11. Harmonic and Anharmonic Behaviour of a Simple Oscillator (United States)

    O'Shea, Michael J.


    We consider a simple oscillator that exhibits harmonic and anharmonic regimes and analyse its behaviour over the complete range of possible amplitudes. The oscillator consists of a mass "m" fixed at the midpoint of a horizontal rope. For zero initial rope tension and small amplitude the period of oscillation, tau, varies as tau is approximately…

  12. Long-term daily vibration exposure alters current perception threshold (CPT) sensitivity and myelinated axons in a rat-tail model of vibration-induced injury. (United States)

    Krajnak, Kristine; Raju, Sandya G; Miller, G Roger; Johnson, Claud; Waugh, Stacey; Kashon, Michael L; Riley, Danny A


    Repeated exposure to hand-transmitted vibration through the use of powered hand tools may result in pain and progressive reductions in tactile sensitivity. The goal of the present study was to use an established animal model of vibration-induced injury to characterize changes in sensory nerve function and cellular mechanisms associated with these alterations. Sensory nerve function was assessed weekly using the current perception threshold test and tail-flick analgesia test in male Sprague-Dawley rats exposed to 28 d of tail vibration. After 28 d of exposure, Aβ fiber sensitivity was reduced. This reduction in sensitivity was partly attributed to structural disruption of myelin. In addition, the decrease in sensitivity was also associated with a reduction in myelin basic protein and 2',3'- cyclic nucleotide phosphodiasterase (CNPase) staining in tail nerves, and an increase in circulating calcitonin gene-related peptide (CGRP) concentrations. Changes in Aβ fiber sensitivity and CGRP concentrations may serve as early markers of vibration-induced injury in peripheral nerves. It is conceivable that these markers may be utilized to monitor sensorineural alterations in workers exposed to vibration to potentially prevent additional injury.

  13. Vibrational spectrum of CF4 isotopes in an algebraic model

    Indian Academy of Sciences (India)

    This new model appears to describe the molecular spectra successfully even in complex situations. The use of Lie algebra did not develop fully until 1970s when it was introduced in a systematic fashion by Iachello and Arima to study the spectra of atomic nuclei (interacting boson model) [3]. The algebraic model which was ...

  14. Modeling and imaging of the vocal fold vibration for voice health

    DEFF Research Database (Denmark)

    Granados, Alba

    of vibration, showing dierent characteristics in normal and abnormal phonation. In the last part of this thesis research, the optical ow algorithm for data acquisition as well as the biomechanical model of the vocal fold are used to formulate a nonstationary statistical inverse problem for vocal fold features......, analysis and inference. This thesis deals with biomechanical models of the vocal fold, specially of the collision, and laryngeal videoendoscopic analysis procedures suitable for the inference of the underlying vocal fold characteristics. The rst part of this research is devoted to frictionless contact...... modeling during asymmetric vocal fold vibration. The prediction problem is numerically addressed with a self-sustained three-dimensional nite element model of the vocal fold with position-based contact constraints. A novel contact detection mechanism is shown to successfully detect collision in asymmetric...

  15. Space robots with flexible appendages: Dynamic modeling, coupling measurement, and vibration suppression (United States)

    Meng, Deshan; Wang, Xueqian; Xu, Wenfu; Liang, Bin


    For a space robot with flexible appendages, vibrations of flexible structure can be easily excited during both orbit and/or attitude maneuvers of the base and the operation of the manipulators. Hence, the pose (position and attitude) of the manipulator's end-effector will greatly deviate from the desired values, and furthermore, the motion of the manipulator will trigger and exacerbate vibrations of flexible appendages. Given lack of the atmospheric damping in orbit, the vibrations will last for quite a while and cause the on-orbital tasks to fail. We derived the rigid-flexible coupling dynamics of a space robot system with flexible appendages and established a coupling model between the flexible base and the space manipulator. A specific index was defined to measure the coupling degree between the flexible motion of the appendages and the rigid motion of the end-effector. Then, we analyzed the dynamic coupling for different conditions, such as modal displacements, joint angles (manipulator configuration), and mass properties. Moreover, the coupling map was adopted and drawn to represent the coupling motion. Based on this map, a trajectory planning method was addressed to suppress structure vibration. Finally, simulation studies of typical cases were performed, which verified the proposed models and method. This work provides a theoretic basis for the system design, performance evaluation, trajectory planning, and control of such space robots.

  16. Adaptive Model Predictive Vibration Control of a Cantilever Beam with Real-Time Parameter Estimation

    Directory of Open Access Journals (Sweden)

    Gergely Takács


    Full Text Available This paper presents an adaptive-predictive vibration control system using extended Kalman filtering for the joint estimation of system states and model parameters. A fixed-free cantilever beam equipped with piezoceramic actuators serves as a test platform to validate the proposed control strategy. Deflection readings taken at the end of the beam have been used to reconstruct the position and velocity information for a second-order state-space model. In addition to the states, the dynamic system has been augmented by the unknown model parameters: stiffness, damping constant, and a voltage/force conversion constant, characterizing the actuating effect of the piezoceramic transducers. The states and parameters of this augmented system have been estimated in real time, using the hybrid extended Kalman filter. The estimated model parameters have been applied to define the continuous state-space model of the vibrating system, which in turn is discretized for the predictive controller. The model predictive control algorithm generates state predictions and dual-mode quadratic cost prediction matrices based on the updated discrete state-space models. The resulting cost function is then minimized using quadratic programming to find the sequence of optimal but constrained control inputs. The proposed active vibration control system is implemented and evaluated experimentally to investigate the viability of the control method.

  17. Analytical Model of Underground Train Induced Vibrations on Nearby Building Structures in Cameroon: Assessment and Prediction


    Lezin Seba MINSILI; He XIA; Robert Medjo EKO


    The purpose of this research paper was to assess and predict the effect of vibrations induced by an underground railway on nearby-existing buildings prior to the construction of projected new railway lines of the National Railway Master Plan of Cameroon and after upgrading of the railway conceded to CAMRAIL linking the two most densely populated cities of Cameroon: Douala and Yaoundé. With the source-transmitter-receiver mathematical model as the train-soil-structure interaction model, taking...

  18. Analytical Model of Underground Train Induced Vibrations on Nearby Building Structures in Cameroon: Assessment and Prediction

    Directory of Open Access Journals (Sweden)

    Lezin Seba MINSILI


    Full Text Available The purpose of this research paper was to assess and predict the effect of vibrations induced by an underground railway on nearby-existing buildings prior to the construction of projected new railway lines of the National Railway Master Plan of Cameroon and after upgrading of the railway conceded to CAMRAIL linking the two most densely populated cities of Cameroon: Douala and Yaoundé. With the source-transmitter-receiver mathematical model as the train-soil-structure interaction model, taking into account sub-model parameters such as type of the train-railway system, typical geotechnical conditions of the ground and the sensitivity of the nearby buildings, the analysis is carried out over the entire system using the dynamic finite element method in the time domain. This subdivision of the model is a powerful tool that allows to consider different alternatives of sub-models with different characteristics, and thus to determine any critical excessive vibration impact. Based on semi-empirical analytical results obtained from presented models, the present work assesses and predicts characteristics of traffic-induced vibrations as a function of time duration, intensity and vehicle speed, as well as their influence on buildings at different levels.

  19. Are water simulation models consistent with steady-state and ultrafast vibrational spectroscopy experiments?

    International Nuclear Information System (INIS)

    Schmidt, J.R.; Roberts, S.T.; Loparo, J.J.; Tokmakoff, A.; Fayer, M.D.; Skinner, J.L.


    Vibrational spectroscopy can provide important information about structure and dynamics in liquids. In the case of liquid water, this is particularly true for isotopically dilute HOD/D 2 O and HOD/H 2 O systems. Infrared and Raman line shapes for these systems were measured some time ago. Very recently, ultrafast three-pulse vibrational echo experiments have been performed on these systems, which provide new, exciting, and important dynamical benchmarks for liquid water. There has been tremendous theoretical effort expended on the development of classical simulation models for liquid water. These models have been parameterized from experimental structural and thermodynamic measurements. The goal of this paper is to determine if representative simulation models are consistent with steady-state, and especially with these new ultrafast, experiments. Such a comparison provides information about the accuracy of the dynamics of these simulation models. We perform this comparison using theoretical methods developed in previous papers, and calculate the experimental observables directly, without making the Condon and cumulant approximations, and taking into account molecular rotation, vibrational relaxation, and finite excitation pulses. On the whole, the simulation models do remarkably well; perhaps the best overall agreement with experiment comes from the SPC/E model

  20. Parametrization of an anharmonic Kirkwood-Keating potential for AlxGa1-xAs alloys. (United States)

    Sim, Eunji; Beckers, Joost; de Leeuw, Simon; Thorpe, Michael; Ratner, Mark A


    We introduce a simple semiempirical anharmonic Kirkwood-Keating potential to model A(x)B(1-x)C-type semiconductors. The potential consists of the Morse strain energy and Coulomb interaction terms. The optical constants of pure components, AB and BC, were employed to fit the potential parameters such as bond-stretching and -bending force constants, dimensionless anharmonicity parameter, and charges. We applied the potential to finite temperature molecular-dynamics simulations on Al(x)Ga(1-x)As for which there is no lattice mismatch. The results were compared with experimental data and those of harmonic Kirkwood-Keating model and of equation-of-motion molecular-dynamics technique. Since the Morse strain potential effectively describes finite temperature damping, we have been able to numerically reproduce experimentally obtained optical properties such as dielectric functions and reflectance. This potential model can be readily generalized for strained alloys.

  1. Iminopropadienones RN=C=C=C=O and bisiminopropadienes RN=C=C=C=NR: matrix infrared spectra and anharmonic frequency calculations. (United States)

    Bégué, Didier; Baraille, Isabelle; Andersen, Heidi Gade; Wentrup, Curt


    Methyliminopropadienone MeN=C=C=C=O 1a was generated by flash vacuum thermolysis from four different precursors and isolated in solid argon. The matrix-isolation infrared spectrum is dominated by unusually strong anharmonic effects resulting in complex fine structure of the absorptions due to the NCCCO moiety in the 2200 cm(-1) region. Doubling and tripling of the corresponding absorption bands are observed for phenyliminopropadienone PhN=C=C=C=O 1b and bis(phenylimino)propadiene PhN=C=C=C=NPh 9, respectively. Anharmonic vibrational frequency calculations allow the identification of a number of overtones and combination bands as the cause of the splittings for each molecule. This method constitutes an important tool for the characterization of reactive intermediates and unusual molecules by matrix-isolation infrared spectroscopy.

  2. Electrical anharmonicity and dampings contributions to Cl-H → stretching band in gaseous (CH3)2O…HCl complex: Quantum dynamic study and prediction of the temperature effects (United States)

    Rekik, Najeh; Alshammari, Majid F.


    In a previous work (Rekik et al., 2017), we demonstrated the ability of a simple anharmonic model of the dipole moment function of the X-H stretching band to explain a set of spectroscopic features of hydrogen bonding formation. Within the context of this model, we have shown that the origins of the broadening of the X - H → stretching band is attributed to large terms in the expansion of the autocorrelation functions due to the electrical anharmonicity. However, the question remained as to the ability of this model to treat the more complex situation in which we take into account the relaxation mechanisms that look at the effect of the surroundings and thereby gives rise to signatures of the medium to the X - H → stretching band lineshapes. Thus, in the present study, we investigated this situation by envisaging that the direct relaxation mechanism is due to the coupling between the fluctuating local electric field and the dipole moment of the complex as rationalized by Rosh and Ratner and the indirect damping resulting from the interaction of the X - H → stretch with its environment via the H-bond bridge mode. Theoretical experiments show that mixing of all these effects results in a speard and complicated structure. Using an ensemble of physically sound parameters as input into this approach, we have captured the main features in the experimental Cl - H → band in gaseous (CH3)2O…HCl complex and shown that the direct relaxation entrains a broadening of the spectra and is capable of qualitatively capturing the main features in the experimental spectra and quantitatively capturing the characteristic time scale of the vibrational dynamics of the Cl - H → stretching band. Furthermore, due to the decent agreement obtained between the theoretical and experimental line shapes at 226 K, the evolution of the IR spectra with the varaiation of temperature is proposed. The findings gained herein underscore the utility of combining simultaneously the effects of

  3. Vibrational characteristics of graphene sheets elucidated using an elastic network model. (United States)

    Kim, Min Hyeok; Kim, Daejoong; Choi, Jae Boong; Kim, Moon Ki


    Recent studies of graphene have demonstrated its great potential for highly sensitive resonators. In order to capture the intrinsic vibrational characteristics of graphene, we propose an atomistic modeling method called the elastic network model (ENM), in which a graphene sheet is modeled as a mass-spring network of adjacent atoms connected by various linear springs with specific bond ratios. Normal mode analysis (NMA) reveals the various vibrational features of bi-layer graphene sheets (BLGSs) clamped at two edges. We also propose a coarse-graining (CG) method to extend our graphene study into the meso- and macroscales, at which experimental measurements and synthesis of graphene become practical. The simulation results show good agreement with experimental observations. Therefore, the proposed ENM approach will not only shed light on the theoretical study of graphene mechanics, but also play an important role in the design of highly-sensitive graphene-based resonators.


    Directory of Open Access Journals (Sweden)

    Reza Esmaeilabadi


    Full Text Available Site response spectrum is one of the key factors to determine the maximum acceleration and displacement, as well as structure behavior analysis during earthquake vibrations. The main objective of this paper is to develop an optimized model based on artificial neural network (ANN using five different training algorithms to predict nonlinear site response spectrum subjected to Silakhor earthquake vibrations is. The model output was tested for a specified area in west of Iran. The performance and quality of optimized model under all training algorithms have been examined by various statistical, analytical and graph analyses criteria as well as a comparison with numerical methods. The observed adaptabilities in results indicate a feasible and satisfactory engineering alternative method for predicting the analysis of nonlinear site response.

  5. On the Lowest Ro-Vibrational States of Protonated Methane: Experiment and Analytical Model (United States)

    Schmiedt, Hanno; Jensen, Per; Asvany, Oskar; Schlemmer, Stephan


    Protonated methane, CH_5^+, is the prototype of an extremely floppy molecule. To the best of our knowledge all barriers are surmountable in the rovibrational ground state; the large amount of zero-point vibrational energy leads to large amplitude motions for many degrees of freedom. Low resolution but broad band vibrational spectroscopy [1] revealed an extremely wide range of C-H stretching vibrations. Comparison with theoretical IR spectra supported the structural motif of a CH_3 tripod and an H_2 moiety, bound to the central carbon atom by a 3c2e bond. In a more dynamic picture the five protons surround the central carbon atom without significant restrictions on the H-C-H bending or H_n-C torsional motions. The large-amplitude internal motions preclude a simple theoretical description of the type possible for more conventional molecules, such as the related spherical-top methane molecule. Recent high-resolution ro-vibrational spectra obtained in cold ion trap experiments [2] show that the observed CH_5^+ transitions belong to a very well-defined energy level scheme describing the lowest rotational and vibrational states of this enigmatic molecule. Here we analyse the experimental ground state combination differences and associate them with the motional states of CH_5^+ allowed by Fermi-Dirac statistics. A model Hamiltonian for unrestricted internal rotations in CH_5^+ yields a simple analytical expression for the energy eigenvalues, expressed in terms of new quantum numbers describing the free internal rotation. These results are compared to the experimental combination differences and the validity of the model will be discussed together with the underlying assumptions. [1] O. Asvany, P. Kumar, I. Hegemann, B. Redlich, S. Schlemmer and D. Marx, Science 309, (2005) 1219-1222 [2] O. Asvany, K.M.T. Yamada, S. Brünken, A. Potapov, S. Schlemmer, Science 347 (2015) 1346-1349

  6. Experimental vibration analysis for a 3D scaled model of a three-floor steel structure

    Directory of Open Access Journals (Sweden)

    Ernesto F. Castillo

    Full Text Available In this paper we present an experimental study of a three dimensional physical model of a three-floor structure subjected to forced vibrations by imposing displacements in its support. The aim of this work is to analyze the behavior of the building when a dynamic vibration absorber (DVA is acting. An analytic simplified analysis and a numerical study are developed to obtain the natural frequencies of the structure. Experiments are carried out in a vibrating table. The frequency range to be experimentally analyzed is determined by the first natural frequency of the structure for which the DVA damping effects are verified. The equipment capabilities, i.e. the frequencies, amplitudes and admissible load, limit the analyses. Nevertheless, satisfactory results are obtained for the study of the first mode of vibration. The effect of different amplitudes of the imposed support motion is also analyzed. In addition, the damping effect of the DVA device is evaluated upon varying its mass and its location in the structure. The characteristic curves in the frequency domain are obtained computing the Fast Fourier Transformation (FFT of the acceleration history registered with piezoelectric accelerometers at different checkpoints for the cases analyzed.

  7. On models of layered piezoelectric beams for passive vibration control (United States)

    Maurini, C.; dell'Isola, F.; Pouget, J.


    In this paper models of layered piezoelectric beams are discussed. The attention is focused on the analysis of the assumptions on transversal stress and strain distribution and their influence on the deduction of the beam constitutive equations from a three dimensional description. A model accounting for non trivial transversal interactions between different layers is deduced from a mixed variational formulation where non-local conditions on transversal stress are enforced by Lagrange multipliers method. The fully coupled electromechanical nature of the system is described. For a sandwich piezoelectric beam, analytical expressions of the beam constitutive coefficients are provided and comparisons to standard modelling approaches are presented. Finally, the fundamental features of the proposed model are highlighted by presenting the through-the-thickness distribution of the 3D state fields.

  8. Validation of vibration-dissociation coupling models in hypersonic non-equilibrium separated flows (United States)

    Shoev, G.; Oblapenko, G.; Kunova, O.; Mekhonoshina, M.; Kustova, E.


    The validation of recently developed models of vibration-dissociation coupling is discussed in application to numerical solutions of the Navier-Stokes equations in a two-temperature approximation for a binary N2/N flow. Vibrational-translational relaxation rates are computed using the Landau-Teller formula generalized for strongly non-equilibrium flows obtained in the framework of the Chapman-Enskog method. Dissociation rates are calculated using the modified Treanor-Marrone model taking into account the dependence of the model parameter on the vibrational state. The solutions are compared to those obtained using traditional Landau-Teller and Treanor-Marrone models, and it is shown that for high-enthalpy flows, the traditional and recently developed models can give significantly different results. The computed heat flux and pressure on the surface of a double cone are in a good agreement with experimental data available in the literature on low-enthalpy flow with strong thermal non-equilibrium. The computed heat flux on a double wedge qualitatively agrees with available data for high-enthalpy non-equilibrium flows. Different contributions to the heat flux calculated using rigorous kinetic theory methods are evaluated. Quantitative discrepancy of numerical and experimental data is discussed.

  9. Modal analysis of human body vibration model for Indian subjects under sitting posture. (United States)

    Singh, Ishbir; Nigam, S P; Saran, V H


    Need and importance of modelling in human body vibration research studies are well established. The study of biodynamic responses of human beings can be classified into experimental and analytical methods. In the past few decades, plenty of mathematical models have been developed based on the diverse field measurements to describe the biodynamic responses of human beings. In this paper, a complete study on lumped parameter model derived from 50th percentile anthropometric data for a seated 54- kg Indian male subject without backrest support under free un-damped conditions has been carried out considering human body segments to be of ellipsoidal shape. Conventional lumped parameter modelling considers the human body as several rigid masses interconnected by springs and dampers. In this study, concept of mass of interconnecting springs has been incorporated and eigenvalues thus obtained are found to be closer to the values reported in the literature. Results obtained clearly establish decoupling of vertical and fore-and-aft oscillations. The mathematical modelling of human body vibration studies help in validating the experimental investigations for ride comfort of a sitting subject. This study clearly establishes the decoupling of vertical and fore-and-aft vibrations and helps in better understanding of possible human response to single and multi-axial excitations.

  10. Vibration response comparison of twisted shrouded blades using different impact models (United States)

    Xie, Fangtao; Ma, Hui; Cui, Can; Wen, Bangchun


    On the basis of our previous work (Ma et al., 2016, Journal of Sound and Vibration, 378, 92-108) [36], an improved analytical model (IAM) of a rotating twisted shrouded blade with stagger angle simulated by flexible beam with a tip-mass is established based on Timoshenko beam theory, whose effectiveness is verified using finite element (FE) method. The effects of different parameters such as shroud gaps, contact stiffness, stagger angles and twist angels on the vibration responses of the shrouded blades are analyzed using two different impact models where the adjacent two shrouded blades are simulated by massless springs in impact model 1 (IM1) and those are simulated by Timoshenko beam in impact model 2 (IM2). The results indicate that two impact models agree well under some cases such as big shroud gaps and small contact stiffness due to the small vibration effects of adjacent blades, but not vice versa under the condition of small shroud gaps and big contact stiffness. As for IM2, the resonance appears because the limitation of the adjacent blades is weakened due to their inertia effects, however, the resonance does not appear because of the strong limitation of the springs used to simulate adjacent blades for IM1. With the increase of stagger angles and twist angles, the first-order resonance rotational speed increases due to the increase of the dynamic stiffness under no-impact condition, and the rotational speeds of starting impact and ending impact rise under the impact condition.

  11. Anharmonic Computations Meet Experiments (IR, Raman, Neutron Diffraction) for Explaining the Behavior of 1,3,5-Tribromo-2,4,6-trimethylbenzene. (United States)

    Meinnel, Jean; Latouche, Camille; Ghanemi, Soumia; Boucekkine, Abdou; Barone, Vincenzo; Moréac, Alain; Boudjada, Ali


    In the present paper we first show the experimental Raman, infrared, and neutron INS spectra of tribromomesitylene (TBM) measured in the range 50-3200 cm(-1) using crystalline powders at 6 or 4 K. Then, the bond lengths and angles determined by neutron diffraction using a TBM single crystal at 14 K are compared to the computed ones at different levels of theory. Anharmonic computations were then performed on the relaxed structure using the VPT2 approach, and for the lowest normal modes, the HRAO model has led to a remarkable agreement for the assignment of the experimental signatures. A particularity appears for frequencies below 150 cm(-1), and in particular for those concerning the energy levels of "hindered rotation" of the three methyl groups, they must be calculated for one-dimensional symmetrical tops independent of the frame vibrations. This fact is consistent with the structure established by neutron diffraction: the protons of the methyl groups undergoing huge "libration" motions are widely spread in space. The values of the transitions between the librational levels determined by inelastic neutron scattering indicate that the hindering potentials are mainly due to intermolecular interactions different for each methyl group in the triclinic cell.

  12. Modeling and Tuning for Vibration Energy Harvesting using a Piezoelectric Bimorph (United States)

    Cao, Yongqing

    With the development of wireless sensors and other devices, the need for continuous power supply with high reliability is growing ever more. The traditional battery power supply has the disadvantage of limited duration of continuous power supply capability so that replacement for new batteries has to be done regularly. This can be quite inconvenient and sometimes quite difficult especially when the sensors are located in places not easily accessible such as the inside of a machine or wild field. This situation stimulates the development of renewable power supply which can harvest energy from the environment. The use of piezoelectric materials to converting environment vibration to electrical energy is one of the alternatives of which a broad range of research has been done by many researchers, focusing on different issues. The improvement of efficiency is one of the most important issues in vibration based energy harvesting. For this purpose different methods are devised and more accurate modeling of coupled piezoelectric mechanical systems is investigated. In the current paper, the research is focused on improving voltage generation of a piezoelectric bimorph on a vibration beam, as well as the analytical modeling of the same system. Also an initial study is conducted on the characteristics of the vibration of Zinc oxide (ZnO) nanowire, which is a promising material for its coupled semiconducting and piezoelectric properties. The effect on the voltage generation by different placement of the piezoelectric bimorph on the vibrating beam is investigated. The relation between the voltage output and the curvature is derived which is used to explain the effect of placement on voltage generation. The effect of adding a lumped mass on the modal frequencies of the beam and on the curvature distribution is investigated. The increased voltage output from the piezoelectric bimorph by using appropriately selected mass is proved analytically and also verified by experiment. For

  13. Vibrations and thermal conductivity in inorganic and polymeric glasses. (United States)

    Shenogin, Sergei; Bodapati, Arun; Keblinski, Pawel


    The mechanism of thermal transport in amorphous materials was studied by means of vibrational mode analysis and classical nonequilibrium molecular dynamics (MD) simulations. We studied four different model systems of (a) Lennard-Jones glass, (b) bead-spring model of an amorphous polymer, (c) amorphous silicon with Stillinger-Weber potential; and (d) all-atom model of glassy polystyrene with PCFF-type force field. For all structures we evaluated thermal conductivity from the harmonic theory of disordered solids [P.B.Allen, and J.L.Feldman, Phys.Rev.B 48, 12581 (1993)] and from direct MD simulations. We found that for all models but polystyrene, the harmonic theory accurately predicts thermal conductivity. By contrast, in the case of polystyrene, only ˜1/2 of thermal conductivity can be explained within the harmonic approximation. Consequently, a major part of the transport has to be attributed to anharmonic coupling between vibrational modes. The reasons for the failure of harmonic theory of disordered solids to model amorphous glassy polymers will be discussed.


    Directory of Open Access Journals (Sweden)

    C. B. Patel


    Full Text Available During a vehicle development program, load data representing severe customer usage is required. The dilemma faced by a design engineer during the design process is that during the initial stage, only predicted loads estimated from historical targets are available, whereas the actual loads are available only at the fag end of the process. At the same time, changes required, if any, are easier and inexpensive during the initial stages of the design process whereas they are extremely costly in the latter stages of the process. The use of road profiles and vehicle models to predict the load acting on the whole vehicle is currently being researched. This work hinges on the ability to accurately measure road profiles. The objective of the work is to develop an algorithm, using MATLAB Simulink software, to convert the input signals into measured road profile. The algorithm is checked by the MATLAB Simulink 4 degrees of freedom half car model. To make the whole Simulink model more realistic, accelerometer and laser sensor properties are introduced. The present work contains the simulation of the mentioned algorithm with a half car model and studies the results in distance, time, and the frequency domain.

  15. Vibrations of turbine blades bundles model with rubber damping elements

    Czech Academy of Sciences Publication Activity Database

    Půst, Ladislav; Pešek, Luděk


    Roč. 21, č. 1 (2014), s. 45-52 ISSN 1802-1484 R&D Projects: GA ČR GA101/09/1166 Institutional support: RVO:61388998 Keywords : mathematical model * bundle of five blades * rubber damping elements * eigenmodes Subject RIV: BI - Acoustics

  16. Modelling of a Bi-axial Vibration Energy Harvester (United States)


    static three-dimensional model detailed in section 2.1 was used to evaluate the B field (magnetic flux density) by enforcing flux conservation, as the...passive interface ASIC in standard CMOS, Sens. 4 J. C. Maxwell, A treatise on electricity and magnetism vol. II, Clarendon Press, Oxford, agnetic

  17. Modeling and control of flow-induced vibrations of a flexible hydrofoil in viscous flow (United States)

    Caverly, Ryan James; Li, Chenyang; Chae, Eun Jung; Forbes, James Richard; Young, Yin Lu


    In this paper, a reduced-order model (ROM) of the flow-induced vibrations of a flexible cantilevered hydrofoil is developed and used to design an active feedback controller. The ROM is developed using data from high-fidelity viscous fluid-structure interaction (FSI) simulations and includes nonlinear terms to accurately capture the effect of lock-in. An active linear quadratic Gaussian (LQG) controller is designed based on a linearization of the ROM and is implemented in simulation with the ROM and the high-fidelity viscous FSI model. A controller saturation method is also presented that ensures that the control force applied to the system remains within a prescribed range. Simulation results demonstrate that the LQG controller successfully suppresses vibrations in both the ROM and viscous FSI simulations using a reasonable amount of control force.

  18. Intrinsic and collective structure of an algebraic model of molecular rotation-vibration spectra

    Energy Technology Data Exchange (ETDEWEB)

    Leviatan, A.; Kirson, M.W.


    A geometrical framework is provided for a recently proposed interacting boson model of molecular rotation-vibration spectra. An intrinsic state is defined by way of a boson condensate parametrized in terms of shape variables and is used to generate an energy surface. The global minimum of the energy surface determines an equilibrium condensate which serves as the basis for an exact separation of the Hamiltonian into intrinsic and collective parts. A Bogoliubov treatment of the intrinsic part produces, in leading order, the normal modes of vibration and their frequencies, the collective degrees of freedom being represented by zero-frequency Goldstone modes associated with spontaneous symmetry breaking in the condensate. The method is very useful in interpreting numerical results of the algebraic model, in identifying the capabilities and inadequacies of the Hamiltonian, and in constructing appropriate algebraic Hamiltonians for specific molecules. copyright 1988 Academic Press, Inc.

  19. Intrinsic and collective structure of an algebraic model of molecular rotation-vibration spectra

    International Nuclear Information System (INIS)

    Leviatan, A.; Kirson, M.W.


    A geometrical framework is provided for a recently proposed interacting boson model of molecular rotation-vibration spectra. An intrinsic state is defined by way of a boson condensate parametrized in terms of shape variables and is used to generate an energy surface. The global minimum of the energy surface determines an equilibrium condensate which serves as the basis for an exact separation of the Hamiltonian into intrinsic and collective parts. A Bogoliubov treatment of the intrinsic part produces, in leading order, the normal modes of vibration and their frequencies, the collective degrees of freedom being represented by zero-frequency Goldstone modes associated with spontaneous symmetry breaking in the condensate. The method is very useful in interpreting numerical results of the algebraic model, in identifying the capabilities and inadequacies of the Hamiltonian, and in constructing appropriate algebraic Hamiltonians for specific molecules. copyright 1988 Academic Press, Inc

  20. Fuzzy Model-based Pitch Stabilization and Wing Vibration Suppression of Flexible Wing Aircraft. (United States)

    Ayoubi, Mohammad A.; Swei, Sean Shan-Min; Nguyen, Nhan T.


    This paper presents a fuzzy nonlinear controller to regulate the longitudinal dynamics of an aircraft and suppress the bending and torsional vibrations of its flexible wings. The fuzzy controller utilizes full-state feedback with input constraint. First, the Takagi-Sugeno fuzzy linear model is developed which approximates the coupled aeroelastic aircraft model. Then, based on the fuzzy linear model, a fuzzy controller is developed to utilize a full-state feedback and stabilize the system while it satisfies the control input constraint. Linear matrix inequality (LMI) techniques are employed to solve the fuzzy control problem. Finally, the performance of the proposed controller is demonstrated on the NASA Generic Transport Model (GTM).

  1. Prediction Models of Free-Field Vibrations from Railway Traffic

    DEFF Research Database (Denmark)

    Malmborg, Jens; Persson, Kent; Persson, Peter


    Many cities experience an increasing population leading to a need for urban densification. In these cities, unused land close to railways will have to be developed with new residential and office buildings. The infrastructural demand will also increase, resulting in heavily trafficked roads and r...... is studied by comparing the response in a three-dimensional finite-element model. Transfer functions at several positions in the free-field are compared....

  2. A vibrational model of F centres in alkali halides

    Energy Technology Data Exchange (ETDEWEB)

    Salis, M. [Universita di Cagliari, Dipt. di Fisica, Istituto Nazionale di Fisica della Materia, Monserrato, CA (Italy)


    Halide vacancies in ionic crystals originate localized positive extra-charges which can trap electrons when crystals are excited by ionizing radiations. A model of F-centres in alkali halides, which relates absorption energies in F-bands to the dynamic parameters of host lattices, is proposed. According to this model, the electrons trapped in F-centres are treated as classical particles with a proper mass, m{sup *} = m*{epsilon}{sub loc}{sup 4} / {epsilon}{sub {infinity}}{sup 2}, m standing for the actual electron mass, and {epsilon}{sub loc} and {epsilon}{sub {infinity}} for local high frequency and optical dielectric constants, respectively. Hence, by considering the trapped electrons as substitutional impurities of small mass, the dynamics of the lattice is investigated by means of the theory of local modes with the assumption of isotopy. A simple equation allowing calculation of the local mode frequencies is obtained. Knowledge of the Debye frequency and of transverse and longitudinal mode frequencies at the long wavelength limit is required. With this model, F-band absorption energy is reasonably well accounted for. (author)

  3. Modeling of carbon nanotube composites for vibration damping (United States)

    Dai, R. L.; Liao, W. H.


    In recent years, it has been found that the composites of carbon nanotubes (CNTs) and epoxy resin could greatly enhance damping ability while the stiffness is kept at a very high level. In this research, carbon nanotube enhanced epoxy resin is fabricated. The dynamic properties of the nanotube composites are experimentally studied. Experimental results show that CNT additive can provide the composite with significant damping without undergoing large shear strain as compared to the VEMs, and the dynamic stiffness of the nanotube composite could be even higher than that of the pure epoxy resin. In order to further study the damping mechanism of the CNT composite, models are developed. Composite unit cell model containing single CNT segment is built by using finite element method (FEM). Models with different CNT orientations are solved in order to describe the behaviors of the randomly oriented CNTs inside the epoxy matrix. Composite loss factor is calculated based on average ratio of the unit cell energy loss to the unit cell energy input. Calculated loss factors under different strain level are compared with experiment results.

  4. Plan, formulate, discuss and correlate a NASTRAN finite element vibrations model of the Boeing Model 360 helicopter airframe (United States)

    Gabel, R.; Lang, P. F.; Smith, L. A.; Reed, D. A.


    Boeing Helicopter, together with other United States helicopter manufacturers, participated in a finite element applications program to emplace in the United States a superior capability to utilize finite element analysis models in support of helicopter airframe design. The activities relating to planning and creating a finite element vibrations model of the Boeing Model 36-0 composite airframe are summarized, along with the subsequent analytical correlation with ground shake test data.

  5. Active vibration control using state space LQG and internal model control methods

    DEFF Research Database (Denmark)

    Mørkholt, Jakob; Elliott, S.J.


    Two ways of designing discrete time robust H2-controllers for feedback broadband active vibration control are compared through computer simulations. The methods are based on different models of disturbance and plant transfer functions, but yield controllers with identical properties. Two simple...... ways of introducing robustness into the H2-design are compared, and finally an efficient way of designing a practical IIR-controller is proposed....

  6. Vibrational many-body methods for molecules and extended systems (United States)

    Keceli, Murat

    Vibrational many-body methods for molecules and extended systems have been developed that can account for the effects of anharmonicity in the potential energy surfaces (PESs) on energies and other observable properties. For molecules, we present a general scheme to calculate anharmonic vibrational frequencies and vibrationally-averaged structures along with applications to some key species in hydrocarbon combustion chemistry: HCO+, HCO, HNO, HOO, HOO--, CH3+, and CH3. We propose a hybrid, compact representation of PESs that combines the merits of two existing representations, which are a quartic force field (QFF) and numerical values on a rectilinear grid. We employed a combination of coupled-cluster singles and doubles (CCSD), CCSD with a second-order perturbation correction in the space of triples [CCSD(2)T] and in the space of triples and quadruples [CCSD(2)TQ], and a correlation-consistent basis set series to achieve the complete-correlation, complete-basis-set limits of the potential energy surfaces. The mean absolute deviation between the predicted and the observed frequencies is 11 cm --1. For extended systems, we generalized the formulations of the vibrational self-consistent field (VSCF), vibrational Moller--Plesset perturbation (VMP), and vibrational coupled-cluster (VCC) methods on the basis of a QFF in normal coordinates. We have identified algebraically and eliminated several terms in the formalisms of VSCF that have nonphysical size dependence, leading to compact and strictly size-extensive equations. This size-extensive VSCF method (XVSCF) thus defined has no contributions from cubic force constants and alters only the transition energies of the underlying harmonic-oscillator reference from a subset of quartic force constants. The mean-field potential of XVSCF felt by each mode is shown to be effectively harmonic, making the XVSCF equations subject to a self-consistent analytical solution without a basis-set expansion and matrix diagonalization

  7. Vibration tests on some models of PEC reactor core elements

    International Nuclear Information System (INIS)

    Bonacina, G.; Castoldi, A.; Zola, M.; Cecchini, F.; Martelli, A.; Vincenzi, D.


    This paper describes the aims of the experimental tests carried out at ISMES, within an agreement with the Department of Fast Reactors of ENEA, on some models of the elements of PEC Fast Nuclear Reactor Core in the frame of the activities for the seismic verification of the PEC core. The seismic verification is briefly described with particular attention to the problems arising from the shocks among the various elements during an earthquake, as well as the computer code used, the purpose and the techniques used to perform tests, some results and the first comparison between the theory and the experimental data

  8. Anharmonic phonons and magnons in BiFeO3

    Energy Technology Data Exchange (ETDEWEB)

    Delaire, Olivier A [ORNL; Ma, Jie [ORNL; Stone, Matthew B [ORNL; Huq, Ashfia [ORNL; Gout, Delphine J [ORNL; Brown, Craig [National Institute of Standards and Technology (NIST); Wang, Kefeng [Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing; Ren, Zhifeng [Boston College, Chestnut Hill


    The phonon density of states (DOS) and magnetic excitation spectrum of polycrystalline BiFeO3 were measured for temperatures 200 < T < 750K , using inelastic neutron scattering (INS). Our results indicate that the magnetic spectrum of BiFeO3 closely resembles that of similar Fe perovskites, such as LaFeO3, despite the cycloid modulation in BiFeO3. We do not find any evidence for a spin gap. A strong T-dependence of the phonon DOS was found, with a marked broadening of the whole spectrum, providing evidence of strong anharmonicity. This anharmonicity is corroborated by large amplitude motions of Bi and O ions observed with neutron diffraction. These results highlight the importance of spin-phonon coupling in this material.

  9. Dirac bound states of anharmonic oscillator in external fields

    Energy Technology Data Exchange (ETDEWEB)

    Hamzavi, Majid, E-mail: [Department of Physics, University of Zanjan, Zanjan (Iran, Islamic Republic of); Ikhdair, Sameer M., E-mail: [Department of Physics, Faculty of Science, an-Najah National University, Nablus, West Bank, Palestine (Country Unknown); Department of Electrical and Electronic Engineering, Near East University, 922022 Nicosia, Northern Cyprus, Mersin 10 (Turkey); Falaye, Babatunde J., E-mail: [Theoretical Physics Section, Department of Physics, University of Ilorin, P. M. B. 1515, Ilorin (Nigeria)


    We explore the effect of the external magnetic and Aharonov–Bohm (AB) flux fields on the energy levels of Dirac particle subjects to mixed scalar and vector anharmonic oscillator field in the two-dimensional (2D) space. We calculate the exact energy eigenvalues and the corresponding un-normalized two-spinor-components wave functions in terms of the chemical potential parameter, magnetic field strength, AB flux field and magnetic quantum number by using the Nikiforov–Uvarov (NU) method. -- Highlights: • Effect of the external fields on the energy levels of Dirac particle with the anharmonic oscillator is investigated. • The solutions are discussed in view of spin and pseudospin symmetries limits. • The energy levels and wave function are presented by the Nikiforov–Uvarov method.

  10. Dirac bound states of anharmonic oscillator in external fields

    International Nuclear Information System (INIS)

    Hamzavi, Majid; Ikhdair, Sameer M.; Falaye, Babatunde J.


    We explore the effect of the external magnetic and Aharonov–Bohm (AB) flux fields on the energy levels of Dirac particle subjects to mixed scalar and vector anharmonic oscillator field in the two-dimensional (2D) space. We calculate the exact energy eigenvalues and the corresponding un-normalized two-spinor-components wave functions in terms of the chemical potential parameter, magnetic field strength, AB flux field and magnetic quantum number by using the Nikiforov–Uvarov (NU) method. -- Highlights: • Effect of the external fields on the energy levels of Dirac particle with the anharmonic oscillator is investigated. • The solutions are discussed in view of spin and pseudospin symmetries limits. • The energy levels and wave function are presented by the Nikiforov–Uvarov method

  11. Surface quality prediction model of nano-composite ceramics in ultrasonic vibration-assisted ELID mirror grinding

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Bo; Chen, Fan; Jia, Xiao-feng; Zhao, Chong-yang; Wang, Xiao-bo [Henan Polytechnic University, Jiaozuo (China)


    Ultrasonic vibration-assisted Electrolytic in-process dressing (ELID) grinding is a highly efficient and highly precise machining method. The surface quality prediction model in ultrasonic vibration-assisted ELID mirror grinding was studied. First, the interaction between grits and workpiece surface was analyzed according to kinematic mechanics, and the surface roughness model was developed. The variations in surface roughness under different parameters was subsequently calculated and analyzed by MATLAB. Results indicate that compared with the ordinary ELID grinding, ultrasonic vibration-assisted ELID grinding is superior, because it has more stable and better surface quality and has an improved range of ductile machining.

  12. The dynamics of a thermal non-equilibrium anharmonic oscillator


    Nachbagauer, Herbert


    We propose an non-standard method to calculate non-equilibrium physical observables. Considering the generic example of an anharmonic quantum oscillator, we take advantage of the fact that the commutator algebra of second order polynomials in creation/annihilation operators closes. We solve the von~Neumann equation for the density-operator exactly in the mean field approximation and study the time evolution of the particle number and the expectation value .

  13. Uncertainty modeling in vibration, control and fuzzy analysis of structural systems

    CERN Document Server

    Halder, Achintya; Ayyub, Bilal M


    This book gives an overview of the current state of uncertainty modeling in vibration, control, and fuzzy analysis of structural and mechanical systems. It is a coherent compendium written by leading experts and offers the reader a sampling of exciting research areas in several fast-growing branches in this field. Uncertainty modeling and analysis are becoming an integral part of system definition and modeling in many fields. The book consists of ten chapters that report the work of researchers, scientists and engineers on theoretical developments and diversified applications in engineering sy

  14. Folding-type coupling potentials in the context of the generalized rotation-vibration model (United States)

    Chamon, L. C.; Morales Botero, D. F.


    The generalized rotation-vibration model was proposed in previous works to describe the structure of heavy nuclei. The model was successfully tested in the description of experimental results related to the electron-nucleus elastic and inelastic scattering. In the present work, we consider heavy-ion collisions and assume this model to calculate folding-type coupling potentials for inelastic states, through the corresponding transition densities. As an example, the method is applied to coupled-channel data analyses for the α + 70,72,74,76Ge systems.

  15. Free vibrations analysis of carbon nanotubes resting on Winkler foundations based on nonlocal models (United States)

    Rahmanian, M.; Torkaman-Asadi, M. A.; Firouz-Abadi, R. D.; Kouchakzadeh, M. A.


    In the present study, free vibrations of single walled carbon nanotubes (SWCNT) on an elastic foundation is investigated by nonlocal theory of elasticity with both beam and shell models. The nonlocal boundary conditions are derived explicitly and effectiveness of nonlocal parameter appearing in nonlocal boundary conditions is studied. Also it is demonstrated that the beam model is comparatively incapable of capturing size effects while shell model captures size effects more precisely. Moreover, the effects of some parameters such as mechanical properties, foundation stiffness, length and radius ratios on the natural frequencies are studied and some conclusions are drawn.

  16. Incorporating nuclear vibrational energies into the "atom in molecules" analysis: An analytical study. (United States)

    Gharabaghi, Masumeh; Shahbazian, Shant


    The quantum theory of atoms in molecules (QTAIM) is based on the clamped nucleus paradigm and solely working with the electronic wavefunctions, so does not include nuclear vibrations in the AIM analysis. On the other hand, the recently extended version of the QTAIM, called the multi-component QTAIM (MC-QTAIM), incorporates both electrons and quantum nuclei, i.e., those nuclei treated as quantum waves instead of clamped point charges, into the AIM analysis using non-adiabatic wavefunctions. Thus, the MC-QTAIM is the natural framework to incorporate the role of nuclear vibrations into the AIM analysis. In this study, within the context of the MC-QTAIM, the formalism of including nuclear vibrational energy in the atomic basin energy is developed in detail and its contribution is derived analytically using the recently proposed non-adiabatic Hartree product nuclear wavefunction. It is demonstrated that within the context of this wavefunction, the quantum nuclei may be conceived pseudo-adiabatically as quantum oscillators and both isotropic harmonic and anisotropic anharmonic oscillator models are used to compute the zero-point nuclear vibrational energy contribution to the basin energies explicitly. Inspired by the results gained within the context of the MC-QTAIM analysis, a heuristic approach is proposed within the context of the QTAIM to include nuclear vibrational energy in the basin energy from the vibrational wavefunction derived adiabatically. The explicit calculation of the basin contribution of the zero-point vibrational energy using the uncoupled harmonic oscillator model leads to results consistent with those derived from the MC-QTAIM.

  17. The Microgravity Vibration Isolation Mount: A Dynamic Model for Optimal Controller Design (United States)

    Hampton, R. David; Tryggvason, Bjarni V.; DeCarufel, Jean; Townsend, Miles A.; Wagar, William O.


    Vibration acceleration levels on large space platforms exceed the requirements of many space experiments. The Microgravity Vibration Isolation Mount (MIM) was built by the Canadian Space Agency to attenuate these disturbances to acceptable levels, and has been operational on the Russian Space Station Mir since May 1996. It has demonstrated good isolation performance and has supported several materials science experiments. The MIM uses Lorentz (voice-coil) magnetic actuators to levitate and isolate payloads at the individual experiment/sub-experiment (versus rack) level. Payload acceleration, relative position, and relative orientation (Euler-parameter) measurements are fed to a state-space controller. The controller, in turn, determines the actuator currents needed for effective experiment isolation. This paper presents the development of an algebraic, state-space model of the MIM, in a form suitable for optimal controller design.

  18. Application of Steinberg vibration fatigue model for structural verification of space instruments (United States)

    García, Andrés; Sorribes-Palmer, Félix; Alonso, Gustavo


    Electronic components in spaceships are subjected to vibration loads during the ascent phase of the launcher. It is important to verify by tests and analysis that all parts can survive in the most severe load cases. The purpose of this paper is to present the methodology and results of the application of the Steinberg's fatigue model to estimate the life of electronic components of the EPT-HET instrument for the Solar Orbiter space mission. A Nastran finite element model (FEM) of the EPT-HET instrument was created and used for the structural analysis. The methodology is based on the use of the FEM of the entire instrument to calculate the relative displacement RDSD and RMS values of the PCBs from random vibration analysis. These values are used to estimate the fatigue life of the most susceptible electronic components with the Steinberg's fatigue damage equation and the Miner's cumulative fatigue index. The estimations are calculated for two different configurations of the instrument and three different inputs in order to support the redesign process. Finally, these analytical results are contrasted with the inspections and the functional tests made after the vibration tests, concluding that this methodology can adequately predict the fatigue damage or survival of the electronic components.

  19. Analysis of bit-rock interaction during stick-slip vibrations using PDC cutting force model

    Energy Technology Data Exchange (ETDEWEB)

    Patil, P.A.; Teodoriu, C. [Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). ITE


    Drillstring vibration is one of the limiting factors maximizing the drilling performance and also causes premature failure of drillstring components. Polycrystalline diamond compact (PDC) bit enhances the overall drilling performance giving the best rate of penetrations with less cost per foot but the PDC bits are more susceptible to the stick slip phenomena which results in high fluctuations of bit rotational speed. Based on the torsional drillstring model developed using Matlab/Simulink for analyzing the parametric influence on stick-slip vibrations due to drilling parameters and drillstring properties, the study of relations between weight on bit, torque on bit, bit speed, rate of penetration and friction coefficient have been analyzed. While drilling with the PDC bits, the bit-rock interaction has been characterized by cutting forces and the frictional forces. The torque on bit and the weight on bit have both the cutting component and the frictional component when resolved in horizontal and vertical direction. The paper considers that the bit is undergoing stick-slip vibrations while analyzing the bit-rock interaction of the PDC bit. The Matlab/Simulink bit-rock interaction model has been developed which gives the average cutting torque, T{sub c}, and friction torque, T{sub f}, values on cutters as well as corresponding average weight transferred by the cutting face, W{sub c}, and the wear flat face, W{sub f}, of the cutters value due to friction.

  20. Theoretical modeling and experimental validation of a torsional piezoelectric vibration energy harvesting system (United States)

    Qian, Feng; Zhou, Wanlu; Kaluvan, Suresh; Zhang, Haifeng; Zuo, Lei


    Vibration energy harvesting has been extensively studied in recent years to explore a continuous power source for sensor networks and low-power electronics. Torsional vibration widely exists in mechanical engineering; however, it has not yet been well exploited for energy harvesting. This paper presents a theoretical model and an experimental validation of a torsional vibration energy harvesting system comprised of a shaft and a shear mode piezoelectric transducer. The piezoelectric transducer position on the surface of the shaft is parameterized by two variables that are optimized to obtain the maximum power output. The piezoelectric transducer can work in d 15 mode (pure shear mode), coupled mode of d 31 and d 33, and coupled mode of d 33, d 31 and d 15, respectively, when attached at different angles. Approximate expressions of voltage and power are derived from the theoretical model, which gave predictions in good agreement with analytical solutions. Physical interpretations on the implicit relationship between the power output and the position parameters of the piezoelectric transducer is given based on the derived approximate expression. The optimal position and angle of the piezoelectric transducer is determined, in which case, the transducer works in the coupled mode of d 15, d 31 and d 33.

  1. Modeling and experimental characterization of a new piezoelectric sensor for low-amplitude vibration measurement

    International Nuclear Information System (INIS)

    Hou, X Y; Koh, C G; Kuang, K S C; Lee, W H


    This paper investigates the capability of a novel piezoelectric sensor for low-frequency and low-amplitude vibration measurement. The proposed design effectively amplifies the input acceleration via two amplifying mechanisms and thus eliminates the use of the external charge amplifier or conditioning amplifier typically employed for measurement system. The sensor is also self-powered, i.e. no external power unit is required. Consequently, wiring and electrical insulation for on-site measurement are considerably simpler. In addition, the design also greatly reduces the interference from rotational motion which often accompanies the translational acceleration to be measured. An analytical model is developed based on a set of piezoelectric constitutive equations and beam theory. Closed-form expression is derived to correlate sensor geometry and material properties with its dynamic performance. Experimental calibration is then carried out to validate the analytical model. After calibration, experiments are carried out to check the feasibility of the new sensor in structural vibration detection. From experimental results, it is concluded that the proposed sensor is suitable for measuring low-frequency and low-amplitude vibrations. (paper)

  2. Experimental and theoretical model of reactivity and vibrational detection modes of triacetone triperoxide (TATP) and homologues (United States)

    Pacheco-Londono, Leonardo C.; Primera-Pedrozo, Oliva M.; Hernandez-Rivera, Samuel P.


    Fully optimized molecular geometry, parameters of reactivity and vibrational spectra of triacetone triperoxide (TATP) and homologue organic peroxides were calculated using B3LYP/6-31G(d,p) method within the Density Functional Theory formalism. Infrared and Raman Spectroscopy were utilized to obtain vibrational spectra of the energetic compound. The model consists in the relation found between the Raman Shift location of the important symmetric stretch ν(O-O) of the organic peroxides and the reactivity of the organic peroxides. A good correlation between the band location in the series studied and the x-y plane polarizability component and the ionization energy was found. Gas phase IR absorption of TATP in air was used for developing stand-off detection schemes of the important organic peroxide in air. The sublimation properties of TATP were measured using two methods: Grazing Angle Probe-Fiber Coupled FTIR and gravimetric on stainless steel surfaces. Sublimation rates, loading concentration values and absorbance band areas were measured and modeled using the persistent IR vibrational signature of the ν(C-O) mode.

  3. Certain Type Turbofan Engine Whole Vibration Model with Support Looseness Fault and Casing Response Characteristics

    Directory of Open Access Journals (Sweden)

    H. F. Wang


    Full Text Available Support looseness fault is a type of common fault in aeroengine. Serious looseness fault would emerge under larger unbalanced force, which would cause excessive vibration and even lead to rubbing fault, so it is important to analyze and recognize looseness fault effectively. In this paper, based on certain type turbofan engine structural features, a rotor-support-casing whole model for certain type turbofan aeroengine is established. The rotor and casing systems are modeled by means of the finite element beam method; the support systems are modeled by lumped-mass model; the support looseness fault model is also introduced. The coupled system response is obtained by numerical integral method. In this paper, based on the casing acceleration signals, the impact characteristics of symmetrical stiffness and asymmetric stiffness models are analyzed, finding that the looseness fault would lead to the longitudinal asymmetrical characteristics of acceleration time domain wave and the multiple frequency characteristics, which is consistent with the real trial running vibration signals. Asymmetric stiffness looseness model is verified to be fit for aeroengine looseness fault model.

  4. Modeling “unilateral” response in the cross-ties of a cable network: Deterministic vibration (United States)

    Giaccu, Gian Felice; Caracoglia, Luca; Barbiellini, Bernardo


    Cross-ties are employed as passive devices for the mitigation of stay-cable vibrations, exhibited on cable-stayed bridges under wind and wind-rain excitation. Large-amplitude oscillation can result in damage to the cables or perceived discomfort to bridge users. The “cable-cross-ties system” derived by connecting two or more stays by transverse cross-ties is often referred to as an “in-plane cable network”. Linear modeling of network dynamics has been available for some time. This framework, however, cannot be used to detect incipient failure in the restrainers due to slackening or snapping. A new model is proposed in this paper to analyze the effects of a complete loss in the pre-tensioning force imparted to the cross-ties, which leads to the “unilateral” free-vibration response of the network (i.e., a cross-tie with linear-elastic internal force in tension and partially inactive in compression). Deterministic free vibrations of a three-cable network are investigated by using the “equivalent linearization method”. A performance coefficient is introduced to monitor the relative reduction in the average (apparent) stiffness of the connector during free vibration response (“mode by mode”), exhibiting unilateral behavior. A reduction of fifty percent in the apparent stiffness was observed in the cross-tie when the pre-tensioning force is small in comparison with the tension force in the stay. This coefficient may be used as a damage indicator for the selection of the initial pre-tensioning force in the cross-ties needed to avoid slackening.

  5. A physics-based temperature model for ultrasonic vibration-assisted pelleting of cellulosic biomass. (United States)

    Song, Xiaoxu; Yu, Xiaoming; Zhang, Meng; Pei, Z J; Wang, Donghai


    Temperature in ultrasonic vibration-assisted (UV-A) pelleting of cellulosic biomass has a significant impact on pellet quality. However, there are no reports on temperature models for UV-A pelleting of cellulosic biomass. The development of a physics-based temperature model can help to explain experimentally determined relations between UV-A pelleting process variables and temperature, and provide guidelines to optimize these process variables in order to produce pellets of good quality. This paper presents such a model for UV-A pelleting of cellulosic biomass. Development of the model is described first. Then temperature distribution is investigated using the model, and temperature difference between the top and the bottom surfaces of a pellet is explained. Based on this model, relations between process variables (ultrasonic power and pelleting duration) and temperature are predicted. Experiments were conducted for model verification, and the results agreed well with model predictions. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. A comprehensive model for in-plane and out-of-plane vibration of CANDU fuel endplate rings

    Energy Technology Data Exchange (ETDEWEB)

    Yu, S.D., E-mail:; Fadaee, M.


    Highlights: • Proposed an effective method for modelling bending and torsional vibration of CANDU fuel endplate rings. • Applied successfully the thick plate theory to curved structural members by accounting for the transverse shear effect. • The proposed method is computationally more efficient compared to the 3D finite element. - Abstract: In this paper, a comprehensive vibration model is developed for analysing in-plane and out-of-plane vibration of CANDU fuel endplate rings by taking into consideration the effects of in-plane extension in the circumferential and radial directions, shear, and rotatory inertia. The model is based on Reddy’s thick plate theory and the nine-node isoparametric Lagrangian plate finite elements. Natural frequencies of various modes of vibration of circular rings obtained using the proposed method are compared with 3D finite element results, experimental data and results available in the literature. Excellent agreement was achieved.

  7. Numerical Modelling of Building Vibrations due to Railway Traffic: Analysis of the Mitigation Capacity of a Wave Barrier

    Directory of Open Access Journals (Sweden)

    Fran Ribes-Llario


    Full Text Available Transmission of train-induced vibrations to buildings located in the vicinity of the track is one of the main negative externalities of railway transport, since both human comfort and the adequate functioning of sensitive equipment may be compromised. In this paper, a 3D FEM model is presented and validated with data from a real track stretch near Barcelona, Spain. Furthermore, a case study is analyzed as an application of the model, in order to evaluate the propagation and transmission of vibrations induced by the passage of a suburban train to a nearby 3-storey building. As a main outcome, vertical vibrations in the foundation slab are found to be maximum in the corners, while horizontal vibrations keep constant along the edges. The propagation within the building structure is also studied, concluding that vibrations invariably increase in their propagation upwards the building. Moreover, the mitigation capacity of a wave barrier acting as a source isolation is assessed by comparing vibration levels registered in several points of the building structure with and without the barrier. In this regard, the wave barrier is found to effectively reduce vibration in both the soil and the structure.

  8. Modeling the interference of vortex-induced vibration and galloping for a slender rectangular prism (United States)

    Mannini, Claudio; Massai, Tommaso; Marra, Antonino Maria


    Several bluff bodies in an airflow, such as rectangular cylinders with moderate side ratio, in particular conditions of mass and damping can experience the interference of vortex-induced vibration (VIV) and galloping. This promotes a combined instability, which one may call "unsteady galloping", with peculiar features and possibly large vibration amplitudes in flow speed ranges where no excitation is predicted by classical theories. The mathematical model proposed between the 70's and the 80's by Prof. Y. Tamura to simulate this phenomenon was considered here for the case study of a two-dimensional rectangular cylinder with a side ratio of 1.5, having the shorter section side perpendicular to the smooth airflow. This wake-oscillator model relies on the linear superposition of the unsteady wake force producing VIV excitation and the quasi-steady force that is responsible for galloping. The model formulation was slightly modified, and the way to determine a crucial parameter was changed, revealing a previously unexplored behavior of the equations. In the present form, the model is able to predict the dynamic response of the rectangular cylinder with a satisfactory qualitative and, to a certain extent, quantitative agreement with the experimental data, although the limitations of the present approach are clearly highlighted in the paper. The mathematical modeling of unsteady galloping and the analysis of the results offer a deep insight into this complicated phenomenon and its nonlinear features. The model also represents a useful engineering tool to estimate the vibration of a structure or structural element for which the interference of VIV and galloping is envisaged.

  9. Airy function approach and Numerov method to study the anharmonic oscillator potentials V(x = Ax2α + Bx2

    Directory of Open Access Journals (Sweden)

    N. Al Sdran


    Full Text Available The numerical solutions of the time independent Schrödinger equation of different one-dimensional potentials forms are sometime achieved by the asymptotic iteration method. Its importance appears, for example, on its efficiency to describe vibrational system in quantum mechanics. In this paper, the Airy function approach and the Numerov method have been used and presented to study the oscillator anharmonic potential V(x = Ax2α + Bx2, (A>0, B<0, with (α = 2 for quadratic, (α =3 for sextic and (α =4 for octic anharmonic oscillators. The Airy function approach is based on the replacement of the real potential V(x by a piecewise-linear potential v(x, while, the Numerov method is based on the discretization of the wave function on the x-axis. The first energies levels have been calculated and the wave functions for the sextic system have been evaluated. These specific values are unlimited by the magnitude of A, B and α. It’s found that the obtained results are in good agreement with the previous results obtained by the asymptotic iteration method for α =3.

  10. Fluctuations and Anharmonicity in Lead Iodide Perovskites from Molecular Dynamics Supercell Simulationss

    KAUST Repository

    Carignano, Marcelo Andrés


    We present a systematic study based on first principles molecular dynamics simulations of lead iodide perovskites with three different cations, including methylammonium (MA), formamidinium (FA) and cesium. Using the high temperature perovskite structure as a reference, we investigate the instabilities that develop as the material is cooled down to 370 K. All three perovskites display anharmonicity in the motion of the iodine atoms, with the stronger effect observed for the MAPbI$_3$ and CsPbI$_3$. At high temperature, this behavior can be traced back to the reduced effective size of the Cs$^+$ and MA$^+$ cations. MAPbI$_3$ undergoes a spontaneous phase transition within our simulation model driven by the dipolar interaction between neighboring MA cations as the temperature is decreased from 450 K. The reverse transformation from tetragonal to cubic is also monitored through the large distribution of the octahedral tilting angles accompanied by an increase in the anharmonicity of the iodine atoms motion. Both MA and FA hybrid perovskites show a strong coupling between the molecular orientations and the local lattice deformations, suggesting mixed order-disorder/displacive characters of the high temperature phase transitions.



    Sabyasachi Mukherjee


    The study of sound and vibration are closely related. Sound or "pressure waves" are generated by vibrating structures (e.g. vocal cords); these pressure waves can also induce the vibration of structures (e.g. ear drum). Hence, when trying to reduce noise it is often a problem in trying to reduce vibration. The high speed engines and machines when mounted on foundations and supports cause vibrations of excessive amplitude because of unbalance forces setup during their working. These are the di...

  12. Histologic Comparison of Vibrating Guidewire with Conventional Guidewire Technique in an Experimental Coronary In Vivo Model

    International Nuclear Information System (INIS)

    Katsouras, Christos S.; Michalis, Lampros K.; Malamou-Mitsi, Vassiliki D.; Niokou, Demetra; Giogiakas, Vassilios; Nikas, Dimitrios; Massouras, Gerasimos; Dallas, Pavlos; Tsetis, Dimitrios K.; Sideris, Dimitris A.; Rees, Michael R.


    Purpose: To compare the damage caused by vibrating guidewire manipulation and conventional guidewire manipulation of soft coronary wires in normal sheep coronary arteries. Methods: Using an intact sheep model the two methods of passing a coronary guidewire down a normal coronary artery under fluoroscopic screening control were studied. The resulting arterial damage caused by the two techniques was studied histologically. The severity of damage was scored from 1 (no damage) to 4 (severe damage) and expressed as: (a) percentage of damaged sections, (b) mean damage score per section and (c) percentage of sections suffering the most severe degree of damage (scores 3 and 4). Results: One hundred and sixty-eight sections were studied.The percentage of damaged sections was lower in the vibrating guidewire group (p 0.004). The mean damage score and the percentage of sections with a damage score of 3 or 4 were smaller in the vibrating guidewire group than in the conventional guidewire manipulation group (p = 0.001 and p =0.009, respectively). Conclusions: Both methods of guidewire manipulation cause identifiable vascular damage. The extent and severity of damage appear greater when the guidewire is manipulated manually

  13. Ab Initio Model for Vibrational Excitation of Polar Molecules by Low-Energy Electrons (United States)

    Vanroose, W. I.; Rescigno, T. N.; McCurdy, C. W.


    Vibrational excitation of the hydrogen halides by electron impact has been a subject of continued interest ever since the first observations of pronounced threshold peaks in the cross sections by Rohr and Linder twenty five years ago. Two semi-empirical models have been developed to explain these features, one a virtual state model by Gauyacq and Herzenberg based on effective-range theory, the other by Domcke and co-workers based on a non-local Feshbach resonance model. We will show that a non-empirical model can be formulated which captures the essential features of the observed cross sections. The only parameters needed to implement the calculations are the potential energy curve of the negative ion in the region where it is bound, the potential curve of the neutral target and its R-dependent dipole moment. We use an effective range theory for the nuclear dynamics, which can be implemented without an expansion in target vibrational states, instead of non-local equations derived from Feshbach partitioning. Another new element is the use of a dipole coupled partial-wave model to predict the analytic continuation of the negative ion potential curve into the continuum. We will illustrate the new model with results for electron-HCl scattering.

  14. Random vibration sensitivity studies of modeling uncertainties in the NIF structures

    International Nuclear Information System (INIS)

    Swensen, E.A.; Farrar, C.R.; Barron, A.A.; Cornwell, P.


    The National Ignition Facility is a laser fusion project that will provide an above-ground experimental capability for nuclear weapons effects simulation. This facility will achieve fusion ignition utilizing solid-state lasers as the energy driver. The facility will cover an estimated 33,400 m 2 at an average height of 5--6 stories. Within this complex, a number of beam transport structures will be houses that will deliver the laser beams to the target area within a 50 microm ms radius of the target center. The beam transport structures are approximately 23 m long and reach approximately heights of 2--3 stories. Low-level ambient random vibrations are one of the primary concerns currently controlling the design of these structures. Low level ambient vibrations, 10 -10 g 2 /Hz over a frequency range of 1 to 200 Hz, are assumed to be present during all facility operations. Each structure described in this paper will be required to achieve and maintain 0.6 microrad ms laser beam pointing stability for a minimum of 2 hours under these vibration levels. To date, finite element (FE) analysis has been performed on a number of the beam transport structures. Certain assumptions have to be made regarding structural uncertainties in the FE models. These uncertainties consist of damping values for concrete and steel, compliance within bolted and welded joints, and assumptions regarding the phase coherence of ground motion components. In this paper, the influence of these structural uncertainties on the predicted pointing stability of the beam line transport structures as determined by random vibration analysis will be discussed

  15. Effect of anharmonicity and Debye-Waller factor on the superconductivity of PdHsub(x) and PdDsub(x)

    International Nuclear Information System (INIS)

    Griessen, R.; Groot, D.G. de


    On the basis of existing superconducting tunnelling, neutron scattering, electrical resistivity and Raman scattering data and new thermal expansion, elastic moduli and point-contact spectroscopy data it is concluded that the anharmonicity of the proton (deuteron)-palladium potential is such that Msub(H)#betta#sub(H) 2 /(Msub(D)#betta#sub(D) 2 ) = 1.12 +- 0.05 Msub(H(D)) is the mass and #betta#sub(H(D)) the frequency of the vibration of hydrogen (deuterium). This anharmonicity is approximately 2 times too weak to reproduce the observed inverse isotope effect in the superconducting transition temperature of concentrated PdHsub(x) and PdDsub(x) alloys. Within a pseudopotential formalism it is shown that the Debye-Waller factor arising from the large zero-point amplitude of the interstitial hydrogen (deuterium) leads to a contribution to the inverse isotope effect in Tsub(c) which is as large as that of anharmonicity alone. (Auth.)

  16. Direct simulations of anharmonic infrared spectra using quantum mechanical/effective fragment potential molecular dynamics (QM/EFP-MD): methanol in water. (United States)

    Ghosh, Manik Kumer; Lee, Jooyong; Choi, Cheol Ho; Cho, Minhaeng


    One of the most stringent tests for chemical accuracy of a hybrid quantum mechanical/molecular mechanical (QM/MM) molecular dynamics simulation method would be to directly compare the calculated vibrational spectra with the corresponding experimental results. Here, the applicability of hybrid QM/effective fragment potential (EFP) to the simulations of methanol infrared spectra is investigated in detail. It is demonstrated that the QM/EFP simulations in combination with time correlation function theory yield not only the fundamental transition bands but also the major overtone and combination bands of methanol dissolved in water in both mid- and near-IR regions. This clearly indicates that the QM/EFP-molecular dynamics can be a viable way of obtaining an anharmonic infrared spectrum that provides information on solvatochromic frequency shifts and fluctuations, solute-solvent interaction-induced dephasing, and anharmonic coupling effects on vibrational spectra of aqueous solutions. We anticipate that the computational protocol developed here can be effectively used to simulate both one- and two-dimensional vibrational spectra of biomolecules and chemically reactive systems in condensed phases.

  17. Role of energy exchange in vibrational dephasing processes in liquids and solids

    International Nuclear Information System (INIS)

    Marks, S.


    Three theories which claim relevance to the dephasing of molecular vibrations in condensed phase matter are presented. All of these theories predict (in certain limiting cases) that the widths and shifts of molecular vibrations will obey an Arrhenius temperature dependence. The basic tenets of the theories are detailed so that the differences between them may be used in an experiment to distinguish between them. One model, based on intermolecular energy exchange of low-frequency modes, results in dephasing the high-frequency modes when anharmonic coupling is present. A computer analysis of temperature dependent experimental lineshapes can result in the extraction of various parameters such as the anharmonic shifts and the exchange rates. It is shown that, in order to properly assess the relative validity of the three models, other evidence must be obtained such as the spectral parameters of the low-frequency modes, the combination bands, and the isotopic dilution behavior. This evidence is presented for d 14 -durene (perdeutero-1,2,4,5-tetramethylbenzene) and compared to previous data obtained on pure h 14 -durene. An extension of the (HSC) intermolecular energy exchange model which allows for the possibility of partial delocalization of the low-frequency modes gives an adequate description of the experimental evidence. Isotopic dilution experiments, in particular, have resulted in a detailed picture of the energy transfer dynamics of the low-frequency modes. A section in which some spontaneous Raman spectra support a model of inhomogeneous broadening in liquids based on results of picosecond stimulated Raman spectroscopy is presented. The model is that a distribution of environmental sites is created by a distribution in the local density and thus creates inhomogeneous broadening

  18. A semi-analytical beam model for the vibration of railway tracks (United States)

    Kostovasilis, D.; Thompson, D. J.; Hussein, M. F. M.


    The high frequency dynamic behaviour of railway tracks, in both vertical and lateral directions, strongly affects the generation of rolling noise as well as other phenomena such as rail corrugation. An improved semi-analytical model of a beam on an elastic foundation is introduced that accounts for the coupling of the vertical and lateral vibration. The model includes the effects of cross-section asymmetry, shear deformation, rotational inertia and restrained warping. Consideration is given to the fact that the loads at the rail head, as well as those exerted by the railpads at the rail foot, may not act through the centroid of the section. The response is evaluated for a harmonic load and the solution is obtained in the wavenumber domain. Results are presented as dispersion curves for free and supported rails and are validated with the aid of a Finite Element (FE) and a waveguide finite element (WFE) model. Closed form expressions are derived for the forced response, and validated against the WFE model. Track mobilities and decay rates are presented to assess the potential implications for rolling noise and the influence of the various sources of vertical-lateral coupling. Comparison is also made with measured data. Overall, the model presented performs very well, especially for the lateral vibration, although it does not contain the high frequency cross-section deformation modes. The most significant effects on the response are shown to be the inclusion of torsion and foundation eccentricity, which mainly affect the lateral response.

  19. Expansion Hamiltonian model for a diatomic molecule adsorbed on a surface: Vibrational states of the CO/Cu(100) system including surface vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Qingyong, E-mail: [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, 116023 Dalian (China); Meyer, Hans-Dieter, E-mail: [Theoretische Chemie, Physikalisch-Chemisches Institut, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg (Germany)


    Molecular-surface studies are often done by assuming a corrugated, static (i.e., rigid) surface. To be able to investigate the effects that vibrations of surface atoms may have on spectra and cross sections, an expansion Hamiltonian model is proposed on the basis of the recently reported [R. Marquardt et al., J. Chem. Phys. 132, 074108 (2010)] SAP potential energy surface (PES), which was built for the CO/Cu(100) system with a rigid surface. In contrast to other molecule-surface coupling models, such as the modified surface oscillator model, the coupling between the adsorbed molecule and the surface atoms is already included in the present expansion SAP-PES model, in which a Taylor expansion around the equilibrium positions of the surface atoms is performed. To test the quality of the Taylor expansion, a direct model, that is avoiding the expansion, is also studied. The latter, however, requests that there is only one movable surface atom included. On the basis of the present expansion and direct models, the effects of a moving top copper atom (the one to which CO is bound) on the energy levels of a bound CO/Cu(100) system are studied. For this purpose, the multiconfiguration time-dependent Hartree calculations are carried out to obtain the vibrational fundamentals and overtones of the CO/Cu(100) system including a movable top copper atom. In order to interpret the results, a simple model consisting of two coupled harmonic oscillators is introduced. From these calculations, the vibrational levels of the CO/Cu(100) system as function of the frequency of the top copper atom are discussed.

  20. Systematics of nuclear densities, deformations and excitation energies within the context of the generalized rotation-vibration model

    Energy Technology Data Exchange (ETDEWEB)

    Chamon, L.C., E-mail: luiz.chamon@dfn.if.usp.b [Departamento de Fisica Nuclear, Instituto de Fisica da Universidade de Sao Paulo, Caixa Postal 66318, 05315-970, Sao Paulo, SP (Brazil); Carlson, B.V. [Departamento de Fisica, Instituto Tecnologico de Aeronautica, Centro Tecnico Aeroespacial, Sao Jose dos Campos, SP (Brazil)


    We present a large-scale systematics of charge densities, excitation energies and deformation parameters for hundreds of heavy nuclei. The systematics is based on a generalized rotation-vibration model for the quadrupole and octupole modes and takes into account second-order contributions of the deformations as well as the effects of finite diffuseness values for the nuclear densities. We compare our results with the predictions of classical surface vibrations in the hydrodynamical approximation.

  1. Vibrations and Stability

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    About this textbook An ideal text for students that ties together classical and modern topics of advanced vibration analysis in an interesting and lucid manner. It provides students with a background in elementary vibrations with the tools necessary for understanding and analyzing more complex...... dynamical phenomena that can be encountered in engineering and scientific practice. It progresses steadily from linear vibration theory over various levels of nonlinearity to bifurcation analysis, global dynamics and chaotic vibrations. It trains the student to analyze simple models, recognize nonlinear...... and physics. This edition includes a new chapter on the useful effects of fast vibrations and many new exercise problems. Written for: Students in mechanical or structural engineering. Keywords: Nonlinear Vibrations, Bifurcations, Chaotic Vibrations, Vibrations and Stability....

  2. Vibrations and Stability

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    dynamical phenomena that can be encountered in engineering and scientific practice. It progresses steadily from linear vibration theory over various levels of nonlinearity to bifurcation analysis, global dynamics and chaotic vibrations. It trains the student to analyze simple models, recognize nonlinear...... and physics. This edition includes a new chapter on the useful effects of fast vibrations and many new exercise problems. Written for: Students in mechanical or structural engineering. Keywords: Nonlinear Vibrations, Bifurcations, Chaotic Vibrations, Vibrations and Stability.......About this textbook An ideal text for students that ties together classical and modern topics of advanced vibration analysis in an interesting and lucid manner. It provides students with a background in elementary vibrations with the tools necessary for understanding and analyzing more complex...

  3. On displacement based non-local models for non-linear vibrations of thin nano plates

    Directory of Open Access Journals (Sweden)

    Chuaqui Tomás R. C.


    Full Text Available This paper addresses the formulation of displacement based, non-linear, plate models adopting Eringen's non-local elasticity, to study the modes of vibration of thin, nano plates. Plate models governed by ordinary differential equations of motion with generalized displacements as unknowns have some advantages over mixed type formulations, but difficulties arise in the development of such non-linear models when non-local effects are taken into account. To circumvent those difficulties, approximations of debatable justification can be imposed. Different approximations are discussed here and the accuracy of the best non-local, non-linear displacement based model achieved is put to test, by carrying out comparisons with a model based on Airy’s stress function.

  4. The vibrating reed frequency meter: digital investigation of an early cochlear model. (United States)

    Bell, Andrew; Wit, Hero P


    The vibrating reed frequency meter, originally employed by Békésy and later by Wilson as a cochlear model, uses a set of tuned reeds to represent the cochlea's graded bank of resonant elements and an elastic band threaded between them to provide nearest-neighbour coupling. Here the system, constructed of 21 reeds progressively tuned from 45 to 55 Hz, is simulated numerically as an elastically coupled bank of passive harmonic oscillators driven simultaneously by an external sinusoidal force. To uncover more detail, simulations were extended to 201 oscillators covering the range 1-2 kHz. Calculations mirror the results reported by Wilson and show expected characteristics such as traveling waves, phase plateaus, and a response with a broad peak at a forcing frequency just above the natural frequency. The system also displays additional fine-grain features that resemble those which have only recently been recognised in the cochlea. Thus, detailed analysis brings to light a secondary peak beyond the main peak, a set of closely spaced low-amplitude ripples, rapid rotation of phase as the driving frequency is swept, frequency plateaus, clustering, and waxing and waning of impulse responses. Further investigation shows that each reed's vibrations are strongly localised, with small energy flow along the chain. The distinctive set of equally spaced ripples is an inherent feature which is found to be largely independent of boundary conditions. Although the vibrating reed model is functionally different to the standard transmission line, its cochlea-like properties make it an intriguing local oscillator model whose relevance to cochlear mechanics needs further investigation.

  5. The vibrating reed frequency meter: digital investigation of an early cochlear model

    Directory of Open Access Journals (Sweden)

    Andrew Bell


    Full Text Available The vibrating reed frequency meter, originally employed by Békésy and later by Wilson as a cochlear model, uses a set of tuned reeds to represent the cochlea’s graded bank of resonant elements and an elastic band threaded between them to provide nearest-neighbour coupling. Here the system, constructed of 21 reeds progressively tuned from 45 to 55 Hz, is simulated numerically as an elastically coupled bank of passive harmonic oscillators driven simultaneously by an external sinusoidal force. To uncover more detail, simulations were extended to 201 oscillators covering the range 1–2 kHz. Calculations mirror the results reported by Wilson and show expected characteristics such as traveling waves, phase plateaus, and a response with a broad peak at a forcing frequency just above the natural frequency. The system also displays additional fine-grain features that resemble those which have only recently been recognised in the cochlea. Thus, detailed analysis brings to light a secondary peak beyond the main peak, a set of closely spaced low-amplitude ripples, rapid rotation of phase as the driving frequency is swept, frequency plateaus, clustering, and waxing and waning of impulse responses. Further investigation shows that each reed’s vibrations are strongly localised, with small energy flow along the chain. The distinctive set of equally spaced ripples is an inherent feature which is found to be largely independent of boundary conditions. Although the vibrating reed model is functionally different to the standard transmission line, its cochlea-like properties make it an intriguing local oscillator model whose relevance to cochlear mechanics needs further investigation.

  6. Low intensity, high frequency vibration training to improve musculoskeletal function in a mouse model of Duchenne muscular dystrophy.

    Directory of Open Access Journals (Sweden)

    Susan A Novotny

    Full Text Available The objective of the study was to determine if low intensity, high frequency vibration training impacted the musculoskeletal system in a mouse model of Duchenne muscular dystrophy, relative to healthy mice. Three-week old wildtype (n = 26 and mdx mice (n = 22 were randomized to non-vibrated or vibrated (45 Hz and 0.6 g, 15 min/d, 5 d/wk groups. In vivo and ex vivo contractile function of the anterior crural and extensor digitorum longus muscles, respectively, were assessed following 8 wks of vibration. Mdx mice were injected 5 and 1 days prior to sacrifice with Calcein and Xylenol, respectively. Muscles were prepared for histological and triglyceride analyses and subcutaneous and visceral fat pads were excised and weighed. Tibial bones were dissected and analyzed by micro-computed tomography for trabecular morphometry at the metaphysis, and cortical geometry and density at the mid-diaphysis. Three-point bending tests were used to assess cortical bone mechanical properties and a subset of tibiae was processed for dynamic histomorphometry. Vibration training for 8 wks did not alter trabecular morphometry, dynamic histomorphometry, cortical geometry, or mechanical properties (P ≥ 0.34. Vibration did not alter any measure of muscle contractile function (P ≥ 0.12; however the preservation of muscle function and morphology in mdx mice indicates vibration is not deleterious to muscle lacking dystrophin. Vibrated mice had smaller subcutaneous fat pads (P = 0.03 and higher intramuscular triglyceride concentrations (P = 0.03. These data suggest that vibration training at 45 Hz and 0.6 g did not significantly impact the tibial bone and the surrounding musculature, but may influence fat distribution in mice.

  7. On the dependence of the OH* Meinel emission altitude on vibrational level: SCIAMACHY observations and model simulations

    Directory of Open Access Journals (Sweden)

    J. P. Burrows


    Full Text Available Measurements of the OH Meinel emissions in the terrestrial nightglow are one of the standard ground-based techniques to retrieve upper mesospheric temperatures. It is often assumed that the emission peak altitudes are not strongly dependent on the vibrational level, although this assumption is not based on convincing experimental evidence. In this study we use Envisat/SCIAMACHY (Scanning Imaging Absorption spectroMeter for Atmospheric CHartographY observations in the near-IR spectral range to retrieve vertical volume emission rate profiles of the OH(3-1, OH(6-2 and OH(8-3 Meinel bands in order to investigate whether systematic differences in emission peak altitudes can be observed between the different OH Meinel bands. The results indicate that the emission peak altitudes are different for the different vibrational levels, with bands originating from higher vibrational levels having higher emission peak altitudes. It is shown that this finding is consistent with the majority of the previously published results. The SCIAMACHY observations yield differences in emission peak altitudes of up to about 4 km between the OH(3-1 and the OH(8-3 band. The observations are complemented by model simulations of the fractional population of the different vibrational levels and of the vibrational level dependence of the emission peak altitude. The model simulations reproduce the observed vibrational level dependence of the emission peak altitude well – both qualitatively and quantitatively – if quenching by atomic oxygen as well as multi-quantum collisional relaxation by O2 is considered. If a linear relationship between emission peak altitude and vibrational level is assumed, then a peak altitude difference of roughly 0.5 km per vibrational level is inferred from both the SCIAMACHY observations and the model simulations.

  8. The control of drilling vibrations: A coupled PDE-ODE modeling approach

    Directory of Open Access Journals (Sweden)

    Saldivar Belem


    Full Text Available The main purpose of this contribution is the control of both torsional and axial vibrations occurring along a rotary oilwell drilling system. The model considered consists of a wave equation coupled to an ordinary differential equation (ODE through a nonlinear function describing the rock-bit interaction. We propose a systematic method to design feedback controllers guaranteeing ultimate boundedness of the system trajectories and leading consequently to the suppression of harmful dynamics. The proposal of a Lyapunov-Krasovskii functional provides stability conditions stated in terms of the solution of a set of linear and bilinear matrix inequalities (LMIs, BMIs. Numerical simulations illustrate the efficiency of the obtained control laws.

  9. Decision tree based knowledge acquisition and failure diagnosis using a PWR loop vibration model

    International Nuclear Information System (INIS)

    Bauernfeind, V.; Ding, Y.


    An analytical vibration model of the primary system of a 1300 MW PWR was used for simulating mechanical faults. Deviations in the calculated power density spectra and coherence functions are determined and classified. The decision tree technique is then used for a personal computer supported knowledge presentation and for optimizing the logical relationships between the simulated faults and the observed symptoms. The optimized decision tree forms the knowledge base and can be used to diagnose known cases as well as to include new data into the knowledge base if new faults occur. (author)

  10. Vibrational behavior of adaptive aircraft wing structures modelled as composite thin-walled beams (United States)

    Song, O.; Librescu, L.; Rogers, C. A.


    The vibrational behavior of cantilevered aircraft wings modeled as thin-walled beams and incorporating piezoelectric effects is studied. Based on the converse piezoelectric effect, the system of piezoelectric actuators conveniently located on the wing yield the control of its associated vertical and lateral bending eigenfrequencies. The possibility revealed by this study enabling one to increase adaptively the eigenfrequencies of thin-walled cantilevered beams could play a significant role in the control of the dynamic response and flutter of wing and rotor blade structures.

  11. Exploiting elastic anharmonicity in aluminum nitride matrix for phase-synchronous frequency reference generation (United States)

    Ghatge, Mayur; Tabrizian, Roozbeh


    A matrix of aluminum-nitride (AlN) waveguides is acoustically engineered to realize electrically isolated phase-synchronous frequency references through nonlinear wave-mixing. AlN rectangular waveguides are cross-coupled through a periodically perforated plate that is engineered to have a wide acoustic bandgap around a desirable frequency ( f1≈509 MHz). While the coupling plate isolates the matrix from resonant vibrations of individual waveguide constituents at f1, it is transparent to the third-order harmonic waves (3f1) that are generated through nonlinear wave-mixing. Therefore, large-signal excitation of the f1 mode in a constituent waveguide generates acoustic waves at 3f1 with an efficiency defined by elastic anharmonicity of the AlN film. The phase-synchronous propagation of the third harmonic through the matrix is amplified by a high quality-factor resonance mode at f2≈1529 MHz, which is sufficiently close to 3f1 (f2 ≅ 3f1). Such an architecture enables realization of frequency-multiplied and phase-synchronous, yet electrically and spectrally isolated, references for multi-band/carrier and spread-spectrum wireless communication systems.

  12. Forced vibration analysis of a Timoshenko cracked beam using a continuous model for the crack

    Directory of Open Access Journals (Sweden)

    Mahdi Heydari


    Full Text Available In this paper, forced flexural vibration of a cracked beam is studied by using a continuous bilinear model for the displacement field. The effects of shear deformation and rotary inertia are considered in the model. The governing equation of motion for the beam is obtained using the Hamilton principle and based on the proposed displacement field. The equation of motion is given for a general force distribution. Then, the equation of motion has been solved for a concentrated force to present a numerical simulation of the method. The frequency response diagrams obtained from this study are compared with the finite element results to demonstrate the accuracy of the method. The results are also compared to results of a similar model with Euler-Bernoulli assumptions to confirm the advantages of the proposed model in the case of short beams.

  13. Vibration Analysis of the Helical Gear System Using the Integrated Excitation Model (United States)

    Nishino, Takayuki

    The vibration of the helical gear system is generated by three kinds of excitation. The first cause is a displacement excitation due to the tooth surface error. The second is a parametric excitation by the periodical change of the tooth mesh stiffness. The third is a moving load on the tooth surface during the progress of mesh of the teeth. In mesh of a pair of helical gears, the composite load of the distributed load along a contact line moves its operating location from one end of face width to the other end during the process of mesh progress. This moving load causes fluctuation of bearing load that excites the housing. Therefore, it is important to treat gear mesh excitation as moving load problem. For this purpose, a tooth mesh model, in which three different types of excitations above are incorporated, is proposed. In this model, a pair of gear tooth is represented by the multiple springs and the moving load can be taken into account by the multiple mesh excitation forces that have the phase differences from each other. This model is applied to the vibration analysis of a single stage gearbox. The analytical and experimental results show that this method is accurate and effective enough for practical use.

  14. On the Free Vibration Modeling of Spindle Systems: A Calibrated Dynamic Stiffness Matrix

    Directory of Open Access Journals (Sweden)

    Omar Gaber


    Full Text Available The effect of bearings on the vibrational behavior of machine tool spindles is investigated. This is done through the development of a calibrated dynamic stiffness matrix (CDSM method, where the bearings flexibility is represented by massless linear spring elements with tuneable stiffness. A dedicated MATLAB code is written to develop and to assemble the element stiffness matrices for the system’s multiple components and to apply the boundary conditions. The developed method is applied to an illustrative example of spindle system. When the spindle bearings are modeled as simply supported boundary conditions, the DSM model results in a fundamental frequency much higher than the system’s nominal value. The simply supported boundary conditions are then replaced by linear spring elements, and the spring constants are adjusted such that the resulting calibrated CDSM model leads to the nominal fundamental frequency of the spindle system. The spindle frequency results are also validated against the experimental data. The proposed method can be effectively applied to predict the vibration characteristics of spindle systems supported by bearings.

  15. The harmonic and anharmonic oscillator in classical stochastic electrodynamics

    International Nuclear Information System (INIS)

    Moore, S.M.; Ramirez, J.A.


    The sensitivity of the spectral density and the correlation of the harmonic oscillator to the charge distribution is examined in the context of classical stochastic electrodynamics. While the first exhibits some degree of sensitivity, the second exhibits none in the limit of zero charge. Thus, a comparison can be made with nonrelativistic quantum mechanics independent of the charge distribution. In the same spirit, the anharmonic oscillator is examined. In the limit of zero charge, it is shown that classical stochastic electrodynamics qualitatively agrees with quantum mechanics, but ambiguities make a quantitative comparison difficult. In an appendix, the oscillator approximation to the hydrogen atom is briefly discussed. (author)

  16. Random electrodynamics of nonlinear system: Part I -- Quartic anharmonic oscillator

    International Nuclear Information System (INIS)

    Sachidanandam, S.; Raghavacharyulu, I.V.V.


    A successful extension of the classical techniques of Random Electrodynamics to nonlinear microsystems is still not obtained in the literature. A beginning is made in this direction in this paper. The quartic anharmonic oscillator is studied as an illustrative example. By extending one of the approximation methods employed in the study of deterministic nonlinear systems to stochastic nonlinear systems, properties quite close to those given by the quantum mechanical description are obtained. The results partly dispel the doubts raised by Claverie and others in the validity of Random Electrodynamics in the description of nonlinear microsystems. (author)

  17. Vibration Propagation of Gear Dynamics in a Gear-Bearing-Housing System Using Mathematical Modeling and Finite Element Analysis (United States)

    Parker, Robert G.; Guo, Yi; Eritenel, Tugan; Ericson, Tristan M.


    Vibration and noise caused by gear dynamics at the meshing teeth propagate through power transmission components to the surrounding environment. This study is devoted to developing computational tools to investigate the vibro-acoustic propagation of gear dynamics through a gearbox using different bearings. Detailed finite element/contact mechanics and boundary element models of the gear/bearing/housing system are established to compute the system vibration and noise propagation. Both vibration and acoustic models are validated by experiments including the vibration modal testing and sound field measurements. The effectiveness of each bearing type to disrupt vibration propagation is speed-dependent. Housing plays an important role in noise radiation .It, however, has limited effects on gear dynamics. Bearings are critical components in drivetrains. Accurate modeling of rolling element bearings is essential to assess vibration and noise of drivetrain systems. This study also seeks to fully describe the vibro-acoustic propagation of gear dynamics through a power-transmission system using rolling element and fluid film wave bearings. Fluid film wave bearings, which have higher damping than rolling element bearings, could offer an energy dissipation mechanism that reduces the gearbox noise. The effectiveness of each bearing type to disrupt vibration propagation in explored using multi-body computational models. These models include gears, shafts, rolling element and fluid film wave bearings, and the housing. Radiated noise is mapped from the gearbox surface to surrounding environment. The effectiveness of rolling element and fluid film wave bearings in breaking the vibro-acoustic propagation path from the gear to the housing is investigated.

  18. Lattice Anharmonicity and Thermal Conductivity from Compressive Sensing of First-Principles Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Fei [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Nielson, Weston [Univ. of California, Los Angeles, CA (United States); Xia, Yi [Univ. of California, Los Angeles, CA (United States); Ozoliņš, Vidvuds [Univ. of California, Los Angeles, CA (United States)


    First-principles prediction of lattice thermal conductivity κL of strongly anharmonic crystals is a long-standing challenge in solid-state physics. Making use of recent advances in information science, we propose a systematic and rigorous approach to this problem, compressive sensing lattice dynamics. Compressive sensing is used to select the physically important terms in the lattice dynamics model and determine their values in one shot. Nonintuitively, high accuracy is achieved when the model is trained on first-principles forces in quasirandom atomic configurations. The method is demonstrated for Si, NaCl, and Cu12Sb4S13, an earth-abundant thermoelectric with strong phonon-phonon interactions that limit the room-temperature κL to values near the amorphous limit.

  19. Concerning the use of the variational method in statistical mechanics of anharmonic sytems

    International Nuclear Information System (INIS)

    Tsallis, C.; Valle, J.W.F.


    The use of the variational method to discuss quantum statistical mechanics of anharmonic system requires, in order to be able to obtain the correct classical limit, the allowance for renormalization of every operator whose definition depends on the harmonic coefficients. The point is exhibited for a single anharmonic oscillator. In this particular case there is no need for mass renormalization [pt

  20. Vibrational frequencies via total-energy calculations. Applications to transition metals

    International Nuclear Information System (INIS)

    Ho, K.; Fu, C.L.; Harmon, B.N.


    The important longitudinal ((2/3),(2/3),(2/3)) vibrational modes in Mo, Nb, and bcc Zr as well as the H-point modes in Mo and Nb have been studied using the frozen-phonon approach. These entirely first-principles calculations involve the precise evaluation of the total crystalline energy as a function of lattice displacement and yield calculated phonon frequencies to within a few percent of the experimental values. Anharmonic terms are readily obtained and are found to be very important for causing the tendency toward the ω-phase instability in bcc Zr. The charge densities and single-particle energies obtained in the course of the calculations allow a detailed analysis of the electronic response to lattice distortions and the mechanisms causing phonon anomalies. The calculations also provide first-principles benchmarks at a few wave vectors where the validity of phenomenological models can be tested or their parameters determined

  1. The choice of boundary conditions and mesh for scaffolding FEM model on the basis of natural vibrations measurements (United States)

    Cyniak, Patrycja; Błazik-Borowa, Ewa; Szer, Jacek; Lipecki, Tomasz; Szer, Iwona


    Scaffolding is a specific construction with high susceptibility to low frequency vibrations. The numerical model of scaffolding presented in this paper contains real imperfections received from geodetic measurements of real construction. Boundary conditions were verified on the basis of measured free vibrations. A simulation of a man walking on penultimate working level as a dynamic load variable in time was made for verified model. The paper presents procedure for a choice of selected parameters of the scaffolding FEM model. The main aim of analysis is the best projection of the real construction and correct modeling of worker walking on the scaffolding. Different boundary conditions are considered, because of their impact on construction vibrations. Natural vibrations obtained from FEM calculations are compared with free vibrations measured during in-situ tests. Structure accelerations caused by walking human are then considered in this paper. Methodology of creating numerical models of scaffoldings and analysis of dynamic effects during human walking are starting points for further considerations about dynamic loads acting on such structures and effects of these loads to construction and workers, whose workplaces are situated on the scaffolding.

  2. Coulomb friction modelling in numerical simulations of vibration and wear work rate of multispan tube bundles

    Energy Technology Data Exchange (ETDEWEB)

    Antunes, J. (Laboratorio Nacional de Engenharia e Tecnologia Industrial, LNETI/ICEN/DEEN, Sacavem (Portugal). Dept. of Nuclear Energy and Engineering); Axisa, F.; Beaufils, B.; Guilbaud, D. (CEA Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France). Dept. d' Etudes Mecaniques et Thermiques)


    The working life of heat exchanger multispan tube bundles subjected to flow-induced vibration, is heavily dependent on nonlinear interaction between the loosely supported tubes and their supports. Reliable wear prediction techniques must account for a number of factors controlling impact-sliding tube response, such as tube support gap, contact stiffness, impact damping, Coulomb friction and squeeze film effect at supports. Tube fretting wear potential risk may then be adequately quantified by an equivalent wear work rate. A simple model is presented which accounts for the key aspects of dry friction and is well suited to the efficient explicit numerical integration schemes, specifically through nonlinear model superposition. Extensive parametric two-dimensional simulations, under random vibration induced by flow turbulence, are presented. Also, the effect of permanent tube-support preload, arising from cross flow drag, tube-support misalignment and thermal expansion, is investigated. Results show that frictional forces consistently reduce wear work rates, which decrease for high values of the coefficient of friction. Such reductions may be extremely important for the limiting case when preload and frictional forces are of sufficient magnitude to overcome dynamic forces, preventing tube-support relative motion. (author).

  3. Investigation of vibration spectrum ferroelectric semiconductor SbSBr nanowire

    International Nuclear Information System (INIS)

    Audzijonis, A.; Zigas, L.; Kvedaravicius, A.; Sereika, R.; Zaltauskas, R.; Cerskus, A


    The temperature dependence of vibration spectra of one SbSBr chain (nanowire) in the direction of the c(z)-axis has been calculated in quasiharmonic approximation by diagonalization of dynamical matrix. The vibrational frequencies in the direction of c(z)-axis have been derived by fitting of the experimental low-frequency ω s 2 of soft infrared (IR) mode of bulk-size SbSBr with the theoretical quasiharmonic low-frequency ω 2 of SbSBr nanowires. In this work the nature of anharmonism and temperature dependence of force constants between atoms in SbSBr crystal along c(z)-axis have been discussed. The anharmonism of all soft (at BZ k=0) modes has been created by the interaction between phonons.

  4. Vibration analysis of rotating nanobeam systems using Eringen's two-phase local/nonlocal model (United States)

    Khaniki, Hossein Bakhshi


    Due to the inability of differential form of nonlocal elastic theory in modelling cantilever beams and inaccurate results for some type of boundaries, in this study, a reliable investigation on transverse vibrational behavior of rotating cantilever size-dependent beams is presented. Governing higher order equations are written in the framework of Eringen's two-phase local/nonlocal model and solved using a modified generalized differential quadrature method. In order to indicate the influence of different material and scale parameters, a comprehensive parametric study is presented. It is shown that increasing the nonlocality term leads to lower natural frequency terms for cantilever nanobeams especially for the fundamental frequency parameter which differential nonlocal model is unable to track appropriately. Moreover, it is shown that rotating speed and hub radius have a remarkable effect in varying the mechanical behavior of rotating cantilever nanobeams. This study is a step forward in analyzing nanorotors, nanoturbines, nanoblades, etc.

  5. Nonlinear mathematical modeling of vibrating motion of nanomechanical cantilever active probe

    Directory of Open Access Journals (Sweden)

    Reza Ghaderi

    Full Text Available Nonlinear vibration response of nanomechanical cantilever (NMC active probes in atomic force microscope (AFM application has been studied in the amplitude mode. Piezoelectric layer is placed piecewise and as an actuator on NMC. Continuous beam model has been chosen for analysis with regard to the geometric discontinuities of piezoelectric layer attachment and NMC's cross section. The force between the tip and the sample surface is modeled using Leonard-Jones potential. Assuming that cantilever is inclined to the sample surface, the effect of nonlinear force on NMC is considered as a shearing force and the concentrated bending moment is regarded at the end. Nonlinear frequency response of NMC is obtained close to the sample surface using the dynamic modeling. It is then become clear that the distance and angle of NMC, the probe length, and the geometric dimensions of piezoelectric layer can affect frequency response bending of the curve.

  6. Numerical modelling of ground vibration caused by elevated high-speed railway lines considering structure-soil-structure interaction

    DEFF Research Database (Denmark)

    Bucinskas, Paulius; Andersen, Lars Vabbersgaard; Persson, Kent


    densely populated urban areas with the collateral effect of increased noise and vibrations levels. This paper aims to quantify the vibrations levels in the area surrounding an elevated railway line built as a multi-span bridge structure. The proposed model employs finite-element analysis to model......-space. The paper analyses the effects of structure-soil-structure interaction on the dynamic behaviour of the surrounding soil surface. The effects of different soil stratification and material properties as well as different train speeds are assessed. Finally, the drawbacks of simplifying the numerical model...

  7. Vibration-rotation alchemy in acetylene (12C2H2), ? at low vibrational excitation: from high resolution spectroscopy to fast intramolecular dynamics (United States)

    Perry, David S.; Miller, Anthony; Amyay, Badr; Fayt, André; Herman, Michel


    The link between energy-resolved spectra and time-resolved dynamics is explored quantitatively for acetylene (12C2H2), ? with up to 8600 cm-1 of vibrational energy. This comparison is based on the extensive and reliable knowledge of the vibration-rotation energy levels and on the model Hamiltonian used to fit them to high precision [B. Amyay, S. Robert, M. Herman, A. Fayt, B. Raghavendra, A. Moudens, J. Thiévin, B. Rowe, and R. Georges, J. Chem. Phys. 131, 114301 (2009)]. Simulated intensity borrowing features in high resolution absorption spectra and predicted survival probabilities in intramolecular vibrational redistribution (IVR) are first investigated for the v 4 + v 5 and v 3 bright states, for J = 2, 30 and 100. The dependence of the results on the rotational quantum number and on the choice of vibrational bright state reflects the interplay of three kinds of off-diagonal resonances: anharmonic, rotational l-type, and Coriolis. The dynamical quantities used to characterize the calculated time-dependent dynamics are the dilution factor φ d, the IVR lifetime τ IVR , and the recurrence time τ rec. For the two bright states v 3 + 2v 4 and 7v 4, the collisionless dynamics for thermally averaged rotational distributions at T = 27, 270 and 500 K were calculated from the available spectroscopic data. For the 7v 4 bright state, an apparent irreversible decay of is found. In all cases, the model Hamiltonian allows a detailed calculation of the energy flow among all of the coupled zeroth-order vibration-rotation states.

  8. Comparison of a fiber-gel finite element model of vocal fold vibration to a transversely isotropic stiffness model. (United States)

    Titze, Ingo R; Alipour, Fariborz; Blake, Douglas; Palaparthi, Anil


    A fiber-gel vocal fold model is compared to a transversely isotropic stiffness model in terms of normal mode vibration. The fiber-gel finite element model (FG-FEM) consists of a series of gel slices, each with a two-dimensional finite element mesh, in a plane transverse to the tissue fibers. The gel slices are coupled with fibers under tension in the anterior-posterior dimension. No vibrational displacement in the fiber-length direction is allowed, resulting in a plane strain state. This is consistent with the assumption of transverse displacement of a simple string, offering a wide range of natural frequencies (well into the kHz region) with variable tension. For low frequencies, the results compare favorably with the natural frequencies of a transversely isotropic elastic stiffness model (TISM) in which the shear modulus in the longitudinal plane is used to approximate the effect of fiber tension. For high frequencies, however, the natural frequencies do not approach the string mode frequencies unless plane strain is imposed on the TISM model. The simplifying assumption of plane strain, as well as the use of analytical closed-form shape functions, allow for substantial savings in computational time, which is important in clinical and exploratory applications of the FG-FEM model.

  9. The monopole and quadrupole vibrations of a hot nucleus

    International Nuclear Information System (INIS)

    Okolowicz, J.; Drozdz, S.; Ploszajczak, M.; Caurier, E.


    An extended time-dependent Hartree-Fock approach has been applied to a description of the isoscalar giant monopole and quadrupole vibration modes in the excited nuclear system at finite temperature. The temperature dependence of the resonance characteristics is established for both modes. In anticipation of some anharmonic effects the principle of regularity and single-valuedness has been used to extract the energies of the collective modes. (orig.)

  10. Vibration of hydraulic machinery

    CERN Document Server

    Wu, Yulin; Liu, Shuhong; Dou, Hua-Shu; Qian, Zhongdong


    Vibration of Hydraulic Machinery deals with the vibration problem which has significant influence on the safety and reliable operation of hydraulic machinery. It provides new achievements and the latest developments in these areas, even in the basic areas of this subject. The present book covers the fundamentals of mechanical vibration and rotordynamics as well as their main numerical models and analysis methods for the vibration prediction. The mechanical and hydraulic excitations to the vibration are analyzed, and the pressure fluctuations induced by the unsteady turbulent flow is predicted in order to obtain the unsteady loads. This book also discusses the loads, constraint conditions and the elastic and damping characters of the mechanical system, the structure dynamic analysis, the rotor dynamic analysis and the system instability of hydraulic machines, including the illustration of monitoring system for the instability and the vibration in hydraulic units. All the problems are necessary for vibration pr...

  11. Vibrational entropies in metallic alloys (United States)

    Ozolins, Vidvuds; Asta, Mark; Wolverton, Christopher


    Recently, it has been recognized that vibrational entropy can have significant effects on the phase stability of metallic alloys. Using density functional linear response calculations and molecular dynamics simulations we study three representative cases: (i) phase diagram of Al-rich Al-Sc alloys, (ii) stability of precipitate phases in CuAl_2, and (iii) phonon dynamics in bcc Zr. We find large vibrational entropy effects in all cases. In the Al-Sc system, vibrations increase the solid solubility of Sc in Al by decreasing the stability of the L12 (Al_3Sc) phase. This leads to a nearly ten-fold increase in the solid solubility of Sc in Al at T=800 K. In the Cu-Al system, our calculations predict that the tetragonal Laves phase of CuAl2 has 0.35 kB/atom higher vibrational entropy than the cubic CaF_2-type phase (the latter is predicted to be the T=0 K ground state of CuAl_2). This entropy difference causes a structural transformation in CuAl2 precipitates from the fluorite to the tetragonal Laves phase around T=500 K. Finally, we analyze the highly unusual dynamics of anharmonically stabilized bcc Zr, finding large diffuse-scattering intensity streaks between the bcc Bragg peaks.

  12. Modeling Stretching Modes of Common Organic Molecules with the Quantum Mechanical Harmonic Oscillator: An Undergraduate Vibrational Spectroscopy Laboratory Exercise (United States)

    Parnis, J. Mark; Thompson, Matthew G. K.


    An introductory undergraduate physical organic chemistry exercise that introduces the harmonic oscillator's use in vibrational spectroscopy is developed. The analysis and modeling exercise begins with the students calculating the stretching modes of common organic molecules with the help of the quantum mechanical harmonic oscillator (QMHO) model.

  13. Modeling and Calibration for Crack Detection in Circular Shafts Supported on Bearings Using Lateral and Torsional Vibration Measurements

    Directory of Open Access Journals (Sweden)

    A. Tlaisi


    Full Text Available In this paper the requisite foundational numerical and experimental investigations that are carried out, to model the “uncracked and cracked” shaft and to identify its bending and torsional vibration responses, are reported. The cylindrical shaft used in this experimental study is continuous over two spans (with a cantilever span carrying a propeller with ball-bearing supports. During modal tests the backward end of shaft (away from the propeller end and connecting it to an electric motor, required for online monitoring is fixed to one of the test frame supports; later on this backward end will be connected to an electric motor to carry out online modal monitoring for crack identification. In the numerical study, beam elements are used for modeling the bending and torsional vibrations of the rotating shaft. The paper describes in detail the numerical “linear spring” models developed for representing the effects of “ball bearings and the (experimental test frame supports” on the vibration frequencies. Shaft response parameters are obtained using modal analysis software, LMS Test Lab, for bending vibrations monitored using accelerometers, and three “sets” of shear strain gages fixed at three different shaft locations measure the torsional vibrations. Effects of different crack depths on bending and torsional frequencies and mode shapes are investigated experimentally and numerically, and the results interpreted to give better comprehension of its vibratory behavior.

  14. Investigation of flow-induced vibration for energy harvesting using a model soap-film system (United States)

    Yang, Wenchao; Stremler, Mark; Virginia Tech Team


    One way to extract energy from geophysical flows is to take advantage of flow-induced vibration (FIV) caused by vortices being shed from a bluff body. Wake-induced vibration of the downstream cylinder in a tandem pair is a promising design for a FIV energy harvesting system, especially suitable for low Reynolds number flows. For this design, the upstream cylinder is fixed in place, while the downstream cylinder is free to oscillate like a pendulum that is driven by interactions with the flow, including the wake of the upstream cylinder. We use a flowing soap film system, with behavior that resembles two-dimensional hydrodynamics, to experimentally investigate the wake interaction between a stationary upstream circular disk and a free downstream circular disk, which acts as a swinging pendulum. The wake flow generates thickness variations in the thin soap film, allowing direct observation of wake patterns through visualization of interference fringes. With the ability to tie together the wake structure and the object motion, we investigate the relationship between energy generation and flow structure in the simplified model energy harvesting system for Re =150. The research results find the optimal efficiency of the energy harvesting system by a parametric study.

  15. Free Vibration Analysis for Cracked FGM Beams by Means of a Continuous Beam Model

    Directory of Open Access Journals (Sweden)

    E Chuan Yang


    Full Text Available Based on Euler-Bernoulli beam theory and a continuous stiffness beam model, the free vibration of rectangular-section beams made of functionally graded materials (FGMs containing open edge cracks is studied. Assuming the material gradients follow exponential distribution along beam thickness direction, the conversion relation between the vibration governing equations of a FGM beam and that of an isotropic homogenous beam is deduced. A continuous function is used to characterize the bending stiffness of an edge cracked FGM beam. Thus, the cracked FGM beam is treated as an intact beam with continuously varying bending stiffness along its longitudinal direction. The characteristic equations of beams with different boundary conditions are obtained by transfer matrix method. To verify the validity of the proposed method, natural frequencies for intact and cracked FGM beams are calculated and compared with those obtained by three-dimensional finite element method (3D FEM and available data in the literature. After that, further discussions are carried out to analyze the influences of crack depth, crack location, material property, and slenderness ratio on the natural frequencies of the cracked FGM beams.

  16. Carrier relaxation in (In,Ga)As quantum dots with magnetic field-induced anharmonic level structure

    Energy Technology Data Exchange (ETDEWEB)

    Kurtze, H.; Bayer, M. [Experimentelle Physik 2, TU Dortmund, D-44221 Dortmund (Germany)


    Sophisticated models have been worked out to explain the fast relaxation of carriers into quantum dot ground states after non-resonant excitation, overcoming the originally proposed phonon bottleneck. We apply a magnetic field along the quantum dot heterostructure growth direction to transform the confined level structure, which can be approximated by a Fock–Darwin spectrum, from a nearly equidistant level spacing at zero field to strong anharmonicity in finite fields. This changeover leaves the ground state carrier population rise time unchanged suggesting that fast relaxation is maintained upon considerable changes of the level spacing. This corroborates recent models explaining the relaxation by polaron formation in combination with quantum kinetic effects.

  17. Infrared Spectrum of Toluene: Comparison of Anharmonic Isolated-Molecule Calculations and Experiments in Liquid Phase and in a Ne Matrix. (United States)

    Knaanie, Roie; Šebek, Jiří; Tsuge, Masashi; Myllys, Nanna; Khriachtchev, Leonid; Räsänen, Markku; Albee, Brian; Potma, Eric O; Gerber, R Benny


    First-principles anharmonic calculations are carried out for the CH stretching vibrations of isolated toluene and compared with the experimental infrared spectra of isotopologues of toluene in a Ne matrix at 3 K and of liquid toluene at room temperature. The calculations use the vibrational self-consistent field method and the B3LYP potential surface. In general, good agreement is found between the calculations and experiments. However, the spectrum of toluene in a Ne matrix is more complicated than that predicted theoretically. This distinction is discussed in terms of matrix-site and resonance effects. Interestingly, the strongest peak in the CH stretching spectrum has similar widths in the liquid phase and in a Ne matrix, despite the very different temperatures. Implications of this observation to the broadening mechanism are discussed. Finally, our results show that the B3LYP potential offers a good description of the anharmonic CH stretching band in toluene, but a proper description of matrix-site and resonance effects remains a challenge.

  18. Molecular first hyperpolarizability of push-pull polyenes: Relationship between electronic and vibrational contribution by a two-state model (United States)

    Castiglioni, C.; del Zoppo, M.; Zerbi, G.


    In this work we present a theoretical justification, based on a two-state model, of the recently observed close resemblance between the molecular first-order hyperpolarizability (βe) obtained with traditional experimental or theoretical methods and the vibrational (or relaxation) contribution (βr) for several classes of polyconjugated molecules. The vibrational hyperpolarizabilities have been evaluated according to a semiclassical model previously presented by the authors in which molecular polarizabilities are expressed in terms of vibrational (infrared and Raman) intensities. Here we prove that in the case of polyconjugated molecules, the analytic expressions of βe and βr are functions of the same physical parameters. This implies that βe and βr provide a measure of the same physical property.

  19. Development of hardware system using temperature and vibration maintenance models integration concepts for conventional machines monitoring: a case study (United States)

    Adeyeri, Michael Kanisuru; Mpofu, Khumbulani; Kareem, Buliaminu


    This article describes the integration of temperature and vibration models for maintenance monitoring of conventional machinery parts in which their optimal and best functionalities are affected by abnormal changes in temperature and vibration values thereby resulting in machine failures, machines breakdown, poor quality of products, inability to meeting customers' demand, poor inventory control and just to mention a few. The work entails the use of temperature and vibration sensors as monitoring probes programmed in microcontroller using C language. The developed hardware consists of vibration sensor of ADXL345, temperature sensor of AD594/595 of type K thermocouple, microcontroller, graphic liquid crystal display, real time clock, etc. The hardware is divided into two: one is based at the workstation (majorly meant to monitor machines behaviour) and the other at the base station (meant to receive transmission of machines information sent from the workstation), working cooperatively for effective functionalities. The resulting hardware built was calibrated, tested using model verification and validated through principles pivoted on least square and regression analysis approach using data read from the gear boxes of extruding and cutting machines used for polyethylene bag production. The results got therein confirmed related correlation existing between time, vibration and temperature, which are reflections of effective formulation of the developed concept.

  20. Vibration control of a pneumatic driven piezoelectric flexible manipulator using self-organizing map based multiple models (United States)

    Zhao, Zhi-li; Qiu, Zhi-cheng; Zhang, Xian-min; Han, Jian-da


    A kind of hybrid pneumatic-piezoelectric flexible manipulator system has been presented in the paper. A hybrid driving scheme is achieved by combining of a pneumatic proportional valve based pneumatic drive and a piezoelectric actuator bonded to the flexible beam. The system dynamics models are obtained based on system identification approaches, using the established experimental system. For system identification of the flexible piezoelectric manipulator subsystem, parametric estimation methods are utilized. For the pneumatic driven system, a single global linear model is not accurate enough to describe its dynamics, due to the high nonlinearity of the pneumatic driven system. Therefore, a self-organizing map (SOM) based multi-model system identification approach is used to get multiple local linear models. Then, a SOM based multi-model inverse controller and a variable damping pole-placement controller are applied to the pneumatic drive and piezoelectric actuator, respectively. Experiments on pneumatic driven vibration control, piezoelectric vibration control and hybrid vibration control are conducted, utilized proportional and derivative (PD) control, SOM based multi-model inverse controller, and the variable damping pole-placement controller. Experimental results demonstrate that the investigated control algorithms can improve the vibration control performance of the pneumatic driven flexible piezoelectric manipulator system.

  1. Multi-model finite element scheme for static and free vibration analyses of composite laminated beams

    Directory of Open Access Journals (Sweden)

    U.N. Band

    Full Text Available Abstract A transition element is developed for the local global analysis of laminated composite beams. It bridges one part of the domain modelled with a higher order theory and other with a 2D mixed layerwise theory (LWT used at critical zone of the domain. The use of developed transition element makes the analysis for interlaminar stresses possible with significant accuracy. The mixed 2D model incorporates the transverse normal and shear stresses as nodal degrees of freedom (DOF which inherently ensures continuity of these stresses. Non critical zones are modelled with higher order equivalent single layer (ESL theory leading to the global mesh with multiple models applied simultaneously. Use of higher order ESL in non critical zones reduces the total number of elements required to map the domain. A substantial reduction in DOF as compared to a complete 2D mixed model is obvious. This computationally economical multiple modelling scheme using the transition element is applied to static and free vibration analyses of laminated composite beams. Results obtained are in good agreement with benchmarks available in literature.

  2. Soil-Pile Interaction in the Pile Vertical Vibration Based on Fictitious Soil-Pile Model

    Directory of Open Access Journals (Sweden)

    Guodong Deng


    Full Text Available By introducing the fictitious soil-pile model, the soil-pile interaction in the pile vertical vibration is investigated. Firstly, assuming the surrounding soil of pile to be viscoelastic material and considering its vertical wave effect, the governing equations of soil-pile system subjected to arbitrary harmonic dynamic force are founded based on the Euler-Bernoulli rod theory. Secondly, the analytical solution of velocity response in frequency domain and its corresponding semianalytical solution of velocity response in time domain are derived by means of Laplace transform technique and separation of variables technique. Based on the obtained solutions, the influence of parameters of pile end soil on the dynamic response is studied in detail for different designing parameters of pile. Lastly, the fictitious soil-pile model and other pile end soil supporting models are compared. It is shown that the dynamic response obtained by the fictitious soil-pile model is among the dynamic responses obtained by other existing models if there are appropriate material parameters and thickness of pile end soil for the fictitious soil-pile model.

  3. Prediction of railway induced ground vibration through multibody and finite element modelling

    Directory of Open Access Journals (Sweden)

    G. Kouroussis


    Full Text Available The multibody approach is now recognized as a reliable and mature computer aided engineering tool. Namely, it is commonly used in industry for the design of road or railway vehicles. The paper presents a framework developed for predicting the vibrations induced by railway transportation. Firstly, the vehicle/track subsystem is simulated, on the basis of the home-made C++ library EasyDyn, by mixing the multibody model of the vehicle and the finite element model of the track, coupled to each other through the wheel/rail contact forces. Only the motion in the vertical plane is considered, assuming a total symmetry between left and right rails. This first step produces the time history of the forces exerted by the ballast on the foundation, which are then applied to a full 3-D FEM model of the soil, defined under the commercial software ABAQUS. The paper points out the contribution of the pitch motion of the bogies and carbodies which were neglected in previous publications, as well as the interest of the so-called coupled-lumped mass model (CLM to represent the influence of the foundation in the track model. The potentialities of the model are illustrated on the example of the Thalys high-speed train, riding at 300 km h−1 on the Belgian site of Mévergnies.

  4. Modulated anharmonic ADPs are intrinsic to aperiodic crystals: a case study on incommensurate Rb2ZnCl4

    International Nuclear Information System (INIS)

    Li, Liang; Wölfel, Alexander; Schönleber, Andreas; Mondal, Swastik; Schreurs, Antoine M. M.; Kroon-Batenburg, Loes M. J.; Smaalen, Sander van


    The superspace maximum entropy method (MEM) density in combination with structure refinements has been used to uncover the modulation in incommensurate Rb 2 ZnCl 4 close to the lock-in transition. Modulated atomic displacement parameters (ADPs) and modulated anharmonic ADPs are found to form an intrinsic part of the modulation. Refined values for the displacement modulation function depend on the presence or absence of modulated ADPs in the model. A combination of structure refinements, analysis of the superspace MEM density and interpretation of difference-Fourier maps has been used to characterize the incommensurate modulation of rubidium tetrachlorozincate, Rb 2 ZnCl 4 , at a temperature of T = 196 K, close to the lock-in transition at T lock-in = 192 K. The modulation is found to consist of a combination of displacement modulation functions, modulated atomic displacement parameters (ADPs) and modulated third-order anharmonic ADPs. Up to fifth-order Fourier coefficients could be refined against diffraction data containing up to fifth-order satellite reflections. The center-of-charge of the atomic basins of the MEM density and the displacive modulation functions of the structure model provide equivalent descriptions of the displacive modulation. Modulations of the ADPs and anharmonic ADPs are visible in the MEM density, but extracting quantitative information about these modulations appears to be difficult. In the structure refinements the modulation parameters of the ADPs form a dependent set, and ad hoc restrictions had to be introduced in the refinements. It is suggested that modulated harmonic ADPs and modulated third-order anharmonic ADPs form an intrinsic part, however small, of incommensurately modulated structures in general. Refinements of alternate models with and without parameters for modulated ADPs lead to significant differences between the parameters of the displacement modulation in these two types of models, thus showing the modulation of ADPs to

  5. Design model for bending vibrations of single-stage tunnel fan rotor (United States)

    Krasyuk, AM; Kosykh, PV


    Using of one-mass model of tunnel fan rotor is justified for estimation calculation of the natural bending vibrations frequency during the design stage. It’s shown that the evaluative computation of the main axial tunnel fan at the early design stage yields the acceptable accuracy. It is shown that after completion of the design, the mass of the stepped-type shaft differs from the mass of the calculated uniform-diameter shaft no more than by 40%. Inclusion of this additional mass in the estimation calculation makes it possible to improve the calculation accuracy. The region of the dimensionless rotor design parameters at which the relative difference of frequency in the evaluative and verification calculations is not higher than 5 % is determined.

  6. Microencapsulation of a hydrophilic model molecule through vibration nozzle and emulsion phase inversion technologies. (United States)

    Dorati, Rossella; Genta, Ida; Modena, Tiziana; Conti, Bice


    The goal of the present work was to evaluate and discuss vibration nozzle microencapsulation (VNM) technology combined to lyophilization, for the microencapsulation of a hydrophilic model molecule into a hydrophilic polymer. Fluorescein-loaded alginate microparticles prepared by VNM and emulsion phase inversion microencapsulation (EPIM) were lyophilized. Morphology, particle size distribution, lyophilized microspheres stability upon rehydration, drug loading and in vitro release were evaluated. Well-formed microspheres were obtained by the VNM technique, with higher yields of production (93.3-100%) and smaller particle size (d50138.10-158.00) than the EPIM microspheres. Rehydration upon lyophilization occurred in 30 min maintaining microsphere physical integrity. Fluorescein release was always faster from the microspheres obtained by VNM (364 h) than from those obtained by EPIM (504 h). The results suggest that VNM is a simple, easy to be scaled-up process suitable for the microencapsulation hydrophilic drugs.

  7. A direct pedestrian-structure interaction model to characterize the human induced vibrations on slender footbridges

    Directory of Open Access Journals (Sweden)

    Jiménez-Alonso, J. F.


    Full Text Available Although the scientific community had knowledge of the human induced vibration problems in structures since the end of the 19th century, it was not until the occurrence of the vibration phenomenon happened in the Millennium Bridge (London, 2000 that the importance of the problem revealed and a higher level of attention devoted. Despite the large advances achieved in the determination of the human-structure interaction force, one of the main deficiencies of the existing models is the exclusion of the effect of changes in the footbridge dynamic properties due to the presence of pedestrians. In this paper, the formulation of a human-structure interaction model, addresses these limitations, is carried out and its reliability is verified from previously published experimental results.Aunque la comunidad científica tenía conocimiento de los problemas vibratorios inducidos por peatones en estructuras desde finales del siglo xix, no fue hasta la ocurrencia de los eventos vibratorios acontecidos en la pasarela del Milenio (Londres, 2000, cuando la importancia del problema se puso de manifiesto y se le comenzó a dedicar un mayor nivel de atención. A pesar de los grandes avances alcanzados en la caracterización de la fuerza de interacción peatón-estructura una de las principales deficiencias de los modelos existentes es la exclusión del cambio en las propiedades dinámicas de la pasarela por la presencia de peatones. En este artículo, se presenta la formulación de un modelo de interacción peatón-estructura que intenta dar respuesta a dichas limitaciones, y su validación a partir de resultados experimentales previamente publicados por otros autores.

  8. Modeling and Analysis of a Combined Stress-Vibration Fiber Bragg Grating Sensor. (United States)

    Yao, Kun; Lin, Qijing; Jiang, Zhuangde; Zhao, Na; Tian, Bian; Shi, Peng; Peng, Gang-Ding


    A combined stress-vibration sensor was developed to measure stress and vibration simultaneously based on fiber Bragg grating (FBG) technology. The sensor is composed of two FBGs and a stainless steel plate with a special design. The two FBGs sense vibration and stress and the sensor can realize temperature compensation by itself. The stainless steel plate can significantly increase sensitivity of vibration measurement. Theoretical analysis and Finite Element Method (FEM) were used to analyze the sensor's working mechanism. As demonstrated with analysis, the obtained sensor has working range of 0-6000 Hz for vibration sensing and 0-100 MPa for stress sensing, respectively. The corresponding sensitivity for vibration is 0.46 pm/g and the resulted stress sensitivity is 5.94 pm/MPa, while the nonlinearity error for vibration and stress measurement is 0.77% and 1.02%, respectively. Compared to general FBGs, the vibration sensitivity of this sensor is 26.2 times higher. Therefore, the developed sensor can be used to concurrently detect vibration and stress. As this sensor has height of 1 mm and weight of 1.15 g, it is beneficial for minimization and integration.

  9. Similarity-transformed equation-of-motion vibrational coupled-cluster theory (United States)

    Faucheaux, Jacob A.; Nooijen, Marcel; Hirata, So


    A similarity-transformed equation-of-motion vibrational coupled-cluster (STEOM-XVCC) method is introduced as a one-mode theory with an effective vibrational Hamiltonian, which is similarity transformed twice so that its lower-order operators are dressed with higher-order anharmonic effects. The first transformation uses an exponential excitation operator, defining the equation-of-motion vibrational coupled-cluster (EOM-XVCC) method, and the second uses an exponential excitation-deexcitation operator. From diagonalization of this doubly similarity-transformed Hamiltonian in the small one-mode excitation space, the method simultaneously computes accurate anharmonic vibrational frequencies of all fundamentals, which have unique significance in vibrational analyses. We establish a diagrammatic method of deriving the working equations of STEOM-XVCC and prove their connectedness and thus size-consistency as well as the exact equality of its frequencies with the corresponding roots of EOM-XVCC. We furthermore elucidate the similarities and differences between electronic and vibrational STEOM methods and between STEOM-XVCC and vibrational many-body Green's function theory based on the Dyson equation, which is also an anharmonic one-mode theory. The latter comparison inspires three approximate STEOM-XVCC methods utilizing the common approximations made in the Dyson equation: the diagonal approximation, a perturbative expansion of the Dyson self-energy, and the frequency-independent approximation. The STEOM-XVCC method including up to the simultaneous four-mode excitation operator in a quartic force field and its three approximate variants are formulated and implemented in computer codes with the aid of computer algebra, and they are applied to small test cases with varied degrees of anharmonicity.

  10. Anharmonic effective pair potentials of gold under high pressure and high temperature

    CERN Document Server

    Okube, M; Ohtaka, O; Fukui, H; Katayama, Y; Utsumi, W


    In order to examine the effect of pressure on the anharmonicity of Au, extended x-ray absorption fine-structure spectra near the Au L sub 3 edge were measured in the temperature range from 300 to 1100 K under pressures up to 14 GPa using large-volume high-pressure devices and synchrotron radiation. The anharmonic effective pair potentials of Au, V (u) = au sup 2 + bu sup 3 , at 0.1 MPa, 6 and 14 GPa have been calculated. The pressure dependence of the thermal expansion coefficients has also been evaluated. The reliability of the anharmonic correction proposed on the basis of the Anderson scale has been discussed.

  11. Implementation of internal model based control and individual pitch control to reduce fatigue loads and tower vibrations in wind turbines (United States)

    Mohammadi, Ebrahim; Fadaeinedjad, Roohollah; Moschopoulos, Gerry


    Vibration control and fatigue loads reduction are important issues in large-scale wind turbines. Identifying the vibration frequencies and tuning dampers and controllers at these frequencies are major concerns in many control methods. In this paper, an internal model control (IMC) method with an adaptive algorithm is implemented to first identify the vibration frequency of the wind turbine tower and then to cancel the vibration signal. Standard individual pitch control (IPC) is also implemented to compare the performance of the controllers in term of fatigue loads reduction. Finally, the performance of the system when both controllers are implemented together is evaluated. Simulation results demonstrate that using only IMC or IPC alone has advantages and can reduce fatigue loads on specific components. IMC can identify and suppress tower vibrations in both fore-aft and side-to-side directions, whereas, IPC can reduce fatigue loads on blades, shaft and yaw bearings. When both IMC and IPC are implemented together, the advantages of both controllers can be used. The aforementioned analysis and comparisons were not studied in literature and this study fills this gap. FAST, AreoDyn and Simulink are used to simulate the mechanical, aerodynamic and electrical aspects of wind turbine.

  12. [The effect of betahistine on histological changes in rabbit brain in model of whole body wide-frequency vibration]. (United States)

    Shimkus, Iu Iu; Sapegin, I D


    In acute experiments in conscious rabbits was studied protective action of selective blocker of histamine H3-receptor betahistine (2mg/kg i/v) against histological changes in precentral and postcentral gyrus, as well as in temporal lobe of cerebral cortex, thalamus, hypothalamus, and cerebellum, arising in case of modeling of whole body wide-frequency vibration. Betahistine attenuates edematous and degenerative changes in neurons and reciprocal glial reaction, caused by vibration, but does not eliminate edema in perivascular spaces. This effect may be related to the improvement of blood supply as a result of of vasodilatory action and decrease of oxygen consumption via vestibuloprotective effect.

  13. Modelling and experimental analysis of the performance of a laser Doppler vibrometer used to measure vibrations through combustive flows (United States)

    Paone, Nicola; Revel, Gian Marco


    The problem of measuring surface vibrations by a laser Doppler vibrometer operating with the measuring beam across a combustive flow is discussed, in order to assess the possibility of experimentally determining the dynamic behaviour of a burner under operating conditions. The instrument performance is analysed in terms of interfering and modifying inputs through the development of a model of the interferometer and by experimental validation of its predictions. Experiments are carried out on an unconfined CH 4 flame of a Bunsen burner and a metal surface under a known forced vibration. The laser vibrometer output is influenced by the presence of the flame: major effects are optical path length variations of the measuring arm of the interferometer and beam movements. All effects occur at the typical flame flickering frequency and cause a distorted vibration spectra and a reduced signal-to-noise ratio. Beam wandering and defocusing are documented by image acquisition.

  14. Combining synchronous averaging with a Gaussian mixture model novelty detection scheme for vibration-based condition monitoring of a gearbox

    CSIR Research Space (South Africa)

    Heyns, T


    Full Text Available This paper investigates how Gaussian mixture models (GMMs) may be used to detect and trend fault induced vibration signal irregularities, such as those which might be indicative of the onset of gear damage. The negative log likelihood (NLL...

  15. Strong anharmonicity in the phonon spectra of PbTe and SnTe from first principles (United States)

    Ribeiro, Guilherme A. S.; Paulatto, Lorenzo; Bianco, Raffaello; Errea, Ion; Mauri, Francesco; Calandra, Matteo


    At room temperature, PbTe and SnTe are efficient thermoelectrics with a cubic structure. At low temperature, SnTe undergoes a ferroelectric transition with a critical temperature strongly dependent on the hole concentration, while PbTe is an incipient ferroelectric. By using the stochastic self-consistent harmonic approximation, we investigate the anharmonic phonon spectra and the occurrence of a ferroelectric transition in both systems. We find that vibrational spectra strongly depend on the approximation used for the exchange-correlation kernel in density-functional theory. If gradient corrections and the theoretical volume are employed, then the calculation of the phonon frequencies as obtained from the diagonalization of the free-energy Hessian leads to phonon spectra in good agreement with experimental data for both systems. In PbTe we evaluate the linear thermal expansion coefficient γ =2.3 ×10-5K-1 , finding it to be in good agreement with experimental value of γ =2.04 ×10-5K-1 . Furthermore, we study the phonon spectrum and we do reproduce the transverse optical mode phonon satellite detected in inelastic neutron scattering and the crossing between the transverse optical and the longitudinal acoustic modes along the Γ X direction. The phonon satellite becomes broader at high temperatures but its energy is essentially temperature independent, in agreement with experiments. We decompose the self-consistent harmonic free energy in second-, third-, and fourth-order anharmonic terms. We find that the third- and fourth-order terms are small. However, treating the third-order term perturbatively on top of the second-order self-consistent harmonic free energy overestimates the energy of the satellite associated with the transverse optical mode. On the contrary, a perturbative treatment on top of the harmonic Hamiltonian breaks down and leads to imaginary phonon frequencies already at 300 K. In the case of SnTe, we describe the occurrence of a ferroelectric

  16. Dynamic Model and Vibration Characteristics of Planar 3-RRR Parallel Manipulator with Flexible Intermediate Links considering Exact Boundary Conditions

    Directory of Open Access Journals (Sweden)

    Lianchao Sheng


    Full Text Available Due to the complexity of the dynamic model of a planar 3-RRR flexible parallel manipulator (FPM, it is often difficult to achieve active vibration control algorithm based on the system dynamic model. To establish a simple and efficient dynamic model of the planar 3-RRR FPM to study its dynamic characteristics and build a controller conveniently, firstly, considering the effect of rigid-flexible coupling and the moment of inertia at the end of the flexible intermediate link, the modal function is determined with the pinned-free boundary condition. Then, considering the main vibration modes of the system, a high-efficiency coupling dynamic model is established on the basis of guaranteeing the model control accuracy. According to the model, the modal characteristics of the flexible intermediate link are analyzed and compared with the modal test results. The results show that the model can effectively reflect the main vibration modes of the planar 3-RRR FPM; in addition the model can be used to analyze the effects of inertial and coupling forces on the dynamics model and the drive torque of the drive motor. Because this model is of the less dynamic parameters, it is convenient to carry out the control program.

  17. An approach for modeling the influence of wheel tractor loads and vibration frequencies on soil compaction (United States)

    Verotti, M.; Servadio, P.; Belfiore, N. P.; Bergonzoli, S.


    Both soil compaction and ground vibration are forms of environmental degradation that may be understood in the context of the vehicle-soil interaction process considered (Hildebrand et al., 2008). The transit of tractors on agricultural soil is often the main cause of soil compaction increasing. As known, this can be a serious problems for tillage and sowing and therefore the influence of all the affecting factors have been extensively studied in the last decades in order to understand their impact on the biosystem. There are factors related to the climate, namely to the rainfalls and temperature, and many others. Hence, it is not simple to figure out a complete model for predicting an index of compaction, for a given situation. Soil compaction models are important tools for controlling soil compaction due to agricultural field traffic and they are potentially useful technique to provide information concerning correct soil management. By means of such models, strategies and recommendations for prevention of soil compaction may be developed and specific advice may be given to farmers and advisers. In order to predict field wheeled and tracked vehicle performance, some empirical methods, used for off-road vehicle, were applied by Servadio (2010) on agricultural soil. The empirical indexes included, besides the soil strength, the load carried by the tire or track, some technical characteristics of the tire or track of the vehicle (tire or track width, tire or track wheel diameter, unloaded tire section height, number of wheel station in one track, tire deflection, total length of the belt track, the track pitch) as well as the vehicle passes. They have been validated with the tests results of agricultural vehicles over a range of soil in central Italy. Among the parameters which affect soil compaction, the water content of the soil, the axle load and number of vehicle passes proved to be the most important ones. The present paper concerns mainly vehicle

  18. Vibration analysis of low-aspect ratio rotating blade modeled as a ...

    African Journals Online (AJOL)

    ... example is given to show the vibration characteristics of the rotating blade. Natural frequencies, corresponding mode shapes and the free vibration response are determined. Induced stresses related to the mode shapes are computed, and nature of these stresses are compared to actual datafrom the aviation industry.

  19. Evaluation of Massey Ferguson Model 165 Tractor Drivers exposed to whole-body vibration

    Directory of Open Access Journals (Sweden)

    P. Nassiri


    Conclusion: This study shows that the need to provide intervention , controlling and managing measures to eliminate or reduce exposure to whole body vibration among tractor drivers its necessary. And, preventing main disorder Including musculoskeletal disorders, discomfort and early fatigue is of circular importance. More studies are also necessary to identify the sources of vibration among various of tractors.

  20. Railway bogie vibration analysis by mathematical simulation model and a scaled four-wheel railway bogie set (United States)

    Visayataksin, Noppharat; Sooklamai, Manon


    The bogie is the part that connects and transfers all the load from the vehicle body onto the railway track; interestingly the interaction between wheels and rails is the critical point for derailment of the rail vehicles. However, observing or experimenting with real bogies on rail vehicles is impossible due to the operational rules and safety concerns. Therefore, this research aimed to develop a vibration analysis set for a four-wheel railway bogie by constructing a four-wheel bogie with scale of 1:4.5. The bogie structures, including wheels and axles, were made from an aluminium alloy, equipped with springs and dampers. The bogie was driven by an electric motor using 4 round wheels instead of 2 straight rails, with linear velocity between 0 to 11.22 m/s. The data collected from the vibration analysis set was compared to the mathematical simulation model to investigate the vibration behavior of the bogie, especially the hunting motion. The results showed that vibration behavior from a scaled four-wheel railway bogie set significantly agreed with the mathematical simulation model in terms of displacement and hunting frequency. The critical speed of the wheelset was found by executing the mathematical simulation model at 13 m/s.

  1. Finite Element Modelling for Static and Free Vibration Response of Functionally Graded Beam

    Directory of Open Access Journals (Sweden)

    Ateeb Ahmad Khan

    Full Text Available Abstract A 1D Finite Element model for static response and free vibration analysis of functionally graded material (FGM beam is presented in this work. The FE model is based on efficient zig-zag theory (ZIGT with two noded beam element having four degrees of freedom at each node. Linear interpolation is used for the axial displacement and cubic hermite interpolation is used for the deflection. Out of a large variety of FGM systems available, Al/SiC and Ni/Al2O3 metal/ceramic FGM system has been chosen. Modified rule of mixture (MROM is used to calculate the young's modulus and rule of mixture (ROM is used to calculate density and poisson's ratio of FGM beam at any point. The MATLAB code based on 1D FE zigzag theory for FGM elastic beams is developed. A 2D FE model for the same elastic FGM beam has been developed using ABAQUS software. An 8-node biquadratic plane stress quadrilateral type element is used for modeling in ABAQUS. Three different end conditions namely simply-supported, cantilever and clamped- clamped are considered. The deflection, normal stress and shear stress has been reported for various models used. Eigen Value problem using subspace iteration method is solved to obtain un-damped natural frequencies and the corresponding mode shapes. The results predicted by the 1D FE model have been compared with the 2D FE results and the results present in open literature. This proves the correctness of the model. Finally, mode shapes have also been plotted for various FGM systems.

  2. Vibron hopping and bond anharmonicity in hot dense hydrogen (United States)

    Feldman, J. L.; Johnson, J. Karl; Hemley, Russell J.


    The Raman-active vibron of dense hydrogen has been shown to exhibit unexpected changes as a function of pressure and temperature to above 100GPa. To understand these results we have performed supercell-based calculations using Van Kranendonk theory taking into account the renormalization of the hopping parameter by the lattice vibrations. We find that the major temperature dependence at this level of theory comes from the differences in populations of rotational states. The theory provides a fair description of the experimental results up to 70GPa. We examine in detail a number of assumptions made in the application of the Van Kranendonk model to hydrogen as a function of pressure and temperature. We also present results of hybrid path integral molecular dynamics calculations in the fluid state at a low pressure (7GPa) near the melting temperature. An amorphous-solid model of the fluid predicts that the Raman vibron frequencies change little upon melting, in agreement with experiment. The Van Kranendonk theory with fixed rotational identities of the molecules tends to predict more peaks in the Raman spectrum than are observed experimentally.

  3. Application of a droplet evaporation model to aerodynamic size measurement of drug aerosols generated by a vibrating mesh nebulizer. (United States)

    Rao, Nagaraja; Kadrichu, Nani; Ament, Brian


    Droplet evaporation has been known to bias cascade impactor measurement of aerosols generated by jet nebulizers. Previous work suggests that vibrating mesh nebulizers behave differently from jet nebulizers. Unlike jet nebulizers, vibrating mesh nebulizers do not rely on compressed air to generate droplets. However, entrained air is still required to transport the generated droplets through the cascade impactor during measurement. The mixing of the droplet and entrained air streams, and heat and mass transfer occurring downstream determines the final aerosol size distribution actually measured by the cascade impactor. This study is aimed at quantifying the effect of these factors on droplet size measurements for the case of vibrating mesh nebulizers. A simple droplet evaporation model has been applied to investigate aerodynamic size measurement of drug aerosol droplets produced by a proprietary vibrating mesh nebulizer. The droplet size measurement system used in this study is the Next Generation Impactor (NGI) cascade impactor. Comparison of modeling results with experiment indicates that droplet evaporation remains a significant effect when sizing aerosol generated by a vibrating mesh nebulizer. Results from the droplet evaporation model shows that the mass median aerodynamic diameter (MMAD) measured by the NGI is strongly influenced not only by the initial droplet size, but also by factors such as the temperature and humidity of entrained air, the nebulizer output rate, and the entrained air flow rate. The modeling and experimental results indicate that the influence of these variables on size measurements may be reduced significantly by refrigerating the impactor down to 5°C prior to measurement. The same data also support the conclusion that for the case of nebulized drug solutions, laser diffraction spectrometry provides a meaningful droplet sizing approach, that is simpler and less susceptible to such droplet evaporation artifacts.

  4. Calibration of Eringen's small length scale coefficient for initially stressed vibrating nonlocal Euler beams based on microstructured beam model

    International Nuclear Information System (INIS)

    Wang, C M; Zhang, Z; Challamel, N; Duan, W H


    In this paper, we calibrate Eringen's small length scale coefficient e 0 for an initially stressed vibrating nonlocal Euler beam via a microstructured beam modelled by some repetitive cells comprising finite rigid segments and elastic rotational springs. By adopting the pseudo-differential operator and Padé's approximation, an analytical solution for the vibration frequency in terms of initial stress may be developed for the microstructured beam model. When comparing this analytical solution with the established exact vibration solution from the nonlocal beam theory, one finds that the calibrated Eringen's small length scale coefficient e 0 is given by e 0 = √(1/6)-(1/12)(σ 0 /σ-breve m ) where σ 0 is the initial stress and σ-breve m is the mth mode buckling stress of the corresponding local Euler beam. It is shown that e 0 varies with respect to the initial axial stress, from 1/√(12)∼0.289 at the buckling compressive stress to 1/√6∼0.408 when the axial stress is zero and it monotonically increases with increasing initial tensile stress. The small length scale coefficient e 0 , however, does not depend on the vibration/buckling mode considered. (paper)

  5. Finite element modelling to assess the effect of surface mounted piezoelectric patch size on vibration response of a hybrid beam (United States)

    Rahman, N.; Alam, M. N.


    Vibration response analysis of a hybrid beam with surface mounted patch piezoelectric layer is presented in this work. A one dimensional finite element (1D-FE) model based on efficient layerwise (zigzag) theory is used for the analysis. The beam element has eight mechanical and a variable number of electrical degrees of freedom. The beams are also modelled in 2D-FE (ABAQUS) using a plane stress piezoelectric quadrilateral element for piezo layers and a plane stress quadrilateral element for the elastic layers of hybrid beams. Results are presented to assess the effect of size of piezoelectric patch layer on the free and forced vibration responses of thin and moderately thick beams under clamped-free and clamped-clamped configurations. The beams are subjected to unit step loading and harmonic loading to obtain the forced vibration responses. The vibration control using in phase actuation potential on piezoelectric patches is also studied. The 1D-FE results are compared with the 2D-FE results.

  6. Interacting boson model of collective states I. The vibrational limit (Reprinted from Annals of Physics, vol 99, pg 253-317, 1976)

    NARCIS (Netherlands)

    Arima, A; Iachello, F


    We propose a unified description of collective nuclear states in terms of a system of interacting bosons. We shown that within this model both the vibrational and the rotational limit can be recovered. We study in detail the vibrational limit and brain attention to the possible existence of an

  7. Steady-state non-linear vibrations of plates using Zener material model with fractional derivative (United States)

    Litewka, Przemysław; Lewandowski, Roman


    The paper is devoted to non-linear vibrations of plates, made of the Zener viscoelastic material modelled with the Caputo fractional derivative, and in particular to their response to harmonic excitation. The plate geometric non-linearity is of the von Kármán type. In the formulation shear effects and rotary inertia are considered, too. The problem is solved in the frequency domain. A one-harmonic form of the solution for plate displacements corresponding to the plate formulation is assumed. The amplitude equation is obtained from the time averaged principle of virtual work. The time averaging precedes the use of the harmonic balance method. In the space discretization the finite element method is used involving 8-noded rectangular plate elements with selective-reduced integration. Several numerical examples are analyzed and the response curves are found using a path-following method. The purpose of these analyses is to identify material features of the adopted model of viscoelasticity with the fractional derivative.

  8. Non-material finite element modelling of large vibrations of axially moving strings and beams (United States)

    Vetyukov, Yury


    We present a new mathematical model for the dynamics of a beam or a string, which moves in a given axial direction across a particular domain. Large in-plane vibrations are coupled with the gross axial motion, and a Lagrangian (material) form of the equations of structural mechanics becomes inefficient. The proposed mixed Eulerian-Lagrangian description features mechanical fields as functions of a spatial coordinate in the axial direction. The material travels across a finite element mesh, and the boundary conditions are applied in fixed nodes. Beginning with the variational equation of virtual work in its material form, we analytically derive the Lagrange's equations of motion of the second kind for the considered case of a discretized non-material control domain and for geometrically exact kinematics. The dynamic analysis is straightforward as soon as the strain and the kinetic energies of the control domain are available. In numerical simulations we demonstrate the rapid mesh convergence of the model, the effect of the bending stiffness and the dynamic instability when the axial velocity gets high. We also show correspondence to the results of fully Lagrangian benchmark solutions.

  9. Vibration energy harvesting by a Timoshenko beam model and piezoelectric transducer (United States)

    Stoykov, S.; Litak, G.; Manoach, E.


    An electro-mechanical system of vibrational energy harvesting is studied. The beam is excited by external and kinematic periodic forces and damped by an electrical resistor through the coupled piezoelectric transducer. Nonlinearities are introduced by stoppers limiting the transverse displacements of the beam. The interaction between the beam and the stoppers is modeled as Winkler elastic foundation. The mechanical properties of the piezoelectric layer are taken into account and the beam is modeled as a composite structure. For the examined composite beam, the geometrically nonlinear version of the Timoshenko's beam theory is assumed. The equations of motion are derived by the principle of virtual work considering large deflections. An isogeometric approach is applied for space discretization and B-Splines are used as shape functions. Finally, the power output and the efficiency of the system due to harmonic excitations are discussed. The influence of the position of the stoppers and their length on the dynamics of the beam and consequently on the power output are analyzed and presented.

  10. Modeling and analysis of the chip formation and transient cutting force during elliptical vibration cutting process (United States)

    Lin, Jieqiong; Guan, Liang; Lu, Mingming; Han, Jinguo; Kan, Yudi


    In traditional diamond cutting, the cutting force is usually large and it will affect tool life and machining quality. Elliptical vibration cutting (EVC) as one of the ultra-precision machining technologies has a lot of advantages, such as reduces cutting force, extend tool life and so on. It's difficult to predict the transient cutting force of EVC due to its unique elliptical motion trajectory. Study on chip formation will helpfully to predict cutting force. The geometric feature of chip has important effects on cutting force, however, few scholars have studied the chip formation. In order to investigate the time-varying cutting force of EVC, the geometric feature model of chip is established based on analysis of chip formation, and the effects of cutting parameters on the geometric feature of chip are analyzed. To predict transient force quickly and effectively, the geometric feature of chip is introduced into the cutting force model. The calculated results show that the error between the predicted cutting force in this paper and that in the literature is less than 2%, which proves its feasibility.

  11. Modeling and analysis of the chip formation and transient cutting force during elliptical vibration cutting process

    Directory of Open Access Journals (Sweden)

    Jieqiong Lin


    Full Text Available In traditional diamond cutting, the cutting force is usually large and it will affect tool life and machining quality. Elliptical vibration cutting (EVC as one of the ultra-precision machining technologies has a lot of advantages, such as reduces cutting force, extend tool life and so on. It’s difficult to predict the transient cutting force of EVC due to its unique elliptical motion trajectory. Study on chip formation will helpfully to predict cutting force. The geometric feature of chip has important effects on cutting force, however, few scholars have studied the chip formation. In order to investigate the time-varying cutting force of EVC, the geometric feature model of chip is established based on analysis of chip formation, and the effects of cutting parameters on the geometric feature of chip are analyzed. To predict transient force quickly and effectively, the geometric feature of chip is introduced into the cutting force model. The calculated results show that the error between the predicted cutting force in this paper and that in the literature is less than 2%, which proves its feasibility.

  12. Modelling and numerical simulation of vortex induced vibrations of single cylinder or cylinder arrays

    International Nuclear Information System (INIS)

    Jus, Y.


    This research thesis fits into the frame of researches achieved in the nuclear field in order to optimize the predictive abilities of sizing models of nuclear plant components. It more precisely addresses the modelling of the action exerted by the flowing fluid and the induced feedback by the structure dynamics. The objective is herein to investigate the interaction between the turbulence at the wall vicinity and the effects of non-conservative and potentially destabilizing unsteady coupling. The peculiar case of a single cylinder in infinite environment, and submitted to a transverse flow, is studied statically and then dynamically. The influence of flow regimes on dynamic response is characterized, and the quantification of fluid-structure interaction energy is assessed. The author then addresses the case of an array of cylinders, and highlights the contribution of three-dimensional macro-simulations for the analysis of flow-induced structure vibrations in subcritical regime within a High Performance Calculation (HPC) framework, and the interest of a CFD/CSM (computational fluid dynamics/computational structure mechanics) coupling in the case of turbulent flows in an industrial environment

  13. Isotopic effects in vibrational relaxation dynamics of H on a Si(100) surface (United States)

    Bouakline, F.; Lorenz, U.; Melani, G.; Paramonov, G. K.; Saalfrank, P.


    In a recent paper [U. Lorenz and P. Saalfrank, Chem. Phys. 482, 69 (2017)], we proposed a robust scheme to set up a system-bath model Hamiltonian, describing the coupling of adsorbate vibrations (system) to surface phonons (bath), from first principles. The method is based on an embedded cluster approach, using orthogonal coordinates for system and bath modes, and an anharmonic phononic expansion of the system-bath interaction up to second order. In this contribution, we use this model Hamiltonian to calculate vibrational relaxation rates of H-Si and D-Si bending modes, coupled to a fully H(D)-covered Si(100)-( 2 × 1 ) surface, at zero temperature. The D-Si bending mode has an anharmonic frequency lying inside the bath frequency spectrum, whereas the H-Si bending mode frequency is outside the bath Debye band. Therefore, in the present calculations, we only take into account one-phonon system-bath couplings for the D-Si system and both one- and two-phonon interaction terms in the case of H-Si. The computation of vibrational lifetimes is performed with two different approaches, namely, Fermi's golden rule, and a generalized Bixon-Jortner model built in a restricted vibrational space of the adsorbate-surface zeroth-order Hamiltonian. For D-Si, the Bixon-Jortner Hamiltonian can be solved by exact diagonalization, serving as a benchmark, whereas for H-Si, an iterative scheme based on the recursive residue generation method is applied, with excellent convergence properties. We found that the lifetimes obtained with perturbation theory, albeit having almost the same order of magnitude—a few hundred fs for D-Si and a couple of ps for H-Si—, are strongly dependent on the discretized numerical representation of the bath spectral density. On the other hand, the Bixon-Jortner model is free of such numerical deficiencies, therefore providing better estimates of vibrational relaxation rates, at a very low computational cost. The results obtained with this model clearly show

  14. Vibration model of rolling element bearings in a rotor-bearing system for fault diagnosis (United States)

    Cong, Feiyun; Chen, Jin; Dong, Guangming; Pecht, Michael


    Rolling element bearing faults are among the main causes of breakdown in rotating machines. In this paper, a rolling bearing fault model is proposed based on the dynamic load analysis of a rotor-bearing system. The rotor impact factor is taken into consideration in the rolling bearing fault signal model. The defect load on the surface of the bearing is divided into two parts, the alternate load and the determinate load. The vibration response of the proposed fault signal model is investigated and the fault signal calculating equation is derived through dynamic and kinematic analysis. Outer race and inner race fault simulations are realized in the paper. The simulation process includes consideration of several parameters, such as the gravity of the rotor-bearing system, the imbalance of the rotor, and the location of the defect on the surface. The simulation results show that different amplitude contributions of the alternate load and determinate load will cause different envelope spectrum expressions. The rotating frequency sidebands will occur in the envelope spectrum in addition to the fault characteristic frequency. This appearance of sidebands will increase the difficulty of fault recognition in intelligent fault diagnosis. The experiments given in the paper have successfully verified the proposed signal model simulation results. The test rig design of the rotor bearing system simulated several operating conditions: (1) rotor bearing only; (2) rotor bearing with loader added; (3) rotor bearing with loader and rotor disk; and (4) bearing fault simulation without rotor influence. The results of the experiments have verified that the proposed rolling bearing signal model is important to the rolling bearing fault diagnosis of rotor-bearing systems.

  15. High pressure behavior of complex phosphate K2Ce[PO4]2: Grüneisen parameter and anharmonicity properties (United States)

    Mishra, Karuna Kara; Bevara, Samatha; Ravindran, T. R.; Patwe, S. J.; Gupta, Mayanak K.; Mittal, Ranjan; Krishnan, R. Venkata; Achary, S. N.; Tyagi, A. K.


    Herein we reported structural stability, vibrational and thermal properties of K2Ce[PO4]2, a relatively underexplored complex phosphate of tetravalent Ce4+ from in situ high-pressure Raman spectroscopic investigations up to 28 GPa using a diamond anvil cell. The studies identified the soft phonons that lead to a reversible phase transformation above 8 GPa, and a phase coexistence of ambient (PI) and high pressure (PII) phases in a wider pressure region 6-11 GPa. From a visual representation of the computed eigen vector displacements, the Ag soft mode at 82 cm-1 is assigned as a lattice mode of K+ cation. Pressure-induced positional disorder is apparent from the substantial broadening of internal modes and the disappearance of low frequency lattice and external modes in phase PII above 18 GPa. Isothermal mode Grüneisen parameters γi of the various phonon modes are calculated and compared for several modes. Using these values, thermal properties such as average Grüneisen parameter, and thermal expansion coefficient are estimated as 0.47, and 2.5 × 10-6 K-1, respectively. The specific heat value was estimated from all optical modes obtained from DFT calculations as 314 J-mol-1 K-1. Our earlier reported temperature dependence of phonon frequencies is used to decouple the "true anharmonic" (explicit contribution at constant volume) and "quasi harmonic" (implicit contribution brought out by volume change) contributions from the total anharmonicity. In addition to the 81 cm-1 Ag lattice mode, several other lattice and external modes of PO43- ions are found to be strongly anharmonic.

  16. Semiclassical quantization in Liouville space for vibrational dynamics. (United States)

    Gruenbaum, Scott M; Loring, Roger F


    Semiclassical approximations to quantum mechanics can include quantum coherence effects in dynamical calculations based on classical mechanics. The Herman-Kluk (HK) semiclassical propagator has been demonstrated to reproduce quantum effects in nonlinear vibrational response functions of anharmonic oscillators but does not provide a practical numerical route to calculations for multiple degrees of freedom. In an HK calculation of a response function, quantum coherence effects enter through interference between pairs of classical trajectories. We have previously elucidated the mechanism by which the HK approximation reproduces quantum effects in response functions in the regime of quasiperiodic dynamics. We have applied this understanding to significantly simplify the semiclassical calculation of response functions in this dynamical regime. The phase space difference between trajectories is treated perturbatively in anharmonicity, allowing integration over these differences to be performed analytically and leaving integration over mean trajectories to be performed numerically. This mean-trajectory (MT) approximation has been applied to linear and nonlinear vibrational response functions for isolated and coupled anharmonic motions. Here, we derive an MT approximation for the Liouville space time evolution operator or superoperator that propagates the density operator. This analysis provides a form of the MT approximation that is readily applicable to other dynamical quantities besides response functions and clarifies the connection between semiclassical quantization of propagators for the wave function and for the density operator.

  17. Squeezing and other non-classical features in k-photon anharmonic oscillator in binomial and negative binomial states of the field

    International Nuclear Information System (INIS)

    Joshi, A.; Lawande, S.V.


    A systematic study of squeezing obtained from k-photon anharmonic oscillator (with interaction hamiltonian of the form (a † ) k , k ≥ 2) interacting with light whose statistics can be varied from sub-Poissonian to poissonian via binomial state of field and super-Poissonian to poissonian via negative binomial state of field is presented. The authors predict that for all values of k there is a tendency increase in squeezing with increased sub-Poissonian character of the field while the reverse is true with super-Poissonian field. They also present non-classical behavior of the first order coherence function explicitly for k = 2 case (i.e., for two-photon anharmonic oscillator model used for a Kerr-like medium) with variation in the statistics of the input light

  18. Anharmonic effects in simple physical models: introducing undergraduates to nonlinearity (United States)

    Christian, J. M.


    Given the pervasive character of nonlinearity throughout the physical universe, a case is made for introducing undergraduate students to its consequences and signatures earlier rather than later. The dynamics of two well-known systems—a spring and a pendulum—are reviewed when the standard textbook linearising assumptions are relaxed. Some qualitative effects of nonlinearity can be anticipated from symmetry (e.g., inspection of potential energy functions), and further physical insight gained by applying a simple successive-approximation method that might be taught in parallel with courses on classical mechanics, ordinary differential equations, and computational physics. We conclude with a survey of how these ideas have been deployed on programmes at a UK university.

  19. Analytical calculation of the vibrator-rotor transition in the sdg interacting boson model

    International Nuclear Information System (INIS)

    Wang Baolin


    Analytical calculation of the vibrator-rotor transition is given by utilizing the 1/N expansion technique in the sdg IBM. The phase transition of low-lying energy spectrum and E2 transition for Sm isotopes are calculated

  20. Improved Models for Prediction of Locally Intense Aeroacoustic Loads and Vibration Environments, Phase I (United States)

    National Aeronautics and Space Administration — ATA Engineering, Inc. proposes an STTR program to develop innovative tools and methods that will significantly improve the accuracy of random vibration response...

  1. Analysis and modeling of unsteady aerodynamics with application to wind turbine blade vibration at standstill conditions

    DEFF Research Database (Denmark)

    Skrzypinski, Witold Robert

    Wind turbine blade vibrations at standstill conditions were investigated in the present work. These included vortex-induced and stall-induced vibrations. Thus, it was investigated whether the stand still vibrations are vortex-induced, stall-induced or a combination of both types. The work comprised...... limits. The motivation for it was that the standard aerodynamics existing in state-of-the-art aeroelastic codes is effectively quasi-steady in deep stall. If such an assumption was incorrect, these codes could predict stall-induced vibrations inaccurately. The main conclusion drawn from these analyzes...... was that even a relatively low amount of temporal lag in the aerodynamic response may significantly increase the aerodynamic damping and therefore influence the aeroelastic stability limits, relative to quasisteady aerodynamic response. Two- and three-dimensional CFD computations included non-moving, prescribed...

  2. Vibration monitoring for aircraft wing model using fiber Bragg grating array packaged by vacuum-assisted resin transfer molding (United States)

    Zhang, Wen; Liu, Xiaolong; He, Wei; Dong, Mingli; Zhu, Lianqing


    For the improvement of monitoring accuracy, a vibration monitoring for aircraft wing model using a fiber Bragg grating (FBG) array packaged by vacuum-assisted resin transfer molding (VARTM) is proposed. The working principle of the vibration monitoring using FBG array has been explained, which can theoretically support the idea of this paper. VARTM has been explained in detail, which is suitable for not only the single FBG sensor but also the FBG array within a relatively large area. The calibration experiment has been performed using the FBG sensor packaged by VARTM. The strain sensitivity of the VARTM package is 1.35 pm/μɛ and the linearity is 0.9999. The vibration monitoring experiment has been carried out using FBG array packaged by VARTM. The measured rate of strain changes across the aluminum test board used to simulate the aircraft wing is 0.69 μɛ/mm and the linearity is 0.9931. The damping ratio is 0.16, which could be further used for system performance evaluation. Experimental results demonstrate that the vibration monitoring using FBG sensors packaged by VARTM can be efficiently used for the structural health monitoring. Given the validation and great performance, this method is quite promising for in-flight monitoring and holds great reference value in other similar engineering structures.

  3. Experimental Study on Vibration Control of a Submerged Pipeline Model by Eddy Current Tuned Mass Damper


    Wenxi Wang; Dakota Dalton; Xugang Hua; Xiuyong Wang; Zhengqing Chen; Gangbing Song


    Undesirable vibrations occurring in undersea pipeline structures due to ocean currents may shorten the lifecycle of pipeline structures and even lead to their failure. Therefore, it is desirable to find a feasible and effective device to suppress the subsea vibration. Eddy current tuned mass damper (ECTMD), which employs the damping force generated by the relative movement of a non-magnetic conductive metal (such as copper or aluminum) through a magnetic field, is demonstrated to be an effici...

  4. Vibration and Buckling Analysis of Unitized Structure Using Meshfree Method and Kriging Model


    Yeilaghi Tamijani, Ali


    The Element Free Galerkin (EFG) method, which is based on the Moving Least Squares (MLS) approximation, is developed here for vibration, buckling and static analysis of homogenous and FGM plate with curvilinear stiffeners. Numerical results for different stiffeners configurations and boundary conditions are presented. All results are verified using the commercial finite element software ANSYS® and other available results in literature. In addition, the vibration analysis of plates with c...

  5. Ultrasonic Vibration Assisted Grinding of Bio-ceramic Materials: Modeling, Simulation, and Experimental Investigations on Edge Chipping (United States)

    Tesfay, Hayelom D.

    Bio-ceramics are those engineered materials that find their applications in the field of biomedical engineering or medicine. They have been widely used in dental restorations, repairing bones, joint replacements, pacemakers, kidney dialysis machines, and respirators. etc. due to their physico-chemical properties, such as excellent corrosion resistance, good biocompatibility, high strength and high wear resistance. Because of their inherent brittleness and hardness nature they are difficult to machine to exact sizes and dimensions. Abrasive machining processes such as grinding is one of the most widely used manufacturing processes for bioceramics. However, the principal technical challenge resulted from these machining is edge chipping. Edge chipping is a common edge failure commonly observed during the machining of bio-ceramic materials. The presence of edge chipping on bio-ceramic products affects dimensional accuracy, increases manufacturing cost, hider their industrial applications and causes potential failure during service. To overcome these technological challenges, a new ultrasonic vibration-assisted grinding (UVAG) manufacturing method has been developed and employed in this research. The ultimate aim of this study is to develop a new cost-effective manufacturing process relevant to eliminate edge chippings in grinding of bio-ceramic materials. In this dissertation, comprehensive investigations will be carried out using experimental, theoretical, and numerical approaches to evaluate the effect of ultrasonic vibrations on edge chipping of bioceramics. Moreover, effects of nine input variables (static load, vibration frequency, grinding depth, spindle speed, grinding distance, tool speed, grain size, grain number, and vibration amplitude) on edge chipping will be studied based on the developed models. Following a description of previous research and existing approaches, a series of experimental tests on three bio-ceramic materials (Lava, partially fired Lava

  6. A truncated conical beam model for analysis of the vibration of rat whiskers. (United States)

    Yan, Wenyi; Kan, Qianhua; Kergrene, Kenan; Kang, Guozheng; Feng, Xi-Qiao; Rajan, Ramesh


    A truncated conical beam model is developed to study the vibration behaviour of a rat whisker. Translational and rotational springs are introduced to better represent the constraint conditions at the base of the whiskers in a living rat. Dimensional analysis shows that the natural frequency of a truncated conical beam with generic spring constraints at its ends is inversely proportional to the square root of the mass density. Under all the combinations of the classical free, pinned, sliding or fixed boundary conditions of a truncated conical beam, it is proved that the natural frequency can be expressed as f = α(rb/L(2))E/ρ and the frequency coefficient α only depends on the ratio of the radii at the two ends of the beam. The natural frequencies of a representative rat whisker are predicted for two typical situations: freely whisking in air and the tip touching an object. Our numerical results show that there exists a window where the natural frequencies of a rat whisker are very sensitive to the change of the rotational constraint at the base. This finding is also confirmed by the numerical results of 18 whiskers with their data available from literature. It can be concluded that the natural frequencies of a rat whisker can be adjusted within a wide range through manipulating the constraints of the follicle on the rat base by a behaving animal. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Measurement Model and Precision Analysis of Accelerometers for Maglev Vibration Isolation Platforms. (United States)

    Wu, Qianqian; Yue, Honghao; Liu, Rongqiang; Zhang, Xiaoyou; Ding, Liang; Liang, Tian; Deng, Zongquan


    High precision measurement of acceleration levels is required to allow active control for vibration isolation platforms. It is necessary to propose an accelerometer configuration measurement model that yields such a high measuring precision. In this paper, an accelerometer configuration to improve measurement accuracy is proposed. The corresponding calculation formulas of the angular acceleration were derived through theoretical analysis. A method is presented to minimize angular acceleration noise based on analysis of the root mean square noise of the angular acceleration. Moreover, the influence of installation position errors and accelerometer orientation errors on the calculation precision of the angular acceleration is studied. Comparisons of the output differences between the proposed configuration and the previous planar triangle configuration under the same installation errors are conducted by simulation. The simulation results show that installation errors have a relatively small impact on the calculation accuracy of the proposed configuration. To further verify the high calculation precision of the proposed configuration, experiments are carried out for both the proposed configuration and the planar triangle configuration. On the basis of the results of simulations and experiments, it can be concluded that the proposed configuration has higher angular acceleration calculation precision and can be applied to different platforms.

  8. Dynamical modeling and free vibration analysis of spinning pipes conveying fluid with axial deployment (United States)

    Liang, Feng; Yang, Xiao-Dong; Zhang, Wei; Qian, Ying-Jing


    In this paper, a dynamical model of simply-supported spinning pipes conveying fluid with axial deployment is proposed and the transverse free vibration and stability for such a doubly gyroscopic system involving time-dependent parameters are investigated. The partial differential equations of motion are derived by the extended Hamilton principle and then truncated by the Galerkin technique. The time-variant frequencies, mode shapes and responses to initial conditions are comprehensively investigated to reveal the dynamical essence of the system. It is indicated that the qualitative stability evolution of the system mainly depends on the effect of fluid-structure interaction (FSI), while the spinning motion will enhance the pipe rigidity and eliminate the buckling instability. The dynamical evolution of a retracting pipe is almost inverse to that of the deploying one. The pipe possesses different mode configurations of spatial curves as the pipe length increases and some modal and response characteristics of the present system are found rather distinct from those of deploying cantilevered structures.

  9. EUCLID/NISP GRISM qualification model AIT/AIV campaign: optical, mechanical, thermal and vibration tests (United States)

    Caillat, A.; Costille, A.; Pascal, S.; Rossin, C.; Vives, S.; Foulon, B.; Sanchez, P.


    Dark matter and dark energy mysteries will be explored by the Euclid ESA M-class space mission which will be launched in 2020. Millions of galaxies will be surveyed through visible imagery and NIR imagery and spectroscopy in order to map in three dimensions the Universe at different evolution stages over the past 10 billion years. The massive NIR spectroscopic survey will be done efficiently by the NISP instrument thanks to the use of grisms (for "Grating pRISMs") developed under the responsibility of the LAM. In this paper, we present the verification philosophy applied to test and validate each grism before the delivery to the project. The test sequence covers a large set of verifications: optical tests to validate efficiency and WFE of the component, mechanical tests to validate the robustness to vibration, thermal tests to validate its behavior in cryogenic environment and a complete metrology of the assembled component. We show the test results obtained on the first grism Engineering and Qualification Model (EQM) which will be delivered to the NISP project in fall 2016.

  10. Modeling and simulation of vortex induced vibration on the subsea riser/pipeline (GRP pipe) (United States)

    Raja Adli, Raja Nor Fauziah bt; Ibrahim, Idris


    This paper presents the research work conducted to investigate the dynamics characteristics of the offshore riser pipeline due to vortex flow and to develop a model that could predict its vortex induced responses. Glass-fiber reinforced plastic (GRP) pipe is used for this study which has smaller density from the steel. A two-dimensional finite element computational method is implemented to describe the dynamic behavior of the riser. The governing equation of motion was based on Hamilton's principle, consists of the strain energy due to bending and axial deformation, kinetic energy due to both riser and internal fluid movement and also external force from currents and waves. A direct integration method namely Newmark integration scheme is proposed to solve the equation of motion. A MATLAB program code was developed to obtain the simulation results. The natural frequency and damping ratio are presented for each mode. Dynamic response of riser is shown in time-domain and the numerical results are discussed. Several parameter effects are used to investigate dynamic responses and the results show an agreement with the theory. Vortex shedding phenomenon also has been discussed in this paper. As a conclusion, the simulation results have successfully shown the vortex induced vibration responses for GRP pipeline.

  11. Effects of 8-Prenylnaringenin and Whole-Body Vibration Therapy on a Rat Model of Osteopenia. (United States)

    Hoffmann, Daniel B; Griesel, Markus H; Brockhusen, Bastian; Tezval, Mohammad; Komrakova, Marina; Menger, Bjoern; Wassmann, Marco; Stuermer, Klaus Michael; Sehmisch, Stephan


    Background. 8-Prenylnaringenin (8-PN) is the phytoestrogen with the highest affinity for estrogen receptor-α (ER-α), which is required to maintain BMD. The osteoprotective properties of 8-PN have been demonstrated previously in tibiae. We used a rat osteopenia model to perform the first investigation of 8-PN with whole-body vertical vibration (WBVV). Study Design. Ovariectomy was performed on 52 of 64 Sprague-Dawley rats. Five weeks after ovariectomy, one group received daily injections (sc) of 8-PN (1.77 mg/kg) for 10 weeks; a second group was treated with both 8-PN and WBVV (twice a day, 15 min, 35 Hz, amplitude 0.47 mm). Other groups received either only WBVV or no treatment. Methods. The rats were sacrificed 15 weeks after ovariectomy. Lumbar vertebrae and femora were removed for biomechanical and morphological assessment. Results. 8-PN at a cancer-safe dose did not cause fundamental improvements in osteoporotic bones. Treatment with 8-PN caused a slight increase in uterine wet weight. Combined therapy using WBVV and 8-PN showed no significant improvements in bone structure and biomechanical properties. Conclusion. We cannot confirm the osteoprotective effects of 8-PN at a cancer-safe dose in primary affected osteoporotic bones. Higher concentrations of 8-PN are not advisable for safety reasons. Adjunctive therapy with WBVV demonstrates no convincing effects on bones.

  12. Effects of 8-Prenylnaringenin and Whole-Body Vibration Therapy on a Rat Model of Osteopenia

    Directory of Open Access Journals (Sweden)

    Daniel B. Hoffmann


    Full Text Available Background. 8-Prenylnaringenin (8-PN is the phytoestrogen with the highest affinity for estrogen receptor-α (ER-α, which is required to maintain BMD. The osteoprotective properties of 8-PN have been demonstrated previously in tibiae. We used a rat osteopenia model to perform the first investigation of 8-PN with whole-body vertical vibration (WBVV. Study Design. Ovariectomy was performed on 52 of 64 Sprague-Dawley rats. Five weeks after ovariectomy, one group received daily injections (sc of 8-PN (1.77 mg/kg for 10 weeks; a second group was treated with both 8-PN and WBVV (twice a day, 15 min, 35 Hz, amplitude 0.47 mm. Other groups received either only WBVV or no treatment. Methods. The rats were sacrificed 15 weeks after ovariectomy. Lumbar vertebrae and femora were removed for biomechanical and morphological assessment. Results. 8-PN at a cancer-safe dose did not cause fundamental improvements in osteoporotic bones. Treatment with 8-PN caused a slight increase in uterine wet weight. Combined therapy using WBVV and 8-PN showed no significant improvements in bone structure and biomechanical properties. Conclusion. We cannot confirm the osteoprotective effects of 8-PN at a cancer-safe dose in primary affected osteoporotic bones. Higher concentrations of 8-PN are not advisable for safety reasons. Adjunctive therapy with WBVV demonstrates no convincing effects on bones.

  13. Fundamental Frequencies of Vibration of Footbridges in Portugal: From In Situ Measurements to Numerical Modelling

    Directory of Open Access Journals (Sweden)

    C. S. Oliveira


    Full Text Available Since 1995, we have been measuring the in situ dynamic characteristics of different types of footbridges built in Portugal (essentially steel and precast reinforced concrete decks with single spans running from 11 to 110 m long, using expedite exciting and measuring techniques. A database has been created, containing not only the fundamental dynamic characteristics of those structures (transversal, longitudinal, and vertical frequencies but also their most important geometric and mechanical properties. This database, with 79 structures organized into 5 main typologies, allows the setting of correlations of fundamental frequencies as a negative power function of span lengths L  (L-0.6 to L-1.4. For 63 footbridges of more simple geometry, it was possible to obtain these correlations by typology. A few illustrative cases representing the most common typologies show that linear numerical models can reproduce the in situ measurements with great accuracy, not only matching the frequencies of vibration but also the amplitudes of motion caused by several pedestrian load patterns.

  14. Equivalent-circuit models for electret-based vibration energy harvesters (United States)

    Phu Le, Cuong; Halvorsen, Einar


    This paper presents a complete analysis to build a tool for modelling electret-based vibration energy harvesters. The calculational approach includes all possible effects of fringing fields that may have significant impact on output power. The transducer configuration consists of two sets of metal strip electrodes on a top substrate that faces electret strips deposited on a bottom movable substrate functioning as a proof mass. Charge distribution on each metal strip is expressed by series expansion using Chebyshev polynomials multiplied by a reciprocal square-root form. The Galerkin method is then applied to extract all charge induction coefficients. The approach is validated by finite element calculations. From the analytic tool, a variety of connection schemes for power extraction in slot-effect and cross-wafer configurations can be lumped to a standard equivalent circuit with inclusion of parasitic capacitance. Fast calculation of the coefficients is also obtained by a proposed closed-form solution based on leading terms of the series expansions. The achieved analytical result is an important step for further optimisation of the transducer geometry and maximising harvester performance.

  15. Dynamic analysis of ITER tokamak. Based on results of vibration test using scaled model

    International Nuclear Information System (INIS)

    Takeda, Nobukazu; Kakudate, Satoshi; Nakahira, Masataka


    The vibration experiments of the support structures with flexible plates for the ITER major components such as toroidal field coil (TF coil) and vacuum vessel (VV) were performed using small-sized flexible plates aiming to obtain its basic mechanical characteristics such as dependence of the stiffness on the loading angle. The experimental results were compared with the analytical ones in order to estimate an adequate analytical model for ITER support structure with flexible plates. As a result, the bolt connection of the flexible plates on the base plate strongly affected on the stiffness of the flexible plates. After studies of modeling the connection of the bolts, it is found that the analytical results modeling the bolts with finite stiffness only in the axial direction and infinite stiffness in the other directions agree well with the experimental ones. Based on this, numerical analysis regarding the actual support structure of the ITER VV and TF coil was performed. The support structure composed of flexible plates and connection bolts was modeled as a spring composed of only two spring elements simulating the in-plane and out-of-plane stiffness of the support structure with flexible plates including the effect of connection bolts. The stiffness of both spring models for VV and TF coil agree well with that of shell models, simulating actual structures such as flexible plates and connection bolts based on the experimental results. It is therefore found that the spring model with the only two values of stiffness enables to simplify the complicated support structure with flexible plates for the dynamic analysis of the VV and TF coil. Using the proposed spring model, the dynamic analysis of the VV and TF coil for the ITER were performed to estimate the integrity under the design earthquake. As a result, it is found that the maximum relative displacement of 8.6 mm between VV and TF coil is much less than 100 mm, so that the integrity of the VV and TF coil of the

  16. Vibration mixer

    Energy Technology Data Exchange (ETDEWEB)

    Alekhin, S.A.; Chernov, V.S.; Denisenko, V.V.; Gorodnyanskiy, I.F.; Prokopov, L.I.; Tikhonov, Yu.P.


    The vibration mixer is proposed which contains a housing, vibration drive with rod installed in the upper part of the mixing mechanism made in the form of a hollow shaft with blades. In order to improve intensity of mixing and dispersion of the mud, the shaft with the blades is arranged on the rod of the vibrator and is equipped with a cam coupling whose drive disc is attached to the vibration rod. The rod is made helical, while the drive disc of the cam coupling is attached to the helical surface of the rod. In addition, the vibration mixer is equipped with perforated discs installed on the ends of the rods.

  17. Towards a scalable and accurate quantum approach for describing vibrations of molecule–metal interfaces

    Directory of Open Access Journals (Sweden)

    David M. Benoit


    Full Text Available We present a theoretical framework for the computation of anharmonic vibrational frequencies for large systems, with a particular focus on determining adsorbate frequencies from first principles. We give a detailed account of our local implementation of the vibrational self-consistent field approach and its correlation corrections. We show that our approach is both robust, accurate and can be easily deployed on computational grids in order to provide an efficient computational tool. We also present results on the vibrational spectrum of hydrogen fluoride on pyrene, on the thiophene molecule in the gas phase, and on small neutral gold clusters.

  18. First-principles momentum distributions and vibrationally corrected permittivities of hexagonal and cubic ice (United States)

    Engel, Edgar A.; Li, Yuting; Needs, Richard J.


    Three-dimensionally resolved proton momentum distributions and end-to-end distributions have been calculated for hexagonal and cubic water ice. First-principles quantum nuclear wave functions have been used to investigate the impact of vibrational anisotropy, anharmonicity, proton and stacking disorder, temperature, and pressure on these distributions. Moreover, the effects of vibrations on the electronic density in hexagonal ice are shown to lead to a 5% vibrational correction with respect to the static-lattice optical permittivity, and proton disorder is found to be crucial in explaining its experimentally observed temperature dependence.

  19. Spectra-structure correlations of saturated and unsaturated medium-chain fatty acids. Near-infrared and anharmonic DFT study of hexanoic acid and sorbic acid (United States)

    Grabska, Justyna; Beć, Krzysztof B.; Ishigaki, Mika; Wójcik, Marek J.; Ozaki, Yukihiro


    Quantum chemical reproduction of entire NIR spectra is a new trend, enabled by contemporary advances in the anharmonic approaches. At the same time, recent increase of the importance of NIR spectroscopy of biological samples raises high demand for gaining deeper understanding of NIR spectra of biomolecules, i.e. fatty acids. In this work we investigate saturated and unsaturated medium-chain fatty acids, hexanoic acid and sorbic acid, in the near-infrared region. By employing fully anharmonic density functional theory (DFT) calculations we reproduce the experimental NIR spectra of these systems, including the highly specific spectral features corresponding to the dimerization of fatty acids. Broad range of concentration levels from 5 · 10- 4 M in CCl4 to pure samples are investigated. The major role of cyclic dimers can be evidenced for the vast majority of these samples. A highly specific NIR feature of fatty acids, the elevation of spectral baseline around 6500-4000 cm- 1, is being explained by the contributions of combination bands resulting from the vibrations of hydrogen-bonded OH groups in the cyclic dimers. Based on the high agreement between the calculated and experimental NIR spectra, a detailed NIR band assignments are proposed for hexanoic acid and sorbic acid. Subsequently, the correlations between the structure and NIR spectra are elucidated, emphasizing the regions in which clear and universal traces of specific bands corresponding to saturated and unsaturated alkyl chains can be established, thus demonstrating the wavenumber regions highly valuable for structural identifications.

  20. Airy function approach and Numerov method to study the anharmonic oscillator potentials V(x) = Ax{sup 2α} + Bx{sup 2}

    Energy Technology Data Exchange (ETDEWEB)

    Al Sdran, N. [King Khalid University, Faculty of Science, Physics Department P.O. Box 9004 Abha (Saudi Arabia); Najran University, Faculty of Sciences and Arts, Najran (Saudi Arabia); Maiz, F., E-mail: [King Khalid University, Faculty of Science, Physics Department P.O. Box 9004 Abha (Saudi Arabia); Thermal Process Laboratory Research and Technologies Centre of Energy, BP 95, 2050 Hammam-lif (Tunisia)


    The numerical solutions of the time independent Schrödinger equation of different one-dimensional potentials forms are sometime achieved by the asymptotic iteration method. Its importance appears, for example, on its efficiency to describe vibrational system in quantum mechanics. In this paper, the Airy function approach and the Numerov method have been used and presented to study the oscillator anharmonic potential V(x) = Ax{sup 2α} + Bx{sup 2}, (A>0, B<0), with (α = 2) for quadratic, (α =3) for sextic and (α =4) for octic anharmonic oscillators. The Airy function approach is based on the replacement of the real potential V(x) by a piecewise-linear potential v(x), while, the Numerov method is based on the discretization of the wave function on the x-axis. The first energies levels have been calculated and the wave functions for the sextic system have been evaluated. These specific values are unlimited by the magnitude of A, B and α. It’s found that the obtained results are in good agreement with the previous results obtained by the asymptotic iteration method for α =3.

  1. Contribution to Experimental Validation of Linear and Non-Linear Dynamic Models for Representing Rotor-Blade Parametric Coupled Vibrations

    DEFF Research Database (Denmark)

    Santos, Ilmar; Saracho, C.M.; Smith, J.T.


    , it is possible to highlight some dynamic effects and experimentally simulate the structural behavior of a windmill in two dimensions (2D-model). Only lateral displacement of the rotor in the horizontal direction is taken into account. Gyroscopic effect due to rotor angular vibrations is eliminated in the test......This work gives a theoretical and experimental contribution to the problem of rotor-blades dynamic interaction. A validation procedure of mathematical models is carried out with help of a simple test rig, built by a mass-spring system attached to four flexible rotating blades. With this test rig...... linear, non-linear and time-depending terms in a very transparent way. Although neither gyroscopic effect due to rotor angular vibrations nor higher blade mode shapes are considered in the analysis, the equations of motion of the rotor-blades system are still general enough for the purpose of the work...

  2. Modeling and Parameter Identification of the Vibration Characteristics of Armature Assembly in a Torque Motor of Hydraulic Servo Valves under Electromagnetic Excitations

    Directory of Open Access Journals (Sweden)

    Jinghui Peng


    Full Text Available The resonance of the armature assembly is the main problem leading to the fatigue of the spring pipe in a torque motor of hydraulic servo valves, which can cause the failure of servo valves. To predict the vibration characteristics of the armature assembly, this paper focuses on the mathematical modeling of the vibration characteristics of armature assembly in a hydraulic servo valve and the identification of parameters in the models. To build models more accurately, the effect of the magnetic spring is taken into account. Vibration modal analysis is performed to obtain the mode shapes and natural frequencies, which are necessary to implement the identification of damping ratios in the mathematical models. Based on the mathematical models for the vibration characteristics, the harmonic responses of the armature assembly are analyzed using the finite element method and measured under electromagnetic excitations. The simulation results agree well with the experimental studies.

  3. Least Squares Fitting of Perturbed Vibrational Polyads Near the Isomerization Barrier in the S_1 State of C_2H_2 (United States)

    Merer, A. J.; Baraban, J. H.; Changala, P. B.; Field, R. W.


    The S_1 electronic state of acetylene has recently been shown to have two potential minima, corresponding to cis- and trans-bent structures. The trans-bent isomer is the more stable, with the cis-bent isomer lying about 2670 cm^{-1} higher; the barrier to isomerization lies roughly 5000 cm^{-1} above the trans zero-point level. The ``isomerization coordinate'' (along which the molecule moves to get from the trans minimum to the barrier) is a combination of the ν_3 (trans bending) and ν_6 (cis bending) vibrational normal coordinates, but the spectrum is very confused because the ν_6 vibration interacts strongly with the ν_4 (torsion) vibration through Coriolis and Darling-Dennison resonances. Since the ν_4 and ν_6 fundamental frequencies are almost equal, the bending vibrational structure consists of polyads. At low vibrational energies the polyads where these three vibrations are excited can be fitted by least squares almost to experimental accuracy with a simple model of Coriolis and Darling-Dennison interactions, but at higher energies the huge x_{36} cross-anharmonicity, which is a symptom that the levels are approaching the isomerization barrier, progressively destroys the polyad structure; in addition the levels show an increasing even-odd staggering of their K-rotational structures, as predicted by group theory. It is not possible to fit the levels near the barrier with a simple model, though some success has been achieved with extended models. Progress with the fitting of the polyads near the barrier will be reviewed. A. L. Utz, J. D. Tobiason, E. Carrasquillo M., L. J. Sanders and F. F. Crim, J. Chem. Phys. {98}, 2742, 1993.

  4. Vibrational quasi-continuum in unimolecular multiphoton dissociation

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Fernandez, P.; Gonzalez-Diaz, P.F.


    The vibrational quasi-continuum of the boron trifluoride molecule has been qualitatively studied and the formalism extended to treat N-normal-mode molecules. The anharmonic potential curves for the BF/sub 3/ normal modes have been calculated, and the computed anharmonicity constants have been tested against the fundamental frequencies. The potential curve of the wagging mode has been simulated by an internal rotation of one of the fluoride atoms. The vibrational-energy levels and wave functions have been calculated applying second-order perturbation theory. The quasi-continuum energy levels of BF/sub 3/ have been obtained by means of a method based in forming adequate linear combinations of wave functions belonging to the N-1 modes resulting from removing the i.r.-active mode;the associated energies have been minimized using a constrained minimization procedure. It has been found that the energy pattern of the N-1 vibrational modes possesses an energy density high enough for constituting a vibrational heat bath and, finally, it has been verified that the ''fictitious'' pattern of the active mode is included in the pattern of the N-1 modes.

  5. Vibrations of rotating machinery

    CERN Document Server

    Matsushita, Osami; Kanki, Hiroshi; Kobayashi, Masao; Keogh, Patrick


    This book opens with an explanation of the vibrations of a single degree-of-freedom (dof) system for all beginners. Subsequently, vibration analysis of multi-dof systems is explained by modal analysis. Mode synthesis modeling is then introduced for system reduction, which aids understanding in a simplified manner of how complicated rotors behave. Rotor balancing techniques are offered for rigid and flexible rotors through several examples. Consideration of gyroscopic influences on the rotordynamics is then provided and vibration evaluation of a rotor-bearing system is emphasized in terms of forward and backward whirl rotor motions through eigenvalue (natural frequency and damping ratio) analysis. In addition to these rotordynamics concerning rotating shaft vibration measured in a stationary reference frame, blade vibrations are analyzed with Coriolis forces expressed in a rotating reference frame. Other phenomena that may be assessed in stationary and rotating reference frames include stability characteristic...

  6. Modelling and Analysis of Automobile Vibration System Based on Fuzzy Theory under Different Road Excitation Information

    Directory of Open Access Journals (Sweden)

    Xue-wen Chen


    Full Text Available A fuzzy increment controller is designed aimed at the vibration system of automobile active suspension with seven degrees of freedom (DOF. For decreasing vibration, an active control force is acquired by created Proportion-Integration-Differentiation (PID controller. The controller’s parameters are adjusted by a fuzzy increment controller with self-modifying parameters functions, which adopts the deviation and its rate of change of the body’s vertical vibration velocity and the desired value in the position of the front and rear suspension as the input variables based on 49 fuzzy control rules. Adopting Simulink, the fuzzy increment controller is validated under different road excitation, such as the white noise input with four-wheel correlation in time-domain, the sinusoidal input, and the pulse input of C-grade road surface. The simulation results show that the proposed controller can reduce obviously the vehicle vibration compared to other independent control types in performance indexes, such as, the root mean square value of the body’s vertical vibration acceleration, pitching, and rolling angular acceleration.

  7. Examining the impact of harmonic correlation on vibrational frequencies calculated in localized coordinates (United States)

    Hanson-Heine, Magnus W. D.


    Carefully choosing a set of optimized coordinates for performing vibrational frequency calculations can significantly reduce the anharmonic correlation energy from the self-consistent field treatment of molecular vibrations. However, moving away from normal coordinates also introduces an additional source of correlation energy arising from mode-coupling at the harmonic level. The impact of this new component of the vibrational energy is examined for a range of molecules, and a method is proposed for correcting the resulting self-consistent field frequencies by adding the full coupling energy from connected pairs of harmonic and pseudoharmonic modes, termed vibrational self-consistent field (harmonic correlation). This approach is found to lift the vibrational degeneracies arising from coordinate optimization and provides better agreement with experimental and benchmark frequencies than uncorrected vibrational self-consistent field theory without relying on traditional correlated methods.

  8. Identification of Serine Conformers by Matrix-Isolation IR Spectroscopy Aided by Near-Infrared Laser Induced Conformational Change, 2D Correlation Analysis, and Quantum Mechanical Anharmonic Computations (United States)

    Najbauer, Eszter E.; Bazsó, Gábor; Apóstolo, Rui; Fausto, Rui; Biczysko, Malgorzata; Barone, Vincenzo; Tarczay, György


    The conformers of α-serine were investigated by matrix-isolation IR spectroscopy combined with NIR laser irradiation. This method, aided by 2D correlation analysis, enabled unambiguously grouping the spectral lines to individual conformers. On the basis of comparison of at least nine experimentally observed vibrational transitions of each conformer with empirically scaled (SQM) and anharmonic (GVPT2) computed IR spectra, 6 conformers were identified. In addition, the presence of at least one more conformer in Ar matrix was proved, and a short-lived conformer with a half-live of (3.7±0.5)·103 s in N2 matrix was generated by NIR irradiation. The analysis of the NIR laser induced conversions revealed that the excitation of the stretching overtone of both the side-chain and the carboxylic OH groups can effectively promote conformational changes, but remarkably different paths were observed for the two kinds of excitations. PMID:26201050

  9. Thermal expansion, anharmonicity and temperature-dependent Raman spectra of single- and few-layer MoSe₂ and WSe₂. (United States)

    Late, Dattatray J; Shirodkar, Sharmila N; Waghmare, Umesh V; Dravid, Vinayak P; Rao, C N R


    We report the temperature-dependent Raman spectra of single- and few-layer MoSe2 and WSe2 in the range 77-700 K. We observed linear variation in the peak positions and widths of the bands arising from contributions of anharmonicity and thermal expansion. After characterization using atomic force microscopy and high-resolution transmission electron microscopy, the temperature coefficients of the Raman modes were determined. Interestingly, the temperature coefficient of the A(2)(2u) mode is larger than that of the A(1g) mode, the latter being much smaller than the corresponding temperature coefficients of the same mode in single-layer MoS2 and of the G band of graphene. The temperature coefficients of the two modes in single-layer MoSe2 are larger than those of the same modes in single-layer WSe2. We have estimated thermal expansion coefficients and temperature dependence of the vibrational frequencies of MoS2 and MoSe2 within a quasi-harmonic approximation, with inputs from first-principles calculations based on density functional theory. We show that the contrasting temperature dependence of the Raman-active mode A(1g) in MoS2 and MoSe2 arises essentially from the difference in their strain-phonon coupling. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Influence of temperature on vibrational spectra and consequences for the predictive ability of multivariate models

    NARCIS (Netherlands)

    Wülfert, F.; Kok, W. T.; Smilde, A. K.


    Temperature, pressure, viscosity, and other process variables fluctuate during an industrial process. When vibrational spectra are measured on- or in-line for process analytical and control purposes, the fluctuations influence the shape of the spectra in a nonlinear manner. The influence of these


    NARCIS (Netherlands)



    Proton and deuteron inelastic scattering experiments, performed with an energy resolution of 12-15 keV, have been used to study negative-parity states of vibrational and transitional nuclei with mass between 98 and 150. The analysis has been focussed on the isovector components, on the

  12. Free Vibration Response of a Frame Structural Model Controlled by a Nonlinear Active Mass Driver System

    Directory of Open Access Journals (Sweden)

    Ilaria Venanzi


    Full Text Available Active control devices, such as active mass dampers, are mainly employed for the reduction of wind-induced vibrations in high-rise buildings, with the final aim of satisfying vibration serviceability limit state requirements and of meeting appropriate comfort criteria. When such active devices, normally operating under wind loads associated with short return periods, are subjected to seismic events, they can experience large amplitude vibrations and exceed stroke limits. This may lead to a reduced performance of the control system that can even worsen the performance of the whole structure. In this paper, a nonlinear control strategy based on a modified direct velocity feedback algorithm is proposed for handling stroke limits of an active mass driver (AMD system. In particular, a suitable nonlinear braking term proportional to the relative AMD velocity is included in the control law in order to slowdown the device in the proximity of the stroke limits. Experimental and numerical free vibration tests are carried out on a scaled-down five-story frame structure equipped with an AMD to demonstrate the effectiveness of the proposed control strategy.

  13. Experiments in Sound and Structural Vibrations Using an Air-Analog Model Ducted Propulsion System (United States)


    from the array in AWT 2.3 Laser Doppler Vibrometry iA laser Dplrvibrometer is based onthe picleof the detection of the Dplrshift of coherent laser light...of a circular membrane /(fromn Morse and Ingard) University of Noire Dame Center for Flow Physics and Control I _ I Sound and Vibration Measurements

  14. Vibration analysis of a trimorph plate as a precursor model for smart automotive bodywork

    International Nuclear Information System (INIS)

    Big-Alabo, A; Cartmell, M P


    This study investigates the vibration characteristics of a proposed candidate structure for smarter car bodies. The material is conceived as a three-layer laminated structure in the form of a trimorph plate. The vibration response of the plate is investigated for large deflections by considering the effects of geometric nonlinearity. First, the governing equation for the mid-point deflection of the plate is developed based on classical laminate plate theory (CLPT). The governing equation is solved, and a simulation is run for different possible layer-stacking sequences. Comparisons are made between the nonlinear vibration response of this trimorph plate both with and without the effects of the von Kármán geometric nonlinearity. The results show that for the same material properties the different layer-stacking sequences produce different vibration responses, and from there it is concluded that layer-stacking sequencing is a basis for the definition of a suitable material configuration for high performance automotive applications.

  15. Blades Forced Vibration Under Aero-Elastic Excitation Modeled by Van der Pol

    Czech Academy of Sciences Publication Activity Database

    Půst, Ladislav; Pešek, Luděk


    Roč. 27, č. 11 (2017), č. článku 1750166. ISSN 0218-1274 R&D Projects: GA ČR GA16-04546S Institutional support: RVO:61388998 Keywords : ade vibration * aero-elastic force * self-excitation * van der Pol Subject RIV: BI - Acoustics OBOR OECD: Applied mechanics Impact factor: 1.329, year: 2016

  16. Economic benefits of CAD-models for compressor manifold vibration analyses according to API 618

    NARCIS (Netherlands)

    Eijk, A.; Samland, G.; Retz, N.; Sauter, D.


    Reciprocating compressors, including pulsation dampers and the connected pipe system, are often the heart of an installation and should therefore operate reliable. Compressor manifold vibrations can contribute to fatigue failure of the system which can lead to unsafe situations, loss of capacity and

  17. Modeling and Dynamic Properties of a Four-Parameter Zener Model Vibration Isolator

    Directory of Open Access Journals (Sweden)

    Wen-ku Shi


    Full Text Available To install high-performance isolators in a limited installation space, a novel passive isolator based on the four-parameter Zener model is proposed. The proposed isolator consists of three major parts, namely, connecting structure, sealing construction, and upper and lower cavities, all of which are enclosed by four segments of metal bellows with the same diameter. The equivalent stiffness and damping model of the isolator are derived from the dynamic stiffness of the isolation system. Experiments are conducted, and the experiment error is analyzed. Test results verify the validity of the model. Theoretical analysis and numerical simulation reveal that the stiffness and damping of the isolator have multiple properties with different exciting amplitudes and structural parameters. In consideration of the design of the structural parameter, the effects of exciting amplitude, damp channel diameter, equivalent cylinder diameter of cavities, sum of the stiffness of the bellows at the end of the isolator, and length of damp channel on the dynamic properties of the isolator are discussed comprehensively. A design method based on the parameter sensitivity of the isolator’s design parameter is proposed. Thus, the novel isolator can be practically applied to engineering and provide a significant contribution in the field.

  18. Nightmare from which you will never awake: Electronic to vibrational spectra!

    Energy Technology Data Exchange (ETDEWEB)

    De Silva, Nuwon [Iowa State Univ., Ames, IA (United States)


    The theoretical background of ab initio methods and density functional theory is provided. The anharmonicity associated with weakly bound metal cation dihydrogen complexes is examined using the vibrational self-consistent field (VSCF) method and the interaction between a hydrogen molecule and a metal cation is characterized. A study of molecular hydrogen clustering around the lithium cation and their accompanied vibrational anharmonicity employing VSCF is illustrated. A qualitative interpretation is provided of solvent-induced shifts of amides and simulated electronic absorption spectra using the combined time-dependent density functional theory/effective fragment potential method (TDDFT/EFP). An excited-state solvent assisted quadruple hydrogen atom transfer reaction of a coumarin derivative is elucidated using micro solvated quantum mechanical (QM) water and macro solvated EFP water. A dispersion correction to the QM-EFP1 interaction energy is presented.

  19. Anharmonicity and Quantum Effects in Thermal Expansion of an Invar Alloy (United States)

    Yokoyama, Toshihiko; Eguchi, Keitaro


    We have investigated the anharmonicity and quantum effects in the Invar alloy Fe64.6Ni35.4 that shows anomalously small thermal expansion. We have performed Fe and Ni K-edge extended x-ray-absorption fine-structure spectroscopic measurements and the computational simulations based on the path-integral effective-classical-potential theory. The first nearest-neighbor (NN) shells around Fe show almost no thermal expansion, while those around Ni exhibit meaningful but smaller expansion than that of fcc Ni. At low temperature, the quantum effect is found to play an essentially important role, which is confirmed by comparing the quantum-mechanical simulations to the classical ones. The anharmonicity (asymmetric distribution) clearly exists for all the first NN shells as in normal thermal expansion systems, implying the breakdown of the direct correspondence between thermal expansion and anharmonicity.

  20. Embedding human annoyance rate models in wireless smart sensors for assessing the influence of subway train-induced ambient vibration (United States)

    Sun, Ke; Zhang, Wei; Ding, Huaping; Kim, Robin E.; Spencer, Billie F., Jr.


    The operation of subway trains induces ambient vibrations, which may cause annoyance and other adverse effects on humans, eventually leading to physical, physiological, and psychological problems. In this paper, the human annoyance rate (HAR) models, used to assess the human comfort under the subway train-induced ambient vibrations, were deduced and the calibration curves for 5 typical use circumstances were addressed. An autonomous measurement system, based on the Imote2, wireless smart sensor (WSS) platform, plus the SHM-H, high-sensitivity accelerometer board, was developed for the HAR assessment. The calibration curves were digitized and embedded in the computational core of the WSS unit. Experimental validation was conducted, using the developed system on a large underground reinforced concrete frame structure adjoining the subway station. The ambient acceleration of both basement floors was measured; the embedded computation was implemented and the HAR assessment results were wirelessly transmitted to the central server, all by the WSS unit. The HAR distributions of the testing areas were identified, and the extent to which both basements will be influenced by the close-up subway-train’s operation, in term of the 5 typical use circumstances, were quantitatively assessed. The potential of the WSS-based autonomous system for the fast environment impact assessment of the subway train-induced ambient vibration was well demonstrated.

  1. Equation of state, nonlinear elastic response, and anharmonic properties of diamond-cubic silicon and germanium. First-principles investigation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chenju [Sichuan Univ., Chengdu (China). Inst. of Atomic and Molecular Physics; Institute of Fluid Physics, Sichuan (China). National Key Laboratory of Shock Wave and Detonation Physics; Gu, Jianbing [Institute of Fluid Physics, Sichuan (China). National Key Laboratory of Shock Wave and Detonation Physics; Sichuan Univ., Chengdu (China). College of Physical Science and Technology; Kuang, Xiaoyu [Sichuan Univ., Chengdu (China). Inst. of Atomic and Molecular Physics; Xiang, Shikai [Institute of Fluid Physics, Sichuan (China). National Key Laboratory of Shock Wave and Detonation Physics


    Nonlinear elastic properties of diamond-cubic silicon and germanium have not been investigated sufficiently to date. Knowledge of these properties not only can help us to understand nonlinear mechanical effects but also can assist us to have an insight into the related anharmonic properties, so we investigate the nonlinear elastic behaviour of single silicon and germanium by calculating their second- and third-order elastic constants. All the results of the elastic constants show good agreement with the available experimental data and other theoretical calculations. Such a phenomenon indicates that the present values of the elastic constants are accurate and can be used to further study the related anharmonic properties. Subsequently, the anharmonic properties such as the pressure derivatives of the second-order elastic constants, Grueneisen constants of long-wavelength acoustic modes, and ultrasonic nonlinear parameters are explored. All the anharmonic properties of silicon calculated in the present work also show good agreement with the existing experimental results; this consistency not only reveals that the calculation method of the anharmonic properties is feasible but also illuminates that the anharmonic properties obtained in the present work are reliable. For the anharmonic properties of germanium, since there are no experimental result and other theoretical data till now, we hope that the anharmonic properties of germanium first offered in this work would serve as a reference for future studies.

  2. Anharmonic, dynamic and functional level effects in far-infrared spectroscopy: Phenol derivatives (United States)

    Bakker, Daniël J.; Ong, Qin; Dey, Arghya; Mahé, Jérôme; Gaigeot, Marie-Pierre; Rijs, Anouk M.


    The far-infrared (far-IR) spectra of phenol and four ortho-substituted phenol derivatives, including three deuterated analogs, are presented. These spectra, measured using the free electron laser FELIX, are used to compare the performance of Born-Oppenheimer Molecular Dynamics (BOMD) with several commonly used levels of static density functional theory in the far-IR region. The molecules studied here form intramolecular hydrogen bonds of different strengths (except phenol), display diverse degrees of flexibility, and the OH moieties of the molecules provide large amplitude, anharmonic OH torsional modes. Since several of the molecules contain two OH groups, strong anharmonic couplings can also be present. Moreover, the experimental far-IR spectra of phenol and saligenin show overtones and combination bands as proven by the measurements of their deuterated analogs. All these characteristics of the molecules enable us to test the performance of the applied levels of theory on different complicating factors. Briefly summarized, both the strength of the hydrogen bond and molecular rigidity do not significantly influence the agreement between theory and experiment. All applied theoretical methods have difficulties to consistently predict modes that include the anharmonic OH torsional motion, resulting in overestimated intensities and frequencies. Coupling between two OH functional groups provides an additional challenge for theories, as seen for catechol. The various employed theoretical methods are found to complement each other, showing good results for complex harmonic modes in the case of static B3LYP-D3, while improved results are observed for anharmonic modes, including the OH torsional modes and their couplings, in the case of BOMD. Additionally, BOMD calculates the relative intensities better than the other theories. VPT2 reproduces weak anharmonic modes well, but it overestimates shifts and intensities for strong anharmonic modes.

  3. A new fractional nonlocal model and its application in free vibration of Timoshenko and Euler-Bernoulli beams (United States)

    Rahimi, Zaher; Sumelka, Wojciech; Yang, Xiao-Jun


    The application of fractional calculus in fractional models (FMs) makes them more flexible than integer models inasmuch they can conclude all of integer and non-integer operators. In other words FMs let us use more potential of mathematics to modeling physical phenomena due to the use of both integer and fractional operators to present a better modeling of problems, which makes them more flexible and powerful. In the present work, a new fractional nonlocal model has been proposed, which has a simple form and can be used in different problems due to the simple form of numerical solutions. Then the model has been used to govern equations of the motion of the Timoshenko beam theory (TBT) and Euler-Bernoulli beam theory (EBT). Next, free vibration of the Timoshenko and Euler-Bernoulli simply-supported (S-S) beam has been investigated. The Galerkin weighted residual method has been used to solve the non-linear governing equations.

  4. Experimental investigation of biodynamic human body models subjected to whole-body vibration during a vehicle ride. (United States)

    Taskin, Yener; Hacioglu, Yuksel; Ortes, Faruk; Karabulut, Derya; Arslan, Yunus Ziya


    In this study, responses of biodynamic human body models to whole-body vibration during a vehicle ride were investigated. Accelerations were acquired from three different body parts, such as the head, upper torso and lower torso, of 10 seated passengers during a car ride while two different road conditions were considered. The same multipurpose vehicle was used during all experiments. Additionally, by two widely used biodynamic models in the literature, a set of simulations were run to obtain theoretical accelerations of the models and were compared with those obtained experimentally. To sustain a quantified comparison between experimental and theoretical approaches, the root mean square acceleration and acceleration spectral density were calculated. Time and frequency responses of the models demonstrated that neither of the models showed the best prediction performance of the human body behaviour in all cases, indicating that further models are required for better prediction of the human body responses.

  5. Femtosecond wavevector overtone spectroscopy of anharmonic lattice dynamics in ferroelectric crystals (United States)

    Brennan, Ciaran Joseph

    Impulse Stimulated Raman Scattering (ISRS) is a useful technique for characterizing the soft optic modes that are responsible for the polar distortion in ferroelectric crystals. ISRS provides an impulse force to the selected mode at a specific wavevector, and the subsequent oscillations and damping of the mode can be observed. Previous researchers have used this technique to measure the wavevector-dependent frequency and damping of optic phonons and phonon-polaritons in a variety of ferroelectric crystals. The recent development of powerful amplified Ti:sapphire femtosecond lasers opens the possibility that the impulse force applied to the ferroelectric soft mode is so large that the resultant ionic excursions will sample the anharmonic portions of the potential energy surface for the soft mode. This would, in principle, allow the experimental measurement of the potential energy surface by carefully characterizing the anharmonic content of the ISRS signals. This information would give insight into the causal mechanism for the phenomenon of ferroelectricity. Measurements of anharmonic phonon-polaritons in ferroelectric crystals have been performed using Wavevector Overtone Spectroscopy (WOS), a refinement of the impulsive stimulated Raman scattering (ISRS) technique. Numerical simulations suggest that harmonics of the polariton wavevector, rather than harmonics of the polariton frequency, are the key signatures of lattice anharmonicity in a time resolved grating experiment. The predicted signals at the wavevector overtones were observed up to the 5th order in LiTaO3, providing strong evidence of anharmonicity of the phonon-polariton response. Further evidence for anharmonicity comes from ISRS measurements at the fundamental wavevector and measurements of diffraction efficiency. The ISRS data shows non-sinusoidal response with a rich overtone spectrum, while the diffraction efficiency measurements reveal ionic displacements of about 1% of the ferroelectric distortion

  6. Analytic approximate eigenvalues by a new technique. Application to sextic anharmonic potentials (United States)

    Diaz Almeida, D.; Martin, P.


    A new technique to obtain analytic approximant for eigenvalues is presented here by a simultaneous use of power series and asymptotic expansions is presented. The analytic approximation here obtained is like a bridge to both expansions: rational functions, as Padé, are used, combined with elementary functions are used. Improvement to previous methods as multipoint quasirational approximation, MPQA, are also developed. The application of the method is done in detail for the 1-D Schrödinger equation with anharmonic sextic potential of the form V (x) =x2 + λx6 and both ground state and the first excited state of the anharmonic oscillator.

  7. Anharmonic properties of solids from measurements of the stress acoustic constant (United States)

    Cantrell, J. H., Jr.


    The equations of elastic motion and their solutions are generalized in order to include nonzero homogeneous initial stresses and redefine the stress acoustic constants to include the effect of initial stress. In deriving the relationship between the stress acoustic constants and the strain-generalized Gruneisen parameters, implications in material anharmonicity and nonlinear thermoelasticity are discovered. It is found that the linear change in velocity obtained from these measurements is a nonlinear process resulting from anharmonicity in the interatomic potential. In addition, the thermal expansion coefficient can also be expressed in terms of linear combinations.

  8. Calculations of lattice vibrational mode lifetimes using Jazz: a Python wrapper for LAMMPS

    International Nuclear Information System (INIS)

    Gao, Y; Wang, H; Daw, M S


    Jazz is a new python wrapper for LAMMPS [1], implemented to calculate the lifetimes of vibrational normal modes based on forces as calculated for any interatomic potential available in that package. The anharmonic character of the normal modes is analyzed via the Monte Carlo-based moments approximation as is described in Gao and Daw [2]. It is distributed as open-source software and can be downloaded from the website (paper)

  9. Effect of vibrating electrode on temperature profiles, fluid flow, and pool shape in ESR system based on a comprehensive coupled model

    Directory of Open Access Journals (Sweden)

    Fang Wang


    Full Text Available The vibrating electrode method was proposed in the electro-slag remelting (ESR process in this paper, and the effect of vibrating electrode on the solidification structure of ingot was studied. A transient three-dimensional (3D coupled mathematical model was established to simulate the electromagnetic phenomenon, fluid flow as well as pool shape in the ESR process with the vibrating electrode. The finite element volume method is developed to solve the electromagnetic field using ANSYS mechanical APDL software. Moreover, the electromagnetic force and Joule heating are interpolated as the source term of the momentum and energy equations. The multi-physical fields have been investigated and compared between the traditional electrode and the vibrating electrode in the ESR process. The results show that the drop process of metal droplets with the traditional electrode is scattered randomly. However, the drop process of metal droplets with the vibrating electrode is periodic. The highest temperature of slag layer with the vibrating electrode is higher than that with the traditional electrode, which can increase the melting rate due to the enhanced heat transfer in the vicinity of the electrode tip. The results also show that when the amplitude and frequency of the vibrating electrode increase, the cycle of drop process of metal droplets decreases significantly.

  10. Application of eigenfunction orthogonalities to vibration problems

    CSIR Research Space (South Africa)

    Fedotov, I


    Full Text Available The modelling of vibration problems is of great importance in engineering. A popular method of analysing such problems is the variational method. The simplest vibration model is represented using the example of a long rod. Two kinds...

  11. Ultrasonic vibration-assisted (UV-A) pelleting of wheat straw: a constitutive model for pellet density. (United States)

    Song, Xiaoxu; Zhang, Meng; Pei, Z J; Wang, Donghai


    Ultrasonic vibration-assisted (UV-A) pelleting can increase cellulosic biomass density and reduce biomass handling and transportation costs in cellulosic biofuel manufacturing. Effects of input variables on pellet density in UV-A pelleting have been studied experimentally. However, there are no reports on modeling of pellet density in UV-A pelleting. Furthermore, in the literature, most reported density models in other pelleting methods of biomass are empirical. This paper presents a constitutive model to predict pellet density in UV-A pelleting. With the predictive model, relations between input variables (ultrasonic power and pelleting pressure) and pellet density are predicted. The predicted relations are compared with those determined experimentally in the literature. Model predictions agree well with reported experimental results. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Analytical Modeling of a Ball Screw Feed Drive for Vibration Prediction of Feeding Carriage of a Spindle

    Directory of Open Access Journals (Sweden)

    Lei Zhang


    Full Text Available An analytical modeling approach for ball screw feed drives is proposed to predict the dynamic behavior of the feeding carriage of a spindle. Mainly considering the rigidity of linear guide modules, a ball-screw-feeding spindle is modeled by a mass-spring system. The contact stiffness of rolling interfaces in linear guide modules is accurately calculated according to the Hertzian theory. Next, a mathematical model is derived using the Lagrange method. The presented model is verified by conducting modal experiments. It is found that the simulated results correspond closely with the experimental data. In order to show the applicability of the proposed mathematical model, parameter-dependent dynamics of the feeding carriage of the spindle is investigated. The work will contribute to the vibration prediction of spindles.

  13. Anharmonic onsets in polypeptides revealed by neutron scattering: experimental evidences and quantitative description of energy resolution dependence. (United States)

    Schiró, Giorgio


    Neutron scattering measurements on protein powders reveal two deviations from harmonic dynamics at low temperature, whose molecular origin, physical nature and biological relevance are still matter of discussion. In this study we present a new experimental and theoretical approach to evidence the resolution dependence of anharmonic onsets: the use of strategically selected homomeric polypeptides allows revealing the exact resolution dependence; a two-site energy landscape model, where resolution effects are explicitly taken into account, is able to interpret quantitatively the experimental data in terms of energy landscape parameters. The energetic description provided by this analysis, together with recent experimental evidences obtained on chemically and structurally different peptide systems, allows us to connect the protein/water energy landscape structure with the two-wells water interaction potential proposed to explain the low-density→high-density liquid-liquid transition observed in supercooled water. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Effect of one-way clutch on the nonlinear vibration of belt-drive systems with a continuous belt model (United States)

    Ding, Hu; Zu, Jean W.


    This study focuses on the nonlinear steady-state response of a belt-drive system with a one-way clutch. A dynamic model is established to describe the rotations of the driving pulley, the driven pulley, and the accessory shaft. Moreover, the model considers the transverse vibration of the translating belt spans for the first time in belt-drive systems coupled with a one-way clutch. The excitation of the belt-drive system is derived from periodic fluctuation of the driving pulley. In automotive systems, this kind of fluctuation is induced by the engine firing harmonic pulsations. The derived coupled discrete-continuous nonlinear equations consist of integro-partial-differential equations and piece-wise ordinary differential equations. Using the Galerkin truncation, a set of nonlinear ordinary differential equations is obtained from the integro-partial-differential equations. Applying the Runge-Kutta time discretization, the time histories of the dynamic response are numerically solved for the driven pulley and the accessory shaft and the translating belt spans. The resonance areas of the coupled belt-drive system are determined using the frequency sweep. The effects of the one-way clutch on the belt-drive system are studied by comparing the frequency-response curves of the translating belt with and without one-way clutch device. Furthermore, the results of 2-term and 4-term Galerkin truncation are compared to determine the numerical convergence. Moreover, parametric studies are conducted to understand the effects of the system parameters on the nonlinear steady-state response. It is concluded that one-way clutch not only decreases the resonance amplitude of the driven pulley and shaft's rotational vibration, but also reduces the resonance region of the belt's transverse vibration.

  15. Hydrogen atom in a uniform electromagnetic field as an anharmonic oscillator

    International Nuclear Information System (INIS)

    Kibler, M.; Negadi, T.


    This work establishes, by means of the Kustaanheimo-Stiefel transformation, a connection between two branches of theoretical physics which are, in present times, the object of numerous studies: the quantum mechanics of anharmonic oscillators and of the hydrogen atom in a (strong) homogeneous and constant electromagnetic field

  16. Neutron TAS spin-echo - a handle to anharmonic effects in lattice dynamics

    Czech Academy of Sciences Publication Activity Database

    Kulda, Jiří; Farhi, E.; Zeyen, CME.


    Roč. 316, - (2002), s. 383-388 ISSN 0921-4526 R&D Projects: GA AV ČR KSK1048102 Keywords : anharmonicity * neutron-echo * three-axis spectrometer Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.609, year: 2002

  17. Cubic and quartic anharmonic potential energy functions for octahedral XY6 molecules

    International Nuclear Information System (INIS)

    Fox, K.; Krohn, B.J.; Shaffer, W.H.


    We give the cubic and quartic anharmonic potential energy functions for XY 6 molecules of O/sub h/ symmetry in terms of normal coordinates. The numbers of independent cubic and quartic potential constants are 22 and 92, respectively. A standard form, introduced here, is related to the tensor formalism developed for the potential energy of tetrahedral XY 4 molecules by Hecht

  18. Anharmonic solution of Schrödinger time-independent equation

    Indian Academy of Sciences (India)

    Keywords. Anharmonic solutions; Yukawa potential. Abstract. We present here a mathematical explanation of how the Schrödinger equation for a class of harmonic oscillators possesses exact solutions. Some of the extended potentials used here are not present in the literature.

  19. Comparison of Vibrational Relaxation Modeling for Strongly Non-Equilibrium Flows (United States)


    3 where SVT is a steric factor, ! is the oscillator frequency, m̃ is the collision reduced mass, µ is the oscillator reduced mass, is the oscillator...f !"i+fCOL exp ("COL) nX r=0 (1)r r! (i r)! (f r)! 1 "rCOL 2 (2) "COL = SVT 4⇡3! m̃ 2/µ ↵2h sinh2 ⇣⇡! ↵v̄ ⌘ (3) For diatom...factors, SVT and SVV, and the parameter ↵ determine the rate of vibrational relaxation, while the inherent form of the transition probability

  20. Vibration of quadrilateral embedded multilayered graphene sheets based on nonlocal continuum models using the Galerkin method (United States)

    Babaei, H.; Shahidi, A. R.


    Free vibration analysis of quadrilateral multilayered graphene sheets (MLGS) embedded in polymer matrix is carried out employing nonlocal continuum mechanics. The principle of virtual work is employed to derive the equations of motion. The Galerkin method in conjunction with the natural coordinates of the nanoplate is used as a basis for the analysis. The dependence of small scale effect on thickness, elastic modulus, polymer matrix stiffness and interaction coefficient between two adjacent sheets is illustrated. The non-dimensional natural frequencies of skew, rhombic, trapezoidal and rectangular MLGS are obtained with various geometrical parameters and mode numbers taken into account, and for each case the effects of the small length scale are investigated.

  1. Experimental modeling of flow-induced vibration of multi-span U-tubes in a CANDU steam generator

    International Nuclear Information System (INIS)

    Mohany, A.; Feenstra, P.; Janzen, V.P.; Richard, R.


    Flow-induced vibration of the tubes in a nuclear steam generator is a concern for designers who are trying to increase the life span of these units. The dominant excitation mechanisms are fluidelastic instability and random turbulence excitation. The outermost U-bend region of the tubes is of greatest concern because the flow is almost perpendicular to the tube axis and the unsupported span is relatively long. The support system in this region must be well designed in order to minimize fretting wear of the tubes at the support locations. Much of the previous testing was conducted on straight single-span or cantilevered tubes in cross-flow. However, the dynamic response of steam generator multi-span U-tubes with clearance supports is expected to be different. Accurate modeling of the tube dynamics is important to properly simulate the dynamic interaction of the tube and supports. This paper describes a test program that was developed to measure the dynamic response of a bundle of steam generator U-tubes with Anti-Vibration Bar (AVB) supports, subjected to Freon two-phase cross-flow. The tube bundle has similar geometrical conditions to those expected for future CANDU steam generators. Future steam generators will be larger than previous CANDU steam generators, nearly twice the heat transfer area, with significant changes in process conditions in the U-bend region, such as increased steam quality and a broader range of flow velocities. This test program was initiated at AECL to demonstrate that the tube support design for future CANDU steam generators will meet the stringent requirements associated with a 60 year design life. The main objective of the tests is to address the issue of in-plane and out-of-plane fluidelastic instability and random turbulent excitation of a U-tube bundle with Anti-Vibration Bar (AVB) supports. Details of the test rig, measurement techniques and preliminary instrumentation results are described in the paper. (author)

  2. Optimal piezoelectric beam shape for single and broadband vibration energy harvesting: Modeling, simulation and experimental results (United States)

    Muthalif, Asan G. A.; Nordin, N. H. Diyana


    Harvesting energy from the surroundings has become a new trend in saving our environment. Among the established ones are solar panels, wind turbines and hydroelectric generators which have successfully grown in meeting the world's energy demand. However, for low powered electronic devices; especially when being placed in a remote area, micro scale energy harvesting is preferable. One of the popular methods is via vibration energy scavenging which converts mechanical energy (from vibration) to electrical energy by the effect of coupling between mechanical variables and electric or magnetic fields. As the voltage generated greatly depends on the geometry and size of the piezoelectric material, there is a need to define an optimum shape and configuration of the piezoelectric energy scavenger. In this research, mathematical derivations for unimorph piezoelectric energy harvester are presented. Simulation is done using MATLAB and COMSOL Multiphysics software to study the effect of varying the length and shape of the beam to the generated voltage. Experimental results comparing triangular and rectangular shaped piezoelectric beam are also presented.

  3. Scientific basis for modelling and calculation of acoustic vibrations in the nuclear power plant coolant (United States)

    Proskuryakov, K. N.


    Created new scientific direction: “Diagnosis, prognosis and prevention of vibration - acoustic resonances in the nuclear power plant (NPP) equipment. The possibility of using methods for calculating and analyzing electric oscillation systems in the study of the properties of acoustic systems with a two-phase medium is proved, based on the similarity of the differential equations describing the state of these systems. Is shown that the developed methods can be used to predict and prevent the occurrence of vibration - acoustic resonances in the NPP equipment. Is shown that the volume of pressurizer at NPPs with VVER and PWR as well as boiling water reactor that exploded at Japan’s NPP Fukushima Daiichi is a Helmholtz resonator, which contain water and steam volumes and able many times increases the impact on them of outside periodic oscillations. Paper presents most important results published long before the severe accidents at NPPs Three Mile Island (TMI), Chernobyl and Fukushima Daiichi that could be used for the prediction of a severe accident scenario, identification of measuring data and process control in order to minimize the damage. Worked out results also could be useful in another industrial technologies based on applications of single and two-phase flows.

  4. Gas phase vibrational spectroscopy of the protonated water pentamer: the role of isomers and nuclear quantum effects. (United States)

    Fagiani, Matias R; Knorke, Harald; Esser, Tim K; Heine, Nadja; Wolke, Conrad T; Gewinner, Sandy; Schöllkopf, Wieland; Gaigeot, Marie-Pierre; Spezia, Riccardo; Johnson, Mark A; Asmis, Knut R


    We use cryogenic ion trap vibrational spectroscopy to study the structure of the protonated water pentamer, H + (H 2 O) 5 , and its fully deuterated isotopologue, D + (D 2 O) 5 , over nearly the complete infrared spectral range (220-4000 cm -1 ) in combination with harmonic and anharmonic electronic structure calculations as well as RRKM modelling. Isomer-selective IR-IR double-resonance measurements on the H + (H 2 O) 5 isotopologue establish that the spectrum is due to a single constitutional isomer, thus discounting the recent analysis of the band pattern in the context of two isomers based on AIMD simulations 〈W. Kulig and N. Agmon, Phys. Chem. Chem. Phys., 2014, 16, 4933-4941〉. The evolution of the persistent bands in the D + (D 2 O) 5 cluster allows the assignment of the fundamentals in the spectra of both isotopologues, and the simpler pattern displayed by the heavier isotopologue is consistent with the calculated spectrum for the branched, Eigen-based structure originally proposed 〈J.-C. Jiang, et al., J. Am. Chem. Soc., 2000, 122, 1398-1410〉. This pattern persists in the vibrational spectra of H + (H 2 O) 5 in the temperature range from 13 K up to 250 K. The present study also underscores the importance of considering nuclear quantum effects in predicting the kinetic stability of these isomers at low temperatures.

  5. Predicting Statistical Distributions of Footbridge Vibrations

    DEFF Research Database (Denmark)

    Pedersen, Lars; Frier, Christian


    The paper considers vibration response of footbridges to pedestrian loading. Employing Newmark and Monte Carlo simulation methods, a statistical distribution of bridge vibration levels is calculated modelling walking parameters such as step frequency and stride length as random variables...

  6. Modeling and analysis of dual-output piezoelectric transformer operating at the thickness-shear vibration mode. (United States)

    Du, Jinlong; Hu, Junhui; Tseng, King-Jet; Kai, Chen Shu; Siong, Goh Chee


    In our previous study, the multioutput piezoelectric transformer operating at the thickness-shear vibration mode was proposed and experimentally investigated. By designing a new construction of support and lead wire connection, a power density of 52.7 W/cm3 and a total output power of 169.8 W were achieved at a temperature rise less than 20 degrees C. In this work, a theoretical model was developed for the dual-output piezoelectric transformer operating at the thickness-shear vibration mode. The equivalent circuit parameters of the piezoelectric transformer were derived. Based on this, the impedance characteristics, equivalent inductance, capacitance ratio, voltage gain, and efficiency of the piezoelectric transformer were calculated. The theoretical results were verified by experimental data. Furthermore, the effect of the transformer size on the voltage gain, efficiency, output power and power density, and the effect of the load of one output on the voltage gain of another output were analyzed. Some useful guidelines were achieved by these analyses.

  7. Spectra-structure correlations of saturated and unsaturated medium-chain fatty acids. Near-infrared and anharmonic DFT study of hexanoic acid and sorbic acid. (United States)

    Grabska, Justyna; Beć, Krzysztof B; Ishigaki, Mika; Wójcik, Marek J; Ozaki, Yukihiro


    Quantum chemical reproduction of entire NIR spectra is a new trend, enabled by contemporary advances in the anharmonic approaches. At the same time, recent increase of the importance of NIR spectroscopy of biological samples raises high demand for gaining deeper understanding of NIR spectra of biomolecules, i.e. fatty acids. In this work we investigate saturated and unsaturated medium-chain fatty acids, hexanoic acid and sorbic acid, in the near-infrared region. By employing fully anharmonic density functional theory (DFT) calculations we reproduce the experimental NIR spectra of these systems, including the highly specific spectral features corresponding to the dimerization of fatty acids. Broad range of concentration levels from 5·10 -4 M in CCl 4 to pure samples are investigated. The major role of cyclic dimers can be evidenced for the vast majority of these samples. A highly specific NIR feature of fatty acids, the elevation of spectral baseline around 6500-4000cm -1 , is being explained by the contributions of combination bands resulting from the vibrations of hydrogen-bonded OH groups in the cyclic dimers. Based on the high agreement between the calculated and experimental NIR spectra, a detailed NIR band assignments are proposed for hexanoic acid and sorbic acid. Subsequently, the correlations between the structure and NIR spectra are elucidated, emphasizing the regions in which clear and universal traces of specific bands corresponding to saturated and unsaturated alkyl chains can be established, thus demonstrating the wavenumber regions highly valuable for structural identifications. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Infrared spectroscopy and Density Functional Theory of crystalline β-2,4,6,8,10,12-hexanitrohexaaziosowurtzitane (β CL-20) in the region of its C-H stretching vibrations. (United States)

    Behler, K D; Pesce-Rodriguez, R; Cabalo, J; Sausa, R


    Molecular vibrational spectroscopy provides a useful tool for material characterization and model verification. We examine the CH stretching fundamental and overtones of energetic material β-2,4,6,8,10,12-hexanitrohexaaziosowurtzitane (β-CL-20) by Raman spectroscopy, Fourier Transform Infrared Spectroscopy, and Laser Photoacoustic Overtone Spectroscopy, and utilize Density Functional Theory to calculate the C-H bond energy of β-CL-20 in a crystal. The spectra reveal four intense and distinct features, whose analysis yields C-H stretching fundamental frequencies and anharmonicity values that range from 3137 to 3170 cm(-1) and 53.8 to 58.8 cm(-1), respectively. From these data, we estimate an average value of 42,700 cm(-1) (5.29 eV) for the C-H bond energy, a value that agrees with our quantum mechanical calculations. Published by Elsevier B.V.

  9. Vibrations and waves

    CERN Document Server

    Kaliski, S


    This book gives a comprehensive overview of wave phenomena in different media with interacting mechanical, electromagnetic and other fields. Equations describing wave propagation in linear and non-linear elastic media are followed by equations of rheological models, models with internal rotational degrees of freedom and non-local interactions. Equations for coupled fields: thermal, elastic, electromagnetic, piezoelectric, and magneto-spin with adequate boundary conditions are also included. Together with its companion volume Vibrations and Waves. Part A: Vibrations this work provides a wealth

  10. System-Level Coupled Modeling of Piezoelectric Vibration Energy Harvesting Systems by Joint Finite Element and Circuit Analysis

    Directory of Open Access Journals (Sweden)

    Congcong Cheng


    Full Text Available A practical piezoelectric vibration energy harvesting (PVEH system is usually composed of two coupled parts: a harvesting structure and an interface circuit. Thus, it is much necessary to build system-level coupled models for analyzing PVEH systems, so that the whole PVEH system can be optimized to obtain a high overall efficiency. In this paper, two classes of coupled models are proposed by joint finite element and circuit analysis. The first one is to integrate the equivalent circuit model of the harvesting structure with the interface circuit and the second one is to integrate the equivalent electrical impedance of the interface circuit into the finite element model of the harvesting structure. Then equivalent circuit model parameters of the harvesting structure are estimated by finite element analysis and the equivalent electrical impedance of the interface circuit is derived by circuit analysis. In the end, simulations are done to validate and compare the proposed two classes of system-level coupled models. The results demonstrate that harvested powers from the two classes of coupled models approximate to theoretic values. Thus, the proposed coupled models can be used for system-level optimizations in engineering applications.

  11. Dynamic modelling of a one-stage spur gear system and vibration-based tooth crack detection analysis (United States)

    Mohammed, Omar D.; Rantatalo, Matti; Aidanpää, Jan-Olov


    For the purpose of simulation and vibration-based condition monitoring of a geared system, it is important to model the system with an appropriate number of degrees of freedom (DOF). In earlier papers several models were suggested and it is therefore of interest to evaluate their limitations. In the present study a 12 DOF gear dynamic model including a gyroscopic effect was developed and the equations of motions were derived. A one-stage reduction gear was modelled using three different dynamic models (with 6, 8 and 8 reduced to 6 DOF), as well as the developed model (with 12 DOF), which is referred as the fourth model in this paper. The time-varying mesh stiffness was calculated, and dynamic simulation was then performed for different crack sizes. Time domain scalar indicators (the RMS, kurtosis and the crest factor) were applied for fault detection analysis. The results of the first model show a clearly visible difference from those of the other studied models, which were made more realistic by including two more DOF to describe the motor and load. Both the symmetric and the asymmetric disc cases were studied using the fourth model. In the case of disc symmetry, the results of the obtained response are close to those obtained from both the second and third models. Furthermore, the second model showed a slight influence from inter-tooth friction, and therefore the third model is adequate for simulating the pinion's y-displacement in the case of the symmetric disc. In the case of the asymmetric disc, the results deviate from those obtained in the symmetric case. Therefore, for simulating the pinion's y-displacement, the fourth model can be considered for more accurate modelling in the case of the asymmetric disc.

  12. Modeling and experimental verification of doubly nonlinear magnet-coupled piezoelectric energy harvesting from ambient vibration

    International Nuclear Information System (INIS)

    Zhou, Shengxi; Cao, Junyi; Wang, Wei; Liu, Shengsheng; Lin, Jing


    This paper presents a nonlinear doubly magnet-coupled energy harvesting system (DMEHS) which could exhibit co-bistable and monostable dynamic characteristics. Its various characteristic responses induced by the magnetic force can be conveniently obtained using the adjustable horizontal distance between two coupled harvesters in the DMEHS. In the case of appropriate relative positions, the DMEHS appears in a co-bistable structure which is different from the traditional bistable structure. Additionally, both the inclination angle of endmost magnets and the displacement perpendicular to the vibration direction are taken into account to calculate the nonlinear magnetic force in the nonlinear electromechanical equations. The numerical investigations show good agreement with experimental results with respect to the output voltage response. Each harvester without magnetic coupling is tested independently to compare with the DMEHS. Both numerical and experimental results also demonstrate the frequency bandwidth and performance enhancements by changing the horizontal distance between the two coupled harvesters. (paper)

  13. Vibration and acoustic frequency spectra for industrial process modeling using selective fusion multi-condition samples and multi-source features (United States)

    Tang, Jian; Qiao, Junfei; Wu, ZhiWei; Chai, Tianyou; Zhang, Jian; Yu, Wen


    Frequency spectral data of mechanical vibration and acoustic signals relate to difficult-to-measure production quality and quantity parameters of complex industrial processes. A selective ensemble (SEN) algorithm can be used to build a soft sensor model of these process parameters by fusing valued information selectively from different perspectives. However, a combination of several optimized ensemble sub-models with SEN cannot guarantee the best prediction model. In this study, we use several techniques to construct mechanical vibration and acoustic frequency spectra of a data-driven industrial process parameter model based on selective fusion multi-condition samples and multi-source features. Multi-layer SEN (MLSEN) strategy is used to simulate the domain expert cognitive process. Genetic algorithm and kernel partial least squares are used to construct the inside-layer SEN sub-model based on each mechanical vibration and acoustic frequency spectral feature subset. Branch-and-bound and adaptive weighted fusion algorithms are integrated to select and combine outputs of the inside-layer SEN sub-models. Then, the outside-layer SEN is constructed. Thus, "sub-sampling training examples"-based and "manipulating input features"-based ensemble construction methods are integrated, thereby realizing the selective information fusion process based on multi-condition history samples and multi-source input features. This novel approach is applied to a laboratory-scale ball mill grinding process. A comparison with other methods indicates that the proposed MLSEN approach effectively models mechanical vibration and acoustic signals.

  14. Vibration-Based Damage Diagnosis in a Laboratory Cable-Stayed Bridge Model via an RCP-ARX Model Based Method

    International Nuclear Information System (INIS)

    Michaelides, P G; Apostolellis, P G; Fassois, S D


    Vibration-based damage detection and identification in a laboratory cable-stayed bridge model is addressed under inherent, environmental, and experimental uncertainties. The problem is challenging as conventional stochastic methods face difficulties due to uncertainty underestimation. A novel method is formulated based on identified Random Coefficient Pooled ARX (RCP-ARX) representations of the dynamics and statistical hypothesis testing. The method benefits from the ability of RCP models in properly capturing uncertainty. Its effectiveness is demonstrated via a high number of experiments under a variety of damage scenarios.

  15. Vibration-Based Damage Diagnosis in a Laboratory Cable-Stayed Bridge Model via an RCP-ARX Model Based Method (United States)

    Michaelides, P. G.; Apostolellis, P. G.; Fassois, S. D.


    Vibration-based damage detection and identification in a laboratory cable-stayed bridge model is addressed under inherent, environmental, and experimental uncertainties. The problem is challenging as conventional stochastic methods face difficulties due to uncertainty underestimation. A novel method is formulated based on identified Random Coefficient Pooled ARX (RCP-ARX) representations of the dynamics and statistical hypothesis testing. The method benefits from the ability of RCP models in properly capturing uncertainty. Its effectiveness is demonstrated via a high number of experiments under a variety of damage scenarios.

  16. Vibration-Based Damage Diagnosis in a Laboratory Cable-Stayed Bridge Model via an RCP-ARX Model Based Method

    Energy Technology Data Exchange (ETDEWEB)

    Michaelides, P G; Apostolellis, P G; Fassois, S D, E-mail:, E-mail: [Laboratory for Stochastic Mechanical Systems and Automation (SMSA), Department of Mechanical and Aeronautical Engineering, University of Patras, GR 265 00 Patras (Greece)


    Vibration-based damage detection and identification in a laboratory cable-stayed bridge model is addressed under inherent, environmental, and experimental uncertainties. The problem is challenging as conventional stochastic methods face difficulties due to uncertainty underestimation. A novel method is formulated based on identified Random Coefficient Pooled ARX (RCP-ARX) representations of the dynamics and statistical hypothesis testing. The method benefits from the ability of RCP models in properly capturing uncertainty. Its effectiveness is demonstrated via a high number of experiments under a variety of damage scenarios.

  17. Vibrational interference effects in x-ray emission of a model water dimer: implications for the interpretation of the liquid spectrum. (United States)

    Ljungberg, M P; Pettersson, L G M; Nilsson, A


    We apply the Kramers-Heisenberg formula to a model water dimer to discuss vibrational interference in the x-ray emission spectrum of the donor molecule for which the core-ionized potential energy surface is dissociative but bounded by the accepting molecule. A long core-hole lifetime leads to decay from Zundel-like, fully delocalized vibrational states in the intermediate potential without involvement of a specific dissociated component. Comparison is made to a model with an unbound intermediate state allowing dissociation to infinity which gives a sharp, fully dissociated feature, and a broad molecular peak at long core-hole life time. The implications of the vibrational interference effect on the liquid water spectrum are discussed and it is proposed that this mainly gives rise to an isotope-dependent asymmetrical broadening of the lone pair peak.

  18. A variable parameter single degree-of-freedom model for predicting the effects of sitting posture and vibration magnitude on the vertical apparent mass of the human body. (United States)

    Toward, Martin G R; Griffin, Michael J


    Models of the vertical apparent mass of the human body are mostly restricted to a sitting posture unsupported by a backrest and ignore the variations in apparent mass associated with changes in posture and changes in the magnitude of vibration. Using findings from experimental research, this study fitted a single degree-of-freedom lumped parameter model to the measured vertical apparent mass of the body measured with a range of sitting postures and vibration magnitudes. The resulting model reflects the effects of reclining a rigid backrest or reclining a foam backrest (from 0 to 30 degrees), the effects of moving the hands from the lap to a steering wheel, the effects of moving the horizontal position of the feet, and the effects of vibration magnitude (from 0.125 to 1.6 ms(-2) r.m.s.). The error between the modelled and the measured apparent mass was minimised, for both the apparent masses of individual subjects and the median apparent masses of groups of 12 subjects, for each sitting posture and each vibration magnitude. Trends in model parameters, the damping ratios, and the damped natural frequencies were identified as a function of the model variables and show the effects of posture and vibration magnitude on body dynamics. For example, contact with a rigid backrest increased the derived damped natural frequency of the principal resonance as a result of reduced moving mass and increased stiffness. When the rigid backrest was reclined from 0 to 30º, the damping decreased and the resonance frequency increased as a result of reduced moving mass. It is concluded that, by appropriate variations in model parameters, a single degree-of-freedom model can provide a useful fit to the vertical apparent mass of the human body over a wide range of postures and vibration magnitudes. When measuring or modelling seat transmissibility, it may be difficult to justify an apparent mass model with more than a single degree-of-freedom if it does not reflect the large influences of

  19. Application of the Modified Vlasov Model to the Free Vibration Analysis of Thick Plates Resting on Elastic Foundations

    Directory of Open Access Journals (Sweden)

    Korhan Ozgan


    Full Text Available The Modified Vlasov Model is applied to the free vibration analysis of thick plates resting on elastic foundations. The effects of the subsoil depth, plate dimensions and their ratio, the value of the vertical deformation parameter within the subsoil on the frequency parameters of plates on elastic foundations are investigated. A four-noded, twelve degrees of freedom quadrilateral finite element (PBQ4 is used for plate bending analysis based on Mindlin plate theory which is effectively applied to the analysis of thin and thick plates when selective reduced integration technique is used. The first ten natural frequency parameters are presented in tabular and graphical forms to show the effects of the parameters considered in the study. It is concluded that the effect of the subsoil depth on the frequency parameters of the plates on elastic foundation is generally larger than that of the other parameters considered in the study.

  20. Structural equation modelling of lower back pain due to whole-body vibration exposure in the construction industry. (United States)

    Vitharana, Vitharanage Hashini Paramitha; Chinda, Thanwadee


    Whole-body vibration (WBV) exposure is a health hazard among workers, causing lower back pain (LBP) in the construction industry. This study examines key factors affecting LBP due to WBV exposure using exploratory factor analysis and structural equation modelling. The results confirm five key factors (equipment, job related, organizational, personal, social context) with their 17 associated items. The organizational factor is found the most important, as it influences the other four factors. The results also show that appropriate seat type, specific training programme, job rotation, workers' satisfaction and workers' physical condition are crucial in reducing LBP due to WBV exposure. Moreover, provision of new machines without proper training and good working condition might not help reduce LBP due to WBV exposure. The results help the construction companies to better understand key factors affecting LBP due to WBV exposure, and to plan for a better health improvement programme.

  1. Vibrationally-Fluidized Granular Flows: Impact and Bulk Velocity Measurements Compared with Discrete Element and Continuum Models (United States)

    Hashemnia, Kamyar

    A new laser displacement probe was developed to measure the impact velocities of particles within vibrationally-fluidized beds. The sensor output was also used to measure bulk flow velocity along the probe window and to provide a measure of the media packing. The displacement signals from the laser sensors were analyzed to obtain the probability distribution functions of the impact velocity of the particles. The impact velocity was affected by the orientation of the laser probe relative to the bulk flow velocity, and the density and elastic properties of the granular media. The impact velocities of the particles were largely independent of their bulk flow speed and packing density. Both the local impact and bulk flow velocities within a tub vibratory finisher were predicted using discrete element modelling (DEM) and compared to the measured values for spherical steel media. It was observed that the impact and bulk flow velocities were relatively insensitive to uncertainties in the contact coefficients of friction and restitution. It was concluded that the predicted impact and bulk flow velocities were dependent on the number of layers in the model. Consequently, the final DE model mimicked the key aspects of the experimental setup, including the submerged laser sensor. The DE method predictions of both impact velocity and bulk flow velocity were in reasonable agreement with the experimental measurements, with maximum differences of 20% and 30%, respectively. Discrete element modeling of granular flows is effective, but requires large numerical models. In an effort to reduce computational effort, this work presents a finite element (FE) continuum model of a vibrationally-fluidized granular flow. The constitutive equations governing the continuum model were calibrated using the discrete element method (DEM). The bulk flow behavior of the equivalent continuum media was then studied using both Lagrangian and Eulerian FE formulations. The bulk flow velocities predicted

  2. Real-Time Spatial Monitoring of Vehicle Vibration Data as a Model for TeleGeoMonitoring Systems


    Robidoux, Jeff


    This research presents the development and proof of concept of a TeleGeoMonitoring (TGM) system for spatially monitoring and analyzing, in real-time, data derived from vehicle-mounted sensors. In response to the concern for vibration related injuries experienced by equipment operators in surface mining and construction operations, the prototype TGM system focuses on spatially monitoring vehicle vibration in real-time. The TGM vibration system consists of 3 components: (1) Data Acquisition ...

  3. Finite element modeling of temperature load effects on the vibration of local modes in multi-cable structures (United States)

    Treyssède, Fabien


    Understanding thermal effects on the vibration of local (cable-dominant) modes in multi-cable structures is a complicated task. The main difficulty lies in the modification by temperature change of cable tensions, which are then undetermined. This paper applies a finite element procedure to investigate the effects of thermal loads on the linear dynamics of prestressed self-weighted multi-cable structures. Provided that boundary conditions are carefully handled, the discretization of cables with nonlinear curved beam elements can properly represent the thermoelastic behavior of cables as well as their linearized dynamics. A three-step procedure that aims to replace applied pretension forces with displacement continuity conditions is used. Despite an increase in the computational cost related to beam rotational degrees of freedom, such an approach has several advantages. Nonlinear beam finite elements are usually available in commercial codes. The overall method follows a thermoelastic geometrically non-linear analysis and hereby includes the main sources of non-linearities in multi-cable structures. The effects of cable bending stiffness, which can be significant, are also naturally accounted for. The accuracy of the numerical approach is assessed thanks to an analytical model for the vibration of a single inclined cable under temperature change. Then, the effects of thermal loads are investigated for two cable bridges, highlighting how natural frequencies can be affected by temperature. Although counterintuitive, a reverse relative change of natural frequency may occur for certain local modes. This phenomenon can be explained by two distinct mechanisms, one related to the physics intrinsic to cables and the other related to the thermal deflection of the superstructure. Numerical results show that cables cannot be isolated from the rest of the structure and the importance of modeling the whole structure for a quantitative analysis of temperature effects on the

  4. Multi-photon dressing of an anharmonic superconducting many-level quantum circuit

    Energy Technology Data Exchange (ETDEWEB)

    Braumueller, Jochen; Cramer, Joel; Schloer, Steffen; Rotzinger, Hannes; Radtke, Lucas; Lukashenko, Alexander; Yang, Ping; Skacel, Sebastian; Probst, Sebastian; Weides, Martin [Karlsruhe Institute of Technology (KIT), Physikalisches Institut, 76131 Karlsruhe (Germany); Marthaler, Michael; Guo, Lingzhen [Karlsruhe Institute of Technology (KIT), Institut fuer Theoretische Festkoerperphysik, 76131 Karlsruhe (Germany); Ustinov, Alexey V. [Karlsruhe Institute of Technology (KIT), Physikalisches Institut, 76131 Karlsruhe (Germany); National University of Science and Technology MISIS, Moscow 119049 (Russian Federation)


    We report on the investigation of a superconducting anharmonic multi-level circuit that is coupled to a harmonic readout resonator. We observe multi-photon transitions via virtual energy levels of our system up to the fifth excited state. The back-action of these higher-order excitations on our readout device is analyzed quantitatively and demonstrated to be in accordance with theoretical expectation. By applying a strong microwave drive we achieve multi-photon dressing of our system which is dynamically coupled by a weak probe tone. The emerging higher-order Rabi sidebands and associated Autler-Townes splittings involving up to five levels of the investigated anharmonic circuit are observed. Experimental results are in good agreement with master equation simulations.

  5. Energy eigenvalues and squeezing properties of general systems of coupled quantum anharmonic oscillators

    International Nuclear Information System (INIS)

    Chung, N. N.; Chew, L. Y.


    We have generalized the two-step approach to the solution of systems of N coupled quantum anharmonic oscillators. By using the squeezed vacuum state of each individual oscillator, we construct the tensor product state, and obtain the optimal squeezed vacuum product state through energy minimization. We then employ this optimal state and its associated bosonic operators to define a basis set to construct the Heisenberg matrix. The diagonalization of the matrix enables us to obtain the energy eigenvalues of the coupled oscillators. In particular, we have applied our formalism to determine the eigenenergies of systems of two coupled quantum anharmonic oscillators perturbed by a general polynomial potential, as well as three and four coupled systems. Furthermore, by performing a first-order perturbation analysis about the optimal squeezed vacuum product state, we have also examined into the squeezing properties of two coupled oscillator systems

  6. Toroidal p-branes, anharmonic oscillators and (hyper)elliptic solutions (United States)

    Zheltukhin, A. A.


    Exact solvability of brane equations is studied, and a new U(1)×U(1)×⋯×U(1) invariant anzats for the solution of p-brane equations in D=(2p+1)-dimensional Minkowski space is proposed. The reduction of the p-brane Hamiltonian to the Hamiltonian of p-dimensional relativistic anharmonic oscillator with the monomial potential of the degree equal to 2 p is revealed. For the case of degenerate p-torus with equal radii it is shown that the p-brane equations are integrable and their solutions are expressed in terms of elliptic ( p=2) or hyperelliptic ( p>2) functions. The solution describes contracting p-brane with the contraction time depending on p and the brane energy density. The toroidal brane elasticity is found to break down linear Hooke law as it takes place for the anharmonic elasticity of smectic liquid crystals.

  7. Vibrating minds

    CERN Multimedia


    Ed Witten is one of the leading scientists in the field of string theory, the theory that describes elementary particles as vibrating strings. This week he leaves CERN after having spent a few months here on sabbatical. His wish is that the LHC will unveil supersymmetry.

  8. Vibrational spectroscopy (United States)

    Umesh P. Agarwal; Rajai Atalla


    Vibrational spectroscopy is an important tool in modern chemistry. In the past two decades, thanks to significant improvements in instrumentation and the development of new interpretive tools, it has become increasingly important for studies of lignin. This chapter presents the three important instrumental methods-Raman spectroscopy, infrared (IR) spectroscopy, and...

  9. Theoretical study of molecular vibration and Application to linear triatomic molecules: case of OCS

    International Nuclear Information System (INIS)

    Andrianavalomahefa, A.


    Our aim is to give a theoretical approach to the calculation of vibrational energy levels of polyatomic molecules. By using matrix calculation, we have to solve an eigenvalue equation that gives normal vibration frequencies of the system. A basis change introduces normal coordinates of vibration, which diagonalize the Hamiltonian. The harmonic approximation gives a rough evaluation of parameters which describe the system. Then, we introduce nonlinear terms to take into account the anharmonicity of interatomic bounds. Morse oscillator gives good approximation for diatomic molecules. We consider cubic and quartic potential terms for polyatomic molecules. We treat the problem both in classical and quantum approach. The results thus obtained are applied to study longitudinal vibration of carbonyl sulfide. [fr

  10. Recent advances in biosynthetic modeling of nitric oxide reductases and insights gained from nuclear resonance vibrational and other spectroscopic studies

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Saumen; Reed, Julian; Sage, Timothy; Branagan, Nicole C.; Petrik, Igor D.; Miner, Kyle D.; Hu, Michael Y.; Zhao, Jiyong; Alp, E. Ercan; Lu, Yi


    This Forum Article focuses on recent advances in structural and spectroscopic studies of biosynthetic models of nitric oxide reductases (NORs). NORs are complex metalloenzymes found in the denitrification pathway of Earth's nitrogen cycle where they catalyze the proton-dependent twoelectron reduction of nitric oxide (NO) to nitrous oxide (N2O). While much progress has been made in biochemical and biophysical studies of native NORs and their variants, a. clear mechanistic understanding of this important metalloenzyme related to its function is still elusive. We report herein UV vis and nuclear resonance vibrational spectroscopy (NRVS) studies of mononitrosylated intermediates of the NOR reaction of a biosynthetic model. The ability to selectively substitute metals at either heme or nonheme metal sites allows the introduction of independent 57Fe probe atoms at either site, as well as allowing the preparation of analogues of stable reaction intermediates by replacing either metal with a redox inactive metal. Together with previous structural and spectroscopic results, we summarize insights gained from studying these biosynthetic models toward understanding structural features responsible for the NOR activity and its mechanism. As a result, the outlook on NOR modeling is also discussed, with an emphasis on the design of models capable of catalytic turnovers designed based on close mimics of the secondary coordination sphere of native NORs.

  11. Modelling the matrix shift on the vibrational frequency of ThO by DFT-D3 calculations. (United States)

    Kovács, Attila; Rode, Joanna E


    Benchmark calculations with a goal to find dispersion-corrected DFT-D3 methods suitable for a reliable estimation of matrix shifts on the vibrational frequency were carried out on the ThO molecule in three rare gas (Rg = Ne, Ar, and Kr) matrices. The matrices were modelled by the explicit approach, in which a single and a double shell of Rg atoms around ThO was considered. The selection of exchange-correlation functionals was based on test calculations on triatomic ThO⋯Rg models. The B3LYP, PBE0, CAM-B3LYP, and LC-ωPBE functionals were found to be the best suited for the estimation of matrix shifts. The single shell of Rg's around ThO accounted for a major part of the shifts; the addition of a second Rg shell resulted only in a minor improvement. Continuum solvation models considerably overestimated the effect of Rg matrices both when the whole matrix was treated by the model and when the first shell was treated explicitly and the rest with a continuum solvation model.

  12. Anharmonic effects in IR, Raman, and Raman optical activity spectra of alanine and proline zwitterions

    Czech Academy of Sciences Publication Activity Database

    Daněček, Petr; Kapitán, Josef; Baumruk, V.; Bednárová, Lucie; Kopecký, V.; Bouř, Petr


    Roč. 126, č. 22 (2007), s. 224513-1 ISSN 0021-9606 R&D Projects: GA ČR GA203/06/0420; GA ČR GA202/07/0732; GA AV ČR IAA400550702 Institutional research plan: CEZ:AV0Z40550506 Keywords : IR * Raman * ROA spectra * Anharmonic effects Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.044, year: 2007

  13. Scattering of acoustic waves from a surface in the presence of an anharmonic interface

    DEFF Research Database (Denmark)

    Kulak, A.; Lodziana, Zbigniew; Srokowski, T.


    Energy transfer coefficient (analogue of LDOS) and aperiodicity index are defined to characterise the nonlinear response and the surface resonances in a thin layer separated from the underlying bulk crystal by an anharmonic interface. Regions of periodic, aperiodic and intermittent motion of the ...... of the system are found by analysing the electric circuit obeying the same delayed differential equations. (C) 2002 Elsevier Science B.V. All rights reserved....

  14. Analysis of the forced vibration test of the Hualien large scale soil-structure interaction model using a flexible volume substructuring method

    International Nuclear Information System (INIS)

    Tang, H.T.; Nakamura, N.


    A 1/4-scale cylindrical reactor containment model was constructed in Hualien, Taiwan for foil-structure interaction (SSI) effect evaluation and SSI analysis procedure verification. Forced vibration tests were executed before backfill (FVT-1) and after backfill (FVT-2) to characterize soil-structure system characteristics under low excitations. A number of organizations participated in the pre-test blind prediction and post-test correlation analyses of the forced vibration test using various industry familiar methods. In the current study, correlation analyses were performed using a three-dimensional flexible volume substructuring method. The results are reported and soil property sensitivities are evaluated in the paper. (J.P.N.)

  15. Generalized theory of spin fluctuations in itinerant electron magnets: Crucial role of spin anharmonicity

    International Nuclear Information System (INIS)

    Solontsov, A.


    The paper critically overviews the recent developments of the theory of spatially dispersive spin fluctuations (SF) in itinerant electron magnetism with particular emphasis on spin-fluctuation coupling or spin anharmonicity. It is argued that the conventional self-consistent renormalized (SCR) theory of spin fluctuations is usually used aside of the range of its applicability actually defined by the constraint of weak spin anharmonicity based on the random phase approximation (RPA) arguments. An essential step in understanding SF in itinerant magnets beyond RPA-like arguments was made recently within the soft-mode theory of SF accounting for strong spin anharmonicity caused by zero-point SF. In the present paper we generalize it to apply for a wider range of temperatures and regimes of SF and show it to lead to qualitatively new results caused by zero-point effects. - Highlights: • We review the spin-fluctuation theory of itinerant electron magnets with account of zero-point effects. • We generalize the existing theory to account for different regimes of spin fluctuations. • We show that zero-point spin fluctuations play a crucial role in both low- and high-temperature properties of metallic magnets. • We argue that a new scheme of calculation of ground state properties of magnets is needed including zero-point effects

  16. Anharmonic behavior and structural phase transition in Yb2O3

    Directory of Open Access Journals (Sweden)

    Sugandha Dogra Pandey


    Full Text Available The investigation of structural phase transition and anharmonic behavior of Yb2O3 has been carried out by high-pressure and temperature dependent Raman scattering studies respectively. In situ Raman studies under high pressure were carried out in a diamond anvil cell at room temperature which indicate a structural transition from cubic to hexagonal phase at and above 20.6 GPa. In the decompression cycle, Yb2O3 retained its high pressure phase. We have observed a Stark line in the Raman spectra at 337.5 cm−1 which arises from the electronic transition between 2F5/2 and 2F7/2 multiplates of Yb3+ (4f13 levels. These were followed by temperature dependent Raman studies in the range of 80–440 K, which show an unusual mode hardening with increasing temperature. The hardening of the most dominant mode (Tg + Ag was analyzed in light of the theory of anharmonic phonon-phonon interaction and thermal expansion of the lattice. Using the mode Grüneisen parameter obtained from high pressure Raman measurements; we have calculated total anharmonicity of the Tg + Ag mode from the temperature dependent Raman data.

  17. Experimental and theoretical study of the vibrational properties of diaspore (α-AlOOH) (United States)

    Delattre, Simon; Balan, Etienne; Lazzeri, Michele; Blanchard, Marc; Guillaumet, Maxime; Beyssac, Olivier; Haussühl, Eiken; Winkler, Björn; Salje, Ekhard K. H.; Calas, Georges


    Vibrational properties of diaspore, α-AlOOH, have been re-investigated using room-temperature single-crystal Raman spectroscopy and low-temperature powder infrared (IR) transmission spectroscopy. First-principles harmonic calculations based on density functional theory provide a convincing assignment of the major Raman peaks and infrared absorption bands. The large width of the Raman band related to OH stretching modes is ascribed to mode-mode anharmonic coupling due to medium-strength H-bonding. Additional broadening in the powder IR spectrum arises from depolarization effects in powder particles. The temperature dependence of the IR spectrum provides a further insight into the anharmonic properties of diaspore. Based on their frequency and temperature behavior, narrow absorption features at ~2,000 cm-1 and anti-resonance at ~2,966 cm-1 in the IR spectrum are interpreted as overtones of fundamental bending bands.

  18. Vibrational spectra of halide-water dimers: Insights on ion hydration from full-dimensional quantum calculations on many-body potential energy surfaces. (United States)

    Bajaj, Pushp; Wang, Xiao-Gang; Carrington, Tucker; Paesani, Francesco


    Full-dimensional vibrational spectra are calculated for both X - (H 2 O) and X - (D 2 O) dimers (X = F, Cl, Br, I) at the quantum-mechanical level. The calculations are carried out on two sets of recently developed potential energy functions (PEFs), namely, Thole-type model energy (TTM-nrg) and many-body energy (MB-nrg), using the symmetry-adapted Lanczos algorithm with a product basis set including all six vibrational coordinates. Although both TTM-nrg and MB-nrg PEFs are derived from coupled-cluster single double triple-F12 data obtained in the complete basis set limit, they differ in how many-body effects are represented at short range. Specifically, while both models describe long-range interactions through the combination of two-body dispersion and many-body classical electrostatics, the relatively simple Born-Mayer functions employed in the TTM-nrg PEFs to represent short-range interactions are replaced in the MB-nrg PEFs by permutationally invariant polynomials to achieve chemical accuracy. For all dimers, the MB-nrg vibrational spectra are in close agreement with the available experimental data, correctly reproducing anharmonic and nuclear quantum effects. In contrast, the vibrational frequencies calculated with the TTM-nrg PEFs exhibit significant deviations from the experimental values. The comparison between the TTM-nrg and MB-nrg results thus reinforces the notion that an accurate representation of both short-range interactions associated with electron density overlap and long-range many-body electrostatic interactions is necessary for a correct description of hydration phenomena at the molecular level.

  19. Vibrational spectra of halide-water dimers: Insights on ion hydration from full-dimensional quantum calculations on many-body potential energy surfaces (United States)

    Bajaj, Pushp; Wang, Xiao-Gang; Carrington, Tucker; Paesani, Francesco


    Full-dimensional vibrational spectra are calculated for both X-(H2O) and X-(D2O) dimers (X = F, Cl, Br, I) at the quantum-mechanical level. The calculations are carried out on two sets of recently developed potential energy functions (PEFs), namely, Thole-type model energy (TTM-nrg) and many-body energy (MB-nrg), using the symmetry-adapted Lanczos algorithm with a product basis set including all six vibrational coordinates. Although both TTM-nrg and MB-nrg PEFs are derived from coupled-cluster single double triple-F12 data obtained in the complete basis set limit, they differ in how many-body effects are represented at short range. Specifically, while both models describe long-range interactions through the combination of two-body dispersion and many-body classical electrostatics, the relatively simple Born-Mayer functions employed in the TTM-nrg PEFs to represent short-range interactions are replaced in the MB-nrg PEFs by permutationally invariant polynomials to achieve chemical accuracy. For all dimers, the MB-nrg vibrational spectra are in close agreement with the available experimental data, correctly reproducing anharmonic and nuclear quantum effects. In contrast, the vibrational frequencies calculated with the TTM-nrg PEFs exhibit significant deviations from the experimental values. The comparison between the TTM-nrg and MB-nrg results thus reinforces the notion that an accurate representation of both short-range interactions associated with electron density overlap and long-range many-body electrostatic interactions is necessary for a correct description of hydration phenomena at the molecular level.

  20. Static and free-vibration analyses of dental prosthesis and atherosclerotic human artery by refined finite element models. (United States)

    Carrera, E; Guarnera, D; Pagani, A


    Static and modal responses of representative biomechanical structures are investigated in this paper by employing higher-order theories of structures and finite element approximations. Refined models are implemented in the domain of the Carrera unified formulation (CUF), according to which low- to high-order kinematics can be postulated as arbitrary and, eventually, hierarchical expansions of the generalized displacement unknowns. By using CUF along with the principle of virtual work, the governing equations are expressed in terms of fundamental nuclei of finite element arrays. The fundamental nuclei are invariant of the theory approximation order and can be opportunely employed to implement variable kinematics theories of bio-structures. In this work, static and free-vibration analyses of an atherosclerotic plaque of a human artery and a dental prosthesis are discussed. The results from the proposed methodologies highlight a number of advantages of CUF models with respect to already established theories and commercial software tools. Namely, (i) CUF models can represent correctly the higher-order phenomena related to complex stress/strain field distributions and coupled mode shapes; (ii) bio-structures can be modeled in a component-wise sense by only employing the physical boundaries of the problem domain and without making any geometrical simplification. This latter aspect, in particular, can be currently accomplished only by using three-dimensional analysis, which may be computationally unbearable as complex bio-systems are considered.

  1. Diagnostics of a crack in a load coupling of a gas turbine using the machine model and the analysis of the shaft vibrations (United States)

    Pennacchi, Paolo; Vania, Andrea


    The diagnostics of malfunctions that can cause catastrophic failures has to be made in early stage in the industrial environment. Often flexible couplings are employed in industrial rotating machines when gearboxes and heavy thermal gradients are present. The hot and cold alignment of these couplings can be very different. Severe misalignments can generate cracks in the stub shafts, which can propagate in operating condition. Owing to the flexural flexibility of the load coupling, the shaft vibrations may be not noticeably affected by some typical symptoms that usually point out the presence of a crack, like twice per revolution harmonics in the vibration spectrum. Anyhow, suitable diagnostic strategies can detect clear fault symptoms, while model-based methods can confirm the occurrence of the shaft bow induced by the progressive yielding of a load coupling due to a crack. This paper shows as a model-based diagnostic methodology would have allowed a crack in a load coupling of a gas turbine to be identified before a serious failure happened by means of the shaft vibration analysis under operating conditions and rated speed. Finally, the vibrations caused by the shaft bow due to the propagation of a crack in the stub shaft of the coupling have been simulated using suitable equivalent excitations, the magnitude and phase of which have been estimated by means of a model-based identification method.

  2. Dynamic Model and Vibration Power Flow of a Rigid-Flexible Coupling and Harmonic-Disturbance Exciting System for Flexible Robotic Manipulator with Elastic Joints

    Directory of Open Access Journals (Sweden)

    Yufei Liu


    Full Text Available This paper investigates the dynamic of a flexible robotic manipulator (FRM which consists of rigid driving base, flexible links, and flexible joints. With considering the motion fluctuations caused by the coupling effect, such as the motor parameters and mechanism inertias, as harmonic disturbances, the system investigated in this paper remains a parametrically excited system. An elastic restraint model of the FRM with elastic joints (FRMEJ is proposed, which considers the elastic properties of the connecting joints between the flexible arm and the driving base, as well as the harmonic disturbances aroused by the electromechanical coupling effect. As a consequence, the FRMEJ accordingly remains a flexible multibody system which conveys the effects of rigid-flexible couple and electromechanical couple. The Lagrangian function and Hamilton’s principle are used to establish the dynamic model of the FRMEJ. Based on the dynamic model proposed, the vibration power flow is introduced to show the vibration energy distribution. Numerical simulations are conducted to investigate the effect of the joint elasticities and the disturbance excitations, and the influences of the structure parameters and motion parameters on the vibration power flow are studied. The results obtained in this paper contribute to the structure design, motion optimization, and vibration control of FRMs.

  3. First Principles Study of the Vibrational and Thermal Properties of the Type-II Clathrates AxGaxSn136-x(x = 8,16,24; A = Rb,Cs) (United States)

    Xue, Dong; Myles, Charles


    We have performed first-principles calculations of the vibrational and thermal properties of the semiconductor clathrates RbxGaxSn136-x and CsxGaxSn136-x for x = 8, 16, and 24. Our calculations used the VASP code to obtain the equilibrium geometries and the PHONOPY code to obtain the harmonic phonon modes. For x = 24, the phonon dispersion relations predict an upshift of the low-lying optical modes (<30cm-1) in the presence of the light guest (``rattler'') Rb. We also find large isotropic atomic displacement parameters (Uiso) when the Rb occupies the large cages (Sn28) . The modes associated with these guests should contribute strongly to lowering the lattice thermal conductivity (kL) . This is reinforced by our evaluation of the guest-associated effective potential energy curves E(x). Our calculated effective harmonic spring constants K for these guests show that a simple harmonic oscillator model is in good agreement with the first principles lattice dynamical calculations. The similarity between ωos = (K/M)1/2 and our computed guest phonon frequencies implies that anharmonic contributions to the guest vibrational modes are not significant. Our calculations of the vibrational contribution to the specific heat and our estimation of kLare also presented and discussed.

  4. Mode coupling and multiquantum vibrational excitations in Feshbach-resonant positron annihilation in molecules (United States)

    Gribakin, G. F.; Stanton, J. F.; Danielson, J. R.; Natisin, M. R.; Surko, C. M.


    The dominant mechanism of low-energy positron annihilation in polyatomic molecules is through positron capture in vibrational Feshbach resonances (VFR). In this paper, we investigate theoretically the effect of anharmonic terms in the vibrational Hamiltonian on positron annihilation rates. Such interactions enable positron capture in VFRs associated with multiquantum vibrational excitations, leading to enhanced annihilation. Mode coupling can also lead to faster depopulation of VFRs, thereby reducing their contribution to the annihilation rates. To analyze this complex picture, we use coupled-cluster methods to calculate the anharmonic vibrational spectra and dipole transition amplitudes for chloroform, chloroform-d1, 1,1-dichloroethylene, and methanol, and use these data to compute positron resonant annihilation rates for these molecules. Theoretical predictions are compared with the annihilation rates measured as a function of incident positron energy. The results demonstrate the importance of mode coupling in both enhancement and suppression of the VFR. There is also experimental evidence for the direct excitation of multimode VFR. Their contribution is analyzed using a statistical approach, with an outlook towards more accurate treatment of this phenomenon.

  5. Vibrational spectroscopy

    International Nuclear Information System (INIS)

    Fadini, A.


    We present 13 programs for the calculation of vibrational spectroscopic problems applied to small molecules with high symmetry. The programs are compiled for the well known programmable pocket calculator Texas Instruments SR-52. To the special problems, the mathematical formulas, input and output instructions, several numerical examples, literature and the programs with comments are given. Order n = 1: The force constants, isotopic vibrational frequencies and the vibrational amplitudes are calculated for the two mass system XY(Csub(infinitely v)). For the three mass system XY 2 (Dsub(infinitely h)) only the force constants and isotopic frequencies are calculated. Order n = 2: For the three mass systems XYZ(Csub(infinitely v)) and XY 2 (Csub(infinitely 2v)) the inverse matrices G of the kinetic energy are presented. For complete sets of data (with isotopic frequencies, Coriolis coupling constants etc.) the complete force constant matrices are calculated. For non complete sets of data one starts in most cases with diagonal force constant matrices. The complete force constant matrix F is calculated with a minimalisation approximation. The eigenvector matrices L result from the G - F - and N-matrices. The N-matrices are calculated from the G- and F-matrices or from the F- and L-matrices respectively. Order n = 3: The matrix G of the system XYZ(Csub(S)) is calculated. For higher orders n, the 'isotopic reduction method' for the calculation of single force constants of proper systems is described. (orig.) [de

  6. Development of Row of Vibration Insulators and its Mathematical Models on a Base of Common Multi-parameter Scheme of Element Axial Line (United States)

    Ponomarev, Yury K.


    The mathematical model of deformation of a cable (rope) vibration insulator consisting of two identical clips connected by means of elastic elements of a complex axial line is developed in detail. The axial line of the element is symmetric relatively to the horizontal axis of the shape and is made up of five rectilinear sections of arbitrary length a, b, c, conjugated to four radius sections with parameters R1 and R2 with angular extent 90°. On the basis of linear representations of the theory of bending and torsion of mechanics of materials, applied mechanics and linear algebra, a mathematical model of loading of an element and a vibration insulator as a whole in the direction of the vertical Y axis has been developed. Generalized characteristics of the friction and elastic forces for an elastic element with a complete set of the listed sections are obtained. Further, with the help of nullification in the generalized model of the characteristics of certain parameters, special cases of friction and elastic forces are obtained without taking into account the nullified parameters. Simultaneously, on the basis of the 3D computer-aided design system, volumetric models of simplified structures were created, given in the work. It is shown that, with the help of a variation of the five parameters of the axial scheme of the element, in combination with the variation of the moment of inertia of the rope section and the number of elements entering the ensemble, the load characteristics and stiffness of the vibration insulators can be changed tens and hundreds of times. This opens up unlimited possibilities for the optimal design of vibration protection systems in terms of weight characteristics, in cost, in terms of vibration intensity, in overall dimensions in different directions, which is very important for aerospace and transport engineering.

  7. Design of external vibration absorber for vibration suppression of milling cutter in processing (United States)

    Zhang, Ya-hui; Zhang, Nian-song; Wang, Ai-min


    A new type of external dynamic vibration absorber is designed to control the vibration at a specific frequency of the milling cutter during the milling process. The structural design of the dynamic vibration absorber and the selection of the corresponding parameters are conducted. The finite element model of the cutter is established and connected with the vibration absorber. The results of the harmonic response analysis of milling cutter before and after the installation of the vibration absorber are compared and show that the vibration absorber can reduce the vibration of the cutter at the resonant frequency, which means it has a good vibration damping performance. The vibration absorber has the advantages of simple structure, convenient frequency modulation and easy installation. This context lay the foundation of further application for damping cutter.

  8. Analyzing the nonlinear vibrational wave differential equation for the simplified model of Tower Cranes by Algebraic Method (United States)

    Akbari, M. R.; Ganji, D. D.; Ahmadi, A. R.; Kachapi, Sayyid H. Hashemi


    In the current paper, a simplified model of Tower Cranes has been presented in order to investigate and analyze the nonlinear differential equation governing on the presented system in three different cases by Algebraic Method (AGM). Comparisons have been made between AGM and Numerical Solution, and these results have been indicated that this approach is very efficient and easy so it can be applied for other nonlinear equations. It is citable that there are some valuable advantages in this way of solving differential equations and also the answer of various sets of complicated differential equations can be achieved in this manner which in the other methods, so far, they have not had acceptable solutions. The simplification of the solution procedure in Algebraic Method and its application for solving a wide variety of differential equations not only in Vibrations but also in different fields of study such as fluid mechanics, chemical engineering, etc. make AGM be a powerful and useful role model for researchers in order to solve complicated nonlinear differential equations.

  9. Modelling of unsteady airfoil aerodynamics for the prediction of blade standstill vibrations

    DEFF Research Database (Denmark)

    Skrzypinski, Witold Robert; Gaunaa, Mac; Sørensen, Niels N.


    In the present work, CFD simulations of the DU96-W-180 airfoil at 26 and 24 deg. angles of attack were performed. 2D RANS and 3D DES computations with non-moving and prescribed motion airfoil suspensions were carried out. The openings of the lift coefficient loops predicted by CFD were different...... that further investigations are needed and that caution should be taken when applying engineering models in connection with aeroelastic simulations. Nonetheless, the results of the 2D CFD, 3D CFD and the engineering models indicate that the associated aerodynamic damping may be higher than that predicted...... than those predicted by engineering models. The average lift slope of the loops from the 3D CFD had opposite sign than the one from 2D CFD. Trying to model the 3D behaviour with the engineering models proved difficult. The disagreement between the 2D CFD, 3D CFD and the engineering models indicates...

  10. Multi-soliton energy transport in anharmonic lattices

    DEFF Research Database (Denmark)

    Ostrovskaya, Elena A A.; Mingaleev, Serge F.; Kivshar, Yuri S S.


    We demonstrate the existence of dynamically stable multihump solitary waves in polaron-type models describing interaction of envelope and lattice excitations. In comparison with the earlier theory of multihump optical solitons (see Phys. Rev. Lett. 83 (1999) 296), our analysis reveals a novel...... physical mechanism for the formation of stable multihump solitary waves in nonintegrable multi-component nonlinear models. (C) 2001 Elsevier Science B.V. All rights reserved....

  11. Finite element modelling and updating of friction stir welding (FSW joint for vibration analysis

    Directory of Open Access Journals (Sweden)

    Zahari Siti Norazila


    Full Text Available Friction stir welding of aluminium alloys widely used in automotive and aerospace application due to its advanced and lightweight properties. The behaviour of FSW joints plays a significant role in the dynamic characteristic of the structure due to its complexities and uncertainties therefore the representation of an accurate finite element model of these joints become a research issue. In this paper, various finite elements (FE modelling technique for prediction of dynamic properties of sheet metal jointed by friction stir welding will be presented. Firstly, nine set of flat plate with different series of aluminium alloy; AA7075 and AA6061 joined by FSW are used. Nine set of specimen was fabricated using various types of welding parameters. In order to find the most optimum set of FSW plate, the finite element model using equivalence technique was developed and the model validated using experimental modal analysis (EMA on nine set of specimen and finite element analysis (FEA. Three types of modelling were engaged in this study; rigid body element Type 2 (RBE2, bar element (CBAR and spot weld element connector (CWELD. CBAR element was chosen to represent weld model for FSW joints due to its accurate prediction of mode shapes and contains an updating parameter for weld modelling compare to other weld modelling. Model updating was performed to improve correlation between EMA and FEA and before proceeds to updating, sensitivity analysis was done to select the most sensitive updating parameter. After perform model updating, total error of the natural frequencies for CBAR model is improved significantly. Therefore, CBAR element was selected as the most reliable element in FE to represent FSW weld joint.

  12. A study of online plant modelling methods for active control of sound and vibration

    DEFF Research Database (Denmark)

    Laugesen, Søren


    Active control systems using the filtered-x algorithm require plant models to describe the relations between the secondary sources and the error sensors. For practical applications online plant modelling may be required if the environment changes significantly. In this study, two dominant methods...

  13. Matching experimental and three dimensional numerical models for structural vibration problems with uncertainties (United States)

    Langer, P.; Sepahvand, K.; Guist, C.; Bär, J.; Peplow, A.; Marburg, S.


    The simulation model which examines the dynamic behavior of real structures needs to address the impact of uncertainty in both geometry and material parameters. This article investigates three-dimensional finite element models for structural dynamics problems with respect to both model and parameter uncertainties. The parameter uncertainties are determined via laboratory measurements on several beam-like samples. The parameters are then considered as random variables to the finite element model for exploring the uncertainty effects on the quality of the model outputs, i.e. natural frequencies. The accuracy of the output predictions from the model is compared with the experimental results. To this end, the non-contact experimental modal analysis is conducted to identify the natural frequency of the samples. The results show a good agreement compared with experimental data. Furthermore, it is demonstrated that geometrical uncertainties have more influence on the natural frequencies compared to material parameters and material uncertainties are about two times higher than geometrical uncertainties. This gives valuable insights for improving the finite element model due to various parameter ranges required in a modeling process involving uncertainty.

  14. Some properties of horn equation model of ultrasonic system vibration and of transfer matrix and equivalent circuit methods of its solution. (United States)

    Hornišová, K; Billik, P


    Traditional technique of horn equation solved by transfer matrices as a model of vibration of ultrasonic systems consisting of sectional transducer, horn and load is discussed. Expression of vibration modes as a ratio of solutions of two Schrödinger equations gives better insight to the structure of a transfer matrix and properties of amplitudes of displacement and strain, and enables more systematic search for analytic solutions. Incorrectness of impedance matrix method and of equivalent circuit method on one hand and correctness and advantages of transfer matrix method in avoiding numerical artifacts and revealing the real features of the model on the other hand are demonstrated on examples. Discontinuous dependence of the nth resonant value on parameters of ultrasonic system, recently described in Sturm-Liouville theory, and consequently, a jump from half-wave to full-wave mode, is observed in a transducer model. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Vibration response of misaligned rotors (United States)

    Patel, Tejas H.; Darpe, Ashish K.


    Misalignment is one of the common faults observed in rotors. Effect of misalignment on vibration response of coupled rotors is investigated in the present study. The coupled rotor system is modelled using Timoshenko beam elements with all six dof. An experimental approach is proposed for the first time for determination of magnitude and harmonic nature of the misalignment excitation. Misalignment effect at coupling location of rotor FE model is simulated using nodal force vector. The force vector is found using misalignment coupling stiffness matrix, derived from experimental data and applied misalignment between the two rotors. Steady-state vibration response is studied for sub-critical speeds. Effect of the types of misalignment (parallel and angular) on the vibration behaviour of the coupled rotor is examined. Along with lateral vibrations, axial and torsional vibrations are also investigated and nature of the vibration response is also examined. It has been found that the misalignment couples vibrations in bending, longitudinal and torsional modes. Some diagnostic features in the fast Fourier transform (FFT) of torsional and longitudinal response related to parallel and angular misalignment have been revealed. Full spectra and orbit plots are effectively used to reveal the unique nature of misalignment fault leading to reliable misalignment diagnostic information, not clearly brought out by earlier studies.

  16. Finite element model updating of multi-span steel-arch-steel-girder bridges based on ambient vibrations (United States)

    Hou, Tsung-Chin; Gao, Wei-Yuan; Chang, Chia-Sheng; Zhu, Guan-Rong; Su, Yu-Min


    The three-span steel-arch-steel-girder Jiaxian Bridge was newly constructed in 2010 to replace the former one that has been destroyed by Typhoon Sinlaku (2008, Taiwan). It was designed and built to continue the domestic service requirement, as well as to improve the tourism business of the Kaohsiung city government, Taiwan. This study aimed at establishing the baseline model of Jiaxian Bridge for hazardous scenario simulation such as typhoons, floods and earthquakes. Necessities of these precaution works were attributed to the inherent vulnerability of the sites: near fault and river cross. The uncalibrated baseline bridge model was built with structural finite element in accordance with the blueprints. Ambient vibration measurements were performed repeatedly to acquire the elastic dynamic characteristics of the bridge structure. Two frequency domain system identification algorithms were employed to extract the measured operational modal parameters. Modal shapes, frequencies, and modal assurance criteria (MAC) were configured as the fitting targets so as to calibrate/update the structural parameters of the baseline model. It has been recognized that different types of structural parameters contribute distinguishably to the fitting targets, as this study has similarly explored. For steel-arch-steel-girder bridges in particular this case, joint rigidity of the steel components was found to be dominant while material properties and section geometries relatively minor. The updated model was capable of providing more rational elastic responses of the bridge superstructure under normal service conditions as well as hazardous scenarios, and can be used for manage the health conditions of the bridge structure.

  17. Urban vibrations

    DEFF Research Database (Denmark)

    Morrison, Ann; Knudsen, L.; Andersen, Hans Jørgen


      lab   studies   in   that   we   found   a   decreased   detection   rate   in   busy   environments.   Here   we   test   with   a   much   larger   sample   and   age   range,   and   contribute   with   the   first   vibration  sensitivity  testing  outside  the  lab  in  an  urban   public...

  18. Prognostics Health Management of Electronic Systems Under Mechanical Shock and Vibration Using Kalman Filter Models and Metrics (United States)

    National Aeronautics and Space Administration — Structural damage to ball grid array interconnects incurred during vibration testing has been monitored in the prefailure space using resistance spectroscopy-based...

  19. Identification of Serine Conformers by Matrix-Isolation IR Spectroscopy Aided by Near-Infrared Laser-Induced Conformational Change, 2D Correlation Analysis, and Quantum Mechanical Anharmonic Computations. (United States)

    Najbauer, Eszter E; Bazsó, Gábor; Apóstolo, Rui; Fausto, Rui; Biczysko, Malgorzata; Barone, Vincenzo; Tarczay, György


    The conformers of α-serine were investigated by matrix-isolation IR spectroscopy combined with NIR laser irradiation. This method, aided by 2D correlation analysis, enabled unambiguously grouping the spectral lines to individual conformers. On the basis of comparison of at least nine experimentally observed vibrational transitions of each conformer with empirically scaled (SQM) and anharmonic (GVPT2) computed IR spectra, six conformers were identified. In addition, the presence of at least one more conformer in Ar matrix was proved, and a short-lived conformer with a half-life of (3.7 ± 0.5) × 10(3) s in N2 matrix was generated by NIR irradiation. The analysis of the NIR laser-induced conversions revealed that the excitation of the stretching overtone of both the side chain and the carboxylic OH groups can effectively promote conformational changes, but remarkably different paths were observed for the two kinds of excitations.

  20. O modelo AM1 na previsão de frequências vibracionais The vibration frequencies predicted by the AM1 model

    Directory of Open Access Journals (Sweden)

    João Carlos Silva Ramos


    Full Text Available We analyse vibrational frequencies of 168 compounds with the AM1 model concerning its experimentally observed gaseous frequencies. Stretching of CH, NH, OH and CO bonds, its related bending frequencies, and the CC frame movements are the studied vibrations. The results show problems with the AM1 vibrational splittings. Often symmetric stretching frequencies, like in CH3, CH2 and NH3, appear switched with the corresponding antisymmetrical ones. Among the studied vibrations many stretchings are overestimated, while bendings oscillate around experimental values. Fluorine stretchings, NN, OO, CH, double and triples CC bonds and cyclic hydrocarbon breathing modes are always overestimated while torsions, umbrella modes and OH/SH stretching are, in average, underestimated. Graphical analysis show that compounds with the lowest molecular masses are the ones with the largest difference to the experimental values. From our results it is not possible to fit confortably the calculated frequencies by a simple linear relationship of the type, n(obs=a*n(AM1. Better aggreement is obtained when different curves are adjusted for the stretching and bending modes, and when a complete linear function is used. Among our studies the best obtained statistical results are for CH, NH and OH. The conclusions obtained in this work will improve the AM1 calculated frequencies leading to accurate results for these properties.

  1. Contributions to the theory of longitudinal vibrations and wave propagation in rods and tubes: I. A mathematical model for linear elastic and hereditary elastic materials

    International Nuclear Information System (INIS)

    Suarez Antola, R.


    After a brief historical survey of some work done on the linear theory of longitudinal vibrations and wave propagation in rods and tubes of uniform cross-section, a simple mathematical model for rods and tubes of linear elastic materials is proposed. Three suitably selected propagation modes (one extensional and two shear modes) with dispersion relations corresponding to mixed boundary conditions are coupled in order to approximately comply with zero-stress boundary conditions. The coupling gives a set of partial differential equations in the mode amplitudes, with time and a single space coordinate (along the axis of symmetry of the rod or tube) as independent variables. Then, the model is generalized to a set of partial integral-differential equations in order to be able to describe vibrations and wave propagation in rods and tubes made of linear hereditary-elastic solids. In this first part of the work, the focus is in either very low frequency or very high frequency phenomena using a simple model with only two coupled modes. The model allows a fairly elegant and comparatively powerful analytical approach to longitudinal vibrations and to longitudinal pulse propagation in solid waveguides. Analytical formulae for group velocities are derived, as well as asymptotic expressions for the propagation of mode amplitudes. The limitations and pitfalls of the model are assessed, and new experiments and digital simulations are suggested to test some of its predictions, wave propagation; elastic and hereditary-elastic materials; propagation modes in rods and tubes

  2. Four Dimensional (4-D) BioChemInfoPhysics Models of Cardiac Cellular and Sub-Cellular Vibrations (Oscillations)


    Chang-Hua Zou; Kang Cheng


    Problem statement: Cardiovascular Diseases (CVD) continued to be the leading cause of death. Failure or abnormal cardiac cellular or sub-cellular vibrations (oscillations) could lead failure or abnormal heart beats that could cause CVD. Understanding the mechanisms of the vibrations (oscillations) could help to prevent or to treat the diseases. Scientists have studied the mechanisms for more than 100 years. To our knowledge, the mechanisms are still unclear today...

  3. Generalized thick strip modelling for vortex-induced vibration of long flexible cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Y., E-mail: [Department of Civil Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiaotong University, No. 800 Dongchuan Road, Shanghai (China); Department of Aeronautics, Imperial College London, South Kensington Campus, London (United Kingdom); Palacios, R., E-mail: [Department of Aeronautics, Imperial College London, South Kensington Campus, London (United Kingdom); Graham, M., E-mail: [Department of Aeronautics, Imperial College London, South Kensington Campus, London (United Kingdom); Sherwin, S., E-mail: [Department of Aeronautics, Imperial College London, South Kensington Campus, London (United Kingdom)


    We propose a generalized strip modelling method that is computationally efficient for the VIV prediction of long flexible cylinders in three-dimensional incompressible flow. In order to overcome the shortcomings of conventional strip-theory-based 2D models, the fluid domain is divided into “thick” strips, which are sufficiently thick to locally resolve the small scale turbulence effects and three dimensionality of the flow around the cylinder. An attractive feature of the model is that we independently construct a three-dimensional scale resolving model for individual strips, which have local spanwise scale along the cylinder's axial direction and are only coupled through the structural model of the cylinder. Therefore, this approach is able to cover the full spectrum for fully resolved 3D modelling to 2D strip theory. The connection between these strips is achieved through the calculation of a tensioned beam equation, which is used to represent the dynamics of the flexible body. In the limit, however, a single “thick” strip would fill the full 3D domain. A parallel Fourier spectral/hp element method is employed to solve the 3D flow dynamics in the strip-domain, and then the VIV response prediction is achieved through the strip–structure interactions. Numerical tests on both laminar and turbulent flows as well as the comparison against the fully resolved DNS are presented to demonstrate the applicability of this approach.

  4. Integration of system identification and finite element modelling of nonlinear vibrating structures (United States)

    Cooper, Samson B.; DiMaio, Dario; Ewins, David J.


    The Finite Element Method (FEM), Experimental modal analysis (EMA) and other linear analysis techniques have been established as reliable tools for the dynamic analysis of engineering structures. They are often used to provide solutions to small and large structures and other variety of cases in structural dynamics, even those exhibiting a certain degree of nonlinearity. Unfortunately, when the nonlinear effects are substantial or the accuracy of the predicted response is of vital importance, a linear finite element model will generally prove to be unsatisfactory. As a result, the validated linear FE model requires further enhancement so that it can represent and predict the nonlinear behaviour exhibited by the structure. In this paper, a pragmatic approach to integrating test-based system identification and FE modelling of a nonlinear structure is presented. This integration is based on three different phases: the first phase involves the derivation of an Underlying Linear Model (ULM) of the structure, the second phase includes experiment-based nonlinear identification using measured time series and the third phase covers augmenting the linear FE model and experimental validation of the nonlinear FE model. The proposed case study is demonstrated on a twin cantilever beam assembly coupled with a flexible arch shaped beam. In this case, polynomial-type nonlinearities are identified and validated with force-controlled stepped-sine test data at several excitation levels.

  5. Ultrasonic vibration-assisted pelleting of wheat straw: a predictive model for energy consumption using response surface methodology. (United States)

    Song, Xiaoxu; Zhang, Meng; Pei, Z J; Wang, Donghai


    Cellulosic biomass can be used as a feedstock for biofuel manufacturing. Pelleting of cellulosic biomass can increase its bulk density and thus improve its storability and reduce the feedstock transportation costs. Ultrasonic vibration-assisted (UV-A) pelleting can produce biomass pellets whose density is comparable to that processed by traditional pelleting methods (e.g. extruding, briquetting, and rolling). This study applied response surface methodology to the development of a predictive model for the energy consumption in UV-A pelleting of wheat straw. Effects of pelleting pressure, ultrasonic power, sieve size, and pellet weight were investigated. This study also optimized the process parameters to minimize the energy consumption in UV-A pelleting using response surface methodology. Optimal conditions to minimize the energy consumption were the following: ultrasonic power at 20%, sieve size at 4 mm, and pellet weight at 1g, and the minimum energy consumption was 2.54 Wh. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Modeling waves forced by a drop bouncing on a vibrating bath (United States)

    Turton, Sam; Rosales, Ruben; Bush, John


    We study the wavefield generated by a droplet bouncing on a bath of silicon oil undergoing vertical oscillations. Such droplets may bounce indefinitely below the Faraday threshold, and in certain parameter regimes destabilize into a walking state in which they are propelled by their own wavefield. While previous theoretical models have rationalize the behavior of single droplets, difficulties have arisen in rationalizing the behavior of multi-droplet systems. We here present a refined wave model that allows us to do so. In particular, we give a detailed account of the spatio-temporal decay of the waves, in addition to the couping between the wave amplitude and modulations in the droplet's vertical dynamics. Our analytic model is compared with the results of direct numerical simulations and experiments. We gratefully acknowledge the financial support of the NSF.

  7. Pressure measurements of TO-phonon anharmonicity in isotopic ZnS

    Energy Technology Data Exchange (ETDEWEB)

    Tallman, R.E.; Weinstein, B.A. [SUNY at Buffalo, Department of Physics, Buffalo, NY 14260 (United States); Ritter, T.M. [Dept. of Chemistry and Physics, UNC Pembroke, NC 28372 (United States); Cantarero, A. [Dept. of Physics and Institute of Materials Science, University of Valencia (Spain); Serrano, J.; Lauck, R.; Cardona, M. [Max-Planck-Institut fuer Festkoerperforschung, 70569 Stuttgart (Germany)


    We have measured the dependence on pressure of the line-widths of the TO and LO Raman phonons of {beta}-ZnS. In order to enhance the phenomena observed, and to eliminate possible effects of isotopic disorder, we have measured a nearly isotopically pure crystal, {sup 68}Zn{sup 32}S. The strongly structured pressure effects observed are interpreted on the basis of anharmonic decay and the corresponding two-phonon density of states. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Vibrational spectral simulation for peptides of mixed secondary structure: Method comparisons with the Trpzip model hairpin

    Czech Academy of Sciences Publication Activity Database

    Bouř, Petr; Keiderling, T. A.


    Roč. 109, - (2005), 23687-23697 ISSN 1089-5647 R&D Projects: GA AV ČR(CZ) IAA4055104 Grant - others:NSF(US) CHE03-16014 Institutional research plan: CEZ:AV0Z40550506 Keywords : VCD * trpzin model hairpin * peptides Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.679, year: 2003

  9. Vibration Analysis of 5-DOF Vehicle Model under Stochastic Road Surface Excitation

    Directory of Open Access Journals (Sweden)

    Zhang Yanlong


    Full Text Available Considering human body vertical motion, vehicle body vertical motion, pitch movement and vertical jump of front and rear wheels, a five-degree-of-freedom vehicle model is established to study basic driving characteristics of the vehicle. Using Fourier transform method, acceleration power spectral density of the seat and the mean square value curves of seat vertical weighted acceleration are obtained by numerical simulation. Combined with comfort provision standards, the influence of vehicle model parameters and speed on seat acceleration power spectral density and vertical root-mean-square value of seat weighted acceleration are analyzed. Results show that the stiffness and damping of the seat have no significant effect on seat acceleration power spectral density, and seat acceleration PSD increases with increasing front or rear suspension stiffness, but it decreases with increasing front or rear suspension damping. It should also be concluded that the model stiffness and the mean square value of seat vertical weighted acceleration present positive correlation in general, but seat vertical weighted acceleration decrease first and then increase when model damping increase. Such analysis results can provide reference for the parameter optimization design of the automobile.

  10. Transient vibration phenomena in deep mine hoisting cables. Part 1: Mathematical model (United States)

    Kaczmarczyk, S.; Ostachowicz, W.


    The classical moving co-ordinate frame approach and Hamilton's principle are employed to derive a distributed-parameter mathematical model to investigate the dynamic behaviour of deep mine hoisting cables. This model describes the coupled lateral-longitudinal dynamic response of the cables in terms of non-linear partial differential equations that accommodate the non-stationary nature of the system. Subsequently, the Rayleigh-Ritz procedure is applied to formulate a discrete mathematical model. Consequently, a system of non-linear non-stationary coupled second order ordinary differential equations arises to govern the temporal behaviour of the cable system. This discrete model with quadratic and cubic non-linear terms describes the modal interactions between lateral oscillations of the catenary cable and longitudinal oscillations of the vertical rope. It is shown that the response of the catenary-vertical rope system may feature a number of resonance phenomena, including external, parametric and autoparametric resonances. The parameters of a typical deep mine winder are used to identify the depth locations of the resonance regions during the ascending cycles with various winding velocities.

  11. Simple vibration modeling of structural fuzzy with continuous boundary by including two-dimensional spatial memory

    DEFF Research Database (Denmark)

    Friis, Lars; Ohlrich, Mogens


    is considered as one or more fuzzy substructures that are known in some statistical sense only. Experiments have shown that such fuzzy substructures often introduce a damping in the master which is much higher than the structural losses account for. A special method for modeling fuzzy substructures with a one...

  12. Thermal expansion of mullite-type Bi{sub 2}Al{sub 4}O{sub 9}: A study by X-ray diffraction, vibrational spectroscopy and density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Mangir Murshed, M., E-mail: [Chemische Kristallographie fester Stoffe, Institut für Anorganische Chemie, Universität Bremens, Leobener Straße, D-28359 Bremen (Germany); Mendive, Cecilia B.; Curti, Mariano [Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Dean Funes 3350, B7600AYL Mar del Plata (Argentina); Šehović, Malik [Chemische Kristallographie fester Stoffe, Institut für Anorganische Chemie, Universität Bremens, Leobener Straße, D-28359 Bremen (Germany); Friedrich, Alexandra [Institut für Geowissenschaften, Abteilung Kristallographie, Goethe-Universität Frankfurt, Altenhöferallee 1, D-60438 Frankfurt am Main (Germany); Fischer, Michael [Kristallographie, FB Geowissenschaften, Universität Bremen, Klagenfurter Straße, D-28359 Bremen (Germany); Gesing, Thorsten M. [Chemische Kristallographie fester Stoffe, Institut für Anorganische Chemie, Universität Bremens, Leobener Straße, D-28359 Bremen (Germany)


    Polycrystalline Bi{sub 2}Al{sub 4}O{sub 9} powder samples were synthesized using the glycerine method. Single crystals were produced from the powder product in a Bi{sub 2}O{sub 3} melt. The lattice thermal expansion of the mullite-type compound was studied using X-ray diffraction, Raman spectroscopy and density functional theory (DFT). The metric parameters were modeled using Grüneisen approximation for the zero pressure equation of state, where the temperature-dependent vibrational internal energy was calculated from the Debye characteristic frequency. Both the first-order and second-order Grüneisen approximations were applied for modeling the volumetric expansion, and the second-order approach provided physically meaningful axial parameters. The phonon density of states as well as phonon dispersion guided to set the characteristic frequency for simulation. The experimental infrared and Raman phonon bands were compared with those calculate from the DFT calculations. Selective Raman modes were analyzed for the thermal anharmonic behaviors using simplified Klemens model. The respective mode Grüneisen parameters were calculated from the pressure-dependent Raman spectra. - Graphical abstract: Crystal structure of mullite-type Bi{sub 2}Al{sub 4}O{sub 9} showing the edge-sharing AlO{sub 6} octahedra running parallel to the c-axis. - Highlights: • Thermal expansion of Bi{sub 2}Al{sub 4}O{sub 9} was studied using XRD, FTIR, Raman and DFT. • Metric parameters were modeled using Grüneisen approximation. • Phonon DOS and phonon dispersion helped to set the Debye frequency. • Mode Grüneisen parameters were calculated from the pressure-dependent Raman spectra. • Anharmonicity was analyzed for some selective Raman modes.

  13. The curious case of cuprous chloride: Giant thermal resistance and anharmonic quasiparticle spectra driven by dispersion nesting (United States)

    Mukhopadhyay, Saikat; Bansal, Dipanshu; Delaire, Olivier; Perrodin, Didier; Bourret-Courchesne, Edith; Singh, David J.; Lindsay, Lucas


    Strongly anharmonic phonon properties of CuCl are investigated with inelastic neutron-scattering measurements and first-principles simulations. An unusual quasiparticle spectral peak emerges in the phonon density of states with increasing temperature, in both simulations and measurements, emanating from exceptionally strong coupling between conventional phonon modes. Associated with this strong anharmonicity, the lattice thermal conductivity of CuCl is extremely low and exhibits anomalous, nonmonotonic pressure dependence. We show how this behavior arises from the structure of the phonon dispersions augmenting the phase space available for anharmonic three-phonon scattering processes, and contrast this mechanism with common arguments based on negative Grüneisen parameters. These results demonstrate the importance of considering intrinsic phonon-dispersion structure toward understanding scattering processes and designing new ultralow thermal conductivity materials.

  14. Thermodynamics of a model solid with magnetoelastic coupling (United States)

    Szałowski, K.; Balcerzak, T.; Jaščur, M.


    In the paper a study of a model magnetoelastic solid system is presented. The system of interest is a mean-field magnet with nearest-neighbour ferromagnetic interactions and the underlying s.c. crystalline lattice with the long-range Morse interatomic potential and the anharmonic Debye model for the lattice vibrations. The influence of the external magnetic field on the thermodynamics is investigated, with special emphasis put on the consequences of the magnetoelastic coupling, introduced by the power-law distance dependence of the magnetic exchange integral. Within the fully self-consistent, Gibbs energy-based formalism such thermodynamic quantities as the entropy, the specific heat as well as the lattice and magnetic response functions are calculated and discussed. To complete the picture, the magnetocaloric effect is characterized by analysis of the isothermal entropy change and the adiabatic temperature change in the presence of the external pressure.

  15. Relative importance of first and second derivatives of nuclear magnetic resonance chemical shifts and spin-spin coupling constants for vibrational averaging

    Czech Academy of Sciences Publication Activity Database

    Dračínský, Martin; Kaminský, Jakub; Bouř, Petr


    Roč. 130, č. 9 (2009), 094106/1-094106/13 ISSN 0021-9606 R&D Projects: GA ČR GA203/06/0420; GA ČR GA202/07/0732; GA AV ČR IAA400550702 Institutional research plan: CEZ:AV0Z40550506 Keywords : NMR * anharmonic forces * vibrational averaging Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.093, year: 2009

  16. Infrared spectra and anharmonic coupling of proton-bound nitrogen dimers N2-H+-N2, N2-D+-N2, and15N2-H+-15N2in solid para-hydrogen. (United States)

    Liao, Hsin-Yi; Tsuge, Masashi; Tan, Jake A; Kuo, Jer-Lai; Lee, Yuan-Pern


    The proton-bound nitrogen dimer, N 2 -H + -N 2 , and its isotopologues were investigated by means of vibrational spectroscopy. These species were produced upon electron bombardment of mixtures of N 2 (or 15 N 2 ) and para-hydrogen (p-H 2 ) or normal-D 2 (n-D 2 ) during deposition at 3.2 K. Reduced-dimension anharmonic vibrational Schrödinger equations were constructed to account for the strong anharmonic effects in these protonated species. The fundamental lines of proton motions in N 2 -H + -N 2 were observed at 715.0 (NH + N antisymmetric stretch, ν 4 ), 1129.6 (NH + N bend, ν 6 ), and 2352.7 (antisymmetric NN/NN stretch, ν 3 ) cm -1 , in agreement with values of 763, 1144, and 2423 cm -1 predicted with anharmonic calculations using the discrete-variable representation (DVR) method at the CCSD/aug-cc-pVDZ level. The lines at 1030.2 and 1395.5 cm -1 were assigned to combination bands involving nν 2 + ν 4 (n = 1 and 2) according to theoretical calculations; ν 2 is the N 2 N 2 stretching mode. For 15 N 2 -H + - 15 N 2 in solid p-H 2 , the corresponding major lines were observed at 710.0 (ν 4 ), 1016.7 (ν 2 + ν 4 ), 1124.3 (ν 6 ), 1384.8 (2ν 2 + ν 4 ), and 2274.9 (ν 3 ) cm -1 . For N 2 -D + -N 2 in solid n-D 2 , the corresponding major lines were observed at 494.0 (ν 4 ), 840.7 (ν 2 + ν 4 ), 825.5 (ν 6 ), and 2356.2 (ν 3 ) cm -1 . In addition, two lines at 762.0 (weak) and 808.3 cm -1 were tentatively assigned to be some modes of N 2 -H + -N 2 perturbed or activated by a third N 2 near the proton.

  17. Modeling the structure and vibrational spectra for oxouranium dichloride monomer and dimer (United States)

    Umreiko, D. S.; Shundalau, M. B.; Trubina, O. V.


    Structural models are designed and spectral characteristics are computed for the monomer and dimer of the oxouranium dichloride (UOCl2) molecule based on ab initio calculations. The calculations were carried out in the LANL2DZ effective core potential approximation for the uranium atom and all-electron basis sets using DFT methods for oxygen and chlorine atoms (B3LYP/cc-pVDZ). A close-to-planar Y-shaped equilibrium configuration with Cs symmetry is obtained for the UOCl2 monomer. The formation of the dimer is accompanied by both significant changes in the structure of the monomeric fragments and the actual loss of their identities. The obtained spectral characteristics are analyzed and compared with experimental data. The adequacy of the proposed models and qualitative agreement between calculation and experiment are demonstrated.

  18. The broken-pair model for nuclei and its extension with quadrupole vibrations

    International Nuclear Information System (INIS)

    Hofstra, P.


    The author presents calculations for low energy properties of nuclei with an odd number of particles. These are described in the Broken-Pair approximation, where it is assumed that all but three particles occur as ordered Cooper pairs; the unpaired (one or three) particles are called quasiparticles. A model is developed with which it is hoped to describe odd nuclei with two open shells in terms of both single-particle and collective degrees of freedom. (Auth.)

  19. Hot Ground Vibration Tests (United States)

    National Aeronautics and Space Administration — Ground vibration tests or modal surveys are routinely conducted to support flutter analysis for subsonic and supersonic vehicles. However, vibration testing...

  20. Electromechanical modeling and experimental analysis of a compression-based piezoelectric vibration energy harvester

    Directory of Open Access Journals (Sweden)

    X.Z. Jiang


    Full Text Available Over the past few decades, wireless sensor networks have been widely used in the field of structure health monitoring of civil, mechanical, and aerospace systems. Currently, most wireless sensor networks are battery-powered and it is costly and unsustainable for maintenance because of the requirement for frequent battery replacements. As an attempt to address such issue, this article theoretically and experimentally studies a compression-based piezoelectric energy harvester using a multilayer stack configuration, which is suitable for civil infrastructure system applications where large compressive loads occur, such as heavily vehicular loading acting on pavements. In this article, we firstly present analytical and numerical modeling of the piezoelectric multilayer stack under axial compressive loading, which is based on the linear theory of piezoelectricity. A two-degree-of-freedom electromechanical model, considering both the mechanical and electrical aspects of the proposed harvester, was developed to characterize the harvested electrical power under the external electrical load. Exact closed-form expressions of the electromechanical models have been derived to analyze the mechanical and electrical properties of the proposed harvester. The theoretical analyses are validated through several experiments for a test prototype under harmonic excitations. The test results exhibit very good agreement with the analytical analyses and numerical simulations for a range of resistive loads and input excitation levels.