WorldWideScience

Sample records for anharmonic vibrational models

  1. Anharmonic double-{gamma} vibrations in nuclei and their description in the interacting boson model

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Ramos, J.E.; Alonso, C.E.; Arias, J.M. [Sevilla Univ. (Spain). Departamento de Fisica Atomica, Molecular y Nuclear; Van Isacker, P. [Grand Accelerateur National d`Ions Lourds, 14 - Caen (France)

    1998-07-01

    Double-{gamma} vibrations in deformed nuclei are studied in the context of the interacting boson model with special reference to their anharmonic character. It is shown that large anharmonicities can be obtained with interactions that are (at least) of three-body nature between the bosons. As an example the {gamma} vibrations of the nucleus {sub 68}{sup 166}Er{sub 98} are studied in detail. (author) 28 refs.

  2. Anharmonic vibrations in nuclei

    CERN Document Server

    Fallot, M; Andrés, M V; Catara, F; Lanza, E G; Scarpaci, J A; Chomaz, Ph.

    2003-01-01

    In this letter, we show that the non-linearitites of large amplitude motions in atomic nuclei induce giant quadrupole and monopole vibrations. As a consequence, the main source of anharmonicity is the coupling with configurations including one of these two giant resonances on top of any state. Two-phonon energies are often lowered by one or two MeV because of the large matrix elements with such three phonon configurations. These effects are studied in two nuclei, 40Ca and 208Pb.

  3. Anharmonic quantum contribution to vibrational dephasing

    OpenAIRE

    Barik, Debashis; Ray, Deb Shankar

    2004-01-01

    Based on a quantum Langevin equation and its corresponding Hamiltonian within a c-number formalism we calculate the vibrational dephasing rate of a cubic oscillator. It is shown that leading order quantum correction due to anharmonicity of the potential makes a significant contribution to the rate and the frequency shift. We compare our theoretical estimates with those obtained from experiments for small diatomics $N_2$, $O_2$ and $CO$.

  4. Effects of vibrational anharmonicity on molecular electronic conduction and thermoelectric efficiency

    Science.gov (United States)

    Friedman, Hava Meira; Agarwalla, Bijay Kumar; Segal, Dvira

    2017-03-01

    We study inelastic vibration-assisted charge transfer effects in two-site molecular junctions, focusing on signatures of vibrational anharmonicity on the electrical characteristics and the thermoelectric response of the junction. We consider three types of oscillators: harmonic, anharmonic-Morse allowing bond dissociation, and harmonic-quartic, mimicking a confinement potential. Using a quantum master equation method which is perturbative in the electron-vibration interaction, we find that the (inelastic) electrical and thermal conductances can be largely affected by the nature of the vibrational potential. In contrast, the Seebeck coefficient, the thermoelectric figure-of-merit, and the thermoelectric efficiency beyond linear response conceal this information, showing a rather weak sensitivity to vibrational anharmonicity. Our work illustrates that anharmonic (many-body) effects, consequential to the current-voltage characteristics, are of little effect for the thermoelectric performance in the present model.

  5. Optimized coordinates for anharmonic vibrational structure theories.

    Science.gov (United States)

    Yagi, Kiyoshi; Keçeli, Murat; Hirata, So

    2012-11-28

    A procedure to determine optimal vibrational coordinates is developed on the basis of an earlier idea of Thompson and Truhlar [J. Chem. Phys. 77, 3031 (1982)]. For a given molecule, these coordinates are defined as the unitary transform of the normal coordinates that minimizes the energy of the vibrational self-consistent-field (VSCF) method for the ground state. They are justified by the fact that VSCF in these coordinates becomes exact in two limiting cases: harmonic oscillators, where the optimized coordinates are normal, and noninteracting anharmonic oscillators, in which the optimized coordinates are localized on individual oscillators. A robust and general optimization algorithm is developed, which decomposes the transformation matrix into a product of Jacobi matrices, determines the rotation angle of each Jacobi matrix that minimizes the energy, and iterates the process until a minimum in the whole high dimension is reached. It is shown that the optimized coordinates are neither entirely localized nor entirely delocalized (or normal) in any of the molecules (the water, water dimer, and ethylene molecules) examined (apart from the aforementioned limiting cases). Rather, high-frequency stretching modes tend to be localized, whereas low-frequency skeletal vibrations remain normal. On the basis of these coordinates, we introduce two new vibrational structure methods: optimized-coordinate VSCF (oc-VSCF) and optimized-coordinate vibrational configuration interaction (oc-VCI). For the modes that become localized, oc-VSCF is found to outperform VSCF, whereas, for both classes of modes, oc-VCI exhibits much more rapid convergence than VCI with respect to the rank of excitations. We propose a rational configuration selection for oc-VCI when the optimized coordinates are localized. The use of the optimized coordinates in VCI with this configuration selection scheme reduces the mean absolute errors in the frequencies of the fundamentals and the first overtones

  6. Effective harmonic oscillator description of anharmonic molecular vibrations

    Indian Academy of Sciences (India)

    Tapta Kanchan Roy; M Durga Prasad

    2009-09-01

    The validity of an effective harmonic oscillator approximation for anharmonic molecular vibrations is tested and compared with vibrational self consistent field and vibrational configurational interaction results. The effective harmonic oscillator is constructed variationally, by taking the trial wave function as a harmonic oscillator eigenfunction with the centroid and width parameter as variational paraeters. It is found that the effective harmonic oscillator approximation provides a description of the anharmonic eigenstates very similar to the vibrational self consistent field results. Coriolis coupling is also included in these studies.

  7. Analytic calculations of anharmonic infrared and Raman vibrational spectra.

    Science.gov (United States)

    Cornaton, Yann; Ringholm, Magnus; Louant, Orian; Ruud, Kenneth

    2016-02-07

    Using a recently developed recursive scheme for the calculation of high-order geometric derivatives of frequency-dependent molecular properties [Ringholm et al., J. Comp. Chem., 2014, 35, 622], we present the first analytic calculations of anharmonic infrared (IR) and Raman spectra including anharmonicity both in the vibrational frequencies and in the IR and Raman intensities. In the case of anharmonic corrections to the Raman intensities, this involves the calculation of fifth-order energy derivatives-that is, the third-order geometric derivatives of the frequency-dependent polarizability. The approach is applicable to both Hartree-Fock and Kohn-Sham density functional theory. Using generalized vibrational perturbation theory to second order, we have calculated the anharmonic infrared and Raman spectra of the non- and partially deuterated isotopomers of nitromethane, where the inclusion of anharmonic effects introduces combination and overtone bands that are observed in the experimental spectra. For the major features of the spectra, the inclusion of anharmonicities in the calculation of the vibrational frequencies is more important than anharmonic effects in the calculated infrared and Raman intensities. Using methanimine as a trial system, we demonstrate that the analytic approach avoids errors in the calculated spectra that may arise if numerical differentiation schemes are used.

  8. Transition from the Seniority to the Anharmonic Vibrator Regime in Nuclei

    CERN Document Server

    Bijker, R; Pittel, S

    1996-01-01

    A recent analysis of experimental energy systematics suggests that all collective nuclei fall into one of three classes -- seniority, anharmonic vibrational, or rotational -- with sharp phase transitions between them. We investigate the transition from the seniority to the anharmonic vibrator regime within a shell model framework involving a single large j-orbit. The calculations qualitatively reproduce the observed transitional behavior, both for U(5) like and O(6) like nuclei. They also confirm the preeminent role played by the neutron-proton interaction in producing the phase transition.

  9. Vibrational Spectra of the Azabenzenes Revisited: Anharmonic Force Fields

    CERN Document Server

    Boese, A D; Martin, Jan M.L.

    2003-01-01

    Anharmonic force fields and vibrational spectra of the azabenzene series (pyridine, pyridazine, pyrimidine, pyrazine, s-triazine, 1,2,3-triazine, 1,2,4-triazine and s-tetrazine) and benzene are obtained using density functional theory (DFT) with the B97-1 exchange-correlation functional and a triple-zeta plus double polarization (TZ2P) basis set. Overall, the fundamental frequencies computed by second-order rovibrational perturbation theory are in excellent agreement with experiment. The resolution of the presently calculated anharmonic spectra is such that they represent an extremely useful tool for the assignment and interpretation of the experimental spectra, especially where resonances are involved.

  10. Probing anharmonic properties of nuclear surface vibration by heavy-ion fusion reactions

    CERN Document Server

    Takigawa, N; Kuyucak, S

    1997-01-01

    Describing fusion reactions between ^{16}O and ^{154}Dy and, between ^{16}O and ^{144}Sm by the $sd-$ and $sdf-$ interacting boson model, we show that heavy-ion fusion reactions are strongly affected by anharmonic properties of nuclear surface vibrations and nuclear shape, and thus provide a powerful method to study details of nuclear structure and dynamics.

  11. Anharmonic vibrations of the dicarbon antisite defect in 4H-SiC

    Energy Technology Data Exchange (ETDEWEB)

    Yan, F.; Devaty, R. P.; Choyke, W. J. [Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 (United States); Gali, A. [Research Institute for Solid State Physics and Optics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Kimoto, T. [Department of Electronic Science and Engineering, Kyoto University, Katsura, Nishikyo, Kyoto 615-8510 (Japan); Ohshima, T. [Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Pensl, G. [Lehrstuhl fuer Angewandte Physik, Universitaet Erlangen-Nuernberg, Staudstr. 7/A3 Erlangen (Germany)

    2012-03-26

    Dicarbon antisite defects were created by either electron irradiation or ion implantation into 4H-SiC. The no-phonon lines from the dicarbon antisite defect center were observed with their phonon replicas. The stretch frequencies of the defect were observed up to the fifth harmonic. The Morse potential model accounts for the anharmonicity quite well and gives a very good prediction of the vibration energies up to the fifth harmonic with an error of less than 1%. First principles calculations show that the model of a dicarbon antisite defect along with its four nearest neighboring carbon atoms can explain the observed anharmonicity.

  12. Vibration-translation energy transfer in anharmonic diatomic molecules. II - The vibrational quantum-number dependence

    Science.gov (United States)

    Mckenzie, R. L.

    1976-01-01

    A semiclassical model of the inelastic collision between a vibrationally excited anharmonic oscillator and a structureless atom is used to predict the variation of thermally averaged vibrational-translational rate coefficients with temperature and initial-state quantum number. Multiple oscillator states are included in a numerical solution for collinear encounters. The results are compared with CO-He experimental values for both ground and excited initial states using several simplified forms of the interaction potential. The numerical model is also used as a basis for evaluating several less complete, but analytic, models. Two computationally simple analytic approximations are found that successfully reproduce the numerical rate coefficients for a wide range of molecular properties and collision partners. Their limitations are identified, and the relative rates of multiple-quantum transitions from excited states are evaluated for several molecular types.

  13. Vibration-translation energy transfer in anharmonic diatomic molecules. 2: The vibrational quantum number dependence

    Science.gov (United States)

    Mckenzie, R. L.

    1975-01-01

    A semiclassical model of the inelastic collision between a vibrationally excited anharmonic oscillator and a structureless atom was used to predict the variation of thermally averaged vibration-translation rate coefficients with temperature and initial-state quantum number. Multiple oscillator states were included in a numerical solution for collinear encounters. The results are compared with CO-He experimental values for both ground and excited initial states using several simplified forms of the interaction potential. The numerical model was also used as a basis for evaluating several less complete but analytic models. Two computationally simple analytic approximations were found that successfully reproduced the numerical rate coefficients for a wide range of molecular properties and collision partners. Their limitations were also identified. The relative rates of multiple-quantum transitions from excited states were evaluated for several molecular types.

  14. Stochastic many-body perturbation theory for anharmonic molecular vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Hermes, Matthew R. [Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801 (United States); Hirata, So, E-mail: sohirata@illinois.edu [Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801 (United States); CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan)

    2014-08-28

    A new quantum Monte Carlo (QMC) method for anharmonic vibrational zero-point energies and transition frequencies is developed, which combines the diagrammatic vibrational many-body perturbation theory based on the Dyson equation with Monte Carlo integration. The infinite sums of the diagrammatic and thus size-consistent first- and second-order anharmonic corrections to the energy and self-energy are expressed as sums of a few m- or 2m-dimensional integrals of wave functions and a potential energy surface (PES) (m is the vibrational degrees of freedom). Each of these integrals is computed as the integrand (including the value of the PES) divided by the value of a judiciously chosen weight function evaluated on demand at geometries distributed randomly but according to the weight function via the Metropolis algorithm. In this way, the method completely avoids cumbersome evaluation and storage of high-order force constants necessary in the original formulation of the vibrational perturbation theory; it furthermore allows even higher-order force constants essentially up to an infinite order to be taken into account in a scalable, memory-efficient algorithm. The diagrammatic contributions to the frequency-dependent self-energies that are stochastically evaluated at discrete frequencies can be reliably interpolated, allowing the self-consistent solutions to the Dyson equation to be obtained. This method, therefore, can compute directly and stochastically the transition frequencies of fundamentals and overtones as well as their relative intensities as pole strengths, without fixed-node errors that plague some QMC. It is shown that, for an identical PES, the new method reproduces the correct deterministic values of the energies and frequencies within a few cm{sup −1} and pole strengths within a few thousandths. With the values of a PES evaluated on the fly at random geometries, the new method captures a noticeably greater proportion of anharmonic effects.

  15. Stochastic many-body perturbation theory for anharmonic molecular vibrations.

    Science.gov (United States)

    Hermes, Matthew R; Hirata, So

    2014-08-28

    A new quantum Monte Carlo (QMC) method for anharmonic vibrational zero-point energies and transition frequencies is developed, which combines the diagrammatic vibrational many-body perturbation theory based on the Dyson equation with Monte Carlo integration. The infinite sums of the diagrammatic and thus size-consistent first- and second-order anharmonic corrections to the energy and self-energy are expressed as sums of a few m- or 2m-dimensional integrals of wave functions and a potential energy surface (PES) (m is the vibrational degrees of freedom). Each of these integrals is computed as the integrand (including the value of the PES) divided by the value of a judiciously chosen weight function evaluated on demand at geometries distributed randomly but according to the weight function via the Metropolis algorithm. In this way, the method completely avoids cumbersome evaluation and storage of high-order force constants necessary in the original formulation of the vibrational perturbation theory; it furthermore allows even higher-order force constants essentially up to an infinite order to be taken into account in a scalable, memory-efficient algorithm. The diagrammatic contributions to the frequency-dependent self-energies that are stochastically evaluated at discrete frequencies can be reliably interpolated, allowing the self-consistent solutions to the Dyson equation to be obtained. This method, therefore, can compute directly and stochastically the transition frequencies of fundamentals and overtones as well as their relative intensities as pole strengths, without fixed-node errors that plague some QMC. It is shown that, for an identical PES, the new method reproduces the correct deterministic values of the energies and frequencies within a few cm(-1) and pole strengths within a few thousandths. With the values of a PES evaluated on the fly at random geometries, the new method captures a noticeably greater proportion of anharmonic effects.

  16. Role of anharmonicities of nuclear vibrations in fusion reactions at subbarrier energies

    CERN Document Server

    Hagino, K; Kuyucak, S

    1997-01-01

    We discuss the effects of double octupole and quadrupole phonon excitations in $^{144}$Sm on fusion reactions between $^{16}$O and $^{144}$Sm at subbarrier energies. The effects of anharmonicities of the vibrational states are taken into account by using the $sdf$-interacting boson model. We compare the results with those in the harmonic limit to show that anharmonicities play an essential role in reproducing the experimental fusion barrier distribution. From the analysis of the high quality fusion data available for this system, we deduce negative static quadrupole moments for both the first 2$^{+}$ and 3$^{-}$ states in $^{144}$Sm. This is the first time that the sign of static quadrupole moments of phonon states in a spherical nucleus is determined from the data of subbarrier fusion reactions.

  17. Anharmonic Vibrational Frequency Calculations Are Not Worthwhile for Small Basis Sets.

    Science.gov (United States)

    Jacobsen, Ruth L; Johnson, Russell D; Irikura, Karl K; Kacker, Raghu N

    2013-02-12

    Anharmonic calculations using vibrational perturbation theory are known to provide near-spectroscopic accuracy when combined with high-level ab initio potential energy functions. However, performance with economical, popular electronic structure methods is less well characterized. We compare the accuracy of harmonic and anharmonic predictions from Hartree-Fock, second-order perturbation, and density functional theories combined with 6-31G(d) and 6-31+G(d,p) basis sets. As expected, anharmonic frequencies are closer than harmonic frequencies to experimental fundamentals. However, common practice is to correct harmonic predictions using multiplicative scaling. The surprising conclusion is that scaled anharmonic calculations are no more accurate than scaled harmonic calculations for the basis sets we used. The data used are from the Computational Chemistry Comparison and Benchmark Database (CCCBDB), maintained by the National Institute of Standards and Technology, which includes more than 3939 independent vibrations for 358 molecules.

  18. Anharmonicity of lattice vibrations induced by charged nickel additions in A sup 2 B sup 6 semiconductors

    CERN Document Server

    Sokolov, V I; Shirokov, E A; Kislov, A N

    2002-01-01

    Paper presents the results of investigations into lattice vibrations induced by nickel impurities charged negatively as to the lattice in ZnSe:Ni, ZnO:Ni, ZnS:Ni, CdS:Ni semiconductors. To investigate into vibrations one applies a sensitive technique of field exciton-oscillation spectroscopy. One observes experimentally oscillating reiterations of the impurity exciton head line including the intensive peaks of combined repetitions up to the 8-th order. The experimental results are discussed on the basis of the model estimations of oscillations of a lattice with a charged impurity centre, as well as, on the ground of calculations for oscillations of monoatomic chain with high anharmonicity. Charged impurity centres are shown to induce new oscillations of lattice - impurity anharmonic modes

  19. Anharmonic vibrational effects of thermoelectric Cu-Sb-Se ternary semiconductors: Density-functional theory studies

    Science.gov (United States)

    Zhang, Yongsheng; Skoug, Eric; Cain, Jeffrey; Morelli, Donald; Ozolins, Vidvuds; Wolverton, Christopher

    2012-02-01

    Strong anharmonicity can lead to intrinsically minimal thermal conductivity even in defect-free single crystals. In an effort to understand this behavior, we have investigated two Cu-Sb-Se ternary semiconductors, Cu3SbSe4 and Cu3SbSe3, by both experimental measurements and density functional theory (DFT) calculations. The experimental lattice thermal conductivity measurements show that while Cu3SbSe4 exhibits classical behavior, the lattice thermal conductivity in Cu3SbSe3 is anomalously low and nearly temperature independent. The vibrational properties of these two semiconductors are calculated by DFT phonon calculations within the quasi-harmonic approximation. The average of the Gr"uneisen parameters of the acoustic mode in Cu3SbSe3 is larger than that of Cu3SbSe4, which theoretically confirms that Cu3SbSe3 has a stronger lattice anharmonicity than Cu3SbSe4. Using our DFT-determined longitudinal and transverse Gr"uneisen parameters, Debye temperatures, and phonon velocities, we calculate the lattice the lattice thermal conductivity using the Debye-Callaway model (without the use of any adjustable parameters). The calculated thermal conductivity is in good agreement with the experimental measurements.

  20. Local anharmonic vibrations strong correlations and superconductivity : a quantum simulation study

    NARCIS (Netherlands)

    Frick, M.; Linden, W. von der; Morgenstern, I.; Raedt, H. de

    1990-01-01

    We investigate the importance of local anharmonic vibrations of the bridging oxygen in the copper oxide high-Tc materials in the context of superconductivity. For the numerical simulation we employ the projector quantum Monte Carlo method to study the ground state properties of the coupled electron-

  1. Anharmonic Vibrational Analysis for the Propadienylidene Molecule (H2C═C═C:).

    Science.gov (United States)

    Wu, Qunyan; Hao, Qiang; Wilke, Jeremiah J; Simmonett, Andrew C; Yamaguchi, Yukio; Li, Qianshu; Fang, De-Cai; Schaefer, Henry F

    2010-10-12

    Maier et al. found that photolysis of singlet cyclopropenylidene (1S) in a matrix yields triplet propargylene (2T), which upon further irradiation is converted to singlet propadienylidene (vinylidenecarbene, 3S). Their discovery was followed by interstellar identification of 3S by Cernicharo et al. An accurate quartic force field for propadienylidene (3S) has been determined employing the ab initio coupled-cluster (CC) with single and double excitations and perturbative triple excitations [CCSD(T)] method and the correlation-consistent core-valence quadruple-ζ (cc-pCVQZ) basis set. Utilizing vibrational second-order perturbation theory (VPT2), vibration-rotation coupling constants, rotational constants, centrifugal distortion constants, vibrational anharmonic constants, and fundamental vibrational frequencies are determined. The predicted fundamental frequencies for 3S as well as its (13)C and deuterium isotopologues are in good agreement with experimental values. The theoretical zero-point vibration corrected rotational constants B0 are consistent with experimental values within 0.3% of errors. The isotopic shifts of B0 are in close to exact agreement with experimental observations. The mean absolute deviation between theoretical anharmonic and experimental fundamental vibrational frequencies for 24 modes (excluding CH2 s-str.) is only 2.6 cm(-1). The isotopic shifts of the vibrational frequencies are also in excellent agreement with the available experimental values. However, a large discrepancy is observed for the CH2 symmetric stretch, casting doubt on the experimental assignment for this mode.

  2. Anharmonic vibrational studies of L-aspartic acid using HF and DFT calculations

    Science.gov (United States)

    Alam, Mohammad Jane; Ahmad, Shabbir

    2012-10-01

    The experimental and theoretical studies on the structure, molecular properties and vibrational spectra of L-aspartic acid are presented. The molecular structure, harmonic and anharmonic vibrational frequencies, molecular properties, MEP mapping, NBO analysis and electronic spectra of L-aspartic acid have been reported. Computed geometrical parameters and anharmonic frequencies of fundamental, combination and overtone transitions were found in satisfactory agreement with the experimental data. The UV-Vis spectrum of present molecule has been recorded and the electronic properties such as HOMO and LUMO energies and few low lying excited states were carried out by using time dependent density functional theory (TD-DFT) approach. Natural Bond Orbital (NBO) analysis has been performed for analyzing charge delocalization throughout the molecule. Molecular electrostatic potential map has also been used for quantitative measure of the chemical activities of various sites of the molecule.

  3. Anharmonic OH vibrations in Mg(OH)2 (brucite): two-dimensional calculations and crystal-induced blueshift.

    Science.gov (United States)

    Hermansson, Kersti; Probst, Michael M; Gajewski, Grzegorz; Mitev, Pavlin D

    2009-12-28

    A two-dimensional quantum-mechanical vibrational model has been used to calculate the anharmonic OH vibrational frequencies in the layered Mg(OH)(2) (brucite) crystal. The underlying potential energy surface was generated by density functional theory (DFT) calculations. The resulting OH frequencies are upshifted (blueshifted) by about +75 cm(-1) with respect to the gas-phase OH frequency (+120 cm(-1) in experiments; the discrepancy is mainly due to inadequacies in the DFT and pseudopotential models). The Raman-IR split is about 50 cm(-1), both in the calculations and in experiments. We find that the blueshift phenomenon in brucite can qualitatively be explained by a parabolalike "OH frequency versus electric field" correlation curve pertaining to an OH(-) ion exposed to an electric field. We also find that it is primarily the neighbors within the Mg(OH)(2) layer that induce the blueshift while the interlayer interaction gives a smaller (and redshifting) contribution.

  4. Perturbative treatment of anharmonic vibrational effects on bond distances: an extended Langevin dynamics method.

    Science.gov (United States)

    Shen, Tonghao; Su, Neil Qiang; Wu, Anan; Xu, Xin

    2014-03-05

    In this work, we first review the perturbative treatment of an oscillator with cubic anharmonicity. It is shown that there is a quantum-classical correspondence in terms of mean displacement, mean-squared displacement, and the corresponding variance in the first-order perturbation theory, provided that the amplitude of the classical oscillator is fixed at the zeroth-order energy of quantum mechanics EQM (0). This correspondence condition is realized by proposing the extended Langevin dynamics (XLD), where the key is to construct a proper driving force. It is assumed that the driving force adopts a simple harmonic form with its amplitude chosen according to EQM (0), while the driving frequency chosen as the harmonic frequency. The latter can be improved by using the natural frequency of the system in response to the potential if its anharmonicity is strong. By comparing to the accurate numeric results from discrete variable representation calculations for a set of diatomic species, it is shown that the present method is able to capture the large part of anharmonicity, being competitive with the wave function-based vibrational second-order perturbation theory, for the whole frequency range from ∼4400 cm(-1) (H2 ) to ∼160 cm(-1) (Na2 ). XLD shows a substantial improvement over the classical molecular dynamics which ceases to work for hard mode when zero-point energy effects are significant.

  5. On the benefits of localized modes in anharmonic vibrational calculations for small molecules

    CERN Document Server

    Panek, Pawel T

    2016-01-01

    Anharmonic vibrational calculations can already be computationally demanding for relatively small molecules. The main bottlenecks lie in the construction of the potential energy surface and in the size of the excitation space in the vibrational configuration interaction (VCI) calculations. To address these challanges, we use localized-mode coordinates to construct potential energy surfaces and perform vibrational self-consistent field (L-VSCF) and L-VCI calculations [P. T. Panek, Ch. R. Jacob, ChemPhysChem 15, 3365 (2014)] for all vibrational modes of two prototypical test cases, the ethene and furan molecules. We find that the mutual coupling between modes is reduced when switching from normal-mode coordinates to localized-mode coordinates. When using such localized-mode coordinates, we observe a faster convergence of the $n$-mode expansion of the potential energy surface. This makes it possible to neglect higher-order contributions in the $n$-mode expansion of the potential energy surface or to approximate ...

  6. A study of anharmonic al and nonlinear behaviours of vibrations of atomic nuclei; Etude des comportements anharmonioques et non lineaires des vibrations des noyaux atomiques

    Energy Technology Data Exchange (ETDEWEB)

    Volpe, M.C. [Caen Univ., 14 (France)

    1997-12-31

    Double Giant Resonances, vibrational states in which a Giant Resonance is excited on top of another Giant Resonance, have been in the last years the object of many theories and studies. Whereas the measured energies and widths of these states agree with a theoretical predictions, the measured excitation cross sections on the other hand are almost always larger than the calculated ones. The standard theoretical approaches are based both on a harmonic approximation for the collective motion on the nucleus and on its linear response to an external field. In this work the influence of anharmonicities and non-linearities in the external field on the excitation of Double Giant Resonances are studied. First, an oscillator model and an extension of the Lipkin-Meshkow-Glick model are used to study the effects of anharmonicities and non-linearities on the excitation probabilities. The results show that these terms can influence the excitation probability of the second excited state in a significant way. Secondly, these exactly soluble schematic models are used to study some of the approximations made in microscopic calculations based on boson expansion methods and also some aspects on the time-dependent mean field approach. Finally, a microscopic calculation of the Coulomb excitation cross sections of Double Giant Resonances is presented for several nuclei. It is found that, for {sup 208} Pb, the inclusion of anharmonicities and non-linearities and the consideration of many states that play a role in the excitation process give a satisfactory agreement between calculated and observed cross sections. (author). 113 refs.

  7. Automatic generation of force fields and property surfaces for use in variational vibrational calculations of anharmonic vibrational energies and zero-point vibrational averaged properties.

    Science.gov (United States)

    Kongsted, Jacob; Christiansen, Ove

    2006-09-28

    An automatic and general procedure for the calculation of geometrical derivatives of the energy and general property surfaces for molecular systems is developed and implemented. General expressions for an n-mode representation are derived, where the n-mode representation includes only the couplings between n or less degrees of freedom. The general expressions are specialized to derivative force fields and property surfaces, and a scheme for calculation of the numerical derivatives is implemented. The implementation is interfaced to electronic structure programs and may be used for both ground and excited electronic states. The implementation is done in the context of a vibrational structure program and can be used in combination with vibrational self-consistent field (VSCF), vibrational configuration interaction (VCI), vibrational Moller-Plesset, and vibrational coupled cluster calculations of anharmonic wave functions and calculation of vibrational averaged properties at the VSCF and VCI levels. Sample calculations are presented for fundamental vibrational energies and vibrationally averaged dipole moments and frequency dependent polarizabilities and hyperpolarizabilities of water and formaldehyde.

  8. Phonon-state mixing in the lowest two $I^{\\pi}=2^+$ states of anharmonic vibration nuclei

    CERN Document Server

    Qin, Z Z

    2016-01-01

    The phonon-configuration mixing in $2^+_1$ and $2^+_2$ states beyond the anharmonic-vibration collectivity explains the universal correlations of $Q(2^+_1)=-Q(2^+_2)$. It also suggests another strong magnetic-moment correlation of $\\mu(2^+_1)=\\mu(2^+_2)$ for the anharmonic-vibration nuclei, which is further confirmed by our experimental-data survey. The global relation between $|Q(2^+)|$, $E_{2^+_1}$ and $E_{2^+_2}$ is analytically established according to the phonon-configuration mixing scheme, and roughly agrees with experiments. This relation may provide a convenient estimation of $|Q(2^+)|$ only with spectral input. The $N_pN_n$ scheme suggests that the phonon-configuration mixing may be driven by the neutron-proton interaction.

  9. Catalytic mechanism of LENR in quasicrystals based on localized anharmonic vibrations and phasons

    CERN Document Server

    Dubinko, Volodymyr; Irwin, Klee

    2016-01-01

    Quasicrystals (QCs) are a novel form of matter, which are neither crystalline nor amorphous. Among many surprising properties of QCs is their high catalytic activity. We propose a mechanism explaining this peculiarity based on unusual dynamics of atoms at special sites in QCs, namely, localized anharmonic vibrations (LAVs) and phasons. In the former case, one deals with a large amplitude (~ fractions of an angstrom) time-periodic oscillations of a small group of atoms around their stable positions in the lattice, known also as discrete breathers, which can be excited in regular crystals as well as in QCs. On the other hand, phasons are a specific property of QCs, which are represented by very large amplitude (~angstrom) oscillations of atoms be-tween two quasi-stable positions determined by the geometry of a QC. Large amplitude atomic motion in LAVs and phasons results in time-periodic driving of adjacent potential wells occupied by hydrogen ions (protons or deuterons) in case of hydrogenated QCs. This drivin...

  10. Global dynamical analysis of vibrational manifolds of HOCl and HOBr under anharmonicity and Fermi resonance: the dynamical potential approach

    Science.gov (United States)

    Fang, Chao; Wu, Guo-Zhen

    2010-01-01

    The vibrational dynamics of HOCl and HOBr between bending and OCl/OBr stretching coordinates with anharmonicity and Fermi coupling is studied with the classical dynamical potential approach. The quantal vibrational dynamics is mostly mapped out by the classical nonlinear variables such as fixed points, except for the state energies, which are quantized. This approach is global in the sense that the focus is on a set of levels instead of individual ones. The dynamics of HOBr is demonstrated to be less complicated. The localized modes along the OCl/OBr stretching coordinates are also shown to have O-Br bonds more prone to dissociation.

  11. A quantum anharmonic oscillator model for the stock market

    Science.gov (United States)

    Gao, Tingting; Chen, Yu

    2017-02-01

    A financially interpretable quantum model is proposed to study the probability distributions of the stock price return. The dynamics of a quantum particle is considered an analog of the motion of stock price. Then the probability distributions of price return can be computed from the wave functions that evolve according to Schrodinger equation. Instead of a harmonic oscillator in previous studies, a quantum anharmonic oscillator is applied to the stock in liquid market. The leptokurtic distributions of price return can be reproduced by our quantum model with the introduction of mixed-state and multi-potential. The trend following dominant market, in which the price return follows a bimodal distribution, is discussed as a specific case of the illiquid market.

  12. Anharmonic Vibrational Analysis of the Infrared and Raman Gas-Phase Spectra of s-trans- and s-gauche-1,3-Butadiene.

    Science.gov (United States)

    Krasnoshchekov, Sergey V; Craig, Norman C; Boopalachandran, Praveenkumar; Laane, Jaan; Stepanov, Nikolay F

    2015-10-29

    A quantum-mechanical (hybrid MP2/cc-pVTZ and CCSD(T)/cc-pVTZ) full quartic potential energy surface (PES) in rectilinear normal coordinates and the second-order operator canonical Van Vleck perturbation theory (CVPT2) are employed to predict the anharmonic vibrational spectra of s-trans- and s-gauche-butadiene (BDE). These predictions are used to interpret their infrared and Raman scattering spectra. New high-temperature Raman spectra in the gas phase are presented in support of assignments for the gauche conformer. The CVPT2 solution is based on a PES and electro-optical properties (EOP; dipole moment and polarizability) expanded in Taylor series. Higher terms than those routinely available from Gaussian09 software were calculated by numerical differentiation of quadratic force fields and EOP using the MP2/cc-pVTZ model. The integer coefficients of the polyad quantum numbers were derived for both conformers of BDE. Replacement of harmonic frequencies by their counterparts from the CCSD(T)/cc-pVTZ model significantly improved the agreement with experimental data for s-trans-BDE (root-mean-square deviation ≈ 5.5 cm(-1)). The accuracy in predicting the rather well-studied spectrum of fundamentals of s-trans-BDE assures good predictions of the spectrum of s-gauche-BDE. A nearly complete assignment of fundamentals was obtained for the gauche conformer. Many nonfundamental transitions of the BDE conformers were interpreted as well. The predictions of multiple Fermi resonances in the complex CH-stretching region correlate well with experiment. It is shown that solving a vibrational anharmonic problem through a numerical-analytic implementation of CVPT2 is a straightforward and computationally advantageous approach for medium-size molecules in comparison with the standard second-order vibrational perturbation theory (VPT2) based on analytic expressions.

  13. PT-Symmetric Cubic Anharmonic Oscillator as a Physical Model

    CERN Document Server

    Mostafazadeh, A

    2004-01-01

    We perform a perturbative calculation of the physical observables, in particular pseudo-Hermitian position and momentum operators, the equivalent Hermitian Hamiltonian operator, and the classical Hamiltonian for the PT-symmetric cubic anharmonic oscillator, $ H=p^1/(2m)+\\mu^2x^2/2+i\\epsilon x^3 $. Ignoring terms of order $ \\epsilon^4 $ and higher, we show that this system describes an ordinary quartic anharmonic oscillator with a position-dependent mass and real and positive coupling constants. This observation elucidates the classical origin of the reality and positivity of the energy spectrum. We also discuss the quantum-classical correspondence for this PT-symmetric system, compute the associated conserved probability density, and comment on the issue of factor-ordering in the pseudo-Hermitian canonical quantization of the underlying classical system.

  14. Systematic studies of molecular vibrational anharmonicity and vibration-rotation interaction by self-consistent-field higher derivative methods: Applications to asymmetric and symmetric top and linear polyatomic molecules

    Energy Technology Data Exchange (ETDEWEB)

    Clabo, D.A. Jr.

    1987-04-01

    Inclusion of the anharmonicity normal mode vibrations (i.e., the third and fourth (and higher) derivatives of a molecular Born-Oppenheimer potential energy surface) is necessary in order to theoretically reproduce experimental fundamental vibrational frequencies of a molecule. Although ab initio determinations of harmonic vibrational frequencies may give errors of only a few percent by the inclusion of electron correlation within a large basis set for small molecules, in general, molecular fundamental vibrational frequencies are more often available from high resolution vibration-rotation spectra. Recently developed analytic third derivatives methods for self-consistent-field (SCF) wavefunctions have made it possible to examine with previously unavailable accuracy and computational efficiency the anharmonic force fields of small molecules.

  15. Vibrational properties and phonon anharmonicity in ZnS{sub 1−x}Se{sub x}: Inelastic neutron scattering, Raman scattering, X-ray diffraction measurements and lattice dynamical studies

    Energy Technology Data Exchange (ETDEWEB)

    Basak, Tista, E-mail: tistabasak1@gmail.com [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra (India); Rao, Mala N.; Chaplot, S.L.; Salke, Nilesh; Rao, Rekha [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra (India); Dhanasekaran, R. [Crystal Growth Centre, Anna University, SP Road, Chennai 600025 (India); Rajarajan, A.K. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra (India); Rols, S. [Institut Laue-Langevin, BP 156, 38042 Grenoble Cedex 9, Grenoble (France); Mittal, R.; Jayakrishnan, V.B.; Sastry, P.U. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra (India)

    2014-01-15

    Inelastic neutron scattering, Raman and X-ray diffraction measurements coupled with lattice dynamical calculations (employing a semi-empirical transferable potential model) have been carried out to gain a detailed understanding of the peculiar vibrational spectrum exhibited by the mixed crystal ZnS{sub 1−x}Se{sub x}. Raman scattering measurements performed over a varying range of temperature (100–800 K) and pressure (up to 13 GPa) have confirmed that the additional mode observed in the spectra are visible over the entire range of temperature and pressure. Correlation of the individual motions of atoms (obtained from computed total and partial phonon density of states) with the inelastic neutron scattering measurements (carried out over the entire Brillouin zone) have then indicated that the existence of the additional mode in ZnS{sub 1−x}Se{sub x} is due to the vibrations of the Se atom being in resonance with that of the S atom. Further, it has been shown that the presence of this additional mode can be tuned by varying the mass of the atom at the Se site. In addition, an analysis of bond-length distribution with increasing Se concentration have elucidated that bond-length spread is not responsible for the presence of the additional mode. An analysis of the peak shifts of the Raman modes with temperature and pressure indicate that the anharmonicity of the vibrational modes increases with increasing compositional disorder. This is attributed to the fact that increasing Se concentration gives rise to a distribution of bond-lengths in ZnS{sub 1−x}Se{sub x}, which is responsible for this compositional disorder induced anharmonicity. Our computations have thus revealed that mass of the anion is responsible for the presence of additional mode while bond-length distribution gives rise to the existence of compositional disorder induced anharmonicity in ZnS{sub 1−x}Se{sub x}. Further, it is observed that the contribution of explicit anharmonicity to the total

  16. Anharmonic Vibrational Treatment Exclusively in Curvilinear Valence Coordinates: The Case of Formamide.

    Science.gov (United States)

    Richter, F; Thaunay, F; Lauvergnat, D; Carbonnière, P

    2015-12-01

    A highly correlated approach using curvilinear valence coordinates is applied to calculate the vibrational fundamentals and some combination modes of the formamide molecule with high accuracy. A series of potential energy surfaces (PESs) has been generated by AGAPES, a program for adaptive generation of adiabatic PESs, at various electronic structure qualities until excellent nonaccidental agreement with the experimentally assigned fundamental transitions was reached at the CCSDT(T)-F12a/aug-cc-pVTZ level of theory using the improved relaxation method of the Heidelberg multiconfiguration time-dependent Hartree (MCTDH) package in connection with an exact expression for the kinetic energy in valence coordinates generated by the TANA program. By comparison of the overtone series ν1-3ν1 to experiment, we demonstrate that the known problems concerning the floppy ν1 wagging motion are solved within this approach. The potential energy coupling as well as the vibrational coupling in curvilinear coordinates is discussed together with the efficiency of this approach.

  17. Getting down to the Fundamentals of Hydrogen Bonding: Anharmonic Vibrational Frequencies of (HF)2 and (H2O)2 from Ab Initio Electronic Structure Computations.

    Science.gov (United States)

    Howard, J Coleman; Gray, Jessica L; Hardwick, Amanda J; Nguyen, Linh T; Tschumper, Gregory S

    2014-12-09

    This work presents a systematic investigation into the basis set convergence of harmonic vibrational frequencies of (H2O)2 and (HF)2 computed with second-order Møller-Plesset perturbation theory (MP2) and the coupled-cluster singles and doubles method with perturbative connected triples, CCSD(T), while employing correlation-consistent basis sets as large as aug-cc-pV6Z. The harmonic vibrational frequencies presented here are expected to lie within a few cm(-1) of the complete basis set (CBS) limit. For these important hydrogen-bonding prototype systems, a basis set of at least quadruple-ζ quality augmented with diffuse functions is required to obtain harmonic vibrational frequencies within 10 cm(-1) of the CBS limit. In addition, second-order vibrational perturbation theory (VPT2) anharmonic corrections yield CCSD(T) vibrational frequencies in excellent agreement with experimental spectra, differing by no more than a few cm(-1) for the intramonomer fundamental vibrations. D0 values predicted by CCSD(T) VPT2 computations with a quadruple-ζ basis set reproduce the experimental values of (HF)2 and (H2O)2 to within 2 and 21 cm(-1), respectively.

  18. Electron hybridization and anharmonic thermal vibration effect on structure transition of SrTiO3 at high-pressure and low-temperature

    Science.gov (United States)

    Yamanaka, Takamitsu; Ahart, Muhtar; Mao, Ho-kwang; Suzuki, Takeyuki

    2017-01-01

    We execute electron density analysis of SrTiO3 at low temperatures up 80 K and high pressures up to 11.88 GPa using X-ray single-crystal diffraction and ab initio quantum chemical molecular orbital (MO) calculation. By changing pressures, the cubic SrTiO3 with perovskite structure goes through a antiferroelastic distortion to tetragonal symmetry above the critical pressure Pc=7 GPa with c/a1 and increasing with lowering temperature. Difference Fourier (D-F) synthesis experimentally proves the residual electron densities Δρ(xyz) are associated with two different effects: electron hybridization bonding electron and anharmonic thermal vibration atoms. The d-p-π hybridization between Ti(3d) and O(2p) orbitals is confirmed in the residual electron density, which is deformed from the ideal spherical density conducted by the atomic scattering factor fi using Hartree-Fock (HF) approximation. MO calculation also reveals the electron hybridization. Anharmonic thermal vibration of atoms yields a large effect to the structure transition. Mulliken charges analysis of MO calculation indicates much smaller charges than their formal ionic charges. Their ionicity increases from cubic to tetragonal above Pc and below Tc.

  19. Predicting the structure and vibrational frequencies of ethylene using harmonic and anharmonic approaches at the Kohn-Sham complete basis set limit.

    Science.gov (United States)

    Buczek, Aneta; Kupka, Teobald; Broda, Małgorzata A; Żyła, Adriana

    2016-01-01

    In this work, regular convergence patterns of the structural, harmonic, and VPT2-calculated anharmonic vibrational parameters of ethylene towards the Kohn-Sham complete basis set (KS CBS) limit are demonstrated for the first time. The performance of the VPT2 scheme implemented using density functional theory (DFT-BLYP and DFT-B3LYP) in combination with two Pople basis sets (6-311++G** and 6-311++G(3df,2pd)), the polarization-consistent basis sets pc-n, aug-pc-n, and pcseg-n (n = 0, 1, 2, 3, 4), and the correlation-consistent basis sets cc-pVXZ and aug-cc-pVXZ (X = D, T, Q, 5, 6) was tested.The BLYP-calculated harmonic frequencies were found to be markedly closer than the B3LYP-calculated harmonic frequencies to the experimentally derived values, while the calculated anharmonic frequencies consistently underestimated the observed wavenumbers. The different basis set families gave very similar estimated values for the CBS parameters. The anharmonic frequencies calculated with B3LYP/aug-pc-3 were consistently significantly higher than those obtained with the pc-3 basis set; applying the aug-pcseg-n basis set family alleviated this problem. Utilization of B3LYP/aug-pcseg-n basis sets instead of B3LYP/aug-cc-pVXZ, which is computationally less expensive, is suggested for medium-sized molecules. Harmonic BLYP/pc-2 calculations produced fairly accurate ethylene frequencies. Graphical Abstract In this study, the performance of the VPT2 scheme implemented using density functional theory (DFT-BLYP and DFT-B3LYP) in combination with the polarization-consistent basis sets pc-n, aug-pc-n, and pcseg-n (n = 0, 1, 2, 3, 4), and the correlation-consistent basis sets cc-pVXZ and aug-cc-pVXZ (X = D, T, Q, 5, and 6) was tested. For the first time, we demonstrated regular convergence patterns of the structural, harmonic, and VPT2-calculated anharmonic vibrational parameters of ethylene towards the Kohn-Sham complete basis set (KS CBS) limit.

  20. Frequency and zero-point vibrational energy scale factors for double-hybrid density functionals (and other selected methods): can anharmonic force fields be avoided?

    Science.gov (United States)

    Kesharwani, Manoj K; Brauer, Brina; Martin, Jan M L

    2015-03-05

    We have obtained uniform frequency scaling factors λ(harm) (for harmonic frequencies), λ(fund) (for fundamentals), and λ(ZPVE) (for zero-point vibrational energies (ZPVEs)) for the Weigend-Ahlrichs and other selected basis sets for MP2, SCS-MP2, and a variety of DFT functionals including double hybrids. For selected levels of theory, we have also obtained scaling factors for true anharmonic fundamentals and ZPVEs obtained from quartic force fields. For harmonic frequencies, the double hybrids B2PLYP, B2GP-PLYP, and DSD-PBEP86 clearly yield the best performance at RMSD = 10-12 cm(-1) for def2-TZVP and larger basis sets, compared to 5 cm(-1) at the CCSD(T) basis set limit. For ZPVEs, again, the double hybrids are the best performers, reaching root-mean-square deviations (RMSDs) as low as 0.05 kcal/mol, but even mainstream functionals like B3LYP can get down to 0.10 kcal/mol. Explicitly anharmonic ZPVEs only are marginally more accurate. For fundamentals, however, simple uniform scaling is clearly inadequate.

  1. The theoretical-cum-statistical approach for the investigation of reaction NO2 + O(3P) → NO + O2 using SCTST and a full anharmonic VPT2 model

    Science.gov (United States)

    Shiekh, Bilal Ahmad; Kaur, Damanjit; Seth, Bharti; Mahajan, Shalagha

    2016-10-01

    The study of the titled reaction has been carried out using high-level quantum mechanics in conjugation with SCTST and VPT2 model. The many quantum mechanical methods have been employed in combinatory approach to find out the various properties such as energy, anharmonic vibrational coefficients and ro-vibrational parameters for the stationary points including the transition state of the reaction. Then the thermal rate coefficients were computed over a temperature regime of 150-1500 K and the corresponding results were compared with the available literature. In this temperature regime, our computed results are in excellent contrast with the experiment.

  2. Generation of discrete superpositions of coherent states in the anharmonic oscillator model

    CERN Document Server

    Miranowicz, A; Kielich, S; 10.1088/0954-8998/2/3/006

    2011-01-01

    The problem of generating discrete superpositions of coherent states in the process of light propagation through a nonlinear Kerr medium, which is modelled by the anharmonic oscillator, is discussed. It is shown that under an appropriate choice of the length (time) of the medium the superpositions with both even and odd numbers of coherent states can appear. Analytical formulae for such superpositions with a few components are given explicitly. General rules governing the process of generating discrete superpositions of coherent states are also given. The maximum number of well distinguished states that can be obtained for a given number of initial photons is estimated. The quasiprobability distribution $Q(\\alpha,\\alpha^*,t)$ representing the superposition states is illustrated graphically, showing regular structures when the component states are well separated.

  3. Thermoelectricity in molecular junctions with harmonic and anharmonic modes

    Directory of Open Access Journals (Sweden)

    Bijay Kumar Agarwalla

    2015-11-01

    Full Text Available We study charge and energy transfer in two-site molecular electronic junctions in which electron transport is assisted by a vibrational mode. To understand the role of mode harmonicity/anharmonicity in transport behavior, we consider two limiting situations: (i the mode is assumed harmonic, (ii we truncate the mode spectrum to include only two levels, to represent an anharmonic mode. Based on the cumulant generating functions of the models, we analyze the linear-response and nonlinear performance of these junctions and demonstrate that while the electrical and thermal conductances are sensitive to whether the mode is harmonic/anharmonic, the Seebeck coefficient, the thermoelectric figure-of-merit, and the thermoelectric efficiency beyond linear response, conceal this information.

  4. High energy conformers of M(+)(APE)(H2O)(0-1)Ar(0-1) clusters revealed by combined IR-PD and DFT-MD anharmonic vibrational spectroscopy.

    Science.gov (United States)

    Brites, V; Nicely, A L; Sieffert, N; Gaigeot, M-P; Lisy, J M

    2014-07-14

    IR-PD vibrational spectroscopy and DFT-based molecular dynamics simulations are combined in order to unravel the structures of M(+)(APE)(H2O)0-1 ionic clusters (M = Na, K), where APE (2-amino-1-phenyl ethanol) is commonly used as an analogue for the noradrenaline neurotransmitter. The strength of the synergy between experiments and simulations presented here is that DFT-MD provides anharmonic vibrational spectra that unambiguously help assign the ionic clusters structures. Depending on the interacting cation, we have found that the lowest energy conformers of K(+)(APE)(H2O)0-1 clusters are formed, while the lowest energy conformers of Na(+)(APE)(H2O)0-1 clusters can only be observed through water loss channel (i.e. without argon tagged to the clusters). Trapping of higher energy conformers is observed when the argon loss channel is recorded in the experiment. This has been rationalized by transition state energies. The dynamical anharmonic vibrational spectra unambiguously provide the prominent OH stretch due to the OH···NH2 H-bond, within 10 cm(-1) of the experiment, hence reproducing the 240-300 cm(-1) red-shift (depending on the interacting cation) from bare neutral APE. When this H-bond is not present, the dynamical anharmonic spectra provide the water O-H stretches as well as the rotational motion of the water molecule at finite temperature, as observed in the experiment.

  5. A band Lanczos approach for calculation of vibrational coupled cluster response functions: simultaneous calculation of IR and Raman anharmonic spectra for the complex of pyridine and a silver cation.

    Science.gov (United States)

    Godtliebsen, Ian H; Christiansen, Ove

    2013-07-07

    We describe new methods for the calculation of IR and Raman spectra using vibrational response theory. Using damped linear response functions that incorporate a Lorentzian line-shape function from the outset, it is shown how the calculation of Raman spectra can be carried out through the calculation of a set of vibrational response functions in the same manner as described previously for IR spectra. The necessary set of response functions can be calculated for both vibrational coupled cluster (VCC) and vibrational configuration interaction (VCI) anharmonic vibrational wave-functions. For the efficient and simultaneous calculation of the full set of necessary response functions, a non-hermitian band Lanczos algorithm is implemented for VCC, and a hermitian band Lanczos algorithm is implemented for VCI. It is shown that the simultaneous calculation of several response functions is often advantageous. Sample calculations are presented for pyridine and the complex between pyridine and the silver cation.

  6. Pressure-Dependent Anharmonic Correlated Einstein Model Extended X-ray Absorption Fine Structure Debye-Waller Factors

    Science.gov (United States)

    Van Hung, Nguyen

    2014-02-01

    A pressure-dependent anharmonic correlated Einstein model is derived for extended X-ray absorption fine structure (EXAFS) Debye-Waller factors (DWFs), which are presented in terms of cumulant expansion up to the third order. The model is based on quantum thermodynamic perturbation theory and includes anharmonic effects based on empirical potentials. Explicit analytical expressions of the pressure-dependent changes in the interatomic distance, anharmonic effective potential, thermodynamic parameters, first, second, and third EXAFS cumulants, and thermal expansion coefficient have been derived. This model avoids the use of extensive full lattice dynamical calculations, yet provides good and reasonable agreement of numerical results for Cu with experimental results of X-ray diffraction (XRD) analysis and pressure-dependent EXAFS. Significant pressure effects are shown by the decrease in the pressure-induced changes in the interatomic distance, EXAFS cumulants and thermal expansion coefficient, as well as by the increase in the pressure-induced changes in the interatomic effective potential, effective spring constant, correlated Einstein frequency, and temperature.

  7. Langevin model of the temperature and hydration dependence of protein vibrational dynamics.

    Science.gov (United States)

    Moritsugu, Kei; Smith, Jeremy C

    2005-06-23

    The modification of internal vibrational modes in a protein due to intraprotein anharmonicity and solvation effects is determined by performing molecular dynamics (MD) simulations of myoglobin, analyzing them using a Langevin model of the vibrational dynamics and comparing the Langevin results to a harmonic, normal mode model of the protein in vacuum. The diagonal and off-diagonal Langevin friction matrix elements, which model the roughness of the vibrational potential energy surfaces, are determined together with the vibrational potentials of mean force from the MD trajectories at 120 K and 300 K in vacuum and in solution. The frictional properties are found to be describable using simple phenomenological functions of the mode frequency, the accessible surface area, and the intraprotein interaction (the displacement vector overlap of any given mode with the other modes in the protein). The frictional damping of a vibrational mode in vacuum is found to be directly proportional to the intraprotein interaction of the mode, whereas in solution, the friction is proportional to the accessible surface area of the mode. In vacuum, the MD frequencies are lower than those of the normal modes, indicating intramolecular anharmonic broadening of the associated potential energy surfaces. Solvation has the opposite effect, increasing the large-amplitude vibrational frequencies relative to in vacuum and thus vibrationally confining the protein atoms. Frictional damping of the low-frequency modes is highly frequency dependent. In contrast to the damping effect of the solvent, the vibrational frequency increase due to solvation is relatively temperature independent, indicating that it is primarily a structural effect. The MD-derived vibrational dynamic structure factor and density of states are well reproduced by a model in which the Langevin friction and potential of mean force parameters are applied to the harmonic normal modes.

  8. Anharmonic activations in proteins and peptide model systems and their connection with supercooled water thermodynamics

    Science.gov (United States)

    Schirò, G.; Cupane, A.

    2016-05-01

    Proteins, the nano-machines of living systems, are highly dynamic molecules. The time-scale of functionally relevant motions spans over a very broad range, from femtoseconds to several seconds. In particular, the pico- to nanoseconds region is characterized by side-chain and backbone anharmonic fluctuations that are responsible for many biological tasks like ligand binding, substrate recognition and enzymatic activity. Neutron scattering on hydrated protein powders reveals two main activations of anharmonic dynamics, characterized by different onset temperature and amplitude. Here we review our work on synthetic polypeptides, native proteins, and single amino acids to identify the physical origin of the two onsets -one involving water-independent local dynamics of methyl groups and, to a minor extent, of aromatic side-chains, and the other one, known as "protein dynamical transition", concerning large scale functional protein fluctuations, most likely induced by a crossover in the structure and dynamics of hydration water connected with the second critical point hypothesis.

  9. Mechanical Vibrations Modeling and Measurement

    CERN Document Server

    Schmitz, Tony L

    2012-01-01

    Mechanical Vibrations:Modeling and Measurement describes essential concepts in vibration analysis of mechanical systems. It incorporates the required mathematics, experimental techniques, fundamentals of modal analysis, and beam theory into a unified framework that is written to be accessible to undergraduate students,researchers, and practicing engineers. To unify the various concepts, a single experimental platform is used throughout the text to provide experimental data and evaluation. Engineering drawings for the platform are included in an appendix. Additionally, MATLAB programming solutions are integrated into the content throughout the text. This book also: Discusses model development using frequency response function measurements Presents a clear connection between continuous beam models and finite degree of freedom models Includes MATLAB code to support numerical examples that are integrated into the text narrative Uses mathematics to support vibrations theory and emphasizes the practical significanc...

  10. Breathers in strongly anharmonic lattices.

    Science.gov (United States)

    Rosenau, Philip; Pikovsky, Arkady

    2014-02-01

    We present and study a family of finite amplitude breathers on a genuinely anharmonic Klein-Gordon lattice embedded in a nonlinear site potential. The direct numerical simulations are supported by a quasilinear Schrodinger equation (QLS) derived by averaging out the fast oscillations assuming small, albeit finite, amplitude vibrations. The genuinely anharmonic interlattice forces induce breathers which are strongly localized with tails evanescing at a doubly exponential rate and are either close to a continuum, with discrete effects being suppressed, or close to an anticontinuum state, with discrete effects being enhanced. Whereas the D-QLS breathers appear to be always stable, in general there is a stability threshold which improves with spareness of the lattice.

  11. Anharmonicity effects in Cu-doped ZnO nanocombs by temperature-dependent Raman scattering

    Science.gov (United States)

    Kong, J. F.; Fan, D. H.; Shen, W. Z.

    2016-09-01

    Micro-Raman spectra of E 2(high) phonon mode in Cu-doped ZnO nanocombs have been presented in detail with different Cu compositions under the temperature ranging from 83 to 443 K grown by a simple catalyst-free chemical vapor deposition method. The alloy disorder effect has been investigated by analyzing the asymmetric broadening of E 2(high) phonon mode and Cu-induced localized vibration mode at room temperature. In addition, we resort to a theory model including the lattice thermal expansion and anharmonic phonon-phonon interaction, which can well describe the temperature dependence of Raman shift and linewidth of E 2(high) phonon. In combining with the theory model, we have revealed an increasing anharmonic effect on the Raman shift and linewidth behaviors with increasing Cu composition. Furthermore, it is found that the lifetime of E 2(high) phonon mode shortens with enhancing the anharmonicity.

  12. Source model for blasting vibration

    Institute of Scientific and Technical Information of China (English)

    DING; Hua(丁桦); ZHENG; Zhemin(郑哲敏)

    2002-01-01

    By analyzing and comparing the experimental data, the point source moment theory and the cavity theory, it is concluded that the vibrating signals away from the blasting explosive come mainly from the natural vibrations of the geological structures near the broken blasting area. The source impulses are not spread mainly by the inelastic properties (such as through media damping, as believed to be the case by many researchers) of the medium in the propagation pass, but by this structure. Then an equivalent source model for the blasting vibrations of a fragmenting blasting is proposed, which shows the important role of the impulse of the source's time function under certain conditions. For the purpose of numerical simulation, the model is realized in FEM, The finite element results are in good agreement with the experimental data.

  13. Mechanical model of carbon dioxide vibrational spectrum

    Science.gov (United States)

    Aldoshin, G. T.; Yakovlev, S. P.

    2016-12-01

    Classical dynamics methods have been used to study the nonlinear vibrations of a CO2 molecule. Consideration includes not only the anharmonicity valence angle, which enables one to explain the Fermi resonance, but also the physical nonlinearity of the force field (stiffness and softness of springs). In the farthest neighbor approximation (with regard to oxygen-oxygen interaction), a set of nonlinear differential equations in the Lagrangian form has been derived. Their analytical solution has been derived using the method of invariant normalization. The occurrence of a strange attractor has been discovered by numerical simulation. Recommendations for the selection of initial conditions are given that take into account the possibility of regular beatings that change into to chaotic beatings.

  14. Anharmonicity and hydrogen bonding in electrooptic sucrose crystal

    Science.gov (United States)

    Szostak, M. M.; Giermańska, J.

    1990-03-01

    The polarized absorption spectra of the sucrose crystal in the 5300 - 7300 cm -1 region have been measured. The assignments of all the eight OH stretching overtones are proposed and their mechanical anharmonicities are estimated. The discrepancies from the oriented gas model (OGM) in the observed relative band intensities, especially of the -CH vibrations, are assumed to be connected with vibronic couplings enhanced by the helical arrangement of molecules joined by hydrogen bondings. It seems that this kind of interactions might be important for the second harmonic generation (SHG) by the sucrose crystal.

  15. Heat flow in anharmonic crystals with internal and external stochastic baths: a convergent polymer expansion for a model with discrete time and long range interparticle interaction

    Science.gov (United States)

    Pereira, Emmanuel; Mendonça, Mateus S.; Lemos, Humberto C. F.

    2015-09-01

    We investigate a chain of oscillators with anharmonic on-site potentials, with long range interparticle interactions, and coupled both to external and internal stochastic thermal reservoirs of Ornstein-Uhlenbeck type. We develop an integral representation, a` la Feynman-Kac, for the correlations and the heat current. We assume the approximation of discrete times in the integral formalism (together with a simplification in a subdominant part of the harmonic interaction) and develop a suitable polymer expansion for the model. In the regime of strong anharmonicity, strong harmonic pinning, and for the interparticle interaction with integrable polynomial decay, we prove the convergence of the polymer expansion uniformly in volume (number of sites and time). We also show that the two-point correlation decays in space such as the interparticle interaction. The existence of a convergent polymer expansion is of practical interest: it establishes a rigorous support for a perturbative analysis of the heat flow problem and for the computation of the thermal conductivity in related anharmonic crystals, including those with inhomogeneous potentials and long range interparticle interactions. To show the usefulness and trustworthiness of our approach, we compute the thermal conductivity of a specific anharmonic chain, and make a comparison with related numerical results presented in the literature.

  16. Modelling of vibration of gear transmissions

    Science.gov (United States)

    Zeman, Vladimir; Nemecek, Josef

    The method for mathematical modeling of spatial vibrations of the spur gear transmissions is presented. This method enables a substantial reduction of the number of degrees of freedom with relatively high accuracy in calculating vibration amplitude.

  17. Direct anharmonic correction method by molecular dynamics

    Science.gov (United States)

    Liu, Zhong-Li; Li, Rui; Zhang, Xiu-Lu; Qu, Nuo; Cai, Ling-Cang

    2017-04-01

    The quick calculation of accurate anharmonic effects of lattice vibrations is crucial to the calculations of thermodynamic properties, the construction of the multi-phase diagram and equation of states of materials, and the theoretical designs of new materials. In this paper, we proposed a direct free energy interpolation (DFEI) method based on the temperature dependent phonon density of states (TD-PDOS) reduced from molecular dynamics simulations. Using the DFEI method, after anharmonic free energy corrections we reproduced the thermal expansion coefficients, the specific heat, the thermal pressure, the isothermal bulk modulus, and the Hugoniot P- V- T relationships of Cu easily and accurately. The extensive tests on other materials including metal, alloy, semiconductor and insulator also manifest that the DFEI method can easily uncover the rest anharmonicity that the quasi-harmonic approximation (QHA) omits. It is thus evidenced that the DFEI method is indeed a very efficient method used to conduct anharmonic effect corrections beyond QHA. More importantly it is much more straightforward and easier compared to previous anharmonic methods.

  18. Influence of water on anharmonicity, stability, and vibrational energy distribution of hydrogen-bonded adducts in atmospheric reactions: case study of the OH + isoprene reaction intermediate using ab initio molecular dynamics.

    Science.gov (United States)

    Dietrick, Scott M; Pacheco, Alexander B; Phatak, Prasad; Stevens, Philip S; Iyengar, Srinivasan S

    2012-01-12

    The effect of water on the stability and vibrational states of a hydroxy-isoprene adduct is probed through the introduction of 1-15 water molecules. It is found that when a static nuclear harmonic approximation is invoked there is a substantial red-shift of the alcohol O-H stretch (of the order of 800 cm(-1)) as a result of introduction of water. When potential energy surface sampling and associated anharmonicities are introduced through finite temperature ab initio dynamics, this hydroxy-isoprene OH stretch strongly couples with all the water vibrational modes as well as the hydroxy-isoprene OH bend modes. A new computational technique is introduced to probe the coupling between these modes. The method involves a two-dimensional, time-frequency analysis of the finite temperature vibrational properties. Such an analysis not only provides information about the modes that are coupled as a result of finite-temperature analysis, but also the temporal evolution of such coupling.

  19. Anharmonic bend-stretch coupling in neat liquid water

    NARCIS (Netherlands)

    Lindner, Joerg; Cringus, Dan; Pshenichnikov, Maxim S.; Voehringer, Peter

    2007-01-01

    Femtosecond mid-IR spectroscopy is used to study the vibrational relaxation dynamics in neat liquid water. By exciting the bending vibration and probing the stretching mode, it is possible to reliably determine the bending and librational lifetimes of water. The anharmonic coupling between the bendi

  20. Test of the vibrational modelling for the λ-type transitions: Application to the α-β quartz transition

    Science.gov (United States)

    Castex, Joëlle; Madon, Michel

    1995-02-01

    Vibrational modelling is at the present time the only known way to predict the heat capacities of the Earth's mantle minerals at high-pressure and high-temperature. To test the validity of this method for λ-type transitions, we have applied it to the α-β quartz transition ( T 0=846±1 K). Raman spectra of quartz were recorded up to 900 K. Measured frequency shifts of the α-quartz Raman modes were then used in conjunction with available high-pressure Raman data to calculate intrinsic mode anharmonicity, through the parameter a i=(∂Lnvi/∂T)v. Vibrational modelling of the heat capacity at constant volume, Cv, and at constant pressure, Cp, including anharmonic corrections deduced from the a i parameters, are compared to experimental data. Taking into account the soft-mode associated to the α-β quartz transition, the model reproduces the excess of Cp related to the transition. Then, this study confirms that detecting a soft-mode from vibrational data allows one to predict λ-type transitions. However, when modelling the thermodynamic properties, the contribution of a soft-mode cannot be established from spectroscopic data. Therefore, one needs first to determine this contribution in order to predict the heat capacities of Earth's mantle minerals displaying λ-type transitions. In α-quartz, this contribution has been determined as 0.007% of the total number of the optic modes in the model of the density of states.

  1. Material Model Research on Rubber Vibration Isolators

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A viscohyperelastic constitutive model is proposed to describe the mechanical behaviour of vibration isolation rubber under broad-band vibration. This constitutive model comprises two parts: a component with three parameters to characterize the hyperelastic static properties of rubber materials,and the other component incorporating two relaxation time parameters, corresponding to high and low strain rates, respectively, to describe the dynamic response under vibration and impact loadings. Based on this proposed constitutive model, a series of experiments were performed on two types of rubber materials over a wide strain rate range. The results predicted from this model are in good agreement with the experimental data.

  2. The modelling of industrial robot manipulator vibration

    Energy Technology Data Exchange (ETDEWEB)

    Marcham, L.J.; Rao, B.K.N.; Noroozi, S.; Penson, R.P. [Southampton Inst. (United Kingdom). Systems Engineering Research Centre

    1996-11-01

    The work reported in this paper addresses the modelling of robot manipulator vibration, with the specific aim of producing a model suitable to be employed within an active compensation controller. An overview of existing work on the modelling of robot dynamics, both mathematically and empirically, is reported. A model of the dynamics of an industrial manipulator, inclusive of vibration, derived using Lagrangian mechanics is presented and further developed through the application of experimental modal analysis, by which the position dependent modal parameters of an industrial robot manipulator are determined. The model results are compared with experimental vibration data taken from the end-effector of a PUMA562C industrial manipulator using laser interferometry. Control of an end-effector located, active compensator for vibration suppression, based upon the derived model is discussed and recommendations which form the basis of further investigations, currently being undertaken, are presented.

  3. Anharmonic phonons and high-temperature superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Crespi, V.H.; Cohen, M.L. (Department of Physics, University of California at Berkeley, and Materials Sciences Division, Lawrence Berkeley Laboratory, Berkeley, California 94720 (United States))

    1993-07-01

    We examine a simple model of anharmonic phonons with application to the superconducting isotope effect. Linear and quadratic electron-phonon coupling are considered for various model potentials. The results of the model calculations are compared with the high-temperature superconductors La[sub 2[minus][ital x

  4. On Kinetics Modeling of Vibrational Energy Transfer

    Science.gov (United States)

    Gilmore, John O.; Sharma, Surendra P.; Cavolowsky, John A. (Technical Monitor)

    1996-01-01

    Two models of vibrational energy exchange are compared at equilibrium to the elementary vibrational exchange reaction for a binary mixture. The first model, non-linear in the species vibrational energies, was derived by Schwartz, Slawsky, and Herzfeld (SSH) by considering the detailed kinetics of vibrational energy levels. This model recovers the result demanded at equilibrium by the elementary reaction. The second model is more recent, and is gaining use in certain areas of computational fluid dynamics. This model, linear in the species vibrational energies, is shown not to recover the required equilibrium result. Further, this more recent model is inconsistent with its suggested rate constants in that those rate constants were inferred from measurements by using the SSH model to reduce the data. The non-linear versus linear nature of these two models can lead to significant differences in vibrational energy coupling. Use of the contemporary model may lead to significant misconceptions, especially when integrated in computer codes considering multiple energy coupling mechanisms.

  5. Anomalous dynamical scaling in anharmonic chains and plasma models with multi-particle collisions

    CERN Document Server

    Di Cintio, Pierfrancesco; Bufferand, Hugo; Ciraolo, Guido; Lepri, Stefano; Straka, Mika J

    2015-01-01

    We study the anomalous dynamical scaling of equilibrium correlations in one dimensional systems. Two different models are compared: the Fermi-Pasta-Ulam chain with cubic and quartic nonlinearity and a gas of point particles interacting stochastically through the Multi-Particle Collision dynamics. For both models -that admit three conservation laws- by means of detailed numerical simulations we verify the predictions of Nonlinear Fluctuating Hydrodynamics for the structure factors of density and energy fluctuations at equilibrium. Despite of this, violations of the expected scaling in the currents correlation are found in some regimes, hindering the observation of the asymptotic scaling predicted by the theory. In the case of the gas model this crossover is clearly demonstrated upon changing the coupling constant.

  6. Alcohol dimers--how much diagonal OH anharmonicity?

    Science.gov (United States)

    Kollipost, Franz; Papendorf, Kim; Lee, Yu-Fang; Lee, Yuan-Pern; Suhm, Martin A

    2014-08-14

    The OH bond of methanol, ethanol and t-butyl alcohol becomes more anharmonic upon hydrogen bonding and the infrared intensity ratio between the overtone and the fundamental transition of the bridging OH stretching mode decreases drastically. FTIR spectroscopy of supersonic slit jet expansions allows to quantify these effects for isolated alcohol dimers, enabling a direct comparison to anharmonic vibrational predictions. The diagonal anharmonicity increase amounts to 15-18%, growing with increasing alkyl substitution. The overtone/fundamental IR intensity ratio, which is on the order of 0.1 or more for isolated alcohols, drops to 0.004-0.001 in the hydrogen-bonded OH group, making overtone detection very challenging. Again, alkyl substitution enhances the intensity suppression. Vibrational second order perturbation theory appears to capture these effects in a semiquantitative way. Harmonic quantum chemistry predictions for the hydrogen bond-induced OH stretching frequency shift (the widely used infrared signature of hydrogen bonding) are insufficient, and diagonal anharmonicity corrections from experiment make the agreement between theory and experiment worse. Inclusion of anharmonic cross terms between hydrogen bond modes and the OH stretching mode is thus essential, as is a high level electronic structure theory. The isolated molecule results are compared to matrix isolation data, complementing earlier studies in N2 and Ar by the more weakly interacting Ne and p-H2 matrices. Matrix effects on the hydrogen bond donor vibration are quantified.

  7. Vibrational relaxation and vibrational cooling in low temperature molecular crystals

    Science.gov (United States)

    Hill, Jeffrey R.; Chronister, Eric L.; Chang, Ta-Chau; Kim, Hackjin; Postlewaite, Jay C.; Dlott, Dana D.

    1988-01-01

    The processes of vibrational relaxation (VR) and vibrational cooling (VC) are investigated in low temperature crystals of complex molecules, specifically benzene, naphthalene, anthracene, and durene. In the VR process, a vibration is deexcited, while VC consists of many sequential and parallel VR steps which return the crystal to thermal equilibrium. A theoretical model is developed which relates the VR rate to the excess vibrational energy, the molecular structure, and the crystal structure. Specific relations are derived for the vibrational lifetime T1 in each of three regimes of excess vibrational energy. The regimes are the following: Low frequency regime I where VR occurs by emission of two phonons, intermediate frequency regime II where VR occurs by emission of one phonon and one vibration, and high frequency regime III where VR occurs by evolution into a dense bath of vibrational combinations. The VR rate in each regime depends on a particular multiphonon density of states and a few averaged anharmonic coefficients. The appropriate densities of states are calculated from spectroscopic data, and together with available VR data and new infrared and ps Raman data, the values of the anharmonic coefficients are determined for each material. The relationship between these parameters and the material properties is discussed. We then describe VC in a master equation formalism. The transition rate matrix for naphthalene is found using the empirically determined parameters of the above model, and the time dependent redistribution in each mode is calculated.

  8. Exploring Anharmonic Nuclear Dynamics and Spectroscopy Using the Kratzer Oscillator.

    Science.gov (United States)

    Toutounji, Mohamad

    2011-06-14

    The Kratzer oscillator is useful in modeling anharmonic molecular vibrations; therefore, its underlying theory is briefly explored in this study. The linear dipole moment time correlation function, within the Condon approximation, is analytically evaluated, and linear absorption lineshapes are calculated at different temperatures. An important integral formula of Landau and Liftshitz is, for the first time, utilized to evaluate the anharmonic Franck-Condon factor (FCF) resulting from modeling the initial and final states by Kratzer potentials. In addition, an exact closed-form expression of the FCF for the linearly displaced and shape-distorted final state energy curve, with respect to the ground state, is reported. Within the context of Mukamel formalism, nonlinear spectral/temporal lineshapes, such as hole-burning, photon echo, and pump-probe signals, may not be calculated without nonlinear response theory using the so-called "four-point dipole moment time correlation function". The above FCFs will be employed to calculate optical linear and nonlinear spectra at different temperatures utilizing a previously developed formula [Toutounji, M. J. Phys. Chem. C2010, in press], whereby a hole-burned absorption lineshape may be found using a linear dipole moment time correlation function.

  9. Modeling of the vibrating beam accelerometer nonlinearities

    Science.gov (United States)

    Romanowski, P. A.; Knop, R. C.

    Successful modeling and processing of the output of a quartz Vibrating Beam Accelerometer (VBA), whose errors are inherently nonlinear with respect to input acceleration, are reported. The VBA output, with two signals that are frequencies of vibrating quartz beams, has inherent higher-order terms. In order to avoid vibration rectification errors, the signal output must be sampled at a rapid rate and the output must be reduced using a nonlinear model. The present model, with acceleration as a function of frequency, is derived by a least-squares process where the covariance matrix is obtained from simulated data. The system performance is found to be acceptable to strategic levels, and it is shown that a vibration rectification error of 400 micrograms/sq g can be reduced to 4 micrograms/sq g by using the processor electronics and a nonlinear model.

  10. An Intermolecular Vibration Model for Lattice Ice

    Directory of Open Access Journals (Sweden)

    Quinn M. Brewster

    2010-06-01

    Full Text Available Lattice ice with tetrahedral arrangement is studied using a modified Einstein’s model that incorporates the hindered translational and rotational vibration bands into a harmonic oscillation system. The fundamental frequencies for hindered translational and rotational vibrations are assigned based on the intermolecular vibration bands as well as thermodynamic properties from existing experimental data. Analytical forms for thermodynamic properties are available for the modified model, with three hindered translational bands at (65, 229, 229 cm-1 and three effective hindered rotational bands at 560 cm-1. The derived results are good for temperatures higher than 30 K. To improve the model below 30 K, Lorentzian broadening correction is added. This simple model helps unveil the physical picture of ice lattice vibration behavior.

  11. The origin of phonon anharmonicity in MgB{sub 2} and related compounds

    Energy Technology Data Exchange (ETDEWEB)

    Boeri, L [INFM Center for Statistical Mechanics and Complexity and Dipartimento di Fisica, Universita di Roma ' La Sapienza' , Piazzale A. Moro 2, 00185 Rome (Italy); Bachelet, G B [INFM Center for Statistical Mechanics and Complexity and Dipartimento di Fisica, Universita di Roma ' La Sapienza' , Piazzale A. Moro 2, 00185 Rome (Italy); Cappelluti, E [INFM Center for Statistical Mechanics and Complexity and Dipartimento di Fisica, Universita di Roma ' La Sapienza' , Piazzale A. Moro 2, 00185 Rome (Italy); Pietronero, L [INFM Center for Statistical Mechanics and Complexity and Dipartimento di Fisica, Universita di Roma ' La Sapienza' , Piazzale A. Moro 2, 00185 Rome (Italy)

    2003-02-01

    The recent discovery of a superconducting transition at 39 K in MgB{sub 2} - made of alternating Mg and graphene-like B planes - has raised great interest, for both its technological and theoretical implications. It was clear since the very beginning that the properties of this material are related to an anomalous coupling between the charge carriers in the {sigma} bands - due to in-plane bonds between Boron atoms - and the phonon mode (E{sub 2g}) which involves in-plane vibrations of the B ions. Theoretical studies have thus been focused on the search for possible anomalies in the e-ph coupling: one of the first results was the discovery that the E{sub 2g} phonon is highly anharmonic, but the connection between anharmonicity and T{sub c} in this material is still a controversial point. We first present a detailed first-principles study of the E{sub 2g} phonon anharmonicity in MgB{sub 2} and analogous compounds which are not superconducting, AlB{sub 2} and graphite, and in a hypothetical hole-doped graphite (C{sup 2+}{sub 2}); we then introduce an analytical model which allows us to relate the onset of anharmonicity with the small Fermi energy of the carriers in {sigma} bands. Our study suggests a possible relation between anharmonicity and non-adiabaticity; non-adiabatic effects, which can lead to a sensible increase of T{sub c} with respect to values predicted by conventional theory, become in fact relevant when phonon frequencies are comparable to electronic energy scales.

  12. Vibrational Spectroscopy of Methyl benzoate

    CERN Document Server

    Maiti, Kiran Sankar

    2014-01-01

    Methyl benzoate (MB) is studied as a model compound for the development of new IR pulse schemes with possible applicability to biomolecules. Anharmonic vibrational modes of MB are calculated on different level (MP2, SCS, CCSD(T) with varying basis sets) ab-initio PESs using the vibrational self-consistent field (VSCF) method and its correlation corrected extensions. Dual level schemes, combining different quantum chemical methods for diagonal and coupling potentials, are systematically studied and applied successfully to reduce the computational cost. Isotopic substitution of {\\beta}-hydrogen by deuterium is studied to obtain a better understanding of the molecular vibrational coupling topology.

  13. FTIR spectra of CH2F2 in the 1000-1300 cm-1 region: Rovibrational analysis and modeling of the Coriolis and anharmonic resonances in the ν3, ν5, ν7, ν9 and 2ν4 polyad

    Science.gov (United States)

    Stoppa, Paolo; Tasinato, Nicola; Baldacci, Agostino; Pietropolli Charmet, Andrea; Giorgianni, Santi; Tamassia, Filippo; Cané, Elisabetta; Villa, Mattia

    2016-05-01

    The FTIR spectra of CH2F2 have been investigated in a region of atmospheric interest (1000-1300 cm-1) where four fundamentals ν3, ν5, ν7 and ν9 occur. These vibrations perturb each other by different Coriolis interactions and the forbidden ν5 borrows intensity from the neighboring levels. Furthermore, the v4=2 state has been found to interact with the v3=1 and v9=1 states by anharmonic and c-type Coriolis resonances, respectively. The spectral analysis resulted in the assignment of about 7500 rovibrational transitions which have been simultaneously fitted, together with microwave data available in literature (Hirota E. J Mol Spectrosc 1978; 69: 409-420) [15] using the Watson's A-reduction Hamiltonian in the Ir representation and the relevant perturbation operators. The model employed includes eight types of resonances within the pentad ν3/ν5/ν7/ν9/2ν4. A set of spectroscopic constants for the four fundamentals as well as parameters for the v4=2 state and eighteen coupling terms have been determined. The simulations performed in different spectral regions well reproduce the experimental data.

  14. Vibration modeling and supression in tennis racquets.

    Energy Technology Data Exchange (ETDEWEB)

    Farrar, C. R. (Charles R.); Buechler, M. A. (Miles A.); Espino, Luis; Thompson, G. A. (Gordon A.)

    2003-01-01

    The size of the 'sweet spot' is one measure of tennis racquet performance. In terms of vibration, the sweet spot is determined by the placement of nodal lines across the racquet head. In this studx the vibrational characteristics of a tennis racquet are explorod to discover the size and location of the sweet spot. A numerical model of the racquet is developed using finite element analysis and the model is verified using the results from an experimental modal analysis. The affects of string tension on the racquet's sweet spot and mode shapes are then quantified. An investigation is also carried out to determine how add-on vibrational datnpers affect the sweet spot.

  15. Nonlinear network model analysis of vibrational energy transfer and localisation in the Fenna-Matthews-Olson complex

    CERN Document Server

    Morgan, Sarah E; Chin, Alex W

    2016-01-01

    Collective protein modes are expected to be important for facilitating energy transfer in the Fenna-Matthews-Olson (FMO) complex, however to date little work has focussed on the microscopic details of these vibrations. The nonlinear network model (NNM) provides a computationally inexpensive approach to studying vibrational modes at the microscopic level, whilst incorporating anharmonicity in the inter-residue interactions which can influence protein dynamics. We apply the NNM to the FMO complex and find evidence for the existence of nonlinear discrete breather modes. These modes tend to transfer energy to the highly connected core pigments, potentially opening up alternative excitation energy transfer routes. Incorporating localised modes based on these discrete breathers in the optical spectra calculations for FMO using ab initio site energies and excitonic couplings can substantially improve their agreement with experimental results.

  16. Nonlinear network model analysis of vibrational energy transfer and localisation in the Fenna-Matthews-Olson complex

    Science.gov (United States)

    Morgan, Sarah E.; Cole, Daniel J.; Chin, Alex W.

    2016-11-01

    Collective protein modes are expected to be important for facilitating energy transfer in the Fenna-Matthews-Olson (FMO) complex of photosynthetic green sulphur bacteria, however to date little work has focussed on the microscopic details of these vibrations. The nonlinear network model (NNM) provides a computationally inexpensive approach to studying vibrational modes at the microscopic level in large protein structures, whilst incorporating anharmonicity in the inter-residue interactions which can influence protein dynamics. We apply the NNM to the entire trimeric FMO complex and find evidence for the existence of nonlinear discrete breather modes. These modes tend to transfer energy to the highly connected core pigments, potentially opening up alternative excitation energy transfer routes through their influence on pigment properties. Incorporating localised modes based on these discrete breathers in the optical spectra calculations for FMO using ab initio site energies and excitonic couplings can substantially improve their agreement with experimental results.

  17. "Plug and play" full-dimensional ab initio potential energy and dipole moment surfaces and anharmonic vibrational analysis for CH4-H2O.

    Science.gov (United States)

    Qu, Chen; Conte, Riccardo; Houston, Paul L; Bowman, Joel M

    2015-03-28

    The potential energy surface of the methane-water dimer is represented as the sum of a new intrinsic two-body potential energy surface and pre-existing intramolecular potentials for the monomers. Different fits of the CH4-H2O intrinsic two-body energy are reported. All these fits are based on 30 467 ab initio interaction energies computed at CCSD(T)-F12b/haTZ (aug-cc-pVTZ for C and O, cc-pVTZ for H) level of theory. The benchmark fit is a full-dimensional, permutationally-invariant analytical representation with root-mean-square (rms) fitting error of 3.5 cm(-1). Two other computationally more efficient two-body potentials are also reported, albeit with larger rms fitting errors. Of these a compact permutationally invariant fit is shown to be the best one in combining precision and speed of evaluation. An intrinsic two-body dipole moment surface is also obtained, based on MP2/haTZ expectation values, with an rms fitting error of 0.002 au. As with the potential, this dipole moment surface is combined with existing monomer ones to obtain the full surface. The vibrational ground state of the dimer and dissociation energy, D0, are determined by diffusion Monte Carlo calculations, and MULTIMODE calculations are performed for the IR spectrum of the intramolecular modes. The relative accuracy of the different intrinsic two-body potentials is analyzed by comparing the energetics and the harmonic frequencies of the global minimum well, and the maximum impact parameter employed in a sample methane-water scattering calculation.

  18. A symmetry adapted approach to vibrational excitations in atomic clusters

    CERN Document Server

    Frank, A I; Bijker, R; Lemus, R; Pérez-Bernal, F

    1998-01-01

    An algebraic method especially suited to describe strongly anharmonic vibrational spectra in molecules may be an appropriate framework to study vibrational spectra of Na$^+_n$ clusters, where nearly flat potential energy surfaces and the appearance of close lying isomers have been reported. As an illustration we describe the model and apply it to the Be$_4$, H$_3^+$, Be$_3$ and Na$_3^+$ clusters.

  19. Lattice Vibrations in Chlorobenzenes:

    DEFF Research Database (Denmark)

    Reynolds, P. A.; Kjems, Jørgen; White, J. W.

    1974-01-01

    Lattice vibrational dispersion curves for the ``intermolecular'' modes in the triclinic, one molecule per unit cell β phase of p‐C6D4Cl2 and p‐C6H4Cl2 have been obtained by inelastic neutron scattering. The deuterated sample was investigated at 295 and at 90°K and a linear extrapolation to 0°K...... by consideration of electrostatic forces or by further anisotropy in the dispersion forces not described in the atom‐atom model. Anharmonic effects are shown to be large, but the dominant features in the temperature variation of frequencies are describable by a quasiharmonic model....

  20. 非简谐振动对石墨烯杨氏模量与声子频率的影响∗%Influence of the anharmonic vibration on the Young mo dulus and the phonon frequency of the graphene

    Institute of Scientific and Technical Information of China (English)

    程正富; 郑瑞伦

    2016-01-01

    perpendicular to the bond-length direction and the longitudinal vibrations along the bond-length direction, in which the longitudinal vibrations are dominant. The nonharmonic effect of the longitudinal vibration is much larger than that of the transverse vibration. The first and the second non-harmonic coeffcient of the transverse vibration are both much less than those of the longitudinal vibration, where ε0/ε′0 ≈8.477 and ε2/ε′2 ≈156. The above five physical quantities are constant at different temperatures if the first and second nonhamonic effects are omitted, which does not conform to the experimental results. After the first and second nonhamonic effects are considered, they all increase with temperature and results are in good agreement with experimental data. The anharmonic effect increases with temperature.

  1. Monitoring Vibration of A Model of Rotating Machine

    Directory of Open Access Journals (Sweden)

    Arko Djajadi

    2012-03-01

    Full Text Available Mechanical movement or motion of a rotating machine normally causes additional vibration. A vibration sensing device must be added to constantly monitor vibration level of the system having a rotating machine, since the vibration frequency and amplitude cannot be measured quantitatively by only sight or touch. If the vibration signals from the machine have a lot of noise, there are possibilities that the rotating machine has defects that can lead to failure. In this experimental research project, a vibration structure is constructed in a scaled model to simulate vibration and to monitor system performance in term of vibration level in case of rotation with balanced and unbalanced condition. In this scaled model, the output signal of the vibration sensor is processed in a microcontroller and then transferred to a computer via a serial communication medium, and plotted on the screen with data plotter software developed using C language. The signal waveform of the vibration is displayed to allow further analysis of the vibration. Vibration level monitor can be set in the microcontroller to allow shutdown of the rotating machine in case of excessive vibration to protect the rotating machine from further damage. Experiment results show the agreement with theory that unbalance condition on a rotating machine can lead to larger vibration amplitude compared to balance condition. Adding and reducing the mass for balancing can be performed to obtain lower vibration level. 

  2. A lattice vibrational model using vibrational density of states for constructing thermodynamic databases (Invited)

    Science.gov (United States)

    Jacobs, M. H.; Van Den Berg, A. P.

    2013-12-01

    Thermodynamic databases are indispensable tools in materials science and mineral physics to derive thermodynamic properties in regions of pressure-temperature-composition space for which experimental data are not available or scant. Because the amount of phases and substances in a database is arbitrarily large, thermodynamic formalisms coupled to these databases are often kept as simple as possible to sustain computational efficiency. Although formalisms based on parameterizations of 1 bar thermodynamic data, commonly used in Calphad methodology, meet this requirement, physically unrealistic behavior in properties hamper the application in the pressure regime prevailing in the Earth's lower mantle. The application becomes especially cumbersome when they are applied to planetary mantles of massive super earth exoplanets or in the development of pressure scales, where Hugoniot data at extreme conditions are involved. Methods based on the Mie-Grüneisen-Debye formalism have the advantage that physically unrealistic behavior in thermodynamic properties is absent, but due to the simple construction of the vibrational density of states (VDoS), they lack engineering precision in the low-pressure regime, especially at 1 bar pressure, hampering application of databases incorporating such formalism to industrial processes. To obtain a method that is generally applicable in the complete stability range of a material, we developed a method based on an alternative use of Kieffer's lattice vibrational formalism. The method requires experimental data to constrain the model parameters and is therefore semi-empirical. It has the advantage that microscopic properties for substances, such as the VDoS, Grüneisen parameters and electronic and static lattice properties resulting from present-day ab-initio methods can be incorporated to constrain a thermodynamic analysis of experimental data. It produces results free from physically unrealistic behavior at high pressure and temperature

  3. Optimizing Vibrational Coordinates To Modulate Intermode Coupling.

    Science.gov (United States)

    Zimmerman, Paul M; Smereka, Peter

    2016-04-12

    The choice of coordinate system strongly affects the convergence properties of vibrational structure computations. Two methods for efficient generation of improved vibrational coordinates are presented and justified by analysis of a model anharmonic two-mode Hessian and numerical computations on polyatomic molecules. To produce optimal coordinates, metrics which quantify off-diagonal couplings over a grid of Hessian matrices are minimized through unitary rotations of the vibrational basis. The first proposed metric minimizes the total squared off-diagonal coupling, and the second minimizes the total squared change in off-diagonal coupling. In this procedure certain anharmonic modes tend to localize, for example X-H stretches. The proposed methods do not rely on prior fitting of the potential energy, vibrational structure computations, or localization metrics, so they are unique from previous vibrational coordinate generation algorithms and are generally applicable to polyatomic molecules. Fitting the potential to the approximate n-mode representation in the optimized bases for all-trans polyenes shows that off-diagonal anharmonic couplings are substantially reduced by the new choices of coordinate system. Convergence of vibrational energies is examined in detail for ethylene, and it is shown that coupling-optimized modes converge in vibrational configuration interaction computations to within 1 cm(-1) using only 3-mode couplings, where normal modes require 4-mode couplings for convergence. Comparison of the vibrational configuration interaction convergence with respect to excitation level for the two proposed metrics shows that minimization of the total off-diagonal coupling is most effective for low-cost vibrational structure computations.

  4. Anharmonic effects in neutron cross-section calculation for nuclei in mass range 48 [<=] A [<=] 58

    Energy Technology Data Exchange (ETDEWEB)

    Lubian, J.; Cabezas, R. (Center for Applied Studies to Nuclear Development, Havana (Cuba))

    1993-08-01

    In this paper, a deviation of the target nucleus wavefunction from the harmonic vibrator in the neutron scattering process by medium-mass nuclei at low energies is studied. Two forms of anharmonicities are used: anharmonicities due to the higher-order terms in the Hamiltonians and those due to the different deformation parameters, corresponding to transitions between nuclear states. For calculation of neutron cross sections, combined use of the coupled-channel method and the statistical Hauser-Feshbach-Moldauer theory is applied. It is shown that both kinds of anharmonicities introduced a correction (about 10% in some cases) to the neutron cross sections at low energies. (author).

  5. Raman-scattering probe of anharmonic effects in GaAs

    Science.gov (United States)

    Verma, Prabhat; Abbi, S. C.; Jain, K. P.

    1995-06-01

    A comparative study of anharmonic effects in various structural forms of GaAs, namely crystalline, disordered and ion-implanted, and pulse laser annealed (PLA), using temperature-dependent Raman scattering, is reported for various phonon modes over the temperature range 10-300 K. The disordered and PLA samples are found to have greater anharmonicity than crystalline GaAs. The localized vibrational mode in PLA GaAs shows shorter relaxation time than the LO-phonon mode.

  6. Studying and Modeling Vibration Transducers and Accelerometers

    Directory of Open Access Journals (Sweden)

    Katalin Ágoston

    2010-12-01

    Full Text Available This paper presents types and operating mode of vibration sensors. Piezoelectric sensing elements are often used in accelerometers. It will be investigate the structure and transfer function of the seismic mass type sensing element. The article presents how the piezoelectric sensing element works and how can be modeled with an electronic circuit. The transfer functions of the electronic circuit models are studied in Matlab and the results are presented. It will be presented the influence of the seismic mass on the accelerometer’s working frequency domain.

  7. Anharmonic Oscillator Lasers.

    Science.gov (United States)

    laser development ; time dependent solutions of the master kinetic equations; electric discharge stabilization in a supersonic CO/N2 flow; and computations of vibrational pumping rates by electrons including super-elastic collisions. A description of the progress made in each of these areas is

  8. Anharmonic densities of states: A general dynamics-based solution

    Science.gov (United States)

    Jellinek, Julius; Aleinikava, Darya

    2016-06-01

    Density of states is a fundamental physical characteristic that lies at the foundation of statistical mechanics and theoretical constructs that derive from them (e.g., kinetic rate theories, phase diagrams, and others). Even though most real physical systems are anharmonic, the vibrational density of states is customarily treated within the harmonic approximation, or with some partial, often limited, account for anharmonicity. The reason for this is that the problem of anharmonic densities of states stubbornly resisted a general and exact, yet convenient and straightforward in applications, solution. Here we formulate such a solution within both classical and quantum mechanics. It is based on actual dynamical behavior of systems as a function of energy and as observed, or monitored, on a chosen time scale, short or long. As a consequence, the resulting anharmonic densities of states are fully dynamically informed and, in general, time-dependent. As such, they lay the ground for formulation of new statistical mechanical frameworks that incorporate time and are ergodic, by construction, with respect to actual dynamical behavior of systems.

  9. Diffusion mobility of the hydrogen atom with allowance for the anharmonic attenuation of migrating atom state

    Science.gov (United States)

    Kashlev, Y. A.

    2017-04-01

    Evolution of vibration relaxation of hydrogen atoms in metals with the close-packed lattice at high and medium temperatures is investigated based on non-equilibrium statistical thermodynamics, in that number on using the retarded two-time Green function method. In accordance with main kinetic equation - the generalized Fokker- Plank- Kolmogorov equation, anharmonism of hydrogen atoms vibration in potential wells does not make any contribution to collision effects. It influences the relaxation processes at the expense of interference of fourth order anharmonism with single-phonon scattering on impurity hydrogen atoms. Therefore, the total relaxation time of vibration energy of system metal-hydrogen is written as a product of two factors: relaxation time of system in harmonic approximation and dimensionless anharmonic attenuation of quantum hydrogen state.

  10. High-resolution IR absorption spectroscopy of polycyclic aromatic hydrocarbons: the realm of anharmonicity

    CERN Document Server

    Maltseva, Elena; Candian, Alessandra; Mackie, Cameron J; Huang, Xinchuan; Lee, Timothy J; Tielens, Alexander G G M; Oomens, Jos; Buma, Wybren Jan

    2015-01-01

    We report on an experimental and theoretical investigation of the importance of anharmonicity in the 3 micron CH stretching region of Polycyclic Aromatic Hydrocarbon (PAH) molecules. We present mass-resolved, high-resolution spectra of the gas-phase cold (~4K) linear PAH molecules naphthalene, anthracene, and tetracene. The measured IR spectra show a surprisingly high number of strong vibrational bands. For naphthalene, the observed bands are well separated and limited by the rotational contour, revealing the band symmetries. Comparisons are made to the harmonic and anharmonic approaches of the widely used Gaussian software. We also present calculated spectra of these acenes using the computational program SPECTRO, providing anharmonic predictions enhanced with a Fermi-resonance treatment that utilises intensity redistribution. We demonstrate that the anharmonicity of the investigated acenes is strong, dominated by Fermi resonances between the fundamental and double combination modes, with triple combination ...

  11. Fermi resonance-algebraic model for molecular vibrational spectra

    Institute of Scientific and Technical Information of China (English)

    侯喜文; 董世海; 谢汨; 马中骐

    1999-01-01

    A Fermi resonance-algebraic model is proposed for molecular vibrations, where a U(2) algebra is used for describing the vibrations of each bond, and Fermi resonances between stretching and bending modes are taken into account. The model for a bent molecule XY2 and a molecule XY3 is successfully applied to fitting the recently observed vibrational spectrum of the water molecule and arsine (AsH3), respectively, and the results are compared with those of other models. Calculations show that algebraic approaches can be used as an effective method to describe molecular vibrations with small standard deviations.

  12. Exploring the relationship between vibrational mode locality and coupling using constrained optimization

    Science.gov (United States)

    Molina, Andrew; Smereka, Peter; Zimmerman, Paul M.

    2016-03-01

    The use of alternate coordinate systems as a means to improve the efficiency and accuracy of anharmonic vibrational structure analysis has seen renewed interest in recent years. While normal modes (which diagonalize the mass-weighted Hessian matrix) are a typical choice, the delocalized nature of this basis makes it less optimal when anharmonicity is in play. When a set of modes is not designed to treat anharmonicity, anharmonic effects will contribute to inter-mode coupling in an uncontrolled fashion. These effects can be mitigated by introducing locality, but this comes at its own cost of potentially large second-order coupling terms. Herein, a method is described which partially localizes vibrations to connect the fully delocalized and fully localized limits. This allows a balance between the treatment of harmonic and anharmonic coupling, which minimizes the error that arises from neglected coupling terms. Partially localized modes are investigated for a range of model systems including a tetramer of hydrogen fluoride, water dimer, ethene, diphenylethane, and stilbene. Generally, partial localization reaches ˜75% of maximal locality while introducing less than ˜30% of the harmonic coupling of the fully localized system. Furthermore, partial localization produces mode pairs that are spatially separated and thus weakly coupled to one another. It is likely that this property can be exploited in the creation of model Hamiltonians that omit the coupling parameters of the distant (and therefore uncoupled) pairs.

  13. Thermodynamic scaling of relaxation: insights from anharmonic elasticity

    Science.gov (United States)

    Bernini, S.; Puosi, F.; Leporini, D.

    2017-04-01

    Using molecular dynamics simulations of a molecular liquid, we investigate the thermodynamic scaling (TS) of the structural relaxation time {τα} in terms of the quantity T{ρ-{γ\\text{ts}}}} , where T and ρ are the temperature and density, respectively. The liquid does not exhibit strong virial–energy correlations. We propose a method for evaluating both the characteristic exponent {{γ\\text{ts}} and the TS master curve that uses experimentally accessible quantities that characterise the anharmonic elasticity and does not use details about the microscopic interactions. In particular, we express the TS characteristic exponent {γ\\text{ts}} in terms of the lattice Grüneisen parameter {γL} and the isochoric anharmonicity {δL} . An analytic expression of the TS master curve of {τα} with {δL} as the key adjustable parameter is found. The comparison with the experimental TS master curves and the isochoric fragilities of 34 glassformers is satisfying. In a few cases, where thermodynamic data are available, we test (i) the predicted characteristic exponent {γ\\text{ts}} and (ii) the isochoric anharmonicity {δL} , as drawn by the best fit of the TS of the structural relaxation, against the available thermodynamic data. A linear relation between the isochoric fragility and the isochoric anharmonicity {δL} is found and compared favourably with the results of experiments with no adjustable parameters. A relation between the increase of the isochoric vibrational heat capacity due to anharmonicity and the isochoric fragility is derived.

  14. Musculoskeletal modelling of low-frequency whole-body vibrations

    DEFF Research Database (Denmark)

    Rasmussen, John; Andersen, Michael Skipper

    2012-01-01

    This paper presents a musculoskeletal model for assessment of the effect of low-frequency whole-body vibrations on the human body. It is a basic assumption behind the model that the vibrations are slow enough to allow the central nervous system to respond to them in terms of muscle activations...

  15. Transient vibration analytical modeling and suppressing for vibration absorber system under impulse excitation

    Science.gov (United States)

    Wang, Xi; Yang, Bintang; Yu, Hu; Gao, Yulong

    2017-04-01

    The impulse excitation of mechanism causes transient vibration. In order to achieve adaptive transient vibration control, a method which can exactly model the response need to be proposed. This paper presents an analytical model to obtain the response of the primary system attached with dynamic vibration absorber (DVA) under impulse excitation. The impulse excitation which can be divided into single-impulse excitation and multi-impulse excitation is simplified as sinusoidal wave to establish the analytical model. To decouple the differential governing equations, a transform matrix is applied to convert the response from the physical coordinate to model coordinate. Therefore, the analytical response in the physical coordinate can be obtained by inverse transformation. The numerical Runge-Kutta method and experimental tests have demonstrated the effectiveness of the analytical model proposed. The wavelet of the response indicates that the transient vibration consists of components with multiple frequencies, and it shows that the modeling results coincide with the experiments. The optimizing simulations based on genetic algorithm and experimental tests demonstrate that the transient vibration of the primary system can be decreased by changing the stiffness of the DVA. The results presented in this paper are the foundations for us to develop the adaptive transient vibration absorber in the future.

  16. Vibration induced flow in hoppers: DEM 2D polygon model

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A two-dimensional discrete element model (DEM) simulation of cohesive polygonal particles has been developed to assess the benefit of point source vibration to induce flow in wedge-shaped hoppers. The particle-particle interaction model used is based on a multi-contact principle.The first part of the study investigated particle discharge under gravity without vibration to determine the critical orifice size (Be) to just sustain flow as a function of particle shape. It is shown that polygonal-shaped particles need a larger orifice than circular particles. It is also shown that Be decreases as the number of particle vertices increases. Addition of circular particles promotes flow of polygons in a linear manner.The second part of the study showed that vibration could enhance flow, effectively reducing Be. The model demonstrated the importance of vibrator location (height), consistent with previous continuum model results, and vibration amplitude in enhancing flow.

  17. THEORETICAL MODEL OF VIBRATING OBJECT TRANSMITTING NOISE TOWARDS EXTERNAL SOUND

    Institute of Scientific and Technical Information of China (English)

    姚志远

    2002-01-01

    On the basic theory of modal method, the coupling relation between the vibration of objects and external sound was analyzed, the theoretical model solving the vibration and noise was provided, the corresponding calculation formula was given. The calculating results show out that this calculation formula is correct.

  18. Application of Hamilton's Principle to the Study of the Anharmonic Oscillator in Classical Mechanics.

    Science.gov (United States)

    And Others; Gilmartin, Harvey

    1979-01-01

    Presented is a form of Hamilton's principle for classical mechanics appropriate to the study of arbitrary self-sustained vibrations in one dimension. It is applied as an approximate computational tool to the study of several examples of anharmonic oscillation. (Author/GA)

  19. Origin of the large anharmonicity in the phonon modes of LiBH{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Gremaud, R.; Züttel, A. [Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory 505 (Hydrogen and Energy), Überlandstrasse 129, CH-8600 Dübendorf (Switzerland); Borgschulte, A., E-mail: andreas.borgschulte@empa.ch [Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory 505 (Hydrogen and Energy), Überlandstrasse 129, CH-8600 Dübendorf (Switzerland); Ramirez-Cuesta, A.J.; Refson, K. [Chemical and Engineering Materials Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, PO Box 2008, MS 6473 Oak Ridge (United States); Colognesi, D. [Istituto dei Sistemi Complessi – sezione di Firenze, Consiglio Nazionale delle Ricerche, via Madonna del piano 10, 50019 Sesto Fiorentino (Italy)

    2013-12-12

    Highlights: • IR, Raman, and INS spectroscopy data and corresponding DFT-calculations on LiBH4. • Mismatch between experiment and theory are due to anharmonicity. • Strong anharmonic effects can be expected for vibrations with high H amplitude. - Abstract: The dynamics and bonding of the complex hydride LiBH{sub 4} have been investigated by vibrational spectroscopy and density functional theory (DFT). The combination of infrared, Raman, and inelastic neutron-scattering (INS) spectroscopies on hydrided and deuterated samples reveals a complete picture of the dynamics of the BH{sub 4}{sup −} ions as well as of the lattice. Particular emphasis is laid on a comparison between experiment and theory, revealing significant discrepancy between the two approaches for vibrations with high anharmonicity, which is related to large vibrational amplitudes. The latter is typical for librational modes in molecular crystals and pseudo-ionic crystals such as complex hydrides. The presented strategy for anharmonic frequency corrections might thus be generally applicable for this kind of materials.

  20. Modeling of vibration for functionally graded beams

    Directory of Open Access Journals (Sweden)

    Yiğit Gülsemay

    2016-01-01

    Full Text Available In this study, a vibration problem of Euler-Bernoulli beam manufactured with Functionally Graded Material (FGM, which is modelled by fourth-order partial differential equations with variable coefficients, is examined by using the Adomian Decomposition Method (ADM.The method is one of the useful and powerful methods which can be easily applied to linear and nonlinear initial and boundary value problems. As to functionally graded materials, they are composites mixed by two or more materials at a certain rate. This mixture at a certain rate is expressed with an exponential function in order to try to minimize singularities from transition between different surfaces of materials as much as possible. According to the structure of the ADM in terms of initial conditions of the problem, a Fourier series expansion method is used along with the ADM for the solution of simply supported functionally graded Euler-Bernoulli beams. Finally, by choosing an appropriate mixture rate for the material, the results are shown in figures and compared with those of a standard (homogeneous Euler-Bernoulli beam.

  1. Unexpected red shift of C-H vibrational band of Methyl benzoate

    CERN Document Server

    Maiti, Kiran Sankar; Scheurer, Christoph

    2016-01-01

    The C-H vibrational bands become more and more important in the structural determination of biological molecules with the development of CARS microscopy and 2DIR spectroscopy. Due to the congested pattern, near degeneracy, and strong anharmonicity of the C-H stretch vibrations, assignment of the C-H vibrational bands are often misleading. Anharmonic vibrational spectra calculation with multidimensional potential energy surface interprets the C-H vibrational spectra more accurately. In this article we have presented the importance of multidimensional potential energy surface in anharmonic vibrational spectra calculation and discuss the unexpected red shift of C-H vibrational band of Methyl benzoate.

  2. Elastic and anelastic properties of densified vitreous B2O3: Relaxations and anharmonicity

    Science.gov (United States)

    Carini, Giovanni, Jr.; Carini, Giuseppe; Tripodo, Gaspare; di Marco, Gaetano; Gilioli, Edmondo

    2012-03-01

    The elastic and anelastic properties of densified B2O3 glasses, melt quenched under pressures of 2 and 4 GPa, were investigated by measuring the sound velocity and the acoustic attenuation of longitudinal and shear ultrasonic waves in the megahertz range over the temperature interval between 8 and 300 K. Densification from 1826 to 2373 kg/m3 leads to an extraordinarily large growth of both bulk and shear moduli but leaves the Poisson's ratio nearly constant. In the glass compacted at 4 GPa, the elastic moduli become larger by a factor of five than those characterizing normal vitreous B2O3 (v-B2O3) as a consequence of modifications of the chemical bonding in the network. The thermally activated relaxations of intrinsic structural defects, which dominate the acoustic behaviors of normal glass below 150 K, giving rise to an intense attenuation peak and a corresponding steep decrease in sound velocity, are increasingly depressed by growing densification. Above 150 K, the ultrasonic velocity is mainly regulated by the vibrational anharmonicity and shows a nearly linear decrease as the temperature is increased, with a substantially smaller slope with increasing densification. Modeling the relaxation losses and the related velocity variations by an asymmetric double-well potential model that has a distribution of both the barrier potential and the asymmetry, it has been possible to separate the relaxation and the anharmonic contributions to the sound velocity. The former has been ascribed to local motions of boroxol rings formed by connected BO3 planar triangles, the basic units building up the network of v-B2O3, while the latter has been interpreted in terms of the Akhiezer mechanism concerning the “thermal vibration viscosity.”

  3. Anharmonicity and infrared bands of Polycyclic Aromatic Hydrocarbon (PAH) molecules

    Science.gov (United States)

    Petrignani, Annemieke; Maltseva, Elena; Candian, Alessandra; Mackie, Cameron; Huang, Xinchuan; Lee, Timothy J.; Tielens, Alexander; Oomens, Jos; Buma, Wybren Jan

    2015-08-01

    We present a systematic laboratory study of the CH stretching region in Polycyclic Aromatic Hydrocarbon (PAH) molecules of different shapes and sizes to investigate anharmonic behaviour and address the reliability of the never-validated but universally accepted scaling factors employed in astronomical PAH models. At the same time, new anharmonic theoretical quantum chemistry studies have been performed with the software program Spectro using our experimental data as benchmark. We performed mass and conformational-resolved, high-resolution spectroscopy of cold (~10K) linear and compact PAH molecules starting with naphthalene (C10H8) in the 3-µm CH stretching region. Surprisingly, the measured infrared spectra show many more strong modes than expected. Measurements of the deuterated counterparts demonstrate that these bands are the result of Fermi Resonances. First comparisons with harmonic and anharmonic DFT calculations using Gaussian 09 show that both approximations are not able to reproduce in detail the observed molecular reality. The improved anharmonic calculations performed with Spectro now include the effects of Fermi resonances and have been applied to PAHs for the first time. The analysis of the experimental data is greatly aided by these new theoretical quantum chemistry studies. Preliminary assignments are presented, aided by comparison between the observed rotational contour and the symmetry of candidate bands.

  4. Absolute Helmholtz free energy of highly anharmonic crystals: theory vs Monte Carlo.

    Science.gov (United States)

    Yakub, Lydia; Yakub, Eugene

    2012-04-14

    We discuss the problem of the quantitative theoretical prediction of the absolute free energy for classical highly anharmonic solids. Helmholtz free energy of the Lennard-Jones (LJ) crystal is calculated accurately while accounting for both the anharmonicity of atomic vibrations and the pair and triple correlations in displacements of the atoms from their lattice sites. The comparison with most precise computer simulation data on sublimation and melting lines revealed that theoretical predictions are in excellent agreement with Monte Carlo simulation data in the whole range of temperatures and densities studied.

  5. Anharmonic-potential-effective-charge approach for computing Raman cross sections of a gas

    Science.gov (United States)

    Kutteh, Ramzi; van Zandt, L. L.

    1993-05-01

    An anharmonic-potential-effective-charge approach for computing relative Raman intensities of a gas is developed. The equations of motion are set up and solved for the driven anharmonic molecular vibrations. An explicit expression for the differential polarizability tensor is derived and its properties discussed. This expression is then used within the context of Placzek's theory [Handbuch der Radiologie (Akademische Verlagsgesellschaft, Leipzig, 1934), Vol. VI] to compute the Raman cross section and depolarization ratio of a gas. The computation is carried out for the small molecules CO2, CS2, SO2, and CCl4; results are compared with experimental measurements and discussed.

  6. Modeling of Vibration-to-Vibration and Vibration-to-Electronic Energy Transfer Processes in Optically Pumped Plasmas

    Science.gov (United States)

    Adamovich, Igor V.; Ploenjes, Elke; Palm, Peter; Rich, J. William; Chernukho, Andrey

    1998-10-01

    - The paper presents the results of modeling of the optical pumping experiments in CO/N2/O2/Ar mixtures. In these experiments, the low vibrational levels of carbon monoxide (vinfrared and ultraviolet radiation from the excited electronic states is measured by a high-resolution step-scan Fourier transform spectrometer. The kinetic model incorporates coupled master equation for the CO, N2, and O2 vibrational level populations, and Boltzmann equation for the electrons. The comparison of the experimental and synthetic time-resolved spectra allowed inference of the V-V exchange rates for CO-CO up to v=40, cross-sections for the energy transfer between the highly excited CO molecules and electrons, and V-V transfer rates for CO-N2 and CO-O2.

  7. Numerical modelling of rubber vibration isolators

    NARCIS (Netherlands)

    Beijers, Clemens A.J.; Boer, de André; Nilsson, A.; Boden, H.

    2003-01-01

    An important cause for interior noise in vehicles is structure-borne sound from the engine. The vibrations of the source (engine) are transmitted to the receiver structure (the vehicle) causing interior noise in the vehicle. For this reason the engine is supported by rubber isolators for passive iso

  8. Vibration Response of Multi Storey Building Using Finite Element Modelling

    Science.gov (United States)

    Chik, T. N. T.; Zakaria, M. F.; Remali, M. A.; Yusoff, N. A.

    2016-07-01

    Interaction between building, type of foundation and the geotechnical parameter of ground may trigger a significant effect on the building. In general, stiffer foundations resulted in higher natural frequencies of the building-soil system and higher input frequencies are often associated with other ground. Usually, vibrations transmitted to the buildings by ground borne are often noticeable and can be felt. It might affect the building and become worse if the vibration level is not controlled. UTHM building is prone to the ground borne vibration due to closed distance from the main road, and the construction activities adjacent to the buildings. This paper investigates the natural frequency and vibration mode of multi storey office building with the presence of foundation system and comparison between both systems. Finite element modelling (FEM) package software of LUSAS is used to perform the vibration analysis of the building. The building is modelled based on the original plan with the foundation system on the structure model. The FEM results indicated that the structure which modelled with rigid base have high natural frequency compare to the structure with foundation system. These maybe due to soil structure interaction and also the damping of the system which related to the amount of energy dissipated through the foundation soil. Thus, this paper suggested that modelling with soil is necessary to demonstrate the soil influence towards vibration response to the structure.

  9. Quantum statistics and anharmonicity in the thermodynamics of spin waves in ferromagnetic metals

    Science.gov (United States)

    Wen, Haohua; Woo, C. H.

    2016-09-01

    The average energy needed to create a magnon is high in ferromagnetic metals due to the high-strength spin stiffness, which results in strong quantization effects that could be important even at thousands of degrees. To take into account quantum statistics at such high temperatures, the associated effects of anharmonicity of the spin vibrations must be taken into account. In addition to the complex nature of such effects, anharmonicity also affects the occupation of the density of state of the vibration states in the context of quantum statistics. Thus, an unoccupied vibration state might become occupied when its spring stiffness is substantially reduced with anharmonicity. Combined effects of quantum statistics and anharmonicity are expected. In this regard, the thermodynamics of ferromagnetic metals are investigated in this paper through the example of bcc iron between 10 and 1400 K. Theoretical analysis and spin-lattice dynamic simulations are performed, through which the physics behind the complex and dramatic temperature dependence of the thermodynamic functions of bcc iron is understood.

  10. Stereovision vibration measurement test of a masonry building model

    Science.gov (United States)

    Shan, Baohua; Gao, Yunli; Shen, Yu

    2016-04-01

    To monitor 3D deformations of structural vibration response, a stereovision-based 3D deformation measurement method is proposed in paper. The world coordinate system is established on structural surface, and 3D displacement equations of structural vibration response are acquired through coordinate transformation. The algorithms of edge detection, center fitting and matching constraint are developed for circular target. A shaking table test of a masonry building model under Taft and El Centro earthquake at different acceleration peak is performed in lab, 3D displacement time histories of the model are acquired by the integrated stereovision measurement system. In-plane displacement curves obtained by two methods show good agreement, this suggests that the proposed method is reliable for monitoring structural vibration response. Out-of-plane displacement curves indicate that the proposed method is feasible and useful for monitoring 3D deformations of vibration response.

  11. Ground state properties of a Bose-Einstein condensate confined in an anharmonic external potential

    Institute of Scientific and Technical Information of China (English)

    Wang Deng-Long; Yan Xiao-Hong; Tang Yi

    2004-01-01

    In light of the interference experiment of Bose-Einstein condensates, we present an anharmonic external potential model to study ground state properties of Bose-Einstein condensates. The ground state energy and the chemical potential have been analytically obtained, which are lower than those in harmonic trap. Additionally, it is found that the anharmonic strength of the external potential has an important effect on density and velocity distributions of the ground state for the Thomas-Fermi model.

  12. First-principles analysis of anharmonic nuclear motion and thermal transport in thermoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Tadano, Terumasa [Department of Applied Physics, The University of Tokyo, Tokyo 113-8656 (Japan); Tsuneyuki, Shinji [Department of Physics, The University of Tokyo, Tokyo 113-0033 (Japan); Institute for Solid State Physics, The University of Tokyo, Kashiwa 277-8581 (Japan)

    2015-12-31

    We show a first-principles approach for analyzing anharmonic properties of lattice vibrations in solids. We firstly extract harmonic and anharmonic force constants from accurate first-principles calculations based on the density functional theory. Using the many-body perturbation theory of phonons, we then estimate the phonon scattering probability due to anharmonic phonon-phonon interactions. We show the validity of the approach by computing the lattice thermal conductivity of Si, a typical covalent semiconductor, and selected thermoelectric materials PbTe and Bi{sub 2}Te{sub 3} based on the Boltzmann transport equation. We also show that the phonon lifetime and the lattice thermal conductivity of the high-temperature phase of SrTiO{sub 3} can be estimated by employing the perturbation theory on top of the solution of the self-consistent phonon equation.

  13. Simplified generalized-gradient approximation and anharmonicity: Benchmark calculations on molecules

    Science.gov (United States)

    Patton, David C.; Porezag, Dirk V.; Pederson, Mark R.

    1997-03-01

    Recent implementational improvements of the generalized-gradient approximation (GGA) have led to a simplified version which is parametrized entirely from fundamental constants, easier to use, and possibly easier to improve. We have performed detailed calculations on the geometries, atomization energies, vibrational energies, and infrared and Raman spectra of many first- and second-row dimers as well as some polyatomic molecules. For atomization and vibrational energies, we find that the simplified version of GGA leads to results similar to the original version. We comment on the fact that GGA-induced changes of hydrogenic bonding are different than for the other atoms in the periodic table but still an improvement over the local approximations to density-functional theory. In addition to a harmonic treatment of the vibrational modes we include the contributions of anharmonicity as well. With the exception of the light hydrogen containing molecules anharmonic corrections are quite small.

  14. Mathematical modeling of mechanical vibration assisted conductivity imaging

    CERN Document Server

    Ammari, Habib; Kwon, Hyeuknam; Seo, Jin Keun; Woo, Eung Je

    2014-01-01

    This paper aims at mathematically modeling a new multi-physics conductivity imaging system incorporating mechanical vibrations simultaneously applied to an imaging object together with current injections. We perturb the internal conductivity distribution by applying time-harmonic mechanical vibrations on the boundary. This enhances the effects of any conductivity discontinuity on the induced internal current density distribution. Unlike other conductivity contrast enhancing frameworks, it does not require a prior knowledge of a reference data. In this paper, we provide a mathematical framework for this novel imaging modality. As an application of the vibration-assisted impedance imaging framework, we propose a new breast image reconstruction method in electrical impedance tomography (EIT). As its another application, we investigate a conductivity anomaly detection problem and provide an efficient location search algorithm. We show both analytically and numerically that the applied mechanical vibration increas...

  15. High-Resolution IR Absorption Spectroscopy of Polycyclic Aromatic Hydrocarbons: The Realm of Anharmonicity

    Science.gov (United States)

    Maltseva, Elena; Petrignani, Annemieke; Candian, Alessandra; Mackie, Cameron J.; Huang, Xinchuan; Lee, Timothy J.; Tielens, Alexander G. G. M.; Oomens, Jos; Buma, Wybren Jan

    2016-01-01

    We report on an experimental and theoretical investigation of the importance of anharmonicity in the 3 micrometers CH stretching region of Polycyclic Aromatic Hydrocarbon (PAH) molecules. We present mass-resolved, high-resolution spectra of the gas-phase cold ((is) approximately 4K) linear PAH molecules naphthalene, anthracene, and tetracene. The measured IR spectra show a surprisingly high number of strong vibrational bands. For naphthalene, the observed bands are well separated and limited by the rotational contour, revealing the band symmetries. Comparisons are made to the harmonic and anharmonic approaches of the widely used Gaussian software. We also present calculated spectra of these acenes using the computational program SPECTRO, providing anharmonic predictions enhanced with a Fermi-resonance treatment that utilizes intensity redistribution. We demonstrate that the anharmonicity of the investigated acenes is strong, dominated by Fermi resonances between the fundamental and double combination modes, with triple combination bands as possible candidates to resolve remaining discrepancies. The anharmonic spectra as calculated with SPECTRO lead to predictions of the main modes that fall within 0.5% of the experimental frequencies. The implications for the Aromatic Infrared Bands, specifically the 3-m band are discussed.

  16. HIGH-RESOLUTION IR ABSORPTION SPECTROSCOPY OF POLYCYCLIC AROMATIC HYDROCARBONS: THE REALM OF ANHARMONICITY

    Energy Technology Data Exchange (ETDEWEB)

    Maltseva, Elena; Buma, Wybren Jan [University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Petrignani, Annemieke; Candian, Alessandra; Mackie, Cameron J.; Tielens, Alexander G. G. M. [Leiden Observatory, Niels Bohrweg 2, 2333 CA Leiden (Netherlands); Huang, Xinchuan; Lee, Timothy J. [SETI Institute, 189 Bernardo Avenue, Suite 100, Mountain View, CA 94043 (United States); Oomens, Jos, E-mail: w.j.buma@uva.nl, E-mail: petrignani@strw.leidenuniv.nl [Radboud University, Toernooiveld 7, 6525 ED Nijmegen (Netherlands)

    2015-11-20

    We report on an experimental and theoretical investigation of the importance of anharmonicity in the 3-μm CH stretching region of polycyclic aromatic hydrocarbon (PAH) molecules. We present mass-resolved, high-resolution spectra of the gas-phase cold (∼4 K) linear PAH molecules naphthalene, anthracene, and tetracene. The measured IR spectra show a surprisingly high number of strong vibrational bands. For naphthalene, the observed bands are well separated and limited by the rotational contour, revealing the band symmetries. Comparisons are made to the harmonic and anharmonic approaches of the widely used Gaussian software. We also present calculated spectra of these acenes using the computational program SPECTRO, providing anharmonic predictions with a Fermi-resonance treatment that utilizes intensity redistribution. We demonstrate that the anharmonicity of the investigated acenes is strong, dominated by Fermi resonances between the fundamental and double combination modes, with triple combination bands as possible candidates to resolve remaining discrepancies. The anharmonic spectra as calculated with SPECTRO lead to predictions of the main bands that fall within 0.5% of the experimental frequencies. The implications for the aromatic infrared bands, specifically the 3-μm band, are discussed.

  17. Motor effect in electron transport through a molecular junction with torsional vibrations

    OpenAIRE

    Pshenichnyuk, Ivan A.; Čížek, Martin

    2010-01-01

    We propose a model for a molecular junction with internal anharmonic torsional vibrations interacting with an electric current. The Wangsness-Bloch-Redfield master equation approach is used to determine the stationary reduced density matrix of the molecule. The dependence of the current, excitation energy and angular momentum of the junction on the applied voltage is studied. Negative differential conductance is observed in the current-voltage characteristics. It is shown that a model with vi...

  18. Modeling of the Archery Bow and Arrow Vibrations

    Directory of Open Access Journals (Sweden)

    I. Zaniewski

    2009-01-01

    Full Text Available Vibration processes in the compound and open kinematical chain with an external link, as a model of an archery bow and arrow system, are evaluated. A mechanical and mathematical model of bend oscillations of the system during accelerate motion of the external link is proposed. Correlation between longitudinal acceleration and natural frequencies is obtained. There are recommendations regarding determination of virtual forms to study arrow vibrations and buckling. The models and methods have been adapted for realization into the engineering method using well-known mathematical software packages.

  19. The Modeling of Vibration Damping in SMA Wires

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, D R; Kloucek, P; Seidman, T I

    2003-09-16

    Through a mathematical and computational model of the physical behavior of shape memory alloy wires, this study shows that localized heating and cooling of such materials provides an effective means of damping vibrational energy. The thermally induced pseudo-elastic behavior of a shape memory wire is modeled using a continuum thermodynamic model and solved computationally as described by the authors in [23]. Computational experiments confirm that up to 80% of an initial shock of vibrational energy can be eliminated at the onset of a thermally-induced phase transformation through the use of spatially-distributed transformation regions along the length of a shape memory alloy wire.

  20. Prediction Model for Vortex-Induced Vibration of Circular Cylinder with Data of Forced Vibration

    Institute of Scientific and Technical Information of China (English)

    PAN Zhi-yuan; CUI Wei-cheng; LIU Ying-zhong

    2007-01-01

    A model based on the data from forced vibration experiments is developed for predicting the vortex-induced vibrations (VIV) of elastically mounted circular cylinders in flow. The assumptions for free and forced vibration tests are explored briefly. Energy equilibrium is taken into account to set up the relationship between the dynamic response of self-excited oscillations and the force coefficients from forced vibration experiments. The gap between these two cases is bridged straightforwardly with careful treatment of key parameters. Given reduced mass m* and material damping ratio ζ of an elastically mounted circular cylinder in flow, the response characteristics such as amplitude, frequency, lock-in range, added mass coefficient, cross-flow fluid force and the corresponding phase angle can be predicted all at once. Instances with different combination of reduced mass and material damping ratio are compared to investigate their effects on VIV. The hysteresis phenomenon can be interpreted reasonably. The predictions and the results from recent experiments carried out by Williamson's group are in rather good agreement.

  1. Non-classical method of modelling of vibrating mechatronic systems

    Science.gov (United States)

    Białas, K.; Buchacz, A.

    2016-08-01

    This work presents non-classical method of modelling of mechatronic systems by using polar graphs. The use of such a method enables the analysis and synthesis of mechatronic systems irrespective of the type and number of the elements of such a system. The method id connected with algebra of structural numbers. The purpose of this paper is also introduces synthesis of mechatronic system which is the reverse task of dynamics. The result of synthesis is obtaining system meeting the defined requirements. This approach is understood as design of mechatronic systems. The synthesis may also be applied to modify the already existing systems in order to achieve a desired result. The system was consisted from mechanical and electrical elements. Electrical elements were used as subsystem reducing unwanted vibration of mechanical system. The majority of vibration occurring in devices and machines is harmful and has a disadvantageous effect on their condition. Harmful impact of vibration is caused by the occurrence of increased stresses and the loss of energy, which results in faster wear machinery. Vibration, particularly low-frequency vibration, also has a negative influence on the human organism. For this reason many scientists in various research centres conduct research aimed at the reduction or total elimination of vibration.

  2. Electrical and mechanical anharmonicities from NIR-VCD spectra of compounds exhibiting axial and planar chirality: the cases of (S)-2,3-pentadiene and methyl-d(3) (R)- and (S)-[2.2]paracyclophane-4-carboxylate.

    Science.gov (United States)

    Abbate, Sergio; Longhi, Giovanna; Gangemi, Fabrizio; Gangemi, Roberto; Superchi, Stefano; Caporusso, Anna Maria; Ruzziconi, Renzo

    2011-10-01

    The IR and Near infrared (NIR) vibrational circular dichroism (VCD) spectra of molecules endowed with noncentral chirality have been investigated. Data for fundamental, first, and second overtone regions of (S)-2,3-pentadiene, exhibiting axial chirality, and methyl-d(3) (R)- and (S)-[2.2]paracyclophane-4-carboxylate, exhibiting planar chirality have been measured and analyzed. The analysis of NIR and IR VCD spectra was based on the local-mode model and the use of density functional theory (DFT), providing mechanical and electrical anharmonic terms for all CH-bonds. The comparison of experimental and calculated spectra is satisfactory and allows one to monitor fine details in the asymmetric charge distribution in the molecules: these details consist in the harmonic frequencies, in the principal anharmonicity constants, in both the atomic polar and axial tensors and in their first and second derivatives with respect to the CH-stretching coordinates.

  3. Vibrational spectrum of CF4 isotopes in an algebraic model

    Indian Academy of Sciences (India)

    Joydeep Choudhury; Srinivasa Rao Karumuri; Nirmal Kumar Sarkar; Ramendu Bhattacharjee

    2009-11-01

    n this paper the stretching vibrational modes of CF4 isotopes are calculated up to first overtone using the one-dimensional vibron model for the first time. The model Hamiltonian so constructed seems to describe the C–F stretching modes accurately using a relatively small set of well-defined parameters.

  4. Insight into structural phase transitions from the decoupled anharmonic mode approximation

    Science.gov (United States)

    Adams, Donat J.; Passerone, Daniele

    2016-08-01

    We develop a formalism (decoupled anharmonic mode approximation, DAMA) that allows calculation of the vibrational free energy using density functional theory even for materials which exhibit negative curvature of the potential energy surface with respect to atomic displacements. We investigate vibrational modes beyond the harmonic approximation and approximate the potential energy surface with the superposition of the accurate potential along each normal mode. We show that the free energy can stabilize crystal structures at finite temperatures which appear dynamically unstable at T  =  0. The DAMA formalism is computationally fast because it avoids statistical sampling through molecular dynamics calculations, and is in principle completely ab initio. It is free of statistical uncertainties and independent of model parameters, but can give insight into the mechanism of a structural phase transition. We apply the formalism to the perovskite cryolite, and investigate the temperature-driven phase transition from the P21/n to the Immm space group. We calculate a phase transition temperature between 710 and 950 K, in fair agreement with the experimental value of 885 K. This can be related to the underestimation of the interaction of the vibrational states. We also calculate the main axes of the thermal ellipsoid and can explain the experimentally observed increase of its volume for the fluorine by 200-300% throughout the phase transition. Our calculations suggest the appearance of tunneling states in the high temperature phase. The convergence of the vibrational DOS and of the critical temperature with respect of reciprocal space sampling is investigated using the polarizable-ion model.

  5. Comparison of the local binding motifs in the imidazolium-based ionic liquids [EMIM][BF{sub 4}] and [EMMIM][BF{sub 4}] through cryogenic ion vibrational predissociation spectroscopy: Unraveling the roles of anharmonicity and intermolecular interactions

    Energy Technology Data Exchange (ETDEWEB)

    Fournier, Joseph A.; Wolke, Conrad T.; Johnson, Christopher J.; Johnson, Mark A., E-mail: mark.johnson@yale.edu, E-mail: mccoy@chemistry.ohio-state.edu [Sterling Chemistry Laboratory, Yale University, New Haven, Connecticut 06520 (United States); McCoy, Anne B., E-mail: mark.johnson@yale.edu, E-mail: mccoy@chemistry.ohio-state.edu [Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210 (United States)

    2015-02-14

    We clarify the role of the critical imidazolium C{sub (2)}H position (the central C between N atoms in the heterocycle) in the assembly motif of the [EMIM][BF{sub 4}] ionic liquid by analyzing the vibrational spectra of the bare EMIM{sup +} ion as well as that of the cationic [EMIM]{sub 2}[BF{sub 4}]{sup +} (EMIM{sup +} = 1-ethyl-3-methylimidazolium, C{sub 6}H{sub 11}N{sub 2}{sup +}) cluster. Vibrational spectra of the cold, mass-selected ions are obtained using cryogenic ion vibrational predissociation of weakly bound D{sub 2} molecules formed in a 10 K ion trap. The C{sub (2)}H behavior is isolated by following the evolution of key vibrational features when the C{sub (2)} hydrogen, the proposed binding location of the anion to the imidazolium ring, is replaced by either deuterium or a methyl group (i.e., in the EMMIM{sup +} analogue). Strong features in the ring CH stretching region of the bare ion are traced to Fermi resonances with overtones of lower frequency modes. Upon incorporation into the EMIM{sup +} ⋅ ⋅ ⋅ BF{sub 4}{sup −} ⋅ ⋅ ⋅ EMIM{sup +} ternary complex, the C{sub (2)}H oscillator strength is dramatically increased, accounting for the much more complicated patterns derived from the EMIM{sup +} ring CH stretches in the light isotopomer, which are strongly suppressed in the deuterated analogue. Further changes in the spectra that occur when the C{sub (2)}H is replaced by a methyl group are consistent with BF{sub 4}{sup −} attachment directly to the imidazolium ring in an arrangement that maximizes the electrostatic interaction between the molecular ions.

  6. Neural Network Modeling of UH-60A Pilot Vibration

    Science.gov (United States)

    Kottapalli, Sesi

    2003-01-01

    Full-scale flight-test pilot floor vibration is modeled using neural networks and full-scale wind tunnel test data for low speed level flight conditions. Neural network connections between the wind tunnel test data and the tlxee flight test pilot vibration components (vertical, lateral, and longitudinal) are studied. Two full-scale UH-60A Black Hawk databases are used. The first database is the NASMArmy UH-60A Airloads Program flight test database. The second database is the UH-60A rotor-only wind tunnel database that was acquired in the NASA Ames SO- by 120- Foot Wind Tunnel with the Large Rotor Test Apparatus (LRTA). Using neural networks, the flight-test pilot vibration is modeled using the wind tunnel rotating system hub accelerations, and separately, using the hub loads. The results show that the wind tunnel rotating system hub accelerations and the operating parameters can represent the flight test pilot vibration. The six components of the wind tunnel N/rev balance-system hub loads and the operating parameters can also represent the flight test pilot vibration. The present neural network connections can significandy increase the value of wind tunnel testing.

  7. Raman spectroscopic study of phase stability and anharmonicity in Bi{sub 12}TiO{sub 20}

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Rekha, E-mail: rekhar@barc.gov.in [Solid State Physics Division, Bhabha Atomic Research Center, Mumbai 400 085 (India); Salke, Nilesh P. [Solid State Physics Division, Bhabha Atomic Research Center, Mumbai 400 085 (India); Garg, Alka B. [High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Center, Mumbai 400 085 (India)

    2013-05-15

    Raman spectroscopic studies on lead-free piezo-electric compound Bi{sub 12}TiO{sub 20} is reported as a function of pressure upto 25 GPa at room temperature. Results indicate that the compound remains in stable crystalline phase upto 25 GPa. Temperature dependent Raman spectroscopic investigations on Bi{sub 12}TiO{sub 20} indicate that the compound is also stable at high temperatures upto 850 K. From measurements of temperature and pressure dependence of Raman mode frequencies, intrinsic anharmonic parameters are calculated for each of the Raman active modes which are useful in modeling of thermodynamic entities. The results are compared with that of analogous compound Bi{sub 12}SiO{sub 20}. Highlights: ► Raman spectroscopic study of Bi{sub 12}TiO{sub 20} is carried out at high pressure/temperature. ► This study indicates a good structural stability of Bi{sub 12}TiO{sub 20}. ► Bi{sub 12}TiO{sub 20} is an ideal system to evaluate the anharmonicity of vibrational modes.

  8. A Nonlinear Vortex Induced Vibration Model of Marine Risers

    Institute of Scientific and Technical Information of China (English)

    LIU Juan; HUANG Weiping

    2013-01-01

    With the exploitation of oil and gas in deep water,the traditional vortex induced vibration (VIV) theory is challenged by the unprecedented flexibility of risers.A nonlinear time-dependent VIV model is developed in this paper based on a VIV lift force model and the Morison equation.Both the inline vibration induced by the flow due to vortex shedding and the fluid-structure interaction in the transverse direction are included in the model.One of the characteristics of the model is the response-dependent lift force with nonlinear damping,which is different from other VIV models.The calculations show that the model can well describe the VIV of deepwater risers with the results agreeing with those calculated by other models.

  9. Anharmonicity effects in the frictionlike mode of graphite

    Science.gov (United States)

    Menéndez, C.; Lobato, A.; Abbasi-Pérez, D.; Fernández-Núñez, J.; Baonza, V. G.; Recio, J. M.

    2016-04-01

    Graphite is a prototypical solid lubricant demanding a thorough understanding of its low-friction behavior. The E2 g(1) Raman active vibrational mode of graphite is associated with the rigid-layer relative movement of its graphene sheets. Thus, this mode can provide a good means of exploring the low resistance of graphene layers to slip with respect to each other. To take advantage of this fact, the anharmonicity of the E2 g(1) mode has to be carefully characterized and evaluated since the atomic arrangement of carbon atoms in the ambient condition ABA stacking of graphite evidences potential asymmetry. The calculated one-dimensional energetic profile of the E2 g(1) mode reveals this local anisotropy around the energy minima and can be microscopically interpreted in terms of electron density interactions. Morse-type potentials accurately fit the energetic profiles at different interlayer separations, and provide simple analytical expressions for evaluating harmonic and anharmonic contributions to the Γ -point E2 g(1) frequency ωE2g(1 ) under a perturbative algebraic treatment. We quantify how the anharmonic contribution increases with the available energy (E ) at zero pressure, and how this contribution decreases as hydrostatic pressure (p ) or uniaxial stress is applied for a given available energy. The calculated ωE2g(1 )-p and ωE2g(1 )-E trends indicate an increasing (decreasing) of frictional forces in graphite with pressure (temperature). Our conclusions are supported by the good agreement of the calculated frequencies with existing Raman experiments under hydrostatic pressure conditions.

  10. Modeling of cable vibration effects of cable-stayed bridges

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The analysis of dynamic responses of cable-stayed bridges subjected to wind and earthquake loads generallyconsiders only the motions of the bridge deck and pylons. The influence of the stay cable vibration on the responses of the bridgeis either ignored or considered by approximate procedures. The transverse vibration of the stay cables, which can be significant insome cases, are usually neglected in previous research. In the present study, a new three-node cable element has been developed tomodel the transverse motions of the cables. The interactions between the cable behavior and the other parts of the bridgesuperstructure are considered by the concept of dynamic stiffness. The nonlinear effect of the cable caused by its self-weight isincluded in the formulation. Numerical examples are presented to demonstrate the accuracy and efficiency of the proposed model.The impact of cable vibration behavior on the dynamic characteristics of cable-stayed bridges is discussed.

  11. Experimental validation of a numerical model for subway induced vibrations

    Science.gov (United States)

    Gupta, S.; Degrande, G.; Lombaert, G.

    2009-04-01

    This paper presents the experimental validation of a coupled periodic finite element-boundary element model for the prediction of subway induced vibrations. The model fully accounts for the dynamic interaction between the train, the track, the tunnel and the soil. The periodicity or invariance of the tunnel and the soil in the longitudinal direction is exploited using the Floquet transformation, which allows for an efficient formulation in the frequency-wavenumber domain. A general analytical formulation is used to compute the response of three-dimensional invariant or periodic media that are excited by moving loads. The numerical model is validated by means of several experiments that have been performed at a site in Regent's Park on the Bakerloo line of London Underground. Vibration measurements have been performed on the axle boxes of the train, on the rail, the tunnel invert and the tunnel wall, and in the free field, both at the surface and at a depth of 15 m. Prior to these vibration measurements, the dynamic soil characteristics and the track characteristics have been determined. The Bakerloo line tunnel of London Underground has been modelled using the coupled periodic finite element-boundary element approach and free field vibrations due to the passage of a train at different speeds have been predicted and compared to the measurements. The correspondence between the predicted and measured response in the tunnel is reasonably good, although some differences are observed in the free field. The discrepancies are explained on the basis of various uncertainties involved in the problem. The variation in the response with train speed is similar for the measurements as well as the predictions. This study demonstrates the applicability of the coupled periodic finite element-boundary element model to make realistic predictions of the vibrations from underground railways.

  12. Nonlinear dynamic modeling and resonance tuning of Galfenol vibration absorbers

    Science.gov (United States)

    Scheidler, Justin J.; Dapino, Marcelo J.

    2013-08-01

    This paper investigates the semi-active control of a magnetically-tunable vibration absorber’s resonance frequency. The vibration absorber that is considered is a metal-matrix composite containing the magnetostrictive material Galfenol (FeGa). A single degree of freedom model for the nonlinear vibration of the absorber is presented. The model is valid under arbitrary stress and magnetic field, and incorporates the variation in Galfenol’s elastic modulus throughout the composite as well as Galfenol’s asymmetric tension-compression behavior. Two boundary conditions—cantilevered and clamped-clamped—are imposed on the composite. The frequency response of the absorber to harmonic base excitation is calculated as a function of the operating conditions to determine the composite’s capacity for resonance tuning. The results show that nearly uniform controllability of the vibration absorber’s resonance frequency is possible below a threshold of the input power amplitude using weak magnetic fields of 0-8 kA m-1. Parametric studies are presented to characterize the effect on resonance tunability of Galfenol volume fraction and Galfenol location within the composite. The applicability of the results to composites of varying geometry and containing different Galfenol materials is discussed.

  13. Living systems as coherent anharmonic oscillators

    Science.gov (United States)

    Molski, M.

    2011-12-01

    A model of living systems considered as coherent, time-dependent anharmonic oscillators is presented. It is based on the concept of space-like coherent states minimizing the time-energy uncertainty relation, adapted to the case of biological systems whose growth is described by the Gompertz or West-Brown-Enquist functions. The coherent states of biological growth evolve coherently in space being localized along the classical time trajectory; hence, the growth is predicted to be coherent in space. It is proven that the Gompertz function is a special solution of the space-like Horodecki-Feinberg equation for the time-dependent Morse oscillator in the dissociation state. Its eigenvalue represents the momentum of biological growth, associated with a space-like component whose properties resemble those attributed by vitalists to the life momentum or vital impulse. The physical characteristics of the life energy and momentum and their connection with the concept of zero-point momentum of vacuum are presented.

  14. Enthalpy of formation and anharmonic force field of diacetylene.

    Science.gov (United States)

    Simmonett, Andrew C; Schaefer, Henry F; Allen, Wesley D

    2009-01-28

    The enthalpy of formation of diacetylene (C4H2) is pinpointed using state-of-the-art theoretical methods, accounting for high-order electron correlation, relativistic effects, non-Born-Oppenheimer corrections, and vibrational anharmonicity. Molecular energies are determined from coupled cluster theory with single and double excitations (CCSD), perturbative triples [CCSD(T)], full triples (CCSDT), and perturbative quadruples [CCSDT(Q)], in concert with correlation-consistent basis sets (cc-pVXZ, X=D, T, Q, 5, 6) that facilitate extrapolations to the complete basis set limit. The first full quartic force field of diacetylene is determined at the highly accurate all-electron CCSD(T) level with a cc-pCVQZ basis, which includes tight functions for core correlation. Application of second-order vibrational perturbation theory to our anharmonic force field yields fundamental frequencies with a mean absolute difference of only 3.9 cm(-1) relative to the experimental band origins, without the use of any empirical scale factors. By a focal point approach, we converge on an enthalpy change for the isogyric reaction 2 H-C[triple bond]C-H-->H-C[triple bond]C-C[triple bond]C-H+H2 of (+0.03, +0.81) kcal mol(-1) at (0, 298.15) K. With the precisely established fHdegrees of acetylene, we thus obtain DeltafHdegrees(C4H2)=(109.4,109.7)+/-0.3 kcal mol(-1) at (0, 298.15) K. Previous estimates of the diacetylene enthalpy of formation range from 102 to 120 kcal mol(-1).

  15. Thermodynamic properties of wadsleyite with anharmonic effect

    Institute of Scientific and Technical Information of China (English)

    Zhongqing Wu

    2015-01-01

    The thermodynamic properties of crystals can be routinely calculated by density functional theory calculations combining with quasi-harmonic approximation.Based on the method developed recently by Wu and Wentzcovitch (Phys Rev B 79:104304,2009) and Wu (Phys Rev B 81:172301,2010),we are able to further ab initio include anharmonic effect on thermodynamic properties of crystals by one additional canonical ensemble with numbers of particle,volume and temperature fixed (NVT) molecular dynamic simulations.Our study indicates that phonon-phonon interaction causes the renormalized phonon frequencies of wadsleyite decrease with temperature.This is consistent with the Raman experimental observation.The anharmonic free energy of wadsleyite is negative and its heat capacity at constant pressure can exceed the Dulong-Petit limit at high temperature.The anharmonicity still significantly affects thermodynamic properties of wadsleyite at pressure and temperature conditions correspond to the transition zone.

  16. Vibration analysis with MADYMO human models

    NARCIS (Netherlands)

    Verver, M.M.; Hoof, J.F.A.M. van

    2002-01-01

    The importance of comfort for the automotive industry is increasing. Car manufacturers use comfort to distinguish their products from their competitors. However, the development and design of a new car seat or interior is very time consuming and expensive. The introduction of computer models of huma

  17. Optimal vibration control of curved beams using distributed parameter models

    Science.gov (United States)

    Liu, Fushou; Jin, Dongping; Wen, Hao

    2016-12-01

    The design of linear quadratic optimal controller using spectral factorization method is studied for vibration suppression of curved beam structures modeled as distributed parameter models. The equations of motion for active control of the in-plane vibration of a curved beam are developed firstly considering its shear deformation and rotary inertia, and then the state space model of the curved beam is established directly using the partial differential equations of motion. The functional gains for the distributed parameter model of curved beam are calculated by extending the spectral factorization method. Moreover, the response of the closed-loop control system is derived explicitly in frequency domain. Finally, the suppression of the vibration at the free end of a cantilevered curved beam by point control moment is studied through numerical case studies, in which the benefit of the presented method is shown by comparison with a constant gain velocity feedback control law, and the performance of the presented method on avoidance of control spillover is demonstrated.

  18. Anharmonicity in GaTe layered crystals

    Energy Technology Data Exchange (ETDEWEB)

    Aydinli, A. [Physics Department, Bilkent University, Ankara (Turkey); Gasanly, N.M.; Uka, A. [Physics Department, Middle East Technical University, Ankara (Turkey); Efeoglu, H. [Physics Department, Atatuerk University, Erzurum (Turkey)

    2002-07-01

    The temperature dependencies (10-300 K) of seven Raman-active mode frequencies in layered semiconductor gallium telluride have been measured in the frequency range from 25 to 300 cm{sup -1}. Softening and broadening of the optical phonon lines are observed with increasing temperature. Comparison between the experimental data and theories of the shift of the phonon lines during heating of the crystal showed that the experimental dependencies can be explained by contributions from thermal expansion and lattice anharmonicity. Lattice anharmonicity is determined to be due to three-phonon processes. (Abstract Copyright [2002], Wiley Periodicals, Inc.)

  19. Detailed model of bouncing drops on a bounded, vibrated bath

    Science.gov (United States)

    Blanchette, Francois; Gilet, Tristan

    2014-11-01

    We present a detailed model of drops bouncing on a bounded vibrated bath. These drops are known to bounce indefinitely and to exhibit complex and varied vertical dynamics depending on the acceleration of the bath. In addition, in a narrow parameter regime, these drops travel horizontally while being guided by the waves they generate. Our model tracks the drop's vertical radius and position, as well as the eigenmodes of the waves generated via ordinary differential equations only. We accurately capture the vertical dynamics, as well as some of the horizontal dynamics. Our model may be extended to account for interactions with other drops or obstacles, such as slits and corrals.

  20. A fluctuating quantum model of the CO vibration in carboxyhemoglobin.

    Science.gov (United States)

    Falvo, Cyril; Meier, Christoph

    2011-06-07

    In this paper, we present a theoretical approach to construct a fluctuating quantum model of the CO vibration in heme-CO proteins and its interaction with external laser fields. The methodology consists of mixed quantum-classical calculations for a restricted number of snapshots, which are then used to construct a parametrized quantum model. As an example, we calculate the infrared absorption spectrum of carboxy-hemoglobin, based on a simplified protein model, and found the absorption linewidth in good agreement with the experimental results.

  1. The anharmonic effect study of coupled Morse oscillators for the unimolecular reaction

    Institute of Scientific and Technical Information of China (English)

    YAO Li; LIN Sheng-Hsien

    2008-01-01

    The importance of anharmonic effect in dissociation of molecular systems especially clusters has been noted. In this paper, we shall study the effect of coupled anharmonic oscillator of the standard bilinear form (SBF) Morse oscillator (MO) potential on unimolecular reaction. We shall use the systematic theoretical approach, YL method, proposed by Yao and Lin (YAO L, et. al. J Phys Chem A, 2007, 111(29): 6722-6729), which can evaluate anharmonic effects on the rate constants based on the transition state theory. In treating the anharmonic effect with the Morse oscillator potential on unimolecular reactions under collision-free conditions by using the RRKM (Rice-Ramsperger-Kassel-Marcus) theory, the in-verse Laplace transformation of the partition functions was used to obtain the total amount of state and density of state by using the first-order and the second-order approximations of the saddle-point method. To demonstrate the anharmonic effect of the SBF Morse model, we choose some model sys-tems and a real reaction as examples.

  2. The anharmonic effect study of coupled Morse oscillators for the unimolecular reaction

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The importance of anharmonic effect in dissociation of molecular systems especially clusters has been noted. In this paper, we shall study the effect of coupled anharmonic oscillator of the standard bilinear form (SBF) Morse oscillator (MO) potential on unimolecular reaction. We shall use the systematic theoretical approach, YL method, proposed by Yao and Lin (YAO L, et. al. J Phys Chem A, 2007, 111(29): 6722-6729), which can evaluate anharmonic effects on the rate constants based on the transition state theory. In treating the anharmonic effect with the Morse oscillator potential on unimolecular reactions under collision-free conditions by using the RRKM (Rice-Ramsperger-Kassel-Marcus) theory, the in-verse Laplace transformation of the partition functions was used to obtain the total amount of state and density of state by using the first-order and the second-order approximations of the saddle-point method. To demonstrate the anharmonic effect of the SBF Morse model, we choose some model systems and a real reaction as examples.

  3. Non-linear vibrational modes in biomolecules: A periodic orbits description

    Energy Technology Data Exchange (ETDEWEB)

    Kampanarakis, Alexandros [Department of Chemistry, University of Crete, and Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (FORTH), Vasilika Vouton, Heraklion 71110, Crete (Greece); Farantos, Stavros C., E-mail: farantos@iesl.forth.gr [Department of Chemistry, University of Crete, and Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (FORTH), Vasilika Vouton, Heraklion 71110, Crete (Greece); Daskalakis, Vangelis; Varotsis, Constantinos [Department of Environmental Science and Technology, Cyprus University of Technology, 31 Archbishop Kyprianos St., P.O. Box 50329, 3603 Lemesos (Cyprus)

    2012-05-03

    Graphical abstract: Vibrational frequency shifts in Fe{sup IV} = O species of the active site of cytochrome c oxidase are attributed to changes in the surrounding Coulomb field. Periodic orbits analysis assists to find the most anharmonic modes in model biomolecules. Highlights: Black-Right-Pointing-Pointer Periodic orbits are extended to multidimensional potentials of biomolecules. Black-Right-Pointing-Pointer Highly anharmonic vibrational modes and center-saddle bifurcations are detected. Black-Right-Pointing-Pointer Vibrational frequencies shifts in Oxoferryl species of CcO are observed. - Abstract: The vibrational harmonic normal modes of a molecule, which are valid at energies close to an equilibrium point (a minimum, maximum or saddle of the potential energy surface), are extended by periodic orbits to high energies where anharmonicity and coupling of the degrees of freedom are significant. In this way the assignment of the spectra, and thus the extraction of dynamics in highly excited molecules, can be obtained. New vibrational modes emanating from bifurcations of periodic orbits and long living localized trajectories signal the birth and localization of new quantum states. In this article we review and further study non-linear vibrational modes for model biomolecules such as alanine dipeptide and the active site in the oxoferryl oxidation state of the enzyme cytochrome c oxidase. We locate periodic orbits which exhibit high anhamonicity and lead to center-saddle bifurcations. These modes are associated to an isomerization process in alanine dipeptide and to frequency shifts in the oxoferryl observed by modifying the Coulomb field around the Imidazole-Fe{sup IV} = O species.

  4. Model reduction and analysis of a vibrating beam microgyroscope

    KAUST Repository

    Ghommem, Mehdi

    2012-05-08

    The present work is concerned with the nonlinear dynamic analysis of a vibrating beam microgyroscope composed of a rotating cantilever beam with a tip mass at its end. The rigid mass is coupled to two orthogonal electrodes in the drive and sense directions, which are attached to the rotating base. The microbeam is driven by an AC voltage in the drive direction, which induces vibrations in the orthogonal sense direction due to rotation about the microbeam axis. The electrode placed in the sense direction is used to measure the induced motions and extract the underlying angular speed. A reduced-order model of the gyroscope is developed using the method of multiple scales and used to examine its dynamic behavior. © The Author(s) 2012 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  5. Anharmonic effects and double giant dipole resonances

    CERN Document Server

    Voronov, V V

    2001-01-01

    A brief review of recent results of the microscopic calculations to describe characteristics of the double giant dipole resonances (DGDR) is presented. A special attention is paid to a microscopic study of the anharmonic properties of the DGDR. It is found that the deviation of the energy centroid of the DGDR from the harmonic limit follows A sup - sup 1 dependence

  6. Comparative study of quantum anharmonic potentials

    Energy Technology Data Exchange (ETDEWEB)

    Amore, Paolo [Facultad de Ciencias, Universidad de Colima, Bernal Diaz del Castillo 340, Colima (Mexico)]. E-mail: paolo@ucol.mx; Aranda, Alfredo [Facultad de Ciencias, Universidad de Colima, Bernal Diaz del Castillo 340, Colima (Mexico); De Pace, Arturo [Istituto Nazionale di Fisica Nucleare, Sezione di Torino, via P. Giuria 1, I-10125 Torino (Italy); Lopez, Jorge A. [Physics Department, University of Texas at El Paso, El Paso, TX (United States)

    2004-09-06

    We perform a study of various anharmonic potentials using a recently developed method. We calculate both the wave functions and the energy eigenvalues for the ground and first excited states of the quartic, sextic and octic potentials with high precision, comparing the results with other techniques available in the literature.

  7. A modal approach to modeling spatially distributed vibration energy dissipation.

    Energy Technology Data Exchange (ETDEWEB)

    Segalman, Daniel Joseph

    2010-08-01

    The nonlinear behavior of mechanical joints is a confounding element in modeling the dynamic response of structures. Though there has been some progress in recent years in modeling individual joints, modeling the full structure with myriad frictional interfaces has remained an obstinate challenge. A strategy is suggested for structural dynamics modeling that can account for the combined effect of interface friction distributed spatially about the structure. This approach accommodates the following observations: (1) At small to modest amplitudes, the nonlinearity of jointed structures is manifest primarily in the energy dissipation - visible as vibration damping; (2) Correspondingly, measured vibration modes do not change significantly with amplitude; and (3) Significant coupling among the modes does not appear to result at modest amplitudes. The mathematical approach presented here postulates the preservation of linear modes and invests all the nonlinearity in the evolution of the modal coordinates. The constitutive form selected is one that works well in modeling spatially discrete joints. When compared against a mathematical truth model, the distributed dissipation approximation performs well.

  8. Vibration acceleration promotes bone formation in rodent models

    Science.gov (United States)

    Uchida, Ryohei; Nakata, Ken; Kawano, Fuminori; Yonetani, Yasukazu; Ogasawara, Issei; Nakai, Naoya; Mae, Tatsuo; Matsuo, Tomohiko; Tachibana, Yuta; Yokoi, Hiroyuki; Yoshikawa, Hideki

    2017-01-01

    All living tissues and cells on Earth are subject to gravitational acceleration, but no reports have verified whether acceleration mode influences bone formation and healing. Therefore, this study was to compare the effects of two acceleration modes, vibration and constant (centrifugal) accelerations, on bone formation and healing in the trunk using BMP 2-induced ectopic bone formation (EBF) mouse model and a rib fracture healing (RFH) rat model. Additionally, we tried to verify the difference in mechanism of effect on bone formation by accelerations between these two models. Three groups (low- and high-magnitude vibration and control-VA groups) were evaluated in the vibration acceleration study, and two groups (centrifuge acceleration and control-CA groups) were used in the constant acceleration study. In each model, the intervention was applied for ten minutes per day from three days after surgery for eleven days (EBF model) or nine days (RFH model). All animals were sacrificed the day after the intervention ended. In the EBF model, ectopic bone was evaluated by macroscopic and histological observations, wet weight, radiography and microfocus computed tomography (micro-CT). In the RFH model, whole fracture-repaired ribs were excised with removal of soft tissue, and evaluated radiologically and histologically. Ectopic bones in the low-magnitude group (EBF model) had significantly greater wet weight and were significantly larger (macroscopically and radiographically) than those in the other two groups, whereas the size and wet weight of ectopic bones in the centrifuge acceleration group showed no significant difference compared those in control-CA group. All ectopic bones showed calcified trabeculae and maturated bone marrow. Micro-CT showed that bone volume (BV) in the low-magnitude group of EBF model was significantly higher than those in the other two groups (3.1±1.2mm3 v.s. 1.8±1.2mm3 in high-magnitude group and 1.3±0.9mm3 in control-VA group), but BV in the

  9. The influence of anharmonic phonons on the isotope effect in high-{Tc} oxides

    Energy Technology Data Exchange (ETDEWEB)

    Crespi, V.H.; Cohen, M.L.

    1992-01-01

    Anharmonic phonons are examined to study the unusual isotope effect exponents for the high-{Tc} oxides. Within a simple model of anharmonicity, the mass dependences of the electron-phonon coupling constant {lambda} and the phonon frequency determine the isotope effect exponent {alpha} as a function of coupling strength. A model in which the outer wells of a multiple-well potential deepen as the orthorhombic/low temperature tetragonal phase transition in La{sub 2-x}M{sub x}CuO{sub 4} is approached is consistent with some experimentally observed variations in {Tc} and {alpha}. 10 refs.

  10. The influence of anharmonic phonons on the isotope effect in high- Tc oxides

    Energy Technology Data Exchange (ETDEWEB)

    Crespi, V.H.; Cohen, M.L.

    1992-01-01

    Anharmonic phonons are examined to study the unusual isotope effect exponents for the high-{Tc} oxides. Within a simple model of anharmonicity, the mass dependences of the electron-phonon coupling constant {lambda} and the phonon frequency determine the isotope effect exponent {alpha} as a function of coupling strength. A model in which the outer wells of a multiple-well potential deepen as the orthorhombic/low temperature tetragonal phase transition in La{sub 2-x}M{sub x}CuO{sub 4} is approached is consistent with some experimentally observed variations in {Tc} and {alpha}. 10 refs.

  11. Force Limited Random Vibration Test of TESS Camera Mass Model

    Science.gov (United States)

    Karlicek, Alexandra; Hwang, James Ho-Jin; Rey, Justin J.

    2015-01-01

    The Transiting Exoplanet Survey Satellite (TESS) is a spaceborne instrument consisting of four wide field-of-view-CCD cameras dedicated to the discovery of exoplanets around the brightest stars. As part of the environmental testing campaign, force limiting was used to simulate a realistic random vibration launch environment. While the force limit vibration test method is a standard approach used at multiple institutions including Jet Propulsion Laboratory (JPL), NASA Goddard Space Flight Center (GSFC), European Space Research and Technology Center (ESTEC), and Japan Aerospace Exploration Agency (JAXA), it is still difficult to find an actual implementation process in the literature. This paper describes the step-by-step process on how the force limit method was developed and applied on the TESS camera mass model. The process description includes the design of special fixtures to mount the test article for properly installing force transducers, development of the force spectral density using the semi-empirical method, estimation of the fuzzy factor (C2) based on the mass ratio between the supporting structure and the test article, subsequent validating of the C2 factor during the vibration test, and calculation of the C.G. accelerations using the Root Mean Square (RMS) reaction force in the spectral domain and the peak reaction force in the time domain.

  12. Temperature dependence of Raman scattering and anharmonic properties in LiNbO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Kokanyan, Ninel; Chapron, David; Fontana, Marc D. [Universite de Lorraine, Laboratoire Materiaux Optiques, Photonique et Systemes (LMOPS), Metz (France); Supelec, Laboratoire Materiaux Optiques, Photonique et Systemes (LMOPS), Metz (France)

    2014-11-15

    The temperature dependence of the Raman spectrum in LiNbO{sub 3} is investigated from 100 to 700 K. The various sources of asymmetry of Raman bands and artefacts are discussed before analyzing the temperature dependence of A{sub 1} and E first-order phonon lines. The phonon frequency downshift and damping increase on heating are interpreted in terms of normal volume expansion and third- and fourth-order anharmonic potentials. Anharmonic contributions are highly anisotropic and mainly explain the temperature dependences of both frequency and damping of A{sub 1} optical vibrational modes along the ferroelectric axis. Results are consistent with Caciuc et al. (Phys Rev B 61:8806, 2000) predictions. (orig.)

  13. Fourth-Order Vibrational Transition State Theory and Chemical Kinetics

    Science.gov (United States)

    Stanton, John F.; Matthews, Devin A.; Gong, Justin Z.

    2015-06-01

    Second-order vibrational perturbation theory (VPT2) is an enormously successful and well-established theory for treating anharmonic effects on the vibrational levels of semi-rigid molecules. Partially as a consequence of the fact that the theory is exact for the Morse potential (which provides an appropriate qualitative model for stretching anharmonicity), VPT2 calculations for such systems with appropriate ab initio potential functions tend to give fundamental and overtone levels that fall within a handful of wavenumbers of experimentally measured positions. As a consequence, the next non-vanishing level of perturbation theory -- VPT4 -- offers only slight improvements over VPT2 and is not practical for most calculations since it requires information about force constants up through sextic. However, VPT4 (as well as VPT2) can be used for other applications such as the next vibrational correction to rotational constants (the ``gammas'') and other spectroscopic parameters. In addition, the marriage of VPT with the semi-classical transition state theory of Miller (SCTST) has recently proven to be a powerful and accurate treatment for chemical kinetics. In this talk, VPT4-based SCTST tunneling probabilities and cumulative reaction probabilities are give for the first time for selected low-dimensional model systems. The prospects for VPT4, both practical and intrinsic, will also be discussed.

  14. On the nonlinear models of the vibrating string

    Science.gov (United States)

    Watzky, Alexandre

    2005-09-01

    Vibrations of strings (threads, wires, cables...) are of great interest because of their various domains of application. In musical acoustics, phenomena which could have been neglected elsewhere take a particular importance since perception, which is very sensitive to nonlinear effects, is involved. Some phenomena can also be emphasized when a string is coupled to a sound-radiating structure. Reliable physical models are thus necessary to account for these phenomena, and to understand the true behavior of a vibrating string. Despite the fact that the first nonlinear models were published more than one century ago, and that accurate equations of motion can be naturally achieved within a finite displacement continuum mechanics framework, general models never received the attention they deserved, most authors focusing on particular phenomena and often settling on approximate models. This can be explained by the awkward multiplicity of the involved phenomena. The aim of this presentation is to discuss the consequences of some common assumptions and the true nature of some observed couplings. Particular attention will be paid to the preponderance of the spatial shape of the modes, which are usually underestimated with respect to their temporal form.

  15. Nonlinear dynamic model for magnetically-tunable Galfenol vibration absorbers

    Science.gov (United States)

    Scheidler, Justin J.; Dapino, Marcelo J.

    2013-03-01

    This paper presents a single degree of freedom model for the nonlinear vibration of a metal-matrix composite manufactured by ultrasonic additive manufacturing that contains seamlessly embedded magnetostrictive Galfenol alloys (FeGa). The model is valid under arbitrary stress and magnetic field. Changes in the composite's natural frequency are quantified to assess its performance as a semi-active vibration absorber. The effects of Galfenol volume fraction and location within the composite on natural frequency are quantified. The bandwidth over which the composite's natural frequency can be tuned with a bias magnetic field is studied for varying displacement excitation amplitudes. The natural frequency is tunable for all excitation amplitudes considered, but the maximum tunability occurs below an excitation amplitude threshold of 1 × 10-6 m for the composite geometry considered. Natural frequency shifts between 6% and 50% are found as the Galfenol volume fraction varies from 25% to 100% when Galfenol is located at the composite neutral axis. At a modest 25% Galfenol by volume, the model shows that up to 15% shifts in composite resonance are possible through magnetic bias field modulation if Galfenol is embedded away from the composite midplane. As the Galfenol volume fraction and distance between Galfenol and composite midplane are increased, linear and quadratic increases in tunability result, respectively.

  16. Quantum-mechanical study of energies, structures, and vibrational spectra of the H(D)Cl complexed with dimethyl ether

    Energy Technology Data Exchange (ETDEWEB)

    Boda, Łukasz, E-mail: lboda@chemia.uj.edu.pl; Boczar, Marek; Gług, Maciej; Wójcik, Marek J. [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Kraków (Poland)

    2015-11-28

    Interaction energies, molecular structure and vibrational frequencies of the binary complex formed between H(D)Cl and dimethyl ether have been obtained using quantum-chemical methods. Equilibrium and vibrationally averaged structures, harmonic and anharmonic wavenumbers of the complex and its deuterated isotopomer were calculated using harmonic and anharmonic second-order perturbation theory procedures with Density Functional Theory B3LYP and B2PLYP-D and ab initio Møller-Plesset second-order methods, and a 6-311++G(3d,3p) basis set. A phenomenological model describing anharmonic-type vibrational couplings within hydrogen bonds was developed to explain the unique broadening and fine structure, as well as the isotope effect of the Cl–H and Cl–D stretching IR absorption bands in the gaseous complexes with dimethyl ether, as an effect of hydrogen bond formation. Simulations of the rovibrational structure of the Cl–H and Cl–D stretching bands were performed and the results were compared with experimental spectra.

  17. On the Elastic Vibration Model for High Length-Diameter Ratio Rocket with Attitude Control System

    Institute of Scientific and Technical Information of China (English)

    朱伯立; 杨树兴

    2003-01-01

    An elastic vibration model for high length-diameter ratio spinning rocket with attitude control system which can be used for trajectory simulation is established. The basic theory of elastic dynamics and vibration dynamics were both used to set up the elastic vibration model of rocket body. In order to study the problem more conveniently, the rocket's body was simplified to be an even beam with two free ends. The model was validated by simulation results and the test data.

  18. Quantum anharmonic oscillator: The airy function approach

    Energy Technology Data Exchange (ETDEWEB)

    Maiz, F., E-mail: fethimaiz@gmail.com [King Khalid University, Faculty of Science, Physics Department, PO Box 9004, Abha 61413, Asseer (Saudi Arabia); University of Cartage, Nabeul Engineering Preparatory Institute, Merazka, 8000 Nabeul (Tunisia); AlFaify, S. [King Khalid University, Faculty of Science, Physics Department, PO Box 9004, Abha 61413, Asseer (Saudi Arabia)

    2014-05-15

    New and simple numerical method is being reported to solve anharmonic oscillator problems. The method is setup to approach the real potential V(x) of the anharmonic oscillator system as a piecewise linear potential u(x) and to solve the Schrödinger equation of the system using the Airy function. Then, solutions continuity conditions lead to the energy quantification condition, and consequently, the energy eigenvalues. For testing purpose, the method was applied on the sextic and octic oscillators systems. The proposed method is found to be realistic, computationally simple, and having high degrees of accuracy. In addition, it can be applied to any form of potential. The results obtained by the proposed method were seen closely agreeing with results reached by other complicated methods.

  19. Coupled mode parametric resonance in a vibrating screen model

    CERN Document Server

    Slepyan, Leonid I

    2013-01-01

    We consider a simple dynamic model of the vibrating screen operating in the parametric resonance (PR) mode. This model was used in the course of designing and setting of such a screen in LPMC. The PR-based screen compares favorably with conventional types of such machines, where the transverse oscillations are excited directly. It is characterized by larger values of the amplitude and by insensitivity to damping in a rather wide range. The model represents an initially strained system of two equal masses connected by a linearly elastic string. Self-equilibrated, longitudinal, harmonic forces act on the masses. Under certain conditions this results in transverse, finite-amplitude oscillations of the string. The problem is reduced to a system of two ordinary differential equations coupled by the geometric nonlinearity. Damping in both the transverse and longitudinal oscillations is taken into account. Free and forced oscillations of this mass-string system are examined analytically and numerically. The energy e...

  20. Frame junction vibration transmission with a modified frame deformation model.

    Science.gov (United States)

    Moore, J A

    1990-12-01

    A previous paper dealt with vibration transmission through junctions of connected frame members where the allowed frame deformations included bending, torsion, and longitudinal motions [J.A. Moore, J. Acoust. Soc. Am. 88, 2766-2776 (1990)]. In helicopter and aircraft structures the skin panels can constitute a high impedance connection along the length of the frames that effectively prohibits in-plane motion at the elevation of the skin panels. This has the effect of coupling in-plane bending and torsional motions within the frame. This paper discusses the transmission behavior through frame junctions that accounts for the in-plane constraint in idealized form by assuming that the attached skin panels completely prohibit inplane motion in the frames. Also, transverse shear deformation is accounted for in describing the relatively deep web frame constructions common in aircraft structures. Longitudinal motion in the frames is not included in the model. Transmission coefficient predictions again show the importance of out-of-plane bending deformation to the transmission of vibratory energy in an aircraft structure. Comparisons are shown with measured vibration transmission data along the framing in the overhead of a helicopter airframe, with good agreement. The frame junction description has been implemented within a general purpose statistical energy analysis (SEA) computer code in modeling the entire airframe structure including skin panels.

  1. Stochastic modeling of friction force and vibration analysis of a mechanical system using the model

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Won Seok; Choi, Chan Kyu; Yoo, Hong Hee [Hanyang University, Seoul (Korea, Republic of)

    2015-09-15

    The squeal noise generated from a disk brake or chatter occurred in a machine tool primarily results from friction-induced vibration. Since friction-induced vibration is usually accompanied by abrasion and lifespan reduction of mechanical parts, it is necessary to develop a reliable analysis model by which friction-induced vibration phenomena can be accurately analyzed. The original Coulomb's friction model or the modified Coulomb friction model employed in most commercial programs employs deterministic friction coefficients. However, observing friction phenomena between two contact surfaces, one may observe that friction coefficients keep changing due to the unevenness of contact surface, temperature, lubrication and humidity. Therefore, in this study, friction coefficients are modeled as random parameters that keep changing during the motion of a mechanical system undergoing friction force. The integrity of the proposed stochastic friction model was validated by comparing the analysis results obtained by the proposed model with experimental results.

  2. Anharmonic properties of potassium halide crystals

    OpenAIRE

    RAJU, Krishna Murti

    2011-01-01

    An effort has been made to obtain the anharmonic properties of potassium halides starting from primary physical parameters viz. nearest neighbor distance and hardness parameters assuming long- and short- range potentials at elevated temperatures. The elastic energy density for a deformed crystal can be expanded as power series of strains for obtaining coefficients of quadratic, cubic and quartic terms which are known as the second, third and fourth order elastic constants respectively...

  3. Solvent effects on zero-point vibrational corrections to optical rotations and nuclear magnetic resonance shielding constants

    Science.gov (United States)

    Kongsted, Jacob; Ruud, Kenneth

    2008-01-01

    We present a study of solvent effects on the zero-point vibrational corrections (ZPVC) to optical rotations and nuclear magnetic resonance shielding constants of solvated molecules. The model used to calculate vibrational corrections rely on an expansion of the potential and property surfaces around an effective molecular geometry and includes both harmonic and anharmonic corrections. Numerical examples are presented for ( S)-propylene oxide in various solvents as well as for acetone and the three diazene molecules. We find that solvent effects on the ZPVCs may be significant and in some cases crucial to accurately predict solvent shifts on molecular properties.

  4. Development, documentation and correlation of a NASTRAN vibration model of the AH-1G helicopter airframe

    Science.gov (United States)

    Cronkhite, J. D.

    1976-01-01

    NASTRAN was evaluated for vibration analysis of the helicopter airframe. The first effort involved development of a NASTRAN model of the AH-1G helicopter airframe and comprehensive documentation of the model. The next effort was to assess the validity of the NASTRAN model by comparisons with static and vibration tests.

  5. Vibration modeling of structural fuzzy with continuous boundary

    DEFF Research Database (Denmark)

    Friis, Lars; Ohlrich, Mogens

    2008-01-01

    From experiments it is well known that the vibration response of a main structure with many attached substructures often shows more damping than structural losses in the components can account for. In practice, these substructures, which are not attached in an entirely rigid manner, behave like...... a multitude of different sprung masses each strongly resisting any motion of the main structure (master) at their base antiresonance. The “theory of structural fuzzy” is intended for modeling such high damping. In the present article the theory of fuzzy structures is briefly outlined and a method of modeling...... effect of the fuzzy with spatial memory is demonstrated by numerical simulations of a main beam structure with fuzzy attachments. It is shown that the introduction of spatial memory reduces the damping effect of the fuzzy and in certain cases the damping effect may even be eliminated completely....

  6. The application of value distribution theory to a doubly anharmonic oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Hu Juan [Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou 310023 (China); Yu Guofu, E-mail: gfyu@sjtu.edu.cn [Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2011-07-22

    The model of doubly anharmonic oscillators is first transformed into certain periodic second ordinary differential equations. A class of exact solutions for eigenfunctions and eigenvalues is obtained from Bank and Laine's theory on periodic ordinary differential equations, which is expressed in the form of the products of the polynomial and exponential functions when parameters satisfy some special relations.

  7. Modeling and analysis of the transient vibration of camshaft in multi-cylinder diesel engine

    OpenAIRE

    Jie Guo; Wenping Zhang; Xinyu Zhang

    2015-01-01

    The dynamics and vibrations of camshaft excited by multi-follower elements are modeled and analyzed. A pushrod valve train system from a four-cylinder diesel engine is selected as the case study. The camshaft is modeled to analyze the interactions of multi-follower elements. Both the camshaft angular vibration and bending vibration are taken into consideration. Each follower element is simplified as a multi-mass system. The lumped masses are connected by the spring elements and the damping el...

  8. Anharmonic phonons and the isotope effect in superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Crespi, V.H.; Cohen, M.L. (Department of Physics, University of California at Berkeley, Berkeley, CA (USA) Materials Sciences Division, Lawrence Berkeley Laboratory, Berkeley, CA (USA)); Penn, D.R. (National Institute of Standards and Technology, Gaithersburg, MD (USA))

    1991-06-01

    Anharmonic interionic potentials are examined in an Einstein model to study the unusual isotope-effect exponents for the high-{ital T}{sub {ital c}} oxides. The mass dependences of the electron-phonon coupling constant {lambda} and the average phonon frequency {radical}{l angle}{omega}{sup 2}{r angle} are computed from weighted sums over the oscillator levels. The isotope-effect exponent is depressed below 1/2 by either a double-well potential or a potential with positive quadratic and quartic parts. Numerical solutions of Schroedinger's equation for double-well potentials produce {lambda}'s in the range 1.5--4 for a material with a vanishing isotope-effect parameter {alpha}. However, low phonon frequencies limit {ital T}{sub {ital c}} to roughly 15 K. A negative quartic perturbation to a harmonic well can increase {alpha} above 1/2. In the extreme-strong-coupling limit, {alpha} is 1/2, regardless of anharmonicity.

  9. Time Dependent Coupled Cluster Approach to Resonance Raman Excitation Profiles from General Anharmonic Surfaces

    Directory of Open Access Journals (Sweden)

    M. Durga Prasad

    2002-05-01

    Full Text Available Abstract: A time dependent coupled cluster approach to the calculation of Resonance Raman excitation profiles on general anharmonic surfaces is presented. The vibrational wave functions on the ground electronic surface are obtained by the coupled cluster method (CCM. It is shown that the propagation of the vibrational ground state on the upper surface is equivalent to propagation of the vacuum state by an effective hamiltonian generated by the similarity transformation of the vibrational hamiltonian of that surface by the CCM wave operator of the lower surface up to a normalization constant. This time propagation is carried out by the time-dependent coupled cluster method in a time dependent frame. Numerical studies are presented to asses the validity of the approach.

  10. Anharmonic resonance absorption of short laser pulses in clusters: A molecular dynamics simulation study

    Science.gov (United States)

    Mahalik, S. S.; Kundu, M.

    2016-12-01

    Linear resonance (LR) absorption of an intense 800 nm laser light in a nano-cluster requires a long laser pulse >100 fs when Mie-plasma frequency ( ω M ) of electrons in the expanding cluster matches the laser frequency (ω). For a short duration of the pulse, the condition for LR is not satisfied. In this case, it was shown by a model and particle-in-cell (PIC) simulations [Phys. Rev. Lett. 96, 123401 (2006)] that electrons absorb laser energy by anharmonic resonance (AHR) when the position-dependent frequency Ω [ r ( t ) ] of an electron in the self-consistent anharmonic potential of the cluster satisfies Ω [ r ( t ) ] = ω . However, AHR remains to be a debate and still obscure in multi-particle plasma simulations. Here, we identify AHR mechanism in a laser driven cluster using molecular dynamics (MD) simulations. By analyzing the trajectory of each MD electron and extracting its Ω [ r ( t ) ] in the self-generated anharmonic plasma potential, it is found that electron is outer ionized only when AHR is met. An anharmonic oscillator model, introduced here, brings out most of the features of MD electrons while passing the AHR. Thus, we not only bridge the gap between PIC simulations, analytical models, and MD calculations for the first time but also unequivocally prove that AHR process is a universal dominant collisionless mechanism of absorption in the short pulse regime or in the early time of longer pulses in clusters.

  11. Vibrational exciton-mediated quantum state transfert: a simple model

    CERN Document Server

    Pouthier, Vincent J C

    2012-01-01

    A communication protocol is proposed in which quantum state transfer is mediated by a vibrational exciton. We consider two distant molecular groups grafted on the sides of a lattice. These groups behave as two quantum computers where the information in encoded and received. The lattice plays the role of a communication channel along which the exciton propagates and interacts with a phonon bath. Special attention is paid for describing the system involving an exciton dressed by a single phonon mode. The Hamiltonian is thus solved exactly so that the relevance of the perturbation theory is checked. Within the nonadiabatic weak-coupling limit, it is shown that the system supports three quasi-degenerate states that define the relevant paths followed by the exciton to tunnel between the computers. When the model parameters are judiciously chosen, constructive interferences take place between these paths. Phonon-induced decoherence is minimized and a high-fidelity quantum state transfer occurs over a broad temperat...

  12. A piezoelectric six-DOF vibration energy harvester based on parallel mechanism: dynamic modeling, simulation, and experiment

    Science.gov (United States)

    Yuan, G.; Wang, D. H.

    2017-03-01

    Multi-directional and multi-degree-of-freedom (multi-DOF) vibration energy harvesting are attracting more and more research interest in recent years. In this paper, the principle of a piezoelectric six-DOF vibration energy harvester based on parallel mechanism is proposed to convert the energy of the six-DOF vibration to single-DOF vibrations of the limbs on the energy harvester and output voltages. The dynamic model of the piezoelectric six-DOF vibration energy harvester is established to estimate the vibrations of the limbs. On this basis, a Stewart-type piezoelectric six-DOF vibration energy harvester is developed and explored. In order to validate the established dynamic model and the analysis results, the simulation model of the Stewart-type piezoelectric six-DOF vibration energy harvester is built and tested with different vibration excitations by SimMechanics, and some preliminary experiments are carried out. The results show that the vibration of the limbs on the piezoelectric six-DOF vibration energy harvester can be estimated by the established dynamic model. The developed Stewart-type piezoelectric six-DOF vibration energy harvester can harvest the energy of multi-directional linear vibration and multi-axis rotating vibration with resonance frequencies of 17 Hz, 25 Hz, and 47 Hz. Moreover, the resonance frequencies of the developed piezoelectric six-DOF vibration energy harvester are not affected by the direction changing of the vibration excitation.

  13. Dynamic modeling and analysis of axial vibration of a coupled propeller and shaft system

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chenyang; Huang, Xiuchang; Hua, Hongxing [Shanghai Jiao Tong University, Shanghai (China)

    2016-07-15

    The dynamic and acoustic characteristics of a coupled propeller and shaft system which is modeled by the transfer matrix method are studied. The elasticity of the propeller is taken into consideration by employing the equivalent reduced modeling method. Thus the influence of the elastic propeller on the vibro-acoustic responses of the coupled system is investigated. To reduce the axial vibration of the coupled propeller-shaft system, the influence and location of the vibration isolator on the structural and acoustic responses is presented. Simulation results demonstrate that utilizing the relationship between the natural frequency of the propeller and the resonance frequency range of the shaft can control the vibration of the coupled system without other vibration control method. Utilizing a vibration isolator is another effective way to control vibration. The optimal position for the isolator installed between the shaft and the thrust bearing is investigated.

  14. Modeling of fluid-induced vibrations and identification of hydrodynamic forces on flow control valves

    Institute of Scientific and Technical Information of China (English)

    Samad Mehrzad; Ilgar Javanshir; Ahmad Rahbar Ranji; Seyyed Hadi Taheri

    2015-01-01

    Dynamics and vibration of control valves under flow-induced vibration are analyzed. Hydrodynamic load characteristics and structural response under flow-induced vibration are mainly influenced by inertia, damping, elastic, geometric characteristics and hydraulic parameters. The purpose of this work is to investigate the dynamic behavior of control valves in the response to self-excited fluid flow. An analytical and numerical method is developed to simulate the dynamic and vibrational behavior of sliding dam valves, in response to flow excitation. In order to demonstrate the effectiveness of proposed model, the simulation results are validated with experimental ones. Finally, to achieve the optimal valve geometry, numerical results for various shapes of valves are compared. Rounded valve with the least amount of flow turbulence obtains lower fluctuations and vibration amplitude compared with the flat and steep valves. Simulation results demonstrate that with the optimal design requirements of valves, vibration amplitude can be reduced by an average to 30%.

  15. Vibrations of liquid drops in film boiling phenomena: the mathematical model

    CERN Document Server

    Casal, Pierre

    2008-01-01

    Flattened liquid drops poured on a very hot surface evaporate quite slowly and float on a film of their own vapour. In the cavities of a surface, an unusual type of vibrational motions occurs. Large vibrations take place and different forms of dynamic drops are possible. They form elliptic patterns with two lobes or hypotrochoid patterns with three lobes or more. The lobes are turning relatively to the hot surface. We present a model of vibrating motions of the drops. Frequencies of the vibrations are calculated regarding the number of lobes. The computations agree with experiments.

  16. Toward feasible and comprehensive computational protocol for simulation of the spectroscopic properties of large molecular systems: the anharmonic infrared spectrum of uracil in the solid state by the reduced dimensionality/hybrid VPT2 approach.

    Science.gov (United States)

    Fornaro, Teresa; Carnimeo, Ivan; Biczysko, Malgorzata

    2015-05-28

    Feasible and comprehensive computational protocols for simulating the spectroscopic properties of large and complex molecular systems are very sought after. Indeed, due to the great variety of intra- and intermolecular interactions that may take place, the interpretation of experimental data becomes more and more difficult as the system under study increases in size or is placed in a complex environment, such as condensed phases. In this framework, we are actively developing a comprehensive and robust computational protocol aimed at quantitative reproduction of the spectra of nucleic acid base complexes, with increasing complexity toward condensed phases and monolayers of biomolecules on solid supports. We have resorted to fully anharmonic quantum mechanical computations within the generalized second-order vibrational perturbation theory (GVPT2) approach, combined with the cost-effective B3LYP-D3 method, in conjunction with basis sets of double-ζ plus polarization quality. Such an approach has been validated in a previous work ( Phys. Chem. Chem. Phys. 2014 , 16 , 10112 - 10128 ) for simulating the IR spectra of the monomers of nucleobases and some of their dimers. In the present contribution we have extended such computational protocol to simulate spectroscopic properties of a molecular solid, namely polycrystalline uracil. First we have selected a realistic molecular model for representing the spectroscopic properties of uracil in the solid state, the uracil heptamer, and then we have computed the relative anharmonic frequencies combining less demanding approaches such as the hybrid B3LYP-D3/DFTBA one, in which the harmonic frequencies are computed at a higher level of theory (B3LYP-D3/N07D) whereas the anharmonic shifts are evaluated at a lower level of theory (DFTBA), and the reduced dimensionality VPT2 (RD-VPT2) approach, where only selected vibrational modes are computed anharmonically along with the couplings with other modes. The good agreement between the

  17. Vibration Signal Forecasting on Rotating Machinery by means of Signal Decomposition and Neurofuzzy Modeling

    Directory of Open Access Journals (Sweden)

    Daniel Zurita-Millán

    2016-01-01

    Full Text Available Vibration monitoring plays a key role in the industrial machinery reliability since it allows enhancing the performance of the machinery under supervision through the detection of failure modes. Thus, vibration monitoring schemes that give information regarding future condition, that is, prognosis approaches, are of growing interest for the scientific and industrial communities. This work proposes a vibration signal prognosis methodology, applied to a rotating electromechanical system and its associated kinematic chain. The method combines the adaptability of neurofuzzy modeling with a signal decomposition strategy to model the patterns of the vibrations signal under different fault scenarios. The model tuning is performed by means of Genetic Algorithms along with a correlation based interval selection procedure. The performance and effectiveness of the proposed method are validated experimentally with an electromechanical test bench containing a kinematic chain. The results of the study indicate the suitability of the method for vibration forecasting in complex electromechanical systems and their associated kinematic chains.

  18. Active control of structural vibration with on-line secondary path modeling

    Institute of Scientific and Technical Information of China (English)

    YANG Tiejun; GU Zhongquan

    2004-01-01

    An active control strategy with on-line secondary path modeling is proposed and applied in active control of helicopter structural vibration. Computer simulations of the secondary path modeling performance demonstrate the superiorities of the active control strategy. A 2-input 4-output active control simulation for a helicopter model is performed and great reduction of structural vibration is achieved. 2-input 2-output and 2-input 4-output experimental studies of structural vibration control for a free-free beam are also carried out in laboratory to simulate a flying helicopter. The experimental results also show better reduction of the structural vibration, which verifies that the proposed method is effective and practical in structural vibration reduction.

  19. Implementation of a vibrationally linked chemical reaction model for DSMC

    Science.gov (United States)

    Carlson, A. B.; Bird, Graeme A.

    1994-01-01

    A new procedure closely linking dissociation and exchange reactions in air to the vibrational levels of the diatomic molecules has been implemented in both one- and two-dimensional versions of Direct Simulation Monte Carlo (DSMC) programs. The previous modeling of chemical reactions with DSMC was based on the continuum reaction rates for the various possible reactions. The new method is more closely related to the actual physics of dissociation and is more appropriate to the particle nature of DSMC. Two cases are presented: the relaxation to equilibrium of undissociated air initially at 10,000 K, and the axisymmetric calculation of shuttle forebody heating during reentry at 92.35 km and 7500 m/s. Although reaction rates are not used in determining the dissociations or exchange reactions, the new method produces rates which agree astonishingly well with the published rates derived from experiment. The results for gas properties and surface properties also agree well with the results produced by earlier DSMC models, equilibrium air calculations, and experiment.

  20. Model of Head-Positioning Error Due to Rotational Vibration of Hard Disk Drives

    Science.gov (United States)

    Matsuda, Yasuhiro; Yamaguchi, Takashi; Saegusa, Shozo; Shimizu, Toshihiko; Hamaguchi, Tetsuya

    An analytical model of head-positioning error due to rotational vibration of a hard disk drive is proposed. The model takes into account the rotational vibration of the base plate caused by the reaction force of the head-positioning actuator, the relationship between the rotational vibration and head-track offset, and the sensitivity function of track-following feedback control. Error calculated by the model agrees well with measured error. It is thus concluded that this model can predict the data transfer performance of a disk drive in read mode.

  1. Approximation methods for the partition functions of anharmonic systems

    Energy Technology Data Exchange (ETDEWEB)

    Lew, P.; Ishida, T.

    1979-07-01

    The analytical approximations for the classical, quantum mechanical and reduced partition functions of the diatomic molecule oscillating internally under the influence of the Morse potential have been derived and their convergences have been tested numerically. This successful analytical method is used in the treatment of anharmonic systems. Using Schwinger perturbation method in the framework of second quantization formulism, the reduced partition function of polyatomic systems can be put into an expression which consists separately of contributions from the harmonic terms, Morse potential correction terms and interaction terms due to the off-diagonal potential coefficients. The calculated results of the reduced partition function from the approximation method on the 2-D and 3-D model systems agree well with the numerical exact calculations.

  2. Wind Turbine Tower Vibration Modeling and Monitoring by the Nonlinear State Estimation Technique (NSET

    Directory of Open Access Journals (Sweden)

    Peng Guo

    2012-12-01

    Full Text Available With appropriate vibration modeling and analysis the incipient failure of key components such as the tower, drive train and rotor of a large wind turbine can be detected. In this paper, the Nonlinear State Estimation Technique (NSET has been applied to model turbine tower vibration to good effect, providing an understanding of the tower vibration dynamic characteristics and the main factors influencing these. The developed tower vibration model comprises two different parts: a sub-model used for below rated wind speed; and another for above rated wind speed. Supervisory control and data acquisition system (SCADA data from a single wind turbine collected from March to April 2006 is used in the modeling. Model validation has been subsequently undertaken and is presented. This research has demonstrated the effectiveness of the NSET approach to tower vibration; in particular its conceptual simplicity, clear physical interpretation and high accuracy. The developed and validated tower vibration model was then used to successfully detect blade angle asymmetry that is a common fault that should be remedied promptly to improve turbine performance and limit fatigue damage. The work also shows that condition monitoring is improved significantly if the information from the vibration signals is complemented by analysis of other relevant SCADA data such as power performance, wind speed, and rotor loads.

  3. Modeling for IFOG Vibration Error Based on the Strain Distribution of Quadrupolar Fiber Coil.

    Science.gov (United States)

    Gao, Zhongxing; Zhang, Yonggang; Zhang, Yunhao

    2016-07-21

    Improving the performance of interferometric fiber optic gyroscope (IFOG) in harsh environment, especially in vibrational environment, is necessary for its practical applications. This paper presents a mathematical model for IFOG to theoretically compute the short-term rate errors caused by mechanical vibration. The computational procedures are mainly based on the strain distribution of quadrupolar fiber coil measured by stress analyzer. The definition of asymmetry of strain distribution (ASD) is given in the paper to evaluate the winding quality of the coil. The established model reveals that the high ASD and the variable fiber elastic modulus in large strain situation are two dominant reasons that give rise to nonreciprocity phase shift in IFOG under vibration. Furthermore, theoretical analysis and computational results indicate that vibration errors of both open-loop and closed-loop IFOG increase with the raise of vibrational amplitude, vibrational frequency and ASD. Finally, an estimation of vibration-induced IFOG errors in aircraft is done according to the proposed model. Our work is meaningful in designing IFOG coils to achieve a better anti-vibration performance.

  4. Modeling for IFOG Vibration Error Based on the Strain Distribution of Quadrupolar Fiber Coil

    Directory of Open Access Journals (Sweden)

    Zhongxing Gao

    2016-07-01

    Full Text Available Improving the performance of interferometric fiber optic gyroscope (IFOG in harsh environment, especially in vibrational environment, is necessary for its practical applications. This paper presents a mathematical model for IFOG to theoretically compute the short-term rate errors caused by mechanical vibration. The computational procedures are mainly based on the strain distribution of quadrupolar fiber coil measured by stress analyzer. The definition of asymmetry of strain distribution (ASD is given in the paper to evaluate the winding quality of the coil. The established model reveals that the high ASD and the variable fiber elastic modulus in large strain situation are two dominant reasons that give rise to nonreciprocity phase shift in IFOG under vibration. Furthermore, theoretical analysis and computational results indicate that vibration errors of both open-loop and closed-loop IFOG increase with the raise of vibrational amplitude, vibrational frequency and ASD. Finally, an estimation of vibration-induced IFOG errors in aircraft is done according to the proposed model. Our work is meaningful in designing IFOG coils to achieve a better anti-vibration performance.

  5. Vibration measurements of a wire scanner - Experimental setup and models

    Science.gov (United States)

    Herranz, Juan; Barjau, Ana; Dehning, Bernd

    2016-03-01

    In the next years the luminosity of the LHC will be significantly increased. This will require a much higher accuracy of beam profile measurement than actually achievable by the current wire scanner. The new performance demands a wire travelling speed up to 20 m s-1 and a position measurement accuracy of the order of 1 μm. The vibrations of the mechanical parts of the system and particularly the vibrations of the thin carbon wire have been identified as the major error sources of wire position uncertainty. Therefore the understanding of the wire vibrations has been given high priority for the design and operation of the new device. This article presents a new strategy to measure the wire vibrations based on the piezoresistive effect of the wire itself. An electronic readout system based on a Wheatstone bridge is used to measure the variation of the carbon wire resistance, which is directly proportional to the wire elongation caused by the oscillations.

  6. Anharmonicity of multi-octupole-phonon excitations in $^{208}$Pb: analysis with multi-reference covariant density functional theory and subbarrier fusion of $^{16}$O+$^{208}$Pb

    CERN Document Server

    Yao, J M

    2016-01-01

    We discuss anharmonicity of the multi-octupole-phonon states in $^{208}$Pb based on a covariant density functional theory, by fully taking into account the interplay between the quadrupole and the octupole degrees of freedom. Our results indicate the existence of a large anharmonicity in the transition strengths, even though the excitation energies are similar to those in the harmonic limit. We also show that the quadrupole-shape fluctuation significantly enhances the fragmentation of the two-octupole-phonon states in $^{208}$Pb. Using those transition strengths as inputs to coupled channels calculations, we then discuss the fusion reaction of $^{16}$O+$^{208}$Pb at energies around the Coulomb barrier. We show that the anharmonicity of the octupole vibrational excitation considerably improves previous coupled-channels calculations in the harmonic oscillator limit, significantly reducing the height of the main peak in the fusion barrier distribution.

  7. Phenomenological models of vibration signals for condition monitoring and fault diagnosis of epicyclic gearboxes

    Science.gov (United States)

    Lei, Yaguo; Liu, Zongyao; Lin, Jing; Lu, Fanbo

    2016-05-01

    Condition monitoring and fault diagnosis of epicyclic gearboxes using vibration signals are not as straightforward as that of fixed-axis gearboxes since epicyclic gearboxes behave quite differently from fixed-axis gearboxes in many aspects, like spectral structures. Aiming to present the spectral structures of vibration signals of epicyclic gearboxes, phenomenological models of vibration signals of epicyclic gearboxes are developed by algebraic equations and spectral structures of these models are deduced using Fourier series analysis. In the phenomenological models, all the possible vibration transfer paths from gear meshing points to a fixed transducer and the effects of angular shifts of planet gears on the spectral structures are considered. Accordingly, time-varying vibration transfer paths from sun-planet/ring-planet gear meshing points to the fixed transducer due to carrier rotation are given by window functions with different amplitudes. And an angular shift in one planet gear position is introduced in the process of modeling. After the theoretical derivations, three experiments are conducted on an epicyclic gearbox test rig and the spectral structures of collected vibration signals are analyzed. As a result, the effects of angular shifts of planet gears are verified, and the phenomenological models of vibration signals when a local fault occurs on the sun gear and the planet gear are validated, respectively. The experiment results demonstrate that the established phenomenological models in this paper are helpful to the condition monitoring and fault diagnosis of epicyclic gearboxes.

  8. Numerical modelling of longitudinal vibrations of a sucker rod string

    Science.gov (United States)

    Shardakov, I. N.; Wasserman, I. N.

    2010-03-01

    A new technique for analyzing the dynamic behavior of a sucker rod string used in the oil well industry is presented. The main difficulty in the numerical calculation of the examined structure is a multivalued velocity—force relation determined by Coulomb's friction and by loads generated during operation of pump valves. Both the monotonic and nonmonotonic velocity—force relations are considered. A quasi-variational inequality formulation of the problem is proposed. The solution of the inequality amounts to finding the minimum of a convex nonsmooth functional at each time step by means of the Newmark difference time scheme, successive iterations and finite element discretization. The problem of functional minimization is reduced to construction of a sequence of smooth nonlinear programming problems by introducing the auxiliary variables and applying the augmented Lagrangian method. The proposed approach is used to study the longitudinal vibrations of sucker rod strings under near-real conditions. In such systems the most commonly occurring vibration modes are the stick-slip vibrations and the vibrations with natural force excited twice a cycle. The nonmonotonic character of the friction law leads to intensification of these vibrations. In the case of nonmonotonic friction law the stick-slip vibrations can occur even under the action of constant external forces.

  9. CALCULATIONS OF STRETCHING VIBRATIONAL ENERGYLEVELS OF THE CH3I MOLECULE BY A NONLINEAR MODEL

    Institute of Scientific and Technical Information of China (English)

    ZHU JUN; GOU QING-QUAN

    2001-01-01

    A nonlinear model, i.e. the quantized discrete self-trapping equation, is applied to calculate the highly excited CH stretching vibrational energy levels of the CH3I molecule in the liquid phase at the electronic ground state up to n=8. The obtained results agree well with the experimental data and with those obtained from local mode model calculations. We note that the dominant feature of the methyl CH stretching vibrational energy levels of the CH3I molecule is a pattern of local mode pairs. When n > 7, all the vibrational energy of the CH3 group can nearly be localized on a single CH bond.

  10. Structure and vibrational spectra of a model of a-Si:H with periodic boundary conditions

    Energy Technology Data Exchange (ETDEWEB)

    Winer, K.; Wooten, F.

    1983-08-01

    A ball-and -stick model of a-Si:H with periodic boundary conditions has been constructed. A computer replica of the structure has been relaxed and the density, radial distribution function and vibrational spectra calculated.

  11. Electromagnetic Vibration Energy Harvesting Devices Architectures, Design, Modeling and Optimization

    CERN Document Server

    Spreemann, Dirk

    2012-01-01

    Electromagnetic vibration transducers are seen as an effective way of harvesting ambient energy for the supply of sensor monitoring systems. Different electromagnetic coupling architectures have been employed but no comprehensive comparison with respect to their output performance has been carried out up to now. Electromagnetic Vibration Energy Harvesting Devices introduces an optimization approach which is applied to determine optimal dimensions of the components (magnet, coil and back iron). Eight different commonly applied coupling architectures are investigated. The results show that correct dimensions are of great significance for maximizing the efficiency of the energy conversion. A comparison yields the architectures with the best output performance capability which should be preferably employed in applications. A prototype development is used to demonstrate how the optimization calculations can be integrated into the design–flow. Electromagnetic Vibration Energy Harvesting Devices targets the design...

  12. Analysis and Modelling of Muscles Motion during Whole Body Vibration

    Directory of Open Access Journals (Sweden)

    La Gatta A

    2010-01-01

    Full Text Available The aim of the study is to characterize the local muscles motion in individuals undergoing whole body mechanical stimulation. In this study we aim also to evaluate how subject positioning modifies vibration dumping, altering local mechanical stimulus. Vibrations were delivered to subjects by the use of a vibrating platform, while stimulation frequency was increased linearly from 15 to 60 Hz. Two different subject postures were here analysed. Platform and muscles motion were monitored using tiny MEMS accelerometers; a contra lateral analysis was also presented. Muscle motion analysis revealed typical displacement trajectories: motion components were found not to be purely sinusoidal neither in phase to each other. Results also revealed a mechanical resonant-like behaviour at some muscles, similar to a second-order system response. Resonance frequencies and dumping factors depended on subject and his positioning. Proper mechanical stimulation can maximize muscle spindle solicitation, which may produce a more effective muscle activation.

  13. Prediction of vibration characteristics in beam structure using sub-scale modeling with experimental validation

    Science.gov (United States)

    Zai, Behzad Ahmed; Sami, Saad; Khan, M. Amir; Ahmad, Furqan; Park, Myung Kyun

    2015-09-01

    Geometric or sub-scale modeling techniques are used for the evaluation of large and complex dynamic structures to ensure accurate reproduction of load path and thus leading to true dynamic characteristics of such structures. The sub-scale modeling technique is very effective in the prediction of vibration characteristics of original large structure when the experimental testing is not feasible due to the absence of a large testing facility. Previous researches were more focused on free and harmonic vibration case with little or no consideration for readily encountered random vibration. A sub-scale modeling technique is proposed for estimating the vibration characteristics of any large scale structure such as Launch vehicles, Mega structures, etc., under various vibration load cases by utilizing precise scaled-down model of that dynamic structure. In order to establish an analytical correlation between the original structure and its scaled models, different scale models of isotropic cantilever beam are selected and analyzed under various vibration conditions( i.e. free, harmonic and random) using finite element package ANSYS. The developed correlations are also validated through experimental testing. The prediction made from the vibratory response of the scaled-down beam through the established sets of correlation are found similar to the response measured from the testing of original beam structure. The established correlations are equally applicable in the prediction of dynamic characteristics of any complex structure through its scaled-down models. This paper presents modified sub-scale modeling technique that enables accurate prediction of vibration characteristics of large and complex structure under not only sinusoidal but also for random vibrations.

  14. Consistent multi-internal-temperature models for vibrational and electronic nonequilibrium in hypersonic nitrogen plasma flows

    Energy Technology Data Exchange (ETDEWEB)

    Guy, Aurélien, E-mail: aurelien.guy@onera.fr; Bourdon, Anne, E-mail: anne.bourdon@lpp.polytechnique.fr; Perrin, Marie-Yvonne, E-mail: marie-yvonne.perrin@ecp.fr [CNRS, UPR 288, Laboratoire d' Énergétique Moléculaire et Macroscopique, Combustion (EM2C), Grande Voie des Vignes, 92295 Châtenay-Malabry (France); Ecole Centrale Paris, Grande Voie des Vignes, 92295 Châtenay-Malabry (France)

    2015-04-15

    In this work, a state-to-state vibrational and electronic collisional model is developed to investigate nonequilibrium phenomena behind a shock wave in an ionized nitrogen flow. In the ionization dynamics behind the shock wave, the electron energy budget is of key importance and it is found that the main depletion term corresponds to the electronic excitation of N atoms, and conversely the major creation terms are the electron-vibration term at the beginning, then replaced by the electron ions elastic exchange term. Based on these results, a macroscopic multi-internal-temperature model for the vibration of N{sub 2} and the electronic levels of N atoms is derived with several groups of vibrational levels of N{sub 2} and electronic levels of N with their own internal temperatures to model the shape of the vibrational distribution of N{sub 2} and of the electronic excitation of N, respectively. In this model, energy and chemistry source terms are calculated self-consistently from the rate coefficients of the state-to-state database. For the shock wave condition studied, a good agreement is observed on the ionization dynamics as well as on the atomic bound-bound radiation between the state-to-state model and the macroscopic multi-internal temperature model with only one group of vibrational levels of N{sub 2} and two groups of electronic levels of N.

  15. RESEARCH ON ACTIVE VIBRATION CONTROL BASED ON COMBINED MODEL FOR COUPLED SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    Niu Junchuan; Zhao Guoqun; Song Kongjie

    2004-01-01

    A novel combined model of the vibration control for the coupled flexible system and its general mathematic description are developed. In presented model, active and passive controls as well as force and moment controls are combined into a single unit to achieve the efficient vibration control of the flexible structures by multi-approaches. Considering the complexity of the energy transmission in the vibrating system, the transmission channels of the power flow transmitted into the foundation are discussed, and the general forces and the corresponding velocities are combined into a single function, respectively. Under the control strategy of the minimum power flow, the transmission characteristics of the power flow are investigated. From the presented numerical examples, it is obvious that the analytical model is effective, and both force and moment controls are able to depress vibration energy substantially.

  16. Anharmonic Franck-Condon simulation of the absorption and fluorescence spectra for the low-lying S1 and S2 excited states of pyridine.

    Science.gov (United States)

    Wang, Huan; Zhu, Chaoyuan; Yu, Jian-Guo; Lin, Sheng Hsien

    2009-12-31

    Anharmonic effects of the absorption and fluorescence spectra of pyridine molecule are studied and analyzed for the two-low lying singlet excited states S(1)((1)B(1)) and S(2)((1)B(2)). The complete active space self-consistent field (CASSCF) method is utilized to compute equilibrium geometries and all 27 vibrational normal-mode frequencies for the ground state and the two excited states. The present calculations show that the frequency differences between the ground and two excited states are small for the ten totally symmetric vibrational modes so that the displaced oscillator approximation can be used for spectrum simulations. The Franck-Condon factors within harmonic approximation basically grasp the main features of molecular spectra, but simulated 0-0 transition energy position and spectrum band shapes are not satisfactorily good for S(1)((1)B(1)) absorption and fluorescence spectra in comparison with experiment observation. As the first-order anharmonic correction added to Franck-Condon factors, both spectrum positions and band shapes can be simultaneously improved for both absorption and fluorescence spectra. It is concluded that the present anharmonic correction produces a significant dynamic shifts for spectrum positions and improves spectrum band shapes as well. The detailed structures of absorption spectrum of S(2)((1)B(2)) state observed from experiment can be also reproduced with anharmonic Franck-Condon simulation, and these were not shown in the harmonic Franck-Condon simulation with either distorted or Duschinsky effects in the literature.

  17. Exact and approximate expressions for the period of anharmonic oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Amore, Paolo [Facultad de Ciencias, Universidad de Colima, Bernal DIaz del Castillo 340, Colima (Mexico); Fernandez, Francisco M [INIFTA (Conicet, UNLP), Blvd. 113 y 64 S/N, Sucursal 4, Casilla de Correo 16, 1900 La Plata (Argentina)

    2005-07-01

    In this paper, we present a straightforward systematic method for the exact and approximate calculation of integrals that appear in formulae for the period of anharmonic oscillators and other problems of interest in classical mechanics.

  18. Probing anharmonicity of a quantum oscillator in an optomechanical cavity

    Science.gov (United States)

    Latmiral, Ludovico; Armata, Federico; Genoni, Marco G.; Pikovski, Igor; Kim, M. S.

    2016-05-01

    We present a way of measuring with high precision the anharmonicity of a quantum oscillator coupled to an optical field via radiation pressure. Our protocol uses a sequence of pulsed interactions to perform a loop in the phase space of the mechanical oscillator, which is prepared in a thermal state. We show how the optical field acquires a phase depending on the anharmonicity. Remarkably, one only needs small initial cooling of the mechanical motion to probe even small anharmonicities. Finally, by applying tools from quantum estimation theory, we calculate the ultimate bound on the estimation precision posed by quantum mechanics and compare it with the precision obtainable with feasible measurements such as homodyne and heterodyne detection on the cavity field. In particular we demonstrate that homodyne detection is nearly optimal in the limit of a large number of photons of the field and we discuss the estimation precision of small anharmonicities in terms of its signal-to-noise ratio.

  19. Linear delta expansion technique for the solution of anharmonic oscillations

    Indian Academy of Sciences (India)

    P K Bera; J Datta

    2007-01-01

    The linear delta expansion technique has been developed for solving the differential equation of motion for symmetric and asymmetric anharmonic oscillators. We have also demonstrated the sophistication and simplicity of this new perturbation technique.

  20. Train-induced ground vibrations: modeling and experiments

    NARCIS (Netherlands)

    Ditzel, A.

    2003-01-01

    Ground vibrations generated by high-speed trains are of great concern because of the possible damage they can cause to buildings or other structures near the track, and the annoyance to the public living in the vicinity of the track. Particularly in soft-soil regions, where the wave speed is compara

  1. Finite Element Modeling of Vibrations in Canvas Paintings

    NARCIS (Netherlands)

    Chiriboga Arroyo, P.G.

    2013-01-01

    Preventing vibration damage from occurring to valuable and sensitive canvas paintings is of main concern for museums and art conservation institutions. This concern has grown in recent years due to the increasing demand of paintings for exhibitions worldwide and the concomitant need for their handli

  2. A Biological Model for Directional Sensing of Seismic Vibration

    Science.gov (United States)

    2007-11-02

    186: 695-705. Cokl, A., Otto, C. and Kalmring, K. 1985. The processing of directional vibratory signals in the ventral nerve cord of Locusta ... migratoria . J. Comp. Physiol. A 156:45-52. Cokl, A., M. Virant-Doberlet, and A. McDowell. 1999. Vibrational directionality in the southern green stink bug

  3. Genuine Quantum Signatures in Synchronization of Anharmonic Self-Oscillators

    Science.gov (United States)

    Lörch, Niels; Amitai, Ehud; Nunnenkamp, Andreas; Bruder, Christoph

    2016-08-01

    We study the synchronization of a Van der Pol self-oscillator with Kerr anharmonicity to an external drive. We demonstrate that the anharmonic, discrete energy spectrum of the quantum oscillator leads to multiple resonances in both phase locking and frequency entrainment not present in the corresponding classical system. Strong driving close to these resonances leads to nonclassical steady-state Wigner distributions. Experimental realizations of these genuine quantum signatures can be implemented with current technology.

  4. Lumped Parameter Modeling for Rapid Vibration Response Prototyping and Test Correlation for Electronic Units

    Science.gov (United States)

    Van Dyke, Michael B.

    2013-01-01

    Present preliminary work using lumped parameter models to approximate dynamic response of electronic units to random vibration; Derive a general N-DOF model for application to electronic units; Illustrate parametric influence of model parameters; Implication of coupled dynamics for unit/board design; Demonstrate use of model to infer printed wiring board (PWB) dynamics from external chassis test measurement.

  5. Experimental and Numerical Investigations on Vibration Characteristics of a Loaded Ship Model

    Institute of Scientific and Technical Information of China (English)

    Pu Liang; Ming Hong; Zheng Wang

    2015-01-01

    In this paper, the vibration characteristics of the structure in the finite fluid domain are analyzed using a coupled finite element method. The added mass matrix is calculated with finite element method (FEM) by 8-node acoustic fluid elements. The vibration characteristics of the structure in the finite fluid domain are calculated combining structure FEM mass matrix. By writing relevant programs, the numerical analysis on vibration characteristics of a submerged cantilever rectangular plate in finite fluid domain and loaded ship model is performed. A modal identification experiment for the loaded ship model in air and in water is conducted and the experiment results verify the reliability of the numerical analysis. The numerical method can be used for further research on vibration characteristics and acoustic radiation problems of the structure in the finite fluid domain.

  6. Stabilization for the Vibrations Modeled by the `Standard Linear Model' of Viscoelasticity

    Indian Academy of Sciences (India)

    Ganesh C Gorain

    2010-09-01

    We study the stabilization of vibrations of a flexible structure modeled by the `standard linear model’ of viscoelasticity in a bounded domain in $\\mathbb{R}^n$ with a smooth boundary. We prove that amplitude of the vibrations remains bounded in the sense of a suitable norm in a space $\\mathbb{X}$, defined explicitly in (22) subject to a restriction on the uncertain disturbing forces on $\\mathbb{X}$. We also estimate the total energy of the system over time interval [0,] for any >0, with a tolerance level of the disturbances. Finally, when the input disturbances are insignificant, uniform exponential stabilization is obtained and an explicit form for the energy decay rate is derived. These results are achieved by a direct method under undamped mixed boundary conditions.

  7. Variational principles for transversely vibrating multiwalled carbon nanotubes based on nonlocal Euler-Bernoulli beam model.

    Science.gov (United States)

    Adali, Sarp

    2009-05-01

    Variational principles are derived for multiwalled carbon nanotubes undergoing vibrations. Derivations are based on the continuum modeling with the Euler-Bernoulli beam representing the nanotubes and small scale effects taken into account via the nonlocal elastic theory. Hamilton's principle for multiwalled nanotubes is given and Rayleigh's quotient for the frequencies is derived for nanotubes undergoing free vibrations. Natural and geometric boundary conditions are derived which lead to a set of coupled boundary conditions due to nonlocal effects.

  8. A direct pedestrian-structure interaction model to characterize the human induced vibrations on slender footbridges

    OpenAIRE

    Jiménez-Alonso, J. F.; Sáez, A.

    2014-01-01

    Although the scientific community had knowledge of the human induced vibration problems in structures since the end of the 19th century, it was not until the occurrence of the vibration phenomenon happened in the Millennium Bridge (London, 2000) that the importance of the problem revealed and a higher level of attention devoted. Despite the large advances achieved in the determination of the human-structure interaction force, one of the main deficiencies of the existing models is the exclusio...

  9. Modeling and analysis of the transient vibration of camshaft in multi-cylinder diesel engine

    Directory of Open Access Journals (Sweden)

    Jie Guo

    2015-11-01

    Full Text Available The dynamics and vibrations of camshaft excited by multi-follower elements are modeled and analyzed. A pushrod valve train system from a four-cylinder diesel engine is selected as the case study. The camshaft is modeled to analyze the interactions of multi-follower elements. Both the camshaft angular vibration and bending vibration are taken into consideration. Each follower element is simplified as a multi-mass system. The lumped masses are connected by the spring elements and the damping elements. The contact force model at the cam–tappet interfaces was developed based on the elasto-hydrodynamic lubrication theory of finite line conjunction. From the analysis results, it can be seen that the bending vibration of camshaft is mainly in the normal direction at the cam–tappet interfaces. Moreover, the bending vibration is mainly influenced by the overlapping of inlet cam function and exhaust cam function of each cylinder. The angular vibration of camshaft mainly focuses at the fundamental frequency and the harmonic frequency corresponding to the cylinder number.

  10. The Origin of Ultralow Thermal Conductivity in InTe: Lone-Pair-Induced Anharmonic Rattling.

    Science.gov (United States)

    Jana, Manoj K; Pal, Koushik; Waghmare, Umesh V; Biswas, Kanishka

    2016-06-27

    Understanding the origin of intrinsically low thermal conductivity is fundamentally important to the development of high-performance thermoelectric materials, which can convert waste-heat into electricity. Herein, we report an ultralow lattice thermal conductivity (ca. 0.4 W m(-1)  K(-1) ) in mixed valent InTe (that is, In(+) In(3+) Te2 ), which exhibits an intrinsic bonding asymmetry with coexistent covalent and ionic substructures. The phonon dispersion of InTe exhibits, along with low-energy flat branches, weak instabilities associated with the rattling vibrations of In(+) atoms along the columnar ionic substructure. These weakly unstable phonons originate from the 5s(2) lone pair of the In(+) atom and are strongly anharmonic, which scatter the heat-carrying acoustic phonons through strong anharmonic phonon-phonon interactions, as evident in anomalously high mode Grüneisen parameters. A maximum thermoelectric figure of merit (z T) of about 0.9 is achieved at 600 K for the 0.3 mol % In-deficient sample, making InTe a promising material for mid-temperature thermoelectric applications.

  11. Microscopic derivation of nuclear rotation-vibration model, axially symmetric case

    CERN Document Server

    Gulshani, Parviz

    2015-01-01

    We derive from first principles the successful phenomenological hydrodynamic model of Bohr-Davydov-Faessler-Greiner for rotation-vibration motion of an axially symmetric deformed nucleus. The derivation is not limited to small oscillation amplitude, and provides microscopic expressions for the interaction operators among the rotation, vibration, and intrinsic motions, for the moment of inertia, vibration mass, and for the deformation variables. The method uses canonical transformations to collective co-ordinates, followed by a constrained variational method, with the associated constraints imposed on the wavefunction rather than on the particle co-ordinates. The approach yields three self-consistent, time-reversal invariant, cranking-type Schrodinger equations for the rotation-vibration and intrinsic motions, and a self-consistency equation. For deformed harmonic oscillator mean-field potentials, these equations are solved in closed forms for the energies, moments of inertia, quadrupole moments and transition...

  12. Identifying damage locations under ambient vibrations utilizing vector autoregressive models and Mahalanobis distances

    Science.gov (United States)

    Mosavi, A. A.; Dickey, D.; Seracino, R.; Rizkalla, S.

    2012-01-01

    This paper presents a study for identifying damage locations in an idealized steel bridge girder using the ambient vibration measurements. A sensitive damage feature is proposed in the context of statistical pattern recognition to address the damage detection problem. The study utilizes an experimental program that consists of a two-span continuous steel beam subjected to ambient vibrations. The vibration responses of the beam are measured along its length under simulated ambient vibrations and different healthy/damage conditions of the beam. The ambient vibration is simulated using a hydraulic actuator, and damages are induced by cutting portions of the flange at two locations. Multivariate vector autoregressive models were fitted to the vibration response time histories measured at the multiple sensor locations. A sensitive damage feature is proposed for identifying the damage location by applying Mahalanobis distances to the coefficients of the vector autoregressive models. A linear discriminant criterion was used to evaluate the amount of variations in the damage features obtained for different sensor locations with respect to the healthy condition of the beam. The analyses indicate that the highest variations in the damage features were coincident with the sensors closely located to the damages. The presented method showed a promising sensitivity to identify the damage location even when the induced damage was very small.

  13. The effect of anharmonicity in epitaxial interfaces. I. Substrate-induced dissociation of finite epitaxial islands

    Science.gov (United States)

    Milchev, Andrey; Markov, Ivan

    1984-01-01

    The behaviour of finite epitaxial islands in the periodic field of the substrate is theoretically investigated whereby the role of anharmonicity in the interatomic forces of the deposit is examined. The harmonic potential, traditionally adopted in the model of Frank and van der Merwe, is replaced by Toda and Morse potentials and sets of difference recursion equations, governing the static properties of such a system, are derived and solved numerically. Thus a new effect of substrate-induced rupture of anharmonic chains migrating on the surface, is found. It is shown that dissociation of migrating clusters is enhanced, if: (i) The substrate potential becomes increasingly modulated, (ii) the natural misfit between deposit and substrate is decreased (in absolute value), (iii) the misfit is negative, rather than positive (with the same absolute value) and (iv) the size of the cluster increases. A relation between dislocations in the chain and rupture appears to exist, suggesting dilatons (enormously stretched interatomic bonds) as the origin for destruction. The influence of anharmonicity on the equilibrium structure of the overgrowth is considered in Part II.

  14. Energy levels of. lambda. x sup 2k anharmonic oscillators using the quantum normal form

    Energy Technology Data Exchange (ETDEWEB)

    Brajamani, S.; Mazumdar, P.S. (Manipur Univ., (India)); Chowdhury, S.K.; Sur, S. (Indian Association for the Cultivation of Science, West Bengal (India))

    1991-04-01

    In recent years there has been a large and important literature on the methods for studying a well-known class of single-well quantum anharmonic oscillators. These one-body Schroedinger problems have played a particularly important role in recent years as model bosonic field theories which contain only one mode. This mode is generated by the usual harmonic oscillator creation operator {alpha}. In this respect the anharmonic oscillators may be considered as the (0+1)-dimensional counterparts of more realistic quantum field theories in the physical world of (3+1)-dimensionality. The ground state and first few excited energy levels of the generalized anharmonic oscillator defined by the Hamiltonian H = {minus}d{sup 2}/dx{sup 2}+x{sup 2}+{lambda}x{sup 2k} (k = 3,4,{hor ellipsis}) have been calculated by employing the method of quantum normal form, which is the quantum mechanical analogue of the classical Birkhoff-Gustavson normal form. The present energy eigenvalues are consistent with other tabulations of the energy levels.

  15. Developing Uncertainty Models for Robust Flutter Analysis Using Ground Vibration Test Data

    Science.gov (United States)

    Potter, Starr; Lind, Rick; Kehoe, Michael W. (Technical Monitor)

    2001-01-01

    A ground vibration test can be used to obtain information about structural dynamics that is important for flutter analysis. Traditionally, this information#such as natural frequencies of modes#is used to update analytical models used to predict flutter speeds. The ground vibration test can also be used to obtain uncertainty models, such as natural frequencies and their associated variations, that can update analytical models for the purpose of predicting robust flutter speeds. Analyzing test data using the -norm, rather than the traditional 2-norm, is shown to lead to a minimum-size uncertainty description and, consequently, a least-conservative robust flutter speed. This approach is demonstrated using ground vibration test data for the Aerostructures Test Wing. Different norms are used to formulate uncertainty models and their associated robust flutter speeds to evaluate which norm is least conservative.

  16. On the vibration of double-walled carbon nanotubes using molecular structural and cylindrical shell models

    Science.gov (United States)

    Ansari, R.; Rouhi, S.; Aryayi, M.

    2016-01-01

    The vibrational behavior of double-walled carbon nanotubes is studied by the use of the molecular structural and cylindrical shell models. The spring elements are employed to model the van der Waals interaction. The effects of different parameters such as geometry, chirality, atomic structure and end constraint on the vibration of nanotubes are investigated. Besides, the results of two aforementioned approaches are compared. It is indicated that by increasing the nanotube side length and radius, the computationally efficient cylindrical shell model gives rational results.

  17. MODELING INFLUENCE OF ROLLING BEARING BUSH AND VIBRATION DAMPING IN CATCHING OF TOOTHED WHEELS

    Directory of Open Access Journals (Sweden)

    P. V. Diachenko

    2010-11-01

    Full Text Available On the base of dynamic scheme of toothing, a mathematical model for study of the influence of constructive parameters of radial bearings such as a factor of friction, reduced masses and stiffnesses on damping the vibrations in gearing is developed. The solution for the model is obtained using a simulation modeling in the Simulink environment with checking the validity of results in the system MathCad. The oscillograms of the vibrations under investigation and the conclusions on the base of their analysis are presented.

  18. Electromechanical coupling model and analysis of transient behavior for inertial vibrating machines

    Institute of Scientific and Technical Information of China (English)

    HU Ji-yun; YU Cui-ping; YIN Xue-gang

    2004-01-01

    A mathematical model of electromechanical coupling system for a planar inertial vibrating machine is built by setting up dynamical equations of discrete systems with a matrix methodology proposed. The substance of the transient behavior of the machine is unveiled by analyzing the results of the computer simulation to the model, and new methods are presented for diminishing the transient amplitude of the vibrating machine and improving the transient behavior. The reliable mathematical model is provided for intelligent control of the transient behavior of the equipment.

  19. High resolution IR diode laser study of collisional energy transfer between highly vibrationally excited monofluorobenzene and CO2: the effect of donor fluorination on strong collision energy transfer.

    Science.gov (United States)

    Kim, Kilyoung; Johnson, Alan M; Powell, Amber L; Mitchell, Deborah G; Sevy, Eric T

    2014-12-21

    Collisional energy transfer between vibrational ground state CO2 and highly vibrationally excited monofluorobenzene (MFB) was studied using narrow bandwidth (0.0003 cm(-1)) IR diode laser absorption spectroscopy. Highly vibrationally excited MFB with E' = ∼41,000 cm(-1) was prepared by 248 nm UV excitation followed by rapid radiationless internal conversion to the electronic ground state (S1→S0*). The amount of vibrational energy transferred from hot MFB into rotations and translations of CO2 via collisions was measured by probing the scattered CO2 using the IR diode laser. The absolute state specific energy transfer rate constants and scattering probabilities for single collisions between hot MFB and CO2 were measured and used to determine the energy transfer probability distribution function, P(E,E'), in the large ΔE region. P(E,E') was then fit to a bi-exponential function and extrapolated to the low ΔE region. P(E,E') and the biexponential fit data were used to determine the partitioning between weak and strong collisions as well as investigate molecular properties responsible for large collisional energy transfer events. Fermi's Golden rule was used to model the shape of P(E,E') and identify which donor vibrational motions are primarily responsible for energy transfer. In general, the results suggest that low-frequency MFB vibrational modes are primarily responsible for strong collisions, and govern the shape and magnitude of P(E,E'). Where deviations from this general trend occur, vibrational modes with large negative anharmonicity constants are more efficient energy gateways than modes with similar frequency, while vibrational modes with large positive anharmonicity constants are less efficient at energy transfer than modes of similar frequency.

  20. IIR filtering based adaptive active vibration control methodology with online secondary path modeling using PZT actuators

    Science.gov (United States)

    Boz, Utku; Basdogan, Ipek

    2015-12-01

    Structural vibrations is a major cause for noise problems, discomfort and mechanical failures in aerospace, automotive and marine systems, which are mainly composed of plate-like structures. In order to reduce structural vibrations on these structures, active vibration control (AVC) is an effective approach. Adaptive filtering methodologies are preferred in AVC due to their ability to adjust themselves for varying dynamics of the structure during the operation. The filtered-X LMS (FXLMS) algorithm is a simple adaptive filtering algorithm widely implemented in active control applications. Proper implementation of FXLMS requires availability of a reference signal to mimic the disturbance and model of the dynamics between the control actuator and the error sensor, namely the secondary path. However, the controller output could interfere with the reference signal and the secondary path dynamics may change during the operation. This interference problem can be resolved by using an infinite impulse response (IIR) filter which considers feedback of the one or more previous control signals to the controller output and the changing secondary path dynamics can be updated using an online modeling technique. In this paper, IIR filtering based filtered-U LMS (FULMS) controller is combined with online secondary path modeling algorithm to suppress the vibrations of a plate-like structure. The results are validated through numerical and experimental studies. The results show that the FULMS with online secondary path modeling approach has more vibration rejection capabilities with higher convergence rate than the FXLMS counterpart.

  1. Shear flow induced vibrations of long slender cylinders with a wake oscillator model

    Institute of Scientific and Technical Information of China (English)

    Fei Ge; Wei Lu; Lei Wang; You-Shi Hong

    2011-01-01

    A time domain model is presented to study the vibrations of long slender cylinders placed in shear flow. Long slender cylinders such as risers and tension legs are widely used in the field of ocean engineering. They are subjected to vortex-induced vibrations (VIV) when placed within a transverse incident flow. A three dimensional model coupled with wake oscillators is formulated to describe the response of the slender cylinder in cross-flow and in-line directions.The wake oscillators are distributed along the cylinder and the vortex-shedding frequency is derived from the local current velocity. A non-linear fluid force model is accounted for the coupled effect between cross-flow and in-line vibrations. The comparisons with the published experimental data show that the dynamic features of VIV of long slender cylinder placed in shear flow can be obtained by the proposed model, such as the spanwise average displacement, vibration frequency, dominant mode and the combination of standing and traveling waves. The simulation in a uniform flow is also conducted and the result is compared with the case of nonuniform flow. It is concluded that the flow shear characteristic has significantly changed the cylinder vibration behavior.

  2. Unsteady Vibration Aerodynamic Modeling and Evaluation of Dynamic Derivatives Using Computational Fluid Dynamics

    Directory of Open Access Journals (Sweden)

    Xu Liu

    2015-01-01

    Full Text Available Unsteady aerodynamic system modeling is widely used to solve the dynamic stability problems encountering aircraft design. In this paper, single degree-of-freedom (SDF vibration model and forced simple harmonic motion (SHM model for dynamic derivative prediction are developed on the basis of modified Etkin model. In the light of the characteristics of SDF time domain solution, the free vibration identification methods for dynamic stability parameters are extended and applied to the time domain numerical simulation of blunted cone calibration model examples. The dynamic stability parameters by numerical identification are no more than 0.15% deviated from those by experimental simulation, confirming the correctness of SDF vibration model. The acceleration derivatives, rotary derivatives, and combination derivatives of Army-Navy Spinner Rocket are numerically identified by using unsteady N-S equation and solving different SHV patterns. Comparison with the experimental result of Army Ballistic Research Laboratories confirmed the correctness of the SHV model and dynamic derivative identification. The calculation result of forced SHM is better than that by the slender body theory of engineering approximation. SDF vibration model and SHM model for dynamic stability parameters provide a solution to the dynamic stability problem encountering aircraft design.

  3. System Modeling and Operational Characteristic Analysis for an Orbital Friction Vibration Actuator Used in Orbital Vibration Welding

    Directory of Open Access Journals (Sweden)

    XU, F.

    2013-05-01

    Full Text Available Orbital Friction Vibration Actuator (OFVA is a core component of Orbital Friction Welding (OFW, which is a novel apertureless welding technology utilizing friction heat to implement solid-state joining. In this paper, topology and operational principle of OFVA are introduced, the analytical formulas of the electromagnetic force for the x and y directions, which can drive the mover to generate a circular motion trajectory, are derived, and the characteristic of static electromagnetic force is predicted by analytical method and 2-D (two-dimensional FEM (finite element method, 3-D and measurement. The coupled magnetic field-circuit-motion simulation models which are driven by current and voltage source are established, respectively, and some of its operational characteristics are analyzed. Simulation and experiment validate theoretical analysis and the feasibility of the fabricated prototype, demonstrate the good performance of the OFVA, and provide valuable reference for engineering applications.

  4. A Simplified Model for Vibration Analysis of Diesel Engine Crankshaft System

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A spatial finite element model for vibration analysis of crankshaft system was proposed. The crankshaft body was simplified as spatial rigid frame by using beam elements based on Timoshenko beam theory. The main bearings in system were simplified as linear springs and dashpots. The natural frequencies of the crankshaft system of a four in-line cylinder engine were calculated and compared with the analytical and experimental values available in other publications. In order to simulate the motion of operating crankshaft system, the gas forces, rotating masses and reciprocating masses were considered, the crankshaft and main bearings were coupled in a rotating coordinate system, and a dynamic model for vibration analysis of crankshaft system was established. By applying the dynamic model, the influence of the mass and moment of inertia of front pulley on the behavior of crankshaft vibration was investigated.

  5. Analysis of Vibrations Generated by the Presence of Corrugation in a Modeled Tram Track

    Directory of Open Access Journals (Sweden)

    Julia I. Real Herráiz

    2015-01-01

    Full Text Available In recent years, there has been a significant increase in the development of the railway system. Despite the huge benefits of railways, one of the main drawbacks of this mode of transport is vibrations caused by vehicles in service, especially in the case of trams circulating in urban areas. Moreover, this undesirable phenomenon may be exacerbated by the presence of irregularities in the rail-wheel contact. Thus, an analytical model able to reproduce the vibrational behavior of a real stretch of tram track was implemented. Besides, a simulation of different types of corrugation was carried out by calculating in an auxiliary model the dynamic overloads generated by corrugation. These dynamic overloads fed the main model to obtain the vibrations generated and then transmitted to the track.

  6. Frustrated quantum-spin system on a triangle coupled with e{sub g} lattice vibrations: correspondence to Longuet-Higgins et al' s Jahn-Teller model

    Energy Technology Data Exchange (ETDEWEB)

    Yamasaki, Hisatsugu [Department of Applied Physics, Osaka City University, Osaka 558-8585 (Japan); Natsume, Yuhei [Graduate School of Science and Technology, Chiba University, Chiba 263-8522 (Japan); Terai, Akira [Department of Applied Physics, Osaka City University, Osaka 558-8585 (Japan); Nakamura, Katsuhiro [Department of Applied Physics, Osaka City University, Osaka 558-8585 (Japan)

    2004-09-01

    We investigate the frustrated quantum three-spin model (S{sub 1},S{sub 2},S{sub 3}) of spin = 1/2 on a triangle, in which spins are coupled with lattice-vibrational modes through the antiferromagnetic exchange interaction depending on distances between spin sites. The present model corresponds to the dynamic Jahn-Teller system E{sub g} - e{sub g} proposed by Longuet-Higgins et al (1958 Proc. R. Soc. A 244 1). This correspondence is revealed by using the transformation to Nakamura-Bishop's bases used in Phys. Rev. Lett. 54 861 (1985). Furthermore, we elucidate the relationship between a chiral order parameter {chi}-circumflex = S{sub 1}{center_dot}(S{sub 2}xS{sub 3}) in the spin system and the electronic orbital angular momentum l-circumflex{sub z} in E{sub g} - e{sub g} vibronic model: the regular oscillatory behaviour of the expectation value <{chi}-circumflex> with increasing energy can be found as in the case of for vibronic structures. The increase of the additional anharmonicity(chaoticity) is found to yield a rapidly decaying irregular oscillation of <{chi}-circumflex>. (letter to the editor)

  7. Modelling and experimental validation of two-dimensional transverse vibrations in a flexible robot link

    DEFF Research Database (Denmark)

    Sørensen, Paul Haase; Baungaard, Jens Rane

    1996-01-01

    A general model for a rotating homogenous flexible robot link is developed. The model describes two-dimensional transverse vibrations induced by the actuator due to misalignment of the actuator axis of rotation relative to the link symmetry axis and due to translational acceleration of the link...

  8. A THERMO-ELECTRO-HYDRODYNAMIC MODEL FOR VIBRATION-ELECTROSPINNING PROCESS

    OpenAIRE

    Lan Xu; Liang Wang; Naeem Faraz

    2011-01-01

    In this paper, a thermo-electro-hydrodynamic model of the vibration- electrospinning process is first established. The model can offer in-depth insight into physical understanding of many complex phenomena which can not be fully explained experimentally. It is a powerful tool to controlling over physical characters.

  9. A THERMO-ELECTRO-HYDRODYNAMIC MODEL FOR VIBRATION-ELECTROSPINNING PROCESS

    Directory of Open Access Journals (Sweden)

    Lan Xu

    2011-01-01

    Full Text Available In this paper, a thermo-electro-hydrodynamic model of the vibration- electrospinning process is first established. The model can offer in-depth insight into physical understanding of many complex phenomena which can not be fully explained experimentally. It is a powerful tool to controlling over physical characters.

  10. Finite element modeling and modal analysis of the human spine vibration configuration.

    Science.gov (United States)

    Guo, Li-Xin; Zhang, Yi-Min; Zhang, Ming

    2011-10-01

    This study was designed to investigate the modal characteristics of the human spine. A 3-D finite element model of the spine T12-Pelvis segment was used to extract resonant frequencies and modal modes of the human spine. By finite element modal analysis and harmonic response analysis, several lower vibration modes in the flexion-extension, lateral bending, and vertical directions were obtained and its vibration configurations were shown in this paper. The results indicate that the lowest resonant frequency of the model is in the flexion-extension direction. The second-order resonant frequency is in the lateral bending direction and the third-order resonant frequency of the T12-Pelvis model is in the vertical direction. The results also show that lumbar spinal vertebrae conduct the rotation action during whole body vibration (WBV). The vibration configurations of the lumbar spine can explore the motion mechanism of different lumbar components under WBV and make us to understand the vibration-induced spine diseases. The findings in this study will be helpful to understand WBV-related injury of the spine in clinics and the ergonomics design and development of mechanical production to protect human spine safety.

  11. Modeling of wave propagation in drill strings using vibration transfer matrix methods.

    Science.gov (United States)

    Han, Je-Heon; Kim, Yong-Joe; Karkoub, Mansour

    2013-09-01

    In order to understand critical vibration of a drill bit such as stick-slip and bit-bounce and their wave propagation characteristics through a drill string system, it is critical to model the torsional, longitudinal, and flexural waves generated by the drill bit vibration. Here, a modeling method based on a vibration transfer matrix between two sets of structural wave variables at the ends of a constant cross-sectional, hollow, circular pipe is proposed. For a drill string system with multiple pipe sections, the total vibration transfer matrix is calculated by multiplying all individual matrices, each is obtained for an individual pipe section. Since drill string systems are typically extremely long, conventional numerical analysis methods such as a finite element method (FEM) require a large number of meshes, which makes it computationally inefficient to analyze these drill string systems numerically. The proposed "analytical" vibration transfer matrix method requires significantly low computational resources. For the validation of the proposed method, experimental and numerical data are obtained from laboratory experiments and FEM analyses conducted by using a commercial FEM package, ANSYS. It is shown that the modeling results obtained by using the proposed method are well matched with the experimental and numerical results.

  12. How intermixing and anharmonicity enhances interfacial thermal conductance?

    Science.gov (United States)

    Polanco, Carlos; Zhang, Jingjie; Le, Nam; Rastgarkafshgarkolaei, Rouzbeh; Norris, Pamela; Ghosh, Avik

    2015-03-01

    The thermal conductance at an interface, whether ballistic or diffusive, can be expressed as a product of the number of conducting channels (M) and their average transmission (T). The common expectation is that interfacial defects reduce T and thus hurt the conductance. This is however at odds with recent simulations showing that a thin intermixing layer can in fact enhance the conductance. We argue that such an enhancement occurs when the increase in number of modes outweighs the reduction in their average transmission. The new channels open as a result of (a) the random interfacial structure that relaxes the conservation rules for the transverse momentum and promotes transitions between formerly symmetry disallowed channels; and (b) inelastic scattering through phonon-phonon interactions that allow modes beyond the contact cut-off frequency to contribute to transport. We use these results to build a back of the envelope model for interfacial conductance that depends on the mixing distribution, the anharmonic strength, the phonon polarization and wavelength. Non-Equilibrium Green's Function (NEGF) as well as Molecular Dynamics (MD) simulations on Si/mixed layer/Ge, as well as simpler FCC crystals support our results. NSF-CAREER (QMHP 1028883), NSF-IDR (CBET 1134311), XSEDE (TG-DMR130123).

  13. The Flux-Flux Correlation Function for Anharmonic Barriers

    CERN Document Server

    Goussev, Arseni; Waalkens, Holger; Wiggins, Stephen

    2010-01-01

    The flux-flux correlation function formalism is a standard and widely used approach for the computation of reaction rates. In this paper we introduce a method to compute the classical and quantum flux-flux correlation functions for anharmonic barriers essentially analytically through the use of the classical and quantum normal forms. In the quantum case we show that the quantum normal form reduces the computation of the flux-flux correlation function to that of an effective one dimensional anharmonic barrier. The example of the computation of the quantum flux-flux correlation function for a fourth order anharmonic barrier is worked out in detail, and we present an analytical expression for the quantum mechanical microcanonical flux-flux correlation function. We then give a discussion of the short-time and harmonic limits.

  14. Dynamic model of vibrating-sliding-uplift rocking coupled motion and dynamic design method of caisson breakwaters

    Institute of Scientific and Technical Information of China (English)

    WANG; Yuanzhan; HUA; Leina; DONG; Shaowei

    2004-01-01

    Vibrating, sliding and uplift rocking are three elementary motion types of caisson breakwaters. The dynamic model and the numerical simulation method of vibrating-sliding-uplift rocking coupled motion of caisson breakwaters are developed. The histories of displacement, rotation, sliding force and overturning moment of a caisson breakwater under the excitation of breaking wave impact are calculated for the motion models of vibrating, vibrating-sliding, vibrating-uplift rocking and vibrating-sliding-uplift rocking. The effects of various motion models on the stability of caisson breakwaters are investigated. The feasibility of the dynamic design idea that the sliding motion and the uplift rocking motion of caisson breakwaters are allowed under the excitation of breaking wave impact is discussed.

  15. Modeling of forced vibration phenomenon by making an electrical analogy with ANSYS finite element software

    Directory of Open Access Journals (Sweden)

    Myriam Rocío Pallares Muñoz

    2010-05-01

    Full Text Available Designing mechanical systems which are submitted to vibration requires calculation methods which are very different to those u-sed in other disciplines because, when this occurs, the magnitude of the forces becomes secondary and the frequency with which the force is repeated becomes the most important aspect. It must be taken care of, given that smaller periodic forces can prompt disasters than greater static forces. The article presents a representative problem regarding systems having forced vibration, the mathematical treatment of differential equations from an electrical and mechanical viewpoint, an electrical analogy, numerical modeling of circuits using ANSYS finite element software, analysis and comparison of numerical modeling results compared to test values, the post-processing of results and conclusions regarding electrical analogy methodology when analysing forced vibra-tion systems.

  16. Does more sophisticated modeling reduce model uncertainty? A case study on vibration predictions

    NARCIS (Netherlands)

    Waarts, P.H.; Wit, M.S. de

    2004-01-01

    In this paper, the reliability of vibration predictions in civil engineering is quantified. Emphasis is laid on the vibration predictions for road- and rail traffic and vibrations from building activities such as (sheet)pile driving. Several kinds of prediction techniques were investigated: expert o

  17. Vibrations inside buildings due to subway railway traffic. Experimental validation of a comprehensive prediction model.

    Science.gov (United States)

    Lopes, Patrícia; Ruiz, Jésus Fernández; Alves Costa, Pedro; Medina Rodríguez, L; Cardoso, António Silva

    2016-10-15

    The present paper focuses on the experimental validation of a numerical approach previously proposed by the authors for the prediction of vibrations inside buildings due to railway traffic in tunnels. The numerical model is based on the concept of dynamic substructuring and is composed by three autonomous models to simulate the following main parts of the problem: i) generation of vibrations (train-track interaction); ii) propagation of vibrations (track-tunnel-ground system); iii) reception of vibrations (building coupled to the ground). The experimental validation consists in the comparison between the results predicted by the proposed numerical model and the measurements performed inside a building due to the railway traffic in a shallow tunnel located in Madrid. Apart from the brief description of the numerical model and of the case study, the main options and simplifications adopted on the numerical modeling strategy are discussed. The balance adopted between accuracy and simplicity of the numerical approach proved to be a path to follow in order to transfer knowledge to engineering practice. Finally, the comparison between numerical and experimental results allowed finding a good agreement between both, fact that ensures the ability of the proposed modeling strategy to deal with real engineering practical problems.

  18. Vibration analysis of concrete bridges during a train pass-by using various models

    Science.gov (United States)

    Li, Qi; Wang, Ke; Cheng, Shili; Li, Wuqian; Song, Xiaodong

    2016-09-01

    The vibration of a bridge must be determined in order to predict the bridge noise during a train pass-by. It can be generally solved with different models either in the time domain or the frequency domain. The computation cost and accuracy of these models vary a lot in a wide frequency band. This study aims to compare the results obtained from various models for recommending the most suitable model in further noise prediction. First, train-track-bridge models in the time domain are developed by using the finite element method and mode superposition method. The rails are modeled by Timoshenko beam elements and the bridge is respectively modeled by shell elements and volume elements. Second, power flow models for the coupled system are established in the frequency domain. The rails are modelled by infinite Timoshenko beams and the bridge is respectively represented by three finite element models, an infinite Kirchhoff plate, and an infinite Mindlin plate model. The vibration at given locations of the bridge and the power input to the bridges through the rail fasteners are calculated using these models. The results show that the shear deformation of the bridge deck has significant influences on the bridge vibration at medium-to-high frequencies. The Mindlin plate model can be used to represent the U-shaped girder to obtain the power input to the bridge with high accuracy and efficiency.

  19. Exact solutions and ladder operators for a new anharmonic oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Dong Shihai [Programa de Ingenieria Molecular, Instituto Mexicano del Petroleo, Lazaro Cardenas 152, 07730 Mexico DF (Mexico)]. E-mail: dongsh2@yahoo.com; Sun Guohua [Instituto de Investigaciones en Matematicas Aplicadas y en Sistemas, UNAM, A.P. 20-726, Del. Alvaro Obregon, 01000 Mexico DF (Mexico); Lozada-Cassou, M. [Programa de Ingenieria Molecular, Instituto Mexicano del Petroleo, Lazaro Cardenas 152, 07730 Mexico DF (Mexico)

    2005-06-06

    In this Letter, we propose a new anharmonic oscillator and present the exact solutions of the Schrodinger equation with this oscillator. The ladder operators are established directly from the normalized radial wave functions and used to evaluate the closed expressions of matrix elements for some related functions. Some comments are made on the general calculation formula and recurrence relation for off-diagonal matrix elements. Finally, we show that this anharmonic oscillator possesses a hidden symmetry between E(r) and E(ir) by substituting r->ir.

  20. Shocks, Rarefaction Waves, and Current Fluctuations for Anharmonic Chains

    Science.gov (United States)

    Mendl, Christian B.; Spohn, Herbert

    2016-10-01

    The nonequilibrium dynamics of anharmonic chains is studied by imposing an initial domain-wall state, in which the two half lattices are prepared in equilibrium with distinct parameters. We analyse the Riemann problem for the corresponding Euler equations and, in specific cases, compare with molecular dynamics. Additionally, the fluctuations of time-integrated currents are investigated. In analogy with the KPZ equation, their typical fluctuations should be of size t^{1/3} and have a Tracy-Widom GUE distributed amplitude. The proper extension to anharmonic chains is explained and tested through molecular dynamics. Our results are calibrated against the stochastic LeRoux lattice gas.

  1. Lattice Vibrations Change the Solid Solubility of an Alloy at High Temperatures

    Science.gov (United States)

    Shulumba, Nina; Hellman, Olle; Raza, Zamaan; Alling, Björn; Barrirero, Jenifer; Mücklich, Frank; Abrikosov, Igor A.; Odén, Magnus

    2016-11-01

    We develop a method to accurately and efficiently determine the vibrational free energy as a function of temperature and volume for substitutional alloys from first principles. Taking Ti1 -xAlxN alloy as a model system, we calculate the isostructural phase diagram by finding the global minimum of the free energy corresponding to the true equilibrium state of the system. We demonstrate that the vibrational contribution including anharmonicity and temperature dependence of the mixing enthalpy have a decisive impact on the calculated phase diagram of a Ti1 -xAlxN alloy, lowering the maximum temperature for the miscibility gap from 6560 to 2860 K. Our local chemical composition measurements on thermally aged Ti0.5Al0.5N alloys agree with the calculated phase diagram.

  2. Investigation of difficult component effects on finite element model vibration prediction for the Bell AH-1G helicopter. Volume 1: Ground vibration test results

    Science.gov (United States)

    Dompka, R. V.

    1989-01-01

    Under the NASA-sponsored Design Analysis Methods for VIBrationS (DAMVIBS) program, a series of ground vibration tests and NASTRAN finite element model (FEM) correlations were conducted on the Bell AH-1G helicopter gunship to investigate the effects of difficult components on the vibration response of the airframe. Previous correlations of the AH-1G showed good agreement between NASTRAN and tests through 15 to 20 Hz, but poor agreement in the higher frequency range of 20 to 30 Hz. Thus, this effort emphasized the higher frequency airframe vibration response correlations and identified areas that need further R and T work. To conduct the investigations, selected difficult components (main rotor pylon, secondary structure, nonstructural doors/panels, landing gear, engine, fuel, etc.) were systematically removed to quantify their effects on overall vibratory response of the airframe. The entire effort was planned and documented, and the results reviewed by NASA and industry experts in order to ensure scientific control of the testing, analysis, and correlation exercise. In particular, secondary structure and damping had significant effects on the frequency response of the airframe above 15 Hz. Also, the nonlinear effects of thrust stiffening and elastomer mounts were significant on the low frequency pylon modes below main rotor 1p (5.4 Hz). The results of the ground vibration testing are presented.

  3. Nonlocal continuum model and molecular dynamics for free vibration of single-walled carbon nanotubes.

    Science.gov (United States)

    Hu, Yan-Gao; Liew, K M; Wang, Q

    2011-12-01

    Free transverse, longitudinal and torsional vibrations of single-walled carbon nanotubes (SWCNTs) are investigated through nonlocal beam model, nonlocal rod model and verified by molecular dynamics (MD) simulations. The nonlocal Timoshenko beam model offers a better prediction of the fundamental frequencies of shorter SWCNTs, such as a (5, 5) SWCNT shorter than 3.5 nm, than local beam models. The nonlocal rod model is employed to study the longitudinal and torsional vibrations of SWCNT and found to enable a good prediction of the MD results for shorter SWCNTs. Nonlocal and local continuum models provide a good agreement with MD results for relatively longer SWCNTs, such as (5, 5) SWCNTs longer than 3.5 nm. The scale parameter in nonlocal beam and rod models is estimated by calibrations from MD results.

  4. From Exact to Partial Dynamical Symmetries: Lessons From the Interacting Boson Model

    CERN Document Server

    Leviatan, A

    2012-01-01

    We exploit the rich algebraic structure of the interacting boson model to explain the notion of partial dynamical symmetry (PDS), and present a procedure for constructing Hamiltonians with this property. We demonstrate the relevance of PDS to various topics in nuclear spectroscopy, including K-band splitting, odd-even staggering in the gamma-band and anharmonicity of excited vibrational bands. Special emphasis in this construction is paid to the role of higher-order terms.

  5. Influence of subglottic stenosis on the flow-induced vibration of a computational vocal fold model

    Science.gov (United States)

    Smith, Simeon L.; Thomson, Scott L.

    2013-04-01

    The effect of subglottic stenosis on vocal fold vibration is investigated. An idealized stenosis is defined, parameterized, and incorporated into a two-dimensional, fully coupled finite element model of the vocal folds and laryngeal airway. Flow-induced responses of the vocal fold model to varying severities of stenosis are compared. The model vibration was not appreciably affected by stenosis severities of up to 60% occlusion. Model vibration was altered by stenosis severities of 90% or greater, evidenced by decreased superior model displacement, glottal width amplitude, and flow rate amplitude. Predictions of vibration frequency and maximum flow declination rate were also altered by high stenosis severities. The observed changes became more pronounced with increasing stenosis severity and inlet pressure, and the trends correlated well with flow resistance calculations. Flow visualization was used to characterize subglottal flow patterns in the space between the stenosis and the vocal folds. Underlying mechanisms for the observed changes, possible implications for human voice production, and suggestions for future work are discussed.

  6. Instability of vibrational modes in hexagonal lattice

    Science.gov (United States)

    Korznikova, Elena A.; Bachurin, Dmitry V.; Fomin, Sergey Yu.; Chetverikov, Alexander P.; Dmitriev, Sergey V.

    2017-02-01

    The phenomenon of modulational instability is investigated for all four delocalized short-wave vibrational modes recently found for the two-dimensional hexagonal lattice with the help of a group-theoretic approach. The polynomial pair potential with hard-type quartic nonlinearity ( β-FPU potential with β > 0) is used to describe interactions between atoms. As expected for the hard-type anharmonic interactions, for all four modes the frequency is found to increase with the amplitude. Frequency of the modes I and III bifurcates from the upper edge of the phonon spectrum, while that of the modes II and IV increases from inside the spectrum. It is also shown that the considered model supports spatially localized vibrational mode called discrete breather (DB) or intrinsic localized mode. DB frequency increases with the amplitude above the phonon spectrum. Two different scenarios of the mode decay were revealed. In the first scenario (for modes I and III), development of the modulational instability leads to a formation of long-lived DBs that radiate their energy slowly until thermal equilibrium is reached. In the second scenario (for modes II and IV) a transition to thermal oscillations of atoms is observed with no formation of DBs.

  7. Three-dimensional modeling of supine human and transport system under whole-body vibration.

    Science.gov (United States)

    Wang, Yang; Rahmatalla, Salam

    2013-06-01

    The development of predictive computer human models in whole-body vibration has shown some success in predicting simple types of motion, mostly for seated positions and in the uniaxial vertical direction. The literature revealed only a handful of papers that tackled supine human modeling in response to vertical vibration. The objective of this work is to develop a predictive, multibody, three-dimensional human model to simulate the supine human and underlying transport system in response to multidirectional whole-body vibration. A three-dimensional dynamic model of a supine human and its underlying transport system is presented in this work to predict supine-human biodynamic response under three-dimensional input random whole-body vibration. The proposed supine-human model consists of three interconnected segments representing the head, torso-arms, and pelvis-legs. The segments are connected via rotational and translational joints that have spring-damper components simulating the three-dimensional muscles and tissuelike connecting elements in the three x, y, and z directions. Two types of transport systems are considered in this work, a rigid support and a long spinal board attached to a standard military litter. The contact surfaces between the supine human and the underlying transport system are modeled using spring-damper components. Eight healthy supine human subjects were tested under combined-axis vibration files with a magnitude of 0.5 m/s2 (rms) and a frequency content of 0.5-16 Hz. The data from seven subjects were used in parameter identification for the dynamic model using optimization schemes in the frequency domain that minimize the differences between the magnitude and phase of the predicted and experimental transmissibility. The predicted accelerations in the time and frequency domains were comparable to those gathered from experiments under different anthropometric, input vibration, and transport conditions under investigation. Based on the

  8. Lattice dynamics and anharmonicity of CaZrF{sub 6} from Raman spectroscopy and ab initio calculations

    Energy Technology Data Exchange (ETDEWEB)

    Sanson, Andrea, E-mail: andrea.sanson@unipd.it [Department of Physics and Astronomy, University of Padova, Padova (Italy); Giarola, Marco; Mariotto, Gino [Department of Computer Science, University of Verona, Verona (Italy); Hu, Lei; Chen, Jun; Xing, Xianran [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing (China)

    2016-09-01

    Very recently it has been found that CaZrF{sub 6} exhibits a very large and isotropic negative thermal expansion (NTE), even greater than the current most popular NTE materials. In this work, the vibrational dynamics of CaZrF{sub 6} has been investigated by temperature-dependent Raman spectroscopy combined with ab initio calculations. As expected on the basis of the group theory for CaZrF{sub 6}, three Raman-active modes were identified: the F{sub 2g} mode peaked at about 236 cm{sup −1}, the E{sub g} mode at around 550–555 cm{sup −1}, and the A{sub g} mode peaked at about 637 cm{sup −1}. The temperature dependence of their frequencies follows an unusual trend: the F{sub 2g} mode, due to bending vibrations of fluorine atoms in the linear Ca-F-Zr chain, is hardened with increasing temperature, while the A{sub g} mode, corresponding to Ca-F-Zr bond stretching vibrations, is softened. We explain this anomalous behavior by separating implicit and explicit anharmonicity for both F{sub 2g} and A{sub g} modes. In fact, cubic anharmonicity (three-phonon processes) is observed to dominate the higher-frequency A{sub g} phonon-mode, quartic anharmonicity (four-phonon processes) is found to dominate the lower-frequency F{sub 2g} phonon-mode. As a result, the large NTE of CaZrF{sub 6} cannot be accurately predicted through the quasi-harmonic approximation. - Highlights: • A Raman and ab initio study of the lattice dynamics of CaZrF{sub 6} was performed. • All the Raman-active modes expected on the basis of the group theory were identified. • The temperature-dependence of the CaZrF{sub 6} Raman frequencies follows an unusual trend. • Explicit anharmonicity dominates for both F{sub 2g} and A{sub g} Raman modes. • The NTE of CaZrF{sub 6} cannot be accurately predicted by the quasi-harmonic approximation.

  9. Vibrational ladder climbing in NO using ultrashort IR laser pulses

    NARCIS (Netherlands)

    Maas, D. J.; Duncan, D. I.; van der Meer, A. F. G.; van der Zande, W. J.; Noordam, L. D.; Lambropoulos, P.; Walther, H.

    1997-01-01

    Chirped excitation of an electronic ladder system has shown complete transfer of the population to the top-level of the ladder system. Similar excitation of vibrational ladders in molecules may provide a tool for state-selective chemistry. Experimental results on the climbing of the anharmonic vibra

  10. Anharmonic exciton dynamics and energy dissipation in liquid water from two-dimensional infrared spectroscopy

    Science.gov (United States)

    De Marco, Luigi; Fournier, Joseph A.; Thämer, Martin; Carpenter, William; Tokmakoff, Andrei

    2016-09-01

    Water's extended hydrogen-bond network results in rich and complex dynamics on the sub-picosecond time scale. In this paper, we present a comprehensive analysis of the two-dimensional infrared (2D IR) spectrum of O-H stretching vibrations in liquid H2O and their interactions with bending and intermolecular vibrations. By exploring the dependence of the spectrum on waiting time, temperature, and laser polarization, we refine our molecular picture of water's complex ultrafast dynamics. The spectral evolution following excitation of the O-H stretching resonance reveals vibrational dynamics on the 50-300 fs time scale that are dominated by intermolecular delocalization. These O-H stretch excitons are a result of the anharmonicity of the nuclear potential energy surface that arises from the hydrogen-bonding interaction. The extent of O-H stretching excitons is characterized through 2D depolarization measurements that show spectrally dependent delocalization in agreement with theoretical predictions. Furthermore, we show that these dynamics are insensitive to temperature, indicating that the exciton dynamics alone set the important time scales in the system. Finally, we study the evolution of the O-H stretching mode, which shows highly non-adiabatic dynamics suggestive of vibrational conical intersections. We argue that the so-called heating, commonly observed within ˜1 ps in nonlinear IR spectroscopy of water, is a nonequilibrium state better described by a kinetic temperature rather than a Boltzmann distribution. Our conclusions imply that the collective nature of water vibrations should be considered in describing aqueous solvation.

  11. Optomechanical self-oscillations in an anharmonic potential: engineering a nonclassical steady state

    Science.gov (United States)

    Grimm, Manuel; Bruder, Christoph; Lörch, Niels

    2016-09-01

    We study self-oscillations of an optomechanical system, where coherent mechanical oscillations are induced by a driven optical or microwave cavity, for the case of an anharmonic mechanical oscillator potential. A semiclassical analytical model is developed to characterize the limit cycle for large mechanical amplitudes corresponding to a weak nonlinearity. As a result, we predict conditions to achieve subpoissonian phonon statistics in the steady state, indicating classically forbidden behavior. We compare with numerical simulations and find very good agreement. Our model is quite general and can be applied to other physical systems such as trapped ions or superconducting circuits.

  12. Secondary flows enhance mixing in a model of vibration-assisted dialysis

    Science.gov (United States)

    Pitre, John; Mueller, Bruce; Lewis, Susan; Bull, Joseph

    2014-11-01

    Hemodialysis is an integral part of treatment for patients with end stage renal disease. While hemodialysis has traditionally been described as a diffusion-dominated process, recent in vitro work has shown that vibration of the dialyzer can enhance the clearance of certain solutes during treatment. We hypothesize that the addition of vibration generates secondary flows in the dialysate compartment. These flows, perpendicular to the longitudinal axis of the dialysis fibers, advect solute away from the fiber walls, thus maintaining a larger concentration gradient and enhancing diffusion. Using the finite element method, we simulated the flow of dialysate through a hexagonally-packed array of cylinders and the transport of solute away from the cylinder walls. The addition of vibration was modeled using sinusoidal body forces of various frequencies and amplitudes. Using the variance of the concentration field as a metric, we found that vibration improves mixing according to a power law dependency on frequency. We will discuss the implications of these computational results on our understanding of the in vitro experiments and propose optimal vibration patterns for improving clearance in dialysis treatments. This work was supported by the Michigan Institute for Clinical and Health Research and NIH Grant UL1TR000433.

  13. Mathematical modelling of friction-vibration interactions of nuclear fuel rods

    Directory of Open Access Journals (Sweden)

    Zeman V.

    2016-06-01

    Full Text Available Nuclear fuel rods (FRs are transverselly linked to each other by three spacer grid cells at several vertical levels inside a fuel assembly (FA. Vibration of FA components, caused by the motion of FA support plates in the reactor core, generates variable contact forces between FRs and spacer grid cells. Friction effects in contact surfaces have an influence on the expected lifetime period of nuclear FA in terms of FR cladding fretting wear. This paper introduces an original approach to mathematical modelling and simulation analysis of FR nonlinear vibrations and fretting wear taking into consideration friction forces at all levels of spacer grids.

  14. Wind-Tunnel Tests of a Bridge Model with Active Vibration Control

    DEFF Research Database (Denmark)

    Hansen, H. I.; Thoft-Christensen, Palle; Mendes, P. A.;

    The application of active control systems to reduce wind vibrations in bridges is a new area of research. This paper presents the results that were obtained on a set of wind tunnel tests of a bridge model equipped with active movable flaps. Based on the monitored position and motion of the deck...

  15. Stochastic Response of Energy Balanced Model for Vortex-Induced Vibration

    DEFF Research Database (Denmark)

    Nielsen, Søren R.K.; Krenk, S.

    A double oscillator model for vortex-induced oscillations of structural elements based on exact power exchange between fluid and structure, recently proposed by authors, is extended to include the effect of the turbulent component of the wind. In non-turbulent flow vortex-induced vibrations...

  16. Flow-induced vibrations of long circular cylinders modeled by coupled nonlinear oscillators

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The dynamics of long slender cylinders undergoing vortex-induced vibrations (VIV) is studied in this work. Long slender cylinders such as risers or tension legs are widely used in the field of ocean engineering. When the sea current flows past a cylinder, it will be excited due to vortex shedding. A three-dimensional time domain model is formulated to describe the response of the cylinder, in which the in-line (IL) and cross-flow (CF) deflections are coupled. The wake dynamics, including in-line and cross-flow vibrations, is represented using a pair of non-linear oscillators distributed along the cylinder. The wake oscillators are coupled to the dynamics of the long cylinder with the acceleration coupling term. A non-linear fluid force model is accounted for to reflect the relative motion of cylinder to current. The model is validated against the published data from a tank experiment with the free span riser. The comparisons show that some aspects due to VIV of long flexible cylinders can be reproduced by the proposed model, such as vibrating frequency, dominant mode number, occurrence and transition of the standing or traveling waves. In the case study, the simulations show that the IL curvature is not smaller than CF curvature, which indicates that both IL and CF vibrations are important for the structural fatigue damage.

  17. Fractal Theory and Contact Dynamics Modeling Vibration Characteristics of Damping Blade

    Directory of Open Access Journals (Sweden)

    Ruishan Yuan

    2014-01-01

    Full Text Available The contact surface structure of dry friction damper is complicate, irregular, and self-similar. In this paper, contact surface structure is described with the fractal theory and damping blade is simplified as 2-DOF cantilever beam model with lumped masses. By changing the position of the damper, lacing and shroud structure are separately simulated to study vibration absorption effect of damping blade. The results show that both shroud structure and lacing could not only dissipate energy but also change stiffness of blade. Under the same condition of normal pressure and contact surface, the damping effect of lacing is stronger than that of shroud structure. Meanwhile, the effect on changing blade stiffness of shroud structure is stronger than that of lacing. This paper proposed that there is at least one position of the blade, at which the damper dissipates the most vibration energy during a vibration cycle.

  18. COMPENSATED INVERSE PID CONTROLLER FOR ACTIVE VIBRATION CONTROL WITH PIEZOELECTRIC PATCHES: MODELING, SIMULATION AND IMPLEMENTATION

    Directory of Open Access Journals (Sweden)

    Asan Gani

    2010-09-01

    Full Text Available Active vibration control of the first three modes of a vibrating cantilever beam using collocated piezoelectric sensor and actuator is examined in this paper. To achieve this, a model based on Euler-Bernoulli beam equation is adopted and extended to the case of three bonded piezoelectric patches that act as sensor, actuator and exciter respectively. A compensated inverse PID controller has been designed and developed to damp first three modes of vibration. Controllers have been designed for each mode and these are later combined in parallel to damp any of the three modes. Individual controller gives better reduction in sensor output for the second and third modes while the combined controller performs better for the first mode. Simulation studies are carried out using MATLAB. These results are compared and verified experimentally and the real-time implementation is carried out with xPC-target toolbox in MATLAB

  19. An analytical model for a piezoelectric vibration energy harvester with resonance frequency tunability

    Directory of Open Access Journals (Sweden)

    Yun Wang

    2015-06-01

    Full Text Available This article conceptually proposes a new method to tune the resonance frequency of piezoelectric vibration energy harvesters, in which the supporting position of the vibrator can be adjusted for frequency tuning. The corresponding analytical model is established to predict the performances of the harvester based on the principles of energy. First, the equivalent stiffness and mass of the vibrator in bending mode are derived explicitly for the different supporting positions. A simple analysis method is then established for the frequency, output voltage, and output power. Finally, some numerical examples are given to demonstrate the presented method. The results are also compared with those by finite element method and good agreement is observed.

  20. Vibrational Heat Transport in Molecular Junctions

    Science.gov (United States)

    Segal, Dvira; Agarwalla, Bijay Kumar

    2016-05-01

    We review studies of vibrational energy transfer in a molecular junction geometry, consisting of a molecule bridging two heat reservoirs, solids or large chemical compounds. This setup is of interest for applications in molecular electronics, thermoelectrics, and nanophononics, and for addressing basic questions in the theory of classical and quantum transport. Calculations show that system size, disorder, structure, dimensionality, internal anharmonicities, contact interaction, and quantum coherent effects are factors that combine to determine the predominant mechanism (ballistic/diffusive), effectiveness (poor/good), and functionality (linear/nonlinear) of thermal conduction at the nanoscale. We review recent experiments and relevant calculations of quantum heat transfer in molecular junctions. We recount the Landauer approach, appropriate for the study of elastic (harmonic) phononic transport, and outline techniques that incorporate molecular anharmonicities. Theoretical methods are described along with examples illustrating the challenge of reaching control over vibrational heat conduction in molecules.

  1. Hybrid predictions of railway induced ground vibration using a combination of experimental measurements and numerical modelling

    Science.gov (United States)

    Kuo, K. A.; Verbraken, H.; Degrande, G.; Lombaert, G.

    2016-07-01

    Along with the rapid expansion of urban rail networks comes the need for accurate predictions of railway induced vibration levels at grade and in buildings. Current computational methods for making predictions of railway induced ground vibration rely on simplifying modelling assumptions and require detailed parameter inputs, which lead to high levels of uncertainty. It is possible to mitigate against these issues using a combination of field measurements and state-of-the-art numerical methods, known as a hybrid model. In this paper, two hybrid models are developed, based on the use of separate source and propagation terms that are quantified using in situ measurements or modelling results. These models are implemented using term definitions proposed by the Federal Railroad Administration and assessed using the specific illustration of a surface railway. It is shown that the limitations of numerical and empirical methods can be addressed in a hybrid procedure without compromising prediction accuracy.

  2. Variational approach to anharmonic collective motion

    CERN Document Server

    Bertsch, George F

    1996-01-01

    We derive large-amplitude collective equations of motion from the variational principle for the time-dependent Schroedinger equation. These equations reduce to the well-known diabatic formulas for vibrational frequencies in the small amplitude limit. The finite amplitude expression allows departures from harmonic behavior of giant resonances to be simply estimated. The relative shift of the second phonon falls with nuclear mass A as A^(-4/3) in the three modes we consider: monopole, dipole, and quadrupole. Numerically the effect is very small in heavy nuclei, as was found with other approaches.

  3. A discrete model for geometrically nonlinear transverse free constrained vibrations of beams with various end conditions

    Science.gov (United States)

    Rahmouni, A.; Beidouri, Z.; Benamar, R.

    2013-09-01

    The purpose of the present paper was the development of a physically discrete model for geometrically nonlinear free transverse constrained vibrations of beams, which may replace, if sufficient degrees of freedom are used, the previously developed continuous nonlinear beam constrained vibration models. The discrete model proposed is an N-Degrees of Freedom (N-dof) system made of N masses placed at the ends of solid bars connected by torsional springs, presenting the beam flexural rigidity. The large transverse displacements of the bar ends induce a variation in their lengths giving rise to axial forces modelled by longitudinal springs. The calculations made allowed application of the semi-analytical model developed previously for nonlinear structural vibration involving three tensors, namely the mass tensor mij, the linear rigidity tensor kij and the nonlinearity tensor bijkl. By application of Hamilton's principle and spectral analysis, the nonlinear vibration problem is reduced to a nonlinear algebraic system, examined for increasing numbers of dof. The results obtained by the physically discrete model showed a good agreement and a quick convergence to the equivalent continuous beam model, for various fixed boundary conditions, for both the linear frequencies and the nonlinear backbone curves, and also for the corresponding mode shapes. The model, validated here for the simply supported and clamped ends, may be used in further works to present the flexural linear and nonlinear constrained vibrations of beams with various types of discontinuities in the mass or in the elasticity distributions. The development of an adequate discrete model including the effect of the axial strains induced by large displacement amplitudes, which is predominant in geometrically nonlinear transverse constrained vibrations of beams [1]. The investigation of the results such a discrete model may lead to in the case of nonlinear free vibrations. The development of the analogy between the

  4. A microscopic nuclear collective rotation-vibration model: 2D submodel

    CERN Document Server

    Gulshani, Parviz

    2016-01-01

    The previous microscopic collective rotation-vibration model is improved to include interaction between collective oscillations in a pair of spatial directions, and to remove many of the previous-model approximations. As in the previous model, the nuclear Schrodinger equation (instead of the Hamiltonian) is canonically transformed to obtain a Schrodinger equation for collective rotation and vibration of a nucleus coupled to an intrinsic motion, with the related constraints imposed on the wavefunction (rather than on the particle co-ordinates). The resulting equation is then effectively linearized into three self-consistent, time-reversal invariant, cranking-type equations using a variational method. The relation of the equations to the phenomenological hydrodynamic collective Bohr-Davydov-Faessler-Greiner model is discussed. To facilitate the solution of the equations and enhance physical insight, we consider in this article the collective oscillations in only two space directions. For harmonic oscillator mea...

  5. Adaptive Neuro-Fuzzy Modeling of UH-60A Pilot Vibration

    Science.gov (United States)

    Kottapalli, Sesi; Malki, Heidar A.; Langari, Reza

    2003-01-01

    Adaptive neuro-fuzzy relationships have been developed to model the UH-60A Black Hawk pilot floor vertical vibration. A 200 point database that approximates the entire UH-60A helicopter flight envelope is used for training and testing purposes. The NASA/Army Airloads Program flight test database was the source of the 200 point database. The present study is conducted in two parts. The first part involves level flight conditions and the second part involves the entire (200 point) database including maneuver conditions. The results show that a neuro-fuzzy model can successfully predict the pilot vibration. Also, it is found that the training phase of this neuro-fuzzy model takes only two or three iterations to converge for most cases. Thus, the proposed approach produces a potentially viable model for real-time implementation.

  6. Adaptive Model Predictive Vibration Control of a Cantilever Beam with Real-Time Parameter Estimation

    Directory of Open Access Journals (Sweden)

    Gergely Takács

    2014-01-01

    Full Text Available This paper presents an adaptive-predictive vibration control system using extended Kalman filtering for the joint estimation of system states and model parameters. A fixed-free cantilever beam equipped with piezoceramic actuators serves as a test platform to validate the proposed control strategy. Deflection readings taken at the end of the beam have been used to reconstruct the position and velocity information for a second-order state-space model. In addition to the states, the dynamic system has been augmented by the unknown model parameters: stiffness, damping constant, and a voltage/force conversion constant, characterizing the actuating effect of the piezoceramic transducers. The states and parameters of this augmented system have been estimated in real time, using the hybrid extended Kalman filter. The estimated model parameters have been applied to define the continuous state-space model of the vibrating system, which in turn is discretized for the predictive controller. The model predictive control algorithm generates state predictions and dual-mode quadratic cost prediction matrices based on the updated discrete state-space models. The resulting cost function is then minimized using quadratic programming to find the sequence of optimal but constrained control inputs. The proposed active vibration control system is implemented and evaluated experimentally to investigate the viability of the control method.

  7. High resolution IR diode laser study of collisional energy transfer between highly vibrationally excited monofluorobenzene and CO{sub 2}: The effect of donor fluorination on strong collision energy transfer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kilyoung; Johnson, Alan M.; Powell, Amber L.; Mitchell, Deborah G.; Sevy, Eric T., E-mail: esevy@byu.edu [Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602 (United States)

    2014-12-21

    Collisional energy transfer between vibrational ground state CO{sub 2} and highly vibrationally excited monofluorobenzene (MFB) was studied using narrow bandwidth (0.0003 cm{sup −1}) IR diode laser absorption spectroscopy. Highly vibrationally excited MFB with E′ = ∼41 000 cm{sup −1} was prepared by 248 nm UV excitation followed by rapid radiationless internal conversion to the electronic ground state (S{sub 1}→S{sub 0}*). The amount of vibrational energy transferred from hot MFB into rotations and translations of CO{sub 2} via collisions was measured by probing the scattered CO{sub 2} using the IR diode laser. The absolute state specific energy transfer rate constants and scattering probabilities for single collisions between hot MFB and CO{sub 2} were measured and used to determine the energy transfer probability distribution function, P(E,E′), in the large ΔE region. P(E,E′) was then fit to a bi-exponential function and extrapolated to the low ΔE region. P(E,E′) and the biexponential fit data were used to determine the partitioning between weak and strong collisions as well as investigate molecular properties responsible for large collisional energy transfer events. Fermi's Golden rule was used to model the shape of P(E,E′) and identify which donor vibrational motions are primarily responsible for energy transfer. In general, the results suggest that low-frequency MFB vibrational modes are primarily responsible for strong collisions, and govern the shape and magnitude of P(E,E′). Where deviations from this general trend occur, vibrational modes with large negative anharmonicity constants are more efficient energy gateways than modes with similar frequency, while vibrational modes with large positive anharmonicity constants are less efficient at energy transfer than modes of similar frequency.

  8. Theory of the anharmonic damping and shift of the Raman mode in silicon

    Science.gov (United States)

    Haro, E.; Balkanski, M.; Wallis, R. F.; Wanser, K. H.

    1986-10-01

    A theoretical investigation has been made of the damping constant and frequency shift of the Raman mode in silicon due to cubic anharmonic interactions between nearest-neighbor atoms. The normal-mode frequencies and eigenvectors for the harmonic crystal were calculated using a model containing short-range forces out to fourth neighbors and long-range nonlocal dipole interactions. The Raman-mode linewidth and frequency shift were calculated as functions of both temperature and frequency, and the results are compared with experimental data on the temperature dependences of these quantities.

  9. Anharmonic Noninertial Lattice Dynamics during Ultrafast Nonthermal Melting of InSb

    Science.gov (United States)

    Zijlstra, Eeuwe S.; Walkenhorst, Jessica; Garcia, Martin E.

    2008-09-01

    We compute the potential energy surface of femtosecond-laser-excited InSb along the directions in which the crystal becomes soft. Using dynamical simulations the time dependence of the atomic coordinates is obtained. We find that at high excitation densities the anharmonicity of the potential energy surface becomes significant after ˜100fs. On the basis of our results we explain recent time-resolved x-ray diffraction experiments. We point out that an alternative model for ultrafast melting [A. M. Lindenberg , Science 308, 392 (2005)SCIEAS0036-807510.1126/science.1107996] is inconsistent with our calculations.

  10. Modeling study of vibrational photochemical isotope enrichment. [HBr + Cl/sub 2/; HCl + Br/sub 2/

    Energy Technology Data Exchange (ETDEWEB)

    Badcock, C.C.; Hwang, W.C.; Kalsch, J.F.

    1978-09-29

    Chemical kinetic modeling studies of vibrational-photochemical isotope enrichment have been performed on two systems: Model (I), H/sup 79/Br(H/sup 81/Br) + Cl/sub 2/ and, Model (II), H/sup 37/Cl(H/sup 35/Cl) + Br. Pulsed laser excitation was modeled to the first excited vibrational level of H/sup 79/Br in Model I and the first and second excited vibrational levels of both HCl isotopes in Model II. These are prototype systems of exoergic (Model I) and endoergic (Model II) reactions. The effects on enrichment of varying the external parameters (pressure, laser intensity) and the internal parameters (rate constants for V-V exchange and excited-state reactions) were examined. Studies of these prototype systems indicate that a favorable reaction for enrichment, with isotopically-specific excitation and a significantly accelerated vibrationally-excited-state reaction should have the following properties: the reaction from v = 0 should be only moderately exoergic, and the most favorable coreactant should be a polyatomic species, such as alkyl radical. Direct excitation of the reacting vibrational level is at least an order of magnitude more favorable for enrichment than is population by energy transfer. Enrichment of the minor isotope by these processes is more effective than is major isotope enrichment. Within limits, increased laser intensity is beneficial. However, for sequential excitation of a second vibrational level, major isotope enrichment can be diminished by high populations of the first vibrational level.

  11. Analytical Model of Underground Train Induced Vibrations on Nearby Building Structures in Cameroon: Assessment and Prediction

    Directory of Open Access Journals (Sweden)

    Lezin Seba MINSILI

    2013-11-01

    Full Text Available The purpose of this research paper was to assess and predict the effect of vibrations induced by an underground railway on nearby-existing buildings prior to the construction of projected new railway lines of the National Railway Master Plan of Cameroon and after upgrading of the railway conceded to CAMRAIL linking the two most densely populated cities of Cameroon: Douala and Yaoundé. With the source-transmitter-receiver mathematical model as the train-soil-structure interaction model, taking into account sub-model parameters such as type of the train-railway system, typical geotechnical conditions of the ground and the sensitivity of the nearby buildings, the analysis is carried out over the entire system using the dynamic finite element method in the time domain. This subdivision of the model is a powerful tool that allows to consider different alternatives of sub-models with different characteristics, and thus to determine any critical excessive vibration impact. Based on semi-empirical analytical results obtained from presented models, the present work assesses and predicts characteristics of traffic-induced vibrations as a function of time duration, intensity and vehicle speed, as well as their influence on buildings at different levels.

  12. Mixed-symmetry states in 144Nd: Semimicroscopic accounting within the cluster vibration model and its mapping into the interacting boson model

    NARCIS (Netherlands)

    Meyer, R. A.; Scholten, O.; Brant, S.; Paar, V.

    1990-01-01

    We have investigated the structure of 144Nd84 within the framework of the cluster vibration model. Further, we have mapped, approximately, the cluster vibration model states into the proton-neutron interacting-boson model, with particular emphasis on the mixed-symmetry states, hindered transitions,

  13. Advances in simulated modeling of vibration systems based on computational intelligence

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Computational intelligence is the computational simulation of the bio-intelligence, which includes artificial neural networks, fuzzy systems and evolutionary computations. This article summarizes the state of the art in the field of simulated modeling of vibration systems using methods of computational intelligence, based on some relevant subjects and the authors' own research work. First, contributions to the applications of computational intelligence to the identification of nonlinear characteristics of packaging are reviewed. Subsequently, applications of the newly developed training algorithms for feedforward neural networks to the identification of restoring forces in multi-degree-of-freedom nonlinear systems are discussed. Finally, the neural-network-based method of model reduction for the dynamic simulation of microelectromechanical systems (MEMS) using generalized Hebbian algorithm (GHA) and robust GHA is outlined. The prospects of the simulated modeling of vibration systems using techniques of computational intelligence are also indicated.

  14. On the cluster composition of supercritical water combining molecular modeling and vibrational spectroscopic data.

    Science.gov (United States)

    Tassaing, T; Garrain, P A; Bégué, D; Baraille, I

    2010-07-21

    The present study is aimed at a detailed analysis of supercritical water structure based on the combination of experimental vibrational spectra as well as molecular modeling calculations of isolated water clusters. We propose an equilibrium cluster composition model where supercritical water is considered as an ideal mixture of small water clusters (n=1-3) at the chemical equilibrium and the vibrational spectra are expected to result from the superposition of the spectra of the individual clusters, Thus, it was possible to extract from the decomposition of the midinfrared spectra the evolution of the partition of clusters in supercritical water as a function of density. The cluster composition predicted by this model was found to be quantitatively consistent with the near infrared and Raman spectra of supercritical water analyzed using the same procedure. We emphasize that such methodology could be applied to determine the portion of cluster in water in a wider thermodynamic range as well as in more complex aqueous supercritical solutions.

  15. Vibrational characteristics of graphene sheets elucidated using an elastic network model.

    Science.gov (United States)

    Kim, Min Hyeok; Kim, Daejoong; Choi, Jae Boong; Kim, Moon Ki

    2014-08-01

    Recent studies of graphene have demonstrated its great potential for highly sensitive resonators. In order to capture the intrinsic vibrational characteristics of graphene, we propose an atomistic modeling method called the elastic network model (ENM), in which a graphene sheet is modeled as a mass-spring network of adjacent atoms connected by various linear springs with specific bond ratios. Normal mode analysis (NMA) reveals the various vibrational features of bi-layer graphene sheets (BLGSs) clamped at two edges. We also propose a coarse-graining (CG) method to extend our graphene study into the meso- and macroscales, at which experimental measurements and synthesis of graphene become practical. The simulation results show good agreement with experimental observations. Therefore, the proposed ENM approach will not only shed light on the theoretical study of graphene mechanics, but also play an important role in the design of highly-sensitive graphene-based resonators.

  16. On the Lowest Ro-Vibrational States of Protonated Methane: Experiment and Analytical Model

    Science.gov (United States)

    Schmiedt, Hanno; Jensen, Per; Asvany, Oskar; Schlemmer, Stephan

    2016-06-01

    Protonated methane, CH_5^+, is the prototype of an extremely floppy molecule. To the best of our knowledge all barriers are surmountable in the rovibrational ground state; the large amount of zero-point vibrational energy leads to large amplitude motions for many degrees of freedom. Low resolution but broad band vibrational spectroscopy [1] revealed an extremely wide range of C-H stretching vibrations. Comparison with theoretical IR spectra supported the structural motif of a CH_3 tripod and an H_2 moiety, bound to the central carbon atom by a 3c2e bond. In a more dynamic picture the five protons surround the central carbon atom without significant restrictions on the H-C-H bending or H_n-C torsional motions. The large-amplitude internal motions preclude a simple theoretical description of the type possible for more conventional molecules, such as the related spherical-top methane molecule. Recent high-resolution ro-vibrational spectra obtained in cold ion trap experiments [2] show that the observed CH_5^+ transitions belong to a very well-defined energy level scheme describing the lowest rotational and vibrational states of this enigmatic molecule. Here we analyse the experimental ground state combination differences and associate them with the motional states of CH_5^+ allowed by Fermi-Dirac statistics. A model Hamiltonian for unrestricted internal rotations in CH_5^+ yields a simple analytical expression for the energy eigenvalues, expressed in terms of new quantum numbers describing the free internal rotation. These results are compared to the experimental combination differences and the validity of the model will be discussed together with the underlying assumptions. [1] O. Asvany, P. Kumar, I. Hegemann, B. Redlich, S. Schlemmer and D. Marx, Science 309, (2005) 1219-1222 [2] O. Asvany, K.M.T. Yamada, S. Brünken, A. Potapov, S. Schlemmer, Science 347 (2015) 1346-1349

  17. Modeling and experimental vibration analysis of nanomechanical cantilever active probes

    Science.gov (United States)

    Salehi-Khojin, Amin; Bashash, Saeid; Jalili, Nader

    2008-08-01

    Nanomechanical cantilever (NMC) active probes have recently received increased attention in a variety of nanoscale sensing and measurement applications. Current modeling practices call for a uniform cantilever beam without considering the intentional jump discontinuities associated with the piezoelectric layer attachment and the NMC cross-sectional step. This paper presents a comprehensive modeling framework for modal characterization and dynamic response analysis of NMC active probes with geometrical discontinuities. The entire length of the NMC is divided into three segments of uniform beams followed by applying appropriate continuity conditions. The characteristics matrix equation is then used to solve for system natural frequencies and mode shapes. Using an equivalent electromechanical moment of a piezoelectric layer, forced motion analysis of the system is carried out. An experimental setup consisting of a commercial NMC active probe from Veeco and a state-of-the-art microsystem analyzer, the MSA-400 from Polytec, is developed to verify the theoretical developments proposed here. Using a parameter estimation technique based on minimizing the modeling error, optimal values of system parameters are identified. Mode shapes and the modal frequency response of the system for the first three modes determined from the proposed model are compared with those obtained from the experiment and commonly used theory for uniform beams. Results indicate that the uniform beam model fails to accurately predict the actual system response, especially in multiple-mode operation, while the proposed discontinuous beam model demonstrates good agreement with the experimental data. Such detailed and accurate modeling framework can lead to significant enhancement in the sensitivity of piezoelectric-based NMC sensors for use in variety of sensing and imaging applications.

  18. Radiation thermo-chemical models of protoplanetary discs. IV. Modelling CO ro-vibrational emission from Herbig Ae discs

    NARCIS (Netherlands)

    Thi, W. F.; Kamp, I.; Woitke, P.; van der Plas, G.; Bertelsen, R.; Wiesenfeld, L.

    2013-01-01

    Context. The carbon monoxide (CO) ro-vibrational emission from discs around Herbig Ae stars and T Tauri stars with strong ultraviolet emissions suggests that fluorescence pumping from the ground X1Σ+ to the electronic A1Π state of CO should be taken into account in disc models. Aims: We wish to unde

  19. Radiation thermo-chemical models of protoplanetary discs IV. Modelling CO ro-vibrational emission from Herbig Ae discs

    NARCIS (Netherlands)

    Thi, W. F.; Kamp, I.; Woitke, P.; van der Plas, G.; Bertelsen, R.; Wiesenfeld, L.

    2013-01-01

    Context. The carbon monoxide (CO) ro-vibrational emission from discs around Herbig Ae stars and T Tauri stars with strong ultraviolet emissions suggests that fluorescence pumping from the ground X-1 Sigma(+) to the electronic A(1)Pi state of CO should be taken into account in disc models. Aims. We w

  20. MODELLING AND VIBRATION ANALYSIS OF A ROAD PROFILE MEASURING SYSTEM

    Directory of Open Access Journals (Sweden)

    C. B. Patel

    2010-06-01

    Full Text Available During a vehicle development program, load data representing severe customer usage is required. The dilemma faced by a design engineer during the design process is that during the initial stage, only predicted loads estimated from historical targets are available, whereas the actual loads are available only at the fag end of the process. At the same time, changes required, if any, are easier and inexpensive during the initial stages of the design process whereas they are extremely costly in the latter stages of the process. The use of road profiles and vehicle models to predict the load acting on the whole vehicle is currently being researched. This work hinges on the ability to accurately measure road profiles. The objective of the work is to develop an algorithm, using MATLAB Simulink software, to convert the input signals into measured road profile. The algorithm is checked by the MATLAB Simulink 4 degrees of freedom half car model. To make the whole Simulink model more realistic, accelerometer and laser sensor properties are introduced. The present work contains the simulation of the mentioned algorithm with a half car model and studies the results in distance, time, and the frequency domain.

  1. Plan, formulate, discuss and correlate a NASTRAN finite element vibrations model of the Boeing Model 360 helicopter airframe

    Science.gov (United States)

    Gabel, R.; Lang, P. F.; Smith, L. A.; Reed, D. A.

    1989-01-01

    Boeing Helicopter, together with other United States helicopter manufacturers, participated in a finite element applications program to emplace in the United States a superior capability to utilize finite element analysis models in support of helicopter airframe design. The activities relating to planning and creating a finite element vibrations model of the Boeing Model 36-0 composite airframe are summarized, along with the subsequent analytical correlation with ground shake test data.

  2. Fuzzy Model-based Pitch Stabilization and Wing Vibration Suppression of Flexible Wing Aircraft.

    Science.gov (United States)

    Ayoubi, Mohammad A.; Swei, Sean Shan-Min; Nguyen, Nhan T.

    2014-01-01

    This paper presents a fuzzy nonlinear controller to regulate the longitudinal dynamics of an aircraft and suppress the bending and torsional vibrations of its flexible wings. The fuzzy controller utilizes full-state feedback with input constraint. First, the Takagi-Sugeno fuzzy linear model is developed which approximates the coupled aeroelastic aircraft model. Then, based on the fuzzy linear model, a fuzzy controller is developed to utilize a full-state feedback and stabilize the system while it satisfies the control input constraint. Linear matrix inequality (LMI) techniques are employed to solve the fuzzy control problem. Finally, the performance of the proposed controller is demonstrated on the NASA Generic Transport Model (GTM).

  3. Application of piezoelectric devices to vibration suppression - From modeling and controller designs to implementation

    Science.gov (United States)

    Won, Chin C.; Sparks, Dean; Belvin, Keith; Sulla, Jeff

    1992-01-01

    Embedded piezoelectric devices may be ideally suited for vibration control of space structures, which lack an inertial ground. When subjected to an input voltage, an embedded piezoelectric actuator changes its dimensions, which in turn generates a pair of forces exerted on adjacent structural members. From the direct piezoelectric effect, an embedded piezoelectric transducer generates an electric charge proportional to the structural dynamic response. In this paper, the implementation, testing and modeling of an active truss structure consisting of piezoelectric sensors and actuators are described. Linear quadratic Gaussian (LQG), second-order, and direct rate feedback control schemes are designed to suppress the vibrations of the active structure. Simulation and test results are presented. It is shown that special model reduction considerations are required to achieve good correlation between test and analysis.

  4. A Grey Prediction Model on Vibration Severity Development of a Pump

    Institute of Scientific and Technical Information of China (English)

    ZHAO Rong-zhen; ZHANG You-yun

    2004-01-01

    The method to enhance the precision of a grey model GM ( 1, 1 ) for predicting the development of vibration severity of a pump is investigated. The rectifying procedures involve the strtcture and the parameters regarding GM( 1,1 ). A new model based on GM ( 1, 1 ), which is GM ( E, 1,1 ), is proposed. In GM(E, 1, 1), the distribution of relative errors ratios between the original series and predicting series obtained by the mean of GM( 1,1 ) are considered in special points to set up the threshold and adjusting coefficients to control the modified action and the rectified amount based on distribution of the original series.The case shows that GM(E, 1, 1 ) is good at predicting the vibration severity development of the pump.

  5. Modelling and Quasilinear Control of Compressor Surge and Rotating Stall Vibrations

    Directory of Open Access Journals (Sweden)

    Ranjan Vepa

    2010-01-01

    Full Text Available An unsteady nonlinear and extended version of the Moore-Greitzer model is developed to facilitate the synthesis of a quasilinear stall vibration controller. The controller is synthesised in two steps. The first step defines the equilibrium point and ensures that the desired equilibrium point is stable. In the second step, the margin of stability at the equilibrium point is tuned or increased by an appropriate feedback of change in the mass flow rate about the steady mass flow rate at the compressor exit. The relatively simple and systematic non-linear modelling and linear controller synthesis approach adopted in this paper clearly highlights the main features on the controller that is capable of inhibiting compressor surge and rotating stall vibrations. Moreover, the method can be adopted for any axial compressor provided its steady-state compressor and throttle maps are known.

  6. Intrinsic and collective structure of an algebraic model of molecular rotation-vibration spectra

    Energy Technology Data Exchange (ETDEWEB)

    Leviatan, A.; Kirson, M.W.

    1988-11-15

    A geometrical framework is provided for a recently proposed interacting boson model of molecular rotation-vibration spectra. An intrinsic state is defined by way of a boson condensate parametrized in terms of shape variables and is used to generate an energy surface. The global minimum of the energy surface determines an equilibrium condensate which serves as the basis for an exact separation of the Hamiltonian into intrinsic and collective parts. A Bogoliubov treatment of the intrinsic part produces, in leading order, the normal modes of vibration and their frequencies, the collective degrees of freedom being represented by zero-frequency Goldstone modes associated with spontaneous symmetry breaking in the condensate. The method is very useful in interpreting numerical results of the algebraic model, in identifying the capabilities and inadequacies of the Hamiltonian, and in constructing appropriate algebraic Hamiltonians for specific molecules. copyright 1988 Academic Press, Inc.

  7. Nonlinear modeling of tuned liquid dampers (TLDs) in rotating wind turbine blades for damping edgewise vibrations

    DEFF Research Database (Denmark)

    Zhang, Zili; Nielsen, Søren R. K.; Basu, Biswajit;

    2015-01-01

    in the rotating coordinate system. A formulation has been proposed leading to coupled nonlinear ordinary differential equations, which have been obtained through the Galerkin variational approach together with the modal expansion technique. Two models, with one sloshing mode and three sloshing modes, have been......Tuned liquid dampers (TLDs) utilize the sloshing motion of the fluid to suppress structural vibrations and become a natural candidate for damping vibrations in rotating wind turbine blades. The centrifugal acceleration at the tip of a wind turbine blade can reach a magnitude of 7–8g...... studied in the numerical simulation. It is shown that the one-mode model is able to predict the sloshing force and the damped structural response accurately, since the primary damping effect on the structure is achieved by the first sloshing mode of the fluid. Although it is unable to predict the fluid...

  8. Modeling and control of flow-induced vibrations of a flexible hydrofoil in viscous flow

    Science.gov (United States)

    Caverly, Ryan James; Li, Chenyang; Chae, Eun Jung; Forbes, James Richard; Young, Yin Lu

    2016-06-01

    In this paper, a reduced-order model (ROM) of the flow-induced vibrations of a flexible cantilevered hydrofoil is developed and used to design an active feedback controller. The ROM is developed using data from high-fidelity viscous fluid-structure interaction (FSI) simulations and includes nonlinear terms to accurately capture the effect of lock-in. An active linear quadratic Gaussian (LQG) controller is designed based on a linearization of the ROM and is implemented in simulation with the ROM and the high-fidelity viscous FSI model. A controller saturation method is also presented that ensures that the control force applied to the system remains within a prescribed range. Simulation results demonstrate that the LQG controller successfully suppresses vibrations in both the ROM and viscous FSI simulations using a reasonable amount of control force.

  9. Torsional vibrations of helically buckled drill-strings: experiments and FE modelling

    Science.gov (United States)

    Kapitaniak, M.; Hamaneh, V. V.; Wiercigroch, M.

    2016-05-01

    This paper presents investigations of a complex drill-string vibrations on a novel experimental rig, developed by the Centre for Applied Dynamics Research at the University of Aberdeen. The rig is capable of exhibiting of all major types of drill-string vibrations, including torsional, axial and lateral modes. The importance of this work lies in the fact, that the experimental rig utilizes real industrial drill-bits and rock samples, which after careful identification of Torque On Bit (TOB) speed curves, allows to use an equivalent friction model to accommodate for both frictional and cutting components of the bit-rock interactions. Moreover, the proposed Finite Element model, after a careful calibration, is capable of replicating experimental results, for the prebuckled configuration of the drill-string. This allows us to observe the effect of winding and unwinding of the helical deformation during stick-slip motion.

  10. Dissipative vibrational model for chiral recognition in olfaction

    Science.gov (United States)

    Tirandaz, Arash; Taher Ghahramani, Farhad; Shafiee, Afshin

    2015-09-01

    We examine the olfactory discrimination of left- and right-handed enantiomers of chiral odorants based on the odorant-mediated electron transport from a donor to an acceptor of the olfactory receptors embodied in a biological environment. The chiral odorant is effectively described by an asymmetric double-well potential whose minima are associated to the left- and right-handed enantiomers. The introduced asymmetry is considered an overall measure of chiral interactions. The biological environment is conveniently modeled as a bath of harmonic oscillators. The resulting spin-boson model is adapted by a polaron transformation to derive the corresponding Born-Markov master equation with which we obtain the elastic and inelastic electron tunneling rates. We show that the inelastic tunneling through left- and right-handed enantiomers occurs with different rates. The discrimination mechanism depends on the ratio of tunneling frequency to localization frequency.

  11. Active vibration control using state space LQG and internal model control methods

    DEFF Research Database (Denmark)

    Mørkholt, Jakob; Elliott, S.J.

    1998-01-01

    Two ways of designing discrete time robust H2-controllers for feedback broadband active vibration control are compared through computer simulations. The methods are based on different models of disturbance and plant transfer functions, but yield controllers with identical properties. Two simple...... ways of introducing robustness into the H2-design are compared, and finally an efficient way of designing a practical IIR-controller is proposed....

  12. An advanced stochastic model for threshold crossing studies of rotor blade vibrations.

    Science.gov (United States)

    Gaonkar, G. H.; Hohenemser, K. H.

    1972-01-01

    A stochastic model to analyze turbulence-excited rotor blade vibrations, previously described by Gaonkar et al. (1971), is generalized to include nonuniformity of the atmospheric turbulence velocity across the rotor disk in the longitudinal direction. The results of the presented analysis suggest that the nonuniformity of the vertical turbulence over the rotor disk is of little influence on the random blade flapping response, at least as far as longitudinal nonuniformity is concerned.

  13. Vibration Stabilization of a Mechanical Model of a X-Band Linear Collider Final Focus Magnet

    Energy Technology Data Exchange (ETDEWEB)

    Frisch, Josef; Chang, Allison; Decker, Valentin; Doyle, Eric; Eriksson, Leif; Hendrickson, Linda; Himel, Thomas; Markiewicz, Thomas; Partridge, Richard; Seryi, Andrei; /SLAC

    2006-09-28

    The small beam sizes at the interaction point of a X-band linear collider require mechanical stabilization of the final focus magnets at the nanometer level. While passive systems provide adequate performance at many potential sites, active mechanical stabilization is useful if the natural or cultural ground vibration is higher than expected. A mechanical model of a room temperature linear collider final focus magnet has been constructed and actively stabilized with an accelerometer based system.

  14. Dynamics of vibrational chaos and entanglement in triatomic molecules: Lie algebraic model

    Institute of Scientific and Technical Information of China (English)

    Zhai Liang-Jun; Zheng Yu-Jun; Ding Shi-Liang

    2012-01-01

    In this paper,the dynamics of chaos and the entanglement in triatomic molecnlar vibrations are investigated.On the classical aspect,we study the chaotic trajectories in the phase space.We employ the linear entropy to examine the dynamical entanglement of the two bonds on the quantum aspect.The correspondence between the classical chaos and the quantum dynamical entanglement is also investigated.As an example,we apply our algebraic model to molecule H2O.

  15. Soil-Pile Interaction in the Pile Vertical Vibration Based on Fictitious Soil-Pile Model

    OpenAIRE

    Guodong Deng; Jiasheng Zhang; Wenbing Wu; Xiong Shi; Fei Meng

    2014-01-01

    By introducing the fictitious soil-pile model, the soil-pile interaction in the pile vertical vibration is investigated. Firstly, assuming the surrounding soil of pile to be viscoelastic material and considering its vertical wave effect, the governing equations of soil-pile system subjected to arbitrary harmonic dynamic force are founded based on the Euler-Bernoulli rod theory. Secondly, the analytical solution of velocity response in frequency domain and its corresponding semianalytical solu...

  16. Performance of a reduced-order FSI model for flow-induced vocal fold vibration

    Science.gov (United States)

    Chang, Siyuan; Luo, Haoxiang; Luo's lab Team

    2016-11-01

    Vocal fold vibration during speech production involves a three-dimensional unsteady glottal jet flow and three-dimensional nonlinear tissue mechanics. A full 3D fluid-structure interaction (FSI) model is computationally expensive even though it provides most accurate information about the system. On the other hand, an efficient reduced-order FSI model is useful for fast simulation and analysis of the vocal fold dynamics, which is often needed in procedures such as optimization and parameter estimation. In this work, we study the performance of a reduced-order model as compared with the corresponding full 3D model in terms of its accuracy in predicting the vibration frequency and deformation mode. In the reduced-order model, we use a 1D flow model coupled with a 3D tissue model. Two different hyperelastic tissue behaviors are assumed. In addition, the vocal fold thickness and subglottal pressure are varied for systematic comparison. The result shows that the reduced-order model provides consistent predictions as the full 3D model across different tissue material assumptions and subglottal pressures. However, the vocal fold thickness has most effect on the model accuracy, especially when the vocal fold is thin. Supported by the NSF.

  17. Vibrational dynamics of the bifluoride ion. I. Construction of a model potential surface

    Science.gov (United States)

    Epa, V. C.; Choi, J. H.; Klobukowski, M.; Thorson, W. R.

    1990-01-01

    Construction of an extended model potential surface for the bifluoride ion [FHF-] is described, based on ab initio calculations for the free ion at the CID (configuration interaction, double replacement) level with a Huzinaga-Dunning double-zeta basis set. 710 data points were generated, for displacements in the three noncyclic vibrational coordinates exploring the potential surface to a height at least 30 000 cm-1 above its minimum, and giving a realistic account of the dissociation into HF+F-. Analogous calculations were made for HF and F- using the same basis. The predicted hydrogen bond energy (De) is 48.13 kcal/mol, with equilibrium F-F separation Re =4.2905 a.u., in good agreement with other recent calculations. A model potential has been constructed, based on a superposition of Morse potentials associated with each H-F distance plus a fairly structureless correction function expressible as a 36-term least-squares polynomial in the prolate spheroidal coordinates used to describe vibrational displacements. The resulting model surface fits all 710 ab initio data points with an r.m.s. deviation of 65.6 cm-1, and points less than 15 000 cm-1 above the minimum with a deviation of 26.3 cm-1. This surface provides the basis for a series of vibrational dynamics studies on the FHF- system being done in this laboratory.

  18. Modeling of Tool Wear in Vibration Assisted Nano Impact-Machining by Loose Abrasives

    Directory of Open Access Journals (Sweden)

    Sagil James

    2014-01-01

    Full Text Available Vibration assisted nano impact-machining by loose abrasives (VANILA is a novel nanomachining process that combines the principles of vibration assisted abrasive machining and tip-based nanomachining, to perform target specific nanoabrasive machining of hard and brittle materials. An atomic force microscope (AFM is used as a platform in this process wherein nanoabrasives, injected in slurry between the workpiece and the vibrating AFM probe which is the tool, impact the workpiece and cause nanoscale material removal. The VANILA process are conducted such that the tool tip does not directly contact the workpiece. The level of precision and quality of the machined features in a nanomachining process is contingent on the tool wear which is inevitable. Initial experimental studies have demonstrated reduced tool wear in the VANILA process as compared to indentation process in which the tool directly contacts the workpiece surface. In this study, the tool wear rate during the VANILA process is analytically modeled considering impacts of abrasive grains on the tool tip surface. Experiments are conducted using several tools in order to validate the predictions of the theoretical model. It is seen that the model is capable of accurately predicting the tool wear rate within 10% deviation.

  19. Computer Simulation Study of Thermal Conduction in 1D Chains of Anharmonic Oscillators

    Institute of Scientific and Technical Information of China (English)

    Tejal N.Shah; P.N.Gajjar

    2013-01-01

    In this work thermal conduction in one-dimensional (1D) chains of anharmonic oscillators are studied using computer simulation.The temperature profile,heat flux and thermal conductivity are investigated for chain length N =100,200,400,800 and 1600.In the computer simulation anharmonicity is introduced due to Fermi-Pasta-Ulam-β (FPU-β) model For substrate interaction,an onsite potential due to Frenkel-Kontorova (FK) model has been used.Numerical simulations demonstrate that temperature gradient scales behave as N-1 linearly with the relation J =0.1765/N.For the thermal conductivity K,KN to N obey the linear relation of the type KN =0.8805N.It is shown that thermal transport is dependent on phonon-phonon interaction as well as phonon-lattice interaction.The thermal conductivity increaseslinearly with increase inanharmonicity and predicts relation κ =0.133 + 0.804β.It is also concluded that for higher value of the strength of the onsite potential system tends to a thermal insulator.

  20. ANALYTIC EQUATION OF STATE FOR GENERALIZED LENNARD-JONES SOLID INCLUDING LOWEST-ORDER ANHARMONIC AND CORRELATION CORRECTIONS

    Institute of Scientific and Technical Information of China (English)

    Cheng Jian-zheng; Zhang De-jun; Lan Cong-qing; Ye Chao-hui

    2000-01-01

    Based on the cell model, the general formula for the free energy of solids is derived analytically with the lowest order anharmonic modification and correlation effect taken into account. Combining a method of summing over lattice sites, the analytic equation of state for generalized Lennard-Jones solid is derived. The calculations show that the agreement between theory and computer simulation is quite good and is significantly improved as compared with the numerical results in literature. The comparison of different effects shows the theory including all neighbors but only considering the lowest anharmonic and correlation effects may be a good and convenient approximation for practical solids. The approximation can be easily extended to the quantum case and other generalized potentials.

  1. Free vibrations analysis of carbon nanotubes resting on Winkler foundations based on nonlocal models

    Energy Technology Data Exchange (ETDEWEB)

    Rahmanian, M.; Torkaman-Asadi, M.A., E-mail: torkaman-asadi@ae.sharif.edu; Firouz-Abadi, R.D.; Kouchakzadeh, M.A.

    2016-03-01

    In the present study, free vibrations of single walled carbon nanotubes (SWCNT) on an elastic foundation is investigated by nonlocal theory of elasticity with both beam and shell models. The nonlocal boundary conditions are derived explicitly and effectiveness of nonlocal parameter appearing in nonlocal boundary conditions is studied. Also it is demonstrated that the beam model is comparatively incapable of capturing size effects while shell model captures size effects more precisely. Moreover, the effects of some parameters such as mechanical properties, foundation stiffness, length and radius ratios on the natural frequencies are studied and some conclusions are drawn.

  2. Uncertainty modeling in vibration, control and fuzzy analysis of structural systems

    CERN Document Server

    Halder, Achintya; Ayyub, Bilal M

    1997-01-01

    This book gives an overview of the current state of uncertainty modeling in vibration, control, and fuzzy analysis of structural and mechanical systems. It is a coherent compendium written by leading experts and offers the reader a sampling of exciting research areas in several fast-growing branches in this field. Uncertainty modeling and analysis are becoming an integral part of system definition and modeling in many fields. The book consists of ten chapters that report the work of researchers, scientists and engineers on theoretical developments and diversified applications in engineering sy

  3. Phonon anharmonicity and negative thermal expansion in SnSe

    Science.gov (United States)

    Bansal, Dipanshu; Hong, Jiawang; Li, Chen W.; May, Andrew F.; Porter, Wallace; Hu, Michael Y.; Abernathy, Douglas L.; Delaire, Olivier

    2016-08-01

    The anharmonic phonon properties of SnSe in the P n m a phase were investigated with a combination of experiments and first-principles simulations. Using inelastic neutron scattering (INS) and nuclear resonant inelastic X-ray scattering (NRIXS), we have measured the phonon dispersions and density of states (DOS) and their temperature dependence, which revealed a strong, inhomogeneous shift and broadening of the spectrum on warming. First-principles simulations were performed to rationalize these measurements, and to explain the previously reported anisotropic thermal expansion, in particular the negative thermal expansion within the Sn-Se bilayers. Including the anisotropic strain dependence of the phonon free energy, in addition to the electronic ground state energy, is essential to reproduce the negative thermal expansion. From the phonon DOS obtained with INS and additional calorimetry measurements, we quantify the harmonic, dilational, and anharmonic components of the phonon entropy, heat capacity, and free energy. The origin of the anharmonic phonon thermodynamics is linked to the electronic structure.

  4. Modeling and Simulation of the Vibration Characteristics of the In-Wheel Motor Driving Vehicle Based on Bond Graph

    Directory of Open Access Journals (Sweden)

    Di Tan

    2016-01-01

    Full Text Available Bond graph theory is applied to the modeling and analysis of the vibration characteristics of the in-wheel motor driving vehicle. First, an 11-degree-of-freedom vibration model of the in-wheel motor driving vehicle is established based on bond graph, and then the correctness of the model is verified. Second, under the driving condition of class B road excitations and a speed of 50 Km/h, the vibration characteristics of the in-wheel motor driving vehicle are simulated and analyzed, and the activity of each part in the system is then calculated. Third, these parts that have less of an effect on the vibration characteristics of an in-wheel motor driving vehicle are identified according to the magnitude of the activity, and then the model is simplified by removing these parts. Finally, the reliability of the simplified model is verified by comparing the vibration characteristics of the model before and after simplification. This study can provide a method for the modeling and simulation of the vibration characteristics of the in-wheel motor driving vehicle.

  5. Level-lumping method for the modeling of CO2 vibrational kinetics

    Science.gov (United States)

    Berthelot, Antonin; Bogaerts, Annemie; University of Antwerp, Plasmant Team

    2016-09-01

    The conversion of greenhouse gases, especially CO2, into value-added chemicals is gaining a very large interest among the scientific and industrial communities. It is known that the excitation of the asymmetric vibrational mode of CO2 is one of the most important processes to achieve high energy efficiencies, thus making the CO2 kinetics very complex. Due to this complexity, the only models that have been developed so far were zero-dimensional models, considering only the variations over time. These models require strong approximations on the geometry of the reactor. In order to reduce the calculation time and to allow the modeling of complex plasma problems in 2D or 3D geometries, we have simplified the chemistry set of CO2 and developed a lumped-levels model for the vibrational kinetics. It was found that a 3-groups model gives a good agreement with the state-to-state model at pressures of 100mbar and above, at the conditions under study. The important dissociation and recombination mechanisms of CO2 have also been investigated. This lumped-levels model is being implemented in a 2D self-consistent microwave plasma code. This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under Grant Agreement No. 606889.

  6. Certain Type Turbofan Engine Whole Vibration Model with Support Looseness Fault and Casing Response Characteristics

    Directory of Open Access Journals (Sweden)

    H. F. Wang

    2014-01-01

    Full Text Available Support looseness fault is a type of common fault in aeroengine. Serious looseness fault would emerge under larger unbalanced force, which would cause excessive vibration and even lead to rubbing fault, so it is important to analyze and recognize looseness fault effectively. In this paper, based on certain type turbofan engine structural features, a rotor-support-casing whole model for certain type turbofan aeroengine is established. The rotor and casing systems are modeled by means of the finite element beam method; the support systems are modeled by lumped-mass model; the support looseness fault model is also introduced. The coupled system response is obtained by numerical integral method. In this paper, based on the casing acceleration signals, the impact characteristics of symmetrical stiffness and asymmetric stiffness models are analyzed, finding that the looseness fault would lead to the longitudinal asymmetrical characteristics of acceleration time domain wave and the multiple frequency characteristics, which is consistent with the real trial running vibration signals. Asymmetric stiffness looseness model is verified to be fit for aeroengine looseness fault model.

  7. Towards a comprehensive model for the electronic and vibrational structure of the Creutz-Taube ion.

    Science.gov (United States)

    Reimers, Jeffrey R; Wallace, Brett B; Hush, Noel S

    2008-01-13

    Since the synthesis of the Creutz-Taube ion, the nature of its charge localization has been of immense scientific interest, this molecule providing a model system for the understanding of the operation of biological photosynthetic and electron-transfer processes. However, recent work has shown that its nature remains an open question. Many systems of this type, including photosynthetic reaction centres, are of current research interest, and thereby the Creutz-Taube ion provides an important chemical paradigm: the key point of interest is the details of how such molecules behave. We lay the groundwork for the construction of a comprehensive model for its chemical and spectroscopic properties. Advances are described in some of the required areas including: simulation of electronic absorption spectra; quantitative depiction of the large interaction of the ion's electronic description with solvent motions; and the physics of Ru-NH3 spectator-mode vibrations. We show that details of the solvent electron-phonon coupling are critical in the interpretation of the spectator-mode vibrations, as these strongly mix with solvent motions when 0.75<2J/lambda<1. In this regime, a double-well potential exists which does not support localized zero-point vibration, and many observed properties of the Creutz-Taube ion are shown to be consistent with the hypothesis that the ion has this character.

  8. Analysis of bit-rock interaction during stick-slip vibrations using PDC cutting force model

    Energy Technology Data Exchange (ETDEWEB)

    Patil, P.A.; Teodoriu, C. [Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). ITE

    2013-08-01

    Drillstring vibration is one of the limiting factors maximizing the drilling performance and also causes premature failure of drillstring components. Polycrystalline diamond compact (PDC) bit enhances the overall drilling performance giving the best rate of penetrations with less cost per foot but the PDC bits are more susceptible to the stick slip phenomena which results in high fluctuations of bit rotational speed. Based on the torsional drillstring model developed using Matlab/Simulink for analyzing the parametric influence on stick-slip vibrations due to drilling parameters and drillstring properties, the study of relations between weight on bit, torque on bit, bit speed, rate of penetration and friction coefficient have been analyzed. While drilling with the PDC bits, the bit-rock interaction has been characterized by cutting forces and the frictional forces. The torque on bit and the weight on bit have both the cutting component and the frictional component when resolved in horizontal and vertical direction. The paper considers that the bit is undergoing stick-slip vibrations while analyzing the bit-rock interaction of the PDC bit. The Matlab/Simulink bit-rock interaction model has been developed which gives the average cutting torque, T{sub c}, and friction torque, T{sub f}, values on cutters as well as corresponding average weight transferred by the cutting face, W{sub c}, and the wear flat face, W{sub f}, of the cutters value due to friction.

  9. Modeling and dynamic properties of dual-chamber solid and liquid mixture vibration isolator

    Science.gov (United States)

    Li, F. S.; Chen, Q.; Zhou, J. H.

    2016-07-01

    The dual-chamber solid and liquid mixture (SALiM) vibration isolator, mainly proposed for vibration isolation of heavy machines with low frequency, consists of four principle parts: SALiM working media including elastic elements and incompressible oil, multi-layers bellows container, rigid reservoir and the oil tube connecting the two vessels. The isolation system under study is governed by a two-degrees-of-freedom (2-DOF) nonlinear equation including quadratic damping. Simplifying the nonlinear damping into viscous damping, the equivalent stiffness and damping model is derived from the equation for the response amplitude. Theoretical analysis and numerical simulation reveal that the isolator's stiffness and damping have multiple properties with different parameters, among which the effects of exciting frequency, vibrating amplitude, quadratic damping coefficient and equivalent stiffness of the two chambers on the isolator's dynamics are discussed in depth. Based on the boundary characteristics of stiffness and damping and the main causes for stiffness hardening effect, improvement strategies are proposed to obtain better dynamic properties. At last, experiments were implemented and the test results were generally consistent with the theoretical ones, which verified the reliability of the nonlinear dynamic model.

  10. Suppression of chaotic vibrations in a nonlinear half-car model

    Energy Technology Data Exchange (ETDEWEB)

    Tusset, Ângelo Marcelo, E-mail: tusset@utfpr.edu.br, E-mail: piccirillo@utfpr.edu.br, E-mail: fcjanzen@utfpr.edu.br, E-mail: wagner-barth@hotmail.com; Piccirillo, Vinícius, E-mail: tusset@utfpr.edu.br, E-mail: piccirillo@utfpr.edu.br, E-mail: fcjanzen@utfpr.edu.br, E-mail: wagner-barth@hotmail.com; Janzen, Frederic Conrad, E-mail: tusset@utfpr.edu.br, E-mail: piccirillo@utfpr.edu.br, E-mail: fcjanzen@utfpr.edu.br, E-mail: wagner-barth@hotmail.com; Lenz, Wagner Barth, E-mail: tusset@utfpr.edu.br, E-mail: piccirillo@utfpr.edu.br, E-mail: fcjanzen@utfpr.edu.br, E-mail: wagner-barth@hotmail.com [UTFPR- PONTA GROSSA, PR (Brazil); Balthazar, José Manoel, E-mail: jmbaltha@rc.unesp.br [UNESP-BAURU, SP (Brazil); Fonseca Brasil, Reyolando M. L. R. da, E-mail: reyolando.brasil@ufabc.edu.br [UFABC-SANTO ANDRE, SP (Brazil)

    2014-12-10

    The present work investigates the nonlinear response of a half-car model. The disturbances of the road are assumed to be sinusoidal. After constructing the bifurcation diagram, we using the 0-1 test for identify the chaotic motion. The principal objective of this study is to eliminate the chaotic behaviour of the chassis and reduce its vibration, and for this reason a control system for semi-active vehicle suspension with magnetorheological damper is proposed. The control mechanism is designed based on SDRE technique, where the control parameter is the voltage applied to the coil of the damper. Numerical results show that the proposed control method is effective in significantly reducing of the chassis vibration, increasing therefore, passenger comfort.

  11. Model Test Study on Ice Induced Vibration of A Compliant Conical Structure

    Institute of Scientific and Technical Information of China (English)

    HUNAG Yan; SHI Qing-zeng; SONG An

    2005-01-01

    The problem of ice induced vibration is common to ocean engineering of cold region countries. To study the ice induced vibration of a compliant conical structure, a series of model tests have been performed and some breakthrough progresses made. The ice sheet before the compliant conical structure is found to fail by two-time breaking in the tests. The process of two-time breaking behaves in two modes, and the general control of the ice and structural conditions determine the mode in which the ice force would behave. Two dynamic ice force functions are established respectively for the two modes of two-time breaking process in this paper. The numerical simulation results are in good agreement with the measured results, indicating that the dynamic ice force functions given in this paper can fully reflect the real situation of the dynamic ice force on a compliant conical structure.

  12. In Situ Experiment and Modelling of RC-Structure Using Ambient Vibration and Timoshenko Beam

    CERN Document Server

    Michel, Clotaire; Guéguen, Philippe; Boutin, Claude

    2007-01-01

    Recently, several experiments were reported using ambient vibration surveys in buildings to estimate the modal parameters of buildings. Their modal properties are full of relevant information concerning its dynamic behaviour in its elastic domain. The main scope of this paper is to determine relevant, though simple, beam modelling whose validity could be easily checked with experimental data. In this study, we recorded ambient vibrations in 3 buildings in Grenoble selected because of their vertical structural homogeneity. First, a set of recordings was done using a 18 channels digital acquisition system (CityShark) connected to six 3C Lennartz 5s sensors. We used the Frequency Domain Decomposition (FDD) technique to extract the modal parameters of these buildings. Second, it is shown in the following that the experimental quasi-elastic behaviour of such structure can be reduced to the behaviour of a vertical continuous Timoshenko beam. A parametric study of this beam shows that a bijective relation exists bet...

  13. A microscopic derivation of nuclear collective rotation-vibration model and its application to nuclei

    Science.gov (United States)

    Gulshani, P.

    2016-07-01

    We derive a microscopic version of the successful phenomenological hydrodynamic model of Bohr-Davydov-Faessler-Greiner for collective rotation-vibration motion of an axially symmetric deformed nucleus. The derivation is not limited to small oscillation amplitude. The nuclear Schrodinger equation is canonically transformed to collective co-ordinates, which is then linearized using a constrained variational method. The associated constraints are imposed on the wavefunction rather than on the particle co-ordinates. The approach yields three self-consistent, time-reversal invariant, cranking-type Schrodinger equations for the rotation-vibration and intrinsic motions, and a self-consistency equation. For harmonic oscillator mean-field potentials, these equations are solved in closed forms for excitation energy, cut-off angular momentum, and other nuclear properties for the ground-state rotational band in some deformed nuclei. The results are compared with measured data.

  14. MATHEMATICAL MODEL OF RR-TYPE MICROMECHANICAL GYRO CAPACITIVE COMB-TYPE SENSORS WITH ACCOUNT FOR VIBRATIONS

    Directory of Open Access Journals (Sweden)

    M. I. Evstifeev

    2016-05-01

    Full Text Available Subject of Research.The reasons for subharmonic resonances in RR-type micromechanical gyro output under linear vibrations are investigated. In ideal case, this type of gyro should be insensitive to this kind of impact due to primary and secondary angular oscillations. However, experimental results reveal significant increase in output signal under external vibrations in 20 Hz - 2 kHz bandwidth, though the device natural frequencies are above 3 kHz. This effect is caused by characteristicsnonlinearity of plate-type and comb-type capacitive sensors. Method. Mathematical model of the capacitive comb-type sensors is clarified. Electromechanical interactions in the sensors under external vibrations are described. Simulink modeling of specified mathematical model is carried out. External vibration modeling is doneby “oscillating frequency” method with constant accelerationamplitude in 20 Hz - 2 kHz bandwidth. Main Results.We have received good agreement of modeling and experimental results in the form of occurrence of subharmonic resonances under linear vibrations in three orthogonal directions. Obtained effects are explained by proposed mathematical models. The main reason for subharmonic resonances in RR-type micromechanical gyro output is that combs of stator and combs of proof mass jump out of mesh. Practical Relevance. The provided investigation gives the possibility to determine algorithmic and construction compensation methods of studied interactions for enhancing vibration resistance of RR-type micromechanical gyro.

  15. Modeling of a seated human body exposed to vertical vibrations in various automotive postures.

    Science.gov (United States)

    Liang, Cho-Chung; Chiang, Chi-Feng

    2008-04-01

    Although much research has been devoted to constructing specific models or to measuring the response characteristics of seated subjects, investigations on a mathematical human model on a seat with a backrest to evaluate vehicular riding comfort have not yet attracted the same level of attention. For the responses of a seated body to vertical vibrations, mathematical models of the mechanisms must be at least two-dimensional in the sagittal plane. In describing the motions of a seated body, two multibody models representative of the automotive postures found in the literature were investigated, one with and the other without a backrest support. Both models were modified to suitably represent the different automotive postures with and without backrest supports, and validated by various experimental data from the published literature pertaining to the same postural conditions. On the basis of the analytical study and the experimental validation, the fourteen-degrees-of-freedom model proposed in this research was found to be best fitted to the test results; therefore, this model is recommended for studying the biodynamic responses of a seated human body exposed to vertical vibrations in various automotive postures.

  16. Non-Gaussian wave packet dynamics in anharmonic potential: Cumulant expansion treatment

    Science.gov (United States)

    Toutounji, Mohamad

    2015-03-01

    This manuscript utilizes cumulant expansion as an alternative algebraic approach to evaluating integrals and solving a system of nonlinear differential equations for probing anharmonic dynamics in condensed phase systems using Morse oscillator. These integrals and differential equations become harder to solve as the anharmonicity of the system goes beyond that of Morse oscillator description. This algebraic approach becomes critically important in case of Morse oscillator as it tends to exhibit divergent dynamics and numerical uncertainties at low temperatures. The autocorrelation function is calculated algebraically and compared to the exact one for they match perfectly. It is also compared to the approximate autocorrelation function using the differential equations technique reported in Toutounji (2014) for weak and strong electron-phonon coupling cases. It is found that the present cumulant method is more efficient, and easier to use, than the exact expression. Deviation between the approximate autocorrelation function and the exact autocorrelation function starts to arise as the electron-phonon coupling strength increases. The autocorrelation function obtained using cumulants identically matches the exact autocorrelation function, thereby surpassing the approach presented in Toutounji (2014). The advantage of the present methodology is its applicability to various types of electron-phonon coupling cases. Additionally, the herein approach only uses algebraic techniques, thereby avoiding both the divergence integral and solving a set of linear first- and second-order partial differential equations as was done in previous work. Model calculations are presented to demonstrate the accuracy of the herein work.

  17. A comprehensive model for in-plane and out-of-plane vibration of CANDU fuel endplate rings

    Energy Technology Data Exchange (ETDEWEB)

    Yu, S.D., E-mail: syu@ryerson.ca; Fadaee, M.

    2016-08-01

    Highlights: • Proposed an effective method for modelling bending and torsional vibration of CANDU fuel endplate rings. • Applied successfully the thick plate theory to curved structural members by accounting for the transverse shear effect. • The proposed method is computationally more efficient compared to the 3D finite element. - Abstract: In this paper, a comprehensive vibration model is developed for analysing in-plane and out-of-plane vibration of CANDU fuel endplate rings by taking into consideration the effects of in-plane extension in the circumferential and radial directions, shear, and rotatory inertia. The model is based on Reddy’s thick plate theory and the nine-node isoparametric Lagrangian plate finite elements. Natural frequencies of various modes of vibration of circular rings obtained using the proposed method are compared with 3D finite element results, experimental data and results available in the literature. Excellent agreement was achieved.

  18. Nanoscale finite element models for vibrations of single-walled carbon nanotubes:atomistic versus continuum

    Institute of Scientific and Technical Information of China (English)

    R ANSARI; S ROUHI; M ARYAYI

    2013-01-01

    By the atomistic and continuum finite element models, the free vibration behavior of single-walled carbon nanotubes (SWCNTs) is studied. In the atomistic finite element model, the bonds and atoms are modeled by the beam and point mass elements, respectively. The molecular mechanics is linked to structural mechanics to determine the elastic properties of the mentioned beam elements. In the continuum finite element approach, by neglecting the discrete nature of the atomic structure of the nanotubes, they are modeled with shell elements. By both models, the natural frequencies of SWCNTs are computed, and the effects of the geometrical parameters, the atomic structure, and the boundary conditions are investigated. The accuracy of the utilized methods is verified in comparison with molecular dynamic simulations. The molecular structural model leads to more reliable results, especially for lower aspect ratios. The present analysis provides valuable information about application of continuum models in the investigation of the mechanical behaviors of nanotubes.

  19. Airy function approach and Numerov method to study the anharmonic oscillator potentials V(x = Ax2α + Bx2

    Directory of Open Access Journals (Sweden)

    N. Al Sdran

    2016-06-01

    Full Text Available The numerical solutions of the time independent Schrödinger equation of different one-dimensional potentials forms are sometime achieved by the asymptotic iteration method. Its importance appears, for example, on its efficiency to describe vibrational system in quantum mechanics. In this paper, the Airy function approach and the Numerov method have been used and presented to study the oscillator anharmonic potential V(x = Ax2α + Bx2, (A>0, B<0, with (α = 2 for quadratic, (α =3 for sextic and (α =4 for octic anharmonic oscillators. The Airy function approach is based on the replacement of the real potential V(x by a piecewise-linear potential v(x, while, the Numerov method is based on the discretization of the wave function on the x-axis. The first energies levels have been calculated and the wave functions for the sextic system have been evaluated. These specific values are unlimited by the magnitude of A, B and α. It’s found that the obtained results are in good agreement with the previous results obtained by the asymptotic iteration method for α =3.

  20. Understanding Anharmonicity in fcc Materials: From its Origin to ab initio Strategies beyond the Quasiharmonic Approximation.

    Science.gov (United States)

    Glensk, A; Grabowski, B; Hickel, T; Neugebauer, J

    2015-05-15

    We derive the Gibbs energy including the anharmonic contribution due to phonon-phonon interactions for an extensive set of unary fcc metals (Al, Ag, Au, Cu, Ir, Ni, Pb, Pd, Pt, Rh) by combining density-functional-theory (DFT) calculations with efficient statistical sampling approaches. We show that the anharmonicity of the macroscopic system can be traced back to the anharmonicity in local pairwise interactions. Using this insight, we derive and benchmark a highly efficient approach which allows the computation of anharmonic contributions using a few T=0 K DFT calculations only.

  1. Two Degrees of Freedom Non-linear Model to Study the Automobile’s Vibrations

    OpenAIRE

    Nicolae–Doru Stănescu

    2010-01-01

    In this paper we present a non-linear model for the study of an automobile's vibrations. The model has two degrees of freedom and it is highly non-linear. The forces in the springs are considered to be given by a polynomial potential. The equations of motion are obtained using the Lagrange second order equations. We determined the equilibrium positions. We proved the conditions for the uniqueness of the equilibrium. In our paper we studied the stability of the equilibrium and the stability of...

  2. Two Degrees of Freedom Non-linear Model to Study the Automobile’s Vibrations

    Directory of Open Access Journals (Sweden)

    Nicolae–Doru Stănescu

    2010-01-01

    Full Text Available In this paper we present a non-linear model for the study of an automobile's vibrations. The model has two degrees of freedom and it is highly non-linear. The forces in the springs are considered to be given by a polynomial potential. The equations of motion are obtained using the Lagrange second order equations. We determined the equilibrium positions. We proved the conditions for the uniqueness of the equilibrium. In our paper we studied the stability of the equilibrium and the stability of the motion. Finally a numerical application is presented.

  3. A preliminary study of asymmetric vocal fold vibrations: modeling and "in-vitro" validation

    CERN Document Server

    Ruty, Nicolas; Pelorson, Xavier; Hirschberg, Avraham; Lopez-Arteaga, Ines

    2007-01-01

    This paper deals with some of aspects of the influence of asymmetry on vocal folds vibrations. A theoretical model of vocal fold asymmetry is presented. The influence of asymmetry is quantitatively examined in terms of oscillation frequency and pressure threshold. The theoretical model is compared to "in-vitro" experiment on a deformable replica of vocal folds. It is found that asymmetry strongly influences the oscillation subglottal pressure threshold. Moreover, the vocal fold with the highest mechanical resonance frequency imposes the oscillation fundamental frequency. The influence of geometrical asymmetry instead of purely mechanical asymmetry is shown

  4. Some results from 1/8-scale Shuttle model vibration studies

    Science.gov (United States)

    Pinson, L. D.; Leadbetter, S. A.

    1978-01-01

    Highlights of experimental and analytical vibration studies of a 1/8-scale structural dynamic model of the Space Shuttle are presented. The Space Shuttle is a launch vehicle with elements assembled in an asymmetric manner. Responses of the assembled vehicle are characterized by directional coupling and high modal density at low frequencies. Effects of distortion of structure near element interfaces are shown to be significant and predictable with highly detailed mathematical models. Acquisition of modal data by single-point random excitation is shown to be viable for these complex structures. Element studies reveal large liquid-structure interactions and a wide range of structural damping.

  5. Semiempirical models in theory of intensities of rotation—vibration spectra of polyatomic molecules

    Science.gov (United States)

    Berezin, V. I.; El'kin, M. D.

    1992-10-01

    Two fundamental models in the theory of intensities of rotation—vibration spectra of polyatomic molecules are considered: a valence-optical scheme (Volkenstein—Elyashevitch—Stepanov scheme) and the Mayants—Averbukh method. The mathematics of the tensor analysis are proposed for the reception of the calculated formulae of overtonic spectroscopy in the limit of the debated models. It is shown that the difference in these formulae is conditioned by the form of the system of curvilinear coordinates, which are used to describe the different kinds of molecular motion.

  6. Subthreshold and suprathreshold vibrational resonance in the FitzHugh-Nagumo neuron model

    Science.gov (United States)

    Zhu, Jinjie; Kong, Chen; Liu, Xianbin

    2016-09-01

    We study the subthreshold and suprathreshold vibrational resonance in the FitzHugh-Nagumo neuron model. For the subthreshold situation, two cases where the stationary states are equilibrium point and limit cycle are considered, where different natures of vibrational resonance are observed via theoretical and numerical methods. Especially when the frequency of the high-frequency driving force is near the so-called canard-resonance frequency, the firing rate can be significantly enhanced at the presence of noise. For the suprathreshold situation, we show that the local maxima of the response amplitude are located at the transition boundaries of different phase-locking patterns. The minimal required forcing amplitudes of high-frequency signal of the firing onset are just multiples of the spiking frequency. Furthermore, phase portraits and time series show that the presence of the global maxima of the response results from not only the suprathreshold but also the subthreshold phase-locking modes. In spite of the distinct characteristics for two stationary states on subthreshold oscillation, the suprathreshold vibrational resonance showed no qualitative difference between the two cases.

  7. Model for continuously scanning ultrasound vibrometer sensing displacements of randomly rough vibrating surfaces.

    Science.gov (United States)

    Ratilal, Purnima; Andrews, Mark; Donabed, Ninos; Galinde, Ameya; Rappaport, Carey; Fenneman, Douglas

    2007-02-01

    An analytic model is developed for the time-dependent ultrasound field reflected off a randomly rough vibrating surface for a continuously scanning ultrasound vibrometer system in bistatic configuration. Kirchhoff's approximation to Green's theorem is applied to model the three-dimensional scattering interaction of the ultrasound wave field with the vibrating rough surface. The model incorporates the beam patterns of both the transmitting and receiving ultrasound transducers and the statistical properties of the rough surface. Two methods are applied to the ultrasound system for estimating displacement and velocity amplitudes of an oscillating surface: incoherent Doppler shift spectra and coherent interferometry. Motion of the vibrometer over the randomly rough surface leads to time-dependent scattering noise that causes a randomization of the received signal spectrum. Simulations with the model indicate that surface displacement and velocity estimation are highly dependent upon the scan velocity and projected wavelength of the ultrasound vibrometer relative to the roughness height standard deviation and correlation length scales of the rough surface. The model is applied to determine limiting scan speeds for ultrasound vibrometer measuring ground displacements arising from acoustic or seismic excitation to be used in acoustic landmine confirmation sensing.

  8. A semi-analytical beam model for the vibration of railway tracks

    Science.gov (United States)

    Kostovasilis, D.; Thompson, D. J.; Hussein, M. F. M.

    2017-04-01

    The high frequency dynamic behaviour of railway tracks, in both vertical and lateral directions, strongly affects the generation of rolling noise as well as other phenomena such as rail corrugation. An improved semi-analytical model of a beam on an elastic foundation is introduced that accounts for the coupling of the vertical and lateral vibration. The model includes the effects of cross-section asymmetry, shear deformation, rotational inertia and restrained warping. Consideration is given to the fact that the loads at the rail head, as well as those exerted by the railpads at the rail foot, may not act through the centroid of the section. The response is evaluated for a harmonic load and the solution is obtained in the wavenumber domain. Results are presented as dispersion curves for free and supported rails and are validated with the aid of a Finite Element (FE) and a waveguide finite element (WFE) model. Closed form expressions are derived for the forced response, and validated against the WFE model. Track mobilities and decay rates are presented to assess the potential implications for rolling noise and the influence of the various sources of vertical-lateral coupling. Comparison is also made with measured data. Overall, the model presented performs very well, especially for the lateral vibration, although it does not contain the high frequency cross-section deformation modes. The most significant effects on the response are shown to be the inclusion of torsion and foundation eccentricity, which mainly affect the lateral response.

  9. An Improved Lumped Parameter Model for a Piezoelectric Energy Harvester in Transverse Vibration

    Directory of Open Access Journals (Sweden)

    Guang-qing Wang

    2014-01-01

    Full Text Available An improved lumped parameter model (ILPM is proposed which predicts the output characteristics of a piezoelectric vibration energy harvester (PVEH. A correction factor is derived for improving the precisions of lumped parameter models for transverse vibration, by considering the dynamic mode shape and the strain distribution of the PVEH. For a tip mass, variations of the correction factor with PVEH length are presented with curve fitting from numerical solutions. The improved governing motion equations and exact analytical solution of the PVEH excited by persistent base motions are developed. Steady-state electrical and mechanical response expressions are derived for arbitrary frequency excitations. Effects of the structural parameters on the electromechanical outputs of the PVEH and important characteristics of the PVEH, such as short-circuit and open-circuit behaviors, are analyzed numerically in detail. Accuracy of the output performances of the ILPM is identified from the available lumped parameter models and the coupled distributed parameter model. Good agreement is found between the analytical results of the ILPM and the coupled distributed parameter model. The results demonstrate the feasibility of the ILPM as a simple and effective means for enhancing the predictions of the PVEH.

  10. Parameter estimation of the vibrational model for the SCOLE experimental facility

    Science.gov (United States)

    Crotts, B. D.; Kakad, Y. P.

    1994-01-01

    The objective of this study is to experimentally determine an empirical model of the vibrational dynamics of the Spacecraft COntrol Laboratory Experiment (SCOLE) facility. The first two flexible modes of this test article are identified using a linear least-square identification procedure and the data utilized for this procedure are obtained by exciting the structure from a quiescent state with torque wheels. The time history data of rate gyro sensors and accelerometers due to excitation and after excitation in terms of free-decay are used in the parameter estimation of the vibrational model. The free-decay portion of the data is analyzed using the Discrete Fourier transform to determine the optimal model order to use in modelling the response. Linear least-square analysis is then used to select the parameters that best fit the output of an Autoregressive (AR) model to the data. The control effectiveness of the torque wheels is then determined using the excitation portion of the test data, again using linear least squares.

  11. The thermo-vibrational convection in microgravity condition. Ground-based modelling.

    Science.gov (United States)

    Zyuzgin, A. V.; Putin, G. F.; Harisov, A. F.

    In 1995-2000 at orbital station "Mir" has been carried out the series of experiments with the equipment "Alice" for the studying regimes of heat transfer in the supercritical fluids under influence inertial microaccelerations. The experiments have found out existence of the thermo-vibrational and thermo-inertial convective movements in the real weightlessness[1] and controlling microgravity fields[2]. However regarding structures of thermovibrational convection the results of experiments have inconsistent character. Therefore carrying out the ground-based modeling of the given problem is actually. In this work in laboratory conditions were investigated the thermo-vibrational convective movements from the dot heat source at high-frequency vibrations of the cavity with the fluid and presence quasi-static microacceleration. As the result of ground-based modeling, the regimes of convective flows, similar observed in the space experiment are received. Evolution of the convective structures and the spatial-temporary characteristics of movements are investigated in a wide range of the problem parameters. The control criteria and its critical value are determined. The received results well coordinated to the data of space experiments and allow adding and expanding representation about thermo-vibrational effects in conditions of real weightlessness and remove the contradictions concerning structures thermo-vibrational convective flows, received at the analysis of the given orbital experiments. The research described in this publication was made possible in part by Russian Foundation for Basic Research and Administration of Perm Region, Russia, under grant 04-02-96038, and Award No. PE-009-0 of the U.S. Civilian Research & Development Foundation for the Independent States of the Former Soviet Union (CRDF). A.V. Zyuzgin, A. I. Ivanov, V. I. Polezhaev, G. F. Putin, E. B. Soboleva Convective Motions in Near-Critical Fluids under Real Zero-Gravity Conditions. Cosmic Research

  12. Phonon anharmonicity, lifetimes, and thermal transport in CH3NH3PbI3 from many-body perturbation theory

    Science.gov (United States)

    Whalley, Lucy D.; Skelton, Jonathan M.; Frost, Jarvist M.; Walsh, Aron

    2016-12-01

    Lattice vibrations in CH3NH3PbI3 are strongly interacting, with double-well instabilities present at the Brillouin zone boundary. Analysis within a first-principles lattice-dynamics framework reveals anharmonic potentials with short phonon quasiparticle lifetimes and mean free paths. The phonon behavior is distinct from the inorganic semiconductors GaAs and CdTe where three-phonon interaction strengths are three orders of magnitude smaller. The implications for the applications of hybrid halide perovskites arising from thermal conductivity, band-gap deformation, and charge-carrier scattering through electron-phonon coupling, are presented.

  13. Expansion Hamiltonian model for a diatomic molecule adsorbed on a surface: Vibrational states of the CO/Cu(100) system including surface vibrations.

    Science.gov (United States)

    Meng, Qingyong; Meyer, Hans-Dieter

    2015-10-28

    Molecular-surface studies are often done by assuming a corrugated, static (i.e., rigid) surface. To be able to investigate the effects that vibrations of surface atoms may have on spectra and cross sections, an expansion Hamiltonian model is proposed on the basis of the recently reported [R. Marquardt et al., J. Chem. Phys. 132, 074108 (2010)] SAP potential energy surface (PES), which was built for the CO/Cu(100) system with a rigid surface. In contrast to other molecule-surface coupling models, such as the modified surface oscillator model, the coupling between the adsorbed molecule and the surface atoms is already included in the present expansion SAP-PES model, in which a Taylor expansion around the equilibrium positions of the surface atoms is performed. To test the quality of the Taylor expansion, a direct model, that is avoiding the expansion, is also studied. The latter, however, requests that there is only one movable surface atom included. On the basis of the present expansion and direct models, the effects of a moving top copper atom (the one to which CO is bound) on the energy levels of a bound CO/Cu(100) system are studied. For this purpose, the multiconfiguration time-dependent Hartree calculations are carried out to obtain the vibrational fundamentals and overtones of the CO/Cu(100) system including a movable top copper atom. In order to interpret the results, a simple model consisting of two coupled harmonic oscillators is introduced. From these calculations, the vibrational levels of the CO/Cu(100) system as function of the frequency of the top copper atom are discussed.

  14. Expansion Hamiltonian model for a diatomic molecule adsorbed on a surface: Vibrational states of the CO/Cu(100) system including surface vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Qingyong, E-mail: mengqingyong@dicp.ac.cn [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, 116023 Dalian (China); Meyer, Hans-Dieter, E-mail: hans-dieter.meyer@pci.uni-heidelberg.de [Theoretische Chemie, Physikalisch-Chemisches Institut, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg (Germany)

    2015-10-28

    Molecular-surface studies are often done by assuming a corrugated, static (i.e., rigid) surface. To be able to investigate the effects that vibrations of surface atoms may have on spectra and cross sections, an expansion Hamiltonian model is proposed on the basis of the recently reported [R. Marquardt et al., J. Chem. Phys. 132, 074108 (2010)] SAP potential energy surface (PES), which was built for the CO/Cu(100) system with a rigid surface. In contrast to other molecule-surface coupling models, such as the modified surface oscillator model, the coupling between the adsorbed molecule and the surface atoms is already included in the present expansion SAP-PES model, in which a Taylor expansion around the equilibrium positions of the surface atoms is performed. To test the quality of the Taylor expansion, a direct model, that is avoiding the expansion, is also studied. The latter, however, requests that there is only one movable surface atom included. On the basis of the present expansion and direct models, the effects of a moving top copper atom (the one to which CO is bound) on the energy levels of a bound CO/Cu(100) system are studied. For this purpose, the multiconfiguration time-dependent Hartree calculations are carried out to obtain the vibrational fundamentals and overtones of the CO/Cu(100) system including a movable top copper atom. In order to interpret the results, a simple model consisting of two coupled harmonic oscillators is introduced. From these calculations, the vibrational levels of the CO/Cu(100) system as function of the frequency of the top copper atom are discussed.

  15. Systematics of nuclear densities, deformations and excitation energies within the context of the generalized rotation-vibration model

    Energy Technology Data Exchange (ETDEWEB)

    Chamon, L.C., E-mail: luiz.chamon@dfn.if.usp.b [Departamento de Fisica Nuclear, Instituto de Fisica da Universidade de Sao Paulo, Caixa Postal 66318, 05315-970, Sao Paulo, SP (Brazil); Carlson, B.V. [Departamento de Fisica, Instituto Tecnologico de Aeronautica, Centro Tecnico Aeroespacial, Sao Jose dos Campos, SP (Brazil)

    2010-11-30

    We present a large-scale systematics of charge densities, excitation energies and deformation parameters for hundreds of heavy nuclei. The systematics is based on a generalized rotation-vibration model for the quadrupole and octupole modes and takes into account second-order contributions of the deformations as well as the effects of finite diffuseness values for the nuclear densities. We compare our results with the predictions of classical surface vibrations in the hydrodynamical approximation.

  16. Effect of higher frequency components and duration of vibration on bone tissue alterations in the rat-tail model.

    Science.gov (United States)

    Peelukhana, Srikara V; Goenka, Shilpi; Kim, Brian; Kim, Jay; Bhattacharya, Amit; Stringer, Keith F; Banerjee, Rupak K

    2015-01-01

    To formulate more accurate guidelines for musculoskeletal disorders (MSD) linked to Hand-Arm Vibration Syndrome (HAVS), delineation of the response of bone tissue under different frequencies and duration of vibration needs elucidation. Rat-tails were vibrated at 125 Hz (9 rats) and 250 Hz (9 rats), at 49 m/s(2), for 1D (6 rats), 5D (6 rats) and 20D (6 rats); D=days (4 h/d). Rats in the control group (6 rats for the vibration groups; 2 each for 1D, 5D, and 20D) were left in their cages, without being subjected to any vibration. Structural and biochemical damages were quantified using empty lacunae count and nitrotyrosine signal-intensity, respectively. One-way repeated-measure mixed-model ANOVA at pbone, structural damage quantified through empty lacunae count was significant (pbone while the trabecular bone showed significant (pbone tissue are dependent upon higher vibration frequencies of 125 Hz, 250 Hz and the duration of vibration (5D, 20D).

  17. Thermodynamics of Anharmonic Systems: Uncoupled Mode Approximations for Molecules.

    Science.gov (United States)

    Li, Yi-Pei; Bell, Alexis T; Head-Gordon, Martin

    2016-06-14

    The partition functions, heat capacities, entropies, and enthalpies of selected molecules were calculated using uncoupled mode (UM) approximations, where the full-dimensional potential energy surface for internal motions was modeled as a sum of independent one-dimensional potentials for each mode. The computational cost of such approaches scales the same with molecular size as standard harmonic oscillator vibrational analysis using harmonic frequencies (HO(hf)). To compute thermodynamic properties, a computational protocol for obtaining the energy levels of each mode was established. The accuracy of the UM approximation depends strongly on how the one-dimensional potentials of each modes are defined. If the potentials are determined by the energy as a function of displacement along each normal mode (UM-N), the accuracies of the calculated thermodynamic properties are not significantly improved versus the HO(hf) model. Significant improvements can be achieved by constructing potentials for internal rotations and vibrations using the energy surfaces along the torsional coordinates and the remaining vibrational normal modes, respectively (UM-VT). For hydrogen peroxide and its isotopologs at 300 K, UM-VT captures more than 70% of the partition functions on average. By contrast, the HO(hf) model and UM-N can capture no more than 50%. For a selected test set of C2 to C8 linear and branched alkanes and species with different moieties, the enthalpies calculated using the HO(hf) model, UM-N, and UM-VT are all quite accurate comparing with reference values though the RMS errors of the HO model and UM-N are slightly higher than UM-VT. However, the accuracies in entropy calculations differ significantly between these three models. For the same test set, the RMS error of the standard entropies calculated by UM-VT is 2.18 cal mol(-1) K(-1) at 1000 K. By contrast, the RMS error obtained using the HO model and UM-N are 6.42 and 5.73 cal mol(-1) K(-1), respectively. For a test set

  18. Structure-borne transmissibility evaluation through modeling and analysis of aircraft vibration dampers

    Directory of Open Access Journals (Sweden)

    Isabel Lima Hidalgo

    2011-05-01

    Full Text Available In the aircraft industry a great practical relevance is given to the extensive use of vibration dampers between fuselage and interior panels. The proper representation of these isolators in computer models is of vital importance for the accurate evaluation of the vibration transmission paths for interior noise prediction. In general, simplified models are not able to predict the component performance at mid and high frequencies, since they do not take into account the natural frequencies of the damper. Experimental tests are carried out to evaluate the dynamic stiffness and the identification of the material properties for a damper available in the market. Different approaches for its modeling are analyzed via FEA, resulting in distinct dynamic responses as function of frequency. The dynamic behavior, when the damper natural mode are considered jointly with the high modal density of the plate that represents the fuselage, required the averaging of results in the high frequency range. At this aim, the statistical energy analysis is then used to turn the comparison between models easier by considering the averaged energy parameters. From simulations, it is possible to conclude how the damper natural modes influence the dynamic response of aircraft interior panels for high frequencies.

  19. Thermal Effects on Vibration and Control of Piezocomposite Kirchhoff Plate Modeled by Finite Elements Method

    Directory of Open Access Journals (Sweden)

    M. Sanbi

    2015-01-01

    Full Text Available Theoretical and numerical results of the modeling of a smart plate are presented for optimal active vibration control. The smart plate consists of a rectangular aluminum piezocomposite plate modeled in cantilever configuration with surface bonded thermopiezoelectric patches. The patches are symmetrically bonded on top and bottom surfaces. A generic thermopiezoelastic theory for piezocomposite plate is derived, using linear thermopiezoelastic theory and Kirchhoff assumptions. Finite element equations for the thermopiezoelastic medium are obtained by using the linear constitutive equations in Hamilton’s principle together with the finite element approximations. The structure is modelled analytically and then numerically and the results of simulations are presented in order to visualize the states of their dynamics and the state of control. The optimal control LQG-Kalman filter is applied. By using this model, the study first gives the influences of the actuator/sensor pair placement and size on the response of the smart plate. Second, the effects of thermoelastic and pyroelectric couplings on the dynamics of the structure and on the control procedure are studied and discussed. It is shown that the effectiveness of the control is not affected by the applied thermal gradient and can be applied with or without this gradient at any time of plate vibrations.

  20. Vibration control of electrorheological seat suspension with human-body model using sliding mode control

    Science.gov (United States)

    Choi, Seung-Bok; Han, Young-Min

    2007-06-01

    This paper presents vibration control performance of a semi-active electrorheological (ER) seat suspension system using a robust sliding mode controller (SMC). A cylindrical type of ER seat damper is manufactured for a commercial vehicle seat suspension and its field-dependent damping force is experimentally evaluated. A vertical vibration model of human-body is then derived and integrated with the governing equations of the ER seat suspension system. The integrated seat-driver model featured by a high order degree-of-freedom (dof) is reduced through a balanced model reduction method. The SMC is then designed based on the reduced model and the state observer is formulated to estimate feedback states which cannot be directly measured from sensors. By imposing a semi-active actuating condition, the synthesized SMC is experimentally realized. In the experimental implementation, a driver directly sits on the controlled seat. Both vertical displacement and acceleration are measured at seat frame and driver's head, respectively. Control performances are evaluated under various road conditions and compared with those obtained from conventional passive seat suspension system.

  1. Consistent post-reaction vibrational energy redistribution in DSMC simulations using TCE model

    Science.gov (United States)

    Borges Sebastião, Israel; Alexeenko, Alina

    2016-10-01

    The direct simulation Monte Carlo (DSMC) method has been widely applied to study shockwaves, hypersonic reentry flows, and other nonequilibrium flow phenomena. Although there is currently active research on high-fidelity models based on ab initio data, the total collision energy (TCE) and Larsen-Borgnakke (LB) models remain the most often used chemistry and relaxation models in DSMC simulations, respectively. The conventional implementation of the discrete LB model, however, may not satisfy detailed balance when recombination and exchange reactions play an important role in the flow energy balance. This issue can become even more critical in reacting mixtures involving polyatomic molecules, such as in combustion. In this work, this important shortcoming is addressed and an empirical approach to consistently specify the post-reaction vibrational states close to thermochemical equilibrium conditions is proposed within the TCE framework. Following Bird's quantum-kinetic (QK) methodology for populating post-reaction states, the new TCE-based approach involves two main steps. The state-specific TCE reaction probabilities for a forward reaction are first pre-computed from equilibrium 0-D simulations. These probabilities are then employed to populate the post-reaction vibrational states of the corresponding reverse reaction. The new approach is illustrated by application to exchange and recombination reactions relevant to H2-O2 combustion processes.

  2. Modelling framework for dynamic interaction between multiple pedestrians and vertical vibrations of footbridges

    Science.gov (United States)

    Venuti, Fiammetta; Racic, Vitomir; Corbetta, Alessandro

    2016-09-01

    After 15 years of active research on the interaction between moving people and civil engineering structures, there is still a lack of reliable models and adequate design guidelines pertinent to vibration serviceability of footbridges due to multiple pedestrians. There are three key issues that a new generation of models should urgently address: pedestrian "intelligent" interaction with the surrounding people and environment, effect of human bodies on dynamic properties of unoccupied structure and inter-subject and intra-subject variability of pedestrian walking loads. This paper presents a modelling framework of human-structure interaction in the vertical direction which addresses all three issues. The framework comprises two main models: (1) a microscopic model of multiple pedestrian traffic that simulates time varying position and velocity of each individual pedestrian on the footbridge deck, and (2) a coupled dynamic model of a footbridge and multiple walking pedestrians. The footbridge is modelled as a SDOF system having the dynamic properties of the unoccupied structure. Each walking pedestrian in a group or crowd is modelled as a SDOF system with an adjacent stochastic vertical force that moves along the footbridge following the trajectory and the gait pattern simulated by the microscopic model of pedestrian traffic. Performance of the suggested modelling framework is illustrated by a series of simulated vibration responses of a virtual footbridge due to light, medium and dense pedestrian traffic. Moreover, the Weibull distribution is shown to fit well the probability density function of the local peaks in the acceleration response. Considering the inherent randomness of the crowd, this makes it possible to determine the probability of exceeding any given acceleration value of the occupied bridge.

  3. Modelling the Source of Blasting for the Numerical Simulation of Blast-Induced Ground Vibrations: A Review

    Science.gov (United States)

    Ainalis, Daniel; Kaufmann, Olivier; Tshibangu, Jean-Pierre; Verlinden, Olivier; Kouroussis, Georges

    2017-01-01

    The mining and construction industries have long been faced with considerable attention and criticism in regard to the effects of blasting. The generation of ground vibrations is one of the most significant factors associated with blasting and is becoming increasingly important as mining sites are now regularly located near urban areas. This is of concern to not only the operators of the mine but also residents. Mining sites are subjected to an inevitable compromise: a production blast is designed to fragment the utmost amount of rock possible; however, any increase in the blast can generate ground vibrations which can propagate great distances and cause structural damage or discomfort to residents in surrounding urban areas. To accurately predict the propagation of ground vibrations near these sensitive areas, the blasting process and surrounding environment must be characterised and understood. As an initial step, an accurate model of the source of blast-induced vibrations is required. This paper presents a comprehensive review of the approaches to model the blasting source in order to critically evaluate developments in the field. An overview of the blasting process and description of the various factors which influence the blast performance and subsequent ground vibrations are also presented. Several approaches to analytically model explosives are discussed. Ground vibration prediction methods focused on seed waveform and charge weight scaling techniques are presented. Finally, numerical simulations of the blasting source are discussed, including methods to estimate blasthole wall pressure time-history, and hydrodynamic codes.

  4. Airy function approach and Numerov method to study the anharmonic oscillator potentials V(x) = Ax2α + Bx2

    Science.gov (United States)

    Al Sdran, N.; Maiz, F.

    2016-06-01

    The numerical solutions of the time independent Schrödinger equation of different one-dimensional potentials forms are sometime achieved by the asymptotic iteration method. Its importance appears, for example, on its efficiency to describe vibrational system in quantum mechanics. In this paper, the Airy function approach and the Numerov method have been used and presented to study the oscillator anharmonic potential V(x) = Ax2α + Bx2, (A>0, Bdiscretization of the wave function on the x-axis. The first energies levels have been calculated and the wave functions for the sextic system have been evaluated. These specific values are unlimited by the magnitude of A, B and α. It's found that the obtained results are in good agreement with the previous results obtained by the asymptotic iteration method for α =3.

  5. The vibrating reed frequency meter: digital investigation of an early cochlear model

    Directory of Open Access Journals (Sweden)

    Andrew Bell

    2015-10-01

    Full Text Available The vibrating reed frequency meter, originally employed by Békésy and later by Wilson as a cochlear model, uses a set of tuned reeds to represent the cochlea’s graded bank of resonant elements and an elastic band threaded between them to provide nearest-neighbour coupling. Here the system, constructed of 21 reeds progressively tuned from 45 to 55 Hz, is simulated numerically as an elastically coupled bank of passive harmonic oscillators driven simultaneously by an external sinusoidal force. To uncover more detail, simulations were extended to 201 oscillators covering the range 1–2 kHz. Calculations mirror the results reported by Wilson and show expected characteristics such as traveling waves, phase plateaus, and a response with a broad peak at a forcing frequency just above the natural frequency. The system also displays additional fine-grain features that resemble those which have only recently been recognised in the cochlea. Thus, detailed analysis brings to light a secondary peak beyond the main peak, a set of closely spaced low-amplitude ripples, rapid rotation of phase as the driving frequency is swept, frequency plateaus, clustering, and waxing and waning of impulse responses. Further investigation shows that each reed’s vibrations are strongly localised, with small energy flow along the chain. The distinctive set of equally spaced ripples is an inherent feature which is found to be largely independent of boundary conditions. Although the vibrating reed model is functionally different to the standard transmission line, its cochlea-like properties make it an intriguing local oscillator model whose relevance to cochlear mechanics needs further investigation.

  6. On the dependence of the OH* Meinel emission altitude on vibrational level: SCIAMACHY observations and model simulations

    Directory of Open Access Journals (Sweden)

    J. P. Burrows

    2012-02-01

    Full Text Available Measurements of the OH Meinel emissions in the terrestrial nightglow are one of the standard ground-based techniques to retrieve upper mesospheric temperatures. It is often assumed that the emission peak altitudes are not strongly dependent on the vibrational level, although this assumption is not based on convincing experimental evidence. In this study we use Envisat/SCIAMACHY (Scanning Imaging Absorption spectroMeter for Atmospheric CHartographY observations in the near-IR spectral range to retrieve vertical volume emission rate profiles of the OH(3-1, OH(6-2 and OH(8-3 Meinel bands in order to investigate, whether systematic differences in emission peak altitudes can be observed between the different OH Meinel bands. The results indicate that the emission peak altitudes are different for the different vibrational levels, with bands originating from higher vibrational levels having higher emission peak altitudes. It is shown that this finding is consistent with the majority of the previously published results. The SCIAMACHY observations yield differences in emission peak altitudes of up to about 4 km between the OH(3-1 and the OH(8-3 band. The observations are complemented by model simulations of the fractional population of the different vibrational levels and of the vibrational level dependence of the emission peak altitude. The model simulations well reproduce the observed vibrational level dependence of the emission peak altitude – both qualitatively and quantitatively – if quenching by atomic oxygen as well as multi-quantum collisional relaxation by O2 is considered. If a linear relationship between emission peak altitude and vibrational level is assumed, then a peak altitude difference of roughly 0.5 km per vibrational level is inferred from both the SCIAMACHY observations and the model simulations.

  7. On the classical dynamics of strongly driven anharmonic oscillators

    Science.gov (United States)

    Breuer, H. P.; Dietz, K.; Holthaus, M.

    1990-12-01

    We investigate the dynamics of periodically driven anharmonic oscillators. In particular, we consider values of the coupling strength which are orders of magnitude higher than those required for the overlap of primary resonances. We observe a division of phase space into a regular and a stochastic region. Both regions are separated by a sharp chaos border which sets an upper limit to the stochastic heating of particles; its dependence on the coupling strength is studied. We construct perpetual adiabatic invariants governing regular motion. A bifurcation mechanism leading to the annihilation of resonances is explained.

  8. Origin of anomalous anharmonic lattice dynamics of lead telluride

    CERN Document Server

    Shiga, Takuma; Hori, Takuma; Delaire, Olivier; Shiomi, Junichiro

    2015-01-01

    The origin of the anomalous anharmonic lattice dynamics of lead telluride is investigated using molecular dynamics simulations with interatomic force constants (IFCs) up to quartic terms obtained from first principles. The calculations reproduce the peak asymmetry of the radial distribution functions and the double peaks of transverse optical phonon previously observed with neutron diffraction and scattering experiments. They are identified to be due to the extremely large nearest-neighbor cubic IFCs in the [100] direction. The outstanding strength of the nearest-neighbor cubic IFCs relative to the longer-range ones explains the reason why the distortion in the radial distribution function is local.

  9. Perfect Lattice Perturbation Theory A Study of the Anharmonic Oscillator

    CERN Document Server

    Bietenholz, W

    1999-01-01

    As an application of perfect lattice perturbation theory, we construct an O(\\lambda) perfect lattice action for the anharmonic oscillator analytically in momentum space. In coordinate space we obtain a set of 2-spin and 4-spin couplings \\propto \\lambda, which we evaluate for various masses. These couplings never involve variables separated by more than two lattice spacings. The O(\\lambda) perfect action is simulated and compared to the standard action. We discuss the improvement for the first two energy gaps \\Delta E_1, \\Delta E_2 and for the scaling quantity \\Delta E_2 / \\Delta E1 in different regimes of the interaction parameter, and of the correlation length.

  10. Piezoelectric devices for vibration suppression: Modeling and application to a truss structure

    Science.gov (United States)

    Won, Chin C.; Sparks, Dean W., Jr.; Belvin, W. Keith; Sulla, Jeff L.

    1993-01-01

    For a space structure assembled from truss members, an effective way to control the structure may be to replace the regular truss elements by active members. The active members play the role of load carrying elements as well as actuators. A piezo strut, made of a stack of piezoceramics, may be an ideal active member to be integrated into a truss space structure. An electrically driven piezo strut generates a pair of forces, and is considered as a two-point actuator in contrast to a one-point actuator such as a thruster or a shaker. To achieve good structural vibration control, sensing signals compatible to the control actuators are desirable. A strain gage or a piezo film with proper signal conditioning to measure member strain or strain rate, respectively, are ideal control sensors for use with a piezo actuator. The Phase 0 CSI Evolutionary Model (CEM) at NASA Langley Research Center used cold air thrusters as actuators to control both rigid body motions and flexible body vibrations. For the Phase 1 and 2 CEM, it is proposed to use piezo struts to control the flexible modes and thrusters to control the rigid body modes. A tenbay truss structure with active piezo struts is built to study the modeling, controller designs, and experimental issues. In this paper, the tenbay structure with piezo active members is modelled using an energy method approach. Decentralized and centralized control schemes are designed and implemented, and preliminary analytical and experimental results are presented.

  11. On the Free Vibration Modeling of Spindle Systems: A Calibrated Dynamic Stiffness Matrix

    Directory of Open Access Journals (Sweden)

    Omar Gaber

    2014-01-01

    Full Text Available The effect of bearings on the vibrational behavior of machine tool spindles is investigated. This is done through the development of a calibrated dynamic stiffness matrix (CDSM method, where the bearings flexibility is represented by massless linear spring elements with tuneable stiffness. A dedicated MATLAB code is written to develop and to assemble the element stiffness matrices for the system’s multiple components and to apply the boundary conditions. The developed method is applied to an illustrative example of spindle system. When the spindle bearings are modeled as simply supported boundary conditions, the DSM model results in a fundamental frequency much higher than the system’s nominal value. The simply supported boundary conditions are then replaced by linear spring elements, and the spring constants are adjusted such that the resulting calibrated CDSM model leads to the nominal fundamental frequency of the spindle system. The spindle frequency results are also validated against the experimental data. The proposed method can be effectively applied to predict the vibration characteristics of spindle systems supported by bearings.

  12. Surface and thermal effects on vibration of embedded alumina nanobeams based on novel Timoshenko beam model

    Institute of Scientific and Technical Information of China (English)

    B AMIRIAN; R HOSSEINI-ARA; H MOOSAVI

    2014-01-01

    This paper deals with the free vibration analysis of circular alumina (Al2O3) nanobeams in the presence of surface and thermal effects resting on a Pasternak foun-dation. The system of motion equations is derived using Hamilton’s principle under the assumptions of the classical Timoshenko beam theory. The effects of the transverse shear deformation and rotary inertia are also considered within the framework of the mentioned theory. The separation of variables approach is employed to discretize the governing equa-tions which are then solved by an analytical method to obtain the natural frequencies of the alumina nanobeams. The results show that the surface effects lead to an increase in the natural frequency of nanobeams as compared with the classical Timoshenko beam model. In addition, for nanobeams with large diameters, the surface effects may increase the natural frequencies by increasing the thermal effects. Moreover, with regard to the Pasternak elastic foundation, the natural frequencies are increased slightly. The results of the present model are compared with the literature, showing that the present model can capture correctly the surface effects in thermal vibration of nanobeams.

  13. Terahertz vibrations of crystalline acyclic and cyclic diglycine: benchmarks for London force correction models.

    Science.gov (United States)

    Juliano, Thomas R; Korter, Timothy M

    2013-10-10

    Terahertz spectroscopy provides direct information concerning weak intermolecular forces in crystalline molecular solids and therefore acts as an excellent method for calibrating and evaluating computational models for noncovalent interactions. In this study, the low-frequency vibrations of two dipeptides were compared, acyclic diglycine and cyclic diglycine, as benchmark systems for gauging the performance of semiempirical London force correction approaches. The diglycine samples were investigated using pulsed terahertz spectroscopy from 10 to 100 cm(-1) and then analyzed using solid-state density functional theory (DFT) augmented with existing London force corrections, as well as a new parametrization (DFT-DX) based on known experimental values. The two diglycine molecules provide a useful test for the applied models given their similarities, but more importantly the differences in the intermolecular forces displayed by each. It was found that all of the considered London force correction models were able to generate diglycine crystal structures of similar accuracy, but considerable variation occurred in their abilities to predict terahertz frequency vibrations. The DFT-DX parametrization was particularly successful in this investigation and shows promise for the improved analysis of low-frequency spectra.

  14. Lattice anharmonicity and thermal conductivity from compressive sensing of first-principles calculations.

    Science.gov (United States)

    Zhou, Fei; Nielson, Weston; Xia, Yi; Ozoliņš, Vidvuds

    2014-10-31

    First-principles prediction of lattice thermal conductivity κ(L) of strongly anharmonic crystals is a long-standing challenge in solid-state physics. Making use of recent advances in information science, we propose a systematic and rigorous approach to this problem, compressive sensing lattice dynamics. Compressive sensing is used to select the physically important terms in the lattice dynamics model and determine their values in one shot. Nonintuitively, high accuracy is achieved when the model is trained on first-principles forces in quasirandom atomic configurations. The method is demonstrated for Si, NaCl, and Cu(12)Sb(4)S(13), an earth-abundant thermoelectric with strong phonon-phonon interactions that limit the room-temperature κ(L) to values near the amorphous limit.

  15. Lattice Anharmonicity and Thermal Conductivity from Compressive Sensing of First-Principles Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Fei [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Nielson, Weston [Univ. of California, Los Angeles, CA (United States); Xia, Yi [Univ. of California, Los Angeles, CA (United States); Ozoliņš, Vidvuds [Univ. of California, Los Angeles, CA (United States)

    2014-10-01

    First-principles prediction of lattice thermal conductivity κL of strongly anharmonic crystals is a long-standing challenge in solid-state physics. Making use of recent advances in information science, we propose a systematic and rigorous approach to this problem, compressive sensing lattice dynamics. Compressive sensing is used to select the physically important terms in the lattice dynamics model and determine their values in one shot. Nonintuitively, high accuracy is achieved when the model is trained on first-principles forces in quasirandom atomic configurations. The method is demonstrated for Si, NaCl, and Cu12Sb4S13, an earth-abundant thermoelectric with strong phonon-phonon interactions that limit the room-temperature κL to values near the amorphous limit.

  16. Anharmonicity of internal atomic oscillation and effective antineutrino mass evaluation from gaseous molecular tritium \\beta -decay

    CERN Document Server

    Lokhov, Alexey V

    2016-01-01

    Data analysis of the next generation effective antineutrino mass measurement experiment KATRIN requires reliable knowledge of systematic corrections. In particular, the width of the daughter molecular ion excitation spectrum rovibrational band should be known with a better then 1% precision. Very precise ab initio quantum calculations exist, and we compare them with the well known tritium molecule parameters within the framework of a phenomenological model. The rovibrational band width with accuracy of a few percent is interpreted as a result of the zero-point atomic oscillation in the harmonic potential. The Morse interatomic potential is used to investigate the impact of anharmonic atomic oscillations. The calculated corrections cannot account for the difference between the ab initio quantum calculations and the phenomenological model.

  17. Active vibration control of a composite wing model using PZT sensors/actuators and virtex: 4 FPGAs

    Science.gov (United States)

    Prakash, Shashikala; Venkatasubramanyam, D. V.; Krishnan, Bharath; Pavate, Aravind; Kabra, Hemant

    2009-07-01

    The reduction of vibration in Aircraft/Aerospace structures as well as helicopter fuselage is becoming increasingly important. A traditional approach to vibration control uses passive techniques which are relatively large, costly and ineffective at low frequencies. Active Vibration Control (AVC), apart from having benefits in size, weight, volume and cost, efficiently attenuates low frequency vibration. Hitherto this was being achieved using high speed Digital Signal Processors (DSPs). But the throughput requirements of general purpose DSPs have increased very much and the Field Programmable Gate Arrays (FPGAs) have emerged as an alternative. The silicon resources of an FPGA lead to staggering performance gains i.e. they are 100 times faster than DSPs. In the present paper Active Vibration Control of a Composite Research Wing Model is investigated using Piezo electric patches as sensors and PZT bimorph actuators collocated on the bottom surface as secondary actuators. Attempt has been made to realize the State - of - the - Art Active Vibration Controller using the Xilinx System Generator on VIRTEX - 4 FPGA. The control has been achieved by implementing the Filtered-X Least Mean Square (FXLMS) based adaptive filter on the FPGA. Single channel real time control has been successfully implemented & tested on the composite research wing model.

  18. Fermi-Decay Law of Bose-Einstein Condensate Trapped in an Anharmonic Potential

    Institute of Scientific and Technical Information of China (English)

    LIU Yuan; JIA Ya-Fei; LI Wei-Dong

    2012-01-01

    The Fermi-decay law of Bose-Einstein condensate, which is trapped by a cigar-shaped anharmonic trap and subjected to a weak random perturbation, is investigated by numerically calculating quantum fidelity (Loschmidt echo), to reveal the coherence loss of the condensate. We find that there are three indispensable factors, anharmonic trap, weak random perturbation and nonlinear interaction, in charging of the Fermi-decay law. The anharmonic trap creates anharmonic oscillations, and the weak random perturbation causes coherence loss by disturbing their coherent oscillations, while the nonlinear interaction enhances the loss to the Fermi-decay law. Based on the Fermi-decay law, some suggestions are presented to prolong the coherent time during coherently manipulating condensates.%The Fermi-decay law of Bose Einstein condensate,which is trapped by a cigar-shaped anharmonic trap and subjected to a weak random perturbation,is investigated by numerically calculating quantum fidelity (Loschmidt echo),to reveal the coherence loss of the condensate.We find that there are three indispensable factors,anharmonic trap,weak random perturbation and nonlinear interaction,in charging of the Fermi-decay law.The anharmonic trap creates anharmonic oscillations,and the weak random perturbation causes coherence loss by disturbing their coherent oscillations,while the nonlinear interaction enhances the loss to the Fermi-decay law.Based on the Fermi-decay law,some suggestions are presented to prolong the coherent time during coherently manipulating condensates.

  19. Vibration Propagation of Gear Dynamics in a Gear-Bearing-Housing System Using Mathematical Modeling and Finite Element Analysis

    Science.gov (United States)

    Parker, Robert G.; Guo, Yi; Eritenel, Tugan; Ericson, Tristan M.

    2012-01-01

    Vibration and noise caused by gear dynamics at the meshing teeth propagate through power transmission components to the surrounding environment. This study is devoted to developing computational tools to investigate the vibro-acoustic propagation of gear dynamics through a gearbox using different bearings. Detailed finite element/contact mechanics and boundary element models of the gear/bearing/housing system are established to compute the system vibration and noise propagation. Both vibration and acoustic models are validated by experiments including the vibration modal testing and sound field measurements. The effectiveness of each bearing type to disrupt vibration propagation is speed-dependent. Housing plays an important role in noise radiation .It, however, has limited effects on gear dynamics. Bearings are critical components in drivetrains. Accurate modeling of rolling element bearings is essential to assess vibration and noise of drivetrain systems. This study also seeks to fully describe the vibro-acoustic propagation of gear dynamics through a power-transmission system using rolling element and fluid film wave bearings. Fluid film wave bearings, which have higher damping than rolling element bearings, could offer an energy dissipation mechanism that reduces the gearbox noise. The effectiveness of each bearing type to disrupt vibration propagation in explored using multi-body computational models. These models include gears, shafts, rolling element and fluid film wave bearings, and the housing. Radiated noise is mapped from the gearbox surface to surrounding environment. The effectiveness of rolling element and fluid film wave bearings in breaking the vibro-acoustic propagation path from the gear to the housing is investigated.

  20. A Modular Finite Element Model for Analysis of Vibration Transmission in Multi-Storey Lightweight Buildings

    DEFF Research Database (Denmark)

    Andersen, Lars Vabbersgaard; Kirkegaard, Poul Henning; Persson, K.;

    2012-01-01

    Transmission of sound and vibrations in the built environment is a nuisance to people working and living in buildings.......Transmission of sound and vibrations in the built environment is a nuisance to people working and living in buildings....

  1. Vibrational mode assignment of finite temperature infrared spectra using the AMOEBA polarizable force field.

    Science.gov (United States)

    Thaunay, Florian; Dognon, Jean-Pierre; Ohanessian, Gilles; Clavaguéra, Carine

    2015-10-21

    The calculation of infrared spectra by molecular dynamics simulations based on the AMOEBA polarizable force field has recently been demonstrated [Semrouni et al., J. Chem. Theory Comput., 2014, 10, 3190]. While this approach allows access to temperature and anharmonicity effects, band assignment requires additional tools, which we describe in this paper. The Driven Molecular Dynamics approach, originally developed by Bowman, Kaledin et al. [Bowman et al. J. Chem. Phys., 2003, 119, 646, Kaledin et al. J. Chem. Phys., 2004, 121, 5646] has been adapted and associated with AMOEBA. Its advantages and limitations are described. The IR spectrum of the Ac-Phe-Ala-NH2 model peptide is analyzed in detail. In addition to differentiation of conformations by reproducing frequency shifts due to non-covalent interactions, DMD allows visualizing the temperature-dependent vibrational modes.

  2. A combined Raman spectroscopic and theoretical investigation of fundamental vibrational bands of furfuryl alcohol (2-furanmethanol)

    DEFF Research Database (Denmark)

    Barsberg, S.; Berg, Rolf W.

    2006-01-01

    . study of FA in weakly interacting environments. It is the first study of FA vibrational properties based on d. functional theory (DFT/B3LYP), and a recently proposed hybrid approach to the calcn. of fundamental frequencies, which also includes an anharmonic contribution. FA occupies five different...

  3. Anharmonicity in Light Scattering by Optical Phonons in GaAs1-xBix

    Energy Technology Data Exchange (ETDEWEB)

    Joshya, R. S.; Rajaji, V.; Narayana, Chandrabhas; Mascarenhas, Angelo; Kini, R. N.

    2016-05-28

    We present a Raman spectroscopic study of GaAs 1-xBix epilayers grown by molecular beam epitaxy. We have investigated the anharmonic effect on the GaAs-like longitudinal optical phonon mode (LO'GaAs) of GaAs 1-xBix for different Bi concentrations at various temperatures. The results are analyzed in terms of the anharmonic damping effect induced by thermal and compositional disorder. We have observed that the anharmonicity increases with Bi concentration in GaAs 1-xBix as evident from the increase in the anharmonicity constants. In addition, the anharmonic lifetime of the optical phonon decreases with increasing Bi concentration in GaAs 1-xBix.

  4. Dynamic test and finite element model updating of bridge structures based on ambient vibration

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The dynamic characteristics of bridge structures are the basis of structural dynamic response and seismic analysis,and are also an important target of health condition monitoring.In this paper,a three-dimensional finite-element model is first established for a highway bridge over a railroad on No.312 National Highway.Based on design drawings,the dynamic characteristics of the bridge are studied using finite element analysis and ambient vibration measurements.Thus,a set of data is selected based on sensitivity analysis and optimization theory;the finite element model of the bridge is updated.The numerical and experimental results show that the updated method is more simple and effective,the updated finite element model can reflect the dynamic characteristics of the bridge better,and it can be used to predict the dynamic response under complex external forces.It is also helpful for further damage identification and health condition monitoring.

  5. Mathematical Modeling of a Transient Vibration Control Strategy Using a Switchable Mass Stiffness Compound System

    Directory of Open Access Journals (Sweden)

    Diego Francisco Ledezma-Ramirez

    2014-01-01

    Full Text Available A theoretical control strategy for residual vibration control resulting from a shock pulse is studied. The semiactive control strategy is applied in a piecewise linear compound model and involves an on-off logic to connect and disconnect a secondary mass stiffness system from the primary isolation device, with the aim of providing high energy dissipation for lightly damped systems. The compound model is characterized by an energy dissipation mechanism due to the inelastic collision between the two masses and then viscous damping is introduced and its effects are analyzed. The objective of the simulations is to evaluate the transient vibration response in comparison to the results for a passive viscously damped single degree-of-freedom system considered as the benchmark or reference case. Similarly the decay in the compound system is associated with an equivalent decay rate or logarithmic decrement for direct comparison. It is found how the compound system provides improved isolation compared to the passive system, and the damping mechanisms are explained.

  6. Vibrational dynamics and solvatochromism of the label SCN in various solvents and hemoglobin by time dependent IR and 2D-IR spectroscopy.

    Science.gov (United States)

    van Wilderen, Luuk J G W; Kern-Michler, Daniela; Müller-Werkmeister, Henrike M; Bredenbeck, Jens

    2014-09-28

    We investigated the characteristics of the thiocyanate (SCN) functional group as a probe of local structural dynamics for 2D-IR spectroscopy of proteins, exploiting the dependence of vibrational frequency on the environment of the label. Steady-state and time-resolved infrared spectroscopy are performed on the model compound methylthiocyanate (MeSCN) in solvents of different polarity, and compared to data obtained on SCN as a local probe introduced as cyanylated cysteine in the protein bovine hemoglobin. The vibrational lifetime of the protein label is determined to be 37 ps, and its anharmonicity is observed to be lower than that of the model compound (which itself exhibits solvent-independent anharmonicity). The vibrational lifetime of MeSCN generally correlates with the solvent polarity, i.e. longer lifetimes in less polar solvents, with the longest lifetime being 158 ps. However, the capacity of the solvent to form hydrogen bonds complicates this simplified picture. The long lifetime of the SCN vibration is in contrast to commonly used azide labels or isotopically-labeled amide I and better suited to monitor structural rearrangements by 2D-IR spectroscopy. We present time-dependent 2D-IR data on the labeled protein which reveal an initially inhomogeneous structure around the CN oscillator. The distribution becomes homogeneous after 5 picoseconds so that spectral diffusion has effectively erased the 'memory' of the CN stretching frequency. Therefore, the 2D-IR data of the label incorporated in hemoglobin demonstrate how SCN can be utilized to sense rearrangements in the local structure on a picosecond timescale.

  7. Validated linear dynamic model of electrically-shunted magnetostrictive transducers with application to structural vibration control

    Science.gov (United States)

    Scheidler, Justin J.; Asnani, Vivake M.

    2017-03-01

    This paper presents a linear model of the fully-coupled electromechanical behavior of a generally-shunted magnetostrictive transducer. The impedance and admittance representations of the model are reported. The model is used to derive the effect of the shunt’s electrical impedance on the storage modulus and loss factor of the transducer without neglecting the inherent resistance of the transducer’s coil. The expressions are normalized and then shown to also represent generally-shunted piezoelectric materials that have a finite leakage resistance. The generalized expressions are simplified for three shunts: resistive, series resistive-capacitive, and inductive, which are considered for shunt damping, resonant shunt damping, and stiffness tuning, respectively. For each shunt, the storage modulus and loss factor are plotted for a wide range of the normalized parameters. Then, important trends and their impact on different applications are discussed. An experimental validation of the transducer model is presented for the case of resistive and resonant shunts. The model closely predicts the measured response for a variety of operating conditions. This paper also introduces a model for the dynamic compliance of a vibrating structure that is coupled to a magnetostrictive transducer for shunt damping and resonant shunt damping applications. This compliance is normalized and then shown to be analogous to that of a structure that is coupled to a piezoelectric material. The derived analogies allow for the observations and equations in the existing literature on structural vibration control using shunted piezoelectric materials to be directly applied to the case of shunted magnetostrictive transducers.

  8. Guidelines for numerical vibration and acoustic analysis of disc brake squeal using simple models of brake systems

    Science.gov (United States)

    Oberst, S.; Lai, J. C. S.; Marburg, S.

    2013-04-01

    Brake squeal has become of increasing concern to the automotive industry but guidelines on how to confidently predict squeal propensity are yet to be established. While it is standard practice to use the complex eigenvalue analysis to predict unstable vibration modes, there have been few attempts to calculate their acoustic radiation. Here guidelines are developed for numerical vibration and acoustic analysis of brake squeal using models of simplified brake systems with friction contact by considering (1) the selection of appropriate elements, contact and mesh; (2) the extraction of surface velocities via forced response; and (3) the calculation of the acoustic response itself. Results indicate that quadratic tetrahedral elements offer the best option for meshing more realistic geometry. A mesh has to be sufficiently fine especially in the contact region to predict mesh-independent unstable vibration modes. Regarding the vibration response, only the direct, steady-state method with a pressurised pad and finite sliding formulation (allowing contact separation) should be used. Comparison of different numerical methods suggest that a obroadband fast multi-pole boundary element method with the Burton-Miller formulation would efficiently solve the acoustic radiation of a full brake system. Results also suggest that a pad lift-off can amplify the acoustic radiation similar to a horn effect. A horn effect is also observed for chamfered pads which are used in practice to reduce the number and strength of unstable vibration modes. These results highlight the importance of optimising the pad shape to reduce acoustic radiation of unstable vibration modes.

  9. Anharmonic behavior in the multisubunit protein apoferritin as revealed by quasi-elastic neutron scattering.

    Science.gov (United States)

    Telling, Mark T F; Neylon, Cameron; Kilcoyne, Susan H; Arrighi, Valeria

    2008-09-04

    Quasi-elastic neutron scattering (QENS) has been used to study the deviation from Debye-law harmonic behavior in lyophilized and hydrated apoferritin, a naturally occurring, multisubunit protein. Whereas analysis of the measured mean squared displacement (msd) parameter reveals a hydration-dependent inflection above 240 K, characteristic of diffusive motion, a hydration-independent inflection is observed at 100 K. The mechanism responsible for this low-temperature anharmonic response is further investigated, via analysis of the elastic incoherent neutron scattering intensity, by applying models developed to describe side-group motion in glassy polymers. Our results suggest that the deviation from harmonic behavior is due to the onset of methyl group rotations which exhibit a broad distribution of activated processes ( E a,ave = 12.2 kJ.mol (-1), sigma = 5.0 kJ x mol (-1)). Our results are likened to those reported for other proteins.

  10. Calculating vibrational spectra without determining excited eigenstates: Solving the complex linear equations of damped response theory for vibrational configuration interaction and vibrational coupled cluster states.

    Science.gov (United States)

    Godtliebsen, Ian H; Christiansen, Ove

    2015-10-07

    It is demonstrated how vibrational IR and Raman spectra can be calculated from damped response functions using anharmonic vibrational wave function calculations, without determining the potentially very many eigenstates of the system. We present an implementation for vibrational configuration interaction and vibrational coupled cluster, and describe how the complex equations can be solved using iterative techniques employing only real trial vectors and real matrix-vector transformations. Using this algorithm, arbitrary frequency intervals can be scanned independent of the number of excited states. Sample calculations are presented for the IR-spectrum of water, Raman spectra of pyridine and a pyridine-silver complex, as well as for the infra-red spectrum of oxazole, and vibrational corrections to the polarizability of formaldehyde.

  11. Modeling Stretching Modes of Common Organic Molecules with the Quantum Mechanical Harmonic Oscillator: An Undergraduate Vibrational Spectroscopy Laboratory Exercise

    Science.gov (United States)

    Parnis, J. Mark; Thompson, Matthew G. K.

    2004-01-01

    An introductory undergraduate physical organic chemistry exercise that introduces the harmonic oscillator's use in vibrational spectroscopy is developed. The analysis and modeling exercise begins with the students calculating the stretching modes of common organic molecules with the help of the quantum mechanical harmonic oscillator (QMHO) model.

  12. Mixed finite element models for free vibrations of thin-walled beams

    Science.gov (United States)

    Noor, Ahmed K.; Peters, Jeanne M.; Min, Byung-Jin

    1989-01-01

    Simple, mixed finite element models are developed for the free vibration analysis of curved thin-walled beams with arbitrary open cross section. The analytical formulation is based on a Vlasov's type thin-walled beam theory with the effects of flexural-torsional coupling, transverse shear deformation and rotary inertia included. The fundamental unknowns consist of seven internal forces and seven generalized displacements of the beam. The element characteristic arrays are obtained by using a perturbed Lagrangian-mixed variational principle. Only C(sup o) continuity is required for the generalized displacements. The internal forces and the Lagrange multiplier are allowed to be discontinuous at interelement boundaries. Numerical results are presented to demonstrate the high accuracy and effectiveness of the elements developed. The standard of comparison is taken to be the solutions obtained by using 2-D plate/shell models for the beams.

  13. Analysis of an algebraic model for the chromophore vibrations of CF$_3$CHFI

    CERN Document Server

    Jung, C; Taylor, H S

    2004-01-01

    We extract the dynamics implicit in an algebraic fitted model Hamiltonian for the hydrogen chromophore's vibrational motion in the molecule $CF_3CHFI$. The original model has 4 degrees of freedom, three positions and one representing interbond couplings. A conserved polyad allows the reduction to 3 degrees of freedom. For most quantum states we can identify the underlying motion that when quantized gives the said state. Most of the classifications, identifications and assignments are done by visual inspection of the already available wave function semiclassically transformed from the number representation to a representation on the reduced dimension toroidal configuration space corresponding to the classical action and angle variables. The concentration of the wave function density to lower dimensional subsets centered on idealized simple lower dimensional organizing structures and the behavior of the phase along such organizing centers already reveals the atomic motion. Extremely little computational work is...

  14. Modeling and optimal vibration control of conical shell with piezoelectric actuators

    Institute of Scientific and Technical Information of China (English)

    Wang Weiyuan; Wei Yingjie; Wang Cong; Zou Zhenzhu

    2008-01-01

    In this paper numerical simulations of active vibration control for conical shell structure with distributed piezoelectric actuators is presented. The dynamic equations of conical shell structure are derived using the finite element model (FEM) based on Mindlin's plate theory. The results of modal calculations with FEM model are accurate enough for engineering applications in comparison with experiment results. The Electromechanical influence of distributed piezoelectric actuators is treated as a boundary condition for estimating the control force. The independent modal space control (IMSC) method is adopted and the optimal linear quadratic state feedback control is implemented so that the best control performance with the least control cost can be achieved. Optimal control effects are compared with controlled responses with other non-optimal control parameters. Numerical simulation results are given to demonstrate the effectiveness of the control scheme.

  15. Model Test Study on Ice-Induced Vibrations of Compliant Multi-Cone Structures

    Institute of Scientific and Technical Information of China (English)

    HUANG Yan; SHI Qing-zeng; SONG An

    2009-01-01

    For the study on the ice-induced vibration of a compliant mono-cone structure,a series of model tests were performed from 2004 to 2006.In these tests,the ice sheet before the compliant conical structure was found to be failed in two-time breaking.Based on this important finding,model tests study of the ice force on a compliant multi-cone structure were performed from 2006 to 2007.in these tests,the ice sheet broke before each single cone non-simultaneously.The exciting energy of the total ice force was found to be in a wide range of frequencies,and the structure can be easily excited with nonlinear resonance.

  16. Vibration of hydraulic machinery

    CERN Document Server

    Wu, Yulin; Liu, Shuhong; Dou, Hua-Shu; Qian, Zhongdong

    2013-01-01

    Vibration of Hydraulic Machinery deals with the vibration problem which has significant influence on the safety and reliable operation of hydraulic machinery. It provides new achievements and the latest developments in these areas, even in the basic areas of this subject. The present book covers the fundamentals of mechanical vibration and rotordynamics as well as their main numerical models and analysis methods for the vibration prediction. The mechanical and hydraulic excitations to the vibration are analyzed, and the pressure fluctuations induced by the unsteady turbulent flow is predicted in order to obtain the unsteady loads. This book also discusses the loads, constraint conditions and the elastic and damping characters of the mechanical system, the structure dynamic analysis, the rotor dynamic analysis and the system instability of hydraulic machines, including the illustration of monitoring system for the instability and the vibration in hydraulic units. All the problems are necessary for vibration pr...

  17. Multi-phonon gamma-vibrational bands in odd-mass nuclei studied by triaxial projected shell model approach

    Energy Technology Data Exchange (ETDEWEB)

    Sheikh, J.A. [Department of Physics, University of Kashmir, Srinagar 190 006 (India); Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996 (United States); Bhat, G.H. [Department of Physics, University of Kashmir, Srinagar 190 006 (India); Sun, Y., E-mail: sunyang@sjtu.edu.c [Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China); Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996 (United States); Palit, R. [Department of Nuclear and Atomic Physics, Tata Institute of Fundamental Research, Colaba, Mumbai (India)

    2010-05-10

    Inspired by the recent experimental data [J.-G. Wang, et al., Phys. Lett. B 675 (2009) 420], we extend the triaxial projected shell model approach to study the gamma-band structure in odd-mass nuclei. As a first application of the new development, the gamma-vibrational structure of {sup 103}Nb is investigated. It is demonstrated that the model describes the ground-state band and multi-phonon gamma-vibrations quite satisfactorily, supporting the interpretation of the data as one of the few experimentally-known examples of simultaneous occurrence of one- and two-gamma-phonon vibrational bands. This generalizes the well-known concept of the surface gamma-oscillation in deformed nuclei built on the ground-state in even-even systems to gamma-bands based on quasiparticle configurations in odd-mass systems.

  18. Development of hardware system using temperature and vibration maintenance models integration concepts for conventional machines monitoring: a case study

    Science.gov (United States)

    Adeyeri, Michael Kanisuru; Mpofu, Khumbulani; Kareem, Buliaminu

    2016-12-01

    This article describes the integration of temperature and vibration models for maintenance monitoring of conventional machinery parts in which their optimal and best functionalities are affected by abnormal changes in temperature and vibration values thereby resulting in machine failures, machines breakdown, poor quality of products, inability to meeting customers' demand, poor inventory control and just to mention a few. The work entails the use of temperature and vibration sensors as monitoring probes programmed in microcontroller using C language. The developed hardware consists of vibration sensor of ADXL345, temperature sensor of AD594/595 of type K thermocouple, microcontroller, graphic liquid crystal display, real time clock, etc. The hardware is divided into two: one is based at the workstation (majorly meant to monitor machines behaviour) and the other at the base station (meant to receive transmission of machines information sent from the workstation), working cooperatively for effective functionalities. The resulting hardware built was calibrated, tested using model verification and validated through principles pivoted on least square and regression analysis approach using data read from the gear boxes of extruding and cutting machines used for polyethylene bag production. The results got therein confirmed related correlation existing between time, vibration and temperature, which are reflections of effective formulation of the developed concept.

  19. Hybrid Optimized and Localized Vibrational Coordinates.

    Science.gov (United States)

    Klinting, Emil Lund; König, Carolin; Christiansen, Ove

    2015-11-01

    We present a new type of vibrational coordinates denoted hybrid optimized and localized coordinates (HOLCs) aiming at a good set of rectilinear vibrational coordinates supporting fast convergence in vibrational stucture calculations. The HOLCs are obtained as a compromise between the recently promoted optimized coordinates (OCs) and localized coordinates (LCs). The three sets of coordinates are generally different from each other and differ from standard normal coordinates (NCs) as well. In determining the HOLCs, we optimize the vibrational self-consistent field (VSCF) energy with respect to orthogonal transformation of the coordinates, which is similar to determining OCs but for HOLCs we additionally introduce a penalty for delocalization, by using a measure of localization similar to that employed in determining LCs. The same theory and implementation covers OCs, LCs, and HOLCs. It is shown that varying one penalty parameter allows for connecting OCs and LCs. The HOLCs are compared to NCs, OCs, and LCs in their nature and performance as basis for vibrational coupled cluster (VCC) response calculations of vibrational anharmonic energies for a small set of simple systems comprising water, formaldehyde, and ethylene. It is found that surprisingly good results can be obtained with HOLCs by using potential energy surfaces as simple as quadratic Taylor expansions. Quite similar coordinates are found for the already established OCs but obtaining these OCs requires much more elaborate and expensive potential energy surfaces and localization is generally not guaranteed. The ability to compute HOLCs for somewhat larger systems is demonstrated for coumarin and the alanine quadramer. The good agreement between HOLCs and OCs, together with the much easier applicability of HOLCs for larger systems, suggests that HOLCs may be a pragmatically very interesting option for anharmonic calculations on medium to large molecular systems.

  20. Soil-Pile Interaction in the Pile Vertical Vibration Based on Fictitious Soil-Pile Model

    Directory of Open Access Journals (Sweden)

    Guodong Deng

    2014-01-01

    Full Text Available By introducing the fictitious soil-pile model, the soil-pile interaction in the pile vertical vibration is investigated. Firstly, assuming the surrounding soil of pile to be viscoelastic material and considering its vertical wave effect, the governing equations of soil-pile system subjected to arbitrary harmonic dynamic force are founded based on the Euler-Bernoulli rod theory. Secondly, the analytical solution of velocity response in frequency domain and its corresponding semianalytical solution of velocity response in time domain are derived by means of Laplace transform technique and separation of variables technique. Based on the obtained solutions, the influence of parameters of pile end soil on the dynamic response is studied in detail for different designing parameters of pile. Lastly, the fictitious soil-pile model and other pile end soil supporting models are compared. It is shown that the dynamic response obtained by the fictitious soil-pile model is among the dynamic responses obtained by other existing models if there are appropriate material parameters and thickness of pile end soil for the fictitious soil-pile model.

  1. Sandwich beam model for free vibration analysis of bilayer graphene nanoribbons with interlayer shear effect

    Science.gov (United States)

    Nazemnezhad, Reza; Shokrollahi, Hassan; Hosseini-Hashemi, Shahrokh

    2014-05-01

    In this study, sandwich beam model (SM) is proposed for free vibration analysis of bilayer graphene nanoribbons (BLGNRs) with interlayer shear effect. This model also takes into account the intralayer (in-plane) stretch of graphene nanoribbons. The molecular dynamics (MD) simulations using the software LAMMPS and Adaptive Intermolecular Reactive Empirical Bond Order (AIREBO) potential are done to validate the accuracy of the sandwich model results. The MD simulation results include the two first frequencies of cantilever BLGNRs with different lengths and two interlayer shear moduli, i.e., 0.25 and 4.6 GPa. These two interlayer shear moduli, 0.25 and 4.6 GPa, can be obtained by sliding a small flake of graphene on a large graphene substrate when the parameter of E_LJ term in AIREBO potential, epsilon_CC, is set to be 2.84 and 45.44 meV, respectively. The SM results for a wide range of bending rigidity values show that the proposed model, i.e., the SM, predicts much better than the previous beam model in which the intralayer stretch is ignored. In addition, it is observed that the model can properly predict the natural frequencies of BLGNRs for various values of the bending rigidity and the interlayer shear modulus.

  2. Development of a Refined Quarter Car Model for the Analysis of Discomfort due to Vibration

    Directory of Open Access Journals (Sweden)

    A. N. Thite

    2012-01-01

    Full Text Available In the automotive industry, numerous expensive and time-consuming trials are used to “optimize” the ride and handling performance. Ideally, a reliable virtual prototype is a solution. The practical usage of a model is linked and restricted by the model complexity and reliability. The object of this study is development and analysis of a refined quarter car suspension model, which includes the effect of series stiffness, to estimate the response at higher frequencies; resulting Maxwell's model representation does not allow straightforward calculation of performance parameters. Governing equations of motion are manipulated to calculate the effective stiffness and damping values. State space model is arranged in a novel form to find eigenvalues, which is a unique contribution. Analysis shows the influence of suspension damping and series stiffness on natural frequencies and regions of reduced vibration response. Increase in the suspension damping coefficient beyond optimum values was found to reduce the modal damping and increase the natural frequencies. Instead of carrying out trial simulations during performance optimization for human comfort, an expression is developed for corresponding suspension damping coefficient. The analysis clearly shows the influence of the series stiffness on suspension dynamics and necessity to incorporate the model in performance predictions.

  3. Vibration Analysis of Rotating Tapered Timoshenko Beams by a New Finite Element Model

    Directory of Open Access Journals (Sweden)

    Bulent Yardimoglu

    2006-01-01

    Full Text Available A new finite element model is developed and subsequently used for transverse vibrations of tapered Timoshenko beams with rectangular cross-section. The displacement functions of the finite element are derived from the coupled displacement field (the polynomial coefficients of transverse displacement and cross-sectional rotation are coupled through consideration of the differential equations of equilibrium approach by considering the tapering functions of breadth and depth of the beam. This procedure reduces the number of nodal variables. The new model can also be used for uniform beams. The stiffness and mass matrices of the finite element model are expressed by using the energy equations. To confirm the accuracy, efficiency, and versatility of the new model, a semi-symbolic computer program in MATLAB® is developed. As illustrative examples, the bending natural frequencies of non-rotating/rotating uniform and tapered Timoshenko beams are obtained and compared with previously published results and the results obtained from the finite element models of solids created in ABAQUS. Excellent agreement is found between the results of new finite element model and the other results.

  4. Dynamic response of electronic systems to shocks and vibrations: Application of analytical (mathematical modeling

    Directory of Open Access Journals (Sweden)

    Suhir E.

    2012-08-01

    Full Text Available Some basic problems of the dynamic response of electronic and photonic (E&P systems to shocks and vibrations are addressed and discussed. The emphasis is on analytical (mathematical modeling, the reliability physics behind the addressed phenomena, and design-for-reliability (DfR issues and challenges. The addressed problems include 1 linear response: effect of viscous damping, shock tests vs. drop tests, role of compliant interfaces, and maximum acceleration and maximum dynamic stress as a suitable reliability criterion; 2 nonlinear response: printed circuit board (PCB experiencing an impact load applied to its support contour and ball-grid-array (BGA testing on the board level; 3 shock protection of portable electronics, including the possible use of nano-wires as a suitable protective “cushion”. The fruitfulness of the probabilistic DfR (PDfR concept to quantify and assure the field (operational reliability of E&P devices and systems is also indicated.

  5. Application of Tube-Packaged FBG Strain Sensor in Vibration Experiment of Submarine Pipeline Model

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Optical fiber sensors have received increasing attention in the fields of aeronautic and civil engineering for their superior ability to stand explosion, immunity to electromagnetic interference and high accuracy, especially fit for measurement applications in harsh environment. In this study, a novel FBG (fiber Bragg grating) strain sensor, which is packaged in a 1.2 mm stainless steel tube with epoxy resin, is developed. Experiments are conducted on the universal material testing machine to calibrate its strain transferring characteristics. The sensor has the advantages of small size, high precision and flexible use, and exhibits promising potentials. Five tube-packaged strain FBG sensors have been applied to the vibration experiment of a submarine pipeline model. The strain measured with the FBG sensor agrees well with that measured with the electric resistance strain sensor.

  6. Modeling And Analysis of a Piezoelectric Vibration-Induced Micro Power Generator

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Joon Hong; Park, Moon Soo; Lee, Sang Ho [Korea Institute of Industrial Technology, Cheonan (Korea, Republic of)

    2007-07-01

    Supplying power to microsystems that have no physical connection to the outside is difficult, and using batteries is not always appropriate. This paper discuss how to generates electricity from mechanical energy when vibrated in a cantilever beam and a model for the system is derived that predicts that the output power of the system is maximized when the mechanical damping in the system is minimized. Furthermore, to cover a wide frequency range and to be useful in a number of applications, a system of three beams with three different resonant frequencies were designed and optimized. This information makes it possible to determine what design alternatives are feasible for the creation of a micro power supply for any specific application of MEMS.

  7. NONLINEAR FLUID DAMPING IN STRUCTURE-WAKE OSCILLATORS IN MODELING VORTEX-INDUCED VIBRATIONS

    Institute of Scientific and Technical Information of China (English)

    LIN Li-ming; LING Guo-can; WU Ying-xiang; ZENG Xiao-hui

    2009-01-01

    A Nonlinear Fluid Damping(NFD)in the form of the square-velocity is applied in the response analysis of Vortex-Induced Vibrations(VIV).Its nonlinear hydrodynamic effects on the coupled wake and structure oscillators are investigated.A comparison between the coupled systems with the linear and nonlinear fluid dampings and experiments shows that the NFD model can well describe response characteristics,such as the amplification of body displacement at lock-in and frequency lock-in,both at high and low mass ratios.Particularly,the predicted peak amplitude of the body in the Griffin plot is in good agreement with experimental data and empirical equation,indicating the significant effect of the NFD on the structure motion.

  8. Modeling vibrational resonance in linear hydrocarbon chain with a mixed quantum-classical method.

    Science.gov (United States)

    Gelman, David; Schwartz, Steven D

    2009-04-07

    The quantum dynamics of a vibrational excitation in a linear hydrocarbon model system is studied with a new mixed quantum-classical method. The method is suited to treat many-body systems consisting of a low dimensional quantum primary part coupled to a classical bath. The dynamics of the primary part is governed by the quantum corrected propagator, with the corrections defined in terms of matrix elements of zeroth order propagators. The corrections are taken to the classical limit by introducing the frozen Gaussian approximation for the bath degrees of freedom. The ability of the method to describe dynamics of multidimensional systems has been tested. The results obtained by the method have been compared to previous quantum simulations performed with the quasiadiabatic path integral method.

  9. A direct pedestrian-structure interaction model to characterize the human induced vibrations on slender footbridges

    Directory of Open Access Journals (Sweden)

    Jiménez-Alonso, J. F.

    2014-12-01

    Full Text Available Although the scientific community had knowledge of the human induced vibration problems in structures since the end of the 19th century, it was not until the occurrence of the vibration phenomenon happened in the Millennium Bridge (London, 2000 that the importance of the problem revealed and a higher level of attention devoted. Despite the large advances achieved in the determination of the human-structure interaction force, one of the main deficiencies of the existing models is the exclusion of the effect of changes in the footbridge dynamic properties due to the presence of pedestrians. In this paper, the formulation of a human-structure interaction model, addresses these limitations, is carried out and its reliability is verified from previously published experimental results.Aunque la comunidad científica tenía conocimiento de los problemas vibratorios inducidos por peatones en estructuras desde finales del siglo xix, no fue hasta la ocurrencia de los eventos vibratorios acontecidos en la pasarela del Milenio (Londres, 2000, cuando la importancia del problema se puso de manifiesto y se le comenzó a dedicar un mayor nivel de atención. A pesar de los grandes avances alcanzados en la caracterización de la fuerza de interacción peatón-estructura una de las principales deficiencias de los modelos existentes es la exclusión del cambio en las propiedades dinámicas de la pasarela por la presencia de peatones. En este artículo, se presenta la formulación de un modelo de interacción peatón-estructura que intenta dar respuesta a dichas limitaciones, y su validación a partir de resultados experimentales previamente publicados por otros autores.

  10. Small perturbation of a disordered harmonic chain by a noise and an anharmonic potential

    CERN Document Server

    Bernardin, Cédric

    2011-01-01

    We study the thermal properties of a pinned disordered harmonic chain weakly perturbed by a noise and an anharmonic potential. The noise is controlled by a parameter $\\lambda \\rightarrow 0$, and the anharmonicity by a parameter $\\lambda' \\le \\lambda$. Let $\\kappa$ be the conductivity of the chain, defined through the Green-Kubo formula. Under suitable hypotheses, we show that $\\kappa = \\mathcal O (\\lambda)$ and, in the absence of anharmonic potential, that $\\kappa \\sim \\lambda$. This is in sharp contrast with the ordered chain for which $\\kappa \\sim 1/\\lambda$, and so shows the persitence of localization effects for a non-integrable dynamics.

  11. Formulation of human-structure interaction system models for vertical vibration

    Science.gov (United States)

    Caprani, Colin C.; Ahmadi, Ehsan

    2016-09-01

    In this paper, human-structure interaction system models for vibration in the vertical direction are considered. This work assembles various moving load models from the literature and proposes extension of the single pedestrian to a crowd of pedestrians for the FE formulation for crowd-structure interaction systems. The walking pedestrian vertical force is represented as a general time-dependent force, and the pedestrian is in turn modelled as moving force, moving mass, and moving spring-mass-damper. The arbitrary beam structure is modelled using either a formulation in modal coordinates or finite elements. In each case, the human-structure interaction (HSI) system is first formulated for a single walking pedestrian and then extended to consider a crowd of pedestrians. Finally, example applications for single pedestrian and crowd loading scenarios are examined. It is shown how the models can be used to quantify the interaction between the crowd and bridge structure. This work should find use for the evaluation of existing and new footbridges.

  12. Analytical model of vertical vibrations in piles for different tip boundary conditions: parametric study and applications

    Institute of Scientific and Technical Information of China (English)

    Ning WANG; Kui-hua WANG; Wen-bing WU

    2013-01-01

    In this paper,a model named fictitious soil pile was introduced to solve the boundary coupled problem at the pile tip.In the model,the soil column between pile tip and bedrock was treated as a fictitious pile,which has the same properties as the local soil.The tip of the fictitious soil pile was assumed to rest on a rigid rock and no tip movement was allowed.In combination with the plane strain theory,the analytical solutions of vertical vibration response of piles in a frequency domain and the corresponding semi-analytical solutions in a time domain were obtained using the Laplace transforms and inverse Fourier transforms.A parametric study of pile response at the pile tip and head showed that the thickness and layering of the stratum between pile tip and bedrock have a significant influence on the complex impedances.Finally,two applications of the analytical model were presented.One is to identify the defects of the pile shaft,in which the proposed model was proved to be accurate to identify the location as well as the length of pile defects.Another application of the model is to identify the sediment thickness under the pile tip.The results showed that the sediment can lead to the decrease of the pile stiffness and increase of the damping,especially when the pile is under a low frequency load.

  13. Vibrational dynamics of the bifluoride ion. II. Adiabatic separation and proton dynamics

    Science.gov (United States)

    Epa, V. C.; Thorson, W. R.

    1990-01-01

    Vibrational dynamics of the bifluoride ion FHF-, which exhibits strongly anharmonic and nonseparable vibrations, is studied using the extended ab initio model potential surface described in the first paper of this series. Adiabatic separation of the proton motion from the F-F (ν1) motion forms a zero-order basis for description, although strong coupling of adiabatic states by the ν1 motion is important in higher vibrational levels and must be considered to understand the spectrum. The adiabatic protonic eigenstates at F-F separations R from 3.75 to 6.40 a.u. have been determined using the self-consistent field approximation in prolate spheroidal coordinates to provide a basis set for configuration interaction expansion of the exact eigenstates. 78 SCF eigenstates (21 σg, 21 σu, 21 πu, and 15 πg) were computed by ``exact'' numerical solution of the SCF equations. The adiabatic CI eigenstates are shown to be converged in energy to better than 1.0 cm-1 for the ground state of each symmetry type and usually better than 10 cm-1 for the lowest three to five states, and pass critical tests of accuracy such as the Hellmann-Feynman theorem. The resulting CI potential energy curves closely resemble corresponding SCF energy curves and justify the concept of mode separation even in this very anharmonic system. The adiabatic CI potential energy curves explain most aspects of the dynamics relevant to the IR and Raman spectra of FHF- (e.g., in KHF2), and calculations of ν1 dynamics within the adiabatic approximation suffice to assign most of the observed IR spectrum of KHF2(s) (to about 6000 cm-1). States corresponding qualitatively to modal overtone and combination levels such as 3ν2 and (ν2+2ν3) however exhibit avoided crossings in the neighborhood of the equilibrium configuration and ``Fermi resonance'' involving interactions of two or more such adiabatic states via the ν1 motion must be treated by close-coupling to predict both frequencies and intensities in the

  14. Computational Modeling of the Size Effects on the Optical Vibrational Modes of H-Terminated Ge Nanostructures

    Directory of Open Access Journals (Sweden)

    Miguel Cruz-Irisson

    2013-04-01

    Full Text Available The vibrational dispersion relations of porous germanium (pGe and germanium nanowires (GeNWs were calculated using the ab initio density functional perturbation theory with a generalized gradient approximation with norm-conserving pseudopotentials. Both pores and nanowires were modeled using the supercell technique. All of the surface dangling bonds were saturated with hydrogen atoms. To address the difference in the confinement between the pores and the nanowires, we calculated the vibrational density of states of the two materials. The results indicate that there is a slight shift in the highest optical mode of the Ge-Ge vibration interval in all of the nanostructures due to the phonon confinement effects. The GeNWs exhibit a reduced phonon confinement compared with the porous Ge due to the mixed Ge-dihydride vibrational modes around the maximum bulk Ge optical mode of approximately 300 cm−1; however, the general effects of such confinements could still be noticed, such as the shift to lower frequencies of the highest optical mode belonging to the Ge vibrations.

  15. A Nonmonotonous Damage Model to Characterize Mullins and Residual Strain Effects of Rubber Strings Subjected to Transverse Vibrations

    Directory of Open Access Journals (Sweden)

    Alex Elías-Zúñiga

    2013-01-01

    Full Text Available This work focuses on the formulation of a constitutive equation to predict Mullins and residual strain effects of buna-N, silicone, and neoprene rubber strings subjected to small transverse vibrations. The nonmonotone behavior exhibited by experimental data is captured by the proposed material model through the inclusion of a phenomenological non-monotonous softening function that depends on the strain intensity between loading and unloading cycles. It is shown that theoretical predictions compare well with uniaxial experimental data collected from transverse vibration tests.

  16. [The effect of betahistine on histological changes in rabbit brain in model of whole body wide-frequency vibration].

    Science.gov (United States)

    Shimkus, Iu Iu; Sapegin, I D

    2013-01-01

    In acute experiments in conscious rabbits was studied protective action of selective blocker of histamine H3-receptor betahistine (2mg/kg i/v) against histological changes in precentral and postcentral gyrus, as well as in temporal lobe of cerebral cortex, thalamus, hypothalamus, and cerebellum, arising in case of modeling of whole body wide-frequency vibration. Betahistine attenuates edematous and degenerative changes in neurons and reciprocal glial reaction, caused by vibration, but does not eliminate edema in perivascular spaces. This effect may be related to the improvement of blood supply as a result of of vasodilatory action and decrease of oxygen consumption via vestibuloprotective effect.

  17. Dynamic modelling and active vibration controller design for a cylindrical shell equipped with piezoelectric sensors and actuators

    Science.gov (United States)

    Kwak, Moon K.; Heo, Seok; Jeong, Moonsan

    2009-04-01

    This paper is concerned with the dynamic modelling, active vibration controller design and experiments for a cylindrical shell equipped with piezoelectric sensors and actuators. The dynamic model was derived by using Rayleigh-Ritz method based on the Donnel-Mushtari shell theory. The actuator equations which relate the applied voltages to the generalized force and sensor equations which relate the generalized displacements to the sensor output voltages for the piezoelectric wafer were derived based on the pin-force model. The equations of motion along with the piezoelectric sensor equations were then reduced to modal forms considering the modes of interest. An aluminium shell was fabricated to demonstrate the effectiveness of the modelling and control techniques. The boundary conditions at both ends of the shell were assumed to be a shear diaphragm in the numerical analysis. Theoretical natural frequencies of the aluminium shell were then calculated and compared to experimental result. They were in good agreement with experimental result for the first two free-vibration modes. The multi-input and multi-output positive position feedback controller, which can cope with the first two vibration modes, was designed based on the block-inverse theory and was implemented digitally using the DSP board. The experimental results showed that vibrations of the cylindrical shell can be successfully suppressed by the piezoelectric actuator and the proposed controller.

  18. Development of a Novel Translational Model of Vibration Injury to the Spine to Study Acute Injury in Vivo

    Science.gov (United States)

    2012-10-01

    Cervical Biomechanics : A Quantitative Anatomy Study. Northeast Bioengineering Conference, Philadelphia, PA, March 2012. 3. Baig HA, Guarino BB, Jaumard...Gohkale AJ, Guarino BB, Winkelstein BA. The Rat as a Viable Model for Human Cervical Biomechanics : A Quantitative Anatomy Study. Northeast...will integrate findings across all tasks of this work. 15. SUBJECT TERMS Pain, vibration, spine, transmissibility, biomechanics , injury 16

  19. Design and Modeling of a Novel Micro-Power Generator based on Harvesting Omni-Directional Vibration Energy

    Directory of Open Access Journals (Sweden)

    E. Elsherbiny1

    2015-08-01

    Full Text Available : In This paper reports on the integration of several technologies to realize, by modeling and design the first twodimensional (2D micro power generator which harvesting multi-directional vibration energy from surrounding environmental, which consists of composite cylindrical system with fixed coil and two rounded axial Neodymium permanent magnets.

  20. Origin of long-lived oscillations in 2D-spectra of a Quantum Vibronic Model: Electronic vs Vibrational coherence

    CERN Document Server

    Plenio, M B; Huelga, S F

    2013-01-01

    We demonstrate that the coupling of excitonic and vibrational motion in biological complexes can provide mechanisms to explain the long-lived oscillations that have been obtained in non linear spectroscopic signals of different photosynthetic pigment protein complexes and we discuss the contributions of excitonic versus purely vibrational components to these oscillatory features. Considering a dimer model coupled to a structured spectral density we exemplify the fundamental aspects of the electron-phonon dynamics, and by analyzing separately the different contributions to the non linear signal, we show that for realistic parameter regimes purely electronic coherence is of the same order as purely vibrational coherence in the electronic ground state. Moreover, we demonstrate how the latter relies upon the excitonic interaction to manifest. These results link recently proposed microscopic, non-equilibrium mechanisms to support long lived coherence at ambient temperatures with actual experimental observations of...

  1. Positron-attachment to small molecules: Vibrational enhancement of positron affinities with configuration interaction level of multi-component molecular orbital approach

    Energy Technology Data Exchange (ETDEWEB)

    Tachikawa, Masanori [Quantum Chemistry Division, Graduate School of NanoBioScience, Yokohama City University, 22-2 Seto, Kanazawa, Yokohama 236-0027 (Japan)

    2015-12-31

    To theoretically demonstrate the binding of a positron to small polarized molecules, we have calculated the vibrational averaged positron affinity (PA) values along the local vibrational contribution with the configuration interaction level of multi-component molecular orbital method. This method can take the electron-positron correlation contribution into account through single electronic - single positronic excitation configurations. The PA values are enhanced by including the local vibrational contribution from vertical PA values due to the anharmonicity of the potential.

  2. Modeling and imaging of the vocal fold vibration for voice health

    DEFF Research Database (Denmark)

    Granados, Alba

    Identication of abnormalities on the vocal fold by means of dierent diagnostic methods is a key step to determine the cause or causes of a voice disorder, and subsequently give an adequate treatment. To this end, clinical investigations benet from accurate mathematical models for prediction, anal...... estimation that accounts for the model uncertainty. An expectation-maximization algorithm for missing data is proposed to nd estimates of the system's unknowns. Due to time limitations no computational results are shown and a purely theoretical discussion is presented....... of vibration, showing dierent characteristics in normal and abnormal phonation. In the last part of this thesis research, the optical ow algorithm for data acquisition as well as the biomechanical model of the vocal fold are used to formulate a nonstationary statistical inverse problem for vocal fold features......Identication of abnormalities on the vocal fold by means of dierent diagnostic methods is a key step to determine the cause or causes of a voice disorder, and subsequently give an adequate treatment. To this end, clinical investigations benet from accurate mathematical models for prediction...

  3. Vibrationally high-resolved electronic spectra of MCl2 (M = C, Si, Ge, Sn, Pb) and photoelectron spectra of MCl2-

    Science.gov (United States)

    Ran, Yibin; Pang, Min; Shen, Wei; Li, Ming; He, Rongxing

    2016-10-01

    We systematically studied the vibrational-resolved electronic spectra of group IV dichlorides using the Franck-Condon approximation combined with the Duschinsky and Herzberg-Teller effects in harmonic and anharmonic frameworks (only the simulation of absorption spectra includes the anharmonicity). Calculated results showed that the band shapes of simulated spectra are in accordance with those of the corresponding experimental or theoretical ones. We found that the symmetric bend mode in progression of absorption is the most active one, whereas the main contributor in photoelectron spectra is the symmetric stretching mode. Moreover, the Duschinsky and anharmonic effects exert weak influence on the absorption spectra, except for PbCl2 molecule. The theoretical insights presented in this work are significant in understanding the photophysical properties of MCl2 (M = C, Si, Ge, Sn, Pb) and studying the Herzberg-Teller and the anharmonic effects on the absorption spectra of new dichlorides of this main group.

  4. The Modeling and Analysis for the Self-Excited Vibration of the Maglev Vehicle-Bridge Interaction System

    Directory of Open Access Journals (Sweden)

    Jinhui Li

    2015-01-01

    Full Text Available This paper addresses the self-excited vibration problems of maglev vehicle-bridge interaction system which greatly degrades the stability of the levitation control, decreases the ride comfort, and restricts the cost of the whole system. Firstly, two levitation models with different complexity are developed, and the comparison of the energy curves associated with the two models is carried out. We conclude that the interaction model with a single levitation control unit is sufficient for the study of the self-excited vibration. Then, the principle underlying the self-excited vibration is explored from the standpoint of work acting on the bridge done by the levitation system. Furthermore, the influences of the parameters, including the modal frequency and modal damping of bridge, the gain of the controller, the sprung mass, and the unsprung mass, on the stability of the interaction system are carried out. The study provides a theoretical guidance for solving the self-excited vibration problems of the vehicle-bridge interaction systems.

  5. Evaluation of Massey Ferguson Model 165 Tractor Drivers exposed to whole-body vibration

    Directory of Open Access Journals (Sweden)

    P. Nassiri

    2013-12-01

    Conclusion: This study shows that the need to provide intervention , controlling and managing measures to eliminate or reduce exposure to whole body vibration among tractor drivers its necessary. And, preventing main disorder Including musculoskeletal disorders, discomfort and early fatigue is of circular importance. More studies are also necessary to identify the sources of vibration among various of tractors.

  6. Next-Generation Modeling, Analysis, and Testing of the Vibration of Mistuned Bladed Disks

    Science.gov (United States)

    2007-12-21

    August 2007. [22] Whitehead, D. S., "Effect of Mistuning on the Vibration of Turbomachine Blades Induced by Wakes," Journal of Mechanical Engineering...14-17. [27] Wagner, J. T., "Coupling of Turbomachine Blade Vibrations Through the Rotor," Journal of Engineering for Power, Vol. 89, No. 3, 1967, pp

  7. Research on the equivalent circuit model of a circular flexural-vibration-research on the equivalent circuit model of a circular flexural-vibration-mode piezoelectric transformer with moderate thickness.

    Science.gov (United States)

    Huang, Yihua; Huang, Wenjin; Wang, Qinglei; Su, Xujian

    2013-07-01

    The equivalent circuit model of a piezoelectric transformer is useful in designing and optimizing the related driving circuits. Based on previous work, an equivalent circuit model for a circular flexural-vibration-mode piezoelectric transformer with moderate thickness is proposed and validated by finite element analysis. The input impedance, voltage gain, and efficiency of the transformer are determined through computation. The basic behaviors of the transformer are shown by numerical results.

  8. Quantum thermal transport through anharmonic systems: A self-consistent approach

    Science.gov (United States)

    He, Dahai; Thingna, Juzar; Wang, Jian-Sheng; Li, Baowen

    2016-10-01

    We propose a feasible and effective approach to study quantum thermal transport through anharmonic systems. The main idea is to obtain an effective harmonic Hamiltonian for the anharmonic system by applying the self-consistent phonon theory. By using the effective harmonic Hamiltonian, we study thermal transport within the framework of the nonequilibrium Green's function method using the celebrated Caroli formula. We corroborate our quantum self-consistent approach by using the quantum master equation that can deal with anharmonicity exactly, but is limited to the weak system-bath coupling regime. Finally, in order to demonstrate its strength, we apply the quantum self-consistent approach to study thermal rectification in a weakly coupled two-segment anharmonic system.

  9. Temperature dependence of Raman-active phonons and anharmonic interactions in layered hexagonal BN

    Science.gov (United States)

    Cuscó, Ramon; Gil, Bernard; Cassabois, Guillaume; Artús, Luis

    2016-10-01

    We present a Raman scattering study of optical phonons in hexagonal BN for temperatures ranging from 80 to 600 K. The experiments were performed on high-quality, single-crystalline hexagonal BN platelets. The observed temperature dependence of the frequencies and linewidths of both Raman active E2 g optical phonons is analyzed in the framework of anharmonic decay theory, and possible decay channels are discussed in the light of density-functional theory calculations. With increasing temperature, the E2g high mode displays strong anharmonic interactions, with a linewidth increase that indicates an important contribution of four-phonon processes and a marked frequency downshift that can be attributed to a substantial effect of the four-phonon scattering processes (quartic anharmonicity). In contrast, the E2g low mode displays a very narrow linewidth and weak anharmonic interactions, with a frequency downshift that is primarily accounted for by the thermal expansion of the interlayer spacing.

  10. First-principles study of anharmonic phonon effects in tetrahedral semiconductors via an external electric field

    Science.gov (United States)

    Dabiri, Zohreh; Kazempour, Ali; Sadeghzadeh, Mohammad Ali

    2016-11-01

    The strength of phonon anharmonicity is investigated in the framework of the Density Functional Perturbation Theory via an applied constant electric field. In contrast to routine approaches, we have employed the electric field as an effective probe to quest after the quasi-harmonic and anharmonic effects. Two typical tetrahedral semiconductors (diamond and silicon) have been selected to test the efficiency of this approach. In this scheme the applied field is responsible for establishing the perturbation and also inducing the anharmonicity in systems. The induced polarization is a result of changing the electronic density while ions are located at their ground state coordinates or at a specified strain. Employing this method, physical quantities of the semiconductors are calculated in presence of the electron-phonon interaction directly and, phonon-phonon interaction, indirectly. The present approach, which is in good agreement with previous theoretical and experimental studies, can be introduced as a benchmark to simply investigate the anharmonicity and pertinent consequences in materials.

  11. Simplified Prediction Model for Vortex-Induced Vibrations of Top Tensioned Risers

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    According to the characteristics of deepwater top tensioned risers, a simplified model is presented to predict the multi-modal response of vortex-induced vibration (VIV) in non-uniform flow based on energy equilibrium theory and the experimental data from VIV self-excited and forced oscillations of rigid cylinders. The response amplitude of each mode is determined by a balance between the energy fed into the riser over the lock-in regions and the energy dissipated by the fluid damping over the remainders. Compared with the previous prediction models, this method can take fully account of the intrinsic nature of VIV for low mass ratio structures on lock-in regions, added mass and nonlinear fluid damping effect, etc. Moreover, it is the first time to propose the accurate calculating procedure for VIV amplitude correction factor by solving energy equilibrium equation and a closed form solution is presented for the case of a riser of uniform mass and cross-section oscillating in a uniform flow. The predicted values show a reasonable agreement with VIV experiments of riser models in stepped and sheared currents.

  12. Structural and vibrational study of graphene oxide via coronene based models: theoretical and experimental results

    Science.gov (United States)

    Almeida de Mendonça, João Paulo; Henrique de Lima, Alessandro; Amaral Junqueira, Georgia Maria; Gianini Quirino, Welber; Legnani, Cristiano; Oliveira Maciel, Indhira; Sato, Fernando

    2016-05-01

    We use the Coronene (C24H12), a simple and finite molecule, to make a model to study the spectroscopic and structural alterations generated by oxygenated groups in graphene oxide (GO). Based on the Lerf-Klinowski model, we chose the hydroxyl [OH-], the carboxyl [COOH-] and the epoxy [the ring C2O inside the molecule] as our radicals of interest and study their collective and isolated effects. We perform geometry optimization, vibrational IR (via AM1 and DFT-B3LYP) and Raman spectra (via DFT-B3LYP) of a series of functionalized coronene molecules. As results, we obtain some useful data for the analysis of IR and Raman spectra of GO, which facilitate the understanding and identification of the peaks found in the experiment. Finally, we suggest a new model to study GO, producing an accurate signature when compared to our experimental data. Such molecule shows in more details of the structural effects caused by functionalization when compared to experimental data.

  13. Four Dimensional (4-D BioChemInfoPhysics Models of Cardiac Cellular and Sub-Cellular Vibrations (Oscillations

    Directory of Open Access Journals (Sweden)

    Chang-Hua Zou

    2009-01-01

    Full Text Available Problem statement: Cardiovascular Diseases (CVD continued to be the leading cause of death. Failure or abnormal cardiac cellular or sub-cellular vibrations (oscillations could lead failure or abnormal heart beats that could cause CVD. Understanding the mechanisms of the vibrations (oscillations could help to prevent or to treat the diseases. Scientists have studied the mechanisms for more than 100 years. To our knowledge, the mechanisms are still unclear today. In this investigation, based on published data or results, conservation laws of the momentum as well as the energy, in views of biology, biochemistry, informatics and physics (BioChemInfoPhysics, we proposed our models of cardiac cellular and sub-cellular vibrations (oscillations of biological components, such as free ions in Biological Fluids (BF, Biological Membranes (BM, Ca++H+ (Ca++ and Na+K+ ATPases, Na+Ca++ exchangers (NCX, Ca++ carriers and myosin heads. Approach: Our models were described with 4-D (x, y, z, t or r, ?, z, t momentum transfer equations in mathematical physics. Results: The momentum transfer equations were solved with free and forced, damped, un-damped and over-damped, vibrations (oscillations. The biological components could be modeled as resonators or vibrators (oscillators, such as liquid plasmas, membranes, active springs, passive springs and active swings. Conclusion: We systematically provided new insights of automation (ignition and maintain, transportation, propagation and orientation of the cardiac cellular and sub-cellular vibrations (oscillations and resonances, with our BioChemInfoPhysics models of 4-D momentum transfer equations. Our modeling results implied: Auto-rhythmic cells (Sinoatrial Node Cells (SANC, Atrioventricular Node Cells (AVNC, Purkinje fibers, non-Auto-rhythmic ventricular myocytes and their Sarcoplasmic Reticulums (SR work as Biological Liquid Plasma Resonators (BLPR. The resonators were

  14. Free vibration analysis of civil engineering structures by component-wise models

    Science.gov (United States)

    Carrera, Erasmo; Pagani, Alfonso

    2014-09-01

    Higher-order beam models are used in this paper to carry out free vibration analysis of civil engineering structures. Refined kinematic fields are developed using the Carrera Unified Formulation (CUF), which allows for the implementation of any-order theory without the need for ad hoc formulations. The principle of virtual displacements in conjunction with the finite element method (FEM) is used to formulate stiffness and mass matrices in terms of fundamental nuclei. The nuclei depend neither on the adopted class of beam theory nor on the FEM approximation along the beam axis. This paper focuses on a particular class of CUF models that makes use of Lagrange polynomials to discretize cross-sectional displacement variables. This class of models are referred to as component-wise (CW) in recent works. According to the CW approach, each structural component (e.g. columns, walls, frame members, and floors) can be modeled by means of the same 1D formulation. A number of typical civil engineering structures (e.g. simple beams, arches, truss structures, and complete industrial and civil buildings) are analyzed and CW results are compared to classical beam theories (Euler-Bernoulli and Timoshenko), refined beam models based on Taylor-like expansions of the displacements on the cross-section, and classical solid/shell FEM solutions from the commercial code MSC Nastran. The results highlight the enhanced capabilities of the proposed formulation. It is in fact demonstrated that CW models are able to replicate 3D solid results with very low computational efforts.

  15. Posture and Vibration Control Based on Virtual Suspension Model Using Sliding Mode Control for Six-Legged Walking Robot

    Science.gov (United States)

    Huang, Qingjiu; Fukuhara, Yasuyuki; Chen, Xuedong

    In this paper, we proposed a robust control method based on the virtual suspension model for keeping the posture stability and decreasing the tiny vibration of the robot body when it is walking on irregular terrain. Firstly, we developed a six-legged walking robot for this study based on stable theory of wave gaits and CAD dynamic model. Secondly, in order to keep the posture stability of body when robot walks, we designed a virtual suspension model with one degree of freedom, which has virtual spring and damper, for the direction of the center of gravity, the pitch angle, and the roll angle of body respectively. And then, in order to decrease the tiny vibration of body when robot walks, we proposed an active suspension control by using sliding mode control based on a virtual suspension model. These proposed methods are discussed using the walking experimental results of the developed six-legged walking robot.

  16. The NASA/industry Design Analysis Methods for Vibrations (DAMVIBS) program: Boeing Helicopters airframe finite element modeling

    Science.gov (United States)

    Gabel, R.; Lang, P.; Reed, D.

    1993-01-01

    Mathematical models based on the finite element method of structural analysis, as embodied in the NASTRAN computer code, are routinely used by the helicopter industry to calculate airframe static internal loads used for sizing structural members. Historically, less reliance has been placed on the vibration predictions based on these models. Beginning in the early 1980's NASA's Langley Research Center initiated an industry wide program with the objective of engendering the needed trust in vibration predictions using these models and establishing a body of modeling guides which would enable confident future prediction of airframe vibration as part of the regular design process. Emphasis in this paper is placed on the successful modeling of the Army/Boeing CH-47D which showed reasonable correlation with test data. A principal finding indicates that improved dynamic analysis requires greater attention to detail and perhaps a finer mesh, especially the mass distribution, than the usual stress model. Post program modeling efforts show improved correlation placing key modal frequencies in the b/rev range with 4 percent of the test frequencies.

  17. SIMULATION OF VIBRATION STRESS RELIEF AFTER WELDING BASED ON FEM

    Institute of Scientific and Technical Information of China (English)

    X.C.Zhao; Y.D.Zhang; H.W.Zhang; Q.Wu

    2008-01-01

    A finite element model is developed for the simulation of vibration stress relief (VSR) after welding.For the nonresonant vibration,the reduction in stress strongly depends on the amplitude of vibration.For the resonant vibration,the vibration frequency is the key for stress relief.The vibration frequency should be close to the structure natural frequency for the desired vibration mode.Only small vibration amplitude is required,which will be amplified during vibration.Vibration time does not have a major impact on vibration stress relief.When the amplitude of vibration stress relief is large,the treatment will be more effective.

  18. VCD Robustness of the Amide-I and Amide-II Vibrational Modes of Small Peptide Models.

    Science.gov (United States)

    Góbi, Sándor; Magyarfalvi, Gábor; Tarczay, György

    2015-09-01

    The rotational strengths and the robustness values of amide-I and amide-II vibrational modes of For(AA)n NHMe (where AA is Val, Asn, Asp, or Cys, n = 1-5 for Val and Asn; n = 1 for Asp and Cys) model peptides with α-helix and β-sheet backbone conformations were computed by density functional methods. The robustness results verify empirical rules drawn from experiments and from computed rotational strengths linking amide-I and amide-II patterns in the vibrational circular dichroism (VCD) spectra of peptides with their backbone structures. For peptides with at least three residues (n ≥ 3) these characteristic patterns from coupled amide vibrational modes have robust signatures. For shorter peptide models many vibrational modes are nonrobust, and the robust modes can be dependent on the residues or on their side chain conformations in addition to backbone conformations. These robust VCD bands, however, provide information for the detailed structural analysis of these smaller systems.

  19. Vibrational properties of uracil

    Institute of Scientific and Technical Information of China (English)

    WANG Zhiping; ZHANG Fengshou; ZENG Xianghua; ZHOU Hongyu; GU Bin; CHENG Wei

    2006-01-01

    A semiempirical molecular dynamics model is developed to study the vibrational frequencies of uracil at very low kinetic temperature by using the Fourier transform of velocity autocorrelation function of trajectories of molecular dynamics simulations. The finite difference harmonic method is used to assign the vibrational frequency of each mode. The calculated frequencies are found to be in good agreement with experimental measurements. Moreover, we make up for the lost vibrational modes in experiments self-consistently. A total of 30 vibrational modes and their corresponding frequencies are reported.

  20. Resummation of divergent perturbation series: Application to the vibrational states of H{sub 2}CO molecule

    Energy Technology Data Exchange (ETDEWEB)

    Duchko, A. N. [National Research Tomsk Polytechnic University, Tomsk (Russian Federation); V.E. Zuev Institute of Atmospheric Optics, Tomsk (Russian Federation); Bykov, A. D., E-mail: adbykov@rambler.ru [V.E. Zuev Institute of Atmospheric Optics, Tomsk (Russian Federation)

    2015-10-21

    Large-order Rayleigh–Schrödinger perturbation theory (RSPT) is applied to the calculation of anharmonic vibrational energy levels of H{sub 2}CO molecule. We use the model of harmonic oscillators perturbed by anharmonic terms of potential energy. Since the perturbation series typically diverge due to strong couplings, we apply the algebraic approximation technique because of its effectiveness shown earlier by Goodson and Sergeev [J. Chem. Phys. 110, 8205 (1999); ibid. 124, 094111 (2006)] and in our previous articles [A. D. Bykov et al. Opt. Spectrosc. 114, 396 (2013); ibid. 116, 598 (2014)]. To facilitate the resummation of terms contributing to perturbed states, when resonance mixing between states is especially strong and perturbation series diverge very quick, we used repartition of the Hamiltonian by shifting the normal mode frequencies. Energy levels obtained by algebraic approximants were compared with the results of variational calculation. It was found that for low energy states (up to ∼5000 cm{sup −1}), algebraic approximants gave accurate values of energy levels, which were in excellent agreement with the variational method. For highly excited states, strong and multiple resonances complicate series resummation, but a suitable change of normal mode frequencies allows one to reduce the resonance mixing and to get accurate energy levels. The theoretical background of the problem of RSPT series divergence is discussed along with its numerical analysis. For these purposes, the vibrational energy is considered as a function of a complex perturbation parameter. Layout and classification of its singularities allow us to model the asymptotic behavior of the perturbation series and prove the robustness of the algorithm.

  1. Development of a finite element model for the identification of mechanical and piezoelectric properties through gradient optimisation and experimental vibration data

    DEFF Research Database (Denmark)

    Araujo, A.; Soares, C.; Herskovits, J.;

    2002-01-01

    the structural behaviour and implement efficient control algorithms for active noise and vibration control. To address this issue we propose a discrete finite element model, associated to gradient optimisation and to an inverse method using experimental vibration data to carry out the identification...

  2. Blasting Vibration Safety Criterion Analysis with Equivalent Elastic Boundary: Based on Accurate Loading Model

    Directory of Open Access Journals (Sweden)

    Qingwen Li

    2015-01-01

    Full Text Available In the tunnel and underground space engineering, the blasting wave will attenuate from shock wave to stress wave to elastic seismic wave in the host rock. Also, the host rock will form crushed zone, fractured zone, and elastic seismic zone under the blasting loading and waves. In this paper, an accurate mathematical dynamic loading model was built. And the crushed zone as well as fractured zone was considered as the blasting vibration source thus deducting the partial energy for cutting host rock. So this complicated dynamic problem of segmented differential blasting was regarded as an equivalent elastic boundary problem by taking advantage of Saint-Venant’s Theorem. At last, a 3D model in finite element software FLAC3D accepted the constitutive parameters, uniformly distributed mutative loading, and the cylindrical attenuation law to predict the velocity curves and effective tensile curves for calculating safety criterion formulas of surrounding rock and tunnel liner after verifying well with the in situ monitoring data.

  3. Vibration energy harvesting by a Timoshenko beam model and piezoelectric transducer

    Science.gov (United States)

    Stoykov, S.; Litak, G.; Manoach, E.

    2015-11-01

    An electro-mechanical system of vibrational energy harvesting is studied. The beam is excited by external and kinematic periodic forces and damped by an electrical resistor through the coupled piezoelectric transducer. Nonlinearities are introduced by stoppers limiting the transverse displacements of the beam. The interaction between the beam and the stoppers is modeled as Winkler elastic foundation. The mechanical properties of the piezoelectric layer are taken into account and the beam is modeled as a composite structure. For the examined composite beam, the geometrically nonlinear version of the Timoshenko's beam theory is assumed. The equations of motion are derived by the principle of virtual work considering large deflections. An isogeometric approach is applied for space discretization and B-Splines are used as shape functions. Finally, the power output and the efficiency of the system due to harmonic excitations are discussed. The influence of the position of the stoppers and their length on the dynamics of the beam and consequently on the power output are analyzed and presented.

  4. Modeling the antisymmetric and symmetric stretching vibrational modes of aqueous carboxylate anions.

    Science.gov (United States)

    Sutton, Catherine C R; Franks, George V; da Silva, Gabriel

    2015-01-05

    The infrared spectra of six aqueous carboxylate anions have been calculated at the M05-2X/cc-pVTZ level of theory with the SMD solvent model, and validated against experimental data from the literature over the region of 1700 cm(-1) to 1250 cm(-1); this region corresponds to the stretching modes of the carboxylate group, and is often interrogated when probing bonding of carboxylates to other species and surfaces. The anions studied here were formate, acetate, oxalate, succinate, glutarate and citrate. For the lowest energy conformer of each anion, the carboxylate moiety antisymmetric stretching peak was predicted with a mean signed error of only 4 cm(-1) using the SMD solvent model, while the symmetric peak was slightly overestimated. Performing calculations in vacuum and scaling was found to generally over-predict the antisymmetric vibrational frequencies and under predict the symmetric peak. Different conformers of the same anion were found to have only slightly different spectra in the studied region and the inclusion of explicit water molecules was not found to significantly change the calculated spectra when the implicit solvent model is used. Overall, the use of density functional theory in conjunction with an implicit solvent model was found to result in infra-red spectra that are the best reproduction of the features found experimentally for the aqueous carboxylate ions in the important 1700 cm(-1) to 1250 cm(-1) region. The development of validated model chemistries for simulating the stretching modes of aqueous carboxylate ions will be valuable for future studies that investigate how carboxylate anions complex with multivalent metal cations and related species in solution.

  5. Anharmonic and Quantum Fluctuations in Molecular Crystals: A First-Principles Study of the Stability of Paracetamol

    Science.gov (United States)

    Rossi, Mariana; Gasparotto, Piero; Ceriotti, Michele

    2016-09-01

    Molecular crystals often exist in multiple competing polymorphs, showing significantly different physicochemical properties. Computational crystal structure prediction is key to interpret and guide the search for the most stable or useful form, a real challenge due to the combinatorial search space, and the complex interplay of subtle effects that work together to determine the relative stability of different structures. Here we take a comprehensive approach based on different flavors of thermodynamic integration in order to estimate all contributions to the free energies of these systems with density-functional theory, including the oft-neglected anharmonic contributions and nuclear quantum effects. We take the two main stable forms of paracetamol as a paradigmatic example. We find that anharmonic contributions, different descriptions of van der Waals interactions, and nuclear quantum effects all matter to quantitatively determine the stability of different phases. Our analysis highlights the many challenges inherent in the development of a quantitative and predictive framework to model molecular crystals. However, it also indicates which of the components of the free energy can benefit from a cancellation of errors that can redeem the predictive power of approximate models, and suggests simple steps that could be taken to improve the reliability of ab initio crystal structure prediction.

  6. Anharmonicity and disorder in simple and complex perovskites: a high energy synchrotron and hot neutron diffraction study

    Science.gov (United States)

    Kiat, Jean-Michel; Baldinozzi, Gianguido; Dunlop, Muriel; Malibert, Charlotte; Dkhil, Brahim; Ménoret, Carole; Masson, Olivier; Fernandez-Diaz, Maria-Teresa

    2000-10-01

    We report a study of simple ABO3 type perovskites BaTiO3, PbTiO3, KNbO3, SrTiO3 and the relaxor perovskites PbSc1/2Nb1/2O3 (PSN) in their cubic phase using hard synchrotron radiation and hot neutrons. Gram-Charlier expansions of the thermal parameters have been performed and have revealed interesting features about the probability density function and the one-particle potential of the different atoms. This description is compared with other descriptions in terms of the split atom model and in terms of the rotator model. Structural trends regarding the order-disorder versus displacive character of the phase transitions have been obtained. It is concluded that SrTiO3 and BaTiO3 are quasi-harmonic systems whereas KNbO3 shows weak anharmonicity and PbTiO3 and PSN display strong anharmonic features.

  7. Polaron dynamics in a two-dimensional anharmonic Holstein model

    DEFF Research Database (Denmark)

    Zolotaryuk, Yaroslav; Christiansen, Peter Leth; Juul Rasmussen, Jens

    1998-01-01

    nonlinearity for the polaron (self-trapped) solutions. We apply the "logarithmic" potential approximation which allows us to use effectively a variational approach, on one hand, and to study the realistic situation of the potential core and saturation nonlinearity, on the other hand. Analytical estimates...

  8. The symmetry breaking phenomenon in anharmonic oscillator model

    CERN Document Server

    Mastine, Antonio Carlos; Natti, Erica Regina Takano

    2010-01-01

    In this article a non-perturbative time-dependent technique is used to treat the initial value problem, in Quantum Mechanics context, for a non-equilibrium self-interacting fermionic system in the presence of an external magnetic field. Particularly, in mean-field regime, we study the dynamical symmetry breaking phenomenon, identifying the physical processes associated.

  9. Experimental Investigation of Wave-Induced Ship Hydroelastic Vibrations by Large-Scale Model Measurement in Coastal Waves

    Directory of Open Access Journals (Sweden)

    Jialong Jiao

    2016-01-01

    Full Text Available Ship hydroelastic vibration is an issue involving mutual interactions among inertial, hydrodynamic, and elastic forces. The conventional laboratory tests for wave-induced hydroelastic vibrations of ships are performed in tank conditions. An alternative approach to the conventional laboratory basin measurement, proposed in this paper, is to perform tests by large-scale model measurement in real sea waves. In order to perform this kind of novel experimental measurement, a large-scale free running model and the experiment scheme are proposed and introduced. The proposed testing methodology is quite general and applicable to a wide range of ship hydrodynamic experimental research. The testing procedure is presented by illustrating a 5-hour voyage trial of the large-scale model carried out at Huludao harbor of China in August 2015. Hammer tests were performed to identify the natural frequencies of the ship model at the beginning of the tests. Then a series of tests under different sailing conditions were carried out to investigate the vibrational characteristics of the model. As a postvoyage analysis, load, pressure, acceleration, and motion responses of the model are studied with respect to different time durations based on the measured data.

  10. A new model of water-lubricated rubber bearings for vibration analysis of flexible multistage rotor systems

    Science.gov (United States)

    Liu, Shibing; Yang, Bingen

    2015-08-01

    Flexible multistage rotating systems that are supported or guided by long water-lubricated rubber bearings (WLRBs) have a variety of engineering applications. Vibration analysis of this type of machinery for performance and duality requires accurate modeling of WLRBs and related rotor-bearing assemblies. This work presents a new model of WLRBs, with attention given to the determination of bearing dynamic coefficients. Due to its large length-to-diameter ratio, a WLRB cannot be described by conventional pointwise bearing models with good fidelity. The bearing model proposed in this paper considers spatially distributed bearing forces. For the first time in the literature, the current study addresses the issue of mixed lubrication in the operation of WLRBs, which involves interactions of shaft vibration, elastic deformation of rubber material and fluid film pressure, and validates the WLRB model in experiments. Additionally, with the new bearing model, vibration analysis of WLRB-supported flexible multistage rotating systems is performed through use of a distributed transfer function method, which delivers accurate and closed-form analytical solutions of steady-state responses without discretization.

  11. Vibrational coherence and energy transfer in two-dimensional spectra with the optimized mean-trajectory approximation

    Energy Technology Data Exchange (ETDEWEB)

    Alemi, Mallory; Loring, Roger F., E-mail: roger.loring@cornell.edu [Baker Laboratory, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853 (United States)

    2015-06-07

    The optimized mean-trajectory (OMT) approximation is a semiclassical method for computing vibrational response functions from action-quantized classical trajectories connected by discrete transitions that represent radiation-matter interactions. Here, we extend the OMT to include additional vibrational coherence and energy transfer processes. This generalized approximation is applied to a pair of anharmonic chromophores coupled to a bath. The resulting 2D spectra are shown to reflect coherence transfer between normal modes.

  12. Variational principles for buckling and vibration of MWCNTs modeled by strain gradient theory

    Institute of Scientific and Technical Information of China (English)

    徐晓建; 邓子辰

    2014-01-01

    Variational principles for the buckling and vibration of multi-walled carbon nanotubes (MWCNTs) are established with the aid of the semi-inverse method. They are used to derive the natural and geometric boundary conditions coupled by small scale parameters. Hamilton’s principle and Rayleigh’s quotient for the buckling and vibration of the MWCNTs are given. The Rayleigh-Ritz method is used to study the buckling and vibration of the single-walled carbon nanotubes (SWCNTs) and double-walled carbon nanotubes (DWCNTs) with three typical boundary conditions. The numerical results reveal that the small scale parameter, aspect ratio, and boundary conditions have a profound effect on the buckling and vibration of the SWCNTs and DWCNTs.

  13. Analysis and modeling of unsteady aerodynamics with application to wind turbine blade vibration at standstill conditions

    DEFF Research Database (Denmark)

    Skrzypinski, Witold Robert

    Wind turbine blade vibrations at standstill conditions were investigated in the present work. These included vortex-induced and stall-induced vibrations. Thus, it was investigated whether the stand still vibrations are vortex-induced, stall-induced or a combination of both types. The work comprised...... limits. The motivation for it was that the standard aerodynamics existing in state-of-the-art aeroelastic codes is effectively quasi-steady in deep stall. If such an assumption was incorrect, these codes could predict stall-induced vibrations inaccurately. The main conclusion drawn from these analyzes...... was that even a relatively low amount of temporal lag in the aerodynamic response may significantly increase the aerodynamic damping and therefore influence the aeroelastic stability limits, relative to quasisteady aerodynamic response. Two- and three-dimensional CFD computations included non-moving, prescribed...

  14. Mathematical Modelling and Parameter Identification of an Electro-Magneto-Mechanical Actuator for Vibration Control

    DEFF Research Database (Denmark)

    Darula, Radoslav; Stein, George Juraj; Kallesøe, Carsten Skovmose

    2012-01-01

    of the electromagnetic circuit in its various operational regimes. The parametric identification supplements mathematical derivations. The analyzed mechanical system is essentially a Single Degree-Of-Freedom (SDOF) oscillatory system augmented by magnetic force influence. The additional magnetic force is generated....... The electric circuit is closed with a shunt resistance connected to the electromagnet. The current induced in the circuit generates additional alternating magnetic force. This force counteracts the original vibration and damps it. In this way the coupled electro-magneto-mechanical system suppresses the forced...... vibration. The mechanical energy is converted into electric one and dissipated in the shunt resistance external to the oscillatory system. Hence, the described system can be used as vibration controller to reduce excessive vibration of large machines and/or structures in semi-active way....

  15. Improved Models for Prediction of Locally Intense Aeroacoustic Loads and Vibration Environments Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ATA Engineering, Inc. proposes an STTR program to develop innovative tools and methods that will significantly improve the accuracy of random vibration response...

  16. Research on modeling of nonlinear vibration isolation system based on BouceWen model

    Institute of Scientific and Technical Information of China (English)

    Zhi-ling PENG; Chun-gui ZHOU

    2014-01-01

    A feedforword neural network of multi-layer topologies for systems with hysteretic nonlinearity is constructed based on BouceWen dif-ferential model. It not only reflects the hysteresis force characteristics of the BouceWen model, but also determines its corresponding pa-rameters. The simulation results show that restoring forceedisplacement curve hysteresis loop is very close to the real curve. The model trained can accurately predict the time response of system. The model is checked under the noise level. The result shows that the model has higher modeling precision, good generalization capability and a certain anti-interference ability.

  17. Ambient Vibration Tests of an Arch Dam with Different Reservoir Water Levels: Experimental Results and Comparison with Finite Element Modelling

    Directory of Open Access Journals (Sweden)

    Sergio Vincenzo Calcina

    2014-01-01

    Full Text Available This paper deals with the ambient vibration tests performed in an arch dam in two different working conditions in order to assess the effect produced by two different reservoir water levels on the structural vibration properties. The study consists of an experimental part and a numerical part. The experimental tests were carried out in two different periods of the year, at the beginning of autumn (October 2012 and at the end of winter (March 2013, respectively. The measurements were performed using a fast technique based on asynchronous records of microtremor time-series. In-contact single-station measurements were done by means of one single high resolution triaxial tromometer and two low-frequency seismometers, placed in different points of the structure. The Standard Spectral Ratio method has been used to evaluate the natural frequencies of vibration of the structure. A 3D finite element model of the arch dam-reservoir-foundation system has been developed to verify analytically determined vibration properties, such as natural frequencies and mode shapes, and their changes linked to water level with the experimental results.

  18. Multivariable wavelet finite element-based vibration model for quantitative crack identification by using particle swarm optimization

    Science.gov (United States)

    Zhang, Xingwu; Gao, Robert X.; Yan, Ruqiang; Chen, Xuefeng; Sun, Chuang; Yang, Zhibo

    2016-08-01

    Crack is one of the crucial causes of structural failure. A methodology for quantitative crack identification is proposed in this paper based on multivariable wavelet finite element method and particle swarm optimization. First, the structure with crack is modeled by multivariable wavelet finite element method (MWFEM) so that the vibration parameters of the first three natural frequencies in arbitrary crack conditions can be obtained, which is named as the forward problem. Second, the structure with crack is tested to obtain the vibration parameters of first three natural frequencies by modal testing and advanced vibration signal processing method. Then, the analyzed and measured first three natural frequencies are combined together to obtain the location and size of the crack by using particle swarm optimization. Compared with traditional wavelet finite element method, MWFEM method can achieve more accurate vibration analysis results because it interpolates all the solving variables at one time, which makes the MWFEM-based method to improve the accuracy in quantitative crack identification. In the end, the validity and superiority of the proposed method are verified by experiments of both cantilever beam and simply supported beam.

  19. Origin of long-lived oscillations in 2D-spectra of a quantum vibronic model: Electronic versus vibrational coherence

    Energy Technology Data Exchange (ETDEWEB)

    Plenio, M. B.; Almeida, J.; Huelga, S. F. [Institute for Theoretical Physics, Albert-Einstein-Allee 11, University Ulm, D-89069 Ulm (Germany)

    2013-12-21

    We demonstrate that the coupling of excitonic and vibrational motion in biological complexes can provide mechanisms to explain the long-lived oscillations that have been obtained in nonlinear spectroscopic signals of different photosynthetic pigment protein complexes and we discuss the contributions of excitonic versus purely vibrational components to these oscillatory features. Considering a dimer model coupled to a structured spectral density we exemplify the fundamental aspects of the electron-phonon dynamics, and by analyzing separately the different contributions to the nonlinear signal, we show that for realistic parameter regimes purely electronic coherence is of the same order as purely vibrational coherence in the electronic ground state. Moreover, we demonstrate how the latter relies upon the excitonic interaction to manifest. These results link recently proposed microscopic, non-equilibrium mechanisms to support long lived coherence at ambient temperatures with actual experimental observations of oscillatory behaviour using 2D photon echo techniques to corroborate the fundamental importance of the interplay of electronic and vibrational degrees of freedom in the dynamics of light harvesting aggregates.

  20. Origin of long-lived oscillations in 2D-spectra of a quantum vibronic model: electronic versus vibrational coherence.

    Science.gov (United States)

    Plenio, M B; Almeida, J; Huelga, S F

    2013-12-21

    We demonstrate that the coupling of excitonic and vibrational motion in biological complexes can provide mechanisms to explain the long-lived oscillations that have been obtained in nonlinear spectroscopic signals of different photosynthetic pigment protein complexes and we discuss the contributions of excitonic versus purely vibrational components to these oscillatory features. Considering a dimer model coupled to a structured spectral density we exemplify the fundamental aspects of the electron-phonon dynamics, and by analyzing separately the different contributions to the nonlinear signal, we show that for realistic parameter regimes purely electronic coherence is of the same order as purely vibrational coherence in the electronic ground state. Moreover, we demonstrate how the latter relies upon the excitonic interaction to manifest. These results link recently proposed microscopic, non-equilibrium mechanisms to support long lived coherence at ambient temperatures with actual experimental observations of oscillatory behaviour using 2D photon echo techniques to corroborate the fundamental importance of the interplay of electronic and vibrational degrees of freedom in the dynamics of light harvesting aggregates.

  1. Ultrasonic Vibration Assisted Grinding of Bio-ceramic Materials: Modeling, Simulation, and Experimental Investigations on Edge Chipping

    Science.gov (United States)

    Tesfay, Hayelom D.

    Bio-ceramics are those engineered materials that find their applications in the field of biomedical engineering or medicine. They have been widely used in dental restorations, repairing bones, joint replacements, pacemakers, kidney dialysis machines, and respirators. etc. due to their physico-chemical properties, such as excellent corrosion resistance, good biocompatibility, high strength and high wear resistance. Because of their inherent brittleness and hardness nature they are difficult to machine to exact sizes and dimensions. Abrasive machining processes such as grinding is one of the most widely used manufacturing processes for bioceramics. However, the principal technical challenge resulted from these machining is edge chipping. Edge chipping is a common edge failure commonly observed during the machining of bio-ceramic materials. The presence of edge chipping on bio-ceramic products affects dimensional accuracy, increases manufacturing cost, hider their industrial applications and causes potential failure during service. To overcome these technological challenges, a new ultrasonic vibration-assisted grinding (UVAG) manufacturing method has been developed and employed in this research. The ultimate aim of this study is to develop a new cost-effective manufacturing process relevant to eliminate edge chippings in grinding of bio-ceramic materials. In this dissertation, comprehensive investigations will be carried out using experimental, theoretical, and numerical approaches to evaluate the effect of ultrasonic vibrations on edge chipping of bioceramics. Moreover, effects of nine input variables (static load, vibration frequency, grinding depth, spindle speed, grinding distance, tool speed, grain size, grain number, and vibration amplitude) on edge chipping will be studied based on the developed models. Following a description of previous research and existing approaches, a series of experimental tests on three bio-ceramic materials (Lava, partially fired Lava

  2. Dynamic behavior of gas bubble in single bubble sonoluminescence - vibrator model

    Institute of Scientific and Technical Information of China (English)

    QIAN Menglu; CHENG Qian; GE Caoyan

    2002-01-01

    Single bubble sonoluminescence is a process of energy transformation from soundto light. Therefore the motion equations of near spherical vibration of a gas bubble in anincompressible and viscous liquid can be deduced by Lagrangian Equation with dissipationfunction when the bubble is considered as a vibrator surrounded by liquid. The analyticalsolutions in the bubble expanding, collapsing and rebounding stages can be obtained by solvingthese motion equations when some approximations are adopted. And the dynamic behaviorsof the bubble in these three stages are discussed.

  3. Reconsidering harmonic and anharmonic coherent states: Partial differential equations approach

    Energy Technology Data Exchange (ETDEWEB)

    Toutounji, Mohamad, E-mail: Mtoutounji@uaeu.ac.ae

    2015-02-15

    This article presents a new approach to dealing with time dependent quantities such as autocorrelation function of harmonic and anharmonic systems using coherent states and partial differential equations. The approach that is normally used to evaluate dynamical quantities involves formidable operator algebra. That operator algebra becomes insurmountable when employing Morse oscillator coherent states. This problem becomes even more complicated in case of Morse oscillator as it tends to exhibit divergent dynamics. This approach employs linear partial differential equations, some of which may be solved exactly and analytically, thereby avoiding the cumbersome noncommutative algebra required to manipulate coherent states of Morse oscillator. Additionally, the arising integrals while using the herein presented method feature stability and high numerical efficiency. The correctness, applicability, and utility of the above approach are tested by reproducing the partition and optical autocorrelation function of the harmonic oscillator. A closed-form expression for the equilibrium canonical partition function of the Morse oscillator is derived using its coherent states and partial differential equations. Also, a nonequilibrium autocorrelation function expression for weak electron–phonon coupling in condensed systems is derived for displaced Morse oscillator in electronic state. Finally, the utility of the method is demonstrated through further simplifying the Morse oscillator partition function or autocorrelation function expressions reported by other researchers in unevaluated form of second-order derivative exponential. Comparison with exact dynamics shows identical results.

  4. Reconsidering harmonic and anharmonic coherent states: Partial differential equations approach

    Science.gov (United States)

    Toutounji, Mohamad

    2015-02-01

    This article presents a new approach to dealing with time dependent quantities such as autocorrelation function of harmonic and anharmonic systems using coherent states and partial differential equations. The approach that is normally used to evaluate dynamical quantities involves formidable operator algebra. That operator algebra becomes insurmountable when employing Morse oscillator coherent states. This problem becomes even more complicated in case of Morse oscillator as it tends to exhibit divergent dynamics. This approach employs linear partial differential equations, some of which may be solved exactly and analytically, thereby avoiding the cumbersome noncommutative algebra required to manipulate coherent states of Morse oscillator. Additionally, the arising integrals while using the herein presented method feature stability and high numerical efficiency. The correctness, applicability, and utility of the above approach are tested by reproducing the partition and optical autocorrelation function of the harmonic oscillator. A closed-form expression for the equilibrium canonical partition function of the Morse oscillator is derived using its coherent states and partial differential equations. Also, a nonequilibrium autocorrelation function expression for weak electron-phonon coupling in condensed systems is derived for displaced Morse oscillator in electronic state. Finally, the utility of the method is demonstrated through further simplifying the Morse oscillator partition function or autocorrelation function expressions reported by other researchers in unevaluated form of second-order derivative exponential. Comparison with exact dynamics shows identical results.

  5. Modeling and simulation of vortex induced vibration on the subsea riser/pipeline (GRP pipe)

    Science.gov (United States)

    Raja Adli, Raja Nor Fauziah bt; Ibrahim, Idris

    2012-06-01

    This paper presents the research work conducted to investigate the dynamics characteristics of the offshore riser pipeline due to vortex flow and to develop a model that could predict its vortex induced responses. Glass-fiber reinforced plastic (GRP) pipe is used for this study which has smaller density from the steel. A two-dimensional finite element computational method is implemented to describe the dynamic behavior of the riser. The governing equation of motion was based on Hamilton's principle, consists of the strain energy due to bending and axial deformation, kinetic energy due to both riser and internal fluid movement and also external force from currents and waves. A direct integration method namely Newmark integration scheme is proposed to solve the equation of motion. A MATLAB program code was developed to obtain the simulation results. The natural frequency and damping ratio are presented for each mode. Dynamic response of riser is shown in time-domain and the numerical results are discussed. Several parameter effects are used to investigate dynamic responses and the results show an agreement with the theory. Vortex shedding phenomenon also has been discussed in this paper. As a conclusion, the simulation results have successfully shown the vortex induced vibration responses for GRP pipeline.

  6. Vibration Propagation in Spider Webs

    Science.gov (United States)

    Hatton, Ross; Otto, Andrew; Elias, Damian

    Due to their poor eyesight, spiders rely on web vibrations for situational awareness. Web-borne vibrations are used to determine the location of prey, predators, and potential mates. The influence of web geometry and composition on web vibrations is important for understanding spider's behavior and ecology. Past studies on web vibrations have experimentally measured the frequency response of web geometries by removing threads from existing webs. The full influence of web structure and tension distribution on vibration transmission; however, has not been addressed in prior work. We have constructed physical artificial webs and computer models to better understand the effect of web structure on vibration transmission. These models provide insight into the propagation of vibrations through the webs, the frequency response of the bare web, and the influence of the spider's mass and stiffness on the vibration transmission patterns. Funded by NSF-1504428.

  7. Theoretical Study of Vibrationally Averaged Dipole Moments for the Ground and Excited C═O Stretching States of trans-Formic Acid.

    Science.gov (United States)

    Paulson, Leif O; Kaminský, Jakub; Anderson, David T; Bouř, Petr; Kubelka, Jan

    2010-03-01

    Recent experimental studies of trans-formic acid (FA) in solid para-hydrogen (pH2) highlighted the importance of vibrationally averaged dipole moments for the interpretation of the high-resolution infrared (IR) spectra, in particular for the C═O stretch (ν3) mode. In this report, dipole moments for the ν3 ground (v = 0) and excited (v = 1, 2, 3, and 4) anharmonic vibrational states in trans-FA are investigated using two different approaches: a single mode approximation, where the vibrational states are obtained from the solution of the one-dimensional Schrödinger equation for the harmonic normal coordinate, and a limited vibrational configuration interaction (VCI) approximation. Density functional theory (B3LYP, BPW91) and correlated ab initio (MP2 and CCSD(T)) electronic methods were employed with a number of double- and triple-ζ and correlation consistent basis sets. Both single mode and VCI approaches show comparable agreement with experimental data, which is more dependent on the level of theory used. In particular, the BPW91/cc-pVDZ level appears to perform remarkably well. Effects of solvation of FA in solid state Ar and pH2 matrices were simulated at the BPW91/cc-pVDZ level using a conductor-like polarized continuum model (CPCM). The Ar and pH2 solid-state matrices cause quite a substantial increase in the FA dipole moments. Compared to gas-phase calculations, the CPCM model for pH2 better reproduces the experimental FA spectral shifts caused by interaction with traces of ortho-hydrogen (oH2) species in solid pH2. The validity of the single mode approach is tested against the multidimensional VCI results, suggesting that the isolated (noninteracting) mode approximation is valid up to the third vibrationally excited state (v = 3). Finally, the contribution of the ground anharmonic vibrational states of the remaining modes to the resulting ν3 single mode dipole moments is examined and discussed.

  8. Anomalous transport of subdiffusing cargos by single kinesin motors: the role of mechanochemical coupling and anharmonicity of tether

    CERN Document Server

    Goychuk, Igor

    2014-01-01

    Here we generalize our previous model of molecular motors trafficking subdiffusing cargos in viscoelastic cytosol by (i) including mechanochemical coupling between cyclic conformational fluctuations of the motor protein driven by the reaction of ATP hydrolysis and its translational motion within the simplest two-state model of hand-over-hand motion of kinesin, and also (ii) by taking into account the anharmonicity of the tether between the motor and cargo (its maximally possible extension length). It is shown that the major earlier results such as occurrence of normal versus anomalous transport depending on the amplitude of binding potential, cargo size and the motor turnover frequency not only survive in this more realistic model, but the results also look very similar for the correspondingly adjusted parameters. However, this more realistic model displays a substantially larger thermodynamic efficiency due to a bidirectional mechanochemical coupling. For realistic parameters, the maximal thermodynamic effic...

  9. Off-resonant vibrational excitation: Orientational dependence and spatial control of photofragments

    DEFF Research Database (Denmark)

    Machholm, Mette; Henriksen, Niels Engholm

    2000-01-01

    Off-resonant and resonant vibrational excitation with short intense infrared (IR) laser pulses creates localized oscillating wave packets, but differs by the efficiency of the excitation and surprisingly by the orientational dependence. Orientational selectivity of the vibrational excitation......-dependent response to the IR fields is due to the anharmonicity of the potential. A subsequent ultraviolet laser pulse in resonance at the outer turning point of the vibrational motion can then dissociate the oscillating molecules, all with the same orientation, leading to spatial control of the photofragment...

  10. Modeling and Parameter Identification of the Vibration Characteristics of Armature Assembly in a Torque Motor of Hydraulic Servo Valves under Electromagnetic Excitations

    Directory of Open Access Journals (Sweden)

    Jinghui Peng

    2014-07-01

    Full Text Available The resonance of the armature assembly is the main problem leading to the fatigue of the spring pipe in a torque motor of hydraulic servo valves, which can cause the failure of servo valves. To predict the vibration characteristics of the armature assembly, this paper focuses on the mathematical modeling of the vibration characteristics of armature assembly in a hydraulic servo valve and the identification of parameters in the models. To build models more accurately, the effect of the magnetic spring is taken into account. Vibration modal analysis is performed to obtain the mode shapes and natural frequencies, which are necessary to implement the identification of damping ratios in the mathematical models. Based on the mathematical models for the vibration characteristics, the harmonic responses of the armature assembly are analyzed using the finite element method and measured under electromagnetic excitations. The simulation results agree well with the experimental studies.

  11. Franck-Condon profiles in photodetachment-photoelectron spectra of ? and ? based on vibrational configuration interaction wavefunctions

    Science.gov (United States)

    Huh, Joonsuk; Neff, Michael; Rauhut, Guntram; Berger, Robert

    2010-02-01

    Explicitly electron correlating coupled cluster calculations, CCSD(T)-F12a, were performed to determine three-dimensional potential energy hypersurfaces of disulphanide and disulphanyl in an automated approach. Surfaces for different electronic states were used in a Watson rovibrational Hamiltonian ansatz to obtain the correlated anharmonic vibrational wavefunctions. Subsequently the anharmonic Franck-Condon overlap integrals were evaluated. The computed Franck-Condon profiles were compared to experimental photodetachment-photoelectron spectra and confirm essentially the assignments made previously. The profiles indicate, however, additional weaker, and as of yet unresolved, additional features.

  12. Dynamic model of large amplitude vibration of a uniform cantilever beam carrying an intermediate lumped mass and rotary inertia

    OpenAIRE

    A. Nikkar; BAGHERI, S.; Saravi,M.

    2014-01-01

    In this paper, a mathematical model of large amplitude vibration of a uniform cantilever beam arising in the structural engineering is proposed. Two efficient and easy mathematical techniques called variational iteration method and He's variational approach are used to solve the governing differential equation of motion. To assess the accuracy of solutions, we compare the results with the Runge-Kutta 4th order. An excellent agreement of the approximate frequencies and periodic solutions with ...

  13. Millimeter-wave spectroscopy of syn formyl azide (HC(O)N3) in seven vibrational states

    Science.gov (United States)

    Walters, Nicholas A.; Amberger, Brent K.; Esselman, Brian J.; Woods, R. Claude; McMahon, Robert J.

    2017-01-01

    Millimeter-wave spectra for formyl azide (HC(O)N3) were obtained from 240 to 360 GHz at ambient temperature. For the ground state of syn formyl azide, over 1500 independent rotational transitions were measured and least-squares fit to a complete S-reduced 8th order centrifugal distortion/rigid rotor Hamiltonian. The decomposition of formyl azide was monitored over a period of several hours, the half-life (t½ = 30 min) was determined, and its decomposition products were investigated. Transitions from five vibrational satellites of syn formyl azide (ν9, ν12, 2ν9, ν9 + ν12, and ν11) were observed, measured, and least-squares fit to complete or nearly complete octic centrifugally-distorted, single-state S-reduced models. A less complete single-state fit of 3ν9 (509.3 cm-1) was obtained from an unperturbed subset of its assignable transitions. This state is apparently coupled to the fundamental ν8 (489.4 cm-1) and the overtone 2ν12 (503.6 cm-1), but the coupling remains unanalyzed. Anharmonic CCSD(T)/ANO1 estimates of the vibrational frequencies of syn formyl azide were in close agreement with previously published experimental and computational values. Experimentally determined vibration-rotation interaction (αi) values were in excellent agreement with coupled-cluster predicted αi values for the fundamentals ν9, ν12, and ν11.

  14. Vibrations of double-nanotube systems with mislocation via a newly developed van der Waals model

    Science.gov (United States)

    Kiani, Keivan

    2015-06-01

    This study deals with transverse vibrations of two adjacent-parallel-mislocated single-walled carbon nanotubes (SWCNTs) under various end conditions. These tubes interact with each other and their surrounding medium through the intertube van der Waals (vdW) forces, and existing bonds between their atoms and those of the elastic medium. The elastic energy of such forces due to the deflections of nanotubes is appropriately modeled by defining a vdW force density function. In the previous works, vdW forces between two identical tubes were idealized by a uniform form of this function. The newly introduced function enables us to investigate the influences of both intertube free distance and longitudinal mislocation on the natural transverse frequencies of the nanosystem which consists of two dissimilar tubes. Such crucial issues have not been addressed yet, even for simply supported tubes. Using nonlocal Timoshenko and higher-order beam theories as well as Hamilton's principle, the strong form of the equations of motion is established. Seeking for an explicit solution to these integro-partial differential equations is a very problematic task. Thereby, an energy-based method in conjunction with an efficient meshfree method is proposed and the nonlocal frequencies of the elastically embedded nanosystem are determined. For simply supported nanosystems, the predicted first five frequencies of the proposed model are checked with those of assumed mode method, and a reasonably good agreement is achieved. Through various studies, the roles of the tube's length ratio, intertube free space, mislocation, small-scale effect, slenderness ratio, radius of SWCNTs, and elastic constants of the elastic matrix on the natural frequencies of the nanosystem with various end conditions are explained. The limitations of the nonlocal Timoshenko beam theory are also addressed. This work can be considered as a vital step towards better realizing of a more complex system that consists of

  15. Time-frequency representation based on time-varying autoregressive model with applications to non-stationary rotor vibration analysis

    Indian Academy of Sciences (India)

    Long Zhang; Guoliang Xiong; Hesheng Liu; Huijun Zou; Weizhong Guo

    2010-04-01

    A parametric time-frequency representation is presented based on timevarying autoregressive model (TVAR), followed by applications to non-stationary vibration signal processing. The identification of time-varying model coefficients and the determination of model order, are addressed by means of neural networks and genetic algorithms, respectively. Firstly, a simulated signal which mimic the rotor vibration during run-up stages was processed for a comparative study on TVAR and other non-parametric time-frequency representations such as Short Time Fourier Transform, Continuous Wavelet Transform, Empirical Mode Decomposition, Wigner–Ville Distribution and Choi–Williams Distribution, in terms of their resolutions, accuracy, cross term suppression as well as noise resistance. Secondly, TVAR was applied to analyse non-stationary vibration signals collected from a rotor test rig during run-up stages, with an aim to extract fault symptoms under non-stationary operating conditions. Simulation and experimental results demonstrate that TVAR is an effective solution to non-stationary signal analysis and has strong capability in signal time-frequency feature extraction.

  16. A comprehensive flow-induced vibration model to predict crack growth and leakage potential in steam generator tubes

    Energy Technology Data Exchange (ETDEWEB)

    El Bouzidi, Salim [School of Engineering, University of Guelph, Guelph, Ontario N1G 2W1 (Canada); Hassan, Marwan, E-mail: mahassan@uoguelph.ca [School of Engineering, University of Guelph, Guelph, Ontario N1G 2W1 (Canada); Riznic, Jovica [Operational Engineering Assessment Division, Canadian Nuclear Safety Commission, Ottawa, Ontario K1P 5S9 (Canada)

    2015-10-15

    Highlights: • Comprehensive flow induced vibrations time domain model was developed. • Simulations of fluidelastic instability and turbulence were conducted. • Nonlinear effect due to the clearances at the supports was studied. • Prediction of stresses due to fluid excitation was obtained. • Deterministic and stochastic analyses for crack and leakage rate were conducted. - Abstract: Flow-induced vibrations (FIVs) are a major threat to the operation of nuclear steam generators. Turbulence and fluidelastic instability are the two main excitation mechanisms leading to tube vibrations. The consequences to the operation of steam generators are premature wear of the tubes, as well as development of cracks that may leak hazardous fluids. This paper investigates the effect of tube support clearance on the integrity of tube bundles within steam generators. Special emphasis will be placed on crack propagation and leakage rates. A crack growth model is used to simulate the growth of surface flaws and through-wall cracks of various initial sizes due to a wide range of support clearances. Leakage rates are predicted using a two-phase flow leakage model. Nonlinear finite element analysis is used to simulate a full U-bend subjected to fluidelastic and turbulence forces. Monte Carlo simulations are then used to conduct a probabilistic assessment of steam generator life due to crack development.

  17. Crack modelling and detection in Timoshenko FGM beam under transverse vibration using frequency contour and response surface model with GA

    Science.gov (United States)

    Banerjee, Amit; Panigrahi, Brajesh; Pohit, G.

    2016-04-01

    In the present work, dynamic response of cracked Timoshenko beam with functionally graded material properties are obtained by a numerical technique using Ritz approximation. In order to verify the applicability and performance of the formulation, comparisons of the present numerical method with three-dimensional FEM models are made. Crack is assumed to be transverse and open throughout the vibration cycle. Two different crack detection techniques have been proposed. Results obtained by the numerical technique are used in both of the crack detection techniques. In the first technique, the frequency contours with respect to crack location and size are plotted and the intersection of contours of different modes helps in the prediction of crack location and size. In the second technique, crack is modelled using response surface methodology (RSM). The sum of the squared errors between the numerical and RSM regression model natural frequencies is used as the objective function. This objective function is minimised using genetic algorithm optimisation technique. Both the crack detection techniques and the numerical analysis have shown good agreement with each other.

  18. Intermediate vibrational coordinate localization with harmonic coupling constraints

    Science.gov (United States)

    Hanson-Heine, Magnus W. D.

    2016-05-01

    Optimized normal coordinates can significantly improve the speed and accuracy of vibrational frequency calculations. However, over-localization can occur when using unconstrained spatial localization techniques. The unintuitive mixtures of stretching and bending coordinates that result can make interpreting spectra more difficult and also cause artificial increases in mode-coupling during anharmonic calculations. Combining spatial localization with a constraint on the coupling between modes can be used to generate coordinates with properties in-between the normal and fully localized schemes. These modes preserve the diagonal nature of the mass-weighted Hessian matrix to within a specified tolerance and are found to prevent contamination between the stretching and bending vibrations of the molecules studied without a priori classification of the different types of vibration present. Relaxing the constraint can also be used to identify which normal modes form specific groups of localized modes. The new coordinates are found to center on more spatially delocalized functional groups than their fully localized counterparts and can be used to tune the degree of vibrational correlation energy during anharmonic calculations.

  19. Thermodynamic properties of water in the lattice gas model with consideration of the vibrational motions of molecules

    Science.gov (United States)

    Titov, S. V.; Tovbin, Yu. K.

    2016-11-01

    A molecular model developed earlier for a polar fluid within the lattice gas model is supplemented by considering the vibrational motions of molecules using water as an example. A combination of point dipole and Lennard-Jones potentials from SPC parametrization is chosen as the force field model for the molecule. The main thermodynamic properties of liquid water (density, internal energy, and entropy) are studied as functions of temperature. There is qualitative agreement between the calculation results and the experimental data. Ways of refining the molecular theory are discussed.

  20. On anharmonic and pressure corrections to the equilibrium isotopic constants for minerals

    Science.gov (United States)

    Polyakov, Veniamin B.

    1998-09-01

    Specifies of the calculations of the reduced isotopic partition function ratios (β-factor) of minerals are discussed. Comparative calculations in the framework of the fully harmonic, quasi-harmonic, and intrinsic anharmonic approximations show minor anharmonic corrections to the harmonic values of the β-factor. In the case of calcite, the difference between the fully harmonic and intrinsic anharmonic values of 10 3lnβ varies from 0.60 at 300 K to 0.37 at 1200 K and is close to typical values of the anharmonic correction in gas molecules. A new treatment for calculating isotopic effects in molar volumes of minerals and pressure effects on their β-factors is developed on the basis of the Mie-Grüneisen equation of state. There is no significant difference between the quasi-harmonic and intrinsic harmonic values of (∂lnβ/∂ P) T. For calcite, the pressure derivative of the β-factor is positive, decreases monotonically with temperature, and becomes small at T ˜ 1000 K (10 3(∂lnβ/ ∂P) T ≈ 0.1-0.15 GPa -1). These results contradict the large anharmonic and pressure effects to the β-factor of calcite calculated by Gillet et al. (1996) as well as their conclusion that the pressure correction to the β-factor of calcite is negative at higher temperatures and increases in its absolute value with increasing temperature.

  1. Discrete Element Method Numerical Modelling on Crystallization of Smooth Hard Spheres under Mechanical Vibration

    Institute of Scientific and Technical Information of China (English)

    AN Xi-Zhong

    2007-01-01

    The crystallization, corresponding to the fcc structure (with packing density p ≈ 0.74), of smooth equal hard spheres under batch-wised feeding and three-dimensional interval vibration is numerically obtained by using the discrete element method. The numerical experiment shows that the ordered packing can be realized by proper control of the dynamic parameters such as batch of each feeding § and vibration amplitude A. The radial distribution function and force network are used to characterize the ordered structure. The defect formed during vibrated packing is characterized as well The results in our work fill the gap of getting packing density between random close packing and fcc packing in phase diagram which provides an effective way of theoretically investigating the complex process and mechanism of hard sphere crystallization and its dynamics.

  2. Vibrational relaxation of NO stretching modes in ferrous NO and ferric NO in model heme

    Science.gov (United States)

    Park, Jaeheung; Lee, Taegon; Lim, Manho

    2013-08-01

    Femtosecond IR-pump-IR-probe spectroscopy was used to measure the vibrational lifetimes (T1) of NO stretching modes of ferrous NO near 1600 cm-1 and ferric NO near 1900 cm-1 at room temperature. The T1 of NO bound to the heme, ranging from 3.5 to 34 ps, is much shorter in ferrous NO. The vibrational relaxation (VR) of NO was independent of solvent used and excess imidazole concentration, suggesting that intramolecular VR into the internal vibrational modes of the probed molecule may be the dominant pathway for VR of the bound NO. With estimated T1 of the bound NO, we simulated transient spectra of NO bound to ferrous hemoglobin (HbII) after photodeligation of HbIINO and discussed the influence of the hot band on the determination of the dynamics of geminate rebinding of NO to HbII using the change in the magnitude of the fundamental band.

  3. Peptides as Model Systems for the Unfolded State of Proteins Explored By Vibrational Spectroscopy

    Science.gov (United States)

    Schweitzer-Stenner, Reinhard; Measey, Thomas; Hagarman, Andrew

    2008-11-01

    Unfolded proteins are generally thought to be structurally random with a minimum of non-local interactions. This concept implies that with the exception of glycine and proline the conformational propensities of amino acid residues in polypeptides should be comparable in that they all sample the statistically allowed region of the Ramachandran plot. However, over the last ten years experimental and computational evidence has emerged for the notion that the conformational space of residues might be more restricted than predicted by random or statistical coil models. We have developed several algorithms which can be used to simulate the amide I band profile of the IR, isotropic Raman, anisotropic Raman and Vibrational Circular Dichroism (VCD) spectra of polypeptides based on assumed ensembles of side chain conformations. The simulations are generally restricted by 3JcαHNH coupling constants obtained from NMR spectroscopy. A comparison with experimental results reveals that e.g. alanine has a clear preference for the so called polyproline II (PPII) conformation in short peptides. The situation becomes more complex if longer polyalanines are doped with negatively charged residues. For the so-called XAO-peptide (X2A7O2, X: diaminobutyric acid, O;ornithine) we found a more compact structure owing to multiple turn conformations sampled by the X2A7 interfaces. For Salmon Calcitonin, a 32-residue hormone, we identified a mixture of PPII, β-strand and helical conformations. Currently, we are in the process of investigating short GxG (x; different natural amino acid residues) peptides in terms of conformational distributions obtained from coil libraries. This will enable us obtain the conformational preferences of amino acid residues in the absence of nearest neighbor interactions.

  4. Examining the impact of harmonic correlation on vibrational frequencies calculated in localized coordinates

    Energy Technology Data Exchange (ETDEWEB)

    Hanson-Heine, Magnus W. D., E-mail: magnus.hansonheine@nottingham.ac.uk [School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)

    2015-10-28

    Carefully choosing a set of optimized coordinates for performing vibrational frequency calculations can significantly reduce the anharmonic correlation energy from the self-consistent field treatment of molecular vibrations. However, moving away from normal coordinates also introduces an additional source of correlation energy arising from mode-coupling at the harmonic level. The impact of this new component of the vibrational energy is examined for a range of molecules, and a method is proposed for correcting the resulting self-consistent field frequencies by adding the full coupling energy from connected pairs of harmonic and pseudoharmonic modes, termed vibrational self-consistent field (harmonic correlation). This approach is found to lift the vibrational degeneracies arising from coordinate optimization and provides better agreement with experimental and benchmark frequencies than uncorrected vibrational self-consistent field theory without relying on traditional correlated methods.

  5. Simple vibration modeling of structural fuzzy with continuous boundary by including two-dimensional spatial memory

    DEFF Research Database (Denmark)

    Friis, Lars; Ohlrich, Mogens

    2008-01-01

    Many complicated systems of practical interest consist basically of a well-defined outer shell-like master structure and a complicated internal structure with uncertain dynamic properties. Using the "fuzzy structure theory" for predicting audible frequency vibration, the internal structure......-dimensional continuous boundary. Additionally, a simple method for determining the so-called equivalent coupling factor is presented. The validity of this method is demonstrated by numerical simulations of the vibration response of a master plate structure with fuzzy attachments. It is revealed that the method performs...

  6. Adaptive Model-Based Mine Detection/Localization using Noisy Laser Doppler Vibration Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, E J; Xiang, N; Candy, J V

    2009-04-06

    The acoustic detection of buried mines is hampered by the fact that at the frequencies required for obtaining useful penetration, the energy is quickly absorbed by the ground. A recent approach which avoids this problem, is to excite the ground with a high-level low frequency sound, which excites low frequency resonances in the mine. These resonances cause a low-level vibration on the surface which can be detected by a Laser Doppler Vibrometer. This paper presents a method of quickly and efficiently detecting these vibrations by sensing a change in the statistics of the signal when the mine is present. Results based on real data are shown.

  7. Low temperature vibrational spectroscopy. III. Structural aspects and detection of phase transitions in crystalline alkali metal and tetramethylammonium hexabromotellurates and platinates

    DEFF Research Database (Denmark)

    Berg, Rolf W.

    1979-01-01

    that the methyl groups are not pseudo freely rotating. The anharmonicity of the vibrations in tetramethylammonium hexabromotellurate seems to increase abnormally at lower temperatures, possibly due to enhanced methyl–bromine interaction. The Journal of Chemical Physics is copyrighted by The American Institute...

  8. Role of anharmonicities and non-linearities in heavy ion collisions a microscopic approach

    CERN Document Server

    Lanza, E G; Catara, F; Chomaz, P; Volpe, C; Chomaz, Ph.

    1996-01-01

    Using a microscopic approach beyond RPA to treat anharmonicities, we mix two-phonon states among themselves and with one-phonon states. We also introduce non-linear terms in the external field. These non-linear terms and the anharmonicities are not taken into account in the "standard" multiphonon picture. Within this framework we calculate Coulomb excitation of 208Pb and 40Ca by a 208Pb nucleus at 641 and 1000MeV/A. We show with different examples the importance of the non-linearities and anharmonicities for the excitation cross section. We find an increase of 10 % for 208Pb and 20 % for 40Ca of the excitation cross section corresponding to the energy region of the double giant dipole resonance with respect to the "standard" calculation. We also find important effects in the low energy region. The predicted cross section in the DGDR region is found to be rather close to the experimental observation.

  9. Effect of external fields on the energies of hydrogenic donor with the anharmonic confinement potential

    Energy Technology Data Exchange (ETDEWEB)

    Aciksoz, E.; Bayrak, O. [Department of Physics, Akdeniz University, 07058 Antalya (Turkey); Soylu, A., E-mail: asimsoylu@gmail.com [Department of Physics, Nigde University, 51240 Nigde (Turkey)

    2015-01-01

    The impurity binding energy in the GaAs−Ga{sub 1−x}Al{sub x}As system is studied with an anharmonic type confinement potential by taking into account the influence of the external electric and magnetic fields within the framework of the effective mass approximation and asymptotic iteration method (AIM). The influence of the external electromagnetic fields and anharmonicity on a donor binding energy is examined systematically. It is shown that the donor binding energy is highly dependent on the external electric and magnetic fields and the confinement potential shapes. Both the electric and magnetic fields are increased, the binding energies increase for each of them. However, the behaviors of increase in the weak and strong fields’ regimes have different character a bit. Furthermore, when the more anharmonicity is considered, the binding energy of donor slightly increases as well.

  10. Numerical Modelling of Rain-Wind-Induced Vibration: Erasmus Bridge, Rotterdam

    NARCIS (Netherlands)

    Geurts, C.; Vrouwenvelder, T.; Staalduinen, P.C. van; Reusink, J.

    1998-01-01

    Shortly after completion, the main span cables of the Erasmus Bridge in Rotterdam showed aerodynamic instabilities with large amplitudes. These instabilities were recognised as rain-wind-induced vibrations. Temporary measures were installed on the bridge, and a year later, tuned hydraulic dampers we

  11. Economic benefits of CAD-models for compressor manifold vibration analyses according to API 618

    NARCIS (Netherlands)

    Eijk, A.; Samland, G.; Retz, N.; Sauter, D.

    2003-01-01

    Reciprocating compressors, including pulsation dampers and the connected pipe system, are often the heart of an installation and should therefore operate reliable. Compressor manifold vibrations can contribute to fatigue failure of the system which can lead to unsafe situations, loss of capacity and

  12. Equation of State, Nonlinear Elastic Response, and Anharmonic Properties of Diamond-Cubic Silicon and Germanium: First-Principles Investigation

    Science.gov (United States)

    Wang, Chenju; Gu, Jianbing; Kuang, Xiaoyu; Xiang, Shikai

    2015-06-01

    Nonlinear elastic properties of diamond-cubic silicon and germanium have not been investigated sufficiently to date. Knowledge of these properties not only can help us to understand nonlinear mechanical effects but also can assist us to have an insight into the related anharmonic properties, so we investigate the nonlinear elastic behaviour of single silicon and germanium by calculating their second- and third-order elastic constants. All the results of the elastic constants show good agreement with the available experimental data and other theoretical calculations. Such a phenomenon indicates that the present values of the elastic constants are accurate and can be used to further study the related anharmonic properties. Subsequently, the anharmonic properties such as the pressure derivatives of the second-order elastic constants, Grüneisen constants of long-wavelength acoustic modes, and ultrasonic nonlinear parameters are explored. All the anharmonic properties of silicon calculated in the present work also show good agreement with the existing experimental results; this consistency not only reveals that the calculation method of the anharmonic properties is feasible but also illuminates that the anharmonic properties obtained in the present work are reliable. For the anharmonic properties of germanium, since there are no experimental result and other theoretical data till now, we hope that the anharmonic properties of germanium first offered in this work would serve as a reference for future studies.

  13. Equation of state, nonlinear elastic response, and anharmonic properties of diamond-cubic silicon and germanium. First-principles investigation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chenju [Sichuan Univ., Chengdu (China). Inst. of Atomic and Molecular Physics; Institute of Fluid Physics, Sichuan (China). National Key Laboratory of Shock Wave and Detonation Physics; Gu, Jianbing [Institute of Fluid Physics, Sichuan (China). National Key Laboratory of Shock Wave and Detonation Physics; Sichuan Univ., Chengdu (China). College of Physical Science and Technology; Kuang, Xiaoyu [Sichuan Univ., Chengdu (China). Inst. of Atomic and Molecular Physics; Xiang, Shikai [Institute of Fluid Physics, Sichuan (China). National Key Laboratory of Shock Wave and Detonation Physics

    2015-10-01

    Nonlinear elastic properties of diamond-cubic silicon and germanium have not been investigated sufficiently to date. Knowledge of these properties not only can help us to understand nonlinear mechanical effects but also can assist us to have an insight into the related anharmonic properties, so we investigate the nonlinear elastic behaviour of single silicon and germanium by calculating their second- and third-order elastic constants. All the results of the elastic constants show good agreement with the available experimental data and other theoretical calculations. Such a phenomenon indicates that the present values of the elastic constants are accurate and can be used to further study the related anharmonic properties. Subsequently, the anharmonic properties such as the pressure derivatives of the second-order elastic constants, Grueneisen constants of long-wavelength acoustic modes, and ultrasonic nonlinear parameters are explored. All the anharmonic properties of silicon calculated in the present work also show good agreement with the existing experimental results; this consistency not only reveals that the calculation method of the anharmonic properties is feasible but also illuminates that the anharmonic properties obtained in the present work are reliable. For the anharmonic properties of germanium, since there are no experimental result and other theoretical data till now, we hope that the anharmonic properties of germanium first offered in this work would serve as a reference for future studies.

  14. Vibration interaction in a multiple flywheel system

    Science.gov (United States)

    Firth, Jordan; Black, Jonathan

    2012-03-01

    This paper investigates vibration interaction in a multiple flywheel system. Flywheels can be used for kinetic energy storage in a satellite Integrated Power and Attitude Control System (IPACS). One hitherto unstudied problem with IPACS is vibration interaction between multiple unbalanced wheels. This paper uses a linear state-space dynamics model to study the impact of vibration interaction. Specifically, imbalance-induced vibration inputs in one flywheel rotor are used to cause a resonant whirling vibration in another rotor. Extra-synchronous resonant vibrations are shown to exist, but with damping modeled the effect is minimal. Vibration is most severe when both rotors are spinning in the same direction.

  15. Embedding human annoyance rate models in wireless smart sensors for assessing the influence of subway train-induced ambient vibration

    Science.gov (United States)

    Sun, Ke; Zhang, Wei; Ding, Huaping; Kim, Robin E.; Spencer, Billie F., Jr.

    2016-10-01

    The operation of subway trains induces ambient vibrations, which may cause annoyance and other adverse effects on humans, eventually leading to physical, physiological, and psychological problems. In this paper, the human annoyance rate (HAR) models, used to assess the human comfort under the subway train-induced ambient vibrations, were deduced and the calibration curves for 5 typical use circumstances were addressed. An autonomous measurement system, based on the Imote2, wireless smart sensor (WSS) platform, plus the SHM-H, high-sensitivity accelerometer board, was developed for the HAR assessment. The calibration curves were digitized and embedded in the computational core of the WSS unit. Experimental validation was conducted, using the developed system on a large underground reinforced concrete frame structure adjoining the subway station. The ambient acceleration of both basement floors was measured; the embedded computation was implemented and the HAR assessment results were wirelessly transmitted to the central server, all by the WSS unit. The HAR distributions of the testing areas were identified, and the extent to which both basements will be influenced by the close-up subway-train’s operation, in term of the 5 typical use circumstances, were quantitatively assessed. The potential of the WSS-based autonomous system for the fast environment impact assessment of the subway train-induced ambient vibration was well demonstrated.

  16. Nightmare from which you will never awake: Electronic to vibrational spectra!

    Energy Technology Data Exchange (ETDEWEB)

    De Silva, Nuwon [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    The theoretical background of ab initio methods and density functional theory is provided. The anharmonicity associated with weakly bound metal cation dihydrogen complexes is examined using the vibrational self-consistent field (VSCF) method and the interaction between a hydrogen molecule and a metal cation is characterized. A study of molecular hydrogen clustering around the lithium cation and their accompanied vibrational anharmonicity employing VSCF is illustrated. A qualitative interpretation is provided of solvent-induced shifts of amides and simulated electronic absorption spectra using the combined time-dependent density functional theory/effective fragment potential method (TDDFT/EFP). An excited-state solvent assisted quadruple hydrogen atom transfer reaction of a coumarin derivative is elucidated using micro solvated quantum mechanical (QM) water and macro solvated EFP water. A dispersion correction to the QM-EFP1 interaction energy is presented.

  17. Design of blade-shaped-electrode linear ion traps with reduced anharmonic contributions

    Energy Technology Data Exchange (ETDEWEB)

    Deng, K.; Che, H.; Ge, Y. P.; Xu, Z. T.; Yuan, W. H.; Zhang, J.; Lu, Z. H., E-mail: zehuanglu@mail.hust.edu.cn [MOE Key Laboratory of Fundamental Physical Quantities Measurement, School of Physics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074 (China); Lan, Y. [MOE Key Laboratory of Fundamental Physical Quantities Measurement, School of Physics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074 (China); Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1 (Canada)

    2015-09-21

    RF quadrupole linear Paul traps are versatile tools in quantum physics experiments. Linear Paul traps with blade-shaped electrodes have the advantages of larger solid angles for fluorescence collection. But with these kinds of traps, the existence of higher-order anharmonic terms of the trap potentials can cause large heating rate for the trapped ions. In this paper, we theoretically investigate the dependence of higher-order terms of trap potentials on the geometry of blade-shaped traps, and offer an optimized design. A modified blade electrodes trap is proposed to further reduce higher-order anharmonic terms while still retaining large fluorescence collection angle.

  18. MODELING OF EQUIVALENT STIFFNESS OF A MAGNETIC SPRING OF VIBRATION EXCITER BASED ON COAXIAL-LINEAR MOTOR

    Directory of Open Access Journals (Sweden)

    G.M. Golenkov

    2015-12-01

    Full Text Available Purpose. The research of the influence of value and direction of current on the equivalent spring magnetic force based on coaxial-linear motor (CLM – MS. Methodology. We carried out investigation of the equivalent harshness of magnetic spring with determination of electromechanical propulsion performance characteristics by the methods of computer modeling and experimental research of physical model of CLM – MS. The modeling of magnetic spring of CLM – MS is carried out by the finite-element method. The challenge is met as an axisymmetric challenge in cylindrical co-ordinates in magnetostatic approach. The experimental investigattion of the propulsion performance characteristics of magnetic spring is carried out on the test bench. Results. After the computer modeling and the experimental investigation of the electromechanical propulsion performance characteristics of magnetic spring the expressions of equivalent stiffness coefficient depending on the current in winding are obtained. The results of computer modeling are confirmed experimentally. Originality. The determination of equivalent stiffness coefficient of magnetic spring of vibration exciter based on coaxial-linear motor. Practical value. The obtained determination of equivalent stiffness coefficient of magnetic spring may be used in process of designing of vibration machines with devices for change of natural oscillation frequency.

  19. Modeling structures and vibrational frequencies for dinitrosyl iron complexes (DNICs) with density functional theory.

    Science.gov (United States)

    Brothers, Scott M; Darensbourg, Marcetta Y; Hall, Michael B

    2011-09-05

    The biochemical and physiological importance of nitric oxide (NO) in signaling and vasodilation has been studied for several decades. The discovery of both protein-bound and free low molecular weight dinitrosyl iron complexes (DNICs) suggests that such compounds might play roles in biological NO storage and transport. These complexes have important distinguishing spectroscopic features, including EPR and Mössbauer spectra, and NO vibrational frequencies (ν((NO))). The latter are particularly sensitive to modifications of the ligand environment and metal oxidation states. Examinations of functionals and basis sets delineate their effect on the NO vibrational frequencies and allow development of a methodology to calculate these frequencies in other DNICs. Three complexes of the form (L)(CO)Fe(NO)(2) (L = CO, N,N'-dimethyl-imidazol-2-ylidene (IMe) or 1-methylimidazole (MeImid)), where {Fe(NO)(2)}(10) is in its reduced form, have been used to calibrate the vibrational frequencies. The functional BP86 paired with a basis set of SDD/ECP on the metal and 6-311++G(d,p) on the ligand atoms exhibits the most accurate results, with deviations from experimental vibrational frequencies of no more than ±40 cm(-1). Subsequent investigations were performed on a series of diiron trinitrosyl complexes of the form {Fe(NO)}(7)-{Fe(NO)(2)}(9) bridged by sulfurs, namely, [(ON)Fe(μ-S,S-C(6)H(4))(2)Fe(NO)(2)](-), [Fe(NO)(2){Fe(NS(3))(NO)}-μ-S,S'], and [(ON)Fe(bme-dach)Fe(NO)(2)-μ-S,S'](+), with the ideal functional/basis set pair determined via the aforementioned test set. The ground state energetics (singlet/triplet/singlet, respectively), geometric parameters, and nitrosyl vibrational frequencies were calculated. The results for the former two complexes correlated well with the experimental work, and in contrast with what was reported in an earlier computational study, a stable triplet ground state structure was optimized for [Fe(NO)(2){Fe(NS(3))(NO)}-μ-S,S']. For [(ON

  20. Calculations of lattice vibrational mode lifetimes using Jazz: a Python wrapper for LAMMPS

    Science.gov (United States)

    Gao, Y.; Wang, H.; Daw, M. S.

    2015-06-01

    Jazz is a new python wrapper for LAMMPS [1], implemented to calculate the lifetimes of vibrational normal modes based on forces as calculated for any interatomic potential available in that package. The anharmonic character of the normal modes is analyzed via the Monte Carlo-based moments approximation as is described in Gao and Daw [2]. It is distributed as open-source software and can be downloaded from the website http://jazz.sourceforge.net/.

  1. Effect of vibrating electrode on temperature profiles, fluid flow, and pool shape in ESR system based on a comprehensive coupled model

    Institute of Scientific and Technical Information of China (English)

    Fang Wang; Yan-chun Lou; Rui Chen; Zhao-wei Song; Bao-kuan Li

    2015-01-01

    The vibrating electrode method was proposed in the electro-slag remelting (ESR) process in this paper, and the effect of vibrating electrode on the solidiifcation structure of ingot was studied. A transient three-dimensional (3D) coupled mathematical model was established to simulate the electromagnetic phenomenon, fluid flow as well as pool shape in the ESR process with the vibrating electrode. The finite element volume method is developed to solve the electromagnetic field using ANSYS mechanical APDL software. Moreover, the electromagnetic force and Joule heating are interpolated as the source term of the momentum and energy equations. The multi-physical fields have been investigated and compared between the traditional electrode and the vibrating electrode in the ESR process. The results show that the drop process of metal droplets with the traditional electrode is scattered randomly. However, the drop process of metal droplets with the vibrating electrode is periodic. The highest temperature of slag layer with the vibrating electrode is higher than that with the traditional electrode, which can increase the melting rate due to the enhanced heat transfer in the vicinity of the electrode tip. The results also show that when the amplitude and frequency of the vibrating electrode increase, the cycle of drop process of metal droplets decreases signiifcantly.

  2. Effect of vibrating electrode on temperature profiles, fluid flow, and pool shape in ESR system based on a comprehensive coupled model

    Directory of Open Access Journals (Sweden)

    Fang Wang

    2015-07-01

    Full Text Available The vibrating electrode method was proposed in the electro-slag remelting (ESR process in this paper, and the effect of vibrating electrode on the solidification structure of ingot was studied. A transient three-dimensional (3D coupled mathematical model was established to simulate the electromagnetic phenomenon, fluid flow as well as pool shape in the ESR process with the vibrating electrode. The finite element volume method is developed to solve the electromagnetic field using ANSYS mechanical APDL software. Moreover, the electromagnetic force and Joule heating are interpolated as the source term of the momentum and energy equations. The multi-physical fields have been investigated and compared between the traditional electrode and the vibrating electrode in the ESR process. The results show that the drop process of metal droplets with the traditional electrode is scattered randomly. However, the drop process of metal droplets with the vibrating electrode is periodic. The highest temperature of slag layer with the vibrating electrode is higher than that with the traditional electrode, which can increase the melting rate due to the enhanced heat transfer in the vicinity of the electrode tip. The results also show that when the amplitude and frequency of the vibrating electrode increase, the cycle of drop process of metal droplets decreases significantly.

  3. Vibration enhanced quantum transport

    CERN Document Server

    Semião, F L; Milburn, G J

    2009-01-01

    In this paper, we study the role of a collective vibrational motion in the phenomenon of electronic energy transfer (EET) between chromophores with different electronic transition frequencies. Previous experimental work on EET in conjugated polymer samples has suggested that the common structural framework of the macromolecule introduce correlations in the energy gap fluctuations which cause coherent EET. We present a simple model describing the coupling between the chromophores and a common vibrational mode, and find that vibration can indeed lead to an enhancement in the transport of excitations across the quantum network. Furthermore, in our model phase information is partially retained in the transfer process from a donor to an acceptor, as experimentally demonstrated in the conjugated polymer system. Consequently, this mechanism of vibration enhanced quantum transport might find applications in quantum information transfer of qubit states or entanglement.

  4. Vibrating wire alignment technique

    CERN Document Server

    Xiao-Long, Wang; lei, Wu; Chun-Hua, Li

    2013-01-01

    Vibrating wire alignment technique is a kind of method which through measuring the spatial distribution of magnetic field to do the alignment and it can achieve very high alignment accuracy. Vibrating wire alignment technique can be applied for magnet fiducialization and accelerator straight section components alignment, it is a necessary supplement for conventional alignment method. This article will systematically expound the international research achievements of vibrating wire alignment technique, including vibrating wire model analysis, system frequency calculation, wire sag calculation and the relation between wire amplitude and magnetic induction intensity. On the basis of model analysis this article will introduce the alignment method which based on magnetic field measurement and the alignment method which based on amplitude and phase measurement. Finally, some basic questions will be discussed and the solutions will be given.

  5. Stochastic modeling and vibration analysis of rotating beams considering geometric random fields

    Science.gov (United States)

    Choi, Chan Kyu; Yoo, Hong Hee

    2017-02-01

    Geometric parameters such as the thickness and width of a beam are random for various reasons including manufacturing tolerance and operation wear. Due to these random parameter properties, the vibration characteristics of the structure are also random. In this paper, we derive equations of motion to conduct stochastic vibration analysis of a rotating beam using the assumed mode method and stochastic spectral method. The accuracy of the proposed method is first verified by comparing analysis results to those obtained with Monte-Carlo simulation (MCS). The efficiency of the proposed method is then compared to that of MCS. Finally, probability densities of various modal and transient response characteristics of rotating beams are obtained with the proposed method.

  6. Experiments in Sound and Structural Vibrations Using an Air-Analog Model Ducted Propulsion System

    Science.gov (United States)

    2007-08-01

    of a circular membrane /(fromn Morse and Ingard ) University of Noire Dame Center for Flow Physics and Control I _ I Sound and Vibration Measurements...region. A detailed deri- vation of Eq. (29) is available in Morse and Ingard (1968), among others. Integration by parts allows the far field solution to...imposed by the rigid duct. A similar amplification function was introduced by Morse and Ingard (p. 320). As an example, if a harmonic monopole source were

  7. Development of a Novel Translational Model of Vibration Injury to the Spine to Study Acute Injury

    Science.gov (United States)

    2013-10-01

    contraction ( MVC ) for each subject was measured. The pelvis was stabilized during the contractions using 2 canvas cargo straps and a seat belt, and...resistance of the chest harness. The force during extension was recorded as the 100 % MVC force. On the day of testing immediately prior to the vibration...prior MVC testing by requiring the subject to sustain brief static contractions at 40% of the maximum force achieved during orientation using real time

  8. Waves & vibrations

    OpenAIRE

    Nicolas, Maxime

    2016-01-01

    Engineering school; This course is designed for students of Polytech Marseille, engineering school. It covers first the physics of vibration of the harmonic oscillator with damping and forcing, coupled oscillators. After a presentation of the wave equation, the vibration of strings, beams and membranes are studied.

  9. Analytical model and spectral correction of vibration effects on Fourier transform spectrometer

    Science.gov (United States)

    Shatalina, Irina; Schmidt, Frederic; Saggin, Bortolino; Gac, Nicolas; Kowalski, Matthieu; Giuranna, Marco

    2013-10-01

    Sensitivity to mechanical vibrations of Fourier Transform Spectrometers (FTS) is a well-known phenomenon. It is especially critical for FTS devoted to atmospheric studies (like the Planetary Fourier Spectrometer (PFS) onboard Mars Express 2003), as absorption bands for the gases of low concentration are comparable with the generated instrument spectral noise. The adopted techniques for the vibration sensitivity reduction suffer of limitations in practical implementation, leaving residual modulations of the interferogram and the so-called ghosts in the spectra. Moreover as it is often impossible to measure the vibrations during the FTS measurement, the position and magnitude of these ghosts cannot be evaluated. Up to now the adopted ghost reduction techniques are mostly based on the averaging of spectra, because the disturbance phase is randomly distributed. This paper presents an innovative data treatment technique which allows single spectrum correction from distortions of unknown nature. Such a technique would increase the spatial resolution of the mapping process and becomes crucial when the desired information is linked to a particular mapping area associated to an individual spectrum. The full study consists in the explicit analysis of the ghost formation and the post-processing algorithm based on the semiblind deconvolution method - an iterative numerical algorithm of the series of consecutive deconvolutions. The technique was tested on the data from the PFS and the algorithm proved to be consistent according to the selected efficiency criteria (coming from the available general information about the signal spectral shape).

  10. Interpreting nonlinear vibrational spectroscopy with the classical mechanical analogs of double-sided Feynman diagrams.

    Science.gov (United States)

    Noid, W G; Loring, Roger F

    2004-10-15

    Observables in coherent, multiple-pulse infrared spectroscopy may be computed from a vibrational nonlinear response function. This response function is conventionally calculated quantum-mechanically, but the challenges in applying quantum mechanics to large, anharmonic systems motivate the examination of classical mechanical vibrational nonlinear response functions. We present an approximate formulation of the classical mechanical third-order vibrational response function for an anharmonic solute oscillator interacting with a harmonic solvent, which establishes a clear connection between classical and quantum mechanical treatments. This formalism permits the identification of the classical mechanical analog of the pure dephasing of a quantum mechanical degree of freedom, and suggests the construction of classical mechanical analogs of the double-sided Feynman diagrams of quantum mechanics, which are widely applied to nonlinear spectroscopy. Application of a rotating wave approximation permits the analytic extraction of signals obeying particular spatial phase matching conditions from a classical-mechanical response function. Calculations of the third-order response function for an anharmonic oscillator coupled to a harmonic solvent are compared to numerically correct classical mechanical results.

  11. Generalized Nonanalytic Expansions, PT-Symmetry and Large-Order Formulas for Odd Anharmonic Oscillators

    Directory of Open Access Journals (Sweden)

    Ulrich D. Jentschura

    2009-01-01

    Full Text Available The concept of a generalized nonanalytic expansion which involves nonanalytic combinations of exponentials, logarithms and powers of a coupling is introduced and its use illustrated in various areas of physics. Dispersion relations for the resonance energies of odd anharmonic oscillators are discussed, and higher-order formulas are presented for cubic and quartic potentials.

  12. Application of quasiexactly solvable potential method to the $N$-body problem of anharmonic oscillators

    Indian Academy of Sciences (India)

    PANAHI H; GAVABAR M MOHAMMADKAZEMI

    2016-05-01

    The quasiexactly solvable potential method is used to determine the energies and the corresponding exact eigenfunctions for a system of N particles with equal mass interacting via an anharmonic potential. For systems with five and seven particles, we compute the ground state and the first excited state only, and compare the spectrums with the results obtained by Ritz approximation method.

  13. Unified Treatment of Screening Coulomb and Anharmonic Oscillator Potentials in Arbitrary Dimensions

    Institute of Scientific and Technical Information of China (English)

    Bülent G(o)nül; Okan (O)zer; Mehmet Ko(c)ak

    2006-01-01

    A mapping is obtained relating radial screened Coulomb systems with low screening parameters to radial anharmonic oscillators in N-dimensional space. Using the formalism of supersymmetric quantum mechanics, it is shown that exact solutions of these potentials exist when the parameters satisfy certain constraints.

  14. Periodic permanent waves in an anharmonic chain with nearest-neighbour interaction

    NARCIS (Netherlands)

    Valkering, T.P.

    1978-01-01

    The existence of longitudinal periodic permanent waves in a one-dimensional translationally invariant anharmonic chain with nearest-neighbour interaction is established by means of variational methods. A general expression for the energy is given in terms of the dispersion relation. The interaction

  15. Numerical experiment of anharmonic oscillators by using the symplectic scheme-shooting method

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Symplectic scheme-shooting method (SSSM) is applied to solve the energy eigenvalues of anharmonic oscillators characterized by the potentials V(x)=λx4 and V(x)=(1/2)x2+λx2α with α=2,3,4 and doubly anharmonic oscillators characterized by the potentials V(x)=(1/2)x2+λ1x4+λ2x6, and a high order symplectic scheme tailored to the "time"-dependent Hamiltonian function is presented. The numerical results illustrate that the energy eigenvalues of anharmonic oscillators with the symplectic scheme-shooting method are in good agreement with the numerical accurate ones obtained from the non-perturbative method by using an appropriately scaled basis for the expansion of each eigenfunction; and the energy eigenvalues of doubly anharmonic oscillators with the sympolectic scheme-shooting method are in good agreement with the exact ones and are better than the results obtained from the four-term asymptotic series. Therefore, the symplectic scheme-shooting method, which is very simple and is easy to grasp, is a good numerical algorithm.

  16. Anharmonicity and phase stability of antiperovskite Li3OCl

    Science.gov (United States)

    Chen, Min-Hua; Emly, Alexandra; Van der Ven, Anton

    2015-06-01

    A lattice-dynamics study of the cubic Li3OCl antiperovskite, a candidate solid electrolyte in lithium-ion batteries, reveals the presence of dynamical instabilities with respect to rotations of the Li6O octahedra. Calculated energy landscapes in the subspace of unstable octahedral rotational modes are very shallow with at most a 1 meV per formula unit reduction in energy upon breaking the cubic symmetry. While Li3OCl is not stable relative to decomposition into Li2O and LiCl at 0 K, estimates of the vibrational free energy suggest that Li3OCl antiperovskite should become entropically stabilized above approximately 480 K.

  17. Effect of subglottic stenosis on the flow-induced vibration of a self-oscillating computational vocal fold model

    Science.gov (United States)

    Smith, Simeon L.; Thomson, Scott L.

    2010-11-01

    The subglottis plays an important role in voice production; however, in general the role of subglottal geometry in phonation is not well understood. This research focuses on studying how subglottic stenosis, or a narrowing of the airway below the vocal folds, affects the response of a self-oscillating computational vocal fold model. Methods are described for computational model development, including stenotic geometry definition from CT scan images, incorporation of the stenosis into a finite element fluid-structure interaction model, and parametric variation of the degree of stenosis severity. Results are presented for a normal (no stenosis) case and five cases of varying degrees of stenosis severity. Qualitative and quantitative comparisons of vocal fold vibratory motion and of flow behavior for the six cases are made, including characterization of flow patterns in the subglottis, glottal width and flow rate time histories, vibration frequency, and airway resistance.

  18. The NASA/Industry Design Analysis Methods for Vibrations (DAMVIBS) Program - Boeing helicopters airframe finite element modeling

    Science.gov (United States)

    Gabel, R.; Lang, P.; Reed, D.

    1992-01-01

    Finite-element modeling of the airframe vibration of the Army/Boeing CH-47D helicopter is conducted with comparisons to experimental data in an effort to improve the design process. A NASTRAN FEM is developed that is fully representative of the test configuration and includes the support fixture, shakers, and the aircraft/shaker suspension system. The analysis is conducted with specific attention given to the prediction of reasonable forced amplitudes throughout the airframe. Reasonable correlation is noted between the FEM and experimental results, although improved correlation can be obtained by including more accurate damping values and secondary effects such as stringer shear loading. It is shown that the general stress model does not provide an adequate dynamic analysis on which to base design improvements. A more detailed model is required that emphasizes highly detailed helicopter elements and employs a finer mesh particularly in the description of the mass distribution.

  19. Electro-Mechanical Modeling and Performance Analysis of Floating Wave Energy Converters Utilizing Yo-Yo Vibrating System

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Kyuho; Park, Jisu [Seoul National University, Seoul (Korea, Republic of); Jang, Seon-Jun [Innovation KR, Seoul (Korea, Republic of)

    2015-01-15

    This paper proposes a floating-type wave energy conversion system that consists of a mechanical part (yo-yo vibrating system, motion rectifying system, and power transmission system) and electrical part (power generation system). The yo-yo vibrating system, which converts translational input to rotational motion, is modeled as a single degree-of-freedom system. It can amplify the wave input via the resonance phenomenon and enhance the energy conversion efficiency. The electromechanical model is established from impedance matching of the mechanical part to the electrical system. The performance was analyzed at various wave frequencies and damping ratios for a wave input acceleration of 0.14 g. The maximum output occurred at the resonance frequency and optimal load resistance, where the power conversion efficiency and electrical output power reached 48% and 290 W, respectively. Utilizing the resonance phenomenon was found to greatly enhance the performance of the wave energy converter, and there exists a maximum power point at the optimum load resistance.

  20. Classical and Quantum Vibration in a Nonseparable, Nonharmonic System

    Science.gov (United States)

    McDonald, Karen Marie

    Studies of vibrational dynamics have been performed on a two-dimensional model potential surface V(x,z; R), adapted from the ab initio surface previously used in this laboratory to analyze dynamics of the bifluoride ion (FHF) ^-. The model potential has C _{2v} symmetry, but is strongly anharmonic and nonseparable in the dynamical variables (x,z); its character changes as the parameter R is varied. Quantum and classical descriptions of vibrational states in this system are compared with corresponding Self-Consistent Field (SCF) approximations. Insights provided by each approach are assessed. Systematic Fermi resonances appear in the quantum mechanical states (at energies up to approximately 10,000 cm^{-1}) arising from crossings of quantum SCF levels with two quanta of vibration exchanged between x and z modes. The lowest quantum states of each symmetry are well described by the SCF approximation except near such crossings. Calculations using Configuration Interaction were done to obtain accurate eigenstates and examine correlations in the quantum mechanics. The Classical Self-Consistent Field (CSCF) method provides a description of the mechanics similar to that given by its quantum counterpart. Classical bound state methods based on semiclassical quantization of quasiperiodic trajectories are unable to give a corresponding description. At energies as low as the quantum ground state, the true classical dynamics is strongly disturbed by resonant interactions. At higher energies the number and strength of these disruptions is so great that the motion is largely irregular. The most prominent effect is a 1:1 frequency resonance associated with strong reorganization of the classical motion along pronounced valleys of the potential surface lying at +/-26^circ to the x-axis. This phenomenon has been studied by analysis of the true dynamics and by application of classical canonical perturbation theory to the zero-order CSCF description. It is found that the latter gives a