WorldWideScience

Sample records for angular resolution integral-field

  1. Spatial and Angular Resolution Enhancement of Light Fields Using Convolutional Neural Networks

    Science.gov (United States)

    Gul, M. Shahzeb Khan; Gunturk, Bahadir K.

    2018-05-01

    Light field imaging extends the traditional photography by capturing both spatial and angular distribution of light, which enables new capabilities, including post-capture refocusing, post-capture aperture control, and depth estimation from a single shot. Micro-lens array (MLA) based light field cameras offer a cost-effective approach to capture light field. A major drawback of MLA based light field cameras is low spatial resolution, which is due to the fact that a single image sensor is shared to capture both spatial and angular information. In this paper, we present a learning based light field enhancement approach. Both spatial and angular resolution of captured light field is enhanced using convolutional neural networks. The proposed method is tested with real light field data captured with a Lytro light field camera, clearly demonstrating spatial and angular resolution improvement.

  2. Studying AGN Jets At Extreme Angular Resolution

    Science.gov (United States)

    Bruni, Gabriele

    2016-10-01

    RadioAstron is a 10m antenna orbiting on the Russian Speckt-R spacecraft, launched in 2011. Performing radio interferometry with a global array of ground telescopes, it is providing record angular resolution. The Key Science Project on AGN polarization is exploiting it to study in great detail the configuration of magnetic fields in AGN jets, and understand their formation and collimation. To date, the project has already achieved the highest angular resolution image ever obtained in Astronomy, and detected brightness temperatures exceeding the ones predicted by theory of AGN.

  3. Angular integrals in d dimensions.

    OpenAIRE

    Somogyi, G.

    2011-01-01

    We discuss the evaluation of certain d dimensional angular integrals which arise in perturbative field theory calculations. We find that the angular integral with n denominators can be computed in terms of a certain special function, the so-called H-function of several variables. We also present several illustrative examples of the general result and briefly consider some applications.

  4. Angular integrals in d dimensions

    International Nuclear Information System (INIS)

    Somogyi, Gabor

    2011-01-01

    We discuss the evaluation of certain d-dimensional angular integrals which arise in perturbative field theory calculations. We find that the angular integral with n denominators can be computed in terms of a certain special function, the so-called H-function of several variables. We also present several illustrative examples of the general result and briefly consider some applications.

  5. Angular integrals in d dimensions

    Science.gov (United States)

    Somogyi, Gábor

    2011-08-01

    We discuss the evaluation of certain d-dimensional angular integrals which arise in perturbative field theory calculations. We find that the angular integral with n denominators can be computed in terms of a certain special function, the so-called H-function of several variables. We also present several illustrative examples of the general result and briefly consider some applications.

  6. Angular integrals in d dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Somogyi, Gabor

    2011-01-15

    We discuss the evaluation of certain d dimensional angular integrals which arise in perturbative field theory calculations. We find that the angular integral with n denominators can be computed in terms of a certain special function, the so-called H-function of several variables. We also present several illustrative examples of the general result and briefly consider some applications. (orig.)

  7. Angular integrals in d dimensions

    International Nuclear Information System (INIS)

    Somogyi, Gabor

    2011-01-01

    We discuss the evaluation of certain d dimensional angular integrals which arise in perturbative field theory calculations. We find that the angular integral with n denominators can be computed in terms of a certain special function, the so-called H-function of several variables. We also present several illustrative examples of the general result and briefly consider some applications. (orig.)

  8. High angular resolution at LBT

    Science.gov (United States)

    Conrad, A.; Arcidiacono, C.; Bertero, M.; Boccacci, P.; Davies, A. G.; Defrere, D.; de Kleer, K.; De Pater, I.; Hinz, P.; Hofmann, K. H.; La Camera, A.; Leisenring, J.; Kürster, M.; Rathbun, J. A.; Schertl, D.; Skemer, A.; Skrutskie, M.; Spencer, J. R.; Veillet, C.; Weigelt, G.; Woodward, C. E.

    2015-12-01

    High angular resolution from ground-based observatories stands as a key technology for advancing planetary science. In the window between the angular resolution achievable with 8-10 meter class telescopes, and the 23-to-40 meter giants of the future, LBT provides a glimpse of what the next generation of instruments providing higher angular resolution will provide. We present first ever resolved images of an Io eruption site taken from the ground, images of Io's Loki Patera taken with Fizeau imaging at the 22.8 meter LBT [Conrad, et al., AJ, 2015]. We will also present preliminary analysis of two data sets acquired during the 2015 opposition: L-band fringes at Kurdalagon and an occultation of Loki and Pele by Europa (see figure). The light curves from this occultation will yield an order of magnitude improvement in spatial resolution along the path of ingress and egress. We will conclude by providing an overview of the overall benefit of recent and future advances in angular resolution for planetary science.

  9. Angular integration and inter-projection correlation effects in CT reconstruction

    International Nuclear Information System (INIS)

    Crawford, C.R.; Pele, N.J.

    1987-01-01

    CT reconstruction algorithms require snap-shot projections of an object. In order to minimize scan times, CT scanners rotate continuously which, in turn, prevents the acquisition of snap-shot projections. Acquired projections are integrals over angular position and may be correlated inter-projection. This paper shows that angular integration and inter-projection correlation introduce a radially dependent degradation of the spatial resolution and cause the image noise to vary non-linearly with radial position

  10. Compact and high-resolution optical orbital angular momentum sorter

    Directory of Open Access Journals (Sweden)

    Chenhao Wan

    2017-03-01

    Full Text Available A compact and high-resolution optical orbital angular momentum (OAM sorter is proposed and demonstrated. The sorter comprises a quadratic fan-out mapper and a dual-phase corrector positioned in the pupil plane and the Fourier plane, respectively. The optical system is greatly simplified compared to previous demonstrations of OAM sorting, and the performance in resolution and efficiency is maintained. A folded configuration is set up using a single reflective spatial light modulator (SLM to demonstrate the validity of the scheme. The two phase elements are implemented on the left and right halves of the SLM and connected by a right-angle prism. Experimental results demonstrate the high resolution of the compact OAM sorter, and the current limit in efficiency can be overcome by replacing with transmissive SLMs and removing the beam splitters. This novel scheme paves the way for the miniaturization and integration of high-resolution OAM sorters.

  11. Q-ball imaging models: comparison between high and low angular resolution diffusion-weighted MRI protocols for investigation of brain white matter integrity

    Energy Technology Data Exchange (ETDEWEB)

    Caiazzo, Giuseppina; Trojsi, Francesca; Cirillo, Mario; Tedeschi, Gioacchino [MRI Research Center SUN-FISM-Neurological Institute for Diagnosis and Care ' ' Hermitage Capodimonte' ' , Naples (Italy); Second University of Naples, Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, Naples (Italy); Esposito, Fabrizio [University of Salerno, Department of Medicine and Surgery, Baronissi (Salerno) (Italy); Maastricht University, Department of Cognitive Neuroscience, Maastricht (Netherlands)

    2016-02-15

    Q-ball imaging (QBI) is one of the typical data models for quantifying white matter (WM) anisotropy in diffusion-weighted MRI (DwMRI) studies. Brain and spinal investigation by high angular resolution DwMRI (high angular resolution imaging (HARDI)) protocols exhibits higher angular resolution in diffusion imaging compared to low angular resolution models, although with longer acquisition times. We aimed to assess the difference between QBI-derived anisotropy values from high and low angular resolution DwMRI protocols and their potential advantages or shortcomings in neuroradiology. Brain DwMRI data sets were acquired in seven healthy volunteers using both HARDI (b = 3000 s/mm{sup 2}, 54 gradient directions) and low angular resolution (b = 1000 s/mm{sup 2}, 32 gradient directions) acquisition schemes. For both sequences, tract of interest tractography and generalized fractional anisotropy (GFA) measures were extracted by using QBI model and were compared between the two data sets. QBI tractography and voxel-wise analyses showed that some WM tracts, such as corpus callosum, inferior longitudinal, and uncinate fasciculi, were reconstructed as one-dominant-direction fiber bundles with both acquisition schemes. In these WM tracts, mean percent different difference in GFA between the two data sets was less than 5 %. Contrariwise, multidirectional fiber bundles, such as corticospinal tract and superior longitudinal fasciculus, were more accurately depicted by HARDI acquisition scheme. Our results suggest that the design of optimal DwMRI acquisition protocols for clinical investigation of WM anisotropy by QBI models should consider the specific brain target regions to be explored, inducing researchers to a trade-off choice between angular resolution and acquisition time. (orig.)

  12. Finsler geometry on higher order tensor fields and applications to high angular resolution diffusion imaging

    NARCIS (Netherlands)

    Astola, L.J.; Florack, L.M.J.

    2010-01-01

    We study 3D-multidirectional images, using Finsler geometry. The application considered here is in medical image analysis, specifically in High Angular Resolution Diffusion Imaging (HARDI) [24] of the brain. The goal is to reveal the architecture of the neural fibers in brain white matter. To the

  13. Finsler geometry on higher order tensor fields and applications to high angular resolution diffusion imaging

    NARCIS (Netherlands)

    Astola, L.J.; Florack, L.M.J.

    2011-01-01

    We study 3D-multidirectional images, using Finsler geometry. The application considered here is in medical image analysis, specifically in High Angular Resolution Diffusion Imaging (HARDI) (Tuch et al. in Magn. Reson. Med. 48(6):1358–1372, 2004) of the brain. The goal is to reveal the architecture

  14. Finsler geometry on higher order tensor fields and applications to high angular resolution diffusion imaging.

    NARCIS (Netherlands)

    Astola, L.; Florack, L.

    2011-01-01

    We study 3D-multidirectional images, using Finsler geometry. The application considered here is in medical image analysis, specifically in High Angular Resolution Diffusion Imaging (HARDI) (Tuch et al. in Magn. Reson. Med. 48(6):1358–1372, 2004) of the brain. The goal is to reveal the architecture

  15. Angular resolution of the gaseous micro-pixel detector Gossip

    Science.gov (United States)

    Bilevych, Y.; Blanco Carballo, V.; van Dijk, M.; Fransen, M.; van der Graaf, H.; Hartjes, F.; Hessey, N.; Koppert, W.; Nauta, S.; Rogers, M.; Romaniouk, A.; Veenhof, R.

    2011-06-01

    Gossip is a gaseous micro-pixel detector with a very thin drift gap intended for a high rate environment like at the pixel layers of ATLAS at the sLHC. The detector outputs not only the crossing point of a traversing MIP, but also the angle of the track, thus greatly simplifying track reconstruction. In this paper we describe a testbeam experiment to examine the angular resolution of the reconstructed track segments in Gossip. We used here the low diffusion gas mixture DME/CO 2 50/50. An angular resolution of 20 mrad for perpendicular tracks could be obtained from a 1.5 mm thin drift volume. However, for the prototype detector used at the testbeam experiment, the resolution of slanting tracks was worsened by poor time resolution of the pixel chip used.

  16. Angular resolution of the gaseous micro-pixel detector Gossip

    Energy Technology Data Exchange (ETDEWEB)

    Bilevych, Y.; Blanco Carballo, V.; Dijk, M. van; Fransen, M.; Graaf, H. van der; Hartjes, F.; Hessey, N.; Koppert, W.; Nauta, S. [Nikhef, P.O. Box 41882, 1009 DB Amsterdam (Netherlands); Rogers, M. [Radboud University, P.O. Box 9102, 6500HC Nijmegen (Netherlands); Romaniouk, A.; Veenhof, R. [CERN, CH-1211, Geneve 23 (Switzerland)

    2011-06-15

    Gossip is a gaseous micro-pixel detector with a very thin drift gap intended for a high rate environment like at the pixel layers of ATLAS at the sLHC. The detector outputs not only the crossing point of a traversing MIP, but also the angle of the track, thus greatly simplifying track reconstruction. In this paper we describe a testbeam experiment to examine the angular resolution of the reconstructed track segments in Gossip. We used here the low diffusion gas mixture DME/CO{sub 2} 50/50. An angular resolution of 20 mrad for perpendicular tracks could be obtained from a 1.5 mm thin drift volume. However, for the prototype detector used at the testbeam experiment, the resolution of slanting tracks was worsened by poor time resolution of the pixel chip used.

  17. Angular resolution of the gaseous micro-pixel detector Gossip

    International Nuclear Information System (INIS)

    Bilevych, Y.; Blanco Carballo, V.; Dijk, M. van; Fransen, M.; Graaf, H. van der; Hartjes, F.; Hessey, N.; Koppert, W.; Nauta, S.; Rogers, M.; Romaniouk, A.; Veenhof, R.

    2011-01-01

    Gossip is a gaseous micro-pixel detector with a very thin drift gap intended for a high rate environment like at the pixel layers of ATLAS at the sLHC. The detector outputs not only the crossing point of a traversing MIP, but also the angle of the track, thus greatly simplifying track reconstruction. In this paper we describe a testbeam experiment to examine the angular resolution of the reconstructed track segments in Gossip. We used here the low diffusion gas mixture DME/CO 2 50/50. An angular resolution of 20 mrad for perpendicular tracks could be obtained from a 1.5 mm thin drift volume. However, for the prototype detector used at the testbeam experiment, the resolution of slanting tracks was worsened by poor time resolution of the pixel chip used.

  18. Trade-off between angular and spatial resolutions in in vivo fiber tractography

    OpenAIRE

    Vos, Sjoerd B.; Aksoy, Murat; Han, Zhaoying; Holdsworth, Samantha J.; Maclaren, Julian; Viergever, Max A.; Leemans, Alexander; Bammer, Roland

    2016-01-01

    Tractography is becoming an increasingly popular method to reconstruct white matter connections in vivo. The diffusion MRI data that tractography is based on requires a high angular resolution to resolve crossing fibers whereas high spatial resolution is required to distinguish kissing from crossing fibers. However, scan time increases with increasing spatial and angular resolutions, which can become infeasible in clinical settings. Here we investigated the trade-off between spatial and angul...

  19. Statistical Angular Resolution Limit for Ultrawideband MIMO Noise Radar

    Directory of Open Access Journals (Sweden)

    Xiaoli Zhou

    2015-01-01

    Full Text Available The two-dimensional angular resolution limit (ARL of elevation and azimuth for MIMO radar with ultrawideband (UWB noise waveforms is investigated using statistical resolution theory. First, the signal model of monostatic UWB MIMO noise radar is established in a 3D reference frame. Then, the statistical angular resolution limits (SARLs of two closely spaced targets are derived using the detection-theoretic and estimation-theoretic approaches, respectively. The detection-theoretic approach is based on the generalized likelihood ratio test (GLRT with given probabilities of false alarm and detection, while the estimation-theoretic approach is based on Smith’s criterion which involves the Cramér-Rao lower bound (CRLB. Furthermore, the relationship between the two approaches is presented, and the factors affecting the SARL, that is, detection parameters, transmit waveforms, array geometry, signal-to-noise ratio (SNR, and parameters of target (i.e., radar cross section (RCS and direction, are analyzed. Compared with the conventional radar resolution theory defined by the ambiguity function, the SARL reflects the practical resolution ability of radar and can provide an optimization criterion for radar system design.

  20. Angular resolution study of a combined gamma-neutron coded aperture imager for standoff detection

    International Nuclear Information System (INIS)

    Ayaz-Maierhafer, Birsen; Hayward, Jason P.; Ziock, Klaus P.; Blackston, Matthew A.; Fabris, Lorenzo

    2013-01-01

    Nuclear threat source observables at standoff distances of tens of meters from mCi class sources include both gamma-rays and neutrons. This work uses simulations to investigate the effects of the angular resolution of a mobile gamma-ray and neutron coded aperture imaging system upon orphan source detection significance and specificity. The design requires maintaining high sensitivity and specificity while keeping the system size as compact as possible to reduce weight, footprint, and cost. A mixture of inorganic and organic scintillators was considered in the detector plane for high sensitivity to both gamma-rays and fast neutrons. For gamma-rays (100 to 2500 keV) and fission spectrum neutrons, angular resolutions of 1–9° and radiation angles of incidence appropriate for mobile search were evaluated. Detection significance for gamma-rays considers those events that contribute to the photopeak of the image pixel corresponding the orphan source location. For detection of fission spectrum neutrons, energy depositions above a set pulse shape discrimination threshold were tallied. The results show that the expected detection significance for the system at an angular resolution of 1° is significantly lower compared to its detection significance an angular resolution of ∼3–4°. An angular resolution of ∼3–4° is recommended both for better detection significance and improved false alarm rate, considering that finer angular resolution does not result in improved background rejection when the coded aperture method is used. Instead, over-pixelating the search space may result in an unacceptably high false alarm rate

  1. Report on the ESO Workshop ''Astronomy at High Angular Resolution''

    Science.gov (United States)

    Boffin, H.; Schmidtobreick, L.; Hussain, G.; Berger, J.-Ph.

    2015-03-01

    A workshop took place in Brussels in 2000 on astrotomography, a generic term for indirect mapping techniques that can be applied to a huge variety of astrophysical systems, ranging from planets, single stars and binaries to active galactic nuclei. It appeared to be timely to revisit the topic given the many past, recent and forthcoming improvements in telescopes and instrumentation. We therefore decided to repeat the astrotomography workshop, but to put it into the much broader context of high angular resolution astronomy. Many techniques, from lucky and speckle imaging, adaptive optics to interferometry, are now widely employed to achieve high angular resolution and they have led to an amazing number of new discoveries. A summary of the workshop themes is presented.

  2. Wide-field Spatio-Spectral Interferometry: Bringing High Resolution to the Far- Infrared

    Science.gov (United States)

    Leisawitx, David

    Wide-field spatio-spectral interferometry combines spatial and spectral interferometric data to provide integral field spectroscopic information over a wide field of view. This technology breaks through a mission cost barrier that stands in the way of resolving spatially and measuring spectroscopically at far-infrared wavelengths objects that will lead to a deep understanding of planetary system and galaxy formation processes. A space-based far-IR interferometer will combine Spitzer s superb sensitivity with a two order of magnitude gain in angular resolution, and with spectral resolution in the thousands. With the possible exception of detector technology, which is advancing with support from other research programs, the greatest challenge for far-IR interferometry is to demonstrate that the interferometer will actually produce the images and spectra needed to satisfy mission science requirements. With past APRA support, our team has already developed the highly specialized hardware testbed, image projector, computational model, and image construction software required for the proposed effort, and we have access to an ideal test facility.

  3. Development of the super high angular resolution principle for X-ray imaging

    International Nuclear Information System (INIS)

    Zhang Chen; Zhang Shuangnan

    2011-01-01

    Development of the Super High Angular Resolution Principle (SHARP) for coded-mask X-ray imaging is presented. We prove that SHARP can be considered as a generalized coded mask imaging method with a coding pattern comprised of diffraction-interference fringes in the mask pattern. The angular resolution of SHARP can be improved by detecting the fringes more precisely than the mask's element size, i.e. by using a detector with a pixel size smaller than the mask's element size. The proposed mission SHARP-X for solar X-ray observations is also briefly discussed. (research papers)

  4. Development of a Measuring System Based on LabVIEW for Angular Stiffness of Integrative Flexible Joint

    International Nuclear Information System (INIS)

    Liu, C J; Wan, D A

    2006-01-01

    In order to meet the need of development of integrative flexible joint, this paper presents a higher precision measuring system for angular stiffness test of integrative flexible joint. The main parts of the system include PC, precision motorized goniometric stage, precision motorized rotary stage and high accuracy torque sensor. The measuring and control program is developed on the platform of LabVIEW. The measuring system developed has angular resolution at 0.00032 deg. (about 1'') theoretically in determining the angular displacement of the joint round its equatorial axis and torque accuracy at 0.005 mN · m. The developed program, which presents a friendly GUI, can implement the data acquisition and processing, measuring procedure automatically. In comparison with other measuring devices with similar purposes, the measuring device can improve the measuring efficiency and accuracy distinctly while has advantages of simple configuration, low cost and high stability

  5. A hard x-ray spectrometer for high angular resolution observations of cosmic sources

    International Nuclear Information System (INIS)

    Hailey, C.J.; Ziock, K.P.; Harrison, F.; Kahn, S.M.; Liedahl, D.; Lubin, P.M.; Seiffert, M.

    1988-01-01

    LAXRIS (large area x-ray imaging spectrometer) is an experimental, balloon-borne, hard x-ray telescope that consists of a coaligned array of x-ray imaging spectrometer modules capable of obtaining high angular resolution (1--3 arcminutes) with moderate energy resolution in the 20- to 300-keV region. Each spectrometer module consists of a CsI(Na) crystal coupled to a position-sensitive phototube with a crossed-wire, resistive readout. Imaging is provided by a coded aperture mask with a 4-m focal length. The high angular resolution is coupled with rather large area (/approximately/800 cm 2 ) to provide good sensitivity. Results are presented on performance and overall design. Sensitivity estimates are derived from a Monte-Carlo code developed to model the LAXRIS response to background encountered at balloon altitudes. We discuss a variety of observations made feasible by high angular resolution. For instance, spatially resolving the nonthermal x-ray emission from clusters of galaxies is suggested as an ideal program for LAXRIS. 15 refs., 5 figs

  6. A hybrid concept (segmented plus monolithic fused silica shells) for a high-throughput and high-angular resolution x-ray mission (Lynx/X-Ray Surveyor like)

    Science.gov (United States)

    Basso, Stefano; Civitani, Marta; Pareschi, Giovanni; Parodi, Giancarlo

    2017-09-01

    Lynx is a large area and high angular resolution X-ray mission being studied by NASA to be presented to the next Decadal Survey for the implementation in the next decade. It aims to realize an X-ray telescope with the effective area similar to Athena (2 m2 at 1 keV) but with the same angular resolution of Chandra and a much larger Field Of View (up 20 arcmin x 20 arcmin). The science of X-ray Surveyor requires a large-throughput mirror assembly with sub-arcsec angular resolution. These future X-ray mirrors have a set of requirements which, collectively, represents very substantial advances over any currently in operation or planned for missions other than X-ray Surveyor. Of particular importance is achieving low mass per unit collecting area, while maintaining Chandra like angular resolution. Among the possible solutions under study, the direct polishing of both thin monolithic pseudo-cylindrical shells and segments made of fused silica are being considered as viable solutions for the implementation of the mirrors. Fused silica has very good thermomechanical parameters (including a very low CTE), making the material particularly well suited for for the production of the Lynx mirrors. It should be noted that the use of close shells is also very attractive, since the operations for the integration of the shells will be greatly simplified and the area lost due to the vignetting from the interfacing structures minimized even if the management of such big (diameter of 3 m) and thin shells have to be demonstrated. In this paper we will discuss a possible basic layout for a full shell mirror and a hybrid concept (segmented plus monolithic shells made of fused silica) as a second solution, for the Lynx/XRS telescope, discussing preliminary results in terms of optical and mechanical performance.

  7. The X-ray Integral Field Unit (X-IFU) for Athena

    Science.gov (United States)

    Ravera, Laurent; Barret, Didier; Willem den Herder, Jan; Piro, Luigi; Cledassou, Rodolphe; Pointecouteau, Etienne; Peille, Philippe; Pajot, Francois; Arnaud, Monique; Pigot, Claude; hide

    2014-01-01

    Athena is designed to implement the Hot and Energetic Universe science theme selected by the European Space Agency for the second large mission of its Cosmic Vision program. The Athena science payload consists of a large aperture high angular resolution X-ray optics (2 m2 at 1 keV) and twelve meters away, two interchangeable focal plane instruments: the X-ray Integral Field Unit (X-IFU) and the Wide Field Imager. The X-IFU is a cryogenic X-ray spectrometer, based on a large array of Transition Edge Sensors (TES), oering 2.5 eV spectral resolution, with approximately 5" pixels, over a field of view of 5' in diameter. In this paper, we present the X-IFU detector and readout electronics principles, some elements of the current design for the focal plane assembly and the cooling chain. We describe the current performance estimates, in terms of spectral resolution, effective area, particle background rejection and count rate capability. Finally, we emphasize on the technology developments necessary to meet the demanding requirements of the X-IFU, both for the sensor, readout electronics and cooling chain.

  8. A two-dimensional wide-angle proton spectrometer with improved angular resolution

    International Nuclear Information System (INIS)

    Yang, Su; Deng, Yanqing; Ge, Xulei; Fang, Yuan; Wei, Wenqing; Gao, Jian; Liu, Feng; Chen, Min; Liao, Guoqian; Li, Yutong; Zhao, Li; Ma, Yanyun

    2017-01-01

    We present an improvement design of a two-dimensional (2D) angular-resolved proton spectrometer for wide-angle measurement of proton beams from high-intensity laser-solid interactions. By using a 2D selective entrance pinhole array with different periods in orthogonal axes, the angular resolution along one dimension is improved by a factor of 6.7. This improvement provides the accessibility to detect the spatial fine structures of the proton energy spectrum.

  9. A two-dimensional wide-angle proton spectrometer with improved angular resolution

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Su [Key Laboratory for Laser Plasmas (Ministry of Education) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240 (China); Deng, Yanqing [Key Laboratory for Laser Plasmas (Ministry of Education) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240 (China); College of Science, National University of Defense Technology, Changsha 410073 (China); Ge, Xulei [Key Laboratory for Laser Plasmas (Ministry of Education) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240 (China); State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433 (China); Fang, Yuan; Wei, Wenqing; Gao, Jian; Liu, Feng; Chen, Min [Key Laboratory for Laser Plasmas (Ministry of Education) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240 (China); Liao, Guoqian; Li, Yutong [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240 (China); Zhao, Li [State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433 (China); Ma, Yanyun [College of Science, National University of Defense Technology, Changsha 410073 (China); Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240 (China); and others

    2017-07-11

    We present an improvement design of a two-dimensional (2D) angular-resolved proton spectrometer for wide-angle measurement of proton beams from high-intensity laser-solid interactions. By using a 2D selective entrance pinhole array with different periods in orthogonal axes, the angular resolution along one dimension is improved by a factor of 6.7. This improvement provides the accessibility to detect the spatial fine structures of the proton energy spectrum.

  10. A novel upwind stabilized discontinuous finite element angular framework for deterministic dose calculations in magnetic fields.

    Science.gov (United States)

    Yang, R; Zelyak, O; Fallone, B G; St-Aubin, J

    2018-01-30

    Angular discretization impacts nearly every aspect of a deterministic solution to the linear Boltzmann transport equation, especially in the presence of magnetic fields, as modeled by a streaming operator in angle. In this work a novel stabilization treatment of the magnetic field term is developed for an angular finite element discretization on the unit sphere, specifically involving piecewise partitioning of path integrals along curved element edges into uninterrupted segments of incoming and outgoing flux, with outgoing components updated iteratively. Correct order-of-accuracy for this angular framework is verified using the method of manufactured solutions for linear, quadratic, and cubic basis functions in angle. Higher order basis functions were found to reduce the error especially in strong magnetic fields and low density media. We combine an angular finite element mesh respecting octant boundaries on the unit sphere to spatial Cartesian voxel elements to guarantee an unambiguous transport sweep ordering in space. Accuracy for a dosimetrically challenging scenario involving bone and air in the presence of a 1.5 T parallel magnetic field is validated against the Monte Carlo package GEANT4. Accuracy and relative computational efficiency were investigated for various angular discretization parameters. 32 angular elements with quadratic basis functions yielded a reasonable compromise, with gamma passing rates of 99.96% (96.22%) for a 2%/2 mm (1%/1 mm) criterion. A rotational transformation of the spatial calculation geometry is performed to orient an arbitrary magnetic field vector to be along the z-axis, a requirement for a constant azimuthal angular sweep ordering. Working on the unit sphere, we apply the same rotational transformation to the angular domain to align its octants with the rotated Cartesian mesh. Simulating an oblique 1.5 T magnetic field against GEANT4 yielded gamma passing rates of 99.42% (95.45%) for a 2%/2 mm (1%/1 mm) criterion.

  11. A novel upwind stabilized discontinuous finite element angular framework for deterministic dose calculations in magnetic fields

    Science.gov (United States)

    Yang, R.; Zelyak, O.; Fallone, B. G.; St-Aubin, J.

    2018-02-01

    Angular discretization impacts nearly every aspect of a deterministic solution to the linear Boltzmann transport equation, especially in the presence of magnetic fields, as modeled by a streaming operator in angle. In this work a novel stabilization treatment of the magnetic field term is developed for an angular finite element discretization on the unit sphere, specifically involving piecewise partitioning of path integrals along curved element edges into uninterrupted segments of incoming and outgoing flux, with outgoing components updated iteratively. Correct order-of-accuracy for this angular framework is verified using the method of manufactured solutions for linear, quadratic, and cubic basis functions in angle. Higher order basis functions were found to reduce the error especially in strong magnetic fields and low density media. We combine an angular finite element mesh respecting octant boundaries on the unit sphere to spatial Cartesian voxel elements to guarantee an unambiguous transport sweep ordering in space. Accuracy for a dosimetrically challenging scenario involving bone and air in the presence of a 1.5 T parallel magnetic field is validated against the Monte Carlo package GEANT4. Accuracy and relative computational efficiency were investigated for various angular discretization parameters. 32 angular elements with quadratic basis functions yielded a reasonable compromise, with gamma passing rates of 99.96% (96.22%) for a 2%/2 mm (1%/1 mm) criterion. A rotational transformation of the spatial calculation geometry is performed to orient an arbitrary magnetic field vector to be along the z-axis, a requirement for a constant azimuthal angular sweep ordering. Working on the unit sphere, we apply the same rotational transformation to the angular domain to align its octants with the rotated Cartesian mesh. Simulating an oblique 1.5 T magnetic field against GEANT4 yielded gamma passing rates of 99.42% (95.45%) for a 2%/2 mm (1%/1 mm) criterion.

  12. In vivo high angular resolution diffusion-weighted imaging of mouse brain at 16.4 Tesla.

    Directory of Open Access Journals (Sweden)

    Othman I Alomair

    Full Text Available Magnetic Resonance Imaging (MRI of the rodent brain at ultra-high magnetic fields (> 9.4 Tesla offers a higher signal-to-noise ratio that can be exploited to reduce image acquisition time or provide higher spatial resolution. However, significant challenges are presented due to a combination of longer T1 and shorter T2/T2* relaxation times and increased sensitivity to magnetic susceptibility resulting in severe local-field inhomogeneity artefacts from air pockets and bone/brain interfaces. The Stejskal-Tanner spin echo diffusion-weighted imaging (DWI sequence is often used in high-field rodent brain MRI due to its immunity to these artefacts. To accurately determine diffusion-tensor or fibre-orientation distribution, high angular resolution diffusion imaging (HARDI with strong diffusion weighting (b >3000 s/mm2 and at least 30 diffusion-encoding directions are required. However, this results in long image acquisition times unsuitable for live animal imaging. In this study, we describe the optimization of HARDI acquisition parameters at 16.4T using a Stejskal-Tanner sequence with echo-planar imaging (EPI readout. EPI segmentation and partial Fourier encoding acceleration were applied to reduce the echo time (TE, thereby minimizing signal decay and distortion artefacts while maintaining a reasonably short acquisition time. The final HARDI acquisition protocol was achieved with the following parameters: 4 shot EPI, b = 3000 s/mm2, 64 diffusion-encoding directions, 125×150 μm2 in-plane resolution, 0.6 mm slice thickness, and 2h acquisition time. This protocol was used to image a cohort of adult C57BL/6 male mice, whereby the quality of the acquired data was assessed and diffusion tensor imaging (DTI derived parameters were measured. High-quality images with high spatial and angular resolution, low distortion and low variability in DTI-derived parameters were obtained, indicating that EPI-DWI is feasible at 16.4T to study animal models of white

  13. Helicons in uniform fields. II. Poynting vector and angular momenta

    Science.gov (United States)

    Stenzel, R. L.; Urrutia, J. M.

    2018-03-01

    The orbital and spin angular momenta of helicon modes have been determined quantitatively from laboratory experiments. The current density is obtained unambiguously from three dimensional magnetic field measurements. The only approximation made is to obtain the electric field from Hall Ohm's law which is usually the case for low frequency whistler modes. This allows the evaluation of the Poynting vector from which the angular momentum is obtained. Comparing two helicon modes (m = 0 and m = 1), one can separate the contribution of angular momentum of a rotating and non-rotating wave field. The orbital angular momentum is important to assess the wave-particle interaction by the transverse Doppler shift of rotating waves which has not been considered so far.

  14. Integrated spectral study of small angular diameter galactic open clusters

    Science.gov (United States)

    Clariá, J. J.; Ahumada, A. V.; Bica, E.; Pavani, D. B.; Parisi, M. C.

    2017-10-01

    This paper presents flux-calibrated integrated spectra obtained at Complejo Astronómico El Leoncito (CASLEO, Argentina) for a sample of 9 Galactic open clusters of small angular diameter. The spectra cover the optical range (3800-6800 Å), with a resolution of ˜14 Å. With one exception (Ruprecht 158), the selected clusters are projected into the fourth Galactic quadrant (282o evaluate their membership status. The current cluster sample complements that of 46 open clusters previously studied by our group in an effort to gather a spectral library with several clusters per age bin. The cluster spectral library that we have been building is an important tool to tie studies of resolved and unresolved stellar content.

  15. Design of UHECR telescope with 1 arcmin resolution and 50 deg. field of view

    CERN Document Server

    Sasaki, M; Asaoka, Y

    2002-01-01

    A new telescope design based on Baker-Nunn optics is proposed for observation of ultra-high-energy cosmic rays (UHECRs). The optical system has an image resolution better than 0.02 deg. within a wide field of view of 50 deg. angular diameter. When combined with a high-quality imaging device, the proposed design enables the directions of UHECRs and high-energy neutrinos to be determined with an accuracy better than 1 arcmin. The outstanding resolution of this telescope allows charge-separated cosmic-rays to be resolved and the source to be determined accurately. This marked improvement in angular resolution will allow the multi-wavelength and 'multi-particle' observations of astronomical objects through collaboration with established astronomical observations.

  16. Astronomy at high angular resolution a compendium of techniques in the visible and near-infrared

    CERN Document Server

    Hussain, Gaitee; Berger, Jean-Philippe; Schmidtobreick, Linda

    2016-01-01

    This book offers an essential compendium of astronomical high-resolution techniques. Recent years have seen considerable developments in such techniques, which are critical to advances in many areas of astronomy. As reflected in the book, these techniques can be divided into direct methods, interferometry, and reconstruction methods, and can be applied to a huge variety of astrophysical systems, ranging from planets, single stars and binaries to active galactic nuclei, providing angular resolution in the micro- to tens of milliarcsecond scales. Written by experts in their fields, the chapters cover adaptive optics, aperture masking imaging, spectra disentangling, interferometry, lucky imaging, Roche tomography, imaging with interferometry, interferometry of AGN, AGN reverberation mapping, Doppler- and magnetic imaging of stellar surfaces, Doppler tomography, eclipse mapping, Stokes imaging, and stellar tomography. This book is intended to enable a next generation of astronomers to apply high-resolution techni...

  17. A super-high angular resolution principle for coded-mask X-ray imaging beyond the diffraction limit of a single pinhole

    International Nuclear Information System (INIS)

    Zhang Chen; Zhang Shuangnan

    2009-01-01

    High angular resolution X-ray imaging is always useful in astrophysics and solar physics. In principle, it can be performed by using coded-mask imaging with a very long mask-detector distance. Previously, the diffraction-interference effect was thought to degrade coded-mask imaging performance dramatically at the low energy end with its very long mask-detector distance. The diffraction-interference effect is described with numerical calculations, and the diffraction-interference cross correlation reconstruction method (DICC) is developed in order to overcome the imaging performance degradation. Based on the DICC, a super-high angular resolution principle (SHARP) for coded-mask X-ray imaging is proposed. The feasibility of coded mask imaging beyond the diffraction limit of a single pinhole is demonstrated with simulations. With the specification that the mask element size is 50 x 50 μm 2 and the mask-detector distance is 50 m, the achieved angular resolution is 0.32 arcsec above about 10 keV and 0.36 arcsec at 1.24 keV (λ = 1 nm), where diffraction cannot be neglected. The on-axis source location accuracy is better than 0.02 arcsec. Potential applications for solar observations and wide-field X-ray monitors are also briefly discussed. (invited reviews)

  18. γ-ray telescopes using conversions to e+e- pairs: event generators, angular resolution and polarimetry

    Science.gov (United States)

    Gros, P.; Bernard, D.

    2017-02-01

    We benchmark various available event generators in Geant4 and EGS5 in the light of ongoing projects for high angular-resolution pair-conversion telescopes at low energy. We compare the distributions of key kinematic variables extracted from the geometry of the three final state particles. We validate and use as reference an exact generator using the full 5D differential cross-section of the conversion process. We focus in particular on the effect of the unmeasured recoiling nucleus on the angular resolution. We show that for high resolution trackers, the choice of the generator affects the estimated resolution of the telescope. We also show that the current available generator are unable to describe accurately a linearly polarised photon source.

  19. Angular-resolution and material-characterization measurements for a dual-particle imaging system with mixed-oxide fuel

    Energy Technology Data Exchange (ETDEWEB)

    Poitrasson-Rivière, Alexis, E-mail: alexispr@umich.edu [Department of Nuclear Engineering & Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Polack, J. Kyle; Hamel, Michael C.; Klemm, Dietrich D.; Ito, Kai; McSpaden, Alexander T.; Flaska, Marek; Clarke, Shaun D.; Pozzi, Sara A. [Department of Nuclear Engineering & Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Tomanin, Alice [Lainsa-Italia S.R.L., Via E. Fermi 2749, 21027 Ispra, VA (Italy); Peerani, Paolo [European Commission, Joint Research Centre, Institute for Transuranium Elements, 21027 Ispra, VA (Italy)

    2015-10-11

    A dual-particle imaging (DPI) system, capable of simultaneously imaging fast neutrons and gamma rays, has been operated in the presence of mixed-oxide (MOX) fuel to assess the system's angular resolution and material-characterization capabilities. The detection principle is based on the scattering physics of neutrons (elastic scattering) and gamma rays (Compton scattering) in organic and inorganic scintillators. The detection system is designed as a combination of a two-plane Compton camera and a neutron-scatter camera. The front plane consists of EJ-309 liquid scintillators and the back plane consists of interleaved EJ-309 and NaI(Tl) scintillators. MCNPX-PoliMi was used to optimize the geometry of the system and the resulting prototype was built and tested using a Cf-252 source as an SNM surrogate. A software package was developed to acquire and process data in real time. The software was used for a measurement campaign to assess the angular resolution of the imaging system with MOX samples. Measurements of two MOX canisters of similar isotopics and intensity were performed for 6 different canister separations (from 5° to 30°, corresponding to distances of 21 cm and 131 cm, respectively). The measurements yielded a minimum separation of 20° at 2.5 m (86-cm separation) required to see 2 separate hot spots. Additionally, the results displayed good agreement with MCNPX-PoliMi simulations. These results indicate an angular resolution between 15° and 20°, given the 5° step. Coupled with its large field of view, and its capability to differentiate between spontaneous fission and (α,n) sources, the DPI system shows its potential for nuclear-nonproliferation applications.

  20. Understanding deformation with high angular resolution electron backscatter diffraction (HR-EBSD)

    Science.gov (United States)

    Britton, T. B.; Hickey, J. L. R.

    2018-01-01

    High angular resolution electron backscatter diffraction (HR-EBSD) affords an increase in angular resolution, as compared to ‘conventional’ Hough transform based EBSD, of two orders of magnitude, enabling measurements of relative misorientations of 1 x 10-4 rads (~ 0.006°) and changes in (deviatoric) lattice strain with a precision of 1 x 10-4. This is achieved through direct comparison of two or more diffraction patterns using sophisticated cross-correlation based image analysis routines. Image shifts between zone axes in the two-correlated diffraction pattern are measured with sub-pixel precision and this realises the ability to measure changes in interplanar angles and lattice orientation with a high degree of sensitivity. These shifts are linked to strains and lattice rotations through simple geometry. In this manuscript, we outline the basis of the technique and two case studies that highlight its potential to tackle real materials science challenges, such as deformation patterning in polycrystalline alloys.

  1. Super-resolution and ultra-sensitivity of angular rotation measurement based on SU(1,1) interferometers using homodyne detection

    Science.gov (United States)

    Liu, Jun; Li, Shitao; Wei, Dong; Gao, Hong; Li, Fuli

    2018-02-01

    We theoretically explore the angular rotation measurement sensitivity of SU(1,1) interferometers with a coherent beam and a vacuum beam input by using orbital angular momentum (OAM). Compared with the OAM in an SU(2) interferometer, the SU(1,1) interferometer employing homodyne detection can further surpass the angular rotation shot noise limit \\tfrac{1}{2l\\sqrt{N}} and improve the resolution and sensitivity of angular rotation measurement. Two models are considered, one is that OAM is carried by a probe beam and the other one is a pump beam with the OAM. The sensitivity can be improved by higher OAM and nonlinear process with a large gain. The resolution can be enhanced in the case that the pump beam has OAM. Moreover, we present a brief discussion on the variation of resolution and sensitivity in the presence of photon loss.

  2. Spin and intrinsic angular momentum; application to the electromagnetic field

    International Nuclear Information System (INIS)

    Paillere, P.

    1993-05-01

    Within the framework of the field theory governed by a Lagrangian, function of the tensor quantities and their covariant first derivatives, and starting with the third order intrinsic angular momentum tensor obtained from a variational principle, the intrinsic angular momentum vector of the electromagnetic field in vacuum is determined. This expression leads to spin matrices for the electromagnetic field, with unity as eigenvalue, thus allowing to bridge the gap between continuous physics and quantum physics. 6 refs

  3. Measuring average angular velocity with a smartphone magnetic field sensor

    Science.gov (United States)

    Pili, Unofre; Violanda, Renante

    2018-02-01

    The angular velocity of a spinning object is, by standard, measured using a device called a tachometer. However, by directly using it in a classroom setting, the activity is likely to appear as less instructive and less engaging. Indeed, some alternative classroom-suitable methods for measuring angular velocity have been presented. In this paper, we present a further alternative that is smartphone-based, making use of the real-time magnetic field (simply called B-field in what follows) data gathering capability of the B-field sensor of the smartphone device as the timer for measuring average rotational period and average angular velocity. The in-built B-field sensor in smartphones has already found a number of uses in undergraduate experimental physics. For instance, in elementary electrodynamics, it has been used to explore the well-known Bio-Savart law and in a measurement of the permeability of air.

  4. Angular resolution in underground detectors and a status report of the Soudan II nucleon decay detector

    International Nuclear Information System (INIS)

    Ambats, I.; Ayres, D.; Barrett, W.

    1987-01-01

    This paper is a status report of the Soudan II honeycomb drift chamber project. It reports on the physics goals, present progress and future schedule of our experiment. It also includes a discussion of the angular resolution of cosmic ray muons which can be achieved in underground detectors, and in particular how to calibrate the resolution using the moon's shadow in cosmic rays. This last point has relevance in trying to understand the angular distributions in the reported observations of underground muons from Cygnus X-3. 12 refs., 9 figs

  5. JEM-X: The X-ray monitor on INTEGRAL

    DEFF Research Database (Denmark)

    Budtz-Jørgensen, Carl; Lund, Niels; Westergaard, Niels Jørgen Stenfeldt

    2004-01-01

    The INTEGRAL X-ray monitor, JEM-X, (together with the two gamma ray instruments, SPI and IBIS) provides simultaneous imaging with arcminute angular resolution in the 3-35 keV band. The good angular resolution and low energy response of JEM-X plays an important role in the detection and identifica......The INTEGRAL X-ray monitor, JEM-X, (together with the two gamma ray instruments, SPI and IBIS) provides simultaneous imaging with arcminute angular resolution in the 3-35 keV band. The good angular resolution and low energy response of JEM-X plays an important role in the detection...

  6. The Role of Spatial Memory and Frames of Reference in the Precision of Angular Path Integration

    OpenAIRE

    Arthur, Joeanna C.; Philbeck, John W.; Kleene, Nicholas J.; Chichka, David

    2012-01-01

    Angular path integration refers to the ability to maintain an estimate of self-location after a rotational displacement by integrating internally-generated (idiothetic) self-motion signals over time. Previous work has found that non-sensory inputs, namely spatial memory, can play a powerful role in angular path integration (Arthur et al., 2007, 2009). Here we investigated the conditions under which spatial memory facilitates angular path integration. We hypothesized that the benefit of spatia...

  7. Longitudinal correlation properties of an optical field with broad angular and frequency spectra and their manifestation in interference microscopy

    International Nuclear Information System (INIS)

    Lyakin, D V; Ryabukho, V P

    2013-01-01

    The results of theoretical and experimental studies of the longitudinal correlation properties of an optical field with broad angular and frequency spectra and manifestations of these properties in interference microscopy are presented. The joint and competitive influence of the angular and frequency spectra of the object-probing field on the longitudinal resolution and on the amplitude of the interference microscope signals from the interfaces between the media inside a multilayer object is demonstrated. The method of compensating the so-called defocusing effect that arises in the interference microscopy using objectives with a large numerical aperture is experimentally demonstrated, which consists in using as a light source in the interference microscope an illuminating interferometer with a frequency-broadband light source. This method of compensation may be used as the basis of simultaneous determination of geometric thickness and refractive index of media forming a multilayer object. (optical fields)

  8. Angular difference feature extraction for urban scene classification using ZY-3 multi-angle high-resolution satellite imagery

    Science.gov (United States)

    Huang, Xin; Chen, Huijun; Gong, Jianya

    2018-01-01

    Spaceborne multi-angle images with a high-resolution are capable of simultaneously providing spatial details and three-dimensional (3D) information to support detailed and accurate classification of complex urban scenes. In recent years, satellite-derived digital surface models (DSMs) have been increasingly utilized to provide height information to complement spectral properties for urban classification. However, in such a way, the multi-angle information is not effectively exploited, which is mainly due to the errors and difficulties of the multi-view image matching and the inaccuracy of the generated DSM over complex and dense urban scenes. Therefore, it is still a challenging task to effectively exploit the available angular information from high-resolution multi-angle images. In this paper, we investigate the potential for classifying urban scenes based on local angular properties characterized from high-resolution ZY-3 multi-view images. Specifically, three categories of angular difference features (ADFs) are proposed to describe the angular information at three levels (i.e., pixel, feature, and label levels): (1) ADF-pixel: the angular information is directly extrapolated by pixel comparison between the multi-angle images; (2) ADF-feature: the angular differences are described in the feature domains by comparing the differences between the multi-angle spatial features (e.g., morphological attribute profiles (APs)). (3) ADF-label: label-level angular features are proposed based on a group of urban primitives (e.g., buildings and shadows), in order to describe the specific angular information related to the types of primitive classes. In addition, we utilize spatial-contextual information to refine the multi-level ADF features using superpixel segmentation, for the purpose of alleviating the effects of salt-and-pepper noise and representing the main angular characteristics within a local area. The experiments on ZY-3 multi-angle images confirm that the proposed

  9. A program for performing angular integrations for transition operators

    International Nuclear Information System (INIS)

    Froese Fischer, C.; Godefroid, M.R.; Hibbert, A.

    1991-01-01

    The MCHF-MLTPOL program performs the angular integrations necessary for expressing the matrix elements of transition operators, E1, E2, ..., or M1, M2, ..., as linear combinations of radial integrals. All matrix elements for transitions between two lists of configuration states will be evaluated. A limited amount of non-orthogonality is allowed between orbitals of the initial and final state. (orig.)

  10. Angular-momentum-assisted dissociation of CO in strong optical fields

    Science.gov (United States)

    Mullin, Amy; Ogden, Hannah; Murray, Matthew; Liu, Qingnan; Toro, Carlos

    2017-04-01

    Filaments are produced in CO gas by intense, chirped laser pulses. Visible emission from C2 is observed as a result of chemical reactions of highly excited CO. At laser intensities greater than 1014 W cm-2, the C2 emission shows a strong dependence on laser polarization. Oppositely chirped pulses of light with ω0 = 800 nm are recombined spatially and temporally to generate angularly accelerating electric fields (up to 30 THz) that either have an instantaneous linear polarization or act as a dynamic polarization grating that oscillates among linear and circular polarizations. The angularly accelerating linear polarization corresponds to an optical centrifuge that concurrently drives molecules into high rotational states (with J 50) and induces strong-field dissociation. Higher order excitation is observed for the time-varying laser polarization configuration that does not induce rotational excitation. The results indicate that the presence of rotational angular momentum lowers the threshold for CO dissociation in strong optical fields by coupling nuclear and electronic degrees of freedom. Support from NSF CHE-1058721 and the University of Maryland.

  11. Accurate Mass Measurements for Planetary Microlensing Events Using High Angular Resolution Observations

    Directory of Open Access Journals (Sweden)

    Jean-Philippe Beaulieu

    2018-04-01

    Full Text Available The microlensing technique is a unique method to hunt for cold planets over a range of mass and separation, orbiting all varieties of host stars in the disk of our galaxy. It provides precise mass-ratio and projected separations in units of the Einstein ring radius. In order to obtain the physical parameters (mass, distance, orbital separation of the system, it is necessary to combine the result of light curve modeling with lens mass-distance relations and/or perform a Bayesian analysis with a galactic model. A first mass-distance relation could be obtained from a constraint on the Einstein ring radius if the crossing time of the source over the caustic is measured. It could then be supplemented by secondary constraints such as parallax measurements, ideally by using coinciding ground and space-born observations. These are still subject to degeneracies, like the orbital motion of the lens. A third mass-distance relation can be obtained thanks to constraints on the lens luminosity using high angular resolution observations with 8 m class telescopes or the Hubble Space Telescope. The latter route, although quite inexpensive in telescope time is very effective. If we have to rely heavily on Bayesian analysis and limited constraints on mass-distance relations, the physical parameters are determined to 30–40% typically. In a handful of cases, ground-space parallax is a powerful route to get stronger constraint on masses. High angular resolution observations will be able to constrain the luminosity of the lenses in the majority of the cases, and in favorable circumstances it is possible to derive physical parameters to 10% or better. Moreover, these constraints will be obtained in most of the planets to be discovered by the Euclid and WFIRST satellites. We describe here the state-of-the-art approaches to measure lens masses and distances with an emphasis on high angular resolution observations. We will discuss the challenges, recent results and

  12. The relationship between Class I and Class II methanol masers at high angular resolution

    Science.gov (United States)

    McCarthy, T. P.; Ellingsen, S. P.; Voronkov, M. A.; Cimò, G.

    2018-06-01

    We have used the Australia Telescope Compact Array (ATCA) to make the first high-resolution observations of a large sample of class I methanol masers in the 95-GHz (80-71A+) transition. The target sources consist of a statistically complete sample of 6.7-GHz class II methanol masers with an associated 95-GHz class I methanol maser, enabling a detailed study of the relationship between the two methanol maser classes at arcsecond angular resolution. These sources have been previously observed at high resolution in the 36- and 44-GHz transitions, allowing comparison between all three class I maser transitions. In total, 172 95-GHz maser components were detected across the 32 target sources. We find that at high resolution, when considering matched maser components, a 3:1 flux density ratio is observed between the 95- and 44-GHz components, consistent with a number of previous lower angular resolution studies. The 95-GHz maser components appear to be preferentially located closer to the driving sources and this may indicate that this transition is more strongly inverted nearby to background continuum sources. We do not observe an elevated association rate between 95-GHz maser emission and more evolved sources, as indicated by the presence of 12.2-GHz class II masers. We find that in the majority of cases where both class I and class II methanol emission is observed, some component of the class I emission is associated with a likely outflow candidate.

  13. Improving the angular resolution of existing air shower arrays by adding a thin layer of lead

    International Nuclear Information System (INIS)

    Poirier, J.; Mikocki, S.

    1987-01-01

    Calculations show that placing a thin sheet of lead above conventional extensive air shower counters yields an additional signal which is earlier in time. This will improve the array's angular resolution. (orig.)

  14. Comparisons of perturbation and integral equation theories for the angular pair correlation function in molecular fluids

    International Nuclear Information System (INIS)

    Murad, S.; Gubbins, K.E.; Gray, C.G.

    1983-01-01

    We compare several recently proposed theories for the angular pair correlation function g(rω 1 ω 2 ), including first- and second-order perturbation theory (the u-expansion), a Pade approximant to this series, first-order f-expansion, the single superchain, generalized mean field, linearized hypernetted chain, and quadratic hypernetted chain approximations. Numerical results from these theories are compared with available computer simulation data for four model fluids whose intermolecular pair potential is of the form u 0 +usub(a), where u 0 is a hard-sphere of Lennard-Jones model, while usub(a) is a dipole-dipole or quadrupole-quadrupole interaction; we refer to these model fluids as HS+μμ, HS+QQ, LJ+μμ, and LJ+QQ. Properties studied include the angular pair correlation function and its spherical harmonic components, the thermodynamic properties, and the angular correlation parameters G 1 and G 2 that are related to the dielectric and Kerr constants. The second-order perturbation theory is superior to the integral equation theories for the thermodynamic harmonics of g(rω 1 ω 2 ) and for the thermodynamic properties themselves at moderate multipole strengths. For other harmonics and properties, the integral equation theories are better, with the quadratic hypernetted chain approximation being the best overall. (orig.)

  15. Method of separation of air showers initiated by γ-quanta and protons using Cherenkov light angular characteristics in combination and angular resolution estimate for an array of several optical telescopes

    International Nuclear Information System (INIS)

    Anokhina, A.M.; Galkin, V.I.; Ivanenko, I.P.; Roganova, T.M.

    1990-01-01

    Computer simulation of optical characteristics of air showers was carried out. On the basis of multidimensional analysis of Cherenkov light angular distribution possibility is considered to distinguish γ-showers from proton showers. Also an estimate for angular resolution is given for an array of five optical telescopes situated at Mt.Aragats. 7 refs.; 10 figs.; 11 tabs

  16. The impact of clustering and angular resolution on far-infrared and millimeter continuum observations

    Science.gov (United States)

    Béthermin, Matthieu; Wu, Hao-Yi; Lagache, Guilaine; Davidzon, Iary; Ponthieu, Nicolas; Cousin, Morgane; Wang, Lingyu; Doré, Olivier; Daddi, Emanuele; Lapi, Andrea

    2017-11-01

    Follow-up observations at high-angular resolution of bright submillimeter galaxies selected from deep extragalactic surveys have shown that the single-dish sources are comprised of a blend of several galaxies. Consequently, number counts derived from low- and high-angular-resolution observations are in tension. This demonstrates the importance of resolution effects at these wavelengths and the need for realistic simulations to explore them. We built a new 2 deg2 simulation of the extragalactic sky from the far-infrared to the submillimeter. It is based on an updated version of the 2SFM (two star-formation modes) galaxy evolution model. Using global galaxy properties generated by this model, we used an abundance-matching technique to populate a dark-matter lightcone and thus simulate the clustering. We produced maps from this simulation and extracted the sources, and we show that the limited angular resolution of single-dish instruments has a strong impact on (sub)millimeter continuum observations. Taking into account these resolution effects, we are reproducing a large set of observables, as number counts and their evolution with redshift and cosmic infrared background power spectra. Our simulation consistently describes the number counts from single-dish telescopes and interferometers. In particular, at 350 and 500 μm, we find that the number counts measured by Herschel between 5 and 50 mJy are biased towards high values by a factor 2, and that the redshift distributions are biased towards low redshifts. We also show that the clustering has an important impact on the Herschel pixel histogram used to derive number counts from P(D) analysis. We find that the brightest galaxy in the beam of a 500 μm Herschel source contributes on average to only 60% of the Herschel flux density, but that this number will rise to 95% for future millimeter surveys on 30 m-class telescopes (e.g., NIKA2 at IRAM). Finally, we show that the large number density of red Herschel sources

  17. A method of evaluating quantitative magnetospheric field models by an angular parameter alpha

    Science.gov (United States)

    Sugiura, M.; Poros, D. J.

    1979-01-01

    The paper introduces an angular parameter, termed alpha, which represents the angular difference between the observed, or model, field and the internal model field. The study discusses why this parameter is chosen and demonstrates its usefulness by applying it to both observations and models. In certain areas alpha is more sensitive than delta-B (the difference between the magnitude of the observed magnetic field and that of the earth's internal field calculated from a spherical harmonic expansion) in expressing magnetospheric field distortions. It is recommended to use both alpha and delta-B in comparing models with observations.

  18. Segmentation of High Angular Resolution Diffusion MRI using Sparse Riemannian Manifold Clustering

    Science.gov (United States)

    Wright, Margaret J.; Thompson, Paul M.; Vidal, René

    2015-01-01

    We address the problem of segmenting high angular resolution diffusion imaging (HARDI) data into multiple regions (or fiber tracts) with distinct diffusion properties. We use the orientation distribution function (ODF) to represent HARDI data and cast the problem as a clustering problem in the space of ODFs. Our approach integrates tools from sparse representation theory and Riemannian geometry into a graph theoretic segmentation framework. By exploiting the Riemannian properties of the space of ODFs, we learn a sparse representation for each ODF and infer the segmentation by applying spectral clustering to a similarity matrix built from these representations. In cases where regions with similar (resp. distinct) diffusion properties belong to different (resp. same) fiber tracts, we obtain the segmentation by incorporating spatial and user-specified pairwise relationships into the formulation. Experiments on synthetic data evaluate the sensitivity of our method to image noise and the presence of complex fiber configurations, and show its superior performance compared to alternative segmentation methods. Experiments on phantom and real data demonstrate the accuracy of the proposed method in segmenting simulated fibers, as well as white matter fiber tracts of clinical importance in the human brain. PMID:24108748

  19. Gravitational Field of Ultrarelativistic Objects with Angular Momentum

    International Nuclear Information System (INIS)

    Fursaev, Dmitri V

    2006-01-01

    A brief review of recently found gyraton metrics which describe the gravitational field of objects having an angular momentum and moving with the velocity of light is given. The gyraton metrics belong to a class of exact plane wave solutions of four and higher dimensional Einstein equations in vacuum or in the presence of a negative cosmological constant

  20. Gravitational Field of Ultrarelativistic Objects with Angular Momentum

    Energy Technology Data Exchange (ETDEWEB)

    Fursaev, Dmitri V [Dubna International University and Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141 980, Dubna, Moscow Region (Russian Federation)

    2006-03-01

    A brief review of recently found gyraton metrics which describe the gravitational field of objects having an angular momentum and moving with the velocity of light is given. The gyraton metrics belong to a class of exact plane wave solutions of four and higher dimensional Einstein equations in vacuum or in the presence of a negative cosmological constant.

  1. Evaluation of Medium Spatial Resolution BRDF-Adjustment Techniques Using Multi-Angular SPOT4 (Take5) Acquisitions

    OpenAIRE

    Claverie, Martin; Vermote, Eric; Franch, Belen; He, Tao; Hagolle, Olivier; Kadiri, Mohamed; Masek, Jeff

    2015-01-01

    High-resolution sensor Surface Reflectance (SR) data are affected by surface anisotropy but are difficult to adjust because of the low temporal frequency of the acquisitions and the low angular sampling. This paper evaluates five high spatial resolution Bidirectional Reflectance Distribution Function (BRDF) adjustment techniques. The evaluation is based on the noise level of the SR Time Series (TS) corrected to a normalized geometry (nadir view, 45° sun zenith angle) extracted from the multi-...

  2. The Athena X-ray Integral Field Unit (X-IFU)

    NARCIS (Netherlands)

    Barret, Didier; Lam Trong, Thien; den Herder, Jan-Willem; Piro, Luigi; Barcons, Xavier; Huovelin, Juhani; Kelley, Richard; Mas-Hesse, J. Miguel; Mitsuda, Kazuhisa; Paltani, Stéphane; Rauw, Gregor; RoŻanska, Agata; Wilms, Joern; Barbera, Marco; Bozzo, Enrico; Ceballos, Maria Teresa; Charles, Ivan; Decourchelle, Anne; den Hartog, Roland; Duval, Jean-Marc; Fiore, Fabrizio; Gatti, Flavio; Goldwurm, Andrea; Jackson, Brian; Jonker, Peter; Kilbourne, Caroline; Macculi, Claudio; Mendez, Mariano; Molendi, Silvano; Orleanski, Piotr; Pajot, François; Pointecouteau, Etienne; Porter, Frederick; Pratt, Gabriel W.; Prêle, Damien; Ravera, Laurent; Renotte, Etienne; Schaye, Joop; Shinozaki, Keisuke; Valenziano, Luca; Vink, Jacco; Webb, Natalie; Yamasaki, Noriko; Delcelier-Douchin, Françoise; Le Du, Michel; Mesnager, Jean-Michel; Pradines, Alice; Branduardi-Raymont, Graziella; Dadina, Mauro; Finoguenov, Alexis; Fukazawa, Yasushi; Janiuk, Agnieszka; Miller, Jon; Nazé, Yaël; Nicastro, Fabrizio; Sciortino, Salvatore; Torrejon, Jose Miguel; Geoffray, Hervé; Hernandez, Isabelle; Luno, Laure; Peille, Philippe; André, Jérôme; Daniel, Christophe; Etcheverry, Christophe; Gloaguen, Emilie; Hassin, Jérémie; Hervet, Gilles; Maussang, Irwin; Moueza, Jérôme; Paillet, Alexis; Vella, Bruno; Campos Garrido, Gonzalo; Damery, Jean-Charles; Panem, Chantal; Panh, Johan; Bandler, Simon; Biffi, Jean-Marc; Boyce, Kevin; Clénet, Antoine; DiPirro, Michael; Jamotton, Pierre; Lotti, Simone; Schwander, Denis; Smith, Stephen; van Leeuwen, Bert-Joost; van Weers, Henk; Brand, Thorsten; Cobo, Beatriz; Dauser, Thomas; de Plaa, Jelle; Cucchetti, Edoardo

    2016-01-01

    The X-ray Integral Field Unit (X-IFU) on board the Advanced Telescope for High-ENergy Astrophysics (Athena) will provide spatially resolved high-resolution X-ray spectroscopy from 0.2 to 12 keV, with 5" pixels over a field of view of 5 arc minute equivalent diameter and a spectral resolution of 2.5

  3. High Angular Resolution Measurements of the Anisotropy of Reflectance of Sea Ice and Snow

    Science.gov (United States)

    Goyens, C.; Marty, S.; Leymarie, E.; Antoine, D.; Babin, M.; Bélanger, S.

    2018-01-01

    We introduce a new method to determine the anisotropy of reflectance of sea ice and snow at spatial scales from 1 m2 to 80 m2 using a multispectral circular fish-eye radiance camera (CE600). The CE600 allows measuring radiance simultaneously in all directions of a hemisphere at a 1° angular resolution. The spectral characteristics of the reflectance and its dependency on illumination conditions obtained from the camera are compared to those obtained with a hyperspectral field spectroradiometer manufactured by Analytical Spectral Device, Inc. (ASD). Results confirm the potential of the CE600, with the suggested measurement setup and data processing, to measure commensurable sea ice and snow hemispherical-directional reflectance factor, HDRF, values. Compared to the ASD, the reflectance anisotropy measured with the CE600 provides much higher resolution in terms of directional reflectance (N = 16,020). The hyperangular resolution allows detecting features that were overlooked using the ASD due to its limited number of measurement angles (N = 25). This data set of HDRF further documents variations in the anisotropy of the reflectance of snow and ice with the geometry of observation and illumination conditions and its spectral and spatial scale dependency. Finally, in order to reproduce the hyperangular CE600 reflectance measurements over the entire 400-900 nm spectral range, a regression-based method is proposed to combine the ASD and CE600 measurements. Results confirm that both instruments may be used in synergy to construct a hyperangular and hyperspectral snow and ice reflectance anisotropy data set.

  4. Transverse angular momentum in topological photonic crystals

    Science.gov (United States)

    Deng, Wei-Min; Chen, Xiao-Dong; Zhao, Fu-Li; Dong, Jian-Wen

    2018-01-01

    Engineering local angular momentum of structured light fields in real space enables applications in many fields, in particular, the realization of unidirectional robust transport in topological photonic crystals with a non-trivial Berry vortex in momentum space. Here, we show transverse angular momentum modes in silicon topological photonic crystals when considering transverse electric polarization. Excited by a chiral external source with either transverse spin angular momentum or transverse phase vortex, robust light flow propagating along opposite directions is observed in several kinds of sharp-turn interfaces between two topologically-distinct silicon photonic crystals. A transverse orbital angular momentum mode with alternating phase vortex exists at the boundary of two such photonic crystals. In addition, unidirectional transport is robust to the working frequency even when the ring size or location of the pseudo-spin source varies in a certain range, leading to the superiority of the broadband photonic device. These findings enable one to make use of transverse angular momentum, a kind of degree of freedom, to achieve unidirectional robust transport in the telecom region and other potential applications in integrated photonic circuits, such as on-chip robust delay lines.

  5. Integral equations for four identical particles in angular momentum representation

    International Nuclear Information System (INIS)

    Kharchenko, V.F.; Shadchin, S.A.

    1975-01-01

    In integral equations of motion for a system of four identical spinless particles with central pair interactions, transition is realized from the representation of relative Jacobi momenta to the representation of their moduli and relative angular moments. As a result, the variables associated with the rotation of the system as a whole are separated in the equations. The integral equations of motion for four particles are reduced to the form of an infinite system of three-demensional integral equations. The four-particle kinematic factors contained in integral kernels are expressed in terms of three-particle type kinematic factors. In the case of separable two-particle interaction, the equations of motion for four particles have the form of an infinite system of two-dimensional integral equations

  6. Particle field diagnose using angular multiplexing volume holography

    Science.gov (United States)

    Zhao, Yu; Li, Zeren; Luo, Zhenxiong; Jun, Li; Zhong, Jie; Ye, Yan; Li, Shengfu; Zhu, Jianhua

    2017-08-01

    The problem of particle field diagnosing using holography can be met in many areas. But single frame hologram can only catch one moment of the fast event, which can't reveal the change process of an unrepeatable fast event. For events in different time-scale, different solution should be used. We did this work to record a laser induced particle field in the time-scale of tens of micron seconds. A laser of pulse sequence mode is applied to provide 10 pulses, the energy and time interval of whom is 150mJ and 1μs. Four pockels cells are employed to pick up the last four pulses for holographic recording, the other pulses are controlled to pre-expose the photopolymer based recording material, which can enhance photosensitivity of the photopolymer during the moment of holographic recording. The angular multiplexing technique and volume holography is accepted to avoid shifting the photopolymer between each shot. Another Q-switch YAG laser (pulse energy 100mJ, pulse width 10ns) is applied to produce the fast event. As a result, we successfully caught the motion process of the laser induced particle field. The time interval of each frame is 1μs, the angular range of the four references is 14°, and the diffraction efficiency of each hologram is less than 2%. After a basic analysis, this optical system could catch more holograms through a compact design.

  7. On the complex angular momentum theory of scattering

    International Nuclear Information System (INIS)

    Thylwe, K.-E.

    1983-01-01

    A contribution to the theory of complex angular momentum techniques in the field of atomic and molecular collisions is given. A new, flexible representation of the scattering amplitude on the basis of realistic assumptions for the behaviour of the S matrix in the complex angular momentum plane is derived. The representation has the form of a sum of steepest-descent integrals, S-matrix residue terms and a symmetry-type background integral. The flexibility is due to the presence of two integer parameters which may be chosen conveniently so as to make the residue sums sufficiently convergent and to minimise the total number of important terms. (author)

  8. Polarization-Dependent Measurements of Molecular Super Rotors with Oriented Angular Momenta

    Science.gov (United States)

    Murray, Matthew J.; Toro, Carlos; Liu, Qingnan; Mullin, Amy S.

    2014-05-01

    Controlling molecular motion would enable manipulation of energy flow between molecules. Here we have used an optical centrifuge to investigate energy transfer between molecular super rotors with oriented angular momenta. The polarizable electron cloud of the molecules interacts with the electric field of linearly polarized light that angularly accelerates over the time of the optical pulse. This process drives molecules into high angular momentum states that are oriented with the optical field and have energies far from equilibrium. High resolution transient IR spectroscopy reveals the dynamics of collisional energy transfer for these super excited rotors. The results of this study leads to a more fundamental understanding of energy balance in non-equilibrium environments and the physical and chemical properties of gases in a new regime of energy states. Results will be presented for several super rotor species including carbon monoxide, carbon dioxide, and acetylene. Polarization-dependent measurements reveal the extent to which the super rotors maintain spatial orientation of high angular momentum states.

  9. Manifest rotation symmetric expressions for angular momentum eigenfunctions

    International Nuclear Information System (INIS)

    Eeg, J.O.; Wroldsen, J.

    1983-01-01

    Manifest rotation symmetric expressions for eigenfunctions for spin s, orbital angular momentum l and total angular momentum j = l+s, .... , /l-s/ in terms of (2j+1) x (2s+1) multipole transition matrices (MTM) is given. These matrices, which are irreducible tensor matrices, have an algebra together with ordinary spin matrices for spin s and spin j. Explicit expressions for MTM's and their algebra are given for angular momenta <-3. By means of some examples it is shown that within this formalism angular integrations in central field problems will be simplified considerably. Thus the formalism turns out to be very useful for instance for calculations within the MIT-bag and also within spin-spin interactions in atomic physics. (Auth.)

  10. Investigation of angular and axial smoothing of PET data

    International Nuclear Information System (INIS)

    Daube-Witherspoon, M.E.; Carson, R.E.

    1996-01-01

    Radial filtering of emission and transmission data is routinely performed in PET during reconstruction in order to reduce image noise. Angular smoothing is not typically done, due to the introduction of a non-uniform resolution loss; axial filtering is also not usually performed on data acquired in 2D mode. The goal of this paper was to assess the effects of angular and axial smoothing on noise and resolution. Angular and axial smoothing was incorporated into the reconstruction process on the Scanditronix PC2048-15B brain PET scanner. In-plane spatial resolution and noise reduction were measured for different amounts of radial and angular smoothing. For radial positions away from the center of the scanner, noise reduction and degraded tangential resolution with no loss of radial resolution were seen. Near the center, no resolution loss was observed, but there was also no reduction in noise for angular filters up to a 7 degrees FWHM. These results can be understood by considering the combined effects of smoothing projections across rows (angles) and then summing (backprojecting). Thus, angular smoothing is not optimal due to its anisotropic noise reduction and resolution degradation properties. However, uniform noise reduction comparable to that seen with radial filtering can be achieved with axial smoothing of transmission data. The axial results suggest that combined radial and axial transmission smoothing could lead to improved noise characteristics with more isotropic resolution degradation

  11. Angular intensity of a gas-phase field ionization source

    International Nuclear Information System (INIS)

    Orloff, J.; Swanson, L.W.

    1979-01-01

    Angular intensities of 1 μA sr -1 have been measured for a gas-phase field ionization source in an optical column under practical operating conditions. The source, which was differentially pumped and cooled to 77 K, utilized a -oriented iridium emitter and precooled hydrogen gas at 10 -2 Torr. The ion beam was collimated with an electrostatic lens and detected below an aperture subtending 0.164 msr. A transmitted current of approx.10 -10 A was measured at voltages corresponding to a field of approx. =2.2 V/A at the emitter

  12. Optical Angular Momentum

    International Nuclear Information System (INIS)

    Arimondo, Ennio

    2004-01-01

    For many years the Institute of Physics has published books on hot topics based on a collection of reprints from different journals, including some remarks by the editors of each volume. The book on Optical Angular Momentum, edited by L Allen, S M Barnett and M J Padgett, is a recent addition to the series. It reproduces forty four papers originally published in different journals and in a few cases it provides direct access to works not easily accessible to a web navigator. The collection covers nearly a hundred years of progress in physics, starting from an historic 1909 paper by Poynting, and ending with a 2002 paper by Padgett, Barnett and coworkers on the measurement of the orbital angular momentum of a single photon. The field of optical angular momentum has expanded greatly, creating an interdisciplinary attraction for researchers operating in quantum optics, atomic physics, solid state physics, biophysics and quantum information theory. The development of laser optics, especially the control of single mode sources, has made possible the specific design of optical radiation modes with a high degree of control on the light angular momentum. The editors of this book are important figures in the field of angular momentum, having contributed to key progress in the area. L Allen published an historical paper in 1999, he and M J Padgett (together with M Babiker) produced few years ago a long review article which is today still the most complete basic introduction to the angular momentum of light, while S M Barnett has contributed several high quality papers to the progress of this area of physics. The editors' choice provides an excellent overview to all readers, with papers classified into eight different topics, covering the basic principles of the light and spin and orbital angular momentum, the laboratory tools for creating laser beams carrying orbital angular momentum, the optical forces and torques created by laser beams carrying angular momentum on

  13. Influence of the maximum applied magnetic field on the angular dependence of Magnetic Barkhausen Noise in API5L steels

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-Ortiz, P. [Laboratorio de Evaluación No Destructiva Electromagnética (LENDE), ESIME-SEPI, Edif. Z-4, Instituto Politécnico Nacional, Zacatenco, México D.F. (Mexico); Pérez-Benítez, J.A., E-mail: japerezb@ipn.mx [Laboratorio de Evaluación No Destructiva Electromagnética (LENDE), ESIME-SEPI, Edif. Z-4, Instituto Politécnico Nacional, Zacatenco, México D.F. (Mexico); Espina-Hernández, J.H. [Laboratorio de Evaluación No Destructiva Electromagnética (LENDE), ESIME-SEPI, Edif. Z-4, Instituto Politécnico Nacional, Zacatenco, México D.F. (Mexico); Caleyo, F. [Departamento de Ingeniería Metalúrgica, ESIQIE, UPALM Edif. 7, Instituto Politécnico Nacional, Zacatenco, C.P. 07738 México D.F. (Mexico); Mehboob, N.; Grössinger, R. [Institute of Solid State Physics, Vienna University of Technology, Vienna A-1040 (Austria); Hallen, J.M. [Departamento de Ingeniería Metalúrgica, ESIQIE, UPALM Edif. 7, Instituto Politécnico Nacional, Zacatenco, C.P. 07738 México D.F. (Mexico)

    2016-03-01

    This work studies the influence of the maximum applied magnetic field on the angular dependence of the energy of the Magnetic Barkhausen Noise signal in three different API5L pipeline steels. The results show that the shape of the angular dependence of the Magnetic Barkhausen Noise energy changes with the increase of the amplitude of the applied magnetic field. This phenomenon is a consequence of the presence of unlike magnetization processes at different magnitudes of the applied magnetic field. The outcomes reveal the importance of controlling the value of the maximum applied field as parameter for the improvement of the MBN angular dependence measurements. - Highlights: • Study the angular dependence of MBN with applied field in three pipeline steels. • Reveals the change of this angular dependence with the increase applied field. • Explains this dependence based on the domain wall dynamics theory.

  14. Influence of the maximum applied magnetic field on the angular dependence of Magnetic Barkhausen Noise in API5L steels

    International Nuclear Information System (INIS)

    Martínez-Ortiz, P.; Pérez-Benítez, J.A.; Espina-Hernández, J.H.; Caleyo, F.; Mehboob, N.; Grössinger, R.; Hallen, J.M.

    2016-01-01

    This work studies the influence of the maximum applied magnetic field on the angular dependence of the energy of the Magnetic Barkhausen Noise signal in three different API5L pipeline steels. The results show that the shape of the angular dependence of the Magnetic Barkhausen Noise energy changes with the increase of the amplitude of the applied magnetic field. This phenomenon is a consequence of the presence of unlike magnetization processes at different magnitudes of the applied magnetic field. The outcomes reveal the importance of controlling the value of the maximum applied field as parameter for the improvement of the MBN angular dependence measurements. - Highlights: • Study the angular dependence of MBN with applied field in three pipeline steels. • Reveals the change of this angular dependence with the increase applied field. • Explains this dependence based on the domain wall dynamics theory.

  15. Magnetic Field Generation through Angular Momentum Exchange between Circularly Polarized Radiation and Charged Particles

    CERN Document Server

    Shvets, G

    2002-01-01

    The interaction between circularly polarized (CP) radiation and charged particles can lead to generation of magnetic field through an inverse Faraday effect. The spin of the circularly polarized electromagnetic wave can be converted into the angular momentum of the charged particles so long as there is dissipation. We demonstrate this by considering two mechanisms of angular momentum absorption relevant for laser-plasma interactions: electron-ion collisions and ionization. The precise dissipative mechanism, however, plays a role in determining the efficiency of the magnetic field generation.

  16. Magnetic Field Generation through Angular Momentum Exchange between Circularly Polarized Radiation and Charged Particles

    International Nuclear Information System (INIS)

    G. Shvets; N.J. Fisch; J.-M. Rax

    2002-01-01

    The interaction between circularly polarized (CP) radiation and charged particles can lead to generation of magnetic field through an inverse Faraday effect. The spin of the circularly polarized electromagnetic wave can be converted into the angular momentum of the charged particles so long as there is dissipation. We demonstrate this by considering two mechanisms of angular momentum absorption relevant for laser-plasma interactions: electron-ion collisions and ionization. The precise dissipative mechanism, however, plays a role in determining the efficiency of the magnetic field generation

  17. Angular Spectrum Simulation of Pulsed Ultrasound Fields

    DEFF Research Database (Denmark)

    Du, Yigang; Jensen, Henrik; Jensen, Jørgen Arendt

    2009-01-01

    frequencies must be performed. Combining it with Field II, the generation of non-linear simulation for any geometry with any excitation array transducer becomes feasible. The purpose of this paper is to make a general pulsed simulation software using the modified ASA. Linear and phased array transducers......The optimization of non-linear ultrasound imaging should in a first step be based on simulation, as this makes parameter studies considerably easier than making transducer prototypes. Such a simulation program should be capable of simulating non-linear pulsed fields for arbitrary transducer...... geometries for any kind of focusing and apodization. The Angular Spectrum Approach (ASA) is capable of simulating monochromatic non-linear acoustic wave propagation. However, for ultrasound imaging the time response of each specific point in space is required, and a pulsed ASA simulation with multi temporal...

  18. Discrete time interval measurement system: fundamentals, resolution and errors in the measurement of angular vibrations

    International Nuclear Information System (INIS)

    Gómez de León, F C; Meroño Pérez, P A

    2010-01-01

    The traditional method for measuring the velocity and the angular vibration in the shaft of rotating machines using incremental encoders is based on counting the pulses at given time intervals. This method is generically called the time interval measurement system (TIMS). A variant of this method that we have developed in this work consists of measuring the corresponding time of each pulse from the encoder and sampling the signal by means of an A/D converter as if it were an analog signal, that is to say, in discrete time. For this reason, we have denominated this method as the discrete time interval measurement system (DTIMS). This measurement system provides a substantial improvement in the precision and frequency resolution compared with the traditional method of counting pulses. In addition, this method permits modification of the width of some pulses in order to obtain a mark-phase on every lap. This paper explains the theoretical fundamentals of the DTIMS and its application for measuring the angular vibrations of rotating machines. It also displays the required relationship between the sampling rate of the signal, the number of pulses of the encoder and the rotating velocity in order to obtain the required resolution and to delimit the methodological errors in the measurement

  19. Microcanonical functional integral for the gravitational field

    International Nuclear Information System (INIS)

    Brown, J.D.; York, J.W. Jr.

    1993-01-01

    The gravitational field in a spatially finite region is described as a microcanonical system. The density of states ν is expressed formally as a functional integral over Lorentzian metrics and is a functional of the geometrical boundary data that are fixed in the corresponding action. These boundary data are the thermodynamical extensive variables, including the energy and angular momentum of the system. When the boundary data are chosen such that the system is described semiclassically by any real stationary axisymmetric black hole, then in this same approximation lnν is shown to equal 1/4 the area of the black-hole event horizon. The canonical and grand canonical partition functions are obtained by integral transforms of ν that lead to ''imaginary-time'' functional integrals. A general form of the first law of thermodynamics for stationary black holes is derived. For the simpler case of nonrelativistic mechanics, the density of states is expressed as a real-time functional integral and then used to deduce Feynman's imaginary-time functional integral for the canonical partition function

  20. Quantum-mechanical theory including angular momenta analysis of atom-atom collisions in a laser field

    Science.gov (United States)

    Devries, P. L.; George, T. F.

    1978-01-01

    The problem of two atoms colliding in the presence of an intense radiation field, such as that of a laser, is investigated. The radiation field, which couples states of different electronic symmetry, is described by the number state representation while the electronic degrees of freedom (plus spin-orbit interaction) are discussed in terms of a diabatic representation. The total angular momentum of the field-free system and the angular momentum transferred by absorption (or emission) of a photon are explicitly considered in the derivation of the coupled scattering equations. A model calculation is discussed for the Xe + F collision system.

  1. A Multi-instrument and Multi-wavelength High Angular Resolution Study of MWC 614: Quantum Heated Particles Inside the Disk Cavity

    Science.gov (United States)

    Kluska, Jacques; Kraus, Stefan; Davies, Claire L.; Harries, Tim; Willson, Matthew; Monnier, John D.; Aarnio, Alicia; Baron, Fabien; Millan-Gabet, Rafael; Ten Brummelaar, Theo; Che, Xiao; Hinkley, Sasha; Preibisch, Thomas; Sturmann, Judit; Sturmann, Laszlo; Touhami, Yamina

    2018-03-01

    High angular resolution observations of young stellar objects are required to study the inner astronomical units of protoplanetary disks in which the majority of planets form. As they evolve, gaps open up in the inner disk regions and the disks are fully dispersed within ∼10 Myr. MWC 614 is a pretransitional object with a ∼10 au radius gap. We present a set of high angular resolution observations of this object including SPHERE/ZIMPOL polarimetric and coronagraphic images in the visible, Keck/NIRC2 near-infrared (NIR) aperture masking observations, and Very Large Telescope Interferometer (AMBER, MIDI, and PIONIER) and Center for High Angular Resolution Astronomy (CLASSIC and CLIMB) long-baseline interferometry at infrared wavelengths. We find that all the observations are compatible with an inclined disk (i ∼ 55° at a position angle of ∼20°–30°). The mid-infrared data set confirms that the disk inner rim is at 12.3 ± 0.4 au from the central star. We determined an upper mass limit of 0.34 M ⊙ for a companion inside the cavity. Within the cavity, the NIR emission, usually associated with the dust sublimation region, is unusually extended (∼10 au, 30 times larger than the theoretical sublimation radius) and indicates a high dust temperature (T ∼ 1800 K). As a possible result of companion-induced dust segregation, quantum heated dust grains could explain the extended NIR emission with this high temperature. Our observations confirm the peculiar state of this object where the inner disk has already been accreted onto the star, exposing small particles inside the cavity to direct stellar radiation. Based on observations made with the Keck observatory (NASA program ID N104N2) and with ESO telescopes at the Paranal Observatory (ESO program IDs 073.C-0720, 077.C-0226, 077.C-0521, 083.C-0984, 087.C-0498(A), 190.C-0963, 095.C-0883) and with the Center for High Angular Resolution Astronomy observatory.

  2. Computer simulation on spatial resolution of X-ray bright-field imaging by dynamical diffraction theory for a Laue-case crystal analyzer

    International Nuclear Information System (INIS)

    Suzuki, Yoshifumi; Chikaura, Yoshinori; Ando, Masami

    2011-01-01

    Recently, dark-field imaging (DFI) and bright-field imaging (BFI) have been proposed and applied to visualize X-ray refraction effects yielded in biomedical objects. In order to clarify the spatial resolution due to a crystal analyzer in Laue geometry, a program based on the Takagi-Taupin equation was modified to be used for carrying out simulations to evaluate the spatial resolution of images coming into a Laue angular analyzer (LAA). The calculation was done with a perfect plane wave for diffraction wave-fields, which corresponded to BFI, under the conditions of 35 keV and a diffraction index 440 for a 2100 μm thick LAA. As a result, the spatial resolution along the g-vector direction showed approximately 37.5 μm. 126 μm-thick LAA showed a spatial resolution better than 3.1 μm under the conditions of 13.7 keV and a diffraction index 220.

  3. Integrated Si-based nanoplasmonic sensor with phase-sensitive angular interrogation

    Energy Technology Data Exchange (ETDEWEB)

    Patskovsky, Sergiy; Meunier, Michel [Laser Processing and Plasmonics Laboratory, Ecole Polytechnique de Montreal, C. P. 6079, succ. Centre-Ville, Montreal, QC, H3C 3A7 (Canada)

    2013-06-15

    This work is related to the development of an integrated Surface Plasmon Resonance (SPR) sensor on silicon platform. The optical properties of metallic nanogratings fabricated on the semiconductor structure allow direct plasmonic detection in transmission mode. Specially designed angular interrogation method provides a periodic signal with phase dependent on the conditions of surface plasmon excitation. Proposed technique leads to sensitivity better than 10{sup -6} RIU for conventional SPR Kretschmann configuration and was tested on the integrated Si-based nanoplasmonic chip. Developed concept is promising for low-cost mono and multi -sensing applications by portable or stationary platforms. (copyright 2013 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Improving angular resolution with Scan-MUSIC algorithm for real complex targets using 35-GHz millimeter-wave radar

    Science.gov (United States)

    Ly, Canh

    2004-08-01

    Scan-MUSIC algorithm, developed by the U.S. Army Research Laboratory (ARL), improves angular resolution for target detection with the use of a single rotatable radar scanning the angular region of interest. This algorithm has been adapted and extended from the MUSIC algorithm that has been used for a linear sensor array. Previously, it was shown that the SMUSIC algorithm and a Millimeter Wave radar can be used to resolve two closely spaced point targets that exhibited constructive interference, but not for the targets that exhibited destructive interference. Therefore, there were some limitations of the algorithm for the point targets. In this paper, the SMUSIC algorithm is applied to a problem of resolving real complex scatterer-type targets, which is more useful and of greater practical interest, particular for the future Army radar system. The paper presents results of the angular resolution of the targets, an M60 tank and an M113 Armored Personnel Carrier (APC), that are within the mainlobe of a Κα-band radar antenna. In particular, we applied the algorithm to resolve centroids of the targets that were placed within the beamwidth of the antenna. The collected coherent data using the stepped-frequency radar were compute magnitudely for the SMUSIC calculation. Even though there were significantly different signal returns for different orientations and offsets of the two targets, we resolved those two target centroids when they were as close as about 1/3 of the antenna beamwidth.

  5. Development and Test of a Contactless Position and Angular Sensor Device for the Application in Synchronous Micro Motors

    Directory of Open Access Journals (Sweden)

    Andreas WALDSCHIK

    2009-09-01

    Full Text Available In this work, we present a contactless micro position and angular sensor system which consists of fixed commercial magnetic sensor elements, such as hall sensors and a movable part with integrated micro structured polymer magnets. This system serves particularly for linear and rotatory synchronous micro motors which we have developed and successfully tested. In order to achieve high precision and control of these motors an integration of the special micro position and angular sensors is pursued to increase the resolution and accuracy of the devices.

  6. Integration of visual and inertial cues in the perception of angular self-motion

    NARCIS (Netherlands)

    Winkel, K.N. de; Soyka, F.; Barnett-Cowan, M.; Bülthoff, H.H.; Groen, E.L.; Werkhoven, P.J.

    2013-01-01

    The brain is able to determine angular self-motion from visual, vestibular, and kinesthetic information. There is compelling evidence that both humans and non-human primates integrate visual and inertial (i.e., vestibular and kinesthetic) information in a statistically optimal fashion when

  7. The role of spatial memory and frames of reference in the precision of angular path integration.

    Science.gov (United States)

    Arthur, Joeanna C; Philbeck, John W; Kleene, Nicholas J; Chichka, David

    2012-09-01

    Angular path integration refers to the ability to maintain an estimate of self-location after a rotational displacement by integrating internally-generated (idiothetic) self-motion signals over time. Previous work has found that non-sensory inputs, namely spatial memory, can play a powerful role in angular path integration (Arthur et al., 2007, 2009). Here we investigated the conditions under which spatial memory facilitates angular path integration. We hypothesized that the benefit of spatial memory is particularly likely in spatial updating tasks in which one's self-location estimate is referenced to external space. To test this idea, we administered passive, non-visual body rotations (ranging 40°-140°) about the yaw axis and asked participants to use verbal reports or open-loop manual pointing to indicate the magnitude of the rotation. Prior to some trials, previews of the surrounding environment were given. We found that when participants adopted an egocentric frame of reference, the previously-observed benefit of previews on within-subject response precision was not manifested, regardless of whether remembered spatial frameworks were derived from vision or spatial language. We conclude that the powerful effect of spatial memory is dependent on one's frame of reference during self-motion updating. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Structured caustic vector vortex optical field: manipulating optical angular momentum flux and polarization rotation.

    Science.gov (United States)

    Chen, Rui-Pin; Chen, Zhaozhong; Chew, Khian-Hooi; Li, Pei-Gang; Yu, Zhongliang; Ding, Jianping; He, Sailing

    2015-05-29

    A caustic vector vortex optical field is experimentally generated and demonstrated by a caustic-based approach. The desired caustic with arbitrary acceleration trajectories, as well as the structured states of polarization (SoP) and vortex orders located in different positions in the field cross-section, is generated by imposing the corresponding spatial phase function in a vector vortex optical field. Our study reveals that different spin and orbital angular momentum flux distributions (including opposite directions) in different positions in the cross-section of a caustic vector vortex optical field can be dynamically managed during propagation by intentionally choosing the initial polarization and vortex topological charges, as a result of the modulation of the caustic phase. We find that the SoP in the field cross-section rotates during propagation due to the existence of the vortex. The unique structured feature of the caustic vector vortex optical field opens the possibility of multi-manipulation of optical angular momentum fluxes and SoP, leading to more complex manipulation of the optical field scenarios. Thus this approach further expands the functionality of an optical system.

  9. Direct observation of strain in bulk subgrains and dislocation walls by high angular resolution three-dimensional X-ray diffraction

    DEFF Research Database (Denmark)

    Jakobsen, Bo; Lienert, U.; Almer, J.

    2008-01-01

    The X-ray diffraction (XRD) method "high angular resolution 3DXRD" is briefly introduced, and results are presented for a single bulk grain in a polycrystalline copper sample deformed in tension. It is found that the three-dimensional reciprocal-space intensity distribution of a 400 reflection...

  10. The usability of the optical parametric amplification of light for high-angular-resolution imaging and fast astrometry

    Science.gov (United States)

    Kurek, A. R.; Stachowski, A.; Banaszek, K.; Pollo, A.

    2018-05-01

    High-angular-resolution imaging is crucial for many applications in modern astronomy and astrophysics. The fundamental diffraction limit constrains the resolving power of both ground-based and spaceborne telescopes. The recent idea of a quantum telescope based on the optical parametric amplification (OPA) of light aims to bypass this limit for the imaging of extended sources by an order of magnitude or more. We present an updated scheme of an OPA-based device and a more accurate model of the signal amplification by such a device. The semiclassical model that we present predicts that the noise in such a system will form so-called light speckles as a result of light interference in the optical path. Based on this model, we analysed the efficiency of OPA in increasing the angular resolution of the imaging of extended targets and the precise localization of a distant point source. According to our new model, OPA offers a gain in resolved imaging in comparison to classical optics. For a given time-span, we found that OPA can be more efficient in localizing a single distant point source than classical telescopes.

  11. HIGH ANGULAR RESOLUTION OBSERVATIONS OF FOUR CANDIDATE BLAST HIGH-MASS STARLESS CORES

    International Nuclear Information System (INIS)

    Olmi, Luca; Poventud, Carlos M.; Araya, Esteban D.; Chapin, Edward L.; Gibb, Andrew; Hofner, Peter; Martin, Peter G.

    2010-01-01

    We discuss high angular resolution observations of ammonia toward four candidate high-mass starless cores (HMSCs). The cores were identified by the Balloon-borne Large Aperture Submillimeter Telescope (BLAST) during its 2005 survey of the Vulpecula region where 60 compact sources were detected simultaneously at 250, 350, and 500 μm. Four of these cores, with no IRAS-PSC or MSX counterparts, were mapped with the NRAO Very Large Array and observed with the Effelsberg 100 m telescope in the NH 3 (1,1) and (2,2) spectral lines. Our observations indicate that the four cores are cold (T k -1 . The four BLAST cores appear to be colder and more quiescent than other previously observed HMSC candidates, suggesting an earlier stage of evolution.

  12. SMA OBSERVATIONS OF CLASS 0 PROTOSTARS: A HIGH ANGULAR RESOLUTION SURVEY OF PROTOSTELLAR BINARY SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Chen Xuepeng [Purple Mountain Observatory, Chinese Academy of Sciences, 2 West Beijing Road, Nanjing 210008 (China); Arce, Hector G.; Dunham, Michael M. [Department of Astronomy, Yale University, Box 208101, New Haven, CT 06520-8101 (United States); Zhang Qizhou; Bourke, Tyler L. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Launhardt, Ralf; Henning, Thomas [Max Planck Institute for Astronomy, Koenigstuhl 17, D-69117 Heidelberg (Germany); Jorgensen, Jes K. [Niels Bohr Institute and Centre for Star and Planet Formation, Copenhagen University, Juliane Maries Vej 30, DK-2100 Copenhagen O (Denmark); Lee, Chin-Fei [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 106, Taiwan (China); Foster, Jonathan B. [Institute for Astrophysical Research, Boston University, Boston, MA 02215 (United States); Pineda, Jaime E., E-mail: xpchen@pmo.ac.cn, E-mail: xuepeng.chen@yale.edu [ESO, Karl Schwarzschild Str. 2, D-85748 Garching bei Munchen (Germany)

    2013-05-10

    We present high angular resolution 1.3 mm and 850 {mu}m dust continuum data obtained with the Submillimeter Array toward 33 Class 0 protostars in nearby clouds (distance < 500 pc), which represents so far the largest survey toward protostellar binary/multiple systems. The median angular resolution in the survey is 2.''5, while the median linear resolution is approximately 600 AU. Compact dust continuum emission is observed from all sources in the sample. Twenty-one sources in the sample show signatures of binarity/multiplicity, with separations ranging from 50 AU to 5000 AU. The numbers of singles, binaries, triples, and quadruples in the sample are 12, 14, 5, and 2, respectively. The derived multiplicity frequency (MF) and companion star fraction (CSF) for Class 0 protostars are 0.64 {+-} 0.08 and 0.91 {+-} 0.05, respectively, with no correction for completeness. The derived MF and CSF in this survey are approximately two times higher than the values found in the binary surveys toward Class I young stellar objects, and approximately three (for MF) and four (for CSF) times larger than the values found among main-sequence stars, with a similar range of separations. Furthermore, the observed fraction of high-order multiple systems to binary systems in Class 0 protostars (0.50 {+-} 0.09) is also larger than the fractions found in Class I young stellar objects (0.31 {+-} 0.07) and main-sequence stars ({<=}0.2). These results suggest that binary properties evolve as protostars evolve, as predicted by numerical simulations. The distribution of separations for Class 0 protostellar binary/multiple systems shows a general trend in which CSF increases with decreasing companion separation. We find that 67% {+-} 8% of the protobinary systems have circumstellar mass ratios below 0.5, implying that unequal-mass systems are preferred in the process of binary star formation. We suggest an empirical sequential fragmentation picture for binary star formation, based on this

  13. PREFACE: Astronomy at High Angular Resolution 2011: The central kiloparsec in galactic nuclei

    Science.gov (United States)

    Iserlohe, Christof; Karas, Vladimir; Krips, Melanie; Eckart, Andreas; Britzen, Silke; Fischer, Sebastian

    2012-07-01

    We are pleased to present the proceedings from the Astronomy at High Angular Resolution 2011: The central kiloparsec in galactic nuclei conference. The conference took place in the Physikzentrum of the Deutsche Physikalische Gesellschaft (DPG), Bad Honnef, Germany, from 28 August to 2 September 2011. It was the second conference of this kind, following the Astronomy at High Angular Resolution conference held in Bad Honnef, three years earlier in 2008. The main objective of the conference was to frame the discussion of the broad range of physical processes that occur in the central 100pc of galactic nuclei. In most cases, this domain is difficult to probe through observations. This is mainly because of the lack of angular resolution, the brightness of the central engine and possible obscurations through dust and gas, which play together in the central regions of host galaxies of galactic nuclei within a broad range of activity. The presence of large amounts of molecular and atomic (both neutral and ionized) gas, dust and central engines with outflows and jets implies that the conditions for star formation in these regions are very special, and probably different from those in the disks of host galaxies. Numerous presentations covering a broad range of topics, both theoretical and experimental, those related to research on Active Galactic Nuclei and on a wide range of observed wavelengths were submitted to the Scientific Organizing Committee. Presentations have been grouped into six sessions: The nuclei of active galaxies The Galactic Center The immediate environment of Super Massive Black Holes The physics of nuclear jets and the interaction of the interstellar medium The central 100pc of the nuclear environment Star formation in that region The editors thank all participants of the AHAR 2011 conference for their enthusiasm and their numerous and vivid contributions to this conference. We would especially like to thank John Hugh Seiradakis from the Aristotle

  14. Path integral of the angular momentum eigenstates evolving with the parameter linked with rotation angle under the space rotation transformation

    International Nuclear Information System (INIS)

    Zhang Zhongcan; Hu Chenguo; Fang Zhenyun

    1998-01-01

    The authors study the method which directly adopts the azimuthal angles and the rotation angle of the axis to describe the evolving process of the angular momentum eigenstates under the space rotation transformation. The authors obtain the angular momentum rotation and multi-rotation matrix elements' path integral which evolves with the parameter λ(0→θ,θ the rotation angle), and establish the general method of treating the functional (path) integral as a normal multi-integrals

  15. Determinantal method for complex angular momenta in potential scattering

    Energy Technology Data Exchange (ETDEWEB)

    Lee, B. W. [University of Pennsylvania, Philadelphia, PA (United States)

    1963-01-15

    In this paper I would like do describe a formulation of the complex angular momenta in potential scattering based on the Lippmann-Schwinger integral equation rather than on the Schrödinger differential equation. This is intended as a preliminary to the paper by SAWYER on the Regge poles and high energy limits in field theory (Bethe-Salpeter amplitudes), where the integral formulation is definitely more advantageous than the differential formulation.

  16. Uncertainty of angular displacement measurement with a MEMS gyroscope integrated in a smartphone

    International Nuclear Information System (INIS)

    De Campos Porath, Maurício; Dolci, Ricardo

    2015-01-01

    Low-cost inertial sensors have recently gained popularity and are now widely used in electronic devices such as smartphones and tablets. In this paper we present the results of a set of experiments aiming to assess the angular displacement measurement errors of a gyroscope integrated in a smartphone of a recent model. The goal is to verify whether these sensors could substitute dedicated electronic inclinometers for the measurement of angular displacement. We estimated a maximum error of 0.3° (sum of expanded uncertainty and maximum absolute bias) for the roll and pitch axes, for a measurement time without referencing up to 1 h. (paper)

  17. Angular analysis of the B-0 -> K*(0) mu(+) mu(-) decay using 3 fb(-1) of integrated luminosity

    NARCIS (Netherlands)

    Aaij, R.; Beteta, C. Abelian; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Cartelle, P. Alvarez; Alves, A. A.; Amato, S.; Arnerio, S.; Arnhis, Y.; An, L.; Anderlini, L.; Andreassi, G.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Gutierrez, O. Aquines; Archilli, F.; d'Argent, P.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Bel, L. J.; Onderwater, C. J. G.; Pellegrino, A.; Tolk, S.

    2016-01-01

    An angular analysis of the B-0 -> K*(0) (-> K+pi(-))mu(+)mu(-) decay is presented. The dataset corresponds to an integrated luminosity of 3.0 fb(-1) of pp collision data collected at the LHCb experiment. The complete angular information from the decay is used to determine CP-averaged observables and

  18. Angularly-resolved elastic scatter from single particles collected over a large solid angle and with high resolution

    International Nuclear Information System (INIS)

    Aptowicz, Kevin B; Chang, Richard K

    2005-01-01

    Elastic light scattering from a single non-spherical particle of various morphologies has been measured simultaneously with a large angular range (90 deg. < θ < 165 deg. and 0 deg. < φ < 360 deg.) and with high angular resolution (1024 pixels in θ and 512 pixels in φ). Because the single-shot laser pulse is short (pulse duration of 70 ns), the tumbling and flowing particle can be treated as frozen in space. The large angle two-dimensional angular optical scattering (hereafter referred to as LA TAOS) intensity pattern, I(θ,φ), has been measured for a variety of particle morphology, such as the following: (1) single polystyrene latex (PSL) sphere; (2) cluster of PSL spheres; (3) single Bacillus subtilis (BG) spore; (4) cluster of BG spores; (5) dried aggregates of bio-aerosols as well as background clutter aerosols. All these measurements were made using the second harmonic of a Nd:YAG laser (0.532 μm). Islands structures in the LA TAOS patterns seem to be the prominent feature. Efforts are being made to extract metrics from these islands and compare them to theoretical results based on the T-matrix method

  19. High resolution gamma-ray spectroscopy and the fascinating angular momentum realm of the atomic nucleus

    International Nuclear Information System (INIS)

    Riley, M A; Simpson, J; Paul, E S

    2016-01-01

    In 1974 Aage Bohr and Ben Mottelson predicted the different ‘phases’ that may be expected in deformed nuclei as a function of increasing angular momentum and excitation energy all the way up to the fission limit. While admitting their picture was highly conjectural they confidently stated ‘...with the ingenious experimental approaches that are being developed, we may look forward with excitement to the detailed spectroscopic studies that will illuminate the behaviour of the spinning quantised nucleus’ . High resolution gamma-ray spectroscopy has indeed been a major tool in studying the structure of atomic nuclei and has witnessed numerous significant advances over the last four decades. This article will select highlights from investigations at the Niels Bohr Institute, Denmark, and Daresbury Laboratory, UK, in the late 1970s and early 1980s, some of which have continued at other national laboratories in Europe and the USA to the present day. These studies illustrate the remarkable diversity of phenomena and symmetries exhibited by nuclei in the angular momentum–excitation energy plane that continue to surprise and fascinate scientists. (invited comment)

  20. High resolution gamma-ray spectroscopy and the fascinating angular momentum realm of the atomic nucleus

    Science.gov (United States)

    Riley, M. A.; Simpson, J.; Paul, E. S.

    2016-12-01

    In 1974 Aage Bohr and Ben Mottelson predicted the different ‘phases’ that may be expected in deformed nuclei as a function of increasing angular momentum and excitation energy all the way up to the fission limit. While admitting their picture was highly conjectural they confidently stated ‘...with the ingenious experimental approaches that are being developed, we may look forward with excitement to the detailed spectroscopic studies that will illuminate the behaviour of the spinning quantised nucleus’. High resolution gamma-ray spectroscopy has indeed been a major tool in studying the structure of atomic nuclei and has witnessed numerous significant advances over the last four decades. This article will select highlights from investigations at the Niels Bohr Institute, Denmark, and Daresbury Laboratory, UK, in the late 1970s and early 1980s, some of which have continued at other national laboratories in Europe and the USA to the present day. These studies illustrate the remarkable diversity of phenomena and symmetries exhibited by nuclei in the angular momentum-excitation energy plane that continue to surprise and fascinate scientists.

  1. High resolution NMR spectroscopy of nanocrystalline proteins at ultra-high magnetic field

    International Nuclear Information System (INIS)

    Sperling, Lindsay J.; Nieuwkoop, Andrew J.; Lipton, Andrew S.; Berthold, Deborah A.; Rienstra, Chad M.

    2010-01-01

    Magic-angle spinning (MAS) solid-state NMR (SSNMR) spectroscopy of uniformly- 13 C, 15 N labeled protein samples provides insight into atomic-resolution chemistry and structure. Data collection efficiency has advanced remarkably in the last decade; however, the study of larger proteins is still challenged by relatively low resolution in comparison to solution NMR. In this study, we present a systematic analysis of SSNMR protein spectra acquired at 11.7, 17.6 and 21.1 Tesla ( 1 H frequencies of 500, 750, and 900 MHz). For two protein systems-GB1, a 6 kDa nanocrystalline protein and DsbA, a 21 kDa nanocrystalline protein-line narrowing is demonstrated in all spectral regions with increasing field. Resolution enhancement is greatest in the aliphatic region, including methine, methylene and methyl sites. The resolution for GB1 increases markedly as a function of field, and for DsbA, resolution in the C-C region increases by 42%, according to the number of peaks that can be uniquely picked and integrated in the 900 MHz spectra when compared to the 500 MHz spectra. Additionally, chemical exchange is uniquely observed in the highest field spectra for at least two isoleucine Cδ1 sites in DsbA. These results further illustrate the benefits of high-field MAS SSNMR spectroscopy for protein structural studies.

  2. High resolution integral holography using Fourier ptychographic approach.

    Science.gov (United States)

    Li, Zhaohui; Zhang, Jianqi; Wang, Xiaorui; Liu, Delian

    2014-12-29

    An innovative approach is proposed for calculating high resolution computer generated integral holograms by using the Fourier Ptychographic (FP) algorithm. The approach initializes a high resolution complex hologram with a random guess, and then stitches together low resolution multi-view images, synthesized from the elemental images captured by integral imaging (II), to recover the high resolution hologram through an iterative retrieval with FP constrains. This paper begins with an analysis of the principle of hologram synthesis from multi-projections, followed by an accurate determination of the constrains required in the Fourier ptychographic integral-holography (FPIH). Next, the procedure of the approach is described in detail. Finally, optical reconstructions are performed and the results are demonstrated. Theoretical analysis and experiments show that our proposed approach can reconstruct 3D scenes with high resolution.

  3. Untangling Galaxy Components - The Angular Momentum Parameter

    Science.gov (United States)

    Tabor, Martha; Merrifield, Michael; Aragon-Salamanca, Alfonso

    2017-06-01

    We have developed a new technique to decompose Integral Field spectral data cubes into separate bulge and disk components, allowing us to study the kinematic and stellar population properties of the individual components and how they vary with position. We present here the application of this method to a sample of fast rotator early type galaxies from the MaNGA integral field survey, and demonstrate how it can be used to explore key properties of the individual components. By extracting ages, metallicities and the angular momentum parameter lambda of the bulges and disks, we show how this method can give us new insights into the underlying structure of the galaxies and discuss what this can tell us about their evolution history.

  4. The Athena X-ray Integral Field Unit (X-IFU)

    Science.gov (United States)

    Barret, Didier; Trong, Thein Lam; Den Herder, Jan-Willem; Piro, Luigi; Barcons, Xavier; Huovelin, Juhani; Kelley, Richard; Mas-Hesse, J. Miquel; Mitsuda, Kazuhisa; Paltani, Stephane; hide

    2016-01-01

    The X-ray Integral Field Unit (X-IFU) on board the Advanced Telescope for High-ENergy Astrophysics (Athena) will provide spatially resolved high-resolution X-ray spectroscopy from 0.2 to 12 keV, with 5 pixels over a field of view of 5 arc minute equivalent diameter and a spectral resolution of 2.5 eV up to 7 keV. In this paper, we first review the core scientific objectives of Athena, driving the main performance parameters of the X-IFU, namely the spectral resolution, the field of view, the effective area, the count rate capabilities, the instrumental background. We also illustrate the breakthrough potential of the X-IFU for some observatory science goals. Then we brie y describe the X-IFU design as defined at the time of the mission consolidation review concluded in May 2016, and report on its predicted performance. Finally, we discuss some options to improve the instrument performance while not increasing its complexity and resource demands (e.g. count rate capability, spectral resolution). (2016) .

  5. Inverse transformation algorithm of transient electromagnetic field and its high-resolution continuous imaging interpretation method

    International Nuclear Information System (INIS)

    Qi, Zhipeng; Li, Xiu; Lu, Xushan; Zhang, Yingying; Yao, Weihua

    2015-01-01

    We introduce a new and potentially useful method for wave field inverse transformation and its application in transient electromagnetic method (TEM) 3D interpretation. The diffusive EM field is known to have a unique integral representation in terms of a fictitious wave field that satisfies a wave equation. The continuous imaging of TEM can be accomplished using the imaging methods in seismic interpretation after the diffusion equation is transformed into a fictitious wave equation. The interpretation method based on the imaging of a fictitious wave field could be used as a fast 3D inversion method. Moreover, the fictitious wave field possesses some wave field features making it possible for the application of a wave field interpretation method in TEM to improve the prospecting resolution.Wave field transformation is a key issue in the migration imaging of a fictitious wave field. The equation in the wave field transformation belongs to the first class Fredholm integration equation, which is a typical ill-posed equation. Additionally, TEM has a large dynamic time range, which also facilitates the weakness of this ill-posed problem. The wave field transformation is implemented by using pre-conditioned regularized conjugate gradient method. The continuous imaging of a fictitious wave field is implemented by using Kirchhoff integration. A synthetic aperture and deconvolution algorithm is also introduced to improve the interpretation resolution. We interpreted field data by the method proposed in this paper, and obtained a satisfying interpretation result. (paper)

  6. Distribution of electron orbits having a definite angular momentum in a static magnetic field

    International Nuclear Information System (INIS)

    Olszewski, S.

    1996-01-01

    Electron orbits having a definite angular momentum in a static magnetic field are calculated with the aid of the Bohr-Sommerfeld quantization rules. The quantization gives that orbits are arranged along a straight line but the distance between the centers of two neighboring orbits decreases with increase of the absolute value of the angular momentum. With the energy correction equal to the zero-point energy of the harmonic oscillator, the distribution of orbits becomes identical to that obtained recently with the aid of a mixed semiclassical and quantum mechanical theory. 16 refs., 1 fig

  7. Dense sampled transmission matrix for high resolution angular spectrum imaging through turbid media via compressed sensing (Conference Presentation)

    Science.gov (United States)

    Jang, Hwanchol; Yoon, Changhyeong; Choi, Wonshik; Eom, Tae Joong; Lee, Heung-No

    2016-03-01

    We provide an approach to improve the quality of image reconstruction in wide-field imaging through turbid media (WITM). In WITM, a calibration stage which measures the transmission matrix (TM), the set of responses of turbid medium to a set of plane waves with different incident angles, is preceded to the image recovery. Then, the TM is used for estimation of object image in image recovery stage. In this work, we aim to estimate highly resolved angular spectrum and use it for high quality image reconstruction. To this end, we propose to perform a dense sampling for TM measurement in calibration stage with finer incident angle spacing. In conventional approaches, incident angle spacing is made to be large enough so that the columns in TM are out of memory effect of turbid media. Otherwise, the columns in TM are correlated and the inversion becomes difficult. We employ compressed sensing (CS) for a successful high resolution angular spectrum recovery with dense sampled TM. CS is a relatively new information acquisition and reconstruction framework and has shown to provide superb performance in ill-conditioned inverse problems. We observe that the image quality metrics such as contrast-to-noise ratio and mean squared error are improved and the perceptual image quality is improved with reduced speckle noise in the reconstructed image. This results shows that the WITM performance can be improved only by executing dense sampling in the calibration stage and with an efficient signal reconstruction framework without elaborating the overall optical imaging systems.

  8. High mass star formation to the extremes: NGC 3603 at high angular resolution in the near-infrared

    International Nuclear Information System (INIS)

    Nuernberger, Dieter E A

    2008-01-01

    High angular resolution observations play a decisive role for our understanding of high mass star formation processes, both within our Galaxy and in extragalactic starburst regions. We take the Galactic starburst template NGC 3603 as paradigm and report here on high angular resolution JHK s L' observations of the enigmatic, highly reddened sources IRS 9A-C in the NGC 3603 region, which were performed with NACO at ESO's Very Large Telescope Yepun. These broad-band imaging data strongly support the classification of IRS 9A-C as high mass protostellar candidates. We also confirm unambiguously the membership of IRS 9A-C with the NGC 3603 region as gas and dust is seen to be stripped off from their circumstellar envelopes by strong stellar winds, originating from the high mass main sequence stars of the nearby OB cluster. The orientation of these gas and dust streamers coincides with that of a very faint, only marginally detected mini-pillar protruding from the adjacent molecular clump NGC 3603 MM 2. The L' data show extended envelopes around IRS 9A-C and reveal sub-structures therein which are indicative for non-spherically distributed material. It seems obvious that protostellar mass outflows are at work to clear cavities along the polar axes of the central protostar, and / or that circumstellar disks are taking shape.

  9. A new CMOS Hall angular position sensor

    Energy Technology Data Exchange (ETDEWEB)

    Popovic, R.S.; Drljaca, P. [Swiss Federal Inst. of Tech., Lausanne (Switzerland); Schott, C.; Racz, R. [SENTRON AG, Zug (Switzerland)

    2001-06-01

    The new angular position sensor consists of a combination of a permanent magnet attached to a shaft and of a two-axis magnetic sensor. The permanent magnet produces a magnetic field parallel with the magnetic sensor plane. As the shaft rotates, the magnetic field also rotates. The magnetic sensor is an integrated combination of a CMOS Hall integrated circuit and a thin ferromagnetic disk. The CMOS part of the system contains two or more conventional Hall devices positioned under the periphery of the disk. The ferromagnetic disk converts locally a magnetic field parallel with the chip surface into a field perpendicular to the chip surface. Therefore, a conventional Hall element can detect an external magnetic field parallel with the chip surface. As the direction of the external magnetic field rotates in the chip plane, the output voltage of the Hall element varies as the cosine of the rotation angle. By placing the Hall elements at the appropriate places under the disk periphery, we may obtain the cosine signals shifted by 90 , 120 , or by any other angle. (orig.)

  10. Concept of dual-resolution light field imaging using an organic photoelectric conversion film for high-resolution light field photography.

    Science.gov (United States)

    Sugimura, Daisuke; Kobayashi, Suguru; Hamamoto, Takayuki

    2017-11-01

    Light field imaging is an emerging technique that is employed to realize various applications such as multi-viewpoint imaging, focal-point changing, and depth estimation. In this paper, we propose a concept of a dual-resolution light field imaging system to synthesize super-resolved multi-viewpoint images. The key novelty of this study is the use of an organic photoelectric conversion film (OPCF), which is a device that converts spectra information of incoming light within a certain wavelength range into an electrical signal (pixel value), for light field imaging. In our imaging system, we place the OPCF having the green spectral sensitivity onto the micro-lens array of the conventional light field camera. The OPCF allows us to acquire the green spectra information only at the center viewpoint with the full resolution of the image sensor. In contrast, the optical system of the light field camera in our imaging system captures the other spectra information (red and blue) at multiple viewpoints (sub-aperture images) but with low resolution. Thus, our dual-resolution light field imaging system enables us to simultaneously capture information about the target scene at a high spatial resolution as well as the direction information of the incoming light. By exploiting these advantages of our imaging system, our proposed method enables the synthesis of full-resolution multi-viewpoint images. We perform experiments using synthetic images, and the results demonstrate that our method outperforms other previous methods.

  11. Angular Momentum of a Bose-Einstein Condensate in a Synthetic Rotational Field

    Science.gov (United States)

    Qu, Chunlei; Stringari, Sandro

    2018-05-01

    By applying a position-dependent detuning to a spin-orbit-coupled Hamiltonian with equal Rashba and Dresselhaus coupling, we exploit the behavior of the angular momentum of a harmonically trapped Bose-Einstein condensed atomic gas and discuss the distinctive role of its canonical and spin components. By developing the formalism of spinor hydrodynamics, we predict the precession of the dipole oscillation caused by the synthetic rotational field, in analogy with the precession of the Foucault pendulum, the excitation of the scissors mode, following the sudden switching off of the detuning, and the occurrence of Hall-like effects. When the detuning exceeds a critical value, we observe a transition from a vortex free, rigidly rotating quantum gas to a gas containing vortices with negative circulation which results in a significant reduction of the total angular momentum.

  12. Uncertainty principle for angular position and angular momentum

    International Nuclear Information System (INIS)

    Franke-Arnold, Sonja; Barnett, Stephen M; Yao, Eric; Leach, Jonathan; Courtial, Johannes; Padgett, Miles

    2004-01-01

    The uncertainty principle places fundamental limits on the accuracy with which we are able to measure the values of different physical quantities (Heisenberg 1949 The Physical Principles of the Quantum Theory (New York: Dover); Robertson 1929 Phys. Rev. 34 127). This has profound effects not only on the microscopic but also on the macroscopic level of physical systems. The most familiar form of the uncertainty principle relates the uncertainties in position and linear momentum. Other manifestations include those relating uncertainty in energy to uncertainty in time duration, phase of an electromagnetic field to photon number and angular position to angular momentum (Vaccaro and Pegg 1990 J. Mod. Opt. 37 17; Barnett and Pegg 1990 Phys. Rev. A 41 3427). In this paper, we report the first observation of the last of these uncertainty relations and derive the associated states that satisfy the equality in the uncertainty relation. We confirm the form of these states by detailed measurement of the angular momentum of a light beam after passage through an appropriate angular aperture. The angular uncertainty principle applies to all physical systems and is particularly important for systems with cylindrical symmetry

  13. Angular momentum conservation for uniformly expanding flows

    International Nuclear Information System (INIS)

    Hayward, Sean A

    2007-01-01

    Angular momentum has recently been defined as a surface integral involving an axial vector and a twist 1-form, which measures the twisting around the spacetime due to a rotating mass. The axial vector is chosen to be a transverse, divergence-free, coordinate vector, which is compatible with any initial choice of axis and integral curves. Then a conservation equation expresses the rate of the change of angular momentum along a uniformly expanding flow as a surface integral of angular momentum densities, with the same form as the standard equation for an axial Killing vector, apart from the inclusion of an effective energy tensor for gravitational radiation

  14. Investigation of an angular spectrum approach for pulsed ultrasound fields

    DEFF Research Database (Denmark)

    Du, Yigang; Jensen, Henrik; Jensen, Jørgen Arendt

    2013-01-01

    An Angular Spectrum Approach (ASA)is formulated and employed to simulate linear pulsed ultra sound fields for high bandwidth signals. Ageometrically focused piston transducer is used as the acoustic source. Signals are cross-correlated to findthe true sound speed during the measurement to make...... the simulated and measured pulses in phase for comparisons. The calculated sound speed in the measurement is varied between 1487.45 m/s and 1487.75 m/s by using different initial values in the ASA simulation. Results from the pulsed ASA simulation susing both Field II simulated and hydrophone measured acoustic....... Optim al parameters for the ASA are found in the simulation .The RMS error of the ASA simulation is reduced from 10.9% to 2.4% for the optimal parameters when comparing to Field II simulation s. The comparison between the ASA calculated and measured pulses are illustrated and the corresponding RMS error...

  15. Regional Trade Integration and Conflict Resolution | CRDI - Centre ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Regional Trade Integration and Conflict Resolution. Couverture du livre Regional Trade Integration and Conflict Resolution. Directeur(s) : Shaheen Rafi Khan. Maison(s) d'édition : Routledge, CRDI. 5 décembre 2008. ISBN : 9780415476737. 288 pages. e-ISBN : 9781552504147. Téléchargez le PDF · Téléchargez le ...

  16. Zooming into local active galactic nuclei: the power of combining SDSS-IV MaNGA with higher resolution integral field unit observations

    Science.gov (United States)

    Wylezalek, Dominika; Schnorr Müller, Allan; Zakamska, Nadia L.; Storchi-Bergmann, Thaisa; Greene, Jenny E.; Müller-Sánchez, Francisco; Kelly, Michael; Liu, Guilin; Law, David R.; Barrera-Ballesteros, Jorge K.; Riffel, Rogemar A.; Thomas, Daniel

    2017-05-01

    Ionized gas outflows driven by active galactic nuclei (AGN) are ubiquitous in high-luminosity AGN with outflow speeds apparently correlated with the total bolometric luminosity of the AGN. This empirical relation and theoretical work suggest that in the range Lbol ˜ 1043-45 erg s-1 there must exist a threshold luminosity above which the AGN becomes powerful enough to launch winds that will be able to escape the galaxy potential. In this paper, we present pilot observations of two AGN in this transitional range that were taken with the Gemini North Multi-Object Spectrograph integral field unit (IFU). Both sources have also previously been observed within the Sloan Digital Sky Survey-IV (SDSS) Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey. While the MaNGA IFU maps probe the gas fields on galaxy-wide scales and show that some regions are dominated by AGN ionization, the new Gemini IFU data zoom into the centre with four times better spatial resolution. In the object with the lower Lbol we find evidence of a young or stalled biconical AGN-driven outflow where none was obvious at the MaNGA resolution. In the object with the higher Lbol we trace the large-scale biconical outflow into the nuclear region and connect the outflow from small to large scales. These observations suggest that AGN luminosity and galaxy potential are crucial in shaping wind launching and propagation in low-luminosity AGN. The transition from small and young outflows to galaxy-wide feedback can only be understood by combining large-scale IFU data that trace the galaxy velocity field with higher resolution, small-scale IFU maps.

  17. High-resolution stochastic integrated thermal–electrical domestic demand model

    International Nuclear Information System (INIS)

    McKenna, Eoghan; Thomson, Murray

    2016-01-01

    Highlights: • A major new version of CREST’s demand model is presented. • Simulates electrical and thermal domestic demands at high-resolution. • Integrated structure captures appropriate time-coincidence of variables. • Suitable for low-voltage network and urban energy analyses. • Open-source development in Excel VBA freely available for download. - Abstract: This paper describes the extension of CREST’s existing electrical domestic demand model into an integrated thermal–electrical demand model. The principle novelty of the model is its integrated structure such that the timing of thermal and electrical output variables are appropriately correlated. The model has been developed primarily for low-voltage network analysis and the model’s ability to account for demand diversity is of critical importance for this application. The model, however, can also serve as a basis for modelling domestic energy demands within the broader field of urban energy systems analysis. The new model includes the previously published components associated with electrical demand and generation (appliances, lighting, and photovoltaics) and integrates these with an updated occupancy model, a solar thermal collector model, and new thermal models including a low-order building thermal model, domestic hot water consumption, thermostat and timer controls and gas boilers. The paper reviews the state-of-the-art in high-resolution domestic demand modelling, describes the model, and compares its output with three independent validation datasets. The integrated model remains an open-source development in Excel VBA and is freely available to download for users to configure and extend, or to incorporate into other models.

  18. Simple Fourier optics formalism for high-angular-resolution systems and nulling interferometry.

    Science.gov (United States)

    Hénault, François

    2010-03-01

    Reviewed are various designs of advanced, multiaperture optical systems dedicated to high-angular-resolution imaging or to the detection of exoplanets by nulling interferometry. A simple Fourier optics formalism applicable to both imaging arrays and nulling interferometers is presented, allowing their basic theoretical relationships to be derived as convolution or cross-correlation products suitable for fast and accurate computation. Several unusual designs, such as a "superresolving telescope" utilizing a mosaicking observation procedure or a free-flying, axially recombined interferometer are examined, and their performance in terms of imaging and nulling capacity are assessed. In all considered cases, it is found that the limiting parameter is the diameter of the individual telescopes. A final section devoted to nulling interferometry shows an apparent superiority of axial versus multiaxial recombining schemes. The entire study is valid only in the framework of first-order geometrical optics and scalar diffraction theory. Furthermore, it is assumed that all entrance subapertures are optically conjugated with their associated exit pupils.

  19. Characterization of the angular memory effect of scattered light in biological tissues.

    Science.gov (United States)

    Schott, Sam; Bertolotti, Jacopo; Léger, Jean-Francois; Bourdieu, Laurent; Gigan, Sylvain

    2015-05-18

    High resolution optical microscopy is essential in neuroscience but suffers from scattering in biological tissues and therefore grants access to superficial brain layers only. Recently developed techniques use scattered photons for imaging by exploiting angular correlations in transmitted light and could potentially increase imaging depths. But those correlations ('angular memory effect') are of a very short range and should theoretically be only present behind and not inside scattering media. From measurements on neural tissues and complementary simulations, we find that strong forward scattering in biological tissues can enhance the memory effect range and thus the possible field-of-view by more than an order of magnitude compared to isotropic scattering for ∼1 mm thick tissue layers.

  20. Robustness of plasmonic angular momentum confinement in cross resonant optical antennas

    Energy Technology Data Exchange (ETDEWEB)

    Klaer, Peter; Lehr, Martin; Krewer, Keno; Schertz, Florian; Schönhense, Gerd; Elmers, Hans Joachim, E-mail: elmers@uni-mainz.de [Institut für Physik, Johannes Gutenberg-Universität, Staudingerweg 7, D-55099 Mainz (Germany); Razinskas, Gary; Wu, Xiao-Fei; Hecht, Bert [Institut für Physik, Julius-Maximilians-Universität, Am Hubland, 97074 Würzburg (Germany)

    2015-06-29

    Using a combination of photoemission electron microscopy and numerical simulations, we investigated the angular moment transfer in strongly enhanced optical near-fields of artificially fabricated optical antennas. The polarization dependence of the optical near-field enhancement has been measured in a maximum symmetric geometry, i.e., excitation by a normal incident planar wave. Finite-difference time-domain simulations for the realistic antenna geometries as determined by high-resolution electron microscopy reveal a very good agreement with experimental data. The agreement confirms that the geometrical asymmetries and inhomogeneities due to the nanoscale fabrication process preserve the circular polarization in the gap regions with strong near-field enhancement.

  1. Efficient evaluation of angular power spectra and bispectra

    Science.gov (United States)

    Assassi, Valentin; Simonović, Marko; Zaldarriaga, Matias

    2017-11-01

    Angular statistics of cosmological observables are hard to compute. The main difficulty is due to the presence of highly-oscillatory Bessel functions which need to be integrated over. In this paper, we provide a simple and fast method to compute the angular power spectrum and bispectrum of any observable. The method is based on using an FFTlog algorithm to decompose the momentum-space statistics onto a basis of power-law functions. For each power law, the integrals over Bessel functions have a simple analytical solution. This allows us to efficiently evaluate these integrals, independently of the value of the multipole l. In particular, this method significantly speeds up the evaluation of the angular bispectrum compared to existing methods. To illustrate our algorithm, we compute the galaxy, lensing and CMB temperature angular power spectrum and bispectrum.

  2. LRS2: A New Integral Field Spectrograph for the HET

    Science.gov (United States)

    Tuttle, Sarah E.; Hill, Gary J.; Chonis, Taylor S.; Tonnesen, Stephanie

    2016-01-01

    Here we present LRS2 (Low Resolution Spectrograph) and highlight early science opportunities with the newly upgraded Hobby Eberly telescope (HET). LRS2 is a four-channel optical wavelength (370nm - 1micron) spectrograph based on two VIRUS unit spectrographs. This fiber-fed integral field spectrograph covers a 12" x 6" field of view, switched between the two units (one blue, and one red) at R~2000. We highlight design elements, including the fundamental modification to grisms (from VPH gratings in VIRUS) to access the higher resolution. We discuss early science opportunities, including investigating nearby "blue-bulge" spiral galaxies and their anomalous star formation distribution.

  3. Fast evaluation of solid harmonic Gaussian integrals for local resolution-of-the-identity methods and range-separated hybrid functionals

    Science.gov (United States)

    Golze, Dorothea; Benedikter, Niels; Iannuzzi, Marcella; Wilhelm, Jan; Hutter, Jürg

    2017-01-01

    An integral scheme for the efficient evaluation of two-center integrals over contracted solid harmonic Gaussian functions is presented. Integral expressions are derived for local operators that depend on the position vector of one of the two Gaussian centers. These expressions are then used to derive the formula for three-index overlap integrals where two of the three Gaussians are located at the same center. The efficient evaluation of the latter is essential for local resolution-of-the-identity techniques that employ an overlap metric. We compare the performance of our integral scheme to the widely used Cartesian Gaussian-based method of Obara and Saika (OS). Non-local interaction potentials such as standard Coulomb, modified Coulomb, and Gaussian-type operators, which occur in range-separated hybrid functionals, are also included in the performance tests. The speed-up with respect to the OS scheme is up to three orders of magnitude for both integrals and their derivatives. In particular, our method is increasingly efficient for large angular momenta and highly contracted basis sets.

  4. Angular momentum conservation law in light-front quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, Kelly Yu-Ju; Brodsky, Stanley J.; /SLAC /Stanford U.

    2017-03-01

    We prove the Lorentz invariance of the angular momentum conservation law and the helicity sum rule for relativistic composite systems in the light-front formulation. We explicitly show that j 3 , the z -component of the angular momentum remains unchanged under Lorentz transformations generated by the light-front kinematical boost operators. The invariance of j 3 under Lorentz transformations is a feature unique to the front form. Applying the Lorentz invariance of the angular quantum number in the front form, we obtain a selection rule for the orbital angular momentum which can be used to eliminate certain interaction vertices in QED and QCD. We also generalize the selection rule to any renormalizable theory and show that there exists an upper bound on the change of orbital angular momentum in scattering processes at any fixed order in perturbation theory.

  5. Noise reduction methods in the analysis of near infrared lunar occultation light curves for high angular resolution measurements

    International Nuclear Information System (INIS)

    Baug Tapas; Chandrasekhar Thyagarajan

    2013-01-01

    A lunar occultation (LO) technique in the near-infrared (NIR) provides angular resolution down to milliarcseconds for an occulted source, even with ground-based 1 m class telescopes. LO observations are limited to brighter objects because they require a high signal-to-noise ratio (S/N ∼40) for proper extraction of angular diameter values. Hence, methods to improve the S/N ratio by reducing noise using Fourier and wavelet transforms have been explored in this study. A sample of 54 NIR LO light curves observed with the IR camera at Mt Abu Observatory has been used. It is seen that both Fourier and wavelet methods have shown an improvement in S/N compared to the original data. However, the application of wavelet transforms causes a slight smoothing of the fringes and results in a higher value for angular diameter. Fourier transforms which reduce discrete noise frequencies do not distort the fringe. The Fourier transform method seems to be effective in improving the S/N, as well as improving the model fit, particularly in the fainter regime of our sample. These methods also provide a better model fit for brighter sources in some cases, though there may not be a significant improvement in S/N

  6. Far-field super-resolution imaging of resonant multiples

    KAUST Repository

    Guo, Bowen

    2016-05-20

    We demonstrate for the first time that seismic resonant multiples, usually considered as noise, can be used for super-resolution imaging in the far-field region of sources and receivers. Tests with both synthetic data and field data show that resonant multiples can image reflector boundaries with resolutions more than twice the classical resolution limit. Resolution increases with the order of the resonant multiples. This procedure has important applications in earthquake and exploration seismology, radar, sonar, LIDAR (light detection and ranging), and ultrasound imaging, where the multiples can be used to make high-resolution images.

  7. Angular distributions of plasma edge velocity and integrated intensity: Update on specific impulse for Ablative Laser Propulsion

    Science.gov (United States)

    Lin, Jun; Pakhomov, Andrew V.

    2005-04-01

    This work concludes our discussion of the image processing technique developed earlier for determination of specific impulse (Isp) for Ablative Laser Propulsion (ALP). The plasma plumes are recorded with a time-resolved intensified charge-coupled device (ICCD) camera. The plasma was formed in vacuum (˜ 3×10-3 Torr) by focusing output pulses of a laser system (100-ps pulsewidth at 532 nm wavelength and ˜35 mJ energy) on surfaces of C (graphite), Al, Si, Fe, Cu, Zn, Sn, and Pb elements. Angular profiles for integrated intensity and plasma expansion velocity were determined for the tested elements. Such profiles were used further for assessment of specific impulse. Specific impulses derived from angular distributions of plasma expansion velocity and integral intensity appeared in excellent agreement with the data derived earlier from force measurements.

  8. Angular distributions of plasma edge velocity and integrated intensity: Update on specific impulse for Ablative Laser Propulsion

    International Nuclear Information System (INIS)

    Lin Jun; Pakhomov, Andrew V.

    2005-01-01

    This work concludes our discussion of the image processing technique developed earlier for determination of specific impulse (Isp) for Ablative Laser Propulsion (ALP). The plasma plumes are recorded with a time-resolved intensified charge-coupled device (ICCD) camera. The plasma was formed in vacuum (∼ 3x10-3 Torr) by focusing output pulses of a laser system (100-ps pulsewidth at 532 nm wavelength and ∼35 mJ energy) on surfaces of C (graphite), Al, Si, Fe, Cu, Zn, Sn, and Pb elements. Angular profiles for integrated intensity and plasma expansion velocity were determined for the tested elements. Such profiles were used further for assessment of specific impulse. Specific impulses derived from angular distributions of plasma expansion velocity and integral intensity appeared in excellent agreement with the data derived earlier from force measurements

  9. Angular spectrum approach for fast simulation of pulsed non-linear ultrasound fields

    DEFF Research Database (Denmark)

    Du, Yigang; Jensen, Henrik; Jensen, Jørgen Arendt

    2011-01-01

    The paper presents an Angular Spectrum Approach (ASA) for simulating pulsed non-linear ultrasound fields. The source of the ASA is generated by Field II, which can simulate array transducers of any arbitrary geometry and focusing. The non-linear ultrasound simulation program - Abersim, is used...... as the reference. A linear array transducer with 64 active elements is simulated by both Field II and Abersim. The excitation is a 2-cycle sine wave with a frequency of 5 MHz. The second harmonic field in the time domain is simulated using ASA. Pulse inversion is used in the Abersim simulation to remove...... the fundamental and keep the second harmonic field, since Abersim simulates non-linear fields with all harmonic components. ASA and Abersim are compared for the pulsed fundamental and second harmonic fields in the time domain at depths of 30 mm, 40 mm (focal depth) and 60 mm. Full widths at -6 dB (FWHM) are f0...

  10. The Athena X-ray Integral Field Unit

    Science.gov (United States)

    Barret, D.

    2017-10-01

    The Athena X-ray Integral Field Unit (X-IFU) is a high-resolution X-ray spectrometer, providing 2.5 eV spectral resolution, over a 5' (equivalent diameter) field of view, and count rate capabilities up to 1 Crab in the 0.2-12 keV range. Approaching the end of its feasibility study (scheduled around the end of 2017), I will briefly recall the scientific objectives of Athena driving the X-IFU specifications and will describe its current baseline configuration and the expected performances. I will outline the on-going technology developments that will enable the X-IFU. The X-IFU will be developed by an international consortium led by France (IRAP/CNES), the Netherlands (SRON), Italy (IAPS), with ESA member state contributions from Belgium, Finland, Germany, Poland, Spain and Switzerland, and international partner contributions from Japan and the United States. This talk is given on behalf of the X-IFU Consortium.

  11. Radiofrequency encoded angular-resolved light scattering

    DEFF Research Database (Denmark)

    Buckley, Brandon W.; Akbari, Najva; Diebold, Eric D.

    2015-01-01

    The sensitive, specific, and label-free classification of microscopic cells and organisms is one of the outstanding problems in biology. Today, instruments such as the flow cytometer use a combination of light scatter measurements at two distinct angles to infer the size and internal complexity...... of cells at rates of more than 10,000 per second. However, by examining the entire angular light scattering spectrum it is possible to classify cells with higher resolution and specificity. Current approaches to performing these angular spectrum measurements all have significant throughput limitations...... Encoded Angular-resolved Light Scattering (REALS), this technique multiplexes angular light scattering in the radiofrequency domain, such that a single photodetector captures the entire scattering spectrum from a particle over approximately 100 discrete incident angles on a single shot basis. As a proof...

  12. Dual electromagnetism: helicity, spin, momentum and angular momentum

    International Nuclear Information System (INIS)

    Bliokh, Konstantin Y; Nori, Franco; Bekshaev, Aleksandr Y

    2013-01-01

    The dual symmetry between electric and magnetic fields is an important intrinsic property of Maxwell equations in free space. This symmetry underlies the conservation of optical helicity and, as we show here, is closely related to the separation of spin and orbital degrees of freedom of light (the helicity flux coincides with the spin angular momentum). However, in the standard field-theory formulation of electromagnetism, the field Lagrangian is not dual symmetric. This leads to problematic dual-asymmetric forms of the canonical energy–momentum, spin and orbital angular-momentum tensors. Moreover, we show that the components of these tensors conflict with the helicity and energy conservation laws. To resolve this discrepancy between the symmetries of the Lagrangian and Maxwell equations, we put forward a dual-symmetric Lagrangian formulation of classical electromagnetism. This dual electromagnetism preserves the form of Maxwell equations, yields meaningful canonical energy–momentum and angular-momentum tensors, and ensures a self-consistent separation of the spin and orbital degrees of freedom. This provides a rigorous derivation of the results suggested in other recent approaches. We make the Noether analysis of the dual symmetry and all the Poincaré symmetries, examine both local and integral conserved quantities and show that only the dual electromagnetism naturally produces a complete self-consistent set of conservation laws. We also discuss the observability of physical quantities distinguishing the standard and dual theories, as well as relations to quantum weak measurements and various optical experiments. (paper)

  13. Geometrically necessary dislocation densities in olivine obtained using high-angular resolution electron backscatter diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Wallis, David, E-mail: davidwa@earth.ox.ac.uk [Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, Oxfordshire, OX1 3AN (United Kingdom); Hansen, Lars N. [Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, Oxfordshire, OX1 3AN (United Kingdom); Ben Britton, T. [Department of Materials, Imperial College London, Royal School of Mines, Exhibition Road, London SW7 2AZ (United Kingdom); Wilkinson, Angus J. [Department of Materials, University of Oxford, Parks Road, Oxford, Oxfordshire, OX1 3PH (United Kingdom)

    2016-09-15

    Dislocations in geological minerals are fundamental to the creep processes that control large-scale geodynamic phenomena. However, techniques to quantify their densities, distributions, and types over critical subgrain to polycrystal length scales are limited. The recent advent of high-angular resolution electron backscatter diffraction (HR-EBSD), based on diffraction pattern cross-correlation, offers a powerful new approach that has been utilised to analyse dislocation densities in the materials sciences. In particular, HR-EBSD yields significantly better angular resolution (<0.01°) than conventional EBSD (~0.5°), allowing very low dislocation densities to be analysed. We develop the application of HR-EBSD to olivine, the dominant mineral in Earth's upper mantle by testing (1) different inversion methods for estimating geometrically necessary dislocation (GND) densities, (2) the sensitivity of the method under a range of data acquisition settings, and (3) the ability of the technique to resolve a variety of olivine dislocation structures. The relatively low crystal symmetry (orthorhombic) and few slip systems in olivine result in well constrained GND density estimates. The GND density noise floor is inversely proportional to map step size, such that datasets can be optimised for analysing either short wavelength, high density structures (e.g. subgrain boundaries) or long wavelength, low amplitude orientation gradients. Comparison to conventional images of decorated dislocations demonstrates that HR-EBSD can characterise the dislocation distribution and reveal additional structure not captured by the decoration technique. HR-EBSD therefore provides a highly effective method for analysing dislocations in olivine and determining their role in accommodating macroscopic deformation. - Highlights: • Lattice orientation gradients in olivine were measured using HR-EBSD. • The limited number of olivine slip systems enable simple least squares inversion for GND

  14. Angular Spectrum Method for the Focused Acoustic Field of a Linear Transducer

    Science.gov (United States)

    Belgroune, D.; de Belleval, J. F.; Djelouah, H.

    Applications involving non-destructive testing or acoustical imaging are more and more sophisticated. In this context, a model based on the angular spectrum approach is tackled in view to calculate the focused impulse field radiated by a linear transducer through a plane fluid-solid interface. It is well known that electronic focusing, based on a cylindrical delay law, like for the classical cases (lenses, curved transducer), leads to an inaccurate focusing in the solid due to geometric aberrations errors affecting refraction. Generally, there is a significant difference between the acoustic focal distance and the geometrical focal due to refraction. In our work, an optimized delay law, based on the Fermat's principle is established, particularly at an oblique incidence where the geometrical considerations, relatively simple in normal incidence, become quickly laborious. Numerical simulations of impulse field are judiciously carried out. Subsequently, the input parameters are optimally selected in order to achieve good computation accuracy and a high focusing. The overall results, involving compression and shear waves, have highlighted the focusing improvement in the solid when compared to the currently available approaches. Indeed, the acoustic focal distance is very close to geometrical focal distance and then, allows better control of the refracted angular beam profile (refraction angle, focusing depth and focal size).

  15. Field-portable pixel super-resolution colour microscope.

    Directory of Open Access Journals (Sweden)

    Alon Greenbaum

    Full Text Available Based on partially-coherent digital in-line holography, we report a field-portable microscope that can render lensfree colour images over a wide field-of-view of e.g., >20 mm(2. This computational holographic microscope weighs less than 145 grams with dimensions smaller than 17×6×5 cm, making it especially suitable for field settings and point-of-care use. In this lensfree imaging design, we merged a colorization algorithm with a source shifting based multi-height pixel super-resolution technique to mitigate 'rainbow' like colour artefacts that are typical in holographic imaging. This image processing scheme is based on transforming the colour components of an RGB image into YUV colour space, which separates colour information from brightness component of an image. The resolution of our super-resolution colour microscope was characterized using a USAF test chart to confirm sub-micron spatial resolution, even for reconstructions that employ multi-height phase recovery to handle dense and connected objects. To further demonstrate the performance of this colour microscope Papanicolaou (Pap smears were also successfully imaged. This field-portable and wide-field computational colour microscope could be useful for tele-medicine applications in resource poor settings.

  16. Ghost Imaging Using Orbital Angular Momentum

    Institute of Scientific and Technical Information of China (English)

    赵生妹; 丁建; 董小亮; 郑宝玉

    2011-01-01

    We present a novel encoding scheme in a ghost-imaging system using orbital angular momentum. In the signal arm, object spatial information is encoded as a phase matrix. For an N-grey-scale object, different phase matrices, varying from 0 to K with increment n/N, are used for different greyscales, and then they are modulated to a signal beam by a spatial light modulator. According to the conservation of the orbital angular momentum in the ghost imaging system, these changes will give different coincidence rates in measurement, and hence the object information can be extracted in the idler arm. By simulations and experiments, the results show that our scheme can improve the resolution of the image effectively. Compared with another encoding method using orbital angular momentum, our scheme has a better performance for both characters and the image object.%We present a novel encoding scheme in a ghost-imaging system using orbital angular momentum.In the signal arm,object spatial information is encoded as a phase matrix.For an N-grey-scale object,different phase matrices,varying from 0 to π with increment π/N,are used for different greyscales,and then they are modulated to a signal beam by a spatial light modulator.According to the conservation of the orbital angular momentum in the ghost imaging system,these changes will give different coincidence rates in measurement,and hence the object information can be extracted in the idler arm.By simulations and experiments,the results show that our scheme can improve the resolution of the image effectively.Compared with another encoding method using orbital angular momentum,our scheme has a better performance for both characters and the image object.

  17. Transverse and longitudinal angular momenta of light

    Energy Technology Data Exchange (ETDEWEB)

    Bliokh, Konstantin Y., E-mail: k.bliokh@gmail.com [Center for Emergent Matter Science, RIKEN, Wako-shi, Saitama 351-0198 (Japan); Nonlinear Physics Centre, RSPhysE, The Australian National University, Canberra, ACT 0200 (Australia); Nori, Franco [Center for Emergent Matter Science, RIKEN, Wako-shi, Saitama 351-0198 (Japan); Physics Department, University of Michigan, Ann Arbor, MI 48109-1040 (United States)

    2015-08-26

    We review basic physics and novel types of optical angular momentum. We start with a theoretical overview of momentum and angular momentum properties of generic optical fields, and discuss methods for their experimental measurements. In particular, we describe the well-known longitudinal (i.e., aligned with the mean momentum) spin and orbital angular momenta in polarized vortex beams. Then, we focus on the transverse (i.e., orthogonal to the mean momentum) spin and orbital angular momenta, which were recently actively discussed in theory and observed in experiments. First, the recently-discovered transverse spin  angular momenta appear in various structured fields: evanescent waves, interference fields, and focused beams. We show that there are several kinds of transverse spin angular momentum, which differ strongly in their origins and physical properties. We describe extraordinary features of the transverse optical spins and overview recent experiments. In particular, the helicity-independent transverse spin inherent in edge evanescent waves offers robust spin–direction coupling at optical interfaces (the quantum spin Hall effect of light). Second, we overview the transverse orbital angular momenta of light, which can be both extrinsic and intrinsic. These two types of the transverse orbital angular momentum are produced by spatial shifts of the optical beams (e.g., in the spin Hall effect of light) and their Lorentz boosts, respectively. Our review is underpinned by a unified theory of the angular momentum of light based on the canonical momentum and spin densities, which avoids complications associated with the separation of spin and orbital angular momenta in the Poynting picture. It allows us to construct a comprehensive classification of all known optical angular momenta based on their key parameters and main physical properties.

  18. High-resolution field shaping utilizing a masked multileaf collimator.

    Science.gov (United States)

    Williams, P C; Cooper, P

    2000-08-01

    Multileaf collimators (MLCs) have become an important tool in the modern radiotherapy department. However, the current limit of resolution (1 cm at isocentre) can be too coarse for acceptable shielding of all fields. A number of mini- and micro-MLCs have been developed, with thinner leaves to achieve approved resolution. Currently however, such devices are limited to modest field sizes and stereotactic applications. This paper proposes a new method of high-resolution beam collimation by use of a tertiary grid collimator situated below the conventional MLC. The width of each slit in the grid is a submultiple of the MLC width. A composite shaped field is thus built up from a series of subfields, with the main MLC defining the length of each strip within each subfield. Presented here are initial findings using a prototype device. The beam uniformity achievable with such a device was examined by measuring transmission profiles through the grid using a diode. Profiles thus measured were then copied and superposed to generate composite beams, from which the uniformity achievable could be assessed. With the average dose across the profile normalized to 100%, hot spots up to 5.0% and troughs of 3% were identified for a composite beam of 2 x 5.0 mm grids, as measured at Dmax for a 6 MV beam. For a beam composed from 4 x 2.5 mm grids, the maximum across the profile was 3.0% above the average, and the minimum 2.5% below. Actual composite profiles were also formed using the integrating properties of film, with the subfield indexing performed using an engineering positioning stage. The beam uniformity for these fields compared well with that achieved in theory using the diode measurements. Finally sine wave patterns were generated to demonstrate the potential improvements in field shaping and conformity using this device as opposed to the conventional MLC alone. The scalloping effect on the field edge commonly seen on MLC fields was appreciably reduced by use of 2 x 5.0 mm

  19. Multimodal Feature Integration in the Angular Gyrus during Episodic and Semantic Retrieval

    Science.gov (United States)

    Bonnici, Heidi M.; Richter, Franziska R.; Yazar, Yasemin

    2016-01-01

    Much evidence from distinct lines of investigation indicates the involvement of angular gyrus (AnG) in the retrieval of both episodic and semantic information, but the region's precise function and whether that function differs across episodic and semantic retrieval have yet to be determined. We used univariate and multivariate fMRI analysis methods to examine the role of AnG in multimodal feature integration during episodic and semantic retrieval. Human participants completed episodic and semantic memory tasks involving unimodal (auditory or visual) and multimodal (audio-visual) stimuli. Univariate analyses revealed the recruitment of functionally distinct AnG subregions during the retrieval of episodic and semantic information. Consistent with a role in multimodal feature integration during episodic retrieval, significantly greater AnG activity was observed during retrieval of integrated multimodal episodic memories compared with unimodal episodic memories. Multivariate classification analyses revealed that individual multimodal episodic memories could be differentiated in AnG, with classification accuracy tracking the vividness of participants' reported recollections, whereas distinct unimodal memories were represented in sensory association areas only. In contrast to episodic retrieval, AnG was engaged to a statistically equivalent degree during retrieval of unimodal and multimodal semantic memories, suggesting a distinct role for AnG during semantic retrieval. Modality-specific sensory association areas exhibited corresponding activity during both episodic and semantic retrieval, which mirrored the functional specialization of these regions during perception. The results offer new insights into the integrative processes subserved by AnG and its contribution to our subjective experience of remembering. SIGNIFICANCE STATEMENT Using univariate and multivariate fMRI analyses, we provide evidence that functionally distinct subregions of angular gyrus (An

  20. Multimodal Feature Integration in the Angular Gyrus during Episodic and Semantic Retrieval.

    Science.gov (United States)

    Bonnici, Heidi M; Richter, Franziska R; Yazar, Yasemin; Simons, Jon S

    2016-05-18

    Much evidence from distinct lines of investigation indicates the involvement of angular gyrus (AnG) in the retrieval of both episodic and semantic information, but the region's precise function and whether that function differs across episodic and semantic retrieval have yet to be determined. We used univariate and multivariate fMRI analysis methods to examine the role of AnG in multimodal feature integration during episodic and semantic retrieval. Human participants completed episodic and semantic memory tasks involving unimodal (auditory or visual) and multimodal (audio-visual) stimuli. Univariate analyses revealed the recruitment of functionally distinct AnG subregions during the retrieval of episodic and semantic information. Consistent with a role in multimodal feature integration during episodic retrieval, significantly greater AnG activity was observed during retrieval of integrated multimodal episodic memories compared with unimodal episodic memories. Multivariate classification analyses revealed that individual multimodal episodic memories could be differentiated in AnG, with classification accuracy tracking the vividness of participants' reported recollections, whereas distinct unimodal memories were represented in sensory association areas only. In contrast to episodic retrieval, AnG was engaged to a statistically equivalent degree during retrieval of unimodal and multimodal semantic memories, suggesting a distinct role for AnG during semantic retrieval. Modality-specific sensory association areas exhibited corresponding activity during both episodic and semantic retrieval, which mirrored the functional specialization of these regions during perception. The results offer new insights into the integrative processes subserved by AnG and its contribution to our subjective experience of remembering. Using univariate and multivariate fMRI analyses, we provide evidence that functionally distinct subregions of angular gyrus (AnG) contribute to the retrieval of

  1. Resolution enhancement in integral microscopy by physical interpolation.

    Science.gov (United States)

    Llavador, Anabel; Sánchez-Ortiga, Emilio; Barreiro, Juan Carlos; Saavedra, Genaro; Martínez-Corral, Manuel

    2015-08-01

    Integral-imaging technology has demonstrated its capability for computing depth images from the microimages recorded after a single shot. This capability has been shown in macroscopic imaging and also in microscopy. Despite the possibility of refocusing different planes from one snap-shot is crucial for the study of some biological processes, the main drawback in integral imaging is the substantial reduction of the spatial resolution. In this contribution we report a technique, which permits to increase the two-dimensional spatial resolution of the computed depth images in integral microscopy by a factor of √2. This is made by a double-shot approach, carried out by means of a rotating glass plate, which shifts the microimages in the sensor plane. We experimentally validate the resolution enhancement as well as we show the benefit of applying the technique to biological specimens.

  2. Linear transforms for Fourier data on the sphere: application to high angular resolution diffusion MRI of the brain.

    Science.gov (United States)

    Haldar, Justin P; Leahy, Richard M

    2013-05-01

    This paper presents a novel family of linear transforms that can be applied to data collected from the surface of a 2-sphere in three-dimensional Fourier space. This family of transforms generalizes the previously-proposed Funk-Radon Transform (FRT), which was originally developed for estimating the orientations of white matter fibers in the central nervous system from diffusion magnetic resonance imaging data. The new family of transforms is characterized theoretically, and efficient numerical implementations of the transforms are presented for the case when the measured data is represented in a basis of spherical harmonics. After these general discussions, attention is focused on a particular new transform from this family that we name the Funk-Radon and Cosine Transform (FRACT). Based on theoretical arguments, it is expected that FRACT-based analysis should yield significantly better orientation information (e.g., improved accuracy and higher angular resolution) than FRT-based analysis, while maintaining the strong characterizability and computational efficiency of the FRT. Simulations are used to confirm these theoretical characteristics, and the practical significance of the proposed approach is illustrated with real diffusion weighted MRI brain data. These experiments demonstrate that, in addition to having strong theoretical characteristics, the proposed approach can outperform existing state-of-the-art orientation estimation methods with respect to measures such as angular resolution and robustness to noise and modeling errors. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Cosmic microwave background bispectrum from primordial magnetic fields on large angular scales.

    Science.gov (United States)

    Seshadri, T R; Subramanian, Kandaswamy

    2009-08-21

    Primordial magnetic fields lead to non-Gaussian signals in the cosmic microwave background (CMB) even at the lowest order, as magnetic stresses and the temperature anisotropy they induce depend quadratically on the magnetic field. In contrast, CMB non-Gaussianity due to inflationary scalar perturbations arises only as a higher-order effect. We propose a novel probe of stochastic primordial magnetic fields that exploits the characteristic CMB non-Gaussianity that they induce. We compute the CMB bispectrum (b(l1l2l3)) induced by such fields on large angular scales. We find a typical value of l1(l1 + 1)l3(l3 + 1)b(l1l2l3) approximately 10(-22), for magnetic fields of strength B0 approximately 3 nG and with a nearly scale invariant magnetic spectrum. Observational limits on the bispectrum allow us to set upper limits on B0 approximately 35 nG.

  4. An alternative resolution to the Mansuripur paradox

    Science.gov (United States)

    Redfern, Francis

    2016-04-01

    In 2013 an article published online by the journal Science declared that the paradox proposed by Masud Mansuripur was resolved. This paradox concerns a point charge-Amperian magnetic dipole system as seen in a frame of reference where they are at rest and one in which they are moving. In the latter frame an electric dipole appears on the magnetic dipole. A torque is then exerted upon the electric dipole by the point charge, a torque that is not observed in the at-rest frame. Mansuripur points out this violates the relativity principle and suggests the Lorentz force responsible for the torque be replaced by the Einstein-Laub force. The resolution of the paradox reported by Science, based on numerous papers in the physics literature, preserves the Lorentz force but depends on the concept of hidden momentum. Here I propose a different resolution based on the overlooked fact that the charge-magnetic dipole system contains linear and angular electromagnetic field momentum. The time rate of change of the field angular-momentum in the frame through which the system is moving cancels that due to the charge-electric dipole interaction. From this point of view hidden momentum is not needed in the resolution of the paradox.

  5. Power calculation of linear and angular incremental encoders

    Science.gov (United States)

    Prokofev, Aleksandr V.; Timofeev, Aleksandr N.; Mednikov, Sergey V.; Sycheva, Elena A.

    2016-04-01

    Automation technology is constantly expanding its role in improving the efficiency of manufacturing and testing processes in all branches of industry. More than ever before, the mechanical movements of linear slides, rotary tables, robot arms, actuators, etc. are numerically controlled. Linear and angular incremental photoelectric encoders measure mechanical motion and transmit the measured values back to the control unit. The capabilities of these systems are undergoing continual development in terms of their resolution, accuracy and reliability, their measuring ranges, and maximum speeds. This article discusses the method of power calculation of linear and angular incremental photoelectric encoders, to find the optimum parameters for its components, such as light emitters, photo-detectors, linear and angular scales, optical components etc. It analyzes methods and devices that permit high resolutions in the order of 0.001 mm or 0.001°, as well as large measuring lengths of over 100 mm. In linear and angular incremental photoelectric encoders optical beam is usually formulated by a condenser lens passes through the measuring unit changes its value depending on the movement of a scanning head or measuring raster. Past light beam is converting into an electrical signal by the photo-detecter's block for processing in the electrical block. Therefore, for calculating the energy source is a value of the desired value of the optical signal at the input of the photo-detecter's block, which reliably recorded and processed in the electronic unit of linear and angular incremental optoelectronic encoders. Automation technology is constantly expanding its role in improving the efficiency of manufacturing and testing processes in all branches of industry. More than ever before, the mechanical movements of linear slides, rotary tables, robot arms, actuators, etc. are numerically controlled. Linear and angular incremental photoelectric encoders measure mechanical motion and

  6. Integrating Field Spectra and Worldview-2 Data for Grapevine Productivity in Different Irrigation Treatments

    Science.gov (United States)

    Maimaitiyiming, M.; Bozzolo, A.; Wulamu, A.; Wilkins, J. L.

    2015-12-01

    Precision farming requires high spectral, spatial and temporal resolution remote sensing data to detect plant physiological changes. The higher spatial resolution is particularly as important as the spectral resolution for crop monitoring. It is important to develop data integration techniques between field or airborne hyperspectral data with spaceborne broad band multispectral images for plant productivity monitoring. To investigate varying rootstock and irrigation interactions, different irrigation treatments are implemented in a vineyard experimental site either i) unirrigated ii) full replacement of evapotranspiration (ET) iii) irrigated at 50 % of the potential ET. In summer 2014, we collected leaf and canopy spectra of the vineyard using field spectroscopy along with other plant physiological and nutritional variables. In this contribution, we integrate the field spectra and the spectral wavelengths of WorldView-2 to develop a predictive model for plant productivity,i.e., fruit quality and yield. First, we upscale field and canopy spectra to WorldView-2 spectral bands using radiative transfer simulations (e.g., MODTRAN). Then we develop remote sensing techniques to quantify plant productivity in different scenarios water stress by identifying the most effective and sensitive wavelengths, and indices that are capable of early detection of plant health and estimation of crop nutrient status. Finally we present predictive models developed from partial least square regression (PLSR) for plant productivity using spectral wavelengths and indices derived from integrated field and satellite remote sensing data.

  7. A high-resolution full-field range imaging system

    Science.gov (United States)

    Carnegie, D. A.; Cree, M. J.; Dorrington, A. A.

    2005-08-01

    There exist a number of applications where the range to all objects in a field of view needs to be obtained. Specific examples include obstacle avoidance for autonomous mobile robots, process automation in assembly factories, surface profiling for shape analysis, and surveying. Ranging systems can be typically characterized as being either laser scanning systems where a laser point is sequentially scanned over a scene or a full-field acquisition where the range to every point in the image is simultaneously obtained. The former offers advantages in terms of range resolution, while the latter tend to be faster and involve no moving parts. We present a system for determining the range to any object within a camera's field of view, at the speed of a full-field system and the range resolution of some point laser scans. Initial results obtained have a centimeter range resolution for a 10 second acquisition time. Modifications to the existing system are discussed that should provide faster results with submillimeter resolution.

  8. Quantum phase amplification for temporal pulse shaping and super-resolution in remote sensing

    Science.gov (United States)

    Yin, Yanchun

    QPA in the spatial domain has also been studied as a method to enhance the spatial resolution of imaging systems. A detailed model has been developed for achieving both super-resolution and detection of phase-amplified light. The imaging resolution problem considered here is treated as a binary hypotheses testing problem. Resolution enhancement is achieved by magnification of the angular separation of two targets in the sub-Rayleigh regime. The detection model includes optimization of detector segmentation, detector noise, and detection in both the spatial and the spatial frequency domain, which provide strategies for the optimization of the signal-to-noise ratio that take advantage of both the change of the field distribution and the change of energy of the signal in the QPA process. Proof-of-principle experiments have been conducted in the spatial domain. For the first time, beam angular amplification has been demonstrated, and the experimental result is in good agreement with simulations. The experimental demonstration has been achieved by observing the correlation of amplitude and angular phase in the phase-sensitive three-wave mixing process using ultrashort laser pulses and utilizing a type I three-wave mixing process. Several diagnostics have been developed and employed in the experimental measurements, including the near-field diagnostic, the far-field diagnostic, and the interferometry diagnostic. They have all been used to confirm the existence and study the properties of the QPA process on a shot-to-shot basis. Specifically, amplitude was measured in the near-field diagnostic, while the angular phase was indirectly measured in the far-field diagnostic by determining the position of the beam centroid. Interferometric measurements have been found to be of insufficient accuracy for this measurement in the way they were implemented. The demonstration of beam angular amplification by use of QPA lays the foundation for future integrated demonstration of imaging

  9. Resolution of potential ambiguities through farside angular structure: Semiclassical analysis

    International Nuclear Information System (INIS)

    Fricke, S.H.; Brandan, M.E.; McVoy, K.W.

    1988-01-01

    The optical potential fits summarized in the preceding paper are subjected to a semiclassical analysis of the Ford-Wheeler--Knoll-Schaeffer type. The important broad dips in their farside cross sections, which are essential in greatly reducing potential ambiguities, are found (in partial agreement with a suggestion of Goldberg's) to be mainly weak ''Airy'' or rainbow minima, that serve to identify deeply penetrating trajectories. The semiclassical analysis also permits the identification and understanding of a new category of discrete and continuous potential ambiguities, and suggests the manner in which specific features of the angular distributions (such as spacings and depths of various angular minima) determine the Woods-Saxon parameters found by a chi-squared search

  10. Evaluation of Medium Spatial Resolution BRDF-Adjustment Techniques Using Multi-Angular SPOT4 (Take5 Acquisitions

    Directory of Open Access Journals (Sweden)

    Martin Claverie

    2015-09-01

    Full Text Available High-resolution sensor Surface Reflectance (SR data are affected by surface anisotropy but are difficult to adjust because of the low temporal frequency of the acquisitions and the low angular sampling. This paper evaluates five high spatial resolution Bidirectional Reflectance Distribution Function (BRDF adjustment techniques. The evaluation is based on the noise level of the SR Time Series (TS corrected to a normalized geometry (nadir view, 45° sun zenith angle extracted from the multi-angular acquisitions of SPOT4 over three study areas (one in Arizona, two in France during the five-month SPOT4 (Take5 experiment. Two uniform techniques (Cst, for Constant, and Av, for Average, relying on the Vermote–Justice–Bréon (VJB BRDF method, assume no variation in space of the BRDF shape. Two methods (VI-dis, for NDVI-based disaggregation and LC-dis, for Land-Cover based disaggregation are based on disaggregation of the MODIS-derived BRDF VJB parameters using vegetation index and land cover, respectively. The last technique (LUM, for Look-Up Map relies on the MCD43 MODIS BRDF products and a crop type data layer. The VI-dis technique produced the lowest level of noise corresponding to the most effective adjustment: reduction from directional to normalized SR TS noises by 40% and 50% on average, for red and near-infrared bands, respectively. The uniform techniques displayed very good results, suggesting that a simple and uniform BRDF-shape assumption is good enough to adjust the BRDF in such geometric configuration (the view zenith angle varies from nadir to 25°. The most complex techniques relying on land cover (LC-dis and LUM displayed contrasting results depending on the land cover.

  11. Angular analysis of the $B^{0}\\rightarrow K^{*0}\\mu^{+}\\mu^{-}$ decay using 3 fb$^{-1}$ of integrated luminosity

    CERN Document Server

    Aaij, Roel; Adeva, Bernardo; Adinolfi, Marco; Affolder, Anthony; Ajaltouni, Ziad; Akar, Simon; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio Augusto; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Andreassi, Guido; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Aquines Gutierrez, Osvaldo; Archilli, Flavio; d'Argent, Philippe; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Bachmann, Sebastian; Back, John; Badalov, Alexey; Baesso, Clarissa; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Batozskaya, Varvara; Battista, Vincenzo; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Bel, Lennaert; Bellee, Violaine; Belloli, Nicoletta; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bertolin, Alessandro; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bifani, Simone; Billoir, Pierre; Bird, Thomas; Birnkraut, Alex; Bizzeti, Andrea; Blake, Thomas; Blanc, Frédéric; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borghi, Silvia; Borisyak, Maxim; Borsato, Martino; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Braun, Svende; Britsch, Markward; Britton, Thomas; Brodzicka, Jolanta; Brook, Nicholas; Buchanan, Emma; Burr, Christopher; Bursche, Albert; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Calvi, Marta; Calvo Gomez, Miriam; Campana, Pierluigi; Campora Perez, Daniel; Capriotti, Lorenzo; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carniti, Paolo; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cavallero, Giovanni; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Chefdeville, Maximilien; Chen, Shanzhen; Cheung, Shu-Faye; Chiapolini, Nicola; Chrzaszcz, Marcin; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coco, Victor; Cogan, Julien; Cogneras, Eric; Cogoni, Violetta; Cojocariu, Lucian; Collazuol, Gianmaria; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombes, Matthew; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Crocombe, Andrew; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Dall'Occo, Elena; Dalseno, Jeremy; David, Pieter; Davis, Adam; De Aguiar Francisco, Oscar; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Simone, Patrizia; Dean, Cameron Thomas; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Déléage, Nicolas; Demmer, Moritz; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Dey, Biplab; Di Canto, Angelo; Di Ruscio, Francesco; Dijkstra, Hans; Donleavy, Stephanie; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Dovbnya, Anatoliy; Dreimanis, Karlis; Dufour, Laurent; Dujany, Giulio; Dungs, Kevin; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; El Rifai, Ibrahim; Elsasser, Christian; Ely, Scott; Esen, Sevda; Evans, Hannah Mary; Evans, Timothy; Fabianska, Maria; Falabella, Antonio; Färber, Christian; Farley, Nathanael; Farry, Stephen; Fay, Robert; Ferguson, Dianne; Fernandez Albor, Victor; Ferrari, Fabio; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fiore, Marco; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fleuret, Frederic; Fohl, Klaus; Fol, Philip; Fontana, Marianna; Fontanelli, Flavio; Forshaw, Dean Charles; Forty, Roger; Frank, Markus; Frei, Christoph; Frosini, Maddalena; Fu, Jinlin; Furfaro, Emiliano; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; García Pardiñas, Julián; Garra Tico, Jordi; Garrido, Lluis; Gascon, David; Gaspar, Clara; Gauld, Rhorry; Gavardi, Laura; Gazzoni, Giulio; Gerick, David; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianì, Sebastiana; Gibson, Valerie; Girard, Olivier Göran; Giubega, Lavinia-Helena; Gligorov, V.V.; Göbel, Carla; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gotti, Claudio; Grabalosa Gándara, Marc; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graverini, Elena; Graziani, Giacomo; Grecu, Alexandru; Greening, Edward; Griffith, Peter; Grillo, Lucia; Grünberg, Oliver; Gui, Bin; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Hadavizadeh, Thomas; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Haines, Susan; Hall, Samuel; Hamilton, Brian; Han, Xiaoxue; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Harrison, Jonathan; He, Jibo; Head, Timothy; Heijne, Veerle; Heister, Arno; Hennessy, Karol; Henrard, Pierre; Henry, Louis; Hernando Morata, Jose Angel; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hill, Donal; Hoballah, Mostafa; Hombach, Christoph; Hulsbergen, Wouter; Humair, Thibaud; Hushchyn, Mikhail; Hussain, Nazim; Hutchcroft, David; Hynds, Daniel; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jaeger, Andreas; Jalocha, Pawel; Jans, Eddy; Jawahery, Abolhassan; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kandybei, Sergii; Kanso, Walaa; Karacson, Matthias; Karbach, Moritz; Karodia, Sarah; Kecke, Matthieu; Kelsey, Matthew; Kenyon, Ian; Kenzie, Matthew; Ketel, Tjeerd; Khairullin, Egor; Khanji, Basem; Khurewathanakul, Chitsanu; Kirn, Thomas; Klaver, Suzanne; Klimaszewski, Konrad; Kochebina, Olga; Kolpin, Michael; Komarov, Ilya; Koopman, Rose; Koppenburg, Patrick; Kozeiha, Mohamad; Kravchuk, Leonid; Kreplin, Katharina; Kreps, Michal; Krokovny, Pavel; Kruse, Florian; Krzemien, Wojciech; Kucewicz, Wojciech; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kuonen, Axel Kevin; Kurek, Krzysztof; Kvaratskheliya, Tengiz; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lambert, Dean; Lanfranchi, Gaia; Langenbruch, Christoph; Langhans, Benedikt; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; van Leerdam, Jeroen; Lees, Jean-Pierre; Lefèvre, Regis; Leflat, Alexander; Lefrançois, Jacques; Lemos Cid, Edgar; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Yiming; Likhomanenko, Tatiana; Liles, Myfanwy; Lindner, Rolf; Linn, Christian; Lionetto, Federica; Liu, Bo; Liu, Xuesong; Loh, David; Longstaff, Iain; Lopes, Jose; Lucchesi, Donatella; Lucio Martinez, Miriam; Luo, Haofei; Lupato, Anna; Luppi, Eleonora; Lupton, Oliver; Lusiani, Alberto; Machefert, Frederic; Maciuc, Florin; Maev, Oleg; Maguire, Kevin; Malde, Sneha; Malinin, Alexander; Manca, Giulia; Mancinelli, Giampiero; Manning, Peter Michael; Mapelli, Alessandro; Maratas, Jan; Marchand, Jean François; Marconi, Umberto; Marin Benito, Carla; Marino, Pietro; Marks, Jörg; Martellotti, Giuseppe; Martin, Morgan; Martinelli, Maurizio; Martinez Santos, Diego; Martinez Vidal, Fernando; Martins Tostes, Danielle; Massacrier, Laure Marie; Massafferri, André; Matev, Rosen; Mathad, Abhijit; Mathe, Zoltan; Matteuzzi, Clara; Mauri, Andrea; Maurin, Brice; Mazurov, Alexander; McCann, Michael; McCarthy, James; McNab, Andrew; McNulty, Ronan; Meadows, Brian; Meier, Frank; Meissner, Marco; Melnychuk, Dmytro; Merk, Marcel; Michielin, Emanuele; Milanes, Diego Alejandro; Minard, Marie-Noelle; Mitzel, Dominik Stefan; Molina Rodriguez, Josue; Monroy, Ignacio Alberto; Monteil, Stephane; Morandin, Mauro; Morawski, Piotr; Mordà, Alessandro; Morello, Michael Joseph; Moron, Jakub; Morris, Adam Benjamin; Mountain, Raymond; Muheim, Franz; Müller, Dominik; Müller, Janine; Müller, Katharina; Müller, Vanessa; Mussini, Manuel; Muster, Bastien; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nandi, Anita; Nasteva, Irina; Needham, Matthew; Neri, Nicola; Neubert, Sebastian; Neufeld, Niko; Neuner, Max; Nguyen, Anh Duc; Nguyen, Thi-Dung; Nguyen-Mau, Chung; Niess, Valentin; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Novoselov, Alexey; O'Hanlon, Daniel Patrick; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Ogilvy, Stephen; Okhrimenko, Oleksandr; Oldeman, Rudolf; Onderwater, Gerco; Osorio Rodrigues, Bruno; Otalora Goicochea, Juan Martin; Otto, Adam; Owen, Patrick; Oyanguren, Maria Aranzazu; Palano, Antimo; Palombo, Fernando; Palutan, Matteo; Panman, Jacob; Papanestis, Antonios; Pappagallo, Marco; Pappalardo, Luciano; Pappenheimer, Cheryl; Parker, William; Parkes, Christopher; Passaleva, Giovanni; Patel, Girish; Patel, Mitesh; Patrignani, Claudia; Pearce, Alex; Pellegrino, Antonio; Penso, Gianni; Pepe Altarelli, Monica; Perazzini, Stefano; Perret, Pascal; Pescatore, Luca; Petridis, Konstantinos; Petrolini, Alessandro; Petruzzo, Marco; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pikies, Malgorzata; Pinci, Davide; Pistone, Alessandro; Piucci, Alessio; Playfer, Stephen; Plo Casasus, Maximo; Poikela, Tuomas; Polci, Francesco; Poluektov, Anton; Polyakov, Ivan; Polycarpo, Erica; Popov, Alexander; Popov, Dmitry; Popovici, Bogdan; Potterat, Cédric; Price, Eugenia; Price, Joseph David; Prisciandaro, Jessica; Pritchard, Adrian; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Punzi, Giovanni; Qian, Wenbin; Quagliani, Renato; Rachwal, Bartolomiej; Rademacker, Jonas; Rama, Matteo; Ramos Pernas, Miguel; Rangel, Murilo; Raniuk, Iurii; Rauschmayr, Nathalie; Raven, Gerhard; Redi, Federico; Reichert, Stefanie; dos Reis, Alberto; Renaudin, Victor; Ricciardi, Stefania; Richards, Sophie; Rihl, Mariana; Rinnert, Kurt; Rives Molina, Vincente; Robbe, Patrick; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Lopez, Jairo Alexis; Rodriguez Perez, Pablo; Roiser, Stefan; Romanovsky, Vladimir; Romero Vidal, Antonio; Ronayne, John William; Rotondo, Marcello; Ruf, Thomas; Ruiz Valls, Pablo; Saborido Silva, Juan Jose; Sagidova, Naylya; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanchez Mayordomo, Carlos; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santimaria, Marco; Santovetti, Emanuele; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Saunders, Daniel Martin; Savrina, Darya; Schael, Stefan; Schiller, Manuel; Schindler, Heinrich; Schlupp, Maximilian; Schmelling, Michael; Schmelzer, Timon; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schubiger, Maxime; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Semennikov, Alexander; Sergi, Antonino; Serra, Nicola; Serrano, Justine; Sestini, Lorenzo; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Vladimir; Shires, Alexander; Siddi, Benedetto Gianluca; Silva Coutinho, Rafael; Silva de Oliveira, Luiz Gustavo; Simi, Gabriele; Sirendi, Marek; Skidmore, Nicola; Skwarnicki, Tomasz; Smith, Edmund; Smith, Eluned; Smith, Iwan Thomas; Smith, Jackson; Smith, Mark; Snoek, Hella; Sokoloff, Michael; Soler, Paul; Soomro, Fatima; Souza, Daniel; Souza De Paula, Bruno; Spaan, Bernhard; Spradlin, Patrick; Sridharan, Srikanth; Stagni, Federico; Stahl, Marian; Stahl, Sascha; Stefkova, Slavomira; Steinkamp, Olaf; Stenyakin, Oleg; Stevenson, Scott; Stoica, Sabin; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Straticiuc, Mihai; Straumann, Ulrich; Sun, Liang; Sutcliffe, William; Swientek, Krzysztof; Swientek, Stefan; Syropoulos, Vasileios; Szczekowski, Marek; Szumlak, Tomasz; T'Jampens, Stephane; Tayduganov, Andrey; Tekampe, Tobias; Tellarini, Giulia; Teubert, Frederic; Thomas, Christopher; Thomas, Eric; van Tilburg, Jeroen; Tisserand, Vincent; Tobin, Mark; Todd, Jacob; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Topp-Joergensen, Stig; Torr, Nicholas; Tournefier, Edwige; Tourneur, Stephane; Trabelsi, Karim; Traill, Murdo; Tran, Minh Tâm; Tresch, Marco; Trisovic, Ana; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tuning, Niels; Ukleja, Artur; Ustyuzhanin, Andrey; Uwer, Ulrich; Vacca, Claudia; Vagnoni, Vincenzo; Valenti, Giovanni; Vallier, Alexis; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vázquez Sierra, Carlos; Vecchi, Stefania; van Veghel, Maarten; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Vesterinen, Mika; Viaud, Benoit; Vieira, Daniel; Vieites Diaz, Maria; Vilasis-Cardona, Xavier; Volkov, Vladimir; Vollhardt, Achim; Voong, David; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; de Vries, Jacco; Waldi, Roland; Wallace, Charlotte; Wallace, Ronan; Walsh, John; Wang, Jianchun; Ward, David; Watson, Nigel; Websdale, David; Weiden, Andreas; Whitehead, Mark; Wicht, Jean; Wilkinson, Guy; Wilkinson, Michael; Williams, Mark Richard James; Williams, Matthew; Williams, Mike; Williams, Timothy; Wilson, Fergus; Wimberley, Jack; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wraight, Kenneth; Wright, Simon; Wyllie, Kenneth; Xie, Yuehong; Xu, Zhirui; Yang, Zhenwei; Yu, Jiesheng; Yuan, Xuhao; Yushchenko, Oleg; Zangoli, Maria; Zavertyaev, Mikhail; Zhang, Liming; Zhang, Yanxi; Zhelezov, Alexey; Zhokhov, Anatoly; Zhong, Liang; Zhukov, Valery; Zucchelli, Stefano

    2016-02-16

    An angular analysis of the $B^{0}\\rightarrow K^{*0}(\\rightarrow K^{+}\\pi^{-})\\mu^{+}\\mu^{-}$ decay is presented. The dataset corresponds to an integrated luminosity of $3.0\\,{\\mbox{fb}^{-1}}$ of $pp$ collision data collected at the LHCb experiment. The complete angular information from the decay is used to determine $C\\!P$-averaged observables and $C\\!P$ asymmetries, taking account of possible contamination from decays with the $K^{+}\\pi^{-}$ system in an S-wave configuration. The angular observables and their correlations are reported in bins of $q^2$, the invariant mass squared of the dimuon system. The observables are determined both from an unbinned maximum likelihood fit and by using the principal moments of the angular distribution. In addition, by fitting for $q^2$-dependent decay amplitudes in the region $1.1< q^{2} <6.0 \\mathrm{\\,Ge\\kern -0.1em V}^{2}/c^{4}$, the zero-crossing points of several angular observables are computed. A global fit is performed to the complete set of $C\\!P$-averaged ob...

  12. Large Quantum Probability Backflow and the Azimuthal Angle-Angular Momentum Uncertainty Relation for an Electron in a Constant Magnetic Field

    Science.gov (United States)

    Strange, P.

    2012-01-01

    In this paper we demonstrate a surprising aspect of quantum mechanics that is accessible to an undergraduate student. We discuss probability backflow for an electron in a constant magnetic field. It is shown that even for a wavepacket composed entirely of states with negative angular momentum the effective angular momentum can take on positive…

  13. Multichannel system for angular distribution measurements

    International Nuclear Information System (INIS)

    Burjan, V.; Kroha, V.; Putz, K.

    A description is given of the individual blocks of the spectrometric apparatus used for measuring the angular distribution of particle spectra and excitation functions of (d,p) reactions at an electrostatic accelerator and the U-120 M cyclotron, both operating at the Nuclear Physics Institute of the Czechoslovak Academy of Sciences at Rez. Main attention was devoted to attaining maximum energy resolution at a high measurement efficiency, this by installing 8 independent spectrometric chains allowing simultaneous measurement of angular distribution in 8 points of the beam. The semiconductor detectors were cooled to -40 degC to -60 degC, which significantly reduced the level of inherent detector noise. An energy resolution of 13 keV was attained using Tesla detectors at a particle energy of 11 MeV. A brief review of data processing and software is given. (B.S.)

  14. Angular Positioning Sensor for Space Mechanisms

    Science.gov (United States)

    Steiner, Nicolas; Chapuis, Dominique

    2013-09-01

    Angular position sensors are used on various rotating mechanisms such as solar array drive mechanisms, antenna pointing mechanisms, scientific instruments, motors or actuators.Now a days, potentiometers and encoders are mainly used for angular measurement purposes. Both of them have their own pros and cons.As alternative, Ruag Space Switzerland Nyon (RSSN) is developing and qualifying two innovative technologies of angular position sensors which offer easy implementation, medium to very high lifetime and high flexibility with regards to the output signal shape/type.The Brushed angular position sensor uses space qualified processes which are already flying on RSSN's sliprings for many years. A large variety of output signal shape can be implemented to fulfill customer requirements (digital, analog, customized, etc.).The contactless angular position sensor consists in a new radiation hard Application Specific Integrated Circuit (ASIC) based on the Hall effect and providing the angular position without complex processing algorithm.

  15. ANGULAR MOMENTUM ACQUISITION IN GALAXY HALOS

    International Nuclear Information System (INIS)

    Stewart, Kyle R.; Brooks, Alyson M.; Bullock, James S.; Maller, Ariyeh H.; Diemand, Jürg; Wadsley, James; Moustakas, Leonidas A.

    2013-01-01

    We use high-resolution cosmological hydrodynamic simulations to study the angular momentum acquisition of gaseous halos around Milky-Way-sized galaxies. We find that cold mode accreted gas enters a galaxy halo with ∼70% more specific angular momentum than dark matter averaged over cosmic time (though with a very large dispersion). In fact, we find that all matter has a higher spin parameter when measured at accretion than when averaged over the entire halo lifetime, and is well characterized by λ ∼ 0.1, at accretion. Combined with the fact that cold flow gas spends a relatively short time (1-2 dynamical times) in the halo before sinking to the center, this naturally explains why cold flow halo gas has a specific angular momentum much higher than that of the halo and often forms ''cold flow disks.'' We demonstrate that the higher angular momentum of cold flow gas is related to the fact that it tends to be accreted along filaments.

  16. Angular glint effects generation for false naval target verisimility requirements

    International Nuclear Information System (INIS)

    Kostis, Theodoros G; Galanis, Konstantinos G; Katsikas, Sokratis K

    2009-01-01

    A stimulating problem in the generation of coherent countermeasures for high range resolution radar systems is the inclusion of angular glint effects in the preparation of the false target mask. Since angular glint is representative of extended naval targets, this inclusion increases the credibility factor of the decoy playback signal at the adversary radar-operator station. In this paper, the ability of an interferometric inverse synthetic aperture radar (InISAR) simulator to provide a proof of concept towards the clarification of this challenging task is ascertained. The solution consists of three novel vector representations of the generated data, which are proven to behave according to the laws of physics governing the glint phenomenon. The first depiction is the angular glint injection at the target which is followed by the representation of the wavefront distortion at the radar. A value-added time procession integration of the target in pure roll motion provides an expected by ISAR theory side-view image of the naval extended false target. The effectiveness of the proposed approach through verification and validation of the results by using the method of pictorial evidence is established. A final argument is raised on the usage of this software tool for actual obfuscation and deception actions for air defence at sea applications

  17. Quantum field theory treatment of magnetic effects on the spin and orbital angular momentum of a free electron

    Energy Technology Data Exchange (ETDEWEB)

    Kurian, P., E-mail: pkurian@gmx.com [National Human Genome Center, Howard University, College of Medicine, Washington, DC (United States); Verzegnassi, C. [Department of Chemistry and Environmental Physics, University of Udine, Udine (Italy); Association for Medicine and Complexity (AMeC), Trieste (Italy)

    2016-01-28

    We consider in a quantum field theory framework the effects of a classical magnetic field on the spin and orbital angular momentum (OAM) of a free electron. We derive formulae for the changes in the spin and OAM due to the introduction of a general classical background field. We consider then a constant magnetic field, in which case the relevant expressions of the effects become much simpler and conversions between spin and OAM become readily apparent. An estimate of the expectation values for a realistic electron state is also given. Our findings may be of interest to researchers in spintronics and the field of quantum biology, where electron spin has been implicated on macroscopic time and energy scales. - Highlights: • We present the first field theory treatment of magnetic changes in electron spin. • Changes in spin and orbital angular momentum (OAM) are correlated and calculated. • Expectation values of spin–OAM changes for a realistic electron state are computed. • Earth's magnetic field produces non-negligible changes in spin of a few percent. • Results apply to spin–OAM conversion in electron vortex beams and quantum biology.

  18. Quantum field theory treatment of magnetic effects on the spin and orbital angular momentum of a free electron

    International Nuclear Information System (INIS)

    Kurian, P.; Verzegnassi, C.

    2016-01-01

    We consider in a quantum field theory framework the effects of a classical magnetic field on the spin and orbital angular momentum (OAM) of a free electron. We derive formulae for the changes in the spin and OAM due to the introduction of a general classical background field. We consider then a constant magnetic field, in which case the relevant expressions of the effects become much simpler and conversions between spin and OAM become readily apparent. An estimate of the expectation values for a realistic electron state is also given. Our findings may be of interest to researchers in spintronics and the field of quantum biology, where electron spin has been implicated on macroscopic time and energy scales. - Highlights: • We present the first field theory treatment of magnetic changes in electron spin. • Changes in spin and orbital angular momentum (OAM) are correlated and calculated. • Expectation values of spin–OAM changes for a realistic electron state are computed. • Earth's magnetic field produces non-negligible changes in spin of a few percent. • Results apply to spin–OAM conversion in electron vortex beams and quantum biology.

  19. Baryon-to-dark matter ratio from random angular fields

    International Nuclear Information System (INIS)

    McDonald, John

    2013-01-01

    We consider the baryon-to-dark matter ratio in models where the dark matter and baryon densities depend on angular fields θ d and θ b according to ρ d ∝θ d α and ρ b ∝θ b β , with all values of θ d and θ b being equally probable in a given randomly-selected domain. Under the assumption that anthropic selection depends primarily on the baryon density in galaxies at spherical collapse, we show that the probability density function for the baryon-to-dark matter ratio r = Ω B /Ω DM is purely statistical in nature and is independent of anthropic selection. We compute the probability density function for r as a function of α and β and show that the observed value of the baryon-to-dark matter ratio, r ≈ 1/5, is natural in this framework

  20. A lower limit to the accretion disc radius in the low-luminosity AGN NGC 1052 derived from high-angular resolution data

    Science.gov (United States)

    Reb, Lennart; Fernández-Ontiveros, Juan A.; Prieto, M. Almudena; Dolag, Klaus

    2018-05-01

    We investigate the central sub-arcsec region of the low-luminosity active galactic nucleus NGC 1052, using a high-angular resolution dataset that covers 10 orders of magnitude in frequency. This allows us to infer the continuum emission within the innermost ˜17 pc around the black hole to be of non-thermal, synchrotron origin and to set a limit to the maximum contribution of a standard accretion disc. Assuming the canonical 10 per cent mass-light conversion efficiency for the standard accretion disc, its inferred accretion power would be too low by one order of magnitude to account for the observed continuum luminosity. We thus introduce a truncated accretion disc and derive a truncation radius to mass-light conversion efficiency relation, which we use to reconcile the inferred accretion power with the continuum luminosity. As a result we find that a truncated disc providing the necessary accretion power must be truncated at rtr ≳ 26 rg, consistent with the inner radius derived from the observations of the Fe Kα line in the X-ray spectrum of this nucleus. This is the first time to derive a limit on the truncation radius of the accretion disc from high-angular resolution data only.

  1. PPAK integral field spectroscopy survey of the Orion nebula. Data release

    NARCIS (Netherlands)

    Sánchez, S. F.; Cardiel, N.; Verheijen, M. A. W.; Martín-Gordón, D.; Vilchez, J. M.; Alves, J.

    2007-01-01

    Aims:We present a low-resolution spectroscopic survey of the Orion nebula. The data are released for public use. We show the possible applications of this dataset analyzing some of the main properties of the nebula. Methods: We perform an integral field spectroscopy mosaic of an area of ~5 arcmin× 6

  2. Photoelectron angular distributions from strong-field ionization of oriented molecules

    DEFF Research Database (Denmark)

    Holmegaard, Lotte; Hansen, Jonas Lerche; Kalhøj, Line

    2010-01-01

    The combination of ultrafast light sources with detection of molecular-frame photoelectron angular distributions (MFPADs) is setting new standards for detailed interrogation of molecular dynamics. However, until recently measurement of MFPADs relied on determining the molecular orientation after...... ionization, which is limited to species and processes where ionization leads to fragmentation. An alternative is to fix the molecular frame before ionization. The only demonstrations of such spatial orientation involved aligned small linear nonpolar molecules. Here we extend these techniques to the general...... class of polar molecules. Carbonylsulphide and benzonitrile molecules, fixed in space by combined laser and electrostatic fields, are ionized with intense, circularly polarized 30-fs laser pulses. For carbonylsulphide and benzonitrile oriented in one dimension, the MFPADs exhibit pronounced anisotropies...

  3. Angular dependence of the upper critical field in Bi2Sr2CuO6+δ

    International Nuclear Information System (INIS)

    Vedeneev, S.I.; Ovchinnikov, Yu.N.

    2002-01-01

    The angular dependence of the upper critical field has been investigated in a wide range of temperatures in very high-quality Bi 2 Sr 2 CuO 6+δ single crystals with critical temperature ≅ 9 K in magnetic fields up to 28 T. Although the typical value of the normal state resistivity ratio ≅ 10 4 , the anisotropy ratio of the upper critical fields is much smaller. A model is proposed based on a strong anisotropy and a small transparency between superconducting layers [ru

  4. Measuring Average Angular Velocity with a Smartphone Magnetic Field Sensor

    Science.gov (United States)

    Pili, Unofre; Violanda, Renante

    2018-01-01

    The angular velocity of a spinning object is, by standard, measured using a device called a tachometer. However, by directly using it in a classroom setting, the activity is likely to appear as less instructive and less engaging. Indeed, some alternative classroom-suitable methods for measuring angular velocity have been presented. In this paper,…

  5. Angular distributions in quasi-fission reactions

    International Nuclear Information System (INIS)

    Luetzenkirchen, K.; Kratz, J.V.; Lucas, R.; Poitou, J.; Gregoire, C.; Wirth, G.; Bruechle, W.; Suemmerer, K.

    1985-10-01

    Angular distributions for fission-like fragments were measured in the systems 50 Ti, 56 Fe + 208 Pb by applying an off-line KX-ray activation technique. The distributions d 2 sigma/dTHETAdZ exhibit forward-backward asymmetries that are strongly Z-dependent. They result from a process (quasi-fission) which yields nearly symmetric masses in times comparable to the rotational period of the composite system. A method for obtaining the variance of the tilting angular momentum, K 0 2 , from these skewed, differential angular distributions is described. The results indicate that the tilting mode is not fully excited in quasi-fission reactions. The results are compared to the sum of the variances of all statistical spin components, measured via γ-multiplicities. Integration of the angular distributions d 2 sigma/dTHETAdZ over all values of Z yields integral angular distributions dsigma/dTHETA and dsigma/dΩ symmetric around 90 0 . The associated unusually large anisotropies do not at all provide an adequate basis for tests or modifications of the transition state theory. A deconvolution of d 2 sigma/dTHETAdZ is performed with gaussian distributions depending on rotational angles ΔTHETA extending over a range of up to 540 0 . From the mean values a time scale for the evolution of K 0 is calculated. (orig.)

  6. Mapping hyperfine fields with Hf in EuTiO3 by time differential perturbed angular correlation

    CERN Document Server

    Rano, Borak Ur Rahman

    2017-01-01

    Using time differential perturbed angular correlation of γ rays, we investigated the electric field gradient for different annealing of defects and local oxygen configuration with Hf as a probe in EuTiO3. The measurements were performed at ISOLDE-CERN. The results, combined with ab-initio calculations, support the assumption that the electric field gradient for this system is determined by the trapping of defects for different charge states of Eu.

  7. An atlas of high-resolution IRAS maps on nearby galaxies

    Science.gov (United States)

    Rice, Walter

    1993-01-01

    An atlas of far-infrared IRAS maps with near 1 arcmin angular resolution of 30 optically large galaxies is presented. The high-resolution IRAS maps were produced with the Maximum Correlation Method (MCM) image construction and enhancement technique developed at IPAC. The MCM technique, which recovers the spatial information contained in the overlapping detector data samples of the IRAS all-sky survey scans, is outlined and tests to verify the structural reliability and photometric integrity of the high-resolution maps are presented. The infrared structure revealed in individual galaxies is discussed. The atlas complements the IRAS Nearby Galaxy High-Resolution Image Atlas, the high-resolution galaxy images encoded in FITS format, which is provided to the astronomical community as an IPAC product.

  8. Configuration mixing of mean-field wave functions projected on angular momentum and particle number: Application to 24Mg

    International Nuclear Information System (INIS)

    Valor, A.; Heenen, P.-H.; Bonche, P.

    2000-01-01

    We present in this paper the general framework of a method which permits to restore the rotational and particle number symmetries of wave functions obtained in Skyrme HF + BCS calculations. This restoration is nothing but a projection of mean-field intrinsic wave functions onto good particle number and good angular momentum. The method allows us also to mix projected wave functions. Such a configuration mixing is discussed for sets of HF + BCS intrinsic states generated in constrained calculations with suitable collective variables. This procedure gives collective states which are eigenstates of the particle number and the angular momentum operators and between which transition probabilities are calculated. An application to 24 Mg is presented, with mean-field wave functions generated by axial quadrupole constraints. Theoretical spectra and transition probabilities are compared to the experiment

  9. Angular momentum content of galaxies

    International Nuclear Information System (INIS)

    Shaya, E.J.; Tully, R.B.

    1984-01-01

    A schema of galaxy formation is developed in which the environmental influence of large-scale structure plays a dominant role. This schema was motivated by the observation that the fraction of E and S0 galaxies is much higher in clusters than in low-density regions and by an inference that those spirals that are found in clusters probably have fallen in relatively recently from the low-density regions. It is proposed that the tidal field of the Local Supercluster acts to determine the morphology of galaxies through two complementary mechanisms. In the first place, the supercluster can apply torques to protogalaxies. Galaxies which collapsed while expanding away from the central cluster decoupled from the external tidal field and conserved the angular momentum that they acquired before collapse. Galaxies which formed in the cluster while the cluster collapsed continued to feel the tidal field. In the latter case, the spin of outer collapsing layers can be halted and reversed, and tends to cancel the spin of inner layers. The result is a reduction of the total angular momentum content of the galaxy. In addition, the supercluster tidal field can regulate accretion of fresh material onto the galaxies since the field creates a Roche limit about galaxies and material beyond this limit is lost. Any material that has not collapsed onto a galaxy by the time the galaxy falls into a cluster will be tidally stripped. The angular momentum content of that part of the protogalactic cloud which has not yet collapsed . continues to grow linearly with time due to the continued torquing by the supercluster and neighbors. Galaxies at large distances from the cluster core can continue to accrete this high angular momentum material until the present, but galaxies that enter the cluster are cut off from replenishing material

  10. Evaluation of angular integrals in the generation of transfer matrices for multigroup transport codes

    International Nuclear Information System (INIS)

    Garcia, R.D.M.

    1985-01-01

    The generalization of a semi-analytical technique for the evaluation of angular integrals that appear in the generation of elastic and discrete inelastic tranfer matrices for transport codes is carried out. In contrast to the generalized series expansions which are found to be too complex and thus of little practical value, when compared to the Gaussian quadrature technique, the recursion relations developed in this work are superior to the quadrature scheme, for those cases where the round-off error propagation is not significant. (Author) [pt

  11. Stability of dislocation structures in copper towards stress relaxation investigated by high angular resolution 3D X-ray diffraction

    DEFF Research Database (Denmark)

    Jakobsen, Bo; Poulsen, Henning Friis; Lienert, Ulrich

    2009-01-01

    A 300 µm thick tensile specimen of OFHC copper is subjected to a tensile loading sequence and deformed to a maximal strain of 3.11%. Using the novel three-dimensional X-ray diffraction method High angular resolution 3DXRD', the evolution of the microstructure within a deeply embedded grain....... In contrast to the deformation stages, during each stress relaxation stage, number, size and orientation of subgrains are found to be constant, while a minor amount of clean-up of the microstructure is observed as narrowing of the radial X-ray diffraction line profile. The associated decrease in the width...

  12. Electronic orbital angular momentum and magnetism of graphene

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Ji, E-mail: ji.luo@upr.edu

    2014-10-01

    Orbital angular momentum (OAM) of graphene electrons in a perpendicular magnetic field is calculated and corresponding magnetic moment is used to investigate the magnetism of perfect graphene. Variation in magnetization demonstrates its decrease with carrier-doping, plateaus in a large field, and de Haas–van Alphen oscillation. Regulation of graphene's magnetism by a parallel electric field is presented. The OAM originates from atomic-scale electronic motion in graphene lattice, and vector hopping interaction between carbon atomic orbitals is the building element. A comparison between OAM of graphene electrons, OAM of Dirac fermions, and total angular momentum of the latter demonstrates their different roles in graphene's magnetism. Applicability and relation to experiments of the results are discussed. - Highlights: • Orbital angular momentum of graphene electrons is calculated. • Orbital magnetic moment of graphene electrons is obtained. • Variation in magnetization of graphene is calculated. • Roles of different kinds of angular momentum are investigated.

  13. Laboratory Testing and Performance Verification of the CHARIS Integral Field Spectrograph

    Science.gov (United States)

    Groff, Tyler D.; Chilcote, Jeffrey; Kasdin, N. Jeremy; Galvin, Michael; Loomis, Craig; Carr, Michael A.; Brandt, Timothy; Knapp, Gillian; Limbach, Mary Anne; Guyon, Olivier; hide

    2016-01-01

    The Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS) is an integral field spectrograph (IFS) that has been built for the Subaru telescope. CHARIS has two imaging modes; the high-resolution mode is R82, R69, and R82 in J, H, and K bands respectively while the low-resolution discovery mode uses a second low-resolution prism with R19 spanning 1.15-2.37 microns (J+H+K bands). The discovery mode is meant to augment the low inner working angle of the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) adaptive optics system, which feeds CHARIS a coronagraphic image. The goal is to detect and characterize brown dwarfs and hot Jovian planets down to contrasts five orders of magnitude dimmer than their parent star at an inner working angle as low as 80 milliarcseconds. CHARIS constrains spectral crosstalk through several key aspects of the optical design. Additionally, the repeatability of alignment of certain optical components is critical to the calibrations required for the data pipeline. Specifically the relative alignment of the lens let array, prism, and detector must be highly stable and repeatable between imaging modes. We report on the measured repeatability and stability of these mechanisms, measurements of spectral crosstalk in the instrument, and the propagation of these errors through the data pipeline. Another key design feature of CHARIS is the prism, which pairs Barium Fluoride with Ohara L-BBH2 high index glass. The dispersion of the prism is significantly more uniform than other glass choices, and the CHARIS prisms represent the first NIR astronomical instrument that uses L-BBH2as the high index material. This material choice was key to the utility of the discovery mode, so significant efforts were put into cryogenic characterization of the material. The final performance of the prism assemblies in their operating environment is described in detail. The spectrograph is going through final alignment, cryogenic cycling, and is being

  14. Accelerated rotation with orbital angular momentum modes

    CSIR Research Space (South Africa)

    Schulze, C

    2015-04-01

    Full Text Available . As the angular acceleration takes place in a bounded space, the azimuthal degree of freedom, such fields accelerate periodically as they propagate. Notably, the amount of angular acceleration is not limited by paraxial considerations, may be tailored for large...

  15. Fast simulation of non-linear pulsed ultrasound fields using an angular spectrum approach

    DEFF Research Database (Denmark)

    Du, Yigang; Jensen, Jørgen Arendt

    2013-01-01

    A fast non-linear pulsed ultrasound field simulation is presented. It is implemented based on an angular spectrum approach (ASA), which analytically solves the non-linear wave equation. The ASA solution to the Westervelt equation is derived in detail. The calculation speed is significantly...... increased compared to a numerical solution using an operator splitting method (OSM). The ASA has been modified and extended to pulsed non-linear ultrasound fields in combination with Field II, where any array transducer with arbitrary geometry, excitation, focusing and apodization can be simulated...... with a center frequency of 5 MHz. The speed is increased approximately by a factor of 140 and the calculation time is 12 min with a standard PC, when simulating the second harmonic pulse at the focal point. For the second harmonic point spread function the full width error is 1.5% at 6 dB and 6.4% at 12 d...

  16. Sub-Airy disk angular resolution with high dynamic range in the near-infrared

    Directory of Open Access Journals (Sweden)

    Richichi A.

    2011-07-01

    Full Text Available Lunar occultations (LO are a simple and effective high angular resolution method, with minimum requirements in instrumentation and telescope time. They rely on the analysis of the diffraction fringes created by the lunar limb. The diffraction phenomen occurs in space, and as a result LO are highly insensitive to most of the degrading effects that limit the performance of traditional single telescope and long-baseline interferometric techniques used for direct detection of faint, close companions to bright stars. We present very recent results obtained with the technique of lunar occultations in the near-IR, showing the detection of companions with very high dynamic range as close as few milliarcseconds to the primary star. We discuss the potential improvements that could be made, to increase further the current performance. Of course, LO are fixed-time events applicable only to sources which happen to lie on the Moon’s apparent orbit. However, with the continuously increasing numbers of potential exoplanets and brown dwarfs beign discovered, the frequency of such events is not negligible. I will list some of the most favorable potential LO in the near future, to be observed from major observatories.

  17. Vector magnetic field changes associated with X-class flares

    Science.gov (United States)

    Wang, Haimin; Ewell, M. W., Jr.; Zirin, H.; Ai, Guoxiang

    1994-01-01

    We present high-resolution transverse and longitudinal magnetic field measurements bracketing five X-class solar flares. We show that the magnetic shear, defined as the angular difference between the measured field and calculated potential field, actually increases after all of these flares. In each case, the shear is shown to increase along a substantial portion of the magnetic neutral line. For two of the cases, we have excellent time resolution, on the order of several minutes, and we demonstrate that the shear increase is impulsive. We briefly discuss the theoretical implications of our results.

  18. Angular-momentum-dominated electron beams and flat-beam generation

    International Nuclear Information System (INIS)

    Sun, Yin-e

    2005-01-01

    In the absence of external forces, if the dynamics within an electron beam is dominated by its angular momentum rather than other effects such as random thermal motion or self Coulomb-repulsive force (i.e., space-charge force), the beam is said to be angular-momentum-dominated. Such a beam can be directly applied to the field of electron-cooling of heavy ions; or it can be manipulated into an electron beam with large transverse emittance ratio, i.e., a flat beam. A flat beam is of interest for high-energy electron-positron colliders or accelerator-based light sources. An angular-momentum-dominated beam is generated at the Fermilab/NICADD photoinjector Laboratory (FNPL) and is accelerated to an energy of 16 MeV. The properties of such a beam is investigated systematically in experiment. The experimental results are in very good agreement with analytical expectations and simulation results. This lays a good foundation for the transformation of an angular-momentum-dominated beam into a flat beam. The round-to-flat beam transformer is composed of three skew quadrupoles. Based on a good knowledge of the angular-momentum-dominated beam, the quadrupoles are set to the proper strengths in order to apply a total torque which removes the angular momentum, resulting in a flat beam. For bunch charge around 0.5 nC, an emittance ratio of 100 ± 5 was measured, with the smaller normalized root-mean-square emittance around 0.4 mm-mrad. Effects limiting the flat-beam emittance ratio are investigated, such as the chromatic effects in the round-to-flat beam transformer, asymmetry in the initial angular-momentum-dominated beam, and space-charge effects. The most important limiting factor turns out to be the uncorrelated emittance growth caused by space charge when the beam energy is low, for example, in the rf gun area. As a result of such emittance growth prior to the round-to-flat beam transformer, the emittance ratio achievable in simulation decreases from orders of thousands to

  19. Angular-momentum-dominated electron beams and flat-beam generation

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yin-e [Univ. of Chicago, IL (United States)

    2005-06-01

    In the absence of external forces, if the dynamics within an electron beam is dominated by its angular momentum rather than other effects such as random thermal motion or self Coulomb-repulsive force (i.e., space-charge force), the beam is said to be angular-momentum-dominated. Such a beam can be directly applied to the field of electron-cooling of heavy ions; or it can be manipulated into an electron beam with large transverse emittance ratio, i.e., a flat beam. A flat beam is of interest for high-energy electron-positron colliders or accelerator-based light sources. An angular-momentum-dominated beam is generated at the Fermilab/NICADD photoinjector Laboratory (FNPL) and is accelerated to an energy of 16 MeV. The properties of such a beam is investigated systematically in experiment. The experimental results are in very good agreement with analytical expectations and simulation results. This lays a good foundation for the transformation of an angular-momentum-dominated beam into a flat beam. The round-to-flat beam transformer is composed of three skew quadrupoles. Based on a good knowledge of the angular-momentum-dominated beam, the quadrupoles are set to the proper strengths in order to apply a total torque which removes the angular momentum, resulting in a flat beam. For bunch charge around 0.5 nC, an emittance ratio of 100 ± 5 was measured, with the smaller normalized root-mean-square emittance around 0.4 mm-mrad. Effects limiting the flat-beam emittance ratio are investigated, such as the chromatic effects in the round-to-flat beam transformer, asymmetry in the initial angular-momentum-dominated beam, and space-charge effects. The most important limiting factor turns out to be the uncorrelated emittance growth caused by space charge when the beam energy is low, for example, in the rf gun area. As a result of such emittance growth prior to the round-to-flat beam transformer, the emittance ratio achievable in simulation decreases from orders of thousands to

  20. Hard X-ray Emission from Galaxy Clusters Observed with INTEGRAL and Prospects for Simbol-X

    Science.gov (United States)

    Eckert, D.; Paltani, S.; Courvoisier, T. J.-L.

    2009-05-01

    Some galaxy clusters are known to contain a large population of relativistic electrons, which produce radio emission through synchrotron radiation. Therefore, it is expected that inverse-Compton scattering of the relativistic electrons with the CMB produce non-thermal emission which should be observable in the hard X-ray domain. Here we focus on the recent results by INTEGRAL, which shed a new light on the non-thermal emission thanks to its angular resolution and sensitivity in the hard X-ray range. We also present the exciting prospects in this field for Simbol-X, which will allow us to detect the non-thermal emission in a number of clusters and map the magnetic field throughout the intra-cluster medium.

  1. Angular momentum projected semiclassics

    International Nuclear Information System (INIS)

    Hasse, R.W.

    1986-10-01

    By using angular momentum projected plane waves as wave functions, we derive semiclassical expressions for the single-particle propagator, the partition function, the nonlocal density matrix, the single-particle density and the one particle- one hole level density for fixed angular momentum and fixed z-component or summed over the z-components. Other quantities can be deduced from the propagator. In coordinate space (r, r') the relevant quantities depend on vertical stroker - r 3 vertical stroke instead of vertical stroker - r'vertical stroke and in Wigner space (R, P) they become proportional to the angular momentum constraints δ(vertical strokeRxPvertical stroke/ℎ - l) and δ((RxP) z /ℎ - m). As applications we calculate the single-particle and one particle- one hole level densities for harmonic oscillator and Hill-Wheeler box potentials and the imaginary part of the optical potential and its volume integral with an underlying harmonic oscillator potential and a zero range two-body interaction. (orig.)

  2. Concepts of radial and angular kinetic energies

    DEFF Research Database (Denmark)

    Dahl, Jens Peder; Schleich, W.P.

    2002-01-01

    We consider a general central-field system in D dimensions and show that the division of the kinetic energy into radial and angular parts proceeds differently in the wave-function picture and the Weyl-Wigner phase-space picture, Thus, the radial and angular kinetic energies are different quantities...

  3. Theoretical evaluation of the Doppler broadening contribution to the angular resolution in CdZnTe Compton scattering detector

    International Nuclear Information System (INIS)

    Diaz Garcia, A.; Cabal Rodriguez, A.E.; Rubio Rodriguez, J. A.; Salicio Diez, J.; Perez Morales, J.M.; Vela Morales, O.; Willmott Zappacosta, C.; Van Espen, P.

    2011-01-01

    Electronically collimated Compton Cameras have been tested in Single Photon Emission Tomography (SPECT) systems instead of mechanically collimated gamma detectors in order to improve their limited sensitivity. One of the main factors that contribute to the worsening of the angular resolution and thus to the deterioration of the system spatial resolution is Doppler broadening. Double differential Klein-Nishina equation is used to consider the random movement of electron inside the crystal. It is important to perform this analysis for each particular material because is difficult to infer one simple Doppler broadening dependency of the atomic number Z. In high Z materials the internal electrons are strongly linked to the nucleus and therefore there can be found high momentums, but they represent just a small portion of the electrons that suffers Compton scattering. This work estimates the influence of the Doppler broadening in CdZnTe semiconductor for different incoming photon energies. For this means there are analyzed main Compton broadening processes in semiconductor Cd 0,8 Zn 0,2 Te with density ρ=5,85g/cm 3 . (Author)

  4. Total angular momentum from Dirac eigenspinors

    International Nuclear Information System (INIS)

    Szabados, Laszlo B

    2008-01-01

    The eigenvalue problem for Dirac operators, constructed from two connections on the spinor bundle over closed spacelike 2-surfaces, is investigated. A class of divergence-free vector fields, built from the eigenspinors, are found, which, for the lowest eigenvalue, reproduce the rotation Killing vectors of metric spheres, and provide rotation BMS vector fields at future null infinity. This makes it possible to introduce a well-defined, gauge invariant spatial angular momentum at null infinity, which reduces to the standard expression in stationary spacetimes. The general formula for the angular momentum flux carried away by the gravitational radiation is also derived

  5. On the angular momentum in star formation

    International Nuclear Information System (INIS)

    Horedt, G.P.

    1978-01-01

    The author discusses the rotation of interstellar clouds which are in a stage immediately before star formation. Cloud collisions seem to be the principal cause of the observed rotation of interstellar clouds. The rotational motion of the clouds is strongly influenced by turbulence. Theories dealing with the resolution of the angular momentum problem in star formation are classified into five major groups. The old idea that the angular momentum of an interstellar cloud passes during star formation into the angular momentum of double star systems and/or circumstellar clouds, is developed. It is suggested that a rotating gas cloud contracts into a ring-like structure which fragments into self-gravitating subcondensations. By collisions and gas accretion these subcondensations accrete into binary systems surrounded by circumstellar clouds. Using some rough approximations the authors find analytical expressions for the semi-major axis of the binary system and for the density of the circumstellar clouds as a function of the initial density and of the initial angular velocity of an interstellar cloud. The obtained values are well within the observational limits. (Auth.)

  6. The INTEGRAL mission

    DEFF Research Database (Denmark)

    Winkler, C.; Courvoisier, T.J.L.; Di Cocco, G.

    2003-01-01

    in the X-ray (3-35 keV) and optical (V-band, 550 nm) energy ranges. INTEGRAL carries two main gamma-ray instruments, the spectrometer SPI (Vedrenne et al. 2003)-optimized for the high-resolution gamma-ray line spectroscopy (20 keV-8 MeV), and the imager IBIS (Ubertini et al. 2003)-optimized for high......The ESA observatory INTEGRAL (International Gamma-Ray Astrophysics Laboratory) is dedicated to the fine spectroscopy (2.5 keV FWHM @ 1 MeV) and fine imaging (angular resolution: 12 arcmin FWHM) of celestial gamma-ray sources in the energy range 15 keV to 10 MeV with concurrent source monitoring...... Centre at ESTEC and the Science Data Centre near Geneva. INTEGRAL was launched on 17 October 2002. The observing programme is well underway and sky exposure (until June 2003) reaches similar to1800 ks in the Galactic plane. The prospects are excellent for the scientific community to observe the high...

  7. Angular Accelerating White Light

    CSIR Research Space (South Africa)

    Dudley, Angela L

    2015-08-01

    Full Text Available wavelength dependence. By digitally simulating free-space propagation on the SLM, The authors compare the effects of real and digital propagation on the angular rotation rates of the resulting optical fields for various wavelengths. The development...

  8. The Wide Field Imager of the International X-ray Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Stefanescu, A., E-mail: astefan@hll.mpg.d [Max-Planck-Institut Halbleiterlabor, Otto-Hahn-Ring 6, 81739 Muenchen (Germany); Johannes Gutenberg-Universitaet, Inst. f. anorganische und analytische Chemie, 55099 Mainz (Germany); Bautz, M.W. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139-4307 (United States); Burrows, D.N. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Bombelli, L.; Fiorini, C. [Politecnico di Milano, Dipartimento di Elettronica e Informazione, Milano (Italy); INFN Sezione di Milano, Milano (Italy); Fraser, G. [Space Research Centre, Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Heinzinger, K. [PNSensor GmbH, Roemerstr. 28, 80803 Muenchen (Germany); Herrmann, S. [Max-Planck-Institut Halbleiterlabor, Otto-Hahn-Ring 6, 81739 Muenchen (Germany); Max-Planck-Institut fuer extraterrestrische Physik, Giessenbachstr., 85748 Garching (Germany); Kuster, M. [Technische Universitaet Darmstadt, Institut fuer Kernphysik, Schlossgartenstr. 9, 64289 Darmstadt (Germany); Lauf, T. [Max-Planck-Institut Halbleiterlabor, Otto-Hahn-Ring 6, 81739 Muenchen (Germany); Max-Planck-Institut fuer extraterrestrische Physik, Giessenbachstr., 85748 Garching (Germany); Lechner, P. [PNSensor GmbH, Roemerstr. 28, 80803 Muenchen (Germany); Lutz, G. [Max-Planck-Institut Halbleiterlabor, Otto-Hahn-Ring 6, 81739 Muenchen (Germany); Max-Planck-Institut fuer Physik, Foehringer Ring 6, 80805 Muenchen (Germany); Majewski, P. [PNSensor GmbH, Roemerstr. 28, 80803 Muenchen (Germany); Meuris, A. [Max-Planck-Institut Halbleiterlabor, Otto-Hahn-Ring 6, 81739 Muenchen (Germany); Max-Planck-Institut fuer extraterrestrische Physik, Giessenbachstr., 85748 Garching (Germany); Murray, S.S. [Harvard/Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States)

    2010-12-11

    The International X-ray Observatory (IXO) will be a joint X-ray observatory mission by ESA, NASA and JAXA. It will have a large effective area (3 m{sup 2} at 1.25 keV) grazing incidence mirror system with good angular resolution (5 arcsec at 0.1-10 keV) and will feature a comprehensive suite of scientific instruments: an X-ray Microcalorimeter Spectrometer, a High Time Resolution Spectrometer, an X-ray Polarimeter, an X-ray Grating Spectrometer, a Hard X-ray Imager and a Wide-Field Imager. The Wide Field Imager (WFI) has a field-of-view of 18 ftx18 ft. It will be sensitive between 0.1 and 15 keV, offer the full angular resolution of the mirrors and good energy resolution. The WFI will be implemented as a 6 in. wafer-scale monolithical array of 1024x1024 pixels of 100x100{mu}m{sup 2} size. The DEpleted P-channel Field-Effect Transistors (DEPFET) forming the individual pixels are devices combining the functionalities of both detector and amplifier. Signal electrons are collected in a potential well below the transistor's gate, modulating the transistor current. Even when the device is powered off, the signal charge is collected and kept in the potential well below the gate until it is explicitly cleared. This makes flexible and fast readout modes possible.

  9. Angular analysis of $\\Lambda_{b} \\rightarrow \\Lambda \\mu^{+}\\mu^{-}$

    CERN Multimedia

    Chatzikonstantinidis, Georgios

    2018-01-01

    The angular analysis of the rare baryon decay of $\\Lambda_{b}\\rightarrow \\Lambda (\\rightarrow p\\pi^{-})\\mu^{+}\\mu^{-}$ in high $q^{2}$ is presented. The dataset that is used corresponds to an integrated luminosity of 5.0 fb$^{-1}$ of pp - collision data collected at centre-of-mass energies between 7 and 13 TeV by the LHCb detector in 2011, 2012, 2015 and 2016. Angular observables are determined using a moment analysis of the angular distribution.

  10. Dynamics of Molecular Gyroscopes Created by Strong Optical Fields

    Science.gov (United States)

    Mullin, Amy

    2015-03-01

    We explore the behavior of molecules in ultra-high angular momentum states prepared in an optical centrifuge and detected with transient IR absorption spectroscopy. In the optical centrifuge, the polarizable electron cloud of molecules interacts with the electric field of linearly polarized light that angularly accelerates over the time of the optical pulse. The centrifuge pulse is generated by combining oppositely chirped pulsed of light. Trapped molecules are driven into high angular momentum states that are spatially oriented with the optical field and have energies far above the average at 300 K. High resolution transient IR spectroscopy reveals the dynamics of collisional energy transfer for the super-rotors. Polarization-dependent studies show that the initial angular momentum orientation persists for many collisions, indicating that molecules in an optical centrifuge behave as quantum gyroscopes. Time-dependent population and energy profiles for individual J- states give information about the dynamics of super-rotors. Research support provided by NSF and the University of Maryland.

  11. Automated and angular time-synchronized directional gamma-ray scintillation sensor

    International Nuclear Information System (INIS)

    Kronenberg, S.; Brucker, G.J.

    1998-01-01

    The authors' previous research resulted in directional sensors for gamma rays and X rays that have a 4π solid angle of acceptance and, at the same time, a high angular resolution that is limited only by their ability to measure small angles. Angular resolution of ∼1 s of arc was achieved. These sensors are capable of operating and accurately detecting high and very low intensity radiation patterns. Such a system can also be used to image broad area sources and their scattering patterns. The principle of operation and design of directional sensors used in this study was described elsewhere; however, for convenience, a part of that text is repeated here. It was shown analytically that the angular distribution of radiation incident on the sensor is proportional to the first derivative of the scan data, that is, of the events' count rate versus orientation of the detector. The previously published results were obtained with a annual operating system. The detector assembly was set at a specific angle, and a pulse rate count was made. This was repeated at numerous other angles of orientation, a time-consuming and labor-intensive process. Recently, the authors automated this system, which is based on the detection of scintillations. The detector, which consists of a stack of plates of Lucite, plastic scintillator, and lead foils, rotates by means of a motor in front of a stationary photomultiplier tube (PMT). One revolution per second was chosen for the motor. At time zero, a trigger indicates that a revolution has started. The angle of orientation of the detector in the laboratory system is proportional to the time during one revolution. The process repeats itself a desired number of times. The trigger signal initiates a scan of a multichannel scalar (MCS). The detector assembly is allowed to rotate in the radiation field, and the MCS scans are repeated in an accumulated mode of operation until enough events are collected for the location of the radiation source to be

  12. Spatial Angular Compounding Technique for H-Scan Ultrasound Imaging.

    Science.gov (United States)

    Khairalseed, Mawia; Xiong, Fangyuan; Kim, Jung-Whan; Mattrey, Robert F; Parker, Kevin J; Hoyt, Kenneth

    2018-01-01

    H-Scan is a new ultrasound imaging technique that relies on matching a model of pulse-echo formation to the mathematics of a class of Gaussian-weighted Hermite polynomials. This technique may be beneficial in the measurement of relative scatterer sizes and in cancer therapy, particularly for early response to drug treatment. Because current H-scan techniques use focused ultrasound data acquisitions, spatial resolution degrades away from the focal region and inherently affects relative scatterer size estimation. Although the resolution of ultrasound plane wave imaging can be inferior to that of traditional focused ultrasound approaches, the former exhibits a homogeneous spatial resolution throughout the image plane. The purpose of this study was to implement H-scan using plane wave imaging and investigate the impact of spatial angular compounding on H-scan image quality. Parallel convolution filters using two different Gaussian-weighted Hermite polynomials that describe ultrasound scattering events are applied to the radiofrequency data. The H-scan processing is done on each radiofrequency image plane before averaging to get the angular compounded image. The relative strength from each convolution is color-coded to represent relative scatterer size. Given results from a series of phantom materials, H-scan imaging with spatial angular compounding more accurately reflects the true scatterer size caused by reductions in the system point spread function and improved signal-to-noise ratio. Preliminary in vivo H-scan imaging of tumor-bearing animals suggests this modality may be useful for monitoring early response to chemotherapeutic treatment. Overall, H-scan imaging using ultrasound plane waves and spatial angular compounding is a promising approach for visualizing the relative size and distribution of acoustic scattering sources. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  13. Integrated High Resolution Monitoring of Mediterranean vegetation

    Science.gov (United States)

    Cesaraccio, Carla; Piga, Alessandra; Ventura, Andrea; Arca, Angelo; Duce, Pierpaolo; Mereu, Simone

    2017-04-01

    The study of the vegetation features in a complex and highly vulnerable ecosystems, such as Mediterranean maquis, leads to the need of using continuous monitoring systems at high spatial and temporal resolution, for a better interpretation of the mechanisms of phenological and eco-physiological processes. Near-surface remote sensing techniques are used to quantify, at high temporal resolution, and with a certain degree of spatial integration, the seasonal variations of the surface optical and radiometric properties. In recent decades, the design and implementation of global monitoring networks involved the use of non-destructive and/or cheaper approaches such as (i) continuous surface fluxes measurement stations, (ii) phenological observation networks, and (iii) measurement of temporal and spatial variations of the vegetation spectral properties. In this work preliminary results from the ECO-SCALE (Integrated High Resolution Monitoring of Mediterranean vegetation) project are reported. The project was manly aimed to develop an integrated system for environmental monitoring based on digital photography, hyperspectral radiometry , and micrometeorological techniques during three years of experimentation (2013-2016) in a Mediterranean site of Italy (Capo Caccia, Alghero). The main results concerned the analysis of chromatic coordinates indices from digital images, to characterized the phenological patterns for typical shrubland species, determining start and duration of the growing season, and the physiological status in relation to different environmental drought conditions; then the seasonal patterns of canopy phenology, was compared to NEE (Net Ecosystem Exchange) patterns, showing similarities. However, maximum values of NEE and ER (Ecosystem respiration), and short term variation, seemed mainly tuned by inter annual pattern of meteorological variables, in particular of temperature recorded in the months preceding the vegetation green-up. Finally, green signals

  14. Influence of extranuclear fields on angular correlations; Influence des champs extranucleaires sur les correlations angulaires

    Energy Technology Data Exchange (ETDEWEB)

    Abragam, A [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    A general formalism is given for the description of the perturbation of angular correlations by extranuclear fields. An application is made to the case of static interactions in solids and time dependent interactions in liquids. (author) [French] On donne un formalisme general pour la description de la perturbation des correlations angulaires par des champs extranucleaires. Ce formalisme est applique aux cas des interactions statiques dans les solides et des interactions dependantes du temps dans les liquides. (auteur)

  15. The photon angular momentum controversy: Resolution of a conflict between laser optics and particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Leader, Elliot, E-mail: e.leader@imperial.ac.uk

    2016-05-10

    The claim some years ago, contrary to all textbooks, that the angular momentum of a photon (and gluon) can be split in a gauge-invariant way into an orbital and spin term, sparked a major controversy in the Particle Physics community, exacerbated by the realization that many different forms of the angular momentum operators are, in principle, possible. A further cause of upset was the realization that the gluon polarization in a nucleon, a supposedly physically meaningful quantity, corresponds only to the gauge-variant gluon spin derived from Noether's theorem, evaluated in a particular gauge. On the contrary, Laser Physicists have, for decades, been happily measuring physical quantities which correspond to photon orbital and spin angular momentum evaluated in a particular gauge. This paper reconciles the two points of view, and shows that it is the gauge invariant version of the canonical angular momentum which agrees with the results of a host of laser optics experiments.

  16. Quantum entanglement of high angular momenta.

    Science.gov (United States)

    Fickler, Robert; Lapkiewicz, Radek; Plick, William N; Krenn, Mario; Schaeff, Christoph; Ramelow, Sven; Zeilinger, Anton

    2012-11-02

    Single photons with helical phase structures may carry a quantized amount of orbital angular momentum (OAM), and their entanglement is important for quantum information science and fundamental tests of quantum theory. Because there is no theoretical upper limit on how many quanta of OAM a single photon can carry, it is possible to create entanglement between two particles with an arbitrarily high difference in quantum number. By transferring polarization entanglement to OAM with an interferometric scheme, we generate and verify entanglement between two photons differing by 600 in quantum number. The only restrictive factors toward higher numbers are current technical limitations. We also experimentally demonstrate that the entanglement of very high OAM can improve the sensitivity of angular resolution in remote sensing.

  17. Lidar Orbital Angular Momentum Sensor

    Data.gov (United States)

    National Aeronautics and Space Administration — The recognition in recent decades that electromagnetic fields have angular momentum (AM) in the form of not only polarization (or spin AM) but also orbital (OAM) has...

  18. Improved Plane-Wave Ultrasound Beamforming by Incorporating Angular Weighting and Coherent Compounding in Fourier Domain.

    Science.gov (United States)

    Chen, Chuan; Hendriks, Gijs A G M; van Sloun, Ruud J G; Hansen, Hendrik H G; de Korte, Chris L

    2018-05-01

    In this paper, a novel processing framework is introduced for Fourier-domain beamforming of plane-wave ultrasound data, which incorporates coherent compounding and angular weighting in the Fourier domain. Angular weighting implies spectral weighting by a 2-D steering-angle-dependent filtering template. The design of this filter is also optimized as part of this paper. Two widely used Fourier-domain plane-wave ultrasound beamforming methods, i.e., Lu's f-k and Stolt's f-k methods, were integrated in the framework. To enable coherent compounding in Fourier domain for the Stolt's f-k method, the original Stolt's f-k method was modified to achieve alignment of the spectra for different steering angles in k-space. The performance of the framework was compared for both methods with and without angular weighting using experimentally obtained data sets (phantom and in vivo), and data sets (phantom) provided by the IEEE IUS 2016 plane-wave beamforming challenge. The addition of angular weighting enhanced the image contrast while preserving image resolution. This resulted in images of equal quality as those obtained by conventionally used delay-and-sum (DAS) beamforming with apodization and coherent compounding. Given the lower computational load of the proposed framework compared to DAS, to our knowledge it can, therefore, be concluded that it outperforms commonly used beamforming methods such as Stolt's f-k, Lu's f-k, and DAS.

  19. S0 galaxies are faded spirals: clues from their angular momentum content

    Science.gov (United States)

    Rizzo, Francesca; Fraternali, Filippo; Iorio, Giuliano

    2018-05-01

    The distribution of galaxies in the stellar specific angular momentum versus stellar mass plane (j⋆ - M⋆) provides key insights into their formation mechanisms. In this paper, we determine the location in this plane of a sample of 10 field/group unbarred lenticular (S0) galaxies from the Calar Alto Legacy Integral Field Area survey. We performed a bulge-disc decomposition both photometrically and kinematically to study the stellar specific angular momentum of the disc components alone and understand the evolutionary links between S0s and other Hubble types. We found that eight of our S0 discs have a distribution in the j⋆ - M⋆ plane that is fully compatible with that of spiral discs, while only two have values of j⋆ lower than the spirals. These two outliers show signs of recent merging. Our results suggest that merger and interaction processes are not the dominant mechanisms in S0 formation in low-density environments. Instead, S0s appear to be the result of secular processes and the fading of spiral galaxies after the shutdown of star formation.

  20. One dimensional spatial resolution optimization on a hybrid low field MRI-gamma detector

    Energy Technology Data Exchange (ETDEWEB)

    Agulles-Pedrós, L., E-mail: lagullesp@unal.edu.co; Abril, A., E-mail: ajabrilf@unal.edu.co [Medical Physics Group, Physics Department, Universidad Nacional de Colombia, Bogotá (Colombia)

    2016-07-07

    Hybrid systems like Positron Emission Tomography/Magnetic Resonance Imaging (PET/MRI) and MRI/gamma camera, offer advantages combining the resolution and contrast capability of MRI with the better contrast and functional information of nuclear medicine techniques. However, the radiation detectors are expensive and need an electronic set-up, which can interfere with the MRI acquisition process or viceversa. In order to improve these drawbacks, in this work it is presented the design of a low field NMR system made up of permanent magnets compatible with a gamma radiation detector based on gel dosimetry. The design is performed using the software FEMM for estimation of the magnetic field, and GEANT4 for the physical process involved in radiation detection and effect of magnetic field. The homogeneity in magnetic field is achieved with an array of NbFeB magnets in a linear configuration with a separation between the magnets, minimizing the effect of Compton back scattering compared with a no-spacing linear configuration. The final magnetic field in the homogeneous zone is ca. 100 mT. In this hybrid proposal, although the gel detector do not have spatial resolution per se, it is possible to obtain a dose profile (1D image) as a function of the position by using a collimator array. As a result, the gamma detector system described allows a complete integrated radiation detector within the low field NMR (lfNMR) system. Finally we present the better configuration for the hybrid system considering the collimator parameters such as height, thickness and distance.

  1. Angular Spectra of Polarized Galactic Foregrounds

    OpenAIRE

    Cho, Jung; Lazarian, A.

    2003-01-01

    It is believed that magnetic field lines are twisted and bend by turbulent motions in the Galaxy. Therefore, both Galactic synchrotron emission and thermal emission from dust reflects statistics of Galactic turbulence. Our simple model of Galactic turbulence, motivated by results of our simulations, predicts that Galactic disk and halo exhibit different angular power spectra. We show that observed angular spectra of synchrotron emission are compatible with our model. We also show that our mod...

  2. Automated Angular Momentum Recoupling Algebra

    Science.gov (United States)

    Williams, H. T.; Silbar, Richard R.

    1992-04-01

    We present a set of heuristic rules for algebraic solution of angular momentum recoupling problems. The general problem reduces to that of finding an optimal path from one binary tree (representing the angular momentum coupling scheme for the reduced matrix element) to another (representing the sub-integrals and spin sums to be done). The method lends itself to implementation on a microcomputer, and we have developed such an implementation using a dialect of LISP. We describe both how our code, called RACAH, works and how it appears to the user. We illustrate the use of RACAH for several transition and scattering amplitude matrix elements occurring in atomic, nuclear, and particle physics.

  3. Interface between path and orbital angular momentum entanglement for high-dimensional photonic quantum information.

    Science.gov (United States)

    Fickler, Robert; Lapkiewicz, Radek; Huber, Marcus; Lavery, Martin P J; Padgett, Miles J; Zeilinger, Anton

    2014-07-30

    Photonics has become a mature field of quantum information science, where integrated optical circuits offer a way to scale the complexity of the set-up as well as the dimensionality of the quantum state. On photonic chips, paths are the natural way to encode information. To distribute those high-dimensional quantum states over large distances, transverse spatial modes, like orbital angular momentum possessing Laguerre Gauss modes, are favourable as flying information carriers. Here we demonstrate a quantum interface between these two vibrant photonic fields. We create three-dimensional path entanglement between two photons in a nonlinear crystal and use a mode sorter as the quantum interface to transfer the entanglement to the orbital angular momentum degree of freedom. Thus our results show a flexible way to create high-dimensional spatial mode entanglement. Moreover, they pave the way to implement broad complex quantum networks where high-dimensionally entangled states could be distributed over distant photonic chips.

  4. Reduced multimodal integration of memory features following continuous theta burst stimulation of angular gyrus.

    Science.gov (United States)

    Yazar, Yasemin; Bergström, Zara M; Simons, Jon S

    Lesions of the angular gyrus (AnG) region of human parietal cortex do not cause amnesia, but appear to be associated with reduction in the ability to consciously experience the reliving of previous events. We used continuous theta burst stimulation to test the hypothesis that the cognitive mechanism implicated in this memory deficit might be the integration of retrieved sensory event features into a coherent multimodal memory representation. Healthy volunteers received stimulation to AnG or a vertex control site after studying stimuli that each comprised a visual object embedded in a scene, with the name of the object presented auditorily. Participants were then asked to make memory judgments about the studied stimuli that involved recollection of single event features (visual or auditory), or required integration of event features within the same modality, or across modalities. Participants' ability to retrieve context features from across multiple modalities was significantly reduced after AnG stimulation compared to stimulation of the vertex. This effect was observed only for the integration of cross-modal context features but not for integration of features within the same modality, and could not be accounted for by task difficulty as performance was matched across integration conditions following vertex stimulation. These results support the hypothesis that AnG is necessary for the multimodal integration of distributed cortical episodic features into a unified conscious representation that enables the experience of remembering. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Helicon modes in uniform plasmas. III. Angular momentum

    International Nuclear Information System (INIS)

    Stenzel, R. L.; Urrutia, J. M.

    2015-01-01

    Helicons are electromagnetic waves with helical phase fronts propagating in the whistler mode in magnetized plasmas and solids. They have similar properties to electromagnetic waves with angular momentum in free space. Helicons are circularly polarized waves carrying spin angular momentum and orbital angular momentum due to their propagation around the ambient magnetic field B 0 . These properties have not been considered in the community of researchers working on helicon plasma sources, but are the topic of the present work. The present work focuses on the field topology of helicons in unbounded plasmas, not on helicon source physics. Helicons are excited in a large uniform laboratory plasma with a magnetic loop antenna whose dipole axis is aligned along or across B 0 . The wave fields are measured in orthogonal planes and extended to three dimensions (3D) by interpolation. Since density and B 0 are uniform, small amplitude waves from loops at different locations can be superimposed to generate complex antenna patterns. With a circular array of phase shifted loops, whistler modes with angular and axial wave propagation, i.e., helicons, are generated. Without boundaries radial propagation also arises. The azimuthal mode number m can be positive or negative while the field polarization remains right-hand circular. The conservation of energy and momentum implies that these field quantities are transferred to matter which causes damping or reflection. Wave-particle interactions with fast electrons are possible by Doppler shifted resonances. The transverse Doppler shift is demonstrated. Wave-wave interactions are also shown by showing collisions between different helicons. Whistler turbulence does not always have to be created by nonlinear wave-interactions but can also be a linear superposition of waves from random sources. In helicon collisions, the linear and/or orbital angular momenta can be canceled, which results in a great variety of field topologies. The work

  6. Angular momentum, g-value, and magnetic flux of gyration states

    International Nuclear Information System (INIS)

    Arunasalam, V.

    1991-10-01

    Two of the world's leading (Nobel laureate) physicists disagree on the definition of the orbital angular momentum L of the Landau gyration states of a spinless charged particle in a uniform external magnetic field B = B i Z . According to Richard P. Feynman (and also Frank Wilczek) L = (rxμv) = rx(p - qA/c), while Felix Bloch (and also Kerson Huang) defines it as L = rxp. We show here that Bloch's definition is the correct one since it satisfies the necessary and sufficient condition LxL = iℎ L, while Feynman's definition does not. However, as a consequence of the quantized Aharonov-Bohm magnetic flux, this canonical orbital angular momentum (surprisingly enough) takes half-odd-integral values with a zero-point gyration states of L Z = ℎ/2. Further, since the diamagnetic and the paramagnetic contributions to the magnetic moment are interdependent, the g-value of these gyration states is two and not one, again a surprising result for a spinless case. The differences between the gauge invariance in classical and quantum mechanics, Onsager's suggestion that the flux quantization might be an intrinsic property of the electromagnetic field-charged particle interaction, the possibility that the experimentally measured fundamental unit of the flux quantum need not necessarily imply the existence of ''electron pairing'' of the Bardeen-Cooper-Schrieffer superconductivity theory, and the relationship to the Dirac's angular momentum quantization condition for the magnetic monopole-charged particle composites (i.e. Schwinger's dyons), are also briefly examined from a pedestrian viewpoint

  7. SOUTHERN MASSIVE STARS AT HIGH ANGULAR RESOLUTION: OBSERVATIONAL CAMPAIGN AND COMPANION DETECTION

    Energy Technology Data Exchange (ETDEWEB)

    Sana, H. [European Space Agency/Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Le Bouquin, J.-B.; Duvert, G.; Zins, G. [Université Grenoble Alpes, IPAG, F-38000 Grenoble (France); Lacour, S.; Gauchet, L.; Pickel, D. [LESIA, Observatoire de Paris, CNRS, UPMC, Université Paris-Diderot, Paris Sciences et Lettres, 5 Place Jules Janssen, F-92195 Meudon (France); Berger, J.-P. [European Southern Observatory, Schwarzschild-Str. 2, D-85748 Garching bei München (Germany); Norris, B. [Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006 (Australia); Olofsson, J. [Max-Planck-Institut für Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany); Absil, O. [Département d' Astrophysique, Géophysique et Océanographie, Université de Liège, 17 Allée du Six Août, B-4000 Liège (Belgium); De Koter, A. [Astrophysical Institute Anton Pannekoek, Universiteit van Amsterdam, Science Park 904, 1098XH Amsterdam (Netherlands); Kratter, K. [JILA, 440 UCB, University of Colorado, Boulder, CO 80309-0440 (United States); Schnurr, O. [Leibniz-Institut für Astrophysik Potsdam, An der Sternwarte 16, D-14482 Potsdam (Germany); Zinnecker, H., E-mail: hsana@stsci.edu [Deutsches SOFIA Instituut, SOFIA Science Center, NASA Ames Research Center, Mail Stop N232-12, Moffett Field, CA 94035 (United States)

    2014-11-01

    Multiplicity is one of the most fundamental observable properties of massive O-type stars and offers a promising way to discriminate between massive star formation theories. Nevertheless, companions at separations between 1 and 100 milliarcsec (mas) remain mostly unknown due to intrinsic observational limitations. At a typical distance of 2 kpc, this corresponds to projected physical separations of 2-200 AU. The Southern MAssive Stars at High angular resolution survey (SMaSH+) was designed to fill this gap by providing the first systematic interferometric survey of Galactic massive stars. We observed 117 O-type stars with VLTI/PIONIER and 162 O-type stars with NACO/Sparse Aperture Masking (SAM), probing the separation ranges 1-45 and 30-250 mas and brightness contrasts of ΔH < 4 and ΔH < 5, respectively. Taking advantage of NACO's field of view, we further uniformly searched for visual companions in an 8'' radius down to ΔH = 8. This paper describes observations and data analysis, reports the discovery of almost 200 new companions in the separation range from 1 mas to 8'' and presents a catalog of detections, including the first resolved measurements of over a dozen known long-period spectroscopic binaries. Excluding known runaway stars for which no companions are detected, 96 objects in our main sample (δ < 0°; H < 7.5) were observed both with PIONIER and NACO/SAM. The fraction of these stars with at least one resolved companion within 200 mas is 0.53. Accounting for known but unresolved spectroscopic or eclipsing companions, the multiplicity fraction at separation ρ < 8'' increases to f {sub m} = 0.91 ± 0.03. The fraction of luminosity class V stars that have a bound companion reaches 100% at 30 mas while their average number of physically connected companions within 8'' is f {sub c} = 2.2 ± 0.3. This demonstrates that massive stars form nearly exclusively in multiple systems. The nine non-thermal radio

  8. Estimate of the angular dimensions of objects and reconstruction of their shapes from the parameters of the fourth-order radiation correlation function

    International Nuclear Information System (INIS)

    Buryi, E V; Kosygin, A A

    2004-01-01

    It is shown that, when the angular resolution of a receiving optical system is insufficient, the angular dimensions of a located object can be estimated and its shape can be reconstructed by estimating the parameters of the fourth-order correlation function (CF) of scattered coherent radiation. The reliability of the estimates of CF counts obtained by the method of a discrete spatial convolution of the intensity-field counts, the possibility of estimating the CF profile counts by the method of one-dimensional convolution of intensity counts, and the applicability of the method for reconstructing the object shape are confirmed experimentally. (laser applications and other topics in quantum electronics)

  9. THOR Fields and Wave Processor - FWP

    Science.gov (United States)

    Soucek, Jan; Rothkaehl, Hanna; Ahlen, Lennart; Balikhin, Michael; Carr, Christopher; Dekkali, Moustapha; Khotyaintsev, Yuri; Lan, Radek; Magnes, Werner; Morawski, Marek; Nakamura, Rumi; Uhlir, Ludek; Yearby, Keith; Winkler, Marek; Zaslavsky, Arnaud

    2017-04-01

    If selected, Turbulence Heating ObserveR (THOR) will become the first spacecraft mission dedicated to the study of plasma turbulence. The Fields and Waves Processor (FWP) is an integrated electronics unit for all electromagnetic field measurements performed by THOR. FWP will interface with all THOR fields sensors: electric field antennas of the EFI instrument, the MAG fluxgate magnetometer, and search-coil magnetometer (SCM), and perform signal digitization and on-board data processing. FWP box will house multiple data acquisition sub-units and signal analyzers all sharing a common power supply and data processing unit and thus a single data and power interface to the spacecraft. Integrating all the electromagnetic field measurements in a single unit will improve the consistency of field measurement and accuracy of time synchronization. The scientific value of highly sensitive electric and magnetic field measurements in space has been demonstrated by Cluster (among other spacecraft) and THOR instrumentation will further improve on this heritage. Large dynamic range of the instruments will be complemented by a thorough electromagnetic cleanliness program, which will prevent perturbation of field measurements by interference from payload and platform subsystems. Taking advantage of the capabilities of modern electronics and the large telemetry bandwidth of THOR, FWP will provide multi-component electromagnetic field waveforms and spectral data products at a high time resolution. Fully synchronized sampling of many signals will allow to resolve wave phase information and estimate wavelength via interferometric correlations between EFI probes. FWP will also implement a plasma resonance sounder and a digital plasma quasi-thermal noise analyzer designed to provide high cadence measurements of plasma density and temperature complementary to data from particle instruments. FWP will rapidly transmit information about magnetic field vector and spacecraft potential to the

  10. History of Solar Magnetic Fields Since George Ellery Hale

    Science.gov (United States)

    Stenflo, J. O.

    2017-09-01

    As my own work on the Sun's magnetic field started exactly 50 years ago at Crimea in the USSR, I have been a participant in the field during nearly half the time span since Hale's discovery in 1908 of magnetic fields in sunspots. The present historical account is accompanied by photos from my personal slide collection, which show a number of the leading personalities who advanced the field in different areas: measurement techniques, from photographic to photoelectric and imaging methods in spectro-polarimetry; theoretical foundations of MHD and the origin of cosmic magnetic fields (birth of dynamo theory); the quest for increased angular resolution from national projects to international consortia (for instruments both on ground and in space); introduction of the Hanle effect in astrophysics and the Second Solar Spectrum as its playground; small-scale nature of the field, the fundamental resolution limit, and transcending it by resolution-independent diagnostics.

  11. High Angular Momentum Rydberg Wave Packets

    Science.gov (United States)

    Wyker, Brendan

    2011-12-01

    High angular momentum Rydberg wave packets are studied. Application of carefully tailored electric fields to low angular momentum, high- n (n ˜ 300) Rydberg atoms creates coherent superpositions of Stark states with near extreme values of angular momentum, ℓ. Wave packet components orbit the parent nucleus at rates that depend on their energy, leading to periods of localization and delocalization as the components come into and go out of phase with each other. Monitoring survival probability signals in the presence of position dependent probing leads to observation of characteristic oscillations based on the composition of the wave packet. The discrete nature of electron energy levels is observed through the measurement of quantum revivals in the wave packet localization signal. Time-domain spectroscopy of these signals allows determination of both the population and phase of individual superposition components. Precise manipulation of wave packets is achieved through further application of pulsed electric fields. Decoherence effects due to background gas collisions and electrical noise are also detailed. Quantized classical trajectory Monte-Carlo simulations are introduced and agree remarkably well with experimental results.

  12. Generating millimeter-wave Bessel beam with orbital angular momentum using reflective-type metasurface inherently integrated with source

    Science.gov (United States)

    Shen, Yizhu; Yang, Jiawei; Meng, Hongfu; Dou, Wenbin; Hu, Sanming

    2018-04-01

    Metasurfaces, orbital angular momenta (OAM), and non-diffractive Bessel beams have been attracting worldwide research. Combining the benefits of these three promising techniques, this paper proposes a metasurface-based reflective-type approach to generate a first-order Bessel beam carrying OAM. To validate this approach, a millimeter-wave metasurface is analyzed, designed, fabricated, and measured. Experimental results agree well with simulation. Moreover, this reflective-type metasurface, generating a Bessel beam with OAM, is inherently integrated with a planar feeding source in the same single-layer printed circuit board. Therefore, the proposed design features low profile, low cost, easy integration with front-end active circuits, and no alignment error between the feeding source and the metasurface.

  13. SpecOp: Optimal Extraction Software for Integral Field Unit Spectrographs

    Science.gov (United States)

    McCarron, Adam; Ciardullo, Robin; Eracleous, Michael

    2018-01-01

    The Hobby-Eberly Telescope’s new low resolution integral field spectrographs, LRS2-B and LRS2-R, each cover a 12”x6” area on the sky with 280 fibers and generate spectra with resolutions between R=1100 and R=1900. To extract 1-D spectra from the instrument’s 3D data cubes, a program is needed that is flexible enough to work for a wide variety of targets, including continuum point sources, emission line sources, and compact sources embedded in complex backgrounds. We therefore introduce SpecOp, a user-friendly python program for optimally extracting spectra from integral-field unit spectrographs. As input, SpecOp takes a sky-subtracted data cube consisting of images at each wavelength increment set by the instrument’s spectral resolution, and an error file for each count measurement. All of these files are generated by the current LRS2 reduction pipeline. The program then collapses the cube in the image plane using the optimal extraction algorithm detailed by Keith Horne (1986). The various user-selected options include the fraction of the total signal enclosed in a contour-defined region, the wavelength range to analyze, and the precision of the spatial profile calculation. SpecOp can output the weighted counts and errors at each wavelength in various table formats using python’s astropy package. We outline the algorithm used for extraction and explain how the software can be used to easily obtain high-quality 1-D spectra. We demonstrate the utility of the program by applying it to spectra of a variety of quasars and AGNs. In some of these targets, we extract the spectrum of a nuclear point source that is superposed on a spatially extended galaxy.

  14. GALACTICNUCLEUS: A high angular resolution JHKs imaging survey of the Galactic centre. I. Methodology, performance, and near-infrared extinction towards the Galactic centre

    Science.gov (United States)

    Nogueras-Lara, F.; Gallego-Calvente, A. T.; Dong, H.; Gallego-Cano, E.; Girard, J. H. V.; Hilker, M.; de Zeeuw, P. T.; Feldmeier-Krause, A.; Nishiyama, S.; Najarro, F.; Neumayer, N.; Schödel, R.

    2018-03-01

    Context. The Galactic centre (GC) is of fundamental astrophysical interest, but existing near-infrared surveys fall short covering it adequately, either in terms of angular resolution, multi-wavelength coverage, or both. Here we introduce the GALACTICNUCLEUS survey, a JHKs imaging survey of the centre of the Milky Way with a 0.2″ angular resolution. Aim. The purpose of this paper is to present the observations of Field 1 of our survey, centred approximately on SgrA* with an approximate size of 7.95' × 3.43'. We describe the observational set-up and data reduction pipeline and discuss the quality of the data. Finally, we present the analysis of the data. Methods: The data were acquired with the near-infrared camera High Acuity Wide field K-band Imager (HAWK-I) at the ESO Very Large Telescope (VLT). Short readout times in combination with the speckle holography algorithm allowed us to produce final images with a stable, Gaussian PSF (point spread function) of 0.2″ FWHM (full width at half maximum). Astrometric calibration is achieved via the VISTA Variables in the Via Lactea (VVV) survey and photometric calibration is based on the SIRIUS/Infrared Survey Facility telescope (IRSF) survey. The quality of the data is assessed by comparison between observations of the same field with different detectors of HAWK-I and at different times. Results: We reach 5σ detection limits of approximately J = 22, H = 21, and Ks = 20. The photometric uncertainties are less than 0.05 at J ≲ 20, H ≲ 17, and Ks ≲ 16. We can distinguish five stellar populations in the colour-magnitude diagrams; three of them appear to belong to foreground spiral arms, and the other two correspond to high- and low-extinction star groups at the GC. We use our data to analyse the near-infrared extinction curve and find some evidence for a possible difference between the extinction index between J - H and H - Ks. However, we conclude that it can be described very well by a power law with an index of

  15. Half-integral spin from quantum gravity

    International Nuclear Information System (INIS)

    Friedman, J.L.

    1982-01-01

    For a certain class of three-manifolds, the angular momentum of an asymptotically flat quantum gravitational field can have half-integral values. In the absence of a full theory of quantum gravity, this result relies on a set of apparently natural assumptions governing the kinematics of such a theory. A key feature is that state vectors are in general invariant only under asymptotically trivial diffeomorphisms that can be continuously deformed to the identity. Angular momentum is associated with diffeomorphisms that look asymptotically like rotations; and the question of whether half-integral values occur depends on whether the diffeomorphism associated with a 2π rotation is itself deformable to the identity. (author)

  16. THE ANGULAR MOMENTUM OF MAGNETIZED MOLECULAR CLOUD CORES: A TWO-DIMENSIONAL-THREE-DIMENSIONAL COMPARISON

    International Nuclear Information System (INIS)

    Dib, Sami; Csengeri, Timea; Audit, Edouard; Hennebelle, Patrick; Pineda, Jaime E.; Goodman, Alyssa A.; Bontemps, Sylvain

    2010-01-01

    In this work, we present a detailed study of the rotational properties of magnetized and self-gravitating dense molecular cloud (MC) cores formed in a set of two very high resolution three-dimensional (3D) MC simulations with decaying turbulence. The simulations have been performed using the adaptative mesh refinement code RAMSES with an effective resolution of 4096 3 grid cells. One simulation represents a mildly magnetically supercritical cloud and the other a strongly magnetically supercritical cloud. We identify dense cores at a number of selected epochs in the simulations at two density thresholds which roughly mimic the excitation densities of the NH 3 (J - K) = (1,1) transition and the N 2 H + (1-0) emission line. A noticeable global difference between the two simulations is the core formation efficiency (CFE) of the high-density cores. In the strongly supercritical simulations, the CFE is 33% per unit free-fall time of the cloud (t ff,cl ), whereas in the mildly supercritical simulations this value goes down to ∼6 per unit t ff,cl . A comparison of the intrinsic specific angular momentum (j 3D ) distributions of the cores with the specific angular momentum derived using synthetic two-dimensional (2D) velocity maps of the cores (j 2D ) shows that the synthetic observations tend to overestimate the true value of the specific angular momentum by a factor of ∼8-10. We find that the distribution of the ratio j 3D /j 2D of the cores peaks at around ∼0.1. The origin of this discrepancy lies in the fact that contrary to the intrinsic determination of j which sums up the individual gas parcels' contributions to the angular momentum, the determination of the specific angular momentum using the standard observational procedure which is based on a measurement on the global velocity gradient under the hypothesis of uniform rotation smoothes out the complex fluctuations present in the 3D velocity field. Our results may well provide a natural explanation for the

  17. Wide-field two-dimensional multifocal optical-resolution photoacoustic computed microscopy

    Science.gov (United States)

    Xia, Jun; Li, Guo; Wang, Lidai; Nasiriavanaki, Mohammadreza; Maslov, Konstantin; Engelbach, John A.; Garbow, Joel R.; Wang, Lihong V.

    2014-01-01

    Optical-resolution photoacoustic microscopy (OR-PAM) is an emerging technique that directly images optical absorption in tissue at high spatial resolution. To date, the majority of OR-PAM systems are based on single focused optical excitation and ultrasonic detection, limiting the wide-field imaging speed. While one-dimensional multifocal OR-PAM (1D-MFOR-PAM) has been developed, the potential of microlens and transducer arrays has not been fully realized. Here, we present the development of two-dimensional multifocal optical-resolution photoacoustic computed microscopy (2D-MFOR-PACM), using a 2D microlens array and a full-ring ultrasonic transducer array. The 10 × 10 mm2 microlens array generates 1800 optical foci within the focal plane of the 512-element transducer array, and raster scanning the microlens array yields optical-resolution photoacoustic images. The system has improved the in-plane resolution of a full-ring transducer array from ≥100 µm to 29 µm and achieved an imaging time of 36 seconds over a 10 × 10 mm2 field of view. In comparison, the 1D-MFOR-PAM would take more than 4 minutes to image over the same field of view. The imaging capability of the system was demonstrated on phantoms and animals both ex vivo and in vivo. PMID:24322226

  18. Study of $ \\bar{p} $ and $ \\bar{n} $ annihilations at LEAR with OBELIX, a large acceptance and high resolution detector based on the Open Axial Field Spectrometer

    CERN Multimedia

    2002-01-01

    % PS201 Study of $\\bar{p}$ and $\\bar{n}$ annihilations at LEAR with OBELIX, a large acceptance and high resolution detector based on the Open Axial Field Spectrometer \\\\ \\\\OBELIX is designed to study exclusive final states of antiproton and antineutron annihilations at low energies with protons and nuclei. \\\\ \\\\The physics motivations of the experiment are:\\\\ \\\\\\begin{itemize} \\item (gg, ggg), hybrids ($ q \\bar{q} g $), multiquarks ($ q q \\bar{q} \\bar{q} $) and light mesons ($ q \\bar{q} $) produced in $ N \\bar{N} $ annihilations and study of their spectroscopy and decays. Also broad structures will be searched for by comparing identical decay modes in exclusive final states of the same type occuring from initial states with different angular momentum or isospin. \\item Study of the dynamics of $ N \\bar{N} $ interactions and of the dependence of the final and intermediate resonant states of annihilation upon the quantum numbers of the initial $ N \\bar{N} $ state (angular momentum: S and P-wave in $\\bar{p}p $ at...

  19. Probing region-specific microstructure of human cortical areas using high angular and spatial resolution diffusion MRI.

    Science.gov (United States)

    Aggarwal, Manisha; Nauen, David W; Troncoso, Juan C; Mori, Susumu

    2015-01-15

    Regional heterogeneity in cortical cyto- and myeloarchitecture forms the structural basis of mapping of cortical areas in the human brain. In this study, we investigate the potential of diffusion MRI to probe the microstructure of cortical gray matter and its region-specific heterogeneity across cortical areas in the fixed human brain. High angular resolution diffusion imaging (HARDI) data at an isotropic resolution of 92-μm and 30 diffusion-encoding directions were acquired using a 3D diffusion-weighted gradient-and-spin-echo sequence, from prefrontal (Brodmann area 9), primary motor (area 4), primary somatosensory (area 3b), and primary visual (area 17) cortical specimens (n=3 each) from three human subjects. Further, the diffusion MR findings in these cortical areas were compared with histological silver impregnation of the same specimens, in order to investigate the underlying architectonic features that constitute the microstructural basis of diffusion-driven contrasts in cortical gray matter. Our data reveal distinct and region-specific diffusion MR contrasts across the studied areas, allowing delineation of intracortical bands of tangential fibers in specific layers-layer I, layer VI, and the inner and outer bands of Baillarger. The findings of this work demonstrate unique sensitivity of diffusion MRI to differentiate region-specific cortical microstructure in the human brain, and will be useful for myeloarchitectonic mapping of cortical areas as well as to achieve an understanding of the basis of diffusion NMR contrasts in cortical gray matter. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Adaptive Angular Sampling for SPECT Imaging

    OpenAIRE

    Li, Nan; Meng, Ling-Jian

    2011-01-01

    This paper presents an analytical approach for performing adaptive angular sampling in single photon emission computed tomography (SPECT) imaging. It allows for a rapid determination of the optimum sampling strategy that minimizes image variance in regions-of-interest (ROIs). The proposed method consists of three key components: (a) a set of close-form equations for evaluating image variance and resolution attainable with a given sampling strategy, (b) a gradient-based algor...

  1. Integrated field modelling[Oil and gas fields

    Energy Technology Data Exchange (ETDEWEB)

    Nazarian, Bamshad

    2002-07-01

    This research project studies the feasibility of developing and applying an integrated field simulator to simulate the production performance of an entire oil or gas field. It integrates the performance of the reservoir, the wells, the chokes, the gathering system, the surface processing facilities and whenever applicable, gas and water injection systems. The approach adopted for developing the integrated simulator is to couple existing commercial reservoir and process simulators using available linking technologies. The simulators are dynamically linked and customised into a single hybrid application that benefits from the concept of open software architecture. The integrated field simulator is linked to an optimisation routine developed based on the genetic algorithm search strategies. This enables optimisation of the system at field level, from the reservoir to the process. Modelling the wells and the gathering network is achieved by customising the process simulator. This study demonstrated that the integrated simulation improves current capabilities to simulate the performance of the entire field and optimise its design. This is achieved by evaluating design options including spread and layout of the wells and gathering system, processing alternatives, reservoir development schemes and production strategies. Effectiveness of the integrated simulator is demonstrated and tested through several field-level case studies that discuss and investigate technical problems relevant to offshore field development. The case studies cover topics such as process optimisation, optimum tie-in of satellite wells into existing process facilities, optimal well location and field layout assessment of a high pressure high temperature deepwater oil field. Case study results confirm the viability of the total field simulator by demonstrating that the field performance simulation and optimal design were obtained in an automated process with treasonable computation time. No significant

  2. Analogical reasoning in working memory: resources shared among relational integration, interference resolution, and maintenance.

    Science.gov (United States)

    Cho, Soohyun; Holyoak, Keith J; Cannon, Tyrone D

    2007-09-01

    We report a series of experiments using a pictorial analogy task designed to manipulate relational integration, interference resolution, and active maintenance simultaneously. The difficulty of the problems was varied in terms of the number of relations to be integrated, the need for interference resolution, and the duration of maintenance required to correctly solve the analogy. The participants showed decreases in performance when integrating multiple relations, as compared with a single relation, and when interference resolution was required in solving the analogy. When the participants were required to integrate multiple relations while simultaneously engaged in interference resolution, performance was worse, as compared with problems that incorporated either of these features alone. Maintenance of information across delays in the range of 1-4.5 sec led to greater decrements in visual memory, as compared with analogical reasoning. Misleading information caused interference when it had been necessarily attended to and maintained in working memory and, hence, had to be actively suppressed. However, sources of conflict within information that had not been attended to or encoded into working memory did not interfere with the ongoing controlled information processing required for relational integration. The findings provide evidence that relational integration and interference resolution depend on shared cognitive resources in working memory during analogical reasoning.

  3. In vivo High Angular Resolution Diffusion-Weighted Imaging of Mouse Brain at 16.4 Tesla

    OpenAIRE

    Alomair, Othman I.; Brereton, Ian M.; Smith, Maree T.; Galloway, Graham J.; Kurniawan, Nyoman D.

    2015-01-01

    Magnetic Resonance Imaging (MRI) of the rodent brain at ultra-high magnetic fields (> 9.4 Tesla) offers a higher signal-to-noise ratio that can be exploited to reduce image acquisition time or provide higher spatial resolution. However, significant challenges are presented due to a combination of longer T 1 and shorter T 2/T2* relaxation times and increased sensitivity to magnetic susceptibility resulting in severe local-field inhomogeneity artefacts from air pockets and bone/brain interfaces...

  4. Angular distribution of atoms ejected by laser ablation of different metals

    International Nuclear Information System (INIS)

    Konomi, I.; Motohiro, T.; Asaoka, T.

    2009-01-01

    Angular distributions of 13 different metals ejected by laser ablation using fourth harmonics (wavelength=266 nm) of neodymium doped yttrium aluminum garnet laser and a fluence close to near-threshold value (2.3 J/cm 2 ) have been investigated with a high angular resolution. The angular distribution which is characterized by the exponent n of cos n θ distribution showed very broad range of values between 3 and 24 for different metals. A simple relation that the exponent n is proportional to the square root of particle atomic weight as reported previously has not been observed. Instead, a general trend has been found that the metals with higher sublimation energy such as Ta and Zr show narrower angular distribution than those with lower sublimation energy such as Sn and In. While the sublimation energy of metals has a great influence on the angular distribution of ejected atoms, a simple consideration suggests that their thermal conductivity and specific heat have little effect on it.

  5. The investigation of active Martian dune fields using very high resolution photogrammetric measurements

    Science.gov (United States)

    Kim, Jungrack; Kim, Younghwi; Park, Minseong

    2016-10-01

    At the present time, arguments continue regarding the migration speeds of Martian dune fields and their correlation with atmospheric circulation. However, precisely measuring the spatial translation of Martian dunes has succeeded only a very few times—for example, in the Nili Patera study (Bridges et al. 2012) using change-detection algorithms and orbital imagery. Therefore, in this study, we developed a generic procedure to precisely measure the migration of dune fields with recently introduced 25-cm resolution orbital imagery specifically using a high-accuracy photogrammetric processor. The processor was designed to trace estimated dune migration, albeit slight, over the Martian surface by 1) the introduction of very high resolution ortho images and stereo analysis based on hierarchical geodetic control for better initial point settings; 2) positioning error removal throughout the sensor model refinement with a non-rigorous bundle block adjustment, which makes possible the co-alignment of all images in a time series; and 3) improved sub-pixel co-registration algorithms using optical flow with a refinement stage conducted on a pyramidal grid processor and a blunder classifier. Moreover, volumetric changes of Martian dunes were additionally traced by means of stereo analysis and photoclinometry. The established algorithms have been tested using high-resolution HIRISE time-series images over several Martian dune fields. Dune migrations were iteratively processed both spatially and volumetrically, and the results were integrated to be compared to the Martian climate model. Migrations over well-known crater dune fields appeared to be almost static for the considerable temporal periods and were weakly correlated with wind directions estimated by the Mars Climate Database (Millour et al. 2015). As a result, a number of measurements over dune fields in the Mars Global Dune Database (Hayward et al. 2014) covering polar areas and mid-latitude will be demonstrated

  6. Jet angularity measurements for single inclusive jet production

    Science.gov (United States)

    Kang, Zhong-Bo; Lee, Kyle; Ringer, Felix

    2018-04-01

    We study jet angularity measurements for single-inclusive jet production at the LHC. Jet angularities depend on a continuous parameter a allowing for a smooth interpolation between different traditional jet shape observables. We establish a factorization theorem within Soft Collinear Effective Theory (SCET) where we consistently take into account in- and out-of-jet radiation by making use of semi-inclusive jet functions. For comparison, we elaborate on the differences to jet angularities measured on an exclusive jet sample. All the necessary ingredients for the resummation at next-to-leading logarithmic (NLL) accuracy are presented within the effective field theory framework. We expect semiinclusive jet angularity measurements to be feasible at the LHC and we present theoretical predictions for the relevant kinematic range. In addition, we investigate the potential impact of jet angularities for quark-gluon discrimination.

  7. Details of 1π sr wide acceptance angle electrostatic lens for electron energy and two-dimensional angular distribution analysis combined with real space imaging

    International Nuclear Information System (INIS)

    Tóth, László; Matsuda, Hiroyuki; Matsui, Fumihiko; Goto, Kentaro; Daimon, Hiroshi

    2012-01-01

    We propose a new 1π sr Wide Acceptance Angle Electrostatic Lens (WAAEL), which works as a photoemission electron microscope (PEEM), a highly sensitive display-type electron energy and two-dimensional angular distribution analyzer. It can display two-dimensional angular distributions of charged particles within the acceptance angle of ±60° that is much larger than the largest acceptance angle range so far and comparable to the display-type spherical mirror analyzer developed by Daimon et al. . It has good focusing capabilities with 5-times magnification and 27(4) μm lateral-resolution. The relative energy resolution is typically from 2 to 5×10 -3 depending on the diameter of energy aperture and the emission area on the sample. Although, the lateral resolution of the presented lens is far from those are available nowadays, but this is the first working model that can form images using charged particles collected from 1π sr wide acceptance angle. The realization of such lens system is one of the first possible steps towards reaching the field of imaging type atomic resolution electron microscopy Feynman et al. Here some preliminary results are shown.

  8. Near-field characteristics of highly non-paraxial subwavelength optical fields with hybrid states of polarization

    International Nuclear Information System (INIS)

    Chen Rui-Pin; Gao Teng-Yue; Chew Khian-Hooi; Dai Chao-Qing; Zhou Guo-Quan; He Sai-Ling

    2017-01-01

    The vectorial structure of an optical field with hybrid states of polarization (SoP) in the near-field is studied by using the angular spectrum method of an electromagnetic beam. Physical images of the longitudinal components of evanescent waves are illustrated and compared with those of the transverse components from the vectorial structure. Our results indicate that the relative weight integrated over the transverse plane of the evanescent wave depends strongly on the number of the polarization topological charges. The shapes of the intensity profiles of the longitudinal components are different from those of the transverse components, and it can be manipulated by changing the initial SoP of the field cross-section. The longitudinal component of evanescent wave dominates the near-field region. In addition, it also leads to three-dimensional shape variations of the optical field and the optical spin angular momentum flux density distributions. (paper)

  9. Heteromodal conceptual processing in the angular gyrus.

    Science.gov (United States)

    Bonner, Michael F; Peelle, Jonathan E; Cook, Philip A; Grossman, Murray

    2013-05-01

    Concepts bind together the features commonly associated with objects and events to form networks in long-term semantic memory. These conceptual networks are the basis of human knowledge and underlie perception, imagination, and the ability to communicate about experiences and the contents of the environment. Although it is often assumed that this distributed semantic information is integrated in higher-level heteromodal association cortices, open questions remain about the role and anatomic basis of heteromodal representations in semantic memory. Here we used combined neuroimaging evidence from functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) to characterize the cortical networks underlying concept representation. Using a lexical decision task, we examined the processing of concepts in four semantic categories that varied on their sensory-motor feature associations (sight, sound, manipulation, and abstract). We found that the angular gyrus was activated across all categories regardless of their modality-specific feature associations, consistent with a heteromodal account for the angular gyrus. Exploratory analyses suggested that categories with weighted sensory-motor features additionally recruited modality-specific association cortices. Furthermore, DTI tractography identified white matter tracts connecting these regions of modality-specific functional activation with the angular gyrus. These findings are consistent with a distributed semantic network that includes a heteromodal, integrative component in the angular gyrus in combination with sensory-motor feature representations in modality-specific association cortices. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Active x-ray optics for high resolution space telescopes

    Science.gov (United States)

    Doel, Peter; Atkins, Carolyn; Brooks, D.; Feldman, Charlotte; Willingale, Richard; Button, Tim; Rodriguez Sanmartin, Daniel; Meggs, Carl; James, Ady; Willis, Graham; Smith, Andy

    2017-11-01

    The Smart X-ray Optics (SXO) Basic Technology project started in April 2006 and will end in October 2010. The aim is to develop new technologies in the field of X-ray focusing, in particular the application of active and adaptive optics. While very major advances have been made in active/adaptive astronomical optics for visible light, little was previously achieved for X-ray optics where the technological challenges differ because of the much shorter wavelengths involved. The field of X-ray astronomy has been characterized by the development and launch of ever larger observatories with the culmination in the European Space Agency's XMM-Newton and NASA's Chandra missions which are currently operational. XMM-Newton uses a multi-nested structure to provide modest angular resolution ( 10 arcsec) but large effective area, while Chandra sacrifices effective area to achieve the optical stability necessary to provide sub-arc second resolution. Currently the European Space Agency (ESA) is engaged in studies of the next generation of X-ray space observatories, with the aim of producing telescopes with increased sensitivity and resolution. To achieve these aims several telescopes have been proposed, for example ESA and NASA's combined International X-ray Observatory (IXO), aimed at spectroscopy, and NASA's Generation-X. In the field of X-ray astronomy sub 0.2 arcsecond resolution with high efficiency would be very exciting. Such resolution is unlikely to be achieved by anything other than an active system. The benefits of a such a high resolution would be important for a range of astrophysics subjects, for example the potential angular resolution offered by active X-ray optics could provide unprecedented structural imaging detail of the Solar Wind bowshock interaction of comets, planets and similar objects and auroral phenomena throughout the Solar system using an observing platform in low Earth orbit. A major aim of the SXO project was to investigate the production of thin

  11. Neutron angular distribution in a plasma focus obtained using nuclear track detectors.

    Science.gov (United States)

    Castillo-Mejía, F; Herrera, J J E; Rangel, J; Golzarri, J I; Espinosa, G

    2002-01-01

    The dense plasma focus (DPF) is a coaxial plasma gun in which a high-density, high-temperature plasma is obtained in a focused column for a few nanoseconds. When the filling gas is deuterium, neutrons can be obtained from fusion reactions. These are partially due to a beam of deuterons which are accelerated against the background hot plasma by large electric fields originating from plasma instabilities. Due to a beam-target effect, the angular distribution of the neutron emission is anisotropic, peaked in the forward direction along the axis of the gun. The purpose of this work is to illustrate the use of CR-39 nuclear track detectors as a diagnostic tool in the determination of the time-integrated neutron angular distribution. For the case studied in this work, neutron emission is found to have a 70% contribution from isotropic radiation and a 30% contribution from anisotropic radiation.

  12. A study of interference effects in Na(3S,3P)-Ne, Ar scattering experiments at high angular resolution

    International Nuclear Information System (INIS)

    Berg, F.T.M. van den.

    1984-01-01

    In this thesis the author presents measurements of differential cross sections for the scattering of Na-atoms in the ground-state and first excited-state by the rare gas atoms Ne and Ar. The scattering experiments were performed in a crossed-beam apparatus built and tested by van Deventer et al. The unique high angular-resolution (0.1 0 ) of this beam-scattering apparatus permits us (i) to remove the discrepancies that still exist between the various X 2 Σ- and A 2 PI-potential curves for Na-Ar and Na-Ne reported up to now, (ii) to obtain detailed information on the B 2 Σ-potentials for these systems and (iii) to demonstrate the necessity of taking into account the spin-uncoupling effects, in the interpretation of the experimental Na-Ne scattering patterns. (Auth.)

  13. Scanning SQUID susceptometers with sub-micron spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Kirtley, John R., E-mail: jkirtley@stanford.edu; Rosenberg, Aaron J.; Palmstrom, Johanna C.; Holland, Connor M.; Moler, Kathryn A. [Department of Applied Physics, Stanford University, Stanford, California 94305-4045 (United States); Paulius, Lisa [Department of Physics, Western Michigan University, Kalamazoo, Michigan 49008-5252 (United States); Spanton, Eric M. [Department of Physics, Stanford University, Stanford, California 94305-4045 (United States); Schiessl, Daniel [Attocube Systems AG, Königinstraße 11A, 80539 Munich (Germany); Jermain, Colin L.; Gibbons, Jonathan [Department of Physics, Cornell University, Cornell, Ithaca, New York 14853 (United States); Fung, Y.-K.K.; Gibson, Gerald W. [IBM Research Division, T. J. Watson Research Center, Yorktown Heights, New York 10598 (United States); Huber, Martin E. [Department of Physics, University of Colorado Denver, Denver, Colorado 80217-3364 (United States); Ralph, Daniel C. [Department of Physics, Cornell University, Cornell, Ithaca, New York 14853 (United States); Kavli Institute at Cornell, Ithaca, New York 14853 (United States); Ketchen, Mark B. [OcteVue, Hadley, Massachusetts 01035 (United States)

    2016-09-15

    Superconducting QUantum Interference Device (SQUID) microscopy has excellent magnetic field sensitivity, but suffers from modest spatial resolution when compared with other scanning probes. This spatial resolution is determined by both the size of the field sensitive area and the spacing between this area and the sample surface. In this paper we describe scanning SQUID susceptometers that achieve sub-micron spatial resolution while retaining a white noise floor flux sensitivity of ≈2μΦ{sub 0}/Hz{sup 1/2}. This high spatial resolution is accomplished by deep sub-micron feature sizes, well shielded pickup loops fabricated using a planarized process, and a deep etch step that minimizes the spacing between the sample surface and the SQUID pickup loop. We describe the design, modeling, fabrication, and testing of these sensors. Although sub-micron spatial resolution has been achieved previously in scanning SQUID sensors, our sensors not only achieve high spatial resolution but also have integrated modulation coils for flux feedback, integrated field coils for susceptibility measurements, and batch processing. They are therefore a generally applicable tool for imaging sample magnetization, currents, and susceptibilities with higher spatial resolution than previous susceptometers.

  14. Scanning SQUID susceptometers with sub-micron spatial resolution

    International Nuclear Information System (INIS)

    Kirtley, John R.; Rosenberg, Aaron J.; Palmstrom, Johanna C.; Holland, Connor M.; Moler, Kathryn A.; Paulius, Lisa; Spanton, Eric M.; Schiessl, Daniel; Jermain, Colin L.; Gibbons, Jonathan; Fung, Y.-K.K.; Gibson, Gerald W.; Huber, Martin E.; Ralph, Daniel C.; Ketchen, Mark B.

    2016-01-01

    Superconducting QUantum Interference Device (SQUID) microscopy has excellent magnetic field sensitivity, but suffers from modest spatial resolution when compared with other scanning probes. This spatial resolution is determined by both the size of the field sensitive area and the spacing between this area and the sample surface. In this paper we describe scanning SQUID susceptometers that achieve sub-micron spatial resolution while retaining a white noise floor flux sensitivity of ≈2μΦ_0/Hz"1"/"2. This high spatial resolution is accomplished by deep sub-micron feature sizes, well shielded pickup loops fabricated using a planarized process, and a deep etch step that minimizes the spacing between the sample surface and the SQUID pickup loop. We describe the design, modeling, fabrication, and testing of these sensors. Although sub-micron spatial resolution has been achieved previously in scanning SQUID sensors, our sensors not only achieve high spatial resolution but also have integrated modulation coils for flux feedback, integrated field coils for susceptibility measurements, and batch processing. They are therefore a generally applicable tool for imaging sample magnetization, currents, and susceptibilities with higher spatial resolution than previous susceptometers.

  15. Low drive field amplitude for improved image resolution in magnetic particle imaging.

    Science.gov (United States)

    Croft, Laura R; Goodwill, Patrick W; Konkle, Justin J; Arami, Hamed; Price, Daniel A; Li, Ada X; Saritas, Emine U; Conolly, Steven M

    2016-01-01

    Magnetic particle imaging (MPI) is a new imaging technology that directly detects superparamagnetic iron oxide nanoparticles. The technique has potential medical applications in angiography, cell tracking, and cancer detection. In this paper, the authors explore how nanoparticle relaxation affects image resolution. Historically, researchers have analyzed nanoparticle behavior by studying the time constant of the nanoparticle physical rotation. In contrast, in this paper, the authors focus instead on how the time constant of nanoparticle rotation affects the final image resolution, and this reveals nonobvious conclusions for tailoring MPI imaging parameters for optimal spatial resolution. The authors first extend x-space systems theory to include nanoparticle relaxation. The authors then measure the spatial resolution and relative signal levels in an MPI relaxometer and a 3D MPI imager at multiple drive field amplitudes and frequencies. Finally, these image measurements are used to estimate relaxation times and nanoparticle phase lags. The authors demonstrate that spatial resolution, as measured by full-width at half-maximum, improves at lower drive field amplitudes. The authors further determine that relaxation in MPI can be approximated as a frequency-independent phase lag. These results enable the authors to accurately predict MPI resolution and sensitivity across a wide range of drive field amplitudes and frequencies. To balance resolution, signal-to-noise ratio, specific absorption rate, and magnetostimulation requirements, the drive field can be a low amplitude and high frequency. Continued research into how the MPI drive field affects relaxation and its adverse effects will be crucial for developing new nanoparticles tailored to the unique physics of MPI. Moreover, this theory informs researchers how to design scanning sequences to minimize relaxation-induced blurring for better spatial resolution or to exploit relaxation-induced blurring for MPI with

  16. Angular overlap model analysis of the D 2d crystal field effect in uranium (4+) compounds

    Science.gov (United States)

    Gajek, Z.; Hubert, S.; Krupa, J. C.

    1988-12-01

    Recent interpretations of the D 2d crystal field of U 4+ in β-ThCl 4, α, β-ThBr 4, ThSiO 4 and UCl 4 are discussed in terms of the simplified one-, two- and three-parameter versions of the Angular Overlap Model which are shown to be a handy tool in a trial interpretation of the effect. The variation of the CF parameters with a small D 2 distortion of the coordination is well reproduced by the model.

  17. INTEGRAL SPI Limits on Electron-Positron Annihilation Radiation from the Galactic Plane

    DEFF Research Database (Denmark)

    Teegarden, B. J.; Watanabe, K.; Jean, P.

    2005-01-01

    ‐Ray Astrophysics Laboratory) mission, launched in 2002 October, is the detailed study of this radiation. The Spectrometer on INTEGRAL (SPI) is a high‐resolution, coded‐aperture gamma‐ray telescope with an unprecedented combination of sensitivity, angular resolution, and energy resolution. We report results from...... the first 10 months of observation. During this period a significant fraction of the observing time was spent in or near the Galactic plane. No positive annihilation flux was detected outside of the central region () of our Galaxy. In this paper we describe the observations and data analysis methods...

  18. The mass and angular momentum of reconstructed metric perturbations

    Science.gov (United States)

    van de Meent, Maarten

    2017-06-01

    We prove a key result regarding the mass and angular momentum content of linear vacuum perturbations of the Kerr metric obtained through the formalism developed by Chrzarnowski, Cohen, and Kegeles (CCK). More precisely, we prove that the Abbott-Deser mass and angular momentum integrals of any such perturbation vanish when that perturbation was obtained from a regular Fourier mode of the Hertz potential. As a corollary we obtain a generalization of previous results on the completion of the ‘no string’ radiation gauge metric perturbation generated by a point particle. We find that for any bound orbit around a Kerr black hole, the mass and angular momentum perturbations completing the CCK metric are simply the energy and angular momentum of the particle ‘outside’ the orbit and vanish ‘inside’ the orbit.

  19. Speckle correlation resolution enhancement of wide-field fluorescence imaging (Conference Presentation)

    Science.gov (United States)

    Yilmaz, Hasan

    2016-03-01

    Structured illumination enables high-resolution fluorescence imaging of nanostructures [1]. We demonstrate a new high-resolution fluorescence imaging method that uses a scattering layer with a high-index substrate as a solid immersion lens [2]. Random scattering of coherent light enables a speckle pattern with a very fine structure that illuminates the fluorescent nanospheres on the back surface of the high-index substrate. The speckle pattern is raster-scanned over the fluorescent nanospheres using a speckle correlation effect known as the optical memory effect. A series of standard-resolution fluorescence images per each speckle pattern displacement are recorded by an electron-multiplying CCD camera using a commercial microscope objective. We have developed a new phase-retrieval algorithm to reconstruct a high-resolution, wide-field image from several standard-resolution wide-field images. We have introduced phase information of Fourier components of standard-resolution images as a new constraint in our algorithm which discards ambiguities therefore ensures convergence to a unique solution. We demonstrate two-dimensional fluorescence images of a collection of nanospheres with a deconvolved Abbe resolution of 116 nm and a field of view of 10 µm × 10 µm. Our method is robust against optical aberrations and stage drifts, therefore excellent for imaging nanostructures under ambient conditions. [1] M. G. L. Gustafsson, J. Microsc. 198, 82-87 (2000). [2] H. Yilmaz, E. G. van Putten, J. Bertolotti, A. Lagendijk, W. L. Vos, and A. P. Mosk, Optica 2, 424-429 (2015).

  20. Satellite Angular Velocity Estimation Based on Star Images and Optical Flow Techniques

    Directory of Open Access Journals (Sweden)

    Giancarmine Fasano

    2013-09-01

    Full Text Available An optical flow-based technique is proposed to estimate spacecraft angular velocity based on sequences of star-field images. It does not require star identification and can be thus used to also deliver angular rate information when attitude determination is not possible, as during platform de tumbling or slewing. Region-based optical flow calculation is carried out on successive star images preprocessed to remove background. Sensor calibration parameters, Poisson equation, and a least-squares method are then used to estimate the angular velocity vector components in the sensor rotating frame. A theoretical error budget is developed to estimate the expected angular rate accuracy as a function of camera parameters and star distribution in the field of view. The effectiveness of the proposed technique is tested by using star field scenes generated by a hardware-in-the-loop testing facility and acquired by a commercial-off-the shelf camera sensor. Simulated cases comprise rotations at different rates. Experimental results are presented which are consistent with theoretical estimates. In particular, very accurate angular velocity estimates are generated at lower slew rates, while in all cases the achievable accuracy in the estimation of the angular velocity component along boresight is about one order of magnitude worse than the other two components.

  1. Recent developments in high-resolution global altimetric gravity field modeling

    DEFF Research Database (Denmark)

    Andersen, Ole Baltazar; Knudsen, Per; Berry, P. A .M.

    2010-01-01

    older gravity fields show accuracy improvement of the order of 20-40% due to a combination of retracking, enhanced processing, and the use of the new EGM2008 geoid model. In coastal and polar regions, accuracy improved in many places by 40-50% (or more) compared with older global marine gravity fields.......In recent years, dedicated effort has been made to improve high-resolution global marine gravity fields. One new global field is the Danish National Space Center (DNSC) 1-minute grid called DNSC08GRA, released in 2008. DNSC08GRA was derived from double-retracked satellite altimetry, mainly from...... the ERS-1 geodetic mission data, augmented with new retracked GEOSAT data which have significantly enhanced the range and hence the gravity field accuracy. DNSC08GRA is the first high-resolution global gravity field to cover the entire Arctic Ocean all the way to the North Pole. Comparisons with other...

  2. Angular dependence of the upper critical field in Bi sub 2 Sr sub 2 CuO sub 6 sub + subdelta

    CERN Document Server

    Vedeneev, S I

    2002-01-01

    The angular dependence of the upper critical field has been investigated in a wide range of temperatures in very high-quality Bi sub 2 Sr sub 2 CuO sub 6 sub + subdelta single crystals with critical temperature approx = 9 K in magnetic fields up to 28 T. Although the typical value of the normal state resistivity ratio approx = 10 sup 4 , the anisotropy ratio of the upper critical fields is much smaller. A model is proposed based on a strong anisotropy and a small transparency between superconducting layers

  3. Mass loss of evolved massive stars: the circumstellar environment at high angular resolution

    International Nuclear Information System (INIS)

    Montarges, Miguel

    2014-01-01

    Mass loss of evolved stars is still largely mysterious, despite its importance as the main evolution engine for the chemical composition of the interstellar medium. For red supergiants (RSG), the triggering of the outflow and the mechanism of dust condensation remain unknown. Concerning red giant stars, we still do not know how their mass loss is able to form a bipolar planetary nebula. During my PhD thesis, I observed evolved stars with high angular resolution techniques. They allowed us to study the surface and the close environment of these stars, from where mass loss originates. With near-infrared interferometric observations, I characterized the water vapor and carbon monoxide envelope of the nearby RSG Betelgeuse. I also monitored a hot spot on its surface and analyzed the structure of its convection, as well as that of Antares (another very nearby supergiant) thanks to radiative hydrodynamical simulations. Diffraction-limited imaging techniques (near-infrared adaptive optics, ultraviolet space telescope) allowed me to observe the evolution of inhomogeneities in the circumstellar envelope of Betelgeuse and to discover a circumstellar disk around L2 Puppis, an asymptotic giant branch star. These multi-scale and multi-wavelength observations obtained at several epochs allowed us to monitor the evolution of the structures and to derive information on the dynamics of the stellar environment. With a wider stellar sample expected in the next few years, this observing program will allow a better understanding of the mass loss of evolved stars. (author)

  4. Initial angular momentum and flow in high energy nuclear collisions

    Science.gov (United States)

    Fries, Rainer J.; Chen, Guangyao; Somanathan, Sidharth

    2018-03-01

    We study the transfer of angular momentum in high energy nuclear collisions from the colliding nuclei to the region around midrapidity, using the classical approximation of the color glass condensate (CGC) picture. We find that the angular momentum shortly after the collision (up to times ˜1 /Qs , where Qs is the saturation scale) is carried by the "β -type" flow of the initial classical gluon field, introduced by some of us earlier. βi˜μ1∇iμ2-μ2∇iμ1 (i =1 ,2 ) describes the rapidity-odd transverse energy flow and emerges from Gauss's law for gluon fields. Here μ1 and μ2 are the averaged color charge fluctuation densities in the two nuclei, respectively. Interestingly, strong coupling calculations using anti-de Sitter/conformal field theory (AdS/CFT) techniques also find an energy flow term featuring this particular combination of nuclear densities. In classical CGC the order of magnitude of the initial angular momentum per rapidity in the reaction plane, at a time 1 /Qs , is |d L2/d η |≈ RAQs-3ɛ¯0/2 at midrapidity, where RA is the nuclear radius, and ɛ¯0 is the average initial energy density. This result emerges as a cancellation between a vortex of energy flow in the reaction plane aligned with the total angular momentum, and energy shear flow opposed to it. We discuss in detail the process of matching classical Yang-Mills results to fluid dynamics. We will argue that dissipative corrections should not be discarded to ensure that macroscopic conservation laws, e.g., for angular momentum, hold. Viscous fluid dynamics tends to dissipate the shear flow contribution that carries angular momentum in boost-invariant fluid systems. This leads to small residual angular momentum around midrapidity at late times for collisions at high energies.

  5. High resolution NMR imaging using a high field yokeless permanent magnet.

    Science.gov (United States)

    Kose, Katsumi; Haishi, Tomoyuki

    2011-01-01

    We measured the homogeneity and stability of the magnetic field of a high field (about 1.04 tesla) yokeless permanent magnet with 40-mm gap for high resolution nuclear magnetic resonance (NMR) imaging. Homogeneity was evaluated using a 3-dimensional (3D) lattice phantom and 3D spin-echo imaging sequences. In the central sphere (20-mm diameter), peak-to-peak magnetic field inhomogeneity was about 60 ppm, and the root-mean-square was 8 ppm. We measured room temperature, magnet temperature, and NMR frequency of the magnet simultaneously every minute for about 68 hours with and without the thermal insulator of the magnet. A simple mathematical model described the magnet's thermal property. Based on magnet performance, we performed high resolution (up to [20 µm](2)) imaging with internal NMR lock sequences of several biological samples. Our results demonstrated the usefulness of the high field small yokeless permanent magnet for high resolution NMR imaging.

  6. High resolution NMR imaging using a high field yokeless permanent magnet

    International Nuclear Information System (INIS)

    Kose, Katsumi; Haishi, Tomoyuki

    2011-01-01

    We measured the homogeneity and stability of the magnetic field of a high field (about 1.04 tesla) yokeless permanent magnet with 40-mm gap for high resolution nuclear magnetic resonance (NMR) imaging. Homogeneity was evaluated using a 3-dimensional (3D) lattice phantom and 3D spin-echo imaging sequences. In the central sphere (20-mm diameter), peak-to-peak magnetic field inhomogeneity was about 60 ppm, and the root-mean-square was 8 ppm. We measured room temperature, magnet temperature, and NMR frequency of the magnet simultaneously every minute for about 68 hours with and without the thermal insulator of the magnet. A simple mathematical model described the magnet's thermal property. Based on magnet performance, we performed high resolution (up to [20 μm] 2 ) imaging with internal NMR lock sequences of several biological samples. Our results demonstrated the usefulness of the high field small yokeless permanent magnet for high resolution NMR imaging. (author)

  7. In-Plane Angular Effect of Magnetoresistance of Quasi-One-Dimensional Organic Metals, (DMET) 2AuBr 2 and (TMTSF) 2ClO 4

    Science.gov (United States)

    Yoshino, Harukazu; Saito, Kazuya; Nishikawa, Hiroyuki; Kikuchi, Koichi; Kobayashi, Keiji; Ikemoto, Isao

    1997-08-01

    Comparative study is presented for the in-plane angular effect of magnetoresistance of quasi-one-dimensional organic conductors, (DMET)2AuBr2 and (TMTSF)2ClO4. The magnetoresistance for the magnetic and electrical fields parallel and perpendicular to the most conducting plane, respectively, was measured at 4.2 K and up to 7.0 T. (DMET)2AuBr2 shows an anomalous hump in the field-orientation dependence of the magnetoresistance for the magnetic field nearly parallel to the most conducting axis and this is very similar to what previously reported for (DMET)2I3. Weak anomaly was detected for the magnetoresistance of (TMTSF)2ClO4 in the Relaxed state, while no anomaly was observed in the SDW phase in the Quenched state. By comparing the numerical angular derivatives of the magnetoresistance, it is shown that the anomaly in the in-plane angular effect continuously develops from zero magnetic field and is closely related to the quasi-one-dimensional Fermi surface. A simple method is proposed to estimate the anisotropy of the transfer integral from the width of the hump anomaly.

  8. The multiplicity of massive stars: A high angular resolution survey with the HST fine guidance sensor

    International Nuclear Information System (INIS)

    Aldoretta, E. J.; Gies, D. R.; Henry, T. J.; Jao, W.-C.; Norris, R. P.

    2015-01-01

    We present the results of an all-sky survey made with the Fine Guidance Sensor on the Hubble Space Telescope to search for angularly resolved binary systems among massive stars. The sample of 224 stars is comprised mainly of Galactic O- and B-type stars and luminous blue variables, plus a few luminous stars in the Large Magellanic Cloud. The FGS TRANS mode observations are sensitive to the detection of companions with an angular separation between 0.″01 and 1.″0 and brighter than △m=5. The FGS observations resolved 52 binary and 6 triple star systems and detected partially resolved binaries in 7 additional targets (43 of these are new detections). These numbers yield a companion detection frequency of 29% for the FGS survey. We also gathered literature results on the numbers of close spectroscopic binaries and wider astrometric binaries among the sample, and we present estimates of the frequency of multiple systems and the companion frequency for subsets of stars residing in clusters and associations, field stars, and runaway stars. These results confirm the high multiplicity fraction, especially among massive stars in clusters and associations. We show that the period distribution is approximately flat in increments of logP. We identify a number of systems of potential interest for long-term orbital determinations, and we note the importance of some of these companions for the interpretation of the radial velocities and light curves of close binaries that have third companions.

  9. Integrating single-point vibrometer and full-field electronic speckle pattern interferometer to evaluate a micro-speaker

    Science.gov (United States)

    Chang, Wen-Chi; Chen, Yu-Chi; Chien, Chih-Jen; Wang, An-Bang; Lee, Chih-Kung

    2011-04-01

    A testing system contains an advanced vibrometer/interferometer device (AVID) and a high-speed electronic speckle pattern interferometer (ESPI) was developed. AVID is a laser Doppler vibrometer that can be used to detect single-point linear and angular velocity with DC to 20 MHz bandwidth and with nanometer resolution. In swept frequency mode, frequency response from mHz to MHz of the structure of interest can be measured. The ESPI experimental setup can be used to measure full-field out-of-plane displacement. A 5-1 phase shifting method and a correlation algorithm were used to analyze the phase difference between the reference signal and the speckle signal scattered from the sample surface. In order to show the efficiency and effectiveness of AVID and ESPI, we designed a micro-speaker composed of a plate with fixed boundaries and two piezo-actuators attached to the sides of the plate. The AVID was used to measure the vibration of one of the piezo-actuators and the ESPI was adopted to measure the two-dimensional out-of-plane displacement of the plate. A microphone was used to measure the acoustic response created by the micro-speaker. Driving signal includes random signal, sinusoidal signal, amplitude modulated high-frequency carrier signal, etc. Angular response induced by amplitude modulated high-frequency carrier signal was found to be significantly narrower than the frequency responses created by other types of driving signals. The validity of our newly developed NDE system are detailed by comparing the relationship between the vibration signal of the micro-speaker and the acoustic field generated.

  10. A Missile-Borne Angular Velocity Sensor Based on Triaxial Electromagnetic Induction Coils

    Directory of Open Access Journals (Sweden)

    Jian Li

    2016-09-01

    Full Text Available Aiming to solve the problem of the limited measuring range for angular motion parameters of high-speed rotating projectiles in the field of guidance and control, a self-adaptive measurement method for angular motion parameters based on the electromagnetic induction principle is proposed. First, a framework with type bent “I-shape” is used to design triaxial coils in a mutually orthogonal way. Under the condition of high rotational speed of a projectile, the induction signal of the projectile moving across a geomagnetic field is acquired by using coils. Second, the frequency of the pulse signal is adjusted self-adaptively. Angular velocity and angular displacement are calculated in the form of periodic pulse counting and pulse accumulation, respectively. Finally, on the basis of that principle prototype of the sensor is researched and developed, performance of measuring angular motion parameters are tested on the sensor by semi-physical and physical simulation experiments, respectively. Experimental results demonstrate that the sensor has a wide measuring range of angular velocity from 1 rps to 100 rps with a measurement error of less than 0.3%, and the angular displacement measurement error is lower than 0.2°. The proposed method satisfies measurement requirements for high-speed rotating projectiles with an extremely high dynamic range of rotational speed and high precision, and has definite value to engineering applications in the fields of attitude determination and geomagnetic navigation.

  11. Characteristic evolutions in numerical relativity using six angular patches

    International Nuclear Information System (INIS)

    Reisswig, Christian; Bishop, Nigel T; Lai, Chi Wai; Thornburg, Jonathan; Szilagyi, Bela

    2007-01-01

    The characteristic approach to numerical relativity is a useful tool in evolving gravitational systems. In the past this has been implemented using two patches of stereographic angular coordinates. In other applications, a six-patch angular coordinate system has proved effective. Here we investigate the use of a six-patch system in characteristic numerical relativity, by comparing an existing two-patch implementation (using second-order finite differencing throughout) with a new six-patch implementation (using either second- or fourth-order finite differencing for the angular derivatives). We compare these different codes by monitoring the Einstein constraint equations, numerically evaluated independently from the evolution. We find that, compared to the (second-order) two-patch code at equivalent resolutions, the errors of the second-order six-patch code are smaller by a factor of about 2, and the errors of the fourth-order six-patch code are smaller by a factor of nearly 50

  12. Characteristic evolutions in numerical relativity using six angular patches

    Energy Technology Data Exchange (ETDEWEB)

    Reisswig, Christian [Max-Planck-Institut fuer Gravitationsphysik, Albert-Einstein-Institut, Am Muehlenberg 1, D-14476 Golm (Germany); Bishop, Nigel T [Department of Mathematical Sciences, University of South Africa, PO Box 392, Unisa 0003, South Africa (South Africa); Lai, Chi Wai [Department of Mathematical Sciences, University of South Africa, PO Box 392, Unisa 0003, South Africa (South Africa); Thornburg, Jonathan [Max-Planck-Institut fuer Gravitationsphysik, Albert-Einstein-Institut, Am Muehlenberg 1, D-14476 Golm (Germany); Szilagyi, Bela [Max-Planck-Institut fuer Gravitationsphysik, Albert-Einstein-Institut, Am Muehlenberg 1, D-14476 Golm (Germany)

    2007-06-21

    The characteristic approach to numerical relativity is a useful tool in evolving gravitational systems. In the past this has been implemented using two patches of stereographic angular coordinates. In other applications, a six-patch angular coordinate system has proved effective. Here we investigate the use of a six-patch system in characteristic numerical relativity, by comparing an existing two-patch implementation (using second-order finite differencing throughout) with a new six-patch implementation (using either second- or fourth-order finite differencing for the angular derivatives). We compare these different codes by monitoring the Einstein constraint equations, numerically evaluated independently from the evolution. We find that, compared to the (second-order) two-patch code at equivalent resolutions, the errors of the second-order six-patch code are smaller by a factor of about 2, and the errors of the fourth-order six-patch code are smaller by a factor of nearly 50.

  13. The role of angular momentum conservation law in statistical mechanics

    Directory of Open Access Journals (Sweden)

    I.M. Dubrovskii

    2008-12-01

    Full Text Available Within the limits of Khinchin ideas [A.Y. Khinchin, Mathematical Foundation of Statistical Mechanics. NY, Ed. Dover, 1949] the importance of momentum and angular momentum conservation laws was analyzed for two cases: for uniform magnetic field and when magnetic field is absent. The law of momentum conservation does not change the density of probability distribution in both cases, just as it is assumed in the conventional theory. It is shown that in systems where the kinetic energy depends only on particle momenta canonically conjugated with Cartesian coordinates being their diagonal quadric form,the angular momentum conservation law changes the density of distribution of the system only in case the full angular momentum of a system is not equal to zero. In the gas of charged particles in a uniform magnetic field the density of distribution also varies if the angular momentum is zero [see Dubrovskii I.M., Condensed Matter Physics, 2206, 9, 23]. Two-dimensional gas of charged particles located within a section of an endless strip filled with gas in magnetic field is considered. Under such conditions the angular momentum is not conserved. Directional particle flows take place close to the strip boundaries, and, as a consequence, the phase trajectory of the considered set of particles does not remain within the limited volume of the phase space. In order to apply a statistical thermodynamics method, it was suggested to consider near-boundary trajectories relative to a reference system that moves uniformly. It was shown that if the diameter of an orbit having average thermal energy is much smaller than a strip width, the corrections to thermodynamic functions are small depending on magnetic field. Only the average velocity of near-boundary particles that form near-boundary electric currents creating the paramagnetic moment turn out to be essential.

  14. Angular analysis of charged and neutral B -> K mu(+) mu(-) decays

    NARCIS (Netherlands)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Anderson, J.; Andreassen, R.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Gutierrez, O. Aquines; Archilli, F.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Balagura, V.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Bauer, Th.; Bay, A.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Belogurov, S.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Onderwater, G.; Pellegrino, A.

    2014-01-01

    The angular distributions of the rare decays B+ -> K+mu(+)mu(-) and B-0 -> K-S(0)mu(+)mu(-) are studied with data corresponding to 3 fb(-1) of integrated luminosity, collected in proton-proton collisions at 7 and 8 TeV centre-of-mass energies with the LHCb detector. The angular distribution is

  15. Uniform angular overlap model interpretation of the crystal field effect in U(5+) fluoride compounds

    Energy Technology Data Exchange (ETDEWEB)

    Gajek, Z.; Mulak, J. (W. Trzebiatowski Inst. of Low Temperature and Structure Research, Polish Academy of Sciences, Wroclaw (Poland))

    1990-11-01

    The uniform interpretation of the crystal field effect in three different U(5+) fluoride compounds: CsUF{sub 6}, {alpha}-UF{sub 5} and {beta}-UF{sub 5} within the angular overlap model (AOM) is given. Some characteristic relations between the AOM parameters and their distance dependencies resulting from ab initio calculations are introduced and examined from a phenomenological point of view. The traditional simplest approach with only one independent parameter, i.e. e{sub {sigma}} with e{sub {pi}}:e{sub {sigma}} = 0.32 and e{sub {delta}} = 0, is shown to provide a consistent interpretation of the crystal field effect of the whole class of the compounds. The parameters obtained for one compound are easily and successfully extrapolated to others. The specificity and importance of the e{sub {delta}} parameter for 5f{sup 1} systems is discussed. (orig.).

  16. Angular momentum alignment in molecular beam scattering

    International Nuclear Information System (INIS)

    Treffers, M.A.

    1985-01-01

    It is shown how the angular momentum alignment in a molecular beam can be determined using laser-induced fluorescence in combination with precession of the angular momenta in a magnetic field. After a general analysis of the method, some results are presented to illustrate the possibilities of the method. Experimental data are presented on the alignment production for Na 2 molecules that made a collision induced angular momentum transition. Magnitude as well as direction of the alignment have been determined for scattering with several scattering partners and for a large number of scattering angles and transitions. The last chapter deals with the total alignment production in a final J-state, i.e. without state selection of the initial rotational state. (orig.)

  17. Angular momentum and torque described with the complex octonion

    International Nuclear Information System (INIS)

    Weng, Zi-Hua

    2014-01-01

    The paper aims to adopt the complex octonion to formulate the angular momentum, torque, and force etc in the electromagnetic and gravitational fields. Applying the octonionic representation enables one single definition of angular momentum (or torque, force) to combine some physics contents, which were considered to be independent of each other in the past. J. C. Maxwell used simultaneously two methods, the vector terminology and quaternion analysis, to depict the electromagnetic theory. It motivates the paper to introduce the quaternion space into the field theory, describing the physical feature of electromagnetic and gravitational fields. The spaces of electromagnetic field and of gravitational field can be chosen as the quaternion spaces, while the coordinate component of quaternion space is able to be the complex number. The quaternion space of electromagnetic field is independent of that of gravitational field. These two quaternion spaces may compose one octonion space. Contrarily, one octonion space can be separated into two subspaces, the quaternion space and S-quaternion space. In the quaternion space, it is able to infer the field potential, field strength, field source, angular momentum, torque, and force etc in the gravitational field. In the S-quaternion space, it is capable of deducing the field potential, field strength, field source, current continuity equation, and electric (or magnetic) dipolar moment etc in the electromagnetic field. The results reveal that the quaternion space is appropriate to describe the gravitational features, including the torque, force, and mass continuity equation etc. The S-quaternion space is proper to depict the electromagnetic features, including the dipolar moment and current continuity equation etc. In case the field strength is weak enough, the force and the continuity equation etc can be respectively reduced to that in the classical field theory

  18. Consistency of the directionality of partially coherent beams in turbulence expressed in terms of the angular spread and the far-field average intensity

    International Nuclear Information System (INIS)

    Xiao-Wen, Chen; Xiao-Ling, Ji

    2010-01-01

    Under the quadratic approximation of the Rytov's phase structure function, this paper derives the general closed-form expressions for the mean-squared width and the angular spread of partially coherent beams in turbulence. It finds that under a certain condition different types of partially coherent beams may have the same directionality as a fully coherent Gaussian beam in free space and also in atmospheric turbulence if the angular spread is chosen as the characteristic parameter of beam directionality. On the other hand, it shows that generally, the directionality of partially coherent beams expressed in terms of the angular spread is not consistent with that in terms of the normalized far-field average intensity distribution in free space, but the consistency can be achieved due to turbulence. (classical areas of phenomenology)

  19. An integral field spectrograph utilizing mirrorlet arrays

    Science.gov (United States)

    Chamberlin, Phillip C.; Gong, Qian

    2016-09-01

    An integral field spectrograph (IFS) has been developed that utilizes a new and novel optical design to observe two spatial dimensions simultaneously with one spectral dimension. This design employs an optical 2-D array of reflecting and focusing mirrorlets. This mirrorlet array is placed at the imaging plane of the front-end telescope to generate a 2-D array of tiny spots replacing what would be the slit in a traditional slit spectrometer design. After the mirrorlet in the optical path, a grating on a concave mirror surface will image the spot array and provide high-resolution spectrum for each spatial element at the same time; therefore, the IFS simultaneously obtains the 3-D data cube of two spatial and one spectral dimensions. The new mirrorlet technology is currently in-house and undergoing laboratory testing at NASA Goddard Space Flight Center. Section 1 describes traditional classes of instruments that are used in Heliophysics missions and a quick introduction to the new IFS design. Section 2 discusses the details of the most generic mirrorlet IFS, while section 3 presents test results of a lab-based instrument. An example application to a Heliophysics mission to study solar eruptive events in extreme ultraviolet wavelengths is presented in section 4 that has high spatial resolution (0.5 arc sec pixels) in the two spatial dimensions and high spectral resolution (66 mÅ) across a 15 Å spectral window. Section 4 also concludes with some other optical variations that could be employed on the more basic IFS for further capabilities of this type of instrument.

  20. An Integral Field Spectrograph Utilizing Mirrorlet Arrays

    Science.gov (United States)

    Chamberlin, Phillip C.; Gong, Qian

    2016-01-01

    An integral field spectrograph (IFS) has been developed that utilizes a new and novel optical design to observe two spatial dimensions simultaneously with one spectral dimension. This design employs an optical 2-D array of reflecting and focusing mirrorlets. This mirrorlet array is placed at the imaging plane of the front-end telescope to generate a 2-D array of tiny spots replacing what would be the slit in a traditional slit spectrometer design. After the mirrorlet in the optical path, a grating on a concave mirror surface will image the spot array and provide high-resolution spectrum for each spatial element at the same time; therefore, the IFS simultaneously obtains the 3-D data cube of two spatial and one spectral dimensions. The new mirrorlet technology is currently in-house and undergoing laboratory testing at NASA Goddard Space Flight Center. Section 1 describes traditional classes of instruments that are used in Heliophysics missions and a quick introduction to the new IFS design. Section 2 discusses the details of the most generic mirrorlet IFS, while section 3 presents test results of a lab-based instrument. An example application to a Heliophysics mission to study solar eruptive events in extreme ultraviolet wavelengths is presented in section 4 that has high spatial resolution (0.5 arc sec pixels) in the two spatial dimensions and high spectral resolution (66 m) across a 15 spectral window. Section 4 also concludes with some other optical variations that could be employed on the more basic IFS for further capabilities of this type of instrument.

  1. Energy spectrum and angular distribution of prompt cosmic-ray muons

    Energy Technology Data Exchange (ETDEWEB)

    Castagnoli, C; Picchi, P [Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica; Turin Univ. (Italy). Ist. di Fisica Generale); Castellina, A; D' Ettorre Piazzoli, B; Mannocchi, G; Vernetto, S [Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica

    1984-07-01

    The energy spectrum and angular distribution of atmospheric prompt muons are calculated by using an integral solution for production of charmed particles, their decay and muon transport in the atmosphere. Current experimental information from accelerator and theoretical ideas about charm cross-section and semi-leptonic decay are used to give a reference prompt muon spectrum to compare with that from conventional sources (..pi.. and K decay). The obtained differential spectrum has an energy dependence which approaches that of the primary cosmic rays. The integral intensity of prompt muons is equal to the conventional one at about 250 TeV. The angular distribution is found to be practically flat in the range (0/80)/sup 0/ irrespective of the muon energy. On the basis of this analysis we estimate that accurate measurements of muon energy spectrum and angular distribution at energies greater than 10 TeV should allow one to obtain useful information regarding charm hadroproduction cross-section in the 100 TeV region.

  2. Integrated Study of Lithofacies Identification—A Case Study in X Field, Sabah, Malaysia

    Directory of Open Access Journals (Sweden)

    Jia Qi Ngui

    2018-02-01

    Full Text Available Understanding subsurface geology is essential for oil and gas exploration. Seismic facies interpretation is very useful in investigating this concept. The interpretation of the depositional setting of the X Field is achieved by integrating the seismic facies characteristics on 3D seismic data and well log data. Both the seismic and well log data are widely used in hydrocarbon exploration to map the subsurface, as they complement each other. Well logs yield the vertical resolution of the subsurface geology at the drilled well, whereas seismic data reveal the lateral continuity. The objective of this paper is to demonstrate the integration of 3D seismic data and well log data for lithofacies identification. Interpretation and analysis of lithofacies is carried out through the integration of the characteristics of seismic reflections with well information (logs. Horizons are interpreted based on the variation in seismic reflections on the seismic section, which is caused by the change in geology within seismic sequences. Well logs give detailed information at the points where the wells were drilled. Interpolating between these points and extrapolating away from the points into undrilled areas can be helpful in providing a better geological knowledge of an area. The result of this integrated study depicts the lithofacies in the area. This integrated study will provide a better insight with higher degree of reliability to the facies distribution and depositional setting of the X Field. The geological and geophysical aspects of the field will be documented.

  3. Angular Magnetoresistance of Nanowires with Alternating Cobalt and Nickel Segments

    KAUST Repository

    Mohammed, Hanan

    2017-06-22

    Magnetization reversal in segmented Co/Ni nanowires with varying number of segments was studied using angular Magnetoresistance (MR) measurements on isolated nanowires. The MR measurements offer an insight into the pinning of domain walls within the nanowires. Angular MR measurements were performed on nanowires with two and multiple segments by varying the angle between the applied magnetic field and nanowire (−90° ≤θ≤90°). The angular MR measurements reveal that at lower values of θ the switching fields are nearly identical for the multisegmented and two-segmented nanowires, whereas at higher values of θ, a decrease in the switching field is observed in the case of two segmented nanowires. The two segmented nanowires generally exhibit a single domain wall pinning event, whereas an increased number of pinning events are characteristic of the multisegmented nanowires at higher values of θ. In-situ magnetic force microscopy substantiates reversal by domain wall nucleation and propagation in multisegmented nanowires.

  4. Angular Magnetoresistance of Nanowires with Alternating Cobalt and Nickel Segments

    KAUST Repository

    Mohammed, Hanan; Corte-Leon, H.; Ivanov, Yurii P.; Moreno, J. A.; Kazakova, O.; Kosel, Jü rgen

    2017-01-01

    Magnetization reversal in segmented Co/Ni nanowires with varying number of segments was studied using angular Magnetoresistance (MR) measurements on isolated nanowires. The MR measurements offer an insight into the pinning of domain walls within the nanowires. Angular MR measurements were performed on nanowires with two and multiple segments by varying the angle between the applied magnetic field and nanowire (−90° ≤θ≤90°). The angular MR measurements reveal that at lower values of θ the switching fields are nearly identical for the multisegmented and two-segmented nanowires, whereas at higher values of θ, a decrease in the switching field is observed in the case of two segmented nanowires. The two segmented nanowires generally exhibit a single domain wall pinning event, whereas an increased number of pinning events are characteristic of the multisegmented nanowires at higher values of θ. In-situ magnetic force microscopy substantiates reversal by domain wall nucleation and propagation in multisegmented nanowires.

  5. Path integral quantization of parametrized field theory

    International Nuclear Information System (INIS)

    Varadarajan, Madhavan

    2004-01-01

    Free scalar field theory on a flat spacetime can be cast into a generally covariant form known as parametrized field theory in which the action is a functional of the scalar field as well as the embedding variables which describe arbitrary, in general curved, foliations of the flat spacetime. We construct the path integral quantization of parametrized field theory in order to analyze issues at the interface of quantum field theory and general covariance in a path integral context. We show that the measure in the Lorentzian path integral is nontrivial and is the analog of the Fradkin-Vilkovisky measure for quantum gravity. We construct Euclidean functional integrals in the generally covariant setting of parametrized field theory using key ideas of Schleich and show that our constructions imply the existence of nonstandard 'Wick rotations' of the standard free scalar field two-point function. We develop a framework to study the problem of time through computations of scalar field two-point functions. We illustrate our ideas through explicit computation for a time independent (1+1)-dimensional foliation. Although the problem of time seems to be absent in this simple example, the general case is still open. We discuss our results in the contexts of the path integral formulation of quantum gravity and the canonical quantization of parametrized field theory

  6. Recursive generation of Cartesian angular momentum coupling trees for SO(3)

    International Nuclear Information System (INIS)

    Sherborne, B.S.; Stedman, G.E.

    1990-01-01

    Two computer algorithms are evaluated for the reduction of angular momentum coupling trees with vector (j=1) terminals with a Cartesian choice of basis as used in nonlinear optics. Rather than employ advanced tensor algebra, both methods essentially iterate in distinct ways the basic techniques of angular momentum coupling. Turbo Pascal programs implementing these algorithms are presented and compared. The accompanying analysis integrates the Cartesian tensor approach and the diagrammatic approach to the solution of problems in nonlinear optics. The programs generate TeX files for the relevant angular momentum diagrams. (orig.)

  7. High Resolution Integral Field Spectroscopy of Europa's Sodium Clouds: Evidence for a Component with Origins in Iogenic Plasma.

    Science.gov (United States)

    Schmidt, C.; Johnson, R. E.; Mendillo, M.; Baumgardner, J. L.; Moore, L.; O'Donoghue, J.; Leblanc, F.

    2015-12-01

    With the object of constraining Iogenic contributions and identifying drivers for variability, we report new observations of neutral sodium in Europa's exosphere. An R~20000 integral field spectrograph at McDonald Observatory is used to generate Doppler maps of sodium cloud structures with a resolution of 2.8 km/s/pixel. In the five nights of observations since 2011, measurements on UT 6.15-6.31 May 2015 uniquely feature fast (10s of km/s) neutral sodium clouds extending nearly 100 Europa radii, more distant than in any previous findings. During these measurements, the satellite geometry was favorable for the transfer of Na from Io to Europa, located at 1:55 to 4:00 and 3:38 to 4:39 Jovian local time, respectively. Eastward emission (away from Jupiter) extends 10-20 Europa radii retaining the moon's rest velocity, while westward emission blue-shifts with distance, and a broad range of velocities are measured, reaching at least 70 km/s at 80 Europa radii. These cloud features are distinct from Io's "banana" and "stream" features, the distant Jupiter-orbiting nebula, and from terrestrial OH and Na contaminant emissions. Io's production was quiescent during this observation, following an extremely active phase in February 2015. These results are consistent with previous findings that Europa's Na exosphere has peak emission between midnight and dawn Jovian local time and support the idea that sodium escape from Io can significantly enhance the emission intensity measured at Europa.

  8. Perturbation theory in angular quantization approach and the expectation values of exponential fields in sine-Gordon model

    International Nuclear Information System (INIS)

    Poghossian, R.H.

    2000-01-01

    In an angular quantization approach a perturbation theory for the Massive Thirring Model (MTM) is developed, which allows us to calculate vacuum expectation values of exponential fields in sine-Gordon theory near the free fermion point in first order of the MTM coupling constant g. The Hankel transforms play an important role when carrying out these calculations. The expression we have found coincides with that of the direct expansion over g of the exact formula conjectured by Lukyanov and Zamolodchikov

  9. Development of insula connectivity between ages 12 and 30 revealed by high angular resolution diffusion imaging.

    Science.gov (United States)

    Dennis, Emily L; Jahanshad, Neda; McMahon, Katie L; de Zubicaray, Greig I; Martin, Nicholas G; Hickie, Ian B; Toga, Arthur W; Wright, Margaret J; Thompson, Paul M

    2014-04-01

    The insula, hidden deep within the Sylvian fissures, has proven difficult to study from a connectivity perspective. Most of our current information on the anatomical connectivity of the insula comes from studies of nonhuman primates and post mortem human dissections. To date, only two neuroimaging studies have successfully examined the connectivity of the insula. Here we examine how the connectivity of the insula develops between ages 12 and 30, in 307 young adolescent and adult subjects scanned with 4-Tesla high angular resolution diffusion imaging (HARDI). The density of fiber connections between the insula and the frontal and parietal cortex decreased with age, but the connection density between the insula and the temporal cortex generally increased with age. This trajectory is in line with well-known patterns of cortical development in these regions. In addition, males and females showed different developmental trajectories for the connection between the left insula and the left precentral gyrus. The insula plays many different roles, some of them affected in neuropsychiatric disorders; this information on the insula's connectivity may help efforts to elucidate mechanisms of brain disorders in which it is implicated. Copyright © 2013 Wiley Periodicals, Inc.

  10. Angular momentum in general relativity

    International Nuclear Information System (INIS)

    Prior, C.R.

    1977-01-01

    The definition of angular momentum proposed in part I of this series (Prior. Proc. R. Soc. Lond.; A354:379 (1977)) is investigated when applied to rotating black holes. It is shown how to use the formula to evaluate the angular momentum of a stationary black hole. This acts as a description of a background space on which the effect of first matter and then gravitational perturbations is considered. The latter are of most interest and the rate of change of angular momentum, dJ/dt, is found as an expression in the shear induced in the event horizon by the perturbation and in its time integral. Teukolsky's solutions (Astrophys. J.; 185:635 (1973)) for the perturbed component of the Weyl tensor are then used to find this shear and hence to give an exact answer for dJ/dt. One of the implications of the result is a direct verification of Bekenstein's formula (Phys. Rev.; 7D:949 (1973)) relating in a simple way the rate of change of angular momentum to the rate of change of mass caused by a plane wave. A more general expression is also given for dM/dt. Considering only stationary perturbations, it is shown how to generalize the definition of angular momentum so as to include information about its direction as well. Three problems are particularly discussed - a single moon, two or more moons and a ring of matter causing the perturbation - since they provide illustrations of all the main features of the black hole's behaviour. In every case it is found that the black hole realigns its axis of rotation so that the final configuration is axisymmetric if possible; otherwise is slows down completely to reach a static state. (author)

  11. Studies of the field-of-view resolution tradeoff in virtual-reality systems

    Science.gov (United States)

    Piantanida, Thomas P.; Boman, Duane; Larimer, James; Gille, Jennifer; Reed, Charles

    1992-01-01

    Most virtual-reality systems use LCD-based displays that achieve a large field-of-view at the expense of resolution. A typical display will consist of approximately 86,000 pixels uniformly distributed over an 80-degree by 60-degree image. Thus, each pixel subtends about 13 minutes of arc at the retina; about the same as the resolvable features of the 20/200 line of a Snellen Eye Chart. The low resolution of LCD-based systems limits task performance in some applications. We have examined target-detection performance in a low-resolution virtual world. Our synthesized three-dimensional virtual worlds consisted of target objects that could be positioned at a fixed distance from the viewer, but at random azimuth and constrained elevation. A virtual world could be bounded by chromatic walls or by wire-frame, or it could be unbounded. Viewers scanned these worlds and indicated by appropriate gestures when they had detected the target object. By manipulating the viewer's field size and the chromatic and luminance contrast of annuli surrounding the field-of-view, we were able to assess the effect of field size on the detection of virtual objects in low-resolution synthetic worlds.

  12. Professional AngularJS

    CERN Document Server

    Karpov, Valeri

    2015-01-01

    A comprehensive guide to AngularJS, Google's open-source client-side framework for app development. Most of the existing guides to AngularJS struggle to provide simple and understandable explanations for more advanced concepts. As a result, some developers who understand all the basic concepts of AngularJS struggle when it comes to building more complex real-world applications. Professional AngularJS provides a thorough understanding of AngularJS, covering everything from basic concepts, such as directives and data binding, to more advanced concepts like transclusion, build systems, and auto

  13. Hybrid and Constrained Resolution-of-Identity Techniques for Coulomb Integrals.

    Science.gov (United States)

    Duchemin, Ivan; Li, Jing; Blase, Xavier

    2017-03-14

    The introduction of auxiliary bases to approximate molecular orbital products has paved the way to significant savings in the evaluation of four-center two-electron Coulomb integrals. We present a generalized dual space strategy that sheds a new light on variants over the standard density and Coulomb-fitting schemes, including the possibility of introducing minimization constraints. We improve in particular the charge- or multipole-preserving strategies introduced respectively by Baerends and Van Alsenoy that we compare to a simple scheme where the Coulomb metric is used for lowest angular momentum auxiliary orbitals only. We explore the merits of these approaches on the basis of extensive Hartree-Fock and MP2 calculations over a standard set of medium size molecules.

  14. Non-integrable quantum field theories as perturbations of certain integrable models

    International Nuclear Information System (INIS)

    Delfino, G.; Simonetti, P.

    1996-03-01

    We approach the study of non-integrable models of two-dimensional quantum field theory as perturbations of the integrable ones. By exploiting the knowledge of the exact S-matrix and Form Factors of the integrable field theories we obtain the first order corrections to the mass ratios, the vacuum energy density and the S-matrix of the non-integrable theories. As interesting applications of the formalism, we study the scaling region of the Ising model in an external magnetic field at T ∼ T c and the scaling region around the minimal model M 2 , τ . For these models, a remarkable agreement is observed between the theoretical predictions and the data extracted by a numerical diagonalization of their Hamiltonian. (author). 41 refs, 9 figs, 1 tab

  15. The topology of integrable systems with incomplete fields

    International Nuclear Information System (INIS)

    Aleshkin, K R

    2014-01-01

    Liouville's theorem holds for Hamiltonian systems with complete Hamiltonian fields which possess a complete involutive system of first integrals; such systems are called Liouville-integrable. In this paper integrable systems with incomplete Hamiltonian fields are investigated. It is shown that Liouville's theorem remains valid in the case of a single incomplete field, while if the number of incomplete fields is greater, a certain analogue of the theorem holds. An integrable system on the algebra sl(3) is taken as an example. Bibliography: 11 titles

  16. Angular overlap model in actinides

    International Nuclear Information System (INIS)

    Gajek, Z.; Mulak, J.

    1991-01-01

    Quantitative foundations of the Angular Overlap Model in actinides based on ab initio calculations of the crystal field effect in the uranium (III) (IV) and (V) ions in various crystals are presented. The calculations justify some common simplifications of the model and fix up the relations between the AOM parameters. Traps and limitations of the AOM phenomenology are discussed

  17. Angular overlap model in actinides

    Energy Technology Data Exchange (ETDEWEB)

    Gajek, Z.; Mulak, J. (Polska Akademia Nauk, Wroclaw (PL). Inst. Niskich Temperatur i Badan Strukturalnych)

    1991-01-01

    Quantitative foundations of the Angular Overlap Model in actinides based on ab initio calculations of the crystal field effect in the uranium (III) (IV) and (V) ions in various crystals are presented. The calculations justify some common simplifications of the model and fix up the relations between the AOM parameters. Traps and limitations of the AOM phenomenology are discussed.

  18. Data requirements for integrated near field models

    International Nuclear Information System (INIS)

    Wilems, R.E.; Pearson, F.J. Jr.; Faust, C.R.; Brecher, A.

    1981-01-01

    The coupled nature of the various processes in the near field require that integrated models be employed to assess long term performance of the waste package and repository. The nature of the integrated near field models being compiled under the SCEPTER program are discussed. The interfaces between these near field models and far field models are described. Finally, near field data requirements are outlined in sufficient detail to indicate overall programmatic guidance for data gathering activities

  19. Enhanced angular overlap model for nonmetallic f -electron systems

    Science.gov (United States)

    Gajek, Z.

    2005-07-01

    An efficient method of interpretation of the crystal field effect in nonmetallic f -electron systems, the enhanced angular overlap model (EAOM), is presented. The method is established on the ground of perturbation expansion of the effective Hamiltonian for localized electrons and first-principles calculations related to available experimental data. The series of actinide compounds AO2 , oxychalcogenides AOX , and dichalcogenides UX2 where X=S ,Se,Te and A=U ,Np serve as probes of the effectiveness of the proposed method. An idea is to enhance the usual angular overlap model with ab initio calculations of those contributions to the crystal field potential, which cannot be represented by the usual angular overlap model (AOM). The enhancement leads to an improved fitting and makes the approach intrinsically coherent. In addition, the ab initio calculations of the main, AOM-consistent part of the crystal field potential allows one to fix the material-specific relations for the EAOM parameters in the effective Hamiltonian. Consequently, the electronic structure interpretation based on EAOM can be extended to systems of the lowest point symmetries or/and deficient experimental data. Several examples illustrating the promising capabilities of EAOM are given.

  20. An alternative resolution to the Mansuripur paradox

    International Nuclear Information System (INIS)

    Redfern, Francis

    2016-01-01

    In 2013 an article published online by the journal Science declared that the paradox proposed by Masud Mansuripur was resolved. This paradox concerns a point charge-Amperian magnetic dipole system as seen in a frame of reference where they are at rest and one in which they are moving. In the latter frame an electric dipole appears on the magnetic dipole. A torque is then exerted upon the electric dipole by the point charge, a torque that is not observed in the at-rest frame. Mansuripur points out this violates the relativity principle and suggests the Lorentz force responsible for the torque be replaced by the Einstein–Laub force. The resolution of the paradox reported by Science, based on numerous papers in the physics literature, preserves the Lorentz force but depends on the concept of hidden momentum. Here I propose a different resolution based on the overlooked fact that the charge-magnetic dipole system contains linear and angular electromagnetic field momentum. The time rate of change of the field angular–momentum in the frame through which the system is moving cancels that due to the charge-electric dipole interaction. From this point of view hidden momentum is not needed in the resolution of the paradox. (paper)

  1. CALIFA, the Calar Alto Legacy Integral Field Area survey. IV. Third public data release

    Science.gov (United States)

    Sánchez, S. F.; García-Benito, R.; Zibetti, S.; Walcher, C. J.; Husemann, B.; Mendoza, M. A.; Galbany, L.; Falcón-Barroso, J.; Mast, D.; Aceituno, J.; Aguerri, J. A. L.; Alves, J.; Amorim, A. L.; Ascasibar, Y.; Barrado-Navascues, D.; Barrera-Ballesteros, J.; Bekeraitè, S.; Bland-Hawthorn, J.; Cano Díaz, M.; Cid Fernandes, R.; Cavichia, O.; Cortijo, C.; Dannerbauer, H.; Demleitner, M.; Díaz, A.; Dettmar, R. J.; de Lorenzo-Cáceres, A.; del Olmo, A.; Galazzi, A.; García-Lorenzo, B.; Gil de Paz, A.; González Delgado, R.; Holmes, L.; Iglésias-Páramo, J.; Kehrig, C.; Kelz, A.; Kennicutt, R. C.; Kleemann, B.; Lacerda, E. A. D.; López Fernández, R.; López Sánchez, A. R.; Lyubenova, M.; Marino, R.; Márquez, I.; Mendez-Abreu, J.; Mollá, M.; Monreal-Ibero, A.; Ortega Minakata, R.; Torres-Papaqui, J. P.; Pérez, E.; Rosales-Ortega, F. F.; Roth, M. M.; Sánchez-Blázquez, P.; Schilling, U.; Spekkens, K.; Vale Asari, N.; van den Bosch, R. C. E.; van de Ven, G.; Vilchez, J. M.; Wild, V.; Wisotzki, L.; Yıldırım, A.; Ziegler, B.

    2016-10-01

    This paper describes the third public data release (DR3) of the Calar Alto Legacy Integral Field Area (CALIFA) survey. Science-grade quality data for 667 galaxies are made public, including the 200 galaxies of the second public data release (DR2). Data were obtained with the integral-field spectrograph PMAS/PPak mounted on the 3.5 m telescope at the Calar Alto Observatory. Three different spectral setups are available: I) a low-resolution V500 setup covering the wavelength range 3745-7500 Å (4240-7140 Å unvignetted) with a spectral resolution of 6.0 Å (FWHM) for 646 galaxies, II) a medium-resolution V1200 setup covering the wavelength range 3650-4840 Å (3650-4620 Å unvignetted) with a spectral resolution of 2.3 Å (FWHM) for 484 galaxies, and III) the combination of the cubes from both setups (called COMBO) with a spectral resolution of 6.0 Å and a wavelength range between 3700-7500 Å (3700-7140 Å unvignetted) for 446 galaxies. The Main Sample, selected and observed according to the CALIFA survey strategy covers a redshift range between 0.005 and 0.03, spans the color-magnitude diagram and probes a wide range of stellar masses, ionization conditions, and morphological types. The Extension Sample covers several types of galaxies that are rare in the overall galaxy population and are therefore not numerous or absent in the CALIFA Main Sample. All the cubes in the data release were processed using the latest pipeline, which includes improved versions of the calibration frames and an even further improved image reconstruction quality. In total, the third data release contains 1576 datacubes, including ~1.5 million independent spectra. Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck-Institut für Astronomie (MPIA) and the Instituto de Astrofísica de Andalucía (CSIC).The spectra are available at http://califa.caha.es/DR3

  2. A search for quark compositeness at the LHC. Dijet angular distributions

    International Nuclear Information System (INIS)

    Usubov, Z.U.; Abdinov, O.B.

    1999-01-01

    The effects of dijet angular distributions coming from a model of quark compositeness are considered. The influence of the parton distribution function, calorimeter non-linearity and energy resolution is investigated. The data sensitivity to the quark compositeness scale for low and high LHC luminosity is studied

  3. In situ high-resolution thermal microscopy on integrated circuits.

    Science.gov (United States)

    Zhuo, Guan-Yu; Su, Hai-Ching; Wang, Hsien-Yi; Chan, Ming-Che

    2017-09-04

    The miniaturization of metal tracks in integrated circuits (ICs) can cause abnormal heat dissipation, resulting in electrostatic discharge, overvoltage breakdown, and other unwanted issues. Unfortunately, locating areas of abnormal heat dissipation is limited either by the spatial resolution or imaging acquisition speed of current thermal analytical techniques. A rapid, non-contact approach to the thermal imaging of ICs with sub-μm resolution could help to alleviate this issue. In this work, based on the intensity of the temperature-dependent two-photon fluorescence (TPF) of Rhodamine 6G (R6G) material, we developed a novel fast and non-invasive thermal microscopy with a sub-μm resolution. Its application to the location of hotspots that may evolve into thermally induced defects in ICs was also demonstrated. To the best of our knowledge, this is the first study to present high-resolution 2D thermal microscopic images of ICs, showing the generation, propagation, and distribution of heat during its operation. According to the demonstrated results, this scheme has considerable potential for future in situ hotspot analysis during the optimization stage of IC development.

  4. Beyond the relativistic mean-field approximation. II. Configuration mixing of mean-field wave functions projected on angular momentum and particle number

    International Nuclear Information System (INIS)

    Niksic, T.; Vretenar, D.; Ring, P.

    2006-01-01

    The framework of relativistic self-consistent mean-field models is extended to include correlations related to the restoration of broken symmetries and to fluctuations of collective variables. The generator coordinate method is used to perform configuration mixing of angular-momentum and particle-number projected relativistic wave functions. The geometry is restricted to axially symmetric shapes, and the intrinsic wave functions are generated from the solutions of the relativistic mean-field+Lipkin-Nogami BCS equations, with a constraint on the mass quadrupole moment. The model employs a relativistic point-coupling (contact) nucleon-nucleon effective interaction in the particle-hole channel, and a density-independent δ-interaction in the pairing channel. Illustrative calculations are performed for 24 Mg, 32 S, and 36 Ar, and compared with results obtained employing the model developed in the first part of this work, i.e., without particle-number projection, as well as with the corresponding nonrelativistic models based on Skyrme and Gogny effective interactions

  5. Radiation of Electron in the Field of Plane Light Wave

    International Nuclear Information System (INIS)

    Zelinsky, A.; Drebot, I.V.; Grigorev, Yu.N.; Zvonareva, O.D.; Tatchyn, R.

    2006-01-01

    Results of integration of a Lorentz equation for a relativistic electron moving in the field of running, plane, linear polarized electromagnetic wave are presented in the paper. It is shown that electron velocities in the field of the wave are almost periodic functions of time. For calculations of angular spectrum of electron radiation intensity expansion of the electromagnetic field in a wave zone into generalized Fourier series was used. Expressions for the radiation intensity spectrum are presented in the paper. Derived results are illustrated for electron and laser beam parameters of NSC KIPT X-ray generator NESTOR. It is shown that for low intensity of the interacting electromagnetic wave the results of energy and angular spectrum calculations in the frame of classical electrodynamics completely coincide with calculation results produced using quantum electrodynamics. Simultaneously, derived expressions give possibilities to investigate dependence of energy and angular Compton radiation spectrum on phase of interaction and the interacting wave intensity

  6. Integrable structures in quantum field theory

    International Nuclear Information System (INIS)

    Negro, Stefano

    2016-01-01

    This review was born as notes for a lecture given at the Young Researchers Integrability School (YRIS) school on integrability in Durham, in the summer of 2015. It deals with a beautiful method, developed in the mid-nineties by Bazhanov, Lukyanov and Zamolodchikov and, as such, called BLZ. This method can be interpreted as a field theory version of the quantum inverse scattering, also known as the algebraic Bethe ansatz. Starting with the case of conformal field theories (CFTs) we show how to build the field theory analogues of commuting transfer T matrices and Baxter Q -operators of integrable lattice models. These objects contain the complete information of the integrable structure of the theory, viz. the integrals of motion, and can be used, as we will show, to derive the thermodynamic Bethe ansatz and nonlinear integral equations. This same method can be easily extended to the description of integrable structures of certain particular massive deformations of CFTs; these, in turn, can be described as quantum group reductions of the quantum sine-Gordon model and it is an easy step to include this last theory in the framework of BLZ approach. Finally we show an interesting and surprising connection of the BLZ structures with classical objects emerging from the study of classical integrable models via the inverse scattering transform method. This connection goes under the name of ODE/IM correspondence and we will present it for the specific case of quantum sine-Gordon model only. (topical review)

  7. Anisotropy of the Cosmic Microwave Background Radiation on Large and Medium Angular Scales

    Science.gov (United States)

    Houghton, Anthony; Timbie, Peter

    1998-01-01

    This grant has supported work at Brown University on measurements of the 2.7 K Cosmic Microwave Background Radiation (CMB). The goal has been to characterize the spatial variations in the temperature of the CMB in order to understand the formation of large-scale structure in the universe. We have concurrently pursued two measurements using millimeter-wave telescopes carried aloft by scientific balloons. Both systems operate over a range of wavelengths, chosen to allow spectral removal of foreground sources such as the atmosphere, Galaxy, etc. The angular resolution of approx. 25 arcminutes is near the angular scale at which the most structure is predicted by current models to be visible in the CMB angular power spectrum. The main goal is to determine the angular scale of this structure; in turn we can infer the density parameter, Omega, for the universe as well as other cosmological parameters, such as the Hubble constant.

  8. IBIS: the imager on-board integral

    International Nuclear Information System (INIS)

    Ubertini, P.; Bazzano, A.; Lebrun, F.; Goldwurm, A.; Laurent, P.; Mirabel, I.F.; Vigroux, L.; Di Cocco, G.; Labanti, C.; Bird, A.J.; Broenstad, K.; La Rosa, G.; Sacco, B.; Quadrini, E.M.; Ramsey, B.; Weisskopf, M.C.; Reglero, V.; Sabau, L.; Staubert, R.; Zdziarski, A.A.

    2003-01-01

    The IBIS telescope is the high angular resolution gamma-ray imager on-board the INTEGRAL Observatory, successfully launched from Baikonur (Kazakhstan) on October 2002. This medium size ESA project, planned for a 2 year mission with possible extension to 5, is devoted to the observation of the gamma-ray sky in the energy range from 3 keV to 10 MeV (Winkler 2001). The IBIS imaging system is based on two independent solid state detector arrays optimised for low (15-1000 keV) and high (0.175-10.0 MeV) energies surrounded by an active VETO System. This high efficiency shield is essential to minimise the background induced by high energy particles in the highly ex-centric out of van Allen belt orbit. A Tungsten Coded Aperture Mask, 16 mm thick and ∼ 1 squared meter in dimension is the imaging device. The IBIS telescope will serve the scientific community at large providing a unique combination of unprecedented high energy wide field imaging capability coupled with broad band spectroscopy and high resolution timing over the energy range from X to gamma rays. To date the IBIS telescope is working nominally in orbit since more than 9 month. (authors)

  9. High-resolution non-destructive three-dimensional imaging of integrated circuits.

    Science.gov (United States)

    Holler, Mirko; Guizar-Sicairos, Manuel; Tsai, Esther H R; Dinapoli, Roberto; Müller, Elisabeth; Bunk, Oliver; Raabe, Jörg; Aeppli, Gabriel

    2017-03-15

    Modern nanoelectronics has advanced to a point at which it is impossible to image entire devices and their interconnections non-destructively because of their small feature sizes and the complex three-dimensional structures resulting from their integration on a chip. This metrology gap implies a lack of direct feedback between design and manufacturing processes, and hampers quality control during production, shipment and use. Here we demonstrate that X-ray ptychography-a high-resolution coherent diffractive imaging technique-can create three-dimensional images of integrated circuits of known and unknown designs with a lateral resolution in all directions down to 14.6 nanometres. We obtained detailed device geometries and corresponding elemental maps, and show how the devices are integrated with each other to form the chip. Our experiments represent a major advance in chip inspection and reverse engineering over the traditional destructive electron microscopy and ion milling techniques. Foreseeable developments in X-ray sources, optics and detectors, as well as adoption of an instrument geometry optimized for planar rather than cylindrical samples, could lead to a thousand-fold increase in efficiency, with concomitant reductions in scan times and voxel sizes.

  10. High-resolution non-destructive three-dimensional imaging of integrated circuits

    Science.gov (United States)

    Holler, Mirko; Guizar-Sicairos, Manuel; Tsai, Esther H. R.; Dinapoli, Roberto; Müller, Elisabeth; Bunk, Oliver; Raabe, Jörg; Aeppli, Gabriel

    2017-03-01

    Modern nanoelectronics has advanced to a point at which it is impossible to image entire devices and their interconnections non-destructively because of their small feature sizes and the complex three-dimensional structures resulting from their integration on a chip. This metrology gap implies a lack of direct feedback between design and manufacturing processes, and hampers quality control during production, shipment and use. Here we demonstrate that X-ray ptychography—a high-resolution coherent diffractive imaging technique—can create three-dimensional images of integrated circuits of known and unknown designs with a lateral resolution in all directions down to 14.6 nanometres. We obtained detailed device geometries and corresponding elemental maps, and show how the devices are integrated with each other to form the chip. Our experiments represent a major advance in chip inspection and reverse engineering over the traditional destructive electron microscopy and ion milling techniques. Foreseeable developments in X-ray sources, optics and detectors, as well as adoption of an instrument geometry optimized for planar rather than cylindrical samples, could lead to a thousand-fold increase in efficiency, with concomitant reductions in scan times and voxel sizes.

  11. Measurement of the dijet angular distributions and search for quark compositeness with the CMS experiment

    International Nuclear Information System (INIS)

    Hinzmann, Andreas Dominik

    2011-01-01

    The Large Hadron Collider (LHC) at the Conseil Europeen pour la Recherche Nucleaire (CERN) allows to study the interactions of quarks and gluons in a yet unexplored energy regime. In 2010, the LHC delivered an integrated luminosity of more than 36 pb -1 of proton-proton collisions at a center-of-mass energy of √(s)=7 TeV. In these proton-proton collisions, the interactions of the constituent quarks and gluons produced a considerable amount of jets of particles with transverse momenta above 1 TeV. Well suited for the study of these jet processes is the Compact Muon Solenoid (CMS) experiment situated at the LHC point 5 as it can measure jets with the necessary energy and angular resolutions over a large range of transverse momentum (∝30 GeV T dijet = e vertical stroke y 1 -y 2 vertical stroke , where y 1 and y 2 are the rapidities of the two jets, y ≡ (1)/(2)ln [(E+p z )/(E-p z )], and p z is the projection of the jet momentum along the beam axis. The choice of the variable χ dijet is motivated by the fact that the normalized differential cross section (1)/(σ) (dσ)/(dχ dijet ) (the dijet angular distribution) is flat in this variable for Rutherford scattering, characteristic for spin-1 particle exchange. In contrast to QCD which predicts a dijet angular distribution similar to Rutherford scattering, new physics, such as quark compositeness, that might have a more isotropic dijet angular distribution would produce an excess at low values of χ dijet . Since the shapes of the dijet angular distributions for the qg →qg, qq ' →qq ' and gg →gg scattering processes are similar, the QCD prediction does not strongly depend on the parton distribution functions (PDFs) which describe the momentum distribution of the partons inside the protons. Due to the normalization, the dijet angular distribution has a reduced sensitivity to several predominant experimental uncertainties (e.g. the jet energy scale and luminosity uncertainties). The dijet angular distribution

  12. Mass and Angular Distributions of Charged Dihadron Production

    Energy Technology Data Exchange (ETDEWEB)

    Cummings, Mary Clare [Michigan U.

    1990-01-01

    Experiment 711, conducted at Fermilab. provided a unique handle towards understanding valence quark scattering by studying pairs of single. charged, high transverse momentum hadrons produced in collisions of 800 GeV /c protons on fixed metal targets. The apparatus consisted of a double-arm spectrometer. calorimetrically triggered. with high momentum resolution and a large angular acceptance for all charge states of particle pairs. The experiment was designed to select those hadron pairs that carrted most of the momentum and energy of the underlying scattered quarks and gluons. The charge of such "leading" hadrons is correlated with the charge of the quark that produced it. Quantum Chromodynamics (QCD) assumes that the scattering behavior of quarks ts independent of their charge, or "flavour": Experiment 711 could test this assumption. Tilis dissertation descrtbes the analysis of the mass and angular distributions of hadron pair production for three separate charge states: +-, ++ and --. The angular distributions are found to deviate from theory predictions of flavour symmetry. Also. the mass cross sections indicate ratios of positive to negative hard-scattered particles that are larger than expected from theory. These results could warrant reconsideration of the assumptions and approximations currently made in leading-order QCD calculations.

  13. Control of Rotational Energy and Angular Momentum Orientation with an Optical Centrifuge

    Science.gov (United States)

    Ogden, Hannah M.; Murray, Matthew J.; Mullin, Amy S.

    2017-04-01

    We use an optical centrifuge to trap and spin molecules to an angular frequency of 30 THz with oriented angular momenta and extremely high rotational energy and then investigate their subsequent collision dynamics with transient high resolution IR spectroscopy. The optical centrifuge is formed by combining oppositely-chirped pulses of 800 nm light, and overlapping them spatially and temporally. Polarization-sensitive Doppler-broadened line profiles characterize the anisotropic kinetic energy release of the super rotor molecules, showing that they behave like molecular gyroscopes. Studies are reported for collisions of CO2 super rotors with CO2, He and Ar. These studies reveal how mass, velocity and rotational adiabaticity impact the angular momentum relaxation and reorientation. Quantum scattering calculations provide insight into the J-specific collision cross sections that control the relaxation. NSF-CHE 105 8721.

  14. Inefficient Angular Momentum Transport in Accretion Disk Boundary Layers: Angular Momentum Belt in the Boundary Layer

    Science.gov (United States)

    Belyaev, Mikhail A.; Quataert, Eliot

    2018-04-01

    We present unstratified 3D MHD simulations of an accretion disk with a boundary layer (BL) that have a duration ˜1000 orbital periods at the inner radius of the accretion disk. We find the surprising result that angular momentum piles up in the boundary layer, which results in a rapidly rotating belt of accreted material at the surface of the star. The angular momentum stored in this belt increases monotonically in time, which implies that angular momentum transport mechanisms in the BL are inefficient and do not couple the accretion disk to the star. This is in spite of the fact that magnetic fields are advected into the BL from the disk and supersonic shear instabilities in the BL excite acoustic waves. In our simulations, these waves only carry a small fraction (˜10%) of the angular momentum required for steady state accretion. Using analytical theory and 2D viscous simulations in the R - ϕ plane, we derive an analytical criterion for belt formation to occur in the BL in terms of the ratio of the viscosity in the accretion disk to the viscosity in the BL. Our MHD simulations have a dimensionless viscosity (α) in the BL that is at least a factor of ˜100 smaller than that in the disk. We discuss the implications of these results for BL dynamics and emission.

  15. Studies of torsional properties of DNA and nucleosomes using angular optical trapping

    Science.gov (United States)

    Sheinin, Maxim Y.

    DNA in vivo is subjected to torsional stress due to the action of molecular motors and other DNA-binding proteins. Several decades of research have uncovered the fascinating diversity of DNA transformations under torsion and the important role they play in the regulation of vital cellular processes such as transcription and replication. Recent studies have also suggested that torsion can influence the structure and stability of nucleosomes---basic building blocks of the eukaryotic genome. However, our understanding of the impact of torsion is far from being complete due to significant experimental challenges. In this work we have used a powerful single-molecule experimental technique, angular optical trapping, to address several long-standing issues in the field of DNA and nucleosome mechanics. First, we utilized the high resolution and direct torque measuring capability of the angular optical trapping to precisely measure DNA twist-stretch coupling. Second, we characterized DNA melting under tension and torsion. We found that torsionally underwound DNA forms a left-handed structure, significantly more flexible compared to the regular B-DNA. Finally, we performed the first comprehensive investigation of the single nucleosome behavior under torque and force. Importantly, we discovered that positive torque causes significant dimer loss, which can have implications for transcription through chromatin.

  16. Simulated cosmic microwave background maps at 0.5 deg resolution: Basic results

    Science.gov (United States)

    Hinshaw, G.; Bennett, C. L.; Kogut, A.

    1995-01-01

    We have simulated full-sky maps of the cosmic microwave background (CMB) anisotropy expected from cold dark matter (CDM) models at 0.5 deg and 1.0 deg angular resolution. Statistical properties of the maps are presented as a function of sky coverage, angular resolution, and instrument noise, and the implications of these results for observability of the Doppler peak are discussed. The rms fluctuations in a map are not a particularly robust probe of the existence of a Doppler peak; however, a full correlation analysis can provide reasonable sensitivity. We find that sensitivity to the Doppler peak depends primarily on the fraction of sky covered, and only secondarily on the angular resolution and noise level. Color plates of the simulated maps are presented to illustrate the anisotropies.

  17. The INTErnational Gamma Ray Astrophysics Laboratory: INTEGRAL Highlights

    Energy Technology Data Exchange (ETDEWEB)

    Ubertini, Pietro, E-mail: pietro.ubertini@iaps.inaf.it; Bazzano, Angela

    2014-04-01

    The INTEGRAL Space Observatory was selected as the second Medium size mission (M2) of the ESAs Horizon 2000 vision programme. INTEGRAL is the first high angular and spectral resolution hard X-ray and soft γ-ray observatory with a wide band spectral response ranging from 3 keV up to 10 MeV energy band. This capability is supplemented by an unprecedented sensitivity enhanced by the 3 days orbit allowing long and uninterrupted observations over very wide field of view (up to ∼1000 squared degrees to zero response) and sub-ms time resolution. Part of the observatory success is due to its capability to link the high energy sky with the lower energy band. The complementarity and synergy with pointing soft X-ray missions such as XMM-Newton and CHANDRA and more recently with NuSTAR is a strategic feature to link the “thermal” and the “non-thermal” Universe observed at higher energies by space missions such as Fermi and AGILE and ground based TeV observatories sensitive to extremely high energies. INTEGRAL was launched on 17 October 2002 from the Baikonur Cosmodrome (Kazakistan) aboard a Proton rocket as part of the Russian contribution to the mission, and has successfully spent almost 11 years in orbit. In view of its successful science outcome the ESA Space Programme Committee haw recently approved its scientific operation till the end of 2016. To date the spacecraft, ground segment and scientific payload are in excellent state-of-health, and INTEGRAL is continuing its scientific operations, originally planned for a 5-year technical design and scientific nominal operation plan. This paper summarizes the current INTEGRAL scientific achievements and future prospects, with particular regard to the high energy domain.

  18. The derivation of vector magnetic fields from Stokes profiles - Integral versus least squares fitting techniques

    Science.gov (United States)

    Ronan, R. S.; Mickey, D. L.; Orrall, F. Q.

    1987-01-01

    The results of two methods for deriving photospheric vector magnetic fields from the Zeeman effect, as observed in the Fe I line at 6302.5 A at high spectral resolution (45 mA), are compared. The first method does not take magnetooptical effects into account, but determines the vector magnetic field from the integral properties of the Stokes profiles. The second method is an iterative least-squares fitting technique which fits the observed Stokes profiles to the profiles predicted by the Unno-Rachkovsky solution to the radiative transfer equation. For sunspot fields above about 1500 gauss, the two methods are found to agree in derived azimuthal and inclination angles to within about + or - 20 deg.

  19. Adaptive Markov Random Fields for Example-Based Super-resolution of Faces

    Directory of Open Access Journals (Sweden)

    Stephenson Todd A

    2006-01-01

    Full Text Available Image enhancement of low-resolution images can be done through methods such as interpolation, super-resolution using multiple video frames, and example-based super-resolution. Example-based super-resolution, in particular, is suited to images that have a strong prior (for those frameworks that work on only a single image, it is more like image restoration than traditional, multiframe super-resolution. For example, hallucination and Markov random field (MRF methods use examples drawn from the same domain as the image being enhanced to determine what the missing high-frequency information is likely to be. We propose to use even stronger prior information by extending MRF-based super-resolution to use adaptive observation and transition functions, that is, to make these functions region-dependent. We show with face images how we can adapt the modeling for each image patch so as to improve the resolution.

  20. Adaptive Markov Random Fields for Example-Based Super-resolution of Faces

    Science.gov (United States)

    Stephenson, Todd A.; Chen, Tsuhan

    2006-12-01

    Image enhancement of low-resolution images can be done through methods such as interpolation, super-resolution using multiple video frames, and example-based super-resolution. Example-based super-resolution, in particular, is suited to images that have a strong prior (for those frameworks that work on only a single image, it is more like image restoration than traditional, multiframe super-resolution). For example, hallucination and Markov random field (MRF) methods use examples drawn from the same domain as the image being enhanced to determine what the missing high-frequency information is likely to be. We propose to use even stronger prior information by extending MRF-based super-resolution to use adaptive observation and transition functions, that is, to make these functions region-dependent. We show with face images how we can adapt the modeling for each image patch so as to improve the resolution.

  1. Effects of angular misalignment on optical klystron undulator radiation

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, G., E-mail: gmishra_dauniv@yahoo.co.in; Prakash, Bramh; Gehlot, Mona

    2015-11-21

    In this paper ,we analyze the important effects of optical klystron undulator radiation with an angular offset of the relativistic electron beam in the second undulator section. An anlytical expression for the undulator radiation is obtained through a transparent and simple procedure.It is shown that the effects of the angular offset is more severe for longer undulator lengths and with higher dispersive field strengths.Both these effects are less pronounced for undulators with large K values.

  2. Chirality and angular momentum in optical radiation

    Science.gov (United States)

    Coles, Matt M.; Andrews, David L.

    2012-06-01

    This paper develops, in precise quantum electrodynamic terms, photonic attributes of the “optical chirality density,” one of several measures long known to be conserved quantities for a vacuum electromagnetic field. The analysis lends insights into some recent interpretations of chiroptical experiments, in which this measure, and an associated chirality flux, have been treated as representing physically distinctive “superchiral” phenomena. In the fully quantized formalism the chirality density is promoted to operator status, whose exploration with reference to an arbitrary polarization basis reveals relationships to optical angular momentum and helicity operators. Analyzing multimode beams with complex wave-front structures, notably Laguerre-Gaussian modes, affords a deeper understanding of the interplay between optical chirality and optical angular momentum. By developing theory with due cognizance of the photonic character of light, it emerges that only the spin-angular momentum of light is engaged in such observations. Furthermore, it is shown that these prominent measures of the helicity of chiral electromagnetic radiation have a common basis in differences between the populations of optical modes associated with angular momenta of opposite sign. Using a calculation of the rate of circular dichroism as an example, with coherent states to model the electromagnetic field, it is discovered that two terms contribute to the differential effect. The primary contribution relates to the difference in left- and right-handed photon populations; the only other contribution, which displays a sinusoidal distance dependence corresponding to the claim of nodal enhancements, is connected with the quantum photon number-phase uncertainty relation. From the full analysis, it appears that the term “superchiral” can be considered redundant.

  3. The Angular Momentum of Baryons and Dark Matter Halos Revisited

    Science.gov (United States)

    Kimm, Taysun; Devriendt, Julien; Slyz, Adrianne; Pichon, Christophe; Kassin, Susan A.; Dubois, Yohan

    2011-01-01

    Recent theoretical studies have shown that galaxies at high redshift are fed by cold, dense gas filaments, suggesting angular momentum transport by gas differs from that by dark matter. Revisiting this issue using high-resolution cosmological hydrodynamics simulations with adaptive-mesh refinement (AMR), we find that at the time of accretion, gas and dark matter do carry a similar amount of specific angular momentum, but that it is systematically higher than that of the dark matter halo as a whole. At high redshift, freshly accreted gas rapidly streams into the central region of the halo, directly depositing this large amount of angular momentum within a sphere of radius r = 0.1R(sub vir). In contrast, dark matter particles pass through the central region unscathed, and a fraction of them ends up populating the outer regions of the halo (r/R(sub vir) > 0.1), redistributing angular momentum in the process. As a result, large-scale motions of the cosmic web have to be considered as the origin of gas angular momentum rather than its virialised dark matter halo host. This generic result holds for halos of all masses at all redshifts, as radiative cooling ensures that a significant fraction of baryons remain trapped at the centre of the halos. Despite this injection of angular momentum enriched gas, we predict an amount for stellar discs which is in fair agreement with observations at z=0. This arises because the total specific angular momentum of the baryons (gas and stars) remains close to that of dark matter halos. Indeed, our simulations indicate that any differential loss of angular momentum amplitude between the two components is minor even though dark matter halos continuously lose between half and two-thirds of their specific angular momentum modulus as they evolve. In light of our results, a substantial revision of the standard theory of disc formation seems to be required. We propose a new scenario where gas efficiently carries the angular momentum generated

  4. Parameters affecting temporal resolution of Time Resolved Integrative Optical Neutron Detector (TRION)

    International Nuclear Information System (INIS)

    Mor, I; Vartsky, D; Bar, D; Feldman, G; Goldberg, M B; Brandis, M; Dangendorf, V; Tittelmeier, K; Bromberger, B; Weierganz, M

    2013-01-01

    The Time-Resolved Integrative Optical Neutron (TRION) detector was developed for Fast Neutron Resonance Radiography (FNRR), a fast-neutron transmission imaging method that exploits characteristic energy-variations of the total scattering cross-section in the E n = 1–10 MeV range to detect specific elements within a radiographed object. As opposed to classical event-counting time of flight (ECTOF), it integrates the detector signal during a well-defined neutron Time of Flight window corresponding to a pre-selected energy bin, e.g., the energy-interval spanning a cross-section resonance of an element such as C, O and N. The integrative characteristic of the detector permits loss-free operation at very intense, pulsed neutron fluxes, at a cost however, of recorded temporal resolution degradation This work presents a theoretical and experimental evaluation of detector related parameters which affect temporal resolution of the TRION system

  5. JEM-X: The X-ray monitor aboard INTEGRAL

    DEFF Research Database (Denmark)

    Lund, Niels; Budtz-Jørgensen, Carl; Westergaard, Niels Jørgen Stenfeldt

    2003-01-01

    The JEM-X monitor provides X-ray spectra and imaging with arcminute angular resolution in the 3 to 35 keV band. The good angular resolution and the low energy response of JEM-X plays an important role in the identification of gamma ray sources and in the analysis and scientific interpretation...

  6. Time variations of the angular momentum of the sun

    International Nuclear Information System (INIS)

    Schatten, K.H.

    1977-01-01

    Time variations of density models of the Sun are investigated. This is an attempt to estimate the changing moment of inertia of the Sun in order to calculate the internal solar angular velocity based upon Newton's equation of motion. Previous estimates of dI/dt disagree with those based upon central densities in a homologously contracting model. It is shown that the homologously contracting model leads to large errors in dI/dt. Based upon an integration of Sears's solar model, dI/dt=-5.5 x 10 34 gm cm 2 s -1 . This suggests a core angular velocity of /sub thetar-italic/ = (0.15 +- 0.03) x 10 -3 s -1 , corresponding to a period of 0.5 +- 0.1 days, assuming a constant angular velocity with time. The brackets indicate a weighting which is discussed

  7. PISCO: The PMAS/PPak Integral-field Supernova Hosts Compilation

    Science.gov (United States)

    Galbany, L.; Anderson, J. P.; Sánchez, S. F.; Kuncarayakti, H.; Pedraz, S.; González-Gaitán, S.; Stanishev, V.; Domínguez, I.; Moreno-Raya, M. E.; Wood-Vasey, W. M.; Mourão, A. M.; Ponder, K. A.; Badenes, C.; Mollá, M.; López-Sánchez, A. R.; Rosales-Ortega, F. F.; Vílchez, J. M.; García-Benito, R.; Marino, R. A.

    2018-03-01

    We present the PMAS/PPak Integral-field Supernova hosts COmpilation (PISCO), which comprises integral field spectroscopy (IFS) of 232 supernova (SN) host galaxies that hosted 272 SNe, observed over several semesters with the 3.5 m telescope at the Calar Alto Observatory (CAHA). PISCO is the largest collection of SN host galaxies observed with wide-field IFS, totaling 466,347 individual spectra covering a typical spatial resolution of ∼380 pc. Focused studies regarding specific SN Ia-related topics will be published elsewhere; this paper aims to present the properties of the SN environments, using stellar population (SP) synthesis, and the gas-phase interstellar medium, providing additional results separating stripped-envelope SNe into their subtypes. With 11,270 H II regions detected in all galaxies, we present for the first time a statistical analysis of H II regions, which puts H II regions that have hosted SNe in context with all other star-forming clumps within their galaxies. SNe Ic are associated with environments that are more metal-rich and have higher EW(Hα) and higher star formation rate within their host galaxies than the mean of all H II regions detected within each host. This in contrast to SNe IIb, which occur in environments that are very different compared to other core-collapse SNe types. We find two clear components of young and old SPs at SNe IIn locations. We find that SNe II fast decliners tend to explode at locations where the ΣSFR is more intense. Finally, we outline how a future dedicated IFS survey of galaxies in parallel to an untargeted SN search would overcome the biases in current environmental studies.

  8. Line broadening interference for high-resolution nuclear magnetic resonance spectra under inhomogeneous magnetic fields

    International Nuclear Information System (INIS)

    Wei, Zhiliang; Yang, Jian; Lin, Yanqin; Chen, Zhong; Chen, Youhe

    2015-01-01

    Nuclear magnetic resonance spectroscopy serves as an important tool for analyzing chemicals and biological metabolites. However, its performance is subject to the magnetic-field homogeneity. Under inhomogeneous fields, peaks are broadened to overlap each other, introducing difficulties for assignments. Here, we propose a method termed as line broadening interference (LBI) to provide high-resolution information under inhomogeneous magnetic fields by employing certain gradients in the indirect dimension to interfere the magnetic-field inhomogeneity. The conventional spectral-line broadening is thus interfered to be non-diagonal, avoiding the overlapping among adjacent resonances. Furthermore, an inhomogeneity correction algorithm is developed based on pattern recognition to recover the high-resolution information from LBI spectra. Theoretical deductions are performed to offer systematic and detailed analyses on the proposed method. Moreover, experiments are conducted to prove the feasibility of the proposed method for yielding high-resolution spectra in inhomogeneous magnetic fields

  9. Close binary evolution. II. Impact of tides, wind magnetic braking, and internal angular momentum transport

    Science.gov (United States)

    Song, H. F.; Meynet, G.; Maeder, A.; Ekström, S.; Eggenberger, P.; Georgy, C.; Qin, Y.; Fragos, T.; Soerensen, M.; Barblan, F.; Wade, G. A.

    2018-01-01

    Context. Massive stars with solar metallicity lose important amounts of rotational angular momentum through their winds. When a magnetic field is present at the surface of a star, efficient angular momentum losses can still be achieved even when the mass-loss rate is very modest, at lower metallicities, or for lower-initial-mass stars. In a close binary system, the effect of wind magnetic braking also interacts with the influence of tides, resulting in a complex evolution of rotation. Aims: We study the interactions between the process of wind magnetic braking and tides in close binary systems. Methods: We discuss the evolution of a 10 M⊙ star in a close binary system with a 7 M⊙ companion using the Geneva stellar evolution code. The initial orbital period is 1.2 days. The 10 M⊙ star has a surface magnetic field of 1 kG. Various initial rotations are considered. We use two different approaches for the internal angular momentum transport. In one of them, angular momentum is transported by shear and meridional currents. In the other, a strong internal magnetic field imposes nearly perfect solid-body rotation. The evolution of the primary is computed until the first mass-transfer episode occurs. The cases of different values for the magnetic fields and for various orbital periods and mass ratios are briefly discussed. Results: We show that, independently of the initial rotation rate of the primary and the efficiency of the internal angular momentum transport, the surface rotation of the primary will converge, in a time that is short with respect to the main-sequence lifetime, towards a slowly evolving velocity that is different from the synchronization velocity. This "equilibrium angular velocity" is always inferior to the angular orbital velocity. In a given close binary system at this equilibrium stage, the difference between the spin and the orbital angular velocities becomes larger when the mass losses and/or the surface magnetic field increase. The

  10. Two-dimensional angular momentum in the presence of long-range magnetic flux

    International Nuclear Information System (INIS)

    Jackiw, R.; Redlich, A.N.

    1983-01-01

    It is shown that eigenvalues of two-dimensional angular momentum remain integer valued in the magnetic field of a solenoid, contrary to published assertions that they are modified by the flux. For a vortex, flux does contribute, and the angular momentum can fractionize, as asserted in the literature, provided phases of wave functions are chosen consistently with the solenoid problem. Long-range effects of flux, the distinction between orbital and canonical angular momentum, and interactions with Cooper pairs are essential to this argument

  11. On the Angular Momentum Loss of Tropical Cyclones: An f-Plane Approximation

    Science.gov (United States)

    Kang, Hyun-Gyu; Cheong, Hyeong-Bin; Kim, Won-Ho

    2018-02-01

    The angular momentum for ideal axisymmetric tropical cyclones on the f-plane is investigated with a focus on the total-volume integrated quantity. Budget analysis of the momentum equation at cylindrical coordinates shows that a tropical cyclone loses angular momentum during its development and mature stages due to the dynamical difference between the viscous inward-flow near the surface and the angular momentum conserving outward-flow aloft. The total relative angular momentum of a tropical cyclone, as a result, can be negative (i.e., implying anticyclonic rotation as a whole) despite intense cyclonic wind in the tropospheric layers. This anticyclonic rotation was measured in terms of the super-rotation ratio, the ratio of total relative angular momentum to the planetary angular momentum. Simulations with the numerical model of Weather Research and Forecasting (WRF) version 3.4.1 was found to be in favor of the theoretical angular-momentum budget analysis. It was revealed in the numerical simulations that the super-rotation ratio was negative, indicating a sub-rotation, as was predicted by analysis. The sub-rotation ratio was found to be less than one percent for typical tropical cyclones. To show the angular momentum decrease even in the decaying stage, numerical simulations where the thermal forcing by sea surface temperature switched off in the mature stage were carried out. In support of the angular momentum budget analysis, the results indicated that the angular momentum also decreases for a while soon after the forcing was eliminated.

  12. A Very Fast and Angular Momentum Conserving Tree Code

    International Nuclear Information System (INIS)

    Marcello, Dominic C.

    2017-01-01

    There are many methods used to compute the classical gravitational field in astrophysical simulation codes. With the exception of the typically impractical method of direct computation, none ensure conservation of angular momentum to machine precision. Under uniform time-stepping, the Cartesian fast multipole method of Dehnen (also known as the very fast tree code) conserves linear momentum to machine precision. We show that it is possible to modify this method in a way that conserves both angular and linear momenta.

  13. A Very Fast and Angular Momentum Conserving Tree Code

    Energy Technology Data Exchange (ETDEWEB)

    Marcello, Dominic C., E-mail: dmarce504@gmail.com [Department of Physics and Astronomy, and Center for Computation and Technology Louisiana State University, Baton Rouge, LA 70803 (United States)

    2017-09-01

    There are many methods used to compute the classical gravitational field in astrophysical simulation codes. With the exception of the typically impractical method of direct computation, none ensure conservation of angular momentum to machine precision. Under uniform time-stepping, the Cartesian fast multipole method of Dehnen (also known as the very fast tree code) conserves linear momentum to machine precision. We show that it is possible to modify this method in a way that conserves both angular and linear momenta.

  14. Visual Sample Plan (VSP) - FIELDS Integration

    Energy Technology Data Exchange (ETDEWEB)

    Pulsipher, Brent A.; Wilson, John E.; Gilbert, Richard O.; Hassig, Nancy L.; Carlson, Deborah K.; Bing-Canar, John; Cooper, Brian; Roth, Chuck

    2003-04-19

    Two software packages, VSP 2.1 and FIELDS 3.5, are being used by environmental scientists to plan the number and type of samples required to meet project objectives, display those samples on maps, query a database of past sample results, produce spatial models of the data, and analyze the data in order to arrive at defensible decisions. VSP 2.0 is an interactive tool to calculate optimal sample size and optimal sample location based on user goals, risk tolerance, and variability in the environment and in lab methods. FIELDS 3.0 is a set of tools to explore the sample results in a variety of ways to make defensible decisions with quantified levels of risk and uncertainty. However, FIELDS 3.0 has a small sample design module. VSP 2.0, on the other hand, has over 20 sampling goals, allowing the user to input site-specific assumptions such as non-normality of sample results, separate variability between field and laboratory measurements, make two-sample comparisons, perform confidence interval estimation, use sequential search sampling methods, and much more. Over 1,000 copies of VSP are in use today. FIELDS is used in nine of the ten U.S. EPA regions, by state regulatory agencies, and most recently by several international countries. Both software packages have been peer-reviewed, enjoy broad usage, and have been accepted by regulatory agencies as well as site project managers as key tools to help collect data and make environmental cleanup decisions. Recently, the two software packages were integrated, allowing the user to take advantage of the many design options of VSP, and the analysis and modeling options of FIELDS. The transition between the two is simple for the user – VSP can be called from within FIELDS, automatically passing a map to VSP and automatically retrieving sample locations and design information when the user returns to FIELDS. This paper will describe the integration, give a demonstration of the integrated package, and give users download

  15. Resolution improvement of low frequency AC magnetic field detection for modulated MR sensors.

    Science.gov (United States)

    Hu, Jinghua; Pan, Mengchun; Hu, Jiafei; Li, Sizhong; Chen, Dixiang; Tian, Wugang; Sun, Kun; Du, Qingfa; Wang, Yuan; Pan, Long; Zhou, Weihong; Zhang, Qi; Li, Peisen; Peng, Junping; Qiu, Weicheng; Zhou, Jikun

    2017-09-01

    Magnetic modulation methods especially Micro-Electro-Mechanical System (MEMS) modulation can improve the sensitivity of magnetoresistive (MR) sensors dramatically, and pT level detection of Direct Current (DC) magnetic field can be realized. While in a Low Frequency Alternate Current (LFAC) magnetic field measurement situation, frequency measurement is limited by a serious spectrum aliasing problem caused by the remanence in sensors and geomagnetic field, leading to target information loss because frequency indicates the magnetic target characteristics. In this paper, a compensation field produced with integrated coils is applied to the MR sensor to remove DC magnetic field distortion, and a LFAC magnetic field frequency estimation algorithm is proposed based on a search of the database, which is derived from the numerical model revealing the relationship of the LFAC frequency and determination factor [defined by the ratio of Discrete Fourier Transform (DFT) coefficients]. In this algorithm, an inverse modulation of sensor signals is performed to detect jumping-off point of LFAC in the time domain; this step is exploited to determine sampling points to be processed. A determination factor is calculated and taken into database to figure out frequency with a binary search algorithm. Experimental results demonstrate that the frequency measurement resolution of the LFAC magnetic field is improved from 12.2 Hz to 0.8 Hz by the presented method, which, within the signal band of a magnetic anomaly (0.04-2 Hz), indicates that the proposed method may expand the applications of magnetoresistive (MR) sensors to human healthcare and magnetic anomaly detection (MAD).

  16. MULTI-SCALE SEGMENTATION OF HIGH RESOLUTION REMOTE SENSING IMAGES BY INTEGRATING MULTIPLE FEATURES

    Directory of Open Access Journals (Sweden)

    Y. Di

    2017-05-01

    Full Text Available Most of multi-scale segmentation algorithms are not aiming at high resolution remote sensing images and have difficulty to communicate and use layers’ information. In view of them, we proposes a method of multi-scale segmentation of high resolution remote sensing images by integrating multiple features. First, Canny operator is used to extract edge information, and then band weighted distance function is built to obtain the edge weight. According to the criterion, the initial segmentation objects of color images can be gained by Kruskal minimum spanning tree algorithm. Finally segmentation images are got by the adaptive rule of Mumford–Shah region merging combination with spectral and texture information. The proposed method is evaluated precisely using analog images and ZY-3 satellite images through quantitative and qualitative analysis. The experimental results show that the multi-scale segmentation of high resolution remote sensing images by integrating multiple features outperformed the software eCognition fractal network evolution algorithm (highest-resolution network evolution that FNEA on the accuracy and slightly inferior to FNEA on the efficiency.

  17. Interpreting angular momentum transfer between electromagnetic multipoles using vector spherical harmonics.

    Science.gov (United States)

    Grinter, Roger; Jones, Garth A

    2018-02-01

    The transfer of angular momentum between a quadrupole emitter and a dipole acceptor is investigated theoretically. Vector spherical harmonics are used to describe the angular part of the field of the mediating photon. Analytical results are presented for predicting angular momentum transfer between the emitter and absorber within a quantum electrodynamical framework. We interpret the allowability of such a process, which appears to violate conservation of angular momentum, in terms of the breakdown of the isotropy of space at the point of photon absorption (detection). That is, collapse of the wavefunction results in loss of all angular momentum information. This is consistent with Noether's Theorem and demystifies some common misconceptions about the nature of the photon. The results have implications for interpreting the detection of photons from multipole sources and offers insight into limits on information that can be extracted from quantum measurements in photonic systems.

  18. Turbulent transport of toroidal angular momentum in low flow gyrokinetics

    International Nuclear Information System (INIS)

    Parra, Felix I; Catto, Peter J

    2010-01-01

    We derive a self-consistent equation for the turbulent transport of toroidal angular momentum in tokamaks in the low flow ordering that only requires solving gyrokinetic Fokker-Planck and quasineutrality equations correct to second order in an expansion on the gyroradius over scale length. We also show that according to our orderings the long wavelength toroidal rotation and the long wavelength radial electric field satisfy the neoclassical relation that gives the toroidal rotation as a function of the radial electric field and the radial gradients of pressure and temperature. Thus, the radial electric field can be solved for once the toroidal rotation is calculated from the transport of toroidal angular momentum. Unfortunately, even though this methodology only requires a gyrokinetic model correct to second order in gyroradius over scale length, current gyrokinetic simulations are only valid to first order. To overcome this difficulty, we exploit the smallish ratio B p /B, where B is the total magnetic field and B p is its poloidal component. When B p /B is small, the usual first order gyrokinetic equation provides solutions that are accurate enough to employ for our expression for the transport of toroidal angular momentum. We show that current δf and full f simulations only need small corrections to achieve this accuracy. Full f simulations, however, are still unable to determine the long wavelength, radial electric field from the quasineutrality equation.

  19. Annular dark field electron microscope images with better than 2 A resolution at 100 kV

    International Nuclear Information System (INIS)

    Shin, D.H.; Kirkland, E.J.; Silcox, J.

    1989-01-01

    High-resolution scanning transmission electron microscope (STEM) images in the annular dark field (ADF) imaging mode approaching the theoretical point-to-point resolution limit are presented. The ADF images were obtained from a high T c superconducting YBa 2 Cu 3 O 7-x thin-film specimen at 100 kV. The 1.9 A resolution lattice image, which is the smallest lattice spacing in the specimen, corresponds to the minimum resolvable spatial frequency with 5% contrast in the contrast transfer function for annular dark field, and is smaller than the resolution limit given by the Rayleigh criterion. This demonstrates that STEM ADF imaging can have a resolution approximately 40% better than that of the bright field conventional transmission electron microscope (CTEM) imaging at Scherzer condition

  20. Large rotating field entropy change in ErFeO3 single crystal with angular distribution contribution

    Science.gov (United States)

    Huang, Ruoxiang; Cao, Shixun; Ren, Wei; Zhan, Sheng; Kang, Baojuan; Zhang, Jincang

    2013-10-01

    We report the rotating field entropy of ErFeO3 single-crystal in a temperature range of 3-40 K. The giant magnetic entropy change, ΔSM = -20.7 J/(kg K), and the refrigerant capacity, RC = 273.5 J/kg, are observed near T =6 K. The anisotropic constants at 6 K, K1 = 1.24× 103 J/kg, K2 = 0.74 × 103 J/kg, in the bc plane are obtained. By considering the magnetocrystalline anisotropy and Fermi-Dirac angular distribution along the orientation of spontaneous magnetization, the experimental results can be well simulated. Our present work demonstrates that ErFeO3 crystal may find practical use for low temperature anisotropic magnetic refrigeration.

  1. High resolution stationary digital breast tomosynthesis using distributed carbon nanotube x-ray source array.

    Science.gov (United States)

    Qian, Xin; Tucker, Andrew; Gidcumb, Emily; Shan, Jing; Yang, Guang; Calderon-Colon, Xiomara; Sultana, Shabana; Lu, Jianping; Zhou, Otto; Spronk, Derrek; Sprenger, Frank; Zhang, Yiheng; Kennedy, Don; Farbizio, Tom; Jing, Zhenxue

    2012-04-01

    The purpose of this study is to investigate the feasibility of increasing the system spatial resolution and scanning speed of Hologic Selenia Dimensions digital breast tomosynthesis (DBT) scanner by replacing the rotating mammography x-ray tube with a specially designed carbon nanotube (CNT) x-ray source array, which generates all the projection images needed for tomosynthesis reconstruction by electronically activating individual x-ray sources without any mechanical motion. The stationary digital breast tomosynthesis (s-DBT) design aims to (i) increase the system spatial resolution by eliminating image blurring due to x-ray tube motion and (ii) reduce the scanning time. Low spatial resolution and long scanning time are the two main technical limitations of current DBT technology. A CNT x-ray source array was designed and evaluated against a set of targeted system performance parameters. Simulations were performed to determine the maximum anode heat load at the desired focal spot size and to design the electron focusing optics. Field emission current from CNT cathode was measured for an extended period of time to determine the stable life time of CNT cathode for an expected clinical operation scenario. The source array was manufactured, tested, and integrated with a Selenia scanner. An electronic control unit was developed to interface the source array with the detection system and to scan and regulate x-ray beams. The performance of the s-DBT system was evaluated using physical phantoms. The spatially distributed CNT x-ray source array comprised 31 individually addressable x-ray sources covering a 30 angular span with 1 pitch and an isotropic focal spot size of 0.6 mm at full width at half-maximum. Stable operation at 28 kV(peak) anode voltage and 38 mA tube current was demonstrated with extended lifetime and good source-to-source consistency. For the standard imaging protocol of 15 views over 14, 100 mAs dose, and 2 × 2 detector binning, the projection

  2. Jacobi fields of completely integrable Hamiltonian systems

    International Nuclear Information System (INIS)

    Giachetta, G.; Mangiarotti, L.; Sardanashvily, G.

    2003-01-01

    We show that Jacobi fields of a completely integrable Hamiltonian system of m degrees of freedom make up an extended completely integrable system of 2m degrees of freedom, where m additional first integrals characterize a relative motion

  3. On the angular distributions of the heavy products of (HI, xn) reactions

    International Nuclear Information System (INIS)

    Sagajdak, R.N.

    1989-01-01

    The effects of neutron evaporation and scattering in the target on the angular distribution of the heavy products of (HI, xn) reactions is considered. Based on the analysis of the experimental angular distributions and their calculated parameters a simple phenomenological approach to the description of these distributions is proposed. The calculated distributions are compared with the experimental ones cited in the literature. The possibilities of using the proposed approach to calculate the integrated angular distributions of heavy products and to determine the efficiency of collecting (HI, xn) reaction products under the conditions of the kinematic separation of recoil nuclei are outlined. 28 refs.; 9 figs

  4. Spatial distribution of dust in galaxies from the Integral field unit data

    Science.gov (United States)

    Zafar, Tayyaba; Sophie Dubber, Andrew Hopkins

    2018-01-01

    An important characteristic of the dust is it can be used as a tracer of stars (and gas) and tell us about the composition of galaxies. Sub-mm and infrared studies can accurately determine the total dust mass and its spatial distribution in massive, bright galaxies. However, faint and distant galaxies are hampered by resolution to dust spatial dust distribution. In the era of integral-field spectrographs (IFS), Balmer decrement is a useful quantity to infer the spatial extent of the dust in distant and low-mass galaxies. We conducted a study to estimate the spatial distribution of dust using the Sydney-Australian Astronomical Observatory (AAO) Multi-object Integral field spectrograph (SAMI) galaxies. Our methodology is unique to exploit the potential of IFS and using the spatial and spectral information together to study dust in galaxies of various morphological types. The spatial extent and content of dust are compared with the star-formation rate, reddening, and inclination of galaxies. We find a right correlation of dust spatial extent with the star-formation rate. The results also indicate a decrease in dust extent radius from Late Spirals to Early Spirals.

  5. Free-space coherent optical communication with orbital angular, momentum multiplexing/demultiplexing using a hybrid 3D photonic integrated circuit.

    Science.gov (United States)

    Guan, Binbin; Scott, Ryan P; Qin, Chuan; Fontaine, Nicolas K; Su, Tiehui; Ferrari, Carlo; Cappuzzo, Mark; Klemens, Fred; Keller, Bob; Earnshaw, Mark; Yoo, S J B

    2014-01-13

    We demonstrate free-space space-division-multiplexing (SDM) with 15 orbital angular momentum (OAM) states using a three-dimensional (3D) photonic integrated circuit (PIC). The hybrid device consists of a silica planar lightwave circuit (PLC) coupled to a 3D waveguide circuit to multiplex/demultiplex OAM states. The low excess loss hybrid device is used in individual and two simultaneous OAM states multiplexing and demultiplexing link experiments with a 20 Gb/s, 1.67 b/s/Hz quadrature phase shift keyed (QPSK) signal, which shows error-free performance for 379,960 tested bits for all OAM states.

  6. Convergence and divergence in spherical harmonic series of the gravitational field generated by high-resolution planetary topography—A case study for the Moon

    Science.gov (United States)

    Hirt, Christian; Kuhn, Michael

    2017-08-01

    Theoretically, spherical harmonic (SH) series expansions of the external gravitational potential are guaranteed to converge outside the Brillouin sphere enclosing all field-generating masses. Inside that sphere, the series may be convergent or may be divergent. The series convergence behavior is a highly unstable quantity that is little studied for high-resolution mass distributions. Here we shed light on the behavior of SH series expansions of the gravitational potential of the Moon. We present a set of systematic numerical experiments where the gravity field generated by the topographic masses is forward-modeled in spherical harmonics and with numerical integration techniques at various heights and different levels of resolution, increasing from harmonic degree 90 to 2160 ( 61 to 2.5 km scales). The numerical integration is free from any divergence issues and therefore suitable to reliably assess convergence versus divergence of the SH series. Our experiments provide unprecedented detailed insights into the divergence issue. We show that the SH gravity field of degree-180 topography is convergent anywhere in free space. When the resolution of the topographic mass model is increased to degree 360, divergence starts to affect very high degree gravity signals over regions deep inside the Brillouin sphere. For degree 2160 topography/gravity models, severe divergence (with several 1000 mGal amplitudes) prohibits accurate gravity modeling over most of the topography. As a key result, we formulate a new hypothesis to predict divergence: if the potential degree variances show a minimum, then the SH series expansions diverge somewhere inside the Brillouin sphere and modeling of the internal potential becomes relevant.

  7. Development of high speed integrated circuit for very high resolution timing measurements

    International Nuclear Information System (INIS)

    Mester, Christian

    2009-10-01

    A multi-channel high-precision low-power time-to-digital converter application specific integrated circuit for high energy physics applications has been designed and implemented in a 130 nm CMOS process. To reach a target resolution of 24.4 ps, a novel delay element has been conceived. This nominal resolution has been experimentally verified with a prototype, with a minimum resolution of 19 ps. To further improve the resolution, a new interpolation scheme has been described. The ASIC has been designed to use a reference clock with the LHC bunch crossing frequency of 40 MHz and generate all required timing signals internally, to ease to use within the framework of an LHC upgrade. Special care has been taken to minimise the power consumption. (orig.)

  8. Development of high speed integrated circuit for very high resolution timing measurements

    Energy Technology Data Exchange (ETDEWEB)

    Mester, Christian

    2009-10-15

    A multi-channel high-precision low-power time-to-digital converter application specific integrated circuit for high energy physics applications has been designed and implemented in a 130 nm CMOS process. To reach a target resolution of 24.4 ps, a novel delay element has been conceived. This nominal resolution has been experimentally verified with a prototype, with a minimum resolution of 19 ps. To further improve the resolution, a new interpolation scheme has been described. The ASIC has been designed to use a reference clock with the LHC bunch crossing frequency of 40 MHz and generate all required timing signals internally, to ease to use within the framework of an LHC upgrade. Special care has been taken to minimise the power consumption. (orig.)

  9. Performance of a field emission gun TEM/STEM

    International Nuclear Information System (INIS)

    Carpenter, R.W.; Bentley, J.

    1979-01-01

    First experimental results on a Phillips EM 400 TEM/STEM fitted with a field-emission electron gun and objective twin lens are given here. Operation of the FEG is reliable up to maximum design voltage (120 kV). Highest resolution achieved in TEM was 1.9 A fringe. A wide variety of diffraction modes were demonstrated, ranging from CBDP from a small area (approx. 10 A dia) in STEM mode to SAD with angular resolution of 8 μrad in TEM mode. The EDS sensitivity is very high. STEM imaging performance to the highest magnifications examined (200 kx) is good. Work is in progress to evaluate the limits of STEM performance

  10. Architectures for Green-Field Supply Chain Integration: Supply Chain Integration Design

    OpenAIRE

    Radanliev, Petar

    2015-01-01

    This paper applied case study research to design architectures for green-field supply chain integration. The integration design is based on a case study of a supply chain integration of 5 companies, operating in different, but supply chain complimenting industry sectors. The case study research is applied to design and validate the architectures in a real world scenario. The supply\\ud chain integration architectures enable the conversion of individual into integrated strategies. The architect...

  11. Design of integral magnetic field sensor

    International Nuclear Information System (INIS)

    Ma Liang; Cheng Yinhui; Wu Wei; Li Baozhong; Zhou Hui; Li Jinxi; Zhu Meng

    2010-01-01

    Magnetic field is one of the important physical parameters in the measuring process of pulsed EMP. We researched on anti-interference and high-sensitivity measurement technique of magnetic field in this report. Semi rigid cables were to bent into ringed antenna so that the antenna was shielded from electric-field interference and had little inductance; In order to have high sensitivity, operational transconductance amplifier was used to produce an active integrator; We designed an optical-electronic transferring module to upgrade anti-interference capability of the magnetic-field measurement system. A measurement system of magnetic field was accomplished. The measurement system was composed of antenna, integrator, and optical-electric transferring module and so on. We calibrated the measurement system in coaxial TEM cell. It indicates that, the measurement system's respondence of rise time is up to 2.5 ns, and output width at 90%-maximum of the pulse is wider than 200 ns. (authors)

  12. Combined calculi for photon orbital and spin angular momenta

    Science.gov (United States)

    Elias, N. M.

    2014-08-01

    Context. Wavelength, photon spin angular momentum (PSAM), and photon orbital angular momentum (POAM), completely describe the state of a photon or an electric field (an ensemble of photons). Wavelength relates directly to energy and linear momentum, the corresponding kinetic quantities. PSAM and POAM, themselves kinetic quantities, are colloquially known as polarization and optical vortices, respectively. Astrophysical sources emit photons that carry this information. Aims: PSAM characteristics of an electric field (intensity) are compactly described by the Jones (Stokes/Mueller) calculus. Similarly, I created calculi to represent POAM characteristics of electric fields and intensities in an astrophysical context. Adding wavelength dependence to all of these calculi is trivial. The next logical steps are to 1) form photon total angular momentum (PTAM = POAM + PSAM) calculi; 2) prove their validity using operators and expectation values; and 3) show that instrumental PSAM can affect measured POAM values for certain types of electric fields. Methods: I derive the PTAM calculi of electric fields and intensities by combining the POAM and PSAM calculi. I show how these quantities propagate from celestial sphere to image plane. I also form the PTAM operator (the sum of the POAM and PSAM operators), with and without instrumental PSAM, and calculate the corresponding expectation values. Results: Apart from the vector, matrix, dot product, and direct product symbols, the PTAM and POAM calculi appear superficially identical. I provide tables with all possible forms of PTAM calculi. I prove that PTAM expectation values are correct for instruments with and without instrumental PSAM. I also show that POAM measurements of "unfactored" PTAM electric fields passing through non-zero instrumental circular PSAM can be biased. Conclusions: The combined PTAM calculi provide insight into mathematically modeling PTAM sources and calibrating POAM- and PSAM-induced measurement errors.

  13. In-Field High-Throughput Phenotyping of Cotton Plant Height Using LiDAR

    Directory of Open Access Journals (Sweden)

    Shangpeng Sun

    2017-04-01

    Full Text Available A LiDAR-based high-throughput phenotyping (HTP system was developed for cotton plant phenotyping in the field. The HTP system consists of a 2D LiDAR and an RTK-GPS mounted on a high clearance tractor. The LiDAR scanned three rows of cotton plots simultaneously from the top and the RTK-GPS was used to provide the spatial coordinates of the point cloud during data collection. Configuration parameters of the system were optimized to ensure the best data quality. A height profile for each plot was extracted from the dense three dimensional point clouds; then the maximum height and height distribution of each plot were derived. In lab tests, single plants were scanned by LiDAR using 0.5° angular resolution and results showed an R2 value of 1.00 (RMSE = 3.46 mm in comparison to manual measurements. In field tests using the same angular resolution; the LiDAR-based HTP system achieved average R2 values of 0.98 (RMSE = 65 mm for cotton plot height estimation; compared to manual measurements. This HTP system is particularly useful for large field application because it provides highly accurate measurements; and the efficiency is greatly improved compared to similar studies using the side view scan.

  14. Structure of high-resolution NMR spectra

    CERN Document Server

    Corio, PL

    2012-01-01

    Structure of High-Resolution NMR Spectra provides the principles, theories, and mathematical and physical concepts of high-resolution nuclear magnetic resonance spectra.The book presents the elementary theory of magnetic resonance; the quantum mechanical theory of angular momentum; the general theory of steady state spectra; and multiple quantum transitions, double resonance and spin echo experiments.Physicists, chemists, and researchers will find the book a valuable reference text.

  15. Integration of the GET electronics for the CHIMERA and FARCOS devices

    Science.gov (United States)

    De Filippo, E.; Acosta, L.; Auditore, L.; Boiano, C.; Cardella, G.; Castoldi, A.; D’Andrea, M.; De Luca, S.; Favela, F.; Fichera, F.; Giudice, N.; Gnoffo, B.; Grimaldi, A.; Guazzoni, C.; Lanzalone, G.; Librizzi, F.; Litrico, P.; Maiolino, C.; Maffesanti, S.; Martorana, NS; Pagano, A.; Pagano, EV; Papa, M.; Parsani, T.; Passaro, G.; Pirrone, S.; Politi, G.; Previdi, F.; Quattrocchi, L.; Rizzo, F.; Russotto, P.; Saccà, G.; Salemi, G.; Sciliberto, D.; Trifirò, A.; Trimarchi, M.

    2018-05-01

    A new front-end based on digital GET electronics has been adopted for the readout of the CsI(Tl) detectors of the CHIMERA 4π multi-detector and for the new modular Femtoscopy Array for Correlation and Spectroscopy (FARCOS). It is expected that the coupling of CHIMERA with the FARCOS array, featuring high angular and energy resolution, and the adoption of the new digital electronics will be well suited for improving specific future data analysis, with the full shape storage of the signals, in the field of heavy ion reactions with stable and exotic beams around the Fermi energies domain. Integration of the GET electronics with CHIMERA and FARCOS devices and with the local analog data acquisition will be briefly discussed. We present some results from previous experimental tests and from the first in-beam experiment (Hoyle-Gamma) with the coupled GET+CHIMERA data acquisition.

  16. Angular momentum of phonons and its application to single-spin relaxation

    Science.gov (United States)

    Nakane, Jotaro J.; Kohno, Hiroshi

    2018-05-01

    We reexamine the relaxation process of a single spin embedded in an elastic medium, a problem studied recently by Garanin and Chudnovsky (GC) [Phys. Rev. B 92, 024421 (2015), 10.1103/PhysRevB.92.024421] from the viewpoint of angular-momentum transfer. Using Noether's theorem, we identify two distinct angular momenta of the medium, one Newtonian discussed by GC and the other field-theoretical, both of which consist of an orbital part and a spin part. For both angular momenta, we found that the orbital part is as essential as the spin part in the relaxation process. In particular, the angular-momentum transfer from the (real) spin to the Newtonian orbital part may be considered as an incipient rotation that leads to the Einstein-de Haas effect.

  17. Field theory a path integral approach

    CERN Document Server

    Das, Ashok

    2006-01-01

    This unique book describes quantum field theory completely within the context of path integrals. With its utility in a variety of fields in physics, the subject matter is primarily developed within the context of quantum mechanics before going into specialized areas.Adding new material keenly requested by readers, this second edition is an important expansion of the popular first edition. Two extra chapters cover path integral quantization of gauge theories and anomalies, and a new section extends the supersymmetry chapter, where singular potentials in supersymmetric systems are described.

  18. Pulsed power for angular multiplexed laser fusion drivers

    International Nuclear Information System (INIS)

    Eninger, J.E.

    1983-01-01

    The feasibility of using rare gas-halide lasers, in particular the KrF laser, as inertial confinement fusion (ICF) drivers has been assessed. These lasers are scalable to the required high energy (approx. =1-5 MJ) in a short pulse (approx. =10 ns) by optical angular multiplexing, and integration of the output from approx. =100 kJ laser amplifier subsystems. The e-beam current density (approx. =50A/cm 2 ) and voltage (approx. =800 kV) required for these power amplifiers lead to an e-beam impedance of approx. =0.2Ω for approx. =300 ns pump time. This impedance level requires modularization of the large area e-gun, a) to achieve a diode inductance consistent with fast current risetime, b) to circumvent dielectric breakdown constraints in the pulse forming lines, and c) to reduce the requirement for guide magnetic fields. Pulsed power systems requirements, design concepts, scalability, tradeoffs, and performance projections are discussed in this paper

  19. Second generation stationary digital breast tomosynthesis system with faster scan time and wider angular span.

    Science.gov (United States)

    Calliste, Jabari; Wu, Gongting; Laganis, Philip E; Spronk, Derrek; Jafari, Houman; Olson, Kyle; Gao, Bo; Lee, Yueh Z; Zhou, Otto; Lu, Jianping

    2017-09-01

    The aim of this study was to characterize a new generation stationary digital breast tomosynthesis system with higher tube flux and increased angular span over a first generation system. The linear CNT x-ray source was designed, built, and evaluated to determine its performance parameters. The second generation system was then constructed using the CNT x-ray source and a Hologic gantry. Upon construction, test objects and phantoms were used to characterize system resolution as measured by the modulation transfer function (MTF), and artifact spread function (ASF). The results indicated that the linear CNT x-ray source was capable of stable operation at a tube potential of 49 kVp, and measured focal spot sizes showed source-to-source consistency with a nominal focal spot size of 1.1 mm. After construction, the second generation (Gen 2) system exhibited entrance surface air kerma rates two times greater the previous s-DBT system. System in-plane resolution as measured by the MTF is 7.7 cycles/mm, compared to 6.7 cycles/mm for the Gen 1 system. As expected, an increase in the z-axis depth resolution was observed, with a decrease in the ASF from 4.30 mm to 2.35 mm moving from the Gen 1 system to the Gen 2 system as result of an increased angular span. The results indicate that the Gen 2 stationary digital breast tomosynthesis system, which has a larger angular span, increased entrance surface air kerma, and faster image acquisition time over the Gen 1 s-DBT system, results in higher resolution images. With the detector operating at full resolution, the Gen 2 s-DBT system can achieve an in-plane resolution of 7.7 cycles per mm, which is better than the current commercial DBT systems today, and may potentially result in better patient diagnosis. © 2017 American Association of Physicists in Medicine.

  20. Energy flow in a bound electromagnetic field: resolution of apparent paradoxes

    International Nuclear Information System (INIS)

    Kholmetskii, A L; Yarman, T

    2008-01-01

    In this paper, we present a resolution of apparent paradoxes formulated in (Kholmetskii A L 2006 Apparent paradoxes in classical electrodynamics: the energy-momentum conservation law for a bound electromagnetic field Eur. J. Phys. 27 825-38; Kholmetskii A L and Yarman T 2008 Apparent paradoxes in classical electrodynamics: a fluid medium in an electromagnetic field Eur. J. Phys. 29 1127) and dealing with the energy flux in a bound electromagnetic field

  1. A FDTD solution of scattering of laser beam with orbital angular momentum by dielectric particles: Far-field characteristics

    International Nuclear Information System (INIS)

    Sun, Wenbo; Hu, Yongxiang; Weimer, Carl; Ayers, Kirk; Baize, Rosemary R.; Lee, Tsengdar

    2017-01-01

    Electromagnetic (EM) beams with orbital angular momentum (OAM) may have great potential applications in communication technology and in remote sensing of the Earth-atmosphere system and outer planets. Study of their interaction with optical lenses and dielectric or metallic objects, or scattering of them by particles in the Earth-atmosphere system, is a necessary step to explore the advantage of the OAM EM beams. In this study, the 3-dimensional (3D) scattered-field (SF) finite-difference time domain (FDTD) technique with the convolutional perfectly matched layer (CPML) absorbing boundary conditions (ABC) is applied to calculate the scattering of the purely azimuthal (the radial mode number is assumed to be zero) Laguerre–Gaussian (LG) beams with the OAM by dielectric particles. We found that for OAM beam's interaction with dielectric particles, the forward-scattering peak in the conventional phase function (P11) disappears, and light scattering peak occurs at a scattering angle of ~15° to 45°. The disappearance of forward-scattering peak means that, in laser communications most of the particle-scattered noise cannot enter the receiver, thus the received light is optimally the original OAM-encoded signal. This feature of the OAM beam also implies that in lidar remote sensing of the atmospheric particulates, most of the multiple-scattering energy will be off lidar sensors, and this may result in an accurate profiling of particle layers in the atmosphere or in the oceans by lidar, or even in the ground when a ground penetration radar (GPR) with the OAM is applied. This far-field characteristics of the scattered OAM light also imply that the optical theorem, which is derived from plane-parallel wave scattering case and relates the forward scattering amplitude to the total cross section of the scatterer, is invalid for the scattering of OAM beams by dielectric particles. - Highlights: • Scattering of orbital angular momentum (OAM) laser beam by dielectric

  2. Measurement of the position resolution of the Gas Pixel Detector

    International Nuclear Information System (INIS)

    Soffitta, Paolo; Muleri, Fabio; Fabiani, Sergio; Costa, Enrico; Bellazzini, Ronaldo; Brez, Alessandro; Minuti, Massimo; Pinchera, Michele; Spandre, Gloria

    2013-01-01

    The Gas Pixel Detector was designed and built as a focal plane instrument for X-ray polarimetry of celestial sources, the last unexplored subtopics of X-ray astronomy. It promises to perform detailed and sensitive measurements resolving extended sources and detecting polarization in faint sources in crowded fields at the focus of telescopes of good angular resolution. Its polarimetric and spectral capability were already studied in earlier works. Here we investigate for the first time, with both laboratory measurements and Monte Carlo simulations, its imaging properties to confirm its unique capability to carry out imaging spectral-polarimetry in future X-ray missions.

  3. Sub-micron resolution selected area electron channeling patterns.

    Science.gov (United States)

    Guyon, J; Mansour, H; Gey, N; Crimp, M A; Chalal, S; Maloufi, N

    2015-02-01

    Collection of selected area channeling patterns (SACPs) on a high resolution FEG-SEM is essential to carry out quantitative electron channeling contrast imaging (ECCI) studies, as it facilitates accurate determination of the crystal plane normal with respect to the incident beam direction and thus allows control the electron channeling conditions. Unfortunately commercial SACP modes developed in the past were limited in spatial resolution and are often no longer offered. In this contribution we present a novel approach for collecting high resolution SACPs (HR-SACPs) developed on a Gemini column. This HR-SACP technique combines the first demonstrated sub-micron spatial resolution with high angular accuracy of about 0.1°, at a convenient working distance of 10mm. This innovative approach integrates the use of aperture alignment coils to rock the beam with a digitally calibrated beam shift procedure to ensure the rocking beam is maintained on a point of interest. Moreover a new methodology to accurately measure SACP spatial resolution is proposed. While column considerations limit the rocking angle to 4°, this range is adequate to index the HR-SACP in conjunction with the pattern simulated from the approximate orientation deduced by EBSD. This new technique facilitates Accurate ECCI (A-ECCI) studies from very fine grained and/or highly strained materials. It offers also new insights for developing HR-SACP modes on new generation high-resolution electron columns. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Differential branching fraction and angular analysis of the decay B-0 -> K*(0)mu(+)mu(-)

    NARCIS (Netherlands)

    Aaij, R.; Abellan Beteta, C.; Adeva, B.; Adinolfi, M.; Adrover, C.; Affolder, A.; Ajaltouni, Z.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; Anderlini, L.; Andreassen, R.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Bachmann, S.; Back, J. J.; Baesso, C.; Balagura, V.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Bauer, Th.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Belogurov, S.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Pellegrino, A.; Tolk, S.

    The angular distribution and differential branching fraction of the decay B-0 -> K*(0)mu(+)mu(-) are studied using a data sample, collected by the LHCb experiment in pp collisions at root s = 7 TeV, corresponding to an integrated luminosity of 1.0 fb(-1). Several angular observables are measured in

  5. A 360-degree floating 3D display based on light field regeneration.

    Science.gov (United States)

    Xia, Xinxing; Liu, Xu; Li, Haifeng; Zheng, Zhenrong; Wang, Han; Peng, Yifan; Shen, Weidong

    2013-05-06

    Using light field reconstruction technique, we can display a floating 3D scene in the air, which is 360-degree surrounding viewable with correct occlusion effect. A high-frame-rate color projector and flat light field scanning screen are used in the system to create the light field of real 3D scene in the air above the spinning screen. The principle and display performance of this approach are investigated in this paper. The image synthesis method for all the surrounding viewpoints is analyzed, and the 3D spatial resolution and angular resolution of the common display zone are employed to evaluate display performance. The prototype is achieved and the real 3D color animation image has been presented vividly. The experimental results verified the representability of this method.

  6. Terahertz-wave near-field imaging with subwavelength resolution using surface-wave-assisted bow-tie aperture

    Science.gov (United States)

    Ishihara, Kunihiko; Ohashi, Keishi; Ikari, Tomofumi; Minamide, Hiroaki; Yokoyama, Hiroyuki; Shikata, Jun-ichi; Ito, Hiromasa

    2006-11-01

    We demonstrate the terahertz-wave near-field imaging with subwavelength resolution using a bow-tie shaped aperture surrounded by concentric periodic structures in a metal film. A subwavelength aperture with concentric periodic grooves, which are known as a bull's eye structure, shows extremely large enhanced transmission beyond the diffraction limit caused by the resonant excitation of surface waves. Additionally, a bow-tie aperture exhibits extraordinary field enhancement at the sharp tips of the metal, which enhances the transmission and the subwavelength spatial resolution. We introduced a bow-tie aperture to the bull's eye structure and achieved high spatial resolution (˜λ/17) in the near-field region. The terahertz-wave near-field image of the subwavelength metal pattern (pattern width=20μm) was obtained for the wavelength of 207μm.

  7. Real-Time Amplitude and Phase Imaging of Optically Opaque Objects by Combining Full-Field Off-Axis Terahertz Digital Holography with Angular Spectrum Reconstruction

    Science.gov (United States)

    Yamagiwa, Masatomo; Ogawa, Takayuki; Minamikawa, Takeo; Abdelsalam, Dahi Ghareab; Okabe, Kyosuke; Tsurumachi, Noriaki; Mizutani, Yasuhiro; Iwata, Testuo; Yamamoto, Hirotsugu; Yasui, Takeshi

    2018-06-01

    Terahertz digital holography (THz-DH) has the potential to be used for non-destructive inspection of visibly opaque soft materials due to its good immunity to optical scattering and absorption. Although previous research on full-field off-axis THz-DH has usually been performed using Fresnel diffraction reconstruction, its minimum reconstruction distance occasionally prevents a sample from being placed near a THz imager to increase the signal-to-noise ratio in the hologram. In this article, we apply the angular spectrum method (ASM) for wavefront reconstruction in full-filed off-axis THz-DH because ASM is more accurate at short reconstruction distances. We demonstrate real-time phase imaging of a visibly opaque plastic sample with a phase resolution power of λ/49 at a frame rate of 3.5 Hz in addition to real-time amplitude imaging. We also perform digital focusing of the amplitude image for the same object with a depth selectivity of 447 μm. Furthermore, 3D imaging of visibly opaque silicon objects was achieved with a depth precision of 1.7 μm. The demonstrated results indicate the high potential of the proposed method for in-line or in-process non-destructive inspection of soft materials.

  8. Real-Time Amplitude and Phase Imaging of Optically Opaque Objects by Combining Full-Field Off-Axis Terahertz Digital Holography with Angular Spectrum Reconstruction

    Science.gov (United States)

    Yamagiwa, Masatomo; Ogawa, Takayuki; Minamikawa, Takeo; Abdelsalam, Dahi Ghareab; Okabe, Kyosuke; Tsurumachi, Noriaki; Mizutani, Yasuhiro; Iwata, Testuo; Yamamoto, Hirotsugu; Yasui, Takeshi

    2018-04-01

    Terahertz digital holography (THz-DH) has the potential to be used for non-destructive inspection of visibly opaque soft materials due to its good immunity to optical scattering and absorption. Although previous research on full-field off-axis THz-DH has usually been performed using Fresnel diffraction reconstruction, its minimum reconstruction distance occasionally prevents a sample from being placed near a THz imager to increase the signal-to-noise ratio in the hologram. In this article, we apply the angular spectrum method (ASM) for wavefront reconstruction in full-filed off-axis THz-DH because ASM is more accurate at short reconstruction distances. We demonstrate real-time phase imaging of a visibly opaque plastic sample with a phase resolution power of λ/49 at a frame rate of 3.5 Hz in addition to real-time amplitude imaging. We also perform digital focusing of the amplitude image for the same object with a depth selectivity of 447 μm. Furthermore, 3D imaging of visibly opaque silicon objects was achieved with a depth precision of 1.7 μm. The demonstrated results indicate the high potential of the proposed method for in-line or in-process non-destructive inspection of soft materials.

  9. Angular correlation methods

    International Nuclear Information System (INIS)

    Ferguson, A.J.

    1974-01-01

    An outline of the theory of angular correlations is presented, and the difference between the modern density matrix method and the traditional wave function method is stressed. Comments are offered on particular angular correlation theoretical techniques. A brief discussion is given of recent studies of gamma ray angular correlations of reaction products recoiling with high velocity into vacuum. Two methods for optimization to obtain the most accurate expansion coefficients of the correlation are discussed. (1 figure, 53 references) (U.S.)

  10. Global integrability of cosmological scalar fields

    Science.gov (United States)

    Maciejewski, Andrzej J.; Przybylska, Maria; Stachowiak, Tomasz; Szydłowski, Marek

    2008-11-01

    We investigate the Liouvillian integrability of Hamiltonian systems describing a universe filled with a scalar field (possibly complex). The tool used is the differential Galois group approach, as introduced by Morales-Ruiz and Ramis. The main result is that the generic systems with minimal coupling are non-integrable, although there still exist some values of parameters for which integrability remains undecided; the conformally coupled systems are only integrable in four known cases. We also draw a connection with the chaos present in such cosmological models, and the issues of the integrability restricted to the real domain.

  11. Global integrability of cosmological scalar fields

    International Nuclear Information System (INIS)

    Maciejewski, Andrzej J; Przybylska, Maria; Stachowiak, Tomasz; Szydlowski, Marek

    2008-01-01

    We investigate the Liouvillian integrability of Hamiltonian systems describing a universe filled with a scalar field (possibly complex). The tool used is the differential Galois group approach, as introduced by Morales-Ruiz and Ramis. The main result is that the generic systems with minimal coupling are non-integrable, although there still exist some values of parameters for which integrability remains undecided; the conformally coupled systems are only integrable in four known cases. We also draw a connection with the chaos present in such cosmological models, and the issues of the integrability restricted to the real domain

  12. Operator theory of angular momentum nad orientational auto-correlation functions

    International Nuclear Information System (INIS)

    Evans, M.W.

    1982-01-01

    The rigorous relation between the orientational auto-correlation function and the angular momentum autocorrelation function is described in two cases of interest. First when description of the complete zero THz- spectrum is required from the Mori continued fraction expansion for the angular momentum autocorrelation function and second when rotation/translation effects are important. The Mori-Evans theory of 1976, relying on the simple Shimizu relation is found to be essentially unaffected by the higher order corrections recently worked out by Ford and co-workers in the Markov limit. The mutual interaction of rotation and translation is important in determining the details of both the orientational and angular momentum auto-correlation function's (a.c.f.'s) in the presence of sample anisotropy or a symmetry breaking field. In this case it is essential to regard the angular momentum a.c.f. as non-Markovian and methods are developed to relate this to the orientational a.c.f. in the presence of rotation/translation coupling. (author)

  13. Angular distribution and atomic effects in condensed phase photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Davis, R.F.

    1981-11-01

    A general concept of condensed phase photoelectron spectroscopy is that angular distribution and atomic effects in the photoemission intensity are determined by different mechanisms, the former being determined largely by ordering phenomena such as crystal momentum conservation and photoelectron diffraction while the latter are manifested in the total (angle-integrated) cross section. In this work, the physics of the photoemission process is investigated in several very different experiments to elucidate the mechanisms of, and correlation between, atomic and angular distribution effects. Theoretical models are discussed and the connection betweeen the two effects is clearly established. The remainder of this thesis, which describes experiments utilizing both angle-resolved and angle-integrated photoemission in conjunction with synchrotron radiation in the energy range 6 eV less than or equal to h ν less than or equal to 360 eV and laboratory sources, is divided into three parts

  14. 15x optical zoom and extreme optical image stabilisation: diffraction limited integral field spectroscopy with the Oxford SWIFT spectrograph

    Science.gov (United States)

    Tecza, Matthias; Thatte, Niranjan; Clarke, Fraser; Lynn, James; Freeman, David; Roberts, Jennifer; Dekany, Richard

    2012-09-01

    When commissioned in November 2008 at the Palomar 200 inch Hale Telescope, the Oxford SWIFT I and z band integral field spectrograph, fed by the adaptive optics system PALAO, provided a wide (3×) range of spatial resolutions: three plate scales of 235 mas, 160 mas, and 80 mas per spaxel over a contiguous field-of-view of 89×44 pixels. Depending on observing conditions and guide star brightness we can choose a seeing limited scale of 235 mas per spaxel, or 160 mas and 80 mas per spaxel for very bright guide star AO with substantial increase of enclosed energy. Over the last two years PALAO was upgraded to PALM-3000: an extreme, high-order adaptive optics system with two deformable mirrors with more than 3000 actuators, promising diffraction limited performance in SWIFT's wavelength range. In order to take advantage of this increased spatial resolution we upgraded SWIFT with new pre-optics allowing us to spatially Nyquist sample the diffraction limited PALM-3000 point spread function with 16 mas resolution, reducing the spaxel scale by another factor of 5×. We designed, manufactured, integrated and tested the new pre-optics in the first half of 2011 and commissioned it in December 2011. Here we present the opto-mechanical design and assembly of the new scale changing optics, as well as laboratory and on-sky commissioning results. In optimal observing conditions we achieve substantial Strehl ratios, delivering the near diffraction limited spatial resolution in the I and z bands.

  15. A Note on the First Integrals of Vector Fields with Integrating Factors and Normalizers

    Directory of Open Access Journals (Sweden)

    Jaume Llibre

    2012-06-01

    Full Text Available We prove a sufficient condition for the existence of explicit first integrals for vector fields which admit an integrating factor. This theorem recovers and extends previous results in the literature on the integrability of vector fields which are volume preserving and possess nontrivial normalizers. Our approach is geometric and coordinate-free and hence it works on any smooth orientable manifold.

  16. New twistorial integral formulas for massless free fields of arbitrary spin

    International Nuclear Information System (INIS)

    Cardoso, J.G.

    1991-01-01

    A manifestly scaling-invariant version of the Kirchoff-D'Adhemar-Penrose field integrals is presented. The invariant integral expressions for the spinning massless free fields are directly transcribed into the framework of twistor theory. It is then shown that the resulting twistorial field integrals can be thought of as being equivalent to the universal Penrose contour integral formulas for these fields

  17. A plasma solenoid driven by an Orbital Angular Momentum laser beam

    OpenAIRE

    Nuter, R.; Korneev, Ph.; Thiele, I.; Tikhonchuk, V.

    2018-01-01

    A tens of Tesla quasi-static axial magnetic field can be produced in the interaction of a short intense laser beam carrying an Orbital Angular Momentum with an underdense plasma. Three-dimensional "Particle In Cell" simulations and analytical model demonstrate that orbital angular momentum is transfered from a tightly focused radially polarized laser beam to electrons without any dissipative effect. A theoretical model describing the balistic interaction of electrons with laser shows that par...

  18. Cosmology Large Angular Scale Surveyor (CLASS) Focal Plane Development

    Science.gov (United States)

    Chuss, D. T.; Ali, A.; Amiri, M.; Appel, J.; Bennett, C. L.; Colazo, F.; Denis, K. L.; Dunner, R.; Essinger-Hileman, T.; Eimer, J.; hide

    2015-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) will measure the polarization of the Cosmic Microwave Background to search for and characterize the polarized signature of inflation. CLASS will operate from the Atacama Desert and observe approx.70% of the sky. A variable-delay polarization modulator provides modulation of the polarization at approx.10Hz to suppress the 1/f noise of the atmosphere and enable the measurement of the large angular scale polarization modes. The measurement of the inflationary signal across angular scales that spans both the recombination and reionization features allows a test of the predicted shape of the polarized angular power spectra in addition to a measurement of the energy scale of inflation. CLASS is an array of telescopes covering frequencies of 38, 93, 148, and 217 GHz. These frequencies straddle the foreground minimum and thus allow the extraction of foregrounds from the primordial signal. Each focal plane contains feedhorn-coupled transition-edge sensors that simultaneously detect two orthogonal linear polarizations. The use of single-crystal silicon as the dielectric for the on-chip transmission lines enables both high efficiency and uniformity in fabrication. Integrated band definition has been implemented that both controls the bandpass of the single-mode transmission on the chip and prevents stray light from coupling to the detectors.

  19. SMART-X: Square Meter, Arcsecond Resolution Telescope for X-rays

    Science.gov (United States)

    Vikhlinin, Alexey; SMART-X Collaboration

    2013-04-01

    SMART-X is a concept for a next-generation X-ray observatory with large-area, 0.5" angular resolution grazing incidence adjustable X-ray mirrors, high-throughput critical angle transmission gratings, and X-ray microcalorimeter and CMOS-based imager in the focal plane. High angular resolution is enabled by new technology based on controlling the shape of mirror segments using thin film piezo actuators deposited on the back surface. Science applications include observations of growth of supermassive black holes since redshifts of ~10, ultra-deep surveys over 10's of square degrees, galaxy assembly at z=2-3, as well as new opportunities in the high-resolution X-ray spectroscopy and time domains. We also review the progress in technology development, tests, and mission design over the past year.

  20. Nuclear Dynamics of a Nearby Seyfert with NIRSpec Integral Field Spectroscopy

    Science.gov (United States)

    Bentz, Misty; Batiste, M.; Onken, C.; Roberts, C.; Valluri, M.; Vasiliev, E.

    2017-11-01

    Integral field spectroscopy has become an invaluable tool for investigating the physical conditions and dynamics deep inside galaxy nuclei. The integral field spectrograph on JWST provides some crucial advantages over those on AO- assisted ground-based telescopes like Gemini and VLT. In particular, JWST will provide a stable and diffraction limited point spread function (PSF) with no seeing halo, and the background will be significantly reduced resulting in shorter exposure times to achieve a benchmark signal-to-noise ratio, even for late-type galaxies that have shallower central cusps and fainter central surface brightnesses, and for which the exposure times required from the ground may be prohibitive. We are particularly interested in comparing black hole masses derived from the modeling of nuclear stellar dynamics to masses derived from reverberation mapping in the same galaxies. With this Early Release Science proposal, we request a small investment of time to clearly demonstrate JWST's capabilities in spatial and spectral resolution relative to the stringent technical requirements for direct black hole mass measurements. The technically demanding nature of the requisite measurements will allow us to explore the limits of what is possible to achieve with the NIRSpec IFU, thus providing technical guidance for a wide range of studies that seek to probe the physics of black hole feeding and feedback and their links to galaxy and black hole co-evolution.

  1. Optical angular momentum and atoms.

    Science.gov (United States)

    Franke-Arnold, Sonja

    2017-02-28

    Any coherent interaction of light and atoms needs to conserve energy, linear momentum and angular momentum. What happens to an atom's angular momentum if it encounters light that carries orbital angular momentum (OAM)? This is a particularly intriguing question as the angular momentum of atoms is quantized, incorporating the intrinsic spin angular momentum of the individual electrons as well as the OAM associated with their spatial distribution. In addition, a mechanical angular momentum can arise from the rotation of the entire atom, which for very cold atoms is also quantized. Atoms therefore allow us to probe and access the quantum properties of light's OAM, aiding our fundamental understanding of light-matter interactions, and moreover, allowing us to construct OAM-based applications, including quantum memories, frequency converters for shaped light and OAM-based sensors.This article is part of the themed issue 'Optical orbital angular momentum'. © 2017 The Author(s).

  2. Optical angular momentum and atoms

    Science.gov (United States)

    2017-01-01

    Any coherent interaction of light and atoms needs to conserve energy, linear momentum and angular momentum. What happens to an atom’s angular momentum if it encounters light that carries orbital angular momentum (OAM)? This is a particularly intriguing question as the angular momentum of atoms is quantized, incorporating the intrinsic spin angular momentum of the individual electrons as well as the OAM associated with their spatial distribution. In addition, a mechanical angular momentum can arise from the rotation of the entire atom, which for very cold atoms is also quantized. Atoms therefore allow us to probe and access the quantum properties of light’s OAM, aiding our fundamental understanding of light–matter interactions, and moreover, allowing us to construct OAM-based applications, including quantum memories, frequency converters for shaped light and OAM-based sensors. This article is part of the themed issue ‘Optical orbital angular momentum’. PMID:28069766

  3. Experimental Investigation of Integrated Optical Intensive Impulse Electric Field Sensors

    International Nuclear Information System (INIS)

    Bao, Sun; Fu-Shen, Chen

    2009-01-01

    We design and fabricate an integrated optical electric field sensor with segmented electrode for intensive impulse electric field measurement. The integrated optical sensor is based on a Mach–Zehnder interferometer with segmented electrodes. The output/input character of the sensing system is analysed and measured. The maximal detectable electric field range (−75 kV/m to 245 kV/m) is obtained by analysing the results. As a result, the integrated optics electric field sensing system is suitable for transient intensive electric field measurement investigation

  4. Coded aperture subreflector array for high resolution radar imaging

    Science.gov (United States)

    Lynch, Jonathan J.; Herrault, Florian; Kona, Keerti; Virbila, Gabriel; McGuire, Chuck; Wetzel, Mike; Fung, Helen; Prophet, Eric

    2017-05-01

    HRL Laboratories has been developing a new approach for high resolution radar imaging on stationary platforms. High angular resolution is achieved by operating at 235 GHz and using a scalable tile phased array architecture that has the potential to realize thousands of elements at an affordable cost. HRL utilizes aperture coding techniques to minimize the size and complexity of the RF electronics needed for beamforming, and wafer level fabrication and integration allow tiles containing 1024 elements to be manufactured with reasonable costs. This paper describes the results of an initial feasibility study for HRL's Coded Aperture Subreflector Array (CASA) approach for a 1024 element micromachined antenna array with integrated single-bit phase shifters. Two candidate electronic device technologies were evaluated over the 170 - 260 GHz range, GaN HEMT transistors and GaAs Schottky diodes. Array structures utilizing silicon micromachining and die bonding were evaluated for etch and alignment accuracy. Finally, the overall array efficiency was estimated to be about 37% (not including spillover losses) using full wave array simulations and measured device performance, which is a reasonable value at 235 GHz. Based on the measured data we selected GaN HEMT devices operated passively with 0V drain bias due to their extremely low DC power dissipation.

  5. Differential branching fraction and angular analysis of the $B^+ \\to K^+ \\mu^+ \\mu^-$ decay

    CERN Document Server

    INSPIRE-00258707; Abellan Beteta, C; Adametz, A; Adeva, B; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves Jr, A A; Amato, S; Amhis, Y; Anderlini, L; Anderson, J; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Bachmann, S; Back, J J; Baesso, C; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bates, A; Bauer, Th; Bay, A; Beddow, J; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Benayoun, M; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M -O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blanks, C; Blouw, J; Blusk, S; Bobrov, A; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bowen, E E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Büchler-Germann, A; Burducea, I; Bursche, A; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carson, L; Carvalho Akiba, K; Casse, G; Cattaneo, M; Cauet, Ch; Charles, M; Charpentier, Ph; Chen, P; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Corti, G; Couturier, B; Cowan, G A; Craik, D; Cunliffe, S; Currie, R; D'Ambrosio, C; David, P; David, P N Y; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Simone, P; Decamp, D; Deckenhoff, M; Degaudenzi, H; Del Buono, L; Deplano, C; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dickens, J; Dijkstra, H; Diniz Batista, P; Domingo Bonal, F; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisenhardt, S; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Elsby, D; Esperante Pereira, D; Falabella, A; Färber, C; Fardell, G; Farinelli, C; Farry, S; Fave, V; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furcas, S; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garnier, J-C; Garofoli, J; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hampson, T; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Harrison, P F; Hartmann, T; He, J; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hicks, E; Hill, D; Hoballah, M; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Hussain, N; Huston, R S; Hutchcroft, D; Hynds, D; Iakovenko, V; Ilten, P; Imong, J; Jacobsson, R; Jaeger, A; Jahjah Hussein, M; Jans, E; Jansen, F; Jaton, P; Jean-Marie, B; Jing, F; John, M; Johnson, D; Jones, C R; Jost, B; Kaballo, M; Kandybei, S; Karacson, M; Karbach, T M; Keaveney, J; Kenyon, I R; Kerzel, U; Ketel, T; Keune, A; Khanji, B; Kim, Y M; Kochebina, O; Komarov, V; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucharczyk, M; Kudryavtsev, V; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J -P; Lefèvre, R; Leflat, A; Lefrançois, J; Leroy, O; Lesiak, T; Li, Y; Li Gioi, L; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; von Loeben, J; Lopes, J H; Lopez Asamar, E; Lopez-March, N; Lu, H; Luisier, J; Mac Raighne, A; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Magnin, J; Maino, M; Malde, S; Manca, G; Mancinelli, G; Mangiafave, N; Marconi, U; Märki, R; Marks, J; Martellotti, G; Martens, A; Martin, L; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Massafferri, A; Mathe, Z; Matteuzzi, C; Matveev, M; Maurice, E; Mazurov, A; McCarthy, J; McGregor, G; McNulty, R; Meissner, M; Merk, M; Merkel, J; Milanes, D A; Minard, M -N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Mylroie-Smith, J; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neufeld, N; Nguyen, A D; Nguyen-Mau, C; Nicol, M; Niess, V; Nikitin, N; Nikodem, T; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Pal, B K; Palano, A; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perego, D L; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pessina, G; Petridis, K; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pie Valls, B; Pietrzyk, B; Pilař, T; Pinci, D; Playfer, S; Plo Casasus, M; Polci, F; Polok, G; Poluektov, A; Polycarpo, E; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pugatch, V; Puig Navarro, A; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redford, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Rives Molina, V; Roa Romero, D A; Robbe, P; Rodrigues, E; Rodriguez Perez, P; Rogers, G J; Roiser, S; Romanovsky, V; Romero Vidal, A; Rouvinet, J; Ruf, T; Ruiz, H; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salzmann, C; Sanmartin Sedes, B; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santinelli, R; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Schaack, P; Schiller, M; Schindler, H; Schleich, S; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M -H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Skwarnicki, T; Smith, N A; Smith, E; Smith, M; Sobczak, K; Soler, F J P; Solomin, A; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Swientek, S; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teklishyn, M; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tsaregorodtsev, A; Tuning, N; Ubeda Garcia, M; Ukleja, A; Urner, D; Uwer, U; Vagnoni, V; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Videau, I; Vieira, D; Vilasis-Cardona, X; Visniakov, J; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voss, H; Voß, C; Waldi, R; Wallace, R; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wicht, J; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wishahi, J; Witek, M; Witzeling, W; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, F; Xing, Z; Yang, Z; Young, R; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhong, L; Zvyagin, A

    2013-01-01

    The angular distribution and differential branching fraction of the decay $B^+ \\to K^+ \\mu^+\\mu^-$ are studied with a dataset corresponding to 1.0 fb$^{-1}$ of integrated luminosity, collected by the LHCb experiment. The angular distribution is measured in bins of dimuon invariant mass squared and found to be consistent with Standard Model expectations. Integrating the differential branching fraction over the full dimuon invariant mass range yields a total branching fraction of $B(B^+ \\to K^+ \\mu^+\\mu^-) = (4.36 ± 0.15 ± 0.18) \\times 10^{−7}$. These measurements are the most precise to date of the $B^+ \\to K^+ \\mu^+\\mu^-$ decay.

  6. Integrated solution for field operations

    Energy Technology Data Exchange (ETDEWEB)

    Aubin, Renaud; Dionis, Francois [EDF, Chatou (France)

    2014-08-15

    This document presents our approach to design and to implement mobile applications for field operations. Internal on-field studies yield to the fact that the value added by mobile solutions is correlated with the easiness of their integration with each other and with the underlying information systems. Moreover, the fast-growing mobile market brings new concepts to the mass and industrial applications design can benefit from these. As a consequence, a simple components-based approach has been applied to design and develop mobile applications for field operations and on-site experiments of the resulting applications have been conducted.

  7. Integrated solution for field operations

    International Nuclear Information System (INIS)

    Aubin, Renaud; Dionis, Francois

    2014-01-01

    This document presents our approach to design and to implement mobile applications for field operations. Internal on-field studies yield to the fact that the value added by mobile solutions is correlated with the easiness of their integration with each other and with the underlying information systems. Moreover, the fast-growing mobile market brings new concepts to the mass and industrial applications design can benefit from these. As a consequence, a simple components-based approach has been applied to design and develop mobile applications for field operations and on-site experiments of the resulting applications have been conducted

  8. Integrated solution for field operations

    International Nuclear Information System (INIS)

    Aubin, Renaud; Dionis, Francois

    2014-01-01

    This paper presents the authors' approach to design and to implement mobile applications for field operations. Internal on-field studies can yield the fact that the value-added by mobile solutions is correlated with the easiness of their integration with each other and with the underlying information systems. Moreover, the fast-growing mobile market brings new concepts to the mass and industrial applications design can benefit from these. As a consequence, a simple components-based approach has been applied to design and develop mobile applications for field operations and on-site experiments of the resulting applications have been conducted. (author)

  9. THE SIMULATION OF SCATTERING OF ELECTROMAGNETIC WAVES ON ANGULAR STRUCTURES.

    Directory of Open Access Journals (Sweden)

    P. A. Preobrazhensky

    2017-02-01

    Full Text Available The paper discusses the characteristics of scattering of electromagnetic waves on the angular diffraction structures. The solution of the problem is based on the method of integral equations. A comparative analysis of the scattering characteristics of structures with different shape is carried out.

  10. Simplified expressions of the T-matrix integrals for electromagnetic scattering.

    Science.gov (United States)

    Somerville, Walter R C; Auguié, Baptiste; Le Ru, Eric C

    2011-09-01

    The extended boundary condition method, also called the null-field method, provides a semianalytic solution to the problem of electromagnetic scattering by a particle by constructing a transition matrix (T-matrix) that links the scattered field to the incident field. This approach requires the computation of specific integrals over the particle surface, which are typically evaluated numerically. We introduce here a new set of simplified expressions for these integrals in the commonly studied case of axisymmetric particles. Simplifications are obtained using the differentiation properties of the radial functions (spherical Bessel) and angular functions (associated Legendre functions) and integrations by parts. The resulting simplified expressions not only lead to faster computations, but also reduce the risks of loss of precision and provide a simpler framework for further analytical work.

  11. 15x optical zoom and extreme optical image stabilisation: diffraction limited integral field spectroscopy with the Oxford SWIFT spectrograph

    OpenAIRE

    Tecza, Matthias; Thatte, Niranjan; Clarke, Fraser; Lynn, James; Freeman, David; Roberts, Jennifer; Dekany, Richard

    2012-01-01

    When commissioned in November 2008 at the Palomar 200 inch Hale Telescope, the Oxford SWIFT I and z band integral field spectrograph, fed by the adaptive optics system PALAO, provided a wide (3×) range of spatial resolutions: three plate scales of 235 mas, 160 mas, and 80 mas per spaxel over a contiguous field-of-view of 89×44 pixels. Depending on observing conditions and guide star brightness we can choose a seeing limited scale of 235 mas per spaxel, or 160 mas and 80 mas per spaxel for ver...

  12. High-resolution imaging of magnetic fields using scanning superconducting quantum interference device (SQUID) microscopy

    Science.gov (United States)

    Fong de Los Santos, Luis E.

    Development of a scanning superconducting quantum interference device (SQUID) microscope system with interchangeable sensor configurations for imaging magnetic fields of room-temperature (RT) samples with sub-millimeter resolution. The low-critical-temperature (Tc) niobium-based monolithic SQUID sensor is mounted in the tip of a sapphire rod and thermally anchored to the cryostat helium reservoir. A 25 mum sapphire window separates the vacuum space from the RT sample. A positioning mechanism allows adjusting the sample-to-sensor spacing from the top of the Dewar. I have achieved a sensor-to-sample spacing of 100 mum, which could be maintained for periods of up to 4 weeks. Different SQUID sensor configurations are necessary to achieve the best combination of spatial resolution and field sensitivity for a given magnetic source. For imaging thin sections of geological samples, I used a custom-designed monolithic low-Tc niobium bare SQUID sensor, with an effective diameter of 80 mum, and achieved a field sensitivity of 1.5 pT/Hz1/2 and a magnetic moment sensitivity of 5.4 x 10-18 Am2/Hz1/2 at a sensor-to-sample spacing of 100 mum in the white noise region for frequencies above 100 Hz. Imaging action currents in cardiac tissue requires higher field sensitivity, which can only be achieved by compromising spatial resolution. I developed a monolithic low-Tc niobium multiloop SQUID sensor, with sensor sizes ranging from 250 mum to 1 mm, and achieved sensitivities of 480 - 180 fT/Hz1/2 in the white noise region for frequencies above 100 Hz, respectively. For all sensor configurations, the spatial resolution was comparable to the effective diameter and limited by the sensor-to-sample spacing. Spatial registration allowed us to compare high-resolution images of magnetic fields associated with action currents and optical recordings of transmembrane potentials to study the bidomain nature of cardiac tissue or to match petrography to magnetic field maps in thin sections of

  13. Test of special resolution and trigger efficiency

    CERN Document Server

    Benhammou, Y

    2015-01-01

    The forthcoming luminosity upgrade of LHC to super-LHC (sLHC) will increase the expected background rate in the forward region of the ATLAS Muon Spectrometer by approximately the factor of five. Some of the present Muon Spectrometer components will fail to cope with these high rates and will have to be replaced. The results of a test of a device consisting of Thin Gap Chambers (TGC) and a fast small-diameter Muon Drift Tube Chamber (sMDT) using the 180 GeV/c muons at the SPS-H8 muon beam at CERN are presented. The goal of the test was to study the combined TGC-sMDT system as tracking and triggering device in the ATLAS muon spectrometer after high-luminosity upgrades of the LHC. The analysis of the recorded data shows a very good correlation between the TGC and sMDT track position and inclination. This technology offers the combination of trigger and tracking and has good angular and spatial resolutions. The angular resolution is 0.4 mrad for each system individually. For the spatial resolution, the width of t...

  14. Viscous damping of toroidal angular momentum in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Stacey, W. M. [Georgia Tech Fusion Research Center, Atlanta, Georgia 30332 (United States)

    2014-09-15

    The Braginskii viscous stress tensor formalism was generalized to accommodate non-axisymmetric 3D magnetic fields in general toroidal flux surface geometry in order to provide a representation for the viscous damping of toroidal rotation in tokamaks arising from various “neoclassical toroidal viscosity” mechanisms. In the process, it was verified that the parallel viscosity contribution to damping toroidal angular momentum still vanishes even in the presence of toroidal asymmetries, unless there are 3D radial magnetic fields.

  15. Transverse momentum dependence of the angular distribution of the Drell-Yan process

    International Nuclear Information System (INIS)

    Berger, Edmond L.; Qiu Jianwei; Rodriguez-Pedraza, Ricardo A.

    2007-01-01

    We calculate the transverse momentum Q perpendicular dependence of the helicity structure functions for the hadroproduction of a massive pair of leptons with pair invariant mass Q. These structure functions determine the angular distribution of the leptons in the pair rest frame. Unphysical behavior in the region Q perpendicular →0 is seen in the results of calculations done at fixed order in QCD perturbation theory. We use current conservation to demonstrate that the unphysical inverse-power and ln(Q/Q perpendicular ) logarithmic divergences in three of the four independent helicity structure functions share the same origin as the divergent terms in fixed-order calculations of the angular-integrated cross section. We show that the resummation of these divergences to all orders in the strong coupling strength α s can be reduced to the solved problem of the resummation of the divergences in the angular-integrated cross section, resulting in well-behaved predictions in the small Q perpendicular region. Among other results, we show the resummed part of the helicity structure functions preserves the Lam-Tung relation between the longitudinal and double spin-flip structure functions as a function of Q perpendicular to all orders in α s

  16. High spatial resolution measurements of large-scale three-dimensional structures in a turbulent boundary layer

    Science.gov (United States)

    Atkinson, Callum; Buchmann, Nicolas; Kuehn, Matthias; Soria, Julio

    2011-11-01

    Large-scale three-dimensional (3D) structures in a turbulent boundary layer at Reθ = 2000 are examined via the streamwise extrapolation of time-resolved stereo particle image velocimetry (SPIV) measurements in a wall-normal spanwise plane using Taylor's hypothesis. Two overlapping SPIV systems are used to provide a field of view similar to that of direct numerical simulations (DNS) on the order of 50 δ × 1 . 5 δ × 3 . 0 δ in the streamwise, wall-normal and spanwise directions, respectively, with an interrogation window size of 40+ ×20+ ×60+ wall units. Velocity power spectra are compared with DNS to examine the effective resolution of these measurements and two-point correlations are performed to investigate the integral length scales associated with coherent velocity and vorticity fluctuations. Individual coherent structures are detected to provide statistics on the 3D size, spacing, and angular orientation of large-scale structures, as well as their contribution to the total turbulent kinetic energy and Reynolds shear stress. The support of the ARC through Discovery (and LIEF) grants is gratefully acknowledged.

  17. The MIRI Medium Resolution Spectrometer calibration pipeline

    NARCIS (Netherlands)

    Labiano, A.; Azzollini, R.; Bailey, J.; Beard, S.; Dicken, D.; García-Marín, M.; Geers, V.; Glasse, A.; Glauser, A.; Gordon, K.; Justtanont, K.; Klaassen, P.; Lahuis, F.; Law, D.; Morrison, J.; Müller, M.; Rieke, G.; Vandenbussche, B.; Wright, G.

    2016-01-01

    The Mid-Infrared Instrument (MIRI) Medium Resolution Spectrometer (MRS) is the only mid-IR Integral Field Spectrometer on board James Webb Space Telescope. The complexity of the MRS requires a very specialized pipeline, with some specific steps not present in other pipelines of JWST instruments,

  18. The Improved Dual-view Field Goniometer System FIGOS

    Directory of Open Access Journals (Sweden)

    Klaus I. Itten

    2008-08-01

    Full Text Available In spectrodirectional Remote Sensing (RS the Earth’s surface reflectance characteristics are studied by means of their angular dimensions. Almost all natural surfaces exhibit an individual anisotropic reflectance behaviour due to the contrast between the optical properties of surface elements and background and the geometric surface properties of the observed scene. The underlying concept, which describes the reflectance characteristic of a specific surface area, is called the bidirectional reflectance distribution function (BRDF. BRDF knowledge is essential for both correction of directional effects in RS data and quantitative retrieval of surface parameters. Ground-based spectrodirectional measurements are usually performed with goniometer systems. An accurate retrieval of the bidirectional reflectance factors (BRF from field goniometer measurements requires hyperspectral knowledge of the angular distribution of the reflected and the incident radiation. However, prior to the study at hand, no operational goniometer system was able to fulfill this requirement. This study presents the first dual-view field goniometer system, which is able to simultaneously collect both the reflected and the incident radiation at high angular and spectral resolution and, thus, providing the necessary spectrodirectional datasets to accurately retrieve the surface specific BRF. Furthermore, the angular distribution of the incoming diffuse radiation is characterized for various atmospheric conditions and the BRF retrieval is performed for an artificial target and compared to laboratory spectrodirectional measurement results obtained with the same goniometer system. Suggestions for further improving goniometer systems are given and the need for intercalibration of various goniometers as well as for standardizing spectrodirectional measurements is expressed.

  19. A Correction of Random Incidence Absorption Coefficients for the Angular Distribution of Acoustic Energy under Measurement Conditions

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho

    2009-01-01

    Most acoustic measurements are based on an assumption of ideal conditions. One such ideal condition is a diffuse and reverberant field. In practice, a perfectly diffuse sound field cannot be achieved in a reverberation chamber. Uneven incident energy density under measurement conditions can cause...... discrepancies between the measured value and the theoretical random incidence absorption coefficient. Therefore the angular distribution of the incident acoustic energy onto an absorber sample should be taken into account. The angular distribution of the incident energy density was simulated using the beam...... tracing method for various room shapes and source positions. The averaged angular distribution is found to be similar to a Gaussian distribution. As a result, an angle-weighted absorption coefficient was proposed by considering the angular energy distribution to improve the agreement between...

  20. High-resolution surface analysis for extended-range downscaling with limited-area atmospheric models

    Science.gov (United States)

    Separovic, Leo; Husain, Syed Zahid; Yu, Wei; Fernig, David

    2014-12-01

    High-resolution limited-area model (LAM) simulations are frequently employed to downscale coarse-resolution objective analyses over a specified area of the globe using high-resolution computational grids. When LAMs are integrated over extended time frames, from months to years, they are prone to deviations in land surface variables that can be harmful to the quality of the simulated near-surface fields. Nudging of the prognostic surface fields toward a reference-gridded data set is therefore devised in order to prevent the atmospheric model from diverging from the expected values. This paper presents a method to generate high-resolution analyses of land-surface variables, such as surface canopy temperature, soil moisture, and snow conditions, to be used for the relaxation of lower boundary conditions in extended-range LAM simulations. The proposed method is based on performing offline simulations with an external surface model, forced with the near-surface meteorological fields derived from short-range forecast, operational analyses, and observed temperatures and humidity. Results show that the outputs of the surface model obtained in the present study have potential to improve the near-surface atmospheric fields in extended-range LAM integrations.

  1. Angular dependence of dose equivalent response of an albedo neutron dosimeter

    International Nuclear Information System (INIS)

    Torres, B.A.; Boswell, E.; Schwartz, R.B.

    1994-01-01

    The ANSI provides procedures for testing the performance of dosimetry services. Although neutron dose equivalent angular response studies are not now mandated, future standards may well require that such studies be performed. Current studies with an albedo dosimeter will yield information regarding the angular dependence of dose equivalent response for this type of personnel dosimeter. Preliminary data for bare 252 Cf fluences show a marked decrease in dosimeter reading with increasing angle. The response decreased by an approximate factor of four. For the horizontal orientation, the same response was noted from both positive and negative angles. However, for the vertical orientation, the response was unexplainably assymetric. We are also examining the response of the personnel badge in moderated 252 Cf fluences. Responses from the moderated and unmoderated 252 Cf fields and theoretical calculations of the neutron angular response will be compared. This information will assist in building a data base for future comparisons of neutron angular responses with other neutron albedo dosimeters and phantoms

  2. Studies of metal binding by the iron transport protein transferrin using time differential perturbed angular correlation spectroscopy

    International Nuclear Information System (INIS)

    Then, G.M.

    1987-01-01

    The binding of the transition metal hafnium to transferrin was studied under various chemical conditions using time differential perturbed γγ angular correlation spectroscopy (TDPAC). Observing the electric quadrupole interaction of the 181 Hf probe nuclei size and symmetry of the electric field gradient induced by the ligands of the metal ions can be determined. The experimental data suggest how homogeneous the binding conditions are and to which extend relaxation phenomena are involved. Due to the excellent time resolution obtained with new BaF 2 detectors the quadrupole coupling parameters of 181 Hf-transferrin could be determined very accurately. Under nearly physiological conditions different binding configurations were quantitatively characterized by spectroscopic means and distinguished with high specificity. (orig./PW) [de

  3. Automatic spectrometer for γ-γ angular correlation

    International Nuclear Information System (INIS)

    Saxena, R.N.; Monteiro, M.T.S.; Bairrio Nuevo Junior, A.

    1974-01-01

    An automated γ-γ angular correlation spectrometer is described in detail. Eletronic arrangements used in integral and differential measurements have also been described. In part I there is a short theoretical introduction, the experimental arrangement is described in part II. The results of the directional correlation measurement of γ-cascades in 60 Ni and 75 As and of the lifetime measurement of excited states in 181 Ta and 81 Br have been described in part III

  4. Repeated 1-cm Resolution Topographic and 2.5-mm Resolution Photomosiac Surveys of Benthic Communities and Fine Scale Bedforms in Monterey Canyon

    Science.gov (United States)

    Caress, D. W.; Hobson, B.; Thomas, H. J.; Henthorn, R.; Martin, E. J.; Bird, L.; Risi, M.; Troni, G.; Paull, C. K.; Rock, S.; Padial, J. A.; Hammond, M. M.

    2014-12-01

    The Monterey Bay Aquarium Research Institute has developed a low altitude, ROV-based seafloor mapping system that combines lidar laser ranging, multibeam sonar, and stereo photographic imagery. When operated at a 3-m altitude, this system maps seafloor topography with a 1-cm lateral resolution and simultaneously collects 2.5-mm resolution color photography. We have twice mapped an 80-m by 80-m area of a chemosynthetic clam community located at 2850-m depth in the Monterey Canyon axis. Both the topography and the photomosaics resolve changes in the clam community over a six-month interval. Many individual animals have moved, and tracks of those animals are visible in the lidar topography. No other changes in the seafloor at this site can be discerned. We have also performed single surveys of bedforms and scours at both 1850-m and 2850-m depths in Monterey Canyon. The highest resolution bathymetry data are collected using a 3DatDepth SL1 lidar laser scanner. This system has a 30° field of view and ranges continuously, achieving a 1 cm sounding spacing at a 3 m altitude and 0.3 m/s speed. Bathymetry data are also collected using a 400-kHz Reson 7125 multibeam sonar. This configuration produces 512 beams across a 135° wide swath; each beam has a 0.5° acrosstrack by 1.0° alongtrack angular width. At a 3-m altitude, the nadir beams have a 2.5 cm acrosstrack and 5 cm alongtrack footprint. Dual Prosilica GX1920 2.4 Mpixel color cameras provide color stereo photography of the seafloor. Illumination is provided by dual xenon strobes. The camera housings have been fitted with corrective optics achieving a 90° field of view with less than 1% distortion. At a 3-m altitude the raw image pixels have a 2.5 mm resolution. Position and attitude data are provided by a Kearfott SeaDevil Inertial Navigation System (INS) integrated with a 300 kHz Teledyne RD Instruments Doppler velocity log (DVL). A separate Paroscientific pressure sensor is mounted adjacent to the INS. The INS

  5. LFNet: A Novel Bidirectional Recurrent Convolutional Neural Network for Light-Field Image Super-Resolution.

    Science.gov (United States)

    Wang, Yunlong; Liu, Fei; Zhang, Kunbo; Hou, Guangqi; Sun, Zhenan; Tan, Tieniu

    2018-09-01

    The low spatial resolution of light-field image poses significant difficulties in exploiting its advantage. To mitigate the dependency of accurate depth or disparity information as priors for light-field image super-resolution, we propose an implicitly multi-scale fusion scheme to accumulate contextual information from multiple scales for super-resolution reconstruction. The implicitly multi-scale fusion scheme is then incorporated into bidirectional recurrent convolutional neural network, which aims to iteratively model spatial relations between horizontally or vertically adjacent sub-aperture images of light-field data. Within the network, the recurrent convolutions are modified to be more effective and flexible in modeling the spatial correlations between neighboring views. A horizontal sub-network and a vertical sub-network of the same network structure are ensembled for final outputs via stacked generalization. Experimental results on synthetic and real-world data sets demonstrate that the proposed method outperforms other state-of-the-art methods by a large margin in peak signal-to-noise ratio and gray-scale structural similarity indexes, which also achieves superior quality for human visual systems. Furthermore, the proposed method can enhance the performance of light field applications such as depth estimation.

  6. Near-field collimation of light carrying orbital angular momentum with bull's-eye-assisted plasmonic coaxial waveguides.

    Science.gov (United States)

    Pu, Mingbo; Ma, Xiaoliang; Zhao, Zeyu; Li, Xiong; Wang, Yanqin; Gao, Hui; Hu, Chenggang; Gao, Ping; Wang, Changtao; Luo, Xiangang

    2015-07-10

    The orbital angular momentum (OAM) of light, as an emerging hotspot in optics and photonics, introduces many degrees of freedom for applications ranging from optical communication and quantum processing to micromanipulation. To achieve a high degree of integration, optical circuits for OAM light are essential, which are, however, challenging in the optical regime owing to the lack of well-developed theory. Here we provide a scheme to guide and collimate the OAM beam at the micro- and nano-levels. The coaxial plasmonic slit was exploited as a naturally occurring waveguide for light carrying OAM. Concentric grooves etched on the output surface of the coaxial waveguide were utilized as a plasmonic metasurface to couple the OAM beam to free space with greatly increased beam directivity. Experimental results at λ = 532 nm validated the novel transportation and collimating effect of the OAM beam. Furthermore, dynamic tuning of the topological charges was demonstrated by using a liquid crystal spatial light modulator (SLM).

  7. Integration of High-Resolution Laser Displacement Sensors and 3D Printing for Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    Shu-Wei Chang

    2017-12-01

    Full Text Available This paper presents a novel experimental design for complex structural health monitoring (SHM studies achieved by integrating 3D printing technologies, high-resolution laser displacement sensors, and multiscale entropy SHM theory. A seven-story structure with a variety of composite bracing systems was constructed using a dual-material 3D printer. A wireless Bluetooth vibration speaker was used to excite the ground floor of the structure, and high-resolution laser displacement sensors (1-μm resolution were used to monitor the displacement history on different floors. Our results showed that the multiscale entropy SHM method could detect damage on the 3D-printed structures. The results of this study demonstrate that integrating 3D printing technologies and high-resolution laser displacement sensors enables the design of cheap, fast processing, complex, small-scale civil structures for future SHM studies. The novel experimental design proposed in this study provides a suitable platform for investigating the validity and sensitivity of SHM in different composite structures and damage conditions for real life applications in the future.

  8. Integration of High-Resolution Laser Displacement Sensors and 3D Printing for Structural Health Monitoring.

    Science.gov (United States)

    Chang, Shu-Wei; Lin, Tzu-Kang; Kuo, Shih-Yu; Huang, Ting-Hsuan

    2017-12-22

    This paper presents a novel experimental design for complex structural health monitoring (SHM) studies achieved by integrating 3D printing technologies, high-resolution laser displacement sensors, and multiscale entropy SHM theory. A seven-story structure with a variety of composite bracing systems was constructed using a dual-material 3D printer. A wireless Bluetooth vibration speaker was used to excite the ground floor of the structure, and high-resolution laser displacement sensors (1-μm resolution) were used to monitor the displacement history on different floors. Our results showed that the multiscale entropy SHM method could detect damage on the 3D-printed structures. The results of this study demonstrate that integrating 3D printing technologies and high-resolution laser displacement sensors enables the design of cheap, fast processing, complex, small-scale civil structures for future SHM studies. The novel experimental design proposed in this study provides a suitable platform for investigating the validity and sensitivity of SHM in different composite structures and damage conditions for real life applications in the future.

  9. Impact of GFZ's Effective Angular Momentum Forecasts on Polar Motion Prediction

    Science.gov (United States)

    Dill, Robert; Dobslaw, Henryk

    2017-04-01

    The Earth System Modelling group at GeoForschungsZentrum (GFZ) Potsdam offers now 6-day forecasts of Earth rotation excitation due to atmospheric, oceanic, and hydrologic angular momentum changes that are consistent with its 40 years-long EAM series. Those EAM forecasts are characterized by an improved long-term consistency due to the introduction of a time-invariant high-resolution reference topography into the AAM processing that accounts for occasional NWP model changes. In addition, all tidal signals from both atmosphere and ocean have been separated, and the temporal resolution of both AAM and OAM has been increased to 3 hours. Analysis of an extended set of EAM short-term hindcasts revealed positive prediction skills for up to 6 days into the future when compared to a persistent forecast. Whereas UT1 predictions in particular rely on an accurate AAM forecast, skillfull polar motion prediction requires high-quality OAM forecasts as well. We will present in this contribution the results from a multi-year hindcast experiment, demonstrating that the polar motion prediction as currently available from Bulletin A can be improved in particular for lead-times between 2 and 5 days by incorporating OAM forecasts. We will also report about early results obtained at Observatoire de Paris to predict polar motion from the integration of GFZ's 6-day EAM forecasts into the Liouville equation in a routine setting, that fully takes into account the operational latencies of all required input products.

  10. An angular selective electron gun for the KATRIN experiment

    Energy Technology Data Exchange (ETDEWEB)

    Zacher, Michael; Ortjohann, Hans-Werner; Steinbrink, Nicholas; Josten, Lorenz; Hannen, Volker; Weinheimer, Christian; Winzen, Daniel [Westfaelische Wilhelms-Universitaet, Muenster (Germany); Collaboration: KATRIN-Collaboration

    2013-07-01

    The KArlsruhe TRItium Neutrino experiment aims for a measurement of the electron anti-neutrino mass with a sensitivity of 200 meV/c{sup 2} (95% C.L.) by analysing the endpoint region of the tritium β-decay. The main spectrometer (MAC-E filter type, 23m length) is one of the central parts of the experiment, featuring an energy resolution of Δ E<1 eV. For commissioning of the spectrometer a well defined electron source is needed that allows to determine the transmission characteristics and compare the electromagnetic properties to simulations. For this purpose an angular selective electron gun was developed. A pulsed UV-Laser produces electrons via the photo-electric effect, which are then accelerated electrostatically in a magnetic field. It features a small energy spread, a sharp selectable emission angle and covers the whole magnetic flux tube of KATRIN. By that, the characteristics of the spectrometer can be investigated with high precision. The time structure of the electron pulses allows time of flight measurements, offering enhanced sensitivity. The talk gives an overview about the e-gun design and its properties.

  11. High resolution studies of the effects of magnetic fields on chemical reactions

    OpenAIRE

    Hamilton, C. A.; Hewitt, J. P.; McLauchlan, Keith A.; Steiner, Ulrich

    1988-01-01

    A simple and inexpensive experiment is described which detects magnetic field effects on chemical reactions with high signal-to-noise ratio and high resolution. It consists in applying a small modulation field to the sample, whilst the main field it experiences is varied, with optical detection at the modulation frequency. It consequently measures the derivative of the normal MARY spectrum. It is shown by theoretical analysis that when using this method it is better to monitor reaction interm...

  12. Angular Momentum in Dwarf Galaxies

    Directory of Open Access Journals (Sweden)

    Del Popolo A.

    2014-06-01

    Full Text Available We study the “angular momentum catastrophe” in the framework of interaction among baryons and dark matter through dynamical friction. By means of Del Popolo (2009 model we simulate 14 galaxies similar to those investigated by van den Bosch, Burkert and Swaters (2001, and calculate the distribution of their spin parameters and the angular momenta. Our model gives the angular momentum distribution which is in agreement with the van den Bosch et al. observations. Our result shows that the “angular momentum catastrophe” can be naturally solved in a model that takes into account the baryonic physics and the exchange of energy and angular momentum between the baryonic clumps and dark matter through dynamical friction.

  13. Gravitational field strength and generalized Komar-integral

    International Nuclear Information System (INIS)

    Simon, W.

    1984-01-01

    We define a 'gravitational field strength' in theories of the Einstein-Cartan type admitting a Killing-vector. This field strength is a second rank, antisymmetric, divergence-free tensor, whose ('Komar-') integral over a closed 2-surface gives a physically meaningful quantity. We find conditions on the Lagrange-density of the theory which ensure the existence of such a tensor, and show that they are satisfied for N = 2-supergravity and for a special case of the bosonic sector of N = 4-supergravity. We discuss a possible application of the generalized Komar-integral in the theory of stationary black holes. We also consider the Kaluza-Klein-approach to the 'field-strength-problem', which turns out to be particularly rewarding in the application to black holes. (Author)

  14. High-resolution modelling of health impacts from air pollution using the integrated model system EVA

    Science.gov (United States)

    Brandt, Jørgen; Andersen, Mikael S.; Bønløkke, Jakob; Christensen, Jesper H.; Geels, Camilla; Hansen, Kaj M.; Jensen, Steen S.; Ketzel, Matthias; Plejdrup, Marlene S.; Sigsgaard, Torben; Silver, Jeremy D.

    2014-05-01

    A high-resolution assessment of health impacts from air pollution and related external cost has been conducted for Denmark using the integrated EVA model system. The EVA system has been further developed by implementing an air quality model with a 1 km x 1 km resolution covering the whole of Denmark. New developments of the integrated model system will be presented as well as results for health impacts and related external costs over several decades. Furthermore, the sensitivity of health impacts to model resolution will be studied. We have developed an integrated model system EVA (Economic Valuation of Air pollution), based on the impact-pathway chain, to assess the health impacts and health-related economic externalities of air pollution resulting from specific emission sources or sectors. The system is used to support policymaking with respect to emission control. In Brandt et al. (2013a; 2013b), the EVA system was used to assess the impacts in Europe and Denmark from the past, present and future total air pollution levels as well as the contribution from the major anthropogenic emission sectors. The EVA system was applied using the hemispheric chemistry-transport model, the Danish Eulerian Hemispheric Model (DEHM), with nesting capability for higher resolution over Europe (50 km x 50 km) and Northern Europe (16.7 km x 16.7 km). In this study an Urban Background Model (UBM) has been further developed to cover the whole of Denmark with a 1 km x 1 km resolution and the model has been implemented as a part of the integrated model system, EVA. The EVA system is based on the impact-pathway methodology. The site-specific emissions will result (via atmospheric transport and chemistry) in a concentration distribution, which together with detailed population data, are used to estimate the population-level exposure. Using exposure-response functions and economic valuations, the exposure is transformed into impacts on human health and related external costs. In this study

  15. New energy levels of praseodymium with large angular momentum

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Shamim; Siddiqui, Imran; Gamper, Bettina; Syed, Tanweer Iqbal; Guthoehrlein, Guenter H.; Windholz, Laurentius [Inst. f. Experimentalphysik, Techn. Univ. Graz, Petersgasse 16, A-8010 Graz (Austria)

    2011-07-01

    The electronic ground state configuration of praseodymium {sup 59}Pr{sub 141} is [Xe] 4f{sup 3}6s{sup 2}, with ground state level {sup 4}I{sub 9/2}. Our research is mainly devoted to find previously unknown energy levels by the investigation of spectral lines and their hyperfine structures. In a hollow cathode discharge lamp praseodymium atoms and ions in ground and excited states are excited to high lying states by laser light. The excitation source is a tunable ring-dye laser system, operated with R6G, Kiton Red, DCM and LD700. A high resolution Fourier transform spectrum is used for selecting promising excitation wavelengths. Then the laser wavelength is tuned to a strong hyperfine component of the spectral line to be investigated, and a search for fluorescence from excited levels is performed. From the observed hyperfine structure we determine J-values and hyperfine constants A of the combining levels. This information, together with excitation and fluorescence wavelengths, allows us to find the energies of involved new levels. Up to now we have discovered large number of previously unknown energy levels with various angular momentum values. We present here the data (energies, parities, angular momenta J, magnetic hyperfine constants A) of ca. 40 new, until now unknown energy levels with high angular momentum values: 15/2, 17/2, 19/2, 21/2.

  16. Artificial terraced field extraction based on high resolution DEMs

    Science.gov (United States)

    Na, Jiaming; Yang, Xin; Xiong, Liyang; Tang, Guoan

    2017-04-01

    With the increase of human activities, artificial landforms become one of the main terrain features with special geographical and hydrological value. Terraced field, as the most important artificial landscapes of the loess plateau, plays an important role in conserving soil and water. With the development of digital terrain analysis (DTA), there is a current and future need in developing a robust, repeatable and cost-effective research methodology for terraced fields. In this paper, a novel method using bidirectional DEM shaded relief is proposed for terraced field identification based on high resolution DEM, taking Zhifanggou watershed, Shannxi province as the study area. Firstly, 1m DEM is obtained by low altitude aerial photogrammetry using Unmanned Aerial Vehicle (UAV), and 0.1m DOM is also obtained as the test data. Then, the positive and negative terrain segmentation is done to acquire the area of terraced field. Finally, a bidirectional DEM shaded relief is simulated to extract the ridges of each terraced field stages. The method in this paper can get not only polygon feature of the terraced field areas but also line feature of terraced field ridges. The accuracy is 89.7% compared with the artificial interpretation result from DOM. And additional experiment shows that this method has a strong robustness as well as high accuracy.

  17. High-resolution photocurrent microscopy using near-field cathodoluminescence of quantum dots

    Directory of Open Access Journals (Sweden)

    Heayoung P. Yoon

    2013-06-01

    Full Text Available We report a fast, versatile photocurrent imaging technique to visualize the local photo response of solar energy devices and optoelectronics using near-field cathodoluminescence (CL from a homogeneous quantum dot layer. This approach is quantitatively compared with direct measurements of high-resolution Electron Beam Induced Current (EBIC using a thin film solar cell (n-CdS / p-CdTe. Qualitatively, the observed image contrast is similar, showing strong enhancement of the carrier collection efficiency at the p-n junction and near the grain boundaries. The spatial resolution of the new technique, termed Q-EBIC (EBIC using quantum dots, is determined by the absorption depth of photons. The results demonstrate a new method for high-resolution, sub-wavelength photocurrent imaging measurement relevant for a wide range of applications.

  18. Separation of massive field equation of arbitrary spin in Robertson-Walker space-time

    International Nuclear Information System (INIS)

    Zecca, A.

    2006-01-01

    The massive spin-(3/2) field equation is explicitly integrated in the Robertson-Walker space-time by the Newman Penrose formalism. The solution is obtained by extending a separation procedure previously used to solve the spin-1 equation. The separated time dependence results in two coupled equations depending on the cosmological background evolution. The separated angular equations are explicitly integrated and the eigenvalues determined. The separated radial equations are integrated in the flat space-time case. The separation method of solution is then generalized, by induction, to prove the main result, that is the separability of the massive field equations of arbitrary spin in the Robertson-Walker space-time

  19. Implementation of $ab$ $initio$ perturbed angular correlation observables for analysis of fluctuating quadrupole interactions

    CERN Document Server

    Barbosa, Marcelo

    A review about the nuclear properties, namely the nuclear moments (magnetic dipole moment and electric quadrupole moment) and their interaction with electromagnetic fields external to the nucleus (hyperfine interactions), as well as the angular distribution of radiation produced by $\\gamma$-decay, is presented. A detailed description about the theory of Perturbed Angular Correlations was done, including the comparison between $\\gamma-\\gamma$- correlations and $e^{-}- \\gamma$ correlations. For dynamic nuclear interactions, an introduction to the theory of stochastic states in PAC was performed. We focused on ab-initio implementation of observables for analyzing fluctuating quadrupole hyperfine interactions on time dependent perturbed angular correlations experiments. The development of computacional codes solving the full problem, adapted to fit data obtained on single crystals or polycrystals for two-state transient fields with any axial symmetry and orientation was the main purpose of this work. The final pa...

  20. Development of an integrated four-channel fast avalanche-photodiode detector system with nanosecond time resolution

    Science.gov (United States)

    Li, Zhenjie; Li, Qiuju; Chang, Jinfan; Ma, Yichao; Liu, Peng; Wang, Zheng; Hu, Michael Y.; Zhao, Jiyong; Alp, E. E.; Xu, Wei; Tao, Ye; Wu, Chaoqun; Zhou, Yangfan

    2017-10-01

    A four-channel nanosecond time-resolved avalanche-photodiode (APD) detector system is developed at Beijing Synchrotron Radiation. It uses a single module for signal processing and readout. This integrated system provides better reliability and flexibility for custom improvement. The detector system consists of three parts: (i) four APD sensors, (ii) four fast preamplifiers and (iii) a time-digital-converter (TDC) readout electronics. The C30703FH silicon APD chips fabricated by Excelitas are used as the sensors of the detectors. It has an effective light-sensitive area of 10 × 10 mm2 and an absorption layer thickness of 110 μm. A fast preamplifier with a gain of 59 dB and bandwidth of 2 GHz is designed to readout of the weak signal from the C30703FH APD. The TDC is realized by a Spartan-6 field-programmable-gate-array (FPGA) with multiphase method in a resolution of 1ns. The arrival time of all scattering events between two start triggers can be recorded by the TDC. The detector has been used for nuclear resonant scattering study at both Advanced Photon Source and also at Beijing Synchrotron Radiation Facility. For the X-ray energy of 14.4 keV, the time resolution, the full width of half maximum (FWHM) of the detector (APD sensor + fast amplifier) is 0.86 ns, and the whole detector system (APD sensors + fast amplifiers + TDC readout electronics) achieves a time resolution of 1.4 ns.

  1. Faddeev-Senjanovic quantization of SU(n) N=2 supersymmetric gauge field system with a non-Abelian Chern-Simons topological term and its fractional spin

    International Nuclear Information System (INIS)

    Huang Yongchang; Huo Qiuhong

    2008-01-01

    Using Faddeev-Senjanovic path integral quantization for constrained Hamilton system, we quantize SU(n) N=2 supersymmetric gauge field system with non-Abelian Chern-Simons topological term in 2+1 dimensions. We use consistency of Coulomb gauge condition to naturally deduce a new gauge condition. Furthermore, we obtain the generating functional of Green function in phase space, deduce the angular momentum based on the global canonical Noether theorem at quantum level, obtain the fractional spin of this supersymmetric system, and show that the total angular momentum is the sum of the orbital angular momentum and spin angular momentum of the non-Abelian gauge field. Finally, we obtain the anomalous fractional spin and discover that the fractional spin has the contributions of both the group superscript components and A 0 s (x) charge

  2. Study at high angular momentum of the reflection asymmetry in the 218 Ra transition nuclei

    International Nuclear Information System (INIS)

    Aiche, M.

    1990-07-01

    The investigations concerning the 218 Ra nuclei at high angular momentum are discussed. The aim of the study is to enlarge the knowledge on the octupolar phenomena and to analyse its evolution as a funcion of the angular momentum. The 218 Ra nuclei is obtained from the ( 14 C, 4n) reaction. The gamma angular distribution and the gamma-gamma coincidence were measured by means of the Chateau de Cristal multicounter. The reflection asymmetric mean field theory and the bosons interaction model were applied to analyze the data and obtain the structure at high angular moments. The results show the existence of dipole-octupole correlations in the nuclei [fr

  3. Multiplexing 32,000 spectra onto 8 detectors: the HARMONI field splitting, image slicing, and wavelength selecting optics

    Science.gov (United States)

    Tecza, Matthias; Thatte, Niranjan; Clarke, Fraser; Freeman, David; Kosmalski, Johan

    2012-09-01

    HARMONI, the High Angular Resolution Monolithic Optical & Near-infrared Integral field spectrograph is one of two first-light instruments for the European Extremely Large Telescope. Over a 256x128 pixel field-of-view HARMONI will simultaneously measure approximately 32,000 spectra. Each spectrum is about 4000 spectral pixels long, and covers a selectable part of the 0.47-2.45 μm wavelength range at resolving powers of either R≍4000, 10000, or 20000. All 32,000 spectra are imaged onto eight HAWAII4RG detectors using a multiplexing scheme that divides the input field into four sub-fields, each imaged onto one image slicer that in turn re-arranges a single sub-field into two long exit slits feeding one spectrograph each. In total we require eight spectrographs, each with one HAWAII4RG detector. A system of articulated and exchangeable fold-mirrors and VPH gratings allows one to select different spectral resolving powers and wavelength ranges of interest while keeping a fixed geometry between the spectrograph collimator and camera avoiding the need for an articulated grating and camera. In this paper we describe both the field splitting and image slicing optics as well as the optics that will be used to select both spectral resolving power and wavelength range.

  4. Data-oriented development with AngularJS

    CERN Document Server

    Waikar, Manoj

    2015-01-01

    This book helps beginner-level AngularJS developers organize AngularJS applications by discussing important AngularJS concepts and best practices. If you are an experienced AngularJS developer but haven't written directives or haven't created custom HTML controls before, then this book is ideal for you.

  5. Wide-field surveys from the SNAP mission

    International Nuclear Information System (INIS)

    2002-01-01

    The Supernova/Acceleration Probe (SNAP) is a proposed space-borne observatory that will survey the sky with a wide-field optical/NIR imager. The images produced by SNAP will have an unprecedented combination of depth, solid-angle, angular resolution, and temporal sampling. Two 7.5 square-degree fields will be observed every four days over 16 months to a magnitude depth of AB = 27.7 in each of nine filters. Co-adding images over all epochs will give an AB = 30.3 per filter. A 300 square-degree field will be surveyed with no repeat visits to AB = 28 per filter. The nine filters span 3500-17000 (angstrom). Although the survey strategy is tailored for supernova and weak gravitational lensing observations, the resulting data supports a broad range of auxiliary science programs

  6. Classification of high resolution remote sensing image based on geo-ontology and conditional random fields

    Science.gov (United States)

    Hong, Liang

    2013-10-01

    The availability of high spatial resolution remote sensing data provides new opportunities for urban land-cover classification. More geometric details can be observed in the high resolution remote sensing image, Also Ground objects in the high resolution remote sensing image have displayed rich texture, structure, shape and hierarchical semantic characters. More landscape elements are represented by a small group of pixels. Recently years, the an object-based remote sensing analysis methodology is widely accepted and applied in high resolution remote sensing image processing. The classification method based on Geo-ontology and conditional random fields is presented in this paper. The proposed method is made up of four blocks: (1) the hierarchical ground objects semantic framework is constructed based on geoontology; (2) segmentation by mean-shift algorithm, which image objects are generated. And the mean-shift method is to get boundary preserved and spectrally homogeneous over-segmentation regions ;(3) the relations between the hierarchical ground objects semantic and over-segmentation regions are defined based on conditional random fields framework ;(4) the hierarchical classification results are obtained based on geo-ontology and conditional random fields. Finally, high-resolution remote sensed image data -GeoEye, is used to testify the performance of the presented method. And the experimental results have shown the superiority of this method to the eCognition method both on the effectively and accuracy, which implies it is suitable for the classification of high resolution remote sensing image.

  7. AngularJS web application development

    CERN Document Server

    Darwin, Peter Bacon

    2013-01-01

    The book will be a step-by-step guide showing the readers how to build a complete web app with AngularJSJavaScript developers who want to learn AngularJS for developing web apps. Knowledge of JavaScript and HTML is expected. No knowledge of AngularJS is required.

  8. DARKNESS: A Microwave Kinetic Inductance Detector Integral Field Spectrograph for High-contrast Astronomy

    Science.gov (United States)

    Meeker, Seth R.; Mazin, Benjamin A.; Walter, Alex B.; Strader, Paschal; Fruitwala, Neelay; Bockstiegel, Clint; Szypryt, Paul; Ulbricht, Gerhard; Coiffard, Grégoire; Bumble, Bruce; Cancelo, Gustavo; Zmuda, Ted; Treptow, Ken; Wilcer, Neal; Collura, Giulia; Dodkins, Rupert; Lipartito, Isabel; Zobrist, Nicholas; Bottom, Michael; Shelton, J. Chris; Mawet, Dimitri; van Eyken, Julian C.; Vasisht, Gautam; Serabyn, Eugene

    2018-06-01

    We present DARKNESS (the DARK-speckle Near-infrared Energy-resolving Superconducting Spectrophotometer), the first of several planned integral field spectrographs to use optical/near-infrared Microwave Kinetic Inductance Detectors (MKIDs) for high-contrast imaging. The photon counting and simultaneous low-resolution spectroscopy provided by MKIDs will enable real-time speckle control techniques and post-processing speckle suppression at frame rates capable of resolving the atmospheric speckles that currently limit high-contrast imaging from the ground. DARKNESS is now operational behind the PALM-3000 extreme adaptive optics system and the Stellar Double Coronagraph at Palomar Observatory. Here, we describe the motivation, design, and characterization of the instrument, early on-sky results, and future prospects.

  9. Near-field electromagnetic holography for high-resolution analysis of network interactions in neuronal tissue.

    Science.gov (United States)

    Kjeldsen, Henrik D; Kaiser, Marcus; Whittington, Miles A

    2015-09-30

    Brain function is dependent upon the concerted, dynamical interactions between a great many neurons distributed over many cortical subregions. Current methods of quantifying such interactions are limited by consideration only of single direct or indirect measures of a subsample of all neuronal population activity. Here we present a new derivation of the electromagnetic analogy to near-field acoustic holography allowing high-resolution, vectored estimates of interactions between sources of electromagnetic activity that significantly improves this situation. In vitro voltage potential recordings were used to estimate pseudo-electromagnetic energy flow vector fields, current and energy source densities and energy dissipation in reconstruction planes at depth into the neural tissue parallel to the recording plane of the microelectrode array. The properties of the reconstructed near-field estimate allowed both the utilization of super-resolution techniques to increase the imaging resolution beyond that of the microelectrode array, and facilitated a novel approach to estimating causal relationships between activity in neocortical subregions. The holographic nature of the reconstruction method allowed significantly better estimation of the fine spatiotemporal detail of neuronal population activity, compared with interpolation alone, beyond the spatial resolution of the electrode arrays used. Pseudo-energy flow vector mapping was possible with high temporal precision, allowing a near-realtime estimate of causal interaction dynamics. Basic near-field electromagnetic holography provides a powerful means to increase spatial resolution from electrode array data with careful choice of spatial filters and distance to reconstruction plane. More detailed approaches may provide the ability to volumetrically reconstruct activity patterns on neuronal tissue, but the ability to extract vectored data with the method presented already permits the study of dynamic causal interactions

  10. Angular momentum of dwarf galaxies

    Science.gov (United States)

    Kurapati, Sushma; Chengalur, Jayaram N.; Pustilnik, Simon; Kamphuis, Peter

    2018-05-01

    Mass and specific angular momentum are two fundamental physical parameters of galaxies. We present measurements of the baryonic mass and specific angular momentum of 11 void dwarf galaxies derived from neutral hydrogen (HI) synthesis data. Rotation curves were measured using 3D and 2D tilted ring fitting routines, and the derived curves generally overlap within the error bars, except in the central regions where, as expected, the 3D routines give steeper curves. The specific angular momentum of void dwarfs is found to be high compared to an extrapolation of the trends seen for higher mass bulge-less spirals, but comparable to that of other dwarf irregular galaxies that lie outside of voids. As such, our data show no evidence for a dependence of the specific angular momentum on the large scale environment. Combining our data with the data from the literature, we find a baryonic threshold of ˜109.1 M⊙ for this increase in specific angular momentum. Interestingly, this threshold is very similar to the mass threshold below which the galaxy discs start to become systematically thicker. This provides qualitative support to the suggestion that the thickening of the discs, as well as the increase in specific angular momentum, are both results of a common physical mechanism, such as feedback from star formation. Quantitatively, however, the amount of star formation observed in our dwarfs appears insufficient to produce the observed increase in specific angular momentum. It is hence likely that other processes, such as cold accretion of high angular momentum gas, also play a role in increasing the specific angular momentum.

  11. Projection of angular momentum via linear algebra

    Science.gov (United States)

    Johnson, Calvin W.; O'Mara, Kevin D.

    2017-12-01

    Projection of many-body states with good angular momentum from an initial state is usually accomplished by a three-dimensional integral. We show how projection can instead be done by solving a straightforward system of linear equations. We demonstrate the method and give sample applications to 48Cr and 60Fe in the p f shell. This new projection scheme, which is competitive against the standard numerical quadrature, should also be applicable to other quantum numbers such as isospin and particle number.

  12. Differential branching fraction and angular analysis of the decay $B_s^0 \\to \\phi \\mu^+\\mu^-$

    CERN Document Server

    Aaij, R; Adeva, B; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves Jr, A A; Amato, S; Amerio, S; Amhis, Y; Anderlini, L; Anderson, J; Andreassen, R; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Bachmann, S; Back, J J; Baesso, C; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bauer, Th; Bay, A; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M -O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Burducea, I; Bursche, A; Busetto, G; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carranza-Mejia, H; Carson, L; Carvalho Akiba, K; Casse, G; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Charles, M; Charpentier, Ph; Chen, P; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Couturier, B; Cowan, G A; Craik, D C; Cunliffe, S; Currie, R; D'Ambrosio, C; David, P; David, P N Y; Davis, A; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Di Ruscio, F; Dijkstra, H; Dogaru, M; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Elsby, D; Falabella, A; Färber, C; Fardell, G; Farinelli, C; Farry, S; Fave, V; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furcas, S; Furfaro, E; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garofoli, J; Garosi, P; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hampson, T; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hartmann, T; He, J; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hicheur, A; Hicks, E; Hill, D; Hoballah, M; Holtrop, M; Hombach, C; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Hussain, N; Hutchcroft, D; Hynds, D; Iakovenko, V; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jans, E; Jaton, P; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Kaballo, M; Kandybei, S; Karacson, M; Karbach, T M; Kenyon, I R; Kerzel, U; Ketel, T; Keune, A; Khanji, B; Kochebina, O; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucharczyk, M; Kudryavtsev, V; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J -P; Lefèvre, R; Leflat, A; Lefrançois, J; Leo, S; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Li Gioi, L; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; Lohn, S; Longstaff, I; Lopes, J H; Lopez Asamar, E; Lopez-March, N; Lu, H; Lucchesi, D; Luisier, J; Luo, H; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Manca, G; Mancinelli, G; Marconi, U; Märki, R; Marks, J; Martellotti, G; Martens, A; Martin, L; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martins Tostes, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Maurice, E; Mazurov, A; Mc Skelly, B; McCarthy, J; McNab, A; McNulty, R; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M -N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Morello, M J; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neufeld, N; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Oyanguren, A; Pal, B K; Palano, A; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perego, D L; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pessina, G; Petridis, K; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Playfer, S; Plo Casasus, M; Polci, F; Polok, G; Poluektov, A; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redford, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Rives Molina, V; Roa Romero, D A; Robbe, P; Rodrigues, E; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Rouvinet, J; Ruf, T; Ruffini, F; Ruiz, H; Ruiz Valls, P; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salustino Guimaraes, V; Salzmann, C; Sanmartin Sedes, B; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M -H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Skwarnicki, T; Smith, N A; Smith, E; Smith, M; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Sun, L; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teklishyn, M; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Urner, D; Uwer, U; Vagnoni, V; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; Waldi, R; Wallace, R; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wicht, J; Wiechczynski, J; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wishahi, J; Witek, M; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, F; Xing, Z; Yang, Z; Young, R; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L; Zvyagin, A

    2013-07-11

    The determination of the differential branching fraction and the first angular analysis of the decay $B_s^0\\to\\phi\\mu^{+}\\mu^{-}$ are presented using data, corresponding to an integrated luminosity of $1.0\\,{\\rm fb}^{-1}$, collected by the LHCb experiment at $\\sqrt{s}=7\\,{\\rm TeV}$. The differential branching fraction is determined in bins of $q^{2}$, the invariant dimuon mass squared. Integration over the full $q^{2}$ range yields a total branching fraction of ${\\cal B}(B_s^0\\to\\phi\\mu^{+}\\mu^{-}) = (7.07\\,^{+0.64}_{-0.59}\\pm 0.17 \\pm 0.71)\\times 10^{-7}$, where the first uncertainty is statistical, the second systematic, and the third originates from the branching fraction of the normalisation channel. An angular analysis is performed to determine the angular observables $F_{\\rm L}$, $S_3$, $A_6$, and $A_9$. The observables are consistent with Standard Model expectations.

  13. Angular correlations in three-jet events in ep collisions at HERA

    NARCIS (Netherlands)

    Abramowicz, H.; Abt, I.; Adamczyk, L.; Adamus, M.; Aggarwal, R.; Antonelli, S.; Antonioli, P.; Antonov, A.; Arneodo, M.; Aushev, V.; Aushev, Y.; Bachynska, O.; Bamberger, A.; Barakbaev, A. N.; Barbagli, G.; Bari, G.; Barreiro, F.; Bartosik, N.; Bartsch, D.; Basile, M.; Behnke, O.; Behr, J.; Behrens, U.; Bellagamba, L.; Bertolin, A.; Bhadra, S.; Bindi, M.; Blohm, C.; Bokhonov, V.; Bold, T.; Bondarenko, K.; Boos, E. G.; Borras, K.; Boscherini, D.; Brock, I.; Brownson, E.; Brugnera, R.; Bruemmer, N.; Bruni, A.; Bruni, G.; Brzozowska, B.; Bussey, P. J.; Bylsma, B.; Caldwell, A.; Capua, M.; Carlin, R.; Catterall, C. D.; Chekanov, S.; Chwastowski, J.; Pellegrino, A.

    2012-01-01

    Three-jet production in deep inelastic ep scattering and photoproduction was investigated with the ZEUS detector at HERA using an integrated luminosity of up to 127 pb(-1). Measurements of differential cross sections are presented as functions of angular correlations between the three jets in the

  14. Galaxy angular momentum

    International Nuclear Information System (INIS)

    Thompson, L.A.

    1974-01-01

    In order to test the theories which purport to explain the origin of galaxy angular momentum, this study presents new data for about 1000 individual galaxies in eight rich clusters. The clusters which are studied include Virgo, A 119, A 400, A 1656 (Coma), A 2147, A 2151 (Hercules), A 2197, and A 2199. Selected samples of these data are used to investigate systematic alignment effects in clusters of galaxies and to investigate the intrinsic ellipticities of E, SO, and spiral galaxies. The following new results are reported: Galaxies in the cluster A 2197 show a significant alignment effect (chi 2 probability less than 0.0002), and the preferential direction of alignment corresponds approximately to the major axis of the overall cluster elongation. None of the other seven clusters show any significant alignment trends. The spiral galaxy samples in four clusters (Virgo, A 1656, A 2151, and A 2197) were large enough to analyze the number distributions of forward and reverse winding spirals. Large and small spiral galaxies have identical ellipticity distributions. Large E and SO galaxies tend to be more spherical, and small E and SO galaxies more flattened. The intrinsic ellipticities of E, SO, and spiral galaxies are the same for galaxies in the ''field'' and for galaxies in rich clusters. Six models of galaxy formation are reviewed, and the major []mphasis is placed on how each model explains the origin of galaxy angular momentum. (Diss. Abstr. Int., B)

  15. Diffraction of a plane electromagnetic wave on a dielectric plate of variable density. [Field equatios, diffracted-wave angular distributions

    Energy Technology Data Exchange (ETDEWEB)

    Aivazyan, Yu M; Mergelyan, O S; Poulatov, M P

    1974-01-01

    Aproblem for the diffraction of a plane electromagnetic wave on a dielectric plate between two other dielectrics is solved. The dielectric constant of the plate depends periodically on three coordinates. From this solution it is possible to obtain the equations for fields and the angular distribution of diffracted waves for the particular cases of a crystal plate and a dielectric surface fluted in all directions. If the expansion is made in the variable of the electron density in crystals, the results will correspond to the problem for the X-ray diffraction on a crystal lattice, the values of the coefficient ..cap alpha -->..sub(tau) being determined by the lattice parameters.

  16. Integration of Conflicts Resolution Values in Learning of History: a Case Study in Kerinci

    Directory of Open Access Journals (Sweden)

    Firza Firza

    2018-04-01

    Full Text Available Conflict is categorized as something always exist in society, people cannot be separated from conflict. Conflict causes stunted progress and development of human thought. Thus, conflicts must be immediately resolved to create a society of peace and harmony. Conflict resolution is a cultural form exists in society. Kerinci people are so familiar with conflict resolution with the term of Mandawah. In the conflict resolution of Mandawah, it is contained in traditional values that are relevant to the life of nowadays’ society. Schools do not only teach learners to master learning, but also to shape the affective aspects. Integration of conflicts resolution values in learning history is needed to improve harmonization in the life of the Kerinci society.

  17. The Cosmology Large Angular Scale Surveyor (CLASS): 40 GHz Optical Design

    Science.gov (United States)

    Eimer, Joseph R.; Bennett, Charles L.; Chuss, David T.; Marriage, Tobias; Wollack, Edward J.; Zeng, Lingzhen

    2012-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) instrument will measure the polarization of the cosmic microwave background at 40, 90, and 150 GHz from Cerro Toco in the Atacama desert of northern Chile. In this paper, we describe the optical design of the 40 GHz telescope system. The telescope is a diffraction limited catadioptric design consisting of a front-end Variable-delay Polarization Modulator (VPM), two ambient temperature mirrors, two cryogenic dielectric lenses, thermal blocking filters, and an array of 36 smooth-wall scalar feedhorn antennas. The feed horns guide the signal to antenna-coupled transition-edge sensor (TES) bolometers. Polarization diplexing and bandpass definition are handled on the same microchip as the TES. The feed horn beams are truncated with 10 dB edge taper by a 4 K Lyot-stop to limit detector loading from stray light and control the edge illumination of the front-end VPM. The field-of-view is 19 deg x 14 deg with a resolution for each beam on the sky of 1.5 deg. FWHM.

  18. The cosmology large angular scale surveyor (CLASS): 40 GHz optical design

    Science.gov (United States)

    Eimer, Joseph R.; Bennett, Charles L.; Chuss, David T.; Marriage, Tobias; Wollack, Edward J.; Zeng, Lingzhen

    2012-09-01

    The Cosmology Large Angular Scale Surveyor (CLASS) instrument will measure the polarization of the cosmic microwave background at 40, 90, and 150 GHz from Cerro Toco in the Atacama desert of northern Chile. In this paper, we describe the optical design of the 40 GHz telescope system. The telescope is a diffraction limited catadioptric design consisting of a front-end Variable-delay Polarization Modulator (VPM), two ambient temperature mirrors, two cryogenic dielectric lenses, thermal blocking filters, and an array of 36 smooth-wall scalar feedhorn antennas. The feed horns guide the signal to antenna-coupled transition-edge sensor (TES) bolometers. Polarization diplexing and bandpass definition are handled on the same microchip as the TES. The feed horn beams are truncated with 10 dB edge taper by a 4 K Lyot-stop to limit detector loading from stray light and control the edge illumination of the front-end VPM. The field-of-view is 19° x 14° with a resolution for each beam on the sky of 1.5° FWHM.

  19. Fused silica segments: a possible solution for x-ray telescopes with very high angular resolution like Lynx/XRS

    Science.gov (United States)

    Salmaso, Bianca; Basso, Stefano; Civitani, Marta; Ghigo, Mauro; Hołyszko, Joanna; Spiga, Daniele; Vecchi, Gabriele; Pareschi, Giovanni

    2017-09-01

    In order to look beyond Chandra, the Lynx/XRS mission has been proposed in USA and is currently studied by NASA. The optic will have an effective area of 2.5 m2 and an angular resolution of 0.5 arcsec HEW at 1 keV. In order to fulfill these requirements different technologies are considered, with the approaches of both full and segmented shells (that, possibly, can be also combined together). Concerning the production of segmented mirrors, a variety of thin substrates (glass, metal, silicon) are envisaged, that can be produced using both direct polishing or replication methods. Innovative post-fabrication correction methods (such as piezoelectric or magneto-restrictive film actuators on the back surface, differential deposition, ion implantation) are being also considered in order to reach the final tolerances. In this paper we are presenting a technology development based on fused silica (SiO2) segmented substrates, owing the low coefficient of thermal expansion of Fused Silica and its high chemical stability compared to other glasses. Thin SiO2 segmented substrates (typically 2 mm thick) are figured by direct polishing combined with final profile ion figuring correction, while the roughness reduction is reached with pitch tools. For the profile and roughness correction, the segments are glued to a substrate. In this paper we present the current status of this technology.

  20. Bianchi identities and the automatic conservation of energy-momentum and angular momentum in general-relativistic field theories

    International Nuclear Information System (INIS)

    Hehl, F.W.; McCrea, J.D.

    1986-01-01

    Automatic conservation of energy-momentum and angular momentum is guaranteed in a gravitational theory if, via the field equations, the conservation laws for the material currents are reduced to the contracted Bianchi identities. We first execute an irreducible decomposition of the Bianchi identities in a Riemann-Cartan space-time. Then, starting from a Riemannian space-time with or without torsion, we determine those gravitational theories which have automatic conservation: general relativity and the Einstein-Cartan-Sciama-Kibble theory, both with cosmological constant, and the nonviable pseudoscalar model. The Poincare gauge theory of gravity, like gauge theories of internal groups, has no automatic conservation in the sense defined above. This does not lead to any difficulties in principle. Analogies to 3-dimensional continuum mechanics are stressed throughout the article

  1. Bianchi identities and the automatic conservation of energy-momentum and angular momentum in general-relativistic field theories

    Science.gov (United States)

    Hehl, Friedrich W.; McCrea, J. Dermott

    1986-03-01

    Automatic conservation of energy-momentum and angular momentum is guaranteed in a gravitational theory if, via the field equations, the conservation laws for the material currents are reduced to the contracted Bianchi identities. We first execute an irreducible decomposition of the Bianchi identities in a Riemann-Cartan space-time. Then, starting from a Riemannian space-time with or without torsion, we determine those gravitational theories which have automatic conservation: general relativity and the Einstein-Cartan-Sciama-Kibble theory, both with cosmological constant, and the nonviable pseudoscalar model. The Poincaré gauge theory of gravity, like gauge theories of internal groups, has no automatic conservation in the sense defined above. This does not lead to any difficulties in principle. Analogies to 3-dimensional continuum mechanics are stressed throughout the article.

  2. Post-mortem inference of the human hippocampal connectivity and microstructure using ultra-high field diffusion MRI at 11.7 T.

    Science.gov (United States)

    Beaujoin, Justine; Palomero-Gallagher, Nicola; Boumezbeur, Fawzi; Axer, Markus; Bernard, Jeremy; Poupon, Fabrice; Schmitz, Daniel; Mangin, Jean-François; Poupon, Cyril

    2018-06-01

    The human hippocampus plays a key role in memory management and is one of the first structures affected by Alzheimer's disease. Ultra-high magnetic resonance imaging provides access to its inner structure in vivo. However, gradient limitations on clinical systems hinder access to its inner connectivity and microstructure. A major target of this paper is the demonstration of diffusion MRI potential, using ultra-high field (11.7 T) and strong gradients (750 mT/m), to reveal the extra- and intra-hippocampal connectivity in addition to its microstructure. To this purpose, a multiple-shell diffusion-weighted acquisition protocol was developed to reach an ultra-high spatio-angular resolution with a good signal-to-noise ratio. The MRI data set was analyzed using analytical Q-Ball Imaging, Diffusion Tensor Imaging (DTI), and Neurite Orientation Dispersion and Density Imaging models. High Angular Resolution Diffusion Imaging estimates allowed us to obtain an accurate tractography resolving more complex fiber architecture than DTI models, and subsequently provided a map of the cross-regional connectivity. The neurite density was akin to that found in the histological literature, revealing the three hippocampal layers. Moreover, a gradient of connectivity and neurite density was observed between the anterior and the posterior part of the hippocampus. These results demonstrate that ex vivo ultra-high field/ultra-high gradients diffusion-weighted MRI allows the mapping of the inner connectivity of the human hippocampus, its microstructure, and to accurately reconstruct elements of the polysynaptic intra-hippocampal pathway using fiber tractography techniques at very high spatial/angular resolutions.

  3. Angular correlations in three-jet events in ep collisions at HERA

    NARCIS (Netherlands)

    Abramowicz, H.; et al., [Unknown; Grigorescu, G.; Keramidas, A.; Koffeman, E.; Kooijman, P.; Pellegrino, A.; Tiecke, H.; Vázquez, M.; Wiggers, L.

    2012-01-01

    Three-jet production in deep inelastic ep scattering and photoproduction was investigated with the ZEUS detector at HERA using an integrated luminosity of up to 127  pb−1. Measurements of differential cross sections are presented as functions of angular correlations between the three jets in the

  4. Angular correlations in three-jet events in ep collisions at HERA

    NARCIS (Netherlands)

    Abramowicz, H.; Abt, I.; Kooijman, P.; Zotkin, D.S.

    2012-01-01

    Three-jet production in deep inelastic ep scattering and photoproduction was investigated with the ZEUS detector at HERA using an integrated luminosity of up to 127  pb-1. Measurements of differential cross sections are presented as functions of angular correlations between the three jets in the

  5. Measurement of electric field gradient at {sup 117}In on the Cu-site in mavicyanin by perturbed angular correlation of {gamma}-rays

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, A., E-mail: yokoyama@cacheibm.s.kanazawa-u.ac.jp; Hashimoto, T.; Ihara, K.; Kikunaga, H.; Kinoshita, N.; Yamazaki, I.; Kataoka, K.; Yanase, M.; Takata, M. [Kanazawa University, Faculty of Science and Graduate School of Natural Science and Technology (Japan); Murakami, Y.; Takamiya, K.; Tanigaki, M.; Ohkubo, Y. [Kyoto University, Research Reactor Institute (Japan)

    2008-01-15

    The structure around the metal site of mavicyanin, a protein molecule with a copper site, was investigated in solution by using time-differential perturbed angular correlation of {sup 117}In. The electric field gradient (EFG) of the metal site was deduced from the measurement. It demonstrated that the site in a mutant-type mavicyanin, Thr15Ala-Mav, gives an EFG different from that in the wild-type mavicyanin does. The pH dependence of the EFG was also observed for both proteins.

  6. A proposed measurement of optical orbital and spin angular momentum and its implications for photon angular momentum

    Directory of Open Access Journals (Sweden)

    Elliot Leader

    2018-04-01

    Full Text Available The expression for the total angular momentum carried by a laser optical vortex beam, splits, in the paraxial approximation, into two terms which seem to represent orbital and spin angular momentum respectively. There are, however, two very different competing versions of the formula for the spin angular momentum, one based on the use of the Poynting vector, as in classical electrodynamics, the other related to the canonical expression for the angular momentum which occurs in Quantum Electrodynamics. I analyze the possibility that a sufficiently sensitive optical measurement could decide which of these corresponds to the actual physical angular momentum carried by the beam. Keywords: Photon, Angular momentum, Laser optics, Particle physics

  7. AngularJS : yksisivuisen web-sovelluksen käyttöliittymän toteutus AngularJS:llä

    OpenAIRE

    Suomijoki, Juha

    2015-01-01

    Opinnäytetyössä tutkittiin mikä on AngularJS-JavaScript-ohjelmistokehys ja miten se soveltuu yksisivuisen web-sovelluksen käyttöliittymän toteutukseen. AngularJS on vuonna 2012 julkaistu Googlen ylläpitämä JavaScript-ohjelmistokehys, joka on tarkoitettu ensisijaisesti yksisivuisten web-sovellusten kehittämiseen. Opinnäytetyön teoriaosuudessa tutkittiin mikä AngularJS on ja mitkä ovat AngularJS:n keskeiset konseptit ja sovelluskomponentit. Tarkastelu pohjautui AngularJS:stä kirjoitettu...

  8. Quark Orbital Angular Momentum

    Directory of Open Access Journals (Sweden)

    Burkardt Matthias

    2015-01-01

    Full Text Available Definitions of orbital angular momentum based on Wigner distributions are used as a framework to discuss the connection between the Ji definition of the quark orbital angular momentum and that of Jaffe and Manohar. We find that the difference between these two definitions can be interpreted as the change in the quark orbital angular momentum as it leaves the target in a DIS experiment. The mechanism responsible for that change is similar to the mechanism that causes transverse single-spin asymmetries in semi-inclusive deep-inelastic scattering.

  9. The Oxford SWIFT integral field spectrograph

    Science.gov (United States)

    Thatte, Niranjan; Tecza, Matthias; Clarke, Fraser; Goodsall, Timothy; Lynn, James; Freeman, David; Davies, Roger L.

    2006-06-01

    We present the design of the Oxford SWIFT integral field spectrograph, a dedicated I and z band instrument (0.65μm micron - 1.0μm micron at R~4000), designed to be used in conjunction with the Palomar laser guide star adaptive optics system (PALAO, and its planned upgrade PALM-3000). It builds on two recent developments (i) the improved ability of second generation adaptive optics systems to correct for atmospheric turbulence at wavelengths less than or equal to 1μm micron, and (ii) the availability of CCD array detectors with high quantum efficiency at very red wavelengths (close to the silicon band edge). Combining these with a state-of-the-art integral field unit design using an all-glass image slicer, SWIFT's design provides very high throughput and low scattered light. SWIFT simultaneously provides spectra of ~4000 spatial elements, arranged in a rectangular field-of-view of 44 × 89 pixels. It has three on-the-fly selectable pixel scales of 0.24", 0.16" and 0.08'. First light is expected in spring 2008.

  10. Chromatic and Achromatic Spatial Resolution of Local Field Potentials in Awake Cortex.

    Science.gov (United States)

    Jansen, Michael; Li, Xiaobing; Lashgari, Reza; Kremkow, Jens; Bereshpolova, Yulia; Swadlow, Harvey A; Zaidi, Qasim; Alonso, Jose-Manuel

    2015-10-01

    Local field potentials (LFPs) have become an important measure of neuronal population activity in the brain and could provide robust signals to guide the implant of visual cortical prosthesis in the future. However, it remains unclear whether LFPs can detect weak cortical responses (e.g., cortical responses to equiluminant color) and whether they have enough visual spatial resolution to distinguish different chromatic and achromatic stimulus patterns. By recording from awake behaving macaques in primary visual cortex, here we demonstrate that LFPs respond robustly to pure chromatic stimuli and exhibit ∼2.5 times lower spatial resolution for chromatic than achromatic stimulus patterns, a value that resembles the ratio of achromatic/chromatic resolution measured with psychophysical experiments in humans. We also show that, although the spatial resolution of LFP decays with visual eccentricity as is also the case for single neurons, LFPs have higher spatial resolution and show weaker response suppression to low spatial frequencies than spiking multiunit activity. These results indicate that LFP recordings are an excellent approach to measure spatial resolution from local populations of neurons in visual cortex including those responsive to color. © The Author 2014. Published by Oxford University Press.

  11. Subwavelength resolution Fourier ptychography with hemispherical digital condensers

    Science.gov (United States)

    Pan, An; Zhang, Yan; Li, Maosen; Zhou, Meiling; Lei, Ming; Yao, Baoli

    2018-02-01

    Fourier ptychography (FP) is a promising computational imaging technique that overcomes the physical space-bandwidth product (SBP) limit of a conventional microscope by applying angular diversity illuminations. However, to date, the effective imaging numerical aperture (NA) achievable with a commercial LED board is still limited to the range of 0.3-0.7 with a 4×/0.1NA objective due to the constraint of planar geometry with weak illumination brightness and attenuated signal-to-noise ratio (SNR). Thus the highest achievable half-pitch resolution is usually constrained between 500-1000 nm, which cannot fulfill some needs of high-resolution biomedical imaging applications. Although it is possible to improve the resolution by using a higher magnification objective with larger NA instead of enlarging the illumination NA, the SBP is suppressed to some extent, making the FP technique less appealing, since the reduction of field-of-view (FOV) is much larger than the improvement of resolution in this FP platform. Herein, in this paper, we initially present a subwavelength resolution Fourier ptychography (SRFP) platform with a hemispherical digital condenser to provide high-angle programmable plane-wave illuminations of 0.95NA, attaining a 4×/0.1NA objective with the final effective imaging performance of 1.05NA at a half-pitch resolution of 244 nm with a wavelength of 465 nm across a wide FOV of 14.60 mm2 , corresponding to an SBP of 245 megapixels. Our work provides an essential step of FP towards high-NA imaging applications without scarfing the FOV, making it more practical and appealing.

  12. New high-resolution rocket-ultraviolet filtergrams of the solar disc

    Science.gov (United States)

    Foing, B.; Bonnet, R.-M.; Bruner, M.

    1986-01-01

    A rocket-borne solar ultraviolet telescope named Transition Region Camera was launched successfully for the third on July 13, 1982. High quality calibrated photographic images of the sun were obtained at Lyman alpha and in the continuum at 160 nm and 220 nm. The angular resolution achieved is better than one arcsec. A flare, active regions, sunspots, the 8 Mm mesostructure, the chromospheric network, bright UV grains and coronal loops were observed during the flight. The results are presented and the evolution with height in the solar atmosphere of the various structures observed is followed from one wavelength to the other, showing distinct differences. The value of the field's intensity of magnetic flux tubes is deduced from the observations.

  13. Frequency-resolved measurement of the orbital angular momentum spectrum of femtosecond ultra-broadband optical-vortex pulses based on field reconstruction

    International Nuclear Information System (INIS)

    Yamane, Keisaku; Yang, Zhili; Toda, Yasunori; Morita, Ryuji

    2014-01-01

    We propose a high-precision method for measuring the orbital angular momentum (OAM) spectrum of ultra-broadband optical-vortex (OV) pulses from fork-like interferograms between OV pulses and a reference plane-wave pulse. It is based on spatial reconstruction of the electric fields of the pulses to be measured from the frequency-resolved interference pattern. Our method is demonstrated experimentally by obtaining the OAM spectra for different spectral components of the OV pulses, enabling us to characterize the frequency dispersion of the topological charge of the OAM spectrum by a simple experimental setup. Retrieval is carried out in quasi-real time, allowing us to investigate OAM spectra dynamically. Furthermore, we determine the relative phases (including the sign) of the topological-charge-resolved electric-field amplitudes, which are significant for evaluating OVs or OV pulses with arbitrarily superposed modes. (paper)

  14. Analogies between optical and quantum mechanical angular momentum.

    Science.gov (United States)

    Nienhuis, Gerard

    2017-02-28

    The insight that a beam of light can carry orbital angular momentum (AM) in its propagation direction came up in 1992 as a surprise. Nevertheless, the existence of momentum and AM of an electromagnetic field has been well known since the days of Maxwell. We compare the expressions for densities of AM in general three-dimensional modes and in paraxial modes. Despite their classical nature, these expressions have a suggestive quantum mechanical appearance, in terms of linear operators acting on mode functions. In addition, paraxial wave optics has several analogies with real quantum mechanics, both with the wave function of a free quantum particle and with a quantum harmonic oscillator. We discuss how these analogies can be applied.This article is part of the themed issue 'Optical orbital angular momentum'. © 2017 The Author(s).

  15. Continuous theta burst stimulation of angular gyrus reduces subjective recollection.

    Directory of Open Access Journals (Sweden)

    Yasemin Yazar

    Full Text Available The contribution of lateral parietal regions such as the angular gyrus to human episodic memory has been the subject of much debate following widespread observations of left parietal activity in healthy volunteers during functional neuroimaging studies of memory retrieval. Patients with lateral parietal lesions are not amnesic, but recent evidence indicates that their memory abilities may not be entirely preserved. Whereas recollection appears intact when objective measures such as source accuracy are used, patients often exhibit reduced subjective confidence in their accurate recollections. When asked to recall autobiographical memories, they may produce spontaneous narratives that lack richness and specificity, but can remember specific details when prompted. Two distinct theoretical accounts have been proposed to explain these results: that the patients have a deficit in the bottom-up capturing of attention by retrieval output, or that they have an impairment in the subjective experience of recollection. The present study aimed to differentiate between these accounts using continuous theta burst stimulation (cTBS in healthy participants to disrupt function of specific left parietal subregions, including angular gyrus. Inconsistent with predictions of the attentional theory, angular gyrus cTBS did not result in greater impairment of free recall than cued recall. Supporting predictions of the subjective recollection account, temporary disruption of angular gyrus was associated with highly accurate source recollection accuracy but a selective reduction in participants' rated source confidence. The findings are consistent with a role for angular gyrus in the integration of memory features into a conscious representation that enables the subjective experience of remembering.

  16. Rotations and angular momentum

    International Nuclear Information System (INIS)

    Nyborg, P.; Froyland, J.

    1979-01-01

    This paper is devoted to the analysis of rotational invariance and the properties of angular momentum in quantum mechanics. In particular, the problem of addition of angular momenta is treated in detail, and tables of Clebsch-Gordan coefficients are included

  17. High-resolution model for estimating the economic and policy implications of agricultural soil salinization in California

    Science.gov (United States)

    Welle, Paul D.; Mauter, Meagan S.

    2017-09-01

    This work introduces a generalizable approach for estimating the field-scale agricultural yield losses due to soil salinization. When integrated with regional data on crop yields and prices, this model provides high-resolution estimates for revenue losses over large agricultural regions. These methods account for the uncertainty inherent in model inputs derived from satellites, experimental field data, and interpreted model results. We apply this method to estimate the effect of soil salinity on agricultural outputs in California, performing the analysis with both high-resolution (i.e. field scale) and low-resolution (i.e. county-scale) data sources to highlight the importance of spatial resolution in agricultural analysis. We estimate that soil salinity reduced agricultural revenues by 3.7 billion (1.7-7.0 billion) in 2014, amounting to 8.0 million tons of lost production relative to soil salinities below the crop-specific thresholds. When using low-resolution data sources, we find that the costs of salinization are underestimated by a factor of three. These results highlight the need for high-resolution data in agro-environmental assessment as well as the challenges associated with their integration.

  18. Asymmetric photoelectron angular distributions from interfering photoionization processes

    International Nuclear Information System (INIS)

    Yin, Y.; Chen, C.; Elliott, D.S.; Smith, A.V.

    1992-01-01

    We have measured asymmetric photoelectron angular distributions for atomic rubidium. Ionization is induced by a one-photon interaction with 280 nm light and by a two-photon interaction with 560 nm light. Interference between the even- and odd-parity free-electron wave functions allows us to control the direction of maximum electron flux by varying the relative phase of the two laser fields

  19. Effects of Wall-Normal and Angular Momentum Injections in Airfoil Separation Control

    Science.gov (United States)

    Munday, Phillip M.; Taira, Kunihiko

    2018-05-01

    The objective of this computational study is to quantify the influence of wall-normal and angular momentum injections in suppressing laminar flow separation over a canonical airfoil. Open-loop control of fully separated, incompressible flow over a NACA 0012 airfoil at $\\alpha = 9^\\circ$ and $Re = 23,000$ is examined with large-eddy simulations. This study independently introduces wall-normal momentum and angular momentum into the separated flow using swirling jets through model boundary conditions. The response of the flow field and the surface vorticity fluxes to various combinations of actuation inputs are examined in detail. It is observed that the addition of angular momentum input to wall-normal momentum injection enhances the suppression of flow separation. Lift enhancement and suppression of separation with the wall-normal and angular momentum inputs are characterized by modifying the standard definition of the coefficient of momentum. The effect of angular momentum is incorporated into the modified coefficient of momentum by introducing a characteristic swirling jet velocity based on the non-dimensional swirl number. With this single modified coefficient of momentum, we are able to categorize each controlled flow into separated, transitional, and attached flows.

  20. The $\\mu$TPC Method: Improving the Position Resolution of Neutron Detectors Based on MPGDs

    CERN Document Server

    Pfeiffer, Dorothea; Birch, Jens; Hall-Wilton, Richard; Höglund, Carina; Hultman, Lars; Iakovidis, George; Oliveri, Eraldo; Oksanen, Esko; Ropelewski, Leszek; Thuiner, Patrik

    2015-01-01

    Due to the Helium-3 crisis, alternatives to the standard neutron detection techniques are becoming urgent. In addition, the instruments of the European Spallation Source (ESS) require advances in the state of the art of neutron detection. The instruments need detectors with excellent neutron detection efficiency, high-rate capabilities and unprecedented spatial resolution. The Macromolecular Crystallography instrument (NMX) requires a position resolution in the order of 200 um over a wide angular range of incoming neutrons. Solid converters in combination with Micro Pattern Gaseous Detectors (MPGDs) are proposed to meet the new requirements. Charged particles rising from the neutron capture have usually ranges larger than several millimetres in gas. This is apparently in contrast with the requirements for the position resolution. In this paper, we present an analysis technique, new in the field of neutron detection, based on the Time Projection Chamber (TPC) concept. Using a standard Single-GEM with the catho...

  1. Next Generation Astronomical X-ray Optics: High Angular Resolution, Light Weight, and Low Production Cost

    Science.gov (United States)

    Zhang. W. W.; Biskach, M. P.; Blake, P. N.; Chan, K. W.; Gaskin, J. A.; Hong, M. L.; Jones, W. D.; Kolos, L. D.; Mazzarella, J. R.; McClelland, R. S.; hide

    2012-01-01

    X-ray astronomy depends on the availability of telescopes with high resolution and large photon collecting areas. Since x-ray observation can only be carried out above the atmosphere, these telescopes must be necessarily lightweight. Compounding the lightweight requirement is that an x-ray telescope consists of many nested concentric shells, which further require that x-ray mirrors must also be geometrically thin to achieve high packing efficiency. This double lightweight and geometrically thin requirement poses significant technical challenges in fabricating the mirrors and in integrating them into mirror assemblies. This paper reports on the approach, strategy and status of our x-ray optics development program whose objective is to meet these technical challenges at modest cost to enable future x-ray missions, including small Explorer missions in the near term, probe class missions in the medium term, and large flagship missions in the long term.

  2. Apertureless near-field/far-field CW two-photon microscope for biological and material imaging and spectroscopic applications.

    Science.gov (United States)

    Nowak, Derek B; Lawrence, A J; Sánchez, Erik J

    2010-12-10

    We present the development of a versatile spectroscopic imaging tool to allow for imaging with single-molecule sensitivity and high spatial resolution. The microscope allows for near-field and subdiffraction-limited far-field imaging by integrating a shear-force microscope on top of a custom inverted microscope design. The instrument has the ability to image in ambient conditions with optical resolutions on the order of tens of nanometers in the near field. A single low-cost computer controls the microscope with a field programmable gate array data acquisition card. High spatial resolution imaging is achieved with an inexpensive CW multiphoton excitation source, using an apertureless probe and simplified optical pathways. The high-resolution, combined with high collection efficiency and single-molecule sensitive optical capabilities of the microscope, are demonstrated with a low-cost CW laser source as well as a mode-locked laser source.

  3. Integrated High Resolution Digital Color Light Sensor in 130 nm CMOS Technology

    Directory of Open Access Journals (Sweden)

    Drago Strle

    2015-07-01

    Full Text Available This article presents a color light detection system integrated in 130 nm CMOS technology. The sensors and corresponding electronics detect light in a CIE XYZ color luminosity space using on-chip integrated sensors without any additional process steps, high-resolution analog-to-digital converter, and dedicated DSP algorithm. The sensor consists of a set of laterally arranged integrated photodiodes that are partly covered by metal, where color separation between the photodiodes is achieved by lateral carrier diffusion together with wavelength-dependent absorption. A high resolution, hybrid, ∑∆ ADC converts each photo diode’s current into a 22-bit digital result, canceling the dark current of the photo diodes. The digital results are further processed by the DSP, which calculates normalized XYZ or RGB color and intensity parameters using linear transformations of the three photo diode responses by multiplication of the data with a transformation matrix, where the coefficients are extracted by training in combination with a pseudo-inverse operation and the least-mean square approximation. The sensor system detects the color light parameters with 22-bit accuracy, consumes less than 60 μA on average at 10 readings per second, and occupies approx. 0.8 mm2 of silicon area (including three photodiodes and the analog part of the ADC. The DSP is currently implemented on FPGA.

  4. Integrated High Resolution Digital Color Light Sensor in 130 nm CMOS Technology.

    Science.gov (United States)

    Strle, Drago; Nahtigal, Uroš; Batistell, Graciele; Zhang, Vincent Chi; Ofner, Erwin; Fant, Andrea; Sturm, Johannes

    2015-07-22

    This article presents a color light detection system integrated in 130 nm CMOS technology. The sensors and corresponding electronics detect light in a CIE XYZ color luminosity space using on-chip integrated sensors without any additional process steps, high-resolution analog-to-digital converter, and dedicated DSP algorithm. The sensor consists of a set of laterally arranged integrated photodiodes that are partly covered by metal, where color separation between the photodiodes is achieved by lateral carrier diffusion together with wavelength-dependent absorption. A high resolution, hybrid, ∑∆ ADC converts each photo diode's current into a 22-bit digital result, canceling the dark current of the photo diodes. The digital results are further processed by the DSP, which calculates normalized XYZ or RGB color and intensity parameters using linear transformations of the three photo diode responses by multiplication of the data with a transformation matrix, where the coefficients are extracted by training in combination with a pseudo-inverse operation and the least-mean square approximation. The sensor system detects the color light parameters with 22-bit accuracy, consumes less than 60 μA on average at 10 readings per second, and occupies approx. 0.8 mm(2) of silicon area (including three photodiodes and the analog part of the ADC). The DSP is currently implemented on FPGA.

  5. Angular correlations of coincident electron-positron pairs in heavy ion collisions

    International Nuclear Information System (INIS)

    Graf, O.

    1988-10-01

    In the present thesis angular correlations of coincident electron-positron pairsnin heavy ion collisions are studied. It is meant as a contribution to the answer of fundamental questions in the quantum electrodynamics of strong fields. (orig./HSI) [de

  6. A multiwire proportional chamber for precision studies of neutron β decay angular correlations

    International Nuclear Information System (INIS)

    Ito, T.M.; Carr, R.; Filippone, B.W.; Martin, J.W.; Plaster, B.; Rybka, G.; Yuan, J.

    2007-01-01

    A new multiwire proportional chamber (MWPC) was designed and constructed for precision studies of neutron β decay angular correlations. Its design has several novel features, including the use of low pressure neopentane as the MWPC gas and an entrance window made of thin Mylar sheet reinforced with Kevlar fibers. In the initial off-line performance tests, the gas gain of neopentane and the position resolution were studied

  7. Angular truncation errors in integrating nephelometry

    International Nuclear Information System (INIS)

    Moosmueller, Hans; Arnott, W. Patrick

    2003-01-01

    Ideal integrating nephelometers integrate light scattered by particles over all directions. However, real nephelometers truncate light scattered in near-forward and near-backward directions below a certain truncation angle (typically 7 deg. ). This results in truncation errors, with the forward truncation error becoming important for large particles. Truncation errors are commonly calculated using Mie theory, which offers little physical insight and no generalization to nonspherical particles. We show that large particle forward truncation errors can be calculated and understood using geometric optics and diffraction theory. For small truncation angles (i.e., <10 deg. ) as typical for modern nephelometers, diffraction theory by itself is sufficient. Forward truncation errors are, by nearly a factor of 2, larger for absorbing particles than for nonabsorbing particles because for large absorbing particles most of the scattered light is due to diffraction as transmission is suppressed. Nephelometers calibration procedures are also discussed as they influence the effective truncation error

  8. ANGULAR MOMENTUM IN GIANT MOLECULAR CLOUDS. I. THE MILKY WAY

    International Nuclear Information System (INIS)

    Imara, Nia; Blitz, Leo

    2011-01-01

    We present a detailed analysis comparing the velocity fields in molecular clouds and the atomic gas that surrounds them in order to address the origin of the gradients. To that end, we present first-moment intensity-weighted velocity maps of the molecular clouds and surrounding atomic gas. The maps are made from high-resolution 13 CO observations and 21 cm observations from the Leiden/Argentine/Bonn Galactic H I Survey. We find that (1) the atomic gas associated with each molecular cloud has a substantial velocity gradient-ranging from 0.02 to 0.07 km s -1 pc -1 -whether or not the molecular cloud itself has a substantial linear gradient. (2) If the gradients in the molecular and atomic gas were due to rotation, this would imply that the molecular clouds have less specific angular momentum than the surrounding H I by a factor of 1-6. (3) Most importantly, the velocity gradient position angles in the molecular and atomic gas are generally widely separated-by as much as 130 deg. in the case of the Rosette molecular cloud. This result argues against the hypothesis that molecular clouds formed by simple top-down collapse from atomic gas.

  9. A proposed measurement of optical orbital and spin angular momentum and its implications for photon angular momentum

    Science.gov (United States)

    Leader, Elliot

    2018-04-01

    The expression for the total angular momentum carried by a laser optical vortex beam, splits, in the paraxial approximation, into two terms which seem to represent orbital and spin angular momentum respectively. There are, however, two very different competing versions of the formula for the spin angular momentum, one based on the use of the Poynting vector, as in classical electrodynamics, the other related to the canonical expression for the angular momentum which occurs in Quantum Electrodynamics. I analyze the possibility that a sufficiently sensitive optical measurement could decide which of these corresponds to the actual physical angular momentum carried by the beam.

  10. Perturbation of angular correlations of 180-86 keV cascade in sup(155)G

    International Nuclear Information System (INIS)

    Budzynski, M; Lebedev, N.A.; Ljzurej, G.; Nezgoda, Kh.; Kochetov, O.I.; Muminov, A.I.; Khazratov, T.

    1980-01-01

    Using the differential disturbed angular correlation method attenuation of a correlation of the 180-86 keV cascade directions in 155 Gd has been studied. Coefficients of integral angular γγ-correlations for 155 Gd have been measured by an automatic correlation spectrometer with a Ge(Li) and two NaI(Tl) detectors. The obtained correlation coefficients are listed in a table. A fragment of the 155 Tb decay scheme, delayed-coincidence curves and a γ-spectrum are presented. During the analysis of experimental data on the differential disturbed angular correlation the nondisturbed correlation coefficient A 22 (O)=-0.220(4) for the 180-86 keV cascade has been obtained. Basing on this result the multipole composition of the 180 keV transition has been determined: M1+(3.54)% E2 with the mixing ratio delta=0.188. It has been found that at a low temperature strong attenuation of the 180-86 keV cascade angular correlation has been observed [ru

  11. An integral design strategy combining optical system and image processing to obtain high resolution images

    Science.gov (United States)

    Wang, Jiaoyang; Wang, Lin; Yang, Ying; Gong, Rui; Shao, Xiaopeng; Liang, Chao; Xu, Jun

    2016-05-01

    In this paper, an integral design that combines optical system with image processing is introduced to obtain high resolution images, and the performance is evaluated and demonstrated. Traditional imaging methods often separate the two technical procedures of optical system design and imaging processing, resulting in the failures in efficient cooperation between the optical and digital elements. Therefore, an innovative approach is presented to combine the merit function during optical design together with the constraint conditions of image processing algorithms. Specifically, an optical imaging system with low resolution is designed to collect the image signals which are indispensable for imaging processing, while the ultimate goal is to obtain high resolution images from the final system. In order to optimize the global performance, the optimization function of ZEMAX software is utilized and the number of optimization cycles is controlled. Then Wiener filter algorithm is adopted to process the image simulation and mean squared error (MSE) is taken as evaluation criterion. The results show that, although the optical figures of merit for the optical imaging systems is not the best, it can provide image signals that are more suitable for image processing. In conclusion. The integral design of optical system and image processing can search out the overall optimal solution which is missed by the traditional design methods. Especially, when designing some complex optical system, this integral design strategy has obvious advantages to simplify structure and reduce cost, as well as to gain high resolution images simultaneously, which has a promising perspective of industrial application.

  12. Near-field collimation of light carrying orbital angular momentum with bull’s-eye-assisted plasmonic coaxial waveguides

    Science.gov (United States)

    Pu, Mingbo; Ma, Xiaoliang; Zhao, Zeyu; Li, Xiong; Wang, Yanqin; Gao, Hui; Hu, Chenggang; Gao, Ping; Wang, Changtao; Luo, Xiangang

    2015-07-01

    The orbital angular momentum (OAM) of light, as an emerging hotspot in optics and photonics, introduces many degrees of freedom for applications ranging from optical communication and quantum processing to micromanipulation. To achieve a high degree of integration, optical circuits for OAM light are essential, which are, however, challenging in the optical regime owing to the lack of well-developed theory. Here we provide a scheme to guide and collimate the OAM beam at the micro- and nano-levels. The coaxial plasmonic slit was exploited as a naturally occurring waveguide for light carrying OAM. Concentric grooves etched on the output surface of the coaxial waveguide were utilized as a plasmonic metasurface to couple the OAM beam to free space with greatly increased beam directivity. Experimental results at λ = 532 nm validated the novel transportation and collimating effect of the OAM beam. Furthermore, dynamic tuning of the topological charges was demonstrated by using a liquid crystal spatial light modulator (SLM).

  13. Developing fine-pixel CdTe detectors for the next generation of high-resolution hard x-ray telescopes

    Science.gov (United States)

    Christe, Steven

    Over the past decade, the NASA Marshall Space Flight Center (MSFC) has been improving the angular resolution of hard X-ray (HXR; 20 "70 keV) optics to the point that we now routinely manufacture optics modules with an angular resolution of 20 arcsec Half Power Diameter (HDP), almost three times the performance of NuSTAR optics (Ramsey et al. 2013; Gubarev et al. 2013a; Atkins et al. 2013). New techniques are currently being developed to provide even higher angular resolution. High angular resolution HXR optics require detectors with a large number of fine pixels in order to adequately sample the telescope point spread function (PSF) over the entire field of view. Excessively over-sampling the PSF will increase readout noise and require more processing with no appreciable increase in image quality. An appropriate level of over-sampling is to have 3 pixels within the HPD. For the HERO mirrors, where the HPD is 26 arcsec over a 6-m focal length converts to 750 μm, the optimum pixel size is around 250 μm. At a 10-m focal length these detectors can support a 16 arcsec HPD. Of course, the detectors must also have high efficiency in the HXR region, good energy resolution, low background, low power requirements, and low sensitivity to radiation damage (Ramsey 2001). The ability to handle high counting rates is also desirable for efficient calibration. A collaboration between Goddard Space Flight Center (GSFC), MSFC, and Rutherford Appleton Laboratory (RAL) in the UK is developing precisely such detectors under an ongoing, funded APRA program (FY2015 to FY2017). The detectors use the RALdeveloped Application Specific Integrated Circuit (ASIC) dubbed HEXITEC, for High Energy X-Ray Imaging Technology. These HEXITEC ASICs can be bonded to 1- or 2- mm-thick Cadmium Telluride (CdTe) or Cadmium-Zinc-Telluride (CZT) to create a fine (250 μm pitch) HXR detector (Jones et al. 2009; Seller et al. 2011). The objectives of this funded effort are to develop and test a HEXITEC

  14. The Higgs field and the resolution of the Cosmological Constant Paradox in the Weyl-geometrical Universe

    Science.gov (United States)

    De Martini, Francesco

    2017-10-01

    The nature of the scalar field responsible for the cosmological inflation is found to be rooted in the most fundamental concept of Weyl's differential geometry: the parallel displacement of vectors in curved space-time. Within this novel geometrical scenario, the standard electroweak theory of leptons based on the SU(2)L⊗U(1)Y as well as on the conformal groups of space-time Weyl's transformations is analysed within the framework of a general-relativistic, conformally covariant scalar-tensor theory that includes the electromagnetic and the Yang-Mills fields. A Higgs mechanism within a spontaneous symmetry breaking process is identified and this offers formal connections between some relevant properties of the elementary particles and the dark energy content of the Universe. An `effective cosmological potential': Veff is expressed in terms of the dark energy potential: via the `mass reduction parameter': , a general property of the Universe. The mass of the Higgs boson, which is considered a `free parameter' by the standard electroweak theory, by our theory is found to be proportional to the mass which accounts for the measured cosmological constant, i.e. the measured content of vacuum-energy in the Universe. The non-integrable application of Weyl's geometry leads to a Proca equation accounting for the dynamics of a φρ-particle, a vector-meson proposed as an an optimum candidate for dark matter. On the basis of previous cosmic microwave background results our theory leads, in the condition of cosmological `critical density', to the assessment of the average energy content of the φρ-excitation. The peculiar mathematical structure of Veff offers a clue towards a very general resolution of a most intriguing puzzle of modern quantum field theory, the `Cosmological Constant Paradox' (here referred to as the `Λ-Paradox'). Indeed, our `universal' theory offers a resolution of the Λ-Paradox for all exponential inflationary potentials: VΛ(T,φ)∝e-nφ, and for all

  15. Resolution of the neutron transport equation by massively parallel computer in the Cronos code

    International Nuclear Information System (INIS)

    Zardini, D.M.

    1996-01-01

    The feasibility of neutron transport problems parallel resolution by CRONOS code's SN module is here studied. In this report we give the first data about the parallel resolution by angular variable decomposition of the transport equation. Problems about parallel resolution by spatial variable decomposition and memory stage limits are also explained here. (author)

  16. Ultrahigh-Resolution Magnetic Resonance in Inhomogeneous Magnetic Fields: Two-Dimensional Long-Lived-Coherence Correlation Spectroscopy

    Science.gov (United States)

    Chinthalapalli, Srinivas; Bornet, Aurélien; Segawa, Takuya F.; Sarkar, Riddhiman; Jannin, Sami; Bodenhausen, Geoffrey

    2012-07-01

    A half-century quest for improving resolution in Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI) has enabled the study of molecular structures, biological interactions, and fine details of anatomy. This progress largely relied on the advent of sophisticated superconducting magnets that can provide stable and homogeneous fields with temporal and spatial variations below ΔB0/B0LLC-COSY) opens the way to overcome both inhomogeneous and homogeneous broadening, which arise from local variations in static fields and fluctuating dipole-dipole interactions, respectively. LLC-COSY makes it possible to obtain ultrahigh resolution two-dimensional spectra, with linewidths on the order of Δν=0.1 to 1 Hz, even in very inhomogeneous fields (ΔB0/B0>10ppm or 5000 Hz at 9.7 T), and can improve resolution by a factor up to 9 when the homogeneous linewidths are determined by dipole-dipole interactions. The resulting LLC-COSY spectra display chemical shift differences and scalar couplings in two orthogonal dimensions, like in “J spectroscopy.” LLC-COSY does not require any sophisticated gradient switching or frequency-modulated pulses. Applications to in-cell NMR and to magnetic resonance spectroscopy (MRS) of selected volume elements in MRI appear promising, particularly when susceptibility variations tend to preclude high resolution.

  17. Kinematics and resolution at future ep colliders

    International Nuclear Information System (INIS)

    Bluemlein, J.; Klein, M.

    1992-01-01

    Limitations due to resolution and kinematics are discussed of the (Q 2 , x) range accessible with electron-proton colliders after HERA. For the time after HERA one may think of two electron-proton colliders: an asymmetric energy machine and a rather symmetric one. Both colliders are compared here in order to study the influence of the different E l /E p ratios on the accessible kinematic range which is restricted due to angular coverage, finite detector resolution and calibration uncertainties

  18. Angular dependence of the coercivity and remanence of ordered arrays of Co nanowires

    International Nuclear Information System (INIS)

    Lavín, R.; Gallardo, C.; Palma, J.L.; Escrig, J.; Denardin, J.C.

    2012-01-01

    The angular dependence of the coercivity and remanence of ordered hexagonal arrays of Co nanowires prepared using anodic aluminum oxide templates was investigated. The experimental evolution of coercivity as a function of the angle, in which the external field is applied, is interpreted considering micromagnetic simulations. Depending on the angle between the axis of the wire and the applied magnetic field direction our results show that the magnetization reversal mode changes from vortex to a transverse domain wall. Besides, we observed that the dipolar interactions cause a reduction in coercive fields, mainly in the direction of easy magnetization of the nanowires. Good agreement between numerical and experimental data is obtained. - Highlights: ► Angular dependence of the coercivity and remanence of Co nanowire arrays. ► Results show that the magnetization reversal mode changes from vortex to a transverse domain wall. ► Dipolar interactions cause a reduction in coercive fields, which is the strongest in the direction of easy magnetization of the nanowire.

  19. Modal decomposition for measuring the orbital angular momentum density of light

    CSIR Research Space (South Africa)

    Schulze, C

    2013-02-01

    Full Text Available We present a novel technique to measure the orbital angular momentum (OAM) density of light. The technique is based on modal decomposition, enabling the complete reconstruction of optical fields, including the reconstruction of the beams Poynting...

  20. A computationally efficient tool for assessing the depth resolution in large-scale potential-field inversion

    DEFF Research Database (Denmark)

    Paoletti, Valeria; Hansen, Per Christian; Hansen, Mads Friis

    2014-01-01

    In potential-field inversion, careful management of singular value decomposition components is crucial for obtaining information about the source distribution with respect to depth. In principle, the depth-resolution plot provides a convenient visual tool for this analysis, but its computational...... on memory and computing time. We used the ApproxDRP to study retrievable depth resolution in inversion of the gravity field of the Neapolitan Volcanic Area. Our main contribution is the combined use of the Lanczos bidiagonalization algorithm, established in the scientific computing community, and the depth...

  1. High-resolution, real-time mapping of surface soil moisture at the field scale using ground penetrating radar

    Science.gov (United States)

    Lambot, S.; Minet, J.; Slob, E.; Vereecken, H.; Vanclooster, M.

    2008-12-01

    Measuring soil surface water content is essential in hydrology and agriculture as this variable controls important key processes of the hydrological cycle such as infiltration, runoff, evaporation, and energy exchanges between the earth and the atmosphere. We present a ground-penetrating radar (GPR) method for automated, high-resolution, real-time mapping of soil surface dielectric permittivity and correlated water content at the field scale. Field scale characterization and monitoring is not only necessary for field scale management applications, but also for unravelling upscaling issues in hydrology and bridging the scale gap between local measurements and remote sensing. In particular, such methods are necessary to validate and improve remote sensing data products. The radar system consists of a vector network analyzer combined with an off-ground, ultra-wideband monostatic horn antenna, thereby setting up a continuous-wave steeped-frequency GPR. Radar signal analysis is based on three-dimensional electromagnetic inverse modelling. The forward model accounts for all antenna effects, antenna-soil interactions, and wave propagation in three-dimensional multilayered media. A fast procedure was developed to evaluate the involved Green's function, resulting from a singular, complex integral. Radar data inversion is focused on the surface reflection in the time domain. The method presents considerable advantages compared to the current surface characterization methods using GPR, namely, the ground wave and common reflection methods. Theoretical analyses were performed, dealing with the effects of electric conductivity on the surface reflection when non-negligible, and on near-surface layering, which may lead to unrealistic values for the surface dielectric permittivity if not properly accounted for. Inversion strategies are proposed. In particular the combination of GPR with electromagnetic induction data appears to be promising to deal with highly conductive soils

  2. The resolution of field identification fixed points in diagonal coset theories

    International Nuclear Information System (INIS)

    Fuchs, J.; Schellekens, B.; Schweigert, C.

    1995-09-01

    The fixed point resolution problem is solved for diagonal coset theories. The primary fields into which the fixed points are resolved are described by submodules of the branching spaces, obtained as eigenspaces of the automorphisms that implement field identification. To compute the characters and the modular S-matrix we use ''orbit Lie algebras'' and ''twining characters'', which were introduced in a previous paper. The characters of the primary fields are expressed in terms branching functions of twining characters. This allows us to express the modular S-matrix through the S-matrices of the orbit Lie algebras associated to the identification group. Our results can be extended to the larger class of ''generalized diagonal cosets''. (orig.)

  3. High-Resolution Integrated Optical System

    Science.gov (United States)

    Prakapenka, V. B.; Goncharov, A. F.; Holtgrewe, N.; Greenberg, E.

    2017-12-01

    Raman and optical spectroscopy in-situ at extreme high pressure and temperature conditions relevant to the planets' deep interior is a versatile tool for characterization of wide range of properties of minerals essential for understanding the structure, composition, and evolution of terrestrial and giant planets. Optical methods, greatly complementing X-ray diffraction and spectroscopy techniques, become crucial when dealing with light elements. Study of vibrational and optical properties of minerals and volatiles, was a topic of many research efforts in past decades. A great deal of information on the materials properties under extreme pressure and temperature has been acquired including that related to structural phase changes, electronic transitions, and chemical transformations. These provide an important insight into physical and chemical states of planetary interiors (e.g. nature of deep reservoirs) and their dynamics including heat and mass transport (e.g. deep carbon cycle). Optical and vibrational spectroscopy can be also very instrumental for elucidating the nature of the materials molten states such as those related to the Earth's volatiles (CO2, CH4, H2O), aqueous fluids and silicate melts, planetary ices (H2O, CH4, NH3), noble gases, and H2. The optical spectroscopy study performed concomitantly with X-ray diffraction and spectroscopy measurements at the GSECARS beamlines on the same sample and at the same P-T conditions would greatly enhance the quality of this research and, moreover, will provide unique new information on chemical state of matter. The advanced high-resolution user-friendly integrated optical system is currently under construction and expected to be completed by 2018. In our conceptual design we have implemented Raman spectroscopy with five excitation wavelengths (266, 473, 532, 660, 946 nm), confocal imaging, double sided IR laser heating combined with high temperature Raman (including coherent anti-Stokes Raman scattering) and

  4. Twistor theory and the energy-momentum and angular momentum of the gravitational field at spatial infinity

    International Nuclear Information System (INIS)

    Shaw, W.T.

    1983-01-01

    Penrose's 'quasi-local mass and angular momentum' is investigated for 2-surfaces near spatial infinity in both linearized theory on Minkowski space and full general relativity. It is shown that for space-times that are radially smooth of order one in the sense of Beig and Schmidt with asymptotically electric Weyl curvature, there exists a global concept of a twistor space at spatial infinity. Global conservation laws for the energy-momentum and angular momentum are obtained, and the ten conserved quantities are shown to be invariant under asymptotic coordinate transformations. The relation to other definitions is discussed briefly. (author)

  5. The Focal Plane Assembly for the Athena X-Ray Integral Field Unit Instrument

    Science.gov (United States)

    Jackson, B. D.; Van Weers, H.; van der Kuur, J.; den Hartog, R.; Akamatsu, H.; Argan, A.; Bandler, S. R.; Barbera, M.; Barret, D.; Bruijn, M. P.; hide

    2016-01-01

    This paper summarizes a preliminary design concept for the focal plane assembly of the X-ray Integral Field Unit on the Athena spacecraft, an imaging microcalorimeter that will enable high spectral resolution imaging and point-source spectroscopy. The instrument's sensor array will be a 3840-pixel transition edge sensor (TES) microcalorimeter array, with a frequency domain multiplexed SQUID readout system allowing this large-format sensor array to be operated within the thermal constraints of the instrument's cryogenic system. A second TES detector will be operated in close proximity to the sensor array to detect cosmic rays and secondary particles passing through the sensor array for off-line coincidence detection to identify and reject events caused by the in-orbit high-energy particle background. The detectors, operating at 55 mK, or less, will be thermally isolated from the instrument cryostat's 2 K stage, while shielding and filtering within the FPA will allow the instrument's sensitive sensor array to be operated in the expected environment during both on-ground testing and in-flight operation, including stray light from the cryostat environment, low-energy photons entering through the X-ray aperture, low-frequency magnetic fields, and high-frequency electric fields.

  6. Nuclear spectroscopic study of the 117In and 77Se using angular correlation technique

    International Nuclear Information System (INIS)

    Zamboni, C.B.

    1981-01-01

    The integral pertubed angular correlation technique has been used to measure the g-factor of the 587 KeV(3/2 - ) state in 117 In. The measurements were made in an external magnetic field of 26 Kg. The 1303-273 KeV gamma cascade in 117 In populated from the beta decay of 117 Cd was utilized for the measurement. The result is g(587 KeV) = -0.233+-0.057. The present result shows the 587 KeV state may not be a simple P 3/2 proton hole state but rather a complex admixture of different configurations. The g-factor of the 249 KeV state in 77 Se has also been measured by the time differential pertubed angular correlation (TDPAC) method in an external magnetic field of 25 Kg. The 755-249 KeV gamma cascade in 77 Se populated from the electron capture decay of 57h 77 Br utilized for the measurement. The g-factor is determined to be g(249 KeV) = 0.486 +- 0.009. In addition the half life of the 249 KeV state in 77 Se has also been measured by the delayed gamma-gamma coincidence method utilizing the gamma cascades 572-249 KeV and 750-249 KeV in 77 Se. The resulting value of the half life is T 1/2 (249 KeV) = (9.56 +- 0.10)ns. The experimental results are discussed in terms of nuclear models applicable for nuclei in this mass region. (author) [pt

  7. Conformal field theories, Coulomb gas picture and integrable models

    International Nuclear Information System (INIS)

    Zuber, J.B.

    1988-01-01

    The aim of the study is to present the links between some results of conformal field theory, the conventional Coulomb gas picture in statistical mechanics and the approach of integrable models. It is shown that families of conformal theories, related by the coset construction to the SU(2) Kac-Moody algebra, may be regarded as obtained from some free field, and modified by the coupling of its winding numbers to floating charges. This representation reflects the procedure of restriction of the corresponding integrable lattice models. The work may be generalized to models based on the coset construction with higher rank algebras. The corresponding integrable models are identified. In the conformal field description, generalized parafermions appear, and are coupled to free fields living on a higher-dimensional torus. The analysis is not as exhaustive as in the SU(2) case: all the various restrictions have not been identified, nor the modular invariants completely classified

  8. Angular biasing in implicit Monte-Carlo

    International Nuclear Information System (INIS)

    Zimmerman, G.B.

    1994-01-01

    Calculations of indirect drive Inertial Confinement Fusion target experiments require an integrated approach in which laser irradiation and radiation transport in the hohlraum are solved simultaneously with the symmetry, implosion and burn of the fuel capsule. The Implicit Monte Carlo method has proved to be a valuable tool for the two dimensional radiation transport within the hohlraum, but the impact of statistical noise on the symmetric implosion of the small fuel capsule is difficult to overcome. We present an angular biasing technique in which an increased number of low weight photons are directed at the imploding capsule. For typical parameters this reduces the required computer time for an integrated calculation by a factor of 10. An additional factor of 5 can also be achieved by directing even smaller weight photons at the polar regions of the capsule where small mass zones are most sensitive to statistical noise

  9. High-resolution mapping reveals linkage between genes in common bean cultivar Ouro Negro conferring resistance to the rust, anthracnose, and angular leaf spot diseases.

    Science.gov (United States)

    Valentini, Giseli; Gonçalves-Vidigal, Maria Celeste; Hurtado-Gonzales, Oscar P; de Lima Castro, Sandra Aparecida; Cregan, Perry B; Song, Qijian; Pastor-Corrales, Marcial A

    2017-08-01

    Co-segregation analysis and high-throughput genotyping using SNP, SSR, and KASP markers demonstrated genetic linkage between Ur-14 and Co-3 4 /Phg-3 loci conferring resistance to the rust, anthracnose and angular leaf spot diseases of common bean. Rust, anthracnose, and angular leaf spot are major diseases of common bean in the Americas and Africa. The cultivar Ouro Negro has the Ur-14 gene that confers broad spectrum resistance to rust and the gene cluster Co-3 4 /Phg-3 containing two tightly linked genes conferring resistance to anthracnose and angular leaf spot, respectively. We used co-segregation analysis and high-throughput genotyping of 179 F 2:3 families from the Rudá (susceptible) × Ouro Negro (resistant) cross-phenotyped separately with races of the rust and anthracnose pathogens. The results confirmed that Ur-14 and Co-3 4 /Phg-3 cluster in Ouro Negro conferred resistance to rust and anthracnose, respectively, and that Ur-14 and the Co-3 4 /Phg-3 cluster were closely linked. Genotyping the F 2:3 families, first with 5398 SNPs on the Illumina BeadChip BARCBEAN6K_3 and with 15 SSR, and eight KASP markers, specifically designed for the candidate region containing Ur-14 and Co-3 4 /Phg-3, permitted the creation of a high-resolution genetic linkage map which revealed that Ur-14 was positioned at 2.2 cM from Co-3 4 /Phg-3 on the short arm of chromosome Pv04 of the common bean genome. Five flanking SSR markers were tightly linked at 0.1 and 0.2 cM from Ur-14, and two flanking KASP markers were tightly linked at 0.1 and 0.3 cM from Co-3 4 /Phg-3. Many other SSR, SNP, and KASP markers were also linked to these genes. These markers will be useful for the development of common bean cultivars combining the important Ur-14 and Co-3 4 /Phg-3 genes conferring resistance to three of the most destructive diseases of common bean.

  10. Practical scaling law for photoelectron angular distributions

    International Nuclear Information System (INIS)

    Guo Dongsheng; Zhang Jingtao; Xu Zhizhan; Li Xiaofeng; Fu Panming; Freeman, R.R.

    2003-01-01

    A practical scaling law that predicts photoelectron angular distributions (PADs) is derived using angular distribution formulas which explicitly contain spontaneous emission. The scaling law is used to analyze recent PAD measurements in above-threshold ionization, and to predict results of future experiments. Our theoretical and numerical studies show that, in the non-relativistic regime and long-wavelength approximation, the shapes of PADs are determined by only three dimensionless numbers: (1) u p ≡U p /(ℎ/2π)ω, the ponderomotive number (ponderomotive energy in units of laser photon energy); (2) ε b ≡E b /(ℎ/2π)ω, the binding number (atomic binding energy in units of the laser photon energy); (3) j, the absorbed-photon number. The scaling law is shown to be useful in predictions of results from strong-field Kapitza-Dirac effect measurements; specifically, the application of this scaling law to recently reported Kapitza-Dirac diffraction is discussed. Possible experimental tests to verify the scaling law are suggested

  11. Angular dependence of the parallel plate ionization chambers of Ipen

    International Nuclear Information System (INIS)

    Albuquerque, M. da P.P.; Caldas, L.

    1989-08-01

    The ionization chambers with parallel plates designed and constructed at IPEN for the dosimetry of soft X-radiation fields were studied in relation to thein angular dependence between O and +- 90 0 . The objective of this study is to verify the chambers response variation for small positioning errors during the field dosimetry used in Radiotherapy. The results were compared with those of commercial parallel plate ionization chambers used as secondary and testiary standards. (author) [pt

  12. AngularJS Performance: A Survey Study

    OpenAIRE

    Ramos, Miguel; Valente, Marco Tulio; Terra, Ricardo

    2017-01-01

    AngularJS is a popular JavaScript MVC-based framework to construct single-page web applications. In this paper, we report the results of a survey with 95 professional developers about performance issues of AngularJS applications. We report common practices followed by developers to avoid performance problems (e.g., use of third-party or custom components), the general causes of performance problems in AngularJS applications (e.g., inadequate architecture decisions taken by AngularJS users), a...

  13. Angularly resolved characterization of ion beams from laser-ultrathin foil interactions

    Science.gov (United States)

    Scullion, C.; Doria, D.; Romagnani, L.; Ahmed, H.; Alejo, A.; Ettlinger, O. C.; Gray, R. J.; Green, J.; Hicks, G. S.; Jung, D.; Naughton, K.; Padda, H.; Poder, K.; Scott, G. G.; Symes, D. R.; Kar, S.; McKenna, P.; Najmudin, Z.; Neely, D.; Zepf, M.; Borghesi, M.

    2016-09-01

    Methods and techniques used to capture and analyze beam profiles produced from the interaction of intense, ultrashort laser pulses and ultrathin foil targets using stacks of Radiochromic Film (RCF) and Columbia Resin #39 (CR-39) are presented. The identification of structure in the beam is particularly important in this regime, as it may be indicative of the dominance of specific acceleration mechanisms. Additionally, RCF can be used to deconvolve proton spectra with coarse energy resolution while mantaining angular information across the whole beam.

  14. Angularly resolved characterization of ion beams from laser-ultrathin foil interactions

    International Nuclear Information System (INIS)

    Scullion, C.; Doria, D.; Ahmed, H.; Alejo, A.; Jung, D.; Naughton, K.; Kar, S.; Zepf, M.; Romagnani, L.; Ettlinger, O.C.; Hicks, G.S.; Poder, K.; Najmudin, Z.; Gray, R.J.; Padda, H.; McKenna, P.; Green, J.; Scott, G.G.; Symes, D.R.; Neely, D.

    2016-01-01

    Methods and techniques used to capture and analyze beam profiles produced from the interaction of intense, ultrashort laser pulses and ultrathin foil targets using stacks of Radiochromic Film (RCF) and Columbia Resin #39 (CR-39) are presented. The identification of structure in the beam is particularly important in this regime, as it may be indicative of the dominance of specific acceleration mechanisms. Additionally, RCF can be used to deconvolve proton spectra with coarse energy resolution while mantaining angular information across the whole beam.

  15. Super-resolution for imagery from integrated microgrid polarimeters.

    Science.gov (United States)

    Hardie, Russell C; LeMaster, Daniel A; Ratliff, Bradley M

    2011-07-04

    Imagery from microgrid polarimeters is obtained by using a mosaic of pixel-wise micropolarizers on a focal plane array (FPA). Each distinct polarization image is obtained by subsampling the full FPA image. Thus, the effective pixel pitch for each polarization channel is increased and the sampling frequency is decreased. As a result, aliasing artifacts from such undersampling can corrupt the true polarization content of the scene. Here we present the first multi-channel multi-frame super-resolution (SR) algorithms designed specifically for the problem of image restoration in microgrid polarization imagers. These SR algorithms can be used to address aliasing and other degradations, without sacrificing field of view or compromising optical resolution with an anti-aliasing filter. The new SR methods are designed to exploit correlation between the polarimetric channels. One of the new SR algorithms uses a form of regularized least squares and has an iterative solution. The other is based on the faster adaptive Wiener filter SR method. We demonstrate that the new multi-channel SR algorithms are capable of providing significant enhancement of polarimetric imagery and that they outperform their independent channel counterparts.

  16. Instant AngularJS starter

    CERN Document Server

    Menard, Dan

    2013-01-01

    Get to grips with a new technology, understand what it is and what it can do for you, and then get to work with the most important features and tasks. This book is written in an easytoread style, with a strong emphasis on realworld, practical examples. Stepbystep explanations are provided for performing important tasks.This book is for web developers familiar with JavascriptIt doesn't cover the history of AngularJS, and it's not a pitch to convince you that AngularJS is the best framework on the entire web. It's a guide to help you learn everything you need to know about AngularJS in as few pa

  17. AngularJS testing cookbook

    CERN Document Server

    Bailey, Simon

    2015-01-01

    This book is intended for developers who have an understanding of the basic principles behind both AngularJS and test-driven development. You, as a developer, are interested in eliminating the fear related to either introducing tests to an existing codebase or starting out testing on a fresh AngularJS application. If you're a team leader or part of a QA team with the responsibility of ensuring full test coverage of an application, then this book is ideal for you to comprehend the full testing scope required by your developers. Whether you're new to or are well versed with AngularJS, this book

  18. High resolution imaging of dielectric surfaces with an evanescent field optical microscope

    NARCIS (Netherlands)

    van Hulst, N.F.; Segerink, Franciscus B.; Bölger, B.

    1992-01-01

    An evanescent field optical microscope (EFOM) is presented which employs frustrated total internal reflection o­n a localized scale by scanning a dielectric tip in close proximity to a sample surface. High resolution images of dielectric gratings and spheres containing both topographic and

  19. High Angular Momentum Halo Gas: A Feedback and Code-independent Prediction of LCDM

    Science.gov (United States)

    Stewart, Kyle R.; Maller, Ariyeh H.; Oñorbe, Jose; Bullock, James S.; Joung, M. Ryan; Devriendt, Julien; Ceverino, Daniel; Kereš, Dušan; Hopkins, Philip F.; Faucher-Giguère, Claude-André

    2017-07-01

    We investigate angular momentum acquisition in Milky Way-sized galaxies by comparing five high resolution zoom-in simulations, each implementing identical cosmological initial conditions but utilizing different hydrodynamic codes: Enzo, Art, Ramses, Arepo, and Gizmo-PSPH. Each code implements a distinct set of feedback and star formation prescriptions. We find that while many galaxy and halo properties vary between the different codes (and feedback prescriptions), there is qualitative agreement on the process of angular momentum acquisition in the galaxy’s halo. In all simulations, cold filamentary gas accretion to the halo results in ˜4 times more specific angular momentum in cold halo gas (λ cold ≳ 0.1) than in the dark matter halo. At z > 1, this inflow takes the form of inspiraling cold streams that are co-directional in the halo of the galaxy and are fueled, aligned, and kinematically connected to filamentary gas infall along the cosmic web. Due to the qualitative agreement among disparate simulations, we conclude that the buildup of high angular momentum halo gas and the presence of these inspiraling cold streams are robust predictions of Lambda Cold Dark Matter galaxy formation, though the detailed morphology of these streams is significantly less certain. A growing body of observational evidence suggests that this process is borne out in the real universe.

  20. High Angular Momentum Halo Gas: A Feedback and Code-independent Prediction of LCDM

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Kyle R. [Department of Mathematical Sciences, California Baptist University, 8432 Magnolia Ave., Riverside, CA 92504 (United States); Maller, Ariyeh H. [Department of Physics, New York City College of Technology, 300 Jay St., Brooklyn, NY 11201 (United States); Oñorbe, Jose [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Bullock, James S. [Center for Cosmology, Department of Physics and Astronomy, The University of California at Irvine, Irvine, CA 92697 (United States); Joung, M. Ryan [Department of Astronomy, Columbia University, New York, NY 10027 (United States); Devriendt, Julien [Department of Physics, University of Oxford, The Denys Wilkinson Building, Keble Rd., Oxford OX1 3RH (United Kingdom); Ceverino, Daniel [Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany); Kereš, Dušan [Department of Physics, Center for Astrophysics and Space Sciences, University of California at San Diego, 9500 Gilman Dr., La Jolla, CA 92093 (United States); Hopkins, Philip F. [California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Faucher-Giguère, Claude-André [Department of Physics and Astronomy and CIERA, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208 (United States)

    2017-07-01

    We investigate angular momentum acquisition in Milky Way-sized galaxies by comparing five high resolution zoom-in simulations, each implementing identical cosmological initial conditions but utilizing different hydrodynamic codes: Enzo, Art, Ramses, Arepo, and Gizmo-PSPH. Each code implements a distinct set of feedback and star formation prescriptions. We find that while many galaxy and halo properties vary between the different codes (and feedback prescriptions), there is qualitative agreement on the process of angular momentum acquisition in the galaxy’s halo. In all simulations, cold filamentary gas accretion to the halo results in ∼4 times more specific angular momentum in cold halo gas ( λ {sub cold} ≳ 0.1) than in the dark matter halo. At z > 1, this inflow takes the form of inspiraling cold streams that are co-directional in the halo of the galaxy and are fueled, aligned, and kinematically connected to filamentary gas infall along the cosmic web. Due to the qualitative agreement among disparate simulations, we conclude that the buildup of high angular momentum halo gas and the presence of these inspiraling cold streams are robust predictions of Lambda Cold Dark Matter galaxy formation, though the detailed morphology of these streams is significantly less certain. A growing body of observational evidence suggests that this process is borne out in the real universe.

  1. Optimized design for the scattering with angular limitation in projection electron-beam lithography based electron projection system

    International Nuclear Information System (INIS)

    Xiu, K.; Gibson, J. M.

    2000-01-01

    We investigate the design for a scattering with angular limitation in projection electron-beam lithography (SCALPEL) based electron projection system with a demagnification of -4. By a ''field-flip'' process we can construct a doublet in which the magnetic field has a flat feature in most of the optic column but opposite sign at two sides connected by a sharp transition region. Such a theoretical model can give a near zero chromatic aberration of rotation and much smaller field curvature and astigmatism. Compared with the conventional doublet, the total image blur caused by aberrations at 1/√(2) mm off-axis distance and 1.5 mrad semiangle aperture at the mask side is about only 24 nm for a column length of 400 mm. A shorter column, less than the current 400 mm, is also favored for further reducing the total aberration. These guarantee that we can choose a much larger aperture angle (compared with present 0.5 mrad) and beam current density in such a SCALPEL projection system to achieve higher throughput while still maintaining current resolution. A practical issue for possible magnetic lens design is also discussed. (c) 2000 American Vacuum Society

  2. A novel angular acceleration sensor based on the electromagnetic induction principle and investigation of its calibration tests.

    Science.gov (United States)

    Zhao, Hao; Feng, Hao

    2013-08-12

    An angular acceleration sensor can be used for the dynamic analysis of human and joint motions. In this paper, an angular acceleration sensor with novel structure based on the principle of electromagnetic induction is designed. The method involves the construction of a constant magnetic field by the excitation windings of sensor, and the cup-shaped rotor that cut the magnetic field. The output windings of the sensor generate an electromotive force, which is directly proportional to the angular acceleration through the electromagnetic coupling when the rotor has rotational angular acceleration. The mechanical structure and the magnetic working circuit of the sensor are described. The output properties and the mathematical model including the transfer function and state-space model of the sensor are established. The asymptotical stability of the sensor when it is working is verified by the Lyapunov Theorem. An angular acceleration calibration device based on the torsional pendulum principle is designed. The method involves the coaxial connection of the angular acceleration sensor, torsion pendulum and a high-precision angle sensor, and then an initial external force is applied to the torsion pendulum to produce a periodic damping angle oscillation. The angular acceleration sensor and the angle sensor will generate two corresponding electrical signals. The sensitivity coefficient of the angular acceleration sensor can be obtained after processing these two-channel signals. The experiment results show that the sensitivity coefficient of the sensor is about 17.29 mv/Krad·s2. Finally, the errors existing in the practical applications of the sensor are discussed and the corresponding improvement measures are proposed to provide effective technical support for the practical promotion of the novel sensor.

  3. Chandra's Ultimate Angular Resolution: Studies of the HRC-I Point Spread Function

    Science.gov (United States)

    Juda, Michael; Karovska, M.

    2010-03-01

    The Chandra High Resolution Camera (HRC) should provide an ideal imaging match to the High-Resolution Mirror Assembly (HRMA). The laboratory-measured intrinsic resolution of the HRC is 20 microns FWHM. HRC event positions are determined via a centroiding method rather than by using discrete pixels. This event position reconstruction method and any non-ideal performance of the detector electronics can introduce distortions in event locations that, when combined with spacecraft dither, produce artifacts in source images. We compare ray-traces of the HRMA response to "on-axis" observations of AR Lac and Capella as they move through their dither patterns to images produced from filtered event lists to characterize the effective intrinsic PSF of the HRC-I. A two-dimensional Gaussian, which is often used to represent the detector response, is NOT a good representation of the intrinsic PSF of the HRC-I; the actual PSF has a sharper peak and additional structure which will be discussed. This work was supported under NASA contract NAS8-03060.

  4. The integrated analyses of digital field mapping techniques and traditional field methods: implications from the Burdur-Fethiye Shear Zone, SW Turkey as a case-study

    Science.gov (United States)

    Elitez, İrem; Yaltırak, Cenk; Zabcı, Cengiz; Şahin, Murat

    2015-04-01

    The precise geological mapping is one of the most important issues in geological studies. Documenting the spatial distribution of geological bodies and their contacts play a crucial role on interpreting the tectonic evolution of any region. Although the traditional field techniques are still accepted to be the most fundamental tools in construction of geological maps, we suggest that the integration of digital technologies to the classical methods significantly increases the resolution and the quality of such products. We simply follow the following steps in integration of the digital data with the traditional field observations. First, we create the digital elevation model (DEM) of the region of interest by interpolating the digital contours of 1:25000 scale topographic maps to 10 m of ground pixel resolution. The non-commercial Google Earth satellite imagery and geological maps of previous studies are draped over the interpolated DEMs in the second stage. The integration of all spatial data is done by using the market leading GIS software, ESRI ArcGIS. We make the preliminary interpretation of major structures as tectonic lineaments and stratigraphic contacts. These preliminary maps are controlled and precisely coordinated during the field studies by using mobile tablets and/or phablets with GPS receivers. The same devices are also used in measuring and recording the geologic structures of the study region. Finally, all digitally collected measurements and observations are added to the GIS database and we finalise our geological map with all available information. We applied this integrated method to map the Burdur-Fethiye Shear Zone (BFSZ) in the southwest Turkey. The BFSZ is an active sinistral 60-to-90 km-wide shear zone, which prolongs about 300 km-long between Suhut-Cay in the northeast and Köyceğiz Lake-Kalkan in the southwest on land. The numerous studies suggest contradictory models not only about the evolution but also about the fault geometry of this

  5. High-resolution nuclear magnetic resonance measurements in inhomogeneous magnetic fields: A fast two-dimensional J-resolved experiment

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yuqing; Cai, Shuhui; Yang, Yu; Sun, Huijun; Lin, Yanqin, E-mail: linyq@xmu.edu.cn, E-mail: chenz@xmu.edu.cn; Chen, Zhong, E-mail: linyq@xmu.edu.cn, E-mail: chenz@xmu.edu.cn [Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005 (China); Lin, Yung-Ya [Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095 (United States)

    2016-03-14

    High spectral resolution in nuclear magnetic resonance (NMR) is a prerequisite for achieving accurate information relevant to molecular structures and composition assignments. The continuous development of superconducting magnets guarantees strong and homogeneous static magnetic fields for satisfactory spectral resolution. However, there exist circumstances, such as measurements on biological tissues and heterogeneous chemical samples, where the field homogeneity is degraded and spectral line broadening seems inevitable. Here we propose an NMR method, named intermolecular zero-quantum coherence J-resolved spectroscopy (iZQC-JRES), to face the challenge of field inhomogeneity and obtain desired high-resolution two-dimensional J-resolved spectra with fast acquisition. Theoretical analyses for this method are given according to the intermolecular multiple-quantum coherence treatment. Experiments on (a) a simple chemical solution and (b) an aqueous solution of mixed metabolites under externally deshimmed fields, and on (c) a table grape sample with intrinsic field inhomogeneity from magnetic susceptibility variations demonstrate the feasibility and applicability of the iZQC-JRES method. The application of this method to inhomogeneous chemical and biological samples, maybe in vivo samples, appears promising.

  6. Spacecraft angular velocity estimation algorithm for star tracker based on optical flow techniques

    Science.gov (United States)

    Tang, Yujie; Li, Jian; Wang, Gangyi

    2018-02-01

    An integrated navigation system often uses the traditional gyro and star tracker for high precision navigation with the shortcomings of large volume, heavy weight and high-cost. With the development of autonomous navigation for deep space and small spacecraft, star tracker has been gradually used for attitude calculation and angular velocity measurement directly. At the same time, with the dynamic imaging requirements of remote sensing satellites and other imaging satellites, how to measure the angular velocity in the dynamic situation to improve the accuracy of the star tracker is the hotspot of future research. We propose the approach to measure angular rate with a nongyro and improve the dynamic performance of the star tracker. First, the star extraction algorithm based on morphology is used to extract the star region, and the stars in the two images are matched according to the method of angular distance voting. The calculation of the displacement of the star image is measured by the improved optical flow method. Finally, the triaxial angular velocity of the star tracker is calculated by the star vector using the least squares method. The method has the advantages of fast matching speed, strong antinoise ability, and good dynamic performance. The triaxial angular velocity of star tracker can be obtained accurately with these methods. So, the star tracker can achieve better tracking performance and dynamic attitude positioning accuracy to lay a good foundation for the wide application of various satellites and complex space missions.

  7. Mars gravity field error analysis from simulated radio tracking of Mars Observer

    International Nuclear Information System (INIS)

    Smith, D.E.; Lerch, F.J.; Chan, J.C.; Chinn, D.S.; Iz, H.B.; Mallama, A.; Patel, G.B.

    1990-01-01

    The Mars Observer (MO) Mission, in a near-polar orbit at 360-410 km altitude for nearly a 2-year observing period, will greatly improve our understanding of the geophysics of Mars, including its gravity field. To assess the expected improvement of the gravity field, the authors have conducted an error analysis based upon the mission plan for the Mars Observer radio tracking data from the Deep Space Network. Their results indicate that it should be possible to obtain a high-resolution model (spherical harmonics complete to degree and order 50 corresponding to a 200-km horizontal resolution) for the gravitational field of the planet. This model, in combination with topography from MO altimetry, should provide for an improved determination of the broad scale density structure and stress state of the Martian crust and upper mantle. The mathematical model for the error analysis is based on the representation of doppler tracking data as a function of the Martian gravity field in spherical harmonics, solar radiation pressure, atmospheric drag, angular momentum desaturation residual acceleration (AMDRA) effects, tracking station biases, and the MO orbit parameters. Two approaches are employed. In the first case, the error covariance matrix of the gravity model is estimated including the effects from all the nongravitational parameters (noise-only case). In the second case, the gravity recovery error is computed as above but includes unmodelled systematic effects from atmospheric drag, AMDRA, and solar radiation pressure (biased case). The error spectrum of gravity shows an order of magnitude of improvement over current knowledge based on doppler data precision from a single station of 0.3 mm s -1 noise for 1-min integration intervals during three 60-day periods

  8. Final-photon angular distributions in Compton double-ionization

    International Nuclear Information System (INIS)

    Kornberg, M.A.

    1999-01-01

    Angular distributions of the scattered-photon in two-electron ionization of helium by Compton scattering are reported. Our calculations are performed as a direct integration over Compton profiles. We show that backward scattering is adequately described using an uncorrelated final-state approximation, as compared with impulse approximation (IA) results. The relation dσ c 2+ /dΩ = R c dσ c + /dΩ is fulfilled within IA at high-photon energies, with R c the asymptotic shake-off ratio. (orig.)

  9. MEMS-based wavelength and orbital angular momentum demultiplexer for on-chip applications

    DEFF Research Database (Denmark)

    Lyubopytov, Vladimir; Porfirev, Alexey P.; Gurbatov, Stanislav O.

    2017-01-01

    Summary form only given. We demonstrate a new tunable MEMS-based WDM&OAM Fabry-Pérot filter for simultaneous wavelength (WDM) and Orbital Angular Momentum (OAM) (de)multiplexing. The WDM&OAM filter is suitable for dense on-chip integration and dedicated for the next generation of optical...

  10. Spiral Transformation for High-Resolution and Efficient Sorting of Optical Vortex Modes

    Science.gov (United States)

    Wen, Yuanhui; Chremmos, Ioannis; Chen, Yujie; Zhu, Jiangbo; Zhang, Yanfeng; Yu, Siyuan

    2018-05-01

    Mode sorting is an essential function for optical multiplexing systems that exploit the orthogonality of the orbital angular momentum mode space. The familiar log-polar optical transformation provides a simple yet efficient approach whose resolution is, however, restricted by a considerable overlap between adjacent modes resulting from the limited excursion of the phase along a complete circle around the optical vortex axis. We propose and experimentally verify a new optical transformation that maps spirals (instead of concentric circles) to parallel lines. As the phase excursion along a spiral in the wave front of an optical vortex is theoretically unlimited, this new optical transformation can separate orbital angular momentum modes with superior resolution while maintaining unity efficiency.

  11. Variation in angular velocity and angular acceleration of a particle in rectilinear motion

    International Nuclear Information System (INIS)

    Mashood, K K; Singh, V A

    2012-01-01

    We discuss the angular velocity and angular acceleration associated with a particle in rectilinear motion with constant acceleration. The discussion was motivated by an observation that students and even teachers have difficulty in ascribing rotational motion concepts to a particle when the trajectory is a straight line. We present some details of our observations. A formal derivation of ω and α is presented which reveals ‘surprising’ and non-intuitive aspects, namely non-monotonic behaviour with an associated extremum. The special case of constant velocity is studied and we find that angular acceleration associated with it also has an extremum. We discuss a plausible source of difficulty. (paper)

  12. Signal Characteristics of Super-Resolution Near-Field Structure Disks with 100 GB Capacity

    Science.gov (United States)

    Kim, Jooho; Hwang, Inoh; Kim, Hyunki; Park, Insik; Tominaga, Junji

    2005-05-01

    We report the basic characteristics of super resolution near-field structure (Super-RENS) media at a blue laser optical system (laser wavelength 405 nm, numerical aperture 0.85). Using a novel write once read many (WORM) structure for a blue laser system, we obtained a carrier-to-noise ratio (CNR) above 33 dB from the signal of the 37.5 nm mark length, which is equivalent to a 100 GB capacity with a 0.32 micrometer track pitch, and an eye pattern for 50 GB (2T: 75 nm) capacity using a patterned signal. Using a novel super-resolution material (tellurium, Te) with low super-resolution readout power, we also improved the read stability.

  13. Field-free orientation of molecules

    DEFF Research Database (Denmark)

    Machholm, Mette; Henriksen, Niels Engholm

    2001-01-01

    The excitation of angular motion, in particular, the creation of a wave packet in the angular degrees of freedom via short-pulse, off-resonant excitation with respect to rotational transitions, was examined. The key result was that field-free time-dependent orientation for a molecule like LiH can...... be generated after the turn-off of a state-of-the-art electromagnetic half-cycle pulse.......The excitation of angular motion, in particular, the creation of a wave packet in the angular degrees of freedom via short-pulse, off-resonant excitation with respect to rotational transitions, was examined. The key result was that field-free time-dependent orientation for a molecule like LiH can...

  14. Bragg reflection transmission filters for variable resolution monochromators

    International Nuclear Information System (INIS)

    Chapman, D.

    1989-01-01

    There are various methods for improving the angular and spectral resolution of monochromator and analyzer systems. The novel system described here, though limited to higher x-ray energies (>20keV), is based on a dynamical effect occurring on the transmitted beam with a thin perfect crystal plate set in the Bragg reflection case. In the case of Bragg reflection from a perfect crystal, the incident beam is rapidly attenuated as it penetrates the crystal in the range of reflection. This extinction length is of the order of microns. The attenuation length, which determines the amount of normal transmission through the plate is generally much longer. Thus, in the range of the Bragg reflection the attenuation of the transmitted beam can change by several orders of magnitude with a small change in energy or angle. This thin crystal plate cuts a notch in the transmitted beam with a width equal to its Darwin width, thus acting as a transmission filter. When used in a non-dispersive mode with other monochromator crystals, the filter when set at the Bragg angle will reflect the entire Darwin width of the incident beam and transmit the wings of the incident beam distribution. When the element is offset in angle by some fraction of the Darwin width, the filter becomes useful in adjusting the angular width of the transmitted beam and removing a wing. Used in pairs with a symmetric offset, the filters can be used to continuously adjust the intrinsic angular divergence of the beam with good wing reduction. Instances where such filters may be useful are in improving the angular resolution of a small angle scattering camera. These filters may be added to a Bonse-Hart camera with one pair on the incident beam to reduce the intrinsic beam divergence and a second pair on the analyzer arm to improve the analyzer resolution. 2 refs., 3 Figs

  15. Fission fragment angular momentum

    International Nuclear Information System (INIS)

    Frenne, D. De

    1991-01-01

    Most of the energy released in fission is converted into translational kinetic energy of the fragments. The remaining excitation energy will be distributed among neutrons and gammas. An important parameter characterizing the scission configuration is the primary angular momentum of the nascent fragments. Neutron emission is not expected to decrease the spin of the fragments by more than one unit of angular momentum and is as such of less importance in the determination of the initial fragment spins. Gamma emission is a suitable tool in studying initial fragment spins because the emission time, number, energy, and multipolarity of the gammas strongly depend on the value of the primary angular momentum. The main conclusions of experiments on gamma emission were that the initial angular momentum of the fragments is large compared to the ground state spin and oriented perpendicular to the fission axis. Most of the recent information concerning initial fragment spin distributions comes from the measurement of isomeric ratios for isomeric pairs produced in fission. Although in nearly every mass chain isomers are known, only a small number are suitable for initial fission fragment spin studies. Yield and half-life considerations strongly limit the number of candidates. This has the advantage that the behavior of a specific isomeric pair can be investigated for a number of fissioning systems at different excitation energies of the fragments and fissioning nuclei. Because most of the recent information on primary angular momenta comes from measurements of isomeric ratios, the global deexcitation process of the fragments and the calculation of the initial fragment spin distribution from measured isomeric ratios are discussed here. The most important results on primary angular momentum determinations are reviewed and some theoretical approaches are given. 45 refs., 7 figs., 2 tabs

  16. Angular Acceleration without Torque?

    Science.gov (United States)

    Kaufman, Richard D.

    2012-01-01

    Hardly. Just as Robert Johns qualitatively describes angular acceleration by an internal force in his article "Acceleration Without Force?" here we will extend the discussion to consider angular acceleration by an internal torque. As we will see, this internal torque is due to an internal force acting at a distance from an instantaneous center.

  17. Characterisation of radiation damage in perovskite using high angular resolution electron channeling x-ray spectroscopy (HARECXS)

    International Nuclear Information System (INIS)

    Smith, K.L.; Zaluzec, N.J.

    2002-01-01

    Full text: Predicting and/or modelling the occurrence of radiation damage induced defects and their effects on physical properties (eg. amorphisation induced swelling, electrical conductivity., optical response etc.) in ceramic phases requires knowledge of the displacement energies, E d , of cations and anions in those phases. In this study, High Angular Resolution Electron Channelling X-ray Spectroscopy (HARECXS) spectra were collected from perovskite (CaTiO 3 ) samples that had been exposed to high-energy electrons or high-energy heavy ions. Calculations based on experimental data were then used to indicate the E d of the cations in perovskite. The HARECXS measurements were conducted on a Philips EM 420T AEM (LaB6 source, operated at 120 kV) fitted with an EDAX ultra thin window Si(Li) detector. The specimen was first manually oriented to an appropriate zone axis. Then control of the relative orientation of the incident probe was accomplished via direct computer control of the beam tilt coils, Typical acquisition times for a complete two-dimensional scan were 18-24 hours, while one dimensional scans ranged from 1-5 hours. Our experiments established that: a) HARECXS can detect radiation damage in perovskite caused by either high energy heavy ions or high energy electrons, b) the HARECXS signature of perovskite shows a systematic change with ion dose, c) HARECXS detects damage in perovskite that has been irradiated with 900kV electrons and does not detect damage in perovskite that has been irradiated with 620kV electrons, indicating the existance of an electron irradiation damage threshold. Calculations based on the latter results indicate that the displacement energy, E d of calcium and titanium in perovskite lie between 50 and 85eV. Copyright (2002) Australian Society for Electron Microscopy Inc

  18. High-resolution imaging gamma-ray spectroscopy with externally segmented germanium detectors

    Science.gov (United States)

    Callas, J. L.; Mahoney, W. A.; Varnell, L. S.; Wheaton, W. A.

    1993-01-01

    Externally segmented germanium detectors promise a breakthrough in gamma-ray imaging capabilities while retaining the superb energy resolution of germanium spectrometers. An angular resolution of 0.2 deg becomes practical by combining position-sensitive germanium detectors having a segment thickness of a few millimeters with a one-dimensional coded aperture located about a meter from the detectors. Correspondingly higher angular resolutions are possible with larger separations between the detectors and the coded aperture. Two-dimensional images can be obtained by rotating the instrument. Although the basic concept is similar to optical or X-ray coded-aperture imaging techniques, several complicating effects arise because of the penetrating nature of gamma rays. The complications include partial transmission through the coded aperture elements, Compton scattering in the germanium detectors, and high background count rates. Extensive electron-photon Monte Carlo modeling of a realistic detector/coded-aperture/collimator system has been performed. Results show that these complicating effects can be characterized and accounted for with no significant loss in instrument sensitivity.

  19. Angular analyses of $b \\to s \\mu^+ \\mu^-$ transitions at CMS

    CERN Document Server

    Wang, Dayong

    2018-01-01

    The flavour changing neutral current decays can be interesting probes for searching for new physics. Angular distributions of $b \\to s \\ell^+ \\ell^-$ transition processes of both $\\mathrm{B}^0 \\to \\mathrm{K}^{*0} \\mu^ +\\mu^-$ and $\\mathrm{B}^{+} \\to \\mathrm{K}^{+} \\mu^+\\mu^-$ are studied using a sample of proton-proton collisions at $\\sqrt{s} = 8~\\mathrm{TeV}$ collected with the CMS detector at the LHC, corresponding to an integrated luminosity of $20.5~\\mathrm{fb}^{-1}$. Angular analyses are performed to determine $P_1$ and $P_5'$ angular parameters for $\\mathrm{B}^0 \\to \\mathrm{K}^{*0} \\mu^ +\\mu^-$ and $A_{FB}$ and $F_{H}$ parameters for $\\mathrm{B}^{+} \\to \\mathrm{K}^{+} \\mu^+\\mu^-$, all as functions of the dimuon invariant mass squared. The $P_5'$ parameter is of particular interest due to recent measurements that indicate a potential discrepancy with the standard model. All the measurements are consistent with the standard model predictions. Efforts with more channels and more coming data will be con...

  20. CALIFA, the Calar alto legacy integral field area survey

    DEFF Research Database (Denmark)

    Husemann, B.; Jahnke, K.; Sánchez, S. F.

    2013-01-01

    We present the first public data release (DR1) of the Calar Alto Legacy Integral Field Area (CALIFA) survey. It consists of science-grade optical datacubes for the first 100 of eventually 600 nearby (0.005 < z < 0.03) galaxies, obtained with the integral-field spectrograph PMAS/PPak mounted on th...... the available interfaces and tools that allow easy access to this first publicCALIFA data at http://califa.caha.es/DR1....