WorldWideScience

Sample records for angular resolution imaging

  1. How does angular resolution affect diffusion imaging measures?

    Science.gov (United States)

    Zhan, Liang; Leow, Alex D; Jahanshad, Neda; Chiang, Ming-Chang; Barysheva, Marina; Lee, Agatha D; Toga, Arthur W; McMahon, Katie L; de Zubicaray, Greig I; Wright, Margaret J; Thompson, Paul M

    2010-01-15

    A key question in diffusion imaging is how many diffusion-weighted images suffice to provide adequate signal-to-noise ratio (SNR) for studies of fiber integrity. Motion, physiological effects, and scan duration all affect the achievable SNR in real brain images, making theoretical studies and simulations only partially useful. We therefore scanned 50 healthy adults with 105-gradient high-angular resolution diffusion imaging (HARDI) at 4T. From gradient image subsets of varying size (6spherical angular distribution energy, we created SNR plots (versus gradient numbers) for seven common diffusion anisotropy indices: fractional and relative anisotropy (FA, RA), mean diffusivity (MD), volume ratio (VR), geodesic anisotropy (GA), its hyperbolic tangent (tGA), and generalized fractional anisotropy (GFA). SNR, defined in a region of interest in the corpus callosum, was near-maximal with 58, 66, and 62 gradients for MD, FA, and RA, respectively, and with about 55 gradients for GA and tGA. For VR and GFA, SNR increased rapidly with more gradients. SNR was optimized when the ratio of diffusion-sensitized to non-sensitized images was 9.13 for GA and tGA, 10.57 for FA, 9.17 for RA, and 26 for MD and VR. In orientation density functions modeling the HARDI signal as a continuous mixture of tensors, the diffusion profile reconstruction accuracy rose rapidly with additional gradients. These plots may help in making trade-off decisions when designing diffusion imaging protocols. PMID:19819339

  2. Progress Toward A Very High Angular Resolution Imaging Spectrometer (VERIS)

    Science.gov (United States)

    Korendyke, Clarence M.; Vourlidas, A.; Landi, E.; Seely, J.; Klimchuck, J.

    2007-07-01

    Recent imaging at arcsecond (TRACE) and sub-arcsecond (VAULT) spatial resolution clearly show that structures with fine spatial scales play a key role in the physics of the upper solar atmosphere. Both theoretical and observational considerations point to the importance of small spatial scales, impulsive energy release, strong dynamics, and extreme plasma nonuniformity. Fundamental questions regarding the nature, structure, properties and dynamics of loops and filamentary structures in the upper atmosphere have been raised. To address these questions, we are developing a next generation, VEry high angular Resolution Imaging Spectrometer (VERIS) as a sounding rocket instrument. VERIS will obtain the necessary high spatial resolution, high fidelity measurements of plasma temperatures, densities and velocities. With broad simultaneous temperature coverage, the VERIS observations will directly address unresolved issues relating to interconnections of various temperature solar plasmas. VERIS will provide the first ever subarcsecond spectra of transition region and coronal structures. It will do so with a sufficient spectral resolution of to allow centroided Doppler velocity determinations to better than 3 km/s. VERIS uses a novel two element, normal incidence optical design with highly reflective EUV coatings to access a spectral range with broad temperature coverage (0.03-15 MK) and density-sensitive line ratios. Finally, in addition to the spectra, VERIS will simultaneously obtain spectrally pure slot images (10x150 arcsec) in the +/-1 grating orders, which can be combined to make instantaneous line-of-sight velocity maps with 8km/s accuracy over an unprecedented field of view. The VERIS program is beginning the second year of its three year development cycle. All design activities and reviews are complete. Fabrication of all major components has begun. Brassboard electronics cards have been fabricated, assembled and tested. The paper presents the essential scientific

  3. On the Angular Resolution of the AGILE Gamma-Ray Imaging Detector

    Science.gov (United States)

    Sabatini, S.; Donnarumma, I.; Tavani, M.; Trois, A.; Bulgarelli, A.; Argan, A.; Barbiellini, G.; Cattaneo, P. W.; Chen, A.; Del Monte, E.; Fioretti, V.; Gianotti, F.; Giuliani, A.; Longo, F.; Lucarelli, F.; Morselli, A.; Pittori, C.; Verrecchia, F.; Caraveo, P.

    2015-08-01

    We present a study of the angular resolution of the AGILE gamma-ray imaging detector (GRID) that has been operational in space since 2007 April. The AGILE instrument is made of an array of 12 planes that are each equipped with a tungsten converter and silicon microstrip detectors, and is sensitive in the energy range 50 MeV-10 GeV. Among the space instruments devoted to gamma-ray astrophysics, AGILE uniquely exploit an analog readout system with dedicated electronics coupled with silicon detectors. We show the results of Monte Carlo simulations carried out to reproduce the gamma-ray detection by the GRID and we compare them to in-flight data. We use the Crab (pulsar + Nebula) system for discussion of real data performance, since its {E}-2 energy spectrum is representative of the majority of gamma-ray sources. For Crab-like spectrum sources, the GRID angular resolution (FWHM of ˜ 4^\\circ at 100 MeV; ˜ 0\\buildrel{\\circ}\\over{.} 8 at 1 GeV; ˜ 0\\buildrel{\\circ}\\over{.} 9 integrating the full energy band from 100 MeV to tens of GeV) is stable across a large field of view, characterized by a flat response up to 30^\\circ off-axis. A comparison of the angular resolution obtained by the two operational gamma-ray instruments, AGILE/GRID and Fermi/LAT (Large Area Telescope), is interesting in view of future gamma-ray missions, which are currently under study. The two instruments exploit different detector configurations that affect the angular resolution: the former is optimized in the readout and track reconstruction, especially in the low-energy band, the latter is optimized in terms of converter thickness and power consumption. We show that despite these differences, the angular resolution of both instruments is very similar, between 100 MeV and a few GeV.

  4. Angular versus spatial resolution trade-offs for diffusion imaging under time constraints.

    Science.gov (United States)

    Zhan, Liang; Jahanshad, Neda; Ennis, Daniel B; Jin, Yan; Bernstein, Matthew A; Borowski, Bret J; Jack, Clifford R; Toga, Arthur W; Leow, Alex D; Thompson, Paul M

    2013-10-01

    Diffusion weighted magnetic resonance imaging (DW-MRI) are now widely used to assess brain integrity in clinical populations. The growing interest in mapping brain connectivity has made it vital to consider what scanning parameters affect the accuracy, stability, and signal-to-noise of diffusion measures. Trade-offs between scan parameters can only be optimized if their effects on various commonly-derived measures are better understood. To explore angular versus spatial resolution trade-offs in standard tensor-derived measures, and in measures that use the full angular information in diffusion signal, we scanned eight subjects twice, 2 weeks apart, using three protocols that took the same amount of time (7 min). Scans with 3.0, 2.7, 2.5 mm isotropic voxels were collected using 48, 41, and 37 diffusion-sensitized gradients to equalize scan times. A specially designed DTI phantom was also scanned with the same protocols, and different b-values. We assessed how several diffusion measures including fractional anisotropy (FA), mean diffusivity (MD), and the full 3D orientation distribution function (ODF) depended on the spatial/angular resolution and the SNR. We also created maps of stability over time in the FA, MD, ODF, skeleton FA of 14 TBSS-derived ROIs, and an information uncertainty index derived from the tensor distribution function, which models the signal using a continuous mixture of tensors. In scans of the same duration, higher angular resolution and larger voxels boosted SNR and improved stability over time. The increased partial voluming in large voxels also led to bias in estimating FA, but this was partially addressed by using "beyond-tensor" models of diffusion. PMID:22522814

  5. Conceptual Design of the Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS) for the Subaru Telescope

    CERN Document Server

    Peters, Mary Anne; Kasdin, N Jeremy; McElwain, Michael W; Galvin, Michael; Carr, Michael A; Lupton, Robert; Gunn, James E; Knapp, Gillian; Gong, Qian; Carlotti, Alexis; Brandt, Timothy; Janson, Markus; Guyon, Olivier; Martinache, Frantz; Hayashi, Masahiko; Takato, Naruhisa

    2012-01-01

    Recent developments in high-contrast imaging techniques now make possible both imaging and spectroscopy of planets around nearby stars. We present the conceptual design of the Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS), a lenslet-based, cryogenic integral field spectrograph (IFS) for imaging exoplanets on the Subaru telescope. The IFS will provide spectral information for 140x140 spatial elements over a 1.75 arcsecs x 1.75 arcsecs field of view (FOV). CHARIS will operate in the near infrared (lambda = 0.9 - 2.5 microns) and provide a spectral resolution of R = 14, 33, and 65 in three separate observing modes. Taking advantage of the adaptive optics systems and advanced coronagraphs (AO188 and SCExAO) on the Subaru telescope, CHARIS will provide sufficient contrast to obtain spectra of young self-luminous Jupiter-mass exoplanets. CHARIS is in the early design phases and is projected to have first light by the end of 2015. We report here on the current conceptual design of CHARIS and th...

  6. On the Angular Resolution of the AGILE gamma-ray imaging detector

    CERN Document Server

    Sabatini, S; Tavani, M; Trois, A; Bulgarelli, A; Argan, A; Barbiellini, G; Cattaneo, P W; Chen, A; Del Monte, E; Fioretti, V; Gianotti, F; Giuliani, A; Longo, F; Lucarelli, F; Morselli, A; Pittori, C; Verrecchia, F; Caraveo, P

    2015-01-01

    We present a study of the Angular Resolution of the AGILE gamma-ray imaging detector (GRID) that is operational in space since April 2007. The AGILE instrument is made of an array of 12 planes each equipped with a Tungsten converter and Silicon micros trip detectors and is sensitive in the energy range 50 MeV - 10 GeV. Among the space instruments devoted to gamma-ray astrophysics, AGILE uniquely exploits an analog readout system with dedicated electronics coupled with Silicon detectors. We show the results of Monte Carlo simulations carried out to reproduce the gamma-ray detection by the GRID, and we compare them to in-flight data. We use the Crab (pulsar + Nebula) system for discussion of real data performance, since its E^{-2} energy spectrum is representative of the majority of gamma-ray sources. For Crab-like spectrum sources, the GRID angular resolution (FWHM of ~4deg at 100 MeV; ~0.8deg at 1 GeV; ~0.9deg integrating the full energy band from 100 MeV to tens of GeV) is stable across a large field of view...

  7. Generalized diffusion tensor imaging and analytical relationships between diffusion tensor imaging and high angular resolution diffusion imaging.

    Science.gov (United States)

    Ozarslan, Evren; Mareci, Thomas H

    2003-11-01

    A new method for mapping diffusivity profiles in tissue is presented. The Bloch-Torrey equation is modified to include a diffusion term with an arbitrary rank Cartesian tensor. This equation is solved to give the expression for the generalized Stejskal-Tanner formula quantifying diffusive attenuation in complicated geometries. This makes it possible to calculate the components of higher-rank tensors without using the computationally-difficult spherical harmonic transform. General theoretical relations between the diffusion tensor (DT) components measured by traditional (rank-2) DT imaging (DTI) and 3D distribution of diffusivities, as measured by high angular resolution diffusion imaging (HARDI) methods, are derived. Also, the spherical tensor components from HARDI are related to the rank-2 DT. The relationships between higher- and lower-rank Cartesian DTs are also presented. The inadequacy of the traditional rank-2 tensor model is demonstrated with simulations, and the method is applied to excised rat brain data collected in a spin-echo HARDI experiment. PMID:14587006

  8. High Angular Resolution Imaging of Solar Radio Bursts from the Lunar Surface

    Science.gov (United States)

    MacDowall, Robert J.; Lazio, Joseph; Bale, Stuart; Burns, Jack O.; Farrell, William M.; Gopalswamy, Nat; Jones, Dayton L.; Kasper, Justin Christophe; Weiler, Kurt

    2012-01-01

    Locating low frequency radio observatories on the lunar surface has a number of advantages, including positional stability and a very low ionospheric radio cutoff. Here, we describe the Radio Observatory on the lunar Surface for Solar studies (ROLSS), a concept for a low frequency, radio imaging interferometric array designed to study particle acceleration in the corona and inner heliosphere. ROLSS would be deployed during an early lunar sortie or by a robotic rover as part of an unmanned landing. The preferred site is on the lunar near side to simplify the data downlink to Earth. The prime science mission is to image type II and type III solar radio bursts with the aim of determining the sites at and mechanisms by which the radiating particles are accelerated. Secondary science goals include constraining the density of the lunar ionosphere by measuring the low radio frequency cutoff of the solar radio emissions or background galactic radio emission, measuring the flux, particle mass, and arrival direction of interplanetary and interstellar dust, and constraining the low energy electron population in astrophysical sources. Furthermore, ROLSS serves a pathfinder function for larger lunar radio arrays. Key design requirements on ROLSS include the operational frequency and angular resolution. The electron densities in the solar corona and inner heliosphere are such that the relevant emission occurs below 10 M Hz, essentially unobservable from Earth's surface due to the terrestrial ionospheric cutoff. Resolving the potential sites of particle acceleration requires an instrument with an angular resolution of at least 2 deg at 10 MHz, equivalent to a linear array size of approximately one kilometer. The major components of the ROLSS array are 3 antenna arms, each of 500 m length, arranged in a Y formation, with a central electronics package (CEP) at their intersection. Each antenna arm is a linear strip of polyimide film (e.g., Kapton(TradeMark)) on which 16 single

  9. High Angular Resolution Stellar Imaging with Occultations from the Cassini Spacecraft II: Kronocyclic Tomography

    CERN Document Server

    Stewart, Paul N; Nicholson, Philip D; Hedman, Matthew M; Lloyd, James P

    2015-01-01

    We present an advance in the use of Cassini observations of stellar occultations by the rings of Saturn for stellar studies. Stewart et al. (2013) demonstrated the potential use of such observations for measuring stellar angular diameters. Here, we use these same observations, and tomographic imaging reconstruction techniques, to produce two dimensional images of complex stellar systems. We detail the determination of the basic observational reference frame. A technique for recovering model-independent brightness profiles for data from each occulting edge is discussed, along with the tomographic combination of these profiles to build an image of the source star. Finally we demonstrate the technique with recovered images of the {\\alpha} Centauri binary system and the circumstellar environment of the evolved late-type giant star, Mira.

  10. Angular-resolution and material-characterization measurements for a dual-particle imaging system with mixed-oxide fuel

    International Nuclear Information System (INIS)

    A dual-particle imaging (DPI) system, capable of simultaneously imaging fast neutrons and gamma rays, has been operated in the presence of mixed-oxide (MOX) fuel to assess the system's angular resolution and material-characterization capabilities. The detection principle is based on the scattering physics of neutrons (elastic scattering) and gamma rays (Compton scattering) in organic and inorganic scintillators. The detection system is designed as a combination of a two-plane Compton camera and a neutron-scatter camera. The front plane consists of EJ-309 liquid scintillators and the back plane consists of interleaved EJ-309 and NaI(Tl) scintillators. MCNPX-PoliMi was used to optimize the geometry of the system and the resulting prototype was built and tested using a Cf-252 source as an SNM surrogate. A software package was developed to acquire and process data in real time. The software was used for a measurement campaign to assess the angular resolution of the imaging system with MOX samples. Measurements of two MOX canisters of similar isotopics and intensity were performed for 6 different canister separations (from 5° to 30°, corresponding to distances of 21 cm and 131 cm, respectively). The measurements yielded a minimum separation of 20° at 2.5 m (86-cm separation) required to see 2 separate hot spots. Additionally, the results displayed good agreement with MCNPX-PoliMi simulations. These results indicate an angular resolution between 15° and 20°, given the 5° step. Coupled with its large field of view, and its capability to differentiate between spontaneous fission and (α,n) sources, the DPI system shows its potential for nuclear-nonproliferation applications

  11. New diffusion phantoms dedicated to the study and validation of high-angular-resolution diffusion imaging (HARDI) models.

    Science.gov (United States)

    Poupon, Cyril; Rieul, Bernard; Kezele, Irina; Perrin, Muriel; Poupon, Fabrice; Mangin, Jean-François

    2008-12-01

    We present new diffusion phantoms dedicated to the study and validation of high-angular-resolution diffusion imaging (HARDI) models. The phantom design permits the application of imaging parameters that are typically employed in studies of the human brain. The phantoms were made of small-diameter acrylic fibers, chosen for their high hydrophobicity and flexibility that ensured good control of the phantom geometry. The polyurethane medium was filled under vacuum with an aqueous solution that was previously degassed, doped with gadolinium-tetraazacyclododecanetetraacetic acid (Gd-DOTA), and treated by ultrasonic waves. Two versions of such phantoms were manufactured and tested. The phantom's applicability was demonstrated on an analytical Q-ball model. Numerical simulations were performed to assess the accuracy of the phantom. The phantom data will be made accessible to the community with the objective of analyzing various HARDI models. PMID:19030160

  12. Diffeomorphic Metric Mapping of High Angular Resolution Diffusion Imaging based on Riemannian Structure of Orientation Distribution Functions

    CERN Document Server

    Du, Jia; Qiu, Anqi

    2011-01-01

    In this paper, we propose a novel large deformation diffeomorphic registration algorithm to align high angular resolution diffusion images (HARDI) characterized by orientation distribution functions (ODFs). Our proposed algorithm seeks an optimal diffeomorphism of large deformation between two ODF fields in a spatial volume domain and at the same time, locally reorients an ODF in a manner such that it remains consistent with the surrounding anatomical structure. To this end, we first review the Riemannian manifold of ODFs. We then define the reorientation of an ODF when an affine transformation is applied and subsequently, define the diffeomorphic group action to be applied on the ODF based on this reorientation. We incorporate the Riemannian metric of ODFs for quantifying the similarity of two HARDI images into a variational problem defined under the large deformation diffeomorphic metric mapping (LDDMM) framework. We finally derive the gradient of the cost function in both Riemannian spaces of diffeomorphis...

  13. Q-ball imaging models: comparison between high and low angular resolution diffusion-weighted MRI protocols for investigation of brain white matter integrity

    Energy Technology Data Exchange (ETDEWEB)

    Caiazzo, Giuseppina; Trojsi, Francesca; Cirillo, Mario; Tedeschi, Gioacchino [MRI Research Center SUN-FISM-Neurological Institute for Diagnosis and Care ' ' Hermitage Capodimonte' ' , Naples (Italy); Second University of Naples, Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, Naples (Italy); Esposito, Fabrizio [University of Salerno, Department of Medicine and Surgery, Baronissi (Salerno) (Italy); Maastricht University, Department of Cognitive Neuroscience, Maastricht (Netherlands)

    2016-02-15

    Q-ball imaging (QBI) is one of the typical data models for quantifying white matter (WM) anisotropy in diffusion-weighted MRI (DwMRI) studies. Brain and spinal investigation by high angular resolution DwMRI (high angular resolution imaging (HARDI)) protocols exhibits higher angular resolution in diffusion imaging compared to low angular resolution models, although with longer acquisition times. We aimed to assess the difference between QBI-derived anisotropy values from high and low angular resolution DwMRI protocols and their potential advantages or shortcomings in neuroradiology. Brain DwMRI data sets were acquired in seven healthy volunteers using both HARDI (b = 3000 s/mm{sup 2}, 54 gradient directions) and low angular resolution (b = 1000 s/mm{sup 2}, 32 gradient directions) acquisition schemes. For both sequences, tract of interest tractography and generalized fractional anisotropy (GFA) measures were extracted by using QBI model and were compared between the two data sets. QBI tractography and voxel-wise analyses showed that some WM tracts, such as corpus callosum, inferior longitudinal, and uncinate fasciculi, were reconstructed as one-dominant-direction fiber bundles with both acquisition schemes. In these WM tracts, mean percent different difference in GFA between the two data sets was less than 5 %. Contrariwise, multidirectional fiber bundles, such as corticospinal tract and superior longitudinal fasciculus, were more accurately depicted by HARDI acquisition scheme. Our results suggest that the design of optimal DwMRI acquisition protocols for clinical investigation of WM anisotropy by QBI models should consider the specific brain target regions to be explored, inducing researchers to a trade-off choice between angular resolution and acquisition time. (orig.)

  14. Q-ball imaging models: comparison between high and low angular resolution diffusion-weighted MRI protocols for investigation of brain white matter integrity

    International Nuclear Information System (INIS)

    Q-ball imaging (QBI) is one of the typical data models for quantifying white matter (WM) anisotropy in diffusion-weighted MRI (DwMRI) studies. Brain and spinal investigation by high angular resolution DwMRI (high angular resolution imaging (HARDI)) protocols exhibits higher angular resolution in diffusion imaging compared to low angular resolution models, although with longer acquisition times. We aimed to assess the difference between QBI-derived anisotropy values from high and low angular resolution DwMRI protocols and their potential advantages or shortcomings in neuroradiology. Brain DwMRI data sets were acquired in seven healthy volunteers using both HARDI (b = 3000 s/mm2, 54 gradient directions) and low angular resolution (b = 1000 s/mm2, 32 gradient directions) acquisition schemes. For both sequences, tract of interest tractography and generalized fractional anisotropy (GFA) measures were extracted by using QBI model and were compared between the two data sets. QBI tractography and voxel-wise analyses showed that some WM tracts, such as corpus callosum, inferior longitudinal, and uncinate fasciculi, were reconstructed as one-dominant-direction fiber bundles with both acquisition schemes. In these WM tracts, mean percent different difference in GFA between the two data sets was less than 5 %. Contrariwise, multidirectional fiber bundles, such as corticospinal tract and superior longitudinal fasciculus, were more accurately depicted by HARDI acquisition scheme. Our results suggest that the design of optimal DwMRI acquisition protocols for clinical investigation of WM anisotropy by QBI models should consider the specific brain target regions to be explored, inducing researchers to a trade-off choice between angular resolution and acquisition time. (orig.)

  15. The Wide-Field Imaging Interferometry Testbed: Enabling Techniques for High Angular Resolution Astronomy

    Science.gov (United States)

    Rinehart, S. A.; Armstrong, T.; Frey, Bradley J.; Jung, J.; Kirk, J.; Leisawitz, David T.; Leviton, Douglas B.; Lyon, R.; Maher, Stephen; Martino, Anthony J.; Pauls, T.

    2007-01-01

    The Wide-Field Imaging Interferometry Testbed (WIIT) was designed to develop techniques for wide-field of view imaging interferometry, using "double-Fourier" methods. These techniques will be important for a wide range of future spacebased interferometry missions. We have provided simple demonstrations of the methodology already, and continuing development of the testbed will lead to higher data rates, improved data quality, and refined algorithms for image reconstruction. At present, the testbed effort includes five lines of development; automation of the testbed, operation in an improved environment, acquisition of large high-quality datasets, development of image reconstruction algorithms, and analytical modeling of the testbed. We discuss the progress made towards the first four of these goals; the analytical modeling is discussed in a separate paper within this conference.

  16. High-angular-resolution stellar imaging with occultations from the Cassini spacecraft - III. Mira

    Science.gov (United States)

    Stewart, Paul N.; Tuthill, Peter G.; Nicholson, Philip D.; Hedman, Matthew M.

    2016-04-01

    We present an analysis of spectral and spatial data of Mira obtained by the Cassini spacecraft, which not only observed the star's spectra over a broad range of near-infrared wavelengths, but was also able to obtain high-resolution spatial information by watching the star pass behind Saturn's rings. The observed spectral range of 1-5 microns reveals the stellar atmosphere in the crucial water-bands which are unavailable to terrestrial observers, and the simultaneous spatial sampling allows the origin of spectral features to be located in the stellar environment. Models are fitted to the data, revealing the spectral and spatial structure of molecular layers surrounding the star. High-resolution imagery is recovered revealing the layered and asymmetric nature of the stellar atmosphere. The observational data set is also used to confront the state-of-the-art cool opacity-sampling dynamic extended atmosphere models of Mira variables through a detailed spectral and spatial comparison, revealing in general a good agreement with some specific departures corresponding to particular spectral features.

  17. Ghost Imaging Using Orbital Angular Momentum

    International Nuclear Information System (INIS)

    We present a novel encoding scheme in a ghost-imaging system using orbital angular momentum. In the signal arm, object spatial information is encoded as a phase matrix. For an N-grey-scale object, different phase matrices, varying from 0 to π with increment π/N, are used for different greyscales, and then they are modulated to a signal beam by a spatial light modulator. According to the conservation of the orbital angular momentum in the ghost imaging system, these changes will give different coincidence rates in measurement, and hence the object information can be extracted in the idler arm. By simulations and experiments, the results show that our scheme can improve the resolution of the image effectively. Compared with another encoding method using orbital angular momentum, our scheme has a better performance for both characters and the image object. (fundamental areas of phenomenology(including applications))

  18. Angular resolution of a neutron scatter imaging system%中子散射成像探测角分辨研究∗

    Institute of Scientific and Technical Information of China (English)

    张美; 张显鹏; 李奎念; 盛亮; 袁媛; 宋朝晖; 李阳

    2015-01-01

    Using a combination of imaging and spectroscopic capabilities, neutron scatter imaging is a novel method of detecting neutrons in an energy range from 1 to 20 MeV. The technique can be applied to measurements in a variety of areas, including solar and atmospheric physics, radiation therapy, and nuclear materials monitoring. Angular resolution is an important parameter for a neutron scatter imaging system. There are some factors causing the uncertainty in the reconstructed image due to the imperfection of the detector system and natures of neutron scattering. These factors mainly are the uncertainties of the position and the energy. In this paper, the contributions of these factors to the angular resolution are discussed. The results show that the angular resolution varies with scatter angle; the position uncertainty not only directly affects the angular resolution, but also indirectly contributes to the angular uncertainty by influencing energy uncertainty; when the detector dimension is less than 5 cm, the energy uncertainty becomes a dominating factor for angular resolution. The prototype is designed based on the above analysis results. The angular resolution of the designed prototype is tested on Cf252 source. The experimental results are basically consistent with the simulation results.%中子散射成像技术是近年来国外正在发展的一项新型辐射成像技术,在深空宇宙探测、核材料监控等方面具有广阔的应用前景。角分辨是衡量该技术成像能力的一项重要参数。研究了位置不确定度和能量分辨对角分辨的影响。理论分析表明:以不同角度散射,成像的角分辨不同;位置不确定不仅直接影响角分辨,还通过影响能量不确定度对角分辨间接贡献;位置分辨主要来源于探测器的结构尺寸,当探测器尺寸小于5 cm,影响角分辨的主要来源是能量不确定度。利用所获得的理论结果指导设计了原理探测系统,并对设计的原

  19. Ghost Imaging Using Orbital Angular Momentum

    Institute of Scientific and Technical Information of China (English)

    赵生妹; 丁建; 董小亮; 郑宝玉

    2011-01-01

    We present a novel encoding scheme in a ghost-imaging system using orbital angular momentum. In the signal arm, object spatial information is encoded as a phase matrix. For an N-grey-scale object, different phase matrices, varying from 0 to K with increment n/N, are used for different greyscales, and then they are modulated to a signal beam by a spatial light modulator. According to the conservation of the orbital angular momentum in the ghost imaging system, these changes will give different coincidence rates in measurement, and hence the object information can be extracted in the idler arm. By simulations and experiments, the results show that our scheme can improve the resolution of the image effectively. Compared with another encoding method using orbital angular momentum, our scheme has a better performance for both characters and the image object.%We present a novel encoding scheme in a ghost-imaging system using orbital angular momentum.In the signal arm,object spatial information is encoded as a phase matrix.For an N-grey-scale object,different phase matrices,varying from 0 to π with increment π/N,are used for different greyscales,and then they are modulated to a signal beam by a spatial light modulator.According to the conservation of the orbital angular momentum in the ghost imaging system,these changes will give different coincidence rates in measurement,and hence the object information can be extracted in the idler arm.By simulations and experiments,the results show that our scheme can improve the resolution of the image effectively.Compared with another encoding method using orbital angular momentum,our scheme has a better performance for both characters and the image object.

  20. Angular resolution of stacked resistive plate chambers

    CERN Document Server

    Samuel, Deepak; Murgod, Lakshmi P

    2016-01-01

    We present here detailed derivations of mathematical expressions for the angular resolution of a set of stacked resistive plate chambers (RPCs). The expressions are validated against experimental results using data collected from the prototype detectors (without magnet) of the upcoming India-based Neutrino Observatory (INO). In principle, these expressions can be used for any other detector with an architecture similar to that of RPCs.

  1. High-angular Resolution Laser Threat Warner

    Directory of Open Access Journals (Sweden)

    Sushil Kumar

    2007-07-01

    Full Text Available In this paper, the design and development aspects of a high-angular resolution laser-threat Warner developed at the Laser Science & Technology Centre (LASTEC, Delhi are presented. It describes a high-angular resolution laser-threat warner capable of giving warning with a resolution of i 3" when it is exposed to laser radiation from visible and near-IR pulsed solid-state laser source. It has a field of view of 90' in the azimuth direction, whereas the elevation coverage is between -5" and + 25". It is capable of handling multiple types of laser threats covering wavelength from 400 nm to 1100 nm and has an operational range of 4 km for a Q-switched laser source energy (10 ns of 10 mJ/pulse and output beam divergence of 1 mrad. The paper also describes its simulated evaluation process and field-testing which it has undergone. The result of field-testing confirms that it meets all its performance specifications mentioned above.

  2. The 2008 outburst in the Young Stellar System Z CMa. III - Multi-epoch high-angular resolution images and spectra of the components in near-infrared

    CERN Document Server

    Bonnefoy, M; Dougados, C; Kospal, A; Benisty, M; Duchene, G; Bouvier, J; Garcia, P J V; Whelan, E; Antoniucci, S; Podio, L

    2016-01-01

    Z CMa is a complex pre-main sequence binary with a current separation of 100 mas, known to consist of an FU Orionis star (SE component) and an embedded Herbig Be star (NW component). Immediately when the late-2008 outburst of Z CMa was announced to the community, we initiated a high angular resolution imaging campaign with VLT/NaCo, Keck/NIRC2, VLT/SINFONI, and Keck/OSIRIS which aimed at characterizing the outburst of both components of the system in the near-infrared. We confirm that the NW star dominates the system flux in the 1.1-3.8 microns range and is responsible for the photometric outburst. We extract the first medium-resolution (R=2000-4000) near-infrared (1.1-2.4 microns) spectra of the individual components during and after the outburst. The SE component has a spectrum typical of FU Orionis objects. The NW component spectrum is characteristic of embedded outbursting protostars and EX Or objects. It displays numerous emission lines during the outburst whose intensity correlates with the system activ...

  3. Accommodation measurement according to angular resolution density in three-dimensional display

    Science.gov (United States)

    Kim, Youngmin; Hong, Keehoon; Kim, Jongshin; Yang, Hee Kyung; Hwang, Jeong-Min; Lee, Byoungho

    2011-03-01

    Accommodative response measurement according to angular resolution in autostereoscopic display based on lenticular lens and lens array method is presented. Conflict between accommodation and convergence is one of the most dominant factors leading to visual fatigue in viewing three-dimensional display. The conflict originates from directional rays that do not have enough angular resolution density. Therefore the purpose of this paper is to verify the relationship between angular resolution density of elemental images and accommodation-convergence conflict. For measurement of accommodation response of a single eye, we used lens arrays and elemental images with different resolution densities.

  4. Angular resolution of air-shower array-telescopes

    Science.gov (United States)

    Linsley, J.

    1985-01-01

    A fundamental limit on the angular resolution of air shower array-telescopes is set by the finite number of shower particles coupled with the finite thickness of the particle swarm. Consequently the angular resolution which can be achieved in practice depends in a determinant manner on the size and number of detectors in an array-telescope, as well as on the detector separation and the timing resolution. It is also necessary to examine the meaning of particle density in whatever type of detector is used. Results are given which can be used to predict the angular resolution of a given instrument for showers of various sizes, and to compare different instruments.

  5. B[e] stars at the highest angular resolution: the case of HD87643

    CERN Document Server

    Millour, Florentin; Borges-Fernandes, Marcelo; Meilland, Anthony

    2009-01-01

    New results on the B[e] star HD87643 are presented here. They were obtained with a wide range of di?erent instruments, from wide-?eld imaging with the WFI camera, high resolution spectroscopy with the FEROS instrument, high angular resolution imaging with the adaptive optics camera NACO, to the highest angular resolution available with AMBER on the VLTI. We report the detection of a companion to HD87643 with AMBER, subsequently con?rmed in the NACO data. Implications of that discovery to some of the previously di?cult-to-understand data-sets are then presented.

  6. High angular resolution SZ observations with NIKA and NIKA2

    CERN Document Server

    Comis, B; Ade, P; André, P; Arnaud, M; Bartalucci, I; Beelen, A; Benoît, A; Bideaud, A; Billot, N; Bourrion, O; Calvo, M; Catalano, A; Coiffard, G; Désert, F -X; Doyle, S; Goupy, J; Kramer, C; Lagache, G; Leclercq, S; Macías-Pérez, J F; Mauskopf, P; Mayet, F; Monfardini, A; Pajot, F; Pascale, E; Perotto, L; Pointecouteau, E; Pisano, G; Ponthieu, N; Pratt, G W; Revéret, V; Ritacco, A; Rodriguez, L; Romero, C; Ruppin, F; Savini, G; Schuster, K; Sievers, A; Triqueneaux, S; Tucker, C; Zilch, R

    2016-01-01

    NIKA2 (New IRAM KID Arrays) is a dual band (150 and 260 GHz) imaging camera based on Kinetic Inductance Detectors (KIDs) and designed to work at the IRAM 30 m telescope (Pico Veleta, Spain). Built on the experience of the NIKA prototype, NIKA2 has been installed at the 30 m focal plane in October 2015 and the commissioning phase is now ongoing. Through the thermal Sunyaev-Zeldovich (tSZ) effect, NIKA2 will image the ionized gas residing in clusters of galaxies with a resolution of 12 and 18 arcsec FWHM (at 150 and 260 GHz, respectively). We report on the recent tSZ measurements with the NIKA camera and discuss the future objectives for the NIKA2 SZ large Program, 300h of observation dedicated to SZ science. With this program we intend to perform a high angular resolution follow-up of a cosmologically-representative sample of clusters belonging to SZ catalogues, with redshift greater than 0.5. The main output of the program will be the study of the redshift evolution of the cluster pressure profile as well as ...

  7. PKS 1502+106: A high-redshift Fermi blazar at extreme angular resolution. Structural dynamics with VLBI imaging up to 86 GHz

    CERN Document Server

    Karamanavis, V; Krichbaum, T P; Angelakis, E; Hodgson, J; Nestoras, I; Myserlis, I; Zensus, J A; Sievers, A; Ciprini, S

    2016-01-01

    Context. Blazars are among the most energetic objects in the Universe. In 2008 August, Fermi/LAT detected the blazar PKS 1502+106 showing a rapid and strong gamma-ray outburst followed by high and variable flux over the next months. This activity at high energies triggered an intensive multi-wavelength campaign covering also the radio, optical, UV, and X-ray bands indicating that the flare was accompanied by a simultaneous outburst at optical/UV/X-rays and a delayed outburst at radio bands. Aims: In the current work we explore the phenomenology and physical conditions within the ultra-relativistic jet of the gamma-ray blazar PKS 1502+106. Additionally, we address the question of the spatial localization of the MeV/GeV-emitting region of the source. Methods: We utilize ultra-high angular resolution mm-VLBI observations at 43 and 86 GHz complemented by VLBI observations at 15 GHz. We also employ single-dish radio data from the F-GAMMA program at frequencies matching the VLBI monitoring. Results: PKS 1502+106 sh...

  8. The angular resolution of air shower gamma ray telescopes

    Science.gov (United States)

    Morello, C.; Navarra, G.; Periale, L.; Vallania, P.

    1985-01-01

    A crucial charactristic of air shower arrays in the field of high energy gamma-ray astronomy is their angular resolving power, the arrival directions being obtained by the time of flight measurements. A small air shower array-telescope is used to study the resolution in the definition of the shower front as a function of the shower size.

  9. Angular resolution of space-based gravitational wave detectors

    International Nuclear Information System (INIS)

    Proposed space-based gravitational wave antennas involve satellites arrayed either in an equilateral triangle around the Earth in the ecliptic plane (the ecliptic-plane option) or in an equilateral triangle orbiting the Sun in such a way that the plane of the triangle is tilted at 60 deg, relative to the ecliptic (the precessing-plane option). In this paper, we explore the angular resolution of these two classes of detectors for two kinds of sources (essentially monochromatic compact binaries and coalescing massive-black-hole binaries) using time-domain expressions for the gravitational waveform that are accurate to 4/2 PN order. Our results display an interesting effect not previously reported in the literature, and particularly underline the importance of including the higher-order PN terms in the waveform when predicting the angular resolution of ecliptic-plane detector arrays

  10. Statistical Angular Resolution Limit for Ultrawideband MIMO Noise Radar

    Directory of Open Access Journals (Sweden)

    Xiaoli Zhou

    2015-01-01

    Full Text Available The two-dimensional angular resolution limit (ARL of elevation and azimuth for MIMO radar with ultrawideband (UWB noise waveforms is investigated using statistical resolution theory. First, the signal model of monostatic UWB MIMO noise radar is established in a 3D reference frame. Then, the statistical angular resolution limits (SARLs of two closely spaced targets are derived using the detection-theoretic and estimation-theoretic approaches, respectively. The detection-theoretic approach is based on the generalized likelihood ratio test (GLRT with given probabilities of false alarm and detection, while the estimation-theoretic approach is based on Smith’s criterion which involves the Cramér-Rao lower bound (CRLB. Furthermore, the relationship between the two approaches is presented, and the factors affecting the SARL, that is, detection parameters, transmit waveforms, array geometry, signal-to-noise ratio (SNR, and parameters of target (i.e., radar cross section (RCS and direction, are analyzed. Compared with the conventional radar resolution theory defined by the ambiguity function, the SARL reflects the practical resolution ability of radar and can provide an optimization criterion for radar system design.

  11. Cepheids at high angular resolution: circumstellar envelope and pulsation

    Science.gov (United States)

    Gallenne, Alexandre

    2011-12-01

    In 2005, interferometric observations with VLTI/VINCI and CHARA/FLUOR revealed the existence of a circumstellar envelope (CSE) around some Cepheids. This surrounding material is particularly interesting for two reasons: it could have an impact on the distance estimates and could be linked to a past or on-going mass loss. The use of Baade-Wesselink methods for independent distance determinations could be significantly biased by the presence of these envelopes. Although their observations are difficult because of the high contrast between the photosphere of the star and the CSE, several observation techniques have the potential to improve our knowledge about their physical properties. In this thesis, I discuss in particular high angular resolution techniques that I applied to the study of several bright Galactic Cepheids. First, I used adaptive optic observations with NACO of the Cepheid RS Puppis, in order to deduce the flux ratio between the CSE and the photosphere of the star. In addition, I could carry out a statistical study of the speckle noise and inspect a possible asymmetry. Secondly, I analysed VISIR data to study the spectral energy distribution of a sample of Cepheids. These diffraction-limited images enabled me to carry out an accurate photometry in the N band and to detect an IR excess linked to the presence of a circumstellar component. On the other hand, applying a Fourier analysis I showed that some components are resolved. I then explored the K' band with the recombination instrument FLUOR for some bright Cepheids. Thanks to new set of data of Y Oph, I improved the study of its circumstellar envelope, using a ring-like model for the CSE. For two other Cepheids, U Vul and S Sge, I applied the interferometric Baade-Wesselink method in order to estimate their distance.

  12. Astronomy at high angular resolution a compendium of techniques in the visible and near-infrared

    CERN Document Server

    Hussain, Gaitee; Berger, Jean-Philippe; Schmidtobreick, Linda

    2016-01-01

    This book offers an essential compendium of astronomical high-resolution techniques. Recent years have seen considerable developments in such techniques, which are critical to advances in many areas of astronomy. As reflected in the book, these techniques can be divided into direct methods, interferometry, and reconstruction methods, and can be applied to a huge variety of astrophysical systems, ranging from planets, single stars and binaries to active galactic nuclei, providing angular resolution in the micro- to tens of milliarcsecond scales. Written by experts in their fields, the chapters cover adaptive optics, aperture masking imaging, spectra disentangling, interferometry, lucky imaging, Roche tomography, imaging with interferometry, interferometry of AGN, AGN reverberation mapping, Doppler- and magnetic imaging of stellar surfaces, Doppler tomography, eclipse mapping, Stokes imaging, and stellar tomography. This book is intended to enable a next generation of astronomers to apply high-resolution techni...

  13. A hard x-ray spectrometer for high angular resolution observations of cosmic sources

    International Nuclear Information System (INIS)

    LAXRIS (large area x-ray imaging spectrometer) is an experimental, balloon-borne, hard x-ray telescope that consists of a coaligned array of x-ray imaging spectrometer modules capable of obtaining high angular resolution (1--3 arcminutes) with moderate energy resolution in the 20- to 300-keV region. Each spectrometer module consists of a CsI(Na) crystal coupled to a position-sensitive phototube with a crossed-wire, resistive readout. Imaging is provided by a coded aperture mask with a 4-m focal length. The high angular resolution is coupled with rather large area (/approximately/800 cm2) to provide good sensitivity. Results are presented on performance and overall design. Sensitivity estimates are derived from a Monte-Carlo code developed to model the LAXRIS response to background encountered at balloon altitudes. We discuss a variety of observations made feasible by high angular resolution. For instance, spatially resolving the nonthermal x-ray emission from clusters of galaxies is suggested as an ideal program for LAXRIS. 15 refs., 5 figs

  14. Angular Resolution of Pachmarhi Array of Cerenkov Telescopes

    OpenAIRE

    Majumdar, P.; Acharya, B. S.; Bhat, P.N.; Chitnis, V. R.; Rahman, M. A.; Singh, B.B.; Vishwanath, P. R.

    2001-01-01

    Pachmarhi Array of \\v{C}erenkov Telescopes(PACT), consisting of a distributed array of 25 telescopes is used to sample the atmospheric \\v{C}erenkov Photon showers. The shower front is fitted to a plane and the direction of arrival of primary particle is obtained. The accuracy in the estimation of the arrival direction of showers has been estimated to be $\\sim 0^{\\circ}.1~$ using `split' array method. The angular resolution is expected to be even better when a spherical front is used for direc...

  15. Systematics in Metallicity Gradient Measurements I : Angular Resolution, Signal-to-Noise and Annuli Binning

    CERN Document Server

    Yuan, T -T; Rich, J

    2013-01-01

    With the rapid progress in metallicity gradient studies at high-redshift, it is imperative that we thoroughly understand the systematics in these measurements. This work investigates how the [NII]/Halpha ratio based metallicity gradients change with angular resolution, signal-to-noise (S/N), and annular binning parameters. Two approaches are used: 1. We downgrade the high angular resolution integral-field data of a gravitationally lensed galaxy and re-derive the metallicity gradients at different angular resolution; 2. We simulate high-redshift integral field spectroscopy (IFS) observations under different angular resolution and S/N conditions using a local galaxy with a known gradient. We find that the measured metallicity gradient changes systematically with angular resolution and annular binning. Seeing-limited observations produce significantly flatter gradients than higher angular resolution observations. There is a critical angular resolution limit beyond which the measured metallicity gradient is subst...

  16. Angular Resolution of the LISA Gravitational Wave Detector

    CERN Document Server

    Cutler, C

    1998-01-01

    We calculate the angular resolution of the planned LISA detector, a space-based laser interferometer for measuring low-frequency gravitational waves from galactic and extragalactic sources. LISA is not a pointed instrument; it is an all-sky monitor with a quadrupolar beam pattern. LISA will measure simultaneously both polarization components of incoming gravitational waves, so the data will consist of two time series. All physical properties of the source, including its position, must be extracted from these time series. LISA's angular resolution is therefore not a fixed quantity, but rather depends on the type of signal and on how much other information must be extracted. Information about the source position will be encoded in the measured signal in three ways: 1) through the relative amplitudes and phases of the two polarization components, 2) through the periodic Doppler shift imposed on the signal by the detector's motion around the Sun, and 3) through the further modulation of the signal caused by the d...

  17. MHz Resolution Imaging Spectroscopy

    Science.gov (United States)

    Chandler, David

    2015-03-01

    Velocity Mapped Ion Imaging has been used for the measurement of the velocity of molecules with resolution down to 1 meter per second. Because of this high velocity resolution one can use this technique to measure spectroscopic features with 1 MHz resolution. We demonstrate this ability on Kr atoms. A thermal distribution of Kr atoms is present in our Ion Imaging apparatus, we will use a three-photon scheme to ionize the Kr atoms, with one of the photon steps being supplied by a high resolution CW laser. By observing the portion of the Doppler width that is ionized by this combination of lasers one can determine the absolute frequency of the laser relative to the line center of the Kr transition, the power broadening associated with the cycling of the Kr atoms with the CW laser, the power broadening associate with the ionization laser and observe Zeeman splittings in the Doppler width of the Kr atom transition. The ability to visualize the photo-physics of the ionization process gives demonstrates how we can use this technique as a molecular wave meter.

  18. Two-color ghost imaging with enhanced angular resolving power

    International Nuclear Information System (INIS)

    This article reports an experimental demonstration on nondegenerate, two-color, biphoton ghost imaging which reproduced a ghost image with enhanced angular resolving power by means of a greater field of view compared with that of classical imaging. With the same imaging magnification, the enhanced angular resolving power and field of view compared with those of classical imaging are 1.25:1 and 1.16:1, respectively. The enhancement of angular resolving power depends on the ratio between the idler and the signal photon frequencies, and the enhancement of the field of view depends mainly on the same ratio and also on the distances of the object plane and the imaging lens from the two-photon source. This article also reports the possibility of reproducing a ghost image with the enhancement of the angular resolving power by means of a greater imaging amplification compared with that of classical imaging.

  19. High Angular Resolution JHK Imaging of the Centers of the Metal-Poor Globular Clusters NGC5272 (M3), NGC6205 (M13), NGC6287, and NGC6341 (M92)

    CERN Document Server

    Davidge, T J

    1998-01-01

    The Canada-France-Hawaii Telescope (CFHT) Adaptive Optics Bonnette (AOB) has been used to obtain high angular resolution JHK images of the centers of the metal-poor globular clusters NGC5272 (M3), NGC6205 (M13), NGC6287, and NGC6341 (M92). The color-magnitude diagrams (CMDs) derived from these data include the upper main sequence and most of the red giant branch (RGB), and the cluster sequences agree with published photometric measurements of bright stars in these clusters. The photometric accuracy is limited by PSF variations, which introduce systematic errors of a few hundredths of a magnitude near the AO reference star. The clusters are paired according to metallicity, and the near-infrared CMDs and luminosity functions are used to investigate the relative ages within each pair. The near-infrared CMDs provide the tightest constraints on the relative ages of the classical second parameter pair NGC5272 and NGC6205, and indicate that these clusters have ages that differ by no more than +/- 1 Gyr. These result...

  20. MEASUREMENT OF ANGULAR VIBRATION AMPLITUDE BY ACTIVELY BLURRED IMAGES

    Institute of Scientific and Technical Information of China (English)

    GUAN Baiqing; WANG Shigang; LIU Chong; LI Qian

    2007-01-01

    A novel motion-blur-based method for measuring the angular amplitude of a high-frequency rotational vibration is schemed. The proposed approach combines the active vision concept and the mechanism of motion-from-blur, generates motion blur on the image plane actively by extending exposure time, and utilizes the motion blur information in polar images to estimate the angular amplitude of a high-frequency rotational vibration. This method obtains the analytical results of the angular vibration amplitude from the geometric moments of a motion blurred polar image and an unblurred image for reference. Experimental results are provided to validate the presented scheme.

  1. Method for improving the angular resolution of a neutron scatter camera

    Science.gov (United States)

    Mascarenhas, Nicholas; Marleau, Peter; Gerling, Mark; Cooper, Robert Lee; Mrowka, Stanley; Brennan, James S.

    2012-12-25

    An instrument that will directly image the fast fission neutrons from a special nuclear material source wherein the neutron detection efficiency is increased has been described. Instead of the previous technique that uses a time-of-flight (TOF) between 2 widely spaced fixed planes of neutron detectors to measure scatter neutron kinetic energy, we now use the recoil proton energy deposited in the second of the 2 scatter planes which can now be repositioned either much closer together or further apart. However, by doubling the separation distance between the 2 planes from 20 cm to a distance of 40 cm we improved the angular resolution of the detector from about 12.degree. to about 10.degree.. A further doubling of the separation distance to 80 cm provided an addition improvement in angular resolution of the detector to about 6.degree. without adding additional detectors or ancillary electronics. The distance between planes also may be dynamically changed using a suitable common technique such as a gear- or motor-drive to toggle between the various positions. The angular resolution of this new configuration, therefore, is increased at the expanse of detection sensitivity. However, the diminished sensitivity may be acceptable for those applications where the detector is able to interrogate a particular site for an extended period.

  2. High angular resolution SZ observations with NIKA and NIKA2

    OpenAIRE

    Comis, B.; Adam, R.; Ade, P.; André, P.; Arnaud, M; Bartalucci, I.; A. Beelen; Benoît, A.; Bideaud, A.; Billot, N.; Bourrion, O.; Calvo, M.; Catalano, A; Coiffard, G.; Désert, F. -X.

    2016-01-01

    NIKA2 (New IRAM KID Arrays) is a dual band (150 and 260 GHz) imaging camera based on Kinetic Inductance Detectors (KIDs) and designed to work at the IRAM 30 m telescope (Pico Veleta, Spain). Built on the experience of the NIKA prototype, NIKA2 has been installed at the 30 m focal plane in October 2015 and the commissioning phase is now ongoing. Through the thermal Sunyaev-Zeldovich (tSZ) effect, NIKA2 will image the ionized gas residing in clusters of galaxies with a resolution of 12 and 18 a...

  3. Cepheids at high angular resolution: circumstellar envelope and pulsation

    CERN Document Server

    Gallenne, Alexandre

    2011-01-01

    In 2005, interferometric observations with VLTI/VINCI and CHARA/FLUOR revealed the existence of a circumstellar envelope (CSE) around some Cepheids. This surrounding material is particularly interesting for two reasons: it could have an impact on the distance estimates and could be linked to a past or on-going mass loss. The use of Baade-Wesselink methods for independent distance determinations could be significantly biased by the presence of these envelopes. Although their observations are difficult because of the high contrast between the photosphere of the star and the CSE, several observation techniques have the potential to improve our knowledge about their physical properties. In this thesis, I discuss in particular high angular resolution techniques that I applied to the study of several bright Galactic Cepheids. First, I used adaptive optic observations with NACO of the Cepheid RS Puppis, in order to deduce the flux ratio between the CSE and the photosphere of the star. In addition, I could carry out ...

  4. Microsphere Super-resolution Imaging

    OpenAIRE

    Wang, Zengbo

    2015-01-01

    Recently, it was discovered that microsphere can generate super-resolution focusing beyond diffraction limit. This has led to the development of an exciting super-resolution imaging technique -microsphere nanoscopy- that features a record resolution of 50 nm under white lights. Different samples have been directly imaged in high resolution and real time without labelling, including both non-biological (nano devices, structures and materials) and biological (subcellular details, viruses) sampl...

  5. Low Power Compact Radio Galaxies at High Angular Resolution

    Energy Technology Data Exchange (ETDEWEB)

    Giroletti, Marcello; Giovannini, G.; /Bologna U. /Bologna, Ist. Radioastronomia; Taylor, G.B.; /KIPAC, Menlo Park /NRAO, Socorro

    2005-06-30

    We present sub-arcsecond resolution multi-frequency (8 and 22 GHz) VLA images of five low power compact (LPC) radio sources, and phase referenced VLBA images at 1.6 GHz of their nuclear regions. At the VLA resolution we resolve the structure and identify component positions and flux densities. The phase referenced VLBA data at 1.6 GHz reveals flat-spectrum, compact cores (down to a few milliJansky) in four of the five sources. The absolute astrometry provided by the phase referencing allows us to identify the center of activity on the VLA images. Moreover, these data reveal rich structures, including two-sided jets and secondary components. On the basis of the arcsecond scale structures and of the nuclear properties, we rule out the presence of strong relativistic effects in our LPCs, which must be intrinsically small (deprojected linear sizes {approx}< 10 kpc). Fits of continuous injection models reveal break frequencies in the GHz domain, and ages in the range 10{sup 5}-10{sup 7} yrs. In LPCs, the outermost edge may be advancing more slowly than in more powerful sources or could even be stationary; some LPCs might also have ceased their activity. In general, the properties of LPCs can be related to a number of reasons, including, but not limited to: youth, frustration, low kinematic power jets, and short-lived activity in the radio.

  6. Microsphere Super-resolution Imaging

    CERN Document Server

    Wang, Zengbo

    2015-01-01

    Recently, it was discovered that microsphere can generate super-resolution focusing beyond diffraction limit. This has led to the development of an exciting super-resolution imaging technique -microsphere nanoscopy- that features a record resolution of 50 nm under white lights. Different samples have been directly imaged in high resolution and real time without labelling, including both non-biological (nano devices, structures and materials) and biological (subcellular details, viruses) samples. This chapter reviews the technique, which covers its background, fundamentals, experiments, mechanisms as well as the future outlook.

  7. Imaging the Earth's Interior: the Angular Distribution of Terrestrial Neutrinos

    CERN Document Server

    Fields, Brian D

    2004-01-01

    Decays of radionuclides throughout the Earth's interior produce geothermal heat, but also are a source of antineutrinos. The (angle-integrated) geoneutrino flux places an integral constraint on the terrestrial radionuclide distribution. In this paper, we calculate the angular distribution of geoneutrinos, which opens a window on the differential radionuclide distribution. We develop the general formalism for the neutrino angular distribution, and we present the inverse transformation which recovers the terrestrial radioisotope distribution given a measurement of the neutrino angular distribution. Thus, geoneutrinos not only allow a means to image the Earth's interior, but offering a direct measure of the radioactive Earth, both (1) revealing the Earth's inner structure as probed by radionuclides, and (2) allowing for a complete determination of the radioactive heat generation as a function of radius. We present the geoneutrino angular distribution for the favored Earth model which has been used to calculate g...

  8. Geometrically necessary dislocation densities in olivine obtained using high-angular resolution electron backscatter diffraction.

    Science.gov (United States)

    Wallis, David; Hansen, Lars N; Ben Britton, T; Wilkinson, Angus J

    2016-09-01

    Dislocations in geological minerals are fundamental to the creep processes that control large-scale geodynamic phenomena. However, techniques to quantify their densities, distributions, and types over critical subgrain to polycrystal length scales are limited. The recent advent of high-angular resolution electron backscatter diffraction (HR-EBSD), based on diffraction pattern cross-correlation, offers a powerful new approach that has been utilised to analyse dislocation densities in the materials sciences. In particular, HR-EBSD yields significantly better angular resolution (densities to be analysed. We develop the application of HR-EBSD to olivine, the dominant mineral in Earth's upper mantle by testing (1) different inversion methods for estimating geometrically necessary dislocation (GND) densities, (2) the sensitivity of the method under a range of data acquisition settings, and (3) the ability of the technique to resolve a variety of olivine dislocation structures. The relatively low crystal symmetry (orthorhombic) and few slip systems in olivine result in well constrained GND density estimates. The GND density noise floor is inversely proportional to map step size, such that datasets can be optimised for analysing either short wavelength, high density structures (e.g. subgrain boundaries) or long wavelength, low amplitude orientation gradients. Comparison to conventional images of decorated dislocations demonstrates that HR-EBSD can characterise the dislocation distribution and reveal additional structure not captured by the decoration technique. HR-EBSD therefore provides a highly effective method for analysing dislocations in olivine and determining their role in accommodating macroscopic deformation. PMID:27337604

  9. X-ray interferometry with transmissive beam combiners for ultra-high angular resolution astronomy

    CERN Document Server

    Skinner, G K; 10.1007/s10686-009-9175-4

    2009-01-01

    Interferometry provides one of the possible routes to ultra-high angular resolution for X-ray and gamma-ray astronomy. Sub-micro-arc-second angular resolution, necessary to achieve objectives such as imaging the regions around the event horizon of a super-massive black hole at the center of an active galaxy, can be achieved if beams from parts of the incoming wavefront separated by 100s of meters can be stably and accurately brought together at small angles. One way of achieving this is by using grazing incidence mirrors. We here investigate an alternative approach in which the beams are recombined by optical elements working in transmission. It is shown that the use of diffractive elements is a particularly attractive option. We report experimental results from a simple 2-beam interferometer using a low-cost commercially available profiled film as the diffractive elements. A rotationally symmetric filled (or mostly filled) aperture variant of such an interferometer, equivalent to an X-ray axicon, is shown to...

  10. X-ray Interferometry with Transmissive Beam Combiners for Ultra-High Angular Resolution Astronomy

    Science.gov (United States)

    Skinner, G. K.; Krismanic, John F.

    2009-01-01

    Abstract Interferometry provides one of the possible routes to ultra-high angular resolution for X-ray and gamma-ray astronomy. Sub-micro-arc-second angular resolution, necessary to achieve objectives such as imaging the regions around the event horizon of a super-massive black hole at the center of an active galaxy, can be achieved if beams from parts of the incoming wavefront separated by 100s of meters can be stably and accurately brought together at small angles. One way of achieving this is by using grazing incidence mirrors. We here investigate an alternative approach in which the beams are recombined by optical elements working in transmission. It is shown that the use of diffractive elements is a particularly attractive option. We report experimental results from a simple 2-beam interferometer using a low-cost commercially available profiled film as the diffractive elements. A rotationally symmetric filled (or mostly filled) aperture variant of such an interferometer, equivalent to an X-ray axicon, is shown to offer a much wider bandpass than either a Phase Fresnel Lens (PFL) or a PFL with a refractive lens in an achromatic pair. Simulations of an example system are presented.

  11. Radiation length imaging with high resolution telescopes

    CERN Document Server

    Stolzenberg, U; Schwenker, B; Wieduwilt, P; Marinas, C; Lütticke, F

    2016-01-01

    The construction of low mass vertex detectors with a high level of system integration is of great interest for next generation collider experiments. Radiation length images with a sufficient spatial resolution can be used to measure and disentangle complex radiation length $X$/$X_0$ profiles and contribute to the understanding of vertex detector systems. Test beam experiments with multi GeV particle beams and high-resolution tracking telescopes provide an opportunity to obtain precise 2D images of the radiation length of thin planar objects. At the heart of the $X$/$X_0$ imaging is a spatially resolved measurement of the scattering angles of particles traversing the object under study. The main challenges are the alignment of the reference telescope and the calibration of its angular resolution. In order to demonstrate the capabilities of $X$/$X_0$ imaging, a test beam experiment has been conducted. The devices under test were two mechanical prototype modules of the Belle II vertex detector. A data sample of ...

  12. High-resolution beta imaging

    International Nuclear Information System (INIS)

    For many years, β radioactivity has been used to label molecules and follow them in various biological processes. β imaging is obtained by autoradiography. Classically made on films or on photographic emulsions, autoradiography is now supplanted by radio-imagers which are very performing. The phosphor-imager, β-imager and μ-imager are the systems mainly used today and their operating principles and properties are compared. The great advantages of these imagers are: their rapidity to obtain results and their reliability for absolute quantification. All emitters (β-, β- -γ and β+) are detectable as well as the gamma emitters of nuclear medicine, by means of their low energy electrons ejected during y emission. Phosphor-imager is well suited to energetic tracers and large series of experiments. Real time radio-imagers (β-imager and μ-imager) are preferred to verify experimental conditions. The β--imager and s-imager are often complementary: one with a large field of view and medium resolution, the other with a higher resolution, but a small surface of detection. Their numerous applications in molecular biology (blotting. gene expression) and in physiopathology (binding, in situ hybridization, immunohistochemistry) are well known. Today other applications are under development in molecular imaging. Moreover, the possibility of multi-detection opens new fields of investigations, especially in nuclear medicine. (author)

  13. Non Local Spatial and Angular Matching: Enabling higher spatial resolution diffusion MRI datasets through adaptive denoising.

    Science.gov (United States)

    St-Jean, Samuel; Coupé, Pierrick; Descoteaux, Maxime

    2016-08-01

    Diffusion magnetic resonance imaging (MRI) datasets suffer from low Signal-to-Noise Ratio (SNR), especially at high b-values. Acquiring data at high b-values contains relevant information and is now of great interest for microstructural and connectomics studies. High noise levels bias the measurements due to the non-Gaussian nature of the noise, which in turn can lead to a false and biased estimation of the diffusion parameters. Additionally, the usage of in-plane acceleration techniques during the acquisition leads to a spatially varying noise distribution, which depends on the parallel acceleration method implemented on the scanner. This paper proposes a novel diffusion MRI denoising technique that can be used on all existing data, without adding to the scanning time. We first apply a statistical framework to convert both stationary and non stationary Rician and non central Chi distributed noise to Gaussian distributed noise, effectively removing the bias. We then introduce a spatially and angular adaptive denoising technique, the Non Local Spatial and Angular Matching (NLSAM) algorithm. Each volume is first decomposed in small 4D overlapping patches, thus capturing the spatial and angular structure of the diffusion data, and a dictionary of atoms is learned on those patches. A local sparse decomposition is then found by bounding the reconstruction error with the local noise variance. We compare against three other state-of-the-art denoising methods and show quantitative local and connectivity results on a synthetic phantom and on an in-vivo high resolution dataset. Overall, our method restores perceptual information, removes the noise bias in common diffusion metrics, restores the extracted peaks coherence and improves reproducibility of tractography on the synthetic dataset. On the 1.2 mm high resolution in-vivo dataset, our denoising improves the visual quality of the data and reduces the number of spurious tracts when compared to the noisy acquisition. Our

  14. Single Image Super Resolution via Manifold Approximation

    OpenAIRE

    Dang, Chinh; Radha, Hayder

    2014-01-01

    Image super-resolution remains an important research topic to overcome the limitations of physical acquisition systems, and to support the development of high resolution displays. Previous example-based super-resolution approaches mainly focus on analyzing the co-occurrence properties of low resolution and high-resolution patches. Recently, we proposed a novel single image super-resolution approach based on linear manifold approximation of the high-resolution image-patch space [1]. The image ...

  15. Wavelet Based Resolution Enhancement for Low Resolution Satellite Images

    OpenAIRE

    Garg, Akansha; Vardhan Naidu, Sashi; Yahia, Hussein; Singh, Darmendra

    2014-01-01

    Satellite images play a major role in the analysis of land cover, topographic analysis, geosciences etc. There has always existed a tradeoff between the image resolution and the image cost. In this paper, a modified discrete wavelet transform and interpolation based technique is proposed for enhancing the resolution of satellite images having low resolution in such a way that a highly resolved satellite image can be obtained without losing any image information. The advent of DWT has given a ...

  16. A super resolution framework for low resolution document image OCR

    Science.gov (United States)

    Ma, Di; Agam, Gady

    2013-01-01

    Optical character recognition is widely used for converting document images into digital media. Existing OCR algorithms and tools produce good results from high resolution, good quality, document images. In this paper, we propose a machine learning based super resolution framework for low resolution document image OCR. Two main techniques are used in our proposed approach: a document page segmentation algorithm and a modified K-means clustering algorithm. Using this approach, by exploiting coherence in the document, we reconstruct from a low resolution document image a better resolution image and improve OCR results. Experimental results show substantial gain in low resolution documents such as the ones captured from video.

  17. Doppler broadening as a lower limit to the angular resolution of next-generation Compton telescopes

    Science.gov (United States)

    Zoglauer, Andreas; Kanbach, Gottfried

    2003-03-01

    The angular resolution of a telescope which detects gamma-rays via the Compton effect is fundamentally limited below a few hundred keV by the fact that the target electrons have an indeterminable momentum inside their atoms which introduces an uncertainty in the recoil energy of the Compton electron and the scattered photon. This additional component in the energy and momentum equation results in a Doppler broadening of the angular resolution compared to the standard Compton equation for a target at rest. The deterioration in resolution is most pronounced for low photon energy, high scatter angle, and high Z of the scatter material. This physical limit to the angular resolution of a Compton telescope is present even if all other parameters (e.g. energy and position) are measured with high accuracy. For different Compton scatter materials such as silicon, germanium and xenon, which are used in current telescope designs, the best possible angular resolution as a function of photon energy and scatter angle is calculated. Averaged over all scatter angles and energies, the Doppler-limited angular resolution of silicon is a factor of ~1.6 better than that of germanium and a factor of ~1.9 better than that of xenon. Looking at the Doppler limit of materials from Z=1 to 90 the best angular resolution can be reached for alkaline and alkaline earth metals, the worst for elements with filled p-orbitals (noble gases) and d-orbitals (e.g. Pd and Au). Of all semiconductors which might be used in a next generation Compton telescope, silicon seems to be the best choice.

  18. Resolution enhancement in medical ultrasound imaging

    OpenAIRE

    Ploquin, Marie; Basarab, Adrian; Kouamé, Denis

    2015-01-01

    Image resolution enhancement is a problem of considerable interest in all medical imaging modalities. Unlike general purpose imaging or video processing, for a very long time, medical image resolution enhancement has been based on optimization of the imaging devices. Although some recent works purport to deal with image postprocessing, much remains to be done regarding medical image enhancement via postprocessing, especially in ultrasound imaging. We face a resolution improvement issue in the...

  19. Angular resolution in underground detectors and a status report of the Soudan II nucleon decay detector

    International Nuclear Information System (INIS)

    This paper is a status report of the Soudan II honeycomb drift chamber project. It reports on the physics goals, present progress and future schedule of our experiment. It also includes a discussion of the angular resolution of cosmic ray muons which can be achieved in underground detectors, and in particular how to calibrate the resolution using the moon's shadow in cosmic rays. This last point has relevance in trying to understand the angular distributions in the reported observations of underground muons from Cygnus X-3. 12 refs., 9 figs

  20. First Results from High Angular Resolution ALMA Observations Toward the HL Tau Region

    CERN Document Server

    Partnership, ALMA; Perez, L M; Hunter, T R; Dent, W R F; Hales, A S; Hills, R; Corder, S; Fomalont, E B; Vlahakis, C; Asaki, Y; Barkats, D; Hirota, A; Hodge, J A; Impellizzeri, C M V; Kneissl, R; Liuzzo, E; Lucas, R; Marcelino, N; Matsushita, S; Nakanishi, K; Phillips, N; Richards, A M S; Toledo, I; Aladro, R; Broguiere, D; Cortes, J R; Cortes, P C; Dhawan, V; Espada, D; Galarza, F; Garcia-Appadoo, D; Guzman-Ramirez, L; Humphreys, E M; Jung, T; Kameno, S; Laing, R A; Leon, S; Marconi, G; Nikolic, B; Nyman, L -A; Radiszcz, M; Remijan, A; Rodon, J A; Sawada, T; Takahashi, S; Tilanus, R P J; Vilaro, B Vila; Watson, L C; Wiklind, T; Akiyama, E; Chapillon, E; de Gregorio, I; Di Francesco, J; Gueth, F; Kawamura, A; Lee, C -F; Luong, Q Nguyen; Mangum, J; Pietu, V; Sanhueza, P; Saigo, K; Takakuwa, S; Ubach, C; van Kempen, T; Wootten, A; Castro-Carrizo, A; Francke, H; Gallardo, J; Garcia, J; Gonzalez, S; Hill, T; Kaminski, T; Kurono, Y; Liu, H -Y; Lopez, C; Morales, F; Plarre, K; Schieven, G; Testi, L; Videla, L; Villard, E; Andreani, P; Hibbard, J E; Tatematsu, K

    2015-01-01

    We present Atacama Large Millimeter/submillimeter Array (ALMA) observations from the 2014 Long Baseline Campaign in dust continuum and spectral line emission from the HL Tau region. The continuum images at wavelengths of 2.9, 1.3, and 0.87 mm have unprecedented angular resolutions of 0.075 arcseconds (10 AU) to 0.025 arcseconds (3.5 AU), revealing an astonishing level of detail in the circumstellar disk surrounding the young solar analogue HL Tau, with a pattern of bright and dark rings observed at all wavelengths. By fitting ellipses to the most distinct rings, we measure precise values for the disk inclination (46.72pm0.05 degrees) and position angle (+138.02pm0.07 degrees). We obtain a high-fidelity image of the 1.0 mm spectral index ($\\alpha$), which ranges from $\\alpha\\sim2.0$ in the optically-thick central peak and two brightest rings, increasing to 2.3-3.0 in the dark rings. The dark rings are not devoid of emission, we estimate a grain emissivity index of 0.8 for the innermost dark ring and lower for ...

  1. High Angular Resolution Monitoring of Prominent AGN at 86 GHz

    OpenAIRE

    Krichbaum, T. P.; Witzel, A.; Zensus, J. A.

    1999-01-01

    We report results from 3mm-VLBI observations of 3C273 and 3C454.3 during the period 1994-1997. In both sources the images show superluminal motion in feature-rich jets. Due to the improved uv-coverage in the later experiments, the jets can be followed further out than previously. Comparision with maps obtained at longer wavelengths allows to determine spectral gradients along the jets. Opacity effects lead to transverse displacements of the jet ridgelines. These displacements appear to be dif...

  2. High Angular Resolution Monitoring of Prominent AGN at 86 GHz

    CERN Document Server

    Krichbaum, T P; Zensus, J A

    1999-01-01

    We report results from 3mm-VLBI observations of 3C273 and 3C454.3 during the period 1994-1997. In both sources the images show superluminal motion in feature-rich jets. Due to the improved uv-coverage in the later experiments, the jets can be followed further out than previously. Comparision with maps obtained at longer wavelengths allows to determine spectral gradients along the jets. Opacity effects lead to transverse displacements of the jet ridgelines. These displacements appear to be different in 3C273 and 3C454.3.

  3. Ghost imaging with entangled photons and orbital angular momentum

    Science.gov (United States)

    Padgett, Miles

    We utilise the position and orbital angular momentum (OAM) correlations between the signal and idler photons generated in the down-conversion process to obtain ghost images of a phase object. By using an OAM phase filter, which is non-local with respect to the object, the ghost images exhibit isotropic edge-enhancement. The strong spatial correlations between the signal and idler photons generated by spontaneous parametric downconversion have been widely utilised in many different imaging systems. The use of a scanning single element detector to recover the spatial information in the signal and idler beams fundamentally limits the detection efficiency of the imaging system to a maximum of 1/N where N is the number of pixels in the image. Our approach overcomes this limitation by replacing the scanning detector by an intensified CCD camera, therefore detecting all photons irrespective of their position within the image. Using a camera in this way, coupled with the OAM edge-enhancement and image reconstruction techniques allows us to obtain images of phase objects with an average of fewer than one photon per image pixel.

  4. Section on High Resolution Optical Imaging (HROI)

    Data.gov (United States)

    Federal Laboratory Consortium — The Section on High Resolution Optical Imaging (HROI) develops novel technologies for studying biological processes at unprecedented speed and resolution. Research...

  5. High-Resolution Imaging Spectrometer

    Science.gov (United States)

    Dozier, Jeff; Goetz, Alexander F. H.

    1990-01-01

    Earth resources observed in greater detail. High-Resolution Imaging Spectrometer, undergoing development for use in NASA's Earth Observing System, measures reflectance of Earth's surface in visible and near-infrared wavelengths. From an orbit around Earth, instrument scans surface of Earth in 200 wavelength bands simultaneously. Produces images enabling identification of minerals in rocks and soils, important algal pigments in oceans and inland waters, changes in spectra associated with biochemistry of plant canopies, compositions of atmospheric aerosols, sizes of grains in snow, and contamination of snow by impurities that absorb visible light.

  6. Advance Neighbor Embedding for Image Super Resolution

    OpenAIRE

    Dr. Ruikar Sachin D; Mr. Wadhavane Tushar D

    2013-01-01

    This paper presents the Advance Neighbor embedding (ANE) method for image super resolution. The assumption of the neighbor-embedding (NE) algorithm for single-image super-resolution Reconstruction is that the feature spaces are locally isometric of low-resolution and high-resolution Patches. But, this is not true for Super Resolution because of one to many mappings between Low Resolution and High Resolution patches. Advance NE method minimize the problem occurred in NE using combine learning ...

  7. GravityCam: Higher Resolution Visible Wide-Field Imaging

    CERN Document Server

    Mackay, Craig; Steele, Iain

    2016-01-01

    The limits to the angular resolution achievable with conventional ground-based telescopes are unchanged over 70 years. Atmospheric turbulence limits image quality to typically ~1 arcsec in practice. We have developed a new concept of ground-based imaging instrument called GravityCam capable of delivering significantly sharper images from the ground than is normally possible without adaptive optics. The acquisition of visible images at high speed without significant noise penalty has been made possible by advances in optical and near IR imaging technologies. Images are recorded at high speed and then aligned before combination and can yield a 3-5 fold improvement in image resolution. Very wide survey fields are possible with widefield telescope optics. We describe GravityCam and detail its application to accelerate greatly the rate of detection of Earth size planets by gravitational microlensing. GravityCam will also improve substantially the quality of weak shear studies of dark matter distribution in distant...

  8. Super Resolution Image Reconstruction using LWT

    OpenAIRE

    Padavala, Sivakrishna; Moghul, Arifullah Baig

    2013-01-01

    Since over three decades, computers have been widely used for processing and displaying images. The ability to process visual information from a super resolution image can enhance the information present in the image. The motivation is from a human eye which takes in raw images (noisy, blurred and translated) and constructs a super resolution image. An image with improved resolution is desired in almost all of the applications to enhance qualitative features and is reported to be achieved by ...

  9. High-resolution ophthalmic imaging system

    Science.gov (United States)

    Olivier, Scot S.; Carrano, Carmen J.

    2007-12-04

    A system for providing an improved resolution retina image comprising an imaging camera for capturing a retina image and a computer system operatively connected to the imaging camera, the computer producing short exposures of the retina image and providing speckle processing of the short exposures to provide the improved resolution retina image. The system comprises the steps of capturing a retina image, producing short exposures of the retina image, and speckle processing the short exposures of the retina image to provide the improved resolution retina image.

  10. Image Super Resolution Using Marginal Ditribution Prior

    OpenAIRE

    Ravishankar, S.; K.V.V. Murthy

    2010-01-01

    In this paper, we propose a new technique for image super-resolution. Given a single low resolution (LR) observation and a database consisting of low resolution images and their high resolution versions, we obtain super-resolution for the LR observation using regularization framework. First we obtain a close approximation of the super-resolved image using learning based technique. We learn high frequency details of the observation using Discrete Cosine Transform (DCT). The LR observation is r...

  11. Single Image Super-Resolution via L0 Image Smoothing

    OpenAIRE

    Zhang Liu; Qi Huang; Jian Li; Qi Wang

    2014-01-01

    We propose a single image super-resolution method based on a L0 smoothing approach. We consider a low-resolution image as two parts: one is the smooth image generated by the L0 smoothing method and the other is the error image between the low-resolution image and the smoothing image. We get an intermediate high-resolution image via a classical interpolation and then generate a high-resolution smoothing image with sharp edges by the L0 smoothing method. For the error image, a...

  12. Single Image Super-Resolution via L0 Image Smoothing

    OpenAIRE

    2014-01-01

    We propose a single image super-resolution method based on a L0 smoothing approach. We consider a low-resolution image as two parts: one is the smooth image generated by the L0 smoothing method and the other is the error image between the low-resolution image and the smoothing image. We get an intermediate high-resolution image via a classical interpolation and then generate a high-resolution smoothing image with sharp edges by the L0 smoothing method. For the error image, a learning-based su...

  13. High angular resolution observations towards OMC-2 FIR 4: Dissecting an intermediate-mass protocluster

    CERN Document Server

    López-Sepulcre, A; Sánchez-Monge, Á; Ceccarelli, C; Dominik, C; Kama, M; Caux, E; Fontani, F; Fuente, A; Ho, P T P; Neri, R; Shimajiri, Y

    2013-01-01

    OMC-2 FIR 4 is one of the closest known young intermediate-mass protoclusters, located at a distance of 420 pc in Orion. This region is one of the few where the complete 500-2000 GHz spectrum has been observed with the heterodyne spectrometer HIFI on board the Herschel satellite, and unbiased spectral surveys at 0.8, 1, 2 and 3 mm have been obtained with the JCMT and IRAM 30-m telescopes. In order to investigate the morphology of this region, we used the IRAM Plateau de Bure Interferometer to image OMC-2 FIR 4 in the 2-mm continuum emission, as well as in DCO+(2-1), DCN(2-1), C34S(3-2), and several CH3OH lines. In addition, we analysed observations of the NH3(1,1) and (2,2) inversion transitions made with the Very Large Array of the NRAO. The resulting maps have an angular resolution which allows us to resolve structures of 5", equivalent to 2000 AU. Our observations reveal three spatially resolved sources within OMC-2 FIR 4, of one or several solar masses each, with hints of further unresolved substructure w...

  14. European Extremely Large Telescope Site Characterization II: High angular resolution parameters

    CERN Document Server

    Ramió, Héctor Vázquez; Muñoz-Tuñón, Casiana; Sarazin, Marc; Varela, Antonia M; Trinquet, Hervé; Delgado, José Miguel; Fuensalida, Jesús J; Reyes, Marcos; Benhida, Abdelmajid; Benkhaldoun, Zouhair; Lambas, Diego García; Hach, Youssef; Lazrek, M; Lombardi, Gianluca; Navarrete, Julio; Recabarren, Pablo; Renzi, Victor; Sabil, Mohammed; Vrech, Rubén

    2012-01-01

    This is the second article of a series devoted to European Extremely Large Telescope (E-ELT) site characterization. In this article we present the main properties of the parameters involved in high angular resolution observations from the data collected in the site testing campaign of the E-ELT during the Design Study (DS) phase. Observations were made in 2008 and 2009, in the four sites selected to shelter the future E-ELT (characterized under the ELT-DS contract): Aklim mountain in Morocco, Observatorio del Roque de los Muchachos (ORM) in Spain, Mac\\'on range in Argentina, and Cerro Ventarrones in Chile. The same techniques, instruments and acquisition procedures were taken on each site. A Multiple Aperture Scintillation Sensor (MASS) and a Differential Image Motion Monitor (DIMM) were installed at each site. Global statistics of the integrated seeing, the free atmosphere seeing, the boundary layer seeing and the isoplanatic angle were studied for each site, and the results are presented here. In order to e...

  15. Super resolution of images and video

    CERN Document Server

    Katsaggelos, Aggelos K

    2007-01-01

    This book focuses on the super resolution of images and video. The authors' use of the term super resolution (SR) is used to describe the process of obtaining a high resolution (HR) image, or a sequence of HR images, from a set of low resolution (LR) observations. This process has also been referred to in the literature as resolution enhancement (RE). SR has been applied primarily to spatial and temporal RE, but also to hyperspectral image enhancement. This book concentrates on motion based spatial RE, although the authors also describe motion free and hyperspectral image SR problems. Also exa

  16. Quantifying and containing the curse of high resolution coronal imaging

    Directory of Open Access Journals (Sweden)

    V. Delouille

    2008-10-01

    Full Text Available Future missions such as Solar Orbiter (SO, InterHelioprobe, or Solar Probe aim at approaching the Sun closer than ever before, with on board some high resolution imagers (HRI having a subsecond cadence and a pixel area of about (80 km2 at the Sun during perihelion. In order to guarantee their scientific success, it is necessary to evaluate if the photon counts available at these resolution and cadence will provide a sufficient signal-to-noise ratio (SNR.

    For example, if the inhomogeneities in the Quiet Sun emission prevail at higher resolution, one may hope to locally have more photon counts than in the case of a uniform source. It is relevant to quantify how inhomogeneous the quiet corona will be for a pixel pitch that is about 20 times smaller than in the case of SoHO/EIT, and 5 times smaller than TRACE.

    We perform a first step in this direction by analyzing and characterizing the spatial intermittency of Quiet Sun images thanks to a multifractal analysis. We identify the parameters that specify the scale-invariance behavior. This identification allows next to select a family of multifractal processes, namely the Compound Poisson Cascades, that can synthesize artificial images having some of the scale-invariance properties observed on the recorded images.

    The prevalence of self-similarity in Quiet Sun coronal images makes it relevant to study the ratio between the SNR present at SoHO/EIT images and in coarsened images. SoHO/EIT images thus play the role of "high resolution" images, whereas the "low-resolution" coarsened images are rebinned so as to simulate a smaller angular resolution and/or a larger distance to the Sun. For a fixed difference in angular resolution and in Spacecraft-Sun distance, we determine the proportion of pixels having a SNR preserved at high resolution given a particular increase in effective area. If scale-invariance continues to prevail at smaller scales, the conclusion reached

  17. Identification of sub-grains and low angle boundaries beyond the angular resolution of EBSD maps

    Energy Technology Data Exchange (ETDEWEB)

    Germain, L., E-mail: Lionel.germain@univ-lorraine.fr [Laboratoire d' Etude des Microstructures et de Mécanique des Matériaux (LEM3), UMR 7239, CNRS/Université de Lorraine, F-57045 Metz (France); Laboratory of Excellence on Design of Alloy Metals for low-mAss Structures (‘LabEx DAMAS’), Université de Lorraine (France); Kratsch, D. [Laboratoire d' Informatique Théorique et Appliquée (LITA), EA3079, Université de Lorraine, 57045 Metz Cedex 1 (France); Salib, M. [Laboratoire d' Etude des Microstructures et de Mécanique des Matériaux (LEM3), UMR 7239, CNRS/Université de Lorraine, F-57045 Metz (France); Laboratory of Excellence on Design of Alloy Metals for low-mAss Structures (‘LabEx DAMAS’), Université de Lorraine (France); Institut Jean Lamour (IJL), SI2M Dept., CNRS UMR 7198, Université de Lorraine, Parc de Saurupt, CS 50840, F-54011 Nancy Cedex (France); Gey, N. [Laboratoire d' Etude des Microstructures et de Mécanique des Matériaux (LEM3), UMR 7239, CNRS/Université de Lorraine, F-57045 Metz (France); Laboratory of Excellence on Design of Alloy Metals for low-mAss Structures (‘LabEx DAMAS’), Université de Lorraine (France)

    2014-12-15

    A new method called ALGrId (Anti-Leak GRain IDentification) is proposed for the detection of sub-grains beyond the relative angular resolution of Electron Backscatter Diffraction maps. It does not use any additional information such as Kikuchi Pattern Quality map nor need data filtering. It uses a modified Dijkstra algorithm which seeks the continuous set of boundaries having the highest average disorientation angle. - Highlights: • ALGrId is a new method to identify sub-grains and low angle boundaries in EBSD maps. • Unlike classical methods, ALGrId works even beyond the relative angular resolution. • If the orientation noise peaks at 0.7°, ALGrid detects 0.4°-boundaries correctly. • In the same example, the classical algorithm identifies 1.1°-boundaries only.

  18. Angular Resolution of a Photoelectric Polarimeter in the Focus of an Optical System

    OpenAIRE

    Lazzarotto, Francesco; Fabiani, Sergio; Costa, Enrico; Muleri, Fabio; Soffitta, Paolo; Di Cosimo, Sergio; Di Persio, Giuseppe; Rubini, Alda; Bellazzini, Ronaldo; Brez, Alessandro; Spandre, Gloria; Cotroneo, Vincenzo; Moretti, Alberto; Pareschi, Giovanni; Tagliaferri, Giampiero

    2009-01-01

    The INFN and INAF Italian research institutes developed a space-borne X-Ray polarimetry experiment based on a X-Ray telescope, focussing the radiation on a Gas Pixel Detector (GPD). The instrument obtains the polarization angle of the absorbed photons from the direction of emission of the photoelectrons as visualized in the GPD. Here we will show how we compute the angular resolution of such an instrument.

  19. PREFACE: The Universe under the Microscope: Astrophysics at High Angular Resolution

    Science.gov (United States)

    Schödel, Rainer

    2009-01-01

    High angular resolution techniques at infrared and centimeter to millimeter wavelengths have become of ever increasing importance for astrophysical research in the past decade. They have led to important breakthroughs, like the direct imaging of protoplanetary discs and of the first exoplanets, the measurement of stellar orbits around the black hole at the center of the Milky Way, or the detection of sub-parsec-scale jets in low luminosity AGN. With adaptive optics in a mature state, infrared/optical astronomy is pushing toward extreme adaptive optics, extremely large telescopes, and infrared/optical interferometry with large aperture telescopes. At longer wavelengths, large arrays start to conquer the sub-millimeter window, with the mid-term goal of global VLBI at sub-millimeter wavelengths. These new techniques will have enormous impact on the field because they will enable us to address issues such as directly measuring the properties of exoplanets, imaging the surfaces of stars, examining stellar dynamics in extremely dense cluster cores, disentangling the processes at the bottom of black hole accretion flows in the jet launching region, or testing general relativity in the strong gravity regime near the event horizon of supermassive black holes. The conference The Universe under the Microscope: Astrophysics at High Angular Resolution, held at the Physikzentrum of the Deutsche Physikalische Gesellschaft in Bad Honnef, Germany, on 12-25 April 2008, aimed at an interdisciplinary approach by bringing together astrophysicists from the three great branches of the field, instrumentation, observation, and theory, to discuss the current state of research and the possibilities offered by the next-generation instruments. Editors of the proceedings Rainer Schödel Instituto de Astrofísica de Andalucía -CSIC, Granada, Spain Andreas Eckart I. Physikalisches Institut der Universität zu Köln, Köln, Germany Susanne Pfalzner I. Physikalisches Institut der Universität zu

  20. Moderate Resolution Imaging Spectroradiometer (MODIS) - Aqua

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset represents multiple products archived at the multiple archive centers for the MODIS (Moderate Resolution Imaging Spectroradiometer) instrument aboard...

  1. Ultrahigh Resolution 3-Dimensional Imaging Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Southwest Sciences proposes to develop innovative instrumentation for the rapid, 3-dimensional imaging of biological tissues with cellular resolution. Our approach...

  2. Moderate Resolution Imaging Spectroradiometer (MODIS) - Terra

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset represents multiple products archived at the multiple archive centers for the MODIS (Moderate Resolution Imaging Spectroradiometer) instrument aboard...

  3. High angular resolution observations of star-forming regions with BETTII and SOFIA

    Science.gov (United States)

    Rizzo, Maxime; Rinehart, Stephen; Mundy, Lee G.; Benford, Dominic J.; Dhabal, Arnab; Fixsen, Dale J.; Leisawitz, David; Maher, Stephen F.; Mentzell, Eric; Silverberg, Robert F.; Staguhn, Johannes; Veach, Todd; Cardiff BETTII Team

    2016-01-01

    High angular resolution observations in the far-infrared are important to understand the star formation process in embedded star clusters where extinction is large and stars form in close proximity. The material taking part in the star forming process is heated by the young stars and emits primarily in the far-IR; hence observations of the far-IR dust emission yields vital information about the gravitational potential, the mass and energy distribution, and core/star formation process. Previous observatories, such as Herschel, Spitzer and WISE lack the angular resolution required to study these dense star forming cores and are further limited by saturation in bright cores.The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) is pioneering the path to sub-arcsecond resolution at far-IR wavelengths. This thesis talk discusses the instrumental challenges in building BETTII, as well as results from our SOFIA survey to illustrate the potential of higher-angular resolution observations. The 8m-long two element interferometer is being tested at NASA GSFC and is scheduled for first flight in fall 2016. BETTII will provide 0.5 to 1 arcsecond spatial resolution and spectral resolving power of 10 to 100 between 30 and 90 microns, where most of the dust continuum emission peaks in local star forming regions. It will achieve spatially-resolved spectroscopy of bright, dense cores with unprecedented high definition. This talk focuses on the main challenges and solutions associated with building BETTII: thermal stability, attitude/pointing control, and path length stabilization. In each of these areas we look at the trade-off between design, control, and knowledge in order to achieve the best-possible instrumental capability and sensitivity.As a first step towards resolving cluster cores, we surveyed 10 nearby star-forming clusters with SOFIA FORCAST at 11, 19, 31 and 37 microns. The FORCAST instrument has the highest angular resolution currently available in

  4. USGS MODERATE RESOLUTION LAND IMAGING

    Science.gov (United States)

    Dwyer, J. L.; Willems, J. S.

    2009-12-01

    For the past 37 years, the Landsat series of satellites has provided continuous data of the Earth’s land masses, coastal boundaries, and coral reefs creating an unprecedented comprehensive record of landscape dynamics. Landsat 5 and 7 continue to capture hundreds of images of the Earth’s surface each day. In mid-December 2008, the USGS made the entire Landsat archive available to everyone, anywhere, at anytime via the Internet at no cost to the user. The opening of the Landsat archive, the longest record of the terrestrial environment, is a revolution that will affect the future of moderate resolution Earth observations, enabling scientists to address research questions and develop operational applications that were previously cost prohibitive. In addition, the time-series data richness of the archive allows for the development of essential climate variables used to monitor the causes and consequences of lands cover change as a function of climate variability and anthropogenic influences. Landsat is unique as a single source of systematic, global land observations in terms of the number of spectral bands, global collection capacity, image quality, and the proven fidelity of its calibrated sensors. Through the Land Remote Sensing Policy Act of 1992 and the Presidential Decision Direct/NSTC-3 (1994), as amended on October 16, 2000, the U.S Geological Survey (USGS) is charged to ensure the continuity of Landsat data. To accomplish this, the USGS, in partnership with the National Aeronautics and Space Administration (NASA), is currently preparing for the launch of the Landsat Data Continuity Mission (LDCM) in December 2012, the eighth satellite in the Landsat Program. The LDCM will ensure the continuation of the Landsat record and will consist of significant improvements in radiometric response and additional spectral bands, from which high quality data products will be generated and accessible to users at no cost.

  5. Thin fused silica optics for a high angular resolution and large collecting area X Ray telescope after Chandra

    Science.gov (United States)

    Pareschi, Giovanni; Citterio, Oberto; Civitani, Marta M; Basso, Stefano; Campana, Sergio; Conconi, Paolo; Ghigo, Mauro; Mattaini, Enrico; Moretti, Alberto; Parodi, Giancarlo; Tagliaferri, Gianpiero

    2014-08-01

    The implementation of an X-ray mission with high imaging capabilities, similar to those achieved with Chandra (SMART-X project, led by CfA together with other US institutes. This project is based on adjustable segments of thin foil mirrors with piezo-electric actuators, aiming to achieve an effective area >2 m2 at 1 keV and an angular resolution better than 1 arcsec HEW. Another attractive technology to realize an X-ray telescope with similar characteristics is being developed at NASA/Goddard. In this case the mirrors are based on Si substrates that are super-polished and figured starting from a bulky Si ingot, from which they are properly cut. Here we propose an alternative method based on precise direct grinding, figuring and polishing of thin (a few mm) glass shells with innovative deterministic polishing methods. This is followed by a final correction via ion figuring to obtain the desired accuracy. For this purpose, a temporary stiffening structure is used to support the shell from the polishing operations up to its integration in the telescope supporting structure. This paper deals with the technological process under development, the results achieved so far and some mission scenarios based on this kind of optics, aiming to achieve an effective area more than 10 times larger than Chandra and an angular resolution of 1 arcsec HEW on axis and of a few arcsec off-axis across a large field of view (1o in diameter).

  6. High Resolution Image Reconstruction from Projection of Low Resolution Images DIffering in Subpixel Shifts

    Science.gov (United States)

    Mareboyana, Manohar; Le Moigne-Stewart, Jacqueline; Bennett, Jerome

    2016-01-01

    In this paper, we demonstrate a simple algorithm that projects low resolution (LR) images differing in subpixel shifts on a high resolution (HR) also called super resolution (SR) grid. The algorithm is very effective in accuracy as well as time efficiency. A number of spatial interpolation techniques using nearest neighbor, inverse-distance weighted averages, Radial Basis Functions (RBF) etc. used in projection yield comparable results. For best accuracy of reconstructing SR image by a factor of two requires four LR images differing in four independent subpixel shifts. The algorithm has two steps: i) registration of low resolution images and (ii) shifting the low resolution images to align with reference image and projecting them on high resolution grid based on the shifts of each low resolution image using different interpolation techniques. Experiments are conducted by simulating low resolution images by subpixel shifts and subsampling of original high resolution image and the reconstructing the high resolution images from the simulated low resolution images. The results of accuracy of reconstruction are compared by using mean squared error measure between original high resolution image and reconstructed image. The algorithm was tested on remote sensing images and found to outperform previously proposed techniques such as Iterative Back Projection algorithm (IBP), Maximum Likelihood (ML), and Maximum a posterior (MAP) algorithms. The algorithm is robust and is not overly sensitive to the registration inaccuracies.

  7. Resolution Enhancement of Range Images via Color-Image Segmentation

    OpenAIRE

    Bhavsar, Arnav

    2012-01-01

    We report a method for super-resolution of range images. Our approach leverages the interpretation of LR image as sparse samples on the HR grid. Based on this interpretation, we demonstrate that our recently reported approach, which reconstructs dense range images from sparse range data by exploiting a registered colour image, can be applied for the task of resolution enhancement of range images. Our method only uses a single colour image in addition to the range observation in the super-reso...

  8. SMA Observations of Class 0 Protostars: A High-Angular Resolution Survey of Protostellar Binary Systems

    CERN Document Server

    Chen, Xuepeng; Zhang, Qizhou; Bourke, Tyler L; Launhardt, Ralf; Jorgensen, Jes K; Lee, Chin-Fee; Foster, Jonathan B; Dunham, Michael M; Pineda, Jaime E; Henning, Thomas

    2013-01-01

    We present high angular resolution 1.3 mm and 850 um dust continuum data obtained with the Submillimeter Array toward 33 Class 0 protostars in nearby clouds (distance < 500 pc), which represents so far the largest survey toward protostellar binary/multiple systems. The median angular resolution in the survey is 2.5 arcsec, while the median linear resolution is approximately 600 AU. Compact dust continuum emission is observed from all sources in the sample. Twenty-one sources in the sample show signatures of binarity/multiplicity, with separations ranging from 50 to 5000 AU. The numbers of singles, binaries, triples, and quadruples in the sample are 12, 14, 5, and 2, respectively. The derived multiplicity frequency (MF) and companion star fraction (CSF) for Class 0 protostars are 0.64+/-0.08 and 0.91+/-0.05, respectively, with no correction for completeness. The derived MF and CSF in this survey are approximately two times higher than the values found in the binary surveys toward Class I YSOs, and approxima...

  9. Vibration-dependent angular anisotropy in the photodetachment of O{sub 2}{sup -}, viewed with velocity-map imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, S T; Cavanagh, S J; Lewis, B R [Research School of Physics and Engineering, Australian National University, Canberra ACT 0200 (Australia); Gascooke, J R [School of Chemistry, Physics and Earth Sciences, Flinders University, SA 5001 (Australia); Mabbs, R [Department of Chemistry, Washington University, St Louis MO 63930-4899 (United States); Sanov, A, E-mail: Stephen.Gibson@anu.edu.a, E-mail: Steven.Cavanagh@anu.edu.a [Department of Chemistry, University of Arizona, Tucson AZ 85721-0041 (United States)

    2009-11-01

    The photodetachment spectrum of O{sub 2}{sup -} has been measured at a number of wavelengths using velocity-map imaging. The electron kinetic-energy resolution (< 5 meV) is sufficient to resolve the anion fine-structure splitting, vibrational and electronic structure. The electron angular distribution varies with the electron kinetic-energy, with a different behaviour for each vibronic band.

  10. VizieR Online Data Catalog: High angular resolution spectroscopy of NGC 1277 (Walsh+, 2016)

    Science.gov (United States)

    Walsh, J. L.; van den Bosch, R. C. E.; Gebhardt, K.; Yildirim, A.; Richstone, D. O.; Gultekin, K.; Husemann, B.

    2016-03-01

    We obtained high angular resolution spectroscopy of NGC 1277 using the Near-infrared Integral Field Spectrometer (NIFS) with the ALTtitude conjugate Adaptive optics for the InfraRed system on the Gemini North telescope. The observations were taken as part of program GN-2011B-Q-27 over the course of four nights, spanning from 2012 October 30 to 2012 December 27. We observed NGC 1277 using 600s object-sky-object exposures with the H+K filter and K grating centered on 2.2μm. (1 data file).

  11. Atomic resolution images of graphite in air

    Energy Technology Data Exchange (ETDEWEB)

    Grigg, D.A.; Shedd, G.M.; Griffis, D.; Russell, P.E.

    1988-12-01

    One sample used for proof of operation for atomic resolution in STM is highly oriented pyrolytic graphite (HOPG). This sample has been imaged with many different STM`s obtaining similar results. Atomic resolution images of HOPG have now been obtained using an STM designed and built at the Precision Engineering Center. This paper discusses the theoretical predictions and experimental results obtained in imaging of HOPG.

  12. Total cross sections for positron scattering on benzene - angular resolution corrections

    Energy Technology Data Exchange (ETDEWEB)

    Karwasz, Grzegorz P. [Instytut Fizyki, Uniwersytet Mikolaja Kopernika, 87100 Torun (Poland)], E-mail: karwasz@fizyka.umk.pl; Karbowski, Andrzej [Instytut Fizyki, Uniwersytet Mikolaja Kopernika, 87100 Torun (Poland); Idziaszek, Zbigniew [Dipartimento di Fisica, Universita degli Studi di Trento, 38050 Povo, Trento (Italy); Brusa, Roberto S. [Centrum Fizyki Teoretycznej, Polska Akademia Nauk, 02668 Warsaw (Poland)

    2008-02-15

    We compare recent measurements of total cross sections for positron scattering in benzene from Trento laboratory [G.P. Karwasz, R.S. Brusa, Z. Idziaszek, A. Karbowski, Eur. J. Phys. D 144 (2007) 197] with early [O. Sueoka, J. Phys. B 21 (1988) L631], later [O. Sueoka, M.K. Kawada, M. Kimura, Nucl. Instr. Method. Phys. B 171 (2000) 96] and the most recent [C. Makochekanwa, O. Sueoka, M. Kimura, Phys. Rev. A 68 (2003) 32707-1] data from Tokyo laboratory. The latter data are significantly lower than the two other sets. A simple calculation shows that an angular resolution correction, rising strongly in the limit of zero energy, should be applied to measured values if wide apertures in the scattering cell and or strong guiding magnetic fields are used. We show, with the help of the modified effective range theory, that the data from Trento and those of Sueoka (1988) would agree well with those of Sueoka et al. (2000) if the data from Sueoka et al. (2000) were artificially low, as a result of the big angular resolution error due to the experimental conditions present in Sueoka et al. (2000)

  13. Discrete time interval measurement system: fundamentals, resolution and errors in the measurement of angular vibrations

    International Nuclear Information System (INIS)

    The traditional method for measuring the velocity and the angular vibration in the shaft of rotating machines using incremental encoders is based on counting the pulses at given time intervals. This method is generically called the time interval measurement system (TIMS). A variant of this method that we have developed in this work consists of measuring the corresponding time of each pulse from the encoder and sampling the signal by means of an A/D converter as if it were an analog signal, that is to say, in discrete time. For this reason, we have denominated this method as the discrete time interval measurement system (DTIMS). This measurement system provides a substantial improvement in the precision and frequency resolution compared with the traditional method of counting pulses. In addition, this method permits modification of the width of some pulses in order to obtain a mark-phase on every lap. This paper explains the theoretical fundamentals of the DTIMS and its application for measuring the angular vibrations of rotating machines. It also displays the required relationship between the sampling rate of the signal, the number of pulses of the encoder and the rotating velocity in order to obtain the required resolution and to delimit the methodological errors in the measurement

  14. Straightforward computer-generated Fresnel hologram from multiple angular orthogonal projection images

    Science.gov (United States)

    Cao, Xuemei; Sang, Xinzhu; Chen, Zhidong; Leng, Junmin; Yan, Binbin; Yuan, Jinhui; Zhang, Ming

    By the multiple angular orthogonal projection images, a novel method for a straightforward computer-generated Fresnel hologram is demonstrated. With the angular orthogonal projection images at various viewpoints obtained from a computer designed three-dimensional object, an incoherent Fresnel hologram can be synthesized. After the shifted angular orthogonal projection images are multiplied by the constant phase factors and integrated, a two-dimensional complex matrix including three-dimensional information is achieved. The proposed Fresnel hologram is verified to be equivalent to an optical coherent Fresnel hologram. Since the diffraction and Fourier transform calculations are not necessary, the calculation complexity of the Fresnel hologram synthetic process can be greatly simplified.

  15. Noise and analyzer-crystal angular position analysis for analyzer-based phase-contrast imaging

    International Nuclear Information System (INIS)

    The analyzer-based phase-contrast x-ray imaging (ABI) method is emerging as a potential alternative to conventional radiography. Like many of the modern imaging techniques, ABI is a computed imaging method (meaning that images are calculated from raw data). ABI can simultaneously generate a number of planar parametric images containing information about absorption, refraction, and scattering properties of an object. These images are estimated from raw data acquired by measuring (sampling) the angular intensity profile of the x-ray beam passed through the object at different angular positions of the analyzer crystal. The noise in the estimated ABI parametric images depends upon imaging conditions like the source intensity (flux), measurements angular positions, object properties, and the estimation method. In this paper, we use the Cramér–Rao lower bound (CRLB) to quantify the noise properties in parametric images and to investigate the effect of source intensity, different analyzer-crystal angular positions and object properties on this bound, assuming a fixed radiation dose delivered to an object. The CRLB is the minimum bound for the variance of an unbiased estimator and defines the best noise performance that one can obtain regardless of which estimation method is used to estimate ABI parametric images. The main result of this paper is that the variance (hence the noise) in parametric images is directly proportional to the source intensity and only a limited number of analyzer-crystal angular measurements (eleven for uniform and three for optimal non-uniform) are required to get the best parametric images. The following angular measurements only spread the total dose to the measurements without improving or worsening CRLB, but the added measurements may improve parametric images by reducing estimation bias. Next, using CRLB we evaluate the multiple-image radiography, diffraction enhanced imaging and scatter diffraction enhanced imaging estimation techniques

  16. REVIEW ON SUPER RESOLUTION OF IMAGES USING WAVELET TRANSFORM

    OpenAIRE

    SWATI D. BIRARE,; Dr. Sanjay L. Nalbalwar

    2010-01-01

    Super resolution is a process where a high resolution image can be reconstructed from a set of blurred and noisy low resolution images which are at a specific pixel shift from each other. Each sub-pixel shifted low resolution image contains some new information about the scene and super resolution is to combine these to give a higher resolution image. Frame alignment is very much important concept in super resolution process which is achieved by image registration. Using image registration, t...

  17. Quantifying Stellar Mass Loss with High Angular Resolution Imaging

    CERN Document Server

    Ridgway, Stephen; Creech-Eakman, Michelle; Elias, Nicholas; Howell, Steve; Hutter, Don; Karovska, Margarita; Ragland, Sam; Wishnow, Ed; Zhao, Ming

    2009-01-01

    Mass is constantly being recycled in the universe. One of the most powerful recycling paths is via stellar mass-loss. All stars exhibit mass loss with rates ranging from ~10(-14) to 10(-4) M(sun) yr-1, depending on spectral type, luminosity class, rotation rate, companion proximity, and evolutionary stage. The first generation of stars consisted mostly of hydrogen and helium. These shed material - via massive winds, planetary nebulae and supernova explosions - seeding the interstellar medium with heavier elements. Subsequent generations of stars incorporated this material, changing how stars burn and providing material for planet formation. An understanding of mass loss is critical for modeling individual stars as well as answering larger astrophysical questions. Understanding mass loss is essential for following the evolution of single stars, binaries, star clusters, and galaxies. Mass loss is one of our weakest areas in the modeling of fundamental stellar processes. In large part this is owing to lack of co...

  18. The angular resolution of the GRAPES-3 array from the shadows of the Moon and the Sun

    Science.gov (United States)

    Oshima, A.; Dugad, S. R.; Goswami, U. D.; Gupta, S. K.; Hayashi, Y.; Ito, N.; Iyer, A.; Jagadeesan, P.; Jain, A.; Kawakami, S.; Minamino, M.; Mohanty, P. K.; Morris, S. D.; Nayak, P. K.; Nonaka, T.; Ogio, S.; Rao, B. S.; Ravindran, K. C.; Tanaka, H.; Tonwar, S. C.; GRAPES-3 Collaboration

    2010-03-01

    The absence of a well established point source of very high energy (≳10TeV) γ-rays in the sky, makes the measurement of the angular resolution and the absolute pointing accuracy of an extensive air shower (EAS) array a challenging task. In the past, several groups have utilized the reduction in the isotropic flux of cosmic rays due to the shadows of the Moon and the Sun, to measure the angular resolution and the absolute pointing accuracy of their arrays. The data collected from the GRAPES-3 EAS array, over the period of 4 years from 2000 to 2003, has been used to observe the shadow of the Moon at a level of ˜5σ and that of the Sun at a lower level of significance. The high density of the detectors in GRAPES-3 enabled an angular resolution of 0.7° to be obtained at energies as low as 30 TeV. The angular resolution studies were further extended by using two other techniques, namely, the even-odd and the left-right methods. All three techniques have yielded nearly identical results on the energy dependent angular resolution.

  19. Modeling of high resolution digital retinal imaging

    OpenAIRE

    Cideciyan, Artur V.; Nagel, Joachim H.; Jacobson, Samuel G.

    1991-01-01

    High resolution digital images of the retina can be obtained by photography with a Zeiss fundus camera followed by digitization of the photographic slide with a high resolution scanner. A complete model of this imaging system is developed based on its four components; the eye, the camera, the film and the scanner. The actual and modeled step responses and system noise are compared to validate the model. A simulated retinal reflection is used to demonstrate the extent of information degradatio...

  20. Direction and movement angular velocity determining of cloudiness with panoramic images of the sky

    Science.gov (United States)

    Galileiskii, Viktor P.; Elizarov, Alexey I.; Kokarev, Dmitrii V.; Morozov, Aleksandr M.

    2014-11-01

    This article gives a short overview to method of direction determining and visible angular velocity of movement determining of cloudiness based on set of panoramic images of cloudy sky, obtained by "Fisheye" wide-angle lens.

  1. Large Quantum imaging of nonlocal spatial correlations induced by orbital angular momentum

    CERN Document Server

    Altman, A; Corndorf, E; Kumar, P; Barbosa, G A; Altman, Adam R.; K\\"{o}pr\\"{u}l\\"{u}, Kahraman G.; Corndorf, Eric; Kumar, Prem; Barbosa, Geraldo A.

    2004-01-01

    Through scanned coincidence counting, we probe the quantum image produced by parametric down conversion with a pump beam carrying orbital angular momentum. Nonlocal spatial correlations are manifested through splitting of the coincidence spot into two.

  2. Overview of techniques used for image resolution enhancement

    OpenAIRE

    Mayuri D Patil; Prof. Surbhi Khare

    2012-01-01

    Image resolution enhancement is one of the first steps in image processing. Image resolution enhancement is the process of manipulating an image so that resultant image is more suitable than the original one for specific application. Image enhancement can be done in various domains. For image resolution enhancement there are many methods, out of which image interpolation scheme is one of themost effective method. However, resolution is vital aspect of any image. Good quality image i.e. high r...

  3. Satellite Angular Velocity Estimation Based on Star Images and Optical Flow Techniques

    OpenAIRE

    Giancarmine Fasano; Giancarlo Rufino; Domenico Accardo; Michele Grassi

    2013-01-01

    An optical flow-based technique is proposed to estimate spacecraft angular velocity based on sequences of star-field images. It does not require star identification and can be thus used to also deliver angular rate information when attitude determination is not possible, as during platform de tumbling or slewing. Region-based optical flow calculation is carried out on successive star images preprocessed to remove background. Sensor calibration parameters, Poisson equation, and a least-squares...

  4. The Evershed effect observed with 0.2 arsec angular resolution

    CERN Document Server

    Almeida, J S; Bonet, J A; Cerdena, I D

    2006-01-01

    We present an analysis of the Evershed effect observed with a resolution of 0.2 arcsec. Using the new Swedish 1-m Solar Telescope and its Littrow spectrograph, we scan a significant part of a sunspot penumbra. Spectra of the non-magnetic line Fe I 7090.4 A allows us to measure Doppler shifts without magnetic contamination. The observed line profiles are asymmetric. The Doppler shift depends on the part of the line used for measuring, indicating that the velocity structure of penumbrae remains unresolved even with our angular resolution. The observed line profiles are properly reproduced if two components with velocities between zero and several km/s co-exist in the resolution elements. Using Doppler shifts at fixed line depths, we find a local correlation between upflows and bright structures, and downflows and dark structures. This association is not specific of the outer penumbra but it also occurs in the inner penumbra. The existence of such correlation was originally reported by Beckers & Schroter (19...

  5. High-Angular-Resolution and High-Sensitivity Science Enabled by Beamformed ALMA

    CERN Document Server

    Fish, Vincent; Anderson, James; Asada, Keiichi; Baudry, Alain; Broderick, Avery; Carilli, Chris; Colomer, Francisco; Conway, John; Dexter, Jason; Doeleman, Sheperd; Eatough, Ralph; Falcke, Heino; Frey, Sándor; Gabányi, Krisztina; Gálvan-Madrid, Roberto; Gammie, Charles; Giroletti, Marcello; Goddi, Ciriaco; Gómez, Jose L; Hada, Kazuhiro; Hecht, Michael; Honma, Mareki; Humphreys, Elizabeth; Impellizzeri, Violette; Johannsen, Tim; Jorstad, Svetlana; Kino, Motoki; Körding, Elmar; Kramer, Michael; Krichbaum, Thomas; Kudryavtseva, Nadia; Laing, Robert; Lazio, Joseph; Loeb, Abraham; Lu, Ru-Sen; Maccarone, Thomas; Marscher, Alan; Mart'ı-Vidal, Iván; Martins, Carlos; Matthews, Lynn; Menten, Karl; Miller, Jon; Miller-Jones, James; Mirabel, Félix; Muller, Sebastien; Nagai, Hiroshi; Nagar, Neil; Nakamura, Masanori; Paragi, Zsolt; Pradel, Nicolas; Psaltis, Dimitrios; Ransom, Scott; Rodr'\\iguez, Luis; Rottmann, Helge; Rushton, Anthony; Shen, Zhi-Qiang; Smith, David; Stappers, Benjamin; Takahashi, Rohta; Tarchi, Andrea; Tilanus, Remo; Verbiest, Joris; Vlemmings, Wouter; Walker, R Craig; Wardle, John; Wiik, Kaj; Zackrisson, Erik; Zensus, J Anton

    2013-01-01

    An international consortium is presently constructing a beamformer for the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile that will be available as a facility instrument. The beamformer will aggregate the entire collecting area of the array into a single, very large aperture. The extraordinary sensitivity of phased ALMA, combined with the extremely fine angular resolution available on baselines to the Northern Hemisphere, will enable transformational new very long baseline interferometry (VLBI) observations in Bands 6 and 7 (1.3 and 0.8 mm) and provide substantial improvements to existing VLBI arrays in Bands 1 and 3 (7 and 3 mm). The ALMA beamformer will have impact on a variety of scientific topics, including accretion and outflow processes around black holes in active galactic nuclei (AGN), tests of general relativity near black holes, jet launch and collimation from AGN and microquasars, pulsar and magnetar emission processes, the chemical history of the universe and the evolution of fundame...

  6. Analysis of angular reading distortions of photographic images Análise das distorções em leituras angulares de imagens fotográficas

    Directory of Open Access Journals (Sweden)

    Gabriela F. Codarin

    2012-08-01

    Full Text Available BACKGROUND: Although photogrammetry is a widespread technique in the health field, despite of the methodological efforts distortions in the angular readings of the images are common. OBJECTIVE: To measure the error of angular measurements in photo images with different digital resolutions in an object with pre-determined angles. METHODS: We used a rubber ball with 52 cm in circumference. The object was previously marked with angles of 10°, 30°, 60° and 90° degrees. The photographic records were performed with the focal axis of the camera perpendicular and three meters away from the object, without the use of optical zoom and a resolution of 3, 5 and 10 Megapixels (Mp. All photographic records were stored and a previously trained experimenter using the computer program ImageJ analyzed the angular values of each photo. The measurements were performed twice within a fifteen-days interval. Subsequently, we calculated the accuracy, relative error and error in degrees values, precision and the Intraclass Correlation Coefficient (ICC. RESULTS: When analyzing the angle of 10°, the average accuracy of measurements was higher for those records of 3 Mp resolution compared to 5 and 10 Mp resolutions. The ICC was considered excellent for all resolutions. With regards to the analyzed angles in photographic records, it was possible to verify that the 90-degree angle photographs were more accurate, had lower relative error and error in degrees, and were more precise, regardless of image resolution. CONCLUSION: The photographs records that were taken with a 3 Mp resolution provided great accuracy and precision measurements and lower errors values, suggesting to be the proper resolution to generate image of angles of 10º and 30º.CONTEXTUALIZAÇÃO: A biofotogrametria é uma técnica difundida na área da saúde e, apesar dos cuidados metodológicos, há distorções nas leituras angulares das imagens fotográficas. OBJETIVO: Mensurar o erro das medidas

  7. ONE-DIMENSIONAL LIGHT BEAM WIDENING USING PRISMS FOR INCREASE OF SPECTROMETER SPECTRAL RESOLUTION AND ANGULAR DISPERSION

    Directory of Open Access Journals (Sweden)

    I. M. Gulis

    2016-01-01

    Full Text Available The increase of angular dispersion and slit resolution limit of grating spectrometers by means of variation of grating parameters is limited by its period and allowable order of diffraction. The special solutions (echelle, holographic, immersion gratings are acceptable in a limited parameter range and are technologically complex in fabrication, thus hardly applicable to instruments of mass production. We propose to decrease slit resolution limit by one-dimensional beam widening in dispersion plane by means of passing it through oblique prism before incidence onto diffraction grating. The increase of angular dispersion can be achieved by narrowing of dispersed beams after grating while passing through other oblique prism. We prove that slit resolution limit in such a system changes approximately as multiplied by angular magnification of the first prism (that is less than 1 times. Also angular dispersion changed approximately as multiplied by angular magnification of the second prism. The Fresnel reflection from the faces of prisms is analyzed. Accounting for that factor gives the increase of resolution about 1,4–1,6 times without loss of light (and can be 2 and more times while using anti-reflective coating. The proposed method is different from the similar ones first of all by its simplicity because it uses simple optical elements – plane reflective grating and thin prisms. It can be applied to amend the analytical characteristics of dispersive spectrometers, first of all the small-sized ones. 

  8. SMA OBSERVATIONS OF CLASS 0 PROTOSTARS: A HIGH ANGULAR RESOLUTION SURVEY OF PROTOSTELLAR BINARY SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Chen Xuepeng [Purple Mountain Observatory, Chinese Academy of Sciences, 2 West Beijing Road, Nanjing 210008 (China); Arce, Hector G.; Dunham, Michael M. [Department of Astronomy, Yale University, Box 208101, New Haven, CT 06520-8101 (United States); Zhang Qizhou; Bourke, Tyler L. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Launhardt, Ralf; Henning, Thomas [Max Planck Institute for Astronomy, Koenigstuhl 17, D-69117 Heidelberg (Germany); Jorgensen, Jes K. [Niels Bohr Institute and Centre for Star and Planet Formation, Copenhagen University, Juliane Maries Vej 30, DK-2100 Copenhagen O (Denmark); Lee, Chin-Fei [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 106, Taiwan (China); Foster, Jonathan B. [Institute for Astrophysical Research, Boston University, Boston, MA 02215 (United States); Pineda, Jaime E., E-mail: xpchen@pmo.ac.cn, E-mail: xuepeng.chen@yale.edu [ESO, Karl Schwarzschild Str. 2, D-85748 Garching bei Munchen (Germany)

    2013-05-10

    We present high angular resolution 1.3 mm and 850 {mu}m dust continuum data obtained with the Submillimeter Array toward 33 Class 0 protostars in nearby clouds (distance < 500 pc), which represents so far the largest survey toward protostellar binary/multiple systems. The median angular resolution in the survey is 2.''5, while the median linear resolution is approximately 600 AU. Compact dust continuum emission is observed from all sources in the sample. Twenty-one sources in the sample show signatures of binarity/multiplicity, with separations ranging from 50 AU to 5000 AU. The numbers of singles, binaries, triples, and quadruples in the sample are 12, 14, 5, and 2, respectively. The derived multiplicity frequency (MF) and companion star fraction (CSF) for Class 0 protostars are 0.64 {+-} 0.08 and 0.91 {+-} 0.05, respectively, with no correction for completeness. The derived MF and CSF in this survey are approximately two times higher than the values found in the binary surveys toward Class I young stellar objects, and approximately three (for MF) and four (for CSF) times larger than the values found among main-sequence stars, with a similar range of separations. Furthermore, the observed fraction of high-order multiple systems to binary systems in Class 0 protostars (0.50 {+-} 0.09) is also larger than the fractions found in Class I young stellar objects (0.31 {+-} 0.07) and main-sequence stars ({<=}0.2). These results suggest that binary properties evolve as protostars evolve, as predicted by numerical simulations. The distribution of separations for Class 0 protostellar binary/multiple systems shows a general trend in which CSF increases with decreasing companion separation. We find that 67% {+-} 8% of the protobinary systems have circumstellar mass ratios below 0.5, implying that unequal-mass systems are preferred in the process of binary star formation. We suggest an empirical sequential fragmentation picture for binary star formation, based on this

  9. Resolution in digital imaging: enough already?

    Science.gov (United States)

    Siegel, Daniel Mark

    2002-09-01

    Digital images have become the new currency for the exchange of information in dermatology. The main value of the digital image, its ability to be transported via the Internet, is optimal if the image can be shared by all interested parties without the need for the still relatively uncommon broadband connection. The technology behind these captured images is progressing rapidly with a resultant increase in image size and resolution. For all practical purposes in clinical dermatology, the current technology with regard to resolution has already gone beyond the needs of the clinician. This article, using freeware and commercially used software, offers proof that a single megapixel image is adequate for on screen evaluation and publication purposes. PMID:12322995

  10. Effects of angular sampling in tomographic myocardial perfusion imaging with Tl-201

    International Nuclear Information System (INIS)

    The present work presents results of computational and experimental simulations, in order to show the influence of angular sampling in the quality of SPECT images reconstructed with the Convolution Backprojection algorithm. Geometric deformations and contrast artifacts had been produced in the incomplete sampled images. The experimental images were sampled at 32 projections over 1800 and 64 projections over 3600. Attenuation correction was performed for images sampled over 3600. The coomputationally simulated images were sampled at both 64 and 128 projections over 3600. (author)

  11. SINGLE IMAGE SUPER RESOLUTION IN SPATIAL AND WAVELET DOMAIN

    OpenAIRE

    Sapan Naik; Nikunj Patel

    2013-01-01

    Recently single image super resolution is very important research area to generate high-resolution image from given low-resolution image. Algorithms of single image resolution are mainly based on wavelet domain and spatial domain. Filter’s support to model the regularity of natural images is exploited in wavelet domain while edges of images get sharp during up sampling in spatial domain. Here single image super resolution algorithm is presented which based on both spatial and wavelet domain a...

  12. SPI: A high resolution imaging spectrometer for INTEGRAL

    International Nuclear Information System (INIS)

    SPI (Spectrometer for INTEGRAL) is a high spectral resolution gamma-ray telescope using cooled germanium detectors that will be flown on board the INTEGRAL mission in 2001. It consists of an array of 19 closely-packed germanium detectors surrounded by an active bismuth germanate (BGO) anti-coincidence shield. The instrument operates over the energy range 20 keV to 8 MeV with an energy resolution of 1-5 keV. A tungsten coded-aperture mask located 1.7 m from the detector array provides imaging over a 15 deg. fully-coded field-of-view with an angular resolution of ∼3 deg. The point source narrow-line sensitivity is estimated to be 3-7x10-6 ph cm-2 s-1 over most of the range of the instrument (E>200 keV) for a 106 s observation. With its combination of high sensitivity, high spectral resolution and imaging, SPI will improve significantly over the performance of previous instruments such as HEAO-3, OSSE, and Comptel. It can be expected to take a major step forward in experimental studies in nuclear astrophysics. The SPI instrument is being developed under the auspices of the European Space Agency by a large international team of scientists and engineers in both Europe and the United States

  13. The GAMMA-400 gamma-ray telescope characteristics. Angular resolution and electrons/protons separation

    CERN Document Server

    Leonov, A A; Bonvicini, V; Topchiev, N P; Adriani, O; Aptekar, R L; Arkhangelskaja, I V; Arkhangelskiy, A I; Bergstrom, L; Berti, E; Bigongiari, G; Bobkov, S G; Boezio, M; Bogomolov, E A; Bonechi, S; Bongi, M; Bottai, S; Boyarchuk, K A; Castellini, G; Cattaneo, P W; Cumani, P; Dedenko, G L; De Donato, C; Dogiel, V A; Gorbunov, M S; Gusakov, Yu V; Hnatyk, B I; Kadilin, V V; Kaplin, V A; Kaplun, A A; Kheymits, M D; Korepanov, V E; Larsson, J; Loginov, V A; Longo, F; Maestro, P; Marrocchesi, P S; Mikhailov, V V; Mocchiutti, E; Moiseev, A A; Mori, N; Moskalenko, I V; Naumov, P Yu; Papini, P; Pearce, M; Picozza, P; Popov, A V; Rappoldi, A; Ricciarini, S; Runtso, M F; Ryde, F; Serdin, O V; Sparvoli, R; Spillantini, P; Suchkov, S I; Tavani, M; Taraskin, A A; Tiberio, A; Tyurin, E M; Ulanov, M V; Vacchi, A; Vannuccini, E; Vasilyev, G I; Yurkin, Yu T; Zampa, N; Zirakashvili, V N; Zverev, V G

    2014-01-01

    The measurements of gamma-ray fluxes and cosmic-ray electrons and positrons in the energy range from 100 MeV to several TeV, which will be implemented by the specially designed GAMMA-400 gamma-ray telescope, concern with the following broad range of science topics. Searching for signatures of dark matter, surveying the celestial sphere in order to study gamma-ray point and extended sources, measuring the energy spectra of Galactic and extragalactic diffuse gamma-ray emission, studying gamma-ray bursts and gamma-ray emission from the Sun, as well as high precision measuring spectra of high-energy electrons and positrons, protons and nuclei up to the knee. To clarify these scientific problems with the new experimental data the GAMMA-400 gamma-ray telescope possesses unique physical characteristics comparing with previous and present experiments. For gamma-ray energies more than 100 GeV GAMMA-400 provides the energy resolution of ~1% and angular resolution better than 0.02 deg. The methods developed to reconstru...

  14. Coexistence of Near-Field and Far-Field Sources: the Angular Resolution Limit

    International Nuclear Information System (INIS)

    Passive source localization is a well known inverse problem in which we convert the observed measurements into information about the direction of arrivals. In this paper we focus on the optimal resolution of such problem. More precisely, we propose in this contribution to derive and analyze the Angular Resolution Limit (ARL) for the scenario of mixed Near-Field (NF) and Far-Field (FF) Sources. This scenario is relevant to some realistic situations. We base our analysis on the Smith's equation which involves the Cramér-Rao Bound (CRB). This equation provides the theoretical ARL which is independent of a specific estimator. Our methodology is the following: first, we derive a closed-form expression of the CRB for the considered problem. Using these expressions, we can rewrite the Smith's equation as a 4-th order polynomial by assuming a small separation of the sources. Finally, we derive in closed-form the analytic ARL under or not the assumption of low noise variance. The obtained expression is compact and can provide useful qualitative informations on the behavior of the ARL

  15. Hard X-ray photoemission with angular resolution and standing-wave excitation

    Energy Technology Data Exchange (ETDEWEB)

    Fadley, Charles S., E-mail: fadley@physics.ucdavis.edu [Department of Physics, University of California Davis, Davis, CA 95616 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2013-10-15

    Highlights: •Hard X-ray photoemission with angle resolution and standing-waves is discussed. •Hard X-ray angle-resolved photoemission yields k{sup →}-resolved bulk electronic structure. •Hard X-ray photoelectron diffraction provides element-specific atomic structure. •Multilayer standing-wave measurements add depth-resolved composition. •Standing-wave excitation also yields element-specific densities of states. -- Abstract: Several aspects of hard X-ray photoemission that make use of angular resolution and/or standing-wave excitation are discussed. These include hard X-ray angle-resolved photoemission (HARPES) from valence levels, which has the capability of determining bulk electronic structure in a momentum-resolved way; hard X-ray photoelectron diffraction (HXPD), which shows promise for studying element-specific bulk atomic structure, including dopant site occupations; and standing wave studies of the composition and chemical states of buried layers and interfaces. Beyond this, standing wave photoemission can be used to derive element-specific densities of states. Some recent examples relevant to all of these aspects are discussed.

  16. Edge Preserving Image Coding For High Resolution Image Representation

    OpenAIRE

    M. Nagaraju Naik; K. Kumar Naik; P. Rajesh Kumar

    2012-01-01

    Image coding for high resolution representation, with projection edge smoothening is been proposed in this work. In past works it is observed that image projection in larger dimension carried out by imageinterpolation results in high stretching effects at bounding regions of the objects in an image. Though focus is made towards achieving high quality accuracy in image projection very less work is made towards preserving the edge regions. in this paper a approach towards preserving edge at the...

  17. Measurement method for roll angular displacement with a high resolution by using diffraction gratings and a heterodyne interferometer

    International Nuclear Information System (INIS)

    The roll angle measurement is difficult to be achieved directly using a typical commercial interferometer due to its low sensitivity in axial direction, where the axial direction is orthogonal to the plane of the roll angular displacement. A roll angle measurement method combined diffraction gratings with a laser heterodyne interferometer is discussed in this paper. The diffraction grating placed in the plane of a roll angular displacement and the interferometer arranged in the plane's orthogonal direction, constitute the measurement pattern for the roll angle with high resolution. The roll angular displacement, considered as the linear, can be tested precisely when the corresponding angle is very small. Using the proposed method, the angle roll measurement obtains the high resolution of 0.002″. Experiment has proved its feasibility and practicability

  18. Bioelasticity imaging:II. Spatial resolution

    Science.gov (United States)

    Cook, Larry T.; Zhu, Yanning; Hall, Timothy J.; Insana, Michael F.

    2000-04-01

    The large elasticity contrast possible with strain imaging promises new diagnostic information to augment x-ray, MRI, and ultrasound for the detection of tumors in soft tissue. In the past, we described the design of an elastographic system using the Fourier crosstalk concept introduced by Barrett and Gifford. The diagonal of the crosstalk matrix is related to the pre-sampled modulation transfer function (MTF) of the strain image. Another approach to measuring the spatial resolution of an elasticity image employs a linear frequency- modulated (chirp) strain pattern imposed upon a simulated ultrasonic echo field to study the strain modulation over a range of spatial frequencies in the image. In experiments, high contrast inclusions positioned at varying separations were imaged to apply the Rayleigh criterion for resolution measurement. We measured MTF curves that fell to 0.2 at a spatial frequency of 0.5 mm-1 to 1 mm-1 under realistic conditions. The spatial resolution for ultrasonic strain imaging strongly depends on the transducer properties and deformation patterns applied to the object. Experiments with tissue-like phantoms mimicking the properties of early breast cancer show that 2 mm spheres three times stiffer than the background can be readily resolved. Thus, the potential for using elasticity imaging to detect early breast cancers is excellent.

  19. Super-resolution near field imaging device

    DEFF Research Database (Denmark)

    2014-01-01

    Super-resolution imaging device comprising at least a first and a second elongated coupling element, each having a first transverse dimension at a first end and a second transverse dimension at a second end and being adapted for guiding light between their respective first and second ends, each...... matrix and the second ends of the coupling elements are located at or in a vicinity of the second side of the matrix. The second transverse dimension is larger than the first transverse dimension. A microscope objective system and a microscope comprising the super-resolution imaging device are also...

  20. Stability of dislocation structures in copper towards stress relaxation investigated by high angular resolution 3D X-ray diffraction

    DEFF Research Database (Denmark)

    Jakobsen, Bo; Poulsen, Henning Friis; Lienert, Ulrich;

    2009-01-01

    A 300 µm thick tensile specimen of OFHC copper is subjected to a tensile loading sequence and deformed to a maximal strain of 3.11%. Using the novel three-dimensional X-ray diffraction method High angular resolution 3DXRD', the evolution of the microstructure within a deeply embedded grain is cha...

  1. Nuclear magnetic resonance imaging at microscopic resolution

    Science.gov (United States)

    Johnson, G. Allan; Thompson, Morrow B.; Gewalt, Sally L.; Hayes, Cecil E.

    Resolution limits in NMR imaging are imposed by bandwidth considerations, available magnetic gradients for spatial encoding, and signal to noise. This work reports modification of a clinical NMR imaging device with picture elements of 500 × 500 × 5000 μm to yield picture elements of 50 × 50 × 1000 μm. Resolution has been increased by using smaller gradient coils permitting gradient fields >0.4 mT/cm. Significant improvements in signal to noise are achieved with smaller rf coils, close attention to choice of bandwidth, and signal averaging. These improvements permit visualization of anatomical structures in the rat brain with an effective diameter of 1 cm with the same definition as is seen in human imaging. The techniques and instrumentation should open a number of basic sciences such as embryology, plant sciences, and teratology to the potentials of NMR imaging.

  2. Pyramidal fractal dimension for high resolution images

    Science.gov (United States)

    Mayrhofer-Reinhartshuber, Michael; Ahammer, Helmut

    2016-07-01

    Fractal analysis (FA) should be able to yield reliable and fast results for high-resolution digital images to be applicable in fields that require immediate outcomes. Triggered by an efficient implementation of FA for binary images, we present three new approaches for fractal dimension (D) estimation of images that utilize image pyramids, namely, the pyramid triangular prism, the pyramid gradient, and the pyramid differences method (PTPM, PGM, PDM). We evaluated the performance of the three new and five standard techniques when applied to images with sizes up to 8192 × 8192 pixels. By using artificial fractal images created by three different generator models as ground truth, we determined the scale ranges with minimum deviations between estimation and theory. All pyramidal methods (PM) resulted in reasonable D values for images of all generator models. Especially, for images with sizes ≥1024 ×1024 pixels, the PMs are superior to the investigated standard approaches in terms of accuracy and computation time. A measure for the possibility to differentiate images with different intrinsic D values did show not only that the PMs are well suited for all investigated image sizes, and preferable to standard methods especially for larger images, but also that results of standard D estimation techniques are strongly influenced by the image size. Fastest results were obtained with the PDM and PGM, followed by the PTPM. In terms of absolute D values best performing standard methods were magnitudes slower than the PMs. Concluding, the new PMs yield high quality results in short computation times and are therefore eligible methods for fast FA of high-resolution images.

  3. Image Resolution Enhancement using DWT and Spatial Domain Interpolation Technique

    OpenAIRE

    Mrs. G. Padma Priya; Prof. T. Venkateswarlu

    2016-01-01

    Image Resolution is one of the important quality metrics of images. Images with high resolution are required in many fields. In this paper, a new resolution enhancement technique is proposed based on the interpolation of four sub band images generated by Discrete Wavelet Transform (DWT) and the original Low Resolution (LR) input image. In this technique, the four sub band images generated by DWT and the input LR image are interpolated with scaling factor, α and then performed inve...

  4. MULTI-RESOLUTION SEAMLESS IMAGE DATABASE

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper presents the basic concepts and principles,data structure and high efficient spatial index for multi-resolution image database.The database is characterized by arrangement of multi-resource image data and seamless mosaic,distribution-based storage and management,integration with other spatial database software such as GeoStar and GeoGrid developed by Wuhan Technical University of Surveying and Mapping.

  5. Electron-optic limitations on image resolution

    Science.gov (United States)

    Engstrom, R. W.

    1973-01-01

    Various approaches are considered to the solution of the electron-optical problem of designing an image tube configuration. Emphasis is placed on the method of computer design, and an illustration is given in which the technique is used in the design of an 80-mm image tube with a zoom capability of 3:1. The solutions are discussed to such problems as image distortion, magnification, and electron bundles striking the zoom electrode. Three types of an electron-optical configuration are examined for the electron-optic limitations to resolution: (1) the proximity image tube, (2) the magnetic-type image tube having uniform electric and magnetic fields, and (3) the electrostatic-type image tube such as the 80-mm zoom tube.

  6. Southern Massive Stars at High Angular Resolution: Observational Campaign and Companion Detection

    CERN Document Server

    Sana, H; Lacour, S; Berger, J -P; Duvert, G; Gauchet, L; Norris, B; Olofsson, J; Pickel, D; Zins, G; Absil, O; de Koter, A; Kratter, K; Schnurr, O; Zinnecker, H

    2014-01-01

    Multiplicity is one of the most fundamental observable properties of massive O-type stars and offers a promising way to discriminate between massive star formation theories. Nevertheless, companions at separations between 1 and 100 mas remain mostly unknown due to intrinsic observational limitations. [...] The Southern MAssive Stars at High angular resolution survey (SMASH+) was designed to fill this gap by providing the first systematic interferometric survey of Galactic massive stars. We observed 117 O-type stars with VLTI/PIONIER and 162 O-type stars with NACO/SAM, respectively probing the separation ranges 1-45 and 30-250mas and brightness contrasts of Delta H < 4 and Delta H < 5. Taking advantage of NACO's field-of-view, we further uniformly searched for visual companions in an 8''-radius down to Delta H = 8. This paper describes the observations and data analysis, reports the discovery of almost 200 new companions in the separation range from 1mas to 8'' and presents the catalog of detections, inc...

  7. Milliarcsecond angular resolution of reddened stellar sources in the vicinity of the Galactic Center

    CERN Document Server

    Richichi, A; Mason, E; Stegmaier, J; Chandrasekhar, T

    2008-01-01

    For the first time, the lunar occultation technique has been employed on a very large telescope in the near-IR with the aim of achieving systematically milliarcsecond resolution on stellar sources. We have demonstrated the burst mode of the ISAAC instrument, using a fast read-out on a small area of the detector to record many tens of seconds of data at a time on fields of few squared arcsec. We have used the opportunity to record a large number of LO events during a passage of the Moon close to the Galactic Center in March 2006. We have developed a data pipeline for the treatment of LO data, including the automated estimation of the main data analysis parameters using a wavelet-based method, and the preliminary fitting and plotting of all light curves. We recorded 51 LO events over about four hours. Of these, 30 resulted of sufficient quality to enable a detailed fitting. We detected two binaries with subarcsec projected separation and three stars with a marginally resolved angular diameter of about 2 mas. Tw...

  8. Sub-Airy disk angular resolution with high dynamic range in the near-infrared

    Directory of Open Access Journals (Sweden)

    Richichi A.

    2011-07-01

    Full Text Available Lunar occultations (LO are a simple and effective high angular resolution method, with minimum requirements in instrumentation and telescope time. They rely on the analysis of the diffraction fringes created by the lunar limb. The diffraction phenomen occurs in space, and as a result LO are highly insensitive to most of the degrading effects that limit the performance of traditional single telescope and long-baseline interferometric techniques used for direct detection of faint, close companions to bright stars. We present very recent results obtained with the technique of lunar occultations in the near-IR, showing the detection of companions with very high dynamic range as close as few milliarcseconds to the primary star. We discuss the potential improvements that could be made, to increase further the current performance. Of course, LO are fixed-time events applicable only to sources which happen to lie on the Moon’s apparent orbit. However, with the continuously increasing numbers of potential exoplanets and brown dwarfs beign discovered, the frequency of such events is not negligible. I will list some of the most favorable potential LO in the near future, to be observed from major observatories.

  9. On solving the orientation gradient dependency of high angular resolution EBSD

    Energy Technology Data Exchange (ETDEWEB)

    Maurice, Claire, E-mail: maurice@emse.fr [Ecole des Mines de Saint-Etienne, UMR CNRS 5146 LCG, 158 cours Fauriel, F-42023 Saint-Etienne (France); Driver, Julian H. [Ecole des Mines de Saint-Etienne, UMR CNRS 5146 LCG, 158 cours Fauriel, F-42023 Saint-Etienne (France); Fortunier, Roland [Universite de Lyon, ENISE, UMR CNRS 5513 LTDS, 58 rue Jean Parot, F-42100 Saint-Etienne (France)

    2012-02-15

    Current high angular resolution electron backscatter diffraction (HR-EBSD) methods are successful at measuring pure elastic strains but have difficulties with plastically deformed metals containing orientation gradients. The strong influences of these rotations have been systematically studied using simulated patterns based on the many-beam dynamic theory of EBSP formation; a rotation of only 1 Degree-Sign can lead to apparent elastic strains of several hundred microstrains. A new method is proposed to correct for orientation gradient effects using a two-step procedure integrating finite strain theory: (i) reference pattern rotation and (ii) cross-correlation; it reduces the strain errors on the simulated patterns to tens of microstrains. An application to plastically deformed ferritic steel to generates elastic strain maps with significantly reduced values of both strains and residual errors in regions of rotations exceeding 1 Degree-Sign . -- Highlights: Black-Right-Pointing-Pointer Many-beam theory simulations show that HR-EBSD is sensitive to orientation gradients. Black-Right-Pointing-Pointer Finite strain theory and rotation processing the reference EBSP solves the problem. Black-Right-Pointing-Pointer New method succesfully applied to plastically strained IF steel.

  10. Compressive sensing for high resolution radar imaging

    NARCIS (Netherlands)

    Anitori, L.; Otten, M.P.G.; Hoogeboom, P.

    2010-01-01

    In this paper we present some preliminary results on the application of Compressive Sensing (CS) to high resolution radar imaging. CS is a recently developed theory which allows reconstruction of sparse signals with a number of measurements much lower than what is required by the Shannon sampling th

  11. Smartphone microendoscopy for high resolution fluorescence imaging

    CERN Document Server

    Hong, Xiangqian; Mugler, Dale H; Yu, Bing

    2016-01-01

    High resolution optical endoscopes are increasingly used in diagnosis of various medical conditions of internal organs, such as the gastrointestinal tracts, but they are too expensive for use in resource-poor settings. On the other hand, smartphones with high resolution cameras and Internet access have become more affordable, enabling them to diffuse into most rural areas and developing countries in the past decade. In this letter we describe a smartphone microendoscope that can take fluorescence images with a spatial resolution of 3.1 {\\mu}m. Images collected from ex vivo, in vitro and in vivo samples using the device are also presented. The compact and cost-effective smartphone microendoscope may be envisaged as a powerful tool for detecting pre-cancerous lesions of internal organs in low and middle income countries.

  12. Resolution enhancement in nonlinear photoacoustic imaging

    International Nuclear Information System (INIS)

    Nonlinear processes can be exploited to gain access to more information than is possible in the linear regime. Nonlinearity modifies the spectra of the excitation signals through harmonic generation, frequency mixing, and spectral shifting, so that features originally outside the detector range can be detected. Here, we present an experimental study of resolution enhancement for photoacoustic imaging of thin metal layers immersed in water. In this case, there is a threshold in the excitation below which no acoustic signal is detected. Above threshold, the nonlinearity reduces the width of the active area of the excitation beam, resulting in a narrower absorption region and thus improved spatial resolution. This gain is limited only by noise, as the active area of the excitation can be arbitrarily reduced when the fluence becomes closer to the threshold. Here, we demonstrate a two-fold improvement in resolution and quantify the image quality as the excitation fluence goes through threshold

  13. Thin fused silica optics for a few arcsec angular resolution and large collecting area x-ray telescope

    Science.gov (United States)

    Citterio, O.; Civitani, M. M.; Pareschi, G.; Basso, S.; Campana, S.; Conconi, P.; Ghigo, M.; Mattaini, E.; Moretti, A.; Parodi, G.; Tagliaferri, G.

    2013-09-01

    The implementation of a X-ray mission with high imaging capabilities, similar to those achieved with Chandra (SMART-X project, led by CfA and involving several other US Institutes. This project is based on adjustable segments of thin foil mirrors with piezo-electric actuators, aiming to achieve an effective area mirrors are based on Si substrates that are super-polished and figured starting from a bulky Si ingot, from which they are properly cut. Here we propose an alternative method based on precise direct grinding, figuring and polishing of thin (a few mm) glass shells with innovative deterministic polishing methods. This is followed by a final correction via ion figuring to obtain the desired accuracy in order to achieve the 1 arc sec HEW requirement. For this purpose, a temporary stiffening structure is used to support the shell from the polishing operations up to its integration in the telescope supporting structure. We will present the technological process under development, the results achieved so far and some mission scenarios based on this kind of optics, aiming to achieve an effective area more than 10 times larger than Chandra and an angular resolution of 1 arcsec HEW on axis and of a few arcsec off-axis across a large field of view (1 deg in diameter).

  14. Image Resolution Enhancement Using PCA Based Post Filtering

    OpenAIRE

    Qiang Guo; Ya Chen

    2013-01-01

    In this study an image resolution enhancement method is presented that uses the NEDI method to generate an initial image. To increase the detail of this initial image, the given low resolution image is fused with it to achieve a new image. Then the final high resolution image is obtained by using a PCA based filtering to reduce the distortion of this new image. Experimental results on test images demonstrate that the proposed method provides competitive performance.

  15. Heralded phase-contrast imaging using an orbital angular momentum phase-filter

    Science.gov (United States)

    Aspden, Reuben S.; Morris, Peter A.; He, Ruiqing; Chen, Qian; Padgett, Miles J.

    2016-05-01

    We utilise the position and orbital angular momentum (OAM) correlations between the signal and idler photons generated in the down-conversion process to obtain ghost images of a phase object. By using an OAM phase filter, which is non-local with respect to the object, the images exhibit isotropic edge-enhancement. This imaging technique is the first demonstration of a full-field, phase-contrast imaging system with non-local edge enhancement, and enables imaging of phase objects using significantly fewer photons than standard phase-contrast imaging techniques.

  16. Satellite angular velocity estimation based on star images and optical flow techniques.

    Science.gov (United States)

    Fasano, Giancarmine; Rufino, Giancarlo; Accardo, Domenico; Grassi, Michele

    2013-01-01

    An optical flow-based technique is proposed to estimate spacecraft angular velocity based on sequences of star-field images. It does not require star identification and can be thus used to also deliver angular rate information when attitude determination is not possible, as during platform de tumbling or slewing. Region-based optical flow calculation is carried out on successive star images preprocessed to remove background. Sensor calibration parameters, Poisson equation, and a least-squares method are then used to estimate the angular velocity vector components in the sensor rotating frame. A theoretical error budget is developed to estimate the expected angular rate accuracy as a function of camera parameters and star distribution in the field of view. The effectiveness of the proposed technique is tested by using star field scenes generated by a hardware-in-the-loop testing facility and acquired by a commercial-off-the shelf camera sensor. Simulated cases comprise rotations at different rates. Experimental results are presented which are consistent with theoretical estimates. In particular, very accurate angular velocity estimates are generated at lower slew rates, while in all cases the achievable accuracy in the estimation of the angular velocity component along boresight is about one order of magnitude worse than the other two components. PMID:24072023

  17. Satellite Angular Velocity Estimation Based on Star Images and Optical Flow Techniques

    Directory of Open Access Journals (Sweden)

    Giancarmine Fasano

    2013-09-01

    Full Text Available An optical flow-based technique is proposed to estimate spacecraft angular velocity based on sequences of star-field images. It does not require star identification and can be thus used to also deliver angular rate information when attitude determination is not possible, as during platform de tumbling or slewing. Region-based optical flow calculation is carried out on successive star images preprocessed to remove background. Sensor calibration parameters, Poisson equation, and a least-squares method are then used to estimate the angular velocity vector components in the sensor rotating frame. A theoretical error budget is developed to estimate the expected angular rate accuracy as a function of camera parameters and star distribution in the field of view. The effectiveness of the proposed technique is tested by using star field scenes generated by a hardware-in-the-loop testing facility and acquired by a commercial-off-the shelf camera sensor. Simulated cases comprise rotations at different rates. Experimental results are presented which are consistent with theoretical estimates. In particular, very accurate angular velocity estimates are generated at lower slew rates, while in all cases the achievable accuracy in the estimation of the angular velocity component along boresight is about one order of magnitude worse than the other two components.

  18. Comparison of super-resolution benefits for downsampled images and real low-resolution data

    NARCIS (Netherlands)

    Peng, Yuxi; Spreeuwers, Luuk; Gökberk, Berk; Veldhuis, Raymond

    2013-01-01

    Recently, more and more researchers are exploring the benefits of super-resolution methods on low-resolution face recognition. However, often results presented are obtained on downsampled high-resolution face images. Because downsampled images are different from real images taken at low resolution,

  19. Double Sparse Multi-Frame Image Super Resolution

    OpenAIRE

    Kato, Toshiyuki; Hino, Hideitsu; Murata, Noboru

    2015-01-01

    A large number of image super resolution algorithms based on the sparse coding are proposed, and some algorithms realize the multi-frame super resolution. In multi-frame super resolution based on the sparse coding, both accurate image registration and sparse coding are required. Previous study on multi-frame super resolution based on sparse coding firstly apply block matching for image registration, followed by sparse coding to enhance the image resolution. In this paper, these two problems a...

  20. Heuristic optimization in penumbral image for high resolution reconstructed image

    International Nuclear Information System (INIS)

    Penumbral imaging is a technique which uses the fact that spatial information can be recovered from the shadow or penumbra that an unknown source casts through a simple large circular aperture. The size of the penumbral image on the detector can be mathematically determined as its aperture size, object size, and magnification. Conventional reconstruction methods are very sensitive to noise. On the other hand, the heuristic reconstruction method is very tolerant of noise. However, the aperture size influences the accuracy and resolution of the reconstructed image. In this article, we propose the optimization of the aperture size for the neutron penumbral imaging.

  1. Wavelet Domain Multidictionary Learning for Single Image Super-Resolution

    OpenAIRE

    Xiaomin Wu; Jiulun Fan; Jian Xu; Yanzi Wang

    2015-01-01

    Image super-resolution (SR) aims at recovering the high-frequency (HF) details of a high-resolution (HR) image according to the given low-resolution (LR) image and some priors about natural images. Learning the relationship of the LR image and its corresponding HF details to guide the reconstruction of the HR image is needed. In order to alleviate the uncertainty in HF detail prediction, the HR and LR images are usually decomposed into 4 subbands after 1-level discrete...

  2. Imaging Genetic Molecules At Atomic Resolution

    Science.gov (United States)

    Coles, L. Stephen

    1993-01-01

    Proposed method of imaging informational polymeric biological molecules at atomic resolution enables determination of sequences of component monomers about 10 to the 3rd power to 10 to the 4th power times as fast as conventional methods do. Accelerates research on genetic structures of animals and plants. Also contributes significantly to imaging processes like scanning electron microscopy (SEM), atomic-force microscopy (AFM), and scanning tunneling microscopy (STM) in cases in which necessary to locate or identify small specimens on relatively large backgrounds and subtract background images to obtain images of specimens in isolation. V-grooves on silicon wafer laid out in square pattern, intersections of which marked to identify coordinates. Specimen molecules held in grooves for reproducible positioning and scanning by AFM or STM.

  3. Image simulation for atomic resolution secondary electron image

    International Nuclear Information System (INIS)

    It has been demonstrated recently that an atomic resolution secondary electron (SE) image can be achieved with a scanning transmission electron microscope (STEM) equipped with a probe-aberration corrector. Its high sensitivity to the surface structure provides a powerful tool to simultaneously study both surface and bulk structure in the STEM, in the combination with the annular dark field (ADF) image. To quantitatively explain the atomic resolution SE image and retrieve surface-structure information, an image simulation is required. Here, we develop a method to simultaneously calculate, for the first time, the atomic resolution SE and ADF-STEM images, based on the multislice method with a frozen-phonon approximation. An object function for secondary electrons, derived from the inelastic scattering, is used to calculate the intensity distribution of the secondary electrons emitted from each slice. The simulations show that the SE image contrast is sensitive to the surface structure and the electron inelastic mean free path, but insensitive to specimen thickness when the thickness is more than 5 nm. The simulated SE images for SrTiO3 crystal show good agreement with the experimental observations. -- Highlights: ► A method is proposed to simulate secondary electron images at atomic resolution. ► Multislice method is used for propagation of primary electrons. ► An object function is derived to calculate secondary electrons emitted from each slice. ► The calculations are compared with experiments. ► It is demonstrated that the secondary electron image is sensitive to the surface structure.

  4. Super-resolution in computational imaging.

    Science.gov (United States)

    Bertero, M; Boccacci, P

    2003-01-01

    Super-resolution is a word used in different contexts but mainly in the case of methods aimed at improving the resolution of an optical instrument beyond the diffraction limit. Such a result may be achieved by means of specific instrumental techniques (such as, for instance, interferometry) or by means of a suitable processing of a digital image; in the latter case we will use the expression computational super-resolution (CSR). In this paper we describe the basic concepts underlying CSR without using the mathematics required for establishing its theoretical validity. The aim is to introduce a wide audience to this topic, to specify the situations where CSR is feasible and to emphasize the point that unlimited CSR is not possible. PMID:12932769

  5. Super-Resolution Reconstruction for Multi-Angle Remote Sensing Images Considering Resolution Differences

    OpenAIRE

    Hongyan Zhang; Zeyu Yang; Liangpei Zhang; Huanfeng Shen

    2014-01-01

    Multi-angle remote sensing images are acquired over the same imaging scene from different angles, and share similar but not identical information. It is therefore possible to enhance the spatial resolution of the multi-angle remote sensing images by the super-resolution reconstruction technique. However, different sensor shooting angles lead to different resolutions for each angle image, which affects the effectiveness of the super-resolution reconstruction of the multi-angle images. In vie...

  6. Sparse Coding Approach for Multi-Frame Image Super Resolution

    OpenAIRE

    Kato, Toshiyuki; Hino, Hideitsu; Murata, Noboru

    2014-01-01

    An image super-resolution method from multiple observation of low-resolution images is proposed. The method is based on sub-pixel accuracy block matching for estimating relative displacements of observed images, and sparse signal representation for estimating the corresponding high-resolution image. Relative displacements of small patches of observed low-resolution images are accurately estimated by a computationally efficient block matching method. Since the estimated displacements are also ...

  7. High Resolution Neutron Imaging of Microfossils

    Czech Academy of Sciences Publication Activity Database

    Jakoubek, J.; Pospíšil, S.; Vacík, Jiří; Vavřík, Daniel

    New York : IEEE, 2012 - (Yu, B.), s. 226-229 ISBN 978-1-4673-2030-6. ISSN 1082-3654. [IEEE Nuclear Science Symposium and Medical Imaging Conference. Anaheim (US), 29.10.2012-3.11.2012] Institutional support: RVO:68378297 ; RVO:61389005 Keywords : Carbon structures * Detectability * High resolution Subject RIV: BM - Solid Matter Physics ; Magnetism; JL - Materials Fatigue, Friction Mechanics (UTAM-F)

  8. Computed tomography with selectable image resolution

    International Nuclear Information System (INIS)

    A computed tomography system x-ray detector has a central group of half-width detector elements and groups of full-width elements on each side of the central group. To obtain x-ray attenuation data for whole body layers, the half-width elements are switched effectively into paralleled pairs so all elements act like full-width elements and an image of normal resolution is obtained. For narrower head layers, the elements in the central group are used as half-width elements so resolution which is twice as great as normal is obtained. The central group is also used in the half-width mode and the outside groups are used in the full-width mode to obtain a high resolution image of a body zone within a full body layer. In one embodiment data signals from the detector are switched by electronic multiplexing and in another embodiment a processor chooses the signals for the various kinds of images that are to be reconstructed. (author)

  9. All sky mapping of the Cosmic Microwave Background at 8' angular resolution with a 0.1 K bolometer: simulations

    OpenAIRE

    Giard, M.; Hivon, E.; Nguyen, C.; Gispert, R.; Górski, K. M.; Lange, A; Ristorcelli, I.

    1999-01-01

    We present simulations of observations with the 143 GHz channel of the Planck High Frequency Instrument (HFI). These simulations are performed over the entire sky, using the true angular resolution of this channel: 8 arcmin FWHM, 3.5 arcmin per pixel. We show that with measured 0.1 K bolometer performances, the sensitivity needed on the Cosmic Microwave Background (CMB) survey is obtained using simple and robust data processing techniques, including a destriping algorithm.

  10. Resolution limits for wave equation imaging

    KAUST Repository

    Huang, Yunsong

    2014-08-01

    Formulas are derived for the resolution limits of migration-data kernels associated with diving waves, primary reflections, diffractions, and multiple reflections. They are applicable to images formed by reverse time migration (RTM), least squares migration (LSM), and full waveform inversion (FWI), and suggest a multiscale approach to iterative FWI based on multiscale physics. That is, at the early stages of the inversion, events that only generate low-wavenumber resolution should be emphasized relative to the high-wavenumber resolution events. As the iterations proceed, the higher-resolution events should be emphasized. The formulas also suggest that inverting multiples can provide some low- and intermediate-wavenumber components of the velocity model not available in the primaries. Finally, diffractions can provide twice or better the resolution than specular reflections for comparable depths of the reflector and diffractor. The width of the diffraction-transmission wavepath is approximately λ at the diffractor location for the diffraction-transmission wavepath. © 2014 Elsevier B.V.

  11. The photon angular momentum controversy: Resolution of a conflict between laser optics and particle physics

    Directory of Open Access Journals (Sweden)

    Elliot Leader

    2016-05-01

    Full Text Available The claim some years ago, contrary to all textbooks, that the angular momentum of a photon (and gluon can be split in a gauge-invariant way into an orbital and spin term, sparked a major controversy in the Particle Physics community, exacerbated by the realization that many different forms of the angular momentum operators are, in principle, possible. A further cause of upset was the realization that the gluon polarization in a nucleon, a supposedly physically meaningful quantity, corresponds only to the gauge-variant gluon spin derived from Noether's theorem, evaluated in a particular gauge. On the contrary, Laser Physicists have, for decades, been happily measuring physical quantities which correspond to photon orbital and spin angular momentum evaluated in a particular gauge. This paper reconciles the two points of view, and shows that it is the gauge invariant version of the canonical angular momentum which agrees with the results of a host of laser optics experiments.

  12. The photon angular momentum controversy: Resolution of a conflict between laser optics and particle physics

    Science.gov (United States)

    Leader, Elliot

    2016-05-01

    The claim some years ago, contrary to all textbooks, that the angular momentum of a photon (and gluon) can be split in a gauge-invariant way into an orbital and spin term, sparked a major controversy in the Particle Physics community, exacerbated by the realization that many different forms of the angular momentum operators are, in principle, possible. A further cause of upset was the realization that the gluon polarization in a nucleon, a supposedly physically meaningful quantity, corresponds only to the gauge-variant gluon spin derived from Noether's theorem, evaluated in a particular gauge. On the contrary, Laser Physicists have, for decades, been happily measuring physical quantities which correspond to photon orbital and spin angular momentum evaluated in a particular gauge. This paper reconciles the two points of view, and shows that it is the gauge invariant version of the canonical angular momentum which agrees with the results of a host of laser optics experiments.

  13. SINGLE IMAGE SUPER RESOLUTION IN SPATIAL AND WAVELET DOMAIN

    Directory of Open Access Journals (Sweden)

    Sapan Naik

    2013-08-01

    Full Text Available Recently single image super resolution is very important research area to generate high-resolution image from given low-resolution image. Algorithms of single image resolution are mainly based on wavelet domain and spatial domain. Filter’s support to model the regularity of natural images is exploited in wavelet domain while edges of images get sharp during up sampling in spatial domain. Here single image super resolution algorithm is presented which based on both spatial and wavelet domain and take the advantage of both. Algorithm is iterative and use back projection to minimize reconstruction error. Wavelet based denoising method is also introduced to remove noise.

  14. Isotope specific resolution recovery image reconstruction in high resolution PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kotasidis, Fotis A. [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva, Switzerland and Wolfson Molecular Imaging Centre, MAHSC, University of Manchester, M20 3LJ, Manchester (United Kingdom); Angelis, Georgios I. [Faculty of Health Sciences, Brain and Mind Research Institute, University of Sydney, NSW 2006, Sydney (Australia); Anton-Rodriguez, Jose; Matthews, Julian C. [Wolfson Molecular Imaging Centre, MAHSC, University of Manchester, Manchester M20 3LJ (United Kingdom); Reader, Andrew J. [Montreal Neurological Institute, McGill University, Montreal QC H3A 2B4, Canada and Department of Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King' s College London, St. Thomas’ Hospital, London SE1 7EH (United Kingdom); Zaidi, Habib [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva (Switzerland); Geneva Neuroscience Centre, Geneva University, CH-1205 Geneva (Switzerland); Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, PO Box 30 001, Groningen 9700 RB (Netherlands)

    2014-05-15

    Purpose: Measuring and incorporating a scanner-specific point spread function (PSF) within image reconstruction has been shown to improve spatial resolution in PET. However, due to the short half-life of clinically used isotopes, other long-lived isotopes not used in clinical practice are used to perform the PSF measurements. As such, non-optimal PSF models that do not correspond to those needed for the data to be reconstructed are used within resolution modeling (RM) image reconstruction, usually underestimating the true PSF owing to the difference in positron range. In high resolution brain and preclinical imaging, this effect is of particular importance since the PSFs become more positron range limited and isotope-specific PSFs can help maximize the performance benefit from using resolution recovery image reconstruction algorithms. Methods: In this work, the authors used a printing technique to simultaneously measure multiple point sources on the High Resolution Research Tomograph (HRRT), and the authors demonstrated the feasibility of deriving isotope-dependent system matrices from fluorine-18 and carbon-11 point sources. Furthermore, the authors evaluated the impact of incorporating them within RM image reconstruction, using carbon-11 phantom and clinical datasets on the HRRT. Results: The results obtained using these two isotopes illustrate that even small differences in positron range can result in different PSF maps, leading to further improvements in contrast recovery when used in image reconstruction. The difference is more pronounced in the centre of the field-of-view where the full width at half maximum (FWHM) from the positron range has a larger contribution to the overall FWHM compared to the edge where the parallax error dominates the overall FWHM. Conclusions: Based on the proposed methodology, measured isotope-specific and spatially variant PSFs can be reliably derived and used for improved spatial resolution and variance performance in resolution

  15. Dual Resolution Images from Paired Fingerprint Cards

    Science.gov (United States)

    NIST Dual Resolution Images from Paired Fingerprint Cards (PC database for purchase)   NIST Special Database 30 is being distributed for use in development and testing of fingerprint compression and fingerprint matching systems. The database allows the user to develop and evaluate data compression algorithms for fingerprint images scanned at both 19.7 ppmm (500 dpi) and 39.4 ppmm (1000 dpi). The data consist of 36 ten-print paired cards with both the rolled and plain images scanned at 19.7 and 39.4 pixels per mm. A newer version of the compression/decompression software on the CDROM can be found at the website http://www.nist.gov/itl/iad/ig/nigos.cfm as part of the NBIS package.

  16. AIRBORNE HIGH-RESOLUTION DIGITAL IMAGING SYSTEM

    Directory of Open Access Journals (Sweden)

    Prado-Molina, J.

    2006-04-01

    Full Text Available A low-cost airborne digital imaging system capable to perform aerial surveys with small-format cameras isintroduced. The equipment is intended to obtain high-resolution multispectral digital photographs constituting so aviable alternative to conventional aerial photography and satellite imagery. Monitoring software handles all theprocedures involved in image acquisition, including flight planning, real-time graphics for aircraft position updatingin a mobile map, and supervises the main variables engaged in the imaging process. This software also creates fileswith the geographical position of the central point of every image, and the flight path followed by the aircraftduring the entire survey. The cameras are mounted on a three-axis stabilized platform. A set of inertial sensorsdetermines platform's deviations independently from the aircraft and an automatic control system keeps thecameras at a continuous nadir pointing and heading, with a precision better than ± 1 arc-degree in three-axis. Thecontrol system is also in charge of saving the platform’s orientation angles when the monitoring software triggersthe camera. These external orientation parameters, together with a procedure for camera calibration give theessential elements for image orthocorrection. Orthomosaics are constructed using commercial GIS software.This system demonstrates the feasibility of large area coverage in a practical and economical way using smallformatcameras. Monitoring and automatization reduce the work while increasing the quality and the amount ofuseful images.

  17. Effects of spatial resolution ratio in image fusion

    Science.gov (United States)

    Ling, Y.; Ehlers, M.; Usery, E.L.; Madden, M.

    2008-01-01

    In image fusion, the spatial resolution ratio can be defined as the ratio between the spatial resolution of the high-resolution panchromatic image and that of the low-resolution multispectral image. This paper attempts to assess the effects of the spatial resolution ratio of the input images on the quality of the fused image. Experimental results indicate that a spatial resolution ratio of 1:10 or higher is desired for optimal multisensor image fusion provided the input panchromatic image is not downsampled to a coarser resolution. Due to the synthetic pixels generated from resampling, the quality of the fused image decreases as the spatial resolution ratio decreases (e.g. from 1:10 to 1:30). However, even with a spatial resolution ratio as small as 1:30, the quality of the fused image is still better than the original multispectral image alone for feature interpretation. In cases where the spatial resolution ratio is too small (e.g. 1:30), to obtain better spectral integrity of the fused image, one may downsample the input high-resolution panchromatic image to a slightly lower resolution before fusing it with the multispectral image.

  18. Single-Frame Image Super-resolution through Contourlet Learning

    OpenAIRE

    Jiji CV; Chaudhuri Subhasis

    2006-01-01

    We propose a learning-based, single-image super-resolution reconstruction technique using the contourlet transform, which is capable of capturing the smoothness along contours making use of directional decompositions. The contourlet coefficients at finer scales of the unknown high-resolution image are learned locally from a set of high-resolution training images, the inverse contourlet transform of which recovers the super-resolved image. In effect, we learn the high-resolution representatio...

  19. Limiting liability via high resolution image processing

    Energy Technology Data Exchange (ETDEWEB)

    Greenwade, L.E.; Overlin, T.K.

    1996-12-31

    The utilization of high resolution image processing allows forensic analysts and visualization scientists to assist detectives by enhancing field photographs, and by providing the tools and training to increase the quality and usability of field photos. Through the use of digitized photographs and computerized enhancement software, field evidence can be obtained and processed as `evidence ready`, even in poor lighting and shadowed conditions or darkened rooms. These images, which are most often unusable when taken with standard camera equipment, can be shot in the worst of photographic condition and be processed as usable evidence. Visualization scientists have taken the use of digital photographic image processing and moved the process of crime scene photos into the technology age. The use of high resolution technology will assist law enforcement in making better use of crime scene photography and positive identification of prints. Valuable court room and investigation time can be saved and better served by this accurate, performance based process. Inconclusive evidence does not lead to convictions. Enhancement of the photographic capability helps solve one major problem with crime scene photos, that if taken with standard equipment and without the benefit of enhancement software would be inconclusive, thus allowing guilty parties to be set free due to lack of evidence.

  20. Associations of water and methanol masers at milli-arcsec angular resolution in two high-mass young stellar objects

    CERN Document Server

    Goddi, C; Sanna, A; Cesaroni, R; Minier, V

    2006-01-01

    Most previous high-angular (<0.1 arcsec) resolution studies of molecular masers in high-mass star forming regions (SFRs) have concentrated mainly on either water or methanol masers. While high-angular resolution observations have clarified that water masers originate from shocks associated with protostellar jets, different environments have been proposed in several sources to explain the origin of methanol masers. Tha aim of the paper is to investigate the nature of the methanol maser birthplace in SFRs and the association between the water and methanol maser emission in the same young stellar object. We have conducted phase-reference Very Long Baseline Interferometry (VLBI) observations of water and methanol masers toward two high-mass SFRs, Sh 2-255 IR and AFGL 5142. In Sh 2-255 IR water masers are aligned along a direction close to the orientation of the molecular outflow observed on angular scales of 1-10 arcsec, tracing possibly the disk-wind emerging from the disk atmosphere. In AFGL 5142 water maser...

  1. Super-resolution photoacoustic fluctuation imaging with multiple speckle illumination

    CERN Document Server

    Chaigne, Thomas; Allain, Marc; Katz, Ori; Gigan, Sylvain; Sentenac, Anne; Bossy, Emmanuel

    2015-01-01

    In deep tissue photoacoustic imaging, the spatial resolution is inherently limited by acoustic diffraction. Moreover, as the ultrasound attenuation increases with frequency, resolution is often traded-off for penetration depth. Here we report on super-resolution photoacoustic imaging by use of multiple speckle illumination. Specifically, we show that the analysis of second-order fluctuations of the photoacoustic images combined with image deconvolution enables resolving optically absorbing structures beyond the acoustic diffraction limit. A resolution increase of almost a factor 2 is demonstrated experimentally. Our method introduces a new framework that could potentially lead to deep tissue photoacoustic imaging with sub-acoustic resolution.

  2. Variational local structure estimation for image super-resolution

    OpenAIRE

    LIAN, HENG

    2007-01-01

    Super-resolution is an important but difficult problem in image/video processing. If a video sequence or some training set other than the given low-resolution image is available, this kind of extra information can greatly aid in the reconstruction of the high-resolution image. The problem is substantially more difficult with only a single low-resolution image on hand. The image reconstruction methods designed primarily for denoising is insufficient for super-resolution problem in the sense th...

  3. Rapid hologram generation utilizing layer-based approach and graphic rendering for realistic three-dimensional image reconstruction by angular tiling

    Science.gov (United States)

    Chen, Jhen-Si; Chu, Daping; Smithwick, Quinn

    2014-03-01

    An approach of rapid hologram generation for the realistic three-dimensional (3-D) image reconstruction based on the angular tiling concept is proposed, using a new graphic rendering approach integrated with a previously developed layer-based method for hologram calculation. A 3-D object is simplified as layered cross-sectional images perpendicular to a chosen viewing direction, and our graphics rendering approach allows the incorporation of clear depth cues, occlusion, and shading in the generated holograms for angular tiling. The combination of these techniques together with parallel computing reduces the computation time of a single-view hologram for a 3-D image of extended graphics array resolution to 176 ms using a single consumer graphics processing unit card.

  4. Reproducible high-resolution multispectral image acquisition in dermatology

    Science.gov (United States)

    Duliu, Alexandru; Gardiazabal, José; Lasser, Tobias; Navab, Nassir

    2015-07-01

    Multispectral image acquisitions are increasingly popular in dermatology, due to their improved spectral resolution which enables better tissue discrimination. Most applications however focus on restricted regions of interest, imaging only small lesions. In this work we present and discuss an imaging framework for high-resolution multispectral imaging on large regions of interest.

  5. High resolution sub-millimeter imaging with ALMA

    International Nuclear Information System (INIS)

    The Atacama Large Millimeter/Submillimeter Array (ALMA) is an international millimeter/submillimeter interferometer under construction in the Atacama Desert of northern Chile. ALMA will be situated on a high-altitude site at 5000 m elevation which provides excellent atmospheric transmission over most of the wavelength range of 0.3 to 3 mm. At the shortest planned wavelength and most extended configuration, the angular resolution of ALMA will be 5 milliarcseconds. This will give us the ability to, for example, image the gas kinematics in protostars and in protoplanetary disks around young Sun-like stars at a distance of 150 pc, or to image the redshifted dust continuum emission from evolving galaxies at epochs of formation as early as z = 10. The instrument will use superconducting (SIS) mixers to provide the lowest possible receiver noise contribution, and special-purpose water vapor radiometers to assist in calibration of atmospheric phase distortions. At present, the first 7 antennas have been delivered and assembled at the Operations Support Facility (OSF) at 3000 m near San Pedro de Atacama. These antennas will be assessed by ALMA engineering and science staff and then moved to the high site for commissioning. Array commissioning will begin in 2009 with fringes and phase closure amongst at least 3 fully functioning antennas at the high site, and early science observations are expected in late 2010, with full operations in 2012.

  6. Gibbs artifact reduction for POCS super-resolution image reconstruction

    Institute of Scientific and Technical Information of China (English)

    Chuangbai XIAO; Jing YU; Kaina SU

    2008-01-01

    The topic of super-resolution image reconstruc-tion has recently received considerable attention among the research community. Super-resolution image reconstruc-tion methods attempt to create a single high-resolution image from a number of low-resolution images (or a video sequence). The method of projections onto convex sets (POCS) for super-resolution image reconstruction attracts many researchers' attention. In this paper, we propose an improvement to reduce the amount of Gibbs artifacts pre-senting on the edges of the high-resolution image recon-structed by the POCS method. The proposed method weights the blur PSF centered at an edge pixel with an exponential function, and consequently decreases the coef-ficients of the PSF in the direction orthogonal to the edge. Experiment results show that the modification reduces effectively the visibility of Gibbs artifacts on edges and improves obviously the quality of the reconstructed high-resolution image.

  7. Away from resolution, assessing the information content of super-resolution images

    OpenAIRE

    Pengo, Thomas; Olivier, Nicolas; Manley, Suliana

    2015-01-01

    Super-resolution microscopy has revolutionized optical fluorescence imaging by improving 3D resolution by 1-2 orders of magnitude. While different methods can successfully increase the resolution, all methods share significant differences with standard imaging methods, making the usual measures of resolution inapplicable. In particular image quality and information content are spatially heterogeneous with variabilities that can be comparable to their mean values, limiting the use of the avera...

  8. A Survey of the Polarized Emission from the Galactic Plane at 1420 MHz with Arcminute Angular Resolution

    CERN Document Server

    Landecker, T L; Reid, R I; Reich, P; Wolleben, M; Kothes, R; Uyaniker, B; Gray, A D; Del Rizzo, D; Furst, E; Taylor, A R; Wielebinski, R

    2010-01-01

    Context: Observations of polarized emission are a significant source of information on the magnetic field that pervades the Interstellar Medium of the Galaxy. Despite the acknowledged importance of the magnetic field in interstellar processes, our knowledge of field configurations on all scales is seriously limited. Aims: This paper describes an extensive survey of polarized Galactic emission at 1.4 GHz that provides data with arcminute resolution and complete coverage of all structures from the broadest angular scales to the resolution limit, giving information on the magneto-ionic medium over a wide range of interstellar environments. Methods: Data from the DRAO Synthesis Telescope, the Effelsberg 100-m Telescope, and the DRAO 26-m Telescope have been combined. Angular resolution is ~1' and the survey extends from l = 66 deg to l = 175 deg over a range -3 deg < b < 5 deg along the northern Galactic plane, with a high-latitude extension from l = 101 deg to l = 116 deg up to b = 17.5 deg. This is the fi...

  9. The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII): High Angular Resolution Astronomy at Far-Infrared Wavelengths

    Science.gov (United States)

    Rinehart, Stephen A.

    2008-01-01

    Astronomical studies at infrared wavelengths have dramatically improved our understanding of the universe, and observations with Spitzer, the upcoming Herschel mission. and SOFIA will continue to provide exciting new discoveries. The comparatively low spatial resolution of these missions, however. is insufficient to resolve the physical scales on which mid- to far-infrared emission arises, resulting in source and structure ambiguities that limit our ability to answer key science questions. Interferometry enables high angular resolution at these wavelengths. We have proposed a new high altitude balloon experiment, the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII). High altitude operation makes far-infrared (30- 300micron) observations possible, and BETTII's 8-meter baseline provides unprecedented angular resolution (-0.5 arcsec) in this band. BETTII will use a double- Fourier instrument to simultaneously obtain both spatial and spectral informatioT. he spatially resolved spectroscopy provided by BETTII will address key questions about the nature of disks in young cluster stars and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the groundwork for future space interferometers.

  10. OBTAINING SUPER-RESOLUTION IMAGES BY COMBINING LOW-RESOLUTION IMAGES WITH HIGH-FREQUENCY INFORMATION DERIVEDFROM TRAINING IMAGES

    Directory of Open Access Journals (Sweden)

    Emil Bilgazyev

    2013-05-01

    Full Text Available In this paper, we propose a new algorithm to estimate a super-resolution image from a given low-resolutionimage, by adding high-frequency information that is extracted from natural high-resolution images in thetraining dataset. The selection of the high-frequency information from the training dataset is accomplished intwo steps, a nearest-neighbor search algorithm is used to select the closest images from the training dataset,which can be implemented in the GPU, and a sparse-representation algorithm is used to estimate a weightparameter to combine the high-frequency information of selected images. This simple but very powerfulsuper-resolution algorithm can produce state-of-the-art results. Qualitatively and quantitatively, wedemonstrate that the proposed algorithm outperforms existing state-of-the-art super-resolution algorithms.

  11. Atomic resolution imaging of ferroelectric domains

    International Nuclear Information System (INIS)

    Electron optical principles involved in obtaining atomic resolution images of ferroelectric domains are reviewed, including the methods available to obtain meaningful interpretation and analysis of the image detail in terms of the atomic structures. Recent work is concerned with establishing the relationship between the essentially static chemical nanodomains and the spatial and temporal fluctuations of the nanoscale polar domains present in the relaxor class of materials, including lead scandium tantalate (PST) and lead magnesium niobate (PMN). Correct interpretation of the images required use of Next Nearest Neighbour Ising model simulations for the chemical domain textures upon which we must superimpose the polar domain textures; an introduction to this work is presented. A thorough analysis of the atomic scale chemical inhomogeneities, based upon the HRTEM results, has lead to an improved formulation of the theory of the dielectric response of PMN and PST, which is capable to predict the observed temperature and frequency dependence. HRTEM may be combined with solid state and statistical physics principles to provide a deeper understanding of structure/property relationships. 15 refs., 6 figs

  12. High resolution neutron imaging for inertial confinement fusion experiments

    International Nuclear Information System (INIS)

    A high resolution neutron imaging system (NIS) is developed and tested on the OMEGA laser facility for inertial confinement fusion (ICF) experiments. This diagnostic uses a coded imaging technique with a high resolution neutron camera. Over the past few years, this detector was improved and neutron images can now be acquired on OMEGA with a 20 μm spatial resolution in the source plane and good signal to noise ratio with both a penumbral and an annular imaging technique. (authors)

  13. Far-field super-resolution imaging of resonant multiples

    KAUST Repository

    Guo, B.

    2016-05-20

    We demonstrate for the first time that seismic resonant multiples, usually considered as noise, can be used for super-resolution imaging in the far-field region of sources and receivers. Tests with both synthetic data and field data show that resonant multiples can image reflector boundaries with resolutions more than twice the classical resolution limit. Resolution increases with the order of the resonant multiples. This procedure has important applications in earthquake and exploration seismology, radar, sonar, LIDAR (light detection and ranging), and ultrasound imaging, where the multiples can be used to make high-resolution images.

  14. Far-field super-resolution imaging of resonant multiples.

    Science.gov (United States)

    Guo, Bowen; Huang, Yunsong; Røstad, Anders; Schuster, Gerard

    2016-05-01

    We demonstrate for the first time that seismic resonant multiples, usually considered as noise, can be used for super-resolution imaging in the far-field region of sources and receivers. Tests with both synthetic data and field data show that resonant multiples can image reflector boundaries with resolutions more than twice the classical resolution limit. Resolution increases with the order of the resonant multiples. This procedure has important applications in earthquake and exploration seismology, radar, sonar, LIDAR (light detection and ranging), and ultrasound imaging, where the multiples can be used to make high-resolution images. PMID:27386521

  15. Single image super-resolution by approximated Heaviside functions

    OpenAIRE

    Deng, Liang-Jian; Guo, Weihong; Huang, Ting-Zhu

    2015-01-01

    Image super-resolution is a process to enhance image resolution. It is widely used in medical imaging, satellite imaging, target recognition, etc. In this paper, we conduct continuous modeling and assume that the unknown image intensity function is defined on a continuous domain and belongs to a space with a redundant basis. We propose a new iterative model for single image super-resolution based on an observation: an image is consisted of smooth components and non-smooth components, and we u...

  16. High resolution imaging detectors and applications

    CERN Document Server

    Saha, Swapan K

    2015-01-01

    Interferometric observations need snapshots of very high time resolution of the order of (i) frame integration of about 100 Hz or (ii) photon-recording rates of several megahertz (MHz). Detectors play a key role in astronomical observations, and since the explanation of the photoelectric effect by Albert Einstein, the technology has evolved rather fast. The present-day technology has made it possible to develop large-format complementary metal oxide–semiconductor (CMOS) and charge-coupled device (CCD) array mosaics, orthogonal transfer CCDs, electron-multiplication CCDs, electron-avalanche photodiode arrays, and quantum-well infrared (IR) photon detectors. The requirements to develop artifact-free photon shot noise-limited images are higher sensitivity and quantum efficiency, reduced noise that includes dark current, read-out and amplifier noise, smaller point-spread functions, and higher spectral bandwidth. This book aims to address such systems, technologies and design, evaluation and calibration, control...

  17. Resolution enhancement phase-contrast imaging by microsphere digital holography

    Science.gov (United States)

    Wang, Yunxin; Guo, Sha; Wang, Dayong; Lin, Qiaowen; Rong, Lu; Zhao, Jie

    2016-05-01

    Microsphere has shown the superiority of super-resolution imaging in the traditional 2D intensity microscope. Here a microsphere digital holography approach is presented to realize the resolution enhancement phase-contrast imaging. The system is designed by combining the microsphere with the image-plane digital holography. A microsphere very close to the object can increase the resolution by transforming the object wave from the higher frequency to the lower one. The resolution enhancement amplitude and phase images can be retrieved from a single hologram. The experiments are carried on the 1D and 2D gratings, and the results demonstrate that the observed resolution has been improved, meanwhile, the phase-contrast image is obtained. The proposed method can improve the transverse resolution in all directions based on a single exposure. Furthermore, this system has extended the application of the microsphere from the conventional 2D microscopic imaging to 3D phase-contrast microscopic imaging.

  18. Angular Cheilitis

    Science.gov (United States)

    ... A This image displays a frequent location for candida infection (angular cheilitis), the corners of the mouth. Overview ... infection, those affected may also have thrush (oral candidiasis). The areas are generally slightly painful. The condition ...

  19. Moderate Resolution Imaging Spectroradiometer (MODIS) Overview

    Science.gov (United States)

    U.S. Geological Survey

    2008-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) is an instrument that collects remotely sensed data used by scientists for monitoring, modeling, and assessing the effects of natural processes and human actions on the Earth's surface. The continual calibration of the MODIS instruments, the refinement of algorithms used to create higher-level products, and the ongoing product validation make MODIS images a valuable time series (2000-present) of geophysical and biophysical land-surface measurements. Carried on two National Aeronautics and Space Administration (NASA) Earth Observing System (EOS) satellites, MODIS acquires morning (EOS-Terra) and afternoon (EOS-Aqua) views almost daily. Terra data acquisitions began in February 2000 and Aqua data acquisitions began in July 2002. Land data are generated only as higher-level products, removing the burden of common types of data processing from the user community. MODIS-based products describing ecological dynamics, radiation budget, and land cover are projected onto a sinusoidal mapping grid and distributed as 10- by 10-degree tiles at 250-, 500-, or 1,000-meter spatial resolution. Some products are also created on a 0.05-degree geographic grid to support climate modeling studies. All MODIS products are distributed in the Hierarchical Data Format-Earth Observing System (HDF-EOS) file format and are available through file transfer protocol (FTP) or on digital video disc (DVD) media. Versions 4 and 5 of MODIS land data products are currently available and represent 'validated' collections defined in stages of accuracy that are based on the number of field sites and time periods for which the products have been validated. Version 5 collections incorporate the longest time series of both Terra and Aqua MODIS data products.

  20. Perceived Image Quality on Mobile Phones with Different Screen Resolution

    OpenAIRE

    Wenjie Zou; Jiarun Song; Fuzheng Yang

    2016-01-01

    The diverse display screen imposes significant challenges for assessing the perceptual media quality across different mobile devices. In this paper, the perceived image quality on different mobile phones is investigated. Firstly, subjective experiments for image quality evaluation are implemented on 9 popular mobile phones and a broadcast-quality monitor to evaluate the impact on perceived image quality regarding the screen resolution, screen size, image resolution, and image coding quality. ...

  1. Self-imaging of orbital angular momentum (OAM) modes in rectangular multimode interference waveguides.

    Science.gov (United States)

    Ma, Zelin; Chen, Hui; Wu, Kaiyi; Zhang, Yanfeng; Chen, Yujie; Yu, Siyuan

    2015-02-23

    We study the propagation of orbital angular momentum (OAM) modes in rectangular multimode waveguides. Due to the multimode interference effect, an OAM mode input forms self-images at certain propagation distances. As OAM modes can be decomposed as the superposition of a pair of quarter-wave phase-shifted even and odd modes, their symmetry properties lead to two different self-imaging categories - forming the OAM-maintaining and the field-splitting self-images. We analyze these phenomena using multimode interference theory, and establish the rules governing the OAM-maintaining self-imaging, which allows the multi-mode interference waveguides to be used as OAM mode splitters and couplers. PMID:25836536

  2. The multiplicity of massive stars: A high angular resolution survey with the HST fine guidance sensor

    Energy Technology Data Exchange (ETDEWEB)

    Aldoretta, E. J.; Gies, D. R.; Henry, T. J.; Jao, W.-C.; Norris, R. P., E-mail: emily@astro.umontreal.ca, E-mail: gies@chara.gsu.edu, E-mail: thenry@chara.gsu.edu, E-mail: jao@chara.gsu.edu, E-mail: norris@chara.gsu.edu [Center for High Angular Resolution Astronomy, Department of Physics and Astronomy, Georgia State University, P. O. Box 5060, Atlanta, GA 30302-5060 (United States); and others

    2015-01-01

    We present the results of an all-sky survey made with the Fine Guidance Sensor on the Hubble Space Telescope to search for angularly resolved binary systems among massive stars. The sample of 224 stars is comprised mainly of Galactic O- and B-type stars and luminous blue variables, plus a few luminous stars in the Large Magellanic Cloud. The FGS TRANS mode observations are sensitive to the detection of companions with an angular separation between 0.″01 and 1.″0 and brighter than △m=5. The FGS observations resolved 52 binary and 6 triple star systems and detected partially resolved binaries in 7 additional targets (43 of these are new detections). These numbers yield a companion detection frequency of 29% for the FGS survey. We also gathered literature results on the numbers of close spectroscopic binaries and wider astrometric binaries among the sample, and we present estimates of the frequency of multiple systems and the companion frequency for subsets of stars residing in clusters and associations, field stars, and runaway stars. These results confirm the high multiplicity fraction, especially among massive stars in clusters and associations. We show that the period distribution is approximately flat in increments of logP. We identify a number of systems of potential interest for long-term orbital determinations, and we note the importance of some of these companions for the interpretation of the radial velocities and light curves of close binaries that have third companions.

  3. The Multiplicity of Massive Stars: A High Angular Resolution Survey with the HST Fine Guidance Sensor

    CERN Document Server

    Aldoretta, E J; Gies, D R; Nelan, E P; Wallace, D J; Hartkopf, W I; Henry, T J; Jao, W -C; Apellániz, J Maíz; Mason, B D; Moffat, A F J; Norris, R P; Richardson, N D; Williams, S J

    2014-01-01

    We present the results of an all-sky survey made with the Fine Guidance Sensor on Hubble Space Telescope to search for angularly resolved binary systems among the massive stars. The sample of 224 stars is comprised mainly of Galactic O- and B-type stars and Luminous Blue Variables, plus a few luminous stars in the Large Magellanic Cloud. The FGS TRANS mode observations are sensitive to detection of companions with an angular separation between 0."01 and 1."0 and brighter than $\\triangle m = 5$. The FGS observations resolved 52 binary and 6 triple star systems and detected partially resolved binaries in 7 additional targets (43 of these are new detections). These numbers yield a companion detection frequency of 29% for the FGS survey. We also gathered literature results on the numbers of close spectroscopic binaries and wider astrometric binaries among the sample, and we present estimates of the frequency of multiple systems and the companion frequency for subsets of stars residing in clusters and associations...

  4. The multiplicity of massive stars: A high angular resolution survey with the HST fine guidance sensor

    International Nuclear Information System (INIS)

    We present the results of an all-sky survey made with the Fine Guidance Sensor on the Hubble Space Telescope to search for angularly resolved binary systems among massive stars. The sample of 224 stars is comprised mainly of Galactic O- and B-type stars and luminous blue variables, plus a few luminous stars in the Large Magellanic Cloud. The FGS TRANS mode observations are sensitive to the detection of companions with an angular separation between 0.″01 and 1.″0 and brighter than △m=5. The FGS observations resolved 52 binary and 6 triple star systems and detected partially resolved binaries in 7 additional targets (43 of these are new detections). These numbers yield a companion detection frequency of 29% for the FGS survey. We also gathered literature results on the numbers of close spectroscopic binaries and wider astrometric binaries among the sample, and we present estimates of the frequency of multiple systems and the companion frequency for subsets of stars residing in clusters and associations, field stars, and runaway stars. These results confirm the high multiplicity fraction, especially among massive stars in clusters and associations. We show that the period distribution is approximately flat in increments of logP. We identify a number of systems of potential interest for long-term orbital determinations, and we note the importance of some of these companions for the interpretation of the radial velocities and light curves of close binaries that have third companions.

  5. From Exoplanets to Quasars: Detection of Potential Damped Lyman Alpha Absorbing Galaxies Using Angular Differential Imaging

    CERN Document Server

    Johnson-Groh, Mara; Ellison, Sara L

    2016-01-01

    The advantages of angular differential imaging (ADI) has been previously untested in imaging the host galaxies of damped Lyman alpha (DLA) systems. In this pilot study, we present the first application of ADI to directly imaging the host galaxy of the DLA seen towards the quasar J1431+3952. K-band imaging of the field surrounding J1431+3952 was obtained on the Gemini North telescope with the adaptive optics system and a laser guide star. We computed a sensitivity curve that demonstrates the sensitivity of our observations as a function of K-band magnitude, impact parameter and DLA angular size. For an impact parameter of 0.5" (3.4 kpc at the redshift of the absorber) our mass sensitivity is log (M_star/M_sun) ~ 9.2 and drops to ~ 9.0 at separations beyond ~ 6 kpc for the smallest size model galaxy. Three candidate galaxies are identified within 5". Stellar masses were computed from the K-band photometry yielding values of log (M_star/M_sun) ~ 9.9, 9.7 and 11.1 respectively. The likely identification of the ab...

  6. A three-channel miniaturized optical system for multi-resolution imaging

    Science.gov (United States)

    Belay, Gebirie Y.; Ottevaere, Heidi; Meuret, Youri; Thienpont, Hugo

    2013-09-01

    Inspired by the natural compound eyes of insects, multichannel imaging systems embrace many channels that scramble their entire Field-Of-View (FOV). Our aim in this work was to attain multi-resolution capability into a multi-channel imaging system by manipulating the available channels to possess different imaging properties (focal length, angular resolution). We have designed a three-channel imaging system where the first and third channels have highest and lowest angular resolution of 0.0096° and 0.078° and narrowest and widest FOVs of 7° and 80°, respectively. The design of the channels has been done for a single wavelength of 587.6 nm using CODE V. The three channels each consist of 4 aspherical lens surfaces and an absorbing baffle that avoids crosstalk among the neighbouring channels. The aspherical lens surfaces have been fabricated in PMMA by ultra-precision diamond tooling and the baffles by metal additive manufacturing. The profiles of the fabricated lens surfaces have been measured with an accurate multi-sensor coordinate measuring machine and compared with the corresponding profiles of the designed lens surfaces. The fabricated lens profiles are then incorporated into CODE V to realistically model the three channels and also compare their performances with those of the nominal design. We can conclude that the performances of the two latter models are in a good agreement.

  7. Adaptive Multi-Resolution Scheme for Efficient Image Compression

    OpenAIRE

    Babel, Marie; Déforges, Olivier; Ronsin, Joseph

    2003-01-01

    The LAR (Locally Adaptive Resolution) method is a multi-layers still image coding scheme, efficient from very low to high bit rates. The first stage is devoted to the representation and compression of the global information (low resolution image), and relies on an adaptive resolution in the image. This paper presents some improvements on the first layer through an original quad-tree like decomposition based on a predictive scheme, and the integration of a powerful interpolation post-processin...

  8. Single Frame Image super Resolution using Learned Directionlets

    OpenAIRE

    Reji A P; Tessamma Thomas

    2010-01-01

    In this paper, a new directionally adaptive, learning based, single image super resolution method using multiple direction wavelet transform, called Directionlets is presented. This method uses directionlets to effectively capture directional features and to extract edge information along different directions of a set of available high resolution images .This information is used as the training set for super resolving a low resolution input image and the Directionlet coefficients ...

  9. A New Approach for Super resolution by Using Web Images and FFT Based Image Registration

    OpenAIRE

    2014-01-01

    Preserving accuracy is a challenging issue in super resolution images. In this paper, we propose a new FFT based image registration algorithm and a sparse based super resolution algorithm to improve the accuracy of super resolution image. Given a low resolution image, our approach initially extracts the local descriptors from the input and then the local descriptors from the whole correlated images using the SIFT algorithm. Once this is completed, it will compare the local descriptors on the ...

  10. Active-Pixel Image Sensors With Programmable Resolution

    Science.gov (United States)

    Kemeny, Sabrina E.; Fossum, Eric R.; Pain, Bedabrata; Nakamura, Junichi; Matthies, Larry H.

    1996-01-01

    Active-pixel image sensors with programmable resolution proposed for use in applications in which speed and efficiency of processing of image data enhanced by providing those data at varying resolutions. Such applications include modeling of biological vision, stereoscopic range-finding, recognition of patterns, tracking targets, and progressive transmission of compressed images. In target-tracking application, sensor initially forms low-resolution image from which area of interest identified, then sensor set at high resolution for examination of identified area. Outputs of contiguous pixels combined. Sensor of this type made to act as though it comprised fewer and larger pixels.

  11. Quantitative Assessment of Single-Image Super-Resolution in Myocardial Scar Imaging

    OpenAIRE

    Ashikaga, Hiroshi; Estner, Heidi L.; Herzka, Daniel A; McVeigh, Elliot R.; Halperin, Henry R.

    2014-01-01

    Single-image super resolution is a process of obtaining a high-resolution image from a set of low-resolution observations by signal processing. While super resolution has been demonstrated to improve image quality in scaled down images in the image domain, its effects on the Fourier-based image acquisition technique, such as MRI, remains unknown.We performed high-resolution ex vivo late gadolinium enhancement (LGE) magnetic resonance imaging (0.4 × 0.4 × 0.4 mm3) in postinfarction swine heart...

  12. Very high resolution satellite data: New challenges in image analysis

    Digital Repository Service at National Institute of Oceanography (India)

    Sathe, P.V.; Muraleedharan, P.M.

    or other natural landscapes. Having very high resolution digital data over a landscape will however create new challenges in the field of atmospheric correction, ground registration, image processing and finally the image interpretation itself. Even...

  13. A Novel and Robust Wavelet based Super Resolution Reconstruction of Low Resolution Images using Efficient Denoising and Adaptive Interpolation

    OpenAIRE

    Liyakathunisa; C.N.Ravi Kuamr

    2010-01-01

    High Resolution images can be reconstructed from several blurred, noisy and aliased low resolution images using a computational process know as super resolution reconstruction. Super resolution reconstruction is the process of combining several low resolution images into a single higher resolution image. In this paper we concentrate on a special case of super resolution problem where the wrap is composed of pure translation and rotation, the blur is space invariant and the noise is additive w...

  14. Ultra-high-resolution brain SPECT imaging: Simulation results

    International Nuclear Information System (INIS)

    The spatial resolution in a reconstructed SPECT image is obviously influenced by the intrinsic resolution of the detector, but it is not generally recognized that the photon-counting efficiency of SPECT systems is also determined by the intrinsic resolution. In fact, it is often stated that increased intrinsic detector resolution is of little use since the overall resolution is limited by the collimator rather than the detector, and that collimator resolution cannot be increased without an unacceptable sacrifice in efficiency. In this paper, the authors attempt to demonstrate that improvements in detector resolution can lead to both improved spatial resolution in the image and improved counting efficiency compared to conventional systems. In this paper they report simulation studies that demonstrate the image quality that is attainable with such detectors. Reconstructions were performed using an iterative search algorithm on a custom-designed parallel computer. The imaging system was described by a calculated system matrix relating all voxels in the object space to all pixels on the detector. They found a resolution close to 2 mm on the reconstructed images obtained from these computer simulations with clinically reasonable exposure times. This resolution may be even further improved by optimization of the multiple-pinhole aperture. Thus the novel semiconductor modular gamma-camera design should provide a large improvement not only in detector resolution but also in reconstructed resolution

  15. Resolution and noise in ghost imaging with classical thermal light

    Institute of Scientific and Technical Information of China (English)

    Cheng Jing; Han Shen-Sheng; Yan Yi-Jing

    2006-01-01

    The resolution and classical noise in ghost imaging with a classical thermal light are investigated theoretically. For ghost imaging with a Gaussian Schell model source, the dependences of the resolution and noise on the spatial coherence of the source and the aperture in the imaging system are discussed and demonstrated by using numerical simulations.The results show that an incoherent source and a large aperture will lead to a good image quality and small noise.

  16. Image super-resolution with B-Spline kernels

    OpenAIRE

    Baboulaz, Loïc; Dragotti, Pier Luigi

    2006-01-01

    A novel approach to image super-resolution is described in this paper. By modeling our image acquisition system with a Spline sampling kernel, we are able to retrieve from the samples some statistical information about the observed continuous scene before its acquisition (irradiance light-field). This information, called continuous moments, allows to register exactly a set of low-resolution images and to ultimately generate a superresolved image. The novelty of the proposed algorithm resides i...

  17. Two-Photon Spiral Imaging with Correlated Orbital Angular Momentum States

    OpenAIRE

    Simon, David S.; Sergienko, Alexander V.

    2012-01-01

    The concept of correlated two-photon spiral imaging is introduced. We begin by analyzing the joint orbital angular momentum (OAM) spectrum of correlated photon pairs. The mutual information carried by the photon pairs is evaluated, and it is shown that when an object is placed in one of the beam paths the value of the mutual information is strongly dependent on object shape and is closely related to the degree of rotational symmetry present. After analyzing the effect of the object on the OAM...

  18. Tomographic imaging of the angular-dependent coherent-scatter cross section.

    Science.gov (United States)

    Westmore, M S; Fenster, A; Cunningham, I A

    1997-01-01

    A new special-purpose computed tomographic (CT) imaging system is described which produces images based on measurements of the low-angle (0-10 degrees) x-ray diffraction properties of an object. Low-angle scatter in the diagnostic x-ray energy range is dominated by coherent scatter, and the system uses first-generation CT geometry to acquire a diffraction pattern for each pencil beam. The patterns are used to reconstruct a series of images which represent the coherent-scatter intensity at a series of scatter angles. To demonstrate the potential of coherent-scatter CT (CSCT), the scanner has been built and used to image a phantom consisting of a water-filled Lucite cylinder containing rods of polyethylene, Lucite, polycarbonate, and nylon. In this paper, the system is described and a sequence of CSCT images of this phantom is shown. Coherent-scatter cross sections of these materials are generated for each pixel from this sequence of images and compared with cross sections measured separately. The resulting excellent agreement shows that the angular-dependent coherent-scatter cross section can be accurately imaged in a tomographic slice through an object. These cross sections give material-specific information about the object. The long-term goal of this research is to make measurements of bone-mineral content for every pixel in a tomographic slice. PMID:9029536

  19. Angular super-resolution with array antennas: Application to seeker-heads

    Science.gov (United States)

    Nickel, U.

    1986-07-01

    Monopulse seeker-heads can give large errors due to closely spaced targets or even completely wrong directions in the case of cross-eye deception. The effective countermeasure against these errors is resolution enhancement. Super-resolution methods offer the possibility to resolve targets closer than the antenna beamwidth. Such methods are favorable for seeker-head applications, because the target separation as well as the signal-to-noise ratio increases as the missile approaches the target. All effective super-resolution methods require an antenna array with access to the single element outputs. Thus mechanical scanning is replaced by electronic scanning. Depending on the type of missile, sometimes antenna pattern restrictions have to be tolerated. Among all super-resolution methods the parametric target model fitting (PTMF) method seems to be most appropriate for this application. This method tries to fit a completely parameterized target model directly to the measured data. It can be rather easily computed, and it is the only method which can resolve completely correlated targets, which arise in the case of multipath and cross-eye deception. For seeker-heads with few antenna elements an implementation with digital signal processor chips is most suited. Computer simulations and experiments with measured data using the DESAS test equipment show that two targets separated at 0.3 beamwidth can be resolved in azimuth and elevation and that the switch from conventional monopulse to two-target estimation (super-resolution), which is crucial for the approaching missile, can be done by a reliable automatic test procedure.

  20. A deep look at the nuclear region of UGC 5101 through high angular resolution mid-IR data with GTC/CanariCam

    CERN Document Server

    Martínez-Paredes, M; Aretxaga, I; Almeida, C Ramos; Hernán-Caballero, A; González-Martín, O; Pereira-Santaella, M; Packham, C; Ramos, A Asensio; Díaz-Santos, T; Elitzur, M; Esquej, P; García-Bernete, I; Imanishi, M; Levenson, N A; Espinosa, J M Rodríguez

    2015-01-01

    We present an analysis of the nuclear infrared (IR, 1.6 to 18 $\\mu$m) emission of the ultraluminous IR galaxy UGC 5101 to derive the properties of its active galactic nucleus (AGN) and its obscuring material. We use new mid-IR high angular resolution ($0.3-0.5$ arcsec) imaging using the Si-2 filter ($\\lambda_{C}=8.7\\, \\mu$m) and $7.5-13$ $\\mu$m spectroscopy taken with CanariCam (CC) on the 10.4m Gran Telescopio CANARIAS. We also use archival HST/NICMOS and Subaru/COMICS imaging and Spitzer/IRS spectroscopy. We estimate the near- and mid-IR unresolved nuclear emission by modelling the imaging data with GALFIT. We decompose the Spitzer/IRS and CC spectra using a power-law component, which represents the emission due to dust heated by the AGN, and a starburst component, both affected by foreground extinction. We model the resulting unresolved near- and mid-IR, and the starburst subtracted CC spectrum with the CLUMPY torus models of Nenkova et al. The derived geometrical properties of the torus, including the lar...

  1. Photo-magnetic Imaging: Resolving Optical Contrast at MRI resolution

    OpenAIRE

    Lin, Yuting; Gao, Hao; Thayer, David; Luk, Alex L.; Gulsen, Gultekin

    2013-01-01

    In this paper, we establish the mathematical framework of a novel imaging technique, namely Photo-magnetic Imaging (PMI). PMI uses laser to illuminate biological tissues and measure the induced temperature variations using magnetic resonance imaging (MRI). PMI overcomes the limitation of conventional optical imaging and allows imaging of optical contrast at MRI spatial resolution. The image reconstruction for PMI, using a finite element-based algorithm with iterative approach, is presented in...

  2. High Resolution Mri Brain Image Segmentation Technique Using Holder Exponent

    OpenAIRE

    M. Ganesh; Palanisamy, V.

    2012-01-01

    Image segmentation is a technique to locate certain objects or boundaries within an image. Imagesegmentation plays a crucial role in many medical imaging applications. There are many algorithms andtechniques have been developed to solve image segmentation problems. Spectral pattern is not sufficient inhigh resolution image for image segmentation due to variability of spectral and structural information.Thus the spatial pattern or texture techniques are used. Thus the concept of Holder Exponen...

  3. Evolution of deformation structures under varying loading conditions followed in situ by high angular resolution 3DXRD

    DEFF Research Database (Denmark)

    Pantleon, Wolfgang; Wejdemann, Christian; Jakobsen, B.;

    2009-01-01

    With high angular resolution three-dimensional X-ray diffraction, individual subgrains are traced in the bulk of a polycrystalline specimen and their dynamics is followed in situ during varying loading conditions. The intensity distribution of single Bragg reflections from an individual grain is...... analyzed in reciprocal space. It consists of sharp high-intensity peaks arising from subgrains superimposed on a cloud of lower intensity arising from dislocation walls. Individual subgrains can be distinguished by their unique combination of orientation and elastic strain. The responses of polycrystalline...... copper to different loading conditions are presented: during uninterrupted tensile deformation, formation of subgrains can be observed concurrently with broadening of the Bragg reflection shortly after onset of plastic deformation. With continued tensile deformation, the subgrain structure develops...

  4. Hyperspectral Imaging for Determining Pigment Contents in Cucumber Leaves in Response to Angular Leaf Spot Disease.

    Science.gov (United States)

    Zhao, Yan-Ru; Li, Xiaoli; Yu, Ke-Qiang; Cheng, Fan; He, Yong

    2016-01-01

    Hyperspectral imaging technique was employed to determine spatial distributions of chlorophyll (Chl), and carotenoid (Car) contents in cucumber leaves in response to angular leaf spot (ALS). Altogether, 196 hyperspectral images of cucumber leaves with five infection severities of ALS were captured by a hyperspectral imaging system in the range of 380-1,030 nm covering 512 wavebands. Mean spectrum were extracted from regions of interest (ROIs) in the hyperspectral images. Partial least square regression (PLSR) models were used to develop quantitative analysis between the spectra and the pigment contents measured by biochemical analyses. In addition, regression coefficients (RCs) in PLSR models were employed to select important wavelengths (IWs) for modelling. It was found that the PLSR models developed by the IWs provided the optimal measurement results with correlation coefficient (R) of prediction of 0.871 and 0.876 for Chl and Car contents, respectively. Finally, Chl and Car distributions in cucumber leaves with the ALS infection were mapped by applying the optimal models pixel-wise to the hyperspectral images. The results proved the feasibility of hyperspectral imaging for visualizing the pigment distributions in cucumber leaves in response to ALS. PMID:27283050

  5. Super-resolution image reconstruction employing Kriging interpolation technique

    OpenAIRE

    Panagiotopoulou, Antigoni; Anastassopoulos, Vassilis

    2007-01-01

    In this paper a high-resolution (HR) image is reconstructed from a sequence of subpixel shifted, aliased low-resolution (LR) frames by means of a novel nonuniform interpolation super-resolution (SR) method. A gradient-based algorithm estimates the horizontal and vertical shifts for each frame. Then, the uniformly spaced sampling points of the HR image are produced by means of Kriging interpolation. Wiener filtering is employed to deal with the restoration problem. The novelty of the proposed ...

  6. SUPER-RESOLUTION FROM A LOW- AND PARTIAL HIGH- RESOLUTION IMAGE PAIR

    OpenAIRE

    Hidane, Moncef; Aujol, Jean-François; Berthoumieu, Yannick; Deledalle, Charles-Alban

    2014-01-01

    The classical super-resolution (SR) setting starts with a set of low-resolution (LR) images related by subpixel shifts and tries to reconstruct a single high-resolution (HR) image. In some cases, partial observations about the HR image are also available. Trying to complete the missing HR data without any reference to LR ones is an inpainting (or completion) problem. In this paper, we consider the problem of recov- ering a single HR image from a pair consisting of a complete LR and incomplete...

  7. Extraction and labeling high-resolution images from PDF documents

    Science.gov (United States)

    Chachra, Suchet K.; Xue, Zhiyun; Antani, Sameer; Demner-Fushman, Dina; Thoma, George R.

    2013-12-01

    Accuracy of content-based image retrieval is affected by image resolution among other factors. Higher resolution images enable extraction of image features that more accurately represent the image content. In order to improve the relevance of search results for our biomedical image search engine, Open-I, we have developed techniques to extract and label high-resolution versions of figures from biomedical articles supplied in the PDF format. Open-I uses the open-access subset of biomedical articles from the PubMed Central repository hosted by the National Library of Medicine. Articles are available in XML and in publisher supplied PDF formats. As these PDF documents contain little or no meta-data to identify the embedded images, the task includes labeling images according to their figure number in the article after they have been successfully extracted. For this purpose we use the labeled small size images provided with the XML web version of the article. This paper describes the image extraction process and two alternative approaches to perform image labeling that measure the similarity between two images based upon the image intensity projection on the coordinate axes and similarity based upon the normalized cross-correlation between the intensities of two images. Using image identification based on image intensity projection, we were able to achieve a precision of 92.84% and a recall of 82.18% in labeling of the extracted images.

  8. Infrared chemical imaging: Spatial resolution evaluation and super-resolution concept

    Energy Technology Data Exchange (ETDEWEB)

    Offroy, Marc [Laboratoire de Spectrochimie Infrarouge et Raman, LASIR, CNRS UMR 8516, Bat. C5, Universite des Sciences et Technologies de Lille, 59655 Villeneuve d' Ascq Cedex (France); Roggo, Yves [F. Hoffmann-La Roche A.G., Basel (Switzerland); Milanfar, Peyman [Multi-Dimensional Signal Processing Laboratory, Electrical Engineering Department, Baskin School of Engineering, University of California, 1156 High Street, Mailcode SOE2, Santa Cruz, CA 95064 (United States); Duponchel, Ludovic, E-mail: ludovic.duponchel@univ-lille1.fr [Laboratoire de Spectrochimie Infrarouge et Raman, LASIR, CNRS UMR 8516, Bat. C5, Universite des Sciences et Technologies de Lille, 59655 Villeneuve d' Ascq Cedex (France)

    2010-08-03

    Chemical imaging systems help to solve many challenges in various scientific fields. Able to deliver rapid spatial and chemical information, modern infrared spectrometers using Focal Plane Array detectors (FPA) are of great interest. Considering conventional infrared spectrometers with a single element detector, we can consider that the diffraction-limited spatial resolution is more or less equal to the wavelength of the light (i.e. 2.5-25 {mu}m). Unfortunately, the spatial resolution of FPA spectroscopic setup is even lower due to the detector pixel size. This becomes a real constraint when micron-sized samples are analysed. New chemometrics methods are thus of great interest to overcome such resolution drawback, while keeping our far-field infrared imaging spectrometers. The aim of the present work is to evaluate the super-resolution concept in order to increase the spatial resolution of infrared imaging spectrometers using FPA detectors. The main idea of super-resolution is the fusion of several low-resolution images of the same sample to obtain a higher-resolution image. Applying the super-resolution concept on a relatively low number of FPA acquisitions, it was possible to observe a 30% decrease in spatial resolution.

  9. Infrared chemical imaging: Spatial resolution evaluation and super-resolution concept

    International Nuclear Information System (INIS)

    Chemical imaging systems help to solve many challenges in various scientific fields. Able to deliver rapid spatial and chemical information, modern infrared spectrometers using Focal Plane Array detectors (FPA) are of great interest. Considering conventional infrared spectrometers with a single element detector, we can consider that the diffraction-limited spatial resolution is more or less equal to the wavelength of the light (i.e. 2.5-25 μm). Unfortunately, the spatial resolution of FPA spectroscopic setup is even lower due to the detector pixel size. This becomes a real constraint when micron-sized samples are analysed. New chemometrics methods are thus of great interest to overcome such resolution drawback, while keeping our far-field infrared imaging spectrometers. The aim of the present work is to evaluate the super-resolution concept in order to increase the spatial resolution of infrared imaging spectrometers using FPA detectors. The main idea of super-resolution is the fusion of several low-resolution images of the same sample to obtain a higher-resolution image. Applying the super-resolution concept on a relatively low number of FPA acquisitions, it was possible to observe a 30% decrease in spatial resolution.

  10. Milliarcsecond angular resolution of reddened stellar sources in the vicinity of the Galactic Center

    OpenAIRE

    Richichi, A.; Fors, O.; Mason, E.; Stegmaier, J; T.Chandrasekhar

    2008-01-01

    For the first time, the lunar occultation technique has been employed on a very large telescope in the near-IR with the aim of achieving systematically milliarcsecond resolution on stellar sources. We have demonstrated the burst mode of the ISAAC instrument, using a fast read-out on a small area of the detector to record many tens of seconds of data at a time on fields of few squared arcsec. We have used the opportunity to record a large number of LO events during a passage of the Moon close ...

  11. A High Resolution Color Image Restoration Algorithm for Thin TOMBO Imaging Systems

    OpenAIRE

    El-Sallam, Amar A.; Farid Boussaid

    2009-01-01

    In this paper, we present a blind image restoration algorithm to reconstruct a high resolution (HR) color image from multiple, low resolution (LR), degraded and noisy images captured by thin (< 1mm) TOMBO imaging systems. The proposed algorithm is an extension of our grayscale algorithm reported in [1] to the case of color images. In this color extension, each Point Spread Function (PSF) of each captured image is assumed to be different from one color component to another and from one imag...

  12. Nanoprobes for super-resolution fluorescence imaging at the nanoscale

    Institute of Scientific and Technical Information of China (English)

    HOU ShangGuo; LIANG Le; DENG SuHui; CHEN JianFang; HUANG Qing; CHENG Ya; FAN ChunHai

    2014-01-01

    Compared with other imaging techniques,fluorescence microscopy has become an essential tool to study cell biology due to its high compatibility with living cells.Owing to the resolution limit set by the diffraction of light,fluorescence microscopy could not resolve the nanostructures in the range of〈200 nm.Recently,many techniques have been emerged to overcome the diffraction barrier,providing nanometer spatial resolution.In the course of development,the progress in fluorescent probes has helped to promote the development of the high-resolution fluorescence nanoscopy.Here,we describe the contributions of the fluorescent probes to far-field super resolution imaging,focusing on concepts of the existing super-resolution nanoscopy based on the photophysics of fluorescent nanoprobes,like photoswitching,bleaching and blinking.Fluorescent probe technology is crucial in the design and implementation of super-resolution imaging methods.

  13. Theoretical evaluation of the Doppler broadening contribution to the angular resolution in CdZnTe Compton scattering detector

    International Nuclear Information System (INIS)

    Electronically collimated Compton Cameras have been tested in Single Photon Emission Tomography (SPECT) systems instead of mechanically collimated gamma detectors in order to improve their limited sensitivity. One of the main factors that contribute to the worsening of the angular resolution and thus to the deterioration of the system spatial resolution is Doppler broadening. Double differential Klein-Nishina equation is used to consider the random movement of electron inside the crystal. It is important to perform this analysis for each particular material because is difficult to infer one simple Doppler broadening dependency of the atomic number Z. In high Z materials the internal electrons are strongly linked to the nucleus and therefore there can be found high momentums, but they represent just a small portion of the electrons that suffers Compton scattering. This work estimates the influence of the Doppler broadening in CdZnTe semiconductor for different incoming photon energies. For this means there are analyzed main Compton broadening processes in semiconductor Cd0,8Zn0,2Te with density ρ=5,85g/cm3. (Author)

  14. HIGH-RESOLUTION IMAGING OF THE ATLBS REGIONS: THE RADIO SOURCE COUNTS

    International Nuclear Information System (INIS)

    The Australia Telescope Low-brightness Survey (ATLBS) regions have been mosaic imaged at a radio frequency of 1.4 GHz with 6'' angular resolution and 72 μJy beam–1 rms noise. The images (centered at R.A. 00h35m00s, decl. –67°00'00'' and R.A. 00h59m17s, decl. –67°00'00'', J2000 epoch) cover 8.42 deg2 sky area and have no artifacts or imaging errors above the image thermal noise. Multi-resolution radio and optical r-band images (made using the 4 m CTIO Blanco telescope) were used to recognize multi-component sources and prepare a source list; the detection threshold was 0.38 mJy in a low-resolution radio image made with beam FWHM of 50''. Radio source counts in the flux density range 0.4-8.7 mJy are estimated, with corrections applied for noise bias, effective area correction, and resolution bias. The resolution bias is mitigated using low-resolution radio images, while effects of source confusion are removed by using high-resolution images for identifying blended sources. Below 1 mJy the ATLBS counts are systematically lower than the previous estimates. Showing no evidence for an upturn down to 0.4 mJy, they do not require any changes in the radio source population down to the limit of the survey. The work suggests that automated image analysis for counts may be dependent on the ability of the imaging to reproduce connecting emission with low surface brightness and on the ability of the algorithm to recognize sources, which may require that source finding algorithms effectively work with multi-resolution and multi-wavelength data. The work underscores the importance of using source lists—as opposed to component lists—and correcting for the noise bias in order to precisely estimate counts close to the image noise and determine the upturn at sub-mJy flux density.

  15. Super-resolution Image Created from a Sequence of Images with Application of Character Recognition

    Directory of Open Access Journals (Sweden)

    Leandro Luiz de Almeida

    2013-12-01

    Full Text Available Super-resolution techniques allow combine multiple images of the same scene to obtain an image with increased geometric and radiometric resolution, called super-resolution image. In this image are enhanced features allowing to recover important details and information. The objective of this work is to develop efficient algorithm, robust and automated fusion image frames to obtain a super-resolution image. Image registration is a fundamental step in combining several images that make up the scene. Our research is based on the determination and extraction of characteristics defined by the SIFT and RANSAC algorithms for automatic image registration. We use images containing characters and perform recognition of these characters to validate and show the effectiveness of our proposed method. The distinction of this work is the way to get the matching and merging of images because it occurs dynamically between elements common images that are stored in a dynamic matrix.

  16. Smartphone microendoscopy for high resolution fluorescence imaging

    OpenAIRE

    Hong, Xiangqian; Nagarajan, Vivek K.; Mugler, Dale H.; Yu, Bing

    2016-01-01

    High resolution optical endoscopes are increasingly used in diagnosis of various medical conditions of internal organs, such as the gastrointestinal tracts, but they are too expensive for use in resource-poor settings. On the other hand, smartphones with high resolution cameras and Internet access have become more affordable, enabling them to diffuse into most rural areas and developing countries in the past decade. In this letter we describe a smartphone microendoscope that can take fluoresc...

  17. Adaptive Outlier Rejection in Image Super-resolution

    Directory of Open Access Journals (Sweden)

    Yrjänäinen Jukka

    2006-01-01

    Full Text Available One critical aspect to achieve efficient implementations of image super-resolution is the need for accurate subpixel registration of the input images. The overall performance of super-resolution algorithms is particularly degraded in the presence of persistent outliers, for which registration has failed. To enhance the robustness of processing against this problem, we propose in this paper an integrated adaptive filtering method to reject the outlier image regions. In the process of combining the gradient images due to each low-resolution image, we use adaptive FIR filtering. The coefficients of the FIR filter are updated using the LMS algorithm, which automatically isolates the outlier image regions by decreasing the corresponding coefficients. The adaptation criterion of the LMS estimator is the error between the median of the samples from the LR images and the output of the FIR filter. Through simulated experiments on synthetic images and on real camera images, we show that the proposed technique performs well in the presence of motion outliers. This relatively simple and fast mechanism enables to add robustness in practical implementations of image super-resolution, while still being effective against Gaussian noise in the image formation model.

  18. High resolution multiplexed functional imaging in live embyros (Conference Presentation)

    Science.gov (United States)

    Xu, Dongli; Peng, Leilei

    2016-03-01

    Optical projection tomography (OPT) creates isotropic 3D imaging of tissue. Two approaches exist today: Wide-field OPT illuminates the entire sample and acquires projection images with a camera; Scanning-laser optical tomography (SLOT) generates the projection with a moving laser beam and point detector. SLOT has superior light collecting efficiency than wide-field optical tomography, making it ideal for tissue fluorescence imaging. Regardless the approach, traditional OPT has to compromise between the resolution and the depth of view. In traditional SLOT, the focused Gaussian beam diverges quickly from the focused plane, making it impossible to achieve high resolution imaging through a large volume specimen. We report using Bessel beam instead of Gaussian beam to perform SLOT. By illuminating samples with a narrow Bessel beam throughout an extended depth, high-resolution projection images can be measured in large volume. Under Bessel illumination, the projection image contains signal from annular-rings of the Bessel beam. Traditional inverse Radon transform of these projections will result in ringing artifacts in reconstructed imaging. Thus a modified 3D filtered back projection algorithm is developed to perform tomography reconstructing of Bessel-illuminated projection images. The resulting 3D imaging is free of artifact and achieved cellular resolution in extended sample volume. The system is applied to in-vivo imaging of transgenic Zebrafish embryos. Results prove Bessel SLOT a promising imaging method in development biology research.

  19. Super-resolution photoacoustic imaging of single gold nanoparticles

    Science.gov (United States)

    Lee, Seunghyun; Kwon, Owoong; Jeon, Mansik; Song, Jaejung; Jo, Minguk; Kim, Sungjee; Son, Junwoo; Kim, Yunseok; Kim, Chulhong

    2016-03-01

    Photoacoustic imaging (PAI) is an emerging hybrid imaging modality that can provide a strong optical absorption contrast using the photoacoustic (PA) effect, and breaks through the fundamental imaging depth limit of existing optical microscopy such as optical coherence tomography (OCT), confocal or two-photon microscopy. In PAI, a short-pulsed laser is illuminated to the tissue, and the PA waves are generated by thermoelastic expansion. Despite the high lateral resolution of optical-resolution photoacoustic microscopy (OR-PAM) thanks to the tight optical focus, the lateral resolution of OR-PAM is limited to the optical diffraction limit, which is approximately a half of the excitation wavelength. Here, we demonstrate a new super-resolution photoacoustic microscopy (SR-PAM) system by breaking the optical diffraction limit. The conventional microscopes with nanoscale resolutions such as a scanning electron microscope (SEM) and transmission electron microscope (TEM) are typically used to image the structures of nanomaterials, but these systems should work in a high vacuum environment and cannot provide the optical properties of the materials. Our newly developed SR-PAM system provides the optical properties with a nanoscale resolution in a normal atmosphere. We have photoacoustically imaged single gold nanoparticles with an average size of 80 nm in diameter and shown their PA expansion properties individually. The lateral resolution of this system was approximately 20 nm. Therefore, this tool will provide an unprecedented optical absorption property with an accurate nanoscale resolution and greatly impact on materials science and nanotechnology field.

  20. Image Resolution and Contrast Enhancement of Satellite Geographical Images with Removal of Noise using Wavelet Transforms

    OpenAIRE

    Khairnar, Prajakta P.; Manjare, C. A.

    2014-01-01

    In this paper the technique for resolution and contrast enhancement of satellite geographical images based on discrete wavelet transform (DWT), stationary wavelet transform (SWT) and singular value decomposition (SVD) has been proposed. In this, the noise is added in the input low resolution and low contrast image. The median filter is used remove noise from the input image. This low resolution, low contrast image without noise is decomposed into four sub-bands by using DWT and SWT. The resol...

  1. HIGH RESOLUTION IMAGE PROJECTION IN FREQUENCY DOMAIN FOR CONTINUOUS IMAGE SEQUENCE

    OpenAIRE

    M. Nagaraju Naik; P. Rajesh Kumar

    2010-01-01

    Unlike most other information technologies, which have enjoyed an exponential growth for the past several decades, display resolution has largely stagnated. Low display resolution has in turn limited the resolution of digital images. Scaling is a non-trivial process that involves a trade-off between efficiency, smoothness and sharpness. As the size of an image is increased, so the pixels, which comprise the image, become increasingly visible, making the image to appear soft. Super scalar repr...

  2. A non-local approach for image super-resolution using intermodality priors

    OpenAIRE

    Rousseau, François

    2010-01-01

    Image enhancement is of great importance in medical imaging where image resolution remains a crucial point in many image analysis algorithms. In this paper, we investigate brain hallucination (Rousseau, 2008), or generating a high-resolution brain image from an input low-resolution image, with the help of another high-resolution brain image. We propose an approach for image super-resolution by using anatomical intermodality priors from a reference image. Contrary to interpolation techniques, ...

  3. SUPER RESOLUTION FOR EGYPTSAT-1 IMAGES WITH ERRATIC SHIFT

    Directory of Open Access Journals (Sweden)

    A. H. Nasr

    2014-01-01

    Full Text Available The key point of the Super-Resolution (SR process is the accurate registration of the low resolution images, i.e., accurate measuring of the fixed shift between them, to obtain high resolution image. Due to certain malfunction, some Egyptsat-1 images have inconsistent sub-pixel shift. Therefore, in this study we propose a methodology to use this kind of shift for reconstructing a SR image of Egyptsat-1 from its low resolution bands. It is a trade-off between the capability of catching spatial details and the sensitivity to the erratic shift existed along the image. Firstly, this inconsistent shift between the bands is transformed into reliable shift. Then a SR method based on image fusion scheme with multi-resolution decomposition is performed. The fusion process is conducted in steerable wavelet domain using normalized convolution technique. It allows the recognition of objects with size approaching its limiting spatial resolution. Results show that the proposed methods make significant spatial resolution improvements from 7.8 to 4 m. Different quantitative measures of the proposed methodology were assessed and tested with some implemented commonly used SR methods. These methods are; nonparametric bayesian, POCS, iterative-interpolation, robust and iterated back projection. The visual and quantitative evaluations verify the usefulness and effectiveness of the proposed methodology.

  4. Heisenberg scaling of imaging resolution by coherent enhancement

    CERN Document Server

    McConnell, Robert; Yoder, Theodore J; Bruzewicz, Colin D; Chuang, Isaac L; Chiaverini, John; Sage, Jeremy M

    2016-01-01

    Classical imaging works by scattering photons from an object to be imaged, and achieves resolution scaling as $1/\\sqrt{t}$, with $t$ the imaging time. By contrast, the laws of quantum mechanics allow one to utilize quantum coherence to obtain imaging resolution that can scale as quickly as $1/t$ -- the so-called "Heisenberg limit." However, ambiguities in the obtained signal often preclude taking full advantage of this quantum enhancement, while imaging techniques designed to be unambiguous often lose this optimal Heisenberg scaling. Here, we demonstrate an imaging technique which combines unambiguous detection of the target with Heisenberg scaling of the resolution. We also demonstrate a binary search algorithm which can efficiently locate a coherent target using the technique, resolving a target trapped ion to within 3% of the $1/e^2$ diameter of the excitation beam.

  5. Direct observation of strain in bulk subgrains and dislocation walls by high angular resolution three-dimensional X-ray diffraction

    DEFF Research Database (Denmark)

    Jakobsen, Bo; Lienert, U.; Almer, J.; Poulsen, Henning Friis; Pantleon, Wolfgang

    The X-ray diffraction (XRD) method "high angular resolution 3DXRD" is briefly introduced, and results are presented for a single bulk grain in a polycrystalline copper sample deformed in tension. It is found that the three-dimensional reciprocal-space intensity distribution of a 400 reflection as...

  6. Who is eating the outflow? High-angular resolution study of an intermediate-mass protostar in L1206

    Science.gov (United States)

    Beltrán, M. T.; Girart, J. M.; Estalella, R.

    2006-10-01

    Context: .Up to now only a few intermediate-mass molecular outflows have been studied with enough high-angular resolution. Aims: .The aim of this work is to study in detail the intermediate-mass YSO IRAS 22272+6358A, which is embedded in L1206, and its molecular outflow, to investigate the interaction of the outflow with the dense protostellar material and to compare their properties with those of lower mass counterparts. Methods: .We carried out OVRO observations of the 2.7 mm continuum emission, CO (J=1→0), C18O(J=1→0), and HC3N (J=12→11) to map the core of L1206 with high-angular resolution and to derive the properties of the dust emission, the molecular outflow, and the dense protostellar envelope. Results: .The 2.7 mm continuum emission has been resolved into four sources, labeled OVRO 1, 2, 3, and 4. The intermediate-mass Class 0/I object OVRO 2, with a mass traced by the dust emission of 14.2 M⊙, is the source associated with IRAS 22272+6358A. The CO (J=1→0) observations have revealed a very collimated outflow driven by OVRO 2, at a PA ≃ 140°, that has a very weak southeastern red lobe and a much stronger northwestern blue lobe. Photodissociation toward the red lobe produced by the ionization front coming from the bright-rimmed diffuse Hii region could be responsible for the morphology of the outflow. The spatial correlation between the outflow and the elongated dense protostellar material traced by HC3N (J=12→11) suggests an interaction between the molecular outflow and the protostellar envelope. Shocks produced by the molecular outflow, and possibly by the shock front preceding the ionization front, could account for the southern enhancement of HC3N. The properties of the intermediate-mass protostar OVRO 2 and the molecular outflow are consistent with those of lower mass counterparts. The C18O abundance relative to molecular hydrogen estimated toward OVRO 2 is 3×10-8, a value ~6 to 13 times lower than typical abundances estimated toward

  7. Super-resolved imaging with ultimate time resolution

    CERN Document Server

    Ashida, Yuto

    2015-01-01

    Precisely and accurately locating point objects is a long-standing common thread in science. Super-resolved imaging of single molecules has revolutionized our view of quasi-static nanostructures $\\it{in-vivo}$. A wide-field approach based on localizing individual fluorophores has emerged as a versatile method to surpass the standard resolution limit. In those techniques, the super-resolution is realized by sparse photoactivation and localization together with the statistical analysis based on point spread functions. Nevertheless, the slow temporal resolution of super-resolved imaging severely restricts the utility to the study of live-cell phenomena. Clearly, a major breakthrough to observe fast, nanoscale dynamics needs to be made. Here we present a super-resolved imaging method that achieves the theoretical-limit time resolution. By invoking information theory, we can achieve the robust localization of overlapped light emitters at an order of magnitude faster speed than the conventional super-resolution mic...

  8. Application of Super-Resolution Image Reconstruction to Digital Holography

    Directory of Open Access Journals (Sweden)

    Zhang Shuqun

    2006-01-01

    Full Text Available We describe a new application of super-resolution image reconstruction to digital holography which is a technique for three-dimensional information recording and reconstruction. Digital holography has suffered from the low resolution of CCD sensors, which significantly limits the size of objects that can be recorded. The existing solution to this problem is to use optics to bandlimit the object to be recorded, which can cause the loss of details. Here super-resolution image reconstruction is proposed to be applied in enhancing the spatial resolution of digital holograms. By introducing a global camera translation before sampling, a high-resolution hologram can be reconstructed from a set of undersampled hologram images. This permits the recording of larger objects and reduces the distance between the object and the hologram. Practical results from real and simulated holograms are presented to demonstrate the feasibility of the proposed technique.

  9. Bendable X-ray Optics for High Resolution Imaging

    Science.gov (United States)

    Gubarev, M.; Ramsey, B.; Kilaru, K.; Atkins, C.; Broadway, D.

    2014-01-01

    Current state-of the-art for x-ray optics fabrication calls for either the polishing of massive substrates into high-angular-resolution mirrors or the replication of thin, lower-resolution, mirrors from perfectly figured mandrels. Future X-ray Missions will require a change in this optics fabrication paradigm in order to achieve sub-arcsecond resolution in light-weight optics. One possible approach to this is to start with perfectly flat, light-weight surface, bend it into a perfect cone, form the desired mirror figure by material deposition, and insert the resulting mirror into a telescope structure. Such an approach is currently being investigated at MSFC, and a status report will be presented detailing the results of finite element analyses, bending tests and differential deposition experiments.

  10. Virtual microscope interface to high resolution histological images

    OpenAIRE

    Feit, Josef; Matyska, Luděk; Ulman, Vladimír; HEJTMÁNEK, Lukáš; Jedličková, Hana; Ježová, Marta; Moulis, Mojmír; Feitová, Věra

    2008-01-01

    The Hypertext atlas of Dermatopathology, the Atlas of Fetal and Neonatal Pathology and Hypertext atlas of Pathology (this one in Czech only) are available at . These atlases offer many clinical, macroscopic and microscopic images, together with short introductory texts. Most of the images are annotated and arrows pointing to the important parts of the image can be activated. The Virtual Microscope interface is used for the access to the histological images obtained in high resolution using au...

  11. High Resolution Linear Polarimetric Imaging for the Event Horizon Telescope

    OpenAIRE

    Chael, Andrew A.; Johnson, Michael D; Narayan, Ramesh; Doeleman, Sheperd S.; Wardle, John F. C.; Bouman, Katherine L.

    2016-01-01

    Images of the linear polarization of synchrotron radiation around Active Galactic Nuclei (AGN) identify their projected magnetic field lines and provide key data for understanding the physics of accretion and outflow from supermassive black holes. The highest resolution polarimetric images of AGN are produced with Very Long Baseline Interferometry (VLBI). Because VLBI incompletely samples the Fourier transform of the source image, any image reconstruction that fills in unmeasured spatial freq...

  12. High Resolution, Range/Range-Rate Imager Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Visidyne proposes to develop a design for a small, lightweight, high resolution, in x, y, and z Doppler imager to assist in the guidance, navigation and control...

  13. Non-Parametric High-Resolution SAR Imaging

    OpenAIRE

    Glentis, George-Othan; Zhao, Kexin; Jakobsson, Andreas; Li, Jian

    2013-01-01

    The development of high-resolution two-dimensional spectral estimation techniques is of notable interest in synthetic aperture radar (SAR) imaging. Typically, data-independent techniques are exploited to form the SAR images, although such approaches will suffer from limited resolution and high sidelobe levels. Recent work on data-adaptive approaches have shown that both the iterative adaptive approach (IAA) and the sparse learning via iterative minimization (SLIM) algorithm offer ...

  14. Deep Networks for Image Super-Resolution with Sparse Prior

    OpenAIRE

    Wang, Zhaowen; Liu, Ding; Yang, Jianchao; Han, Wei; Huang, Thomas

    2015-01-01

    Deep learning techniques have been successfully applied in many areas of computer vision, including low-level image restoration problems. For image super-resolution, several models based on deep neural networks have been recently proposed and attained superior performance that overshadows all previous handcrafted models. The question then arises whether large-capacity and data-driven models have become the dominant solution to the ill-posed super-resolution problem. In this paper, we argue th...

  15. Land Cover Semantic Annotation Derived from High Resolution SAR Images

    OpenAIRE

    Dumitru, Corneliu Octavian; Schwarz, Gottfried; Datcu, Mihai

    2016-01-01

    Users of remote sensing images analyzing land cover characteristics are very much interested in classification schemes that define a consistent set of target categories. Up to now, a number of established classification schemes are mainly being used by interpreters of medium-resolution optical satellite image focusing on large-scale land cover. In contrast, we concentrate in this publication on the definition of a new classification scheme for high-resolution synthetic aperture radar (S...

  16. Image Resolution in the Digital Era: Notion and Clinical Implications

    OpenAIRE

    Vahid Rakhshan

    2014-01-01

    Digital radiographs need additional metadata in order to be accurate when being converted to analog media. Resolution is a major reason of failures in proper printing or digitizing the images. This letter shortly explains the overlooked pitfalls of digital radiography and photography in dental practice, and briefly instructs the reader how to avoid or rectify common problems associated with resolution calibration of digital radiographs.

  17. Metamaterial coatings for subwavelength-resolution imaging

    Science.gov (United States)

    Zapata-Rodríguez, Carlos J.; Pastor, David; Miret, Juan J.

    2011-05-01

    Coating lenses are membranes made of materials exhibiting negative index of refraction and deposited on other media with high dielectric constant ɛ3. Unfortunately far-field imaging suffers from centrosymmetric aberrations. We propose a simple procedure to compensate partially deviations from ray-tracing perfect imaging in asymmetric metamaterial lenses. We also show that, under some circumstances, coating superlens may recover subwavelength information transmitted in a relative spatial spectrum ranging from 1 to √ɛ3.

  18. High resolution multimodal clinical ophthalmic imaging system

    OpenAIRE

    Mujat, Mircea; Ferguson, R. Daniel; Patel, Ankit H.; Iftimia, Nicusor; Lue, Niyom; Hammer, Daniel X.

    2010-01-01

    We developed a multimodal adaptive optics (AO) retinal imager which is the first to combine high performance AO-corrected scanning laser ophthalmoscopy (SLO) and swept source Fourier domain optical coherence tomography (SSOCT) imaging modes in a single compact clinical prototype platform. Such systems are becoming ever more essential to vision research and are expected to prove their clinical value for diagnosis of retinal diseases, including glaucoma, diabetic retinopathy (DR), age-related m...

  19. HIGH RESOLUTION IMAGE PROJECTION IN FREQUENCY DOMAIN FOR CONTINUOUS IMAGE SEQUENCE

    Directory of Open Access Journals (Sweden)

    M. Nagaraju Naik

    2010-09-01

    Full Text Available Unlike most other information technologies, which have enjoyed an exponential growth for the past several decades, display resolution has largely stagnated. Low display resolution has in turn limited the resolution of digital images. Scaling is a non-trivial process that involves a trade-off between efficiency, smoothness and sharpness. As the size of an image is increased, so the pixels, which comprise the image, become increasingly visible, making the image to appear soft. Super scalar representation of image sequence is limited due to image information present in low dimensional image sequence. To project a image frame sequence into high-resolution static or fractional scalingvalue, a scaling approach is developed based on energy spectral interpolation and frequency spectral interpolation techniques. To realize the frequency spectral resolution Cubic-B-Spline method is used.

  20. High spatial resolution diffusion tensor imaging and its applications

    CERN Document Server

    Wang, J J

    2002-01-01

    Introduction Magnetic Resonance Imaging is at present the only imaging technique available to measure diffusion of water and metabolites in humans. It provides vital insights to brain connectivity and has proved to be an important tool in diagnosis and therapy planning in many neurological diseases such as brain tumour, ischaemia and multiple sclerosis. This project focuses on the development of a high resolution diffusion tensor imaging technique. In this thesis, the basic theory of diffusion tensor MR Imaging is presented. The technical challenges encountered during development of these techniques will be discussed, with proposed solutions. New sequences with high spatial resolution have been developed and the results are compared with the standard technique more commonly used. Overview The project aims at the development of diffusion tensor imaging techniques with a high spatial resolution. Chapter 2 will describe the basic physics of MRI, the phenomenon of diffusion and the measurement of diffusion by MRI...

  1. The complex evolutionary paths of local infrared bright galaxies: a high angular resolution mid-infrared view

    CERN Document Server

    Alonso-Herrero, A; Roche, P F; Hernan-Caballero, A; Aretxaga, I; Martinez-Paredes, M; Almeida, C Ramos; Pereira-Santaella, M; Diaz-Santos, T; Levenson, N A; Packham, C; Colina, L; Esquej, P; Gonzalez-Martin, O; Ichikawa, K; Imanishi, M; Espinosa, J M Rodriguez; Telesco, C

    2016-01-01

    We investigate the evolutionary connection between local IR-bright galaxies ($\\log L_{\\rm IR}\\ge 11.4\\,L_\\odot$) and quasars. We use high angular resolution ($\\sim$ 0.3-0.4 arcsec $\\sim$ few hundred parsecs) $8-13\\,\\mu$m ground-based spectroscopy to disentangle the AGN mid-IR properties from those of star formation. The comparison between the nuclear $11.3\\,\\mu$m PAH feature emission and that measured with Spitzer/IRS indicates that the star formation is extended over a few kpc in the IR-bright galaxies. The AGN contribution to the total IR luminosity of IR-bright galaxies is lower than in quasars. Although the dust distribution is predicted to change as IR-bright galaxies evolve to IR-bright quasars and then to optical quasars, we show that the AGN mid-IR emission of all the quasars in our sample is not significantly different. In contrast, the nuclear emission of IR-bright galaxies with low AGN contributions appears more heavily embedded in dust although there is no clear trend with the interaction stage or...

  2. Facial Image Super Resolution Using Weighted Patch Pairs

    Directory of Open Access Journals (Sweden)

    Payman Moallem

    2013-03-01

    Full Text Available A challenging field in image processing and computer graphics is to have higher frequency details by super resolving facial images. Unlike similar papers in this field, this paper introduces a practical face hallucinating approach with higher quality output images. The image reconstruction was based on a set of high and low resolution image pairs. Each image is divided into defined patches with overlapped regions. A patch from a defined location is removed from the low resolution (LR input image and is compared with the LR patches of the training images with the same location. Each defined LR patch has a defined high resolution (HR patch. Based on the Euclidean distance comparison, each patch of every single image in the training images database receives a specific weight. This weight is transferred to its relevant HR patch identically. The sum of the gained weights for one specific location of a patch is equal to unity. The HR output image is constructed by integrating the HR hallucinated patches.

  3. Angular resolution measurements at SPring-8 of a hard X-ray optic for the New Hard X-ray Mission

    CERN Document Server

    Spiga, D; Furuzawa, A; Basso, S; Binda, R; Borghi, G; Cotroneo, V; Grisoni, G; Kunieda, H; Marioni, F; Matsumoto, H; Mori, H; Miyazawa, T; Negri, B; Orlandi, A; Pareschi, G; Salmaso, B; Tagliaferri, G; Uesugi, K; Valsecchi, G; Vernani, D

    2015-01-01

    The realization of X-ray telescopes with imaging capabilities in the hard (> 10 keV) X-ray band requires the adoption of optics with shallow (10 m shall be produced and tested. Full-illumination tests of such mirrors are usually performed with on- ground X-ray facilities, aimed at measuring their effective area and the angular resolution; however, they in general suffer from effects of the finite distance of the X-ray source, e.g. a loss of effective area for double reflection. These effects increase with the focal length of the mirror under test; hence a "partial" full-illumination measurement might not be fully representative of the in-flight performances. Indeed, a pencil beam test can be adopted to overcome this shortcoming, because a sector at a time is exposed to the X-ray flux, and the compensation of the beam divergence is achieved by tilting the optic. In this work we present the result of a hard X-ray test campaign performed at the BL20B2 beamline of the SPring-8 synchrotron radiation facility, aime...

  4. A high angular resolution survey of massive stars in Cygnus OB2: Results from the Hubble space telescope fine guidance sensors

    International Nuclear Information System (INIS)

    We present results of a high angular resolution survey of massive OB stars in the Cygnus OB2 association that we conducted with the fine guidance sensor 1R (FGS1r) on the Hubble Space Telescope. FGS1r is able to resolve binary systems with a magnitude difference ΔV < 4 down to separations as small as 0.''01. The sample includes 58 of the brighter members of Cyg OB2, one of the closest examples of an environment containing a large number of very young and massive stars. We resolved binary companions for 12 targets and confirmed the triple nature of one other target, and we offer evidence of marginally resolved companions for two additional stars. We confirm the binary nature of 11 of these systems from complementary adaptive optics imaging observations. The overall binary frequency in our study is 22% to 26% corresponding to orbital periods ranging from 20 to 20,000 yr. When combined with the known short-period spectroscopic binaries, the results support the hypothesis that the binary fraction among massive stars is >60%. One of the new discoveries is a companion to the hypergiant star MT 304 = Cyg OB2-12, and future measurements of orbital motion should provide mass estimates for this very luminous star.

  5. Synthetic aperture radar images with composite azimuth resolution

    Energy Technology Data Exchange (ETDEWEB)

    Bielek, Timothy P; Bickel, Douglas L

    2015-03-31

    A synthetic aperture radar (SAR) image is produced by using all phase histories of a set of phase histories to produce a first pixel array having a first azimuth resolution, and using less than all phase histories of the set to produce a second pixel array having a second azimuth resolution that is coarser than the first azimuth resolution. The first and second pixel arrays are combined to produce a third pixel array defining a desired SAR image that shows distinct shadows of moving objects while preserving detail in stationary background clutter.

  6. High-resolution Multi-band Imaging for Validation and Characterization of Small Kepler Planets

    CERN Document Server

    Everett, Mark E; Ciardi, David R; Horch, Elliott P; Howell, Steve B; Crepp, Justin R; Silva, David R

    2014-01-01

    High-resolution ground-based optical speckle and near-infrared adaptive optics images are taken to search for stars in close angular proximity to host stars of candidate planets identified by the NASA Kepler Mission. Neighboring stars are a potential source of false positive signals. These stars also blend into Kepler light curves, affecting estimated planet properties, and are important for an understanding of planets in multiple star systems. Deep images with high angular resolution help to validate candidate planets by excluding potential background eclipsing binaries as the source of the transit signals. A study of 18 Kepler Object of Interest stars hosting a total of 28 candidate and validated planets is presented. Validation levels are determined for 18 planets against the likelihood of a false positive from a background eclipsing binary. Most of these are validated at the 99% level or higher, including 5 newly-validated planets in two systems: Kepler-430 and Kepler-431. The stellar properties of the ca...

  7. High-resolution multi-band imaging for validation and characterization of small Kepler planets

    International Nuclear Information System (INIS)

    High-resolution ground-based optical speckle and near-infrared adaptive optics images are taken to search for stars in close angular proximity to host stars of candidate planets identified by the NASA Kepler Mission. Neighboring stars are a potential source of false positive signals. These stars also blend into Kepler light curves, affecting estimated planet properties, and are important for an understanding of planets in multiple star systems. Deep images with high angular resolution help to validate candidate planets by excluding potential background eclipsing binaries as the source of the transit signals. A study of 18 Kepler Object of Interest stars hosting a total of 28 candidate and validated planets is presented. Validation levels are determined for 18 planets against the likelihood of a false positive from a background eclipsing binary. Most of these are validated at the 99% level or higher, including five newly validated planets in two systems: Kepler-430 and Kepler-431. The stellar properties of the candidate host stars are determined by supplementing existing literature values with new spectroscopic characterizations. Close neighbors of seven of these stars are examined using multi-wavelength photometry to determine their nature and influence on the candidate planet properties. Most of the close neighbors appear to be gravitationally bound secondaries, while a few are best explained as closely co-aligned field stars. Revised planet properties are derived for each candidate and validated planet, including cases where the close neighbors are the potential host stars.

  8. The claustrum and insula in Microcebus murinus: a high-resolution diffusion imaging study

    Directory of Open Access Journals (Sweden)

    Soyoung Park

    2012-06-01

    Full Text Available The present study explores the connectivity of the claustrum and insula in the mouse lemur (Microcebus murinus using high angular resolution diffusion imaging (HARDI with 72 directions, with a very small voxel size (90 micra, and probabilistic fiber tractography. Our data indicate that the claustrum connects with many cortical areas and the olfactory bulb; its strongest probabilistic connections are with the entorhinal cortex, suggesting that the claustrum may have a role in spatial memory and navigation. By contrast, the insula connects with many subcortical areas, including the brainstem and thalamic structures particularly involved in taste and visceral feelings. The insula in the Microcebus connects with the dorsolateral frontal cortex in contrast to the mouse insula, which has stronger connections with the ventromedial frontal lobe. This connectivity in the Microcebus is consistent with the dorsolateral expansion of the frontal cortex in primates. In spite of these connectional differences between the claustrum and insula, their close juxtaposition and common gene expression point to the cortical affinities of the claustrum. Overall, the connections of the Microcebus claustrum and insula are similar to those of the rodents, cat, macaque, and human, validating these results. High angular and spatial resolution diffusion tensor imaging offers the advantages that it is non-destructive, requires no surgical interventions, and the connection of each and every voxel can be mapped, whereas in conventional tractography only a few specific tracer injection sites can be assayed. Also, the brain can be sectioned computationally into any desired plane for analysis.

  9. High-resolution multi-band imaging for validation and characterization of small Kepler planets

    Energy Technology Data Exchange (ETDEWEB)

    Everett, Mark E.; Silva, David R. [National Optical Astronomy Observatory, 950 North Cherry Avenue Tucson, AZ 85719 (United States); Barclay, Thomas; Howell, Steve B. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Ciardi, David R. [NASA Exoplanet Science Institute, 770 South Wilson Avenue, Pasadena, CA 91125 (United States); Horch, Elliott P. [Department of Physics, Southern Connecticut State University, 501 Crescent Street, New Haven, CT 06515 (United States); Crepp, Justin R. [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556 (United States)

    2015-02-01

    High-resolution ground-based optical speckle and near-infrared adaptive optics images are taken to search for stars in close angular proximity to host stars of candidate planets identified by the NASA Kepler Mission. Neighboring stars are a potential source of false positive signals. These stars also blend into Kepler light curves, affecting estimated planet properties, and are important for an understanding of planets in multiple star systems. Deep images with high angular resolution help to validate candidate planets by excluding potential background eclipsing binaries as the source of the transit signals. A study of 18 Kepler Object of Interest stars hosting a total of 28 candidate and validated planets is presented. Validation levels are determined for 18 planets against the likelihood of a false positive from a background eclipsing binary. Most of these are validated at the 99% level or higher, including five newly validated planets in two systems: Kepler-430 and Kepler-431. The stellar properties of the candidate host stars are determined by supplementing existing literature values with new spectroscopic characterizations. Close neighbors of seven of these stars are examined using multi-wavelength photometry to determine their nature and influence on the candidate planet properties. Most of the close neighbors appear to be gravitationally bound secondaries, while a few are best explained as closely co-aligned field stars. Revised planet properties are derived for each candidate and validated planet, including cases where the close neighbors are the potential host stars.

  10. Analyzing angular distributions for two-step dissociation mechanisms in velocity map imaging.

    Science.gov (United States)

    Straus, Daniel B; Butler, Lynne M; Alligood, Bridget W; Butler, Laurie J

    2013-08-15

    Increasingly, velocity map imaging is becoming the method of choice to study photoinduced molecular dissociation processes. This paper introduces an algorithm to analyze the measured net speed, P(vnet), and angular, β(vnet), distributions of the products from a two-step dissociation mechanism, where the first step but not the second is induced by absorption of linearly polarized laser light. Typically, this might be the photodissociation of a C-X bond (X = halogen or other atom) to produce an atom and a momentum-matched radical that has enough internal energy to subsequently dissociate (without the absorption of an additional photon). It is this second step, the dissociation of the unstable radicals, that one wishes to study, but the measured net velocity of the final products is the vector sum of the velocity imparted to the radical in the primary photodissociation (which is determined by taking data on the momentum-matched atomic cophotofragment) and the additional velocity vector imparted in the subsequent dissociation of the unstable radical. The algorithm allows one to determine, from the forward-convolution fitting of the net velocity distribution, the distribution of velocity vectors imparted in the second step of the mechanism. One can thus deduce the secondary velocity distribution, characterized by a speed distribution P(v1,2°) and an angular distribution I(θ2°), where θ2° is the angle between the dissociating radical's velocity vector and the additional velocity vector imparted to the product detected from the subsequent dissociation of the radical. PMID:23464815

  11. HRTEM Imaging of Atoms at Sub-Angstrom Resolution

    Energy Technology Data Exchange (ETDEWEB)

    O' Keefe, Michael A.; Allard, Lawrence F.; Blom, Douglas A.

    2005-04-06

    John Cowley and his group at Arizona State University pioneered the use of transmission electron microscopy (TEM) for high-resolution imaging. Images were achieved three decades ago showing the crystal unit cell content at better than 4 Angstrom resolution. This achievement enabled researchers to pinpoint the positions of heavy atom columns within the unit cell. Lighter atoms appear as resolution is improved to sub-Angstrom levels. Currently, advanced microscopes can image the columns of the light atoms (carbon, oxygen, nitrogen) that are present in many complex structures, and even the lithium atoms present in some battery materials. Sub-Angstrom imaging, initially achieved by focal-series reconstruction of the specimen exit surface wave, will become common place for next-generation electron microscopes with CS-corrected lenses and monochromated electron beams. Resolution can be quantified in terms of peak separation and inter-peak minimum, but the limits imposed on the attainable resolution by the properties of the micro-scope specimen need to be considered. At extreme resolution the ''size'' of atoms can mean that they will not be resolved even when spaced farther apart than the resolution of the microscope.

  12. Neutron radiography and its image resolutions

    International Nuclear Information System (INIS)

    Neutron radiography (NR) is widely applied especially for non-destructive inspection of industrial products. An outline of NR technique is given in this report with few examples of industrial applications. The quality of a NR image depends on many factors. The values of L, D, and L/D are main factors to define a geometrical unsharpness of NR images. A device for accurate measurements of those parameters is proposed and fabricated. Degree of confidence is estimated for measurements of those parameters in detail. Values of L, D, and L/D are measured for our NR facilities with different geometrical conditions by use of the device and the values are compared to the designed values. The quality of the NR image also depends on an inherent unsharpness of its imaging device. The inherent unsharpness is measured as an edge spread function (ESF) and a modulation transfer function (MTF) is derived from the ESF with a technique of the discrete fast Fourier transform (DFFT). Results are compared to theoretically calculated MTF. (author)

  13. Deduction of image area from space resolution

    International Nuclear Information System (INIS)

    To investigate a new method for calculating nuclear medical image area, supposing a radioactive object equivalent to a composite of infinite line sources, based on the response of line source to γ camera, both responses to center and edge of the radioactive object can be deduced. The threshold (T) was expressed as T = response of edge (counts of edge)/response of center (counts of center). Then counts of edge = T x counts of center. With the counts of edge, the edge of the image could be defined and the area of the image was worked out. The results were showed that: 1) The maximum calculating errors of 'cold' and 'hot' phantom in planar and tomographic image was <0.59% and <3.40%; 2) The standard deviation of same area calculated by the threshold values determined by both above and manual method was 0.54 and 3.95 respectively; 3) The effectiveness in clinical experiments was 92.6%. The method is accurate and reliable

  14. Spatial Resolution Characterization for AWiFS Multispectral Images

    Science.gov (United States)

    Blonski, Slawomir; Ryan, Robert E.; Pagnutti, Mary; Stanley, Thomas

    2007-01-01

    This viewgraph presentation describes the spatial resolution of the AWiFS multispectral images characterized by an estimation of the Modulation Transfer Function (MTF) at Nyquist frequency. The contents include: 1) MTF Analysis; 2) Target Analysis; 3) "Pulse Target"; 4) "Pulse" Method; 5) Target Images; 6) Bridge Profiles; 7) MTF Calculation; 8) MTF Results; and 9) Results Summary.

  15. Reference-free method for forming a three-dimensional image and determining the angular velocity of a remote object

    NARCIS (Netherlands)

    Mandrosov, V. I.

    2012-01-01

    We propose a reference-free method for forming a three-dimensional image and for determining the angular velocity of a remote nonplanar object. The method is based on probing an object by laser radiation with a coherence length that is smaller or larger than the size of the object and on the use of

  16. A method for generating high resolution satellite image time series

    Science.gov (United States)

    Guo, Tao

    2014-10-01

    There is an increasing demand for satellite remote sensing data with both high spatial and temporal resolution in many applications. But it still is a challenge to simultaneously improve spatial resolution and temporal frequency due to the technical limits of current satellite observation systems. To this end, much R&D efforts have been ongoing for years and lead to some successes roughly in two aspects, one includes super resolution, pan-sharpen etc. methods which can effectively enhance the spatial resolution and generate good visual effects, but hardly preserve spectral signatures and result in inadequate analytical value, on the other hand, time interpolation is a straight forward method to increase temporal frequency, however it increase little informative contents in fact. In this paper we presented a novel method to simulate high resolution time series data by combing low resolution time series data and a very small number of high resolution data only. Our method starts with a pair of high and low resolution data set, and then a spatial registration is done by introducing LDA model to map high and low resolution pixels correspondingly. Afterwards, temporal change information is captured through a comparison of low resolution time series data, and then projected onto the high resolution data plane and assigned to each high resolution pixel according to the predefined temporal change patterns of each type of ground objects. Finally the simulated high resolution data is generated. A preliminary experiment shows that our method can simulate a high resolution data with a reasonable accuracy. The contribution of our method is to enable timely monitoring of temporal changes through analysis of time sequence of low resolution images only, and usage of costly high resolution data can be reduces as much as possible, and it presents a highly effective way to build up an economically operational monitoring solution for agriculture, forest, land use investigation

  17. A Novel and Robust Wavelet based Super Resolution Reconstruction of Low Resolution Images using Efficient Denoising and Adaptive Interpolation

    Directory of Open Access Journals (Sweden)

    Liyakathunisa

    2010-10-01

    Full Text Available High Resolution images can be reconstructed from several blurred, noisy and aliased low resolution images using a computational process know as super resolution reconstruction. Super resolution reconstruction is the process of combining several low resolution images into a single higher resolution image. In this paper we concentrate on a special case of super resolution problem where the wrap is composed of pure translation and rotation, the blur is space invariant and the noise is additive white Gaussian noise. Super resolution reconstruction consists of registration, restoration and interpolation phases. Once the Low resolution image are registered with respect to a reference frame then wavelet based restoration is performed to remove the blur and noise from the images, finally the images are interpolated using adaptive interpolation. We are proposing an efficient wavelet based denoising with adaptive interpolation for super resolution reconstruction. Under this frame work, the low resolution images are decomposed into many levels to obtain different frequency bands. Then our proposed novel soft thresholding technique is used to remove the noisy coefficients, by fixing optimum threshold value. In order to obtain an image of higher resolution we have proposed an adaptive interpolation technique. Our proposed wavelet based denoising with adaptive interpolation for super resolution reconstruction preserves the edges as well as smoothens the image without introducing artifacts. Experimental results show that the proposed approach has succeeded in obtaining a high-resolution image with a high PSNR, ISNR ratio and a good visual quality.

  18. A Bayesian Nonparametric Approach to Image Super-Resolution.

    Science.gov (United States)

    Polatkan, Gungor; Zhou, Mingyuan; Carin, Lawrence; Blei, David; Daubechies, Ingrid

    2015-02-01

    Super-resolution methods form high-resolution images from low-resolution images. In this paper, we develop a new Bayesian nonparametric model for super-resolution. Our method uses a beta-Bernoulli process to learn a set of recurring visual patterns, called dictionary elements, from the data. Because it is nonparametric, the number of elements found is also determined from the data. We test the results on both benchmark and natural images, comparing with several other models from the research literature. We perform large-scale human evaluation experiments to assess the visual quality of the results. In a first implementation, we use Gibbs sampling to approximate the posterior. However, this algorithm is not feasible for large-scale data. To circumvent this, we then develop an online variational Bayes (VB) algorithm. This algorithm finds high quality dictionaries in a fraction of the time needed by the Gibbs sampler. PMID:26353246

  19. Image Super-Resolution Using Deep Convolutional Networks.

    Science.gov (United States)

    Dong, Chao; Loy, Chen Change; He, Kaiming; Tang, Xiaoou

    2016-02-01

    We propose a deep learning method for single image super-resolution (SR). Our method directly learns an end-to-end mapping between the low/high-resolution images. The mapping is represented as a deep convolutional neural network (CNN) that takes the low-resolution image as the input and outputs the high-resolution one. We further show that traditional sparse-coding-based SR methods can also be viewed as a deep convolutional network. But unlike traditional methods that handle each component separately, our method jointly optimizes all layers. Our deep CNN has a lightweight structure, yet demonstrates state-of-the-art restoration quality, and achieves fast speed for practical on-line usage. We explore different network structures and parameter settings to achieve trade-offs between performance and speed. Moreover, we extend our network to cope with three color channels simultaneously, and show better overall reconstruction quality. PMID:26761735

  20. Compact and mobile high resolution PET brain imager

    Science.gov (United States)

    Majewski, Stanislaw; Proffitt, James

    2011-02-08

    A brain imager includes a compact ring-like static PET imager mounted in a helmet-like structure. When attached to a patient's head, the helmet-like brain imager maintains the relative head-to-imager geometry fixed through the whole imaging procedure. The brain imaging helmet contains radiation sensors and minimal front-end electronics. A flexible mechanical suspension/harness system supports the weight of the helmet thereby allowing for patient to have limited movements of the head during imaging scans. The compact ring-like PET imager enables very high resolution imaging of neurological brain functions, cancer, and effects of trauma using a rather simple mobile scanner with limited space needs for use and storage.

  1. Bandwidth and resolution of super-resolution imaging with perforated solids

    Science.gov (United States)

    Liang, Zixian; Li, Jensen

    2011-12-01

    Recent experiments on acoustic superlens and hyperlens found anisotropic metamaterials constructed from periodic perforated solids can be used for super-resolution imaging. Here, we present a theoretical study on the operational bandwidth of these imaging devices using the emerging framework of transformation acoustics. Within the transformation approach, both the microstructural superlens and hyperlens can be discussed using the transfer matrix method on the same footing. We show that the geometrical structure of the periodic metamaterials induces that an acoustics hyperlens has a very wide operational frequency bandwidth with its subwavelength resolution limited by the ratio of image magnification while an acoustics superlens has a very deep subwavelength resolution limited only by the periodicity of the perforations but intrinsically working at a narrow frequency bandwidth. Such investigation will become useful for designing future transformation acoustical imaging devices.

  2. Bandwidth and resolution of super-resolution imaging with perforated solids

    Directory of Open Access Journals (Sweden)

    Zixian Liang

    2011-12-01

    Full Text Available Recent experiments on acoustic superlens and hyperlens found anisotropic metamaterials constructed from periodic perforated solids can be used for super-resolution imaging. Here, we present a theoretical study on the operational bandwidth of these imaging devices using the emerging framework of transformation acoustics. Within the transformation approach, both the microstructural superlens and hyperlens can be discussed using the transfer matrix method on the same footing. We show that the geometrical structure of the periodic metamaterials induces that an acoustics hyperlens has a very wide operational frequency bandwidth with its subwavelength resolution limited by the ratio of image magnification while an acoustics superlens has a very deep subwavelength resolution limited only by the periodicity of the perforations but intrinsically working at a narrow frequency bandwidth. Such investigation will become useful for designing future transformation acoustical imaging devices.

  3. An Effective Multi-Frame Super Resolution of Image from Blurry and Noisy Images Using PCA

    Directory of Open Access Journals (Sweden)

    Swati A. Patil

    2014-01-01

    Full Text Available Image super-resolution are techniques aiming restoration of a high-resolution image from one or several low-resolution observation images, which offer the advantages overcoming some of the inherent resolution limitations of low-cost imaging sensors (e.g., satellite image, cell phone, camera’s or surveillance camera’s, and allow better utilization of the growing capability and noise free image of HR displays. Conventional image super-resolution approaches normally require multiple LR inputs of the same scene with sub-pixel motions. This paper attempts to undertake the study of the super-resolution restoration problem and improved resolution image is restored from several geometrically warped, blurred, noisy images. The super-resolution restoration problem is modeled and analyzed from the filters such as Median Filter, Adaptive Wiener Filter, Gaussian Filter these different noise densities have been removed between 10% to 65%. The Principal Component analysis (PCA is the technique which is useful for improving the image sharpness after the process of de-blurring

  4. On the Adaptability of Neural Network Image Super-Resolution

    OpenAIRE

    Chua, Kah Keong; Tay, Yong Haur

    2012-01-01

    In this paper, we described and developed a framework for Multilayer Perceptron (MLP) to work on low level image processing, where MLP will be used to perform image super-resolution. Meanwhile, MLP are trained with different types of images from various categories, hence analyse the behaviour and performance of the neural network. The tests are carried out using qualitative test, in which Mean Squared Error (MSE), Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM). The r...

  5. Super resolution technique and its potential usage in medical imaging

    OpenAIRE

    Chang, Yiu-chuen; 張耀泉

    2014-01-01

    Purpose: Medical imaging systems are used to scan patients to obtain valuable information for diseases diagnosis and assisting treatment. An ideal scanner should be sensitive enough to detect any trace amount of abnormal tissue at its early stage. With the continuous development of high-tech treatment systems such as Tomotherapy (manufactured by Tomo HD), the high-resolution imaging system is favorable to reduce the damage of normal tissue due to the image guidance of Mega-voltage beam be...

  6. Learning-Based Nonparametric Image Super-Resolution

    OpenAIRE

    Gupta Mithun Das; Huang Thomas S; Petrovic Nemanja; Rajaram Shyamsundar

    2006-01-01

    We present a novel learning-based framework for zooming and recognizing images of digits obtained from vehicle registration plates, which have been blurred using an unknown kernel. We model the image as an undirected graphical model over image patches in which the compatibility functions are represented as nonparametric kernel densities. The crucial feature of this work is an iterative loop that alternates between super-resolution and restoration stages. A machine-learning-based framework ha...

  7. High resolution field imaging with atomic vapor cells

    OpenAIRE

    Horsley, Andrew

    2015-01-01

    In this thesis, I report on the development of imaging techniques in atomic vapor cells. This is a relatively unexplored area, despite the ubiquitous use of imaging in experiments with ultracold atoms. Our main focus is in high resolution imaging of microwave near fields, for which there is currently no satisfactory established technique. We detect microwave fields through Rabi oscillations driven by the microwave on atomic hyperfine transitions. The technique can be easily modified to also i...

  8. Multi-resolution, multi-sensor image fusion: general fusion framework

    OpenAIRE

    Palubinskas, Gintautas; Reinartz, Peter

    2011-01-01

    Multi-resolution image fusion also known as pansharpening aims to include spatial information from a high resolution image, e.g. panchromatic or Synthetic Aperture Radar (SAR) image, into a low resolution image, e.g. multi-spectral or hyper-spectral image, while preserving spectral properties of a low resolution image. A signal processing view at this problem allowed us to perform a systematic classification of most known multi-resolution image fusion approaches and resul...

  9. Texture analysis of high-resolution FLAIR images for TLE

    Science.gov (United States)

    Jafari-Khouzani, Kourosh; Soltanian-Zadeh, Hamid; Elisevich, Kost

    2005-04-01

    This paper presents a study of the texture information of high-resolution FLAIR images of the brain with the aim of determining the abnormality and consequently the candidacy of the hippocampus for temporal lobe epilepsy (TLE) surgery. Intensity and volume features of the hippocampus from FLAIR images of the brain have been previously shown to be useful in detecting the abnormal hippocampus in TLE. However, the small size of the hippocampus may limit the texture information. High-resolution FLAIR images show more details of the abnormal intensity variations of the hippocampi and therefore are more suitable for texture analysis. We study and compare the low and high-resolution FLAIR images of six epileptic patients. The hippocampi are segmented manually by an expert from T1-weighted MR images. Then the segmented regions are mapped on the corresponding FLAIR images for texture analysis. The 2-D wavelet transforms of the hippocampi are employed for feature extraction. We compare the ability of the texture features from regular and high-resolution FLAIR images to distinguish normal and abnormal hippocampi. Intracranial EEG results as well as surgery outcome are used as gold standard. The results show that the intensity variations of the hippocampus are related to the abnormalities in the TLE.

  10. Semantic-based high resolution remote sensing image retrieval

    Science.gov (United States)

    Guo, Dihua

    High Resolution Remote Sensing (HRRS) imagery has been experiencing extraordinary development in the past decade. Technology development means increased resolution imagery is available at lower cost, making it a precious resource for planners, environmental scientists, as well as others who can learn from the ground truth. Image retrieval plays an important role in managing and accessing huge image database. Current image retrieval techniques, cannot satisfy users' requests on retrieving remote sensing images based on semantics. In this dissertation, we make two fundamental contributions to the area of content based image retrieval. First, we propose a novel unsupervised texture-based segmentation approach suitable for accurately segmenting HRRS images. The results of existing segmentation algorithms dramatically deteriorate if simply adopted to HRRS images. This is primarily clue to the multi-texture scales and the high level noise present in these images. Therefore, we propose an effective and efficient segmentation model, which is a two-step process. At high-level, we improved the unsupervised segmentation algorithm by coping with two special features possessed by HRRS images. By preprocessing images with wavelet transform, we not only obtain multi-resolution images but also denoise the original images. By optimizing the splitting results, we solve the problem of textons in HRRS images existing in different scales. At fine level, we employ fuzzy classification segmentation techniques with adjusted parameters for different land cover. We implement our algorithm using real world 1-foot resolution aerial images. Second, we devise methodologies to automatically annotate HRRS images based on semantics. In this, we address the issue of semantic feature selection, the major challenge faced by semantic-based image retrieval. To discover and make use of hidden semantics of images is application dependent. One type of the semantics in HRRS image is conveyed by composite

  11. A True Multi-modality Approach for High Resolution Optical Imaging: Photo-Magnetic Imaging

    OpenAIRE

    Luk, Alex T.; Ha, Seunghoon; Nouizi, Farouk; Thayer, David; Lin, Yuting; Gulsen, Gultekin

    2014-01-01

    Multi-modality imaging leverages the competitive advantage of different imaging systems to improve the overall resolution and quantitative accuracy. Our new technique, Photo-Magnetic Imaging (PMI) is one of these true multi-modality imaging approaches, which can provide quantitative optical absorption map at MRI spatial resolution. PMI uses laser light to illuminate tissue and elevate its temperature while utilizing MR thermometry to measure the laser-induced temperature variation with high s...

  12. High resolution surface plasmon microscopy for cell imaging

    Science.gov (United States)

    Argoul, F.; Monier, K.; Roland, T.; Elezgaray, J.; Berguiga, L.

    2010-04-01

    We introduce a new non-labeling high resolution microscopy method for cellular imaging. This method called SSPM (Scanning Surface Plasmon Microscopy) pushes down the resolution limit of surface plasmon resonance imaging (SPRi) to sub-micronic scales. High resolution SPRi is obtained by the surface plasmon lauching with a high numerical aperture objective lens. The advantages of SPPM compared to other high resolution SPRi's rely on three aspects; (i) the interferometric detection of the back reflected light after plasmon excitation, (ii) the twodimensional scanning of the sample for image reconstruction, (iii) the radial polarization of light, enhancing both resolution and sensitivity. This microscope can afford a lateral resolution of - 150 nm in liquid environment and - 200 nm in air. We present in this paper images of IMR90 fibroblasts obtained with SSPM in dried environment. Internal compartments such as nucleus, nucleolus, mitochondria, cellular and nuclear membrane can be recognized without labelling. We propose an interpretation of the ability of SSPM to reveal high index contrast zones by a local decomposition of the V (Z) function describing the response of the SSPM.

  13. Imaging Lithium Atoms at Sub-Angstrom Resolution

    Energy Technology Data Exchange (ETDEWEB)

    O' Keefe, Michael A.; Shao-Horn, Yang

    2005-01-03

    John Cowley and his group at ASU were pioneers in the use of transmission electron microscopy (TEM) for high-resolution imaging. Three decades ago they achieved images showing the crystal unit cell content at better than 4A resolution. Over the years, this achievement has inspired improvements in resolution that have enabled researchers to pinpoint the positions of heavy atom columns within the cell. More recently, this ability has been extended to light atoms as resolution has improved. Sub-Angstrom resolution has enabled researchers to image the columns of light atoms (carbon, oxygen and nitrogen) that are present in many complex structures. By using sub-Angstrom focal-series reconstruction of the specimen exit surface wave to image columns of cobalt, oxygen, and lithium atoms in a transition metal oxide structure commonly used as positive electrodes in lithium rechargeable batteries, we show that the range of detectable light atoms extends to lithium. HRTEM at sub-Angstrom resolution will provide the essential role of experimental verification for the emergent nanotech revolution. Our results foreshadow those to be expected from next-generation TEMs with CS-corrected lenses and monochromated electron beams.

  14. Angular resolution measurements at SPring-8 of a hard x-ray optic for the New Hard X-ray Mission

    Science.gov (United States)

    Spiga, D.; Raimondi, L.; Furuzawa, A.; Basso, S.; Binda, R.; Borghi, G.; Cotroneo, V.; Grisoni, G.; Kunieda, H.; Marioni, F.; Matsumoto, H.; Mori, H.; Miyazawa, T.; Negri, B.; Orlandi, A.; Pareschi, G.; Salmaso, B.; Tagliaferri, G.; Uesugi, K.; Valsecchi, G.; Vernani, D.

    2011-09-01

    The realization of X-ray telescopes with imaging capabilities in the hard (> 10 keV) X-ray band requires the adoption of optics with shallow (=10 m shall be produced and tested. Full-illumination tests of such mirrors are usually performed with onground X-ray facilities, aimed at measuring their effective area and the angular resolution; however, they in general suffer from effects of the finite distance of the X-ray source, e.g. a loss of effective area for double reflection. These effects increase with the focal length of the mirror under test; hence a "partial" full-illumination measurement might not be fully representative of the in-flight performances. Indeed, a pencil beam test can be adopted to overcome this shortcoming, because a sector at a time is exposed to the X-ray flux, and the compensation of the beam divergence is achieved by tilting the optic. In this work we present the result of a hard X-ray test campaign performed at the BL20B2 beamline of the SPring-8 synchrotron radiation facility, aimed at characterizing the Point Spread Function (PSF) of a multilayer-coated Wolter-I mirror shell manufactured by Nickel electroforming. The mirror shell is a demonstrator for the NHXM hard X-ray imaging telescope (0.3 - 80 keV), with a predicted HEW (Half Energy Width) close to 20 arcsec. We show some reconstructed PSFs at monochromatic X-ray energies of 15 to 63 keV, and compare them with the PSFs computed from post-campaign metrology data, self-consistently treating profile and roughness data by means of a method based on the Fresnel diffraction theory. The modeling matches the measured PSFs accurately.

  15. Subsurface Super-resolution Imaging of Unstained Polymer Nanostructures

    Science.gov (United States)

    Urban, Ben E.; Dong, Biqin; Nguyen, The-Quyen; Backman, Vadim; Sun, Cheng; Zhang, Hao F.

    2016-01-01

    Optical imaging has offered unique advantages in material researches, such as spectroscopy and lifetime measurements of deeply embedded materials, which cannot be matched using electron or scanning-probe microscopy. Unfortunately, conventional optical imaging cannot provide the spatial resolutions necessary for many nanoscopic studies. Despite recent rapid progress, super-resolution optical imaging has yet to be widely applied to non-biological materials. Herein we describe a method for nanoscopic optical imaging of buried polymer nanostructures without the need for extrinsic staining. We observed intrinsic stochastic fluorescence emission or blinking from unstained polymers and performed spatial-temporal spectral analysis to investigate its origin. We further applied photon localization super-resolution imaging reconstruction to the detected stochastic blinking, and achieved a spatial resolution of at least 100 nm, which corresponds to a six-fold increase over the optical diffraction limit. This work demonstrates the potential for studying the static heterogeneities of intrinsic polymer molecular-specific properties at sub-diffraction-limited optical resolutions. PMID:27354178

  16. Precision cosmology with time delay lenses: high resolution imaging requirements

    CERN Document Server

    Meng, Xiao-Lei; Agnello, Adriano; Auger, Matthew W; Liao, Kai; Marshall, Philip J

    2015-01-01

    Lens time delays are a powerful probe of cosmology, provided that the gravitational potential of the main deflector can be modeled with sufficient precision. Recent work has shown that this can be achieved by detailed modeling of the host galaxies of lensed quasars, which appear as "Einstein Rings" in high resolution images. We carry out a systematic exploration of the high resolution imaging required to exploit the thousands of lensed quasars that will be discovered by current and upcoming surveys with the next decade. Specifically, we simulate realistic lens systems as imaged by the Hubble Space Telescope (HST), James Webb Space Telescope (JWST), and ground based adaptive optics images taken with Keck or the Thirty Meter Telescope (TMT). We compare the performance of these pointed observations with that of images taken by the Euclid (VIS), Wide-Field Infrared Survey Telescope (WFIRST) and Large Synoptic Survey Telescope (LSST) surveys. We use as our metric the precision with which the slope $\\gamma'$ of the...

  17. A compressed sensing approach for enhancing infrared imaging resolution

    Science.gov (United States)

    Xiao, Long-long; Liu, Kun; Han, Da-peng; Liu, Ji-ying

    2012-11-01

    This paper presents a novel approach for improving infrared imaging resolution by the use of Compressed Sensing (CS). Instead of sensing raw pixel data, the image sensor measures the compressed samples of the observed image through a coded aperture mask placed on the focal plane of the optical system, and then the image reconstruction can be conducted from these samples using an optimal algorithm. The resolution is determined by the size of the coded aperture mask other than that of the focal plane array (FPA). The attainable quality of the reconstructed image strongly depends on the choice of the coded aperture mode. Based on the framework of CS, we carefully design an optimum mask pattern and use a multiplexing scheme to achieve multiple samples. The gradient projection for sparse reconstruction (GPSR) algorithm is employed to recover the image. The mask radiation effect is discussed by theoretical analyses and numerical simulations. Experimental results are presented to show that the proposed method enhances infrared imaging resolution significantly and ensures imaging quality.

  18. Reference-free method for forming a three-dimensional image and determining the angular velocity of a remote object

    Science.gov (United States)

    Mandrosov, V. I.

    2012-07-01

    We propose a reference-free method for forming a threedimensional image and for determining the angular velocity of a remote nonplanar object. The method is based on probing an object by laser radiation with a coherence length that is smaller or larger than the size of the object and on the use of a screen with radial holes in the centres of which photodetectors are located, the screen being mounted in the region of the flat image of the object. A threedimensional image of the object is constructed using the visibility of the interference fringes formed behind the screen due to radiation beams scattered by the object which pass through various pairs of holes (one of the holes is fixed). The three components of the angular velocity vector of the object are determined by the power spectrum of the electric signal produced during the movement of interference fringes on a photodetector mounted behind the screen.

  19. Dissociating the Effects of Angular Disparity and Image Similarity in Mental Rotation and Object Recognition

    Science.gov (United States)

    Cheung, Olivia S.; Hayward, William G.; Gauthier, Isabel

    2009-01-01

    Performance is often impaired linearly with increasing angular disparity between two objects in tasks that measure mental rotation or object recognition. But increased angular disparity is often accompanied by changes in the similarity between views of an object, confounding the impact of the two factors in these tasks. We examined separately the…

  20. Impact of image-space resolution modeling for studies with the high-resolution research tomograph

    International Nuclear Information System (INIS)

    Brain PET in small structures is challenged by low resolution inducing bias in the activity measurements. Improved spatial resolution may be obtained by using dedicated tomographs and more comprehensive modeling of the acquisition system during reconstruction. In this study, we assess the impact of resolution modeling (RM) during reconstruction on image quality and on the estimates of biologic parameters in a clinical study performed on a high-resolution research tomograph. Methods: An accelerated list-mode ordinary Poisson ordered-subset expectation maximization (OP-OSEM) algorithm, including sinogram-based corrections and an experimental stationary model of resolution, has been designed. Experimental phantom studies are used to assess contrast and noise characteristics of the reconstructed images. The binding potential of a selective tracer of the dopamine transporter is also assessed in anatomic volumes of interest in a 5-patient study. Results: In the phantom experiment, a slower convergence and a higher contrast recovery are observed for RM-OP-OSEM than for OP-OSEM for the same level of statistical noise. RM-OP-OSEM yields contrast recovery levels that could not be reached without RM as well as better visual recovery of the smallest spheres and better delineation of the structures in the reconstructed images. Statistical noise has lower variance at the voxel level with RM than without at matched resolution. In a uniform activity region, RM induces higher positive and lower negative correlations with neighboring voxels, leading to lower spatial variance. Clinical images reconstructed with RM demonstrate better delineation of cortical and subcortical structures in both time-averaged and parametric images. The binding potential in the striatum is also increased, a result similar to the one observed in the phantom study. Conclusion: In high-resolution PET, RM during reconstruction improves quantitative accuracy by reducing the partial-volume effects. (authors)

  1. Image Resolution in the Digital Era: Notion and Clinical Implications

    Directory of Open Access Journals (Sweden)

    Vahid Rakhshan

    2014-05-01

    Full Text Available Digital radiographs need additional metadata in order to be accurate when being converted to analog media. Resolution is a major reason of failures in proper printing or digitizing the images. This letter shortly explains the overlooked pitfalls of digital radiography and photography in dental practice, and briefly instructs the reader how to avoid or rectify common problems associated with resolution calibration of digital radiographs.

  2. Image Resolution in the Digital Era: Notion and Clinical Implications

    Directory of Open Access Journals (Sweden)

    Vahid Rakhshan

    2014-12-01

    Full Text Available Digital radiographs need additional metadata in order to be accurate when being converted to analog media. Resolution is a major reason of failures in proper printing or digitizing the images. This letter shortly explains the overlooked pitfalls of digital radiography and photography in dental practice, and briefly instructs the reader how to avoid or rectify common problems associated with resolution calibration of digital radiographs.

  3. High-Resolution and Animal Imaging Instrumentation and Techniques

    Science.gov (United States)

    Belcari, Nicola; Guerra, AlbertoDel

    During the last decade we have observed a growing interest in "in vivo" imaging techniques for small animals. This is due to the necessity of studying biochemical processes at a molecular level for pharmacology, genetic, and pathology investigations. This field of research is usually called "molecular imaging."Advances in biological understanding have been accompanied by technological advances in instrumentation and techniques and image-reconstruction software, resulting in improved image quality, visibility, and interpretation. The main technological challenge is then the design of systems with high spatial resolution and high sensitivity.

  4. Super-resolution far-field ghost imaging via compressive sampling

    OpenAIRE

    Gong, Wenlin; han, Shensheng

    2009-01-01

    Much more image details can be resolved by improving the system's imaging resolution and enhancing the resolution beyond the system's Rayleigh diffraction limit is generally called super-resolution. By combining the sparse prior property of images with the ghost imaging method, we demonstrated experimentally that super-resolution imaging can be nonlocally achieved in the far field even without looking at the object. Physical explanation of super-resolution ghost imaging via compressive sampli...

  5. High Resolution Linear Polarimetric Imaging for the Event Horizon Telescope

    CERN Document Server

    Chael, Andrew A; Narayan, Ramesh; Doeleman, Sheperd S; Wardle, John F C; Bouman, Katherine L

    2016-01-01

    Images of the linear polarization of synchrotron radiation around Active Galactic Nuclei (AGN) identify their projected magnetic field lines and provide key data for understanding the physics of accretion and outflow from supermassive black holes. The highest resolution polarimetric images of AGN are produced with Very Long Baseline Interferometry (VLBI). Because VLBI incompletely samples the Fourier transform of the source image, any image reconstruction that fills in unmeasured spatial frequencies will not be unique and reconstruction algorithms are required. In this paper, we explore extensions of the Maximum Entropy Method (MEM) to linear polarimetric VLBI imaging. In contrast to previous work, our polarimetric MEM algorithm combines a Stokes I imager that uses only bispectrum measurements that are immune to atmospheric phase corruption with a joint Stokes Q and U imager that operates on robust polarimetric ratios. We demonstrate the effectiveness of our technique on 7- and 3-mm wavelength quasar observat...

  6. High Speed and High Resolution Table-Top Nanoscale Imaging

    CERN Document Server

    Tadesse, G K; Demmler, S; HÄdrich, S; Wahyutama, I; Steinert, M; Spielmann, C; ZÜrch, M; TÜnnermann, A; Limpert, J; Rothhardt, J

    2016-01-01

    We present a table-top coherent diffraction imaging (CDI) experiment based on high-order harmonics generated at 18 nm by a high average power femtosecond fiber laser system. The high photon flux, narrow spectral bandwidth and high degree of spatial coherence allow for ultra-high sub-wavelength resolution imaging at a high numerical aperture. Our experiments demonstrate a half-pitch resolution of 13.6 nm, very close to the actual Abbe-limit of 12.4 nm, which is the highest resolution achieved from any table-top XUV or X-ray microscope. In addition, 20.5 nm resolution was achieved with only 3 sec of integration time bringing live diffraction imaging and 3D tomography on the nanoscale one step closer to reality. The current resolution is solely limited by the wavelength and the detector size. Thus, table-top nanoscopes with only a few-nm resolutions are in reach and will find applications in many areas of science and technology.

  7. High Resolution Local Structure-Constrained Image Upsampling.

    Science.gov (United States)

    Zhao, Yang; Wang, Ronggang; Wang, Wenmin; Gao, Wen

    2015-11-01

    With the development of ultra-high-resolution display devices, the visual perception of fine texture details is becoming more and more important. A method of high-quality image upsampling with a low cost is greatly needed. In this paper, we propose a fast and efficient image upsampling method that makes use of high-resolution local structure constraints. The average local difference is used to divide a bicubic-interpolated image into a sharp edge area and a texture area, and these two areas are reconstructed separately with specific constraints. For reconstruction of the sharp edge area, a high-resolution gradient map is estimated as an extra constraint for the recovery of sharp and natural edges; for the reconstruction of the texture area, a high-resolution local texture structure map is estimated as an extra constraint to recover fine texture details. These two reconstructed areas are then combined to obtain the final high-resolution image. The experimental results demonstrated that the proposed method recovered finer pixel-level texture details and obtained top-level objective performance with a low time cost compared with state-of-the-art methods. PMID:26186777

  8. Demosaiced pixel super-resolution for multiplexed holographic color imaging.

    Science.gov (United States)

    Wu, Yichen; Zhang, Yibo; Luo, Wei; Ozcan, Aydogan

    2016-01-01

    To synthesize a holographic color image, one can sequentially take three holograms at different wavelengths, e.g., at red (R), green (G) and blue (B) parts of the spectrum, and digitally merge them. To speed up the imaging process by a factor of three, a Bayer color sensor-chip can also be used to demultiplex three wavelengths that simultaneously illuminate the sample and digitally retrieve individual set of holograms using the known transmission spectra of the Bayer color filters. However, because the pixels of different channels (R, G, B) on a Bayer color sensor are not at the same physical location, conventional demosaicing techniques generate color artifacts in holographic imaging using simultaneous multi-wavelength illumination. Here we demonstrate that pixel super-resolution can be merged into the color de-multiplexing process to significantly suppress the artifacts in wavelength-multiplexed holographic color imaging. This new approach, termed Demosaiced Pixel Super-Resolution (D-PSR), generates color images that are similar in performance to sequential illumination at three wavelengths, and therefore improves the speed of holographic color imaging by 3-fold. D-PSR method is broadly applicable to holographic microscopy applications, where high-resolution imaging and multi-wavelength illumination are desired. PMID:27353242

  9. Demosaiced pixel super-resolution for multiplexed holographic color imaging

    Science.gov (United States)

    Wu, Yichen; Zhang, Yibo; Luo, Wei; Ozcan, Aydogan

    2016-06-01

    To synthesize a holographic color image, one can sequentially take three holograms at different wavelengths, e.g., at red (R), green (G) and blue (B) parts of the spectrum, and digitally merge them. To speed up the imaging process by a factor of three, a Bayer color sensor-chip can also be used to demultiplex three wavelengths that simultaneously illuminate the sample and digitally retrieve individual set of holograms using the known transmission spectra of the Bayer color filters. However, because the pixels of different channels (R, G, B) on a Bayer color sensor are not at the same physical location, conventional demosaicing techniques generate color artifacts in holographic imaging using simultaneous multi-wavelength illumination. Here we demonstrate that pixel super-resolution can be merged into the color de-multiplexing process to significantly suppress the artifacts in wavelength-multiplexed holographic color imaging. This new approach, termed Demosaiced Pixel Super-Resolution (D-PSR), generates color images that are similar in performance to sequential illumination at three wavelengths, and therefore improves the speed of holographic color imaging by 3-fold. D-PSR method is broadly applicable to holographic microscopy applications, where high-resolution imaging and multi-wavelength illumination are desired.

  10. Towards an automatic tool for resolution evaluation of mammographic images

    International Nuclear Information System (INIS)

    Quality of Mammographies from the Public and Private Services of the State. With an essentially educational character, an evaluation of the image quality is monthly held from a breast phantom in each mammographic equipment. In face of this, this work proposes to develop a protocol for automatic evaluation of image quality of mammograms so that the radiological protection and image quality requirements are met in the early detection of breast cancer. Specifically, image resolution will be addressed and evaluated, as a part of the program of image quality evaluation. Results show that for the fourth resolution and using 28 phantom images with the ground truth settled, the computer analysis of the resolution is promising and may be used as a tool for the assessment of the image quality. (Author)

  11. Towards an automatic tool for resolution evaluation of mammographic images

    Energy Technology Data Exchange (ETDEWEB)

    De Oliveira, J. E. E. [FUMEC, Av. Alfonso Pena 3880, CEP 30130-009 Belo Horizonte - MG (Brazil); Nogueira, M. S., E-mail: juliae@fumec.br [Centro de Desenvolvimento da Tecnologia Nuclear / CNEN, Pte. Antonio Carlos 6627, 31270-901, Belo Horizonte - MG (Brazil)

    2014-08-15

    Quality of Mammographies from the Public and Private Services of the State. With an essentially educational character, an evaluation of the image quality is monthly held from a breast phantom in each mammographic equipment. In face of this, this work proposes to develop a protocol for automatic evaluation of image quality of mammograms so that the radiological protection and image quality requirements are met in the early detection of breast cancer. Specifically, image resolution will be addressed and evaluated, as a part of the program of image quality evaluation. Results show that for the fourth resolution and using 28 phantom images with the ground truth settled, the computer analysis of the resolution is promising and may be used as a tool for the assessment of the image quality. (Author)

  12. Angular Variation of Solar Feature Contrast in Full-Disk G-Band Images

    Science.gov (United States)

    Blunt, Sarah Caroline; Criscuoli, Serena; Ermolli, Ilaria; Giorgi, Fabrizio

    2015-01-01

    We investigate the center-to-limb variation (CLV) of the contrasts of four types of solar surface features observed in the G-Band (430.6 nm, FWHM 1.2 nm) by analyzing 12 high quality full-disk images obtained from the Rome Precision Solar Photometric Telescope. The studied features, specifically network, enhanced network, plage, and bright plage, were singled out based on their brightness signatures in mean simultaneous Ca II K images using an intensity threshold technique. We compared our results with those obtained from high-resolution (HR) observations, and with the outputs of the spectral synthesis performed on semi-empirical models and magneto hydrodynamic (MHD) simulations. We find that the measured contrasts are systematically lower than those of HR observational results, as was expected due to the lower resolution of the analyzed observations. We also find that our observations best reflect the CLV derived from the recent one-dimensional atmospheric models described in Fontenla et al 2011 with respect to results obtained from earlier similar models. The measured CLV also agrees with those derived from the syntheses of MHD simulations and HR observations, if spatial resolution effects are properly taken into account. This work was carried out through the National Solar Observatory Summer Research Assistantship (SRA) Program. The National Solar Observatory is operated by the Association of Universities for Research in Astronomy, Inc. (AURA) under cooperative agreement with the National Science Foundation. This work was also partially supported by the European Union's Seventh Programme for Research, Technological Development and Demonstration under the grant agreements in 312495 (SOLARNET) and 313188 (SOLID).

  13. High resolution imaging with impulse based thermoacoustic tomography

    Science.gov (United States)

    Kellnberger, Stephan; Hajiaboli, Amir; Sergiadis, George; Razansky, Daniel; Ntziachristos, Vasilis

    2011-07-01

    Existing imaging modalities like microwave- or radiofrequency (RF) induced thermoacoustic tomography systems show the potential for resolving structures deep inside tissue due to the high penetration properties of RF. However, one of the major drawbacks of existing thermoacoustic tomography systems with pulse modulated carrier frequency excitation is the compromise between efficient signal generation and attainable spatial resolution. In order to overcome limitations of conventional thermoacoustic imaging methods, we herein present and experimentally validate our novel approach towards high resolution thermoacoustic tomography. Instead of carrier-frequency amplification, we utilize ultrahigh-energy electromagnetic impulses at nanosecond duration with near-field energy coupling, thus maintaining thermoacoustic signal strength without compromising spatial resolution. Preliminary experiments on highly absorbing objects, consisting of copper wires with characteristic sizes of ~100 μm, reveal the resolution performance which yields 160 μm. Furthermore, benefits like its cost effectiveness, simplicity and compactness with the potential application in small animal imaging as well as human body imaging show that thermoacoustic tomography with impulse excitation is a promising imaging modality which has a broad range of applications.

  14. Super-resolution imaging of a single metal layer: high loss but superior resolution

    Science.gov (United States)

    Guo, Kai; Liu, Jianlong; Zhou, Keya; Liu, Shutian

    2016-04-01

    In this work, we re-analyze the influence of the loss on the super-resolution imaging of a single metal layer superlens system and reveal its positive role of the imaging. The analysis is based on the surface plasmon polariton (SPP) theory. We show that SPP mode with high loss could suppress the amplification of evanescent waves and concentrate the energy, thus contribute to the imaging. We propose to surround the metal layer with high index medium to increase the loss of the SPP modes. The proposed structure shows better performance in super-resolution imaging than the low loss cases. Numerical simulations are performed to demonstrate the results by using two-dimensional finite element method.

  15. High-resolution dynamic speech imaging with deformation estimation.

    Science.gov (United States)

    Maojing Fu; Barlaz, Marissa S; Shosted, Ryan K; Zhi-Pei Liang; Sutton, Bradley P

    2015-08-01

    Dynamic speech magnetic resonance imaging (DSMRI) is a promising technique for visualizing articulatory motion in real time. However, many existing applications of DSMRI have been limited by slow imaging speed and the lack of quantitative motion analysis. In this paper, we present a novel DS-MRI technique to simultaneously estimate dynamic image sequence of speech and the associated deformation field. Extending on our previous Partial Separability (PS) model-based methods, the proposed technique visualizes both speech motion and deformation with a spatial resolution of 2.2 × 2.2 mm(2) and a nominal frame rate of 100 fps. Also, the technique enables direct analysis of articulatory motion through the deformation fields. Effectiveness of the method is systematically examined via in vivo experiments. Utilizing the obtained high-resolution images and deformation fields, we also performed a phonetics study on Brazilian Portuguese to show the method's practical utility. PMID:26736572

  16. High resolution ultrasound and photoacoustic imaging of single cells

    Directory of Open Access Journals (Sweden)

    Eric M. Strohm

    2016-03-01

    Full Text Available High resolution ultrasound and photoacoustic images of stained neutrophils, lymphocytes and monocytes from a blood smear were acquired using a combined acoustic/photoacoustic microscope. Photoacoustic images were created using a pulsed 532 nm laser that was coupled to a single mode fiber to produce output wavelengths from 532 nm to 620 nm via stimulated Raman scattering. The excitation wavelength was selected using optical filters and focused onto the sample using a 20× objective. A 1000 MHz transducer was co-aligned with the laser spot and used for ultrasound and photoacoustic images, enabling micrometer resolution with both modalities. The different cell types could be easily identified due to variations in contrast within the acoustic and photoacoustic images. This technique provides a new way of probing leukocyte structure with potential applications towards detecting cellular abnormalities and diseased cells at the single cell level.

  17. Improved Image Fusion in PET/CT Using Hybrid Image Reconstruction and Super-Resolution

    OpenAIRE

    Kennedy, John A.; Ora Israel; Alex Frenkel; Rachel Bar-Shalom; Haim Azhari

    2007-01-01

    Purpose. To provide PET/CT image fusion with an improved PET resolution and better contrast ratios than standard reconstructions. Method. Using a super-resolution algorithm, several PET acquisitions were combined to improve the resolution. In addition, functional PET data was smoothed with a hybrid computed tomography algorithm (HCT), in which anatomical edge information taken from the CT was employed to retain sharper edges. The combined HCT and super-resolution technique were evaluated in p...

  18. Bandwidth and resolution of super-resolution imaging with perforated solids

    OpenAIRE

    Zixian Liang; Jensen Li

    2011-01-01

    Recent experiments on acoustic superlens and hyperlens found anisotropic metamaterials constructed from periodic perforated solids can be used for super-resolution imaging. Here, we present a theoretical study on the operational bandwidth of these imaging devices using the emerging framework of transformation acoustics. Within the transformation approach, both the microstructural superlens and hyperlens can be discussed using the transfer matrix method on the same footing. We show that the ge...

  19. Locomotion of microspheres for super-resolution imaging

    OpenAIRE

    Krivitsky, Leonid A.; Jia Jun Wang; Zengbo Wang; Boris Luk'yanchuk

    2013-01-01

    Super-resolution imaging using sub-diffraction field localization by micron sized transparent beads (microspheres) was recently demonstrated [1]. Practical applications in microscopy require control over the positioning of the microspheres. We present a simple method of positioning and controllable movement of a microsphere by using a glass micropipette. This allows sub-diffraction imaging at arbitrary points in three dimensions, as well as the ability to track moving objects. The results are...

  20. Widefield scanning imaging with optical super-resolution

    Science.gov (United States)

    Li, Yanghui; Shi, Zhaoyi; Shuai, Shaojie; Wang, Le

    2015-08-01

    An economical, pollution-free microsphere-based widefield scanning imaging method is presented. This system is able to visualize the surface pattern of the sample through a transparent dielectric microsphere stuck onto a glass probe. The microsphere endows the system with super-resolution capability, while the field of view can easily be expanded by scanning and image stitching. The feasibilities and advantages of this method have been verified experimentally.

  1. Image Resolution Enhancement Using Undecimated Double Density Wavelet Transform

    OpenAIRE

    Gopi, Varun P.; V. Suresh Babu; Dilna C.

    2014-01-01

    In this paper, an undecimated double density wavelet based image resolution enhancement technique is proposed. The critically sampled discrete wavelet transform (DWT) suffers from the drawbacks of being shift-variant and lacking the capacity to process directional information in images. The double density wavelet transform (DDWT) is an approximately shift-invariant transform capturing directional information. The undecimated double density wavelet transform (UDDWT) is an improvement of the DD...

  2. High Spectral Resolution, High Cadence, Imaging X-Ray Microcalorimeters for Solar Physics

    Science.gov (United States)

    Bandler, Simon R.; Bailey, Catherine N.; Bookbinder, Jay A.; DeLuca, Edward E.; Chervenak, Jay A.; Eckart, Megan E.; Finkbeiner, Fred M.; Kelley, Daniel P.; Kelley, Richard L.; Kilbourne, Caroline A.; Porter, Frederick S.; Sadleir, Jack E.; Smith, Stephen J.; Smith, Randall K.

    2010-01-01

    High spectral resolution, high cadence, imaging x-ray spectroscopy has the potential to revolutionize the study of the solar corona. To that end we have been developing transition-edge-sensor (TES) based x-ray micro calorimeter arrays for future solar physics missions where imaging and high energy resolution spectroscopy will enable previously impossible studies of the dynamics and energetics of the solar corona. The characteristics of these x-ray microcalorimeters are significantly different from conventional micro calorimeters developed for astrophysics because they need to accommodate much higher count rates (300-1000 cps) while maintaining high energy resolution of less than 4 eV FWHM in the X-ray energy band of 0.2-10 keV. The other main difference is a smaller pixel size (less than 75 x 75 square microns) than is typical for x-ray micro calorimeters in order to provide angular resolution less than 1 arcsecond. We have achieved at energy resolution of 2.15 eV at 6 keV in a pixel with a 12 x 12 square micron TES sensor and 34 x 34 x 9.1 micron gold absorber, and a resolution of 2.30 eV at 6 keV in a pixel with a 35 x 35 micron TES and a 57 x 57 x 9.1 micron gold absorber. This performance has been achieved in pixels that are fabricated directly onto solid substrates, ie. they are not supported by silicon nitride membranes. We present the results from these detectors, the expected performance at high count-rates, and prospects for the use of this technology for future Solar missions.

  3. The Effect of Aberrations and Scatter on Image Resolution Assessed by Adaptive Optics Retinal Section Imaging

    OpenAIRE

    Wanek, Justin; Mori, Marek; Shahidi, Mahnaz

    2007-01-01

    The effect of increased high order wavefront aberrations on image resolution was investigated and the performance of adaptive optics (AO) for correcting wavefront error in the presence of increased light scatter was assessed in a model eye. An AO section imaging system provided an oblique view of a simulated model eye retina and incorporated a wavefront sensor and deformable mirror for measurement and compensation of wavefront aberrations. Image resolution was quantified by the width of a Lor...

  4. Fast iterative segmentation of high resolution medical images

    International Nuclear Information System (INIS)

    Various applications in positron emission tomography (PET), single photon emission computed tomography (SPECT) and magnetic resonance imaging (MRI) require segmentation of 20 to 60 high resolution images of size 256x256 pixels in 3-9 seconds per image. This places particular constraints on the design of image segmentation algorithms. This paper examines the trade-offs in segmenting images based on fitting a density function to the pixel intensities using curve-fitting versus the maximum likelihood method. A quantized data representation is proposed and the EM algorithm for fitting a finite mixture density function to the quantized representation for an image is derived. A Monte Carlo evaluation of mean estimation error and classification error showed that the resulting quantized EM algorithm dramatically reduces the required computation time without loss of accuracy

  5. High spatial resolution X-UV Fresnel zone plates imaging

    International Nuclear Information System (INIS)

    The goal of this work is to study the capabilities of imaging of Fresnel zone plates in the 1.5. and 2 keV X-ray range for the imaging of laser-produced plasmas. The diagnostic is composed of a Fresnel zone plate with good imaging capabilities and a multilayer mirror to select the spectral emission bandwidth of the plasma we want to study. This diagnostic was evaluated at the Centre d'Etudes de Limeil-Valenton experiments to study spatial resolution with this kind of X-ray source. The images we obtained showed that there is no geometric aberrations over an object field of several millimetre. Fresnen zone plates are often used for monochromatic biological objects imaging in the water window around 400 eV but they offer large prospects for laser produced plasma imaging. (author)

  6. High resolution image reconstruction with constrained, total-variation minimization

    CERN Document Server

    Sidky, Emil Y; Duchin, Yuval; Ullberg, Christer; Pan, Xiaochuan

    2011-01-01

    This work is concerned with applying iterative image reconstruction, based on constrained total-variation minimization, to low-intensity X-ray CT systems that have a high sampling rate. Such systems pose a challenge for iterative image reconstruction, because a very fine image grid is needed to realize the resolution inherent in such scanners. These image arrays lead to under-determined imaging models whose inversion is unstable and can result in undesirable artifacts and noise patterns. There are many possibilities to stabilize the imaging model, and this work proposes a method which may have an advantage in terms of algorithm efficiency. The proposed method introduces additional constraints in the optimization problem; these constraints set to zero high spatial frequency components which are beyond the sensing capability of the detector. The method is demonstrated with an actual CT data set and compared with another method based on projection up-sampling.

  7. High angular resolution Sunyaev-Zel'dovich observations of MACS J1423.8+2404 with NIKA: Multiwavelength analysis

    Science.gov (United States)

    Adam, R.; Comis, B.; Bartalucci, I.; Adane, A.; Ade, P.; André, P.; Arnaud, M.; Beelen, A.; Belier, B.; Benoît, A.; Bideaud, A.; Billot, N.; Bourrion, O.; Calvo, M.; Catalano, A.; Coiffard, G.; D'Addabbo, A.; Désert, F.-X.; Doyle, S.; Goupy, J.; Hasnoun, B.; Hermelo, I.; Kramer, C.; Lagache, G.; Leclercq, S.; Macías-Pérez, J.-F.; Martino, J.; Mauskopf, P.; Mayet, F.; Monfardini, A.; Pajot, F.; Pascale, E.; Perotto, L.; Pointecouteau, E.; Ponthieu, N.; Pratt, G. W.; Revéret, V.; Ritacco, A.; Rodriguez, L.; Savini, G.; Schuster, K.; Sievers, A.; Triqueneaux, S.; Tucker, C.; Zylka, R.

    2016-02-01

    The prototype of the NIKA2 camera, NIKA, is a dual-band instrument operating at the IRAM 30-m telescope, which can observe the sky simultaneously at 150 and 260 GHz. One of the main goals of NIKA (and NIKA2) is to measure the pressure distribution in galaxy clusters at high angular resolution using the thermal Sunyaev-Zel'dovich (tSZ) effect. Such observations have already proved to be an excellent probe of cluster pressure distributions even at intermediate and high redshifts. However, an important fraction of clusters host sub-millimeter and/or radio point sources, which can significantly affect the reconstructed signal. Here we report on sub-millimeter point sources. We examine the morphological distribution of the tSZ signal and compare it to other datasets. The NIKA data are combined with Herschel satellite data to study the spectral energy distribution (SED) of the sub-millimeter point source contaminants. We then perform a joint reconstruction of the intracluster medium (ICM) electronic pressure and density by combining NIKA, Planck, XMM-Newton, and Chandra data, focusing on the impact of the radio and sub-millimeter sources on the reconstructed pressureprofile. We find that large-scale pressure distribution is unaffected by the point sources because of the resolved nature of the NIKA observations. The reconstructed pressure in the inner region is slightly higher when the contribution of point sources are removed. We show that it is not possible to set strong constraints on the central pressure distribution without accurately removing these contaminants. The comparison with X-ray only data shows good agreement for the pressure, temperature, and entropy profiles, which all indicate that MACS J1423.8+2404 is a dynamically relaxed cool core system. The present observations illustrate the possibility of measuring these quantities with a relatively small integration time, even at high redshift and without X-ray spectroscopy. This work is part of a pilot study

  8. High-resolution adaptive imaging with a single photodiode

    Science.gov (United States)

    Soldevila, F.; Salvador-Balaguer, E.; Clemente, P.; Tajahuerce, E.; Lancis, J.

    2015-09-01

    During the past few years, the emergence of spatial light modulators operating at the tens of kHz has enabled new imaging modalities based on single-pixel photodetectors. The nature of single-pixel imaging enforces a reciprocal relationship between frame rate and image size. Compressive imaging methods allow images to be reconstructed from a number of projections that is only a fraction of the number of pixels. In microscopy, single-pixel imaging is capable of producing images with a moderate size of 128 × 128 pixels at frame rates under one Hz. Recently, there has been considerable interest in the development of advanced techniques for high-resolution real-time operation in applications such as biological microscopy. Here, we introduce an adaptive compressive technique based on wavelet trees within this framework. In our adaptive approach, the resolution of the projecting patterns remains deliberately small, which is crucial to avoid the demanding memory requirements of compressive sensing algorithms. At pattern projection rates of 22.7 kHz, our technique would enable to obtain 128 × 128 pixel images at frame rates around 3 Hz. In our experiments, we have demonstrated a cost-effective solution employing a commercial projection display.

  9. Coregistration of high-resolution Mars orbital images

    Science.gov (United States)

    Sidiropoulos, Panagiotis; Muller, Jan-Peter

    2015-04-01

    The systematic orbital imaging of the Martian surface started 4 decades ago from NASA's Viking Orbiter 1 & 2 missions, which were launched in August 1975, and acquired orbital images of the planet between 1976 and 1980. The result of this reconnaissance was the first medium-resolution (i.e. ≤ 300m/pixel) global map of Mars, as well as a variety of high-resolution images (reaching up to 8m/pixel) of special regions of interest. Over the last two decades NASA has sent 3 more spacecraft with onboard instruments for high-resolution orbital imaging: Mars Global Surveyor (MGS) having onboard the Mars Orbital Camera - Narrow Angle (MOC-NA), Mars Odyssey having onboard the Thermal Emission Imaging System - Visual (THEMIS-VIS) and the Mars Reconnaissance Orbiter (MRO) having on board two distinct high-resolution cameras, Context Camera (CTX) and High-Resolution Imaging Science Experiment (HiRISE). Moreover, ESA has the multispectral High resolution Stereo Camera (HRSC) onboard ESA's Mars Express with resolution up to 12.5m since 2004. Overall, this set of cameras have acquired more than 400,000 high-resolution images, i.e. with resolution better than 100m and as fine as 25 cm/pixel. Notwithstanding the high spatial resolution of the available NASA orbital products, their accuracy of areo-referencing is often very poor. As a matter of fact, due to pointing inconsistencies, usually form errors in roll attitude, the acquired products may actually image areas tens of kilometers far away from the point that they are supposed to be looking at. On the other hand, since 2004, the ESA Mars Express has been acquiring stereo images through the High Resolution Stereo Camera (HRSC), with resolution that is usually 12.5-25 metres per pixel. The achieved coverage is more than 64% for images with resolution finer than 20 m/pixel, while for ~40% of Mars, Digital Terrain Models (DTMs) have been produced with are co-registered with MOLA [Gwinner et al., 2010]. The HRSC images and DTMs

  10. Using Progressive Resolution to Visualize large Satellite Image dataset

    Science.gov (United States)

    ho, yuan; ramanmurthy, mohan

    2014-05-01

    Unidata's Integrated Data Viewer (IDV) is a Java-based software application that provides new and innovative ways of displaying satellite imagery, gridded data, and surface, upper air, and radar data within a unified interface. Progressive Resolution (PR) is a advanced feature newly developed in the IDV. When loading a large satellite dataset with PR turned on, the IDV calculates the resolution of the view window, sets the magnification factors dynamically, and loads a sufficient amount of the data to generate an image at the correct resolution. A rubber band box (RBB) interface allows the user to zoom in/out or change the projection, forcing the IDV to recalculate the magnification factors and get higher/lower resolution data. This new feature improves the IDV memory usage significantly. In the preliminary test, loading 100 time steps of GOES-East 1 km 0.65 visible image data (100 X 10904 X 6928) with PR, both memory and CPU usage are comparable to generating a single time-step display at full resolution (10904 X 6928), and the quality of the resulting image is not compromised. The PR feature is currently available for both satellite imagery and gridded datasets, and will be expanded to other datasets. In this presentation we will present examples of PR usage with large satellite datasets for academic investigations and scientific discovery.

  11. Photoelectron angular distributions from autoionizing 4s14p66p1 states in atomic krypton probed with femtosecond time resolution

    International Nuclear Information System (INIS)

    Photoelectron angular distributions (PADs) are obtained for a pair of 4s14p66p1 (a singlet and a triplet) autoionizing states in atomic krypton. A high-order harmonic pulse is used to excite the pair of states and a time-delayed 801 nm ionization pulse probes the PADs to the final 4s14p6 continuum with femtosecond time resolution. The ejected electrons are detected with velocity map imaging to retrieve the time-resolved photoelectron spectrum and PADs. The PAD for the triplet state is inherently separable by virtue of its longer autoionization lifetime. Measuring the total signal over time allows for the PADs to be extracted for both the singlet state and the triplet state. Anisotropy parameters for the triplet state are measured to be β2= 0.55 ± 0.17 and β4=-0.01 ± 0.10, while the singlet state yields β2= 2.19 ± 0.18 and β4= 1.84 ± 0.14. For the singlet state, the ratio of radial transition dipole matrix elements, X, of outgoing S to D partial waves and total phase shift difference between these waves, Δ, are determined to be X= 0.56 ± 0.08 and Δ= 2.19 ± 0.11 rad. The continuum quantum defect difference between the S and D electron partial waves is determined to be -0.15 ± 0.03 for the singlet state. Based on previous analyses, the triplet state is expected to have anisotropy parameters independent of electron kinetic energy and equal to β2= 5/7 and β4=-12/7. Deviations from the predicted values are thought to be a result of state mixing by spin-orbit and configuration interactions in the intermediate and final states; theoretical calculations are required to quantify these effects.

  12. Towards Adaptive High-Resolution Images Retrieval Schemes

    Science.gov (United States)

    Kourgli, A.; Sebai, H.; Bouteldja, S.; Oukil, Y.

    2016-06-01

    Nowadays, content-based image-retrieval techniques constitute powerful tools for archiving and mining of large remote sensing image databases. High spatial resolution images are complex and differ widely in their content, even in the same category. All images are more or less textured and structured. During the last decade, different approaches for the retrieval of this type of images have been proposed. They differ mainly in the type of features extracted. As these features are supposed to efficiently represent the query image, they should be adapted to all kind of images contained in the database. However, if the image to recognize is somewhat or very structured, a shape feature will be somewhat or very effective. While if the image is composed of a single texture, a parameter reflecting the texture of the image will reveal more efficient. This yields to use adaptive schemes. For this purpose, we propose to investigate this idea to adapt the retrieval scheme to image nature. This is achieved by making some preliminary analysis so that indexing stage becomes supervised. First results obtained show that by this way, simple methods can give equal performances to those obtained using complex methods such as the ones based on the creation of bag of visual word using SIFT (Scale Invariant Feature Transform) descriptors and those based on multi scale features extraction using wavelets and steerable pyramids.

  13. Structure Identification in High-Resolution Transmission Electron Microscopic Images

    DEFF Research Database (Denmark)

    Vestergaard, Jacob Schack; Kling, Jens; Dahl, Anders Bjorholm;

    2014-01-01

    A connection between microscopic structure and macroscopic properties is expected for almost all material systems. High-resolution transmission electron microscopy is a technique offering insight into the atomic structure, but the analysis of large image series can be time consuming. The present...

  14. Polarization Imaging over Sea Surface - A Method for Measurements of Stokes Components Angular Distribution

    Science.gov (United States)

    Freda, W.; Piskozub, J.; Toczek, H.

    2015-12-01

    This article describes a method for determining the angular distribution of light polarization over a roughened surface of the sea. Our method relies on measurements of the Stokes vector elements using a polarization imaging camera that operates using the Division of Focal Plane (DoFP) method. It uses special monochrome CCD array in which the neighbouring cells, instead of recording different colours (red green and blue), are equipped with micropolarizers of four directions (0, 45, 90 and 135 degrees). We combined the camera with a fish-eye lens of Field of View (FoV) > 180 deg. Such a large FoV allowed us to crop out the fragment of the frame along the circular horizon, showing a view covering all directions of the hemisphere. Because of complicated optical design of the fish-eye lens (light refraction on surfaces of parts of the lens) connected to the sensor we checked the accuracy of the measurement system. A method to determine the accuracy of measured polarization is based on comparison of the experimentally obtained rotation matrix with its theoretical form. Such a comparison showed that the maximum error of Stokes vector elements depended on zenith angle and reached as much as 24% for light coming from just above the horizon, but decreased rapidly with decreasing zenith angle to the value of 12% for the angles 10° off the edge of FoV. Moreover we present the preliminary results prepared over rough sea surface. These results include total intensity of light, Degree of Linear Polarization (DoLP) and their standard deviations. The results have been averaged over one thousand frames of a movie. These results indicate that the maximum polarization is observed near the reflection of the sun, and the signal coming from below the surface may be observed at zenith angles far from the vertical direction.

  15. High-Resolution Solar Imaging With Photon Sieves

    Science.gov (United States)

    Oktem, F. S.; Kamalabadi, F.; Davila, J. M.

    2014-12-01

    A photon sieve is a modification of a Fresnel zone plate in which open zones are replaced by a large number of circular holes. This lightweight optical device offers a superior image forming capability compared with the Fresnel zone plate, and is specially suited to observations at UV and x-ray wavelengths where refractive lenses are not available due to strong absorption of materials, and reflective mirrors are difficult to manufacture to achieve near diffraction-limited resolution. At these shorter wavelengths, photon sieves enable diffraction-limited imaging performance with relaxed manufacturing tolerances, and simple and low-cost fabrication. In this work, we present a new photon sieve imaging modality that, unlike previous designs, takes advantage of chromatic aberration. The fact that different wavelengths are focused at different distances from photon sieve is exploited to develop a novel multi-spectral imaging technique. The idea is to use a photon sieve imaging system with a moving detector which records images at different planes. Each measurement consists of superimposed images of different wavelengths, with each individual image being either in focus or out of focus. For spatially incoherent illumination, we study the problem of recovering the individual images from these superimposed measurements. We first formulate the discrete forward problem using the closed-form Fresnel imaging formulas. The inverse problem is then a multi-frame deconvolution problem involving multiple objects, and is formulated as a maximum posterior estimation problem. The resulting nonlinear optimization problem is solved using a fixed-point iterative algorithm. In contrast to traditional spectral imagers employing a series of wavelength filters, the proposed technique relies on a simple optical system, but incorporates powerful image processing methods to form spectral images computationally. In addition to diffraction-limited high spatial resolution enabled by photon sieves

  16. 3D spatial resolution and spectral resolution of interferometric 3D imaging spectrometry.

    Science.gov (United States)

    Obara, Masaki; Yoshimori, Kyu

    2016-04-01

    Recently developed interferometric 3D imaging spectrometry (J. Opt. Soc. Am A18, 765 [2001]1084-7529JOAOD610.1364/JOSAA.18.000765) enables obtainment of the spectral information and 3D spatial information for incoherently illuminated or self-luminous object simultaneously. Using this method, we can obtain multispectral components of complex holograms, which correspond directly to the phase distribution of the wavefronts propagated from the polychromatic object. This paper focuses on the analysis of spectral resolution and 3D spatial resolution in interferometric 3D imaging spectrometry. Our analysis is based on a novel analytical impulse response function defined over four-dimensional space. We found that the experimental results agree well with the theoretical prediction. This work also suggests a new criterion and estimate method regarding 3D spatial resolution of digital holography. PMID:27139648

  17. Super-resolution Microscopy in Plant Cell Imaging.

    Science.gov (United States)

    Komis, George; Šamajová, Olga; Ovečka, Miroslav; Šamaj, Jozef

    2015-12-01

    Although the development of super-resolution microscopy methods dates back to 1994, relevant applications in plant cell imaging only started to emerge in 2010. Since then, the principal super-resolution methods, including structured-illumination microscopy (SIM), photoactivation localization microscopy (PALM), stochastic optical reconstruction microscopy (STORM), and stimulated emission depletion microscopy (STED), have been implemented in plant cell research. However, progress has been limited due to the challenging properties of plant material. Here we summarize the basic principles of existing super-resolution methods and provide examples of applications in plant science. The limitations imposed by the nature of plant material are reviewed and the potential for future applications in plant cell imaging is highlighted. PMID:26482957

  18. Locomotion of microspheres for super-resolution imaging

    Science.gov (United States)

    Krivitsky, Leonid A.; Wang, Jia Jun; Wang, Zengbo; Luk'yanchuk, Boris

    2013-12-01

    Super-resolution virtual imaging by micron sized transparent beads (microspheres) was recently demonstrated by Wang et al. Practical applications in microscopy require control over the positioning of the microspheres. Here we present a method of positioning and controllable movement of a microsphere by using a fine glass micropipette. This allows sub-diffraction imaging at arbitrary points in three dimensions, as well as the ability to track moving objects. The results are relevant to a broad scope of applications, including sample inspection, microfabrication, and bio-imaging.

  19. An image super-resolution method considering edge character

    International Nuclear Information System (INIS)

    Maximum A Posteriori (MAP) estimation is an important image super-resolution method. However, a clear edge is difficult to maintain. To address this problem, we analyze the causes of poor edge stability. We also present a method for reducing the smoothness of the edge, maintaining the smoothness of the soft regional area, and reducing pseudo noise to improve connected edge retention. The improved method fixes the iteration number and smoothing factor of the MAP estimation by using Gauss-Laplacian image edge extraction. Finally, the validity of this method is verified by its application to feature information recognition in remote sensing images

  20. Accurate Image Super-Resolution Using Very Deep Convolutional Networks

    OpenAIRE

    Kim, Jiwon; Lee, Jung Kwon; Lee, Kyoung Mu

    2015-01-01

    We present a highly accurate single-image super-resolution (SR) method. Our method uses a very deep convolutional network inspired by VGG-net used for ImageNet classification \\cite{simonyan2015very}. We find increasing our network depth shows a significant improvement in accuracy. Our final model uses 20 weight layers. By cascading small filters many times in a deep network structure, contextual information over large image regions is exploited in an efficient way. With very deep networks, ho...

  1. A 2D eye gaze estimation system with low-resolution webcam images

    Directory of Open Access Journals (Sweden)

    Kim Jin

    2011-01-01

    Full Text Available Abstract In this article, a low-cost system for 2D eye gaze estimation with low-resolution webcam images is presented. Two algorithms are proposed for this purpose, one for the eye-ball detection with stable approximate pupil-center and the other one for the eye movements' direction detection. Eyeball is detected using deformable angular integral search by minimum intensity (DAISMI algorithm. Deformable template-based 2D gaze estimation (DTBGE algorithm is employed as a noise filter for deciding the stable movement decisions. While DTBGE employs binary images, DAISMI employs gray-scale images. Right and left eye estimates are evaluated separately. DAISMI finds the stable approximate pupil-center location by calculating the mass-center of eyeball border vertices to be employed for initial deformable template alignment. DTBGE starts running with initial alignment and updates the template alignment with resulting eye movements and eyeball size frame by frame. The horizontal and vertical deviation of eye movements through eyeball size is considered as if it is directly proportional with the deviation of cursor movements in a certain screen size and resolution. The core advantage of the system is that it does not employ the real pupil-center as a reference point for gaze estimation which is more reliable against corneal reflection. Visual angle accuracy is used for the evaluation and benchmarking of the system. Effectiveness of the proposed system is presented and experimental results are shown.

  2. Direct Imaging of Transient Fano Resonances in N2 Using Time-, Energy-, and Angular-Resolved Photoelectron Spectroscopy

    Science.gov (United States)

    Eckstein, Martin; Yang, Chung-Hsin; Frassetto, Fabio; Poletto, Luca; Sansone, Giuseppe; Vrakking, Marc J. J.; Kornilov, Oleg

    2016-04-01

    Autoionizing Rydberg states of molecular N2 are studied using time-, energy-, and angular-resolved photoelectron spectroscopy. A femtosecond extreme ultraviolet pulse with a photon energy of 17.5 eV excites the resonance and a subsequent IR pulse ionizes the molecule before the autoionization takes place. The angular-resolved photoelectron spectra depend on pump-probe time delay and allow for the distinguishing of two electronic states contributing to the resonance. The lifetime of one of the contributions is determined to be 14 ±1 fs , while the lifetime of the other appears to be significantly shorter than the time resolution of the experiment. These observations suggest that the Rydberg states in this energy region are influenced by the effect of interference stabilization and merge into a complex resonance.

  3. Direct Imaging of Transient Fano Resonances in N_{2} Using Time-, Energy-, and Angular-Resolved Photoelectron Spectroscopy.

    Science.gov (United States)

    Eckstein, Martin; Yang, Chung-Hsin; Frassetto, Fabio; Poletto, Luca; Sansone, Giuseppe; Vrakking, Marc J J; Kornilov, Oleg

    2016-04-22

    Autoionizing Rydberg states of molecular N_{2} are studied using time-, energy-, and angular-resolved photoelectron spectroscopy. A femtosecond extreme ultraviolet pulse with a photon energy of 17.5 eV excites the resonance and a subsequent IR pulse ionizes the molecule before the autoionization takes place. The angular-resolved photoelectron spectra depend on pump-probe time delay and allow for the distinguishing of two electronic states contributing to the resonance. The lifetime of one of the contributions is determined to be 14±1  fs, while the lifetime of the other appears to be significantly shorter than the time resolution of the experiment. These observations suggest that the Rydberg states in this energy region are influenced by the effect of interference stabilization and merge into a complex resonance. PMID:27152799

  4. Live CLEM imaging to analyze nuclear structures at high resolution.

    Science.gov (United States)

    Haraguchi, Tokuko; Osakada, Hiroko; Koujin, Takako

    2015-01-01

    Fluorescence microscopy (FM) and electron microscopy (EM) are powerful tools for observing molecular components in cells. FM can provide temporal information about cellular proteins and structures in living cells. EM provides nanometer resolution images of cellular structures in fixed cells. We have combined FM and EM to develop a new method of correlative light and electron microscopy (CLEM), called "Live CLEM." In this method, the dynamic behavior of specific molecules of interest is first observed in living cells using fluorescence microscopy (FM) and then cellular structures in the same cell are observed using electron microscopy (EM). Following image acquisition, FM and EM images are compared to enable the fluorescent images to be correlated with the high-resolution images of cellular structures obtained using EM. As this method enables analysis of dynamic events involving specific molecules of interest in the context of specific cellular structures at high resolution, it is useful for the study of nuclear structures including nuclear bodies. Here we describe Live CLEM that can be applied to the study of nuclear structures in mammalian cells. PMID:25555577

  5. Natural-pose hand detection in low-resolution images

    Directory of Open Access Journals (Sweden)

    Nyan Bo Bo1

    2009-07-01

    Full Text Available Robust real-time hand detection and tracking in video sequences would enable many applications in areas as diverse ashuman-computer interaction, robotics, security and surveillance, and sign language-based systems. In this paper, we introducea new approach for detecting human hands that works on single, cluttered, low-resolution images. Our prototype system, whichis primarily intended for security applications in which the images are noisy and low-resolution, is able to detect hands as smallas 2424 pixels in cluttered scenes. The system uses grayscale appearance information to classify image sub-windows as eithercontaining or not containing a human hand very rapidly at the cost of a high false positive rate. To improve on the false positiverate of the main classifier without affecting its detection rate, we introduce a post-processor system that utilizes the geometricproperties of skin color blobs. When we test our detector on a test image set containing 106 hands, 92 of those hands aredetected (86.8% detection rate, with an average false positive rate of 1.19 false positive detections per image. The rapiddetection speed, the high detection rate of 86.8%, and the low false positive rate together ensure that our system is useable asthe main detector in a diverse variety of applications requiring robust hand detection and tracking in low-resolution, clutteredscenes.

  6. Learning-based compressed sensing for infrared image super resolution

    Science.gov (United States)

    Zhao, Yao; Sui, Xiubao; Chen, Qian; Wu, Shaochi

    2016-05-01

    This paper presents an infrared image super-resolution method based on compressed sensing (CS). First, the reconstruction model under the CS framework is established and a Toeplitz matrix is selected as the sensing matrix. Compared with traditional learning-based methods, the proposed method uses a set of sub-dictionaries instead of two coupled dictionaries to recover high resolution (HR) images. And Toeplitz sensing matrix allows the proposed method time-efficient. Second, all training samples are divided into several feature spaces by using the proposed adaptive k-means classification method, which is more accurate than the standard k-means method. On the basis of this approach, a complex nonlinear mapping from the HR space to low resolution (LR) space can be converted into several compact linear mappings. Finally, the relationships between HR and LR image patches can be obtained by multi-sub-dictionaries and HR infrared images are reconstructed by the input LR images and multi-sub-dictionaries. The experimental results show that the proposed method is quantitatively and qualitatively more effective than other state-of-the-art methods.

  7. Providing Internet Access to High-Resolution Lunar Images

    Science.gov (United States)

    Plesea, Lucian

    2008-01-01

    The OnMoon server is a computer program that provides Internet access to high-resolution Lunar images, maps, and elevation data, all suitable for use in geographical information system (GIS) software for generating images, maps, and computational models of the Moon. The OnMoon server implements the Open Geospatial Consortium (OGC) Web Map Service (WMS) server protocol and supports Moon-specific extensions. Unlike other Internet map servers that provide Lunar data using an Earth coordinate system, the OnMoon server supports encoding of data in Moon-specific coordinate systems. The OnMoon server offers access to most of the available high-resolution Lunar image and elevation data. This server can generate image and map files in the tagged image file format (TIFF) or the Joint Photographic Experts Group (JPEG), 8- or 16-bit Portable Network Graphics (PNG), or Keyhole Markup Language (KML) format. Image control is provided by use of the OGC Style Layer Descriptor (SLD) protocol. Full-precision spectral arithmetic processing is also available, by use of a custom SLD extension. This server can dynamically add shaded relief based on the Lunar elevation to any image layer. This server also implements tiled WMS protocol and super-overlay KML for high-performance client application programs.

  8. Providing Internet Access to High-Resolution Mars Images

    Science.gov (United States)

    Plesea, Lucian

    2008-01-01

    The OnMars server is a computer program that provides Internet access to high-resolution Mars images, maps, and elevation data, all suitable for use in geographical information system (GIS) software for generating images, maps, and computational models of Mars. The OnMars server is an implementation of the Open Geospatial Consortium (OGC) Web Map Service (WMS) server. Unlike other Mars Internet map servers that provide Martian data using an Earth coordinate system, the OnMars WMS server supports encoding of data in Mars-specific coordinate systems. The OnMars server offers access to most of the available high-resolution Martian image and elevation data, including an 8-meter-per-pixel uncontrolled mosaic of most of the Mars Global Surveyor (MGS) Mars Observer Camera Narrow Angle (MOCNA) image collection, which is not available elsewhere. This server can generate image and map files in the tagged image file format (TIFF), Joint Photographic Experts Group (JPEG), 8- or 16-bit Portable Network Graphics (PNG), or Keyhole Markup Language (KML) format. Image control is provided by use of the OGC Style Layer Descriptor (SLD) protocol. The OnMars server also implements tiled WMS protocol and super-overlay KML for high-performance client application programs.

  9. Enhancement of the low resolution image quality using randomly sampled data for multi-slice MR imaging

    OpenAIRE

    Pang, Yong; Yu, Baiying; Zhang, Xiaoliang

    2014-01-01

    Low resolution images are often acquired in in vivo MR applications involving in large field-of-view (FOV) and high speed imaging, such as, whole-body MRI screening and functional MRI applications. In this work, we investigate a multi-slice imaging strategy for acquiring low resolution images by using compressed sensing (CS) MRI to enhance the image quality without increasing the acquisition time. In this strategy, low resolution images of all the slices are acquired using multiple-slice imag...

  10. Spatial super-resolution in code aperture spectral imaging

    Science.gov (United States)

    Arguello, Henry; Rueda, Hoover F.; Arce, Gonzalo R.

    2012-06-01

    The Code Aperture Snapshot Spectral Imaging system (CASSI) senses the spectral information of a scene using the underlying concepts of compressive sensing (CS). The random projections in CASSI are localized such that each measurement contains spectral information only from a small spatial region of the data cube. The goal of this paper is to translate high-resolution hyperspectral scenes into compressed signals measured by a low-resolution detector. Spatial super-resolution is attained as an inverse problem from a set of low-resolution coded measurements. The proposed system not only offers significant savings in size, weight and power, but also in cost as low resolution detectors can be used. The proposed system can be efficiently exploited in the IR region where the cost of detectors increases rapidly with resolution. The simulations of the proposed system show an improvement of up to 4 dB in PSNR. Results also show that the PSNR of the reconstructed data cubes approach the PSNR of the reconstructed data cubes attained with high-resolution detectors, at the cost of using additional measurements.

  11. Digital watermarking scheme for extremely high-resolution printing images

    Science.gov (United States)

    Honjo, Yuji; Tanaka, Kiyoshi

    2002-04-01

    In this work, we propose a new digital watermarking scheme for extremely high-resolution printing images applicable to On-Demand Publishing (ODP) system. We designed our scheme by considering the following requirements: (i) high image quality, (ii) high security, and (iii) watermark immunity (robustness). In order to attain these requirements we employ the idea of Spread Spectrum (SS) watermarking technique in our scheme and modify it to be applicable to color (CMYK) binary printing images. Simulation results verified that we could embed a watermark spreading over the entire output image as a weak energy and still keep high image quality. Also the watermark could be robustly decoded by controlling some parameters even after some possible attacks by a third party.

  12. The inelastic contribution to high resolution images of defects

    International Nuclear Information System (INIS)

    The importance of the contribution due to inelastically scattered electrons to unfiltered HREM images is examined, with emphasis on imaging of defects in semiconductors. Whenever the low energy loss spectrum contains sharp peaks, the contribution is not featureless. At specimen thickness of a few tens of nm, it may change the image appearance in a major way. The strongest effect occurs in high resolution, medium voltage (200 to 500 kV) electron microscope images of defects at focus values minimizing the contrast of the elastic image in low Z materials such as Al and Si. In higher Z materials or those with no sharp 'plasmons', the contribution is small. 23 refs., 8 figs

  13. Ultrahigh-resolution Cerenkov-light imaging system for positron radionuclides: potential applications and limitations

    OpenAIRE

    Yamamoto, Seiichi; WATABE, Tadashi; IKEDA, Hayato; Kanai, Yasukazu; Watabe, Hiroshi; Ogata, Yoshimune; Kato, Katsuhiko; Hatazawa, Jun

    2014-01-01

    Objective Cerenkov-light imaging provides inherently high resolution because the light is emitted near the positron radionuclide. However, the magnitude for the high spatial resolution of Cerenkov-light imaging is unclear. Its potential molecular imaging applications also remain unclear. We developed an ultrahigh-resolution Cerenkov-light imaging system, measured its spatial resolution, and explored its applications to molecular imaging research. Methods Our Cerenkov-light imaging system cons...

  14. A Novel and Efficient Lifting Scheme based Super Resolution Reconstruction for Early Detection of Cancer in Low Resolution Mammogram Images

    Directory of Open Access Journals (Sweden)

    Liyakathunisa

    2011-05-01

    Full Text Available Mammography is the most effective method for early detection of breast diseases. However, thetypical diagnostic signs, such as masses and microcalcifications, are difficult to be detectedbecause mammograms are low contrast and noisy images. We concentrate on a special case ofsuper resolution reconstruction for early detection of cancer from low resolution mammogramimages. Super resolution reconstruction is the process of combining several low resolutionimages into a single higher resolution image. This paper describes a novel approach forenhancing the resolution of mammographic images. We are proposing an efficient lifting waveletbased denoising with adaptive interpolation for super resolution reconstruction. Under this framework, the digitized low resolution mammographic images are decomposed into many levels toobtain different frequency bands. We use Daubechies (D4 lifting schemes to decompose lowresolution mammogram images into multilevel scale and wavelet coefficients. Then our proposednovel soft thresholding technique is used to remove the noisy coefficients, by fixing optimumthreshold value. In order to obtain an image of higher resolution adaptive interpolation is applied.Our proposed lifting wavelet transform based restoration and adaptive interpolation preserves theedges as well as smoothens the image without introducing artifacts. The proposed algorithmavoids the application of iterative method, reduces the complexity of calculation and applies tolarge dimension low-resolution images. Experimental results show that the proposed approachhas succeeded in obtaining a high-resolution mammogram image with a high PSNR, ISNR ratioand a good visual quality.

  15. Photoacoustic lymphatic imaging with high spatial-temporal resolution

    Science.gov (United States)

    Martel, Catherine; Yao, Junjie; Huang, Chih-Hsien; Zou, Jun; Randolph, Gwendalyn J.; Wang, Lihong V.

    2014-11-01

    Despite its critical function in coordinating the egress of inflammatory and immune cells out of tissues and maintaining fluid balance, the causative role of lymphatic network dysfunction in pathological settings is still understudied. Engineered-animal models and better noninvasive high spatial-temporal resolution imaging techniques in both preclinical and clinical studies will help to improve our understanding of different lymphatic-related pathologic disorders. Our aim was to take advantage of our newly optimized noninvasive wide-field fast-scanning photoacoustic (PA) microcopy system to coordinately image the lymphatic vasculature and its flow dynamics, while maintaining high resolution and detection sensitivity. Here, by combining the optical-resolution PA microscopy with a fast-scanning water-immersible microelectromechanical system scanning mirror, we have imaged the lymph dynamics over a large field-of-view, with high spatial resolution and advanced detection sensitivity. Depending on the application, lymphatic vessels (LV) were spectrally or temporally differentiated from blood vessels. Validation experiments were performed on phantoms and in vivo to identify the LV. Lymphatic flow dynamics in nonpathological and pathological conditions were also visualized. These results indicate that our newly developed PA microscopy is a promising tool for lymphatic-related biological research.

  16. Noise and physical limits to maximum resolution of PET images

    Energy Technology Data Exchange (ETDEWEB)

    Herraiz, J.L.; Espana, S. [Dpto. Fisica Atomica, Molecular y Nuclear, Facultad de Ciencias Fisicas, Universidad Complutense de Madrid, Avda. Complutense s/n, E-28040 Madrid (Spain); Vicente, E.; Vaquero, J.J.; Desco, M. [Unidad de Medicina y Cirugia Experimental, Hospital GU ' Gregorio Maranon' , E-28007 Madrid (Spain); Udias, J.M. [Dpto. Fisica Atomica, Molecular y Nuclear, Facultad de Ciencias Fisicas, Universidad Complutense de Madrid, Avda. Complutense s/n, E-28040 Madrid (Spain)], E-mail: jose@nuc2.fis.ucm.es

    2007-10-01

    In this work we show that there is a limit for the maximum resolution achievable with a high resolution PET scanner, as well as for the best signal-to-noise ratio, which are ultimately related to the physical effects involved in the emission and detection of the radiation and thus they cannot be overcome with any particular reconstruction method. These effects prevent the spatial high frequency components of the imaged structures to be recorded by the scanner. Therefore, the information encoded in these high frequencies cannot be recovered by any reconstruction technique. Within this framework, we have determined the maximum resolution achievable for a given acquisition as a function of data statistics and scanner parameters, like the size of the crystals or the inter-crystal scatter. In particular, the noise level in the data as a limitation factor to yield high-resolution images in tomographs with small crystal sizes is outlined. These results have implications regarding how to decide the optimal number of voxels of the reconstructed image or how to design better PET scanners.

  17. High resolution hyperspectral imaging with a high throughput virtual slit

    Science.gov (United States)

    Gooding, Edward A.; Gunn, Thomas; Cenko, Andrew T.; Hajian, Arsen R.

    2016-05-01

    Hyperspectral imaging (HSI) device users often require both high spectral resolution, on the order of 1 nm, and high light-gathering power. A wide entrance slit assures reasonable étendue but degrades spectral resolution. Spectrometers built using High Throughput Virtual Slit™ (HTVS) technology optimize both parameters simultaneously. Two remote sensing use cases that require high spectral resolution are discussed. First, detection of atmospheric gases with intrinsically narrow absorption lines, such as hydrocarbon vapors or combustion exhaust gases such as NOx and CO2. Detecting exhaust gas species with high precision has become increasingly important in the light of recent events in the automobile industry. Second, distinguishing reflected daylight from emission spectra in the visible and NIR (VNIR) regions is most easily accomplished using the Fraunhofer absorption lines in solar spectra. While ground reflectance spectral features in the VNIR are generally quite broad, the Fraunhofer lines are narrow and provide a signature of intrinsic vs. extrinsic illumination. The High Throughput Virtual Slit enables higher spectral resolution than is achievable with conventional spectrometers by manipulating the beam profile in pupil space. By reshaping the instrument pupil with reflective optics, HTVS-equipped instruments create a tall, narrow image profile at the exit focal plane, typically delivering 5X or better the spectral resolution achievable with a conventional design.

  18. A parallel solution for high resolution histological image analysis.

    Science.gov (United States)

    Bueno, G; González, R; Déniz, O; García-Rojo, M; González-García, J; Fernández-Carrobles, M M; Vállez, N; Salido, J

    2012-10-01

    This paper describes a general methodology for developing parallel image processing algorithms based on message passing for high resolution images (on the order of several Gigabytes). These algorithms have been applied to histological images and must be executed on massively parallel processing architectures. Advances in new technologies for complete slide digitalization in pathology have been combined with developments in biomedical informatics. However, the efficient use of these digital slide systems is still a challenge. The image processing that these slides are subject to is still limited both in terms of data processed and processing methods. The work presented here focuses on the need to design and develop parallel image processing tools capable of obtaining and analyzing the entire gamut of information included in digital slides. Tools have been developed to assist pathologists in image analysis and diagnosis, and they cover low and high-level image processing methods applied to histological images. Code portability, reusability and scalability have been tested by using the following parallel computing architectures: distributed memory with massive parallel processors and two networks, INFINIBAND and Myrinet, composed of 17 and 1024 nodes respectively. The parallel framework proposed is flexible, high performance solution and it shows that the efficient processing of digital microscopic images is possible and may offer important benefits to pathology laboratories. PMID:22522064

  19. High spatial resolution diffusion tensor imaging and its applications

    International Nuclear Information System (INIS)

    Introduction Magnetic Resonance Imaging is at present the only imaging technique available to measure diffusion of water and metabolites in humans. It provides vital insights to brain connectivity and has proved to be an important tool in diagnosis and therapy planning in many neurological diseases such as brain tumour, ischaemia and multiple sclerosis. This project focuses on the development of a high resolution diffusion tensor imaging technique. In this thesis, the basic theory of diffusion tensor MR Imaging is presented. The technical challenges encountered during development of these techniques will be discussed, with proposed solutions. New sequences with high spatial resolution have been developed and the results are compared with the standard technique more commonly used. Overview The project aims at the development of diffusion tensor imaging techniques with a high spatial resolution. Chapter 2 will describe the basic physics of MRI, the phenomenon of diffusion and the measurement of diffusion by MRI. The basic parameters used all through the projects will be presented. In Chapter 3, a reproducibility study on DTI with the single shot EPI sequence will be conducted. The single shot DT-EPI was carried out on a stroke patient. In Chapter 4, current techniques on high spatial resolution DTI will be explored. Sequences of Interleaved EPI of two segments and EPI with Half Fourier acquisition will be developed. The sources of artefacts which contaminate most DT images will be discussed with solution proposed. Chapter 5 proposed a new selective averaging algorithm for the data acquired by the sequences of interleaved EPI. It does not require cardiac gating during data acquisition period and thus increase the speed of data collection. A new ghost free segmented EPI sequence will be presented in Chapter 6: Half-FOV EPI. The technique will be tested on a phantom in vitro as well as in two normal male volunteers in vivo. A comparison study on diffusion tensor imaging

  20. High-resolution imaging of solar system objects

    Science.gov (United States)

    Goldberg, B. A.

    1986-01-01

    A very extensive Io sodium imaging program beginning with the first images of the cloud and culminating in comprehensive characterization of the cloud's appearance and behavior as a function of both time and Io's orbital position now forms the basis for a collaborative modeling analysis and a continued observational study with emphasis on understanding how the cloud's behavior is diagnostic of spatial and temporal variations in the physical conditions of the inner Jovian magnetosphere. The sodium cloud was found to have a variety of systematic variations, a pronounced east-west orbital asymmetry, and temporal changes which could be diagnostic of time changes in both Io and its plasma environment. New comet imaging programs initiated at the 3.6-meter Canada-France-Hawaii Telescope draw upon both ultra high time resolution and high spatial resolution imaging capabilities. Seven observing runs between Dec. 1984 and May 1986 were devoted to observing Halley, Giacobini-Zinner, and several other comets. Among these observations were the first images of Halley through IHW filters, and images of Giacobini-Zinner during the ICE encounter which have been directly correlated with ICE magnetic field measurements.

  1. Detection of engineering vehicles in high-resolution monitoring images

    Institute of Scientific and Technical Information of China (English)

    Xun LIU; Yin ZHANG; San-yuan ZHANG; Ying WANG; Zhong-yan LIANG; Xiu-zi YE

    2015-01-01

    This paper presents a novel formulation for detecting objects with articulated rigid bodies from high-resolution monitoring images, particularly engineering vehicles. There are many pixels in high-resolution monitoring images, and most of them represent the background. Our method fi rst detects object patches from monitoring images using a coarse detection process. In this phase, we build a descriptor based on histograms of oriented gradient, which contain color frequency information. Then we use a linear support vector machine to rapidly detect many image patches that may contain object parts, with a low false negative rate and a high false positive rate. In the second phase, we apply a refi nement classifi cation to determine the patches that actually contain objects. In this stage, we increase the size of the image patches so that they include the complete object using models of the object parts. Then an accelerated and improved salient mask is used to improve the performance of the dense scale-invariant feature transform descriptor. The detection process returns the absolute position of positive objects in the original images. We have applied our methods to three datasets to demonstrate their effectiveness.

  2. Spatial scales of pollution from variable resolution satellite imaging

    International Nuclear Information System (INIS)

    The Moderate Resolution Imaging Spectroradiometer (MODIS) provides daily global coverage, but the 10 km resolution of its aerosol optical depth (AOD) product is not adequate for studying spatial variability of aerosols in urban areas. Recently, a new Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm was developed for MODIS which provides AOD at 1 km resolution. Using MAIAC data, the relationship between MAIAC AOD and PM2.5 as measured by the EPA ground monitoring stations was investigated at varying spatial scales. Our analysis suggested that the correlation between PM2.5 and AOD decreased significantly as AOD resolution was degraded. This is so despite the intrinsic mismatch between PM2.5 ground level measurements and AOD vertically integrated measurements. Furthermore, the fine resolution results indicated spatial variability in particle concentration at a sub-10 km scale. Finally, this spatial variability of AOD within the urban domain was shown to depend on PM2.5 levels and wind speed. - Highlights: ► The correlation between PM2.5 and AOD decreases as AOD resolution is degraded. ► High resolution MAIAC AOD 1 km retrieval can be used to investigate within-city PM2.5 variability. ► Low pollution days exhibit higher spatial variability of AOD and PM2.5 then moderate pollution days. ► AOD spatial variability within urban area is higher during the lower wind speed conditions. - The correlation between PM2.5 and AOD decreases as AOD resolution is degraded. The new high-resolution MAIAC AOD retrieval has the potential to capture PM2.5 variability at the intra-urban scale.

  3. Broadband line imaging with subwavelength resolution using plasmonic waveguides

    OpenAIRE

    Podoliak, N.; Horak, P.; Prangsma, J.C.; Pinkse, P.W.H.

    2015-01-01

    In this paper we design a high-resolution line imaging device allowing for broadband operation at near-infrared wavelengths ranging from 1 ?m to 2 ?m utilizing the advantage of subwavelength light confinement in plasmonic waveguides. The device consists of an array of air-guided plasmonic waveguides in gold with fanned-out geometry. In the main part of the device the separation between waveguides increases gradually from the input towards the output. High resolution is achieved on the input s...

  4. Image super-resolution using windowed ordinary Kriging interpolation

    Science.gov (United States)

    Zhang, Qianying; Wu, Jitao

    2015-02-01

    This paper presents a novel interpolation approach for single image super-resolution based on ordinary Kriging interpolation, which has been widely used in geostatistics. The proposed method simultaneously considers the intensity distances and geometry of the pixel data. We employ a new intensity distance definition and local windows surrounding each unknown high-resolution pixel to implement the algorithm. The proposed approach is able to produce adaptive weights and edge preservation is achieved. Our experimental results show the efficiency of the proposed approach compared to conventional interpolation methods in terms of the peak signal-to-noise (PNSR) and visual perception.

  5. Line integration and spatial resolution in optical imaging of plasmas

    International Nuclear Information System (INIS)

    Optical emission spectroscopy of plasmas is a commonly used line-integrated method. In an attempt to enhance the spatial resolution along the line of sight, lenses are often used. To judge the benefit of this measure, a detection function is derived, which describes the amount of light detected from different positions along the optical axis of the lens-detector-system. Although certain points within the plasma are more sharply imaged by the lens system than others, the overall detection function is found to be almost perfectly flat, i.e. the lens does not yield any spatial resolution. (paper)

  6. Single-image super-resolution using sparsity constraints and non-local similarities at multiple resolution scales

    OpenAIRE

    Luong, Quang; Ruzic, Tijana; Pizurica, Aleksandra; Philips, Wilfried

    2010-01-01

    Traditional super-resolution methods produce a clean high-resolution image from several observed degraded low-resolution images following an acquisition or degradation model. Such a model describes how each output pixel is related to one or more input pixels and it is called data fidelity term in the regularization framework. Additionally, prior knowledge such as piecewise smoothness can be incorporated to improve the image restoration result. The impact of an observed pixel on the restored p...

  7. High-resolution imaging in the scanning transmission electron microscope

    International Nuclear Information System (INIS)

    The high-resolution imaging of crystalline materials in the scanning transmission electron microscopy (STEM) is reviewed with particular emphasis on the conditions under which an incoherent image can be obtained. It is shown that a high-angle annular detector can be used to break the coherence of the imaging process, in the transverse plane through the geometry of the detector, or in three dimensions if multiphonon diffuse scattering is detected. In the latter case, each atom can be treated as a highly independent source of high-angle scattering. The most effective fast electron states are therefore tightly bound s-type Bloch states. Furthermore, they add constructively for each incident angle in the coherent STEM probe, so that s states are responsible for practically the entire image contrast. Dynamical effects are largely removed, and almost perfect incoherent imaging is achieved. s states are relatively insensitive to neighboring strings, so that incoherent imaging is maintained for superlattice and interfaces, and supercell calculations are unnecessary. With an optimum probe profile, the incoherent image represents a direct image of the crystal projection, with compositional sensitivity built in through the strong dependence of the scattering cross sections on atomic number Z

  8. Multi-resolution image segmentation based on Gaussian mixture model

    Institute of Scientific and Technical Information of China (English)

    Tang Yinggan; Liu Dong; Guan Xinping

    2006-01-01

    Mixture model based image segmentation method, which assumes that image pixels are independent and do not consider the position relationship between pixels, is not robust to noise and usually leads to misclassification. A new segmentation method, called multi-resolution Gaussian mixture model method, is proposed. First, an image pyramid is constructed and son-father link relationship is built between each level of pyramid. Then the mixture model segmentation method is applied to the top level. The segmentation result on the top level is passed top-down to the bottom level according to the son-father link relationship between levels. The proposed method considers not only local but also global information of image, it overcomes the effect of noise and can obtain better segmentation result. Experimental result demonstrates its effectiveness.

  9. In vivo high-resolution retinal imaging using adaptive optics.

    Science.gov (United States)

    Seyedahmadi, Babak Jian; Vavvas, Demetrios

    2010-01-01

    Retinal imaging with conventional methods is only able to overcome the lowest order of aberration, defocus and astigmatism. The human eye is fraught with higher order of aberrations. Since we are forced to use the human optical system in retinal imaging, the images are degraded. In addition, all of these distortions are constantly changing due to head/eye movement and change in accommodation. Adaptive optics is a promising technology introduced in the field of ophthalmology to measure and compensate for these aberrations. High-resolution obtained by adaptive optics enables us to view and image the retinal photoreceptors, retina pigment epithelium, and identification of cone subclasses in vivo. In this review we will be discussing the basic technology of adaptive optics and hardware requirement in addition to clinical applications of such technology. PMID:21090998

  10. Application of multi-resolution analysis in sonar image denoising

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Sonar images have complex background, low contrast, and deteriorative edges; these characteristics make it difficult for researchers to dispose the sonar objects. The multi-resolution analysis represents the signals in different scales efficiently, which is widely used in image processing. Wavelets are successful in disposing point discontinuities in one dimension, but not in two dimensions. The finite Ridgelet transform (FRIT) deals efficiently with the singularity in high dimension. It presents three improved denoising approaches, which are based on FRIT and used in the sonar image disposal technique. By experiment and comparison with traditional methods, these approaches not only suppress the artifacts, but also obtain good effect in edge keeping and SNR of the sonar image denoising.

  11. High resolution adaptive imaging of a single atom

    CERN Document Server

    Wong-Campos, J D; Neyenhuis, B; Mizrahi, J; Monroe, C

    2015-01-01

    We report the optical imaging of a single atom with nanometer resolution using an adaptive optical alignment technique that is applicable to general optical microscopy. By decomposing the image of a single laser-cooled atom, we identify and correct optical aberrations in the system and realize an atomic position sensitivity of $\\approx$ 0.5 nm/$\\sqrt{\\text{Hz}}$ with a minimum uncertainty of 1.7 nm, allowing the direct imaging of atomic motion. This is the highest position sensitivity ever measured for an isolated atom, and opens up the possibility of performing out-of-focus 3D particle tracking, imaging of atoms in 3D optical lattices or sensing forces at the yoctonewton (10$^{-24}$ N) scale.

  12. Atomic Resolution Imaging with a sub-50 pm Electron Probe

    Energy Technology Data Exchange (ETDEWEB)

    Erni, Rolf P.; Rossell, Marta D.; Kisielowski, Christian; Dahmen, Ulrich

    2009-03-02

    Using a highly coherent focused electron probe in a 5th order aberration-corrected transmission electron microscope, we report on resolving a crystal spacing less than 50 pm. Based on the geometrical source size and residual coherent and incoherent axial lens aberrations, an electron probe is calculated, which is theoretically capable of resolving an ideal 47 pm spacing with 29percent contrast. Our experimental data show the 47 pm spacing of a Ge 114 crystal imaged with 11-18percent contrast at a 60-95percent confidence level, providing the first direct evidence for sub 50-pm resolution in ADF STEM imaging.

  13. Super-Resolution for Traditional and Omnidirectional Image Sequences

    Directory of Open Access Journals (Sweden)

    Attila Nagy

    2009-03-01

    Full Text Available This article presents a simple method on how to implement a super-resolutionbased video enhancement technique in .NET using the functions of the OpenCV library.First, we outline the goal of this project and after that, a short review of the steps of superresolutiontechnique is given. As a part of the discussion about the implementation itself,the general design aspects are detailed in short. Then, the different optical flow algorithmsare analyzed and the super-resolution calculation of omnidirectional image sequences isdiscussed. After all that, the achieved results can be seen and finally, a short generalconclusion can be read. This paper is a revision of our previous work [1]. In this edition,we focus on the super-resolution of omnidirectional image sequences rather than thetechnological issues that were discussed in our previous article. Further information aboutthe implementation and wrapper development can be found in [1 and 12].

  14. Fast full resolution saliency detection based on incoherent imaging system

    Science.gov (United States)

    Lin, Guang; Zhao, Jufeng; Feng, Huajun; Xu, Zhihai; Li, Qi; Chen, Yueting

    2016-05-01

    Image saliency detection is widely applied in many tasks in the field of the computer vision. In this paper, we combine the saliency detection with the Fourier optics to achieve acceleration of saliency detection algorithm. An actual optical saliency detection system is constructed within the framework of incoherent imaging system. Additionally, the application of our system to implement the bottom-up rapid pre-saliency process of primate visual saliency is discussed with dual-resolution camera. A set of experiments over our system are conducted and discussed. We also demonstrate the comparisons between our method and pure computer methods. The results show our system can produce full resolution saliency maps faster and more effective.

  15. A high-resolution two-dimensional imaging velocimeter

    International Nuclear Information System (INIS)

    Velocity interferometers are typically used to measure velocities of surfaces at a single point or along an imaged line as a function of time. We describe an optical arrangement that enables high-resolution measurements of the two-dimensional velocity field across a shock front or shocked interface. The technique is employed to measure microscopic fluctuations in shock fronts that have passed through materials being considered as ablators for indirect-drive inertial confinement fusion. With picosecond time resolution the instrument captures velocity modes with wavelengths as short as 2.5 μm at a resolution of ∼10 m/s rms on velocity fields averaging many km/s over an 800 μm field of view.

  16. Nonlinear Adjustment Model with Integral and Its Application to Super Resolution Image Reconstruction

    OpenAIRE

    Zhu, Jianjun; Fan, Donghao; Zhou, Cui; Zhou, Jinghong

    2015-01-01

    The process of super resolution image reconstruction is such a process that multiple observations are taken on the same target to obtain low resolution images, then the low resolution images are used to reconstruct the real image of the target, namely high resolution image. This process is similar to that in the field of surveying and mapping, in which the same target is observed repeatedly and the optimal values is calculated with surveying adjustment methods. In this paper, the method of su...

  17. Overcoming Registration Uncertainty in Image Super-Resolution: Maximize or Marginalize?

    OpenAIRE

    Andrew Zisserman; Roberts, Stephen J.; David P. Capel; Pickup, Lyndsey C.

    2007-01-01

    In multiple-image super-resolution, a high-resolution image is estimated from a number of lower-resolution images. This usually involves computing the parameters of a generative imaging model (such as geometric and photometric registration, and blur) and obtaining a MAP estimate by minimizing a cost function including an appropriate prior. Two alternative approaches are examined. First, both registrations and the super-resolution image are found simultaneously using a joint MAP optimization. ...

  18. Overcoming Registration Uncertainty in Image Super-Resolution: Maximize or Marginalize?

    OpenAIRE

    Pickup Lyndsey C; Capel David P; Roberts Stephen J; Zisserman Andrew

    2007-01-01

    In multiple-image super-resolution, a high-resolution image is estimated from a number of lower-resolution images. This usually involves computing the parameters of a generative imaging model (such as geometric and photometric registration, and blur) and obtaining a MAP estimate by minimizing a cost function including an appropriate prior. Two alternative approaches are examined. First, both registrations and the super-resolution image are found simultaneously using a joint MAP optimization....

  19. Precision crystal alignment for high-resolution electron microscope imaging

    International Nuclear Information System (INIS)

    One of the more difficult tasks involved in obtaining quality high-resolution electron micrographs is the precise alignment of a specimen into the required zone. The current accepted procedure, which involves changing to diffraction mode and searching for symmetric point diffraction pattern, is insensitive to small amounts of misalignment and at best qualitative. On-line analysis of the fourier space representation of the image, both for determining and correcting crystal tilt, is investigated. 8 refs., 42 figs

  20. Convex Super-Resolution Detection of Lines in Images

    OpenAIRE

    Polisano, Kévin; Condat, Laurent; Clausel, Marianne; Perrier, Valérie

    2016-01-01

    International audience In this paper, we present a new convex formulation for the problem of recovering lines in degraded images. Following the recent paradigm of super-resolution, we formulate a dedicated atomic norm penalty and we solve this optimization problem by means of a primal–dual algorithm. This parsimonious model enables the reconstruction of lines from lowpass measurements, even in presence of a large amount of noise or blur. Furthermore, a Prony method performed on rows and co...

  1. Deeply-Recursive Convolutional Network for Image Super-Resolution

    OpenAIRE

    Kim, Jiwon; Lee, Jung Kwon; Lee, Kyoung Mu

    2015-01-01

    We propose an image super-resolution method (SR) using a deeply-recursive convolutional network (DRCN). Our network has a very deep recursive layer (up to 16 recursions). Increasing recursion depth can improve performance without introducing new parameters for additional convolutions. Albeit advantages, learning a DRCN is very hard with a standard gradient descent method due to exploding/vanishing gradients. To ease the difficulty of training, we propose two extensions: recursive-supervision ...

  2. The convergence of object dependent resolution in maximum likelihood based tomographic image reconstruction

    International Nuclear Information System (INIS)

    Study of the maximum likelihood by EM algorithm (ML) with a reconstruction kernel equal to the intrinsic detector resolution and sieve regularization has demonstrated that any image improvements over filtered backprojection (FBP) are a function of image resolution. Comparing different reconstruction algorithms potentially requires measuring and matching the image resolution. Since there are no standard methods for describing the resolution of images from a nonlinear algorithm such as ML, the authors have defined measures of effective local Gaussian resolution (ELGR) and effective global Gaussian resolution (EGGR) and examined their behaviour in FBP images and in ML images using two different measurement techniques. (Author)

  3. Requirements for a Moderate-resolution Infrared Imaging Sounder (MIRIS)

    Science.gov (United States)

    Pagano, Thomas S.; Aumann, Hartmut H.; Gerber, Andrew J.; Kuai, Le; Gontijo, I.; DeLeon, Berta; Susskind, Joel; Iredell, Lena; Bajpai, Shyam

    2013-09-01

    The high cost of imaging and sounding from space warrants exploration of new methods for obtaining the required information, including changing the spectral band sets, employing new technologies and merging instruments. In some cases we must consider relaxation of the current capability. In others, we expect higher performance. In general our goal is to meet the VIIRS and CrIS requirements while providing the enhanced next generation capabilities: 1) Hyperspectral Imaging in the Vis/NIR bands, 2) High Spatial Resolution Sounding in the Infrared bands. The former will improve the accuracy of ocean color products, aerosols and water vapor, surface vegetation and geology. The latter will enable the high-impact achieved by the current suite of hyperspectral infrared sounders to be achieved by the next generation high resolution forecast models. We examine the spectral, spatial and radiometric requirements for a next generation system and technologies that can be applied from the available inventory within government and industry. A two-band grating spectrometer instrument called the Moderate-resolution Infrared Imaging Sounder (MIRIS) is conceived that, when used with the planned NASA PACE Ocean Color Instrument (OCI) will meet the vast majority of CrIS and VIIRS requirements in the all bands and provide the next generation capabilities desired. MIRIS resource requirements are modest and the Technology Readiness Level is high leading to the expectation that the cost and risk of MIRIS will be reasonable.

  4. Preconditioning for edge-preserving image super resolution.

    Science.gov (United States)

    Pelletier, Stéphane; Cooperstock, Jeremy R

    2012-01-01

    We propose a simple preconditioning method for accelerating the solution of edge-preserving image super-resolution (SR) problems in which a linear shift-invariant point spread function is employed. Our technique involves reordering the high-resolution (HR) pixels in a similar manner to what is done in preconditioning methods for quadratic SR formulations. However, due to the edge preserving requirements, the Hessian matrix of the cost function varies during the minimization process. We develop an efficient update scheme for the preconditioner in order to cope with this situation. Unlike some other acceleration strategies that round the displacement values between the low-resolution (LR) images on the HR grid, the proposed method does not sacrifice the optimality of the observation model. In addition, we describe a technique for preconditioning SR problems involving rational magnification factors. The use of such factors is motivated in part by the fact that, under certain circumstances, optimal SR zooms are nonintegers. We show that, by reordering the pixels of the LR images, the structure of the problem to solve is modified in such a way that preconditioners based on circulant operators can be used. PMID:21693419

  5. Correction of Migration Through Resolution Cell in ISAR Imaging

    Institute of Scientific and Technical Information of China (English)

    JIANGZhenglin; XINGMengdao; BAOZheng

    2004-01-01

    For ISAR imaging-radar, after the translation motion compensated, the target can be changed to turntable and the R-D (Range-Doppler) algorithm usually adopted is based on small target flying steadily, with the assumption that all of the scatterers are not migrated through their range cells. But for maneuvering target this assumption is not satisfied, as the Doppler frequency is time varying. Actually, to obtain the cross-range resolution of dozens of centimeters for the large-scale or medium targets, especially for S or L wave band, with wave length so short, MTRC (the Migration through resolution cell)would occur on both fringes of the ISAR imaging. The Doppler migration is basically caused by nonuniform rotation of several parts of the target, so that the Doppler frequency of each scatterer is time varying, which can be accumulated coherently by the method of time-frequency analysis in order to get instant range-Doppler image. In this paper, the reason that causes migration through resolution cell is discussed, and a compensating algorithm is proposed. The method of time-frequency analysis to every range cell of scattererer is applied to estimate its instant frequency after range compressing and MTRC correcting,so that the quadratic term can be adjusted. Simulated data and real data prove that this method is effective.

  6. Learning Based Single Frame Image Super-resolution Using Fast Discrete Curvelet Coefficients

    OpenAIRE

    Anil A. Patil; Jyoti Singhai

    2012-01-01

    High-resolution (HR) images play a vital role in all imaging applications as they offer more details. The images captured by the camera system are of degraded quality due to the imaging system and are low-resolution (LR) images. Image super-resolution (SR) is a process, where HR image is obtained from combining one or multiple LR images of same scene. In this paper, learning based single frame image super-resolution technique is proposed by using Fast Discrete Curvelet Transform (FDCT) coeffi...

  7. High resolution 3D imaging of synchrotron generated microbeams

    Energy Technology Data Exchange (ETDEWEB)

    Gagliardi, Frank M., E-mail: frank.gagliardi@wbrc.org.au [Alfred Health Radiation Oncology, The Alfred, Melbourne, Victoria 3004, Australia and School of Medical Sciences, RMIT University, Bundoora, Victoria 3083 (Australia); Cornelius, Iwan [Imaging and Medical Beamline, Australian Synchrotron, Clayton, Victoria 3168, Australia and Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales 2500 (Australia); Blencowe, Anton [Division of Health Sciences, School of Pharmacy and Medical Sciences, The University of South Australia, Adelaide, South Australia 5000, Australia and Division of Information Technology, Engineering and the Environment, Mawson Institute, University of South Australia, Mawson Lakes, South Australia 5095 (Australia); Franich, Rick D. [School of Applied Sciences and Health Innovations Research Institute, RMIT University, Melbourne, Victoria 3000 (Australia); Geso, Moshi [School of Medical Sciences, RMIT University, Bundoora, Victoria 3083 (Australia)

    2015-12-15

    Purpose: Microbeam radiation therapy (MRT) techniques are under investigation at synchrotrons worldwide. Favourable outcomes from animal and cell culture studies have proven the efficacy of MRT. The aim of MRT researchers currently is to progress to human clinical trials in the near future. The purpose of this study was to demonstrate the high resolution and 3D imaging of synchrotron generated microbeams in PRESAGE® dosimeters using laser fluorescence confocal microscopy. Methods: Water equivalent PRESAGE® dosimeters were fabricated and irradiated with microbeams on the Imaging and Medical Beamline at the Australian Synchrotron. Microbeam arrays comprised of microbeams 25–50 μm wide with 200 or 400 μm peak-to-peak spacing were delivered as single, cross-fire, multidirectional, and interspersed arrays. Imaging of the dosimeters was performed using a NIKON A1 laser fluorescence confocal microscope. Results: The spatial fractionation of the MRT beams was clearly visible in 2D and up to 9 mm in depth. Individual microbeams were easily resolved with the full width at half maximum of microbeams measured on images with resolutions of as low as 0.09 μm/pixel. Profiles obtained demonstrated the change of the peak-to-valley dose ratio for interspersed MRT microbeam arrays and subtle variations in the sample positioning by the sample stage goniometer were measured. Conclusions: Laser fluorescence confocal microscopy of MRT irradiated PRESAGE® dosimeters has been validated in this study as a high resolution imaging tool for the independent spatial and geometrical verification of MRT beam delivery.

  8. High resolution 3D imaging of synchrotron generated microbeams

    International Nuclear Information System (INIS)

    Purpose: Microbeam radiation therapy (MRT) techniques are under investigation at synchrotrons worldwide. Favourable outcomes from animal and cell culture studies have proven the efficacy of MRT. The aim of MRT researchers currently is to progress to human clinical trials in the near future. The purpose of this study was to demonstrate the high resolution and 3D imaging of synchrotron generated microbeams in PRESAGE® dosimeters using laser fluorescence confocal microscopy. Methods: Water equivalent PRESAGE® dosimeters were fabricated and irradiated with microbeams on the Imaging and Medical Beamline at the Australian Synchrotron. Microbeam arrays comprised of microbeams 25–50 μm wide with 200 or 400 μm peak-to-peak spacing were delivered as single, cross-fire, multidirectional, and interspersed arrays. Imaging of the dosimeters was performed using a NIKON A1 laser fluorescence confocal microscope. Results: The spatial fractionation of the MRT beams was clearly visible in 2D and up to 9 mm in depth. Individual microbeams were easily resolved with the full width at half maximum of microbeams measured on images with resolutions of as low as 0.09 μm/pixel. Profiles obtained demonstrated the change of the peak-to-valley dose ratio for interspersed MRT microbeam arrays and subtle variations in the sample positioning by the sample stage goniometer were measured. Conclusions: Laser fluorescence confocal microscopy of MRT irradiated PRESAGE® dosimeters has been validated in this study as a high resolution imaging tool for the independent spatial and geometrical verification of MRT beam delivery

  9. Special issue on high-resolution optical imaging

    Science.gov (United States)

    Smith, Peter J. S.; Davis, Ilan; Galbraith, Catherine G.; Stemmer, Andreas

    2013-09-01

    The pace of development in the field of advanced microscopy is truly breath-taking, and is leading to major breakthroughs in our understanding of molecular machines and cell function. This special issue of Journal of Optics draws attention to a number of interesting approaches, ranging from fluorescence and imaging of unlabelled cells, to computational methods, all of which are describing the ever increasing detail of the dynamic behaviour of molecules in the living cell. This is a field which traditionally, and currently, demonstrates a marvellous interplay between the disciplines of physics, chemistry and biology, where apparent boundaries to resolution dissolve and living cells are viewed in ever more clarity. It is fertile ground for those interested in optics and non-conventional imaging to contribute high-impact outputs in the fields of cell biology and biomedicine. The series of articles presented here has been selected to demonstrate this interdisciplinarity and to encourage all those with a background in the physical sciences to 'dip their toes' into the exciting and dynamic discoveries surrounding cell function. Although single molecule super-resolution microscopy is commercially available, specimen preparation and interpretation of single molecule data remain a major challenge for scientists wanting to adopt the techniques. The paper by Allen and Davidson [1] provides a much needed detailed introduction to the practical aspects of stochastic optical reconstruction microscopy, including sample preparation, image acquisition and image analysis, as well as a brief description of the different variants of single molecule localization microscopy. Since super-resolution microscopy is no longer restricted to three-dimensional imaging of fixed samples, the review by Fiolka [2] is a timely introduction to techniques that have been successfully applied to four-dimensional live cell super-resolution microscopy. The combination of multiple high-resolution techniques

  10. Radio frequency for very high-resolution imaging

    International Nuclear Information System (INIS)

    The authors report on the first approach and the design of a selectable transmit field-of-view shoulder coil with a separate receive coil. They imaged two cadaver shoulders, six shoulders of normal volunteers, and two rotator cuff tears in coronal, sagittal, and axial planes. All results were obtained on a Diasonics, MT/S imager operating at 0.35T. The receive coil is a single-turn wide strip of copper into which the patient inserts his or her arm. The transmit coil is PIN diode detuned during reception. It provides a variable transmit field of view that allows for ultrahigh- and high-resolution imaging. One major advantage of this design is that the authors do not use the body coil as a transmitter and thus avoid exciting regions of tissue that cause phase-encoding aliasing

  11. Detection of Barchan Dunes in High Resolution Satellite Images

    Science.gov (United States)

    Azzaoui, M. A.; Adnani, M.; El Belrhiti, H.; Chaouki, I. E.; Masmoudi, C.

    2016-06-01

    Barchan dunes are the fastest moving sand dunes in the desert. We developed a process to detect barchans dunes on High resolution satellite images. It consisted of three steps, we first enhanced the image using histogram equalization and noise reduction filters. Then, the second step proceeds to eliminate the parts of the image having a texture different from that of the barchans dunes. Using supervised learning, we tested a coarse to fine textural analysis based on Kolomogorov Smirnov test and Youden's J-statistic on co-occurrence matrix. As an output we obtained a mask that we used in the next step to reduce the search area. In the third step we used a gliding window on the mask and check SURF features with SVM to get barchans dunes candidates. Detected barchans dunes were considered as the fusion of overlapping candidates. The results of this approach were very satisfying in processing time and precision.

  12. High Resolution Image Correspondences for Video Post-Production

    Directory of Open Access Journals (Sweden)

    Marcus Magnor

    Full Text Available We present an algorithm for estimating dense image correspondences. Our versatile approach lends itself to various tasks typical for video post-processing, including image morphing, optical flow estimation, stereo rectification, disparity/depth reconstruction, and baseline adjustment. We incorporate recent advances in feature matching, energy minimization, stereo vision, and data clustering into our approach. At the core of our correspondence estimation we use Efficient Belief Propagation for energy minimization. While state-of-the-art algorithms only work on thumbnail-sized images, our novel feature downsampling scheme in combination with a simple, yet efficient data term compression, can cope with high-resolution data. The incorporation of SIFT (Scale-Invariant Feature Transform features into data term computation further resolves matching ambiguities, making long-range correspondence estimation possible. We detect occluded areas by evaluating the correspondence symmetry, we further apply Geodesic matting to automatically determine plausible values in these regions.

  13. High Resolution Image Correspondences for Video Post-Production

    Directory of Open Access Journals (Sweden)

    Marcus Magnor

    2012-12-01

    Full Text Available We present an algorithm for estimating dense image correspondences. Our versatile approach lends itself to various tasks typical for video post-processing, including image morphing, optical flow estimation, stereo rectification, disparity/depth reconstruction, and baseline adjustment. We incorporate recent advances in feature matching, energy minimization, stereo vision, and data clustering into our approach. At the core of our correspondence estimation we use Efficient Belief Propagation for energy minimization. While state-of-the-art algorithms only work on thumbnail-sized images, our novel feature downsampling scheme in combination with a simple, yet efficient data term compression, can cope with high-resolution data. The incorporation of SIFT (Scale-Invariant Feature Transform features into data term computation further resolves matching ambiguities, making long-range correspondence estimation possible. We detect occluded areas by evaluating the correspondence symmetry, we further apply Geodesic matting to automatically determine plausible values in these regions.

  14. Enhanced Landmine Detection from Low Resolution IR Image Sequences

    Science.gov (United States)

    Wang, Tiesheng; Gu, Irene Yu-Hua; Tjahjadi, Tardi

    We deal with the problem of landmine field detection using low-resolution infrared (IR) image sequences measured from airborne or vehicle-borne passive IR cameras. The proposed scheme contains two parts: a) employ a multi-scale detector, i.e., a special type of isotropic bandpass filters, to detect landmine candidates in each frame; b) enhance landmine detection through seeking maximum consensus of corresponding landmine candidates over image frames. Experiments were conducted on several IR image sequences measured from airborne and vehicle-borne cameras, where some results are included. As shown in our experiments, the landmine signatures have been significantly enhanced using the proposed scheme, and automatic detection results are reasonably good. These methods can therefore be applied to assisting humanitarian demining work for landmine field detection.

  15. Imaging collagen type I fibrillogenesis with high spatiotemporal resolution

    Energy Technology Data Exchange (ETDEWEB)

    Stamov, Dimitar R, E-mail: stamov@jpk.com [JPK Instruments AG, Bouchéstrasse 12, 12435 Berlin (Germany); Stock, Erik [JPK Instruments AG, Bouchéstrasse 12, 12435 Berlin (Germany); Franz, Clemens M [DFG-Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Strasse 1a, 76131 Karlsruhe (Germany); Jähnke, Torsten; Haschke, Heiko [JPK Instruments AG, Bouchéstrasse 12, 12435 Berlin (Germany)

    2015-02-15

    Fibrillar collagens, such as collagen type I, belong to the most abundant extracellular matrix proteins and they have received much attention over the last five decades due to their large interactome, complex hierarchical structure and high mechanical stability. Nevertheless, the collagen self-assembly process is still incompletely understood. Determining the real-time kinetics of collagen type I formation is therefore pivotal for better understanding of collagen type I structure and function, but visualising the dynamic self-assembly process of collagen I on the molecular scale requires imaging techniques offering high spatiotemporal resolution. Fast and high-speed scanning atomic force microscopes (AFM) provide the means to study such processes on the timescale of seconds under near-physiological conditions. In this study we have applied fast AFM tip scanning to study the assembly kinetics of fibrillar collagen type I nanomatrices with a temporal resolution reaching eight seconds for a frame size of 500 nm. By modifying the buffer composition and pH value, the kinetics of collagen fibrillogenesis can be adjusted for optimal analysis by fast AFM scanning. We furthermore show that amplitude-modulation imaging can be successfully applied to extract additional structural information from collagen samples even at high scan rates. Fast AFM scanning with controlled amplitude modulation therefore provides a versatile platform for studying dynamic collagen self-assembly processes at high resolution. - Highlights: • Continuous non-invasive time-lapse investigation of collagen I fibrillogenesis in situ. • Imaging of collagen I self-assembly with high spatiotemporal resolution. • Application of setpoint modulation to study the hierarchical structure of collagen I. • Observing real-time formation of the D-banding pattern in collagen I.

  16. Imaging collagen type I fibrillogenesis with high spatiotemporal resolution

    International Nuclear Information System (INIS)

    Fibrillar collagens, such as collagen type I, belong to the most abundant extracellular matrix proteins and they have received much attention over the last five decades due to their large interactome, complex hierarchical structure and high mechanical stability. Nevertheless, the collagen self-assembly process is still incompletely understood. Determining the real-time kinetics of collagen type I formation is therefore pivotal for better understanding of collagen type I structure and function, but visualising the dynamic self-assembly process of collagen I on the molecular scale requires imaging techniques offering high spatiotemporal resolution. Fast and high-speed scanning atomic force microscopes (AFM) provide the means to study such processes on the timescale of seconds under near-physiological conditions. In this study we have applied fast AFM tip scanning to study the assembly kinetics of fibrillar collagen type I nanomatrices with a temporal resolution reaching eight seconds for a frame size of 500 nm. By modifying the buffer composition and pH value, the kinetics of collagen fibrillogenesis can be adjusted for optimal analysis by fast AFM scanning. We furthermore show that amplitude-modulation imaging can be successfully applied to extract additional structural information from collagen samples even at high scan rates. Fast AFM scanning with controlled amplitude modulation therefore provides a versatile platform for studying dynamic collagen self-assembly processes at high resolution. - Highlights: • Continuous non-invasive time-lapse investigation of collagen I fibrillogenesis in situ. • Imaging of collagen I self-assembly with high spatiotemporal resolution. • Application of setpoint modulation to study the hierarchical structure of collagen I. • Observing real-time formation of the D-banding pattern in collagen I

  17. Noise and Analyzer-Crystal Angular Position Analysis for Analyzer-Based Phase-Contrast Imaging

    OpenAIRE

    Majidi, Keivan; Li, Jun; Muehleman, Carol; Brankov, Jovan G.

    2014-01-01

    The analyzer-based phase-contrast X-ray imaging (ABI) method is emerging as a potential alternative to conventional radiography. Like many of the modern imaging techniques, ABI is a computed imaging method (meaning that images are calculated from raw data). ABI can simultaneously generate a number of planar parametric images containing information about absorption, refraction, and scattering properties of an object. These images are estimated from raw data acquired by measuring (sampling) the...

  18. High-resolution EUV imaging tools for resist exposure and aerial image monitoring

    Science.gov (United States)

    Booth, M.; Brisco, O.; Brunton, A.; Cashmore, J.; Elbourn, P.; Elliner, G.; Gower, M.; Greuters, J.; Grunewald, P.; Gutierrez, R.; Hill, T.; Hirsch, J.; Kling, L.; McEntee, N.; Mundair, S.; Richards, P.; Truffert, V.; Wallhead, I.; Whitfield, M.; Hudyma, R.

    2005-05-01

    Key features are presented of two high-resolution EUV imaging tools: the MS-13 Microstepper wafer exposure and the RIM-13 reticle imaging microscope. The MS-13 has been developed for EUV resist testing and technology evaluation at the 32nm node and beyond, while the RIM-13 is designed for actinic aerial image monitoring of blank and patterned EUV reticles. Details of the design architecture, module layout, major subsystems and performance are presented for both tools.

  19. The optical microscopy with virtual image breaks a record: 50-nm resolution imaging is demonstrated

    CERN Document Server

    Wang, Zengbo; Li, Lin; Liu, Zhu; Luk'yanchuk, Boris; Chen, Zaichun; Hong, Minghui

    2010-01-01

    We demonstrate a new 'microsphere nanoscope' that uses ordinary SiO2 microspheres as superlenses to create a virtual image of the object in near field. The magnified virtual image greatly overcomes the diffraction limit. We are able to resolve clearly 50-nm objects under a standard white light source in both transmission and reflection modes. The resolution achieved for white light opens a new opportunity to image viruses, DNA and molecules in real time.

  20. High-performance VGA-resolution digital color CMOS imager

    Science.gov (United States)

    Agwani, Suhail; Domer, Steve; Rubacha, Ray; Stanley, Scott

    1999-04-01

    This paper discusses the performance of a new VGA resolution color CMOS imager developed by Motorola on a 0.5micrometers /3.3V CMOS process. This fully integrated, high performance imager has on chip timing, control, and analog signal processing chain for digital imaging applications. The picture elements are based on 7.8micrometers active CMOS pixels that use pinned photodiodes for higher quantum efficiency and low noise performance. The image processing engine includes a bank of programmable gain amplifiers, line rate clamping for dark offset removal, real time auto white balancing, per column gain and offset calibration, and a 10 bit pipelined RSD analog to digital converter with a programmable input range. Post ADC signal processing includes features such as bad pixel replacement based on user defined thresholds levels, 10 to 8 bit companding and 5 tap FIR filtering. The sensor can be programmed via a standard I2C interface that runs on 3.3V clocks. Programmable features include variable frame rates using a constant frequency master clock, electronic exposure control, continuous or single frame capture, progressive or interlace scanning modes. Each pixel is individually addressable allowing region of interest imaging and image subsampling. The sensor operates with master clock frequencies of up to 13.5MHz resulting in 30FPS. A total programmable gain of 27dB is available. The sensor power dissipation is 400mW at full speed of operation. The low noise design yields a measured 'system on a chip' dynamic range of 50dB thus giving over 8 true bits of resolution. Extremely high conversion gain result in an excellent peak sensitivity of 22V/(mu) J/cm2 or 3.3V/lux-sec. This monolithic image capture and processing engine represent a compete imaging solution making it a true 'camera on a chip'. Yet in its operation it remains extremely easy to use requiring only one clock and a 3.3V power supply. Given the available features and performance levels, this sensor will be

  1. Influence of Iterative Reconstruction Algorithms on PET Image Resolution

    Science.gov (United States)

    Karpetas, G. E.; Michail, C. M.; Fountos, G. P.; Valais, I. G.; Nikolopoulos, D.; Kandarakis, I. S.; Panayiotakis, G. S.

    2015-09-01

    The aim of the present study was to assess image quality of PET scanners through a thin layer chromatography (TLC) plane source. The source was simulated using a previously validated Monte Carlo model. The model was developed by using the GATE MC package and reconstructed images obtained with the STIR software for tomographic image reconstruction. The simulated PET scanner was the GE DiscoveryST. A plane source consisted of a TLC plate, was simulated by a layer of silica gel on aluminum (Al) foil substrates, immersed in 18F-FDG bath solution (1MBq). Image quality was assessed in terms of the modulation transfer function (MTF). MTF curves were estimated from transverse reconstructed images of the plane source. Images were reconstructed by the maximum likelihood estimation (MLE)-OSMAPOSL, the ordered subsets separable paraboloidal surrogate (OSSPS), the median root prior (MRP) and OSMAPOSL with quadratic prior, algorithms. OSMAPOSL reconstruction was assessed by using fixed subsets and various iterations, as well as by using various beta (hyper) parameter values. MTF values were found to increase with increasing iterations. MTF also improves by using lower beta values. The simulated PET evaluation method, based on the TLC plane source, can be useful in the resolution assessment of PET scanners.

  2. High resolution imaging of dynamic surface processes from the ISS

    Science.gov (United States)

    Donnellan, A.; Green, J. J.; De Jong, E. M.; Knight, R.; Bills, B.; Arrowsmith, R.

    Spaceborne persistent multi-angle imaging allows staring at selected targets during an orbit pass. From its vantage point on the International Space Station (ISS) a persistent Earth imaging telescope would provide hundreds of high-resolution images simultaneously. Observations could be in visible and SWIR bands as it stares at a scene of interest. These images provide rich multi-angle stereo views enabling understanding of rapidly changing Earth features with many applications to Earth science and disaster response. Current academic state-of-the-art is driven by single images taken with a near nadir view. Persistent imaging could address NASA's goal of understanding how and why the Earth's environment is changing, and could be used for forecasting and mitigating the effects of natural disasters. Specifically such a mission could be used to answer the questions: 1) How are Earth's vulnerable systems reflecting changes in climate? and 2) What processes and features characterize the magnitude and extent of disasters? A mission would meet geomorphologists' requirements observing changing features such as landslides, earthquakes, floods, volcanoes, and glaciers.

  3. Noise removal in nuclear medicine images by using multi resolution

    International Nuclear Information System (INIS)

    A novel flexible and dynamic algorithm for noise removal in nuclear medicine images is proposed. The images have a very low signal-to-noise ratio and the total number of registered photons is relatively small. The algorithm removes the noise from both the images original spatial domain and from the wavelet transform domain. In the spatial domain it uses both the autocorrelation technique in order to remove the noise that appears in a from of isolated pixels around the objects of interest and the information that each image contains about the signal in its neighbouring images. In the transform domain the wavelet coefficients filtration is carried out with a filter bank which meets the near-perfect reconstruction condition and is adapted to the signal. In addition, the coefficients that correspond to noise and are about to be discarded are selected by using a non uniform threshold which is adapted to the spatial varying noise level. Criteria for selection of an optimal decomposition level for the NM images are defined. In order to suppress the noise, multi resolution characteristics of both the signal and noise are used.(Author)

  4. X-ray characterization of CMOS imaging detector with high resolution for fluoroscopic imaging application

    International Nuclear Information System (INIS)

    This paper introduces complementary metal-oxide semiconductor (CMOS) active pixel sensor (APS)-based X-ray imaging detectors with high spatial resolution for medical imaging application. In this study, our proposed X-ray CMOS imaging sensor has been fabricated by using a 0.35 µm 1 Poly 4 Metal CMOS process. The pixel size is 100 µm×100 µm and the pixel array format is 24×96 pixels, which provide a field-of-view (FOV) of 9.6 mm×2.4 mm. The 14.3-bit extend counting analog-to digital converter (ADC) with built-in binning mode was used to reduce the area and simultaneously improve the image resolution. Both thallium-doped CsI (CsI:Tl) and Gd2O2S:Tb scintillator screens were used as converters for incident X-rays to visible light photons. The optical property and X-ray imaging characterization such as X-ray to light response as a function of incident X-ray exposure dose, spatial resolution and X-ray images of objects were measured under different X-ray energy conditions. The measured results suggest that our developed CMOS-based X-ray imaging detector has the potential for fluoroscopic imaging and cone-beam computed tomography (CBCT) imaging applications

  5. X-ray characterization of CMOS imaging detector with high resolution for fluoroscopic imaging application

    Science.gov (United States)

    Cha, Bo Kyung; Kim, Cho Rong; Jeon, Seongchae; Kim, Ryun Kyung; Seo, Chang-Woo; Yang, Keedong; Heo, Duchang; Lee, Tae-Bum; Shin, Min-Seok; Kim, Jong-Boo; Kwon, Oh-Kyung

    2013-12-01

    This paper introduces complementary metal-oxide semiconductor (CMOS) active pixel sensor (APS)-based X-ray imaging detectors with high spatial resolution for medical imaging application. In this study, our proposed X-ray CMOS imaging sensor has been fabricated by using a 0.35 μm 1 Poly 4 Metal CMOS process. The pixel size is 100 μm×100 μm and the pixel array format is 24×96 pixels, which provide a field-of-view (FOV) of 9.6 mm×2.4 mm. The 14.3-bit extend counting analog-to digital converter (ADC) with built-in binning mode was used to reduce the area and simultaneously improve the image resolution. Both thallium-doped CsI (CsI:Tl) and Gd2O2S:Tb scintillator screens were used as converters for incident X-rays to visible light photons. The optical property and X-ray imaging characterization such as X-ray to light response as a function of incident X-ray exposure dose, spatial resolution and X-ray images of objects were measured under different X-ray energy conditions. The measured results suggest that our developed CMOS-based X-ray imaging detector has the potential for fluoroscopic imaging and cone-beam computed tomography (CBCT) imaging applications.

  6. High angular resolution Sunyaev-Zel'dovich observations of MACS J1423.8+2404 with NIKA: multi-wavelength analysis

    CERN Document Server

    Adam, R; Bartalucci, I; Adane, A; Ade, P; André, P; Arnaud, M; Beelen, A; Belier, B; Benoît, A; Bideaud, A; Billot, N; Bourrion, O; Calvo, M; Catalano, A; Coiffard, G; D'Addabbo, A; Désert, F -X; Doyle, S; Goupy, J; Hasnoun, B; Hermelo, I; Kramer, C; Lagache, G; Leclercq, S; Macías-Pérez, J -F; Martino, J; Mauskopf, P; Mayet, F; Monfardini, A; Pajot, F; Pascale, E; Perotto, L; Pointecouteau, E; Ponthieu, N; Pratt, G W; Revéret, V; Ritacco, A; Rodriguez, L; Savini, G; Schuster, K; Sievers, A; Triqueneaux, S; Tucker, C; Zylka, R

    2015-01-01

    NIKA, the prototype of the NIKA2 camera, is an instrument operating at the IRAM 30m telescope that can observe the sky simultaneously at 150 and 260GHz. One of the main goals of NIKA is to measure the pressure distribution in galaxy clusters at high angular resolution using the Sunyaev-Zel'dovich (SZ) effect. Such observations have already proved to be an excellent probe of cluster pressure distributions even at high redshifts. However, an important fraction of clusters host submm and/or radio point sources that can significantly affect the reconstructed signal. Here we report <20arcsec angular resolution observations at 150 and 260GHz of the cluster MACSJ1424, which hosts both radio and submm point sources. We examine the morphological distribution of the SZ signal and compare it to other datasets. The NIKA data are combined with Herschel satellite data to study the SED of the submm point source contaminants. We then perform a joint reconstruction of the ICM electronic pressure and density by combining NI...

  7. Continued Development of Small-Pixel CZT and CdTe Detectors for Future High-Angular-Resolution Hard X-ray Missions

    Science.gov (United States)

    Krawczynski, Henric

    The Nuclear Spectroscopic Telescope Array (NuSTAR) Small Explorer Mission was launched in June 2012 and has demonstrated the technical feasibility and high scientific impact of hard X-ray astronomy. We propose to continue our current R&D program to develop finely pixelated semiconductor detectors and the associated readout electronics for the focal plane of a NuSTAR follow-up mission. The detector-ASIC (Application Specific Integrated Circuit) package will be ideally matched to the new generation of low-cost, low-mass X-ray mirrors which achieve an order of magnitude better angular resolution than the NuSTAR mirrors. As part of this program, the Washington University group will optimize the contacts of 2x2 cm^2 footprint Cadmium Zinc Telluride (CZT) and Cadmium Telluride (CdTe) detectors contacted with 100x116 hexagonal pixels at a next-neighbor pitch of 200 microns. The Brookhaven National Laboratory group will design, fabricate, and test the next generation of the HEXID ASIC matched to the new X-ray mirrors and the detectors, providing a low-power 100x116 channel ASIC with extremely low readout noise (i.e. with a root mean square noise of 13 electrons). The detectors will be tested with radioactive sources and in the focal plane of high-angular-resolution X-ray mirrors at the X-ray beam facilities at the Goddard and Marshall Space Flight Centers.

  8. Spatiotonal adaptivity in super-resolution of under-sampled image sequences

    OpenAIRE

    Pham, T Q

    2006-01-01

    This thesis concerns the use of spatial and tonal adaptivity in improving the resolution of aliased image sequences under scene or camera motion. Each of the five content chapters focuses on a different subtopic of super-resolution: image registration (chapter 2), image fusion (chapter 3 and 4), super-resolution restoration (chapter 5), and super-resolution synthesis (chapter 6). Chapter 2 derives the Cramer-Rao lower bound of image registration and shows that iterative gradient-based estimat...

  9. A Fast Algorithm for Image Super-Resolution from Blurred Observations

    OpenAIRE

    Ng Michael K; Bose Nirmal K; Yau Andy C

    2006-01-01

    We study the problem of reconstruction of a high-resolution image from several blurred low-resolution image frames. The image frames consist of blurred, decimated, and noisy versions of a high-resolution image. The high-resolution image is modeled as a Markov random field (MRF), and a maximum a posteriori (MAP) estimation technique is used for the restoration. We show that with the periodic boundary condition, a high-resolution image can be restored efficiently by using fast Fourier transfor...

  10. A dedicated high resolution PET imager for plant sciences

    CERN Document Server

    Wang, Qiang; Li, Ke; Wen, Jie; Komarov, Sergey; O'Sullivan, Joseph A; Tai, Yuan-Chuan

    2014-01-01

    PET provides in vivo molecular and functional imaging capability that is crucial to studying the interaction of plant with changing environment at the whole-plant level. We have developed a dedicated plant PET imager that features high spatial resolution, housed in a fully controlled environment provided by a plant growth chamber (PGC). The system currently contains two types of detector modules: 84 microPET R4 block detectors with 2.2 mm crystals to provide a large detecting area; and 32 Inveon block detectors with 1.5 mm crystals to provide higher spatial resolution. Outputs of the four microPET block detectors in a modular housing are concatenated by a custom printed circuit board to match the output characteristics of an Inveon detector. All the detectors are read out by QuickSilver electronics. The detector modules are configured to full rings with a 15 cm diameter trans-axial field of view (FOV) for dynamic tomographic imaging of small plants. Potentially, the Inveon detectors can be reconfigured to qua...

  11. Role of color and spatial resolution in digital imaging colposcopy

    Science.gov (United States)

    Craine, Eric R.; Engel, John R.; Craine, Brian L.

    1990-07-01

    We have developed a practical digital imaging colposcope for use in research on early detection of cancerous and pre-cancerous tissue in the cervix. Several copies of the system have now been used in a variety of clinical and research environments. Two issues of considerable interest which emerged early in our work involved the roles of color and spatial resolution as they applied to digital imaging colposcopy. In each instance these qualities potentially have a significant impact on the diagnostic efficacy of the system. In order to evaluate the role of these parameters we devised and conducted a receiver operating characteristic (ROC) evaluation of the system. It is apparent from these tests that a spatial resolution of 512 x 480 pixel with 7 or 8 bits of contrast is adequate for the task. The more interesting result arises from the study of the use of color in these examinations; it appears that in general, contrary to the widely held perception of the physicians involved, color apparently provides the clinician with little or no diagnostic information. Indeed, in some instances, access to color seemed to confuse the physician and resulted in an elevated rate of false positives. Results of the ROC tests are presented in this paper along with their implications for further development of this imaging modality.

  12. High temporal resolution functional MRI using parallel echo volumar imaging

    International Nuclear Information System (INIS)

    Purpose: To combine parallel imaging with 3D single-shot acquisition (echo volumar imaging, EVI) in order to acquire high temporal resolution volumar functional MRI (fMRI) data. Materials and Methods: An improved EVI sequence was associated with parallel acquisition and field of view reduction in order to acquire a large brain volume in 200 msec. Temporal stability and functional sensitivity were increased through optimization of all imaging parameters and Tikhonov regularization of parallel reconstruction. Two human volunteers were scanned with parallel EVI in a 1.5 T whole-body MR system, while submitted to a slow event-related auditory paradigm. Results: Thanks to parallel acquisition, the EVI volumes display a low level of geometric distortions and signal losses. After removal of low-frequency drifts and physiological artifacts,activations were detected in the temporal lobes of both volunteers and voxel-wise hemodynamic response functions (HRF) could be computed. On these HRF different habituation behaviors in response to sentence repetition could be identified. Conclusion: This work demonstrates the feasibility of high temporal resolution 3D fMRI with parallel EVI. Combined with advanced estimation tools,this acquisition method should prove useful to measure neural activity timing differences or study the nonlinearities and non-stationarities of the BOLD response. (authors)

  13. High temporal resolution functional MRI using parallel echo volumar imaging

    Energy Technology Data Exchange (ETDEWEB)

    Rabrait, C.; Ciuciu, P.; Ribes, A.; Poupon, C.; Dehaine-Lambertz, G.; LeBihan, D.; Lethimonnier, F. [CEA Saclay, DSV, I2BM, Neurospin, F-91191 Gif Sur Yvette (France); Le Roux, P. [GEHC, Buc (France); Dehaine-Lambertz, G. [Unite INSERM 562, Gif Sur Yvette (France)

    2008-07-01

    Purpose: To combine parallel imaging with 3D single-shot acquisition (echo volumar imaging, EVI) in order to acquire high temporal resolution volumar functional MRI (fMRI) data. Materials and Methods: An improved EVI sequence was associated with parallel acquisition and field of view reduction in order to acquire a large brain volume in 200 msec. Temporal stability and functional sensitivity were increased through optimization of all imaging parameters and Tikhonov regularization of parallel reconstruction. Two human volunteers were scanned with parallel EVI in a 1.5 T whole-body MR system, while submitted to a slow event-related auditory paradigm. Results: Thanks to parallel acquisition, the EVI volumes display a low level of geometric distortions and signal losses. After removal of low-frequency drifts and physiological artifacts,activations were detected in the temporal lobes of both volunteers and voxel-wise hemodynamic response functions (HRF) could be computed. On these HRF different habituation behaviors in response to sentence repetition could be identified. Conclusion: This work demonstrates the feasibility of high temporal resolution 3D fMRI with parallel EVI. Combined with advanced estimation tools,this acquisition method should prove useful to measure neural activity timing differences or study the nonlinearities and non-stationarities of the BOLD response. (authors)

  14. Imaging protein interactions in vivo with sub-cellular resolution

    CERN Document Server

    Raicu, Valerica; Fung, Russell; Melnichuk, Mike; Jansma, David B; Pisterzi, Luca; Fox, Michael; Wells, James W; Saldin, Dilano K

    2008-01-01

    Resonant Energy Transfer (RET) from an optically excited donor molecule (D) to a non-excited acceptor molecule (A) residing nearby is widely used to detect molecular interactions in living cells. Stoichiometric information, such as the number of proteins forming a complex, has been obtained so far for a handful of proteins, but only after exposing the sample sequentially to at least two different excitation wavelengths. During this lengthy process of measurement, the molecular makeup of a cellular region may change, and this has so far limited the applicability of RET to determination of cellular averages. Here we demonstrate a method for imaging protein complex distribution in living cells with sub-cellular spatial resolution, which relies on a spectrally-resolved two-photon microscope, a simple but competent theory, and a keen selection of fluorescent tags. This technology may eventually lead to tracking dynamics of macromolecular complex formation and dissociation with spatial resolution inside living cell...

  15. High resolution imaging systems for inertial confinement fusion experiments

    International Nuclear Information System (INIS)

    The path to successful inertial confinement fusion (ICF) requires to observe and control the micro balloon deformations. This will be achieved using X-ray microscope among other diagnostics. A high resolution, high energy X-ray microscope involving state-of-the-art toroidal mirrors and multilayer coatings is described. Years of experiments and experience have led to a small-scale X-ray plasma imager that proves the feasibility of all the features required for a LMJ diagnostic: spatial resolution of 5 mu m, broad bandwidth, millimetric field of view (FOV). Using the feed back given by this diagnostic, a prototype for the Laser MegaJoule (LMJ) experiments has been designed. The experimental results of the first diagnostic and the concepts of the second are discussed. (authors)

  16. MUSIC electromagnetic imaging with enhanced resolution for small inclusions

    International Nuclear Information System (INIS)

    This paper investigates the influence of the test dipole on the resolution of the multiple signal classification (MUSIC) imaging method applied to the electromagnetic inverse scattering problem of determining the locations of a collection of small objects embedded in a known background medium. Based on the analysis of the induced electric dipoles in eigenstates, an algorithm is proposed to determine the test dipole that generates a pseudo-spectrum with enhanced resolution. The amplitudes in three directions of the optimal test dipole are not necessarily in phase, i.e., the optimal test dipole may not correspond to a physical direction in the real three-dimensional space. In addition, the proposed test-dipole-searching algorithm is able to deal with some special scenarios, due to the shapes and materials of objects, to which the standard MUSIC does not apply

  17. MUSIC electromagnetic imaging with enhanced resolution for small inclusions

    Science.gov (United States)

    Chen, Xudong; Zhong, Yu

    2009-01-01

    This paper investigates the influence of the test dipole on the resolution of the multiple signal classification (MUSIC) imaging method applied to the electromagnetic inverse scattering problem of determining the locations of a collection of small objects embedded in a known background medium. Based on the analysis of the induced electric dipoles in eigenstates, an algorithm is proposed to determine the test dipole that generates a pseudo-spectrum with enhanced resolution. The amplitudes in three directions of the optimal test dipole are not necessarily in phase, i.e., the optimal test dipole may not correspond to a physical direction in the real three-dimensional space. In addition, the proposed test-dipole-searching algorithm is able to deal with some special scenarios, due to the shapes and materials of objects, to which the standard MUSIC does not apply.

  18. Hybrid averaging offers high-flow contrast by cost apportionment among imaging time, axial, and lateral resolution in optical coherence tomography angiography.

    Science.gov (United States)

    Li, Peng; Cheng, Yuxuan; Li, Pei; Zhou, Liping; Ding, Zhihua; Ni, Yang; Pan, Cong

    2016-09-01

    The current temporal, wavelength, angular, and spatial averaging approaches trade imaging time and resolution for multiple independent measurements that improve the flow contrast in optical coherence tomography angiography (OCTA). We find that these averaging approaches are equivalent in principle, offering almost the same flow contrast enhancement as the number of averages increases. Based on this finding, we propose a hybrid averaging strategy for contrast enhancement by cost apportionment. We demonstrate that, compared with any individual approach, the hybrid averaging is able to offer a desired flow contrast without severe degradation of imaging time and resolution. Making use of the extended range of a VCSEL-based swept-source OCT, an angular averaging approach by path length encoding is also demonstrated for flow contrast enhancement. PMID:27607943

  19. A high-resolution radio image of a young supernova

    International Nuclear Information System (INIS)

    Supernovae in our own Galaxy are so rare that images of their remnants can show only the late aftermath of an explosion that occurred anything from a few hundred to several tens of thousands of years ago. Young supernovae are seen frequently in other galaxies, but because they are more distant it has not been possible until now to obtain high-resolution images that would reveal details of the explosion and the immediate development of the ejected material. Here we present a very-long-baseline interferometric (VLBI) radio image of the bright supernova 1986J, which occurred in the galaxy NGC891 at a distance of ∼12 Mpc. No detailed image of any supernova or remnant has been obtained before so soon after the explosion. Our image shows a shell of emission with jet-like protrusions. Their analysis should advance our understanding of the dynamics of the expanding debris, the dissipation of energy into the surrounding circumstellar medium, and the evolution of the supernova into the remnant. (author)

  20. A high-resolution radio image of a young supernova

    Energy Technology Data Exchange (ETDEWEB)

    Bartel, N.; Rupen, M.P.; Shapiro, I.I. (Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (USA)); Preston, R.A. (Jet Propulsion Lab., Pasadena, CA (USA)); Rius, A. (Universidad Complutense de Madrid (Spain). Inst. de Astronomia y Geodesia)

    1991-03-21

    Supernovae in our own Galaxy are so rare that images of their remnants can show only the late aftermath of an explosion that occurred anything from a few hundred to several tens of thousands of years ago. Young supernovae are seen frequently in other galaxies, but because they are more distant it has not been possible until now to obtain high-resolution images that would reveal details of the explosion and the immediate development of the ejected material. Here we present a very-long-baseline interferometric (VLBI) radio image of the bright supernova 1986J, which occurred in the galaxy NGC891 at a distance of {similar to}12 Mpc. No detailed image of any supernova or remnant has been obtained before so soon after the explosion. Our image shows a shell of emission with jet-like protrusions. Their analysis should advance our understanding of the dynamics of the expanding debris, the dissipation of energy into the surrounding circumstellar medium, and the evolution of the supernova into the remnant. (author).

  1. High-resolution hyperspectral single-pixel imaging system based on compressive sensing

    Science.gov (United States)

    Magalha~es, Filipe; Abolbashari, Mehrdad; Araújo, Francisco M.; Correia, Miguel V.; Farahi, Faramarz

    2012-07-01

    For the first time, a high-resolution hyperspectral single-pixel imaging system based on compressive sensing is presented and demonstrated. The system integrates a digital micro-mirror device array to optically compress the image to be acquired and an optical spectrum analyzer to enable high spectral resolution. The system's ability to successfully reconstruct images with 10 pm spectral resolution is proven.

  2. High resolution fluorescent bio-imaging with electron beam excitation.

    Science.gov (United States)

    Kawata, Yoshimasa; Nawa, Yasunori; Inami, Wataru

    2014-11-01

    We have developed electron beam excitation assisted (EXA) optical microscope[1-3], and demonstrated its resolution higher than 50 nm. In the microscope, a light source in a few nanometers size is excited by focused electron beam in a luminescent film. The microscope makes it possible to observe dynamic behavior of living biological specimens in various surroundings, such as air or liquids. Scan speed of the nanometric light source is faster than that in conventional near-field scanning optical microscopes. The microscope enables to observe optical constants such as absorption, refractive index, polarization, and their dynamic behavior on a nanometric scale. The microscope opens new microscopy applications in nano-technology and nano-science.Figure 1(a) shows schematic diagram of the proposed EXA microscope. An electron beam is focused on a luminescent film. A specimen is put on the luminescent film directly. The inset in Fig. 1(a) shows magnified image of the luminescent film and the specimen. Nanometric light source is excited in the luminescent film by the focused electron beam. The nanometric light source illuminates the specimen, and the scattered or transmitted radiation is detected with a photomultiplier tube (PMT). The light source is scanned by scanning of the focused electron beam in order to construct on image. Figure 1(b) shows a luminescence image of the cells acquired with the EXA microscope, and Fig. 1(c) shows a phase contrast microscope image. Cells were observed in culture solution without any treatments, such as fixation and drying. The shape of each cell was clearly recognized and some bright spots were observed in cells. We believe that the bright spots indicated with arrows were auto-fluorescence of intracellular granules and light- grey regions were auto-fluorescence of cell membranes. It is clearly demonstrated that the EXA microscope is useful tool for observation of living biological cells in physiological conditions.jmicro;63/suppl_1/i

  3. Precision cosmology with time delay lenses: High resolution imaging requirements

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Xiao -Lei [Beijing Normal Univ., Beijing (China); Univ. of California, Santa Barbara, CA (United States); Treu, Tommaso [Univ. of California, Santa Barbara, CA (United States); Univ. of California, Los Angeles, CA (United States); Agnello, Adriano [Univ. of California, Santa Barbara, CA (United States); Univ. of California, Los Angeles, CA (United States); Auger, Matthew W. [Univ. of Cambridge, Cambridge (United Kingdom); Liao, Kai [Beijing Normal Univ., Beijing (China); Univ. of California, Santa Barbara, CA (United States); Univ. of California, Los Angeles, CA (United States); Marshall, Philip J. [Stanford Univ., Stanford, CA (United States)

    2015-09-28

    Lens time delays are a powerful probe of cosmology, provided that the gravitational potential of the main deflector can be modeled with sufficient precision. Recent work has shown that this can be achieved by detailed modeling of the host galaxies of lensed quasars, which appear as ``Einstein Rings'' in high resolution images. The distortion of these arcs and counter-arcs, as measured over a large number of pixels, provides tight constraints on the difference between the gravitational potential between the quasar image positions, and thus on cosmology in combination with the measured time delay. We carry out a systematic exploration of the high resolution imaging required to exploit the thousands of lensed quasars that will be discovered by current and upcoming surveys with the next decade. Specifically, we simulate realistic lens systems as imaged by the Hubble Space Telescope (HST), James Webb Space Telescope (JWST), and ground based adaptive optics images taken with Keck or the Thirty Meter Telescope (TMT). We compare the performance of these pointed observations with that of images taken by the Euclid (VIS), Wide-Field Infrared Survey Telescope (WFIRST) and Large Synoptic Survey Telescope (LSST) surveys. We use as our metric the precision with which the slope γ' of the total mass density profile ρtot∝ r–γ' for the main deflector can be measured. Ideally, we require that the statistical error on γ' be less than 0.02, such that it is subdominant to other sources of random and systematic uncertainties. We find that survey data will likely have sufficient depth and resolution to meet the target only for the brighter gravitational lens systems, comparable to those discovered by the SDSS survey. For fainter systems, that will be discovered by current and future surveys, targeted follow-up will be required. Furthermore, the exposure time required with upcoming facilitites such as JWST, the Keck Next Generation Adaptive

  4. Precision cosmology with time delay lenses: high resolution imaging requirements

    Science.gov (United States)

    Meng, Xiao-Lei; Treu, Tommaso; Agnello, Adriano; Auger, Matthew W.; Liao, Kai; Marshall, Philip J.

    2015-09-01

    Lens time delays are a powerful probe of cosmology, provided that the gravitational potential of the main deflector can be modeled with sufficient precision. Recent work has shown that this can be achieved by detailed modeling of the host galaxies of lensed quasars, which appear as ``Einstein Rings'' in high resolution images. The distortion of these arcs and counter-arcs, as measured over a large number of pixels, provides tight constraints on the difference between the gravitational potential between the quasar image positions, and thus on cosmology in combination with the measured time delay. We carry out a systematic exploration of the high resolution imaging required to exploit the thousands of lensed quasars that will be discovered by current and upcoming surveys with the next decade. Specifically, we simulate realistic lens systems as imaged by the Hubble Space Telescope (HST), James Webb Space Telescope (JWST), and ground based adaptive optics images taken with Keck or the Thirty Meter Telescope (TMT). We compare the performance of these pointed observations with that of images taken by the Euclid (VIS), Wide-Field Infrared Survey Telescope (WFIRST) and Large Synoptic Survey Telescope (LSST) surveys. We use as our metric the precision with which the slope γ' of the total mass density profile ρtotpropto r-γ' for the main deflector can be measured. Ideally, we require that the statistical error on γ' be less than 0.02, such that it is subdominant to other sources of random and systematic uncertainties. We find that survey data will likely have sufficient depth and resolution to meet the target only for the brighter gravitational lens systems, comparable to those discovered by the SDSS survey. For fainter systems, that will be discovered by current and future surveys, targeted follow-up will be required. However, the exposure time required with upcoming facilitites such as JWST, the Keck Next Generation Adaptive Optics System, and TMT, will only be of

  5. A Frequency Domain Approach to Registration of Aliased Images with Application to Super-resolution

    Directory of Open Access Journals (Sweden)

    Vandewalle Patrick

    2006-01-01

    Full Text Available Super-resolution algorithms reconstruct a high-resolution image from a set of low-resolution images of a scene. Precise alignment of the input images is an essential part of such algorithms. If the low-resolution images are undersampled and have aliasing artifacts, the performance of standard registration algorithms decreases. We propose a frequency domain technique to precisely register a set of aliased images, based on their low-frequency, aliasing-free part. A high-resolution image is then reconstructed using cubic interpolation. Our algorithm is compared to other algorithms in simulations and practical experiments using real aliased images. Both show very good visual results and prove the attractivity of our approach in the case of aliased input images. A possible application is to digital cameras where a set of rapidly acquired images can be used to recover a higher-resolution final image.

  6. Structured scintillators for X-ray imaging with micrometre resolution

    DEFF Research Database (Denmark)

    Olsen, Ulrik Lund; Schmidt, Søren; Poulsen, Henning Friis;

    2009-01-01

    shown to be negligible. The concept of such a 3D detector enables ray tracing and super resolution algorithms to be applied. Realized pore geometries have a lower aspect ratio than used in simulations and the roughness of the pore walls gives a 13% decrease in waveguide efficiency. Compared to currently......A 3D X-ray detector for imaging of 30–200 keV photons is described. It comprises a stack of semitransparent structured scintillators, where each scintillator is a regular array of waveguides in silicon, and with pores filled with CsI. The performance of the detector is described theoretically and...

  7. The standardization of super resolution optical microscopic images based on DICOM

    Science.gov (United States)

    Xia, Wei; Gao, Xin

    2015-03-01

    Super resolution optical microscopy allows the capture of images with a higher resolution than the diffraction limit. However, due to the lack of a standard format, the processing, visualization, transfer, and exchange of Super Resolution Optical Microscope (SROM) images are inconvenient. In this work, we present an approach to standardize the SROM images based on the Digital Imaging and Communication in Medicine (DICOM) standard. The SROM images and associated information are encapsulated and converted to DICOM images based on the Visible Light Microscopic Image Information Object Definition of DICOM. The new generated SROM images in DICOM format can be displayed, processed, transferred, and exchanged by using most medical image processing tools.

  8. Multi-Sensor Fusion of Infrared and Electro-Optic Signals for High Resolution Night Images

    OpenAIRE

    Victor Lawrence; Xiaopeng Huang; Hong Man; Ravi Netravali

    2012-01-01

    Electro-optic (EO) image sensors exhibit the properties of high resolution and low noise level at daytime, but they do not work in dark environments. Infrared (IR) image sensors exhibit poor resolution and cannot separate objects with similar temperature. Therefore, we propose a novel framework of IR image enhancement based on the information (e.g., edge) from EO images, which improves the resolution of IR images and helps us distinguish objects at night. Our framework superimposing/blending ...

  9. High Angular Resolution Radio Observations of a Coronal Mass Ejection Source Region at Low Frequencies during a Solar Eclipse

    Science.gov (United States)

    Ramesh, R.; Kathiravan, C.; Barve, Indrajit V.; Rajalingam, M.

    2012-01-01

    We carried out radio observations of the solar corona in the frequency range 109-50 MHz during the annular eclipse of 2010 January 15 from the Gauribidanur Observatory, located about 100 km north of Bangalore in India. The radio emission in the above frequency range originates typically in the radial distance range ≈1.2-1.5 R ⊙ in the "undisturbed" solar atmosphere. Our analysis indicates that (1) the angular size of the smallest observable radio source (associated with a coronal mass ejection in the present case) is ≈1' ± 0farcm3, (2) the source size does not vary with radial distance, (3) the peak brightness temperature of the source corresponding to the above size at a typical frequency like 77 MHz is ≈3 × 109 K, and (4) the coronal magnetic field near the source region is ≈70 mG.

  10. High-resolution imaging methods in array signal processing

    DEFF Research Database (Denmark)

    Xenaki, Angeliki

    The purpose of this study is to develop methods in array signal processing which achieve accurate signal reconstruction from limited observations resulting in high-resolution imaging. The focus is on underwater acoustic applications and sonar signal processing both in active (transmit and receive...... in active sonar signal processing for detection and imaging of submerged oil contamination in sea water from a deep-water oil leak. The submerged oil _eld is modeled as a uid medium exhibiting spatial perturbations in the acoustic parameters from their mean ambient values which cause weak scattering......-of-arrival (DOA) of the associated wavefronts from a limited number of observations. Usually, there are only a few sources generating the acoustic wavefield such that DOA estimation is essentially a sparse signal reconstruction problem. Conventional methods for DOA estimation (i.e., beamforming) suffer from...

  11. Feature Recognition of Low-resolution Fiber Image

    Institute of Scientific and Technical Information of China (English)

    YU Su-ping; ZENG Pei-feng; WU Xiong-ying; CHEN Jian-ping

    2006-01-01

    The interpolatory edge operator is applied to the recognition of cotton and ramie fibers. Its performance is studied in comparison with the Canny edge operator in the fiber's edge detection for cross-sectional image. The input image is interpolated other than Gaussian function smoothing. The quality of edge output is improved by the interpolatory edge operator. It produces edge output with good continuity for low-resolution input. The fine edge output, such as crossmarkings, can be distinguished clearly, so the interpolatory edge operator is suitable for the study of cotton and ramie fibers. Furthermore, the application of the interpolatory edge operator can cut the hardware cost, reduce the storage and speed up the data transmission.

  12. Hybrid-modality high-resolution imaging: for diagnostic biomedical imaging and sensing for disease diagnosis

    Science.gov (United States)

    Murukeshan, Vadakke M.; Hoong Ta, Lim

    2014-11-01

    Medical diagnostics in the recent past has seen the challenging trend to come up with dual and multi-modality imaging for implementing better diagnostic procedures. The changes in tissues in the early disease stages are often subtle and can occur beneath the tissue surface. In most of these cases, conventional types of medical imaging using optics may not be able to detect these changes easily due to its penetration depth of the orders of 1 mm. Each imaging modality has its own advantages and limitations, and the use of a single modality is not suitable for every diagnostic applications. Therefore the need for multi or hybrid-modality imaging arises. Combining more than one imaging modalities overcomes the limitation of individual imaging method and integrates the respective advantages into a single setting. In this context, this paper will be focusing on the research and development of two multi-modality imaging platforms. The first platform combines ultrasound and photoacoustic imaging for diagnostic applications in the eye. The second platform consists of optical hyperspectral and photoacoustic imaging for diagnostic applications in the colon. Photoacoustic imaging is used as one of the modalities in both platforms as it can offer deeper penetration depth compared to optical imaging. The optical engineering and research challenges in developing the dual/multi-modality platforms will be discussed, followed by initial results validating the proposed scheme. The proposed schemes offer high spatial and spectral resolution imaging and sensing, and is expected to offer potential biomedical imaging solutions in the near future.

  13. Enhancement of Spatial Resolution of the Lroc Wide Angle Camera Images

    Science.gov (United States)

    Mahanti, P.; Robinson, M. S.; Sato, H.; Awumah, A.; Henriksen, M.

    2016-06-01

    Image fusion, a popular method for resolution enhancement in Earth-based remote sensing studies involves the integration of geometric (sharpness) detail of a high-resolution panchromatic (Pan) image and the spectral information of a lower resolution multi-spectral (MS) image. Image fusion with planetary images is not as widespread as with terrestrial studies, although successful application of image fusion can lead to the generation of higher resolution MS image data. A comprehensive comparison of six image fusion algorithms in the context of lunar images is presented in this work. Performance of these algorithms is compared by visual inspection of the high-resolution multi-spectral products, derived products such as band-to-band ratio and composite images, and performance metrics with an emphasis on spectral content preservation. Enhanced MS images of the lunar surface can enable new science and maximize the science return for current and future missions.

  14. Real-time imaging of spin-to-orbital angular momentum hybrid remote state preparation

    Science.gov (United States)

    Erhard, Manuel; Qassim, Hammam; Mand, Harjaspreet; Karimi, Ebrahim; Boyd, Robert W.

    2015-08-01

    There exists two prominent methods to transfer information between two spatially separated parties, namely Alice (A) and Bob (B): quantum teleportation and remote state preparation. However, the difference between these methods is, in the teleportation scheme, the state to be transferred is completely unknown, whereas in state preparation it should be known to the sender. In addition, photonic state teleportation is probabilistic due to the impossibility of performing a two-particle complete Bell-state analysis with linear optics, while remote state preparation can be performed deterministically. Here we report the first realization of photonic hybrid remote state preparation from spin to orbital angular momentum degrees of freedom. In our scheme, the polarization state of photon A is transferred to orbital angular momentum of photon B. The prepared states are visualized in real time by means of an intensified CCD camera. The quality of the prepared states is verified by performing quantum state tomography, which confirms an average fidelity higher than 99.4%. We believe that this experiment paves the way towards a novel means of quantum communication in which encryption and decryption are carried out in naturally different Hilbert spaces, and therefore may provide a means for enhancing security.

  15. Towards continualized task-based resolution modeling in PET imaging

    Science.gov (United States)

    Ashrafinia, Saeed; Karakatsanis, Nicolas; Mohy-ud-Din, Hassan; Rahmim, Arman

    2014-03-01

    We propose a generalized resolution modeling (RM) framework, including extensive task-based optimization, wherein we continualize the conventionally discrete framework of RM vs. no RM, to include varying degrees of RM. The proposed framework has the advantage of providing a trade-off between the enhanced contrast recovery by RM and the reduced inter-voxel correlations in the absence of RM, and to enable improved task performance. The investigated context was that of oncologic lung FDG PET imaging. Given a realistic blurring kernel of FWHM h (`true PSF'), we performed iterative EM including RM using a wide range of `modeled PSF' kernels with varying widths h. In our simulations, h = 6mm, while h varied from 0 (no RM) to 12mm, thus considering both underestimation and overestimation of the true PSF. Detection task performance was performed using prewhitened (PWMF) and nonprewhitened matched filter (NPWMF) observers. It was demonstrated that an underestimated resolution blur (h = 4mm) enhanced task performance, while slight over-estimation (h = 7mm) also achieved enhanced performance. The latter is ironically attributed to the presence of ringing artifacts. Nonetheless, in the case of the NPWMF, the increasing intervoxel correlations with increasing values of h degrade detection task performance, and underestimation of the true PSF provides the optimal task performance. The proposed framework also achieves significant improvement of reproducibility, which is critical in quantitative imaging tasks such as treatment response monitoring.

  16. High resolution mm-VLBI imaging of Cygnus A

    CERN Document Server

    Boccardi, Bia; Bach, Uwe; Ros, Eduardo; Zensus, J Anton

    2015-01-01

    At a distance of 249 Mpc ($z$=0.056), Cygnus A is the only powerful FR II radio galaxy for which a detailed sub-parsec scale imaging of the base of both jet and counter-jet can be obtained. Observing with VLBI at millimeter wavelengths is fundamental for this object, as it uncovers those regions which appear self-absorbed or free-free absorbed by a circumnuclear torus at longer wavelengths. We performed 7 mm Global VLBI observations, achieving ultra-high resolution imaging on scales down to 90 $\\mu$as. This resolution corresponds to a linear scale of only $\\sim$400 Schwarzschild radii. We studied the transverse structure of the jets through a pixel-based analysis, and kinematic properties of the main emission features by modeling the interferometric visibilities with two-dimensional Gaussian components. Both jets appear limb-brightened, and their opening angles are relatively large ($\\phi_\\mathrm {j}\\sim 10^{\\circ}$). The flow is observed to accelerate within the inner-jet up to scales of $\\sim$1 pc, while lo...

  17. Fluid Lensing, Applications to High-Resolution 3D Subaqueous Imaging & Automated Remote Biosphere Assessment from Airborne and Space-borne Platforms

    Science.gov (United States)

    Chirayath, V.

    2014-12-01

    Fluid Lensing is a theoretical model and algorithm I present for fluid-optical interactions in turbulent flows as well as two-fluid surface boundaries that, when coupled with an unique computer vision and image-processing pipeline, may be used to significantly enhance the angular resolution of a remote sensing optical system with applicability to high-resolution 3D imaging of subaqueous regions and through turbulent fluid flows. This novel remote sensing technology has recently been implemented on a quadcopter-based UAS for imaging shallow benthic systems to create the first dataset of a biosphere with unprecedented sub-cm-level imagery in 3D over areas as large as 15 square kilometers. Perturbed two-fluid boundaries with different refractive indices, such as the surface between the ocean and air, may be exploited for use as lensing elements for imaging targets on either side of the interface with enhanced angular resolution. I present theoretical developments behind Fluid Lensing and experimental results from its recent implementation for the Reactive Reefs project to image shallow reef ecosystems at cm scales. Preliminary results from petabyte-scale aerial survey efforts using Fluid Lensing to image at-risk coral reefs in American Samoa (August, 2013) show broad applicability to large-scale automated species identification, morphology studies and reef ecosystem characterization for shallow marine environments and terrestrial biospheres, of crucial importance to understanding climate change's impact on coastal zones, global oxygen production and carbon sequestration.

  18. CARMENES input catalogue of M dwarfs II. High-resolution imaging with FastCam

    CERN Document Server

    Cortes-Contreras, M; Caballero, J A; Gauza, B; Montes, D; Alonso-Floriano, F J; Jeffers, S V; Morales, J C; Reiners, A; Ribas, I; Schoefer, P; Quirrenbach, A; Amado, P J; Mundt, R; Seifert, W

    2016-01-01

    Aims: We search for low-mass companions of M dwarfs and characterize their multiplicity fraction with the purpose of helping in the selection of the most appropriate targets for the CARMENES exoplanet survey. Methods: We obtained high-resolution images in the I band with the lucky imaging instrument FastCam at the 1.5 m Telescopio Carlos Sanchez for 490 mid- to late-M dwarfs. For all the detected binaries, we measured angular separations, position angles, and magnitude differences in the I band. We also calculated the masses of each individual component and estimated orbital periods, using the available magnitude and colour relations for M dwarfs and our own MJ-spectral type and mass-MI relations. To avoid biases in our sample selection, we built a volume-limited sample of M0.0-M5.0 dwarfs that is complete up to 86% within 14 pc. Results: From the 490 observed stars, we detected 80 companions in 76 systems, of which 30 are new discoveries. The multiplicity fraction in our observed sample is 16.7+-2.0% . In ou...

  19. Theme issue "High Resolution Earth Imaging for Geospatial Information"

    Science.gov (United States)

    Heipke, Christian; Soergel, Uwe; Rottensteiner, Franz; Jutzi, Boris

    2015-02-01

    Earth imaging from air and space has undergone major changes over the last decade. Examples of new and significant developments comprise the development and constant improvement of digital aerial cameras, multiple-echo and full-waveform laser scanners and the appearance of geosensor networks and unconventional platforms, most notably unmanned aircraft systems (UAS), sometimes called unmanned aerial vehicles (UAV) or remotely piloted aircraft systems (RPAS), and the ever increasing number of high-resolution and hyperspectral optical and SAR satellite sensors, small satellites and satellite constellations, which allow for both, a continued availability of satellite data over long periods of time, and a very short revisit time for any location on the globe. To give few examples: the latest Landsat satellite, appropriately called the Landsat data continuity mission or LDCM was launched on February 2013, continuing the Landsat mission which began back in 1972; during 2013 and 2014 France has put the SPOT 6 and 7 twin satellites into orbit, extending the history of high resolution space images, which started in 1986; and in April 2014 the European Space Agency (ESA) successfully launched the Sentinel 1A satellite with a synthetic aperture radar (SAR) sensor, the first of a fleet of different sensors that will be sent into space in the coming years. Sentinel 1A together with its twin system Sentinel 1B, to be launched in 2016, will continue the tremendous success story of ESA's C band SAR satellite activities dating back to 1991. Like the predecessors ERS 1, ERS 2, and Envisat ASAR, the Sentinel 1 systems are designed to cover the entire land mass with medium resolution, the repeat cycle is 12 days for Sentinel 1A alone and will even drop to six days as soon as both satellites are operational.

  20. High-resolution Imaging of Living Retina through Optic Adaptive Retinal Imaging System

    Institute of Scientific and Technical Information of China (English)

    Chunhui Jiang; Wenji Wang; Ning Ling; Gezhi Xu; Xuejun Rao; Xinyang Li; Yudong Zhang

    2002-01-01

    Purpose: To evaluate the possibility as well as the usage of adaptive optics in high-resolution retinal imaging.Methods:From March to November 2001, the fundus of 25 adults were checked by using Optic Adaptive Retinal Imaging System (OAS). The age of the subjects varied from 18~48 years. All had normal visual acuity from 0.9 to 1.0. No abnormality was found in the ocular examination, and their medical as well as ocular history was unremarkable. Results: High-resolution images of the retinal cells, photoreceptor and bipolar cell, were analysed. In these images, the cells are clearly resolved. The density of the photoreceptor at area 1.5 degree from the foveloa is around 40 000~50 000/mm2. At area 3 degree, it drops to less than 30 000/mm2.Conclusion:Optic Adaptive Retinal Imaging System (AOS) is able to get high-resolution image of retinal cells in living human eyes. It may be widely used in ophthalmology experimentally and clinically.

  1. High Resolution Depth-Resolved Imaging From Multi-Focal Images for Medical Ultrasound

    DEFF Research Database (Denmark)

    Diamantis, Konstantinos; Dalgarno, Paul A.; Greenaway, Alan H.;

    2015-01-01

    in-focus images. The technique is derived from biological microscopy and is validated here with simulated ultrasound data. A linear array probe is used to scan a point scatterer phantom that moves in depth with a controlled step. From the beamformed responses of each scatterer position the image......An ultrasound imaging technique providing subdiffraction limit axial resolution for point sources is proposed. It is based on simultaneously acquired multi-focal images of the same object, and on the image metric of sharpness. The sharpness is extracted by image data and presents higher values for...... sharpness is assessed. Values from all positions plotted together form a curve that peaks at the receive focus, which is set during the beamforming. Selection of three different receive foci for each acquired dataset will result in the generation of three overlapping sharpness curves. A set of three...

  2. Structured illumination quantitative phase microscopy for enhanced resolution amplitude and phase imaging

    OpenAIRE

    Chowdhury, Shwetadwip; Izatt, Joseph

    2013-01-01

    Structured illumination microscopy (SIM) is an established microscopy technique typically used to image samples at resolutions beyond the diffraction limit. Until now, however, achieving sub-diffraction resolution has predominantly been limited to intensity-based imaging modalities. Here, we introduce an analogue to conventional SIM that allows sub-diffraction resolution, quantitative phase-contrast imaging of optically transparent objects. We demonstrate sub-diffraction resolution amplitude ...

  3. Single-shot and single-sensor high/super-resolution microwave imaging based on metasurface

    OpenAIRE

    Libo Wang; Lianlin Li; Yunbo Li; Hao Chi Zhang; Tie Jun Cui

    2016-01-01

    Real-time high-resolution (including super-resolution) imaging with low-cost hardware is a long sought-after goal in various imaging applications. Here, we propose broadband single-shot and single-sensor high-/super-resolution imaging by using a spatio-temporal dispersive metasurface and an imaging reconstruction algorithm. The metasurface with spatio-temporal dispersive property ensures the feasibility of the single-shot and single-sensor imager for super- and high-resolution imaging, since ...

  4. Snow Cover Maps from MODIS Images at 250 m Resolution, Part 1: Algorithm Description

    OpenAIRE

    Claudia Notarnicola; Martial Duguay; Nico Moelg; Thomas Schellenberger; Anke Tetzlaff; Roberto Monsorno; Armin Costa; Christian Steurer; Marc Zebisch

    2013-01-01

    A new algorithm for snow cover monitoring at 250 m resolution based on Moderate Resolution Imaging Spectroradiometer (MODIS) images is presented. In contrast to the 500 m resolution MODIS snow products of NASA (MOD10 and MYD10), the main goal was to maintain the resolution as high as possible to allow for a more accurate detection of snow covered area (SCA). This is especially important in mountainous regions characterized by extreme landscape heterogeneity, where maps at a resolution of 500 ...

  5. Fast Super-Resolution Imaging with Ultra-High Labeling Density Achieved by Joint Tagging Super-Resolution Optical Fluctuation Imaging (JT-SOFI)

    CERN Document Server

    Zeng, Zhiping; Wang, Hening; Huang, Ning; Shan, Chunyan; Zhang, Hao; Teng, Junlin; Xi, Peng

    2015-01-01

    Previous stochastic localization-based super-resolution techniques are largely limited by the labeling density and the fidelity to the morphology of specimen. We report on an optical super-resolution imaging scheme implementing joint tagging using multiple fluorescent blinking dyes associated with super-resolution optical fluctuation imaging (JT-SOFI), achieving ultra-high labeling density super-resolution imaging. To demonstrate the feasibility of JT-SOFI, quantum dots with different emission spectra were jointly labeled to the tubulin in COS7 cells, creating ultra-high density labeling. After analyzing and combining the fluorescence intermittency images emanating from spectrally resolved quantum dots, the microtubule networks are capable of being investigated with high fidelity and remarkably enhanced contrast at sub-diffraction resolution. The spectral separation also significantly decreased the frame number required for SOFI, enabling fast super-resolution microscopy through simultaneous data acquisition....

  6. Overcoming Registration Uncertainty in Image Super-Resolution: Maximize or Marginalize?

    Directory of Open Access Journals (Sweden)

    Andrew Zisserman

    2007-01-01

    Full Text Available In multiple-image super-resolution, a high-resolution image is estimated from a number of lower-resolution images. This usually involves computing the parameters of a generative imaging model (such as geometric and photometric registration, and blur and obtaining a MAP estimate by minimizing a cost function including an appropriate prior. Two alternative approaches are examined. First, both registrations and the super-resolution image are found simultaneously using a joint MAP optimization. Second, we perform Bayesian integration over the unknown image registration parameters, deriving a cost function whose only variables of interest are the pixel values of the super-resolution image. We also introduce a scheme to learn the parameters of the image prior as part of the super-resolution algorithm. We show examples on a number of real sequences including multiple stills, digital video, and DVDs of movies.

  7. An extension of the high-resolution millimeter- and submillimeter-wave spectrum of methanol to high angular momentum quantum numbers

    Science.gov (United States)

    Anderson, Todd; Herbst, Eric; De Lucia, Frank C.

    1992-01-01

    The high-resolution laboratory millimeter- and submillimeter-wave spectra of C-12H(3)OH and C-13H(3)OH have been extended to include transitions involving significantly higher angular momentum quantum numbers than studied previously. For C-12H(3)OH, the data set now includes 549 A torsional substate transitions and 524 E torsional substate transitions through J is not greater than 24, exclusive of blends. For C-13H(3)OH the data set now includes 453 A torsional substate transitions and 440 E torsional substate transitions through J is not greater than 24, exclusive of blends. The extended internal axis method Hamiltonian has been used to analyze the transitions to experimental accuracy. The molecular constants determined by this approach have been used to predict accurately the frequencies of many transitions through J = 25 not measured in the laboratory.

  8. Production of High-Resolution Remote Sensing Images for Navigation Information Infrastructures

    Institute of Scientific and Technical Information of China (English)

    WANG Zhijun; Djemel Ziou; Costas Armenakis

    2004-01-01

    This paper introduces the image fusion approach of multi-resolution analysis-based intensity modulation (MRAIM) to produce the high-resolution multi-spectral images from high-resolution panchromatic image and low-resolution multi-spectral images for navigation information infrastructure. The mathematical model of image fusion is derived according to the principle of remote sensing image formation. It shows that the pixel values of a high-resolution multi-spectral images are determined by the pixel values of the approximation of a high-resolution panchromatic image at the resolution level of low-resolution multi-spectral images, and in the pixel valae computation the M-band wavelet theory and the à trous algorithm are then used. In order to evaluate the MRAIM approach, an experiment has been carried out on the basis of the IKONOS 1 m panchromatic image and 4 m multi-spectral images. The result demonstrates that MRAIM image fusion approach gives promising fusion results and it can be used to produce the high-resolution remote sensing images required for navigation information infrastructures.

  9. Fast compressed sensing analysis for super-resolution imaging using L1-homotopy

    OpenAIRE

    Babcock, Hazen P; Moffitt, Jeffrey R.; Cao, Yunlong; Zhuang, Xiaowei

    2013-01-01

    In super-resolution imaging techniques based on single-molecule switching and localization, the time to acquire a super-resolution image is limited by the maximum density of fluorescent emitters that can be accurately localized per imaging frame. In order to increase the imaging rate, several methods have been recently developed to analyze images with higher emitter densities. One powerful approach uses methods based on compressed sensing to increase the analyzable emitter density per imaging...

  10. High resolution Ceres HAMO atlas derived from Dawn FC images

    Science.gov (United States)

    Roatsch, Thomas; Kersten, Elke; Matz, Klaus-Dieter; Preusker, Frank; Scholten, Frank; Jaumann, Ralf; Raymond, Carol A.; Russell, Chris T.

    2016-04-01

    Introduction: NASA's Dawn spacecraft entered the orbit of dwarf planet Ceres in March 2015, and will characterize the geology, elemental and mineralogical composition, topography, shape, and internal structure of Ceres. One of the major goals of the mission is a global mapping of Ceres. Data: The Dawn mission was mapping Ceres in HAMO (High Altitude Mapping Orbit, 1475 km altitude) between August and October 2015. The framing camera took about 2,600 clear filter images with a resolution of about 140 m/pixel during these cycles. The images were taken with different viewing angles and different illumination conditions. We selected images from one cycle (cycle #1) for the mosaicking process to have similar viewing and illumination conditions. Very minor gaps in the coverage were filled with a few images from cycle #2. Data Processing: The first step of the processing chain towards the cartographic products is to ortho-rectify the images to the proper scale and map projec-tion type. This process requires detailed information of the Dawn orbit and attitude data and of the topography of the targets. Both, improved orientation and a high-resolution shape model, are provided by stereo processing (bundle block adjustment) of the HAMO stereo image dataset [3]. Ceres's HAMO shape model was used for the calculation of the ray intersection points while the map projection itself was done onto the reference sphere of Ceres with a radius of 470 km. The final step is the controlled mosaicking) of all images to a global mosaic of Ceres, the so-called basemap. Ceres map tiles: The Ceres atlas was produced in a scale of 1:750,000 and consists of 15 tiles that conform to the quadrangle scheme proposed by Greeley and Batson [4]. A map scale of 1:750,000 guarantees a mapping at the highest available Dawn resolution in HAMO. The individual tiles were extracted from the global mosaic and reprojected. Nomenclature: The Dawn team proposed 81 names for geological features. By international

  11. Effects of frame rate and image resolution on pulse rate measured using multiple camera imaging photoplethysmography

    Science.gov (United States)

    Blackford, Ethan B.; Estepp, Justin R.

    2015-03-01

    Non-contact, imaging photoplethysmography uses cameras to facilitate measurements including pulse rate, pulse rate variability, respiration rate, and blood perfusion by measuring characteristic changes in light absorption at the skin's surface resulting from changes in blood volume in the superficial microvasculature. Several factors may affect the accuracy of the physiological measurement including imager frame rate, resolution, compression, lighting conditions, image background, participant skin tone, and participant motion. Before this method can gain wider use outside basic research settings, its constraints and capabilities must be well understood. Recently, we presented a novel approach utilizing a synchronized, nine-camera, semicircular array backed by measurement of an electrocardiogram and fingertip reflectance photoplethysmogram. Twenty-five individuals participated in six, five-minute, controlled head motion artifact trials in front of a black and dynamic color backdrop. Increasing the input channel space for blind source separation using the camera array was effective in mitigating error from head motion artifact. Herein we present the effects of lower frame rates at 60 and 30 (reduced from 120) frames per second and reduced image resolution at 329x246 pixels (one-quarter of the original 658x492 pixel resolution) using bilinear and zero-order downsampling. This is the first time these factors have been examined for a multiple imager array and align well with previous findings utilizing a single imager. Examining windowed pulse rates, there is little observable difference in mean absolute error or error distributions resulting from reduced frame rates or image resolution, thus lowering requirements for systems measuring pulse rate over sufficient length time windows.

  12. Improved SOT (Hinode mission) high resolution solar imaging observations

    CERN Document Server

    Goodarzi, Hadis; Adjabshirizadeh, Ali

    2015-01-01

    We consider the best today available observations of the Sun free of turbulent Earth atmospheric effects, taken with the Solar Optical Telescope (SOT) onboard the Hinode spacecraft. Both the instrumental smearing and the observed stray light are analyzed in order to improve the resolution. The Point Spread Function (PSF) corresponding to the blue continuum Broadband Filter Imager (BFI) near 450 nm is deduced by analyzing i/ the limb of the Sun and ii/ images taken during the transit of the planet Venus in 2012. A combination of Gaussian and Lorentzian functions is selected to construct a PSF in order to remove both smearing due to the instrumental diffraction effects (PSF core) and the large-angle stray light due to the spiders and central obscuration (wings of the PSF) that are responsible for the parasitic stray light. A Max-likelihood deconvolution procedure based on an optimum number of iterations is discussed. It is applied to several solar field images, including the granulation near the limb. The norma...

  13. Structure recognition from high resolution images of ceramic composites

    Energy Technology Data Exchange (ETDEWEB)

    Ushizima, Daniela; Perciano, Talita; Krishnan, Harinarayan; Loring, Burlen; Bale, Hrishikesh; Parkinson, Dilworth; Sethian, James

    2015-01-05

    Fibers provide exceptional strength-to-weight ratio capabilities when woven into ceramic composites, transforming them into materials with exceptional resistance to high temperature, and high strength combined with improved fracture toughness. Microcracks are inevitable when the material is under strain, which can be imaged using synchrotron X-ray computed micro-tomography (mu-CT) for assessment of material mechanical toughness variation. An important part of this analysis is to recognize fibrillar features. This paper presents algorithms for detecting and quantifying composite cracks and fiber breaks from high-resolution image stacks. First, we propose recognition algorithms to identify the different structures of the composite, including matrix cracks and fibers breaks. Second, we introduce our package F3D for fast filtering of large 3D imagery, implemented in OpenCL to take advantage of graphic cards. Results show that our algorithms automatically identify micro-damage and that the GPU-based implementation introduced here takes minutes, being 17x faster than similar tools on a typical image file.

  14. Image quality in thoracic 4D cone-beam CT: A sensitivity analysis of respiratory signal, binning method, reconstruction algorithm, and projection angular spacing

    International Nuclear Information System (INIS)

    Purpose: Respiratory signal, binning method, and reconstruction algorithm are three major controllable factors affecting image quality in thoracic 4D cone-beam CT (4D-CBCT), which is widely used in image guided radiotherapy (IGRT). Previous studies have investigated each of these factors individually, but no integrated sensitivity analysis has been performed. In addition, projection angular spacing is also a key factor in reconstruction, but how it affects image quality is not obvious. An investigation of the impacts of these four factors on image quality can help determine the most effective strategy in improving 4D-CBCT for IGRT. Methods: Fourteen 4D-CBCT patient projection datasets with various respiratory motion features were reconstructed with the following controllable factors: (i) respiratory signal (real-time position management, projection image intensity analysis, or fiducial marker tracking), (ii) binning method (phase, displacement, or equal-projection-density displacement binning), and (iii) reconstruction algorithm [Feldkamp–Davis–Kress (FDK), McKinnon–Bates (MKB), or adaptive-steepest-descent projection-onto-convex-sets (ASD-POCS)]. The image quality was quantified using signal-to-noise ratio (SNR), contrast-to-noise ratio, and edge-response width in order to assess noise/streaking and blur. The SNR values were also analyzed with respect to the maximum, mean, and root-mean-squared-error (RMSE) projection angular spacing to investigate how projection angular spacing affects image quality. Results: The choice of respiratory signals was found to have no significant impact on image quality. Displacement-based binning was found to be less prone to motion artifacts compared to phase binning in more than half of the cases, but was shown to suffer from large interbin image quality variation and large projection angular gaps. Both MKB and ASD-POCS resulted in noticeably improved image quality almost 100% of the time relative to FDK. In addition, SNR

  15. Novel concepts in infrared imaging at nanoscale resolution

    Science.gov (United States)

    Taubner, Thomas

    2010-03-01

    Within the recent years, various novel optical concepts have been invented to improve the diffraction-limited resolution of optical microscopy. The first approach of scanning near-field optical microscopy (SNOM) employed a small, subwavelength-sized aperture that is scanned close to the object of interest, capable of a resolution of about 50 nm. More advanced concepts rely on the light scattering of a sharp tip probing the sample, allowing for higher resolution (10-30 nm) and the use of longer wavelengths. Another exciting new imaging device, a planar slab of a material with negative permittivity called a superlens, allows for subwavelength resolved imaging over large areas. I will focus on the latter two systems that operate with infrared light and offer the capability of chemical sensing by directly probing molecular vibrations. Particularly, I will present the latest results on superlensing that became accessible by phase-sensitive infrared near-field microscopy and thus provide new insight into the imaging process of a such a device [1]. I will also explain the basics of scattering-type near-field optical microscopy (s-SNOM) and present various examples of unambiguous nanoscale material characterization from various areas such as semiconductor analysis, materials science, chemistry, and biology [2-4]. In these examples, the use of infrared spectroscopy allows to sense molecular vibrations as well as collective excitation of lattice vibrations (``phonons'') in polar crystals [5]. Currently, the main limitation of this technique comprises of the low signals that demand tunable laser sources and restrict the spectral range of operation. Consequently, I will introduce new concepts for increasing the sensitivity of infrared near-field spectroscopy to ultimately allow for a broadband operation. [4pt] [1] T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, R. Hillenbrand, Science 313, 1595 (2006). [0pt] [2] T. Taubner, R. Hillenbrand, F. Keilmann, Applied Physics Letters

  16. Self-triggered image intensifier tube for high-resolution UHECR imaging detector

    CERN Document Server

    Sasaki, M; Jobashi, M

    2003-01-01

    The authors have developed a self-triggered image intensifier tube with high-resolution imaging capability. An image detected by a first image intensifier tube as an electrostatic lens with a photocathode diameter of 100 mm is separated by a half-mirror into a path for CCD readout (768x494 pixels) and a fast control to recognize and trigger the image. The proposed system provides both a high signal-to-noise ratio to improve single photoelectron detection and excellent spatial resolution between 207 and 240 mu m rendering this device a potentially essential tool for high-energy physics and astrophysics experiments, as well as high-speed photography. When combined with a 1-arcmin resolution optical system with 50 deg. field-of-view proposed by the present authors, the observation of ultra high-energy cosmic rays and high-energy neutrinos using this device is expected, leading to revolutionary progress in particle astrophysics as a complementary technique to traditional astronomical observations at multiple wave...

  17. Investigation of Image Fusion Between High-Resolution Image and Multi-spectral Image

    Institute of Scientific and Technical Information of China (English)

    LI Pingxiang; WANG Zhijun

    2003-01-01

    On the basis of a thorough understanding of the physical characteristics of remote sensing image, this paper employs the theories of wavelet transform and signal sampling to develop a new image fusion algorithm. The algorithm has been successfully applied to the image fusion of SPOT PAN and TM of Guangdong province, China. The experimental results show that a perfect image fusion can be built up by using the image analytical solution and re-construction in the image frequency domain based on the physical characteristics of the image formation. The method has demonstrated that the results of the image fusion do not change spectral characteristics of the original image.

  18. Study of fish response using particle image velocimetry and high-speed, high-resolution imaging

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Z. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richmond, M. C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mueller, R. P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gruensch, G. R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2004-10-01

    Fish swimming has fascinated both engineers and fish biologists for decades. Digital particle image velocimetry (DPIV) and high-speed, high-resolution digital imaging are recently developed analysis tools that can help engineers and biologists better understand how fish respond to turbulent environments. This report details studies to evaluate DPIV. The studies included a review of existing literature on DPIV, preliminary studies to test the feasibility of using DPIV conducted at our Flow Biology Laboratory in Richland, Washington September through December 2003, and applications of high-speed, high-resolution digital imaging with advanced motion analysis to investigations of fish injury mechanisms in turbulent shear flows and bead trajectories in laboratory physical models. Several conclusions were drawn based on these studies, which are summarized as recommendations for proposed research at the end of this report.

  19. Image Super-Resolution Based on Sparsity Prior via Smoothed $l_0$ Norm

    OpenAIRE

    Rostami, Mohammad; Wang, Zhou

    2016-01-01

    In this paper we aim to tackle the problem of reconstructing a high-resolution image from a single low-resolution input image, known as single image super-resolution. In the literature, sparse representation has been used to address this problem, where it is assumed that both low-resolution and high-resolution images share the same sparse representation over a pair of coupled jointly trained dictionaries. This assumption enables us to use the compressed sensing theory to find the jointly spar...

  20. Building identification from very high-resolution satellite images

    Science.gov (United States)

    Lhomme, Stephane

    Urbanisation still remains one of the main problems worldwide. The extent and rapidity of the urban growth induce a number of socio-economic and environmental conflicts everywhere. In order to reduce these problems, urban planners need to integrate spatial information in planning tools. Actually high expectations are made on Very High Spatial Resolution imagery (VHSR). These high-spatial resolution images are available at a reasonable price and due to short revisit periods, they offer a high degree of actuality. However, interpretation methods seem not to be adapted to this new type of images. The aim of our study is to develop a new method for semi-automatic building extraction with VHSR. The different steps performed to achieve our objective are each presented in a chapter. In the first chapter, the general context of our research is described with the definition of our objective. After a short historical review of urbanisation, we focus on urban growth and associated problems. In the following we discuss the possible contributions of geography to reduce these problems. After discussing concepts, theories and methodologies of geographical analysis in urban areas, we present existing general urban planning tools. Finally, we show the special interest of our study that is due to a growing need to integrate spatial information in these decision support tools. In the second chapter we verify the possibility of reaching our objective by analysing the technical characteristics of the images, the noise and the distortions which affect the images. Quality and interpretability of the studied image is analysed in order to show the capacity of these image to represent urban objects as close to reality as possible. The results confirm the potential of VHSR Imagery for urban objects analysis. The third chapter deal with the preliminary steps necessary for the elaboration of our method of building extraction. First, we evaluate the quality of the Sherbrooke Ikonos image

  1. Hierarchical progressive surveys. Multi-resolution HEALPix data structures for astronomical images, catalogues, and 3-dimensional data cubes

    CERN Document Server

    Fernique, P; Boch, T; Oberto, A; Pineau, F-X; Durand, D; Bot, C; Cambresy, L; Derriere, S; Genova, F; Bonnarel, F

    2015-01-01

    Scientific exploitation of the ever increasing volumes of astronomical data requires efficient and practical methods for data access, visualisation, and analysis. Hierarchical sky tessellation techniques enable a multi-resolution approach to organising data on angular scales from the full sky down to the individual image pixels. Aims. We aim to show that the Hierarchical progressive survey (HiPS) scheme for describing astronomical images, source catalogues, and three-dimensional data cubes is a practical solution to managing large volumes of heterogeneous data and that it enables a new level of scientific interoperability across large collections of data of these different data types. Methods. HiPS uses the HEALPix tessellation of the sphere to define a hierarchical tile and pixel structure to describe and organise astronomical data. HiPS is designed to conserve the scientific properties of the data alongside both visualisation considerations and emphasis on the ease of implementation. We describe the develop...

  2. High-resolution two-dimensional image upconversion of incoherent light

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Pedersen, Christian; Tidemand-Lichtenberg, Peter

    2010-01-01

    We consider a technique for high-resolution image upconversion of thermal light. Experimentally, we demonstrate cw upconversion with a resolution of more than 200 × 1000 pixels of thermally illuminated objects. This is the first demonstration (to our knowledge) of high-resolution cw image upconve...

  3. Ultra-low kinetic energy photoelectron angular distribution measurements in He and Ne using a Velocity Map Imaging spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Juarez, A M; Hoyos-Campo, L M [Institute de Ciencias Fisicas, Universidad Nacional Autonoma de Mexico, Cuernavaca, Mor. 62210 (Mexico); Redt, E; Hoenert, M; Aguilar, A [Lawrence Berkeley National Laboratory, Berkeley CA-94720 (United States); Rolles, D [Max Planck Advanced Study Group, CFEL, D-22761 Hamburg (Germany); Berrah, N, E-mail: aaguilar@lbl.go [Department of Physics, Western Michigan University, Kalamazoo MI-49008 (United States)

    2009-11-01

    We present photoelectron angular distributions (PADs) in Helium and Neon for electrons with excess energies between 5 and 100 meV. These ultra-low kinetic energy PAD measurements were obtained with a modified Velocity Map Imaging spectrometer (VMI) and VUV light from the Advanced Light Source (ALS) synchrotron radiation source. The efficiency and reliability of the spectrometer at this ultra-low kinetic energy range has been tested by determining the variation with energy of the asymmetry, {beta}, parameter of photoelectrons from the s-shell direct ionization in Helium. For Neon, we determined the energy dependent asymmetry parameters across the 's' and 'd' autoionizing resonances between the P{sub 3/2} and P{sub 1/2} ionic states. Furthermore, we measured the asymmetry parameter for photoelectrons produced from the n = 2 to n = 6 satellite states of He. These measurements were performed at values of excess kinetic energy previously unexplored.

  4. Ultra-low kinetic energy photoelectron angular distribution measurements in He and Ne using a Velocity Map Imaging spectrometer

    International Nuclear Information System (INIS)

    We present photoelectron angular distributions (PADs) in Helium and Neon for electrons with excess energies between 5 and 100 meV. These ultra-low kinetic energy PAD measurements were obtained with a modified Velocity Map Imaging spectrometer (VMI) and VUV light from the Advanced Light Source (ALS) synchrotron radiation source. The efficiency and reliability of the spectrometer at this ultra-low kinetic energy range has been tested by determining the variation with energy of the asymmetry, β, parameter of photoelectrons from the s-shell direct ionization in Helium. For Neon, we determined the energy dependent asymmetry parameters across the 's' and 'd' autoionizing resonances between the P3/2 and P1/2 ionic states. Furthermore, we measured the asymmetry parameter for photoelectrons produced from the n = 2 to n = 6 satellite states of He. These measurements were performed at values of excess kinetic energy previously unexplored.

  5. First-order convex feasibility algorithms for iterative image reconstruction in limited angular-range X-ray CT

    CERN Document Server

    Sidky, Emil Y; Pan, Xiaochuan

    2012-01-01

    Iterative image reconstruction (IIR) algorithms in Computed Tomography (CT) are based on algorithms for solving a particular optimization problem. Design of the IIR algorithm, therefore, is aided by knowledge of the solution to the optimization problem on which it is based. Often times, however, it is impractical to achieve accurate solution to the optimization of interest, which complicates design of IIR algorithms. This issue is particularly acute for CT with a limited angular-range scan, which leads to poorly conditioned system matrices and difficult to solve optimization problems. In this article, we develop IIR algorithms which solve a certain type of optimization called convex feasibility. The convex feasibility approach can provide alternatives to unconstrained optimization approaches and at the same time allow for efficient algorithms for their solution -- thereby facilitating the IIR algorithm design process. An accelerated version of the Chambolle-Pock (CP) algorithm is adapted to various convex fea...

  6. Monitoring of vegetation coverage based on high-resolution images

    Institute of Scientific and Technical Information of China (English)

    Zhang Li; Li Li-juan; Liang Li-qiao; Li Jiu-yi

    2007-01-01

    Measurement of vegetation coverage on a small scale is the foundation for the monitoring of changes in vegetation coverage and of the inversion model of monitoring vegetation coverage on a large scale by remote sensing. Using the object-oriented analytical software,Definiens Professional 5,a new method for calculating vegetation coverage based on high-resolution images(aerial photographs or near-surface photography)is proposed. Our research supplies references to remote sensing measurements of vegetation coverage on a small scale and accurate fundamental data for the inversion model of vegetation coverage on a large and intermediatc scale to improve the accuracy of remote sensing monitoring of changes in vegetation coverage.

  7. Mobile sensor for high resolution NMR spectroscopy and imaging

    Science.gov (United States)

    Danieli, Ernesto; Mauler, Jörg; Perlo, Juan; Blümich, Bernhard; Casanova, Federico

    2009-05-01

    In this work we describe the construction of a mobile NMR tomograph with a highly homogeneous magnetic field. Fast MRI techniques as well as NMR spectroscopy measurements were carried out. The magnet is based on a Halbach array built from identical permanent magnet blocks generating a magnetic field of 0.22 T. To shim the field inhomogeneities inherent to magnet arrays constructed from these materials, a shim strategy based on the use of movable magnet blocks is employed. With this approach a reduction of the line-width from ˜20 kHz to less than 0.1 kHz was achieved, that is by more than two orders of magnitude, in a volume of 21 cm 3. Implementing a RARE sequence, 3D images of different objects placed in this volume were obtained in short experimental times. Moreover, by reducing the sample size to 1 cm 3, sub ppm resolution is obtained in 1H NMR spectra.

  8. A Fast Super-Resolution Reconstruction from Image Sequence

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Based on the mechanism of imagery, a novel method called the delaminating combining template method, used for the problem of super-resolution reconstruction from image sequence, is described in this paper. The combining template method contains two steps: a delaminating strategy and a combining template algorithm. The delaminating strategy divides the original problem into several sub-problems;each of them is only connected to one degrading factor. The combining template algorithm is suggested to resolve each sub-problem. In addition, to verify the valid of the method, a new index called oriental entropy is presented. The results from the theoretical analysis and experiments illustrate that this method to be promising and efficient.

  9. A Fast Algorithm for Image Super-Resolution from Blurred Observations

    Directory of Open Access Journals (Sweden)

    Ng Michael K

    2006-01-01

    Full Text Available We study the problem of reconstruction of a high-resolution image from several blurred low-resolution image frames. The image frames consist of blurred, decimated, and noisy versions of a high-resolution image. The high-resolution image is modeled as a Markov random field (MRF, and a maximum a posteriori (MAP estimation technique is used for the restoration. We show that with the periodic boundary condition, a high-resolution image can be restored efficiently by using fast Fourier transforms. We also apply the preconditioned conjugate gradient method to restore high-resolution images in the aperiodic boundary condition. Computer simulations are given to illustrate the effectiveness of the proposed approach.

  10. A Novel Super Resolution Reconstruction of Low Reoslution Images Progressively Using DCT and Zonal Filter Based Denoising

    OpenAIRE

    Liyakathunisa; C.N .Ravi Kumar

    2011-01-01

    Due to the factors like processing power limitations and channel capabilities images are often down sampled and transmitted at low bit rates resulting in a low resolution compressed image. High resolution images can be reconstructed from several blurred, noisy and down sampled low resolution images using a computational process know as super resolution reconstruction. Super-resolution is the process of combining multiple aliased low-quality images to produce a high resolution, high-quality im...

  11. Local orbital angular momentum revealed by spiral phase plate imaging in transmission electron microscopy

    CERN Document Server

    Juchtmans, Roeland

    2015-01-01

    The orbital angular momentum (OAM) of light and matter waves is a parameter that is getting increasingly more attention over the past couple of years. Beams with a well defined OAM, the so-called vortex beams, are applied already in e.g. telecommunication, astrophysics, nanomanipulation and chiral measurements in optics and electron microscopy. Also the OAM of a wave induced by the interaction with a sample, shows great potential of interest. In all these experiments it is crucial to measure the exact (local) OAM content of the wave, whether it is an incoming vortex beam or an exit wave after interacting with a sample. In this work we investigate the use of spiral phase plates as an alternative to the programmable phase plates used in optics to measure OAM. We derive analytically how these can be used to study the local OAM components of any wave function. By means of numerical simulations we illustrate how the OAM of a pure vortex beam can be measured. We also look at a sum of misaligned vortex beams and sho...

  12. High-resolution reconstruction of objects from cloud-covered infrared images

    Science.gov (United States)

    Wang, Jing; Ralph, Jason F.; Goulermas, John Y.

    2009-05-01

    FLIR images are essential for the detection and recognition of ground targets. Small targets can be enhanced using super-resolution techniques to improve the effective resolution of the target area using a sequence of low-resolution images. However, when there is significant cloud cover, several problems can arise: clouds can obscure a target (partially or fully), they can affect the accuracy of image registration algorithms, and they can reduce the contrast of the object against the background. To reconstruct an image in the presence of cloud cover, image correlation metrics from optical flow and a robust super-resolution algorithm have been used to compile a 'best' frame.

  13. Fast and high resolution single-cell BRET imaging.

    Science.gov (United States)

    Goyet, Elise; Bouquier, Nathalie; Ollendorff, Vincent; Perroy, Julie

    2016-01-01

    Resonance Energy Transfer (RET)-based technologies are used to report protein-protein interactions in living cells. Among them, Bioluminescence-initiated RET (BRET) provides excellent sensitivity but the low light intensity intrinsic to the bioluminescent process hampers its use for the localization of protein complexes at the sub-cellular level. Herein we have characterized the methodological conditions required to reliably perform single-cell BRET imaging using an extremely bright luciferase, Nanoluciferase (Nluc). With this, we achieved an unprecedented performance in the field of protein-protein interaction imaging in terms of temporal and spatial resolution, duration of signal stability, signal sensitivity and dynamic range. As proof-of-principle, an Nluc-containing BRET-based sensor of ERK activity enabled the detection of subtle, transient and localized variations in ERK activity in neuronal dendritic spines, induced by the activation of endogenous synaptic NMDA receptors. This development will improve our comprehension of both the spatio-temporal dynamics of protein-protein interactions and the activation patterns of specific signaling pathways. PMID:27302735

  14. Noncontact optical imaging in mice with full angular coverage and automatic surface extraction

    Science.gov (United States)

    Meyer, Heiko; Garofalakis, Anikitos; Zacharakis, Giannis; Psycharakis, Stylianos; Mamalaki, Clio; Kioussis, Dimitris; Economou, Eleftherios N.; Ntziachristos, Vasilis; Ripoll, Jorge

    2007-06-01

    During the past decade, optical imaging combined with tomographic approaches has proved its potential in offering quantitative three-dimensional spatial maps of chromophore or fluorophore concentration in vivo. Due to its direct application in biology and biomedicine, diffuse optical tomography (DOT) and its fluorescence counterpart, fluorescence molecular tomography (FMT), have benefited from an increase in devoted research and new experimental and theoretical developments, giving rise to a new imaging modality. The most recent advances in FMT and DOT are based on the capability of collecting large data sets by using CCDs as detectors, and on the ability to include multiple projections through recently developed noncontact approaches. For these to be implemented, we have developed an imaging setup that enables three-dimensional imaging of arbitrary shapes in fluorescence or absorption mode that is appropriate for small animal imaging. This is achieved by implementing a noncontact approach both for sources and detectors and coregistering surface geometry measurements using the same CCD camera. A thresholded shadowgrammetry approach is applied to the geometry measurements to retrieve the surface mesh. We present the evaluation of the system and method in recovering three-dimensional surfaces from phantom data and live mice. The approach is used to map the measured in vivo fluorescence data onto the tissue surface by making use of the free-space propagation equations, as well as to reconstruct fluorescence concentrations inside highly scattering tissuelike phantom samples. Finally, the potential use of this setup for in vivo small animal imaging and its impact on biomedical research is discussed.

  15. Local orbital angular momentum revealed by spiral-phase-plate imaging in transmission-electron microscopy

    Science.gov (United States)

    Juchtmans, Roeland; Verbeeck, Jo

    2016-02-01

    The orbital angular momentum (OAM) of light and matter waves is a parameter that has been getting increasingly more attention over the past couple of years. Beams with a well-defined OAM, the so-called vortex beams, are applied already in, e.g., telecommunication, astrophysics, nanomanipulation, and chiral measurements in optics and electron microscopy. Also, the OAM of a wave induced by the interaction with a sample has attracted a lot of interest. In all these experiments it is crucial to measure the exact (local) OAM content of the wave, whether it is an incoming vortex beam or an exit wave after interacting with a sample. In this work we investigate the use of spiral phase plates (SPPs) as an alternative to the programmable phase plates used in optics to measure OAM. We derive analytically how these can be used to study the local OAM components of any wave function. By means of numerical simulations we illustrate how the OAM of a pure vortex beam can be measured. We also look at a sum of misaligned vortex beams and show how, by using SPPs, the position and the OAM of each individual beam can be detected. Finally, we look at the OAM induced by a magnetic dipole on a free-electron wave and show how the SPP can be used to localize the magnetic poles and measure their "magnetic charge." Although our findings can be applied to study the OAM of any wave function, our findings are of particular interest for electron microscopy where versatile programmable phase plates do not yet exist.

  16. Characterization of a submillimeter high-angular-resolution camera with a monolithic silicon bolometer array for the Caltech Submillimeter Observatory

    OpenAIRE

    Wang, Nina; Hunter, T. R.; Benford, D. J.; Serabyn, E.; Lis, D.C.; Phillips, T. G.; Moseley, S. H.; Bpyce, K.; Szymkowiak, A.; C. Allen; Mott, B.; Gygax, J.

    1996-01-01

    We constructed a 24-pixel bolometer camera operating in the 350- and 450-µm atmospheric windows for the Caltech Submillimeter Observatory (CSO). This instrument uses a monolithic silicon bolometer array that is cooled to approximately 300 mK by a single-shot 3 He refrigerator. First-stage amplification is provided by field-effect transistors at approximately 130 K. The sky is imaged onto the bolometer array by means of several mirrors outside the Dewar and a cold off-axis elliptical mirror in...

  17. A new reduced-reference metric for measuring spatial resolution enhanced images

    Science.gov (United States)

    Qian, Shen-En; Chen, Guangyi

    2012-10-01

    Assessment of image quality is critical for many image processing algorithms, such as image acquisition, compression, restoration, enhancement, and reproduction. In general, image quality assessment algorithms are classified into three categories: full-reference (FR), reduced-reference (RR), and no-reference (NR) algorithms. The design of NR metrics is extremely difficult and little progress has been made. FR metrics are easier to design and the majority of image quality assessment algorithms are of this type. A FR metric requires the reference image and the test image to have the same size. This may not the case in real life of image processing. In spatial resolution enhancement of hyperspectral images, such as pan-sharpening, the size of the enhanced images is larger than that of the original image. Thus, the FR metric cannot be used. A common approach in practice is to first down-sample an original image to a low resolution image, then to spatially enhance the down-sampled low resolution image using a subject enhancement technique. In this way, the original image and the enhanced image have the same size and the FR metric can be applied to them. However, this common approach can never directly assess the image quality of the spatially enhanced image that is produced directly from the original image. In this paper, a new RR metric was proposed for measuring the visual fidelity of an image with higher spatial resolution. It does not require the sizes of the reference image and the test image to be the same. The iterative back projection (IBP) technique was chosen to enhance the spatial resolution of an image. Experimental results showed that the proposed RR metrics work well for measuring the visual quality of spatial resolution enhanced hyperspectral images. They are consistent with the corresponding FR metrics.

  18. Super-resolution from unregistered aliased images with unknown scalings and shifts

    OpenAIRE

    Peng, Yigang; Yang, Feng; Dai, Qionghai; Xu, Wenli; Vetterli, Martin

    2012-01-01

    We consider the problem of super-resolution from unregistered aliased images with unknown spatial scaling factors and shifts. Due to the limitation of pixel size in the image sensor, the sampling rate for each image is lower than the Nyquist rate of the scene. Thus, we have aliasing in captured images, which makes it hard to register the low-resolution images and then generate a high-resolution image. To work out this problem, we formulate it as a multichannel sam- pling and reconstruction pr...

  19. A Statistical Definition of Image Resolution Based on the Correlation of Pixels

    OpenAIRE

    Zhou, Jian-Feng

    2015-01-01

    Resolution, usually defined by the Rayleigh criterion or the Full Width at Half Maximum of a Point Spread Function, is a basic property of an image. Here, we present a new statistical definition of image resolution based on the cross-correlation properties of the pixels in an image. It is shown that the new definition of image resolution depends not only on the PSF of an imaging device, but also on the signal-to-noise ratio of the data and on the structures of an object. In an image, the reso...

  20. Research on super-resolution image reconstruction based on an improved POCS algorithm

    Science.gov (United States)

    Xu, Haiming; Miao, Hong; Yang, Chong; Xiong, Cheng

    2015-07-01

    Super-resolution image reconstruction (SRIR) can improve the fuzzy image's resolution; solve the shortage of the spatial resolution, excessive noise, and low-quality problem of the image. Firstly, we introduce the image degradation model to reveal the essence of super-resolution reconstruction process is an ill-posed inverse problem in mathematics. Secondly, analysis the blurring reason of optical imaging process - light diffraction and small angle scattering is the main reason for the fuzzy; propose an image point spread function estimation method and an improved projection onto convex sets (POCS) algorithm which indicate effectiveness by analyzing the changes between the time domain and frequency domain algorithm in the reconstruction process, pointed out that the improved POCS algorithms based on prior knowledge have the effect to restore and approach the high frequency of original image scene. Finally, we apply the algorithm to reconstruct synchrotron radiation computer tomography (SRCT) image, and then use these images to reconstruct the three-dimensional slice images. Comparing the differences between the original method and super-resolution algorithm, it is obvious that the improved POCS algorithm can restrain the noise and enhance the image resolution, so it is indicated that the algorithm is effective. This study and exploration to super-resolution image reconstruction by improved POCS algorithm is proved to be an effective method. It has important significance and broad application prospects - for example, CT medical image processing and SRCT ceramic sintering analyze of microstructure evolution mechanism.

  1. In-Place image super-resolution with Inter-Frame motion cues

    OpenAIRE

    Hortelano Sánchez, Oscar

    2015-01-01

    Nowadays, video media devices are using high-resolution image standards, and recent history tells us that this is not stoping here. This resolution increase requires of high quality sensors, which are costly. Super resolution is a software solution for image up-scaling which solves this problem. In this project, we are focusing on a machine learning video super resolution solution exploiting motion information. Our results explain that the addition of motion information helps in order to prov...

  2. Arcsecond-Resolution Submillimeter HCN Imaging of the Binary Protostar IRAS 16293-2422

    CERN Document Server

    Takakuwa, S; Bourke, T; Hirano, N; Ho, P T P; Jorgensen, J; Kuan, Y J; Wilner, D; Yeh, S C C

    2007-01-01

    (Abridged) With the SMA we have made high angular-resolution (~1" = 160 AU) observations of the protobinary system IRAS 16293-2422 in the J = 4-3 lines of HCN and HC^15N, and in the continuum at 354.5 GHz. The HCN (4-3) line was also observed using the JCMT to supply missing short spacing information. Submillimeter continuum emission is detected from the individual binary components with a separation of ~5". The HC^15N (4-3) emission has revealed a compact (~500 AU) flattened structure (P.A. = -16 degree) associated with Source A, and shows a velocity gradient along the projected minor axis, which can be interpreted as an infalling gas motion. Our HCN image including the short-spacing information shows an extended (~3000 AU) circumbinary envelope as well as the compact structure associated with Source A. A toy model consisting of a flattened structure with radial infall towards a 1 Msun central star reproduces the HCN/HC^15N position-velocity diagram along the minor axis of the HC^15N emission. In the extende...

  3. Experimental validation of a high-resolution diffuse optical imaging modality: photomagnetic imaging

    Science.gov (United States)

    Nouizi, Farouk; Luk, Alex; Thayer, Dave; Lin, Yuting; Ha, Seunghoon; Gulsen, Gultekin

    2016-01-01

    We present experimental results that validate our imaging technique termed photomagnetic imaging (PMI). PMI illuminates the medium under investigation with a near-infrared light and measures the induced temperature increase using magnetic resonance imaging. A multiphysics solver combining light and heat propagation is used to model spatiotemporal distribution of temperature increase. Furthermore, a dedicated PMI reconstruction algorithm has been developed to reveal high-resolution optical absorption maps from temperature measurements. Being able to perform measurements at any point within the medium, PMI overcomes the limitations of conventional diffuse optical imaging. We present experimental results obtained on agarose phantoms mimicking biological tissue with inclusions having either different sizes or absorption contrasts, located at various depths. The reconstructed images show that PMI can successfully resolve these inclusions with high resolution and recover their absorption coefficient with high-quantitative accuracy. Even a 1-mm inclusion located 6-mm deep is recovered successfully and its absorption coefficient is underestimated by only 32%. The improved PMI system presented here successfully operates under the maximum skin exposure limits defined by the American National Standards Institute, which opens up the exciting possibility of its future clinical use for diagnostic purposes.

  4. Influence of total beam current on HRTEM image resolution in differentially pumped ETEM with nitrogen gas

    International Nuclear Information System (INIS)

    Environmental transmission electron microscopy (ETEM) enables the study of catalytic and other reaction processes as they occur with Angstrom-level resolution. The microscope used is a dedicated ETEM (Titan ETEM, FEI Company) with a differential pumping vacuum system and apertures, allowing aberration corrected high-resolution transmission electron microscopy (HRTEM) imaging to be performed with gas pressures up to 20 mbar in the sample area and with significant advantages over membrane-type E-cell holders. The effect on image resolution of varying the nitrogen gas pressure, electron beam current density and total beam current were measured using information limit (Young's fringes) on a standard cross grating sample and from silicon crystal lattice imaging. As expected, increasing gas pressure causes a decrease in HRTEM image resolution. However, the total electron beam current also causes big changes in the image resolution (lower beam current giving better resolution), whereas varying the beam current density has almost no effect on resolution, a result that has not been reported previously. This behavior is seen even with zero-loss filtered imaging, which we believe shows that the drop in resolution is caused by elastic scattering at gas ions created by the incident electron beam. Suitable conditions for acquiring high resolution images in a gas environment are discussed. Lattice images at nitrogen pressures up to 16 mbar are shown, with 0.12 nm information transfer at 4 mbar. -- Highlights: ► ETEM images with point resolution of 0.12 nm in 4 mbar of nitrogen gas. ► Clear Si lattice imaging with 16 mbar of nitrogen gas. ► ETEM image resolution in gas can be much improved by decreasing total beam current. ► Beam current density (beam convergence) has no effect on the image resolution.

  5. Image Resolution Enhancement by Using Interpolation Followed by Iterative Back Projection

    OpenAIRE

    Rasti, Pejman; Hasan DEMIREL; Anbarjafari, Gholamreza

    2016-01-01

    In this paper, we propose a new super resolution technique based on the interpolation followed by registering them using iterative back projection (IBP). Low resolution images are being interpolated and then the interpolated images are being registered in order to generate a sharper high resolution image. The proposed technique has been tested on Lena, Elaine, Pepper, and Baboon. The quantitative peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM) results as well as the v...

  6. Snow Cover Maps from MODIS Images at 250 m Resolution, Part 2: Validation

    OpenAIRE

    Marc Zebisch; Christian Steurer; Armin Costa; Roberto Monsorno; Thomas Schellenberger; Anke Tetzlaff; Martial Duguay; Nico Moelg; Claudia Notarnicola

    2013-01-01

    The performance of a new algorithm for binary snow cover monitoring based on Moderate Resolution Imaging Spectroradiometer (MODIS) satellite images at 250 m resolution is validated using snow cover maps (SCA) based on Landsat 7 ETM+ images and in situ snow depth measurements from ground stations in selected test sites in Central Europe. The advantages of the proposed algorithm are the improved ground resolution of 250 m and the near real-time availability with respect to the 500 m standard Na...

  7. Super-Resolution Raman Spectroscopy by Digital Image Processing

    OpenAIRE

    Motohiro Tomita; Hiroki Hashiguchi; Takuya Yamaguchi; Munehisa Takei; Daisuke Kosemura; Atsushi Ogura

    2013-01-01

    We demonstrate the results of a strain (stress) evaluation obtained from Raman spectroscopy measurements with the super-resolution method (the so-called super-resolution Raman spectroscopy) for a Si substrate with a patterned SiN film (serving as a strained Si sample). To improve the spatial resolution of Raman spectroscopy, we used the super-resolution method and a high-numerical-aperture immersion lens. Additionally, we estimated the spatial resolution by an edge force model (EFM) calculati...

  8. Detection and quantification of waterborne microorganisms using an image cytometer based on angular spatial frequency processing

    CERN Document Server

    Pérez, Juan Miguel; Martínez, Pedro; Pruneri, Valerio

    2015-01-01

    We introduce a new image cytometer design for detection of very small particulate and demonstrate its capability in water analysis. The device is a compact microscope composed of off--the--shelf components, such as a light emitting diode (LED) source, a complementary metal--oxide--semiconductor (CMOS) image sensor, and a specific combination of optical lenses that allow, through an appropriate software, Fourier transform processing of the sample volume. Waterborne microorganisms, such as Escherichia coli (E. coli), Legionella pneumophila (L. pneumophila) and Phytoplankton, are detected by interrogating the volume sample either in a fluorescent or label-free mode, i.e. with or without fluorescein isothiocyanate (FITC) molecules attached to the micro-organisms, respectively. We achieve a sensitivity of 50 CFU/ml, which can be further increased to 0.2 CFU/ml by pre-concentrating an initial sample volume of 500 ml with an ad hoc fluidic system. We also prove the capability of the proposed image cytometer of diffe...

  9. Learning Based Single Frame Image Super-resolution Using Fast Discrete Curvelet Coefficients

    Directory of Open Access Journals (Sweden)

    Anil A. Patil

    2012-10-01

    Full Text Available High-resolution (HR images play a vital role in all imaging applications as they offer more details. The images captured by the camera system are of degraded quality due to the imaging system and are low-resolution (LR images. Image super-resolution (SR is a process, where HR image is obtained from combining one or multiple LR images of same scene. In this paper, learning based single frame image super-resolution technique is proposed by using Fast Discrete Curvelet Transform (FDCT coefficients. FDCT is an extension to Cartesian wavelets having anisotropic scaling with many directions and positions, which forms tight wedges. Such wedges allow FDCT to capture the smooth curves and fine edges at multiresolution level. The finer scale curvelet coefficients of LR image are learnt locally from a set of high-resolution training images. The super-resolved image is reconstructed by inverse Fast Discrete Curvelet Transform (IFDCT. This technique represents fine edges of reconstructed HR image by extrapolating the FDCT coefficients from the high-resolution training images. Experimentation based results show appropriate improvements in MSE and PSNR.

  10. Single-shot and single-sensor high/super-resolution microwave imaging based on metasurface

    Science.gov (United States)

    Wang, Libo; Li, Lianlin; Li, Yunbo; Zhang, Hao Chi; Cui, Tie Jun

    2016-06-01

    Real-time high-resolution (including super-resolution) imaging with low-cost hardware is a long sought-after goal in various imaging applications. Here, we propose broadband single-shot and single-sensor high-/super-resolution imaging by using a spatio-temporal dispersive metasurface and an imaging reconstruction algorithm. The metasurface with spatio-temporal dispersive property ensures the feasibility of the single-shot and single-sensor imager for super- and high-resolution imaging, since it can convert efficiently the detailed spatial information of the probed object into one-dimensional time- or frequency-dependent signal acquired by a single sensor fixed in the far-field region. The imaging quality can be improved by applying a feature-enhanced reconstruction algorithm in post-processing, and the desired imaging resolution is related to the distance between the object and metasurface. When the object is placed in the vicinity of the metasurface, the super-resolution imaging can be realized. The proposed imaging methodology provides a unique means to perform real-time data acquisition, high-/super-resolution images without employing expensive hardware (e.g. mechanical scanner, antenna array, etc.). We expect that this methodology could make potential breakthroughs in the areas of microwave, terahertz, optical, and even ultrasound imaging.

  11. Single-shot and single-sensor high/super-resolution microwave imaging based on metasurface.

    Science.gov (United States)

    Wang, Libo; Li, Lianlin; Li, Yunbo; Zhang, Hao Chi; Cui, Tie Jun

    2016-01-01

    Real-time high-resolution (including super-resolution) imaging with low-cost hardware is a long sought-after goal in various imaging applications. Here, we propose broadband single-shot and single-sensor high-/super-resolution imaging by using a spatio-temporal dispersive metasurface and an imaging reconstruction algorithm. The metasurface with spatio-temporal dispersive property ensures the feasibility of the single-shot and single-sensor imager for super- and high-resolution imaging, since it can convert efficiently the detailed spatial information of the probed object into one-dimensional time- or frequency-dependent signal acquired by a single sensor fixed in the far-field region. The imaging quality can be improved by applying a feature-enhanced reconstruction algorithm in post-processing, and the desired imaging resolution is related to the distance between the object and metasurface. When the object is placed in the vicinity of the metasurface, the super-resolution imaging can be realized. The proposed imaging methodology provides a unique means to perform real-time data acquisition, high-/super-resolution images without employing expensive hardware (e.g. mechanical scanner, antenna array, etc.). We expect that this methodology could make potential breakthroughs in the areas of microwave, terahertz, optical, and even ultrasound imaging. PMID:27246668

  12. High Resolution Imaging by Atomic Force Microscopy: Contribution of short-range force to the imaging

    Science.gov (United States)

    Eguchi, Toyoaki; Kotone, Akiyama; Masanori, Ono; Toshio, Sakurai; Yukio, Hasegawa

    2003-03-01

    Recent developments in force detection technique have made us possible to obtain atomically resolved images of the Si(111)-(7x7) surface by AFM. Compared with STM, however, its spatial resolution remains limited. In this presentation, we demonstrate that with careful pretreatment and appropriate experimental parameters, the structure of the rest-atom layer can be imaged using AFM by detecting the short-range force due to the single chemical bonding. The detection of the short-range force is verified by analysis of the frequency-shift versus distance curve (force curve). This unprecedented high resolution is achieved by reducing background forces due to the long-range interactions with small oscillation amplitude of the cantilever and an atomically sharp tip. The high temperature annealing of the cantilever assists in obtaining a bare silicon tip on the cantilever without unwanted tip-blunting, and improving the Q-factor of the cantilever. This study implies that characterization of the AFM tip in nanometer scale, not only on the apex atoms but also its shape near the apex, is important and critical for AFM high resolution imaging.

  13. High Resolution Multispectral Flow Imaging of Cells with Extended Depth of Field Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Proposed is the development the extended depth of field (EDF) or confocal like imaging capabilities of a breakthrough multispectral high resolution imaging flow...

  14. Complementarity of PALM and SOFI for super-resolution live cell imaging of focal adhesions

    CERN Document Server

    Deschout, Hendrik; Sharipov, Azat; Szlag, Daniel; Feletti, Lely; Vandenberg, Wim; Dedecker, Peter; Hofkens, Johan; Leutenegger, Marcel; Lasser, Theo; Radenovic, Aleksandra

    2016-01-01

    Live cell imaging of focal adhesions requires a sufficiently high temporal resolution, which remains a challenging task for super-resolution microscopy. We have addressed this important issue by combining photo-activated localization microscopy (PALM) with super-resolution optical fluctuation imaging (SOFI). Using simulations and fixed cell focal adhesion images, we investigated the complementarity between PALM and SOFI in terms of spatial and temporal resolution. This PALM-SOFI framework was used to image focal adhesions in living cells, while obtaining a temporal resolution below 10 s. We visualized the dynamics of focal adhesions, and revealed local mean velocities around 190 nm per minute. The complementarity of PALM and SOFI was assessed in detail with a methodology that integrates a quantitative resolution and signal-to-noise metric. This PALM and SOFI concept provides an enlarged quantitative imaging framework, allowing unprecedented functional exploration of focal adhesions through the estimation of m...

  15. Using texture analysis to improve per-pixel classification of very high resolution images for mapping plastic greenhouses

    Science.gov (United States)

    Agüera, Francisco; Aguilar, Fernando J.; Aguilar, Manuel A.

    The area occupied by plastic-covered greenhouses has undergone rapid growth in recent years, currently exceeding 500,000 ha worldwide. Due to the vast amount of input (water, fertilisers, fuel, etc.) required, and output of different agricultural wastes (vegetable, plastic, chemical, etc.), the environmental impact of this type of production system can be serious if not accompanied by sound and sustainable territorial planning. For this, the new generation of satellites which provide very high resolution imagery, such as QuickBird and IKONOS can be useful. In this study, one QuickBird and one IKONOS satellite image have been used to cover the same area under similar circumstances. The aim of this work was an exhaustive comparison of QuickBird vs. IKONOS images in land-cover detection. In terms of plastic greenhouse mapping, comparative tests were designed and implemented, each with separate objectives. Firstly, the Maximum Likelihood Classification (MLC) was applied using five different approaches combining R, G, B, NIR, and panchromatic bands. The combinations of the bands used, significantly influenced some of the indexes used to classify quality in this work. Furthermore, the quality classification of the QuickBird image was higher in all cases than that of the IKONOS image. Secondly, texture features derived from the panchromatic images at different window sizes and with different grey levels were added as a fifth band to the R, G, B, NIR images to carry out the MLC. The inclusion of texture information in the classification did not improve the classification quality. For classifications with texture information, the best accuracies were found in both images for mean and angular second moment texture parameters. The optimum window size in these texture parameters was 3×3 for IK images, while for QB images it depended on the quality index studied, but the optimum window size was around 15×15. With regard to the grey level, the optimum was 128. Thus, the

  16. 256-MSCT image acquisition with sequential axial scans. Evaluation of image quality and resolution in a phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Klink, T.; Schwartz, B.; Regier, M.; Adam, G. [Universitaetsklinikum Hamburg-Eppendorf (Germany). Klinik und Poliklinik fuer Diagnostische und Interventionelle Radiologie; Nagel, H. [Dr. HD Nagel - Wissenschaft und Technik fuer die Radiologie, Buchholz (Germany); Begemann, P.G. [Roentgeninstitut Duesseldorf (Germany)

    2012-03-15

    Evaluation of image quality and resolution of varying sequential axial scan protocols utilizing two resolution phantoms with a 256-MSCT scanner. Sequential axial scans were performed on a z-axis and an axial-plane resolution phantom with varying acquisition and reconstruction parameters. Two independent observers evaluated the image quality and resolution, and analyzed quantitative image quality parameters and radiation doses. The best image quality and resolution were achieved with an activated z-flying focal spot (zFFS) and overlapping reconstruction. With an activated zFFS, image degradation was significantly minimized in marginal or overlapping zones of the beam, but the maximum effective detector width was reduced to 82 % and 75 %, respectively depending on the field of view. With a deactivated zFFS, the effective detector width was not restricted, but the image quality decreased and the artifacts increased as the collimation increased. For sequential axial CT data acquisition with multi-planar image reformation, the zFFS technique is crucial to achieve the best image quality and resolution. Major advantages are minimized image degradation and increased spatial resolution along the z-axis, but the zFFS reduces the maximum effective detector width. (orig.)

  17. Signal Amplification Technique (SAT): an approach for improving resolution and reducing image noise in computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Phelps, M.E.; Huang, S.C.; Hoffman, E.J.; Plummer, D.; Carson, R.

    1981-01-01

    Spatial resolution improvements in computed tomography (CT) have been limited by the large and unique error propagation properties of this technique. The desire to provide maximum image resolution has resulted in the use of reconstruction filter functions designed to produce tomographic images with resolution as close as possible to the intrinsic detector resolution. Thus, many CT systems produce images with excessive noise with the system resolution determined by the detector resolution rather than the reconstruction algorithm. CT is a rigorous mathematical technique which applies an increasing amplification to increasing spatial frequencies in the measured data. This mathematical approach to spatial frequency amplification cannot distinguish between signal and noise and therefore both are amplified equally. We report here a method in which tomographic resolution is improved by using very small detectors to selectively amplify the signal and not noise. Thus, this approach is referred to as the signal amplification technique (SAT). SAT can provide dramatic improvements in image resolution without increases in statistical noise or dose because increases in the cutoff frequency of the reconstruction algorithm are not required to improve image resolution. Alternatively, in cases where image counts are low, such as in rapid dynamic or receptor studies, statistical noise can be reduced by lowering the cutoff frequency while still maintaining the best possible image resolution. A possible system design for a positron CT system with SAT is described.

  18. Signal Amplification Technique (SAT): an approach for improving resolution and reducing image noise in computed tomography

    International Nuclear Information System (INIS)

    Spatial resolution improvements in computed tomography (CT) have been limited by the large and unique error propagation properties of this technique. The desire to provide maximum image resolution has resulted in the use of reconstruction filter functions designed to produce tomographic images with resolution as close as possible to the intrinsic detector resolution. Thus, many CT systems produce images with excessive noise with the system resolution determined by the detector resolution rather than the reconstruction algorithm. CT is a rigorous mathematical technique which applies an increasing amplification to increasing spatial frequencies in the measured data. This mathematical approach to spatial frequency amplification cannot distinguish between signal and noise and therefore both are amplified equally. We report here a method in which tomographic resolution is improved by using very small detectors to selectively amplify the signal and not noise. Thus, this approach is referred to as the signal amplification technique (SAT). SAT can provide dramatic improvements in image resolution without increases in statistical noise or dose because increases in the cutoff frequency of the reconstruction algorithm are not required to improve image resolution. Alternatively, in cases where image counts are low, such as in rapid dynamic or receptor studies, statistical noise can be reduced by lowering the cutoff frequency while still maintaining the best possible image resolution. A possible system design for a positron CT system with SAT is described

  19. A theoretical analysis of the super-resolution capacity of imagers using speckle illuminations

    CERN Document Server

    Idier, Jérôme; Liu, Penghuan; Allain, Marc; Bourguignon, Sébastien; Sentenac, Anne

    2015-01-01

    Speckle based imaging consists in forming a super-resolved reconstruction of an unknown object from low-resolution images obtained under random inhomogeneous illuminations (speckles). However, the origin of this super-resolution is unclear. In this work, we demonstrate that, under physically realistic conditions, the correlation of the data have a super-resolution power corresponding to the squaring of the imager point spread function. This theoretical result is important for many practical imaging systems such as acoustic and electromagnetic tomographies, fluorescence and photoacoustic microscopies or synthetic aperture radar imaging.

  20. Preparation of cell membranes for high resolution imaging by AFM

    International Nuclear Information System (INIS)

    Studies of cell membrane structure by atomic force microscopy (AFM) have been limited because of the softness of cell membranes. Here, we utilize a new technique of sample preparation to lay red blood cell membranes on the top of a mica surface to obtain high resolution images by in-situ AFM on both sides of cell membranes. Our results indicate that the location of oligosaccharides and proteins in red blood cell membranes might be different from the current membrane model. The inner membrane leaflet is covered by dense proteins with fewer free lipids than expected. In contrast, the outer membrane leaflet is quite smooth; oligosaccharides and peptides supposed to protrude out of the outer membrane leaflet surface might be actually hidden in the middle of hydrophilic lipid heads; transmembrane proteins might form domains in the membranes revealed by PNGase F and trypsin digestion. Our result could be significant to interpret some functions about red blood cell membranes and guide to heal the blood diseases related to cell membranes.

  1. Atomic Resolution Imaging and Quantification of Chemical Functionality of Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Udo [Yale University

    2014-12-10

    The work carried out from 2006-2014 under DoE support was targeted at developing new approaches to the atomic-scale characterization of surfaces that include species-selective imaging and an ability to quantify chemical surface interactions with site-specific accuracy. The newly established methods were subsequently applied to gain insight into the local chemical interactions that govern the catalytic properties of model catalysts of interest to DoE. The foundation of our work was the development of three-dimensional atomic force microscopy (3D-AFM), a new measurement mode that allows the mapping of the complete surface force and energy fields with picometer resolution in space (x, y, and z) and piconewton/millielectron volts in force/energy. From this experimental platform, we further expanded by adding the simultaneous recording of tunneling current (3D-AFM/STM) using chemically well-defined tips. Through comparison with simulations, we were able to achieve precise quantification and assignment of local chemical interactions to exact positions within the lattice. During the course of the project, the novel techniques were applied to surface-oxidized copper, titanium dioxide, and silicon oxide. On these materials, defect-induced changes to the chemical surface reactivity and electronic charge density were characterized with site-specific accuracy.

  2. Multi-Sensor Fusion of Infrared and Electro-Optic Signals for High Resolution Night Images

    Directory of Open Access Journals (Sweden)

    Victor Lawrence

    2012-07-01

    Full Text Available Electro-optic (EO image sensors exhibit the properties of high resolution and low noise level at daytime, but they do not work in dark environments. Infrared (IR image sensors exhibit poor resolution and cannot separate objects with similar temperature. Therefore, we propose a novel framework of IR image enhancement based on the information (e.g., edge from EO images, which improves the resolution of IR images and helps us distinguish objects at night. Our framework superimposing/blending the edges of the EO image onto the corresponding transformed IR image improves their resolution. In this framework, we adopt the theoretical point spread function (PSF proposed by Hardie et al. for the IR image, which has the modulation transfer function (MTF of a uniform detector array and the incoherent optical transfer function (OTF of diffraction-limited optics. In addition, we design an inverse filter for the proposed PSF and use it for the IR image transformation. The framework requires four main steps: (1 inverse filter-based IR image transformation; (2 EO image edge detection; (3 registration; and (4 blending/superimposing of the obtained image pair. Simulation results show both blended and superimposed IR images, and demonstrate that blended IR images have better quality over the superimposed images. Additionally, based on the same steps, simulation result shows a blended IR image of better quality when only the original IR image is available.

  3. Far-field fluorescence microscopy beyond the diffraction limit: Fluorescence imaging with ultrahigh resolution

    OpenAIRE

    Rice, James H.

    2007-01-01

    Fluorescence microscopy is an important and extensively utilised tool for imaging biological systems. However, the image resolution that can be obtained has a limit as defined through the laws of diffraction. Demand for improved resolution has stimulated research into developing methods to image beyond the diffraction limit based on far-field fluorescence microscopy techniques. Rapid progress is being made in this area of science with methods emerging that enable fluorescence imaging in the f...

  4. Super-resolution image transfer by a vortex-like metamaterial

    OpenAIRE

    Dong, Hui Yuan; Wang, Jin; Fung, Kin Hung; Cui, Tie Jun

    2013-01-01

    We propose a vortex-like metamaterial device that is capable of transferring image along a spiral route without losing subwavelength information of the image. The super-resolution image can be guided and magnified at the same time with one single design. Our design may provide insights in manipulating super-resolution image in a more flexible manner. Examples are given and illustrated with numerical simulations.

  5. Solving the problem of imaging resolution: stochastic multi-scale image fusion

    Science.gov (United States)

    Karsanina, Marina; Mallants, Dirk; Gilyazetdinova, Dina; Gerke, Kiril

    2016-04-01

    Structural features of porous materials define the majority of its physical properties, including water infiltration and redistribution, multi-phase flow (e.g. simultaneous water/air flow, gas exchange between biologically active soil root zone and atmosphere, etc.) and solute transport. To characterize soil and rock microstructure X-ray microtomography is extremely useful. However, as any other imaging technique, this one also has a significant drawback - a trade-off between sample size and resolution. The latter is a significant problem for multi-scale complex structures, especially such as soils and carbonates. Other imaging techniques, for example, SEM/FIB-SEM or X-ray macrotomography can be helpful in obtaining higher resolution or wider field of view. The ultimate goal is to create a single dataset containing information from all scales or to characterize such multi-scale structure. In this contribution we demonstrate a general solution for merging multiscale categorical spatial data into a single dataset using stochastic reconstructions with rescaled correlation functions. The versatility of the method is demonstrated by merging three images representing macro, micro and nanoscale spatial information on porous media structure. Images obtained by X-ray microtomography and scanning electron microscopy were fused into a single image with predefined resolution. The methodology is sufficiently generic for implementation of other stochastic reconstruction techniques, any number of scales, any number of material phases, and any number of images for a given scale. The methodology can be further used to assess effective properties of fused porous media images or to compress voluminous spatial datasets for efficient data storage. Potential practical applications of this method are abundant in soil science, hydrology and petroleum engineering, as well as other geosciences. This work was partially supported by RSF grant 14-17-00658 (X-ray microtomography study of shale

  6. Angular velocity discrimination

    Science.gov (United States)

    Kaiser, Mary K.

    1990-01-01

    Three experiments designed to investigate the ability of naive observers to discriminate rotational velocities of two simultaneously viewed objects are described. Rotations are constrained to occur about the x and y axes, resulting in linear two-dimensional image trajectories. The results indicate that observers can discriminate angular velocities with a competence near that for linear velocities. However, perceived angular rate is influenced by structural aspects of the stimuli.

  7. Acceleration of image-based resolution modelling reconstruction using an expectation maximization nested algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Angelis, Georgios I.; Matthews, Julian C.; Markiewicz, Pawel J.; Kotasidis, Fotis A. [Manchester Univ. (United Kingdom). Dept. of Cancer and Enabling Sciences; Lionheart, William R. [Manchester Univ. (United Kingdom). School of Mathematics; Reader, Andrew J. [McGill Univ., Montreal, QC (Canada). Brain Imaging Centre

    2011-07-01

    Recent studies have demonstrated the benefits of a resolution model within the reconstruction algorithm in an attempt to account for those effects that degrade the resolution of an image. However, these algorithms usually suffer from slower convergence rates due to the additional need to solve an image resolution deconvolution problem. In this work we investigate a newly proposed algorithm, which decouples the tomographic and image resolution problems within an image based expectation maximization (EM) framework. Results showed that convergence can be accelerated by interleaving multiple iterations of an image based EM algorithm solving the resolution model problem with EM iterations solving the tomographic problem. Minor differences are observed using the proposed nested algorithm compared to the single iteration normally performed when optimal number of iterations are performed for each algorithm. However using the proposed nested approach convergence is significantly accelerated enabling reconstruction using far fewer iterations. This may be of particular benefit for slowly converging portions of the image. (orig.)

  8. Improving Resolution and Depth of Astronomical Observations via Modern Mathematical Methods for Image Analysis

    Science.gov (United States)

    Castellano, M.; Ottaviani, D.; Fontana, A.; Merlin, E.; Pilo, S.; Falcone, M.

    2015-09-01

    In the past years modern mathematical methods for image analysis have led to a revolution in many fields, from computer vision to scientific imaging. However, some recently developed image processing techniques successfully exploited by other sectors have been rarely, if ever, experimented on astronomical observations. We present here tests of two classes of variational image enhancement techniques: "structure-texture decomposition" and "super-resolution" showing that they are effective in improving the quality of observations. Structure-texture decomposition allows to recover faint sources previously hidden by the background noise, effectively increasing the depth of available observations. Super-resolution yields an higher-resolution and a better sampled image out of a set of low resolution frames, thus mitigating problematics in data analysis arising from the difference in resolution/sampling between different instruments, as in the case of EUCLID VIS and NIR imagers.

  9. Improving resolution and depth of astronomical observations via modern mathematical methods for image analysis

    CERN Document Server

    Castellano, Marco; Fontana, Adriano; Merlin, Emiliano; Pilo, Stefano; Falcone, Maurizio

    2015-01-01

    In the past years modern mathematical methods for image analysis have led to a revolution in many fields, from computer vision to scientific imaging. However, some recently developed image processing techniques successfully exploited by other sectors have been rarely, if ever, experimented on astronomical observations. We present here tests of two classes of variational image enhancement techniques: "structure-texture decomposition" and "super-resolution" showing that they are effective in improving the quality of observations. Structure-texture decomposition allows to recover faint sources previously hidden by the background noise, effectively increasing the depth of available observations. Super-resolution yields an higher-resolution and a better sampled image out of a set of low resolution frames, thus mitigating problematics in data analysis arising from the difference in resolution/sampling between different instruments, as in the case of EUCLID VIS and NIR imagers.

  10. [3D Super-resolution Reconstruction and Visualization of Pulmonary Nodules from CT Image].

    Science.gov (United States)

    Wang, Bing; Fan, Xing; Yang, Ying; Tian, Xuedong; Gu, Lixu

    2015-08-01

    The aim of this study was to propose an algorithm for three-dimensional projection onto convex sets (3D POCS) to achieve super resolution reconstruction of 3D lung computer tomography (CT) images, and to introduce multi-resolution mixed display mode to make 3D visualization of pulmonary nodules. Firstly, we built the low resolution 3D images which have spatial displacement in sub pixel level between each other and generate the reference image. Then, we mapped the low resolution images into the high resolution reference image using 3D motion estimation and revised the reference image based on the consistency constraint convex sets to reconstruct the 3D high resolution images iteratively. Finally, we displayed the different resolution images simultaneously. We then estimated the performance of provided method on 5 image sets and compared them with those of 3 interpolation reconstruction methods. The experiments showed that the performance of 3D POCS algorithm was better than that of 3 interpolation reconstruction methods in two aspects, i.e., subjective and objective aspects, and mixed display mode is suitable to the 3D visualization of high resolution of pulmonary nodules. PMID:26710449

  11. Resolution to the quantum-classical dilemma in thermal ghost imaging

    OpenAIRE

    Chen, Lixiang

    2016-01-01

    There has been an intense debate on the quantum versus classical origin of ghost imaging with a thermal light source over the last two decades. A lot of distinguished work has contributed to this topic, both theoretically and experimentally, however, to this day this quantum-classical dilemma still persists. Here we formulate for the first time a density matrix in the photon orbital angular momentum (OAM) Hilbert space to fully characterize the two-arm ghost imaging system with the basic defi...

  12. Research on the affect of differential-images technique to the resolution of infrared spatial camera

    Science.gov (United States)

    Jin, Guang; An, Yuan; Qi, Yingchun; Hu, Fusheng

    2007-12-01

    The optical system of infrared spatial camera adopts bigger relative aperture and bigger pixel size on focal plane element. These make the system have bulky volume and low resolution. The potential of the optical systems can not be exerted adequately. So, one method for improving resolution of infrared spatial camera based on multi-frame difference-images is introduced in the dissertation. The method uses more than one detectors to acquire several difference images, and then reconstructs a new high-resolution image from these images through the relationship of pixel grey value. The technique of difference-images that uses more than two detectors is researched, and it can improve the resolution 2.5 times in theory. The relationship of pixel grey value between low-resolution difference-images and high-resolution image is found by analyzing the energy of CCD sampling, a general relationship between the enhanced times of the resolution of the detected figure with differential method and the least count of CCD that will be used to detect figure is given. Based on the research of theory, the implementation process of utilizing difference-images technique to improve the resolution of the figure was simulated used Matlab software by taking a personality image as the object, and the software can output the result as an image. The result gotten from the works we have finished proves that the technique is available in high-resolution image reconstruction. The resolution of infrared spatial camera can be improved evidently when holding the size of optical structure or using big size detector by applying for difference image technique. So the technique has a high value in optical remote fields.

  13. Images shaping in RLS and RTLS

    OpenAIRE

    Klochko, V. K.

    2009-01-01

    We propose methods of processing of complex amplitudes of reflected signals in shaping of radio images of surface and objects in multichannel RLS and RTLS, allowing to increase angular resolution and amplitude images obtaining rate.

  14. Stellar Diameters and Temperatures VI. High angular resolution measurements of the transiting exoplanet host stars HD 189733 and HD 209458 and implications for models of cool dwarfs

    CERN Document Server

    Boyajian, Tabetha; Feiden, Gregory A; Huber, Daniel; Basu, Sarbani; Demarque, Pierre; Fischer, Debra A; Schaefer, Gail; Mann, Andrew W; White, Timothy R; Maestro, Vicente; Brewer, John; Lamell, C Brooke; Spada, Federico; López-Morales, Mercedes; Ireland, Michael; Farrington, Chris; van Belle, Gerard T; Kane, Stephen R; Jones, Jeremy; Brummelaar, Theo A ten; Ciardi, David R; McAlister, Harold A; Ridgway, Stephen; Goldfinger, P J; Turner, Nils H; Sturmann, Laszlo

    2014-01-01

    We present direct radii measurements of the well-known transiting exoplanet host stars HD 189733 and HD 209458 using the CHARA Array interferometer. We find the limb-darkened angular diameters to be theta_LD = 0.3848 +/- 0.0055 and 0.2254 +/- 0.0072 milliarcsec for HD 189733 and HD 209458, respectively. HD 189733 and HD 209458 are currently the only two transiting exoplanet systems where detection of the respective planetary companion's orbital motion from high resolution spectroscopy has revealed absolute masses for both star and planet. We use our new measurements together with the orbital information from radial velocity and photometric time series data, Hipparcos distances, and newly measured bolometric fluxes to determine the stellar effective temperatures (T_eff = 4875 +/- 43, 6093 +/- 103 K), stellar linear radii (R_* = 0.805 +/- 0.016, 1.203 +/- 0.061 R_sun), mean stellar densities (rho_* = 1.62 +/- 0.11, 0.58 +/- 0.14 rho_sun), planetary radii (R_p = 1.216 +/- 0.024, 1.451 +/- 0.074 R_Jup), and mean ...

  15. 3D Cryo-Imaging: A Very High-Resolution View of the Whole Mouse

    OpenAIRE

    Roy, Debashish; Steyer, Grant J.; Gargesha, Madhusudhana; Stone, Meredith E.; Wilson, David L.

    2009-01-01

    We developed the Case Cryo-imaging system that provides information rich, very high-resolution, color brightfield, and molecular fluorescence images of a whole mouse using a section-and-image block-face imaging technology. The system consists of a mouse-sized, motorized cryo-microtome with special features for imaging, a modified, brightfield/ fluorescence microscope, and a robotic xyz imaging system positioner, all of which is fully automated by a control system. Using the robotic system, we...

  16. Super-resolution deep imaging with hollow Bessel beam STED microscopy

    CERN Document Server

    Yu, Wentao; Dong, Dashan; Yang, Xusan; Xiao, Yunfeng; Gong, Qihuang; Xi, Peng; Shi, Kebin

    2015-01-01

    Stimulated emission depletion (STED) microscopy has become a powerful imaging and localized excitation method beating the diffraction barrier for improved lateral spatial resolution in cellular imaging, lithography, etc. Due to specimen-induced aberrations and scattering distortion, it has been a great challenge for STED to maintain consistent lateral resolution deeply inside the specimens. Here we report on a deep imaging STED microscopy by using Gaussian beam for excitation and hollow Bessel beam for depletion (GB-STED). The proposed scheme shows the improved imaging depth up to ~155{\\mu}m in solid agarose sample, ~115{\\mu}m in PDMS and ~100{\\mu}m in phantom of gray matter in brain tissue with consistent super resolution, while the standard STED microscopy shown a significantly reduced lateral resolution at the same imaging depth. The results indicate the excellent imaging penetration capability of GB-STED, making it a promising tool for deep 3D imaging optical nanoscopy and laser fabrication.

  17. RCS Computation Technique Based on ISAR Imaging for Large Angular Rotation Problem%基于ISAR成像的目标大角度RCS外推

    Institute of Scientific and Technical Information of China (English)

    闫伟; 杜卫民; 董群锋; 许家栋

    2012-01-01

    传统逆合成孔径雷达(ISAR)转台成像算法对目标进行成像后只能外推小角度区域雷达散射截面(RCS).针对这一问题,建立了大转角转台成像系统,提出了一种基于近场微波成像的RCS外推算法,分析了近场大转角转动带来的越距离单元徙动问题.通过将距离与方位域解耦,并对方位方向进行圆周卷积运算,得到高质量的目标成像,进而可以外推目标360度方位的RCS,并与传统ISAR小角度成像算法进行比对.仿真结果表明,外推算法不仅可以对目标进行成像,诊断目标的强散射点位置,还可以用来做远区RCS大角度外推,并结合成像结果分析目标散射机理.%In this paper, a radar cross section ( RCS) extrapolation method was proposed based on inverse synthetic aperture radar (ISAR) imaging system with large angular rotation. It can solve the problem that the ISAR system can not deal with the small angle rotation problem to acquire the RCS. The range cell migration problem caused by large angle rotation was also considered. The proposed system was accomplished by decoupling the green function to range direction and azimuth direction. In azimuth direction, the convolution method was used to obtain the accurate images rapidly. Then, the images were used for RCS extrapolation over 360 degree. The proposed method is testified by simulation results. The results show that the proposed method can be used to acquire high resolution image which can be used for high quality RCS extrapolation.

  18. Super-resolution of turbulent passive scalar images using data assimilation

    Science.gov (United States)

    Zille, Pascal; Corpetti, Thomas; Shao, Liang; Xu, Chen

    2016-02-01

    In this paper, the problem of improving the quality of low-resolution passive scalar image sequences is addressed. This situation, known as "image super-resolution" in computer vision, aroused to our knowledge very few applications in the field of fluid visualization. Yet, in most image acquisition devices, the spatial resolution of the acquired data is limited by the sensor physical properties, while users often require higher-resolution images for further processing and analysis of the system of interest. The originality of the approach presented in this paper is to link the image super-resolution process together with the large eddy simulation framework in order to derive a complete super-resolution technique. We first start by defining two categories of fine-scale components we aim to reconstruct. Then, using a deconvolution procedure as well as data assimilation tools, we show how to partially recover some of these missing components within the low-resolution images while ensuring the temporal consistency of the solution. This method is evaluated using both synthetic and real image data. Finally, we demonstrate how the produced high-resolution images can improve a posteriori analysis such as motion field estimation.

  19. POCS Based Super-Resolution Image Reconstruction Using an Adaptive Regularization Parameter

    Directory of Open Access Journals (Sweden)

    S.S.Panda

    2011-09-01

    Full Text Available Crucial information barely visible to the human eye is often embedded in a series of low-resolution images taken of the same scene. Super-resolution enables the extraction of this information by reconstructing a single image, at a high resolution than is present in any of the individual images. This is particularly useful in forensic imaging, where the extraction of minute details in an image can help to solve a crime. Super-resolution image restoration has been one of the most important research areas in recent years which goals to obtain a high resolution (HR image from several low resolutions (LR blurred, noisy, under sampled and displaced images. Relation of the HR image and LR images can be modeled by a linear system using a transformation matrix and additive noise. However, a unique solution may not be available because of the singularity of transformation matrix. To overcome this problem, POCS method has been used. However, their performance is not good because the effect of noise energy has been ignored. In this paper, we propose an adaptive regularization approach based on the fact that the regularization parameter should be a linear function of noise variance. The performance of the proposed approach has been tested on several images and the obtained results demonstrate the superiority of our approach compared with existing methods.

  20. High resolution Cerenkov light imaging of induced positron distribution in proton therapy

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Seiichi, E-mail: s-yama@met.nagoya-u.ac.jp; Fujii, Kento; Morishita, Yuki; Okumura, Satoshi; Komori, Masataka [Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Aichi 461-8673 (Japan); Toshito, Toshiyuki [Department of Proton Therapy Physics, Nagoya Proton Therapy Center, Nagoya City West Medical Center, Aichi 462-8508 (Japan)

    2014-11-01

    Purpose: In proton therapy, imaging of the positron distribution produced by fragmentation during or soon after proton irradiation is a useful method to monitor the proton range. Although positron emission tomography (PET) is typically used for this imaging, its spatial resolution is limited. Cerenkov light imaging is a new molecular imaging technology that detects the visible photons that are produced from high-speed electrons using a high sensitivity optical camera. Because its inherent spatial resolution is much higher than PET, the authors can measure more precise information of the proton-induced positron distribution with Cerenkov light imaging technology. For this purpose, they conducted Cerenkov light imaging of induced positron distribution in proton therapy. Methods: First, the authors evaluated the spatial resolution of our Cerenkov light imaging system with a {sup 22}Na point source for the actual imaging setup. Then the transparent acrylic phantoms (100 × 100 × 100 mm{sup 3}) were irradiated with two different proton energies using a spot scanning proton therapy system. Cerenkov light imaging of each phantom was conducted using a high sensitivity electron multiplied charge coupled device (EM-CCD) camera. Results: The Cerenkov light’s spatial resolution for the setup was 0.76 ± 0.6 mm FWHM. They obtained high resolution Cerenkov light images of the positron distributions in the phantoms for two different proton energies and made fused images of the reference images and the Cerenkov light images. The depths of the positron distribution in the phantoms from the Cerenkov light images were almost identical to the simulation results. The decay curves derived from the region-of-interests (ROIs) set on the Cerenkov light images revealed that Cerenkov light images can be used for estimating the half-life of the radionuclide components of positrons. Conclusions: High resolution Cerenkov light imaging of proton-induced positron distribution was possible. The