WorldWideScience

Sample records for angular resolution 3d

  1. Stability of dislocation structures in copper towards stress relaxation investigated by high angular resolution 3D X-ray diffraction

    DEFF Research Database (Denmark)

    Jakobsen, Bo; Poulsen, Henning Friis; Lienert, Ulrich;

    2009-01-01

    A 300 µm thick tensile specimen of OFHC copper is subjected to a tensile loading sequence and deformed to a maximal strain of 3.11%. Using the novel three-dimensional X-ray diffraction method High angular resolution 3DXRD', the evolution of the microstructure within a deeply embedded grain is cha...

  2. A 3-D Hall Sensor for Precise Angular Position Measurements

    OpenAIRE

    DIMITROV, Konstantin Veselinov

    2007-01-01

    A 3-D silicon Hall effect sensor for precise angular-position measurement over 360° rotation is presented. This vector microtransducer functionally integrates into a common sensor region two parallel-field Hall devices for in-plane components of the magnetic field and one orthogonal Hall version for the perpendicular for the chip magnetic field. The advantages of this magnetometer are its low channel cross-sensitivities, remarkable simplified device design and high spatial resolution.

  3. Recovering 3D clustering information with angular correlations

    CERN Document Server

    Asorey, Jacobo; Gaztanaga, Enrique; Lewis, Antony

    2012-01-01

    We study how to recover the full 3D clustering information of P(\\vec{k},z), including redshift space distortions (RSD), from 2D tomography using the angular auto and cross spectra of different redshift bins C_\\ell(z,z'). We focus on quasilinear scales where the minimum scale \\lambda_{min} or corresponding maximum wavenumber k_{max}= 2\\pi/\\lambda_{min} is targeted to be between k_{max}={0.05-0.2} h/Mpc. For spectroscopic surveys, we find that we can recover the full 3D clustering information when the redshift bin width \\Delta z used in the 2D tomography is similar to the targeted minimum scale, i.e. \\Delta z ~ {0.6-0.8} \\lambda_{min} H(z)/c which corresponds to \\Delta z ~ 0.01-0.05 for z\\Delta z and most radial information is intrinsically lost. The remaining information can be recovered from the 2D tomography if we use \\Delta z ~ 2\\sigma_z. While 3D and 2D analysis are shown here to be equivalent, the advantage of using angular positions and redshifts is that we do not need a fiducial cosmology to convert to ...

  4. 3D spatial resolution and spectral resolution of interferometric 3D imaging spectrometry.

    Science.gov (United States)

    Obara, Masaki; Yoshimori, Kyu

    2016-04-01

    Recently developed interferometric 3D imaging spectrometry (J. Opt. Soc. Am A18, 765 [2001]1084-7529JOAOD610.1364/JOSAA.18.000765) enables obtainment of the spectral information and 3D spatial information for incoherently illuminated or self-luminous object simultaneously. Using this method, we can obtain multispectral components of complex holograms, which correspond directly to the phase distribution of the wavefronts propagated from the polychromatic object. This paper focuses on the analysis of spectral resolution and 3D spatial resolution in interferometric 3D imaging spectrometry. Our analysis is based on a novel analytical impulse response function defined over four-dimensional space. We found that the experimental results agree well with the theoretical prediction. This work also suggests a new criterion and estimate method regarding 3D spatial resolution of digital holography. PMID:27139648

  5. High resolution 3D nonlinear integrated inversion

    Institute of Scientific and Technical Information of China (English)

    Li Yong; Wang Xuben; Li Zhirong; Li Qiong; Li Zhengwen

    2009-01-01

    The high resolution 3D nonlinear integrated inversion method is based on nonlinear theory. Under layer control, the log data from several wells (or all wells) in the study area and seismic trace data adjacent to the wells are input to a network with multiple inputs and outputs and are integratedly trained to obtain an adaptive weight function of the entire study area. Integrated nonlinear mapping relationships are built and updated by the lateral and vertical geologic variations of the reservoirs. Therefore, the inversion process and its inversion results can be constrained and controlled and a stable seismic inversion section with high resolution with velocity inversion, impedance inversion, and density inversion sections, can be gained. Good geologic effects have been obtained in model computation tests and real data processing, which verified that this method has high precision, good practicality, and can be used for quantitative reservoir analysis.

  6. A Bayesian approach for suppression of limited angular sampling artifacts in single particle 3D reconstruction.

    Science.gov (United States)

    Moriya, Toshio; Acar, Erman; Cheng, R Holland; Ruotsalainen, Ulla

    2015-09-01

    In the single particle reconstruction, the initial 3D structure often suffers from the limited angular sampling artifact. Selecting 2D class averages of particle images generally improves the accuracy and efficiency of the reference-free 3D angle estimation, but causes an insufficient angular sampling to fill the information of the target object in the 3D frequency space. Similarly, the initial 3D structure by the random-conical tilt reconstruction has the well-known "missing cone" artifact. Here, we attempted to solve the limited angular sampling problem by sequentially applying maximum a posteriori estimate with expectation maximization algorithm (sMAP-EM). Using both simulated and experimental cryo-electron microscope images, the sMAP-EM was compared to the direct Fourier method on the basis of reconstruction error and resolution. To establish selection criteria of the final regularization weight for the sMAP-EM, the effects of noise level and sampling sparseness on the reconstructions were examined with evenly distributed sampling simulations. The frequency information filled in the missing cone of the conical tilt sampling simulations was assessed by developing new quantitative measurements. All the results of visual and numerical evaluations showed the sMAP-EM performed better than the direct Fourier method, regardless of the sampling method, noise level, and sampling sparseness. Furthermore, the frequency domain analysis demonstrated that the sMAP-EM can fill the meaningful information in the unmeasured angular space without detailed a priori knowledge of the objects. The current research demonstrated that the sMAP-EM has a high potential to facilitate the determination of 3D protein structures at near atomic-resolution. PMID:26193484

  7. Optofluidic microscope with 3D spatial resolution

    DEFF Research Database (Denmark)

    Vig, Asger Laurberg; Marie, Rodolphe; Jensen, Eric;

    2010-01-01

    This paper reports on-chip based optical detection with three-dimensional spatial resolution by integration of an optofluidic microscope (OFM) in a microfluidic pinched flow fractionation (PFF) separation device. This setup also enables on-chip particle image velocimetry (PIV). The position...

  8. Resonant structure of the 3d electron's angular distribution in a free Mn+Ion

    International Nuclear Information System (INIS)

    The 3d-electron angular anisotropy parameter of the free Mn+ ion is calculated using the open-quotes spin-polarizedclose quotes random-phase approximation with exchange. Strong resonance structure is discovered, which is due to interference with the powerful 3p → 3d discrete excitation. The effect of the 3p → 4s transition is also noticeable. The ordering of these respective resonances with phonon energy increase proved to be opposite in angular anisotropy parameter to that in 3d-photoionization cross section. A paper describing these results was published

  9. Application of Novel Rotation Angular Model for 3D Mouse System Based on MEMS Accelerometers

    Institute of Scientific and Technical Information of China (English)

    QIAN Li; CHEN Wen-yuan; XU Guo-ping

    2009-01-01

    A new scheme is proposed to model 3D angular motion of a revolving regular object with miniature, low-cost micro electro mechanical systems (MEMS) accelerometers (instead of gyroscope), which is employed in 3D mouse system. To sense 3D angular motion, the static property of MEMS accelerometer, sensitive to gravity acceleration, is exploited. With the three outputs of configured accelerometers, the proposed model is implemented to get the rotary motion of the rigid object. In order to validate the effectiveness of the proposed model, an input device is developed with the configuration of the scheme. Experimental results show that a simulated 3D cube can accurately track the rotation of the input device. The result indicates the feasibility and effectiveness of the proposed model in the 3D mouse system.

  10. Reconstruction of High Resolution 3D Objects from Incomplete Images and 3D Information

    Directory of Open Access Journals (Sweden)

    Alexander Pacheco

    2014-05-01

    Full Text Available To this day, digital object reconstruction is a quite complex area that requires many techniques and novel approaches, in which high-resolution 3D objects present one of the biggest challenges. There are mainly two different methods that can be used to reconstruct high resolution objects and images: passive methods and active methods. This methods depend on the type of information available as input for modeling 3D objects. The passive methods use information contained in the images and the active methods make use of controlled light sources, such as lasers. The reconstruction of 3D objects is quite complex and there is no unique solution- The use of specific methodologies for the reconstruction of certain objects it’s also very common, such as human faces, molecular structures, etc. This paper proposes a novel hybrid methodology, composed by 10 phases that combine active and passive methods, using images and a laser in order to supplement the missing information and obtain better results in the 3D object reconstruction. Finally, the proposed methodology proved its efficiency in two complex topological complex objects.

  11. Effect of postural changes on 3D joint angular velocity during starting block phase

    OpenAIRE

    Slawinski, Jean; Dumas, Raphaël; CHEZE, Laurence; ONTANON, Guy; BONNEFOY-MAZURE, Alice

    2013-01-01

    Few studies have focused on the effect of posture during sprint start. The aim of this study was to measure the effect of the modification of horizontal distance between the blocks during sprint start on three dimensional (3D) joint angular velocity. Nine trained sprinters started using three different starting positions (bunched, medium and elongated). They were equipped with 63 passive reflective markers, and an opto-electronic Motion Analysis1 system was used to collect the 3D marker traje...

  12. Effect of the starting block posture on the 3D joint angular velocity in sprinters

    OpenAIRE

    SLAWINSKI, J; ONTANON, G; Dumas, R; Cheze, L.; Miller, C.; MAZURE-BONNEFOY, A

    2011-01-01

    The aim of this study was to measure the effect of the modification of the posture during a sprint start on 3D joint angular velocity. This was performed using a 3D kinematic analysis of the whole body. Ten trained sprinters started using three different starting positions in the starting blocks (bunched, medium and elongated). They were equipped with 63 passive reflective markers, and an opto-electronic Motion Analysis® system (12 digital cameras 250 Hz) was used to collect the 3D marker tra...

  13. 3D super-resolution microscopy of bacterial division machinery

    Science.gov (United States)

    Vedyaykin, A. D.; Sabantsev, A. V.; Vishnyakov, I. E.; Morozova, N. E.; Polinovskaya, V. S.; Khodorkovskii, M. A.

    2016-08-01

    Super-resolution microscopy is a promising tool for the field of microbiology, as bacteria sizes are comparable to the resolution limit of light microscopy. Bacterial division machinery and FtsZ protein in particular attract much attention of scientists who use different super-resolution microscopy techniques, but most of the available data on FtsZ structures was obtained using two-dimensional (2D) super-resolution microscopy. Using 3D single-molecule localization microscopy (SMLM, namely dSTORM) to visualize FtsZ, we demonstrate that this approach allows more accurate interpretation of super-resolution images and provides new opportunities for the study of complex structures like bacterial divisome.

  14. Effect of postural changes on 3D joint angular velocity during starting block phase.

    Science.gov (United States)

    Slawinski, Jean; Dumas, Raphaël; Cheze, Laurence; Ontanon, Guy; Miller, Christian; Mazure-Bonnefoy, Alice

    2013-01-01

    Few studies have focused on the effect of posture during sprint start. The aim of this study was to measure the effect of the modification of horizontal distance between the blocks during sprint start on three dimensional (3D) joint angular velocity. Nine trained sprinters started using three different starting positions (bunched, medium and elongated). They were equipped with 63 passive reflective markers, and an opto-electronic Motion Analysis system was used to collect the 3D marker trajectories. During the pushing phase on the blocks, norm of the joint angular velocity (NJAV), 3D Euler angular velocity (EAV) and pushing time on the blocks were calculated. The results demonstrated that the decrease of the block spacing induces an opposite effect on the angular velocity of joints of the lower and the upper limbs. The NJAV of the upper limbs is greater in the bunched start, whereas the NJAV of the lower limbs is smaller. The modifications of NJAV were due to a combination of the movement of the joints in the different degrees of freedom. The medium start seems to be the best compromise because it leads, in a short pushing time, to a combination of optimal joint velocities for upper and lower segments. PMID:23062070

  15. A low-resolution 3D holographic volumetric display

    Science.gov (United States)

    Khan, Javid; Underwood, Ian; Greenaway, Alan; Halonen, Mikko

    2010-05-01

    A simple low resolution volumetric display is presented, based on holographic volume-segments. The display system comprises a proprietary holographic screen, laser projector, associated optics plus a control unit. The holographic screen resembles a sheet of frosted glass about A4 in size (20x30cm). The holographic screen is rear-illuminated by the laser projector, which is in turn driven by the controller, to produce simple 3D images that appear outside the plane of the screen. A series of spatially multiplexed and interleaved interference patterns are pre-encoded across the surface of the holographic screen. Each illumination pattern is capable of reconstructing a single holographic volume-segment. Up to nine holograms are multiplexed on the holographic screen in a variety of configurations including a series of numeric and segmented digits. The demonstrator has good results under laboratory conditions with moving colour 3D images in front of or behind the holographic screen.

  16. Improved resolution of 3D printed scaffolds by shrinking.

    Science.gov (United States)

    Chia, Helena N; Wu, Benjamin M

    2015-10-01

    Three-dimensional printing (3DP) uses inkjet printheads to selectively deposit liquid binder to adjoin powder particles in a layer-by-layer fashion to create a computer-modeled 3D object. Two general approaches for 3DP have been described for biomedical applications (direct and indirect 3DP). The two approaches offer competing advantages, and both are limited by print resolution. This study describes a materials processing strategy to enhance 3DP resolution by controlled shrinking net-shape scaffolds. Briefly, porogen preforms are printed and infused with the desired monomer or polymer solution. After solidification or polymerization, the porogen is leached and the polymer is allowed to shrink by controlled drying. Heat treatment is performed to retain the dimensions against swelling forces. The main objective of this study is to determine the effects of polymer content and post-processing on dimension, microstructure, and thermomechanical properties of the scaffold. For polyethylene glycol diacrylate (PEG-DA), reducing polymer content corresponded with greater shrinkage with maximum shrinkage of ∼80 vol% at 20% vol% PEG-DA. The secondary heat treatment retains the microarchitecture and new dimensions of the scaffolds, even when the heat-treated scaffolds are immersed into water. To demonstrate shrinkage predictability, 3D components with interlocking positive and negative features were printed, processed, and fitted. This material processing strategy provides an alternative method to enhance the resolution of 3D scaffolds, for a wide range of polymers, without optimizing the binder-powder interaction physics to print each material combination. PMID:25404276

  17. Characterization of gait pattern by 3D angular accelerations in hemiparetic and healthy gait.

    Science.gov (United States)

    Rueterbories, Jan; Spaich, Erika G; Andersen, Ole K

    2013-02-01

    Characterization of gait pattern is of interest for clinical gait assessment. Past developments of ambulatory measurement systems have still limitations for daily usage in the clinical environment. This study investigated the potential of 3D angular accelerations of foot, shank, and thigh to characterize gait events and phases of ten healthy and ten hemiparetic subjects. The key feature of the system was the use of angular accelerations obtained by differential measurement. Further, the effect of sensor position and walking cadence on the signal was investigated. We found that gait phases are characterized as modulated amplitudes of angular accelerations of foot, shank, and thigh. Increasing the gait cadence from 70 steps/min to 100 steps/min caused an amplitude increase of the magnitude of the vector, summing all 3D angular accelerations on the sensor position (pgait showed a lower mean of the magnitude of the vector during the loading response in the hemiparetic gait (pgait were observed. A comparison of the tangential acceleration component in the frontal plane showed no statistically significant difference between healthy and hemiparetic gait. Further, no statistically significant difference between the tangential components was found for both groups. This method demonstrated promising results for a possible use for gait assessment.

  18. High Resolution 3D Radar Imaging of Comet Interiors

    Science.gov (United States)

    Asphaug, E. I.; Gim, Y.; Belton, M.; Brophy, J.; Weissman, P. R.; Heggy, E.

    2012-12-01

    Knowing the interiors of comets and other primitive bodies is fundamental to our understanding of how planets formed. We have developed a Discovery-class mission formulation, Comet Radar Explorer (CORE), based on the use of previously flown planetary radar sounding techniques, with the goal of obtaining high resolution 3D images of the interior of a small primitive body. We focus on the Jupiter-Family Comets (JFCs) as these are among the most primitive bodies reachable by spacecraft. Scattered in from far beyond Neptune, they are ultimate targets of a cryogenic sample return mission according to the Decadal Survey. Other suitable targets include primitive NEOs, Main Belt Comets, and Jupiter Trojans. The approach is optimal for small icy bodies ~3-20 km diameter with spin periods faster than about 12 hours, since (a) navigation is relatively easy, (b) radar penetration is global for decameter wavelengths, and (c) repeated overlapping ground tracks are obtained. The science mission can be as short as ~1 month for a fast-rotating JFC. Bodies smaller than ~1 km can be globally imaged, but the navigation solutions are less accurate and the relative resolution is coarse. Larger comets are more interesting, but radar signal is unlikely to be reflected from depths greater than ~10 km. So, JFCs are excellent targets for a variety of reasons. We furthermore focus on the use of Solar Electric Propulsion (SEP) to rendezvous shortly after the comet's perihelion. This approach leaves us with ample power for science operations under dormant conditions beyond ~2-3 AU. This leads to a natural mission approach of distant observation, followed by closer inspection, terminated by a dedicated radar mapping orbit. Radar reflections are obtained from a polar orbit about the icy nucleus, which spins underneath. Echoes are obtained from a sounder operating at dual frequencies 5 and 15 MHz, with 1 and 10 MHz bandwidths respectively. The dense network of echoes is used to obtain global 3D

  19. 3D Flash LIDAR EDL Resolution Improvement Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Scientific Concepts, Inc. (ASC) is a small business that has developed 3D Flash LIDAR systems for space and terrestrial applications. 3D Flash LIDAR is...

  20. High resolution 3D imaging of synchrotron generated microbeams

    Energy Technology Data Exchange (ETDEWEB)

    Gagliardi, Frank M., E-mail: frank.gagliardi@wbrc.org.au [Alfred Health Radiation Oncology, The Alfred, Melbourne, Victoria 3004, Australia and School of Medical Sciences, RMIT University, Bundoora, Victoria 3083 (Australia); Cornelius, Iwan [Imaging and Medical Beamline, Australian Synchrotron, Clayton, Victoria 3168, Australia and Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales 2500 (Australia); Blencowe, Anton [Division of Health Sciences, School of Pharmacy and Medical Sciences, The University of South Australia, Adelaide, South Australia 5000, Australia and Division of Information Technology, Engineering and the Environment, Mawson Institute, University of South Australia, Mawson Lakes, South Australia 5095 (Australia); Franich, Rick D. [School of Applied Sciences and Health Innovations Research Institute, RMIT University, Melbourne, Victoria 3000 (Australia); Geso, Moshi [School of Medical Sciences, RMIT University, Bundoora, Victoria 3083 (Australia)

    2015-12-15

    Purpose: Microbeam radiation therapy (MRT) techniques are under investigation at synchrotrons worldwide. Favourable outcomes from animal and cell culture studies have proven the efficacy of MRT. The aim of MRT researchers currently is to progress to human clinical trials in the near future. The purpose of this study was to demonstrate the high resolution and 3D imaging of synchrotron generated microbeams in PRESAGE® dosimeters using laser fluorescence confocal microscopy. Methods: Water equivalent PRESAGE® dosimeters were fabricated and irradiated with microbeams on the Imaging and Medical Beamline at the Australian Synchrotron. Microbeam arrays comprised of microbeams 25–50 μm wide with 200 or 400 μm peak-to-peak spacing were delivered as single, cross-fire, multidirectional, and interspersed arrays. Imaging of the dosimeters was performed using a NIKON A1 laser fluorescence confocal microscope. Results: The spatial fractionation of the MRT beams was clearly visible in 2D and up to 9 mm in depth. Individual microbeams were easily resolved with the full width at half maximum of microbeams measured on images with resolutions of as low as 0.09 μm/pixel. Profiles obtained demonstrated the change of the peak-to-valley dose ratio for interspersed MRT microbeam arrays and subtle variations in the sample positioning by the sample stage goniometer were measured. Conclusions: Laser fluorescence confocal microscopy of MRT irradiated PRESAGE® dosimeters has been validated in this study as a high resolution imaging tool for the independent spatial and geometrical verification of MRT beam delivery.

  1. CsI calorimeter with 3-D position resolution

    CERN Document Server

    Schopper, Herwig Franz; Shaw, H; Nefzger, C; Zoglauer, A; Schönfelder, V; Kanbach, G

    2000-01-01

    New gamma-ray calorimeter have been developed for the MEGA Compton camera. They consist of arrays of small CsI(Tl) scintillator bars read out by Silicon PIN-diodes and low noise, self-triggering frontend electronics. The length of the bars (the thickness of the calorimeter) can be varied for different applications to fit the stopping power needed and the light loss tolerable. In this paper we present calibration results from 2 cm long bars with diodes on one side, and 8 cm long bars with diodes on two opposite sides. Double-sided readout gives 3-D information of interactions which will be used to overcome the limited position resolution in Anger-cameras at high energies. Simpler detection devices like Anger-cameras might finally resolve only the centre of gravity. As events from gamma-rays with energies of MeV do extend over several cm, it is a prerequisite for an imaging device to resolve the interaction structure in detail. Combining CsI(Tl) scintillators, Silicon PIN-photodiodes and frontend electronics in...

  2. Angular resolution of stacked resistive plate chambers

    CERN Document Server

    Samuel, Deepak; Murgod, Lakshmi P

    2016-01-01

    We present here detailed derivations of mathematical expressions for the angular resolution of a set of stacked resistive plate chambers (RPCs). The expressions are validated against experimental results using data collected from the prototype detectors (without magnet) of the upcoming India-based Neutrino Observatory (INO). In principle, these expressions can be used for any other detector with an architecture similar to that of RPCs.

  3. Characterization of the 3D angular vestibulo-ocular reflex in C57BL6 mice.

    Science.gov (United States)

    Migliaccio, Americo A; Meierhofer, Robert; Della Santina, Charles C

    2011-05-01

    We characterized the three-dimensional angular vestibulo-ocular reflex (3D aVOR) of adult C57BL6 mice during static tilt testing, sinusoidal, and high-acceleration rotations and compared it with that of another lateral-eyed mammal with afoveate retinae (chinchilla) and two primate species with forward eye orientation and retinal foveae (human and squirrel monkey). Noting that visual acuity in mice is poor compared to chinchillas and even worse compared to primates, we hypothesized that the mouse 3D aVOR would be relatively low in gain (eye-velocity/head-velocity) compared to other species and would fall off for combinations of head rotation velocity and frequency for which peak-to-peak position changes fall below the minimum visual angle resolvable by mice. We also predicted that as in chinchilla, the mouse 3D aVOR would be more isotropic (eye/head velocity gain independent of head rotation axis) and better aligned with the axis of head rotation than the 3D aVOR of primates. In 12 adult C57BL6 mice, binocular 3D eye movements were measured in darkness during whole-body static tilts, 20-100°/s whole-body sinusoidal rotations (0.02-10 Hz) and acceleration steps of 3,000°/s² to a 150°/s plateau (dominant spectral content 8-12 Hz). Our results show that the mouse has a robust static tilt counter-roll response gain of ~0.35 (eye-position Δ/head-position Δ) and mid-frequency aVOR gain (~0.6-0.8), but relatively low aVOR gain for high-frequency sinusoidal head rotations and for steps of head rotation acceleration (~0.5). Due to comparatively poor static visual acuity in the mouse, a perfectly compensatory 3D aVOR would confer relatively little benefit during high-frequency, low-amplitude movements. Therefore, our data suggest that the adaptive drive for maintaining a compensatory 3D aVOR depends on the static visual acuity in different species. Like chinchillas, mice have a much more nearly isotropic 3D aVOR than do the primates for which comparable data are

  4. Statistical Angular Resolution Limit for Ultrawideband MIMO Noise Radar

    Directory of Open Access Journals (Sweden)

    Xiaoli Zhou

    2015-01-01

    Full Text Available The two-dimensional angular resolution limit (ARL of elevation and azimuth for MIMO radar with ultrawideband (UWB noise waveforms is investigated using statistical resolution theory. First, the signal model of monostatic UWB MIMO noise radar is established in a 3D reference frame. Then, the statistical angular resolution limits (SARLs of two closely spaced targets are derived using the detection-theoretic and estimation-theoretic approaches, respectively. The detection-theoretic approach is based on the generalized likelihood ratio test (GLRT with given probabilities of false alarm and detection, while the estimation-theoretic approach is based on Smith’s criterion which involves the Cramér-Rao lower bound (CRLB. Furthermore, the relationship between the two approaches is presented, and the factors affecting the SARL, that is, detection parameters, transmit waveforms, array geometry, signal-to-noise ratio (SNR, and parameters of target (i.e., radar cross section (RCS and direction, are analyzed. Compared with the conventional radar resolution theory defined by the ambiguity function, the SARL reflects the practical resolution ability of radar and can provide an optimization criterion for radar system design.

  5. 3D Flash LIDAR EDL Resolution Improvement Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Scientific Concepts, Inc. (ASC) is a small business, which has developed a compact, eye-safe 3D Flash LIDARTM Camera (FLC) well suited for real-time...

  6. High-angular Resolution Laser Threat Warner

    Directory of Open Access Journals (Sweden)

    Sushil Kumar

    2007-07-01

    Full Text Available In this paper, the design and development aspects of a high-angular resolution laser-threat Warner developed at the Laser Science & Technology Centre (LASTEC, Delhi are presented. It describes a high-angular resolution laser-threat warner capable of giving warning with a resolution of i 3" when it is exposed to laser radiation from visible and near-IR pulsed solid-state laser source. It has a field of view of 90' in the azimuth direction, whereas the elevation coverage is between -5" and + 25". It is capable of handling multiple types of laser threats covering wavelength from 400 nm to 1100 nm and has an operational range of 4 km for a Q-switched laser source energy (10 ns of 10 mJ/pulse and output beam divergence of 1 mrad. The paper also describes its simulated evaluation process and field-testing which it has undergone. The result of field-testing confirms that it meets all its performance specifications mentioned above.

  7. Mesh Resolution Effect on 3D RANS Turbomachinery Flow Simulations

    CERN Document Server

    Yershov, Sergiy

    2016-01-01

    The paper presents the study of the effect of a mesh refinement on numerical results of 3D RANS computations of turbomachinery flows. The CFD solver F, which based on the second-order accurate ENO scheme, is used in this study. The simplified multigrid algorithm and local time stepping permit decreasing computational time. The flow computations are performed for a number of turbine and compressor cascades and stages. In all flow cases, the successively refined meshes of H-type with an approximate orthogonalization near the solid walls were generated. The results obtained are compared in order to estimate their both mesh convergence and ability to resolve the transonic flow pattern. It is concluded that for thorough studying the fine phenomena of the 3D turbomachinery flows, it makes sense to use the computational meshes with the number of cells from several millions up to several hundred millions per a single turbomachinery blade channel, while for industrial computations, a mesh of about or less than one mil...

  8. Towards optical intensity interferometry for high angular resolution stellar astrophysics

    CERN Document Server

    Nunez, Paul D

    2012-01-01

    Most neighboring stars are still detected as point sources and are beyond the angular resolution reach of current observatories. Methods to improve our understanding of stars at high angular resolution are investigated. Air Cherenkov telescopes (ACTs), primarily used for Gamma-ray astronomy, enable us to increase our understanding of the circumstellar environment of a particular system. When used as optical intensity interferometers, future ACT arrays will allow us to detect stars as extended objects and image their surfaces at high angular resolution. Optical stellar intensity interferometry (SII) with ACT arrays, composed of nearly 100 telescopes, will provide means to measure fundamental stellar parameters and also open the possibility of model-independent imaging. A data analysis algorithm is developed and permits the reconstruction of high angular resolution images from simulated SII data. The capabilities and limitations of future ACT arrays used for high angular resolution imaging are investigated via ...

  9. X-ray tomography: Biological cells in 3-D at better than 50 nm resolution

    International Nuclear Information System (INIS)

    . The low radiation damage of cryogenic samples will enable collection of more projection images at smaller angular spacing, improving the resolution of the reconstructed 3-D volumes

  10. Segment-interaction in sprint start: Analysis of 3D angular velocity and kinetic energy in elite sprinters.

    Science.gov (United States)

    Slawinski, J; Bonnefoy, A; Ontanon, G; Leveque, J M; Miller, C; Riquet, A; Chèze, L; Dumas, R

    2010-05-28

    The aim of the present study was to measure during a sprint start the joint angular velocity and the kinetic energy of the different segments in elite sprinters. This was performed using a 3D kinematic analysis of the whole body. Eight elite sprinters (10.30+/-0.14s 100 m time), equipped with 63 passive reflective markers, realised four maximal 10 m sprints start on an indoor track. An opto-electronic Motion Analysis system consisting of 12 digital cameras (250 Hz) was used to collect the 3D marker trajectories. During the pushing phase on the blocks, the 3D angular velocity vector and its norm were calculated for each joint. The kinetic energy of 16 segments of the lower and upper limbs and of the total body was calculated. The 3D kinematic analysis of the whole body demonstrated that joints such as shoulders, thoracic or hips did not reach their maximal angular velocity with a movement of flexion-extension, but with a combination of flexion-extension, abduction-adduction and internal-external rotation. The maximal kinetic energy of the total body was reached before clearing block (respectively, 537+/-59.3 J vs. 514.9+/-66.0 J; p< or =0.01). These results suggested that a better synchronization between the upper and lower limbs could increase the efficiency of pushing phase on the blocks. Besides, to understand low interindividual variances in the sprint start performance in elite athletes, a 3D complete body kinematic analysis shall be used. PMID:20226465

  11. A 3D CZT high resolution detector for x- and gamma-ray astronomy

    DEFF Research Database (Denmark)

    Kuvvetli, Irfan; Budtz-Jørgensen, Carl; Zappettini, A.;

    2014-01-01

    At DTU Space we have developed a high resolution three dimensional (3D) position sensitive CZT detector for high energy astronomy. The design of the 3D CZT detector is based on the CZT Drift Strip detector principle. The position determination perpendicular to the anode strips is performed using...

  12. Ultra-compact, High Resolution, LADAR system for 3D Imaging Project

    Data.gov (United States)

    National Aeronautics and Space Administration — SiWave proposes to develop an innovative, ultra-compact, high resolution, long range LADAR system to produce a 3D map of the exterior of any object in space such as...

  13. Methodology of High Accuracy and Resolution 3D Geological Model Generation and Application

    Institute of Scientific and Technical Information of China (English)

    吴键; 曹代勇; 邓爱居; 李东津; 蒋涛; 翟光华

    2004-01-01

    By generating a high accuracy and high resolution geological model in Liuchu oil field, the technique of geological modeling is expanded and involved in primary geological study, making the sand bodies and reservoir be easily described in detail. The 3D visualization and 3D interactive editing of geological structure model are the key for modeling procedure. And a high accuracy and resolution geological model has been well applied in optimizing the production scheme.

  14. Dual-projection 3D-2D registration for surgical guidance: preclinical evaluation of performance and minimum angular separation

    Science.gov (United States)

    Uneri, A.; Otake, Y.; Wang, A. S.; Kleinszig, G.; Vogt, S.; Gallia, G. L.; Rigamonti, D.; Wolinsky, J.-P.; Gokaslan, Ziya L.; Khanna, A. J.; Siewerdsen, J. H.

    2014-03-01

    An algorithm for 3D-2D registration of CT and x-ray projections has been developed using dual projection views to provide 3D localization with accuracy exceeding that of conventional tracking systems. The registration framework employs a normalized gradient information (NGI) similarity metric and covariance matrix adaptation evolution strategy (CMAES) to solve for the patient pose in 6 degrees of freedom. Registration performance was evaluated in anthropomorphic head and chest phantoms, as well as a human torso cadaver, using C-arm projection views acquired at angular separations (Δ𝜃) ranging 0-178°. Registration accuracy was assessed in terms target registration error (TRE) and compared to that of an electromagnetic tracker. Studies evaluated the influence of C-arm magnification, x-ray dose, and preoperative CT slice thickness on registration accuracy and the minimum angular separation required to achieve TRE ~2 mm. The results indicate that Δ𝜃 as small as 10-20° is adequate to achieve TRE <2 mm with 95% confidence, comparable or superior to that of commercial trackers. The method allows direct registration of preoperative CT and planning data to intraoperative fluoroscopy, providing 3D localization free from conventional limitations associated with external fiducial markers, stereotactic frames, trackers, and manual registration. The studies support potential application to percutaneous spine procedures and intracranial neurosurgery.

  15. Spatial resolution of the HRRT PET scanner using 3D-OSEM PSF reconstruction

    DEFF Research Database (Denmark)

    Olesen, Oline Vinter; Sibomana, Merence; Keller, Sune Høgild;

    2009-01-01

    The spatial resolution of the Siemens High Resolution Research Tomograph (HRRT) dedicated brain PET scanner installed at Copenhagen University Hospital (Rigshospitalet) was measured using a point-source phantom with high statistics. Further, it was demonstrated how the newly developed 3D-OSEM PSF...

  16. High-resolution MRI of the labyrinth. Optimization of scan parameters with 3D-FSE

    International Nuclear Information System (INIS)

    The aim of our study was to optimize the parameters of high-resolution MRI of the labyrinth with a 3D fast spin-echo (3D-FSE) sequence. We investigated repetition time (TR), echo time (TE), Matrix, field of view (FOV), and coil selection in terms of CNR (contrast-to-noise ratio) and SNR (signal-to-noise ratio) by comparing axial images and/or three-dimensional images. The optimal 3D-FSE sequence parameters were as follows: 1.5 Tesla MR unit (Signa LX, GE Medical Systems), 3D-FSE sequence, dual 3-inch surface coil, acquisition time=12.08 min, TR=5000 msec, TE=300 msec, 3 number of excitations (NEX), FOV=12 cm, matrix=256 x 256, slice thickness=0.5 mm/0.0 sp, echo train=64, bandwidth=±31.5 kHz. High-resolution MRI of the labyrinth using the optimized 3D-FSE sequence parameters permits visualization of important anatomic details (such as scala tympani and scala vestibuli), making it possible to determine inner ear anomalies and the patency of cochlear turns. To obtain excellent heavily T2-weighted axial and three-dimensional images in the labyrinth, high CNR, SNR, and spatial resolution are significant factors at the present time. Furthermore, it is important not only to optimize the scan parameters of 3D-FSE but also to select an appropriate coil for high-resolution MRI of the labyrinth. (author)

  17. Symmetry-Based Conflict Detection and Resolution Method towards Web3D-based Collaborative Design

    Directory of Open Access Journals (Sweden)

    Mingjiu Yu

    2016-05-01

    Full Text Available In the process of web3D-based collaborative design, it is necessary to completely prevent operation conflicts among designers due to distributed environments and complex 3D models. Therefore, conflict detection and conflict resolution are of great significance to attain an acceptable result. In order to facilitate effective and smooth design work, a symmetry-based collaborative design framework is proposed using the X3D operation models. Combined considerations cover both models and operations, while different operation strategies are utilized for conflict resolution in web-based collaborative design. The strategy can achieve automatic operation, real-time conflict detection based on dynamically adjustable time, and conflict auto-detection and resolution with designers’ customization. A proof-of-concept system is developed for verification. The proposed resolution shows good performance, scalability and interactivity in a case study.

  18. 3D resolution enhancement of deep-tissue imaging based on virtual spatial overlap modulation microscopy.

    Science.gov (United States)

    Su, I-Cheng; Hsu, Kuo-Jen; Shen, Po-Ting; Lin, Yen-Yin; Chu, Shi-Wei

    2016-07-25

    During the last decades, several resolution enhancement methods for optical microscopy beyond diffraction limit have been developed. Nevertheless, those hardware-based techniques typically require strong illumination, and fail to improve resolution in deep tissue. Here we develop a high-speed computational approach, three-dimensional virtual spatial overlap modulation microscopy (3D-vSPOM), which immediately solves the strong-illumination issue. By amplifying only the spatial frequency component corresponding to the un-scattered point-spread-function at focus, plus 3D nonlinear value selection, 3D-vSPOM shows significant resolution enhancement in deep tissue. Since no iteration is required, 3D-vSPOM is much faster than iterative deconvolution. Compared to non-iterative deconvolution, 3D-vSPOM does not need a priori information of point-spread-function at deep tissue, and provides much better resolution enhancement plus greatly improved noise-immune response. This method is ready to be amalgamated with two-photon microscopy or other laser scanning microscopy to enhance deep-tissue resolution. PMID:27464077

  19. 3D High Resolution l1-SPIRiT Reconstruction on Gadgetron based Cloud

    DEFF Research Database (Denmark)

    Xue, Hui; Kelmann, Peter; Inati, Souheil;

    framework to support distributed computing in a cloud environment. This extension is named GT-Plus. A cloud version of 3D l1-SPIRiT was implemented on the GT-Plus framework. We demonstrate that a 3mins reconstruction could be achieved for 1mm3 isotropic resolution neuro scans with significantly improved......Applying non-linear reconstruction to high resolution 3D MRI is challenging because of the lengthy computing time needed for those iterative algorithms. To achieve practical processing duration to enable clinical usage of non-linear reconstruction, we have extended previously published Gadgetron...

  20. Generalized recovery algorithm for 3D super-resolution microscopy using rotating point spread functions

    Science.gov (United States)

    Shuang, Bo; Wang, Wenxiao; Shen, Hao; Tauzin, Lawrence J.; Flatebo, Charlotte; Chen, Jianbo; Moringo, Nicholas A.; Bishop, Logan D. C.; Kelly, Kevin F.; Landes, Christy F.

    2016-01-01

    Super-resolution microscopy with phase masks is a promising technique for 3D imaging and tracking. Due to the complexity of the resultant point spread functions, generalized recovery algorithms are still missing. We introduce a 3D super-resolution recovery algorithm that works for a variety of phase masks generating 3D point spread functions. A fast deconvolution process generates initial guesses, which are further refined by least squares fitting. Overfitting is suppressed using a machine learning determined threshold. Preliminary results on experimental data show that our algorithm can be used to super-localize 3D adsorption events within a porous polymer film and is useful for evaluating potential phase masks. Finally, we demonstrate that parallel computation on graphics processing units can reduce the processing time required for 3D recovery. Simulations reveal that, through desktop parallelization, the ultimate limit of real-time processing is possible. Our program is the first open source recovery program for generalized 3D recovery using rotating point spread functions. PMID:27488312

  1. Generalized recovery algorithm for 3D super-resolution microscopy using rotating point spread functions.

    Science.gov (United States)

    Shuang, Bo; Wang, Wenxiao; Shen, Hao; Tauzin, Lawrence J; Flatebo, Charlotte; Chen, Jianbo; Moringo, Nicholas A; Bishop, Logan D C; Kelly, Kevin F; Landes, Christy F

    2016-01-01

    Super-resolution microscopy with phase masks is a promising technique for 3D imaging and tracking. Due to the complexity of the resultant point spread functions, generalized recovery algorithms are still missing. We introduce a 3D super-resolution recovery algorithm that works for a variety of phase masks generating 3D point spread functions. A fast deconvolution process generates initial guesses, which are further refined by least squares fitting. Overfitting is suppressed using a machine learning determined threshold. Preliminary results on experimental data show that our algorithm can be used to super-localize 3D adsorption events within a porous polymer film and is useful for evaluating potential phase masks. Finally, we demonstrate that parallel computation on graphics processing units can reduce the processing time required for 3D recovery. Simulations reveal that, through desktop parallelization, the ultimate limit of real-time processing is possible. Our program is the first open source recovery program for generalized 3D recovery using rotating point spread functions. PMID:27488312

  2. Generalized recovery algorithm for 3D super-resolution microscopy using rotating point spread functions

    Science.gov (United States)

    Shuang, Bo; Wang, Wenxiao; Shen, Hao; Tauzin, Lawrence J.; Flatebo, Charlotte; Chen, Jianbo; Moringo, Nicholas A.; Bishop, Logan D. C.; Kelly, Kevin F.; Landes, Christy F.

    2016-08-01

    Super-resolution microscopy with phase masks is a promising technique for 3D imaging and tracking. Due to the complexity of the resultant point spread functions, generalized recovery algorithms are still missing. We introduce a 3D super-resolution recovery algorithm that works for a variety of phase masks generating 3D point spread functions. A fast deconvolution process generates initial guesses, which are further refined by least squares fitting. Overfitting is suppressed using a machine learning determined threshold. Preliminary results on experimental data show that our algorithm can be used to super-localize 3D adsorption events within a porous polymer film and is useful for evaluating potential phase masks. Finally, we demonstrate that parallel computation on graphics processing units can reduce the processing time required for 3D recovery. Simulations reveal that, through desktop parallelization, the ultimate limit of real-time processing is possible. Our program is the first open source recovery program for generalized 3D recovery using rotating point spread functions.

  3. Spatial resolution limits for the isotropic-3D PET detector X’tal cube

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Eiji, E-mail: rush@nirs.go.jp; Tashima, Hideaki; Hirano, Yoshiyuki; Inadama, Naoko; Nishikido, Fumihiko; Murayama, Hideo; Yamaya, Taiga

    2013-11-11

    Positron emission tomography (PET) has become a popular imaging method in metabolism, neuroscience, and molecular imaging. For dedicated human brain and small animal PET scanners, high spatial resolution is needed to visualize small objects. To improve the spatial resolution, we are developing the X’tal cube, which is our new PET detector to achieve isotropic 3D positioning detectability. We have shown that the X’tal cube can achieve 1 mm{sup 3} uniform crystal identification performance with the Anger-type calculation even at the block edges. We plan to develop the X’tal cube with even smaller 3D grids for sub-millimeter crystal identification. In this work, we investigate spatial resolution of a PET scanner based on the X’tal cube using Monte Carlo simulations for predicting resolution performance in smaller 3D grids. For spatial resolution evaluation, a point source emitting 511 keV photons was simulated by GATE for all physical processes involved in emission and interaction of positrons. We simulated two types of animal PET scanners. The first PET scanner had a detector ring 14.6 cm in diameter composed of 18 detectors. The second PET scanner had a detector ring 7.8 cm in diameter composed of 12 detectors. After the GATE simulations, we converted the interacting 3D position information to digitalized positions for realistic segmented crystals. We simulated several X’tal cubes with cubic crystals from (0.5 mm){sup 3} to (2 mm){sup 3} in size. Also, for evaluating the effect of DOI resolution, we simulated several X’tal cubes with crystal thickness from (0.5 mm){sup 3} to (9 mm){sup 3}. We showed that sub-millimeter spatial resolution was possible using cubic crystals smaller than (1.0 mm){sup 3} even with the assumed physical processes. Also, the weighted average spatial resolutions of both PET scanners with (0.5 mm){sup 3} cubic crystals were 0.53 mm (14.6 cm ring diameter) and 0.48 mm (7.8 cm ring diameter). For the 7.8 cm ring diameter, spatial

  4. Array diagnostics, spatial resolution, and filtering of undesired radiation with the 3D reconstruction algorithm

    DEFF Research Database (Denmark)

    Cappellin, C.; Pivnenko, Sergey; Jørgensen, E.;

    2013-01-01

    This paper focuses on three important features of the 3D reconstruction algorithm of DIATOOL: the identification of array elements improper functioning and failure, the obtainable spatial resolution of the reconstructed fields and currents, and the filtering of undesired radiation and scattering...

  5. 3-D Rat Brain Phantom for High-Resolution Molecular Imaging

    NARCIS (Netherlands)

    F.J. Beekman; B. Vastenhouw; G. van der Wilt; M. Vervloet; R. Visscher; J. Booij; M. Gerrits; C. Ji; R. Ramakers; F. van der Have

    2009-01-01

    With the steadily improving resolution of novel small-animal single photon emission computed tomography (SPECT) and positron emission tomography devices, highly detailed phantoms are required for testing and optimizing these systems. We present a three-dimensional (3-D) digital and physical phantom

  6. iBem3D, a three-dimensional iterative boundary element method using angular dislocations for modeling geologic structures

    Science.gov (United States)

    Maerten, F.; Maerten, L.; Pollard, D. D.

    2014-11-01

    Most analytical solutions to engineering or geological problems are limited to simple geometries. For example, analytical solutions have been found to solve for stresses around a circular hole in a plate. To solve more complex problems, mathematicians and engineers have developed powerful computer-aided numerical methods, which can be categorized into two main types: differential methods and integral methods. The finite element method (FEM) is a differential method that was developed in the 1950s and is one of the most commonly used numerical methods today. Since its development, other differential methods, including the boundary element method (BEM), have been developed to solve different types of problems. The purpose of this paper is to describe iBem3D, formally called Poly3D, a C++ and modular 3D boundary element computer program based on the theory of angular dislocations for modeling three-dimensional (3D) discontinuities in an elastic, heterogeneous, isotropic whole- or half-space. After 20 years and more than 150 scientific publications, we present in detail the formulation behind this method, its enhancements over the years as well as some important applications in several domains of the geosciences. The main advantage of using this formulation, for describing geological objects such as faults, resides in the possibility of modeling complex geometries without gaps and overlaps between adjacent triangular dislocation elements, which is a significant shortcoming for models using rectangular dislocation elements. Reliability, speed, simplicity, and accuracy are enhanced in the latest version of the computer code. Industrial applications include subseismic fault modeling, fractured reservoir modeling, interpretation and validation of fault connectivity and reservoir compartmentalization, depleted area and fault reactivation, and pressurized wellbore stability. Academic applications include earthquake and volcano monitoring, hazard mitigation, and slope

  7. Development of a High Resolution 3D Infant Stomach Model for Surgical Planning

    Science.gov (United States)

    Chaudry, Qaiser; Raza, S. Hussain; Lee, Jeonggyu; Xu, Yan; Wulkan, Mark; Wang, May D.

    Medical surgical procedures have not changed much during the past century due to the lack of accurate low-cost workbench for testing any new improvement. The increasingly cheaper and powerful computer technologies have made computer-based surgery planning and training feasible. In our work, we have developed an accurate 3D stomach model, which aims to improve the surgical procedure that treats the infant pediatric and neonatal gastro-esophageal reflux disease (GERD). We generate the 3-D infant stomach model based on in vivo computer tomography (CT) scans of an infant. CT is a widely used clinical imaging modality that is cheap, but with low spatial resolution. To improve the model accuracy, we use the high resolution Visible Human Project (VHP) in model building. Next, we add soft muscle material properties to make the 3D model deformable. Then we use virtual reality techniques such as haptic devices to make the 3D stomach model deform upon touching force. This accurate 3D stomach model provides a workbench for testing new GERD treatment surgical procedures. It has the potential to reduce or eliminate the extensive cost associated with animal testing when improving any surgical procedure, and ultimately, to reduce the risk associated with infant GERD surgery.

  8. 3D multicolor super-resolution imaging offers improved accuracy in neuron tracing.

    Directory of Open Access Journals (Sweden)

    Melike Lakadamyali

    Full Text Available The connectivity among neurons holds the key to understanding brain function. Mapping neural connectivity in brain circuits requires imaging techniques with high spatial resolution to facilitate neuron tracing and high molecular specificity to mark different cellular and molecular populations. Here, we tested a three-dimensional (3D, multicolor super-resolution imaging method, stochastic optical reconstruction microscopy (STORM, for tracing neural connectivity using cultured hippocampal neurons obtained from wild-type neonatal rat embryos as a model system. Using a membrane specific labeling approach that improves labeling density compared to cytoplasmic labeling, we imaged neural processes at 44 nm 2D and 116 nm 3D resolution as determined by considering both the localization precision of the fluorescent probes and the Nyquist criterion based on label density. Comparison with confocal images showed that, with the currently achieved resolution, we could distinguish and trace substantially more neuronal processes in the super-resolution images. The accuracy of tracing was further improved by using multicolor super-resolution imaging. The resolution obtained here was largely limited by the label density and not by the localization precision of the fluorescent probes. Therefore, higher image resolution, and thus higher tracing accuracy, can in principle be achieved by further improving the label density.

  9. X-Ray Nanofocus CT: Visualising Of Internal 3D-Structures With Submicrometer Resolution

    Science.gov (United States)

    Weinekoetter, Christian

    2008-09-01

    High-resolution X-ray Computed Tomography (CT) allows the visualization and failure analysis of the internal micro structure of objects—even if they have complicated 3D-structures where 2D X-ray microscopy would give unclear information. During the past several years, computed tomography has progressed to higher resolution and quicker reconstruction of the 3D-volume. Most recently it even allows a three-dimensional look into the inside of materials with submicron resolution. With the use of nanofocus® tube technology, nanoCT®-systems are pushing forward into application fields that were exclusive to high cost and rare available synchrotron techniques. The study was performed with the new nanotom, a very compact laboratory system which allows the analysis of samples up to 120 mm in diameter and weighing up to 1 kg with exceptional voxel-resolution down to click, this technique will substitute destructive mechanical slicing and cutting in many applications. The initial CT results obtained with the nanotom® demonstrate that it is now possible to analyze the three-dimensional micro structure of materials and small objects with submicrometer resolution. Any internal difference in material, density or porosity within a sample can be visualized and data like distances can be measured. NanoCT® widely expands the spectrum of detectable micro-structures. The nanotom® opens a new dimension of 3D-microanalysis and will replace more destructive methods—saving costs and time per sample inspected.

  10. Single-pixel 3D imaging with time-based depth resolution

    CERN Document Server

    Sun, Ming-Jie; Gibson, Graham M; Sun, Baoqing; Radwell, Neal; Lamb, Robert; Padgett, Miles J

    2016-01-01

    Time-of-flight three dimensional imaging is an important tool for many applications, such as object recognition and remote sensing. Unlike conventional imaging approach using pixelated detector array, single-pixel imaging based on projected patterns, such as Hadamard patterns, utilises an alternative strategy to acquire information with sampling basis. Here we show a modified single-pixel camera using a pulsed illumination source and a high-speed photodiode, capable of reconstructing 128x128 pixel resolution 3D scenes to an accuracy of ~3 mm at a range of ~5 m. Furthermore, we demonstrate continuous real-time 3D video with a frame-rate up to 12 Hz. The simplicity of the system hardware could enable low-cost 3D imaging devices for precision ranging at wavelengths beyond the visible spectrum.

  11. Inclusion of high resolution MODIS maps on a 3D tropospheric water vapor GPS tomography model

    Science.gov (United States)

    Benevides, Pedro; Catalao, Joao; Nico, Giovanni; Miranda, Pedro M. A.

    2015-10-01

    Observing the water vapor distribution on the troposphere remains a challenge for the weather forecast. Radiosondes provide precise water vapor profiles of the troposphere, but lack geographical and temporal coverage, while satellite meteorological maps have good spatial resolution but even poorer temporal resolution. GPS has proved its capacity to measure the integrated water vapor in all weather conditions with high temporal sampling frequency. However these measurements lack a vertical water vapor discretization. Reconstruction of the slant path GPS observation to the satellite allows oblique water vapor measurements. Implementation of a 3D grid of voxels along the troposphere over an area where GPS stations are available enables the observation ray tracing. A relation between the water vapor density and the distanced traveled inside the voxels is established, defining GPS tomography. An inverse problem formulation is needed to obtain a water vapor solution. The combination of precipitable water vapor (PWV) maps obtained from MODIS satellite data with the GPS tomography is performed in this work. The MODIS PWV maps can have 1 or 5 km pixel resolution, being obtained 2 times per day in the same location at most. The inclusion of MODIS PWV maps provides an enhanced horizontal resolution for the tomographic solution and benefits the stability of the inversion problem. A 3D tomographic grid was adjusted over a regional area covering Lisbon, Portugal, where a GNSS network of 9 receivers is available. Radiosonde measurements in the area are used to evaluate the 3D water vapor tomography maps.

  12. Correction of a Depth-Dependent Lateral Distortion in 3D Super-Resolution Imaging.

    Directory of Open Access Journals (Sweden)

    Lina Carlini

    Full Text Available Three-dimensional (3D localization-based super-resolution microscopy (SR requires correction of aberrations to accurately represent 3D structure. Here we show how a depth-dependent lateral shift in the apparent position of a fluorescent point source, which we term `wobble`, results in warped 3D SR images and provide a software tool to correct this distortion. This system-specific, lateral shift is typically > 80 nm across an axial range of ~ 1 μm. A theoretical analysis based on phase retrieval data from our microscope suggests that the wobble is caused by non-rotationally symmetric phase and amplitude aberrations in the microscope's pupil function. We then apply our correction to the bacterial cytoskeletal protein FtsZ in live bacteria and demonstrate that the corrected data more accurately represent the true shape of this vertically-oriented ring-like structure. We also include this correction method in a registration procedure for dual-color, 3D SR data and show that it improves target registration error (TRE at the axial limits over an imaging depth of 1 μm, yielding TRE values of < 20 nm. This work highlights the importance of correcting aberrations in 3D SR to achieve high fidelity between the measurements and the sample.

  13. User-Appropriate Viewer for High Resolution Interactive Engagement with 3d Digital Cultural Artefacts

    Science.gov (United States)

    Gillespie, D.; La Pensée, A.; Cooper, M.

    2013-07-01

    Three dimensional (3D) laser scanning is an important documentation technique for cultural heritage. This technology has been adopted from the engineering and aeronautical industry and is an invaluable tool for the documentation of objects within museum collections (La Pensée, 2008). The datasets created via close range laser scanning are extremely accurate and the created 3D dataset allows for a more detailed analysis in comparison to other documentation technologies such as photography. The dataset can be used for a range of different applications including: documentation; archiving; surface monitoring; replication; gallery interactives; educational sessions; conservation and visualization. However, the novel nature of a 3D dataset is presenting a rather unique challenge with respect to its sharing and dissemination. This is in part due to the need for specialised 3D software and a supported graphics card to display high resolution 3D models. This can be detrimental to one of the main goals of cultural institutions, which is to share knowledge and enable activities such as research, education and entertainment. This has limited the presentation of 3D models of cultural heritage objects to mainly either images or videos. Yet with recent developments in computer graphics, increased internet speed and emerging technologies such as Adobe's Stage 3D (Adobe, 2013) and WebGL (Khronos, 2013), it is now possible to share a dataset directly within a webpage. This allows website visitors to interact with the 3D dataset allowing them to explore every angle of the object, gaining an insight into its shape and nature. This can be very important considering that it is difficult to offer the same level of understanding of the object through the use of traditional mediums such as photographs and videos. Yet this presents a range of problems: this is a very novel experience and very few people have engaged with 3D objects outside of 3D software packages or games. This paper

  14. Markerless 3D Head Tracking for Motion Correction in High Resolution PET Brain Imaging

    DEFF Research Database (Denmark)

    Olesen, Oline Vinter

    This thesis concerns application specific 3D head tracking. The purpose is to improve motion correction in position emission tomography (PET) brain imaging through development of markerless tracking. Currently, motion correction strategies are based on either the PET data itself or tracking devices...... images. Incorrect motion correction can in the worst cases result in wrong diagnosis or treatment. The evolution of a markerless custom-made structured light 3D surface tracking system is presented. The system is targeted at state-of-the-art high resolution dedicated brain PET scanners with a resolution...... of a few millimeters. Stateof- the-art hardware and software solutions are integrated into an operational device. This novel system is tested against a commercial tracking system popular in PET brain imaging. Testing and demonstrations are carried out in clinical settings. A compact markerless tracking...

  15. Towards high resolution mapping of 3-D mesoscale dynamics from observations

    Directory of Open Access Journals (Sweden)

    B. Buongiorno Nardelli

    2012-10-01

    Full Text Available The MyOcean R&D project MESCLA (MEsoSCaLe dynamical Analysis through combined model, satellite and in situ data was devoted to the high resolution 3-D retrieval of tracer and velocity fields in the oceans, based on the combination of in situ and satellite observations and quasi-geostrophic dynamical models. The retrieval techniques were also tested and compared with the output of a primitive equation model, with particular attention to the accuracy of the vertical velocity field as estimated through the Q vector formulation of the omega equation. The project focused on a test case, covering the region where the Gulf Stream separates from the US East Coast. This work demonstrated that innovative methods for the high resolution mapping of 3-D mesoscale dynamics from observations can be used to build the next generations of operational observation-based products.

  16. How to get spatial resolution inside probe volumes of commercial 3D LDA systems

    Energy Technology Data Exchange (ETDEWEB)

    Strunck, V.; Sodomann, T.; Mueller, H.; Dopheide, D. [Section of Fluid Flow Measuring Techniques, Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116, Braunschweig (Germany)

    2004-01-01

    In laser Doppler anemometry (LDA) it is often the aim to determine the velocity profile for a given fluid flow. The spatial resolution of such velocity profiles is limited in principal by the size of the probe volume. The method of using time of flight data from two probe volumes allows improvements of the spatial resolution by at least one order of magnitude and measurements of small-scale velocity profiles inside the measuring volume along the optical axis of commercial available 3D anemometers without moving the probe. No change of the optical set-up is necessary. An increased spatial resolution helps to acquire more precise data in areas where the flow velocity changes rapidly as shown in the vicinity of the stagnation point of a cuboid. In the overlapping region of three measuring volumes a spatially resolved 3D velocity vector profile is obtained in the direction of the optical axis in near plane flow conditions. In plane laminar flows the probe volume is extended by a few millimetres. The limitation of the method to a plane flow is that it would require a two-component LDA in a very special off-axis arrangement, but this arrangement is available in most commercial 3D systems. (orig.)

  17. P-Cable: New High-Resolution 3D Seismic Acquisition Technology

    Science.gov (United States)

    Planke, Sverre; Berndt, Christian; Mienert, Jürgen; Bünz, Stefan; Eriksen, Frode N.; Eriksen, Ola K.

    2010-05-01

    We have developed a new cost-efficient technology for acquisition of high-resolution 3D seismic data: the P-Cable system. This technology is very well suited for deep water exploration, site surveys, and studies of shallow gas and fluid migration associated with gas hydrates or leaking reservoirs. It delivers unparalleled 3D seismic images of subsurface sediment architectures. The P-Cable system consists of a seismic cable towed perpendicular to a vessel's steaming direction. This configuration allows us to image an up to 150 m wide swath of the sub-surface for each sail line. Conventional 3D seismic technology relies on several very long streamers (up to 10 km long streamers are common), large sources, and costly operations. In contrast, the P-Cable system is light-weight and fast to deploy from small vessels. Only a small source is required as the system is made for relatively shallow imaging, typically above the first water-bottom multiple. The P-Cable system is particularly useful for acquisition of small 3D cubes, 10-50 km2, in focus areas, rather than extensive mapping of large regions. The rapid deployment and recovery of the system makes it possible to acquire several small cubes (10 to 30 km2) with high-resolution (50-250 Hz) seismic data in during one cruise. The first development of the P-Cable system was a cooperative project achieved by Volcanic Basin Petroleum Research (VBPR), University of Tromsø, National Oceanography Centre, Southampton, and industry partners. Field trials using a 12-streamer system were conducted on sites with active fluid-leakage systems on the Norwegian-Barents-Svalbard margin, the Gulf of Cadiz, and the Mediterranean. The second phase of the development introduced digital streamers. The new P-Cable2 system also includes integrated tow and cross cables for power and data transmission and improved doors to spread the larger cross cable. This digital system has been successfully used during six cruises by the University of Troms

  18. A 3D HIDAC-PET camera with sub-millimeter resolution for imaging small animals

    International Nuclear Information System (INIS)

    A HIDAC-PET camera consisting essentially of 5 million 0.5 mm gas avalanching detectors has been constructed for small-animal imaging. The particular HIDAC advantage--a high 3D spatial resolution--has been improved to 0.95 mm fwhm and to 0.7 mm fwhm when reconstructing with 3D-OSEM methods incorporating resolution recovery. A depth-of-interaction resolution of 2.5 mm is implicit, due to the laminar construction. Scatter-corrected sensitivity, at 8.9 cps/kBq (i.e. 0.9%) from a central point source, or 7.2 cps/kBq (543 cps/kBq/cm3) from a distributed (40 mm diameter, 60 mm long) source is now much higher than previous, and other, work. A field-of-view of 100 mm (adjustable to 200 mm) diameter by 210 mm axially permits whole-body imaging of small animals, containing typically 4MBqs of activity, at 40 kcps of which 16% are random coincidences, with a typical scatter fraction of 44%. Throughout the field-of-view there are no positional distortions and relative quantitation is uniform to ± 3.5%, but some variation of spatial resolution is found. The performance demonstrates that HIDAC technology is quite appropriate for small-animal PET cameras

  19. 3D cut-cell modelling for high-resolution atmospheric simulations

    CERN Document Server

    Yamazaki, H; Nikiforakis, N

    2015-01-01

    With the recent, rapid development of computer technology, the resolution of atmospheric numerical models has increased substantially. As a result, steep gradients in mountainous terrain are now being resolved in high-resolution models. This results in large truncation errors in those models using terrain-following coordinates. In this study, a new 3D Cartesian coordinate non-hydrostatic atmospheric model is developed. A cut-cell representation of topography based on finite-volume discretization is combined with a cell-merging approach, in which small cut-cells are merged with neighboring cells either vertically or horizontally. In addition, a block-structured mesh-refinement technique achieves a variable resolution on the model grid with the finest resolution occurring close to the terrain surface. The model successfully reproduces a flow over a 3D bell-shaped hill that shows a good agreement with the flow predicted by the linear theory. The ability of the model to simulate flows over steep terrain is demons...

  20. Blind 3D Model Watermarking Based on Multi-Resolution Representation and Fuzzy Logic

    CERN Document Server

    Tamane, Sharvari C

    2012-01-01

    Insertion of a text message, audio data or/and an image into another image or 3D model is called as a watermarking process. Watermarking has variety of applications like: Copyright Protection, Owner Identification, Copy Protection and Data Hiding etc., depending upon the type of watermark insertion algorithm. Watermark remains in the content after applying various attacks without any distortions. The blind watermarking method used in the system is based on a wavelet transform, a fuzzy inference system and a multi-resolution representation (MRR) of the 3d model. The watermark scrambled by Arnold Transform is embedded in the wavelet coefficients at third resolution level of the MRR. Fuzzy logic approach used in the method makes it to approximate the best possible gain with an accurate scaling factor so that the watermark remains invisible. The fuzzy input variables are computed for each wavelet coefficient in the 3D model. The output of the fuzzy system is a single value which is a perceptual value for each cor...

  1. Angular resolution of space-based gravitational wave detectors

    International Nuclear Information System (INIS)

    Proposed space-based gravitational wave antennas involve satellites arrayed either in an equilateral triangle around the Earth in the ecliptic plane (the ecliptic-plane option) or in an equilateral triangle orbiting the Sun in such a way that the plane of the triangle is tilted at 60 deg, relative to the ecliptic (the precessing-plane option). In this paper, we explore the angular resolution of these two classes of detectors for two kinds of sources (essentially monochromatic compact binaries and coalescing massive-black-hole binaries) using time-domain expressions for the gravitational waveform that are accurate to 4/2 PN order. Our results display an interesting effect not previously reported in the literature, and particularly underline the importance of including the higher-order PN terms in the waveform when predicting the angular resolution of ecliptic-plane detector arrays

  2. High-resolution 3D X-ray imaging of intracranial nitinol stents

    Energy Technology Data Exchange (ETDEWEB)

    Snoeren, Rudolph M.; With, Peter H.N. de [Eindhoven University of Technology (TU/e), Faculty Electrical Engineering, Signal Processing Systems group (SPS), Eindhoven (Netherlands); Soederman, Michael [Karolinska University Hospital, Department of Neuroradiology, Stockholm (Sweden); Kroon, Johannes N.; Roijers, Ruben B.; Babic, Drazenko [Philips Healthcare, Best (Netherlands)

    2012-02-15

    To assess an optimized 3D imaging protocol for intracranial nitinol stents in 3D C-arm flat detector imaging. For this purpose, an image quality simulation and an in vitro study was carried out. Nitinol stents of various brands were placed inside an anthropomorphic head phantom, using iodine contrast. Experiments with objects were preceded by image quality and dose simulations. We varied X-ray imaging parameters in a commercially interventional X-ray system to set 3D image quality in the contrast-noise-sharpness space. Beam quality was varied to evaluate contrast of the stents while keeping absorbed dose below recommended values. Two detector formats were used, paired with an appropriate pixel size and X-ray focus size. Zoomed reconstructions were carried out and snapshot images acquired. High contrast spatial resolution was assessed with a CT phantom. We found an optimal protocol for imaging intracranial nitinol stents. Contrast resolution was optimized for nickel-titanium-containing stents. A high spatial resolution larger than 2.1 lp/mm allows struts to be visualized. We obtained images of stents of various brands and a representative set of images is shown. Independent of the make, struts can be imaged with virtually continuous strokes. Measured absorbed doses are shown to be lower than 50 mGy Computed Tomography Dose Index (CTDI). By balancing the modulation transfer of the imaging components and tuning the high-contrast imaging capabilities, we have shown that thin nitinol stent wires can be reconstructed with high contrast-to-noise ratio and good detail, while keeping radiation doses within recommended values. Experimental results compare well with imaging simulations. (orig.)

  3. A 3D high-resolution gamma camera for radiopharmaceutical studies with small animals

    CERN Document Server

    Loudos, G K; Giokaris, N D; Styliaris, E; Archimandritis, S C; Varvarigou, A D; Papanicolas, C N; Majewski, S; Weisenberger, D; Pani, R; Scopinaro, F; Uzunoglu, N K; Maintas, D; Stefanis, K

    2003-01-01

    The results of studies conducted with a small field of view tomographic gamma camera based on a Position Sensitive Photomultiplier Tube are reported. The system has been used for the evaluation of radiopharmaceuticals in small animals. Phantom studies have shown a spatial resolution of 2 mm in planar and 2-3 mm in tomographic imaging. Imaging studies in mice have been carried out both in 2D and 3D. Conventional radiopharmaceuticals have been used and the results have been compared with images from a clinically used system.

  4. Sparse Bayesian framework applied to 3D super-resolution reconstruction in fetal brain MRI

    Science.gov (United States)

    Becerra, Laura C.; Velasco Toledo, Nelson; Romero Castro, Eduardo

    2015-01-01

    Fetal Magnetic Resonance (FMR) is an imaging technique that is becoming increasingly important as allows assessing brain development and thus make an early diagnostic of congenital abnormalities, spatial resolution is limited by the short acquisition time and the unpredictable fetus movements, in consequence the resulting images are characterized by non-parallel projection planes composed by anisotropic voxels. The sparse Bayesian representation is a flexible strategy which is able to model complex relationships. The Super-resolution is approached as a regression problem, the main advantage is the capability to learn data relations from observations. Quantitative performance evaluation was carried out using synthetic images, the proposed method demonstrates a better reconstruction quality compared with standard interpolation approach. The presented method is a promising approach to improve the information quality related with the 3-D fetal brain structure. It is important because allows assessing brain development and thus make an early diagnostic of congenital abnormalities.

  5. High-resolution 3D analysis of mouse small-intestinal stroma.

    Science.gov (United States)

    Bernier-Latmani, Jeremiah; Petrova, Tatiana V

    2016-09-01

    Here we detail a protocol for whole-mount immunostaining of mouse small-intestinal villi that can be used to generate high-resolution 3D images of all gut cell types, including blood and lymphatic vessel cells, neurons, smooth muscle cells, fibroblasts and immune cells. The procedure describes perfusion, fixation, dissection, immunostaining, mounting, clearing, confocal imaging and quantification, using intestinal vasculature as an example. As intestinal epithelial cells prevent visualization with some antibodies, we also provide an optional protocol to remove these cells before fixation. In contrast to alternative current techniques, our protocol enables the entire villus to be visualized with increased spatial resolution of cell location, morphology and cell-cell interactions, thus allowing for easy quantification of phenotypes. The technique, which takes 7 d from mouse dissection to microscopic examination, will be useful for researchers who are interested in most aspects of intestinal biology, including mucosal immunology, infection, nutrition, cancer biology and intestinal microbiota. PMID:27560169

  6. 3D imaging provides a high-resolution, volumetric approach for analyzing biofouling.

    Science.gov (United States)

    First, Matthew R; Policastro, Steven A; Strom, Matthew J; Riley, Scott C; Robbins-Wamsley, Stephanie H; Drake, Lisa A

    2014-01-01

    A volumetric approach for determining the fouling burden on surfaces is presented, consisting of a 3D camera imaging system with fine (5 μm) resolution. Panels immersed in an estuary on the southwest coast of Florida, USA were imaged and the data were used to quantify seasonal changes in the biofouling community. Test panels, which were submerged in seawater for up to one year, were analyzed before and after gentle scrubbing to quantify the biovolume of the total fouling community (ie soft and hard organisms) and the hard fouling community. Total biofouling ranged from 0.01 to 1.16 cm(3) cm(-2) throughout the immersion period; soft fouling constituted 22-87% of the total biovolume. In the future, this approach may be used to inform numerical models of fluid-surface interfaces and to evaluate, with high resolution, the morphology of fouling organisms in response to antifouling technologies.

  7. Focus Variation - A New Technology for High Resolution Optical 3D Surface Metrology

    Science.gov (United States)

    Scherer, S.

    2009-04-01

    Focus Variation - A New Technology for High Resolution Optical 3D Surface Metrology S. Scherer1, E. Cristea1, O. Huber1, A. Krenn1 1 ALICONA GmbH Graz, Austria The need for increasing accuracy is a characteristic of all geo-applications, and hence of the instruments contributing to obtaining relevant data. Small and fine sensors are being developed, measuring different parameters of our geosystem and requiring continuous validation and calibration. These sensors have often very small components (fine sensors able to sense dust, atmospheric water vapour characteristics, pressure change, gravimeters, satellite micro-components), showing complex topographies including steep flanks and having varying reflective properties. In order to get valid and reliable results, quality assurance of these instruments and sensors is required. The optical technology Focus-Variation, developed by Alicona and added in the latest draft of the upcoming ISO standard 25178, provides high resolution 3D surface metrology even at those complex topographies. The technique of Focus-Variation combines the small depth of focus of an optical system with vertical scanning to provide topographical and color information from the variation of focus. It is used for high-resolution optical 3D surface measurements. The traceable and repeatable measurement results are further being used for calibration and validation purposes. Some of the characteristics of the technology are: - Measurement of instruments / samples with steep flanks up to 80° - Measurement of materials with strongly varying reflection properties - Measurement of surfaces presenting fine (from 10nm) or strong roughness Here, we present the operating principle and possible applications of the optical 3D measurement system "InfiniteFocus", which is based on the technology of Focus-Variation and used for quality assurance in the lab and in production. With the vertical resolution of up to 10nm, InfiniteFocus yields meaningful form and

  8. High-resolution laser radar for 3D imaging in artwork cataloging, reproduction, and restoration

    Science.gov (United States)

    Ricci, Roberto; Fantoni, Roberta; Ferri de Collibus, Mario; Fornetti, Giorgio G.; Guarneri, Massimiliano; Poggi, Claudio

    2003-10-01

    A high resolution Amplitude Modulated Laser Radar (AM-LR) sensor has recently been developed, aimed at accurately reconstructing 3D digital models of real targets, either single objects or complex scenes. The sensor sounding beam can be swept linearly across the object or circularly around it, by placing the object on a controlled rotating platform, enabling to obtain respectively linear and cylindrical range maps. Both amplitude and phase shift of the modulating wave of back-scattered light are collected and processed, providing respectively a shade-free, high resolution, photographic-like picture and accurate range data in the form of a range image. The resolution of range measurements depends mainly on the laser modulation frequency, provided that the power of the backscattered light reaching the detector is at least a few nW (current best performances are ~100 μm). The complete object surface can be reconstructed from the sampled points by using specifically developed software tools. The system has been successfully applied to scan different types of real surfaces (stone, wood, alloys, bones), with relevant applications in different fields, ranging from industrial machining to medical diagnostics, to vision in hostile environments. Examples of artwork reconstructed models (pottery, marble statues) are presented and the relevance of this technology for reverse engineering applied to cultural heritage conservation and restoration are discussed. Final 3D models can be passed to numeric control machines for rapid-prototyping, exported in standard formats for CAD/CAM purposes and made available on the Internet by adopting a virtual museum paradigm, thus possibly enabling specialists to perform remote inspections on high resolution digital reproductions of hardly accessible masterpieces.

  9. Application of high resolution 2D/3D spectral induced polarization (SIP) in metalliferous ore exploration

    Science.gov (United States)

    Chen, R.; Zhao, X.; Yao, H.; He, X.; Zeng, P.; Chang, F.; Yang, Y.; Zhang, X.; Xi, X.; He, L.

    2015-12-01

    Induced polarization (IP) is a powerful tool in metalliferous ore exploration. However, there are many sources, such as clay and graphite, which can generate IP anomaly. Spectral induced polarization (SIP) measures IP response on a wide frequency range. This method provides a way to discriminate IP response generated by metalliferous ore or other objects. The best way to explore metalliferous ore is 3D SIP exploration. However, if we consider the exploration cost and efficiency, we can use SIP profiling to find an anomaly, and then use 2D/3D SIP sounding to characterize the anomaly. Based on above idea, we used a large-scale distributed SIP measurement system which can realize 800 sounding sites in one direction at the same time. This system can be used for SIP profiling, 2D/3D SIP sounding with high efficiency, high resolution, and large depth of investigation (> 1000 m). Qiushuwan copper - molybdenum deposit is located in Nanyang city, Henan province, China. It is only a middle-size deposit although over 100 holes were drilled and over 40 years of exploration were spent because of very complex geological setting. We made SIP measurement over 100 rock and ore samples to discriminate IP responses of ore and rock containing graphite. Then we carried out 7 lines of 2D SIP exploration with the depth of investigation great than 1000 m. The minimum electode spacing for potential difference is only 20 m. And we increase the spacing of current electodes at linear scale. This acquisition setting ensures high density data acquired and high quality data acquisition. Modeling and inversion result proves that we can get underground information with high resolution by our method. Our result shows that there exists a strong SIP response related to ore body in depth > 300 m. Pseudo-3D inversion of five 2D SIP sounding lines shows the location and size of IP anomaly. The new drillings based our result found a big copper-molybdenum ore body in new position with depth > 300 m and

  10. On the orbital angular momentum of Cu 3d hole states in superconducting La sub 2-x Sr sub x CuO sub 4

    Energy Technology Data Exchange (ETDEWEB)

    Pompa, M. (INFM Research Unit, Dipt. di Fisica, Rome-1 Univ. (Italy) LURE, CNRS-MEN, Univ. Paris Sud, 91 - Orsay (France)); Castrucci, P.; Li, C.; Udron, D. (INFM Research Unit, Dipt. di Fisica, Rome-1 Univ. (Italy)); Flank, A.M.; Lagarde, P. (LURE, CNRS-CEA-MEN, Univ. Paris Sud, 91 - Orsay (France)); Katayama-Yoshida, H. (Dept. of Physics, Tohoku Univ., Sendai (Japan)); Della Longa, S. (Univ. of l' Aquila (Italy)); Bianconi, A. (INFM Research Unit, Dipt. di Fisica, Rome-1 Univ. (Italy) Univ. of l' Aquila (Italy))

    1991-12-01

    The symmetry of the 3d{sup 9}L{sup *} states induced by doping has been studied in a superconducting La{sub 2-x}Sr{sub x}CuO{sub 4} (x=0.08, Tc=20 K) single crystal by polarized Cu L{sub 3}-edge X-ray absorption spectroscopy (XAS) by using synchrotron radiation. The integral of the unpolarized while line at threshold increases by 15% going from the insulating La{sub 2}CuO{sub 4} to the superconductor La{sub 1.92}Sr{sub 0.08}CuO{sub 4} due to the additional 3d{sup 9}L{sup *} states formed in the gap. The weight of the 3d{sup 9}{sub x2-y2}L{sup *} (3d{sup 9}{sub 3z2-r2}L{sup *}) states is obtained from the variation of the polarized Eperpendicular toc and Eparallelc spectra is found to be 70% (30%) of the total 3d{sup 9}L{sup *} states. These experimental resutls show that the orbital angular momentum of the 3d holes is not frozen in the m{sub l}=2(3d{sub x2-y2}) symmetry in the doped cuprate perovskite suggesting the presence of a second band with mostly 3d{sub 3z2-r2} character close to the Fermi level. (orig.).

  11. RELAP5-3D Resolution of Known Restart/Backup Issues

    Energy Technology Data Exchange (ETDEWEB)

    Mesina, George L.; Anderson, Nolan A.

    2014-12-01

    The state-of-the-art nuclear reactor system safety analysis computer program developed at the Idaho National Laboratory (INL), RELAP5-3D, continues to adapt to changes in computer hardware and software and to develop to meet the ever-expanding needs of the nuclear industry. To continue at the forefront, code testing must evolve with both code and industry developments, and it must work correctly. To best ensure this, the processes of Software Verification and Validation (V&V) are applied. Verification compares coding against its documented algorithms and equations and compares its calculations against analytical solutions and the method of manufactured solutions. A form of this, sequential verification, checks code specifications against coding only when originally written then applies regression testing which compares code calculations between consecutive updates or versions on a set of test cases to check that the performance does not change. A sequential verification testing system was specially constructed for RELAP5-3D to both detect errors with extreme accuracy and cover all nuclear-plant-relevant code features. Detection is provided through a “verification file” that records double precision sums of key variables. Coverage is provided by a test suite of input decks that exercise code features and capabilities necessary to model a nuclear power plant. A matrix of test features and short-running cases that exercise them is presented. This testing system is used to test base cases (called null testing) as well as restart and backup cases. It can test RELAP5-3D performance in both standalone and coupled (through PVM to other codes) runs. Application of verification testing revealed numerous restart and backup issues in both standalone and couple modes. This document reports the resolution of these issues.

  12. High angular resolution diffusion imaging with stimulated echoes

    DEFF Research Database (Denmark)

    Lundell, Henrik; Alexander, Daniel C; Dyrby, Tim B

    2014-01-01

    other than the diffusion gradients in the STEAM sequence contribute much greater diffusion weighting than in PGSE and lead to a disrupted experimental design. Here, we introduce a simple compensation to the STEAM acquisition that avoids the orientational bias and disrupted experiment design...... angular resolution diffusion imaging (HARDI) data were acquired with and without the proposed compensation. The data were processed to derive standard diffusion tensor imaging (DTI) maps, which highlight the need for the compensation. Ignoring the other gradient pulses, a bias in DTI parameters from STEAM...

  13. Early Earth plume-lid tectonics: A high-resolution 3D numerical modelling approach

    Science.gov (United States)

    Fischer, R.; Gerya, T.

    2016-10-01

    Geological-geochemical evidence point towards higher mantle potential temperature and a different type of tectonics (global plume-lid tectonics) in the early Earth (>3.2 Ga) compared to the present day (global plate tectonics). In order to investigate tectono-magmatic processes associated with plume-lid tectonics and crustal growth under hotter mantle temperature conditions, we conduct a series of 3D high-resolution magmatic-thermomechanical models with the finite-difference code I3ELVIS. No external plate tectonic forces are applied to isolate 3D effects of various plume-lithosphere and crust-mantle interactions. Results of the numerical experiments show two distinct phases in coupled crust-mantle evolution: (1) a longer (80-100 Myr) and relatively quiet 'growth phase' which is marked by growth of crust and lithosphere, followed by (2) a short (∼20 Myr) and catastrophic 'removal phase', where unstable parts of the crust and mantle lithosphere are removed by eclogitic dripping and later delamination. This modelling suggests that the early Earth plume-lid tectonic regime followed a pattern of episodic growth and removal also called episodic overturn with a periodicity of ∼100 Myr.

  14. CCTV Coverage Index Based on Surveillance Resolution and Its Evaluation Using 3D Spatial Analysis

    Directory of Open Access Journals (Sweden)

    Kyoungah Choi

    2015-09-01

    Full Text Available We propose a novel approach to evaluating how effectively a closed circuit television (CCTV system can monitor a targeted area. With 3D models of the target area and the camera parameters of the CCTV system, the approach produces surveillance coverage index, which is newly defined in this study as a quantitative measure for surveillance performance. This index indicates the proportion of the space being monitored with a sufficient resolution to the entire space of the target area. It is determined by computing surveillance resolution at every position and orientation, which indicates how closely a specific object can be monitored with a CCTV system. We present full mathematical derivation for the resolution, which depends on the location and orientation of the object as well as the geometric model of a camera. With the proposed approach, we quantitatively evaluated the surveillance coverage of a CCTV system in an underground parking area. Our evaluation process provided various quantitative-analysis results, compelling us to examine the design of the CCTV system prior to its installation and understand the surveillance capability of an existing CCTV system.

  15. Feasibility analysis of high resolution tissue image registration using 3-D synthetic data

    Directory of Open Access Journals (Sweden)

    Yachna Sharma

    2011-01-01

    Full Text Available Background: Registration of high-resolution tissue images is a critical step in the 3D analysis of protein expression. Because the distance between images (~4-5μm thickness of a tissue section is nearly the size of the objects of interest (~10-20μm cancer cell nucleus, a given object is often not present in both of two adjacent images. Without consistent correspondence of objects between images, registration becomes a difficult task. This work assesses the feasibility of current registration techniques for such images. Methods: We generated high resolution synthetic 3-D image data sets emulating the constraints in real data. We applied multiple registration methods to the synthetic image data sets and assessed the registration performance of three techniques (i.e., mutual information (MI, kernel density estimate (KDE method [1], and principal component analysis (PCA at various slice thicknesses (with increments of 1μm in order to quantify the limitations of each method. Results: Our analysis shows that PCA, when combined with the KDE method based on nuclei centers, aligns images corresponding to 5μm thick sections with acceptable accuracy. We also note that registration error increases rapidly with increasing distance between images, and that the choice of feature points which are conserved between slices improves performance. Conclusions: We used simulation to help select appropriate features and methods for image registration by estimating best-case-scenario errors for given data constraints in histological images. The results of this study suggest that much of the difficulty of stained tissue registration can be reduced to the problem of accurately identifying feature points, such as the center of nuclei.

  16. A High-Resolution 3D Weather Radar, MSG, and Lightning Sensor Observation Composite

    Science.gov (United States)

    Diederich, Malte; Senf, Fabian; Wapler, Kathrin; Simmer, Clemens

    2013-04-01

    Within the research group 'Object-based Analysis and SEamless prediction' (OASE) of the Hans Ertel Centre for Weather Research programme (HerZ), a data composite containing weather radar, lightning sensor, and Meteosat Second Generation observations is being developed for the use in object-based weather analysis and nowcasting. At present, a 3D merging scheme combines measurements of the Bonn and Jülich dual polarimetric weather radar systems (data provided by the TR32 and TERENO projects) into a 3-dimensional polar-stereographic volume grid, with 500 meters horizontal, and 250 meters vertical resolution. The merging takes into account and compensates for various observational error sources, such as attenuation through hydrometeors, beam blockage through topography and buildings, minimum detectable signal as a function of noise threshold, non-hydrometeor echos like insects, and interference from other radar systems. In addition to this, the effect of convection during the radar 5-minute volume scan pattern is mitigated through calculation of advection vectors from subsequent scans and their use for advection correction when projecting the measurements into space for any desired timestamp. The Meteosat Second Generation rapid scan service provides a scan in 12 spectral visual and infrared wavelengths every 5 minutes over Germany and Europe. These scans, together with the derived microphysical cloud parameters, are projected into the same polar stereographic grid used for the radar data. Lightning counts from the LINET lightning sensor network are also provided for every 2D grid pixel. The combined 3D radar and 2D MSG/LINET data is stored in a fully documented netCDF file for every 5 minute interval, and is made ready for tracking and object based weather analysis. At the moment, the 3D data only covers the Bonn and Jülich area, but the algorithms are planed to be adapted to the newly conceived DWD polarimetric C-Band 5 minute interval volume scan strategy. An

  17. Systematics in Metallicity Gradient Measurements I : Angular Resolution, Signal-to-Noise and Annuli Binning

    CERN Document Server

    Yuan, T -T; Rich, J

    2013-01-01

    With the rapid progress in metallicity gradient studies at high-redshift, it is imperative that we thoroughly understand the systematics in these measurements. This work investigates how the [NII]/Halpha ratio based metallicity gradients change with angular resolution, signal-to-noise (S/N), and annular binning parameters. Two approaches are used: 1. We downgrade the high angular resolution integral-field data of a gravitationally lensed galaxy and re-derive the metallicity gradients at different angular resolution; 2. We simulate high-redshift integral field spectroscopy (IFS) observations under different angular resolution and S/N conditions using a local galaxy with a known gradient. We find that the measured metallicity gradient changes systematically with angular resolution and annular binning. Seeing-limited observations produce significantly flatter gradients than higher angular resolution observations. There is a critical angular resolution limit beyond which the measured metallicity gradient is subst...

  18. Free-space coherent optical communication with orbital angular, momentum multiplexing/demultiplexing using a hybrid 3D photonic integrated circuit.

    Science.gov (United States)

    Guan, Binbin; Scott, Ryan P; Qin, Chuan; Fontaine, Nicolas K; Su, Tiehui; Ferrari, Carlo; Cappuzzo, Mark; Klemens, Fred; Keller, Bob; Earnshaw, Mark; Yoo, S J B

    2014-01-13

    We demonstrate free-space space-division-multiplexing (SDM) with 15 orbital angular momentum (OAM) states using a three-dimensional (3D) photonic integrated circuit (PIC). The hybrid device consists of a silica planar lightwave circuit (PLC) coupled to a 3D waveguide circuit to multiplex/demultiplex OAM states. The low excess loss hybrid device is used in individual and two simultaneous OAM states multiplexing and demultiplexing link experiments with a 20 Gb/s, 1.67 b/s/Hz quadrature phase shift keyed (QPSK) signal, which shows error-free performance for 379,960 tested bits for all OAM states.

  19. 3D high spectral and spatial resolution imaging of ex vivo mouse brain

    Energy Technology Data Exchange (ETDEWEB)

    Foxley, Sean, E-mail: sean.foxley@ndcn.ox.ac.uk; Karczmar, Gregory S. [Department of Radiology, University of Chicago, Chicago, Illinois 60637 (United States); Domowicz, Miriam [Department of Pediatrics, University of Chicago, Chicago, Illinois 60637 (United States); Schwartz, Nancy [Department of Pediatrics, Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637 (United States)

    2015-03-15

    Purpose: Widely used MRI methods show brain morphology both in vivo and ex vivo at very high resolution. Many of these methods (e.g., T{sub 2}{sup *}-weighted imaging, phase-sensitive imaging, or susceptibility-weighted imaging) are sensitive to local magnetic susceptibility gradients produced by subtle variations in tissue composition. However, the spectral resolution of commonly used methods is limited to maintain reasonable run-time combined with very high spatial resolution. Here, the authors report on data acquisition at increased spectral resolution, with 3-dimensional high spectral and spatial resolution MRI, in order to analyze subtle variations in water proton resonance frequency and lineshape that reflect local anatomy. The resulting information compliments previous studies based on T{sub 2}{sup *} and resonance frequency. Methods: The proton free induction decay was sampled at high resolution and Fourier transformed to produce a high-resolution water spectrum for each image voxel in a 3D volume. Data were acquired using a multigradient echo pulse sequence (i.e., echo-planar spectroscopic imaging) with a spatial resolution of 50 × 50 × 70 μm{sup 3} and spectral resolution of 3.5 Hz. Data were analyzed in the spectral domain, and images were produced from the various Fourier components of the water resonance. This allowed precise measurement of local variations in water resonance frequency and lineshape, at the expense of significantly increased run time (16–24 h). Results: High contrast T{sub 2}{sup *}-weighted images were produced from the peak of the water resonance (peak height image), revealing a high degree of anatomical detail, specifically in the hippocampus and cerebellum. In images produced from Fourier components of the water resonance at −7.0 Hz from the peak, the contrast between deep white matter tracts and the surrounding tissue is the reverse of the contrast in water peak height images. This indicates the presence of a shoulder in

  20. Study of CT-based positron range correction in high resolution 3D PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Cal-Gonzalez, J., E-mail: jacobo@nuclear.fis.ucm.es [Grupo de Fisica Nuclear, Dpto. Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Herraiz, J.L. [Grupo de Fisica Nuclear, Dpto. Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Espana, S. [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Vicente, E. [Grupo de Fisica Nuclear, Dpto. Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Instituto de Estructura de la Materia, Consejo Superior de Investigaciones Cientificas (CSIC), Madrid (Spain); Herranz, E. [Grupo de Fisica Nuclear, Dpto. Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Desco, M. [Unidad de Medicina y Cirugia Experimental, Hospital General Universitario Gregorio Maranon, Madrid (Spain); Vaquero, J.J. [Dpto. de Bioingenieria e Ingenieria Espacial, Universidad Carlos III, Madrid (Spain); Udias, J.M. [Grupo de Fisica Nuclear, Dpto. Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain)

    2011-08-21

    Positron range limits the spatial resolution of PET images and has a different effect for different isotopes and positron propagation materials. Therefore it is important to consider it during image reconstruction, in order to obtain optimal image quality. Positron range distributions for most common isotopes used in PET in different materials were computed using the Monte Carlo simulations with PeneloPET. The range profiles were introduced into the 3D OSEM image reconstruction software FIRST and employed to blur the image either in the forward projection or in the forward and backward projection. The blurring introduced takes into account the different materials in which the positron propagates. Information on these materials may be obtained, for instance, from a segmentation of a CT image. The results of introducing positron blurring in both forward and backward projection operations was compared to using it only during forward projection. Further, the effect of different shapes of positron range profile in the quality of the reconstructed images with positron range correction was studied. For high positron energy isotopes, the reconstructed images show significant improvement in spatial resolution when positron range is taken into account during reconstruction, compared to reconstructions without positron range modeling.

  1. Low-resolution characterization of the 3D structure of the Euglena gracilis photoreceptor

    International Nuclear Information System (INIS)

    This paper deals with the first characterization of the structure of the photoreceptive organelle of the unicellular alga Euglena gracilis (Euglenophyta). This organelle has a three-dimensional organization consisting of up to 50 closely stacked membrane lamellae. Ionically induced unstacking of the photoreceptor lamellae revealed ordered arrays well suited to structural analysis by electron microscopy and image analysis, which ultimately yielded a low-resolution picture of the structure. Each lamella is formed by the photoreceptive membrane protein of the cell assembled within the membrane layer in a hexagonal lattice. The first order diffraction spots in the calculated Fourier transform reveals the presence of 6-fold symmetrized topography (better resolution about 90 A). The 2D and 3D structural data are very similar with those recently published on proteorodopsin, a membrane protein used by marine bacterio-plankton as light-driven proton pump. In our opinion these similarity indicate that a photoreceptive protein belonging to the same superfamily of proteorodopsin could form the Euglena photoreceptor

  2. A Fast Full Tensor Gravity computation algorithm for High Resolution 3D Geologic Interpretations

    Science.gov (United States)

    Jayaram, V.; Crain, K.; Keller, G. R.

    2011-12-01

    We present an algorithm to rapidly calculate the vertical gravity and full tensor gravity (FTG) values due to a 3-D geologic model. This algorithm can be implemented on single, multi-core CPU and graphical processing units (GPU) architectures. Our technique is based on the line element approximation with a constant density within each grid cell. This type of parameterization is well suited for high-resolution elevation datasets with grid size typically in the range of 1m to 30m. The large high-resolution data grids in our studies employ a pre-filtered mipmap pyramid type representation for the grid data known as the Geometry clipmap. The clipmap was first introduced by Microsoft Research in 2004 to do fly-through terrain visualization. This method caches nested rectangular extents of down-sampled data layers in the pyramid to create view-dependent calculation scheme. Together with the simple grid structure, this allows the gravity to be computed conveniently on-the-fly, or stored in a highly compressed format. Neither of these capabilities has previously been available. Our approach can perform rapid calculations on large topographies including crustal-scale models derived from complex geologic interpretations. For example, we used a 1KM Sphere model consisting of 105000 cells at 10m resolution with 100000 gravity stations. The line element approach took less than 90 seconds to compute the FTG and vertical gravity on an Intel Core i7 CPU at 3.07 GHz utilizing just its single core. Also, unlike traditional gravity computational algorithms, the line-element approach can calculate gravity effects at locations interior or exterior to the model. The only condition that must be met is the observation point cannot be located directly above the line element. Therefore, we perform a location test and then apply appropriate formulation to those data points. We will present and compare the computational performance of the traditional prism method versus the line element

  3. Coupling between the charge carriers and lattice distortions via modulation of the orbital angular momentum m sub l =0 of the 3d holes by polarized XAS spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pompa, M.; Turtu, S.; Campanella, F.; Pettiti, I.; Udron, D. (INFM, Dipt. di Fisica, Rome-1 Univ. (Italy)); Bianconi, A. (INFM, Dipt. di Fisica, Rome-1 Univ. (Italy) Univ. of L' Aquila (Italy)); Flank, A.M.; Lagarde, P. (LURE, 91 - Orsay (France)); Li, C. (Inst. of Physics, Academia Sinica, Beijing (China))

    1991-12-01

    The change of the orbital angular momentum m{sub l} of the Cu 3d holes going from the insulating to the metallic phase has been studied in several families of high Tc superconductors. The symmetry of the 3d{sup 9}L states in the metallic phase has been studied by quantitative analysis of the variation of polarized Cu L{sub 3} X-ray absorption spectra. At a doping level n{sub h} {approx equal} 15% we have found 10% of Zhang-Rice singlets 3d{sub x}2{sub -y}2 L(b{sub 1}) and 5% of 3d{sub 3z}2{sub -r}2L(a{sub 1}) states. Therefore the percentage of the 3d{sub 3z}2{sub -r}2L states on the total number of the 3d{sup 9}L states is about 30% i.e. much larger than the probability of single hole states 3d{sub 3z}2{sub -r}2 in the insulating phase. The EXAFS and XANES studies of the Cu site structure and dynamics in Bi{sub 2}Sr{sub 2}Ca{sub 1-x}Y{sub x}Cu{sub 2}O{sub {proportional to}} {sub 8} system point toward the coupling of the charge carriers with distortions of the Cu sites driven by the m{sub l}=0 character of the Cu 3d holes that can be called a 3d{sub z}2{sub -r}2 polaron. (orig.).

  4. Characteristics of neurovascular compression in facial neuralgia patients by 3D high-resolution MRI and fusion technology

    Institute of Scientific and Technical Information of China (English)

    Zi-Yi Guo; Jing Chen; Guang Yang; Qian-Yu Tang; Cai-Xiang Chen; Shui-Xi Fu; Dan Yu

    2012-01-01

    Objective: To evaluate the anatomical characteristics and patterns of neurovascular compression in patients suffering trigeminal neuralgia, using 3D high-resolution magnetic resonance imaging methods and fusion technologies. Methods: The analysis of the anatomy of the facial nerve, brain stem and the vascular structures related to this nerve was made in 100 consecutive patients for TN. 3D high resolution MRI studies (3D SPGR, T1 enhanced 3D MP-RAGE and T2/T1 3D FIESTA) simultaneous visualization were used to assessed using the software 3D DOCTOR. Results: In 93 patients (93%), there were one or several locals of neurovascular compression (NVC). The superior cerebellar artery was involved in 71 cases (76%), the other vessels including the antero-inferior cerebellar artery, the basilar artery, the vertebral artery, and some venous structures. The mean distance between NVC and nerve origin site in the brainstem was (3.76 ± 2.90) mm). In 39 patients (42%), the vascular compression was located proximally and in 42 (45%) the compression was located distally. Nerve dislocation or distortion by the vessel was observed in 30 cases (32%). Conclusions: This 3D high resolution MRI and image fusion technology could be useful for diagnostic and therapeutic decisions in TN.

  5. The effect of CT scanner parameters and 3D volume rendering techniques on the accuracy of linear, angular, and volumetric measurements of the mandible

    Science.gov (United States)

    Whyms, B.J.; Vorperian, H.K.; Gentry, L.R.; Schimek, E.M.; Bersu, E.T.; Chung, M.K.

    2013-01-01

    Objectives This study investigates the effect of scanning parameters on the accuracy of measurements from three-dimensional multi-detector computed tomography (3D-CT) mandible renderings. A broader range of acceptable parameters can increase the availability of CT studies for retrospective analysis. Study Design Three human mandibles and a phantom object were scanned using 18 combinations of slice thickness, field of view, and reconstruction algorithm and three different threshold-based segmentations. Measurements of 3D-CT models and specimens were compared. Results Linear and angular measurements were accurate, irrespective of scanner parameters or rendering technique. Volume measurements were accurate with a slice thickness of 1.25 mm, but not 2.5 mm. Surface area measurements were consistently inflated. Conclusions Linear, angular and volumetric measurements of mandible 3D-CT models can be confidently obtained from a range of parameters and rendering techniques. Slice thickness is the primary factor affecting volume measurements. These findings should also apply to 3D rendering using cone-beam-CT. PMID:23601224

  6. How does angular resolution affect diffusion imaging measures?

    Science.gov (United States)

    Zhan, Liang; Leow, Alex D; Jahanshad, Neda; Chiang, Ming-Chang; Barysheva, Marina; Lee, Agatha D; Toga, Arthur W; McMahon, Katie L; de Zubicaray, Greig I; Wright, Margaret J; Thompson, Paul M

    2010-01-15

    A key question in diffusion imaging is how many diffusion-weighted images suffice to provide adequate signal-to-noise ratio (SNR) for studies of fiber integrity. Motion, physiological effects, and scan duration all affect the achievable SNR in real brain images, making theoretical studies and simulations only partially useful. We therefore scanned 50 healthy adults with 105-gradient high-angular resolution diffusion imaging (HARDI) at 4T. From gradient image subsets of varying size (6spherical angular distribution energy, we created SNR plots (versus gradient numbers) for seven common diffusion anisotropy indices: fractional and relative anisotropy (FA, RA), mean diffusivity (MD), volume ratio (VR), geodesic anisotropy (GA), its hyperbolic tangent (tGA), and generalized fractional anisotropy (GFA). SNR, defined in a region of interest in the corpus callosum, was near-maximal with 58, 66, and 62 gradients for MD, FA, and RA, respectively, and with about 55 gradients for GA and tGA. For VR and GFA, SNR increased rapidly with more gradients. SNR was optimized when the ratio of diffusion-sensitized to non-sensitized images was 9.13 for GA and tGA, 10.57 for FA, 9.17 for RA, and 26 for MD and VR. In orientation density functions modeling the HARDI signal as a continuous mixture of tensors, the diffusion profile reconstruction accuracy rose rapidly with additional gradients. These plots may help in making trade-off decisions when designing diffusion imaging protocols. PMID:19819339

  7. High-resolution 3D seismic model of the crustal and uppermost mantle structure in Poland

    Science.gov (United States)

    Grad, Marek; Polkowski, Marcin; Ostaficzuk, Stanisław R.

    2016-01-01

    In the area of Poland a contact between the Precambrian and Phanerozoic Europe and the Carpathians has a complicated structure and a complex P-wave velocity of the sedimentary cover, crystalline crust, Moho depth and the uppermost mantle. The geometry of the uppermost several kilometers of sediments is relatively well recognized from over 100,000 boreholes. The vertical seismic profiling (VSP) from 1188 boreholes provided detailed velocity data for regional tectonic units and for stratigraphic successions from Permian to the Tertiary and Quaternary deposits. These data, however, do not provide information about the velocity and basement depth in the central part of the Trans-European suture zone (TESZ) and in the Carpathians. So, the data set is supplemented by 2D velocity models from 32 deep seismic sounding refraction profiles which also provide information about the crust and uppermost mantle. Together with the results of other methods: vertical seismic profiling, magnetotelluric, allow for the creation of a detailed, high-resolution 3D model for the entire Earth's crust and the uppermost mantle down to a depth of 60 km. The thinnest sedimentary cover in the Mazury-Belarus anteclise is only 0.3 to 1 km thick, which increases to 7 to 8 km along the East European Craton (EEC) margin, and 9 to 12 km in the TESZ. The Variscan domain is characterized by a 1-4 km thick sedimentary cover, while the Carpathians are characterized by very thick sedimentary layers, up to about 20 km. The crystalline crust is differentiated and has a layered structure. The crust beneath the West European Platform (WEP; Variscan domain) is characterized by P-wave velocities of 5.8-6.6 km/s. The upper and middle crusts beneath the EEC are characterized by velocities of 6.1-6.6 km/s, and are underlain by a high velocity lower crust with a velocity of about 7 km/s. A general decrease in velocity is observed from the older to the younger tectonic domains. The TESZ is associated with a steep dip

  8. Clean localization super-resolution microscopy for 3D biological imaging

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, Partha P., E-mail: partha@iap.iisc.ernet.in [Nanobioimaging Laboratory, Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012 (India); Curthoys, Nikki M.; Hess, Samuel T. [Department of Physics and Astronomy, University of Maine, Orono, Maine 04469 (United States)

    2016-01-15

    We propose clean localization microscopy (a variant of fPALM) using a molecule filtering technique. Localization imaging involves acquiring a large number of images containing single molecule signatures followed by one-to-one mapping to render a super-resolution image. In principle, this process can be repeated for other z-planes to construct a 3D image. But, single molecules observed from off-focal planes result in false representation of their presence in the focal plane, resulting in incorrect quantification and analysis. We overcome this with a single molecule filtering technique that imposes constraints on the diffraction limited spot size of single molecules in the image plane. Calibration with sub-diffraction size beads puts a natural cutoff on the actual diffraction-limited size of single molecules in the focal plane. This helps in distinguishing beads present in the focal plane from those in the off-focal planes thereby providing an estimate of the single molecules in the focal plane. We study the distribution of actin (labeled with a photoactivatable CAGE 552 dye) in NIH 3T3 mouse fibroblast cells.

  9. In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy

    International Nuclear Information System (INIS)

    The application of a photoacoustic imaging instrument based upon a Fabry-Perot polymer film ultrasound sensor to imaging the superficial vasculature is described. This approach provides a backward mode-sensing configuration that has the potential to overcome the limitations of current piezoelectric based detection systems used in superficial photoacoustic imaging. The system has been evaluated by obtaining non-invasive images of the vasculature in human and mouse skin as well as mouse models of human colorectal tumours. These studies showed that the system can provide high-resolution 3D images of vascular structures to depths of up to 5 mm. It is considered that this type of instrument may find a role in the clinical assessment of conditions characterized by changes in the vasculature such as skin tumours and superficial soft tissue damage due to burns, wounds or ulceration. It may also find application in the characterization of small animal cancer models where it is important to follow the tumour vasculature over time in order to study its development and/or response to therapy.

  10. Airborne LIDAR and high resolution satellite data for rapid 3D feature extraction

    Science.gov (United States)

    Jawak, S. D.; Panditrao, S. N.; Luis, A. J.

    2014-11-01

    This work uses the canopy height model (CHM) based workflow for individual tree crown delineation and 3D feature extraction approach (Overwatch Geospatial's proprietary algorithm) for building feature delineation from high-density light detection and ranging (LiDAR) point cloud data in an urban environment and evaluates its accuracy by using very high-resolution panchromatic (PAN) (spatial) and 8-band (multispectral) WorldView-2 (WV-2) imagery. LiDAR point cloud data over San Francisco, California, USA, recorded in June 2010, was used to detect tree and building features by classifying point elevation values. The workflow employed includes resampling of LiDAR point cloud to generate a raster surface or digital terrain model (DTM), generation of a hill-shade image and an intensity image, extraction of digital surface model, generation of bare earth digital elevation model (DEM) and extraction of tree and building features. First, the optical WV-2 data and the LiDAR intensity image were co-registered using ground control points (GCPs). The WV-2 rational polynomial coefficients model (RPC) was executed in ERDAS Leica Photogrammetry Suite (LPS) using supplementary *.RPB file. In the second stage, ortho-rectification was carried out using ERDAS LPS by incorporating well-distributed GCPs. The root mean square error (RMSE) for the WV-2 was estimated to be 0.25 m by using more than 10 well-distributed GCPs. In the second stage, we generated the bare earth DEM from LiDAR point cloud data. In most of the cases, bare earth DEM does not represent true ground elevation. Hence, the model was edited to get the most accurate DEM/ DTM possible and normalized the LiDAR point cloud data based on DTM in order to reduce the effect of undulating terrain. We normalized the vegetation point cloud values by subtracting the ground points (DEM) from the LiDAR point cloud. A normalized digital surface model (nDSM) or CHM was calculated from the LiDAR data by subtracting the DEM from the DSM

  11. Detection of 3D tree root systems using high resolution ground penetration radar

    Science.gov (United States)

    Altdorff, D.; Honds, M.; Botschek, J.; Van Der Kruk, J.

    2014-12-01

    Knowledge of root systems and its distribution are important for biomass estimation as well as for the prevention of subsurface distribution network damages. Ground penetration radar (GPR) is a promising technique that enables a non-invasive imaging of tree roots. Due to the polarisation-dependent reflection coefficients and complicated three-dimensional root structure, accurate measurements with perpendicularly polarized antennas are needed. In this study, we show GPR data from two planes and one chestnut at two locations with different soil conditions. Perpendicular 10 x 10 cm grid measurements were made with a shielded 250 MHz antenna in combination with a high precision self-tracking laser theodolite that provides geo-referenced traces with a spatial resolution of ~ 2 cm. After selecting potential root hyperbolas within the perpendicular GPR profiles, the corresponding three-dimensional coordinates were extracted and visualized in planar view to reveal any linear structure that indicates a possible tree root. The coordinates of the selected linear structures were projected back to the surface by means of the laser-theodolite to indicate the locations for groundtruthing. Additionally, we interpolated the measured data into a 3D cube where time slices confirmed the locations of linear reflection events. We validated the indicated predictions by excavation of the soil with a suction dredge. Subsequent georeferencing of the true root distribution and comparison with the selected linear events showed that the approach was able to identify the precise position of roots with a diameter between 3 and 10 cm and a depth of up to 70 cm. However, not all linear events were roots; also mouse channels were found in these depths, since they also generate GPR hyperbolas aligned in linear structures. Roots at a second location at depths of 1 to 1.20 m did not generate identifiable hyperboles, which was probably due to an increased electrical conductivity below 86 cm depth. The

  12. High-resolution 3D seismic investigation of giant seafloor craters in the Barents Sea

    Science.gov (United States)

    Waage, Malin; Bünz, Stefan; Andreassen, Karin

    2016-04-01

    Multiple giant craters exist on the seafloor in an area of ~ 100 km2 east of Bear Island Trough in the west-central Barents Sea. It has been hypothesized that these craters might have been caused by gas eruptions following the last deglaciation. Gas seepage from the seafloor occurs abundantly in this area. The crater area is still likely to represent one of the largest hot-spots for shallow marine methane release in the arctic. In summer 2015, we acquired high-resolution P-Cable 3D seismic data in this area covering several of the craters and their associated pingo structures. Due to the shallow and hard Triassic bedrock, penetration of the seismic signals is limited to approximately 450 ms bsf. The crater structures are up to 1 km wide and 40 m deep. Pingo structures occur on the rim of some of the craters and are up to 700 m wide and up to 15 m high above the surrounding seafloor. The 3D seismic data reveals faults, fracture networks and weakness zone that resemble pipes or similar vertical, focused fluid-flow structures in the Triassic sedimentary rocks below the craters. The principal orientation of the faults is in a ~ NW-SE direction that coincides with regional faulting from Permo-Triassic extension. The seismic data also show high-amplitude anomalies beneath some of representing shallow gas accumulations that might be the intermediate source of the gas seepage. This might suggest that craters are caused by high pressured gas that migrated from deeper petroleum systems and accumulated in the shallow Triassic rocks during the last glaciation. Previous work indicate that craters of similar size are likely a cause of enormous blow-outs of gas. Our study discusses the formation mechanisms and timing of these potential blow-out craters and whether they formed during the last deglaciation, when this area was likely quite unstable as severe glacial erosion caused localized high isostatic rebound rates here. We also investigate the role of gas hydrates that might

  13. High-Resolution 3-D Imaging and Tissue Differentiation with Transmission Tomography

    Science.gov (United States)

    Marmarelis, V. Z.; Jeong, J.; Shin, D. C.; Do, S.

    A three-dimensional High-resolution Ultrasonic Transmission Tomography (HUTT) system has been developed recently under the sponsorship of the Alfred Mann Institute at the University of Southern California that holds the promise of early detection of breast cancer (mm-size lesions) with greater sensitivity (true positives) and specificity (true negatives) than current x-ray mammograghy. In addition to sub-mm resolution in 3-D, the HUTT system has the unique capability of reliable tissue classification by means of the frequency-dependent attenuation characteristics of individual voxels that are extracted from the tomographic data through novel signal processing methods. These methods yield "multi-band signatures" of the various tissue types that are utilized to achieve reliable tissue differentiation via novel segmentation and classification algorithms. The unparalleled high-resolution and tissue differentiation capabilities of the HUTT system have been demonstrated so far with man-made and animal-tissue phantoms. Illustrative results are presented that corroborate these claims, although several challenges remain to make HUTT a clinically acceptable technology. The next critical step is to collect and analyze data from human subjects (female breasts) in order to demonstrate the key capability of the HUTT system to detect breast lesions early (at the mm-size stage) and to differentiate between malignant and benign lesions in a manner that is far superior (in terms of sensitivity and specificity) to the current x-ray mammography. The key initial application of the HUTT imaging technology is envisioned to be the early (at the mm-size) detection of breast cancer, which represents a major threat to the well-being of women around the world. The potential impact is estimated in hundreds of thousands lives saved, millions of unnecessary biopsies avoided, and billions of dollars saved in national health-care costs every year - to say nothing of the tens of thousands of

  14. Data-fusion of high resolution X-ray CT, SEM and EDS for 3D and pseudo-3D chemical and structural characterization of sandstone.

    Science.gov (United States)

    De Boever, Wesley; Derluyn, Hannelore; Van Loo, Denis; Van Hoorebeke, Luc; Cnudde, Veerle

    2015-07-01

    When dealing with the characterization of the structure and composition of natural stones, problems of representativeness and choice of analysis technique almost always occur. Since feature-sizes are typically spread over the nanometer to centimeter range, there is never one single technique that allows a rapid and complete characterization. Over the last few decades, high resolution X-ray CT (μ-CT) has become an invaluable tool for the 3D characterization of many materials, including natural stones. This technique has many important advantages, but there are also some limitations, including a tradeoff between resolution and sample size and a lack of chemical information. For geologists, this chemical information is of importance for the determination of minerals inside samples. We suggest a workflow for the complete chemical and structural characterization of a representative volume of a heterogeneous geological material. This workflow consists of combining information derived from CT scans at different spatial resolutions with information from scanning electron microscopy and energy-dispersive X-ray spectroscopy.

  15. Segment-interaction in sprint start: Analysis of 3D angular velocity and kinetic energy in elite sprinters

    OpenAIRE

    Slawinski, Jean; BONNEFOY, Alice; ONTANON, Guy; LEVEQUE, Jean-Michel; Miller, Christian; RIQUET, Annie; CHEZE, Laurence; Dumas, Raphaël

    2010-01-01

    The aim of the present study was to measure during a sprint start the joint angularv elocity and the kinetic energy of the different segments in elite sprinters.This was performed using a 3D kinematic analysis of the wholebody.

  16. Robust automatic high resolution segmentation of SOFC anode porosity in 3D

    DEFF Research Database (Denmark)

    Jørgensen, Peter Stanley; Bowen, Jacob R.

    2008-01-01

    anode in 3D. The technique is based on numerical approximations to partial differential equations to evolve a 3D surface to the desired phase boundary. Vector fields derived from the experimentally acquired data are used as the driving force. The automatic segmentation compared to manual delineation...

  17. High angular resolution SZ observations with NIKA and NIKA2

    CERN Document Server

    Comis, B; Ade, P; André, P; Arnaud, M; Bartalucci, I; Beelen, A; Benoît, A; Bideaud, A; Billot, N; Bourrion, O; Calvo, M; Catalano, A; Coiffard, G; Désert, F -X; Doyle, S; Goupy, J; Kramer, C; Lagache, G; Leclercq, S; Macías-Pérez, J F; Mauskopf, P; Mayet, F; Monfardini, A; Pajot, F; Pascale, E; Perotto, L; Pointecouteau, E; Pisano, G; Ponthieu, N; Pratt, G W; Revéret, V; Ritacco, A; Rodriguez, L; Romero, C; Ruppin, F; Savini, G; Schuster, K; Sievers, A; Triqueneaux, S; Tucker, C; Zilch, R

    2016-01-01

    NIKA2 (New IRAM KID Arrays) is a dual band (150 and 260 GHz) imaging camera based on Kinetic Inductance Detectors (KIDs) and designed to work at the IRAM 30 m telescope (Pico Veleta, Spain). Built on the experience of the NIKA prototype, NIKA2 has been installed at the 30 m focal plane in October 2015 and the commissioning phase is now ongoing. Through the thermal Sunyaev-Zeldovich (tSZ) effect, NIKA2 will image the ionized gas residing in clusters of galaxies with a resolution of 12 and 18 arcsec FWHM (at 150 and 260 GHz, respectively). We report on the recent tSZ measurements with the NIKA camera and discuss the future objectives for the NIKA2 SZ large Program, 300h of observation dedicated to SZ science. With this program we intend to perform a high angular resolution follow-up of a cosmologically-representative sample of clusters belonging to SZ catalogues, with redshift greater than 0.5. The main output of the program will be the study of the redshift evolution of the cluster pressure profile as well as ...

  18. High-resolution magnetic resonance angiography of the internal carotid artery: 2D vs 3D TOF in stenotic disease

    Energy Technology Data Exchange (ETDEWEB)

    Carriero, A.; Magarelli, N.; Marano, R.; Ambrosini, R.; Bonomo, L. [Department of Radiology, University of Chieti (Italy); Scarabino, T. [IRCCS, S. Giovanni Rotondo, Foggia (Italy); Salvolini, U. [Department of Neuroradiology, University of Ancona (Italy)

    1998-10-01

    The aim of this study was to compare high-resolution 2D TOF with high-resolution 3D TOF in the study of internal carotid artery disease. Sixty-four patients with clinical signs of cerebrovascular insufficiency were studied with a superconductive 1.5 T magnet using two techniques: 2D and 3D TOF. Digital subtraction angiography (DSA) was the gold standard. The 2D TOF technique was performed using the following parameters: TR/TE/FA/MA 49 ms/9 ms/60 /512 x 256; the 3D TOF was performed with the following parameters: TR/TE/FA/MA 50 ms/8 ms/20 /512 x 256. The 2D TOF agreed with DSA in 116 of 128 diagnostic judgments (90 %) and overestimated seven times. The 3D TOF technique agreed with DSA in 125 of 128 diagnostic judgments (97 %) with one overestimation and two underestimations. There was no statistically significant difference (P < 0.05) between the two different techniques. Our study confirms the high reliability of themethodology carried out with the high-resolution 2D and 3D technique. (orig.) (orig.) With 1 fig., 5 refs.

  19. High-resolution, real-time simultaneous 3D surface geometry and temperature measurement.

    Science.gov (United States)

    An, Yatong; Zhang, Song

    2016-06-27

    This paper presents a method to simultaneously measure three-dimensional (3D) surface geometry and temperature in real time. Specifically, we developed 1) a holistic approach to calibrate both a structured light system and a thermal camera under exactly the same world coordinate system even though these two sensors do not share the same wavelength; and 2) a computational framework to determine the sub-pixel corresponding temperature for each 3D point as well as discard those occluded points. Since the thermal 2D imaging and 3D visible imaging systems do not share the same spectrum of light, they can perform sensing simultaneously in real time: we developed a hardware system that can achieve real-time 3D geometry and temperature measurement at 26 Hz with 768 × 960 points per frame. PMID:27410608

  20. High-Resolution Visual 3D Recontructions for Rapid Archaeological Characterization

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The final output will be geotiffs and a custom 3D texture model format that allows for dynamic level-of-detail rendering. The work discussed in the proposal will...

  1. 3D printing of high-resolution PLA-based structures by hybrid electrohydrodynamic and fused deposition modeling techniques

    International Nuclear Information System (INIS)

    Recently, the three-dimensional (3D) printing technique has received much attention for shape forming and manufacturing. The fused deposition modeling (FDM) printer is one of the various 3D printers available and has become widely used due to its simplicity, low-cost, and easy operation. However, the FDM technique has a limitation whereby its patterning resolution is too low at around 200 μm. In this paper, we first present a hybrid mechanism of electrohydrodynamic jet printing with the FDM technique, which we name E-FDM. We then develop a novel high-resolution 3D printer based on the E-FDM process. To determine the optimal condition for structuring, we also investigated the effect of several printing parameters, such as temperature, applied voltage, working height, printing speed, flow-rate, and acceleration on the patterning results. This method was capable of fabricating both high resolution 2D and 3D structures with the use of polylactic acid (PLA). PLA has been used to fabricate scaffold structures for tissue engineering, which has different hierarchical structure sizes. The fabrication speed was up to 40 mm/s and the pattern resolution could be improved to 10 μm. (paper)

  2. 3D printing of high-resolution PLA-based structures by hybrid electrohydrodynamic and fused deposition modeling techniques

    Science.gov (United States)

    Zhang, Bin; Seong, Baekhoon; Nguyen, VuDat; Byun, Doyoung

    2016-02-01

    Recently, the three-dimensional (3D) printing technique has received much attention for shape forming and manufacturing. The fused deposition modeling (FDM) printer is one of the various 3D printers available and has become widely used due to its simplicity, low-cost, and easy operation. However, the FDM technique has a limitation whereby its patterning resolution is too low at around 200 μm. In this paper, we first present a hybrid mechanism of electrohydrodynamic jet printing with the FDM technique, which we name E-FDM. We then develop a novel high-resolution 3D printer based on the E-FDM process. To determine the optimal condition for structuring, we also investigated the effect of several printing parameters, such as temperature, applied voltage, working height, printing speed, flow-rate, and acceleration on the patterning results. This method was capable of fabricating both high resolution 2D and 3D structures with the use of polylactic acid (PLA). PLA has been used to fabricate scaffold structures for tissue engineering, which has different hierarchical structure sizes. The fabrication speed was up to 40 mm/s and the pattern resolution could be improved to 10 μm.

  3. Cepheids at high angular resolution: circumstellar envelope and pulsation

    CERN Document Server

    Gallenne, Alexandre

    2011-01-01

    In 2005, interferometric observations with VLTI/VINCI and CHARA/FLUOR revealed the existence of a circumstellar envelope (CSE) around some Cepheids. This surrounding material is particularly interesting for two reasons: it could have an impact on the distance estimates and could be linked to a past or on-going mass loss. The use of Baade-Wesselink methods for independent distance determinations could be significantly biased by the presence of these envelopes. Although their observations are difficult because of the high contrast between the photosphere of the star and the CSE, several observation techniques have the potential to improve our knowledge about their physical properties. In this thesis, I discuss in particular high angular resolution techniques that I applied to the study of several bright Galactic Cepheids. First, I used adaptive optic observations with NACO of the Cepheid RS Puppis, in order to deduce the flux ratio between the CSE and the photosphere of the star. In addition, I could carry out ...

  4. The potential of 3D-FISH and super-resolution structured illumination microscopy for studies of 3D nuclear architecture: 3D structured illumination microscopy of defined chromosomal structures visualized by 3D (immuno)-FISH opens new perspectives for studies of nuclear architecture.

    Science.gov (United States)

    Markaki, Yolanda; Smeets, Daniel; Fiedler, Susanne; Schmid, Volker J; Schermelleh, Lothar; Cremer, Thomas; Cremer, Marion

    2012-05-01

    Three-dimensional structured illumination microscopy (3D-SIM) has opened up new possibilities to study nuclear architecture at the ultrastructural level down to the ~100 nm range. We present first results and assess the potential using 3D-SIM in combination with 3D fluorescence in situ hybridization (3D-FISH) for the topographical analysis of defined nuclear targets. Our study also deals with the concern that artifacts produced by FISH may counteract the gain in resolution. We address the topography of DAPI-stained DNA in nuclei before and after 3D-FISH, nuclear pores and the lamina, chromosome territories, chromatin domains, and individual gene loci. We also look at the replication patterns of chromocenters and the topographical relationship of Xist-RNA within the inactive X-territory. These examples demonstrate that an appropriately adapted 3D-FISH/3D-SIM approach preserves key characteristics of the nuclear ultrastructure and that the gain in information obtained by 3D-SIM yields new insights into the functional nuclear organization. PMID:22508100

  5. The new high resolution method of Godunov`s type for 3D viscous flow calculations

    Energy Technology Data Exchange (ETDEWEB)

    Yershov, S.V.; Rusanov, A.V. [Ukranian National Academy of Sciences, Kahrkov (Ukraine)

    1996-12-31

    The numerical method is suggested for the calculations of the 3D viscous compressible flows described by the thin-layer Reynolds-averaged Navier-Stokes equations. The method is based on the Godunov`s finite-difference scheme and it uses the ENO reconstruction suggested by Harten to achieve the uniformly high-order accuracy. The computational efficiency is provided with the simplified multi grid approach and the implicit step written in {delta} -form. The turbulent effects are simulated with the Baldwin - Lomax turbulence model. The application package FlowER is developed to calculate the 3D turbulent flows within complex-shape channels. The numerical results for the 3D flow around a cylinder and through the complex-shaped channels show the accuracy and the reliability of the suggested method. (author)

  6. Dubai 3d Textuerd Mesh Using High Quality Resolution Vertical/oblique Aerial Imagery

    Science.gov (United States)

    Tayeb Madani, Adib; Ziad Ahmad, Abdullateef; Christoph, Lueken; Hammadi, Zamzam; Manal Abdullah Sabeal, Manal Abdullah x.

    2016-06-01

    Providing high quality 3D data with reasonable quality and cost were always essential, affording the core data and foundation for developing an information-based decision-making tool of urban environments with the capability of providing decision makers, stakeholders, professionals, and public users with 3D views and 3D analysis tools of spatial information that enables real-world views. Helps and assist in improving users' orientation and also increase their efficiency in performing their tasks related to city planning, Inspection, infrastructures, roads, and cadastre management. In this paper, the capability of multi-view Vexcel UltraCam Osprey camera images is examined to provide a 3D model of building façades using an efficient image-based modeling workflow adopted by commercial software's. The main steps of this work include: Specification, point cloud generation, and 3D modeling. After improving the initial values of interior and exterior parameters at first step, an efficient image matching technique such as Semi Global Matching (SGM) is applied on the images to generate point cloud. Then, a mesh model of points is calculated using and refined to obtain an accurate model of buildings. Finally, a texture is assigned to mesh in order to create a realistic 3D model. The resulting model has provided enough LoD2 details of the building based on visual assessment. The objective of this paper is neither comparing nor promoting a specific technique over the other and does not mean to promote a sensor-based system over another systems or mechanism presented in existing or previous paper. The idea is to share experience.

  7. DUBAI 3D TEXTUERD MESH USING HIGH QUALITY RESOLUTION VERTICAL/OBLIQUE AERIAL IMAGERY

    Directory of Open Access Journals (Sweden)

    A. T. Madani

    2016-06-01

    Full Text Available Providing high quality 3D data with reasonable quality and cost were always essential, affording the core data and foundation for developing an information-based decision-making tool of urban environments with the capability of providing decision makers, stakeholders, professionals, and public users with 3D views and 3D analysis tools of spatial information that enables real-world views. Helps and assist in improving users’ orientation and also increase their efficiency in performing their tasks related to city planning, Inspection, infrastructures, roads, and cadastre management. In this paper, the capability of multi-view Vexcel UltraCam Osprey camera images is examined to provide a 3D model of building façades using an efficient image-based modeling workflow adopted by commercial software’s. The main steps of this work include: Specification, point cloud generation, and 3D modeling. After improving the initial values of interior and exterior parameters at first step, an efficient image matching technique such as Semi Global Matching (SGM is applied on the images to generate point cloud. Then, a mesh model of points is calculated using and refined to obtain an accurate model of buildings. Finally, a texture is assigned to mesh in order to create a realistic 3D model. The resulting model has provided enough LoD2 details of the building based on visual assessment. The objective of this paper is neither comparing nor promoting a specific technique over the other and does not mean to promote a sensor-based system over another systems or mechanism presented in existing or previous paper. The idea is to share experience.

  8. Cepheids at high angular resolution: circumstellar envelope and pulsation

    Science.gov (United States)

    Gallenne, Alexandre

    2011-12-01

    In 2005, interferometric observations with VLTI/VINCI and CHARA/FLUOR revealed the existence of a circumstellar envelope (CSE) around some Cepheids. This surrounding material is particularly interesting for two reasons: it could have an impact on the distance estimates and could be linked to a past or on-going mass loss. The use of Baade-Wesselink methods for independent distance determinations could be significantly biased by the presence of these envelopes. Although their observations are difficult because of the high contrast between the photosphere of the star and the CSE, several observation techniques have the potential to improve our knowledge about their physical properties. In this thesis, I discuss in particular high angular resolution techniques that I applied to the study of several bright Galactic Cepheids. First, I used adaptive optic observations with NACO of the Cepheid RS Puppis, in order to deduce the flux ratio between the CSE and the photosphere of the star. In addition, I could carry out a statistical study of the speckle noise and inspect a possible asymmetry. Secondly, I analysed VISIR data to study the spectral energy distribution of a sample of Cepheids. These diffraction-limited images enabled me to carry out an accurate photometry in the N band and to detect an IR excess linked to the presence of a circumstellar component. On the other hand, applying a Fourier analysis I showed that some components are resolved. I then explored the K' band with the recombination instrument FLUOR for some bright Cepheids. Thanks to new set of data of Y Oph, I improved the study of its circumstellar envelope, using a ring-like model for the CSE. For two other Cepheids, U Vul and S Sge, I applied the interferometric Baade-Wesselink method in order to estimate their distance.

  9. High-resolution 3D ultrasound jawbone surface imaging for diagnosis of periodontal bony defects: an in vitro study.

    Science.gov (United States)

    Mahmoud, Ahmed M; Ngan, Peter; Crout, Richard; Mukdadi, Osama M

    2010-11-01

    Although medical specialties have recognized the importance of using ultrasonic imaging, dentistry is only beginning to discover its benefit. This has particularly been important in the field of periodontics which studies infections in the gum and bone tissues that surround the teeth. This study investigates the feasibility of using a custom-designed high-frequency ultrasound imaging system to reconstruct high-resolution (3D) surface images of periodontal defects in human jawbone. The system employs single-element focused ultrasound transducers with center frequencies ranging from 30 to 60 MHz. Continuous acquisition using a 1 GHz data acquisition card is synchronized with a high-precision two-dimensional (2D) positioning system of ±1 μm resolution for acquiring accurate measurements of the mandible, in vitro. Signal and image processing algorithms are applied to reconstruct high-resolution ultrasound images and extract the jawbone surface in each frame. Then, all edges are combined and smoothed in order to render a 3D surface image of the jawbone. In vitro experiments were performed to assess the system performance using mandibles with teeth (dentate) or without (nondentate). The system was able to reconstruct 3D images for the mandible's outer surface with superior spatial resolution down to 24 μm, and to perform the whole scanning in images were confirmed with the anatomical structures on the mandibles. All the anatomical landmarks were detected and fully described as 3D images using this novel ultrasound imaging technique, whereas the 2D X-ray radiographic images suffered from poor contrast. These results indicate the great potential of utilizing high-resolution ultrasound as a noninvasive, nonionizing imaging technique for the early diagnosis of the more severe form of periodontal disease.

  10. Orbital evolution of colliding star and pulsar winds in 2D and 3D: dimensionality, resolution, and grid size effects

    CERN Document Server

    Bosch-Ramon, V; Perucho, M

    2014-01-01

    The structure formed by the shocked winds of a massive star and a non-accreting pulsar in a binary system suffers periodic and random variations of orbital and non-linear dynamical origin. The characterization of the evolution of the two-wind interaction region is necessary to understand the non-thermal emission from radio to gamma rays. For the first time, we simulate in 3D the interaction of isotropic stellar and relativistic pulsar winds along one full orbit, on scales well beyond the binary size. We also investigate the impact of grid resolution and size. We carry out, with the code PLUTO, relativistic hydrodynamical simulations in 2 and 3D of the interaction of a slow dense wind and a mildly relativistic wind along one full orbit, up to ~100 times the binary size. The 2-dimensional simulations are carried out with equal and larger grid resolution and size than in 3D. The simulations in 3D confirm previous results in 2D, showing a strong shock induced by Coriolis forces that terminates the pulsar wind in ...

  11. Oxygen lines in solar granulation. I. Testing 3D models against new observations with high spatial and spectral resolution

    CERN Document Server

    Pereira, Tiago M D; Asplund, Martin

    2009-01-01

    Aims: we seek to provide additional tests of the line formation of theoretical 3D solar photosphere models. In particular, we set out to test the spatially-resolved line formation at several viewing angles, from the solar disk-centre to the limb and focusing on atomic oxygen lines. The purpose of these tests is to provide additional information on whether the 3D model is suitable to derive the solar oxygen abundance. We also aim to empirically constrain the NLTE recipes for neutral hydrogen collisions, using the spatially-resolved observations of the OI 777 nm lines. Methods: using the Swedish 1-m Solar Telescope we obtained high-spatial-resolution observations of five atomic oxygen lines (along with lines for other species) for five positions on the solar disk. These observations have a high spatial and spectral resolution, and a continuum intensity contrast up to 9% at 615 nm. The theoretical line profiles were computed using the 3D model, with a full 3D NLTE treatment for oxygen and LTE for the other lines...

  12. 3D silicon sensors with variable electrode depth for radiation hard high resolution particle tracking

    International Nuclear Information System (INIS)

    3D sensors, with electrodes micro-processed inside the silicon bulk using Micro-Electro-Mechanical System (MEMS) technology, were industrialized in 2012 and were installed in the first detector upgrade at the LHC, the ATLAS IBL in 2014. They are the radiation hardest sensors ever made. A new idea is now being explored to enhance the three-dimensional nature of 3D sensors by processing collecting electrodes at different depths inside the silicon bulk. This technique uses the electric field strength to suppress the charge collection effectiveness of the regions outside the p-n electrodes' overlap. Evidence of this property is supported by test beam data of irradiated and non-irradiated devices bump-bonded with pixel readout electronics and simulations. Applications include High-Luminosity Tracking in the high multiplicity LHC forward regions. This paper will describe the technical advantages of this idea and the tracking application rationale

  13. Parameter Estimation of Fossil Oysters from High Resolution 3D Point Cloud and Image Data

    Science.gov (United States)

    Djuricic, Ana; Harzhauser, Mathias; Dorninger, Peter; Nothegger, Clemens; Mandic, Oleg; Székely, Balázs; Molnár, Gábor; Pfeifer, Norbert

    2014-05-01

    A unique fossil oyster reef was excavated at Stetten in Lower Austria, which is also the highlight of the geo-edutainment park 'Fossilienwelt Weinviertel'. It provides the rare opportunity to study the Early Miocene flora and fauna of the Central Paratethys Sea. The site presents the world's largest fossil oyster biostrome formed about 16.5 million years ago in a tropical estuary of the Korneuburg Basin. About 15,000 up to 80-cm-long shells of Crassostrea gryphoides cover a 400 m2 large area. Our project 'Smart-Geology for the World's largest fossil oyster reef' combines methods of photogrammetry, geology and paleontology to document, evaluate and quantify the shell bed. This interdisciplinary approach will be applied to test hypotheses on the genesis of the taphocenosis (e.g.: tsunami versus major storm) and to reconstruct pre- and post-event processes. Hence, we are focusing on using visualization technologies from photogrammetry in geology and paleontology in order to develop new methods for automatic and objective evaluation of 3D point clouds. These will be studied on the basis of a very dense surface reconstruction of the oyster reef. 'Smart Geology', as extension of the classic discipline, exploits massive data, automatic interpretation, and visualization. Photogrammetry provides the tools for surface acquisition and objective, automated interpretation. We also want to stress the economic aspect of using automatic shape detection in paleontology, which saves manpower and increases efficiency during the monitoring and evaluation process. Currently, there are many well known algorithms for 3D shape detection of certain objects. We are using dense 3D laser scanning data from an instrument utilizing the phase shift measuring principle, which provides accurate geometrical basis < 3 mm. However, the situation is difficult in this multiple object scenario where more than 15,000 complete or fragmentary parts of an object with random orientation are found. The goal

  14. First MMS Observations of High Time Resolution 3D Electric and Magnetic fields at the Dayside Magnetopause.

    Science.gov (United States)

    Torbert, R. B.; Burch, J. L.; Russell, C. T.; Magnes, W.; Ergun, R. E.; Lindqvist, P. A.; Le Contel, O.; Vaith, H.; Macri, J.; Myers, S.; Rau, D.; Needell, J.; King, B.; Granoff, M.; Chutter, M.; Dors, I.; Argall, M. R.; Shuster, J. R.; Olsson, G.; Marklund, G. T.; Khotyaintsev, Y. V.; Eriksson, A. I.; Kletzing, C.; Bounds, S. R.; Anderson, B. J.; Baumjohann, W.; Steller, M.; Bromund, K. R.; Le, G.; Nakamura, R.; Strangeway, R. J.; Leinweber, H. K.; Tucker, S.; Westfall, J.; Fischer, D.; Plaschke, F.; Pollock, C. J.; Giles, B. L.; Moore, T. E.; Mauk, B.; Fuselier, S. A.

    2015-12-01

    The electrodynamics at the magnetopause is key to our understanding of ion and electron acceleration within reconnection regions. The Magnetospheric Multiscale (MMS) fleet of four spacecraft was launched into its Phase-1 equatorial orbit of 12 Re apogee specifically to investigate these regions at the Earth's magnetopause. In addition to a comprehensive suite of particle measurements, MMS makes very high time resolution 3D electric and magnetic field measurements of high accuracy using flux-gate, search coil, 3-axis double probe, and electron drift sensors. In September 2015, the MMS fleet will begin to encounter the dusk-side magnetopause in its initial configuration of approximately 160 km separation, allowing investigation of the spatial and temporal characteristics of important electrodynamics during reconnection. Using these field and particle measurements, we present first observations of 3D magnetic and electric fields (including their parallel component), and inferred current sheets, during active magnetopause crossings using the highest time resolution data available on MMS.

  15. High-resolution 3D-GRE imaging of the abdomen using controlled aliasing acceleration technique - a feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    AlObaidy, Mamdoh; Ramalho, Miguel; Busireddy, Kiran K.R.; Liu, Baodong; Burke, Lauren M.; Altun, Ersan; Semelka, Richard C. [University of North Carolina at Chapel Hill, Department of Radiology, Chapel Hill, NC (United States); Dale, Brian M. [Siemens Medical Solutions, MR Research and Development, Morrisville, NC (United States)

    2015-12-15

    To assess the feasibility of high-resolution 3D-gradient-recalled echo (GRE) fat-suppressed T1-weighted images using controlled aliasing acceleration technique (CAIPIRINHA-VIBE), and compare image quality and lesion detection to standard-resolution 3D-GRE images using conventional acceleration technique (GRAPPA-VIBE). Eighty-four patients (41 males, 43 females; age range: 14-90 years, 58.8 ± 15.6 years) underwent abdominal MRI at 1.5 T with CAIPIRINHA-VIBE [spatial resolution, 0.76 ± 0.04 mm] and GRAPPA-VIBE [spatial resolution, 1.17 ± 0.14 mm]. Two readers independently reviewed image quality, presence of artefacts, lesion conspicuity, and lesion detection. Kappa statistic was used to assess interobserver agreement. Wilcoxon signed-rank test was used for image qualitative pairwise comparisons. Logistic regression with post-hoc testing was used to evaluate statistical significance of lesions evaluation. Interobserver agreement ranged between 0.45-0.93. Pre-contrast CAIPIRINHA-VIBE showed significantly (p < 0.001) sharper images and lesion conspicuity with decreased residual aliasing, but more noise enhancement and inferior image quality. Post-contrast CAIPIRINHA-VIBE showed significantly (p < 0.001) sharper images and higher lesion conspicuity, with less respiratory motion and residual aliasing artefacts. Inferior fat-suppression was noticeable on CAIPIRINHA-VIBE sequences (p < 0.001). High in-plane resolution abdominal 3D-GRE fat-suppressed T1-weighted imaging using controlled-aliasing acceleration technique is feasible and yields sharper images compared to standard-resolution images using standard acceleration, with higher post-contrast image quality and trend for improved hepatic lesions detection. (orig.)

  16. Construction of conducting and photoconducting 3D structures with submicron resolution in electrooptical substrates

    International Nuclear Information System (INIS)

    It is shown that the implantation of protons in electrooptical substrates enables the construction of 3D structures with submicron features that are both conductive and photoconductive embedded in amorphized regions that possess reduced refractive index. The conductivity and photoconductivity are attributed to the transformation of the material into a degenerate semiconductor due to the formation of high concentration of OH- complexes that are created by the bonding of the implanted H+ ions to the O-2 ions of the lattice. It is argued that these results extend significantly the capabilities of integrated photonic circuits and devices fabricated by Refractive Index Engineering by ion implantations. (orig.)

  17. Use of High resolution 3D Diffusion tensor imaging to study brain white matter development in live neonatal rats

    Directory of Open Access Journals (Sweden)

    Yu eCai

    2011-10-01

    Full Text Available High resolution diffusion tensor imaging (DTI can provide important information on brain development, yet it is challenging in live neonatal rats due to the small size of neonatal brain and motion-sensitive nature of DTI. Imaging in live neonatal rats has clear advantages over fixed brain scans, as longitudinal and functional studies would be feasible to understand neuro-developmental abnormalities. In this study, we developed imaging strategies that can be used to obtain high resolution 3D DTI images in live neonatal rats at postnatal day 5 (PND5 and postnatal day 14 (PND14, using only 3 hours of imaging acquisition time. An optimized 3D DTI pulse sequence and appropriate animal setup to minimize physiological motion artifacts are the keys to successful high resolution 3D DTI imaging. Thus, a 3D RARE DTI sequence with twin navigator echoes was implemented to accelerate imaging acquisition time and minimize motion artifacts. It has been suggested that neonatal mammals possess a unique ability to tolerate mild to moderate hypothermia and hypoxia without long term impact. Thus, we additionally utilized this ability to minimize motion artifacts in MR images by carefully suppressing the respiratory rate to around 15/min for PND5 and 30/min for PND14 using mild to moderate hypothermia. These imaging strategies have been successfully implemented to study how the effect of cocaine exposure in dams might affect brain development in their rat pups. Image quality resulting from this in vivo DTI study was comparable to ex vivo scans. FA values were also similar between the live and fixed brain scans. The capability of acquiring high quality in vivo DTI imaging offers a valuable opportunity to study many neurological disorders in brain development in an authentic living environment.

  18. Compressive Sensing in High-resolution 3D SAR Tomography of Urban Scenarios

    Directory of Open Access Journals (Sweden)

    Liao Ming-sheng

    2015-04-01

    Full Text Available In modern high resolution SAR data, due to the intrinsic side-looking geometry of SAR sensors, layover and foreshortening issues inevitably arise, especially in dense urban areas. SAR tomography provides a new way of overcoming these problems by exploiting the back-scattering property for each pixel. However, traditional non-parametric spectral estimators, e.g. Truncated Singular Value Decomposition (TSVD, are limited by their poor elevation resolution, which is not comparable to the azimuth and slant-range resolution. In this paper, the Compressive Sensing (CS approach using Basis Pursuit (BP and TWo-step Iterative Shrinkage/Thresholding (TWIST are introduced. Experimental studies with real spotlight-mode TerraSAR-X dataset are carried out using both BP and TWIST, to demonstrate the merits of compressive sensing approaches in terms of robustness, computational efficiency, and super-resolution capability.

  19. Intelligent Multi-Resolution 3D Modeling, Compression, Registration, Fusion and Recognition Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA missions are being designed for multi-sensor data collection and synthesis using diverse temporal, spatial and spectral resolutions for use by multiple teams...

  20. Intelligent Multi-Resolution 3D Modeling, Compression, Registration, Fusion and Recognition Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA missions are being designed for multisensor data collection and synthesis using diverse temporal, spatial and spectral resolutions for use by multiple teams of...

  1. Automatic Building Damage Detection Method Using High-Resolution Remote Sensing Images and 3d GIS Model

    Science.gov (United States)

    Tu, Jihui; Sui, Haigang; Feng, Wenqing; Song, Zhina

    2016-06-01

    In this paper, a novel approach of building damaged detection is proposed using high resolution remote sensing images and 3D GIS-Model data. Traditional building damage detection method considers to detect damaged building due to earthquake, but little attention has been paid to analyze various building damaged types(e.g., trivial damaged, severely damaged and totally collapsed.) Therefore, we want to detect the different building damaged type using 2D and 3D feature of scenes because the real world we live in is a 3D space. The proposed method generalizes that the image geometric correction method firstly corrects the post-disasters remote sensing image using the 3D GIS model or RPC parameters, then detects the different building damaged types using the change of the height and area between the pre- and post-disasters and the texture feature of post-disasters. The results, evaluated on a selected study site of the Beichuan earthquake ruins, Sichuan, show that this method is feasible and effective in building damage detection. It has also shown that the proposed method is easily applicable and well suited for rapid damage assessment after natural disasters.

  2. Laser 3D printing with sub-microscale resolution of porous elastomeric scaffolds for supporting human bone stem cells.

    Science.gov (United States)

    Petrochenko, Peter E; Torgersen, Jan; Gruber, Peter; Hicks, Lucas A; Zheng, Jiwen; Kumar, Girish; Narayan, Roger J; Goering, Peter L; Liska, Robert; Stampfl, Jürgen; Ovsianikov, Aleksandr

    2015-04-01

    A reproducible method is needed to fabricate 3D scaffold constructs that results in periodic and uniform structures with precise control at sub-micrometer and micrometer length scales. In this study, fabrication of scaffolds by two-photon polymerization (2PP) of a biodegradable urethane and acrylate-based photoelastomer is demonstrated. This material supports 2PP processing with sub-micrometer spatial resolution. The high photoreactivity of the biophotoelastomer permits 2PP processing at a scanning speed of 1000 mm s(-1), facilitating rapid fabrication of relatively large structures (>5 mm(3)). These structures are custom printed for in vitro assay screening in 96-well plates and are sufficiently flexible to enable facile handling and transplantation. These results indicate that stable scaffolds with porosities of greater than 60% can be produced using 2PP. Human bone marrow stromal cells grown on 3D scaffolds exhibit increased growth and proliferation compared to smooth 2D scaffold controls. 3D scaffolds adsorb larger amounts of protein than smooth 2D scaffolds due to their larger surface area; the scaffolds also allow cells to attach in multiple planes and to completely infiltrate the porous scaffolds. The flexible photoelastomer material is biocompatible in vitro and is associated with facile handling, making it a viable candidate for further study of complex 3D-printed scaffolds.

  3. 2D and 3D imaging resolution trade-offs in quantifying pore throats for prediction of permeability

    Energy Technology Data Exchange (ETDEWEB)

    Beckingham, Lauren E.; Peters, Catherine A.; Um, Wooyong; Jones, Keith W.; Lindquist, W.Brent

    2013-09-03

    Although the impact of subsurface geochemical reactions on porosity is relatively well understood, changes in permeability remain difficult to estimate. In this work, pore-network modeling was used to predict permeability based on pore- and pore-throat size distributions determined from analysis of 2D scanning electron microscopy (SEM) images of thin sections and 3D X-ray computed microtomography (CMT) data. The analyzed specimens were a Viking sandstone sample from the Alberta sedimentary basin and an experimental column of reacted Hanford sediments. For the column, a decrease in permeability due to mineral precipitation was estimated, but the permeability estimates were dependent on imaging technique and resolution. X-ray CT imaging has the advantage of reconstructing a 3D pore network while 2D SEM imaging can easily analyze sub-grain and intragranular variations in mineralogy. Pore network models informed by analyses of 2D and 3D images at comparable resolutions produced permeability esti- mates with relatively good agreement. Large discrepancies in predicted permeabilities resulted from small variations in image resolution. Images with resolutions 0.4 to 4 lm predicted permeabilities differ- ing by orders of magnitude. While lower-resolution scans can analyze larger specimens, small pore throats may be missed due to resolution limitations, which in turn overestimates permeability in a pore-network model in which pore-to-pore conductances are statistically assigned. Conversely, high-res- olution scans are capable of capturing small pore throats, but if they are not actually flow-conducting predicted permeabilities will be below expected values. In addition, permeability is underestimated due to misinterpreting surface-roughness features as small pore throats. Comparison of permeability pre- dictions with expected and measured permeability values showed that the largest discrepancies resulted from the highest resolution images and the best predictions of

  4. Brief communication: Impact of mesh resolution for MISMIP and MISMIP3d experiments using Elmer/Ice

    Science.gov (United States)

    Gagliardini, O.; Brondex, J.; Gillet-Chaulet, F.; Tavard, L.; Peyaud, V.; Durand, G.

    2016-02-01

    The dynamical contribution of marine ice sheets to sea level rise is largely controlled by grounding line (GL) dynamics. Two marine ice sheet model intercomparison exercises, namely MISMIP and MISMIP3d, have been proposed to the community to test and compare the ability of models to capture the GL dynamics. Both exercises are known to present a discontinuity of the friction at the GL, which is believed to increase the model sensitivity to mesh resolution. Here, using Elmer/Ice, the only Stokes model which completed both intercomparisons, the sensitivity to the mesh resolution is studied from an extended MISMIP experiment in which the friction continuously decreases over a transition distance and equals zero at the GL. Using this MISMIP-like setup, it is shown that the sensitivity to the mesh resolution is not improved for a vanishing friction at the GL. For the original MISMIP experiment, i.e. for a discontinuous friction at the GL, we further show that the results are moreover very sensitive to the way the friction is interpolated in the close vicinity of the GL. In the light of these new insights, and thanks to increased computing resources, new results for the MISMIP3d experiments obtained for higher resolutions than previously published are made available for future comparisons as the Supplement.

  5. High Resolution 3-D Finite-Volume Coastal Ocean Modeling in Lower Campbell River and Discovery Passage, British Columbia, Canada

    Directory of Open Access Journals (Sweden)

    Yuehua Lin

    2014-03-01

    Full Text Available The 3-D unstructured-grid, Finite-Volume Coastal Ocean Model (FVCOM was used to simulate the flows in Discovery Passage including the adjoining Lower Campbell River, British Columbia, Canada. Challenges in the studies include the strong tidal currents (e.g., up to 7.8 m/s in Seymour Narrows and tailrace discharges, small-scale topographic features and steep bottom slopes, and stratification affected by the Campbell River freshwater discharges. Two applications of high resolution 3-D FVCOM modeling were conducted. One is for the Lower Campbell River extending upstream as far as the John Hart Hydroelectric dam. The horizontal resolution varies from 0.27 m to 32 m in the unstructured triangular mesh to resolve the tailrace flow. The bottom elevation decreases ~14 m within the distance of ~1.4 km along the river. This pioneering FVCOM river modeling demonstrated a very good performance in simulating the river flow structures. The second application is to compute ocean currents immediately above the seabed along the present underwater electrical cable crossing routes across Discovery Passage. Higher resolution was used near the bottom with inter-layer spacing ranging from 0.125 to 0.0005 of total water depth. The model behaves very well in simulating the strong tidal currents in the area at high resolution in both the horizontal and vertical. One year maximum near bottom tidal current along the routes was then analyzed using the model results.

  6. A CZT high efficiency detector with 3D spatial resolution for Laue lens applications

    DEFF Research Database (Denmark)

    Auricchio, N.; Basili, A.; Caroli, E.;

    2010-01-01

    high performance focal plane detectors in order to exploit to the maximum the intrinsic capabilities of these new high energy telescopes. We describe the ongoing development of a three dimensional (3D) position sensitive device suitable as the basic unit of a high efficiency focal plane detector......For X- and γ-ray astronomy in the coming decades, both ESA and NASA have indicated in their guidelines the importance of developing innovative instrumentation operating in the hard X- and soft γ-ray range where important scientific issues are still open, exploiting high sensitivity (50–100 times...... better than current instruments) for spectroscopic imaging and polarimetric observations. In this framework, the development of new focusing optics based on wide band Laue lenses operating from ∼60 keV up to several hundred keV is particularly challenging. These new high energy focusing optics require...

  7. 3-D structure below Aevroe Island from high-resolution reflection seismic studies, southeastern Sweden

    International Nuclear Information System (INIS)

    Reflection seismology has served as a useful tool for imaging and mapping of fracture zones in crystalline rock along 2-D lines in nuclear waste disposal studies. Two 1-km-long perpendicular seismic reflection lines were acquired on Aevroe Island, southeast Sweden, in October 1996 in order to (1) test the seismic reflection method for future site investigations, (2) map known fracture zones, and (3) add to the Swedish database of reflection seismic studies of the shallow crystalline crust. An east-west line was shot with 5-m geophone and shot-point spacing, and a north-south line was shot with 10-m geophone and shotpoint spacing. An explosive source with a charge size of 100 g was used along both lines. The data clearly image three major dipping reflectors and one subhorizontal one in the upper 200 ms (600 m). The dipping reflectors (to the south, east, and northwest) intersect or project to the surface at or close to where surface-mapped fracture zones exist. The south-dipping reflector correlates with the top of a heavily fractured interval observed in a borehole (KAV01) at about 400 m. The subhorizontal zone at about 100--200 m correlates with a known fracture zone in the same borehole (KAV01). 3-D effects are apparent in the data, and only where the profiles cross can the true orientation of the reflecting events be determined. To properly orient and locate all events observed on the lines requires acquisition of 3-D data

  8. Multi-pulse time delay integration method for flexible 3D super-resolution range-gated imaging.

    Science.gov (United States)

    Xinwei, Wang; Youfu, Li; Yan, Zhou

    2015-03-23

    Constructing flexible regular-shaped range-intensity profiles by the convolution of illuminator laser pulse and sensor gate pulse is crucial for 3D super-resolution range-gated imaging. However, ns-scale rectangular-shaped laser pulse with tunable pulse width is difficult to be obtained, especially for pulsed solid-stated lasers. In this paper we propose a multi-pulse time delay integration (MPTDI) method to reshape range-intensity profiles (RIP) free from the above limitation of pulsed lasers. An equivalent laser pulse temporal shaping model is established to evaluate and optimize the MPTDI method. By using MPTDI, the RIP shape and depth of viewing can both be flexibly changed as desired. Here typical triangular and trapezoidal RIPs are established for 3D imaging under triangular and trapezoidal range-intensity correlation algorithms. In addition, a prototype experiment is demonstrated to prove the feasibility of MPTDI.

  9. High resolution 3D imaging of bump-bonds by means of synchrotron radiation computed laminography

    Science.gov (United States)

    Cecilia, A.; Hamann, E.; Koenig, T.; Xu, F.; Cheng, Y.; Helfen, L.; Ruat, M.; Scheel, M.; Zuber, M.; Baumbach, T.; Fauler, A.; Fiederle, M.

    2013-12-01

    During the flip-chip bonding process of a semiconductor sensor onto readout electronics, a formation of defects may take place, like solder joint displacements, voids, cracks, pores and bridges. This may result in blind spots on the detector, which are insensitive to photons and thus reduce the detector performance. In this work, the flip-chip interconnections of selected CdTe and GaAs Medipix detectors were investigated by synchrotron radiation computed laminography at a micrometer scale. The analysis of the volume rendering proved the presence of voids in the CdTe sensor flip-chip interconnections, with sizes between 3 μm and 9 μm. These voids can be harmful for the long term use of the device, because their presence weakens the adhesive strength between a contact and the readout electronics. Consequently, their formation needs to be avoided. The GaAs Medipix detectors investigated include two sensors that were produced with different flip-chip methods. The comparison of the 3D renderings of the bump-bond interconnections in the two GaAs sensors demonstrated the presence of a misalignment in the range of 5-12 μm between pixel passivation and bump-bonds in the detector produced with an older technique. In contrast to this, no misalignment was observed for the most recently produced detector. The only remarkable observation is the presence of ``satellites'' of solder that do not compromise the detector operation.

  10. Possible use of small UAV to create high resolution 3D model of vertical rock faces

    Science.gov (United States)

    Mészáros, János; Kerkovits, Krisztian

    2014-05-01

    One of the newest and mostly emerging acquisition technologies is the use of small unmanned aerial vehicles (UAVs) to photogrammetry and remote sensing. Several successful research project or industrial use can be found worldwide (mine investigation, precision agriculture, mapping etc.) but those surveys are focusing mainly on the survey of horizontal areas. In our research a mixed acquisition method was developed and tested to create a dense, 3D model about a columnar outcrop close to Kő-hegy (Pest County). Our primary goal was to create a model whereat the pattern of different layers is clearly visible and measurable, as well as to test the robustness of our idea. Our method uses a consumer grade camera to take digital photographs about the outcrop. A small, custom made tricopter was built to carry the camera above middle and top parts of the rock, the bottom part can be photographed only from several ground positions. During the field survey ground control points were installed and measured using a kinematic correction GPS. These latter data were used during the georeferencing of generated point cloud. Free online services built on Structure from Motion (SfM) algorithms and desktop software also were tested to generate the relative point cloud and for further processing and analysis.

  11. High sensitivity and high resolution element 3D analysis by a combined SIMS–SPM instrument

    Directory of Open Access Journals (Sweden)

    Yves Fleming

    2015-04-01

    Full Text Available Using the recently developed SIMS–SPM prototype, secondary ion mass spectrometry (SIMS data was combined with topographical data from the scanning probe microscopy (SPM module for five test structures in order to obtain accurate chemical 3D maps: a polystyrene/polyvinylpyrrolidone (PS/PVP polymer blend, a nickel-based super-alloy, a titanium carbonitride-based cermet, a reticle test structure and Mg(OH2 nanoclusters incorporated inside a polymer matrix. The examples illustrate the potential of this combined approach to track and eliminate artefacts related to inhomogeneities of the sputter rates (caused by samples containing various materials, different phases or having a non-flat surface and inhomogeneities of the secondary ion extraction efficiencies due to local field distortions (caused by topography with high aspect ratios. In this respect, this paper presents the measured relative sputter rates between PVP and PS as well as in between the different phases of the TiCN cermet.

  12. High resolution processing of 3D seismic data for thin coal seam in Guqiao coal mine

    Science.gov (United States)

    Li, Qiaoling; Peng, Suping; Zou, Guangui

    2015-04-01

    Accurate identification of small faults for coal seams is very important for coal-field exploration, which can greatly improve mining efficiency and safety. However, coal seams in China are mostly thin layers, ranging from 2-5 m. Moreover, the shallow coal seam with strong reflection forms a shield underneath thin coal seam which is only about 40 m deeper. This causes great difficulty in seismic processing and interpretation. The primary concern is to obtain high-resolution seismic image of underneath thin coal seam for mining safety. In this paper, field data is carefully analyzed and fit-for-purpose solutions are adopted in order to improve the quality of reprocessed data and resolution of target coal seam. Identification of small faults has been enhanced significantly.

  13. Macromolecular 3D SEM reconstruction strategies: Signal to noise ratio and resolution

    International Nuclear Information System (INIS)

    Three-dimensional scanning electron microscopy generates quantitative volumetric structural data from SEM images of macromolecules. This technique provides a quick and easy way to define the quaternary structure and handedness of protein complexes. Here, we apply a variety of preparation and imaging methods to filamentous actin in order to explore the relationship between resolution, signal-to-noise ratio, structural preservation and dataset size. This information can be used to define successful imaging strategies for different applications. - Highlights: • F-actin SEM datasets were collected using 8 different preparation/ imaging techniques. • Datasets were reconstructed by back projection and compared/analyzed • 3DSEM actin reconstructions can be produced with <100 views of the asymmetric unit. • Negatively stained macromolecules can be reconstructed by 3DSEM to ∼3 nm resolution

  14. High Resolution 3d Imaging during the Construction of National Radioactive Waste Repository from BÁTAAPÁTI, Hungary

    Science.gov (United States)

    Gaich, A.; Deák, F.; Pötsch, M.

    2012-12-01

    The Hungarian National Radioactive Waste Repository is being built in the neighborhood of the village called Bátaapáti. The program of the new disposal facility for the low- and intermediate-level wastes (L/ILW) is conducted by PURAM (Public Limited Company for Radioactive Waste Management). The Bátaapáti underground research program began in February 2005, with the excavation of the two inclined exploratory tunnels. These tunnels have 30 m distance between their axes, 10% inclination and 1.7 km length, and have reached the 0 m Baltic sea-level in the Mórágy Granite Formation. The safety of nuclear repository mainly is influenced by the ground behaviour and its fracturing hence mapping of the geological features has a great importance. Because of the less stable ground, the cavern walls were shotcreted after every tunnelling advance. The site geologists were required to make the tunnel mapping after every drill and blast cycle. The time interval was short and the documenting work was unrepeatable due to the shotcrete supported walls, so it was very important to use a modern, precise system to create 3D photorealistic models of the rock surfaces on the excavated tunnel walls. We have chosen the photogrammetric method, because it has adequate resolution and quality for the photo combined 3D models. At the beginning, we had used the JointMetriX3D (JMX) system and subsequently ShapeMetriX3D (SMX) in the repository chamber excavation phase. From the acquired 3D images through geological mapping is performed as the system allows directly measuring geometric information on visible discontinuities such as dip and dip direction. Descriptive rock mass parameters such as spacing, area, roughness are instantly available. In this article we would like to continue that research having made by JMX model of a tunnel face of "TSZV" access tunnel and using SMX model of a tunnel face from "DEK" Chamber. Our studies were carried out by field engineering geologists on further

  15. High-Resolution 3D Bathymetric Mapping for Small Streams Using Low-Altitude Aerial Photography

    Science.gov (United States)

    Dietrich, J. T.; Duffin, J.

    2015-12-01

    Geomorphic monitoring of river restoration projects is a critical component of measuring their success. In smaller streams, with depths less than 2 meters, one of the more difficult variables to map at high-resolution is bathymetry. In larger rivers, bathymetry can be measured with instruments like multi-beam sonar, bathymetric airborne LiDAR, or acoustic doppler current profilers (ADCP). However, these systems are often limited by their minimum operating depths, which makes them ineffective in shallow water. Remote sensing offers several potential solutions for collecting bathymetry, spectral depth mapping and photogrammetric measurement (e.g. Structure-from-Motion (SfM) multi-view photogrammetry). In this case study, we use SfM to produce both high-resolution above water topography and below water bathymetry for two reaches of a stream restoration project on the Middle Fork of the John Day River in eastern Oregon and one reach on the White River in Vermont. We collected low-allitude multispectral (RGB+NIR) aerial photography at all of the sites at altitudes of 30 to 50 meters. The SfM survey was georeferenced with RTK-GPS ground control points and the bathymetry was refraction-corrected using additional RTK-GPS sample points. The resulting raster data products have horizontal resolutions of ~4-8 centimeters for the topography and ~8-15 cm for the bathymetry. This methodology, like many fluvial remote sensing methods, will only work under ideal conditions (e.g. clear water), but it provides an additional tool for collecting high-resolution bathymetric datasets for geomorphic monitoring efforts.

  16. High-resolution direct 3D printed PLGA scaffolds: print and shrink

    International Nuclear Information System (INIS)

    Direct three-dimensional printing (3DP) produces the final part composed of the powder and binder used in fabrication. An advantage of direct 3DP is control over both the microarchitecture and macroarchitecture. Prints which use porogen incorporated in the powder result in high pore interconnectivity, uniform porosity, and defined pore size after leaching. The main limitations of direct 3DP for synthetic polymers are the use of organic solvents which can dissolve polymers used in most printheads and limited resolution due to unavoidable spreading of the binder droplet after contact with the powder. This study describes a materials processing strategy to eliminate the use of organic solvent during the printing process and to improve 3DP resolution by shrinking with a non-solvent plasticizer. Briefly, poly(lactic-co-glycolic acid) (PLGA) powder was prepared by emulsion solvent evaporation to form polymer microparticles. The printing powder was composed of polymer microparticles dry mixed with sucrose particles. After printing with a water-based liquid binder, the polymer microparticles were fused together to form a network by solvent vapor in an enclosed vessel. The sucrose is removed by leaching and the resulting scaffold is placed in a solution of methanol. The methanol acts as a non-solvent plasticizer and allows for polymer chain rearrangement and efficient packing of polymer chains. The resulting volumetric shrinkage is ∼80% at 90% methanol. A complex shape (honey-comb) was designed, printed, and shrunken to demonstrate isotropic shrinking with the ability to reach a final resolution of ∼400 μm. The effect of type of alcohol (i.e. methanol or ethanol), concentration of alcohol, and temperature on volumetric shrinking was studied. This study presents a novel materials processing strategy to overcome the main limitations of direct 3DP to produce high resolution PLGA scaffolds. (paper)

  17. High Temporal and Spatial Resolution 3D Time-Resolved Contrast-Enhanced MR Angiography of the Hands and Feet

    OpenAIRE

    Haider, Clifton R.; Riederer, Stephen J.; Borisch, Eric A.; Glockner, James F; Grimm, Roger C.; Hulshizer, Thomas C.; Macedo, Thanila A.; Mostardi, Petrice M.; Rossman, Phillip J.; Vrtiska, Terri J.; Young, Phillip M.

    2011-01-01

    Methods are described for generating 3D time-resolved contrast-enhanced MR angiograms of the hands and feet. Given targeted spatial resolution and frame times, it is shown that acceleration of about one order of magnitude or more is necessary. This is obtained by a combination of 2D Sensitivity Encoding (SENSE) and homodyne (HD) acceleration methods. Image update times from 3.4 to 6.8 sec are provided in conjunction with view sharing. Modular receiver coil arrays are described which can be de...

  18. 3-D Modeling of Tomato Canopies Using a High-Resolution Portable Scanning Lidar for Extracting Structural Information

    OpenAIRE

    Fumiki Hosoi; Kazushige Nakabayashi; Kenji Omasa

    2011-01-01

    In the present study, an attempt was made to produce a precise 3D image of a tomato canopy using a portable high-resolution scanning lidar. The tomato canopy was scanned by the lidar from three positions surrounding it. Through the scanning, the point cloud data of the canopy were obtained and they were co-registered. Then, points corresponding to leaves were extracted and converted into polygon images. From the polygon images, leaf areas were accurately estimated with a mean absolute percent...

  19. Denoising of high resolution small animal 3D PET data using the non-subsampled Haar wavelet transform

    Energy Technology Data Exchange (ETDEWEB)

    Ochoa Domínguez, Humberto de Jesús, E-mail: hochoa@uacj.mx [Departamento de Ingeniería Eléctrica y computación, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chih. (Mexico); Máynez, Leticia O. [Departamento de Ingeniería Eléctrica y computación, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chih. (Mexico); Vergara Villegas, Osslan O. [Departamento de Ingeniería Industrial, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chih. (Mexico); Mederos, Boris; Mejía, José M.; Cruz Sánchez, Vianey G. [Departamento de Ingeniería Eléctrica y computación, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chih. (Mexico)

    2015-06-01

    PET allows functional imaging of the living tissue. However, one of the most serious technical problems affecting the reconstructed data is the noise, particularly in images of small animals. In this paper, a method for high-resolution small animal 3D PET data is proposed with the aim to reduce the noise and preserve details. The method is based on the estimation of the non-subsampled Haar wavelet coefficients by using a linear estimator. The procedure is applied to the volumetric images, reconstructed without correction factors (plane reconstruction). Results show that the method preserves the structures and drastically reduces the noise that contaminates the image.

  20. Early Earth tectonics: A high-resolution 3D numerical modelling approach

    Science.gov (United States)

    Fischer, R.; Gerya, T.

    2014-12-01

    Early Earth had a higher amount of remaining radiogenic elements as well as a higher amount of leftover primordial heat. Both contributed to the increased temperature in the Earth's interior and it is mainly this increased mantle potential temperature ΔTp that controls the dynamics of the crust and upper mantle and the style of Early Earth tectonics. For a minor increase in temperature ΔTp buckling, delamination and Rayleigh-Taylor style dripping of the plate is observed in addition. For higher temperatures ΔTp > 250 K no subduction can be observed anymore and tectonics is dominated by delamination and Rayleigh-Taylor instabilities. We conduct 3D petrological-thermomechanical numerical modelling experiments of the crust and upper mantle under Early Earth conditions and a plume tectonics model setup. For varying crustal structures and an increased mantle potential temperature ΔTp, a thermal anomaly in the bottom temperature boundary introduces a plume. The model is able to self-sufficiently form depleted mantle lithosphere after repeated melt removal. New crust can be produced in the form of volcanics or plutonics. To simulate differentiation the newly formed crust can have a range in composition from basaltic over dacitic to granitic depending on its source rock. Models show large amounts of subcrustal decompression melting and consequently large amounts of new formed crust which in turn influences the dynamics. Mantle and crust are convecting separately. Dome-shaped plutons of mafic or felsic composition can be observed in the crust. Between these domes elongated belts of upper crust, volcanics and sediments are formed. These structures look similar to, for example, the Kaapvaal craton in South Africa where the elongated shape of the Barberton Greenstone Belt is surrounded by multiple plutons.

  1. High-Resolution Detection of Five Frequencies in a Single 3D Spectrum: HNHCACO - a Bidirectional Coherence Transfer Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Pang Yuxi; Zeng Lei; Kurochkin, Alexander V.; Zuiderweg, Erik R.P. [University of Michigan, Biophysics Research Division (United States)

    1998-02-15

    A new triple-resonance pulse sequence, 3D HNHCACO, is introduced and discussed, which identifies sequential correlations of the backbone nuclei (H{alpha}(i-1), C{alpha}(i-1), C'(i-1), NH(i)) of doubly labeled proteins in H2O. The three-dimensional (3D) method utilizes a recording of 15N and 13C resonances in a single indirect time domain, the 13C' resonance in another indirect time domain, and detects both NH and H{alpha} protons. A bidirectional coherence transfer (NH(i) {r_reversible} N(i) {r_reversible} C'(i-1) {r_reversible} C{alpha}(i-1) {r_reversible} H{alpha}(i-1)) is effectuated, resulting in a single high-resolution 3D spectrum that contains the frequencies of all five backbone nuclei. The experiment was applied to the 12.3 kDa ribonuclease from Bacillus intermedius (Binase)

  2. Adaptive multi-resolution 3D Hartree-Fock-Bogoliubov solver for nuclear structure

    Science.gov (United States)

    Pei, J. C.; Fann, G. I.; Harrison, R. J.; Nazarewicz, W.; Shi, Yue; Thornton, S.

    2014-08-01

    Background: Complex many-body systems, such as triaxial and reflection-asymmetric nuclei, weakly bound halo states, cluster configurations, nuclear fragments produced in heavy-ion fusion reactions, cold Fermi gases, and pasta phases in neutron star crust, are all characterized by large sizes and complex topologies in which many geometrical symmetries characteristic of ground-state configurations are broken. A tool of choice to study such complex forms of matter is an adaptive multi-resolution wavelet analysis. This method has generated much excitement since it provides a common framework linking many diversified methodologies across different fields, including signal processing, data compression, harmonic analysis and operator theory, fractals, and quantum field theory. Purpose: To describe complex superfluid many-fermion systems, we introduce an adaptive pseudospectral method for solving self-consistent equations of nuclear density functional theory in three dimensions, without symmetry restrictions. Methods: The numerical method is based on the multi-resolution and computational harmonic analysis techniques with a multi-wavelet basis. The application of state-of-the-art parallel programming techniques include sophisticated object-oriented templates which parse the high-level code into distributed parallel tasks with a multi-thread task queue scheduler for each multi-core node. The internode communications are asynchronous. The algorithm is variational and is capable of solving coupled complex-geometric systems of equations adaptively, with functional and boundary constraints, in a finite spatial domain of very large size, limited by existing parallel computer memory. For smooth functions, user-defined finite precision is guaranteed. Results: The new adaptive multi-resolution Hartree-Fock-Bogoliubov (HFB) solver madness-hfb is benchmarked against a two-dimensional coordinate-space solver hfb-ax that is based on the B-spline technique and a three-dimensional solver

  3. A high resolution hydrodynamic 3-D model simulation of the malta shelf area

    Directory of Open Access Journals (Sweden)

    A. F. Drago

    Full Text Available The seasonal variability of the water masses and transport in the Malta Channel and proximity of the Maltese Islands have been simulated by a high resolution (1.6 km horizontal grid on average, 15 vertical sigma layers eddy resolving primitive equation shelf model (ROSARIO-I. The numerical simulation was run with climatological forcing and includes thermohaline dynamics with a turbulence scheme for the vertical mixing coefficients on the basis of the Princeton Ocean Model (POM. The model has been coupled by one-way nesting along three lateral boundaries (east, south and west to an intermediate coarser resolution model (5 km implemented over the Sicilian Channel area. The fields at the open boundaries and the atmospheric forcing at the air-sea interface were applied on a repeating "perpetual" year climatological cycle.

    The ability of the model to reproduce a realistic circulation of the Sicilian-Maltese shelf area has been demonstrated. The skill of the nesting procedure was tested by model-modelc omparisons showing that the major features of the coarse model flow field can be reproduced by the fine model with additional eddy space scale components. The numerical results included upwelling, mainly in summer and early autumn, along the southern coasts of Sicily and Malta; a strong eastward shelf surface flow along shore to Sicily, forming part of the Atlantic Ionian Stream, with a presence throughout the year and with significant seasonal modulation, and a westward winter intensified flow of LIW centered at a depth of around 280 m under the shelf break to the south of Malta. The seasonal variability in the thermohaline structure of the domain and the associated large-scale flow structures can be related to the current knowledge on the observed hydrography of the area. The level of mesoscale resolution achieved by the model allowed the spatial and temporal evolution of the changing flow patterns, triggered by

  4. Biometric assessment of deep-sea vent megabenthic communities using multi-resolution 3D image reconstructions

    Science.gov (United States)

    Thornton, Blair; Bodenmann, Adrian; Pizarro, Oscar; Williams, Stefan B.; Friedman, Ariell; Nakajima, Ryota; Takai, Ken; Motoki, Kaori; Watsuji, Tomo-o.; Hirayama, Hisako; Matsui, Yohei; Watanabe, Hiromi; Ura, Tamaki

    2016-10-01

    This paper describes a method to survey the distribution of megabenthos over multi-hectare regions of the seafloor. Quantitative biomass estimates are made by combining high-resolution 3D image reconstructions, used to model spatial relationships between representative taxa, with lower-resolution reconstructions taken over a wider area in which the distribution of larger predatory animals can be observed. The method is applied to a region of the Iheya North field that was the target of scientific drilling during the IODP Expedition 331 in 2010. An area of 2.5 ha was surveyed 3 years and 4 months after the site was drilled. More than 100,000 organisms from 6 taxa were identified. The visible effects of drilling on the distribution of megabenthos were confined to a 20 m radius of the artificially created hydrothermal discharges, with the associated densities of biomass lower than observed in nearby naturally discharging areas.

  5. Single objective light-sheet microscopy for high-speed whole-cell 3D super-resolution.

    Science.gov (United States)

    Meddens, Marjolein B M; Liu, Sheng; Finnegan, Patrick S; Edwards, Thayne L; James, Conrad D; Lidke, Keith A

    2016-06-01

    We have developed a method for performing light-sheet microscopy with a single high numerical aperture lens by integrating reflective side walls into a microfluidic chip. These 45° side walls generate light-sheet illumination by reflecting a vertical light-sheet into the focal plane of the objective. Light-sheet illumination of cells loaded in the channels increases image quality in diffraction limited imaging via reduction of out-of-focus background light. Single molecule super-resolution is also improved by the decreased background resulting in better localization precision and decreased photo-bleaching, leading to more accepted localizations overall and higher quality images. Moreover, 2D and 3D single molecule super-resolution data can be acquired faster by taking advantage of the increased illumination intensities as compared to wide field, in the focused light-sheet. PMID:27375939

  6. An alternative 3D inversion method for magnetic anomalies with depth resolution

    Directory of Open Access Journals (Sweden)

    M. Chiappini

    2006-06-01

    Full Text Available This paper presents a new method to invert magnetic anomaly data in a variety of non-complex contexts when a priori information about the sources is not available. The region containing magnetic sources is discretized into a set of homogeneously magnetized rectangular prisms, polarized along a common direction. The magnetization distribution is calculated by solving an underdetermined linear system, and is accomplished through the simultaneous minimization of the norm of the solution and the misfit between the observed and the calculated field. Our algorithm makes use of a dipolar approximation to compute the magnetic field of the rectangular blocks. We show how this approximation, in conjunction with other correction factors, presents numerous advantages in terms of computing speed and depth resolution, and does not affect significantly the success of the inversion. The algorithm is tested on both synthetic and real magnetic datasets.

  7. Adaptive Multi-resolution 3D Hartree-Fock-Bogoliubov Solver for Nuclear Structure

    CERN Document Server

    Pei, Junchen; Harrison, Robert; Nazarewicz, Witold; Shi, Yue; Thornton, Scott

    2014-01-01

    Complex many-body systems, such as triaxial and reflection-asymmetric nuclei, weakly-bound halo states, cluster configurations, nuclear fragments produced in heavy-ion fusion reactions, cold Fermi gases, and pasta phases in neutron star crust, they are all characterized by large sizes and complex topologies, in which many geometrical symmetries characteristic of ground-state configurations are broken. A tool of choice to study such complex forms of matter is an adaptive multi-resolution wavelet analysis. This method has generated much excitement since it provides a common framework linking many diversified methodologies across different fields, including signal processing, data compression, harmonic analysis and operator theory, fractals, and quantum field theory. To describe complex superfluid many-fermion systems, we introduce an adaptive pseudo-spectral method for solving self-consistent equations of nuclear density functional theory in three dimensions, without symmetry restrictions. The new adaptive mult...

  8. Two-photon luminescence thermometry: towards 3D high-resolution thermal imaging of waveguides.

    Science.gov (United States)

    He, Ruiyun; Vázquez de Aldana, Javier Rodríguez; Pedrola, Ginés Lifante; Chen, Feng; Jaque, Daniel

    2016-07-11

    We report on the use of the Erbium-based luminescence thermometry to realize high resolution, three dimensional thermal imaging of optical waveguides. Proof of concept is demonstrated in a 980-nm laser pumped ultrafast laser inscribed waveguide in Er:Yb phosphate glass. Multi-photon microscopy images revealed the existence of well confined intra-waveguide temperature increments as large as 200 °C for moderate 980-nm pump powers of 120 mW. Numerical simulations and experimental data reveal that thermal loading can be substantially reduced if pump events are separated more than the characteristic thermal time that for the waveguides investigated is in the ms time scale. PMID:27410882

  9. Focus Variation - A New Technology for High Resolution Optical 3D Surface Metrology in the Micro- and Nanometer Range

    Science.gov (United States)

    Huber, O.

    2009-04-01

    Focus Variation - A New Technology for High Resolution Optical 3D Surface Metrology in the Micro- and Nanometer Range S. Scherer1, E. Cristea1, O. Huber1, A. Krenn1 1 ALICONA GmbH Graz, Austria The need for increasing accuracy is a characteristic of all geo-applications, and hence of the instruments contributing to obtaining relevant data. Small and fine sensors are being developed, measuring different parameters of our geosystem and requiring continuous validation and calibration. These sensors have often very small components (fine sensors able to sense dust, atmospheric water vapour characteristics, pressure change, gravimeters, satellite micro-components), showing complex topographies including steep flanks and having varying reflective properties. In order to get valid and reliable results, quality assurance of these instruments and sensors is required. The optical technology Focus-Variation, developed by Alicona and added in the latest draft of the upcoming ISO standard 25178, provides high resolution 3D surface metrology even at those complex topographies. The technique of Focus-Variation combines the small depth of focus of an optical system with vertical scanning to provide topographical and color information from the variation of focus. It is used for high-resolution optical 3D surface measurements. The traceable and repeatable measurement results are further being used for e.g. calibration and validation purposes. Some of the characteristics of the technology are: - Measurement of instruments / samples with steep flanks up to 80° - Measurement of materials with strongly varying reflection properties - Measurement of surfaces presenting fine (from 10nm) or strong roughness Here, we present the operating principle and possible applications of the optical 3D measurement system "InfiniteFocus", which is based on the technology of Focus-Variation. With the vertical resolution of up to 10nm, InfiniteFocus yields meaningful form and roughness measurements. The

  10. Petrophysical analysis of limestone rocks by nuclear logging and 3D high-resolution X-ray computed microtomography

    International Nuclear Information System (INIS)

    This study presents the pore-space system analysis of the 2-ITAB-1-RJ well cores, which were drilled in the Sao Jose do Itaborai Basin, in the state of Rio de Janeiro, Brasil. The analysis presented herein has been developed based on two techniques: nuclear logging and 3D high-resolution X-ray computed microtomography. Nuclear logging has been proven to be the technique that provides better quality and more quantitative information about the porosity using radioactive sources. The Density Gamma Probe and the Neutron Sonde used in this work provide qualitative information about bulk density variations and compensated porosity of the geological formation. The samples obtained from the well cores were analyzed by microtomography. The use of this technique in sedimentary rocks allows quantitative evaluation of pore system and generates high-resolution 3D images (∼microns order). The images and data obtained by microtomography were integrated with the response obtained by nuclear logging. The results obtained by these two techniques allow the understanding of the pore-size distribution and connectivity, as well as the porosity values. Both techniques are important and they complement each other.

  11. High resolution 3D MRI of mouse mammary glands with intra-ductal injection of contrast media.

    Science.gov (United States)

    Markiewicz, Erica; Fan, Xiaobing; Mustafi, Devkumar; Zamora, Marta; Roman, Brian B; Jansen, Sanaz A; Macleod, Kay; Conzen, Suzanne D; Karczmar, Gregory S

    2015-01-01

    The purpose of this study was to use high resolution three-dimensional (3D) magnetic resonance imaging (MRI) to study mouse mammary gland ductal architecture based on intra-ductal injection of contrast agents. Female FVB/N mice age 12-20 weeks (n=12), were used in this study. A 34G, 45° tip Hamilton needle with a 25μL Hamilton syringe was inserted into the tip of the nipple. Approximately 20-25μL of a Gadodiamide/Trypan blue/saline solution was injected slowly over one minute into the nipple and duct. To prevent washout of contrast media from ducts due to perfusion, and maximize the conspicuity of ducts on MRI, mice were sacrificed one minute after injection. High resolution 3D T1-weighted images were acquired on a 9.4T Bruker scanner after sacrifice to eliminate motion artifacts and reduce contrast media leakage from ducts. Trypan blue staining was well distributed throughout the ductal tree. MRI showed the mammary gland ductal structure clearly. In spoiled gradient echo T1-weighted images, the signal-to-noise ratio of regions identified as enhancing mammary ducts following contrast injection was significantly higher than that of muscle (pcontrast media (pcontrast agents to measure metabolism or target receptors in normal ducts and ducts with in situ cancers.

  12. B[e] stars at the highest angular resolution: the case of HD87643

    CERN Document Server

    Millour, Florentin; Borges-Fernandes, Marcelo; Meilland, Anthony

    2009-01-01

    New results on the B[e] star HD87643 are presented here. They were obtained with a wide range of di?erent instruments, from wide-?eld imaging with the WFI camera, high resolution spectroscopy with the FEROS instrument, high angular resolution imaging with the adaptive optics camera NACO, to the highest angular resolution available with AMBER on the VLTI. We report the detection of a companion to HD87643 with AMBER, subsequently con?rmed in the NACO data. Implications of that discovery to some of the previously di?cult-to-understand data-sets are then presented.

  13. A Compact 3D Omnidirectional Range Sensor of High Resolution for Robust Reconstruction of Environments

    Directory of Open Access Journals (Sweden)

    Roberto Marani

    2015-01-01

    Full Text Available In this paper, an accurate range sensor for the three-dimensional reconstruction of environments is designed and developed. Following the principles of laser profilometry, the device exploits a set of optical transmitters able to project a laser line on the environment. A high-resolution and high-frame-rate camera assisted by a telecentric lens collects the laser light reflected by a parabolic mirror, whose shape is designed ad hoc to achieve a maximum measurement error of 10 mm when the target is placed 3 m away from the laser source. Measurements are derived by means of an analytical model, whose parameters are estimated during a preliminary calibration phase. Geometrical parameters, analytical modeling and image processing steps are validated through several experiments, which indicate the capability of the proposed device to recover the shape of a target with high accuracy. Experimental measurements show Gaussian statistics, having standard deviation of 1.74 mm within the measurable range. Results prove that the presented range sensor is a good candidate for environmental inspections and measurements.

  14. Improving the H.E.S.S. angular resolution using the Disp method

    CERN Document Server

    Lu, C -C

    2013-01-01

    The angular resolution of imaging atmospheric Cherenkov telescopes depends on the employed event reconstruction methods. By taking the weighted average of intersections of shower axes, the H.E.S.S. experiment achieves a 0.08 degree angular resolution at 20 degree zenith angle with an image size cut of 160 p.e. for sources with a spectral index of 2. However, the angular resolution degrades to 0.14 degree at 60 degree zenith angle, due to the larger fraction of nearly parallel images. The Disp method reduces the impact of parallel images by including an estimation of the image displacement (disp), inferred from the Hillas parameters, in the reconstruction procedure. By using this technique, the angular resolution at large zenith angles can be improved by 50%. An additional cut on the estimated direction uncertainty can further improve the angular resolution to around 0.05 degrees at the expense of a loss of 50% of effective area. The performance of this reconstruction method on simulated gamma-ray events and r...

  15. Digitized crime scene forensics: automated trace separation of toolmarks on high-resolution 2D/3D CLSM surface data

    Science.gov (United States)

    Clausing, Eric; Vielhauer, Claus

    2015-03-01

    Locksmith forensics is an important and very challenging part of classic crime scene forensics. In prior work, we propose a partial transfer to the digital domain, to effectively support forensic experts and present approaches for a full process chain consisting of five steps: Trace positioning, 2D/3D acquisition with a confocal 3D laser scanning microscope, detection by segmentation, trace type determination, and determination of the opening method. In particular the step of trace segmentation on high-resolution 3D surfaces thereby turned out to be the part most difficult to implement. The reason for that is the highly structured and complex surfaces to be analyzed. These surfaces are cluttered with a high number of toolmarks, which overlap and distort each other. In Clausing et al., we present an improved approach for a reliable segmentation of relevant trace regions but without the possibility of separating single traces out of segmented trace regions. However, in our past research, especially features based on shape and dimension turned out to be highly relevant for a fully automated analysis and interpretation. In this paper, we consequently propose an approach for this separation. To achieve this goal, we use our segmentation approach and expand it with a combination of the watershed algorithm with a graph-based analysis. Found sub-regions are compared based on their surface character and are connected or divided depending on their similarity. We evaluate our approach with a test set of about 1,300 single traces on the exemplary locking cylinder component 'key pin' and thereby are able of showing the high suitability of our approach.

  16. 3D registration of intravascular optical coherence tomography and cryo-image volumes for microscopic-resolution validation

    Science.gov (United States)

    Prabhu, David; Mehanna, Emile; Gargesha, Madhusudhana; Wen, Di; Brandt, Eric; van Ditzhuijzen, Nienke S.; Chamie, Daniel; Yamamoto, Hirosada; Fujino, Yusuke; Farmazilian, Ali; Patel, Jaymin; Costa, Marco; Bezerra, Hiram G.; Wilson, David L.

    2016-03-01

    High resolution, 100 frames/sec intravascular optical coherence tomography (IVOCT) can distinguish plaque types, but further validation is needed, especially for automated plaque characterization. We developed experimental and 3D registration methods, to provide validation of IVOCT pullback volumes using microscopic, brightfield and fluorescent cryoimage volumes, with optional, exactly registered cryo-histology. The innovation was a method to match an IVOCT pullback images, acquired in the catheter reference frame, to a true 3D cryo-image volume. Briefly, an 11-parameter, polynomial virtual catheter was initialized within the cryo-image volume, and perpendicular images were extracted, mimicking IVOCT image acquisition. Virtual catheter parameters were optimized to maximize cryo and IVOCT lumen overlap. Local minima were possible, but when we started within reasonable ranges, every one of 24 digital phantom cases converged to a good solution with a registration error of only +1.34+/-2.65μm (signed distance). Registration was applied to 10 ex-vivo cadaver coronary arteries (LADs), resulting in 10 registered cryo and IVOCT volumes yielding a total of 421 registered 2D-image pairs. Image overlays demonstrated high continuity between vascular and plaque features. Bland- Altman analysis comparing cryo and IVOCT lumen area, showed mean and standard deviation of differences as 0.01+/-0.43 mm2. DICE coefficients were 0.91+/-0.04. Finally, visual assessment on 20 representative cases with easily identifiable features suggested registration accuracy within one frame of IVOCT (+/-200μm), eliminating significant misinterpretations introduced by 1mm errors in the literature. The method will provide 3D data for training of IVOCT plaque algorithms and can be used for validation of other intravascular imaging modalities.

  17. Nanometer depth resolution in 3D topographic analysis of drug-loaded nanofibrous mats without sample preparation.

    Science.gov (United States)

    Paaver, Urve; Heinämäki, Jyrki; Kassamakov, Ivan; Hæggström, Edward; Ylitalo, Tuomo; Nolvi, Anton; Kozlova, Jekaterina; Laidmäe, Ivo; Kogermann, Karin; Veski, Peep

    2014-02-28

    We showed that scanning white light interferometry (SWLI) can provide nanometer depth resolution in 3D topographic analysis of electrospun drug-loaded nanofibrous mats without sample preparation. The method permits rapidly investigating geometric properties (e.g. fiber diameter, orientation and morphology) and surface topography of drug-loaded nanofibers and nanomats. Electrospun nanofibers of a model drug, piroxicam (PRX), and hydroxypropyl methylcellulose (HPMC) were imaged. Scanning electron microscopy (SEM) served as a reference method. SWLI 3D images featuring 29 nm by 29 nm active pixel size were obtained of a 55 μm × 40 μm area. The thickness of the drug-loaded non-woven nanomats was uniform, ranging from 2.0 μm to 3.0 μm (SWLI), and independent of the ratio between HPMC and PRX. The average diameters (n=100, SEM) for drug-loaded nanofibers were 387 ± 125 nm (HPMC and PRX 1:1), 407 ± 144 nm (HPMC and PRX 1:2), and 290 ± 100 nm (HPMC and PRX 1:4). We found advantages and limitations in both techniques. SWLI permits rapid non-contacting and non-destructive characterization of layer orientation, layer thickness, porosity, and surface morphology of electrospun drug-loaded nanofibers and nanomats. Such analysis is important because the surface topography affects the performance of nanomats in pharmaceutical and biomedical applications. PMID:24378328

  18. A simple and high-resolution stereolithography-based 3D bioprinting system using visible light crosslinkable bioinks.

    Science.gov (United States)

    Wang, Zongjie; Abdulla, Raafa; Parker, Benjamin; Samanipour, Roya; Ghosh, Sanjoy; Kim, Keekyoung

    2015-01-01

    Bioprinting is a rapidly developing technique for biofabrication. Because of its high resolution and the ability to print living cells, bioprinting has been widely used in artificial tissue and organ generation as well as microscale living cell deposition. In this paper, we present a low-cost stereolithography-based bioprinting system that uses visible light crosslinkable bioinks. This low-cost stereolithography system was built around a commercial projector with a simple water filter to prevent harmful infrared radiation from the projector. The visible light crosslinking was achieved by using a mixture of polyethylene glycol diacrylate (PEGDA) and gelatin methacrylate (GelMA) hydrogel with eosin Y based photoinitiator. Three different concentrations of hydrogel mixtures (10% PEG, 5% PEG + 5% GelMA, and 2.5% PEG + 7.5% GelMA, all w/v) were studied with the presented systems. The mechanical properties and microstructure of the developed bioink were measured and discussed in detail. Several cell-free hydrogel patterns were generated to demonstrate the resolution of the solution. Experimental results with NIH 3T3 fibroblast cells show that this system can produce a highly vertical 3D structure with 50 μm resolution and 85% cell viability for at least five days. The developed system provides a low-cost visible light stereolithography solution and has the potential to be widely used in tissue engineering and bioengineering for microscale cell patterning. PMID:26696527

  19. A simple and high-resolution stereolithography-based 3D bioprinting system using visible light crosslinkable bioinks.

    Science.gov (United States)

    Wang, Zongjie; Abdulla, Raafa; Parker, Benjamin; Samanipour, Roya; Ghosh, Sanjoy; Kim, Keekyoung

    2015-12-22

    Bioprinting is a rapidly developing technique for biofabrication. Because of its high resolution and the ability to print living cells, bioprinting has been widely used in artificial tissue and organ generation as well as microscale living cell deposition. In this paper, we present a low-cost stereolithography-based bioprinting system that uses visible light crosslinkable bioinks. This low-cost stereolithography system was built around a commercial projector with a simple water filter to prevent harmful infrared radiation from the projector. The visible light crosslinking was achieved by using a mixture of polyethylene glycol diacrylate (PEGDA) and gelatin methacrylate (GelMA) hydrogel with eosin Y based photoinitiator. Three different concentrations of hydrogel mixtures (10% PEG, 5% PEG + 5% GelMA, and 2.5% PEG + 7.5% GelMA, all w/v) were studied with the presented systems. The mechanical properties and microstructure of the developed bioink were measured and discussed in detail. Several cell-free hydrogel patterns were generated to demonstrate the resolution of the solution. Experimental results with NIH 3T3 fibroblast cells show that this system can produce a highly vertical 3D structure with 50 μm resolution and 85% cell viability for at least five days. The developed system provides a low-cost visible light stereolithography solution and has the potential to be widely used in tissue engineering and bioengineering for microscale cell patterning.

  20. High Temporal and Spatial Resolution 3D Time-Resolved Contrast-Enhanced MR Angiography of the Hands and Feet

    Science.gov (United States)

    Haider, Clifton R.; Riederer, Stephen J.; Borisch, Eric A.; Glockner, James F.; Grimm, Roger C.; Hulshizer, Thomas C.; Macedo, Thanila A.; Mostardi, Petrice M.; Rossman, Phillip J.; Vrtiska, Terri J.; Young, Phillip M.

    2010-01-01

    Methods are described for generating 3D time-resolved contrast-enhanced MR angiograms of the hands and feet. Given targeted spatial resolution and frame times, it is shown that acceleration of about one order of magnitude or more is necessary. This is obtained by a combination of 2D Sensitivity Encoding (SENSE) and homodyne (HD) acceleration methods. Image update times from 3.4 to 6.8 sec are provided in conjunction with view sharing. Modular receiver coil arrays are described which can be designed to the targeted vascular region. Images representative of the technique are generated in the vasculature of the hands and feet in volunteers and in patient studies. PMID:21698702

  1. Modeling the crystal distribution of lead-sulfate in lead-acid batteries with 3D spatial resolution

    Science.gov (United States)

    Huck, Moritz; Badeda, Julia; Sauer, Dirk Uwe

    2015-04-01

    For the reliability of lead-acid batteries it is important to have an accurate prediction of its response to load profiles. A model for the lead-sulfate growth is presented, which is embedded in a physical-chemical model with 3D spatial resolution is presented which is used for analyzing the different mechanism influencing the cell response. One import factor is the chemical dissolution and precipitation of lead-sulfate, since its dissolution speed limits the charging reaction and the accumulation of indissolvable of lead-sulfate leads to capacity degradation. The cell performance/behavior is not only determined by the amount of the sulfate but also by the radii and distribution of the crystals. The presented model can be used to for an improved understanding of the interaction of the different mechanisms.

  2. The ATLAS(3D) project : III. A census of the stellar angular momentum within the effective radius of early-type galaxies: unveiling the distribution of fast and slow rotators

    NARCIS (Netherlands)

    Emsellem, Eric; Cappellari, Michele; Krajnovic, Davor; Alatalo, Katherine; Blitz, Leo; Bois, Maxime; Bournaud, Frederic; Bureau, Martin; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Khochfar, Sadegh; Kuntschner, Harald; Lablanche, Pierre-Yves; McDermid, Richard M.; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Serra, Paolo; van de Ven, Glenn; Weijmans, Anne-Marie; Young, Lisa M.

    2011-01-01

    We provide a census of the apparent stellar angular momentum within one effective radius of a volume-limited sample of 260 early-type galaxies (ETGs) in the nearby Universe, using the integral-field spectroscopy obtained in the course of the ATLAS(3D) project. We exploit the lambda(R) parameter (pre

  3. A High-resolution 3D Geodynamical Model of the Present-day India-Asia Collision System

    Science.gov (United States)

    Kaus, B.; Baumann, T.

    2015-12-01

    We present a high-resolution, 3D geodynamic model of the present-day India-Asia collision system. The model is separated into multiple tectonic blocks, for which we estimate the first order rheological properties and the impact on the dynamics of the collision system. This is done by performing systematic simulations with different rheologies to minimize the misfit to observational constraints such as the GPS-velocity field. The simulations are performed with the parallel staggered grid FD code LaMEM using a numerical resolution of at least 512x512x256 cells to resolve dynamically important shear zones reasonably well. A fundamental part of this study is the reconstruction of the 3D present-day geometry of Tibet and the adjacent regions. Our interpretations of crust and mantle lithosphere geometry are jointly based on a globally available shear wave tomography (Schaeffer and Lebedev, 2013) and the Crust 1.0 model (Laske et al. http://igppweb.ucsd.edu/~gabi/crust1.html). We regionally refined and modified our interpretations based on seismicity distributions and focal mechanisms and incorporated regional receiver function studies to improve the accuracy of the Moho in particular. Results suggest that we can identify at least one "best-fit" solution in terms of rheological model properties that reproduces the observed velocity field reasonably well, including the strong rotation of the GPS velocity around the eastern syntax of the Himalaya. We also present model co-variances to illustrate the trade-offs between the rheological model parameters, their respective uncertainties, and the model fit. Schaeffer, A.J., Lebedev, S., 2013. Global shear speed structure of the upper mantle and transition zone. Geophysical Journal International 194, 417-449. doi:10.1093/gji/ggt095

  4. High-resolution 3D surface displacements from 2004 - 2012 at Santorini volcano, Greece measured by LiDAR-differencing

    Science.gov (United States)

    Parks, M.; Pyle, D. M.; Nissen, E.; Mather, T. A.; Raptakis, C.; Nomikou, P.

    2012-12-01

    In January 2011 Santorini volcano entered a period of unrest characterised by earthquake swarms and caldera-wide uplift. Interferometric Synthetic Aperture Radar (InSAR) measurements indicate vertical motions of 8 - 14 cm across the central volcanic island of Nea Kameni since the onset of unrest. In April 2004, a NERC funded Airborne Research and Survey Facility (ARSF) flight acquired high-resolution (1m per pixel) light detection and ranging laser radar (LiDAR) data over the central volcanic islands of Nea Kameni and Palea Kameni. This survey was repeated in May 2012 to provide an updated digital elevation model (DEM). We apply a new method of differencing pre- and post- deformation LiDAR point clouds using the Iterative Closest Point (ICP) algorithm to produce a high-resolution grid of 3D surface displacements from 2004 - 2012. The 2004 ("source") and 2012 ("target") point clouds are first split into square subsets ("windows") and the displacement for each window is determined by iterating three steps: (1) identifying closest point pairs; (2) calculating the translation and rotation required that best aligns the paired points; (3) applying this transformation to the source cloud. The surface displacement map spans both a period of slow subsidence (from 2004 - 2010), and a subsequent period of inflation (from 2011 - 2012). We shall compare our results with those obtained from simple DEM elevation differencing and from InSAR. To our knowledge, this is the first application of the ICP technique to measuring volcanic deformation. This approach may be implemented at other volcanoes to monitor 3D surface displacements during periods of unrest.

  5. High angular resolution SZ observations with NIKA and NIKA2

    OpenAIRE

    Comis, B.; Adam, R.; Ade, P.; André, P.; Arnaud, M; Bartalucci, I.; A. Beelen; Benoît, A.; Bideaud, A.; Billot, N.; Bourrion, O.; Calvo, M.; Catalano, A; Coiffard, G.; Désert, F. -X.

    2016-01-01

    NIKA2 (New IRAM KID Arrays) is a dual band (150 and 260 GHz) imaging camera based on Kinetic Inductance Detectors (KIDs) and designed to work at the IRAM 30 m telescope (Pico Veleta, Spain). Built on the experience of the NIKA prototype, NIKA2 has been installed at the 30 m focal plane in October 2015 and the commissioning phase is now ongoing. Through the thermal Sunyaev-Zeldovich (tSZ) effect, NIKA2 will image the ionized gas residing in clusters of galaxies with a resolution of 12 and 18 a...

  6. Angular resolution in underground detectors and a status report of the Soudan II nucleon decay detector

    International Nuclear Information System (INIS)

    This paper is a status report of the Soudan II honeycomb drift chamber project. It reports on the physics goals, present progress and future schedule of our experiment. It also includes a discussion of the angular resolution of cosmic ray muons which can be achieved in underground detectors, and in particular how to calibrate the resolution using the moon's shadow in cosmic rays. This last point has relevance in trying to understand the angular distributions in the reported observations of underground muons from Cygnus X-3. 12 refs., 9 figs

  7. Low Power Compact Radio Galaxies at High Angular Resolution

    Energy Technology Data Exchange (ETDEWEB)

    Giroletti, Marcello; Giovannini, G.; /Bologna U. /Bologna, Ist. Radioastronomia; Taylor, G.B.; /KIPAC, Menlo Park /NRAO, Socorro

    2005-06-30

    We present sub-arcsecond resolution multi-frequency (8 and 22 GHz) VLA images of five low power compact (LPC) radio sources, and phase referenced VLBA images at 1.6 GHz of their nuclear regions. At the VLA resolution we resolve the structure and identify component positions and flux densities. The phase referenced VLBA data at 1.6 GHz reveals flat-spectrum, compact cores (down to a few milliJansky) in four of the five sources. The absolute astrometry provided by the phase referencing allows us to identify the center of activity on the VLA images. Moreover, these data reveal rich structures, including two-sided jets and secondary components. On the basis of the arcsecond scale structures and of the nuclear properties, we rule out the presence of strong relativistic effects in our LPCs, which must be intrinsically small (deprojected linear sizes {approx}< 10 kpc). Fits of continuous injection models reveal break frequencies in the GHz domain, and ages in the range 10{sup 5}-10{sup 7} yrs. In LPCs, the outermost edge may be advancing more slowly than in more powerful sources or could even be stationary; some LPCs might also have ceased their activity. In general, the properties of LPCs can be related to a number of reasons, including, but not limited to: youth, frustration, low kinematic power jets, and short-lived activity in the radio.

  8. Complex angular momentum theory of state-to-state integral cross sections: resonance effects in the F + HD → HF(v' = 3) + D reaction.

    Science.gov (United States)

    Sokolovski, D; Akhmatskaya, E; Echeverría-Arrondo, C; De Fazio, D

    2015-07-28

    State-to-state reactive integral cross sections (ICSs) are often affected by quantum mechanical resonances, especially near a reactive threshold. An ICS is usually obtained by summing partial waves at a given value of energy. For this reason, the knowledge of pole positions and residues in the complex energy plane is not sufficient for a quantitative description of the patterns produced by resonance. Such description is available in terms of the poles of an S-matrix element in the complex plane of the total angular momentum. The approach was recently implemented in a computer code ICS_Regge, available in the public domain [Comput. Phys. Commun., 2014, 185, 2127]. In this paper, we employ the ICS_Regge package to analyse in detail, for the first time, the resonance patterns predicted for integral cross sections (ICSs) of the benchmark F + HD → HF(v' = 3) + D reaction. The v = 0, j = 0, Ω = 0 → v' = 3, j' = 0, 1, 2, and Ω' = 0, 1, 2 transitions are studied for collision energies from 58.54 to 197.54 meV. For these energies, we find several resonances, whose contributions to the ICS vary from symmetric and asymmetric Fano shapes to smooth sinusoidal Regge oscillations. Complex energies of metastable states and Regge pole positions and residues are found by Padé reconstruction of the scattering matrix elements. The accuracy of the ICS_Regge code, relation between complex energies and Regge poles, various types of Regge trajectories, and the origin of the J-shifting approximation are also discussed.

  9. Chiral resolution of spin angular momentum in linearly polarized and unpolarized light.

    Science.gov (United States)

    Hernández, R J; Mazzulla, A; Provenzano, C; Pagliusi, P; Cipparrone, G

    2015-11-20

    Linearly polarized (LP) and unpolarized (UP) light are racemic entities since they can be described as superposition of opposite circularly polarized (CP) components of equal amplitude. As a consequence they do not carry spin angular momentum. Chiral resolution of a racemate, i.e. separation of their chiral components, is usually performed via asymmetric interaction with a chiral entity. In this paper we provide an experimental evidence of the chiral resolution of linearly polarized and unpolarized Gaussian beams through the transfer of spin angular momentum to chiral microparticles. Due to the interplay between linear and angular momentum exchange, basic manipulation tasks, as trapping, spinning or orbiting of micro-objects, can be performed by light with zero helicity. The results might broaden the perspectives for development of miniaturized and cost-effective devices.

  10. Crust Uppermost Mantle Structure beneath Eastern Asia: Progress towards a Uniform, Tightly Constrained, High Resolution 3-D Model

    Science.gov (United States)

    Shen, W.; Ritzwoller, M. H.; Zheng, Y.; Lin, F. C.; Kim, Y.; Ning, J.; Kang, D.; Feng, L.; Wiens, D. A.

    2015-12-01

    In the past decade, large and dense seismic arrays have been deployed across much of eastern Asia (e.g., the "CEArray" and the "China Array" deployed by the China Earthquake Administration (CEA), the NECESS Array deployed collaboratively by China, Japan and the US, Korean Seismic Network, KNET and other networks in Japan, and historical PASSCAL installations), which have been used to produce increasingly well resolved models of the crust and uppermost mantle at different length scales. These models, however, do not cover eastern Asia uniformly. In this presentation, we report on an effort to generate a uniform high resolution 3-D model of the crust and uppermost mantle beneath eastern Asia using state-of-art surface wave and body wave inversion techniques. Highlights of this effort include: 1) We collect ambient noise cross-correlations using more than 1,800 seismic stations from multiple seismic arrays in this area and perform uniform surface wave tomography for the study area. 2) We collect P-wave receiver functions for over 1,000 stations and Rayleigh wave H/V ratio measurements for over 200 stations in this area. 3) We adopt a Bayesian Monte Carlo inversion to the Rayleigh wave dispersion maps and produce a uniform 3-D model with uncertainties of the crust and uppermost mantle. 4) In the areas where receiver functions and/or Rayleigh wave H/V ratios are collected, we replace the surface wave inversion by a joint inversion of surface waves and these seismic observables. The resulting model displays a great variety and considerable richness of geological and tectonic features in the crust and in the uppermost mantle which we summarize and discuss with focus on the relationship between the observed crustal variations and tectonic/geological boundaries and lithospheric modifications associated with volcanism in Northeast China.

  11. Detection of latent fingerprints using high-resolution 3D confocal microscopy in non-planar acquisition scenarios

    Science.gov (United States)

    Kirst, Stefan; Vielhauer, Claus

    2015-03-01

    In digitized forensics the support of investigators in any manner is one of the main goals. Using conservative lifting methods, the detection of traces is done manually. For non-destructive contactless methods, the necessity for detecting traces is obvious for further biometric analysis. High resolutional 3D confocal laser scanning microscopy (CLSM) grants the possibility for a detection by segmentation approach with improved detection results. Optimal scan results with CLSM are achieved on surfaces orthogonal to the sensor, which is not always possible due to environmental circumstances or the surface's shape. This introduces additional noise, outliers and a lack of contrast, making a detection of traces even harder. Prior work showed the possibility of determining angle-independent classification models for the detection of latent fingerprints (LFP). Enhancing this approach, we introduce a larger feature space containing a variety of statistical-, roughness-, color-, edge-directivity-, histogram-, Gabor-, gradient- and Tamura features based on raw data and gray-level co-occurrence matrices (GLCM) using high resolutional data. Our test set consists of eight different surfaces for the detection of LFP in four different acquisition angles with a total of 1920 single scans. For each surface and angles in steps of 10, we capture samples from five donors to introduce variance by a variety of sweat compositions and application influences such as pressure or differences in ridge thickness. By analyzing the present test set with our approach, we intend to determine angle- and substrate-dependent classification models to determine optimal surface specific acquisition setups and also classification models for a general detection purpose for both, angles and substrates. The results on overall models with classification rates up to 75.15% (kappa 0.50) already show a positive tendency regarding the usability of the proposed methods for LFP detection on varying surfaces in non

  12. Plant tissues in 3D via X-ray tomography: simple contrasting methods allow high resolution imaging.

    Directory of Open Access Journals (Sweden)

    Yannick M Staedler

    Full Text Available Computed tomography remains strongly underused in plant sciences despite its high potential in delivering detailed 3D phenotypical information because of the low X-ray absorption of most plant tissues. Existing protocols to study soft tissues display poor performance, especially when compared to those used on animals. More efficient protocols to study plant material are therefore needed. Flowers of Arabidopsis thaliana and Marcgravia caudata were immersed in a selection of contrasting agents used to treat samples for transmission electron microscopy. Grayscale values for floral tissues and background were measured as a function of time. Contrast was quantified via a contrast index. The thick buds of Marcgravia were scanned to determine which contrasting agents best penetrate thick tissues. The highest contrast increase with cytoplasm-rich tissues was obtained with phosphotungstate, whereas osmium tetroxide and bismuth tatrate displayed the highest contrast increase with vacuolated tissues. Phosphotungstate also displayed the best sample penetration. Furthermore, infiltration with phosphotungstate allowed imaging of all plants parts at a high resolution of 3 µm, which approaches the maximum resolution of our equipment: 1.5 µm. The high affinity of phosphotungstate for vasculature, cytoplasm-rich tissue, and pollen causes these tissues to absorb more X-rays than the surrounding tissues, which, in turn, makes these tissues appear brighter on the scan data. Tissues with different brightness can then be virtually dissected from each other by selecting the bracket of grayscale to be visualized. Promising directions for the future include in silico phenotyping and developmental studies of plant inner parts (e.g., ovules, vasculature, pollen, and cell nuclei via virtual dissection as well as correlations of quantitative phenotypes with omics datasets. Therefore, this work represents a crucial improvement of previous methods, allowing new directions of

  13. High-resolution 3-D imaging of surface damage sites in fused silica with Optical Coherence Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Guss, G; Bass, I; Hackel, R; Mailhiot, C; Demos, S G

    2007-10-30

    In this work, we present the first successful demonstration of a non-contact technique to precisely measure the 3D spatial characteristics of laser induced surface damage sites in fused silica for large aperture laser systems by employing Optical Coherence Tomography (OCT). What makes OCT particularly interesting in the characterization of optical materials for large aperture laser systems is that its axial resolution can be maintained with working distances greater than 5 cm, whether viewing through air or through the bulk of thick optics. Specifically, when mitigating surface damage sites against further growth by CO{sub 2} laser evaporation of the damage, it is important to know the depth of subsurface cracks below the damage site. These cracks are typically obscured by the damage rubble when imaged from above the surface. The results to date clearly demonstrate that OCT is a unique and valuable tool for characterizing damage sites before and after the mitigation process. We also demonstrated its utility as an in-situ diagnostic to guide and optimize our process when mitigating surface damage sites on large, high-value optics.

  14. 3D tissue-engineered construct analysis via conventional high-resolution microcomputed tomography without X-ray contrast.

    Science.gov (United States)

    Voronov, Roman S; VanGordon, Samuel B; Shambaugh, Robert L; Papavassiliou, Dimitrios V; Sikavitsas, Vassilios I

    2013-05-01

    As the field of tissue engineering develops, researchers are faced with a large number of degrees of freedom regarding the choice of material, architecture, seeding, and culturing. To evaluate the effectiveness of a tissue-engineered strategy, histology is typically done by physically slicing and staining a construct (crude, time-consuming, and unreliable). However, due to recent advances in high-resolution biomedical imaging, microcomputed tomography (μCT) has arisen as a quick and effective way to evaluate samples, while preserving their structure in the original state. However, a major barrier for using μCT to do histology has been its inability to differentiate between materials with similar X-ray attenuation. Various contrasting strategies (hardware and chemical staining agents) have been proposed to address this problem, but at a cost of additional complexity and limited access. Instead, here we suggest a strategy for how virtual 3D histology in silico can be conducted using conventional μCT, and we provide an illustrative example from bone tissue engineering. The key to our methodology is an implementation of scaffold surface architecture that is ordered in relation to cells and tissue, in concert with straightforward image-processing techniques, to minimize the reliance on contrasting for material segmentation. In the case study reported, μCT was used to image and segment porous poly(lactic acid) nonwoven fiber mesh scaffolds that were seeded dynamically with mesenchymal stem cells and cultured to produce soft tissue and mineralized tissue in a flow perfusion bioreactor using an osteogenic medium. The methodology presented herein paves a new way for tissue engineers to identify and distinguish components of cell/tissue/scaffold constructs to easily and effectively evaluate the tissue-engineering strategies that generate them.

  15. Development of a high angular resolution diffusion imaging human brain template.

    Science.gov (United States)

    Varentsova, Anna; Zhang, Shengwei; Arfanakis, Konstantinos

    2014-05-01

    Brain diffusion templates contain rich information about the microstructure of the brain, and are used as references in spatial normalization or in the development of brain atlases. The accuracy of diffusion templates constructed based on the diffusion tensor (DT) model is limited in regions with complex neuronal micro-architecture. High angular resolution diffusion imaging (HARDI) overcomes limitations of the DT model and is capable of resolving intravoxel heterogeneity. However, when HARDI is combined with multiple-shot sequences to minimize image artifacts, the scan time becomes inappropriate for human brain imaging. In this work, an artifact-free HARDI template of the human brain was developed from low angular resolution multiple-shot diffusion data. The resulting HARDI template was produced in ICBM-152 space based on Turboprop diffusion data, was shown to resolve complex neuronal micro-architecture in regions with intravoxel heterogeneity, and contained fiber orientation information consistent with known human brain anatomy.

  16. CHARRON: Code for High Angular Resolution of Rotating Objects in Nature

    Science.gov (United States)

    Domiciano de Souza, A.; Zorec, J.; Vakili, F.

    2012-12-01

    Rotation is one of the fundamental physical parameters governing stellar physics and evolution. At the same time, spectrally resolved optical/IR long-baseline interferometry has proven to be an important observing tool to measure many physical effects linked to rotation, in particular, stellar flattening, gravity darkening, differential rotation. In order to interpret the high angular resolution observations from modern spectro-interferometers, such as VLTI/AMBER and VEGA/CHARA, we have developed an interferometry-oriented numerical model: CHARRON (Code for High Angular Resolution of Rotating Objects in Nature). We present here the characteristics of CHARRON, which is faster (≃q10-30 s per model) and thus more adapted to model-fitting than the first version of the code presented by Domiciano de Souza et al. (2002).

  17. Identification of sub-grains and low angle boundaries beyond the angular resolution of EBSD maps

    Energy Technology Data Exchange (ETDEWEB)

    Germain, L., E-mail: Lionel.germain@univ-lorraine.fr [Laboratoire d' Etude des Microstructures et de Mécanique des Matériaux (LEM3), UMR 7239, CNRS/Université de Lorraine, F-57045 Metz (France); Laboratory of Excellence on Design of Alloy Metals for low-mAss Structures (‘LabEx DAMAS’), Université de Lorraine (France); Kratsch, D. [Laboratoire d' Informatique Théorique et Appliquée (LITA), EA3079, Université de Lorraine, 57045 Metz Cedex 1 (France); Salib, M. [Laboratoire d' Etude des Microstructures et de Mécanique des Matériaux (LEM3), UMR 7239, CNRS/Université de Lorraine, F-57045 Metz (France); Laboratory of Excellence on Design of Alloy Metals for low-mAss Structures (‘LabEx DAMAS’), Université de Lorraine (France); Institut Jean Lamour (IJL), SI2M Dept., CNRS UMR 7198, Université de Lorraine, Parc de Saurupt, CS 50840, F-54011 Nancy Cedex (France); Gey, N. [Laboratoire d' Etude des Microstructures et de Mécanique des Matériaux (LEM3), UMR 7239, CNRS/Université de Lorraine, F-57045 Metz (France); Laboratory of Excellence on Design of Alloy Metals for low-mAss Structures (‘LabEx DAMAS’), Université de Lorraine (France)

    2014-12-15

    A new method called ALGrId (Anti-Leak GRain IDentification) is proposed for the detection of sub-grains beyond the relative angular resolution of Electron Backscatter Diffraction maps. It does not use any additional information such as Kikuchi Pattern Quality map nor need data filtering. It uses a modified Dijkstra algorithm which seeks the continuous set of boundaries having the highest average disorientation angle. - Highlights: • ALGrId is a new method to identify sub-grains and low angle boundaries in EBSD maps. • Unlike classical methods, ALGrId works even beyond the relative angular resolution. • If the orientation noise peaks at 0.7°, ALGrid detects 0.4°-boundaries correctly. • In the same example, the classical algorithm identifies 1.1°-boundaries only.

  18. Hip and knee joints are more stabilized than driven during the stance phase of gait: an analysis of the 3D angle between joint moment and joint angular velocity.

    Science.gov (United States)

    Dumas, R; Cheze, L

    2008-08-01

    Joint power is commonly used in orthopaedics, ergonomics or sports analysis but its clinical interpretation remains controversial. Some basic principles on muscle actions and energy transfer have been proposed in 2D. The decomposition of power on 3 axes, although questionable, allows the same analysis in 3D. However, these basic principles have been widely criticized, mainly because bi-articular muscles must be considered. This requires a more complex computation in order to determine how the individual muscle force contributes to drive the joint. Conversely, with simple 3D inverse dynamics, the analysis of both joint moment and angular velocity directions is essential to clarify when the joint moment can contribute or not to drive the joint. The present study evaluates the 3D angle between the joint moment and the joint angular velocity and investigates when the hip, knee and ankle joints are predominantly driven (angle close to 0 degrees and 180 degrees ) or stabilized (angle close to 90 degrees ) during gait. The 3D angle curves show that the three joints are never fully but only partially driven and that the hip and knee joints are mainly stabilized during the stance phase. The notion of stabilization should be further investigated, especially for subjects with motion disorders or prostheses. PMID:18206375

  19. Hip and knee joints are more stabilized than driven during the stance phase of gait: an analysis of the 3D angle between joint moment and joint angular velocity.

    Science.gov (United States)

    Dumas, R; Cheze, L

    2008-08-01

    Joint power is commonly used in orthopaedics, ergonomics or sports analysis but its clinical interpretation remains controversial. Some basic principles on muscle actions and energy transfer have been proposed in 2D. The decomposition of power on 3 axes, although questionable, allows the same analysis in 3D. However, these basic principles have been widely criticized, mainly because bi-articular muscles must be considered. This requires a more complex computation in order to determine how the individual muscle force contributes to drive the joint. Conversely, with simple 3D inverse dynamics, the analysis of both joint moment and angular velocity directions is essential to clarify when the joint moment can contribute or not to drive the joint. The present study evaluates the 3D angle between the joint moment and the joint angular velocity and investigates when the hip, knee and ankle joints are predominantly driven (angle close to 0 degrees and 180 degrees ) or stabilized (angle close to 90 degrees ) during gait. The 3D angle curves show that the three joints are never fully but only partially driven and that the hip and knee joints are mainly stabilized during the stance phase. The notion of stabilization should be further investigated, especially for subjects with motion disorders or prostheses.

  20. High-resolution X-ray CT for 3D petrography of ferruginous sandstone for an investigation of building stone decay.

    Science.gov (United States)

    Cnudde, Veerle; Dewanckele, Jan; Boone, Matthieu; de Kock, Tim; Boone, Marijn; Brabant, Loes; Dusar, Michiel; de Ceukelaire, Marleen; de Clercq, Hilde; Hayen, Roald; Jacobs, Patric

    2011-11-01

    Diestian ferruginous sandstone has been used as the dominant building stone for monuments in the Hageland, a natural landscape in east-central Belgium. Like all rocks, this stone type is sensitive to weathering. Case hardening was observed in combination with blackening of the exterior parts of the dressed stones. To determine the 3D petrography and to identify the structural differences between the exterior and interior parts, X-ray computed tomography was used in combination with more traditional research techniques like optical microscopy and scanning electron microscopy. The 3D characterization of the ferruginous sandstone was performed with a high-resolution X-ray CT scanner (www.ugct.ugent.be) in combination with the flexible 3D analysis software Morpho+, which provides the necessary petrophysical parameters of the scanned samples in 3D. Besides providing the required 3D parameters like porosity, pore-size distribution, grain size, grain orientation, and surface analysis, the results of the 3D analysis can also be visualized, which enables to understand and interpret the analysis results in a straightforward way. The complementarities between high-quality X-ray CT images and flexible 3D software and its relation with the more traditional microscopical research techniques are opening up new gateways in the study of weathering processes of natural building stones.

  1. Next Generation X-ray Optics: High Angular Resolution, Light Weight, and Low Production Cost

    Science.gov (United States)

    Zhang, William

    2014-08-01

    Every conceivable future x-ray astronomical mission would require x-ray optics. These optics must meet the three-fold requirements of angular resolution, effective area, and cost.In this poster we will present the rationale, technical approach, and status of an x-ray optics technology development program that has been underway at Goddard Space Flight Center and Marshall Space Flight Center.

  2. Angular Resolution of a Photoelectric Polarimeter in the Focus of an Optical System

    OpenAIRE

    Lazzarotto, Francesco; Fabiani, Sergio; Costa, Enrico; Muleri, Fabio; Soffitta, Paolo; Di Cosimo, Sergio; Di Persio, Giuseppe; Rubini, Alda; Bellazzini, Ronaldo; Brez, Alessandro; Spandre, Gloria; Cotroneo, Vincenzo; Moretti, Alberto; Pareschi, Giovanni; Tagliaferri, Giampiero

    2009-01-01

    The INFN and INAF Italian research institutes developed a space-borne X-Ray polarimetry experiment based on a X-Ray telescope, focussing the radiation on a Gas Pixel Detector (GPD). The instrument obtains the polarization angle of the absorbed photons from the direction of emission of the photoelectrons as visualized in the GPD. Here we will show how we compute the angular resolution of such an instrument.

  3. Method for improving the angular resolution of a neutron scatter camera

    Science.gov (United States)

    Mascarenhas, Nicholas; Marleau, Peter; Gerling, Mark; Cooper, Robert Lee; Mrowka, Stanley; Brennan, James S.

    2012-12-25

    An instrument that will directly image the fast fission neutrons from a special nuclear material source wherein the neutron detection efficiency is increased has been described. Instead of the previous technique that uses a time-of-flight (TOF) between 2 widely spaced fixed planes of neutron detectors to measure scatter neutron kinetic energy, we now use the recoil proton energy deposited in the second of the 2 scatter planes which can now be repositioned either much closer together or further apart. However, by doubling the separation distance between the 2 planes from 20 cm to a distance of 40 cm we improved the angular resolution of the detector from about 12.degree. to about 10.degree.. A further doubling of the separation distance to 80 cm provided an addition improvement in angular resolution of the detector to about 6.degree. without adding additional detectors or ancillary electronics. The distance between planes also may be dynamically changed using a suitable common technique such as a gear- or motor-drive to toggle between the various positions. The angular resolution of this new configuration, therefore, is increased at the expanse of detection sensitivity. However, the diminished sensitivity may be acceptable for those applications where the detector is able to interrogate a particular site for an extended period.

  4. Augmented 3D super-resolution of fluorescence-free nanoparticles using enhanced dark-field illumination based on wavelength-modulation and a least-cubic algorithm

    Science.gov (United States)

    Zhang, Peng; Kim, Kyungsoo; Lee, Seungah; Chakkarapani, Suresh Kumar; Fang, Ning; Kang, Seong Ho

    2016-09-01

    Augmented three-dimensional (3D) subdiffraction-limited resolution of fluorescence-free single-nanoparticles was achieved with wavelength-dependent enhanced dark-field (EDF) illumination and a least-cubic algorithm. Various plasmonic nanoparticles on a glass slide (i.e., gold nanoparticles, GNPs; silver nanoparticles, SNPs; and gold nanorods, GNRs) were imaged and sliced in the z-direction to a thickness of 10 nm. Single-particle images were then compared with simulation data. The 3D coordinates of individual GNP, SNP, and GNR nanoparticles (x, y, z) were resolved by fitting the data with 3D point spread functions using a least-cubic algorithm and collation. Final, 3D super-resolution microscopy (SRM) images were obtained by resolving 3D coordinates and their Cramér-Rao lower bound-based localization precisions in an image space (530 nm × 530 nm × 300 nm) with a specific voxel size (2.5 nm × 2.5 nm × 5 nm). Compared with the commonly used least-square method, the least-cubic method was more useful for finding the center in asymmetric cases (i.e., nanorods) with high precision and accuracy. This novel 3D fluorescence-free SRM technique was successfully applied to resolve the positions of various nanoparticles on glass and gold nanospots (in vitro) as well as in a living single cell (in vivo) with subdiffraction limited resolution in 3D.

  5. Frequency and Angular Resolution for Measuring, Presenting and Predicting Loudspeaker Polar Data

    DEFF Research Database (Denmark)

    Staffeldt, Henrik; Seidel, Felicity

    1996-01-01

    The spherical polar loudspeaker data available today are usually measured with such a coarse resolution that only rough estimates of the performance of sound systems can be predicted by applying these data. Complex, spherical polar data with higher angular and frequency resolutions than used today...... measurement principles and systems, in terms of specific levels of accuracy, are also discussed. The presented material consists of research the authors have done for the AES Standards Committee SC-04-03, working group on loudspeaker modeling and measurement, toward a goal set by that working group...

  6. Feasibility and evaluation of dual-source transmit 3D imaging of the orbits: Comparison to high-resolution conventional MRI at 3T

    Energy Technology Data Exchange (ETDEWEB)

    Seeger, Achim, E-mail: achim.seeger@gmx.de [Department of Diagnostic and Interventional Neuroradiology, Eberhard-Karls-University, Hoppe-Seyler-Str. 3, Tübingen 72076 (Germany); Schulze, Maximilian, E-mail: maximilian.schulze@med.uni-tuebingen.de [Department of Diagnostic and Interventional Neuroradiology, Eberhard-Karls-University, Hoppe-Seyler-Str. 3, Tübingen 72076 (Germany); Schuettauf, Frank, E-mail: fschuettauf@uni-tuebingen.de [University Eye Hospital, Department of Ophthalmology, Eberhard-Karls-University, Schleichstrasse 12, Tübingen 72076 (Germany); Klose, Uwe, E-mail: uwe.klose@med.uni-tuebingen.de [Department of Diagnostic and Interventional Neuroradiology, Eberhard-Karls-University, Hoppe-Seyler-Str. 3, Tübingen 72076 (Germany); Ernemann, Ulrike, E-mail: ulrike.ernemann@med.uni-tuebingen.de [Department of Diagnostic and Interventional Neuroradiology, Eberhard-Karls-University, Hoppe-Seyler-Str. 3, Tübingen 72076 (Germany); Hauser, Till-Karsten, E-mail: till-karsten.hauser@med.uni-tuebingen.de [Department of Diagnostic and Interventional Neuroradiology, Eberhard-Karls-University, Hoppe-Seyler-Str. 3, Tübingen 72076 (Germany)

    2015-06-15

    Highlights: • Reduced FOV imaging enables a 3D approach for a very fast assessment of the orbits. • Conventional MRI exhibited higher eSNR values and consecutively higher scores for overall image quality in the subjective readers’ analysis. • All pathologies could be detected compared to high-resolution conventional MRI making 3D pTX SPACE to a potential alternative and fast imaging technique. - Abstract: Purpose: To prospectively compare the image quality and diagnostic performance of orbital MR images obtained by using a dual-source parallel transmission (pTX) 3D sequence (Sampling Perfection with Application optimized Contrasts using different flip angle Evolution, SPACE) with the image quality of conventional high-resolution standard protocol for clinical use in patients at 3T. Materials and methods: After obtaining institutional review board approval and patient consent, 32 patients with clinical indication for orbital MRI were examined using a high-resolution conventional sequences and 3D pTX SPACE sequences. Quantitative measurements, image quality of the healthy orbit, incidence of artifacts, and the subjective diagnostic performance to establish diagnosis was rated. Statistical significance was calculated by using a Student's t-test and nonparametric Wilcoxon signed rank test. Results: Length measurements were comparable in the two techniques, 3D pTX SPACE resulted in significant faster image acquisition with higher spatial resolution and less motion artifacts as well as better delineation of the optic nerve sheath. However, estimated contrast-to-noise and signal-to-noise and overall image quality as well as subjective scores of the conventional TSE imaging were rated significantly higher. The conventional MR sequences were the preferred techniques by the readers. Conclusion: This study demonstrates the feasibility of 3D pTX SPACE of the orbit resulting in a rapid acquisition of isotropic high-resolution images. Although no pathology was

  7. True 3D kinematic analysis for slope instability assessment in the Siq of Petra (Jordan), from high resolution TLS

    Science.gov (United States)

    Gigli, Giovanni; Margottini, Claudio; Spizzichino, Daniele; Ruther, Heinz; Casagli, Nicola

    2016-04-01

    released, stratigraphic setting and tectonic activity can be recognized. As a consequence, rock-falls have been occurring, even recently, with unstable rock mass volumes ranging from 0.1 m3 up to over some hundreds m3. Slope instability, acceleration of crack deformation and consequent increasing of rock-fall hazard conditions, could threaten the safety of tourist as well as the integrity of the heritage. 3D surface model coming from Terrestrial Laser Scanner acquisitions was developed almost all over the site of Petra, including the Siq. Comprehensively, a point cloud of five billion points was generated making the site of Petra likely the largest scanned archaeological site in the word. As far as the Siq, the scanner was positioned on the path floor at intervals of not more than 10 meters from each station. The total number of scans in the Siq was 220 with an average point cloud interval of approximately 3 cm. Subsequently, for the definition of the main rockfall source areas, a spatial kinematic analysis for the whole Siq has been performed, by using discontinuity orientation data extracted from the point cloud by means of the software Diana. Orientation, number of sets, spacing/frequency, persistence, block size and scale dependent roughness was obtained combining fieldwork and automatic analysis. This kind of analysis is able to establish where a particular instability mechanism is kinematically feasible, given the geometry of the slope, the orientation of discontinuities and shear strength of the rock. The final outcome of this project was a detail landslide kinematic index map, reporting main potential instability mechanisms for a given area. The kinematic index was finally calibrated for each instability mechanism (plane failure; wedge failure; block toppling; flexural toppling) surveyed in the site. The latter is including the collapse occurred in May 2015, likely not producing any victim, in a sector clearly identified by the susceptibility maps produced by the

  8. 1D-3D Hybrid Modelling - From Multi-Compartment Models to Full Resolution Models in Space and Time

    Directory of Open Access Journals (Sweden)

    Stephan eGrein

    2014-07-01

    Full Text Available Investigation of cellular and network dynamics in the brain by means of modeling & simulation has evolved into a highly interdisciplinary field, that uses sophisticated modeling & simulation approaches to understand distinct areas of brain function. Depending on the underlying complexity, these models vary in level of detail to cope with the attached computational cost. Hence for large network simulations, single neurons are typically reduced to time-dependent signal processors, dismissing spatial aspects of the cells. For single cell or small-world networks, general purpose simulators allow for space and time-dependent simulations of electrical signal processing, based on the cable equation theory. An emerging field in Computational Neuroscience encompasses a new level of detail by incorporating the 3D morphology of cells and organelles into 3D space and time-dependent simulations. Every approach has its advantages and limitations, such as computational cost, integrated and methods-spanning simulation approaches, depending on the network size could establish new ways to investigate the brain. We present a hybrid simulation approach, that makes use of reduced 1D-models using e.g. the NEURON which couples to fully resolved models for simulating cellular and sub-cellular dynamics, including the detailed 3D-morphology of neurons and organelles. To couple 1D- & 3D-simulations, we present a geometry and membrane potential mapping framework, with which graph-based morphologies, e.g. in swc-/hoc-format, are mapped to full surface and volume representations of the neuron; membrane potential data from 1D-simulations are used as boundary conditions for full 3D simulations. Thus, established models and data, based on general purpose 1D-simulators, can be directly coupled to the emerging field of fully resolved highly detailed 3D-modeling approaches. The new framework is applied to investigate electrically active neurons and their intracellular spatio

  9. Astronomy at high angular resolution a compendium of techniques in the visible and near-infrared

    CERN Document Server

    Hussain, Gaitee; Berger, Jean-Philippe; Schmidtobreick, Linda

    2016-01-01

    This book offers an essential compendium of astronomical high-resolution techniques. Recent years have seen considerable developments in such techniques, which are critical to advances in many areas of astronomy. As reflected in the book, these techniques can be divided into direct methods, interferometry, and reconstruction methods, and can be applied to a huge variety of astrophysical systems, ranging from planets, single stars and binaries to active galactic nuclei, providing angular resolution in the micro- to tens of milliarcsecond scales. Written by experts in their fields, the chapters cover adaptive optics, aperture masking imaging, spectra disentangling, interferometry, lucky imaging, Roche tomography, imaging with interferometry, interferometry of AGN, AGN reverberation mapping, Doppler- and magnetic imaging of stellar surfaces, Doppler tomography, eclipse mapping, Stokes imaging, and stellar tomography. This book is intended to enable a next generation of astronomers to apply high-resolution techni...

  10. Reconstruction of high-resolution 3D dose from matrix measurements : error detection capability of the COMPASS correction kernel method

    NARCIS (Netherlands)

    Godart, J.; Korevaar, E. W.; Visser, R.; Wauben, D. J. L.; van t Veld, Aart

    2011-01-01

    TheCOMPASS system (IBADosimetry) is a quality assurance (QA) tool which reconstructs 3D doses inside a phantom or a patient CT. The dose is predicted according to the RT plan with a correction derived from 2D measurements of a matrix detector. This correction method is necessary since a direct recon

  11. Method and phantom to study combined effects of in-plane (x,y) and z-axis resolution for 3D CT imaging.

    Science.gov (United States)

    Goodenough, David; Levy, Josh; Kristinsson, Smari; Fredriksson, Jesper; Olafsdottir, Hildur; Healy, Austin

    2016-01-01

    Increasingly, the advent of multislice CT scanners, volume CT scanners, and total body spiral acquisition modes has led to the use of Multi Planar Reconstruction and 3D datasets. In considering 3D resolution properties of a CT system it is important to note that both the in-plane (x,y) and z-axis (slice thickness) influence the visual-ization and detection of objects within the scanned volume. This study investigates ways to consider both the in-plane resolution and the z-axis resolution in a single phantom wherein analytic or visualized analysis can yield information on these combined effects. A new phantom called the "Wave Phantom" is developed that can be used to sample the 3D resolution properties of a CT image, including in-plane (x,y) and z-axis information. The key development in this Wave Phantom is the incorporation of a z-axis aspect of a more traditional step (bar) resolution gauge phantom. The phantom can be examined visually wherein a cutoff level may be seen; and/or the analytic analysis of the various characteristics of the waveform profile by including amplitude, frequency, and slope (rate of climb) of the peaks, can be extracted from the Wave Pattern using mathematical analysis such as the Fourier transform. The combined effect of changes in in-plane resolution and z-axis (thickness), are shown, as well as the effect of changes in either in-plane resolu-tion, or z-axis thickness. Examples of visual images of the Wave pattern as well as the analytic characteristics of the various harmonics of a periodic Wave pattern resulting from changes in resolution filter and/or slice thickness, and position in the field of view are shown. The Wave Phantom offers a promising way to investigate 3D resolution results from combined effect of in-plane (x-y) and z-axis resolution as contrasted to the use of simple 2D resolution gauges that need to be used with separate measures of z-axis dependency, such as angled ramps. It offers both a visual pattern as well as a

  12. Method and phantom to study combined effects of in-plane (x,y) and z-axis resolution for 3D CT imaging.

    Science.gov (United States)

    Goodenough, David; Levy, Josh; Kristinsson, Smari; Fredriksson, Jesper; Olafsdottir, Hildur; Healy, Austin

    2016-09-08

    Increasingly, the advent of multislice CT scanners, volume CT scanners, and total body spiral acquisition modes has led to the use of Multi Planar Reconstruction and 3D datasets. In considering 3D resolution properties of a CT system it is important to note that both the in-plane (x,y) and z-axis (slice thickness) influence the visual-ization and detection of objects within the scanned volume. This study investigates ways to consider both the in-plane resolution and the z-axis resolution in a single phantom wherein analytic or visualized analysis can yield information on these combined effects. A new phantom called the "Wave Phantom" is developed that can be used to sample the 3D resolution properties of a CT image, including in-plane (x,y) and z-axis information. The key development in this Wave Phantom is the incorporation of a z-axis aspect of a more traditional step (bar) resolution gauge phantom. The phantom can be examined visually wherein a cutoff level may be seen; and/or the analytic analysis of the various characteristics of the waveform profile by including amplitude, frequency, and slope (rate of climb) of the peaks, can be extracted from the Wave Pattern using mathematical analysis such as the Fourier transform. The combined effect of changes in in-plane resolution and z-axis (thickness), are shown, as well as the effect of changes in either in-plane resolu-tion, or z-axis thickness. Examples of visual images of the Wave pattern as well as the analytic characteristics of the various harmonics of a periodic Wave pattern resulting from changes in resolution filter and/or slice thickness, and position in the field of view are shown. The Wave Phantom offers a promising way to investigate 3D resolution results from combined effect of in-plane (x-y) and z-axis resolution as contrasted to the use of simple 2D resolution gauges that need to be used with separate measures of z-axis dependency, such as angled ramps. It offers both a visual pattern as well as a

  13. Analysis of Resolutions for SAR 3D Imaging Using Linear Array Antennas%线阵 SAR 三维成像分辨率分析

    Institute of Scientific and Technical Information of China (English)

    王斌; 王彦平; 洪文; 吴一戎

    2011-01-01

    Linear array antennas synthetic aperture radar (LASAR) can acquire the echoes of the target from different observation angles, and it can realize three-dimensional (3D) imaging for the targets.In order to get the 3D images with high resolutions, the relationship between the resolutions and the observation geometry is studied in this paper.Firstly, the signal model for LASAR 3D imaging is derived, and the 3D resolutions related with the geometry of the LASAR are obtained.Then the variance of the resolution in the elevation direction with array antenna angle and referenced look angle is analyzed.And then we conclude that the best resolution is obtained when the array antenna angle is equal to the referenced look angle.Finally, the simulation results of LASAR 3D imaging with MATLAB software are given, and the resolutions of 3D imaging under different observation geometry are analyzed and compared.%研究阵列无线 SAR 系统优化问题,关于线阵合成孔径雷达(SAR)使用阵列天线获取观测目标不同入射角的回波信号,能够实现对目标的三维成像.为了获取高分辨率的三维成像结果,研究了线阵 SAR 三维成像分辨率与观测几何的关系.采用线阵 SAR 实现三维成像的信号模型,得到了与线阵 SAR 几何相关的三维分辨率,根据高度向分辨率随着参考视角和线阵角度的变化,得到在线阵角度的三维成像分辨率.并运用运用 MATLAB 仿真平台进行了线阵 SAR 三维成像仿真,结果表明目标三维成像得到了高分辨率的结果.

  14. SMA Observations of Class 0 Protostars: A High-Angular Resolution Survey of Protostellar Binary Systems

    CERN Document Server

    Chen, Xuepeng; Zhang, Qizhou; Bourke, Tyler L; Launhardt, Ralf; Jorgensen, Jes K; Lee, Chin-Fee; Foster, Jonathan B; Dunham, Michael M; Pineda, Jaime E; Henning, Thomas

    2013-01-01

    We present high angular resolution 1.3 mm and 850 um dust continuum data obtained with the Submillimeter Array toward 33 Class 0 protostars in nearby clouds (distance < 500 pc), which represents so far the largest survey toward protostellar binary/multiple systems. The median angular resolution in the survey is 2.5 arcsec, while the median linear resolution is approximately 600 AU. Compact dust continuum emission is observed from all sources in the sample. Twenty-one sources in the sample show signatures of binarity/multiplicity, with separations ranging from 50 to 5000 AU. The numbers of singles, binaries, triples, and quadruples in the sample are 12, 14, 5, and 2, respectively. The derived multiplicity frequency (MF) and companion star fraction (CSF) for Class 0 protostars are 0.64+/-0.08 and 0.91+/-0.05, respectively, with no correction for completeness. The derived MF and CSF in this survey are approximately two times higher than the values found in the binary surveys toward Class I YSOs, and approxima...

  15. Generalized diffusion tensor imaging and analytical relationships between diffusion tensor imaging and high angular resolution diffusion imaging.

    Science.gov (United States)

    Ozarslan, Evren; Mareci, Thomas H

    2003-11-01

    A new method for mapping diffusivity profiles in tissue is presented. The Bloch-Torrey equation is modified to include a diffusion term with an arbitrary rank Cartesian tensor. This equation is solved to give the expression for the generalized Stejskal-Tanner formula quantifying diffusive attenuation in complicated geometries. This makes it possible to calculate the components of higher-rank tensors without using the computationally-difficult spherical harmonic transform. General theoretical relations between the diffusion tensor (DT) components measured by traditional (rank-2) DT imaging (DTI) and 3D distribution of diffusivities, as measured by high angular resolution diffusion imaging (HARDI) methods, are derived. Also, the spherical tensor components from HARDI are related to the rank-2 DT. The relationships between higher- and lower-rank Cartesian DTs are also presented. The inadequacy of the traditional rank-2 tensor model is demonstrated with simulations, and the method is applied to excised rat brain data collected in a spin-echo HARDI experiment. PMID:14587006

  16. Studies on image quality, high contrast resolution and dose for the axial skeleton and limbs with a new, dedicated CT system (ISO-C-3D)

    International Nuclear Information System (INIS)

    Purpose: Evaluation of 3D-CT imaging of the axial skeleton and different joints of the lower and upper extremities with a new dedicated CT system (ISO-C-3D) based on a mobile isocentric C-arm image amplifier. Material and Methods: 27 cadaveric specimes of different joints of the lower and upper extremities and of the spinal column were examined with 3D-CT imaging (ISO-C-3d). All images were evaluated by 3 radiologists for image quality using a semiquantitative score (score value 1: poor quality; score value 4: excellent quality). In addition, dose measurements and measurements of high contrast resolution were performed in comparison to conventional and low-dose spiral CT using a high contrast phantom (Catphan, Phantom Laboratories). Results: Adequate image quality (mean score values 3-4) could be achieved with an applied dose comparable to low-dose CT in smaller joints such as wrist, elbow, ankle and knee. A remarkably inferior image quality resulted in imaging of the hip, lumbar and thoracic spine (mean score values 2-3) in spite of almost doubling the dose (dose increased by 85 percent). The image quality of shoulder examinations was insufficient (mean score value 1). Phantom studies showed a high-contrast resolution comparable to helical CT in the xy-axis (9 lp/cm). Conclusion: Preliminary results show, that image quality of C-arm-based CT-imaging (ISO-C-3D) seems to be adequate in smaller joints. ISO-C-3D images of the hip and axial skeleton show a decreased image quality, which does not seem to be sufficient for diagnosing subtle fractures. (orig.)

  17. VizieR Online Data Catalog: High angular resolution spectroscopy of NGC 1277 (Walsh+, 2016)

    Science.gov (United States)

    Walsh, J. L.; van den Bosch, R. C. E.; Gebhardt, K.; Yildirim, A.; Richstone, D. O.; Gultekin, K.; Husemann, B.

    2016-03-01

    We obtained high angular resolution spectroscopy of NGC 1277 using the Near-infrared Integral Field Spectrometer (NIFS) with the ALTtitude conjugate Adaptive optics for the InfraRed system on the Gemini North telescope. The observations were taken as part of program GN-2011B-Q-27 over the course of four nights, spanning from 2012 October 30 to 2012 December 27. We observed NGC 1277 using 600s object-sky-object exposures with the H+K filter and K grating centered on 2.2μm. (1 data file).

  18. High resolution 3D ERT to help GPR data interpretation for researching archaeological items in a geologically complex subsurface

    Science.gov (United States)

    Negri, S.; Leucci, G.; Mazzone, F.

    2008-09-01

    Muro Leccese (Lecce) contains one the most important Messapian archaeological sites in southern Italy. The archaeological interest of the site arises from the discovery of the remains of Messapian walls, tombs, roads, etc. (4th-2nd centuries BC) in the neighbourhood. The archaeological remains were found at about 0.3 m depth. At present the site belongs to the municipality, which intends to build a new sewer network through it. The risk of destroying potentially interesting ancient archaeological structures during the works prompted an archaeological survey of the area. The relatively large dimensions of the area (almost 10,000 m 2), together with time and cost constraints, made it necessary to use geophysical investigations as a faster means to ascertain the presence of archaeological items. Since the most important targets were expected to be located at a soil depth of about 0.3 m, a ground-penetrating radar (GPR) survey was carried out in an area located near the archaeological excavations. Unfortunately the geological complexity did not allow an easy interpretation of the GPR data. Therefore a 3D electrical resistivity tomography (ERT) scan was conducted in order to resolve these interpretation problems. A three-way comparison of the results of the dense ERT measurements parallel to the x axis, the results of the measurements parallel to the y axis and the combined results was performed. Subsequently the synthetic model approach was used to provide a better characterization of the resistivity anomalies visible on the ERT field data. The 3D inversion results clearly illustrate the capability to resolve in view of quality 3D structures of archaeological interest. According to the presented data the inversion models along one direction ( x or y) seems to be adequate in reconstructing the subsurface structures. Naturally field data produce good quality reconstructions of the archaeological features only if the x-line and y-line measurements are considered together

  19. High density resolution synchrotron radiation based x-ray microtomography (SR μCT) for quantitative 3D-morphometrics in zoological sciences

    Science.gov (United States)

    Nickel, Michael; Hammel, Jörg U.; Herzen, Julia; Bullinger, Eric; Beckmann, Felix

    2008-08-01

    Zoological sciences widely rely on morphological data to reconstruct and understand body structures of animals. The best suitable methods like tomography allow for a direct representation of 3D-structures. In recent years, synchrotron radiation based x-ray microtomography (SR μCT) placed high resolutions to the disposal of morphologists. With the development of highly brilliant and collimated third generation synchrotron sources, phase contrast SR μCT became widely available. A number of scientific contributions stressed the superiority of phase contrast over absorption contrast. However, here we demonstrate the power of high density resolution methods based on absorption-contrast SRμCT for quantitative 3D-measurements of tissues and other delicate bio-structures in zoological sciences. We used beamline BW2 at DORIS III (DESY, Hamburg, Germany) to perform microtomography on tissue and mineral skeletons of marine sponges (Porifera) which were shock frozen and/or fixed in a glutamate osmium tetroxide solution, followed by critical point drying. High density resolution tomographic reconstructions allowed running quantitative 3D-image analyses in Matlab and ImageJ. By applying contrast and shape rule based algorithms we semi-automatically extracted and measured sponge body structures like mineral spicules, elements of the canal system or tissue structures. This lead to a better understanding of sponge biology: from skeleton functional morphology and internal water flow regimes to body contractility. Our high density resolution based quantitative approach can be applied to a wide variety of biological structures. However, two prerequisites apply: (1) maximum density resolution is necessary; (2) edge effects as seen for example in phase outline contrast SR μCT must not be present. As a consequence, to allow biological sciences to fully exploit the power of SR μCT further increase of density resolution in absorption contrast methods is desirable.

  20. X-ray Interferometry with Transmissive Beam Combiners for Ultra-High Angular Resolution Astronomy

    Science.gov (United States)

    Skinner, G. K.; Krismanic, John F.

    2009-01-01

    Abstract Interferometry provides one of the possible routes to ultra-high angular resolution for X-ray and gamma-ray astronomy. Sub-micro-arc-second angular resolution, necessary to achieve objectives such as imaging the regions around the event horizon of a super-massive black hole at the center of an active galaxy, can be achieved if beams from parts of the incoming wavefront separated by 100s of meters can be stably and accurately brought together at small angles. One way of achieving this is by using grazing incidence mirrors. We here investigate an alternative approach in which the beams are recombined by optical elements working in transmission. It is shown that the use of diffractive elements is a particularly attractive option. We report experimental results from a simple 2-beam interferometer using a low-cost commercially available profiled film as the diffractive elements. A rotationally symmetric filled (or mostly filled) aperture variant of such an interferometer, equivalent to an X-ray axicon, is shown to offer a much wider bandpass than either a Phase Fresnel Lens (PFL) or a PFL with a refractive lens in an achromatic pair. Simulations of an example system are presented.

  1. Geometrically necessary dislocation densities in olivine obtained using high-angular resolution electron backscatter diffraction.

    Science.gov (United States)

    Wallis, David; Hansen, Lars N; Ben Britton, T; Wilkinson, Angus J

    2016-09-01

    Dislocations in geological minerals are fundamental to the creep processes that control large-scale geodynamic phenomena. However, techniques to quantify their densities, distributions, and types over critical subgrain to polycrystal length scales are limited. The recent advent of high-angular resolution electron backscatter diffraction (HR-EBSD), based on diffraction pattern cross-correlation, offers a powerful new approach that has been utilised to analyse dislocation densities in the materials sciences. In particular, HR-EBSD yields significantly better angular resolution (densities to be analysed. We develop the application of HR-EBSD to olivine, the dominant mineral in Earth's upper mantle by testing (1) different inversion methods for estimating geometrically necessary dislocation (GND) densities, (2) the sensitivity of the method under a range of data acquisition settings, and (3) the ability of the technique to resolve a variety of olivine dislocation structures. The relatively low crystal symmetry (orthorhombic) and few slip systems in olivine result in well constrained GND density estimates. The GND density noise floor is inversely proportional to map step size, such that datasets can be optimised for analysing either short wavelength, high density structures (e.g. subgrain boundaries) or long wavelength, low amplitude orientation gradients. Comparison to conventional images of decorated dislocations demonstrates that HR-EBSD can characterise the dislocation distribution and reveal additional structure not captured by the decoration technique. HR-EBSD therefore provides a highly effective method for analysing dislocations in olivine and determining their role in accommodating macroscopic deformation. PMID:27337604

  2. Discrete time interval measurement system: fundamentals, resolution and errors in the measurement of angular vibrations

    International Nuclear Information System (INIS)

    The traditional method for measuring the velocity and the angular vibration in the shaft of rotating machines using incremental encoders is based on counting the pulses at given time intervals. This method is generically called the time interval measurement system (TIMS). A variant of this method that we have developed in this work consists of measuring the corresponding time of each pulse from the encoder and sampling the signal by means of an A/D converter as if it were an analog signal, that is to say, in discrete time. For this reason, we have denominated this method as the discrete time interval measurement system (DTIMS). This measurement system provides a substantial improvement in the precision and frequency resolution compared with the traditional method of counting pulses. In addition, this method permits modification of the width of some pulses in order to obtain a mark-phase on every lap. This paper explains the theoretical fundamentals of the DTIMS and its application for measuring the angular vibrations of rotating machines. It also displays the required relationship between the sampling rate of the signal, the number of pulses of the encoder and the rotating velocity in order to obtain the required resolution and to delimit the methodological errors in the measurement

  3. Regularization Designs for Uniform Spatial Resolution and Noise Properties in Statistical Image Reconstruction for 3D X-ray CT

    OpenAIRE

    Cho, Jang Hwan; Fessler, Jeffrey A.

    2014-01-01

    Statistical image reconstruction methods for X-ray computed tomography (CT) provide improved spatial resolution and noise properties over conventional filtered back-projection (FBP) reconstruction, along with other potential advantages such as reduced patient dose and artifacts. Conventional regularized image reconstruction leads to spatially variant spatial resolution and noise characteristics because of interactions between the system models and the regularization. Previous regularization d...

  4. Single-side access, isotropic resolution and multispectral 3D photoacoustic imaging with rotate-translate scanning of ultrasonic detector array

    CERN Document Server

    Gateau, Jérôme; Chassot, Jean-Marie; Bossy, Emmanuel

    2015-01-01

    Photoacoustic imaging can achieve high-resolution three-dimensional visualization of optical absorbers at penetration depths ~ 1 cm in biological tissues by detecting optically-induced high ultrasound frequencies. Tomographic acquisition with ultrasound linear arrays offers an easy implementation of single-side access, parallelized and high-frequency detection, but usually comes with an image quality impaired by the directionality of the detectors. Indeed, a simple translation of the array perpendicularly to its median imaging plane is often used, but results both in a poor resolution in the translation direction and in strong limited view artifacts. To improve the spatial resolution and the visibility of complex structures while keeping a planar detection geometry, we introduce, in this paper, a novel rotate-translate scanning scheme, and investigate the performance of a scanner implemented at 15 MHz center frequency. The developed system achieved a quasi-isotropic uniform 3D resolution of ~170 um over a cub...

  5. 1D-3D hybrid modeling-from multi-compartment models to full resolution models in space and time.

    Science.gov (United States)

    Grein, Stephan; Stepniewski, Martin; Reiter, Sebastian; Knodel, Markus M; Queisser, Gillian

    2014-01-01

    Investigation of cellular and network dynamics in the brain by means of modeling and simulation has evolved into a highly interdisciplinary field, that uses sophisticated modeling and simulation approaches to understand distinct areas of brain function. Depending on the underlying complexity, these models vary in their level of detail, in order to cope with the attached computational cost. Hence for large network simulations, single neurons are typically reduced to time-dependent signal processors, dismissing the spatial aspect of each cell. For single cell or networks with relatively small numbers of neurons, general purpose simulators allow for space and time-dependent simulations of electrical signal processing, based on the cable equation theory. An emerging field in Computational Neuroscience encompasses a new level of detail by incorporating the full three-dimensional morphology of cells and organelles into three-dimensional, space and time-dependent, simulations. While every approach has its advantages and limitations, such as computational cost, integrated and methods-spanning simulation approaches, depending on the network size could establish new ways to investigate the brain. In this paper we present a hybrid simulation approach, that makes use of reduced 1D-models using e.g., the NEURON simulator-which couples to fully resolved models for simulating cellular and sub-cellular dynamics, including the detailed three-dimensional morphology of neurons and organelles. In order to couple 1D- and 3D-simulations, we present a geometry-, membrane potential- and intracellular concentration mapping framework, with which graph- based morphologies, e.g., in the swc- or hoc-format, are mapped to full surface and volume representations of the neuron and computational data from 1D-simulations can be used as boundary conditions for full 3D simulations and vice versa. Thus, established models and data, based on general purpose 1D-simulators, can be directly coupled to the

  6. Non Local Spatial and Angular Matching: Enabling higher spatial resolution diffusion MRI datasets through adaptive denoising.

    Science.gov (United States)

    St-Jean, Samuel; Coupé, Pierrick; Descoteaux, Maxime

    2016-08-01

    Diffusion magnetic resonance imaging (MRI) datasets suffer from low Signal-to-Noise Ratio (SNR), especially at high b-values. Acquiring data at high b-values contains relevant information and is now of great interest for microstructural and connectomics studies. High noise levels bias the measurements due to the non-Gaussian nature of the noise, which in turn can lead to a false and biased estimation of the diffusion parameters. Additionally, the usage of in-plane acceleration techniques during the acquisition leads to a spatially varying noise distribution, which depends on the parallel acceleration method implemented on the scanner. This paper proposes a novel diffusion MRI denoising technique that can be used on all existing data, without adding to the scanning time. We first apply a statistical framework to convert both stationary and non stationary Rician and non central Chi distributed noise to Gaussian distributed noise, effectively removing the bias. We then introduce a spatially and angular adaptive denoising technique, the Non Local Spatial and Angular Matching (NLSAM) algorithm. Each volume is first decomposed in small 4D overlapping patches, thus capturing the spatial and angular structure of the diffusion data, and a dictionary of atoms is learned on those patches. A local sparse decomposition is then found by bounding the reconstruction error with the local noise variance. We compare against three other state-of-the-art denoising methods and show quantitative local and connectivity results on a synthetic phantom and on an in-vivo high resolution dataset. Overall, our method restores perceptual information, removes the noise bias in common diffusion metrics, restores the extracted peaks coherence and improves reproducibility of tractography on the synthetic dataset. On the 1.2 mm high resolution in-vivo dataset, our denoising improves the visual quality of the data and reduces the number of spurious tracts when compared to the noisy acquisition. Our

  7. Annual to sub-annual 3D surface evolution of an Antarctic blue-ice moraine using multi-platform, multi-temporal high resolution topography

    Science.gov (United States)

    Westoby, Matthew; Dunning, Stuart; Woodward, John; Hein, Andrew; Marrero, Shasta; Winter, Kate; Sugden, David

    2016-04-01

    High-resolution topographic data products are now routinely used for the geomorphological characterisation of Earth surface landforms and landscapes, whilst the acquisition and differencing of such datasets are swiftly becoming the preferred method for quantifying the transfer of mass through landscapes at the spatial scales of observation at which many processes operate. In this research, we employ 3-D differencing of repeat high-resolution topography to quantify the surface evolution of a 0.3 km2 blue-ice moraine complex in front of Patriot Hills, Antarctica. We used terrestrial laser scanning (TLS) to acquire multiple overlapping 3D datasets of the moraine surface at the beginning and end of the austral summer season in 2012/2013 and during a resurvey campaign in 2014. An additional topographic dataset was acquired at the end of season 1 through the application of a Structure-from-Motion with Multi-View Stereo (SfM-MVS) workflow to a set of aerial photographs acquired during a single unmanned aerial vehicle (UAV) sortie. 3D cloud-to-cloud differencing was undertaken using the M3C2 algorithm. The results of 3D differencing revealed net uplift (median ~0.05 m) and lateral (xy) movement (median 0.02 m) of the moraine crests within season 1. Analysis of results from the longest differencing epoch (start of season 1 to season 2) suggests gradual but persistent surface uplift (median ~0.11 m) and sustained lateral movement (median ~0.05 m). Locally, lowering of a similar magnitude to uplift was observed in inter-moraine troughs and close to the current ice margin. This research demonstrates that it is possible to detect dynamic surface topographic change across glacial moraines over short timescales through the acquisition and differencing of high-resolution topographic datasets. Such data and methods of analysis offer new opportunities to understand glaciological and geomorphological process linkages in remote glacial environments.

  8. 3D high resolution mineral phase distribution and seismic velocity structure of the transition zone: predicted by a full spherical-shell compressible mantle convection model

    Science.gov (United States)

    Geenen, T.; Heister, T.; Van Den Berg, A. P.; Jacobs, M.; Bangerth, W.

    2011-12-01

    We present high resolution 3D results of the complex mineral phase distribution in the transition zone obtained by numerical modelling of mantle convection. We extend the work by [Jacobs and van den Berg, 2011] to 3D and illustrate the efficiency of adaptive mesh refinement for capturing the complex spatial distribution and sharp phase transitions as predicted by their model. The underlying thermodynamical model is based on lattice dynamics which allows to predict thermophysical properties and seismic wave speeds for the applied magnesium-endmember olivine-pyroxene mineralogical model. The use of 3D geometry allows more realistic prediction of phase distribution and seismic wave speeds resulting from 3D flow processes involving the Earth's transition zone and more significant comparisons with interpretations from seismic tomography and seismic reflectivity studies aimed at the transition zone. Model results are generated with a recently developed geodynamics modeling application based on dealII (www.dealii.org). We extended this model to incorporate both a general thermodynamic model, represented by P,T space tabulated thermophysical properties, and a solution strategy that allows for compressible flow. When modeling compressible flow in the so called truncated anelastic approximation framework we have to adapt the solver strategy that has been proven by several authors to be highly efficient for incompressible flow to incorporate an extra term in the continuity equation. We present several possible solution strategies and discuss their implication in terms of robustness and computational efficiency.

  9. Contrast and resolution analysis of angular domain imaging for iterative optical projection tomography reconstruction

    Science.gov (United States)

    Ng, Eldon; Vasefi, Fartash; Kaminska, Bozena; Chapman, Glenn H.; Carson, Jeffrey J. L.

    2010-02-01

    Angular domain imaging (ADI) generates a projection image of an attenuating target within a turbid medium by employing a silicon micro-tunnel array to reject photons that have deviated from the initial propagation direction. In this imaging method, image contrast and resolution are position dependent. The objective of this work was to first characterize the contrast and resolution of the ADI system at a multitude of locations within the imaging plane. The second objective was to compare the reconstructions of different targets using filtered back projection and iterative reconstruction algorithms. The ADI system consisted of a diode laser laser (808nm, CW, ThorLabs) with a beam expander for illumination of the sample cuvette. At the opposite side of the cuvette, an Angular Filter Array (AFA) of 80 μm x 80 μm square-shaped tunnels 1 cm in length was used to reject the transmitted scattered light. Image-forming light exiting the AFA was detected by a linear CCD (16-bit, Mightex). Our approach was to translate two point attenuators (0.5 mm graphite rod, 0.368 mm drill bit) submerged in a 0.6% IntralipidTM dilution using a SCARA robot (Epson E2S351S) to cover a 37x37 and 45x45 matrix of grid points in the imaging plane within the 1 cm path length sample cuvette. At each grid point, a one-dimensional point-spread distribution was collected and system contrast and resolution were measured. Then, the robot was used to rotate the target to collect projection images at several projection angles of various objects, and reconstructed with a filtered back projection and an iterative reconstruction algorithm.

  10. High throughput 3D super-resolution microscopy reveals Caulobacter crescentus in vivo Z-ring organization.

    Science.gov (United States)

    Holden, Seamus J; Pengo, Thomas; Meibom, Karin L; Fernandez Fernandez, Carmen; Collier, Justine; Manley, Suliana

    2014-03-25

    We created a high-throughput modality of photoactivated localization microscopy (PALM) that enables automated 3D PALM imaging of hundreds of synchronized bacteria during all stages of the cell cycle. We used high-throughput PALM to investigate the nanoscale organization of the bacterial cell division protein FtsZ in live Caulobacter crescentus. We observed that FtsZ predominantly localizes as a patchy midcell band, and only rarely as a continuous ring, supporting a model of "Z-ring" organization whereby FtsZ protofilaments are randomly distributed within the band and interact only weakly. We found evidence for a previously unidentified period of rapid ring contraction in the final stages of the cell cycle. We also found that DNA damage resulted in production of high-density continuous Z-rings, which may obstruct cytokinesis. Our results provide a detailed quantitative picture of in vivo Z-ring organization.

  11. A single photon detector array with 64x64 resolution and millimetric depth accuracy for 3D imaging

    OpenAIRE

    Niclass, Cristiano; Charbon, Edoardo

    2005-01-01

    An avalanche photodiode array uses single-photon counting to perform time-of-flight range-finding on a scene uniformly hit by 100ps 250mW uncollimated laser pulses. The 32x32 pixel sensor, fabricated in a 0.8μm CMOS process uses a microscanner package to enhance the effective resolution in the application to 64x64 pixels. The application achieves a measurement depth resolution of 1.3mm to a depth of 3.75m.

  12. Characterization of a sub-assembly of 3D position sensitive cadmium zinc telluride detectors and electronics from a sub-millimeter resolution PET system

    Science.gov (United States)

    Abbaszadeh, Shiva; Gu, Yi; Reynolds, Paul D.; Levin, Craig S.

    2016-09-01

    Cadmium zinc telluride (CZT) offers key advantages for small animal positron emission tomography (PET), including high spatial and energy resolution and simple metal deposition for fabrication of very small pixel arrays. Previous studies have investigated the intrinsic spatial, energy, and timing resolution of an individual sub-millimeter resolution CZT detector. In this work we present the first characterization results of a system of these detectors. The 3D position sensitive dual-CZT detector module and readout electronics developed in our lab was scaled up to complete a significant portion of the final PET system. This sub-system was configured as two opposing detection panels containing a total of twelve 40~\\text{mm}× 40~\\text{mm}× 5 mm monolithic CZT crystals for proof of concept. System-level characterization studies, including optimizing the trigger threshold of each channel’s comparators, were performed. 68Ge and 137Cs radioactive isotopes were used to characterize the energy resolution of all 468 anode channels in the sub-system. The mean measured global 511 keV photopeak energy resolution over all anodes was found to be 7.35+/- 1.75 % FWHM after correction for photon interaction depth-dependent signal variation. The measured global time resolution was 37 ns FWHM, a parameter to be further optimized, and the intrinsic spatial resolution was 0.76 mm FWHM.

  13. Converting Multi-Shell and Diffusion Spectrum Imaging to High Angular Resolution Diffusion Imaging.

    Science.gov (United States)

    Yeh, Fang-Cheng; Verstynen, Timothy D

    2016-01-01

    Multi-shell and diffusion spectrum imaging (DSI) are becoming increasingly popular methods of acquiring diffusion MRI data in a research context. However, single-shell acquisitions, such as diffusion tensor imaging (DTI) and high angular resolution diffusion imaging (HARDI), still remain the most common acquisition schemes in practice. Here we tested whether multi-shell and DSI data have conversion flexibility to be interpolated into corresponding HARDI data. We acquired multi-shell and DSI data on both a phantom and in vivo human tissue and converted them to HARDI. The correlation and difference between their diffusion signals, anisotropy values, diffusivity measurements, fiber orientations, connectivity matrices, and network measures were examined. Our analysis result showed that the diffusion signals, anisotropy, diffusivity, and connectivity matrix of the HARDI converted from multi-shell and DSI were highly correlated with those of the HARDI acquired on the MR scanner, with correlation coefficients around 0.8~0.9. The average angular error between converted and original HARDI was 20.7° at voxels with signal-to-noise ratios greater than 5. The network topology measures had less than 2% difference, whereas the average nodal measures had a percentage difference around 4~7%. In general, multi-shell and DSI acquisitions can be converted to their corresponding single-shell HARDI with high fidelity. This supports multi-shell and DSI acquisitions over HARDI acquisition as the scheme of choice for diffusion acquisitions.

  14. Converting Multi-Shell and Diffusion Spectrum Imaging to High Angular Resolution Diffusion Imaging

    Science.gov (United States)

    Yeh, Fang-Cheng; Verstynen, Timothy D.

    2016-01-01

    Multi-shell and diffusion spectrum imaging (DSI) are becoming increasingly popular methods of acquiring diffusion MRI data in a research context. However, single-shell acquisitions, such as diffusion tensor imaging (DTI) and high angular resolution diffusion imaging (HARDI), still remain the most common acquisition schemes in practice. Here we tested whether multi-shell and DSI data have conversion flexibility to be interpolated into corresponding HARDI data. We acquired multi-shell and DSI data on both a phantom and in vivo human tissue and converted them to HARDI. The correlation and difference between their diffusion signals, anisotropy values, diffusivity measurements, fiber orientations, connectivity matrices, and network measures were examined. Our analysis result showed that the diffusion signals, anisotropy, diffusivity, and connectivity matrix of the HARDI converted from multi-shell and DSI were highly correlated with those of the HARDI acquired on the MR scanner, with correlation coefficients around 0.8~0.9. The average angular error between converted and original HARDI was 20.7° at voxels with signal-to-noise ratios greater than 5. The network topology measures had less than 2% difference, whereas the average nodal measures had a percentage difference around 4~7%. In general, multi-shell and DSI acquisitions can be converted to their corresponding single-shell HARDI with high fidelity. This supports multi-shell and DSI acquisitions over HARDI acquisition as the scheme of choice for diffusion acquisitions. PMID:27683539

  15. Characterization of a high resolution and high sensitivity pre-clinical PET scanner with 3D event reconstruction

    CERN Document Server

    Rissi, M; Bolle, E; Dorholt, O; Hines, K E; Rohne, O; Skretting, A; Stapnes, S; Volgyes, D

    2012-01-01

    COMPET is a preclinical PET scanner aiming towards a high sensitivity, a high resolution and MRI compatibility by implementing a novel detector geometry. In this approach, long scintillating LYSO crystals are used to absorb the gamma-rays. To determine the point of interaction (P01) between gamma-ray and crystal, the light exiting the crystals on one of the long sides is collected with wavelength shifters (WLS) perpendicularly arranged to the crystals. This concept has two main advantages: (1) The parallax error is reduced to a minimum and is equal for the whole field of view (FOV). (2) The P01 and its energy deposit is known in all three dimension with a high resolution, allowing for the reconstruction of Compton scattered gamma-rays. Point (1) leads to a uniform point source resolution (PSR) distribution over the whole FOV, and also allows to place the detector close to the object being imaged. Both points (1) and (2) lead to an increased sensitivity and allow for both high resolution and sensitivity at the...

  16. Optical coherence tomography for ultrahigh-resolution 3D imaging of cell development and real-time guiding for photodynamic therapy

    Science.gov (United States)

    Wang, Tianshi; Zhen, Jinggao; Wang, Bo; Xue, Ping

    2009-11-01

    Optical coherence tomography is a new emerging technique for cross-sectional imaging with high spatial resolution of micrometer scale. It enables in vivo and non-invasive imaging with no need to contact the sample and is widely used in biological and clinic application. In this paper optical coherence tomography is demonstrated for both biological and clinic applications. For biological application, a white-light interference microscope is developed for ultrahigh-resolution full-field optical coherence tomography (full-field OCT) to implement 3D imaging of biological tissue. Spatial resolution of 0.9μm×1.1μm (transverse×axial) is achieved A system sensitivity of 85 dB is obtained at an acquisition time of 5s per image. The development of a mouse embryo is studied layer by layer with our ultrahigh-resolution full-filed OCT. For clinic application, a handheld optical coherence tomography system is designed for real-time and in situ imaging of the port wine stains (PWS) patient and supplying surgery guidance for photodynamic therapy (PDT) treatment. The light source with center wavelength of 1310nm, -3 dB wavelength range of 90 nm and optical power of 9mw is utilized. Lateral resolution of 8 μm and axial resolution of 7μm at a rate of 2 frames per second and with 102dB sensitivity are achieved in biological tissue. It is shown that OCT images distinguish very well the normal and PWS tissues in clinic and are good to serve as a valuable diagnosis tool for PDT treatment.

  17. The Evershed effect observed with 0.2 arsec angular resolution

    CERN Document Server

    Almeida, J S; Bonet, J A; Cerdena, I D

    2006-01-01

    We present an analysis of the Evershed effect observed with a resolution of 0.2 arcsec. Using the new Swedish 1-m Solar Telescope and its Littrow spectrograph, we scan a significant part of a sunspot penumbra. Spectra of the non-magnetic line Fe I 7090.4 A allows us to measure Doppler shifts without magnetic contamination. The observed line profiles are asymmetric. The Doppler shift depends on the part of the line used for measuring, indicating that the velocity structure of penumbrae remains unresolved even with our angular resolution. The observed line profiles are properly reproduced if two components with velocities between zero and several km/s co-exist in the resolution elements. Using Doppler shifts at fixed line depths, we find a local correlation between upflows and bright structures, and downflows and dark structures. This association is not specific of the outer penumbra but it also occurs in the inner penumbra. The existence of such correlation was originally reported by Beckers & Schroter (19...

  18. High-Angular-Resolution and High-Sensitivity Science Enabled by Beamformed ALMA

    CERN Document Server

    Fish, Vincent; Anderson, James; Asada, Keiichi; Baudry, Alain; Broderick, Avery; Carilli, Chris; Colomer, Francisco; Conway, John; Dexter, Jason; Doeleman, Sheperd; Eatough, Ralph; Falcke, Heino; Frey, Sándor; Gabányi, Krisztina; Gálvan-Madrid, Roberto; Gammie, Charles; Giroletti, Marcello; Goddi, Ciriaco; Gómez, Jose L; Hada, Kazuhiro; Hecht, Michael; Honma, Mareki; Humphreys, Elizabeth; Impellizzeri, Violette; Johannsen, Tim; Jorstad, Svetlana; Kino, Motoki; Körding, Elmar; Kramer, Michael; Krichbaum, Thomas; Kudryavtseva, Nadia; Laing, Robert; Lazio, Joseph; Loeb, Abraham; Lu, Ru-Sen; Maccarone, Thomas; Marscher, Alan; Mart'ı-Vidal, Iván; Martins, Carlos; Matthews, Lynn; Menten, Karl; Miller, Jon; Miller-Jones, James; Mirabel, Félix; Muller, Sebastien; Nagai, Hiroshi; Nagar, Neil; Nakamura, Masanori; Paragi, Zsolt; Pradel, Nicolas; Psaltis, Dimitrios; Ransom, Scott; Rodr'\\iguez, Luis; Rottmann, Helge; Rushton, Anthony; Shen, Zhi-Qiang; Smith, David; Stappers, Benjamin; Takahashi, Rohta; Tarchi, Andrea; Tilanus, Remo; Verbiest, Joris; Vlemmings, Wouter; Walker, R Craig; Wardle, John; Wiik, Kaj; Zackrisson, Erik; Zensus, J Anton

    2013-01-01

    An international consortium is presently constructing a beamformer for the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile that will be available as a facility instrument. The beamformer will aggregate the entire collecting area of the array into a single, very large aperture. The extraordinary sensitivity of phased ALMA, combined with the extremely fine angular resolution available on baselines to the Northern Hemisphere, will enable transformational new very long baseline interferometry (VLBI) observations in Bands 6 and 7 (1.3 and 0.8 mm) and provide substantial improvements to existing VLBI arrays in Bands 1 and 3 (7 and 3 mm). The ALMA beamformer will have impact on a variety of scientific topics, including accretion and outflow processes around black holes in active galactic nuclei (AGN), tests of general relativity near black holes, jet launch and collimation from AGN and microquasars, pulsar and magnetar emission processes, the chemical history of the universe and the evolution of fundame...

  19. High Angular Resolution Observations of Four Candidate BLAST High-Mass Starless Cores

    CERN Document Server

    Olmi, Luca; Chapin, Edward L; Gibb, Andrew; Hofner, Peter; Martin, Peter G; Poventud, Carlos M

    2010-01-01

    We discuss high-angular resolution observations of ammonia toward four candidate high-mass starless cores (HMSCs). The cores were identified by the Balloon-borne Large Aperture Submillimeter Telescope (BLAST) during its 2005 survey of the Vulpecula region where 60 compact sources were detected simultaneously at 250, 350, and 500 micron. Four of these cores, with no IRAS-PSC or MSX counterparts, were observed with the NRAO Very Large Array (VLA) in the NH3(1,1) and (2,2) spectral lines. Our observations indicate that the four cores are cold (Tk <~ 14K) and show a filamentary and/or clumpy structure. They also show a significant velocity substructure within ~1km/s. The four BLAST cores appear to be colder and more quiescent than other previously observed HMSC candidates, suggesting an earlier stage of evolution.

  20. Simple Fourier optics formalism for high angular resolution systems and nulling interferometry

    CERN Document Server

    Henault, Francois

    2009-01-01

    In this paper are reviewed various designs of advanced, multi-aperture optical systems dedicated to high angular resolution imaging or to the detection of exo-planets by nulling interferometry. A simple Fourier optics formalism is presented, allowing to derive their imaging and nulling basic relationships as convolution or cross correlation products suitable for fast and accurate computation. The most promising designs seem to be the free-flying, axially recombined interferometers showing an unsurpassed imaging capacity, and a conceptual "super-resolving telescope" utilizing a mosaicing observation procedure. The entire study is only valid in the frame of first-order geometrical optics and scalar diffraction theory. Furthermore, it is assumed that all entrance sub-apertures are optically conjugated with their associated exit pupils, a particularity inducing an instrumental behaviour comparable with those of diffraction gratings.

  1. Non-Parametric Tests of Structure for High Angular Resolution Diffusion Imaging in Q-Space

    CERN Document Server

    Olhede, Sofia C

    2010-01-01

    High angular resolution diffusion imaging data is the observed characteristic function for the local diffusion of water molecules in tissue. This data is used to infer structural information in brain imaging. Non-parametric scalar measures are proposed to summarize such data, and to locally characterize spatial features of the diffusion probability density function (PDF), relying on the geometry of the characteristic function. Summary statistics are defined so that their distributions are, to first order, both independent of nuisance parameters and also analytically tractable. The dominant direction of the diffusion at a spatial location (voxel) is determined, and a new set of axes are introduced in Fourier space. Variation quantified in these axes determines the local spatial properties of the diffusion density. Non-parametric hypothesis tests for determining whether the diffusion is unimodal, isotropic or multi-modal are proposed. More subtle characteristics of white-matter microstructure, such as the degre...

  2. Understanding Active Galactic Nuclei using near-infrared high angular resolution polarimetry II: Preliminary results

    CERN Document Server

    Marin, F; Goosmann, R; Gratadour, D; Rouan, D; Clénet, Y; Pelat, D; Lobos, P Andrea Rojas

    2016-01-01

    In this second research note of a series of two, we present the first near-infrared results we obtained when modeling Active Galactic Nuclei (AGN). Our first proceedings showed the comparison between the MontAGN and STOKES Monte Carlo codes. Now we use our radiative transfer codes to simulate the polarization maps of a prototypical, NGC 1068-like, type-2 radio-quiet AGN. We produced high angular resolution infrared (1 micron) polarization images to be compared with recent observations in this wavelength range. Our preliminary results already show a good agreement between the models and observations but cannot account for the peculiar linear polarization angle of the torus such as observed. Gratadour et al. 2015 found a polarization position angle being perpendicular to the bipolar outflows axis. Further work is needed to improve the models by adding physical phenomena such as dichroism and clumpiness.

  3. SU-E-CAMPUS-T-05: Validation of High-Resolution 3D Patient QA for Proton Pencil Beam Scanning and IMPT by Polymer Gel Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Cardin, A; Avery, S; Ding, X; Kassaee, A; Lin, L [University of Pennsylvania, Philadelphia, PA (United States); Maryanski, M [MGS Research, Inc., Madison, CT (United States)

    2014-06-15

    Purpose: Validation of high-resolution 3D patient QA for proton pencil beam scanning and IMPT by polymer gel dosimetry. Methods: Four BANG3Pro polymer gel dosimeters (manufactured by MGS Research Inc, Madison, CT) were used for patient QA at the Robert's Proton Therapy Center (RPTC, Philadelphia, PA). All dosimeters were sealed in identical thin-wall Pyrex glass spheres. Each dosimeter contained a set of markers for 3D registration purposes. The dosimeters were mounted in a consistent and reproducible manner using a custom build holder. Two proton pencil beam scanning plans were designed using Varian Eclipse™ treatment planning system: 1) A two-field intensity modulated proton therapy (IMPT) plan and 2) one single field uniform dose (SFUD) plan. The IMPT fields were evaluated as a composite plan and individual fields, the SFUD plan was delivered as a single field plan.Laser CT scanning was performed using the manufacturer's OCTOPUS-IQ axial transmission laser CT scanner using a 1 mm slice thickness. 3D registration, analysis, and OD/cm to absorbed dose calibrations were perfomed using DICOM RT-Dose and CT files, and software developed by the manufacturer. 3D delta index, a metric equivalent to the gamma tool, was used for dose comparison. Results: Very good agreement with single IMPT fields and with SFUD was obtained. Composite IMPT fields had a less satisfactory agreement. The single fields had 3D delta index passing rates (3% dose difference, 3 mm DTA) of 98.98% and 94.91%. The composite 3D delta index passing rate was 80.80%. The SFUD passing rate was 93.77%. Required shifts of the dose distributions were less than 4 mm. Conclusion: A formulation of the BANG3Pro polymer gel dosimeter, suitable for 3D QA of proton patient plans is established and validated. Likewise, the mailed QA analysis service provided by the manufacturer is a practical option when required resources are unavailable. We fully disclose that the subject of this research regards a

  4. The effect of spatial micro-CT image resolution and surface complexity on the morphological 3D analysis of open porous structures

    Energy Technology Data Exchange (ETDEWEB)

    Pyka, Grzegorz, E-mail: gregory.pyka@mtm.kuleuven.be [Department of Metallurgy and Materials Engineering, KU Leuven, Kasteelpark Arenberg 44 – PB2450, B-3001 Leuven (Belgium); Kerckhofs, Greet [Department of Metallurgy and Materials Engineering, KU Leuven, Kasteelpark Arenberg 44 – PB2450, B-3001 Leuven (Belgium); Biomechanics Research Unit, Université de Liege, Chemin des Chevreuils 1 - BAT 52/3, B-4000 Liège (Belgium); Schrooten, Jan; Wevers, Martine [Department of Metallurgy and Materials Engineering, KU Leuven, Kasteelpark Arenberg 44 – PB2450, B-3001 Leuven (Belgium)

    2014-01-15

    In material science microfocus X-ray computed tomography (micro-CT) is one of the most popular non-destructive techniques to visualise and quantify the internal structure of materials in 3D. Despite constant system improvements, state-of-the-art micro-CT images can still hold several artefacts typical for X-ray CT imaging that hinder further image-based processing, structural and quantitative analysis. For example spatial resolution is crucial for an appropriate characterisation as the voxel size essentially influences the partial volume effect. However, defining the adequate image resolution is not a trivial aspect and understanding the correlation between scan parameters like voxel size and the structural properties is crucial for comprehensive material characterisation using micro-CT. Therefore, the objective of this study was to evaluate the influence of the spatial image resolution on the micro-CT based morphological analysis of three-dimensional (3D) open porous structures with a high surface complexity. In particular the correlation between the local surface properties and the accuracy of the micro-CT-based macro-morphology of 3D open porous Ti6Al4V structures produced by selective laser melting (SLM) was targeted and revealed for rough surfaces a strong dependence of the resulting structure characteristics on the scan resolution. Reducing the surface complexity by chemical etching decreased the sensitivity of the overall morphological analysis to the spatial image resolution and increased the detection limit. This study showed that scan settings and image processing parameters need to be customized to the material properties, morphological parameters under investigation and the desired final characteristics (in relation to the intended functional use). Customization of the scan resolution can increase the reliability of the micro-CT based analysis and at the same time reduce its operating costs. - Highlights: • We examine influence of the image resolution

  5. WE-F-16A-04: Micro-Irradiator Treatment Verification with High-Resolution 3D-Printed Rodent-Morphic Dosimeters

    International Nuclear Information System (INIS)

    Purpose: Pre-clinical micro-radiation therapy studies often utilize very small beams (∼0.5-5mm), and require accurate dose delivery in order to effectively investigate treatment efficacy. Here we present a novel high-resolution absolute 3D dosimetry procedure, capable of ∼100-micron isotopic dosimetry in anatomically accurate rodent-morphic phantoms Methods: Anatomically accurate rat-shaped 3D dosimeters were made using 3D printing techniques from outer body contours and spinal contours outlined on CT. The dosimeters were made from a radiochromic plastic material PRESAGE, and incorporated high-Z PRESASGE inserts mimicking the spine. A simulated 180-degree spinal arc treatment was delivered through a 2 step process: (i) cone-beam-CT image-guided positioning was performed to precisely position the rat-dosimeter for treatment on the XRad225 small animal irradiator, then (ii) treatment was delivered with a simulated spine-treatment with a 180-degree arc with 20mm x 10mm cone at 225 kVp. Dose distribution was determined from the optical density change using a high-resolution in-house optical-CT system. Absolute dosimetry was enabled through calibration against a novel nano-particle scintillation detector positioned in a channel in the center of the distribution. Results: Sufficient contrast between regular PRESAGE (tissue equivalent) and high-Z PRESAGE (spinal insert) was observed to enable highly accurate image-guided alignment and targeting. The PRESAGE was found to have linear optical density (OD) change sensitivity with respect to dose (R2 = 0.9993). Absolute dose for 360-second irradiation at isocenter was found to be 9.21Gy when measured with OD change, and 9.4Gy with nano-particle detector- an agreement within 2%. The 3D dose distribution was measured at 500-micron resolution Conclusion: This work demonstrates for the first time, the feasibility of accurate absolute 3D dose measurement in anatomically accurate rat phantoms containing variable density PRESAGE

  6. WE-F-16A-04: Micro-Irradiator Treatment Verification with High-Resolution 3D-Printed Rodent-Morphic Dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Bache, S; Belley, M [Duke University Medical Physics Graduate Program, Durham, NC (United States); Benning, R; Adamovics, J [Rider University, Lawrenceville, NJ (United States); Stanton, I; Therien, M [Department of Chemistry, Duke University, Durham, NC (United States); Yoshizumi, T [Department of Radiology, Duke University Medical Center, Durham, NC (United States); Department of Radiation Oncology, Duke University Medical Center, Durham, NC (United States); Oldham, M [Department of Radiation Oncology, Duke University Medical Center, Durham, NC (United States)

    2014-06-15

    Purpose: Pre-clinical micro-radiation therapy studies often utilize very small beams (∼0.5-5mm), and require accurate dose delivery in order to effectively investigate treatment efficacy. Here we present a novel high-resolution absolute 3D dosimetry procedure, capable of ∼100-micron isotopic dosimetry in anatomically accurate rodent-morphic phantoms Methods: Anatomically accurate rat-shaped 3D dosimeters were made using 3D printing techniques from outer body contours and spinal contours outlined on CT. The dosimeters were made from a radiochromic plastic material PRESAGE, and incorporated high-Z PRESASGE inserts mimicking the spine. A simulated 180-degree spinal arc treatment was delivered through a 2 step process: (i) cone-beam-CT image-guided positioning was performed to precisely position the rat-dosimeter for treatment on the XRad225 small animal irradiator, then (ii) treatment was delivered with a simulated spine-treatment with a 180-degree arc with 20mm x 10mm cone at 225 kVp. Dose distribution was determined from the optical density change using a high-resolution in-house optical-CT system. Absolute dosimetry was enabled through calibration against a novel nano-particle scintillation detector positioned in a channel in the center of the distribution. Results: Sufficient contrast between regular PRESAGE (tissue equivalent) and high-Z PRESAGE (spinal insert) was observed to enable highly accurate image-guided alignment and targeting. The PRESAGE was found to have linear optical density (OD) change sensitivity with respect to dose (R{sup 2} = 0.9993). Absolute dose for 360-second irradiation at isocenter was found to be 9.21Gy when measured with OD change, and 9.4Gy with nano-particle detector- an agreement within 2%. The 3D dose distribution was measured at 500-micron resolution Conclusion: This work demonstrates for the first time, the feasibility of accurate absolute 3D dose measurement in anatomically accurate rat phantoms containing variable density

  7. Scalable, incremental learning with MapReduce parallelization for cell detection in high-resolution 3D microscopy data

    KAUST Repository

    Sung, Chul

    2013-08-01

    Accurate estimation of neuronal count and distribution is central to the understanding of the organization and layout of cortical maps in the brain, and changes in the cell population induced by brain disorders. High-throughput 3D microscopy techniques such as Knife-Edge Scanning Microscopy (KESM) are enabling whole-brain survey of neuronal distributions. Data from such techniques pose serious challenges to quantitative analysis due to the massive, growing, and sparsely labeled nature of the data. In this paper, we present a scalable, incremental learning algorithm for cell body detection that can address these issues. Our algorithm is computationally efficient (linear mapping, non-iterative) and does not require retraining (unlike gradient-based approaches) or retention of old raw data (unlike instance-based learning). We tested our algorithm on our rat brain Nissl data set, showing superior performance compared to an artificial neural network-based benchmark, and also demonstrated robust performance in a scenario where the data set is rapidly growing in size. Our algorithm is also highly parallelizable due to its incremental nature, and we demonstrated this empirically using a MapReduce-based implementation of the algorithm. We expect our scalable, incremental learning approach to be widely applicable to medical imaging domains where there is a constant flux of new data. © 2013 IEEE.

  8. HIGH RESOLUTION X-RAY TECHNIQUES AS NEW TOOL TO INVESTIGATE THE 3D VASCULARIZATION OF ENGINEERED-BONE TISSUE

    Directory of Open Access Journals (Sweden)

    Inna eBukreeva

    2015-09-01

    Full Text Available The understanding of structure-function relationships in normal and pathologic mammalian tissues is at the basis of tissue engineering (TE approach for the development of biological substitutes to restore or improve tissue function. In this framework it is interesting to investigate engineered bone tissue, which is formed when porous ceramic constructs are loaded with Bone Marrow Stromal Cells (BMSC and implanted in vivo. To monitor the relation between bone formation and vascularization, it is important to achieve a detailed imaging and a quantitative description of the complete three-dimensional vascular network in such constructs. Here we used synchrotron X-ray phase contrast micro-tomography to visualize and analyze the three-dimensional micro-vascular networks in bone-engineered constructs, in ectopic bone formation mouse-model. We compared samples seeded with and without BMSC as well as samples differently stained (comprising unstained samples. Thanks to the high quality of the images, we investigated the 3D distribution of both vessels and collagen matrix and we obtained quantitative information for all different sample preparations.We propose our approach as a tool for quantitative studies of angiogenesis in TE and for any other pre-clinical investigations where a quantitative analysis of the vascular network is required.

  9. Max CAPR: High-Resolution 3D Contrast-Enhanced MR Angiography With Acquisition Times Under 5 Seconds

    OpenAIRE

    Haider, Clifton R.; Borisch, Eric A.; Glockner, James F; Mostardi, Petrice M.; Rossman, Phillip J.; Young, Phillip M.; Riederer, Stephen J.

    2010-01-01

    High temporal and spatial resolution is desired in imaging of vascular abnormalities having short arterial-to-venous transit times. Methods that exploit temporal correlation to reduce the observed frame time demonstrate temporal blurring, obfuscating bolus dynamics. Previously, a Cartesian acquisition with projection reconstruction-like (CAPR) sampling method has been demonstrated for three-dimensional contrast-enhanced angiographic imaging of the lower legs using two-dimensional sensitivity-...

  10. ONE-DIMENSIONAL LIGHT BEAM WIDENING USING PRISMS FOR INCREASE OF SPECTROMETER SPECTRAL RESOLUTION AND ANGULAR DISPERSION

    Directory of Open Access Journals (Sweden)

    I. M. Gulis

    2016-01-01

    Full Text Available The increase of angular dispersion and slit resolution limit of grating spectrometers by means of variation of grating parameters is limited by its period and allowable order of diffraction. The special solutions (echelle, holographic, immersion gratings are acceptable in a limited parameter range and are technologically complex in fabrication, thus hardly applicable to instruments of mass production. We propose to decrease slit resolution limit by one-dimensional beam widening in dispersion plane by means of passing it through oblique prism before incidence onto diffraction grating. The increase of angular dispersion can be achieved by narrowing of dispersed beams after grating while passing through other oblique prism. We prove that slit resolution limit in such a system changes approximately as multiplied by angular magnification of the first prism (that is less than 1 times. Also angular dispersion changed approximately as multiplied by angular magnification of the second prism. The Fresnel reflection from the faces of prisms is analyzed. Accounting for that factor gives the increase of resolution about 1,4–1,6 times without loss of light (and can be 2 and more times while using anti-reflective coating. The proposed method is different from the similar ones first of all by its simplicity because it uses simple optical elements – plane reflective grating and thin prisms. It can be applied to amend the analytical characteristics of dispersive spectrometers, first of all the small-sized ones. 

  11. Comparison of 3D Maximum A Posteriori and Filtered Backprojection algorithms for high resolution animal imaging in microPET

    Energy Technology Data Exchange (ETDEWEB)

    Chatziioannou, A.; Qi, J.; Moore, A.; Annala, A.; Nguyen, K.; Leahy, R.M.; Cherry, S.R.

    2000-01-01

    We have evaluated the performance of two three dimensional reconstruction algorithms with data acquired from microPET, a high resolution tomograph dedicated to small animal imaging. The first was a linear filtered-backprojection algorithm (FBP) with reprojection of the missing data and the second was a statistical maximum-aposteriori probability algorithm (MAP). The two algorithms were evaluated in terms of their resolution performance, both in phantoms and in vivo. Sixty independent realizations of a phantom simulating the brain of a baby monkey were acquired, each containing 3 million counts. Each of these realizations was reconstructed independently with both algorithms. The ensemble of the sixty reconstructed realizations was used to estimate the standard deviation as a measure of the noise for each reconstruction algorithm. More detail was recovered in the MAP reconstruction without an increase in noise relative to FBP. Studies in a simple cylindrical compartment phantom demonstrated improved recovery of known activity ratios with MAP. Finally in vivo studies also demonstrated a clear improvement in spatial resolution using the MAP algorithm. The quantitative accuracy of the MAP reconstruction was also evaluated by comparison with autoradiography and direct well counting of tissue samples and was shown to be superior.

  12. Max CAPR: high-resolution 3D contrast-enhanced MR angiography with acquisition times under 5 seconds.

    Science.gov (United States)

    Haider, Clifton R; Borisch, Eric A; Glockner, James F; Mostardi, Petrice M; Rossman, Phillip J; Young, Phillip M; Riederer, Stephen J

    2010-10-01

    High temporal and spatial resolution is desired in imaging of vascular abnormalities having short arterial-to-venous transit times. Methods that exploit temporal correlation to reduce the observed frame time demonstrate temporal blurring, obfuscating bolus dynamics. Previously, a Cartesian acquisition with projection reconstruction-like (CAPR) sampling method has been demonstrated for three-dimensional contrast-enhanced angiographic imaging of the lower legs using two-dimensional sensitivity-encoding acceleration and partial Fourier acceleration, providing 1mm isotropic resolution of the calves, with 4.9-sec frame time and 17.6-sec temporal footprint. In this work, the CAPR acquisition is further undersampled to provide a net acceleration approaching 40 by eliminating all view sharing. The tradeoff of frame time and temporal footprint in view sharing is presented and characterized in phantom experiments. It is shown that the resultant 4.9-sec acquisition time, three-dimensional images sets have sufficient spatial and temporal resolution to clearly portray arterial and venous phases of contrast passage. It is further hypothesized that these short temporal footprint sequences provide diagnostic quality images. This is tested and shown in a series of nine contrast-enhanced MR angiography patient studies performed with the new method. PMID:20715291

  13. Max CAPR: High-Resolution 3D Contrast-Enhanced MR Angiography With Acquisition Times Under 5 Seconds

    Science.gov (United States)

    Haider, Clifton R.; Borisch, Eric A.; Glockner, James F.; Mostardi, Petrice M.; Rossman, Phillip J.; Young, Phillip M.; Riederer, Stephen J.

    2011-01-01

    High temporal and spatial resolution is desired in imaging of vascular abnormalities having short arterial-to-venous transit times. Methods that exploit temporal correlation to reduce the observed frame time demonstrate temporal blurring, obfuscating bolus dynamics. Previously, a Cartesian acquisition with projection reconstruction-like (CAPR) sampling method has been demonstrated for three-dimensional contrast-enhanced angiographic imaging of the lower legs using two-dimensional sensitivity-encoding acceleration and partial Fourier acceleration, providing 1mm isotropic resolution of the calves, with 4.9-sec frame time and 17.6-sec temporal footprint. In this work, the CAPR acquisition is further undersampled to provide a net acceleration approaching 40 by eliminating all view sharing. The tradeoff of frame time and temporal footprint in view sharing is presented and characterized in phantom experiments. It is shown that the resultant 4.9-sec acquisition time, three-dimensional images sets have sufficient spatial and temporal resolution to clearly portray arterial and venous phases of contrast passage. It is further hypothesized that these short temporal footprint sequences provide diagnostic quality images. This is tested and shown in a series of nine contrast-enhanced MR angiography patient studies performed with the new method. PMID:20715291

  14. Comparison of 3D Maximum A Posteriori and Filtered Backprojection algorithms for high resolution animal imaging in microPET

    International Nuclear Information System (INIS)

    We have evaluated the performance of two three dimensional reconstruction algorithms with data acquired from microPET, a high resolution tomograph dedicated to small animal imaging. The first was a linear filtered-backprojection algorithm (FBP) with reprojection of the missing data and the second was a statistical maximum-aposteriori probability algorithm (MAP). The two algorithms were evaluated in terms of their resolution performance, both in phantoms and in vivo. Sixty independent realizations of a phantom simulating the brain of a baby monkey were acquired, each containing 3 million counts. Each of these realizations was reconstructed independently with both algorithms. The ensemble of the sixty reconstructed realizations was used to estimate the standard deviation as a measure of the noise for each reconstruction algorithm. More detail was recovered in the MAP reconstruction without an increase in noise relative to FBP. Studies in a simple cylindrical compartment phantom demonstrated improved recovery of known activity ratios with MAP. Finally in vivo studies also demonstrated a clear improvement in spatial resolution using the MAP algorithm. The quantitative accuracy of the MAP reconstruction was also evaluated by comparison with autoradiography and direct well counting of tissue samples and was shown to be superior

  15. SMA OBSERVATIONS OF CLASS 0 PROTOSTARS: A HIGH ANGULAR RESOLUTION SURVEY OF PROTOSTELLAR BINARY SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Chen Xuepeng [Purple Mountain Observatory, Chinese Academy of Sciences, 2 West Beijing Road, Nanjing 210008 (China); Arce, Hector G.; Dunham, Michael M. [Department of Astronomy, Yale University, Box 208101, New Haven, CT 06520-8101 (United States); Zhang Qizhou; Bourke, Tyler L. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Launhardt, Ralf; Henning, Thomas [Max Planck Institute for Astronomy, Koenigstuhl 17, D-69117 Heidelberg (Germany); Jorgensen, Jes K. [Niels Bohr Institute and Centre for Star and Planet Formation, Copenhagen University, Juliane Maries Vej 30, DK-2100 Copenhagen O (Denmark); Lee, Chin-Fei [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 106, Taiwan (China); Foster, Jonathan B. [Institute for Astrophysical Research, Boston University, Boston, MA 02215 (United States); Pineda, Jaime E., E-mail: xpchen@pmo.ac.cn, E-mail: xuepeng.chen@yale.edu [ESO, Karl Schwarzschild Str. 2, D-85748 Garching bei Munchen (Germany)

    2013-05-10

    We present high angular resolution 1.3 mm and 850 {mu}m dust continuum data obtained with the Submillimeter Array toward 33 Class 0 protostars in nearby clouds (distance < 500 pc), which represents so far the largest survey toward protostellar binary/multiple systems. The median angular resolution in the survey is 2.''5, while the median linear resolution is approximately 600 AU. Compact dust continuum emission is observed from all sources in the sample. Twenty-one sources in the sample show signatures of binarity/multiplicity, with separations ranging from 50 AU to 5000 AU. The numbers of singles, binaries, triples, and quadruples in the sample are 12, 14, 5, and 2, respectively. The derived multiplicity frequency (MF) and companion star fraction (CSF) for Class 0 protostars are 0.64 {+-} 0.08 and 0.91 {+-} 0.05, respectively, with no correction for completeness. The derived MF and CSF in this survey are approximately two times higher than the values found in the binary surveys toward Class I young stellar objects, and approximately three (for MF) and four (for CSF) times larger than the values found among main-sequence stars, with a similar range of separations. Furthermore, the observed fraction of high-order multiple systems to binary systems in Class 0 protostars (0.50 {+-} 0.09) is also larger than the fractions found in Class I young stellar objects (0.31 {+-} 0.07) and main-sequence stars ({<=}0.2). These results suggest that binary properties evolve as protostars evolve, as predicted by numerical simulations. The distribution of separations for Class 0 protostellar binary/multiple systems shows a general trend in which CSF increases with decreasing companion separation. We find that 67% {+-} 8% of the protobinary systems have circumstellar mass ratios below 0.5, implying that unequal-mass systems are preferred in the process of binary star formation. We suggest an empirical sequential fragmentation picture for binary star formation, based on this

  16. Experimental electronic structure and Fermi-surface instability of the correlated 3d sulphide BaVS3 : High-resolution angle-resolved photoemission spectroscopy

    Science.gov (United States)

    Mitrovic, S.; Fazekas, P.; Søndergaard, C.; Ariosa, D.; Barišić, N.; Berger, H.; Cloëtta, D.; Forró, L.; Höchst, H.; Kupčić, I.; Pavuna, D.; Margaritondo, G.

    2007-04-01

    The correlated 3d sulphide BaVS3 exhibits an interesting coexistence of one-dimensional and three-dimensional properties. Our experiments determine the electronic band structure and shed light on this puzzle. High-resolution angle-resolved photoemission measurements in a 4-eV -wide range below the Fermi energy level uncover and investigate the coexistence of a1g wide-band and eg narrow-band d electrons, which lead to the complicated electronic properties of this material. We explore the effects of strong correlations and the Fermi surface instability associated with the metal-insulator transition.

  17. High-resolution 3D Phase Imaging using a Partitioned Detection Aperture: a Wave-Optic Analysis

    CERN Document Server

    Barankov, Roman; Mertz, Jerome

    2015-01-01

    An optically transparent thin sample is characterized by a distribution of pathlengths and a weak attenuation parameter. The phase shifts imparted by the sample can be measured using a partitioned detection aperture [Opt. Lett. 37, 4062 (2012)]. In this work, we analyze the system using paraxial wave optics and derive three-dimensional spread functions for phase and intensity. Using these functions we discuss methods of phase reconstruction for in- and out-of-focus samples, insensitive to weak attenuations of light. Our approach provides a strategy for detection-limited lateral resolution with extended depth of field, and is applicable to imaging smooth and rough samples.

  18. Hard X-ray photoemission with angular resolution and standing-wave excitation

    Energy Technology Data Exchange (ETDEWEB)

    Fadley, Charles S., E-mail: fadley@physics.ucdavis.edu [Department of Physics, University of California Davis, Davis, CA 95616 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2013-10-15

    Highlights: •Hard X-ray photoemission with angle resolution and standing-waves is discussed. •Hard X-ray angle-resolved photoemission yields k{sup →}-resolved bulk electronic structure. •Hard X-ray photoelectron diffraction provides element-specific atomic structure. •Multilayer standing-wave measurements add depth-resolved composition. •Standing-wave excitation also yields element-specific densities of states. -- Abstract: Several aspects of hard X-ray photoemission that make use of angular resolution and/or standing-wave excitation are discussed. These include hard X-ray angle-resolved photoemission (HARPES) from valence levels, which has the capability of determining bulk electronic structure in a momentum-resolved way; hard X-ray photoelectron diffraction (HXPD), which shows promise for studying element-specific bulk atomic structure, including dopant site occupations; and standing wave studies of the composition and chemical states of buried layers and interfaces. Beyond this, standing wave photoemission can be used to derive element-specific densities of states. Some recent examples relevant to all of these aspects are discussed.

  19. The GAMMA-400 gamma-ray telescope characteristics. Angular resolution and electrons/protons separation

    CERN Document Server

    Leonov, A A; Bonvicini, V; Topchiev, N P; Adriani, O; Aptekar, R L; Arkhangelskaja, I V; Arkhangelskiy, A I; Bergstrom, L; Berti, E; Bigongiari, G; Bobkov, S G; Boezio, M; Bogomolov, E A; Bonechi, S; Bongi, M; Bottai, S; Boyarchuk, K A; Castellini, G; Cattaneo, P W; Cumani, P; Dedenko, G L; De Donato, C; Dogiel, V A; Gorbunov, M S; Gusakov, Yu V; Hnatyk, B I; Kadilin, V V; Kaplin, V A; Kaplun, A A; Kheymits, M D; Korepanov, V E; Larsson, J; Loginov, V A; Longo, F; Maestro, P; Marrocchesi, P S; Mikhailov, V V; Mocchiutti, E; Moiseev, A A; Mori, N; Moskalenko, I V; Naumov, P Yu; Papini, P; Pearce, M; Picozza, P; Popov, A V; Rappoldi, A; Ricciarini, S; Runtso, M F; Ryde, F; Serdin, O V; Sparvoli, R; Spillantini, P; Suchkov, S I; Tavani, M; Taraskin, A A; Tiberio, A; Tyurin, E M; Ulanov, M V; Vacchi, A; Vannuccini, E; Vasilyev, G I; Yurkin, Yu T; Zampa, N; Zirakashvili, V N; Zverev, V G

    2014-01-01

    The measurements of gamma-ray fluxes and cosmic-ray electrons and positrons in the energy range from 100 MeV to several TeV, which will be implemented by the specially designed GAMMA-400 gamma-ray telescope, concern with the following broad range of science topics. Searching for signatures of dark matter, surveying the celestial sphere in order to study gamma-ray point and extended sources, measuring the energy spectra of Galactic and extragalactic diffuse gamma-ray emission, studying gamma-ray bursts and gamma-ray emission from the Sun, as well as high precision measuring spectra of high-energy electrons and positrons, protons and nuclei up to the knee. To clarify these scientific problems with the new experimental data the GAMMA-400 gamma-ray telescope possesses unique physical characteristics comparing with previous and present experiments. For gamma-ray energies more than 100 GeV GAMMA-400 provides the energy resolution of ~1% and angular resolution better than 0.02 deg. The methods developed to reconstru...

  20. Coexistence of Near-Field and Far-Field Sources: the Angular Resolution Limit

    International Nuclear Information System (INIS)

    Passive source localization is a well known inverse problem in which we convert the observed measurements into information about the direction of arrivals. In this paper we focus on the optimal resolution of such problem. More precisely, we propose in this contribution to derive and analyze the Angular Resolution Limit (ARL) for the scenario of mixed Near-Field (NF) and Far-Field (FF) Sources. This scenario is relevant to some realistic situations. We base our analysis on the Smith's equation which involves the Cramér-Rao Bound (CRB). This equation provides the theoretical ARL which is independent of a specific estimator. Our methodology is the following: first, we derive a closed-form expression of the CRB for the considered problem. Using these expressions, we can rewrite the Smith's equation as a 4-th order polynomial by assuming a small separation of the sources. Finally, we derive in closed-form the analytic ARL under or not the assumption of low noise variance. The obtained expression is compact and can provide useful qualitative informations on the behavior of the ARL

  1. Assessment of Image Processing and Resolution on Permeability and Drainage Simulations Through 3D Pore-networks Obtained Using X-ray Computed Tomography

    Science.gov (United States)

    Mills, G.; Willson, C. S.; Thompson, K. E.; Rivers, M. L.

    2013-12-01

    Typically, continuum-scale flow parameters are obtained through laboratory experiments. Over the past several years, image-based modeling, which is a direct simulation of flow through the structural arrangements of the voids and solids obtained using X-ray computed tomography (XCT) in a sample porous medium, has become a reliable technique for predicting certain flow parameters. Even though XCT is capable of resolving micron-level details, the voxel resolution of the reconstructed image is still dependent upon a number of factors, including the sample size, X-ray energy and XCT beamline setup. Thus, each imaging experiment requires a tradeoff between the sample size that can be imaged, the voxel resolution, and the length scale of the pore space that can be extracted. In addition, the geometric and topological properties of the void space and 3D pore network structure are dictated by the image processing and the choice of pore network generation method. In this research, image-based pore network models are used to quantitatively assess the impact of image resolution, image processing and the choice of pore network generation methods on simulated parameters. A 5 mm diameter and ~15 mm in length Berea sandstone core was scanned two times. First, a ~12 mm long section of the entire cross-section was scanned at 4.1 micron voxel resolution; next, a ~1.4 mm diameter and ~4.12 mm length section within the 1st domain was scanned at 1 micron voxel resolution. The resulting 3D datasets were filtered and segmented into solid and void space. The low resolution image was filtered and segmented using two different approaches in order to evaluate the potential of each approach in identifying the different solid phases in the original 16 bit dataset. A set of networks were created by varying the pore density on both the high and low resolution datasets in order to assess the impact of these factors on flow simulations. Single-phase permeability and a two-phase drainage pore

  2. Real-time high resolution 3D imaging of the lyme disease spirochete adhering to and escaping from the vasculature of a living host.

    Directory of Open Access Journals (Sweden)

    Tara J Moriarty

    2008-06-01

    Full Text Available Pathogenic spirochetes are bacteria that cause a number of emerging and re-emerging diseases worldwide, including syphilis, leptospirosis, relapsing fever, and Lyme borreliosis. They navigate efficiently through dense extracellular matrix and cross the blood-brain barrier by unknown mechanisms. Due to their slender morphology, spirochetes are difficult to visualize by standard light microscopy, impeding studies of their behavior in situ. We engineered a fluorescent infectious strain of Borrelia burgdorferi, the Lyme disease pathogen, which expressed green fluorescent protein (GFP. Real-time 3D and 4D quantitative analysis of fluorescent spirochete dissemination from the microvasculature of living mice at high resolution revealed that dissemination was a multi-stage process that included transient tethering-type associations, short-term dragging interactions, and stationary adhesion. Stationary adhesions and extravasating spirochetes were most commonly observed at endothelial junctions, and translational motility of spirochetes appeared to play an integral role in transendothelial migration. To our knowledge, this is the first report of high resolution 3D and 4D visualization of dissemination of a bacterial pathogen in a living mammalian host, and provides the first direct insight into spirochete dissemination in vivo.

  3. Importance of energy and angular resolutions in top-hat electrostatic analysers for solar wind proton measurements

    Science.gov (United States)

    De Marco, R.; Marcucci, M. F.; Bruno, R.; D'Amicis, R.; Servidio, S.; Valentini, F.; Lavraud, B.; Louarn, P.; Salatti, M.

    2016-08-01

    We use a numerical code which reproduces the angular/energy response of a typical top-hat electrostatic analyser starting from solar wind proton velocity distribution functions (VDFs) generated by numerical simulations. The simulations are based on the Hybrid Vlasov-Maxwell numerical algorithm which integrates the Vlasov equation for the ion distribution function, while the electrons are treated as a fluid. A virtual satellite launched through the simulation box measures the particle VDFs. Such VDFs are moved from the simulation Cartesian grid to energy-angular coordinates to mimic the response of a real sensor in the solar wind. Different energy-angular resolutions of the analyser are investigated in order to understand the influence of the phase-space resolution in existing and upcoming space missions, with regards to determining the key parameters of plasma dynamics.

  4. Development of a lab-scale, high-resolution, tube-generated X-ray computed-tomography system for three-dimensional (3D) materials characterization

    Energy Technology Data Exchange (ETDEWEB)

    Mertens, J.C.E., E-mail: james.mertens@asu.edu; Williams, J.J., E-mail: jason.williams@asu.edu; Chawla, Nikhilesh, E-mail: nchawla@asu.edu

    2014-06-01

    The design and construction of a modular high resolution X-ray computed tomography (XCT) system is highlighted in this paper. The design approach is detailed for meeting a specified set of instrument performance goals tailored towards experimental versatility and high resolution imaging. The XCT tool is unique in the detector and X-ray source design configuration, enabling control in the balance between detection efficiency and spatial resolution. The system package is also unique: The sample manipulation approach implemented enables a wide gamut of in situ experimentation to analyze structure evolution under applied stimulus, by optimizing scan conditions through a high degree of controllability. The component selection and design process is detailed: Incorporated components are specified, custom designs are shared, and the approach for their integration into a fully functional XCT scanner is provided. Custom designs discussed include the dual-target X-ray source cradle which maintains position and trajectory of the beam between the two X-ray target configurations with respect to a scintillator mounting and positioning assembly and the imaging sensor, as well as a novel large-format X-ray detector with enhanced adaptability. The instrument is discussed from an operational point of view, including the details of data acquisition and processing implemented for 3D imaging via micro-CT. The performance of the instrument is demonstrated on a silica-glass particle/hydroxyl-terminated-polybutadiene (HTPB) matrix binder PBX simulant. Post-scan data processing, specifically segmentation of the sample's relevant microstructure from the 3D reconstruction, is provided to demonstrate the utility of the instrument. - Highlights: • Custom built X-ray tomography system for microstructural characterization • Detector design for maximizing polychromatic X-ray detection efficiency • X-ray design offered for maximizing X-ray flux with respect to imaging resolution

  5. A high resolution 3D velocity model beneath the Tokyo Metropolitan area by MeSO-net

    Science.gov (United States)

    Nakagawa, S.; Sakai, S.; Honda, R.; Kimura, H.; Hirata, N.

    2015-12-01

    Beneath the Tokyo metropolitan area, the Philippine Sea Plate (PSP) subducts and causes devastating mega-thrust earthquakes, such as the 1703 Genroku earthquake (M8.0) and the 1923 Kanto earthquake (M7.9). An M7 or greater (M7+) earthquake in this area at present has high potential to produce devastating serious loss of life and property with even greater global economic repercussions. The Central Disaster Management Council of Japan estimates that an M7+ earthquake will cause 23,000 fatalities and 95 trillion yen (about 1 trillion US$) economic loss. We have launched the Special Project for Reducing Vulnerability for Urban Mega Earthquake Disasters in collaboration with scientists, engineers, and social-scientists in nationwide institutions since 2012. We analyze data from the dense seismic array called Metropolitan Seismic Observation network (MeSO-net), which has 296 seismic stations with spacing of 5 km (Sakai and Hirata, 2009; Kasahara et al., 2009). We applied the double-difference tomography method (Zhang and Thurber, 2003) and estimated the velocity structure and the upper boundary of PSP (Nakagawa et al., 2010). The 2011 Tohoku-oki earthquake (M9.0) has activated seismicity also in Kanto region, providing better coverage of ray paths for tomographic analysis. We obtain much higher resolution velocity models from whole dataset observed by MeSO-net between 2008 and 2015. A detailed image of tomograms shows that PSP contacts Pacific plate at a depth of 50 km beneath northern Tokyo bay. A variation of velocity along the oceanic crust suggests dehydration reaction to produce seismicity in a slab, which may related to the M7+ earthquake. Acknowledgement: This study was supported by the Special Project for Reducing Vulnerability for Urban Mega Earthquake Disasters of MEXT, Japan and the Earthquake Research Institute cooperative research program.

  6. European Extremely Large Telescope Site Characterization II: High angular resolution parameters

    CERN Document Server

    Ramió, Héctor Vázquez; Muñoz-Tuñón, Casiana; Sarazin, Marc; Varela, Antonia M; Trinquet, Hervé; Delgado, José Miguel; Fuensalida, Jesús J; Reyes, Marcos; Benhida, Abdelmajid; Benkhaldoun, Zouhair; Lambas, Diego García; Hach, Youssef; Lazrek, M; Lombardi, Gianluca; Navarrete, Julio; Recabarren, Pablo; Renzi, Victor; Sabil, Mohammed; Vrech, Rubén

    2012-01-01

    This is the second article of a series devoted to European Extremely Large Telescope (E-ELT) site characterization. In this article we present the main properties of the parameters involved in high angular resolution observations from the data collected in the site testing campaign of the E-ELT during the Design Study (DS) phase. Observations were made in 2008 and 2009, in the four sites selected to shelter the future E-ELT (characterized under the ELT-DS contract): Aklim mountain in Morocco, Observatorio del Roque de los Muchachos (ORM) in Spain, Mac\\'on range in Argentina, and Cerro Ventarrones in Chile. The same techniques, instruments and acquisition procedures were taken on each site. A Multiple Aperture Scintillation Sensor (MASS) and a Differential Image Motion Monitor (DIMM) were installed at each site. Global statistics of the integrated seeing, the free atmosphere seeing, the boundary layer seeing and the isoplanatic angle were studied for each site, and the results are presented here. In order to e...

  7. Southern Massive Stars at High Angular Resolution: Observational Campaign and Companion Detection

    CERN Document Server

    Sana, H; Lacour, S; Berger, J -P; Duvert, G; Gauchet, L; Norris, B; Olofsson, J; Pickel, D; Zins, G; Absil, O; de Koter, A; Kratter, K; Schnurr, O; Zinnecker, H

    2014-01-01

    Multiplicity is one of the most fundamental observable properties of massive O-type stars and offers a promising way to discriminate between massive star formation theories. Nevertheless, companions at separations between 1 and 100 mas remain mostly unknown due to intrinsic observational limitations. [...] The Southern MAssive Stars at High angular resolution survey (SMASH+) was designed to fill this gap by providing the first systematic interferometric survey of Galactic massive stars. We observed 117 O-type stars with VLTI/PIONIER and 162 O-type stars with NACO/SAM, respectively probing the separation ranges 1-45 and 30-250mas and brightness contrasts of Delta H < 4 and Delta H < 5. Taking advantage of NACO's field-of-view, we further uniformly searched for visual companions in an 8''-radius down to Delta H = 8. This paper describes the observations and data analysis, reports the discovery of almost 200 new companions in the separation range from 1mas to 8'' and presents the catalog of detections, inc...

  8. Milliarcsecond angular resolution of reddened stellar sources in the vicinity of the Galactic Center

    CERN Document Server

    Richichi, A; Mason, E; Stegmaier, J; Chandrasekhar, T

    2008-01-01

    For the first time, the lunar occultation technique has been employed on a very large telescope in the near-IR with the aim of achieving systematically milliarcsecond resolution on stellar sources. We have demonstrated the burst mode of the ISAAC instrument, using a fast read-out on a small area of the detector to record many tens of seconds of data at a time on fields of few squared arcsec. We have used the opportunity to record a large number of LO events during a passage of the Moon close to the Galactic Center in March 2006. We have developed a data pipeline for the treatment of LO data, including the automated estimation of the main data analysis parameters using a wavelet-based method, and the preliminary fitting and plotting of all light curves. We recorded 51 LO events over about four hours. Of these, 30 resulted of sufficient quality to enable a detailed fitting. We detected two binaries with subarcsec projected separation and three stars with a marginally resolved angular diameter of about 2 mas. Tw...

  9. On solving the orientation gradient dependency of high angular resolution EBSD

    Energy Technology Data Exchange (ETDEWEB)

    Maurice, Claire, E-mail: maurice@emse.fr [Ecole des Mines de Saint-Etienne, UMR CNRS 5146 LCG, 158 cours Fauriel, F-42023 Saint-Etienne (France); Driver, Julian H. [Ecole des Mines de Saint-Etienne, UMR CNRS 5146 LCG, 158 cours Fauriel, F-42023 Saint-Etienne (France); Fortunier, Roland [Universite de Lyon, ENISE, UMR CNRS 5513 LTDS, 58 rue Jean Parot, F-42100 Saint-Etienne (France)

    2012-02-15

    Current high angular resolution electron backscatter diffraction (HR-EBSD) methods are successful at measuring pure elastic strains but have difficulties with plastically deformed metals containing orientation gradients. The strong influences of these rotations have been systematically studied using simulated patterns based on the many-beam dynamic theory of EBSP formation; a rotation of only 1 Degree-Sign can lead to apparent elastic strains of several hundred microstrains. A new method is proposed to correct for orientation gradient effects using a two-step procedure integrating finite strain theory: (i) reference pattern rotation and (ii) cross-correlation; it reduces the strain errors on the simulated patterns to tens of microstrains. An application to plastically deformed ferritic steel to generates elastic strain maps with significantly reduced values of both strains and residual errors in regions of rotations exceeding 1 Degree-Sign . -- Highlights: Black-Right-Pointing-Pointer Many-beam theory simulations show that HR-EBSD is sensitive to orientation gradients. Black-Right-Pointing-Pointer Finite strain theory and rotation processing the reference EBSP solves the problem. Black-Right-Pointing-Pointer New method succesfully applied to plastically strained IF steel.

  10. Sub-Airy disk angular resolution with high dynamic range in the near-infrared

    Directory of Open Access Journals (Sweden)

    Richichi A.

    2011-07-01

    Full Text Available Lunar occultations (LO are a simple and effective high angular resolution method, with minimum requirements in instrumentation and telescope time. They rely on the analysis of the diffraction fringes created by the lunar limb. The diffraction phenomen occurs in space, and as a result LO are highly insensitive to most of the degrading effects that limit the performance of traditional single telescope and long-baseline interferometric techniques used for direct detection of faint, close companions to bright stars. We present very recent results obtained with the technique of lunar occultations in the near-IR, showing the detection of companions with very high dynamic range as close as few milliarcseconds to the primary star. We discuss the potential improvements that could be made, to increase further the current performance. Of course, LO are fixed-time events applicable only to sources which happen to lie on the Moon’s apparent orbit. However, with the continuously increasing numbers of potential exoplanets and brown dwarfs beign discovered, the frequency of such events is not negligible. I will list some of the most favorable potential LO in the near future, to be observed from major observatories.

  11. First Results from High Angular Resolution ALMA Observations Toward the HL Tau Region

    CERN Document Server

    Partnership, ALMA; Perez, L M; Hunter, T R; Dent, W R F; Hales, A S; Hills, R; Corder, S; Fomalont, E B; Vlahakis, C; Asaki, Y; Barkats, D; Hirota, A; Hodge, J A; Impellizzeri, C M V; Kneissl, R; Liuzzo, E; Lucas, R; Marcelino, N; Matsushita, S; Nakanishi, K; Phillips, N; Richards, A M S; Toledo, I; Aladro, R; Broguiere, D; Cortes, J R; Cortes, P C; Dhawan, V; Espada, D; Galarza, F; Garcia-Appadoo, D; Guzman-Ramirez, L; Humphreys, E M; Jung, T; Kameno, S; Laing, R A; Leon, S; Marconi, G; Nikolic, B; Nyman, L -A; Radiszcz, M; Remijan, A; Rodon, J A; Sawada, T; Takahashi, S; Tilanus, R P J; Vilaro, B Vila; Watson, L C; Wiklind, T; Akiyama, E; Chapillon, E; de Gregorio, I; Di Francesco, J; Gueth, F; Kawamura, A; Lee, C -F; Luong, Q Nguyen; Mangum, J; Pietu, V; Sanhueza, P; Saigo, K; Takakuwa, S; Ubach, C; van Kempen, T; Wootten, A; Castro-Carrizo, A; Francke, H; Gallardo, J; Garcia, J; Gonzalez, S; Hill, T; Kaminski, T; Kurono, Y; Liu, H -Y; Lopez, C; Morales, F; Plarre, K; Schieven, G; Testi, L; Videla, L; Villard, E; Andreani, P; Hibbard, J E; Tatematsu, K

    2015-01-01

    We present Atacama Large Millimeter/submillimeter Array (ALMA) observations from the 2014 Long Baseline Campaign in dust continuum and spectral line emission from the HL Tau region. The continuum images at wavelengths of 2.9, 1.3, and 0.87 mm have unprecedented angular resolutions of 0.075 arcseconds (10 AU) to 0.025 arcseconds (3.5 AU), revealing an astonishing level of detail in the circumstellar disk surrounding the young solar analogue HL Tau, with a pattern of bright and dark rings observed at all wavelengths. By fitting ellipses to the most distinct rings, we measure precise values for the disk inclination (46.72pm0.05 degrees) and position angle (+138.02pm0.07 degrees). We obtain a high-fidelity image of the 1.0 mm spectral index ($\\alpha$), which ranges from $\\alpha\\sim2.0$ in the optically-thick central peak and two brightest rings, increasing to 2.3-3.0 in the dark rings. The dark rings are not devoid of emission, we estimate a grain emissivity index of 0.8 for the innermost dark ring and lower for ...

  12. Sea level history in 3D: Data acquisition and processing for an ultra-high resolution MCS survey across IODP Expedition 313 drillsite

    Science.gov (United States)

    Nedimovic, M. R.; Mountain, G. S.; Austin, J. A., Jr.; Fulthorpe, C.; Aali, M.; Baldwin, K.; Bhatnagar, T.; Johnson, C.; Küçük, H. M.; Newton, A.; Stanley, J.

    2015-12-01

    In June-July 2015, we acquired the first 3D/2D hybrid (short/long streamer) multichannel seismic (MCS) reflection dataset. These data were collected simultaneously across IODP Exp. 313 drillsites, off New Jersey, using R/V Langsethand cover ~95% of the planned 12x50 km box. Despite the large survey area, the lateral and vertical resolution for the 3D dataset is almost a magnitude of order higher than for data gathered for standard petroleum exploration. Such high-resolution was made possible by collection of common midpoint (CMP) lines whose combined length is ~3 times the Earth's circumference (~120,000 profile km) and a source rich in high-frequencies. We present details on the data acquisition, ongoing data analysis, and preliminary results. The science driving this project is presented by Mountain et al. The 3D component of this innovative survey used an athwartship cross cable, extended laterally by 2 barovanes roughly 357.5 m apart and trailed by 24 50-m P-Cables spaced ~12.5 m with near-trace offset of 53 m. Each P-Cable had 8 single hydrophone groups spaced at 6.25 m for a total of 192 channels. Record length was 4 s and sample rate 0.5 ms, with no low cut and an 824 Hz high cut filter. We ran 77 sail lines spaced ~150 m. Receiver locations were determined using 2 GPS receivers mounted on floats and 2 compasses and depth sensors per streamer. Streamer depths varied from 2.1 to 3.7 m. The 2D component used a single 3 km streamer, with 240 9-hydrophone groups spaced at 12.5 m, towed astern with near-trace offset of 229 m. The record length was 4 s and sample rate 0.5 ms, with low cut filter at 2 Hz and high cut at 412 Hz. Receiver locations were recorded using GPS at the head float and tail buoy, combined with 12 bird compasses spaced ~300 m. Nominal streamer depth was 4.5 m. The source for both systems was a 700 in3 linear array of 4 Bolt air guns suspended at 4.5 m towing depth, 271.5 m behind the ship's stern. Shot spacing was 12.5 m. Data analysis to

  13. Demonstration of a Novel, Integrated, Multi-Scale Procedure for High-Resolution 3D Reservoir Characterization and Improved CO2-EOR/Sequestration Management, SACROC Unit

    Energy Technology Data Exchange (ETDEWEB)

    Scott R. Reeves

    2007-09-30

    The primary goal of this project was to demonstrate a new and novel approach for high resolution, 3D reservoir characterization that can enable better management of CO{sub 2} enhanced oil recovery (EOR) projects and, looking to the future, carbon sequestration projects. The approach adopted has been the subject of previous research by the DOE and others, and relies primarily upon data-mining and advanced pattern recognition approaches. This approach honors all reservoir characterization data collected, but accepts that our understanding of how these measurements relate to the information of most interest, such as how porosity and permeability vary over a reservoir volume, is imperfect. Ideally the data needed for such an approach includes surface seismic to provide the greatest amount of data over the entire reservoir volume of interest, crosswell seismic to fill the resolution gap between surface seismic and wellbore-scale measurements, geophysical well logs to provide the vertical resolution sought, and core data to provide the tie to the information of most interest. These data are combined via a series of one or more relational models to enable, in its most successful application, the prediction of porosity and permeability on a vertical resolution similar to logs at each surface seismic trace location. In this project, the procedure was applied to the giant (and highly complex) SACROC unit of the Permian basin in West Texas, one of the world's largest CO{sub 2}-EOR projects and a potentially world-class geologic sequestration site. Due to operational scheduling considerations on the part of the operator of the field, the crosswell data was not obtained during the period of project performance (it is currently being collected however as part of another DOE project). This compromised the utility of the surface seismic data for the project due to the resolution gap between it and the geophysical well logs. An alternative approach was adopted that utilized a

  14. The Anatomy of a Fumarole inferred from a 3-D High-Resolution Electrical Resistivity Image of Solfatara Hydrothermal System (Phlegrean Fields, Italy)

    Science.gov (United States)

    Gresse, M.; Vandemeulebrouck, J.; Chiodini, G.; Byrdina, S.; Lebourg, T.; Johnson, T. C.

    2015-12-01

    Solfatara, the most active crater in the Phlegrean Fields volcanic complex, shows since ten years a remarkable renewal of activity characterized by an increase of CO2 total degassing from 1500 up to 3000 tons/day, associated with a large ground uplift (Chiodini et al., 2015). In order to precisely image the structure of the shallow hydrothermal system, we performed an extended electrical DC resistivity survey at Solfatara, with about 40 2-D profiles of length up to 1 km, as well as soil temperature and CO2 flux measurements over the area. We then realized a 3-D inversion from the ~40 000 resistivity data points, using E4D code (Johnson et al., 2010). At large scale, results clearly delineate two contrasted structures: - A very conductive body (resistivity < 5 Ohm.m) located beneath the Fangaia mud pools, and likely associated to a mineralized liquid rich plume. - An elongated more resistive body (20-30 Ohm.m) connected to the main fumarolic area and interpreted as the gas reservoir feeding the fumaroles. At smaller scale, our resistivity model originally highlights the 3-D anatomy of a fumarole and the interactions between condensate layers and gas chimneys. This high-resolution image of the shallow hydrothermal structure is a new step for the modeling of this system.

  15. The influence of the spatial resolution of topographic input data on the accuracy of 3-D UV actinic flux and irradiance calculations

    Directory of Open Access Journals (Sweden)

    P. Weihs

    2011-10-01

    Full Text Available The aim of this study was to investigate the influence of the spatial resolution of a digital elevation map (DEM on the three-dimensional (3-D radiative transfer performance for both spectral ultraviolet (UV irradiance and actinic flux at 305 nm. Model simulations were performed for clear sky conditions for three case studies: the first and second one using three sites in the Innsbruck area and the third one using three sites at the Sonnblick Observatory and surrounding area. It was found that DEM resolution may change the altitude at some locations by up to 500 m, resulting in changes in the sky obscured by the horizon of up to 15%. The geographical distribution of UV irradiance and actinic flux shows that with larger pixel size, uncertainties in UV irradiance and actinic flux determination of up to 100% are possible. These large changes in incident irradiance and actinic flux with changing pixel size are strongly connected to shading effects. The effect of DEM pixel size on irradiance and actinic flux was studied at the six locations, and it was found that significant increases in irradiance and actinic flux with increasing DEM pixel size occurred at one valley location at high solar zenith angles in the Innsbruck area as well as for one steep valley location in the Sonnblick area. This increase in irradiance and actinic flux with increasing DEM resolution is most likely to be connected to shading effects affecting the reflections from the surroundings.

  16. High temporal and spatial resolution 3D time-resolved contrast-enhanced magnetic resonance angiography of the hands and feet.

    Science.gov (United States)

    Haider, Clifton R; Riederer, Stephen J; Borisch, Eric A; Glockner, James F; Grimm, Roger C; Hulshizer, Thomas C; Macedo, Thanila A; Mostardi, Petrice M; Rossman, Phillip J; Vrtiska, Terri J; Young, Phillip M

    2011-07-01

    Methods are described for generating 3D time-resolved contrast-enhanced magnetic resonance (MR) angiograms of the hands and feet. Given targeted spatial resolution and frame times, it is shown that acceleration of about one order of magnitude or more is necessary. This is obtained by a combination of 2D sensitivity encoding (SENSE) and homodyne (HD) acceleration methods. Image update times from 3.4-6.8 seconds are provided in conjunction with view sharing. Modular receiver coil arrays are described which can be designed to the targeted vascular region. Images representative of the technique are generated in the vasculature of the hands and feet in volunteers and in patient studies. PMID:21698702

  17. Construction of a high resolution focal plane detector for the magnetic spectrometer Q3D in Munich. Investigations on the nuclear structure of 129Te

    International Nuclear Information System (INIS)

    This thesis deals with two topics of nuclear spectroscopy. In the first part, the new light ion detector is presented, which was constructed in the framework of this work. The second part is dealing with the nuclear structure of 129Te. The new cathode strip detector of the Muenchner Q3D Magnetspektrograph is the result of the further development of the prototype of 1989. This new detector has a high precision spatial resolution without systematic error, an active length of 890 mm and powerful particle identification capabilities. The spectroscopic investigation of 129Te is part of a series of Te isotope investigations. With (n,γγ)-measurements at the research reactor in Rez close to Prag and (d,p)- , (d-vector,p)- and (d-vector,t)-transfer measurements at the accelerator in Muenchen the decay cross sections of 129Te has been improved essentially

  18. Mapping 3D fault geometry in earthquakes using high-resolution topography: Examples from the 2010 El Mayor-Cucapah (Mexico) and 2013 Balochistan (Pakistan) earthquakes

    Science.gov (United States)

    Zhou, Yu; Walker, Richard T.; Elliott, John R.; Parsons, Barry

    2016-04-01

    Fault dips are usually measured from outcrops in the field or inferred through geodetic or seismological modeling. Here we apply the classic structural geology approach of calculating dip from a fault's 3-D surface trace using recent, high-resolution topography. A test study applied to the 2010 El Mayor-Cucapah earthquake shows very good agreement between our results and those previously determined from field measurements. To obtain a reliable estimate, a fault segment ≥120 m long with a topographic variation ≥15 m is suggested. We then applied this method to the 2013 Balochistan earthquake, getting dips similar to previous estimates. Our dip estimates show a switch from north to south dipping at the southern end of the main trace, which appears to be a response to local extension within a stepover. We suggest that this previously unidentified geometrical complexity may act as the endpoint of earthquake ruptures for the southern end of the Hoshab fault.

  19. Realtime infiltration process monitoring in macroporous soil - a plot-scale experiment accompanied by high-resolution time-lapse 3D GPR

    Science.gov (United States)

    Jackisch, Conrad; Allroggen, Niklas

    2016-04-01

    Infiltration and quick vertical redistribution of event water through rapid subsurface flow in soil structures is one of the key issues in hydrology. Although the importance of preferential flow is broadly recognised, our theories, observation techniques and modelling approaches lose grounds when the assumption of well-mixed states in REVs collapses. To characterise the combination of advective and diffusive flow is especially challenging. We have shown in earlier studies that a combination of TDR monitoring, dye- and salt-tracer recovery and time-lapse 3D GPR in irrigation experiments provides means to characterise infiltration dynamics at the plot- and hillslope-scale also in highly structured soils. We pinpointed that the spatial and temporal resolution requires special attention and improvement - particularly owing to the facts of high velocity (10‑3 ms‑1) of advective flow and small scale (10‑2 m) of the respective flow structures. We present insights from a novel technique of continuous high-resolution time-lapse 3D GPR measurements during and after a plot-scale (1 m x 1 m) irrigation experiment. Continuous TDR soil moisture measurements, dye tracer excavation and salt-tracer samples are used as qualitative and quantitative references. While classical infiltration experiments either look at spatial patterns or temporal dynamics at singular gauges, we highlight the advantage of combining both to achieve a more complete image of the infiltration process. Although operating at the limits of the techniques this setup enables non-invasive observation of preferential flow processes in the field and allows to explore and characterise macropore matrix exchange.

  20. Soil process-oriented modelling of within-field variability based on high-resolution 3D soil type distribution maps.

    Science.gov (United States)

    Bönecke, Eric; Lück, Erika; Gründling, Ralf; Rühlmann, Jörg; Franko, Uwe

    2016-04-01

    Today, the knowledge of within-field variability is essential for numerous purposes, including practical issues, such as precision and sustainable soil management. Therefore, process-oriented soil models have been applied for a considerable time to answer question of spatial soil nutrient and water dynamics, although, they can only be as consistent as their variation and resolution of soil input data. Traditional approaches, describe distribution of soil types, soil texture or other soil properties for greater soil units through generalised point information, e.g. from classical soil survey maps. Those simplifications are known to be afflicted with large uncertainties. Varying soil, crop or yield conditions are detected even within such homogenised soil units. However, recent advances of non-invasive soil survey and on-the-go monitoring techniques, made it possible to obtain vertical and horizontal dense information (3D) about various soil properties, particularly soil texture distribution which serves as an essential soil key variable affecting various other soil properties. Thus, in this study we based our simulations on detailed 3D soil type distribution (STD) maps (4x4 m) to adjacently built-up sufficient informative soil profiles including various soil physical and chemical properties. Our estimates of spatial STD are based on high-resolution lateral and vertical changes of electrical resistivity (ER), detected by a relatively new multi-sensor on-the-go ER monitoring device. We performed an algorithm including fuzzy-c-mean (FCM) logic and traditional soil classification to estimate STD from those inverted and layer-wise available ER data. STD is then used as key input parameter for our carbon, nitrogen and water transport model. We identified Pedological horizon depths and inferred hydrological soil variables (field capacity, permanent wilting point) from pedotransferfunctions (PTF) for each horizon. Furthermore, the spatial distribution of soil organic carbon

  1. Spatial and Spectral Characterization, Mapping, and 3D Reconstructing of Ice-wedge Polygons Using High Resolution LiDAR Data

    Science.gov (United States)

    Gangodagamage, C.; Rowland, J. C.; Skurikhin, A. N.; Wilson, C. J.; Brumby, S. P.; Painter, S. L.; Gable, C. W.; Bui, Q.; Short, L. S.; Liljedahl, A.; Hubbard, S. S.; Wainwright, H. M.; Dafflon, B.; Tweedie, C. E.; Kumar, J.; Wullschleger, S. D.

    2013-12-01

    In landscapes with ice-wedge polygons, fine-scale land surface characterization is critically important because the processes that govern the carbon cycle and hydrological dynamics are controlled by features on the order of a few to tens of meters. To characterize the fine-scale features in polygonal ground in Barrow, Alaska, we use high-resolution LiDAR-derived topographic data (such as elevation, slope, curvature, and a novel 'directed distance (DD)') to develop quantitative metrics that allow for the discretization and characterization of polygons (formed by seasonal freeze and thaw processes). First, we used high resolution (0.25 m) LiDAR to show that the high and low centered polygon features exhibit a unique signature in the Fourier power spectrum where the landscape signature on freeze and thaw process (~ 5 to 100 m) is super imposed on the coarse scale fluvial eroded landscape (rudimentary river network) signature. We next convolve LiDAR elevations with multiscale wavelets and objectively choose appropriate scales to map interconnected troughs of high- and low-centered polygons. For the ice wedges where LiDAR surface expressions (troughs) are not well developed, we used a Delaunay triangulation to connect the ice-wedge network and map the topologically connected polygons. This analysis allows us to explore the 3D morphometry of these high- and low-centered polygons and develop a supervised set of ensemble characteristic templates for each polygon type as a function of directed distance (DD). These templates are used to classify the ice-wedge polygon landscape into low-centered polygons with limited troughs, and high- and low-centered polygons with well-developed trough network. We further extend the characteristic templates to polygon ensemble slopes and curvatures as a function of DD and develop a classification scheme for microtopographic features including troughs, rims, elevated ridges, and centers for both high-centered and low-centered polygon

  2. Soil process-oriented modelling of within-field variability based on high-resolution 3D soil type distribution maps.

    Science.gov (United States)

    Bönecke, Eric; Lück, Erika; Gründling, Ralf; Rühlmann, Jörg; Franko, Uwe

    2016-04-01

    Today, the knowledge of within-field variability is essential for numerous purposes, including practical issues, such as precision and sustainable soil management. Therefore, process-oriented soil models have been applied for a considerable time to answer question of spatial soil nutrient and water dynamics, although, they can only be as consistent as their variation and resolution of soil input data. Traditional approaches, describe distribution of soil types, soil texture or other soil properties for greater soil units through generalised point information, e.g. from classical soil survey maps. Those simplifications are known to be afflicted with large uncertainties. Varying soil, crop or yield conditions are detected even within such homogenised soil units. However, recent advances of non-invasive soil survey and on-the-go monitoring techniques, made it possible to obtain vertical and horizontal dense information (3D) about various soil properties, particularly soil texture distribution which serves as an essential soil key variable affecting various other soil properties. Thus, in this study we based our simulations on detailed 3D soil type distribution (STD) maps (4x4 m) to adjacently built-up sufficient informative soil profiles including various soil physical and chemical properties. Our estimates of spatial STD are based on high-resolution lateral and vertical changes of electrical resistivity (ER), detected by a relatively new multi-sensor on-the-go ER monitoring device. We performed an algorithm including fuzzy-c-mean (FCM) logic and traditional soil classification to estimate STD from those inverted and layer-wise available ER data. STD is then used as key input parameter for our carbon, nitrogen and water transport model. We identified Pedological horizon depths and inferred hydrological soil variables (field capacity, permanent wilting point) from pedotransferfunctions (PTF) for each horizon. Furthermore, the spatial distribution of soil organic carbon

  3. The ATLAS3D project - III. A census of the stellar angular momentum within the effective radius of early-type galaxies: unveiling the distribution of Fast and Slow Rotators

    CERN Document Server

    Emsellem, Eric; Krajnović, Davor; Alatalo, Katherine; Blitz, Leo; Bois, Maxime; Bournaud, Frédéric; Bureau, Martin; Davies, Roger L; Davis, Timothy A; de Zeeuw, P T; Khochfar, Sadegh; Kuntschner, Harald; Lablanche, Pierre-Yves; McDermid, Richard M; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Serra, Paolo; van de Ven, Glenn; Weijmans, Anne-Marie; Young, Lisa M

    2011-01-01

    We provide a census of the apparent stellar angular momentum within 1 Re of a volume-limited sample of 260 early-type galaxies (ETGs) in the nearby Universe, using integral-field spectroscopy obtained in the course of the ATLAS3D project. We exploit the LambdaR parameter to characterise the existence of two families of ETGs: Slow Rotators which exhibit complex stellar velocity fields and often include stellar kinematically Distinct Cores (KDCs), and Fast Rotators which have regular velocity fields. Our complete sample of 260 ETGs leads to a new criterion to disentangle Fast and Slow Rotators which now includes a dependency on the apparent ellipticity (Epsilon). It separates the two classes significantly better than the previous prescription, and than a criterion based on V/Sigma: Slow Rotators and Fast Rotators have LambdaR lower and larger than kFSxSQRT(Epsilon), respectively, where kFS=0.31 for measurements made within 1 Re. We show that the vast majority of early-type galaxies are Fast Rotators: these have...

  4. High-Resolution Geophysical 3D Imaging for Archaeology by Magnetic and EM data: The Case of the Iron Age Settlement of Torre Galli, Southern Italy

    Science.gov (United States)

    Cella, Federico; Fedi, Maurizio

    2015-11-01

    Magnetic and electromagnetic surveying are effective techniques frequently used in archaeology because the susceptibility and the electric resistivity contrast between the cover soil and several buried finds often lead to detectable anomalies. Significant advances were recently achieved by 3D imaging methods of potential field data that provide an estimate of the magnetization distribution within the subsurface. They provide a high-resolution image of the source distribution, thanks to the differentiation of the field and to the stability of the process. These techniques are fast and quite effective in the case of a compact, isolated, and depth-limited source, i.e., just the kind of source generally occurring in archaeological investigations. We illustrate the high-resolution imaging process for a geophysical study carried out at Torre Galli ( Vibo Valentia, Calabria, Italy), one of the most significant sites of the early Iron Age in Italy. Multi-scale derivative analysis of magnetic data revealed the trends of anomalies shaped and aligned with a regular geometry. This allowed us to make an outline of the buried structures, and then to characterize them in terms of size, shape, and depth by means of the imaging technique. Targeted excavations were therefore addressed to the locations selected by our analysis, revealing structures showing exactly the predicted features and confirming the archaeological hypothesis concerning the settlement organization partitioned in terms of functional differentiation: an intermediate area occupied mostly by defensive structures placed between the village, westward, and the necropolis, eastward.

  5. High-resolution sub-bottom sonar imaging and 3D modeling of drowned Pleistocene river paleochannel architecture (Strunjan bay, Adriatic Sea)

    Science.gov (United States)

    Trobec, Ana; Šmuc, Andrej; Poglajen, Sašo; Vrabec, Marko

    2015-04-01

    In the Gulf of Trieste (northern Adriatic), the seafloor is covered by up to several 100s of m of continental sediments, characterized predominately by alluvial and aeolian deposits that formed during Pleistocene sea-level lowstands. High-resolution multibeam bathymetry revealed the existence of several meandering river channels. One such channel appears to be vertically offset across a linear, NE-SW striking morphological flexure, which could be an expression of active faulting. Initial sub-bottom sonar profiles showed abrupt terminations of subhorizontal strata of Pleistocene sediments which roughly coincide with the flexure position. To obtain a high-resolution 3D interpretation of this peculiar feature, we investigated the outermost part of the Strunjan bay (southern Slovenian coast). A grid of 25 m spaced sub-bottom profiles covering the area of 1225 x 500 m and comprising a total of 71 orthogonal profiles was acquired with the Innomar parametric sediment echo sounder SES-2000, using a sampling interval of 69 μs and a frequency of 8000 Hz. Data processing included conversion from proprietary to standard SEG-Y data format, deconvolution, elimination of swell movement and Automatic Gain Control. Geopositioned profiles were interpreted and correlated in IHS Kingdom seismic interpretation software, which was used to pick horizons and model 3D geometry of key stratigraphic surfaces. Four distinct acoustic facies were resolved from the sonar profiles to a depth of up to 10 m below the seafloor. The first reflection represents the seafloor, ranging in depth from 20 to 26 m. Acoustic facies A in the immediate subsurface represents Holocene marine sediments that are up to 9 m thick. The paleochannel and associated river deposits are represented in the underlying acoustic facies B. Characteristic for this facies is strong attenuation of signal along the river channel which we interpret as a consequence of lateral channel migration and/or later gas accumulations in this

  6. All sky mapping of the Cosmic Microwave Background at 8' angular resolution with a 0.1 K bolometer: simulations

    OpenAIRE

    Giard, M.; Hivon, E.; Nguyen, C.; Gispert, R.; Górski, K. M.; Lange, A; Ristorcelli, I.

    1999-01-01

    We present simulations of observations with the 143 GHz channel of the Planck High Frequency Instrument (HFI). These simulations are performed over the entire sky, using the true angular resolution of this channel: 8 arcmin FWHM, 3.5 arcmin per pixel. We show that with measured 0.1 K bolometer performances, the sensitivity needed on the Cosmic Microwave Background (CMB) survey is obtained using simple and robust data processing techniques, including a destriping algorithm.

  7. 3-D multi-observable probabilistic inversion for the compositional and thermal structure of the lithosphere and upper mantle. II: General methodology and resolution analysis

    Science.gov (United States)

    Afonso, J. C.; Fullea, J.; Yang, Y.; Connolly, J. A. D.; Jones, A. G.

    2013-04-01

    Here we present a 3-D multi-observable probabilistic inversion method, particularly designed for high-resolution (regional) thermal and compositional mapping of the lithosphere and sub-lithospheric upper mantle that circumvents the problems associated with traditional inversion methods. The key aspects of the method are as follows: (a) it exploits the increasing amount and quality of geophysical datasets; (b) it combines multiple geophysical observables (Rayleigh and Love dispersion curves, body-wave tomography, magnetotelluric, geothermal, petrological, gravity, elevation, and geoid) with different sensitivities to deep/shallow, thermal/compositional anomalies into a single thermodynamic-geophysical framework; (c) it uses a general probabilistic (Bayesian) formulation to appraise the data; (d) no initial model is needed; (e) compositional a priori information relies on robust statistical analyses of a large database of natural mantle samples; and (f) it provides a natural platform to estimate realistic uncertainties. In addition, the modular nature of the method/algorithm allows for incorporating or isolating specific forward operators according to available data. The strengths and limitations of the method are thoroughly explored with synthetic models. It is shown that the a posteriori probability density function (i.e., solution to the inverse problem) satisfactorily captures spatial variations in bulk composition and temperature with high resolution, as well as sharp discontinuities in these fields. Our results indicate that only temperature anomalies of ΔT ⪆150°C and large compositional anomalies of ΔMg# > 3 (or bulk ΔAl2O3 > 1.5) can be expected to be resolved simultaneously when combining high-quality geophysical data. This resolving power is sufficient to explore some long-standing problems regarding the nature and evolution of the lithosphere (e.g., vertical stratification of cratonic mantle, compositional versus temperature signatures in seismic

  8. New X-Ray Tomography Method Based on the 3D Radon Transform Compatible with Anisotropic Sources

    Science.gov (United States)

    Vassholz, M.; Koberstein-Schwarz, B.; Ruhlandt, A.; Krenkel, M.; Salditt, T.

    2016-02-01

    In this work, we propose a novel computed tomography (CT) approach for three-dimensional (3D) object reconstruction, based on a generalized tomographic geometry with two-dimensional angular sampling (two angular degrees of freedom). The reconstruction is based on the 3D radon transform and is compatible with anisotropic beam conditions. This allows isotropic 3D imaging with a source, which can be extended along one direction for increased flux, while high resolution is achieved by a small source size only in the orthogonal direction. This novel scheme for analytical CT is demonstrated by numerical simulations and proof-of-concept experiments. In this way high resolution and coherence along a single direction determines the reconstruction quality of the entire 3D data set, opening up, for example, new opportunities to achieve nanoscale resolution and/or phase contrast with low brilliance sources such as laboratory x-ray or neutron sources.

  9. Associations of water and methanol masers at milli-arcsec angular resolution in two high-mass young stellar objects

    CERN Document Server

    Goddi, C; Sanna, A; Cesaroni, R; Minier, V

    2006-01-01

    Most previous high-angular (<0.1 arcsec) resolution studies of molecular masers in high-mass star forming regions (SFRs) have concentrated mainly on either water or methanol masers. While high-angular resolution observations have clarified that water masers originate from shocks associated with protostellar jets, different environments have been proposed in several sources to explain the origin of methanol masers. Tha aim of the paper is to investigate the nature of the methanol maser birthplace in SFRs and the association between the water and methanol maser emission in the same young stellar object. We have conducted phase-reference Very Long Baseline Interferometry (VLBI) observations of water and methanol masers toward two high-mass SFRs, Sh 2-255 IR and AFGL 5142. In Sh 2-255 IR water masers are aligned along a direction close to the orientation of the molecular outflow observed on angular scales of 1-10 arcsec, tracing possibly the disk-wind emerging from the disk atmosphere. In AFGL 5142 water maser...

  10. The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII): High Angular Resolution Astronomy at Far-Infrared Wavelengths

    Science.gov (United States)

    Rinehart, Stephen A.

    2008-01-01

    Astronomical studies at infrared wavelengths have dramatically improved our understanding of the universe, and observations with Spitzer, the upcoming Herschel mission. and SOFIA will continue to provide exciting new discoveries. The comparatively low spatial resolution of these missions, however. is insufficient to resolve the physical scales on which mid- to far-infrared emission arises, resulting in source and structure ambiguities that limit our ability to answer key science questions. Interferometry enables high angular resolution at these wavelengths. We have proposed a new high altitude balloon experiment, the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII). High altitude operation makes far-infrared (30- 300micron) observations possible, and BETTII's 8-meter baseline provides unprecedented angular resolution (-0.5 arcsec) in this band. BETTII will use a double- Fourier instrument to simultaneously obtain both spatial and spectral informatioT. he spatially resolved spectroscopy provided by BETTII will address key questions about the nature of disks in young cluster stars and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the groundwork for future space interferometers.

  11. A Survey of the Polarized Emission from the Galactic Plane at 1420 MHz with Arcminute Angular Resolution

    CERN Document Server

    Landecker, T L; Reid, R I; Reich, P; Wolleben, M; Kothes, R; Uyaniker, B; Gray, A D; Del Rizzo, D; Furst, E; Taylor, A R; Wielebinski, R

    2010-01-01

    Context: Observations of polarized emission are a significant source of information on the magnetic field that pervades the Interstellar Medium of the Galaxy. Despite the acknowledged importance of the magnetic field in interstellar processes, our knowledge of field configurations on all scales is seriously limited. Aims: This paper describes an extensive survey of polarized Galactic emission at 1.4 GHz that provides data with arcminute resolution and complete coverage of all structures from the broadest angular scales to the resolution limit, giving information on the magneto-ionic medium over a wide range of interstellar environments. Methods: Data from the DRAO Synthesis Telescope, the Effelsberg 100-m Telescope, and the DRAO 26-m Telescope have been combined. Angular resolution is ~1' and the survey extends from l = 66 deg to l = 175 deg over a range -3 deg < b < 5 deg along the northern Galactic plane, with a high-latitude extension from l = 101 deg to l = 116 deg up to b = 17.5 deg. This is the fi...

  12. Detection and analysis of human serum albumin nanoparticles within phagocytic cells at the resolution of individual live cell or single 3D multicellular spheroid

    Energy Technology Data Exchange (ETDEWEB)

    Afrimzon, Elena; Zurgil, Naomi; Sobolev, Maria; Shafran, Yana [Bar-Ilan University, The Biophysical Interdisciplinary Schottenstein Center for the Research and Technology of the Cellome (Israel); Langer, Klaus; Zlatev, Iavor [Westfälischen Wilhelms-Universität Münster, Institut für Pharmazeutische Technologie und Biopharmazie (Germany); Wronski, Robert; Windisch, Manfred [QPS Austria GmbH (Austria); Briesen, Hagen von [Fraunhofer Institute for Biomedical Engineering IBMT, Department of Cell Biology & Applied Virology (Germany); Schmidt, Reinhold [Medical University of Graz, Department of Neurology (Austria); Pietrzik, Claus [University Medical Center of the Johannes Gutenberg University of Mainz, Institute of Pathobiochemistry (Germany); Deutsch, Mordechai, E-mail: motti.jsc@gmail.com [Bar-Ilan University, The Biophysical Interdisciplinary Schottenstein Center for the Research and Technology of the Cellome (Israel)

    2015-12-15

    Since nanoparticles (NPs) have shown great potential in various biomedical applications, live cell response to NPs should be thoroughly explored prior to their in vivo use. In the current study, live cell array (LCA) methodology and unique cell-based assays were used to study the interaction of magnetite (HSA-Mag NP) loaded human serum albumin NPs with phagocytic cells. The LCA enabled cell culturing during HSA-Mag NP accumulation and monolayer or spheroid formation, concomitantly with on-line monitoring of NP internalization. These platforms were also utilized for imaging intercellular links between living cells preloaded with HSA-Mag NP in 2D and 3D resolution. HSA-Mag NP uptake by cells was quantified by imaging, and analyzed using time-resolved measurements. Image analysis of the individual cells in cell populations showed accumulation of HSA-Mag NP by promonocytes and glial cells in a dose- and time-dependent manner. High variability of NP accumulation in individual cells within cell populations, as well as cell subgroups, was evident in both cell types. Following 24 h interaction, uptake of HSA-Mag NP was about 10 times more efficient in glial cells than in activated promonocytes. The presented assays may facilitate detection and analysis of the amount of NPs within individual cells, as well as the rate of NP accumulation and processing in different subsets of living cells. Such data are crucial for estimating predicted drug dosage delivered by NPs, as well as to study possible mechanisms for NP interference with live cells.

  13. Angular-resolution and material-characterization measurements for a dual-particle imaging system with mixed-oxide fuel

    Science.gov (United States)

    Poitrasson-Rivière, Alexis; Polack, J. Kyle; Hamel, Michael C.; Klemm, Dietrich D.; Ito, Kai; McSpaden, Alexander T.; Flaska, Marek; Clarke, Shaun D.; Pozzi, Sara A.; Tomanin, Alice; Peerani, Paolo

    2015-10-01

    A dual-particle imaging (DPI) system, capable of simultaneously imaging fast neutrons and gamma rays, has been operated in the presence of mixed-oxide (MOX) fuel to assess the system's angular resolution and material-characterization capabilities. The detection principle is based on the scattering physics of neutrons (elastic scattering) and gamma rays (Compton scattering) in organic and inorganic scintillators. The detection system is designed as a combination of a two-plane Compton camera and a neutron-scatter camera. The front plane consists of EJ-309 liquid scintillators and the back plane consists of interleaved EJ-309 and NaI(Tl) scintillators. MCNPX-PoliMi was used to optimize the geometry of the system and the resulting prototype was built and tested using a Cf-252 source as an SNM surrogate. A software package was developed to acquire and process data in real time. The software was used for a measurement campaign to assess the angular resolution of the imaging system with MOX samples. Measurements of two MOX canisters of similar isotopics and intensity were performed for 6 different canister separations (from 5° to 30°, corresponding to distances of 21 cm and 131 cm, respectively). The measurements yielded a minimum separation of 20° at 2.5 m (86-cm separation) required to see 2 separate hot spots. Additionally, the results displayed good agreement with MCNPX-PoliMi simulations. These results indicate an angular resolution between 15° and 20°, given the 5° step. Coupled with its large field of view, and its capability to differentiate between spontaneous fission and (α,n) sources, the DPI system shows its potential for nuclear-nonproliferation applications.

  14. 3D Animation Essentials

    CERN Document Server

    Beane, Andy

    2012-01-01

    The essential fundamentals of 3D animation for aspiring 3D artists 3D is everywhere--video games, movie and television special effects, mobile devices, etc. Many aspiring artists and animators have grown up with 3D and computers, and naturally gravitate to this field as their area of interest. Bringing a blend of studio and classroom experience to offer you thorough coverage of the 3D animation industry, this must-have book shows you what it takes to create compelling and realistic 3D imagery. Serves as the first step to understanding the language of 3D and computer graphics (CG)Covers 3D anim

  15. 3D video

    CERN Document Server

    Lucas, Laurent; Loscos, Céline

    2013-01-01

    While 3D vision has existed for many years, the use of 3D cameras and video-based modeling by the film industry has induced an explosion of interest for 3D acquisition technology, 3D content and 3D displays. As such, 3D video has become one of the new technology trends of this century.The chapters in this book cover a large spectrum of areas connected to 3D video, which are presented both theoretically and technologically, while taking into account both physiological and perceptual aspects. Stepping away from traditional 3D vision, the authors, all currently involved in these areas, provide th

  16. Solution of the neutron transport equation by the collision probability for 3D geometries; Resolution de l`equation du transport pour les neutrons par la methode des probabilites de collision dans le geometries 3D

    Energy Technology Data Exchange (ETDEWEB)

    Oujidi, B.

    1996-09-19

    The TDT code solves the multigroup transport equation by the interface current method for unstructured 2D geometries. This works presents the extension of TDT to the treatment of 3D geometries obtained by axial displacement of unstructured 2D geometries. Three-dimensional trajectories are obtained by lifting the 2D trajectories. The code allows for the definition of macro-domains in the axial direction to be used in the interface-current method. Specular and isotropic reflection or translations boundary conditions can be applied to the horizontal boundaries of the domain. Numerical studies have shown the need for longer trajectory cutoffs for trajectories intersecting horizontal boundaries. Numerical applications to the calculation of local power peaks are given in a second part for: the local destruction of a Pyrex absorbent and inter-assembly (UO{sub 2}-MOX) power distortion due to pellet collapsing at the top of the core. Calculations with 16 groups were performed by coupling TDT to the spectral code APOLLO2. One-group comparisons with the Monte Carlo code TRIMARAN2 are also given. (author). 30 refs.

  17. Solution of the neutron transport equation by the collision probability method for 3D geometries; Resolution de l`equation du transport par les neutrons par la methode des probabilites de collision dans les geometries 3D

    Energy Technology Data Exchange (ETDEWEB)

    Oujidi, B

    1996-09-19

    The TDT code solves the multigroup transport equation by the interface-current method for unstructured 2D geometries. This works presents the extension of TDT to the treatment of 3D geometries obtained by axial displacement of unstructured 2D geometries. Three-dimensional trajectories are obtained by lifting the 2D trajectories. The code allows for the definition of macro-domains in the axial direction to be used in interface-current method. Specular and isotropic reflection or translations boundary conditions can be applied to the horizontal boundaries of the domain. Numerical studies have shown the need for longer trajectory cutoffs for trajectories intersecting horizontal boundaries. Numerical applications to the calculation of local power peaks are given in a second part for: the local destruction of a Pyrex absorbent, inter-assembly (U02-MOX) power distortion due to pellet collapsing at the top of the core. Calculations with 16 groups were performed by coupling TDT to the spectral code APOLLO2. One-group comparisons with the Monte Carlo code TRIMARAN2 are also given. (author) 30 refs.

  18. Molecular outflows and hot molecular core in G24.78+0.08 at sub-arcsecond angular resolution

    OpenAIRE

    Beltran, M. T.; Cesaroni, R.; Zhang, Q; Galvan-Madrid, R.; Beuther, H.; Fallscheer, C.; Neri, R.; Codella, C.

    2011-01-01

    Context. This study is part of a large project to study the physics of accretion and molecular outflows towards a selected sample of high-mass star-forming regions that show evidence of infall and rotation from previous studies. Aims. We wish to make a thorough study at high-angular resolution of the structure and kinematics of the HMCs and corresponding molecular outflows in the high-mass star-forming region G24.78+0.08. Methods. We carried out SMA and IRAM PdBI observations at 1.3 and 1.4 m...

  19. Noise reduction methods in analysis of near infrared lunar occultation light curves for high angular resolution measurements

    CERN Document Server

    Baug, Tapas

    2013-01-01

    Lunar occultation (LO) technique in the near-infrared provides angular resolution down to milliarcseconds on the occulted source even with ground-based 1m class telescopes. LO observations are limited to brighter objects because they require high signal to noise ratio (S/N ~ 40) for proper extraction of angular diameter values. Hence, methods to improve the S/N ratio by reducing noise using Fourier and Wavelet transforms have been explored in this study. A sample of 54 near-infrared LO light curves observed with IR Camera at Mt Abu observatory has been used. It is seen that both Fourier and Wavelet methods have shown improvement in S/N, compared to the original data. However, the application of wavelet transforms results in slight smoothening of the fringes resulting in a higher angular diameter value. Fourier transforms which reduce discrete noise frequencies do not distort the fringe. Fourier transform method seems to be effective in S/N improvement, as well as improved model fit particularly in the fainter...

  20. High-resolution and functional magnetic resonance imaging of the brachial plexus using an isotropic 3D T2 STIR (Short Term Inversion Recovery) SPACE sequence and diffusion tensor imaging

    Energy Technology Data Exchange (ETDEWEB)

    Viallon, M.; Vargas, M.I.; Jlassi, H.; Loevblad, K.O.; Delavelle, J. [University Hospital of Geneva, Department of Radiology, Geneva (Switzerland)

    2008-05-15

    This technical note demonstrates the relevance of the isotropic 3D T2 turbo-spin-echo (TSE) sequence with short-term inversion recovery (STIR) and variable flip angle RF excitations (SPACE: Sampling Perfection with Application optimized Contrasts using different flip angle Evolutions) for high-resolution brachial plexus imaging. The sequence was used in 11 patients in the diagnosis of brachial plexus pathologies involving primary and secondary tumors, and in six volunteers. We show that 3D STIR imaging is not only a reliable alternative to 2D STIR imaging, but it also better evaluates the anatomy, nerve site compression and pathology of the plexus, especially to depict space-occupying tumors along its course. Finally, due to its appropriate contrast we describe how 3D-STIR can be used as a high-resolution mask to be fused with fraction of anisotropy (FA) maps calculated from diffusion tensor imaging (DTI) data of the plexus. (orig.)

  1. 3-D Rat Brain Phantom for High-Resolution Molecular Imaging: Experimental studies aimed at advancing understanding of human brain disease and malfunction, and of behavior problems, may be aided by computer models of small laboratory animals

    NARCIS (Netherlands)

    Beekman, F.J.; Vastenhouw, B.; Van der Wilt, G.; Vervloet, M.; Visscher, R.; Booij, J.; Gerrits, M.; Ji, C.; Ramakers, R.; Van der Have, F.

    2009-01-01

    With the steadily improving resolution of novel small-animal single photon emission computed tomography (SPECT) and positron emission tomography devices, highly detailed phantoms are required for testing and optimizing these systems. We present a three-dimensional (3-D) digital and physical phantom

  2. Milliarcsecond angular resolution of reddened stellar sources in the vicinity of the Galactic Center. II. Additional observations

    CERN Document Server

    Richichi, A; Mason, E

    2008-01-01

    We present lunar occultation observations obtained in August 2006 with the recently demonstrated burst mode of the ISAAC instrument at the ESO VLT. The results presented here follow the previously reported observations carried out in March 2006 on a similar but unrelated set of sources. Interstellar extinction in the inner regions of the galactic bulge amounts to tens of magnitudes at visual wavelengths. As a consequence, the majority of sources in that area are poorly studied and large numbers of potentially interesting sources such as late-type giants with circumstellar shells, stellar masers, infrared stars, remain excluded from the typical investigations which are carried out in less problematic regions. Also undetected are a large numbers of binaries. By observing LO events in this region, we gain the means to investigate at least a selected number of sources with an unprecedented combination of sensitivity and angular resolution. The LO technique permits to achieve mas resolution with a sensitivity of K...

  3. Thin fused silica optics for a high angular resolution and large collecting area X Ray telescope after Chandra

    Science.gov (United States)

    Pareschi, Giovanni; Citterio, Oberto; Civitani, Marta M; Basso, Stefano; Campana, Sergio; Conconi, Paolo; Ghigo, Mauro; Mattaini, Enrico; Moretti, Alberto; Parodi, Giancarlo; Tagliaferri, Gianpiero

    2014-08-01

    The implementation of an X-ray mission with high imaging capabilities, similar to those achieved with Chandra (SMART-X project, led by CfA together with other US institutes. This project is based on adjustable segments of thin foil mirrors with piezo-electric actuators, aiming to achieve an effective area >2 m2 at 1 keV and an angular resolution better than 1 arcsec HEW. Another attractive technology to realize an X-ray telescope with similar characteristics is being developed at NASA/Goddard. In this case the mirrors are based on Si substrates that are super-polished and figured starting from a bulky Si ingot, from which they are properly cut. Here we propose an alternative method based on precise direct grinding, figuring and polishing of thin (a few mm) glass shells with innovative deterministic polishing methods. This is followed by a final correction via ion figuring to obtain the desired accuracy. For this purpose, a temporary stiffening structure is used to support the shell from the polishing operations up to its integration in the telescope supporting structure. This paper deals with the technological process under development, the results achieved so far and some mission scenarios based on this kind of optics, aiming to achieve an effective area more than 10 times larger than Chandra and an angular resolution of 1 arcsec HEW on axis and of a few arcsec off-axis across a large field of view (1o in diameter).

  4. High-resolution 3D seismic investigations of hydrate-bearing fluid-escape chimneys in the Nyegga region of the Voring Plateau, Norway

    Energy Technology Data Exchange (ETDEWEB)

    Westbrook, G.; Exley, R. [Birmingham Univ., Birmingham (United Kingdom). School of Geography, Earth and Environmental Sciences; Minshull, T.; Jose, T. [National Oceanography Centre, Southampton (United Kingdom); Nouze, H.; Ker, S. [French Research Inst. for Exploitation of the Sea (France). Dept. of Geosciences; Gailler, A. [Birmingham Univ., Birmingham (United Kingdom). School of Geography, Earth and Environmental Sciences]|[French Research Inst. for Exploitation of the Sea (France). Dept. of Geosciences; Plaza, A. [Tromso Univ., Tromso (Norway). Inst. for Geology]|[French Research Inst. for Exploitation of the Sea (France). Dept. of Geosciences

    2008-07-01

    Seismic surveys in the southeast part of the Voring plateau on the Norwegian continental shelf have revealed hundreds of pockmarks and mounds which appear to be the seabed terminations of chimney-like structures. The seismic characteristics are very similar to chimneys in the accretionary complex off Vancouver Island, Canada. The pockmarks are sites of methane seeps colonized by chemosynthetic biota. There is extensive development of authigenic carbonate within the pockmarks. There are many indicators that free gas exists beneath the base of the gas hydrate stability zone (GHSZ). The observed thinning of the time intervals between reflectors in the flanks of chimneys could be caused by the presence of higher velocity material such as hydrate or authigenic carbonate. Evidence for the presence of hydrate was obtained from cores at 5 locations during a seismic survey conducted in 2006. Two of these pockmarks, each about 300-m wide with active seeps within them, were the sites of high-resolution seismic experiments using Ocean-Bottom Seismic recorders with 100-m separation to investigate the 3-D variation in their structure and properties. Travel-time tomography was used to detail the variation in Vp and Vs within and around the chimneys. It was concluded that the material within the CNE03 chimney that gave a higher seismic velocity could be carbonate or hydrate. Coring of hydrate from this feature favours the presence of hydrate. It was suggested that on average, hydrate may occupy up to 35 per cent of the pore space. The bending of strata in the flanks is partly deformational in origin, implying that the chimney was created by some forceful process, and now acts as a pathway for methane-rich fluid flow. The strata in the flanks of the G11 pockmark do not bend upwards. The pockmarks are underlain by a zone of locally higher content of free gas, approximately 5 km across. The chimneys beneath the pockmarks penetrate this zone. Many other smaller chimney-like structures

  5. The multiplicity of massive stars: A high angular resolution survey with the HST fine guidance sensor

    Energy Technology Data Exchange (ETDEWEB)

    Aldoretta, E. J.; Gies, D. R.; Henry, T. J.; Jao, W.-C.; Norris, R. P., E-mail: emily@astro.umontreal.ca, E-mail: gies@chara.gsu.edu, E-mail: thenry@chara.gsu.edu, E-mail: jao@chara.gsu.edu, E-mail: norris@chara.gsu.edu [Center for High Angular Resolution Astronomy, Department of Physics and Astronomy, Georgia State University, P. O. Box 5060, Atlanta, GA 30302-5060 (United States); and others

    2015-01-01

    We present the results of an all-sky survey made with the Fine Guidance Sensor on the Hubble Space Telescope to search for angularly resolved binary systems among massive stars. The sample of 224 stars is comprised mainly of Galactic O- and B-type stars and luminous blue variables, plus a few luminous stars in the Large Magellanic Cloud. The FGS TRANS mode observations are sensitive to the detection of companions with an angular separation between 0.″01 and 1.″0 and brighter than △m=5. The FGS observations resolved 52 binary and 6 triple star systems and detected partially resolved binaries in 7 additional targets (43 of these are new detections). These numbers yield a companion detection frequency of 29% for the FGS survey. We also gathered literature results on the numbers of close spectroscopic binaries and wider astrometric binaries among the sample, and we present estimates of the frequency of multiple systems and the companion frequency for subsets of stars residing in clusters and associations, field stars, and runaway stars. These results confirm the high multiplicity fraction, especially among massive stars in clusters and associations. We show that the period distribution is approximately flat in increments of logP. We identify a number of systems of potential interest for long-term orbital determinations, and we note the importance of some of these companions for the interpretation of the radial velocities and light curves of close binaries that have third companions.

  6. The multiplicity of massive stars: A high angular resolution survey with the HST fine guidance sensor

    International Nuclear Information System (INIS)

    We present the results of an all-sky survey made with the Fine Guidance Sensor on the Hubble Space Telescope to search for angularly resolved binary systems among massive stars. The sample of 224 stars is comprised mainly of Galactic O- and B-type stars and luminous blue variables, plus a few luminous stars in the Large Magellanic Cloud. The FGS TRANS mode observations are sensitive to the detection of companions with an angular separation between 0.″01 and 1.″0 and brighter than △m=5. The FGS observations resolved 52 binary and 6 triple star systems and detected partially resolved binaries in 7 additional targets (43 of these are new detections). These numbers yield a companion detection frequency of 29% for the FGS survey. We also gathered literature results on the numbers of close spectroscopic binaries and wider astrometric binaries among the sample, and we present estimates of the frequency of multiple systems and the companion frequency for subsets of stars residing in clusters and associations, field stars, and runaway stars. These results confirm the high multiplicity fraction, especially among massive stars in clusters and associations. We show that the period distribution is approximately flat in increments of logP. We identify a number of systems of potential interest for long-term orbital determinations, and we note the importance of some of these companions for the interpretation of the radial velocities and light curves of close binaries that have third companions.

  7. The Multiplicity of Massive Stars: A High Angular Resolution Survey with the HST Fine Guidance Sensor

    CERN Document Server

    Aldoretta, E J; Gies, D R; Nelan, E P; Wallace, D J; Hartkopf, W I; Henry, T J; Jao, W -C; Apellániz, J Maíz; Mason, B D; Moffat, A F J; Norris, R P; Richardson, N D; Williams, S J

    2014-01-01

    We present the results of an all-sky survey made with the Fine Guidance Sensor on Hubble Space Telescope to search for angularly resolved binary systems among the massive stars. The sample of 224 stars is comprised mainly of Galactic O- and B-type stars and Luminous Blue Variables, plus a few luminous stars in the Large Magellanic Cloud. The FGS TRANS mode observations are sensitive to detection of companions with an angular separation between 0."01 and 1."0 and brighter than $\\triangle m = 5$. The FGS observations resolved 52 binary and 6 triple star systems and detected partially resolved binaries in 7 additional targets (43 of these are new detections). These numbers yield a companion detection frequency of 29% for the FGS survey. We also gathered literature results on the numbers of close spectroscopic binaries and wider astrometric binaries among the sample, and we present estimates of the frequency of multiple systems and the companion frequency for subsets of stars residing in clusters and associations...

  8. Q-ball imaging models: comparison between high and low angular resolution diffusion-weighted MRI protocols for investigation of brain white matter integrity

    Energy Technology Data Exchange (ETDEWEB)

    Caiazzo, Giuseppina; Trojsi, Francesca; Cirillo, Mario; Tedeschi, Gioacchino [MRI Research Center SUN-FISM-Neurological Institute for Diagnosis and Care ' ' Hermitage Capodimonte' ' , Naples (Italy); Second University of Naples, Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, Naples (Italy); Esposito, Fabrizio [University of Salerno, Department of Medicine and Surgery, Baronissi (Salerno) (Italy); Maastricht University, Department of Cognitive Neuroscience, Maastricht (Netherlands)

    2016-02-15

    Q-ball imaging (QBI) is one of the typical data models for quantifying white matter (WM) anisotropy in diffusion-weighted MRI (DwMRI) studies. Brain and spinal investigation by high angular resolution DwMRI (high angular resolution imaging (HARDI)) protocols exhibits higher angular resolution in diffusion imaging compared to low angular resolution models, although with longer acquisition times. We aimed to assess the difference between QBI-derived anisotropy values from high and low angular resolution DwMRI protocols and their potential advantages or shortcomings in neuroradiology. Brain DwMRI data sets were acquired in seven healthy volunteers using both HARDI (b = 3000 s/mm{sup 2}, 54 gradient directions) and low angular resolution (b = 1000 s/mm{sup 2}, 32 gradient directions) acquisition schemes. For both sequences, tract of interest tractography and generalized fractional anisotropy (GFA) measures were extracted by using QBI model and were compared between the two data sets. QBI tractography and voxel-wise analyses showed that some WM tracts, such as corpus callosum, inferior longitudinal, and uncinate fasciculi, were reconstructed as one-dominant-direction fiber bundles with both acquisition schemes. In these WM tracts, mean percent different difference in GFA between the two data sets was less than 5 %. Contrariwise, multidirectional fiber bundles, such as corticospinal tract and superior longitudinal fasciculus, were more accurately depicted by HARDI acquisition scheme. Our results suggest that the design of optimal DwMRI acquisition protocols for clinical investigation of WM anisotropy by QBI models should consider the specific brain target regions to be explored, inducing researchers to a trade-off choice between angular resolution and acquisition time. (orig.)

  9. Q-ball imaging models: comparison between high and low angular resolution diffusion-weighted MRI protocols for investigation of brain white matter integrity

    International Nuclear Information System (INIS)

    Q-ball imaging (QBI) is one of the typical data models for quantifying white matter (WM) anisotropy in diffusion-weighted MRI (DwMRI) studies. Brain and spinal investigation by high angular resolution DwMRI (high angular resolution imaging (HARDI)) protocols exhibits higher angular resolution in diffusion imaging compared to low angular resolution models, although with longer acquisition times. We aimed to assess the difference between QBI-derived anisotropy values from high and low angular resolution DwMRI protocols and their potential advantages or shortcomings in neuroradiology. Brain DwMRI data sets were acquired in seven healthy volunteers using both HARDI (b = 3000 s/mm2, 54 gradient directions) and low angular resolution (b = 1000 s/mm2, 32 gradient directions) acquisition schemes. For both sequences, tract of interest tractography and generalized fractional anisotropy (GFA) measures were extracted by using QBI model and were compared between the two data sets. QBI tractography and voxel-wise analyses showed that some WM tracts, such as corpus callosum, inferior longitudinal, and uncinate fasciculi, were reconstructed as one-dominant-direction fiber bundles with both acquisition schemes. In these WM tracts, mean percent different difference in GFA between the two data sets was less than 5 %. Contrariwise, multidirectional fiber bundles, such as corticospinal tract and superior longitudinal fasciculus, were more accurately depicted by HARDI acquisition scheme. Our results suggest that the design of optimal DwMRI acquisition protocols for clinical investigation of WM anisotropy by QBI models should consider the specific brain target regions to be explored, inducing researchers to a trade-off choice between angular resolution and acquisition time. (orig.)

  10. Three dimensional and high resolution magnetic resonance imaging of the inner ear. Normal ears and anomaly scanned with 3D-CISS sequence

    International Nuclear Information System (INIS)

    The MRI system used in this study was a new scanning sequence, 3D-CISS (Three dimensional-constructive interference in steady state) with 1.5 Tesla. Ten normal ears and one ear with Mondini type anomaly were scanned and reconstructed. In imagings of normal inner ears, the cochlea has three spiral layers; basal, middle and apical turns. Each turn was separated into three parts; the scala vestibuli, osseous spiral lamina and scala tympani. Three semicircular ducts, utricle and saccule were also reconstructed in one frame. In the inner ear of Mondini anomaly, 3D MRI showed cochlear aplasia, hypoplasia of semicircular ducts and widely dilated vestibule. The imaging was identical with findings of ''common cavity''. The anomaly was easily recognized in 3D MRI more than in 2D imagings. The detailed and cubic imagings of the Mondini anomaly in 3D MRI could not be observed with conventional 2D MRI. 3D MRI is not invasive method and can scan a target very quickly. (author)

  11. EUROPEANA AND 3D

    Directory of Open Access Journals (Sweden)

    D. Pletinckx

    2012-09-01

    Full Text Available The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.

  12. High Angular Resolution Stellar Imaging with Occultations from the Cassini Spacecraft II: Kronocyclic Tomography

    CERN Document Server

    Stewart, Paul N; Nicholson, Philip D; Hedman, Matthew M; Lloyd, James P

    2015-01-01

    We present an advance in the use of Cassini observations of stellar occultations by the rings of Saturn for stellar studies. Stewart et al. (2013) demonstrated the potential use of such observations for measuring stellar angular diameters. Here, we use these same observations, and tomographic imaging reconstruction techniques, to produce two dimensional images of complex stellar systems. We detail the determination of the basic observational reference frame. A technique for recovering model-independent brightness profiles for data from each occulting edge is discussed, along with the tomographic combination of these profiles to build an image of the source star. Finally we demonstrate the technique with recovered images of the {\\alpha} Centauri binary system and the circumstellar environment of the evolved late-type giant star, Mira.

  13. Solid works 3D

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Cheol Yeong

    2004-02-15

    This book explains modeling of solid works 3D and application of 3D CAD/CAM. The contents of this book are outline of modeling such as CAD and 2D and 3D, solid works composition, method of sketch, writing measurement fixing, selecting projection, choosing condition of restriction, practice of sketch, making parts, reforming parts, modeling 3D, revising 3D modeling, using pattern function, modeling necessaries, assembling, floor plan, 3D modeling method, practice floor plans for industrial engineer data aided manufacturing, processing of CAD/CAM interface.

  14. Solid works 3D

    International Nuclear Information System (INIS)

    This book explains modeling of solid works 3D and application of 3D CAD/CAM. The contents of this book are outline of modeling such as CAD and 2D and 3D, solid works composition, method of sketch, writing measurement fixing, selecting projection, choosing condition of restriction, practice of sketch, making parts, reforming parts, modeling 3D, revising 3D modeling, using pattern function, modeling necessaries, assembling, floor plan, 3D modeling method, practice floor plans for industrial engineer data aided manufacturing, processing of CAD/CAM interface.

  15. The role of dislocations in varied olivine deformation mechanisms investigated using high-angular resolution electron backscatter diffraction

    Science.gov (United States)

    Wallis, David; Hansen, Lars; Britton, Ben; Wilkinson, Angus

    2016-04-01

    Experimentally-derived flow laws can be used to predict the rheology of rocks deformed under natural conditions only if the same microphysical processes can be demonstrated to control the rate-limiting deformation mechanism in both cases. Olivine rheology may exert a principle control on the strength of the lithosphere, and therefore considerable research effort has been applied to assessing its rheology through experimental, geological, and geophysical approaches. Nonetheless, considerable uncertainty remains regarding the dominant deformation mechanisms in the upper mantle. This uncertainty arises in large part due to our limited understanding of the fundamental deformation processes associated with each mechanism. Future improvements to microphysical models of distinct deformation mechanisms require new insight into the contributions those fundamental processes to the macroscopic behaviour. The dynamics of dislocations is central to modelling viscous deformation of olivine, but characterisation techniques capable of constraining dislocation types, densities, and distributions over the critical grain to polycrystal length-scales have been lacking. High angular resolution electron backscatter diffraction (HR-EBSD), developed and increasingly applied in the material sciences, offers an approach capable of such analyses. HR-EBSD utilises diffraction pattern image cross-correlation to achieve dramatically improved angular resolution (~0.01°) of lattice orientation gradients compared to conventional Hough-based EBSD (~0.5°). This angular resolution allows very low densities (≥ 10^11 m^-2) of geometrically necessary dislocations (GND) to be resolved, facilitating analysis of a wide range of dislocation microstructures. We have developed the application of HR-EBSD to olivine and applied it to samples deformed both experimentally and naturally in grain-size sensitive and grain-size insensitive regimes. The results quantitatively highlight variations in the types and

  16. New diffusion phantoms dedicated to the study and validation of high-angular-resolution diffusion imaging (HARDI) models.

    Science.gov (United States)

    Poupon, Cyril; Rieul, Bernard; Kezele, Irina; Perrin, Muriel; Poupon, Fabrice; Mangin, Jean-François

    2008-12-01

    We present new diffusion phantoms dedicated to the study and validation of high-angular-resolution diffusion imaging (HARDI) models. The phantom design permits the application of imaging parameters that are typically employed in studies of the human brain. The phantoms were made of small-diameter acrylic fibers, chosen for their high hydrophobicity and flexibility that ensured good control of the phantom geometry. The polyurethane medium was filled under vacuum with an aqueous solution that was previously degassed, doped with gadolinium-tetraazacyclododecanetetraacetic acid (Gd-DOTA), and treated by ultrasonic waves. Two versions of such phantoms were manufactured and tested. The phantom's applicability was demonstrated on an analytical Q-ball model. Numerical simulations were performed to assess the accuracy of the phantom. The phantom data will be made accessible to the community with the objective of analyzing various HARDI models. PMID:19030160

  17. 3d-3d correspondence revisited

    Science.gov (United States)

    Chung, Hee-Joong; Dimofte, Tudor; Gukov, Sergei; Sułkowski, Piotr

    2016-04-01

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d {N}=2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. We also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  18. IZDELAVA TISKALNIKA 3D

    OpenAIRE

    Brdnik, Lovro

    2015-01-01

    Diplomsko delo analizira trenutno stanje 3D tiskalnikov na trgu. Prikazan je razvoj in principi delovanja 3D tiskalnikov. Predstavljeni so tipi 3D tiskalnikov, njihove prednosti in slabosti. Podrobneje je predstavljena zgradba in delovanje koračnih motorjev. Opravljene so meritve koračnih motorjev. Opisana je programska oprema za rokovanje s 3D tiskalniki in komponente, ki jih potrebujemo za izdelavo. Diploma se oklepa vprašanja, ali je izdelava 3D tiskalnika bolj ekonomična kot pa naložba v ...

  19. 3D optical manipulation of a single electron spin

    CERN Document Server

    Geiselmann, Michael; Renger, Jan; Say, Jana M; Brown, Louise J; de Abajo, F Javier García; Koppens, Frank; Quidant, Romain

    2013-01-01

    Nitrogen vacancy (NV) centers in diamond are promising elemental blocks for quantum optics [1, 2], spin-based quantum information processing [3, 4], and high-resolution sensing [5-13]. Yet, fully exploiting these capabilities of single NV centers requires strategies to accurately manipulate them. Here, we use optical tweezers as a tool to achieve deterministic trapping and 3D spatial manipulation of individual nano-diamonds hosting a single NV spin. Remarkably, we find the NV axis is nearly fixed inside the trap and can be controlled in-situ, by adjusting the polarization of the trapping light. By combining this unique spatial and angular control with coherent manipulation of the NV spin and fluorescent lifetime measurements near an integrated photonic system, we prove optically trapped NV center as a novel route for both 3D vectorial magnetometry and sensing of the local density of optical states.

  20. Quantitative assessment of cancer vascular architecture by skeletonization of high-resolution 3-D contrast-enhanced ultrasound images: role of liposomes and microbubbles.

    Science.gov (United States)

    Molinari, F; Meiburger, K M; Giustetto, P; Rizzitelli, S; Boffa, C; Castano, M; Terreno, E

    2014-12-01

    The accurate characterization and description of the vascular network of a cancer lesion is of paramount importance in clinical practice and cancer research in order to improve diagnostic accuracy or to assess the effectiveness of a treatment. The aim of this study was to show the effectiveness of liposomes as an ultrasound contrast agent to describe the 3-D vascular architecture of a tumor. Eight C57BL/6 mice grafted with syngeneic B16-F10 murine melanoma cells were injected with a bolus of 1,2-Distearoyl-sn-glycero-3-phosphocoline (DSPC)-based non-targeted liposomes and with a bolus of microbubbles. 3-D contrast-enhanced images of the tumor lesions were acquired in three conditions: pre-contrast, after the injection of microbubbles, and after the injection of liposomes. By using a previously developed reconstruction and characterization image processing technique, we obtained the 3-D representation of the vascular architecture in these three conditions. Six descriptive parameters of these networks were also computed: the number of vascular trees (NT), the vascular density (VD), the number of branches, the 2-D curvature measure, the number of vascular flexes of the vessels, and the 3-D curvature. Results showed that all the vascular descriptors obtained by liposome-based images were statistically equal to those obtained by using microbubbles, except the VD which was found to be lower for liposome images. All the six descriptors computed in pre-contrast conditions had values that were statistically lower than those computed in presence of contrast, both for liposomes and microbubbles. Liposomes have already been used in cancer therapy for the selective ultrasound-mediated delivery of drugs. This work demonstrated their effectiveness also as vascular diagnostic contrast agents, therefore proving that liposomes can be used as efficient "theranostic" (i.e. therapeutic 1 diagnostic) ultrasound probes.

  1. Milliarcsecond angular resolution of reddened stellar sources in the vicinity of the Galactic Center

    OpenAIRE

    Richichi, A.; Fors, O.; Mason, E.; Stegmaier, J; T.Chandrasekhar

    2008-01-01

    For the first time, the lunar occultation technique has been employed on a very large telescope in the near-IR with the aim of achieving systematically milliarcsecond resolution on stellar sources. We have demonstrated the burst mode of the ISAAC instrument, using a fast read-out on a small area of the detector to record many tens of seconds of data at a time on fields of few squared arcsec. We have used the opportunity to record a large number of LO events during a passage of the Moon close ...

  2. High-angular-resolution stellar imaging with occultations from the Cassini spacecraft - III. Mira

    Science.gov (United States)

    Stewart, Paul N.; Tuthill, Peter G.; Nicholson, Philip D.; Hedman, Matthew M.

    2016-04-01

    We present an analysis of spectral and spatial data of Mira obtained by the Cassini spacecraft, which not only observed the star's spectra over a broad range of near-infrared wavelengths, but was also able to obtain high-resolution spatial information by watching the star pass behind Saturn's rings. The observed spectral range of 1-5 microns reveals the stellar atmosphere in the crucial water-bands which are unavailable to terrestrial observers, and the simultaneous spatial sampling allows the origin of spectral features to be located in the stellar environment. Models are fitted to the data, revealing the spectral and spatial structure of molecular layers surrounding the star. High-resolution imagery is recovered revealing the layered and asymmetric nature of the stellar atmosphere. The observational data set is also used to confront the state-of-the-art cool opacity-sampling dynamic extended atmosphere models of Mira variables through a detailed spectral and spatial comparison, revealing in general a good agreement with some specific departures corresponding to particular spectral features.

  3. Reducing Uncertainty in the Distribution of Hydrogeologic Units within Volcanic Composite Units of Pahute Mesa Using High-Resolution 3-D Resistivity Methods, Nevada Test Site, Nevada

    Science.gov (United States)

    Rodriguez, Brian D.; Sweetkind, Don; Burton, Bethany L.

    2010-01-01

    The U.S. Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) at their Nevada Site Office (NSO) are addressing groundwater contamination resulting from historical underground nuclear testing through the Environmental Management program and, in particular, the Underground Test Area (UGTA) project. From 1951 to 1992, 828 underground nuclear tests were conducted at the Nevada Test Site (NTS) northwest of Las Vegas (DOE UGTA, 2003). Most of these tests were conducted hundreds of feet above the groundwater table; however, more than 200 of the tests were near, or within, the water table. This underground testing was limited to specific areas of the NTS including Pahute Mesa, Rainier Mesa/Shoshone Mountain, Frenchman Flat, and Yucca Flat. Volcanic composite units make up much of the area within the Pahute Mesa Corrective Action Unit (CAU) at the NTS, Nevada. The extent of many of these volcanic composite units extends throughout and south of the primary areas of past underground testing at Pahute and Rainier Mesas. As situated, these units likely influence the rate and direction of groundwater flow and radionuclide transport. Currently, these units are poorly resolved in terms of their hydrologic properties introducing large uncertainties into current CAU-scale flow and transport models. In 2007, the U.S. Geological Survey (USGS), in cooperation with DOE and NNSA-NSO acquired three-dimensional (3-D) tensor magnetotelluric data at the NTS in Area 20 of Pahute Mesa CAU. A total of 20 magnetotelluric recording stations were established at about 600-m spacing on a 3-D array and were tied to ER20-6 well and other nearby well control (fig. 1). The purpose of this survey was to determine if closely spaced 3-D resistivity measurements can be used to characterize the distribution of shallow (600- to 1,500-m-depth range) devitrified rhyolite lava-flow aquifers (LFA) and zeolitic tuff confining units (TCU) in areas of limited drill hole control on

  4. 3D and Education

    Science.gov (United States)

    Meulien Ohlmann, Odile

    2013-02-01

    Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?

  5. Seismic attribute detection of faults and fluid pathways within an active strike-slip shear zone: New insights from high-resolution 3D P-Cable™ seismic data along the Hosgri Fault, offshore California

    Science.gov (United States)

    Kluesner, Jared; Brothers, Daniel

    2016-01-01

    Poststack data conditioning and neural-network seismic attribute workflows are used to detect and visualize faulting and fluid migration pathways within a 13.7 km2 13.7 km2 3D P-Cable™ seismic volume located along the Hosgri Fault Zone offshore central California. The high-resolution 3D volume used in this study was collected in 2012 as part of Pacific Gas and Electric’s Central California Seismic Imaging Project. Three-dimensional seismic reflection data were acquired using a triple-plate boomer source (1.75 kJ) and a short-offset, 14-streamer, P-Cable system. The high-resolution seismic data were processed into a prestack time-migrated 3D volume and publically released in 2014. Postprocessing, we employed dip-steering (dip and azimuth) and structural filtering to enhance laterally continuous events and remove random noise and acquisition artifacts. In addition, the structural filtering was used to enhance laterally continuous edges, such as faults. Following data conditioning, neural-network based meta-attribute workflows were used to detect and visualize faults and probable fluid-migration pathways within the 3D seismic volume. The workflow used in this study clearly illustrates the utility of advanced attribute analysis applied to high-resolution 3D P-Cable data. For example, results from the fault attribute workflow reveal a network of splayed and convergent fault strands within an approximately 1.3 km wide shear zone that is characterized by distinctive sections of transpressional and transtensional dominance. Neural-network chimney attribute calculations indicate that fluids are concentrated along discrete faults in the transtensional zones, but appear to be more broadly distributed amongst fault bounded anticlines and structurally controlled traps in the transpressional zones. These results provide high-resolution, 3D constraints on the relationships between strike-slip fault mechanics, substrate deformation, and fluid migration along an active

  6. High angular resolution diffusion imaging in a child with autism spectrum disorder and comparison with his unaffected identical twin.

    Science.gov (United States)

    Conti, Eugenia; Pannek, Kerstin; Calderoni, Sara; Gaglianese, Anna; Fiori, Simona; Brovedani, Paola; Scelfo, Danilo; Rose, Stephen; Tosetti, Michela; Cioni, Giovanni; Guzzetta, Andrea

    2015-01-01

    In recent years, the use of brain diffusion MRI has led to the hypothesis that children with autism spectrum disorder (ASD) show abnormally connected brains. We used the model of disease-discordant identical twins to test the hypothesis that higher-order diffusion MRI protocols are able to detect abnormal connectivity in a single subject. We studied the structural connectivity of the brain of a child with ASD, and of that of his unaffected identical twin, using high angular resolution diffusion imaging (HARDI) probabilistic tractography. Cortical regions were automatically parcellated from high-resolution structural images, and HARDI-based connection matrices were produced for statistical comparison. Differences in diffusion indexes between subjects were tested by Wilcoxon signed rank test. Tracts were defined as discordant when they showed a between-subject difference of 10 percent or more. Around 11 percent of the discordant intra-hemispheric tracts showed lower fractional anisotropy (FA) values in the ASD twin, while only 1 percent showed higher values. This difference was significant. Our findings in a disease-discordant identical twin pair confirm previous literature consistently reporting lower FA values in children with ASD. PMID:26446271

  7. Molecular outflows and hot molecular core in G24.78+0.08 at sub-arcsecond angular resolution

    CERN Document Server

    Beltran, M T; Zhang, Q; Galvan-Madrid, R; Beuther, H; Fallscheer, C; Neri, R; Codella, C

    2011-01-01

    Context. This study is part of a large project to study the physics of accretion and molecular outflows towards a selected sample of high-mass star-forming regions that show evidence of infall and rotation from previous studies. Aims. We wish to make a thorough study at high-angular resolution of the structure and kinematics of the HMCs and corresponding molecular outflows in the high-mass star-forming region G24.78+0.08. Methods. We carried out SMA and IRAM PdBI observations at 1.3 and 1.4 mm, respectively, of dust and of typical high-density and molecular outflow tracers with resolutions of <1". Complementary IRAM 30-m 12CO and 13CO observations were carried out to recover the short spacing information of the molecular outflows. Results. The millimeter continuum emission towards cores G24 A1 and A2 has been resolved into 3 and 2 cores, respectively, and named A1, A1b, A1c, A2, and A2b. All these cores are aligned in a southeast-northwest direction coincident with that of the molecular outflows detected i...

  8. Martian terrain - 3D

    Science.gov (United States)

    1997-01-01

    This area of terrain near the Sagan Memorial Station was taken on Sol 3 by the Imager for Mars Pathfinder (IMP). 3D glasses are necessary to identify surface detail.The IMP is a stereo imaging system with color capability provided by 24 selectable filters -- twelve filters per 'eye.' It stands 1.8 meters above the Martian surface, and has a resolution of two millimeters at a range of two meters.Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  9. Towards automated firearm identification based on high resolution 3D data: rotation-invariant features for multiple line-profile-measurement of firing pin shapes

    Science.gov (United States)

    Fischer, Robert; Vielhauer, Claus

    2015-03-01

    Understanding and evaluation of potential evidence, as well as evaluation of automated systems for forensic examinations currently play an important role within the domain of digital crime scene analysis. The application of 3D sensing and pattern recognition systems for automatic extraction and comparison of firearm related tool marks is an evolving field of research within this domain. In this context, the design and evaluation of rotation-invariant features for use on topography data play a particular important role. In this work, we propose and evaluate a 3D imaging system along with two novel features based on topography data and multiple profile-measurement-lines for automatic matching of firing pin shapes. Our test set contains 72 cartridges of three manufactures shot by six different 9mm guns. The entire pattern recognition workflow is addressed. This includes the application of confocal microscopy for data acquisition, preprocessing covers outlier handling, data normalization, as well as necessary segmentation and registration. Feature extraction involves the two introduced features for automatic comparison and matching of 3D firing pin shapes. The introduced features are called `Multiple-Circle-Path' (MCP) and `Multiple-Angle-Path' (MAP). Basically both features are compositions of freely configurable amounts of circular or straight path-lines combined with statistical evaluations. During the first part of evaluation (E1), we examine how well it is possible to differentiate between two 9mm weapons of the same mark and model. During second part (E2), we evaluate the discrimination accuracy regarding the set of six different 9mm guns. During the third part (E3), we evaluate the performance of the features in consideration of different rotation angles. In terms of E1, the best correct classification rate is 100% and in terms of E2 the best result is 86%. The preliminary results for E3 indicate robustness of both features regarding rotation. However, in future

  10. Collaborative Project. 3D Radiative Transfer Parameterization Over Mountains/Snow for High-Resolution Climate Models. Fast physics and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Liou, Kuo-Nan [Univ. of California, Los Angeles, CA (United States)

    2016-02-09

    Under the support of the aforementioned DOE Grant, we have made two fundamental contributions to atmospheric and climate sciences: (1) Develop an efficient 3-D radiative transfer parameterization for application to intense and intricate inhomogeneous mountain/snow regions. (2) Innovate a stochastic parameterization for light absorption by internally mixed black carbon and dust particles in snow grains for understanding and physical insight into snow albedo reduction in climate models. With reference to item (1), we divided solar fluxes reaching mountain surfaces into five components: direct and diffuse fluxes, direct- and diffuse-reflected fluxes, and coupled mountain-mountain flux. “Exact” 3D Monte Carlo photon tracing computations can then be performed for these solar flux components to compare with those calculated from the conventional plane-parallel (PP) radiative transfer program readily available in climate models. Subsequently, Parameterizations of the deviations of 3D from PP results for five flux components are carried out by means of the multiple linear regression analysis associated with topographic information, including elevation, solar incident angle, sky view factor, and terrain configuration factor. We derived five regression equations with high statistical correlations for flux deviations and successfully incorporated this efficient parameterization into WRF model, which was used as the testbed in connection with the Fu-Liou-Gu PP radiation scheme that has been included in the WRF physics package. Incorporating this 3D parameterization program, we conducted simulations of WRF and CCSM4 to understand and evaluate the mountain/snow effect on snow albedo reduction during seasonal transition and the interannual variability for snowmelt, cloud cover, and precipitation over the Western United States presented in the final report. With reference to item (2), we developed in our previous research a geometric-optics surface-wave approach (GOS) for the

  11. Some experiments using preconditioning techniques and second-order iterative methods for the resolution of the 3D transient neutron diffusion equation

    International Nuclear Information System (INIS)

    We present a numerical study about the application of two versions of a second-degree iterative method for the solution of the sparse linear systems arising in the discretization of the 3D multi-group time-dependent Neutron Diffusion Equation. In addition, we propose some modifications to them, as well as a study of well-known preconditioning techniques in order to improve their convergence and accuracy when they are applied to a sequence of solutions in time of a real nuclear core transient. This is important for studies of stability and security of nuclear reactors. (authors)

  12. Resolution of 3D mechanical drawing and distributed drafting techniques%三维机械制图分解与分布式制图技术

    Institute of Scientific and Technical Information of China (English)

    应华; 李凯里

    2006-01-01

    探索利用目前日趋成熟的分布式计算技术,解决大型复杂三维机械图形制图效率问题.以汽车设计为例,讨论了三维机械图形分解的思路和方法,提出了"共享空间+Java3D"和基于CORBA规范的对象共享分布式CAD计算模式.

  13. 3D micro-optical elements for generation of tightly focused vortex beams

    OpenAIRE

    Balčytis Armandas; Hakobyan Davit; Gabalis Martynas; Žukauskas Albertas; Urbonas Darius; Malinauskas Mangirdas; Petruškevičius Raimondas; Brasselet Etienne; Juodkazis Saulius

    2015-01-01

    Orbital angular momentum carrying light beams are usedfor optical trapping and manipulation. This emerging trend provides new challenges involving device miniaturization for improved performance and enhanced functionality at the microscale. Here we discus a new fabrication method based on combining the additive 3D structuring capability laser photopolymerization and the substractive sub-wavelength resolution patterning of focused ion beam lithography to produce micro-optical elements capable ...

  14. From 3D view to 3D print

    Science.gov (United States)

    Dima, M.; Farisato, G.; Bergomi, M.; Viotto, V.; Magrin, D.; Greggio, D.; Farinato, J.; Marafatto, L.; Ragazzoni, R.; Piazza, D.

    2014-08-01

    In the last few years 3D printing is getting more and more popular and used in many fields going from manufacturing to industrial design, architecture, medical support and aerospace. 3D printing is an evolution of bi-dimensional printing, which allows to obtain a solid object from a 3D model, realized with a 3D modelling software. The final product is obtained using an additive process, in which successive layers of material are laid down one over the other. A 3D printer allows to realize, in a simple way, very complex shapes, which would be quite difficult to be produced with dedicated conventional facilities. Thanks to the fact that the 3D printing is obtained superposing one layer to the others, it doesn't need any particular work flow and it is sufficient to simply draw the model and send it to print. Many different kinds of 3D printers exist based on the technology and material used for layer deposition. A common material used by the toner is ABS plastics, which is a light and rigid thermoplastic polymer, whose peculiar mechanical properties make it diffusely used in several fields, like pipes production and cars interiors manufacturing. I used this technology to create a 1:1 scale model of the telescope which is the hardware core of the space small mission CHEOPS (CHaracterising ExOPlanets Satellite) by ESA, which aims to characterize EXOplanets via transits observations. The telescope has a Ritchey-Chrétien configuration with a 30cm aperture and the launch is foreseen in 2017. In this paper, I present the different phases for the realization of such a model, focusing onto pros and cons of this kind of technology. For example, because of the finite printable volume (10×10×12 inches in the x, y and z directions respectively), it has been necessary to split the largest parts of the instrument in smaller components to be then reassembled and post-processed. A further issue is the resolution of the printed material, which is expressed in terms of layers

  15. 3D virtuel udstilling

    DEFF Research Database (Denmark)

    Tournay, Bruno; Rüdiger, Bjarne

    2006-01-01

    3d digital model af Arkitektskolens gård med virtuel udstilling af afgangsprojekter fra afgangen sommer 2006. 10 s.......3d digital model af Arkitektskolens gård med virtuel udstilling af afgangsprojekter fra afgangen sommer 2006. 10 s....

  16. High-resolution cartilage imaging of the knee at 3 T: Basic evaluation of modern isotropic 3D MR-sequences

    International Nuclear Information System (INIS)

    Purpose: To evaluate qualitative and quantitative image quality parameters of isotropic three-dimensional (3D) cartilage-imaging magnetic resonance (MR)-sequences at 3 T. Materials and methods: The knees of 10 healthy volunteers (mean age, 24.4 ± 5.6 years) were scanned at a 3 T MR scanner with water-excited 3D Fast-Low Angle Shot (FLASH), True Fast Imaging with Steady-state Precession (TrueFISP), Sampling Perfection with Application-optimized Contrast using different flip-angle Evolutions (SPACE) as well as conventional and two individually weighted Double-Echo Steady-State (DESS) sequences. The MR images were evaluated qualitatively and quantitatively (signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), SNR efficiency, CNR efficiency). Quantitative parameters were compared by means of a Tukey-test and sequences were ranked according to SNR/CNR, SNR/CNR efficiency and qualitative image grading. Results: The highest SNR was measured for SPACE (34.0 ± 5.6), the highest CNR/CNR efficiency (cartilage/fluid) for the individually weighted DESS (46.9 ± 18.0/2.18 ± 0.84). SPACE, individually weighted and conventional DESS were ranked best with respect to SNR/CNR and SNR/CNR efficiency. The DESS sequences also performed best in the qualitative evaluation. TrueFISP performed worse, FLASH worst. The individually weighted DESS sequences were generally better than the conventional DESS with the significant increase of cartilage-fluid contrast (46.9 ± 18.0/31.9 ± 11.4 versus 22.0 ± 7.3) as main advantage. Conclusion: Individually weighted DESS is the most promising candidate; all tested sequences performed better than FLASH.

  17. 3D laptop for defense applications

    Science.gov (United States)

    Edmondson, Richard; Chenault, David

    2012-06-01

    Polaris Sensor Technologies has developed numerous 3D display systems using a US Army patented approach. These displays have been developed as prototypes for handheld controllers for robotic systems and closed hatch driving, and as part of a TALON robot upgrade for 3D vision, providing depth perception for the operator for improved manipulation and hazard avoidance. In this paper we discuss the prototype rugged 3D laptop computer and its applications to defense missions. The prototype 3D laptop combines full temporal and spatial resolution display with the rugged Amrel laptop computer. The display is viewed through protective passive polarized eyewear, and allows combined 2D and 3D content. Uses include robot tele-operation with live 3D video or synthetically rendered scenery, mission planning and rehearsal, enhanced 3D data interpretation, and simulation.

  18. 3-D tracking in a miniature time projection chamber

    Energy Technology Data Exchange (ETDEWEB)

    Vahsen, S.E., E-mail: sevahsen@hawaii.edu [University of Hawaii, 2505 Correa Road, Honolulu, HI 96822 (United States); Hedges, M.T.; Jaegle, I.; Ross, S.J.; Seong, I.S.; Thorpe, T.N.; Yamaoka, J. [University of Hawaii, 2505 Correa Road, Honolulu, HI 96822 (United States); Kadyk, J.A.; Garcia-Sciveres, M. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States)

    2015-07-11

    The three-dimensional (3-D) detection of millimeter-scale ionization trails is of interest for detecting nuclear recoils in directional fast neutron detectors and in direction-sensitive searches for weakly interacting massive particles (WIMPs), which may constitute the Dark Matter of the universe. We report on performance characterization of a miniature gas target Time Projection Chamber (TPC) where the drift charge is avalanche-multiplied with Gas Electron Multipliers (GEMs) and detected with the ATLAS FE-I3 Pixel Application Specific Integrated Circuit (ASIC). We report on measurements of gain, gain resolution, point resolution, diffusion, angular resolution, and energy resolution with low-energy X-rays, cosmic rays, and alpha particles, using the gases Ar:CO{sub 2} (70:30) and He:CO{sub 2} (70:30) at atmospheric pressure. We discuss the implications for future, larger directional neutron and Dark Matter detectors. With an eye to designing and selecting components for these, we generalize our results into analytical expressions for detector performance whenever possible. We conclude by demonstrating the 3-D directional detection of a fast neutron source.

  19. A Novel 2D Image Compression Algorithm Based on Two Levels DWT and DCT Transforms with Enhanced Minimize-Matrix-Size Algorithm for High Resolution Structured Light 3D Surface Reconstruction

    Science.gov (United States)

    Siddeq, M. M.; Rodrigues, M. A.

    2015-09-01

    Image compression techniques are widely used on 2D image 2D video 3D images and 3D video. There are many types of compression techniques and among the most popular are JPEG and JPEG2000. In this research, we introduce a new compression method based on applying a two level discrete cosine transform (DCT) and a two level discrete wavelet transform (DWT) in connection with novel compression steps for high-resolution images. The proposed image compression algorithm consists of four steps. (1) Transform an image by a two level DWT followed by a DCT to produce two matrices: DC- and AC-Matrix, or low and high frequency matrix, respectively, (2) apply a second level DCT on the DC-Matrix to generate two arrays, namely nonzero-array and zero-array, (3) apply the Minimize-Matrix-Size algorithm to the AC-Matrix and to the other high-frequencies generated by the second level DWT, (4) apply arithmetic coding to the output of previous steps. A novel decompression algorithm, Fast-Match-Search algorithm (FMS), is used to reconstruct all high-frequency matrices. The FMS-algorithm computes all compressed data probabilities by using a table of data, and then using a binary search algorithm for finding decompressed data inside the table. Thereafter, all decoded DC-values with the decoded AC-coefficients are combined in one matrix followed by inverse two levels DCT with two levels DWT. The technique is tested by compression and reconstruction of 3D surface patches. Additionally, this technique is compared with JPEG and JPEG2000 algorithm through 2D and 3D root-mean-square-error following reconstruction. The results demonstrate that the proposed compression method has better visual properties than JPEG and JPEG2000 and is able to more accurately reconstruct surface patches in 3D.

  20. Development of an iterative reconstruction method to overcome 2D detector low resolution limitations in MLC leaf position error detection for 3D dose verification in IMRT

    NARCIS (Netherlands)

    Visser, Ruurd; Godart, J.; Wauben, D. J. L.; Langendijk, J. A.; van't Veld, A. A.; Korevaar, E. W.

    2016-01-01

    The objective of this study was to introduce a new iterative method to reconstruct multi leaf collimator (MLC) positions based on low resolution ionization detector array measurements and to evaluate its error detection performance. The iterative reconstruction method consists of a fluence model, a

  1. An effective hyper-resolution pseudo-3D implementation of small scale hydrological features to improve regional and global climate studies

    Science.gov (United States)

    Hazenberg, P.; Broxton, P. D.; Gochis, D. J.; Niu, G.; Pelletier, J. D.; Troch, P. A.; Zeng, X.

    2013-12-01

    Global land surface processes play an important role in the land-atmosphere exchanges of energy, water, and trace gases. As such, correct representation of the different hydrological processes has long been an important research topic in climate modeling. Historically, these processes were presented at a relatively coarse horizontal resolution, focusing mainly on the vertical hydrological response, while lateral exchanges were either disregarded or implemented in a relatively crude manner. Increases in computational power have led to higher resolution regional and global land surface models. For the coming years, it is anticipated that these models will simulate the hydrological response of the earth surface at a 100-1000 meter pixel size, which is stated as hyper-resolution earth surface modeling. At these relatively high resolutions, correct representation of groundwater, including lateral interactions across pixels and with the channel network, becomes important. Next to that, at these high resolutions elevation differences have a larger impact on the hydrological response and therefore need to be represented properly. We will present a new hydrological framework specifically developed to operate at these hyper-resolutions. Our new approach discriminates between differences in the hydrological response of hillslopes, riparian zones, wetlands and flat regions within a given pixel, while interacting with the channel network and the atmosphere. Instead of applying the traditional conceptual approach, these interactions are incorporated using a physically-based approach. In order to be able to differentiate between these different hydrological features, globally available high-resolution 30 meter DEM data were analyzed using a state-of-the-art digital geomorphological identification method. Based on these techniques, local estimates of soil depth, hillslope width functions, channel network density, etc. were also obtained that are used as input to the model In the

  2. The complex evolutionary paths of local infrared bright galaxies: a high angular resolution mid-infrared view

    CERN Document Server

    Alonso-Herrero, A; Roche, P F; Hernan-Caballero, A; Aretxaga, I; Martinez-Paredes, M; Almeida, C Ramos; Pereira-Santaella, M; Diaz-Santos, T; Levenson, N A; Packham, C; Colina, L; Esquej, P; Gonzalez-Martin, O; Ichikawa, K; Imanishi, M; Espinosa, J M Rodriguez; Telesco, C

    2016-01-01

    We investigate the evolutionary connection between local IR-bright galaxies ($\\log L_{\\rm IR}\\ge 11.4\\,L_\\odot$) and quasars. We use high angular resolution ($\\sim$ 0.3-0.4 arcsec $\\sim$ few hundred parsecs) $8-13\\,\\mu$m ground-based spectroscopy to disentangle the AGN mid-IR properties from those of star formation. The comparison between the nuclear $11.3\\,\\mu$m PAH feature emission and that measured with Spitzer/IRS indicates that the star formation is extended over a few kpc in the IR-bright galaxies. The AGN contribution to the total IR luminosity of IR-bright galaxies is lower than in quasars. Although the dust distribution is predicted to change as IR-bright galaxies evolve to IR-bright quasars and then to optical quasars, we show that the AGN mid-IR emission of all the quasars in our sample is not significantly different. In contrast, the nuclear emission of IR-bright galaxies with low AGN contributions appears more heavily embedded in dust although there is no clear trend with the interaction stage or...

  3. Thin fused silica optics for a few arcsec angular resolution and large collecting area x-ray telescope

    Science.gov (United States)

    Citterio, O.; Civitani, M. M.; Pareschi, G.; Basso, S.; Campana, S.; Conconi, P.; Ghigo, M.; Mattaini, E.; Moretti, A.; Parodi, G.; Tagliaferri, G.

    2013-09-01

    The implementation of a X-ray mission with high imaging capabilities, similar to those achieved with Chandra (SMART-X project, led by CfA and involving several other US Institutes. This project is based on adjustable segments of thin foil mirrors with piezo-electric actuators, aiming to achieve an effective area mirrors are based on Si substrates that are super-polished and figured starting from a bulky Si ingot, from which they are properly cut. Here we propose an alternative method based on precise direct grinding, figuring and polishing of thin (a few mm) glass shells with innovative deterministic polishing methods. This is followed by a final correction via ion figuring to obtain the desired accuracy in order to achieve the 1 arc sec HEW requirement. For this purpose, a temporary stiffening structure is used to support the shell from the polishing operations up to its integration in the telescope supporting structure. We will present the technological process under development, the results achieved so far and some mission scenarios based on this kind of optics, aiming to achieve an effective area more than 10 times larger than Chandra and an angular resolution of 1 arcsec HEW on axis and of a few arcsec off-axis across a large field of view (1 deg in diameter).

  4. Perception of detail in 3D images

    NARCIS (Netherlands)

    Heyndrickx, I.; Kaptein, R.

    2009-01-01

    A lot of current 3D displays suffer from the fact that their spatial resolution is lower compared to their 2D counterparts. One reason for this is that the multiple views needed to generate 3D are often spatially multiplexed. Besides this, imperfect separation of the left- and right-eye view leads t

  5. 3D printing of functional structures

    NARCIS (Netherlands)

    Krijnen, G.J.M.

    2016-01-01

    The technology colloquial known as ‘3D printing’ has developed in such diversity in printing technologies and application fields that meanwhile it seems anything is possible. However, clearly the ideal 3D Printer, with high resolution, multi-material capability, fast printing, etc. is yet to be deve

  6. Blender 3D cookbook

    CERN Document Server

    Valenza, Enrico

    2015-01-01

    This book is aimed at the professionals that already have good 3D CGI experience with commercial packages and have now decided to try the open source Blender and want to experiment with something more complex than the average tutorials on the web. However, it's also aimed at the intermediate Blender users who simply want to go some steps further.It's taken for granted that you already know how to move inside the Blender interface, that you already have 3D modeling knowledge, and also that of basic 3D modeling and rendering concepts, for example, edge-loops, n-gons, or samples. In any case, it'

  7. TU-F-17A-04: Respiratory Phase-Resolved 3D MRI with Isotropic High Spatial Resolution: Determination of the Average Breathing Motion Pattern for Abdominal Radiotherapy Planning

    International Nuclear Information System (INIS)

    Purpose: To develop a retrospective 4D-MRI technique (respiratory phase-resolved 3D-MRI) for providing an accurate assessment of tumor motion secondary to respiration. Methods: A 3D projection reconstruction (PR) sequence with self-gating (SG) was developed for 4D-MRI on a 3.0T MRI scanner. The respiration-induced shift of the imaging target was recorded by SG signals acquired in the superior-inferior direction every 15 radial projections (i.e. temporal resolution 98 ms). A total of 73000 radial projections obtained in 8-min were retrospectively sorted into 10 time-domain evenly distributed respiratory phases based on the SG information. Ten 3D image sets were then reconstructed offline. The technique was validated on a motion phantom (gadolinium-doped water-filled box, frequency of 10 and 18 cycles/min) and humans (4 healthy and 2 patients with liver tumors). Imaging protocol included 8-min 4D-MRI followed by 1-min 2D-realtime (498 ms/frame) MRI as a reference. Results: The multiphase 3D image sets with isotropic high spatial resolution (1.56 mm) permits flexible image reformatting and visualization. No intra-phase motion-induced blurring was observed. Comparing to 2D-realtime, 4D-MRI yielded similar motion range (phantom: 10.46 vs. 11.27 mm; healthy subject: 25.20 vs. 17.9 mm; patient: 11.38 vs. 9.30 mm), reasonable displacement difference averaged over the 10 phases (0.74mm; 3.63mm; 1.65mm), and excellent cross-correlation (0.98; 0.96; 0.94) between the two displacement series. Conclusion: Our preliminary study has demonstrated that the 4D-MRI technique can provide high-quality respiratory phase-resolved 3D images that feature: a) isotropic high spatial resolution, b) a fixed scan time of 8 minutes, c) an accurate estimate of average motion pattern, and d) minimal intra-phase motion artifact. This approach has the potential to become a viable alternative solution to assess the impact of breathing on tumor motion and determine appropriate treatment margins

  8. TU-F-17A-04: Respiratory Phase-Resolved 3D MRI with Isotropic High Spatial Resolution: Determination of the Average Breathing Motion Pattern for Abdominal Radiotherapy Planning

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Z; Pang, J; Yang, W; Yue, Y; Tuli, R; Fraass, B; Li, D; Fan, Z [Cedars-Sinai Medical Center, Los Angeles, CA (United States)

    2014-06-15

    Purpose: To develop a retrospective 4D-MRI technique (respiratory phase-resolved 3D-MRI) for providing an accurate assessment of tumor motion secondary to respiration. Methods: A 3D projection reconstruction (PR) sequence with self-gating (SG) was developed for 4D-MRI on a 3.0T MRI scanner. The respiration-induced shift of the imaging target was recorded by SG signals acquired in the superior-inferior direction every 15 radial projections (i.e. temporal resolution 98 ms). A total of 73000 radial projections obtained in 8-min were retrospectively sorted into 10 time-domain evenly distributed respiratory phases based on the SG information. Ten 3D image sets were then reconstructed offline. The technique was validated on a motion phantom (gadolinium-doped water-filled box, frequency of 10 and 18 cycles/min) and humans (4 healthy and 2 patients with liver tumors). Imaging protocol included 8-min 4D-MRI followed by 1-min 2D-realtime (498 ms/frame) MRI as a reference. Results: The multiphase 3D image sets with isotropic high spatial resolution (1.56 mm) permits flexible image reformatting and visualization. No intra-phase motion-induced blurring was observed. Comparing to 2D-realtime, 4D-MRI yielded similar motion range (phantom: 10.46 vs. 11.27 mm; healthy subject: 25.20 vs. 17.9 mm; patient: 11.38 vs. 9.30 mm), reasonable displacement difference averaged over the 10 phases (0.74mm; 3.63mm; 1.65mm), and excellent cross-correlation (0.98; 0.96; 0.94) between the two displacement series. Conclusion: Our preliminary study has demonstrated that the 4D-MRI technique can provide high-quality respiratory phase-resolved 3D images that feature: a) isotropic high spatial resolution, b) a fixed scan time of 8 minutes, c) an accurate estimate of average motion pattern, and d) minimal intra-phase motion artifact. This approach has the potential to become a viable alternative solution to assess the impact of breathing on tumor motion and determine appropriate treatment margins

  9. High-Resolution X-Ray Techniques as New Tool to Investigate the 3D Vascularization of Engineered-Bone Tissue

    Science.gov (United States)

    Bukreeva, Inna; Fratini, Michela; Campi, Gaetano; Pelliccia, Daniele; Spanò, Raffaele; Tromba, Giuliana; Brun, Francesco; Burghammer, Manfred; Grilli, Marco; Cancedda, Ranieri; Cedola, Alessia; Mastrogiacomo, Maddalena

    2015-01-01

    The understanding of structure–function relationships in normal and pathologic mammalian tissues is at the basis of a tissue engineering (TE) approach for the development of biological substitutes to restore or improve tissue function. In this framework, it is interesting to investigate engineered bone tissue, formed when porous ceramic constructs are loaded with bone marrow stromal cells (BMSC) and implanted in vivo. To monitor the relation between bone formation and vascularization, it is important to achieve a detailed imaging and a quantitative description of the complete three-dimensional vascular network in such constructs. Here, we used synchrotron X-ray phase-contrast micro-tomography to visualize and analyze the three-dimensional micro-vascular networks in bone-engineered constructs, in an ectopic bone formation mouse-model. We compared samples seeded and not seeded with BMSC, as well as samples differently stained or unstained. Thanks to the high quality of the images, we investigated the 3D distribution of both vessels and collagen matrix and we obtained quantitative information for all different samples. We propose our approach as a tool for quantitative studies of angiogenesis in TE and for any pre-clinical investigation where a quantitative analysis of the vascular network is required. PMID:26442248

  10. MISTiC Winds, a Micro-Satellite Constellation Approach to High Resolution Observations of the Atmosphere using Infrared Sounding and 3D Winds Measurements

    Science.gov (United States)

    Maschhoff, K. R.; Polizotti, J. J.; Susskind, J.; Aumann, H. H.

    2015-12-01

    MISTiCTM Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiC's extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a 27U-class CubeSat or an ESPA-Class micro-satellite. Low fabrication and launch costs enable a LEO sun-synchronous sounding constellation that would collectively provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's Atmospheric Infrared Sounder that was built by BAE Systems and operates aboard the AQUA satellite. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenas-at much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. Key technical risks are being reduced through laboratory and airborne testing under NASA's Instrument Incubator Program.

  11. Advanced 3D Object Identification System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Optra will build an Advanced 3D Object Identification System utilizing three or more high resolution imagers spaced around a launch platform. Data from each imager...

  12. RELAP5-3D User Problems

    Energy Technology Data Exchange (ETDEWEB)

    Riemke, Richard Allan

    2002-09-01

    The Reactor Excursion and Leak Analysis Program with 3D capability1 (RELAP5-3D) is a reactor system analysis code that has been developed at the Idaho National Engineering and Environmental Laboratory (INEEL) for the U. S. Department of Energy (DOE). The 3D capability in RELAP5-3D includes 3D hydrodynamics2 and 3D neutron kinetics3,4. Assessment, verification, and validation of the 3D capability in RELAP5-3D is discussed in the literature5,6,7,8,9,10. Additional assessment, verification, and validation of the 3D capability of RELAP5-3D will be presented in other papers in this users seminar. As with any software, user problems occur. User problems usually fall into the categories of input processing failure, code execution failure, restart/renodalization failure, unphysical result, and installation. This presentation will discuss some of the more generic user problems that have been reported on RELAP5-3D as well as their resolution.

  13. 3D打印技术对著作权制度的冲击与回应%Challenges and Resolutions for Copyright Institution of 3D Printing

    Institute of Scientific and Technical Information of China (English)

    王鑫

    2015-01-01

    The 3D printing bring a lot of significant challenges to Copyright Institution,such as lay Copyright Law great stress on the task that should clear and definite the boundary of "Copy" as quickly as possible,sway some provisions of limitations on Rights under the "Fair Use" regulation,and query the rationality that mitigate or annul a punishment due to the "Technological Neutrality" principle. Based on the Comparative Studies of Regulations on the Protection of Layout-designs of Integrated Circuits, the thesis advises that it is necessary for Copyright Institution to enlarge the content of "Copy",revise the provisions of "Fair Use" and make innovations on technology management process to answer these challenges.%3D打印技术的出现对著作权制度产生了巨大冲击,它不仅加剧了明确作品“复制”行为范围的迫切性,动摇了“合理使用”限制中部分规定的必要性,还使得对于“技术中立”原则引致侵权责任减免的合理性受到质疑。为回应相关技术发展带来的挑战,结合《集成电路布图设计保护条例》保护模式对比探讨,认为有必要适时拓宽“复制”行为范围,进一步规范“合理使用”的行使,创新技术管理模式以完善著作权制度。

  14. Diffusible iodine-based contrast-enhanced computed tomography (diceCT): an emerging tool for rapid, high-resolution, 3-D imaging of metazoan soft tissues.

    Science.gov (United States)

    Gignac, Paul M; Kley, Nathan J; Clarke, Julia A; Colbert, Matthew W; Morhardt, Ashley C; Cerio, Donald; Cost, Ian N; Cox, Philip G; Daza, Juan D; Early, Catherine M; Echols, M Scott; Henkelman, R Mark; Herdina, A Nele; Holliday, Casey M; Li, Zhiheng; Mahlow, Kristin; Merchant, Samer; Müller, Johannes; Orsbon, Courtney P; Paluh, Daniel J; Thies, Monte L; Tsai, Henry P; Witmer, Lawrence M

    2016-06-01

    Morphologists have historically had to rely on destructive procedures to visualize the three-dimensional (3-D) anatomy of animals. More recently, however, non-destructive techniques have come to the forefront. These include X-ray computed tomography (CT), which has been used most commonly to examine the mineralized, hard-tissue anatomy of living and fossil metazoans. One relatively new and potentially transformative aspect of current CT-based research is the use of chemical agents to render visible, and differentiate between, soft-tissue structures in X-ray images. Specifically, iodine has emerged as one of the most widely used of these contrast agents among animal morphologists due to its ease of handling, cost effectiveness, and differential affinities for major types of soft tissues. The rapid adoption of iodine-based contrast agents has resulted in a proliferation of distinct specimen preparations and scanning parameter choices, as well as an increasing variety of imaging hardware and software preferences. Here we provide a critical review of the recent contributions to iodine-based, contrast-enhanced CT research to enable researchers just beginning to employ contrast enhancement to make sense of this complex new landscape of methodologies. We provide a detailed summary of recent case studies, assess factors that govern success at each step of the specimen storage, preparation, and imaging processes, and make recommendations for standardizing both techniques and reporting practices. Finally, we discuss potential cutting-edge applications of diffusible iodine-based contrast-enhanced computed tomography (diceCT) and the issues that must still be overcome to facilitate the broader adoption of diceCT going forward. PMID:26970556

  15. A 3D high resolution ex vivo white matter atlas of the common squirrel monkey (saimiri sciureus) based on diffusion tensor imaging

    Science.gov (United States)

    Gao, Yurui; Parvathaneni, Prasanna; Schilling, Kurt G.; Wang, Feng; Stepniewska, Iwona; Xu, Zhoubing; Choe, Ann S.; Ding, Zhaohua; Gore, John C.; Chen, Li min; Landman, Bennett A.; Anderson, Adam W.

    2016-03-01

    Modern magnetic resonance imaging (MRI) brain atlases are high quality 3-D volumes with specific structures labeled in the volume. Atlases are essential in providing a common space for interpretation of results across studies, for anatomical education, and providing quantitative image-based navigation. Extensive work has been devoted to atlas construction for humans, macaque, and several non-primate species (e.g., rat). One notable gap in the literature is the common squirrel monkey - for which the primary published atlases date from the 1960's. The common squirrel monkey has been used extensively as surrogate for humans in biomedical studies, given its anatomical neuro-system similarities and practical considerations. This work describes the continued development of a multi-modal MRI atlas for the common squirrel monkey, for which a structural imaging space and gray matter parcels have been previously constructed. This study adds white matter tracts to the atlas. The new atlas includes 49 white matter (WM) tracts, defined using diffusion tensor imaging (DTI) in three animals and combines these data to define the anatomical locations of these tracks in a standardized coordinate system compatible with previous development. An anatomist reviewed the resulting tracts and the inter-animal reproducibility (i.e., the Dice index of each WM parcel across animals in common space) was assessed. The Dice indices range from 0.05 to 0.80 due to differences of local registration quality and the variation of WM tract position across individuals. However, the combined WM labels from the 3 animals represent the general locations of WM parcels, adding basic connectivity information to the atlas.

  16. 3D architecture modeling of reservoir compartments in a Shingled Turbidite Reservoir using high-resolution seismic data and sparse well control, example from Mars {open_quotes}Pink{close_quotes} reservoir, Mississippi Canyon Area, Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Chapin, M.A.; Mahaffie, M.J.; Tiller, G.M. [Shell Exploration and Production Technology Co., Houston, TX (United States)

    1996-12-31

    Economics of most deep-water development projects require large reservoir volumes to be drained with relatively few wells. The presence of reservoir compartments must therefore be detected and planned for in a pre-development stage. We have used 3-D seismic data to constrain large-scale, deterministic reservoir bodies in a 3-D architecture model of Pliocene-turbidite sands of the {open_quotes}E{close_quotes} or {open_quotes}Pink{close_quotes} reservoir, Prospect Mars, Mississippi Canyon Areas 763 and 807, Gulf of Mexico. Reservoir compartmentalization is influenced by stratigraphic shingling, which in turn is caused by low accommodation space predentin the upper portion of a ponded seismic sequence within a salt withdrawal mini-basin. The accumulation is limited by updip onlap onto a condensed section marl, and by lateral truncation by a large scale submarine erosion surface. Compartments were suggested by RFT pressure variations and by geochemical analysis of RFT fluid samples. A geological interpretation derived from high-resolution 3-D seismic and three wells was linked to 3-D architecture models through seismic inversion, resulting in a reservoir all available data. Distinguishing subtle stratigraphical shingles from faults was accomplished by detailed, loop-level mapping, and was important to characterize the different types of reservoir compartments. Seismic inversion was used to detune the seismic amplitude, adjust sandbody thickness, and update the rock properties. Recent development wells confirm the architectural style identified. This modeling project illustrates how high-quality seismic data and architecture models can be combined in a pre-development phase of a prospect, in order to optimize well placement.

  17. 3D architecture modeling of reservoir compartments in a Shingled Turbidite Reservoir using high-resolution seismic data and sparse well control, example from Mars [open quotes]Pink[close quotes] reservoir, Mississippi Canyon Area, Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Chapin, M.A.; Mahaffie, M.J.; Tiller, G.M. (Shell Exploration and Production Technology Co., Houston, TX (United States))

    1996-01-01

    Economics of most deep-water development projects require large reservoir volumes to be drained with relatively few wells. The presence of reservoir compartments must therefore be detected and planned for in a pre-development stage. We have used 3-D seismic data to constrain large-scale, deterministic reservoir bodies in a 3-D architecture model of Pliocene-turbidite sands of the [open quotes]E[close quotes] or [open quotes]Pink[close quotes] reservoir, Prospect Mars, Mississippi Canyon Areas 763 and 807, Gulf of Mexico. Reservoir compartmentalization is influenced by stratigraphic shingling, which in turn is caused by low accommodation space predentin the upper portion of a ponded seismic sequence within a salt withdrawal mini-basin. The accumulation is limited by updip onlap onto a condensed section marl, and by lateral truncation by a large scale submarine erosion surface. Compartments were suggested by RFT pressure variations and by geochemical analysis of RFT fluid samples. A geological interpretation derived from high-resolution 3-D seismic and three wells was linked to 3-D architecture models through seismic inversion, resulting in a reservoir all available data. Distinguishing subtle stratigraphical shingles from faults was accomplished by detailed, loop-level mapping, and was important to characterize the different types of reservoir compartments. Seismic inversion was used to detune the seismic amplitude, adjust sandbody thickness, and update the rock properties. Recent development wells confirm the architectural style identified. This modeling project illustrates how high-quality seismic data and architecture models can be combined in a pre-development phase of a prospect, in order to optimize well placement.

  18. Thin monolithic glass shells for future high angular resolution and large collecting area x-ray telescope

    Science.gov (United States)

    Civitani, M. M.; Citterio, O.; Ghigo, M.; Mattaini, E.; Pareschi, G.; Parodi, G.

    2013-09-01

    One of the most difficult requests to be accomplished from the technological point of view for next generation x-ray telescopes is to combine high angular resolution and effective area. A significant increase of effective area can be reached with high precision but at the same time thin (2-3 mm thickness for mirror diameters of 30-110 cm) glass mirror shells. In the last few years the Brera Observatory has lead a development program for realizing this kind of monolithic thin glass shell. The fused silica has been chosen as shell substrate due to its thermal and mechanical properties. To bring the mirror shells to the needed accuracy, we have adopted a deterministic direct polishing method (already used for past missions as Einstein, Rosat, Chandra) to ten time thinner shells. The technological challenge has been solved using a temporary stiffening structure that allows the handling and the machining of so thin glass shells. The results obtained with a prototype shell at an intermediate stage of its development (17'' HEW measured in full illumination mode with x-ray) indicate that the working concept is feasible and can be further exploited using the very large Ion Beam Facility available in our labs for the final high accuracy figuring of the thin shells. In this paper we present the required tolerances for the shell realization, the shells production chain flow and the ion beam facility up grading. Forecast on figuring time and expected performances of the figuring will also be given on the basis on the metrological data collected during past shell development.

  19. Molecular outflows and hot molecular cores in G24.78+0.08 at sub-arcsecond angular resolution

    Science.gov (United States)

    Beltrán, M. T.; Cesaroni, R.; Zhang, Q.; Galván-Madrid, R.; Beuther, H.; Fallscheer, C.; Neri, R.; Codella, C.

    2011-08-01

    Context. This study is part of a large project to study the physics of accretion and molecular outflows towards a selected sample of high-mass star-forming regions that show evidence of infall and rotation from previous studies. Aims: We wish to make a thorough study at high-angular resolution of the structure and kinematics of the HMCs and corresponding molecular outflows in the high-mass star-forming region G24.78+0.08. Methods: We carried out SMA and IRAM PdBI observations at 1.3 and 1.4 mm, respectively, of dust and of typical high-density and molecular outflow tracers with resolutions of < 1″. Complementary IRAM 30-m 12CO and 13CO observations were carried out to recover the short spacing information of the molecular outflows. Results: The millimeter continuum emission towards cores G24 A1 and A2 has been resolved into three and two cores, respectively, and named A1, A1b, A1c, A2, and A2b. All these cores are aligned in a southeast-northwest direction coincident with that of the molecular outflows detected in the region, which suggests a preferential direction for star formation in this region. The masses of the cores range from 7 to 22 M⊙, and the rotational temperatures from 128 to 180 K. The high-density tracers have revealed the existence of two velocity components towards A1. One of them peaks close to the position of the millimeter continuum peak and of the HC Hii region and is associated with the velocity gradient seen in CH3CN towards this core, while the other one peaks southwest of core A1 and is not associated with any millimeter continuum emission peak. The position-velocity plots along outflow A and the 13CO (2-1) averaged blueshifted and redshifted emission indicate that this outflow is driven by core A2. Core A1 apparently does not drive any outflow. The knotty appearance of the highly collimated outflow C and the 12CO position-velocity plot suggest an episodic outflow, where the knots are made of swept-up ambient gas.

  20. Radiochromic 3D Detectors

    Science.gov (United States)

    Oldham, Mark

    2015-01-01

    Radiochromic materials exhibit a colour change when exposed to ionising radiation. Radiochromic film has been used for clinical dosimetry for many years and increasingly so recently, as films of higher sensitivities have become available. The two principle advantages of radiochromic dosimetry include greater tissue equivalence (radiologically) and the lack of requirement for development of the colour change. In a radiochromic material, the colour change arises direct from ionising interactions affecting dye molecules, without requiring any latent chemical, optical or thermal development, with important implications for increased accuracy and convenience. It is only relatively recently however, that 3D radiochromic dosimetry has become possible. In this article we review recent developments and the current state-of-the-art of 3D radiochromic dosimetry, and the potential for a more comprehensive solution for the verification of complex radiation therapy treatments, and 3D dose measurement in general.

  1. 3D Projection Installations

    DEFF Research Database (Denmark)

    Halskov, Kim; Johansen, Stine Liv; Bach Mikkelsen, Michelle

    2014-01-01

    Three-dimensional projection installations are particular kinds of augmented spaces in which a digital 3-D model is projected onto a physical three-dimensional object, thereby fusing the digital content and the physical object. Based on interaction design research and media studies, this article...... contributes to the understanding of the distinctive characteristics of such a new medium, and identifies three strategies for designing 3-D projection installations: establishing space; interplay between the digital and the physical; and transformation of materiality. The principal empirical case, From...... Fingerplan to Loop City, is a 3-D projection installation presenting the history and future of city planning for the Copenhagen area in Denmark. The installation was presented as part of the 12th Architecture Biennale in Venice in 2010....

  2. Herramientas SIG 3D

    Directory of Open Access Journals (Sweden)

    Francisco R. Feito Higueruela

    2010-04-01

    Full Text Available Applications of Geographical Information Systems on several Archeology fields have been increasing during the last years. Recent avances in these technologies make possible to work with more realistic 3D models. In this paper we introduce a new paradigm for this system, the GIS Thetrahedron, in which we define the fundamental elements of GIS, in order to provide a better understanding of their capabilities. At the same time the basic 3D characteristics of some comercial and open source software are described, as well as the application to some samples on archeological researchs

  3. TOWARDS: 3D INTERNET

    OpenAIRE

    Ms. Swapnali R. Ghadge

    2013-01-01

    In today’s ever-shifting media landscape, it can be a complex task to find effective ways to reach your desired audience. As traditional media such as television continue to lose audience share, one venue in particular stands out for its ability to attract highly motivated audiences and for its tremendous growth potential the 3D Internet. The concept of '3D Internet' has recently come into the spotlight in the R&D arena, catching the attention of many people, and leading to a lot o...

  4. Bootstrapping 3D fermions

    Science.gov (United States)

    Iliesiu, Luca; Kos, Filip; Poland, David; Pufu, Silviu S.; Simmons-Duffin, David; Yacoby, Ran

    2016-03-01

    We study the conformal bootstrap for a 4-point function of fermions in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge C T . We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N . We also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.

  5. Interaktiv 3D design

    DEFF Research Database (Denmark)

    Villaume, René Domine; Ørstrup, Finn Rude

    2002-01-01

    Projektet undersøger potentialet for interaktiv 3D design via Internettet. Arkitekt Jørn Utzons projekt til Espansiva blev udviklet som et byggesystem med det mål, at kunne skabe mangfoldige planmuligheder og mangfoldige facade- og rumudformninger. Systemets bygningskomponenter er digitaliseret som...... 3D elementer og gjort tilgængelige. Via Internettet er det nu muligt at sammenstille og afprøve en uendelig  række bygningstyper som  systemet blev tænkt og udviklet til....

  6. Unique structure of iC3b resolved at a resolution of 24 Å by 3D-electron microscopy.

    Science.gov (United States)

    Alcorlo, Martin; Martínez-Barricarte, Ruben; Fernández, Francisco J; Rodríguez-Gallego, César; Round, Adam; Vega, M Cristina; Harris, Claire L; de Cordoba, Santiago Rodríguez; Llorca, Oscar

    2011-08-01

    Activation of C3, deposition of C3b on the target surface, and subsequent amplification by formation of a C3-cleaving enzyme (C3-convertase; C3bBb) triggers the effector functions of complement that result in inflammation and cell lysis. Concurrently, surface-bound C3b is proteolyzed to iC3b by factor I and appropriate cofactors. iC3b then interacts with the complement receptors (CR) of the Ig superfamily, CR2 (CD21), CR3 (CD11b/CD18), and CR4 (CD11c/CD18) on leukocytes, down-modulating inflammation, enhancing B cell-mediated immunity, and targeting pathogens for clearance by phagocytosis. Using EM and small-angle X-ray scattering, we now present a medium-resolution structure of iC3b (24 Å). iC3b displays a unique conformation with structural features distinct from any other C3 fragment. The macroglobulin ring in iC3b is similar to that in C3b, whereas the TED (thioester-containing domain) domain and the remnants of the CUB (complement protein subcomponents C1r/C1s, urchin embryonic growth factor and bone morphogenetic protein 1) domain have moved to locations more similar to where they were in native C3. A consequence of this large conformational change is the disruption of the factor B binding site, which renders iC3b unable to assemble a C3-convertase. This structural model also justifies the decreased interaction between iC3b and complement regulators and the recognition of iC3b by the CR of the Ig superfamily, CR2, CR3, and CR4. These data further illustrate the extraordinary conformational versatility of C3 to accommodate a great diversity of functional activities. PMID:21788512

  7. Unique structure of iC3b resolved at a resolution of 24 Å by 3D-electron microscopy.

    Science.gov (United States)

    Alcorlo, Martin; Martínez-Barricarte, Ruben; Fernández, Francisco J; Rodríguez-Gallego, César; Round, Adam; Vega, M Cristina; Harris, Claire L; de Cordoba, Santiago Rodríguez; Llorca, Oscar

    2011-08-01

    Activation of C3, deposition of C3b on the target surface, and subsequent amplification by formation of a C3-cleaving enzyme (C3-convertase; C3bBb) triggers the effector functions of complement that result in inflammation and cell lysis. Concurrently, surface-bound C3b is proteolyzed to iC3b by factor I and appropriate cofactors. iC3b then interacts with the complement receptors (CR) of the Ig superfamily, CR2 (CD21), CR3 (CD11b/CD18), and CR4 (CD11c/CD18) on leukocytes, down-modulating inflammation, enhancing B cell-mediated immunity, and targeting pathogens for clearance by phagocytosis. Using EM and small-angle X-ray scattering, we now present a medium-resolution structure of iC3b (24 Å). iC3b displays a unique conformation with structural features distinct from any other C3 fragment. The macroglobulin ring in iC3b is similar to that in C3b, whereas the TED (thioester-containing domain) domain and the remnants of the CUB (complement protein subcomponents C1r/C1s, urchin embryonic growth factor and bone morphogenetic protein 1) domain have moved to locations more similar to where they were in native C3. A consequence of this large conformational change is the disruption of the factor B binding site, which renders iC3b unable to assemble a C3-convertase. This structural model also justifies the decreased interaction between iC3b and complement regulators and the recognition of iC3b by the CR of the Ig superfamily, CR2, CR3, and CR4. These data further illustrate the extraordinary conformational versatility of C3 to accommodate a great diversity of functional activities.

  8. Towards magnetic 3D x-ray imaging

    Science.gov (United States)

    Fischer, Peter; Streubel, R.; Im, M.-Y.; Parkinson, D.; Hong, J.-I.; Schmidt, O. G.; Makarov, D.

    2014-03-01

    Mesoscale phenomena in magnetism will add essential parameters to improve speed, size and energy efficiency of spin driven devices. Multidimensional visualization techniques will be crucial to achieve mesoscience goals. Magnetic tomography is of large interest to understand e.g. interfaces in magnetic multilayers, the inner structure of magnetic nanocrystals, nanowires or the functionality of artificial 3D magnetic nanostructures. We have developed tomographic capabilities with magnetic full-field soft X-ray microscopy combining X-MCD as element specific magnetic contrast mechanism, high spatial and temporal resolution due to the Fresnel zone plate optics. At beamline 6.1.2 at the ALS (Berkeley CA) a new rotation stage allows recording an angular series (up to 360 deg) of high precision 2D projection images. Applying state-of-the-art reconstruction algorithms it is possible to retrieve the full 3D structure. We will present results on prototypic rolled-up Ni and Co/Pt tubes and glass capillaries coated with magnetic films and compare to other 3D imaging approaches e.g. in electron microscopy. Supported by BES MSD DOE Contract No. DE-AC02-05-CH11231 and ERC under the EU FP7 program (grant agreement No. 306277).

  9. A super-high angular resolution principle for coded-mask X-ray imaging beyond the diffraction limit of a single pinhole

    Institute of Scientific and Technical Information of China (English)

    Chen Zhang; Shuang-Nan Zhang

    2009-01-01

    High angular resolution X-ray imaging is always useful in astrophysics and solar physics. In principle, it can be performed by using coded-mask imaging with a very long mask-detector distance. Previously, the diffraction-interference effect was thought to degrade coded-mask imaging performance dramatically at the low energy end with its very long mask-detector distance. The diffraction-interference effect is described with numerical calculations, and the difffraction-interference cross correlation reconstruction method (DICC) is developed in order to overcome the imaging performance degradation. Based on the DICC, a super-high angular resolution principle (SHARP) for coded-mask X-ray imaging is proposed. The feasibility of coded mask imaging beyond the diffraction limit of a single pinhole is demonstrated with simulations. With the specification that the mask element size is 50 × 50 μm2 and the mask-detector distance is 50 m, the achieved angular resolution is 0.32arcsec above about 10keV and 0.36arcsec at 1.24keV (λ = 1 nm), where diffraction cannot be neglected. The on-axis source location accuracy is better than 0.02 arcsec. Potential applications for solar observations and wide-field X-ray monitors are also briefly discussed.

  10. Tangible 3D Modelling

    DEFF Research Database (Denmark)

    Hejlesen, Aske K.; Ovesen, Nis

    2012-01-01

    This paper presents an experimental approach to teaching 3D modelling techniques in an Industrial Design programme. The approach includes the use of tangible free form models as tools for improving the overall learning. The paper is based on lecturer and student experiences obtained through facil...

  11. 3D Harmonic Echocardiography:

    NARCIS (Netherlands)

    M.M. Voormolen

    2007-01-01

    textabstractThree dimensional (3D) echocardiography has recently developed from an experimental technique in the ’90 towards an imaging modality for the daily clinical practice. This dissertation describes the considerations, implementation, validation and clinical application of a unique

  12. Investigation of hyperfine parameters of semiconductor oxides SnO2 and TiO2 pure and doped with 3d transition methods using spectroscopy of perturbed gamma-gamma angular correlation

    International Nuclear Information System (INIS)

    This study aimed the use of nuclear technique Perturbed γ-γ Angular Correlation Spectroscopy (PAC) to measure the hyperfine interactions in thin films and powder samples of SnO2 and TiO2 pure and doped with transition metals to obtain a systematic investigation of defects and magnetism from an atomic point of view with the main motivation the application in spintronics. The work also focused on the preparation and characterization of samples by conventional techniques such as X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy and magnetization measurements. Pure samples of the films were measured by the systematic variation of thermal treatment and applied magnetic field. These measurements were performed in HISKP at the University of Bonn (Rheinische Friedrich-Wilhelms-Universität Bonn) using 111In(111Cd) or 181Hf (181Ta); at IPEN, in turn, these measurements were performed after the diffusion of the same probe nuclei. Another part of PAC measurements were carried out using 111mCd(111Cd) and 117Cd (117In) in Isotope Mass Separator On-Line (ISOLDE) at Centre Européen Recherche Nucléaire (CERN). The measurements were performed from 8 K to 1173 K. After comparing results from macroscopic techniques with those from PAC, it was concluded that there is a correlation between the defects, magnetism and the mobility of charge carriers in semiconductors studied here. A step forward in the search for semiconductors, whose magnetic ordering allows its use in electronics based on spin. Some results have been published, including results obtained at the University of Bonn for the sandwich doctorate period [1-7]. (author)

  13. 3D high resolution stratigraphy of early rift deltaic deposits in the Sergipe-Alagoas basin: impact on the reservoir compartmentalization; Estratigrafia de alta resolucao 3D em depositos deltaicos do inicio do rifte da bacia de Sergipe-Alagoas: impacto na compartimentacao de reservatorios

    Energy Technology Data Exchange (ETDEWEB)

    Borba, Claudio [Petroleo Brasileiro S. A. (PETROBRAS/UO-SEAL), Aracaju, SE (Brazil). Unidade de Operacoes de Exploracao e Producao de Sergipe e Alagoas], E-mail: cborba@petrobras.com; Paim, Paulo Sergio Gomes [Universidade do Vale do Rio dos Sinos (UNISINOS), Sao Leopoldo, RS (Brazil)], E-mail: ppaim@unisinos.br; Garcia, Antonio Jorge Vasconcellos [Universidade Federal de Sergipe (UFS), Aracaju, SE (Brazil)], E-mail: garciageo@pq.cnpq.br

    2009-05-15

    A high resolution stratigraphic study applied to reservoir characterization, based on well logs, cuts and cores from the Furado Field, a mature oil field of the Alagoas Sub-basin, was carried out on deltaic strata of the lower portion of the Barra de Itiuba Formation (early rifting of the Sergipe-Alagoas Basin). Three lacustrine systems tracts were recognized within a 3rd order sequence: the low stand systems tract (tectonic pulse initiation) that includes extensive, medium- to coarse-grained fluvial-deltaic sandstones that display good reservoir quality; the transgressive systems tract (tectonic climax), which comprises lacustrine and pro delta shale and distal delta front, fine- to very fine-grained sandstone; and the high stand system tract (tectonic quiescence) that encompasses several cycles of delta front progradation and related poor quality reservoirs relative to those of the low stand system tract. The 4th order sequences are represented by climate-driven transgressive-regressive cycles that constitute independent reservoirs, equivalent to a reservoir zones. This high resolution stratigraphic framework was then used on the building of the 3D geologic model, which honored the systems tracts geometry, and related facies, as well as the paleostructure, including a syn-depositional fault propagation anticline. Several normal faults split the reservoirs at different scales. Their potential impact on reservoir fragmentation was approached through the use of fault juxtaposition and shale gouge ratio diagrams. (author)

  14. High angular resolution Sunyaev-Zel'dovich observations of MACS J1423.8+2404 with NIKA: Multiwavelength analysis

    Science.gov (United States)

    Adam, R.; Comis, B.; Bartalucci, I.; Adane, A.; Ade, P.; André, P.; Arnaud, M.; Beelen, A.; Belier, B.; Benoît, A.; Bideaud, A.; Billot, N.; Bourrion, O.; Calvo, M.; Catalano, A.; Coiffard, G.; D'Addabbo, A.; Désert, F.-X.; Doyle, S.; Goupy, J.; Hasnoun, B.; Hermelo, I.; Kramer, C.; Lagache, G.; Leclercq, S.; Macías-Pérez, J.-F.; Martino, J.; Mauskopf, P.; Mayet, F.; Monfardini, A.; Pajot, F.; Pascale, E.; Perotto, L.; Pointecouteau, E.; Ponthieu, N.; Pratt, G. W.; Revéret, V.; Ritacco, A.; Rodriguez, L.; Savini, G.; Schuster, K.; Sievers, A.; Triqueneaux, S.; Tucker, C.; Zylka, R.

    2016-02-01

    The prototype of the NIKA2 camera, NIKA, is a dual-band instrument operating at the IRAM 30-m telescope, which can observe the sky simultaneously at 150 and 260 GHz. One of the main goals of NIKA (and NIKA2) is to measure the pressure distribution in galaxy clusters at high angular resolution using the thermal Sunyaev-Zel'dovich (tSZ) effect. Such observations have already proved to be an excellent probe of cluster pressure distributions even at intermediate and high redshifts. However, an important fraction of clusters host sub-millimeter and/or radio point sources, which can significantly affect the reconstructed signal. Here we report on sub-millimeter point sources. We examine the morphological distribution of the tSZ signal and compare it to other datasets. The NIKA data are combined with Herschel satellite data to study the spectral energy distribution (SED) of the sub-millimeter point source contaminants. We then perform a joint reconstruction of the intracluster medium (ICM) electronic pressure and density by combining NIKA, Planck, XMM-Newton, and Chandra data, focusing on the impact of the radio and sub-millimeter sources on the reconstructed pressureprofile. We find that large-scale pressure distribution is unaffected by the point sources because of the resolved nature of the NIKA observations. The reconstructed pressure in the inner region is slightly higher when the contribution of point sources are removed. We show that it is not possible to set strong constraints on the central pressure distribution without accurately removing these contaminants. The comparison with X-ray only data shows good agreement for the pressure, temperature, and entropy profiles, which all indicate that MACS J1423.8+2404 is a dynamically relaxed cool core system. The present observations illustrate the possibility of measuring these quantities with a relatively small integration time, even at high redshift and without X-ray spectroscopy. This work is part of a pilot study

  15. Investigation of hyperfine parameters of semiconductor oxides SnO{sub 2} and TiO{sub 2} pure and doped with 3d transition methods using spectroscopy of perturbed gamma-gamma angular correlation; Investigacao de parametros hiperfinos dos oxidos semicondutores SnO{sub 2} and TiO{sub 2} puros e dopados com metais de transicao 3d pela espectroscopia de correlacao angular gama-gama perturbada

    Energy Technology Data Exchange (ETDEWEB)

    Schell, Juliana

    2015-09-01

    This study aimed the use of nuclear technique Perturbed γ-γ Angular Correlation Spectroscopy (PAC) to measure the hyperfine interactions in thin films and powder samples of SnO{sub 2} and TiO{sub 2} pure and doped with transition metals to obtain a systematic investigation of defects and magnetism from an atomic point of view with the main motivation the application in spintronics. The work also focused on the preparation and characterization of samples by conventional techniques such as X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy and magnetization measurements. Pure samples of the films were measured by the systematic variation of thermal treatment and applied magnetic field. These measurements were performed in HISKP at the University of Bonn (Rheinische Friedrich-Wilhelms-Universität Bonn) using {sup 111}In({sup 111}Cd) or {sup 181}Hf ({sup 181}Ta); at IPEN, in turn, these measurements were performed after the diffusion of the same probe nuclei. Another part of PAC measurements were carried out using {sup 111}mCd({sup 111}Cd) and {sup 117}Cd ({sup 117}In) in Isotope Mass Separator On-Line (ISOLDE) at Centre Européen Recherche Nucléaire (CERN). The measurements were performed from 8 K to 1173 K. After comparing results from macroscopic techniques with those from PAC, it was concluded that there is a correlation between the defects, magnetism and the mobility of charge carriers in semiconductors studied here. A step forward in the search for semiconductors, whose magnetic ordering allows its use in electronics based on spin. Some results have been published, including results obtained at the University of Bonn for the sandwich doctorate period [1-7]. (author)

  16. Recent development of 3D display technology for new market

    Science.gov (United States)

    Kim, Sung-Sik

    2003-11-01

    A multi-view 3D video processor was designed and implemented with several FPGAs for real-time applications and a projection-type 3D display was introduced for low-cost commercialization. One high resolution projection panel and only one projection lens is capable of displaying multiview autostereoscopic images. It can cope with various arrangements of 3D camera systems (or pixel arrays) and resolutions of 3D displays. This system shows high 3-D image quality in terms of resolution, brightness, and contrast so it is well suited for the commercialization in the field of game and advertisement market.

  17. Angular resolution of a neutron scatter imaging system%中子散射成像探测角分辨研究∗

    Institute of Scientific and Technical Information of China (English)

    张美; 张显鹏; 李奎念; 盛亮; 袁媛; 宋朝晖; 李阳

    2015-01-01

    Using a combination of imaging and spectroscopic capabilities, neutron scatter imaging is a novel method of detecting neutrons in an energy range from 1 to 20 MeV. The technique can be applied to measurements in a variety of areas, including solar and atmospheric physics, radiation therapy, and nuclear materials monitoring. Angular resolution is an important parameter for a neutron scatter imaging system. There are some factors causing the uncertainty in the reconstructed image due to the imperfection of the detector system and natures of neutron scattering. These factors mainly are the uncertainties of the position and the energy. In this paper, the contributions of these factors to the angular resolution are discussed. The results show that the angular resolution varies with scatter angle; the position uncertainty not only directly affects the angular resolution, but also indirectly contributes to the angular uncertainty by influencing energy uncertainty; when the detector dimension is less than 5 cm, the energy uncertainty becomes a dominating factor for angular resolution. The prototype is designed based on the above analysis results. The angular resolution of the designed prototype is tested on Cf252 source. The experimental results are basically consistent with the simulation results.%中子散射成像技术是近年来国外正在发展的一项新型辐射成像技术,在深空宇宙探测、核材料监控等方面具有广阔的应用前景。角分辨是衡量该技术成像能力的一项重要参数。研究了位置不确定度和能量分辨对角分辨的影响。理论分析表明:以不同角度散射,成像的角分辨不同;位置不确定不仅直接影响角分辨,还通过影响能量不确定度对角分辨间接贡献;位置分辨主要来源于探测器的结构尺寸,当探测器尺寸小于5 cm,影响角分辨的主要来源是能量不确定度。利用所获得的理论结果指导设计了原理探测系统,并对设计的原

  18. 3D ultrafast ultrasound imaging in vivo

    International Nuclear Information System (INIS)

    Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafast Ultrasound Imaging in 3D based on the use of either diverging or plane waves emanating from a sparse virtual array located behind the probe. It achieves high contrast and resolution while maintaining imaging rates of thousands of volumes per second. A customized portable ultrasound system was developed to sample 1024 independent channels and to drive a 32  ×  32 matrix-array probe. Its ability to track in 3D transient phenomena occurring in the millisecond range within a single ultrafast acquisition was demonstrated for 3D Shear-Wave Imaging, 3D Ultrafast Doppler Imaging, and, finally, 3D Ultrafast combined Tissue and Flow Doppler Imaging. The propagation of shear waves was tracked in a phantom and used to characterize its stiffness. 3D Ultrafast Doppler was used to obtain 3D maps of Pulsed Doppler, Color Doppler, and Power Doppler quantities in a single acquisition and revealed, at thousands of volumes per second, the complex 3D flow patterns occurring in the ventricles of the human heart during an entire cardiac cycle, as well as the 3D in vivo interaction of blood flow and wall motion during the pulse wave in the carotid at the bifurcation. This study demonstrates the potential of 3D Ultrafast Ultrasound Imaging for the 3D mapping of stiffness, tissue motion, and flow in humans in vivo and promises new clinical applications of ultrasound with reduced intra—and inter-observer variability. (fast track communication)

  19. Massive 3D Supergravity

    CERN Document Server

    Andringa, Roel; de Roo, Mees; Hohm, Olaf; Sezgin, Ergin; Townsend, Paul K

    2009-01-01

    We construct the N=1 three-dimensional supergravity theory with cosmological, Einstein-Hilbert, Lorentz Chern-Simons, and general curvature squared terms. We determine the general supersymmetric configuration, and find a family of supersymmetric adS vacua with the supersymmetric Minkowski vacuum as a limiting case. Linearizing about the Minkowski vacuum, we find three classes of unitary theories; one is the supersymmetric extension of the recently discovered `massive 3D gravity'. Another is a `new topologically massive supergravity' (with no Einstein-Hilbert term) that propagates a single (2,3/2) helicity supermultiplet.

  20. Massive 3D supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Andringa, Roel; Bergshoeff, Eric A; De Roo, Mees; Hohm, Olaf [Centre for Theoretical Physics, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands); Sezgin, Ergin [George and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Townsend, Paul K, E-mail: E.A.Bergshoeff@rug.n, E-mail: O.Hohm@rug.n, E-mail: sezgin@tamu.ed, E-mail: P.K.Townsend@damtp.cam.ac.u [Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA (United Kingdom)

    2010-01-21

    We construct the N=1 three-dimensional supergravity theory with cosmological, Einstein-Hilbert, Lorentz Chern-Simons, and general curvature squared terms. We determine the general supersymmetric configuration, and find a family of supersymmetric adS vacua with the supersymmetric Minkowski vacuum as a limiting case. Linearizing about the Minkowski vacuum, we find three classes of unitary theories; one is the supersymmetric extension of the recently discovered 'massive 3D gravity'. Another is a 'new topologically massive supergravity' (with no Einstein-Hilbert term) that propagates a single (2,3/2) helicity supermultiplet.

  1. 3D Digital Modelling

    DEFF Research Database (Denmark)

    Hundebøl, Jesper

    ABSTRACT: Lack of productivity in construction is a well known issue. Despite the fact that causes hereof are multiple, the introduction of information technology is a frequently observed response to almost any challenge. ICT in construction is a thoroughly researched matter, however, the current...... important to appreciate the analysis. Before turning to the presentation of preliminary findings and a discussion of 3D digital modelling, it begins, however, with an outline of industry specific ICT strategic issues. Paper type. Multi-site field study...

  2. Determining 3D flow fields via multi-camera light field imaging.

    Science.gov (United States)

    Truscott, Tadd T; Belden, Jesse; Nielson, Joseph R; Daily, David J; Thomson, Scott L

    2013-03-06

    In the field of fluid mechanics, the resolution of computational schemes has outpaced experimental methods and widened the gap between predicted and observed phenomena in fluid flows. Thus, a need exists for an accessible method capable of resolving three-dimensional (3D) data sets for a range of problems. We present a novel technique for performing quantitative 3D imaging of many types of flow fields. The 3D technique enables investigation of complicated velocity fields and bubbly flows. Measurements of these types present a variety of challenges to the instrument. For instance, optically dense bubbly multiphase flows cannot be readily imaged by traditional, non-invasive flow measurement techniques due to the bubbles occluding optical access to the interior regions of the volume of interest. By using Light Field Imaging we are able to reparameterize images captured by an array of cameras to reconstruct a 3D volumetric map for every time instance, despite partial occlusions in the volume. The technique makes use of an algorithm known as synthetic aperture (SA) refocusing, whereby a 3D focal stack is generated by combining images from several cameras post-capture (1). Light Field Imaging allows for the capture of angular as well as spatial information about the light rays, and hence enables 3D scene reconstruction. Quantitative information can then be extracted from the 3D reconstructions using a variety of processing algorithms. In particular, we have developed measurement methods based on Light Field Imaging for performing 3D particle image velocimetry (PIV), extracting bubbles in a 3D field and tracking the boundary of a flickering flame. We present the fundamentals of the Light Field Imaging methodology in the context of our setup for performing 3DPIV of the airflow passing over a set of synthetic vocal folds, and show representative results from application of the technique to a bubble-entraining plunging jet.

  3. Positional Awareness Map 3D (PAM3D)

    Science.gov (United States)

    Hoffman, Monica; Allen, Earl L.; Yount, John W.; Norcross, April Louise

    2012-01-01

    The Western Aeronautical Test Range of the National Aeronautics and Space Administration s Dryden Flight Research Center needed to address the aging software and hardware of its current situational awareness display application, the Global Real-Time Interactive Map (GRIM). GRIM was initially developed in the late 1980s and executes on older PC architectures using a Linux operating system that is no longer supported. Additionally, the software is difficult to maintain due to its complexity and loss of developer knowledge. It was decided that a replacement application must be developed or acquired in the near future. The replacement must provide the functionality of the original system, the ability to monitor test flight vehicles in real-time, and add improvements such as high resolution imagery and true 3-dimensional capability. This paper will discuss the process of determining the best approach to replace GRIM, and the functionality and capabilities of the first release of the Positional Awareness Map 3D.

  4. TOWARDS: 3D INTERNET

    Directory of Open Access Journals (Sweden)

    Ms. Swapnali R. Ghadge

    2013-08-01

    Full Text Available In today’s ever-shifting media landscape, it can be a complex task to find effective ways to reach your desired audience. As traditional media such as television continue to lose audience share, one venue in particular stands out for its ability to attract highly motivated audiences and for its tremendous growth potential the 3D Internet. The concept of '3D Internet' has recently come into the spotlight in the R&D arena, catching the attention of many people, and leading to a lot of discussions. Basically, one can look into this matter from a few different perspectives: visualization and representation of information, and creation and transportation of information, among others. All of them still constitute research challenges, as no products or services are yet available or foreseen for the near future. Nevertheless, one can try to envisage the directions that can be taken towards achieving this goal. People who take part in virtual worlds stay online longer with a heightened level of interest. To take advantage of that interest, diverse businesses and organizations have claimed an early stake in this fast-growing market. They include technology leaders such as IBM, Microsoft, and Cisco, companies such as BMW, Toyota, Circuit City, Coca Cola, and Calvin Klein, and scores of universities, including Harvard, Stanford and Penn State.

  5. Angular glint calculation and analysis of radar targets via adaptive cross approximation algorithm

    Institute of Scientific and Technical Information of China (English)

    Miao Sui; Xiaojian Xu

    2014-01-01

    Angular glint is a significant electromagnetic (EM) scat-tering signature of extended radar targets. Based on the adaptive cross approximation (ACA) algorithm accelerated method of mo-ments (MoM) and the plane incident wave assumption, the narrow-band, wideband and newly developed high-resolution range profile (HRRP) based angular glint calculation formulations are derived and applied to arbitrarily shaped three-dimensional (3D) perfectly electrical y conducting (PEC) objects. In addition, the near-field angular glint is emphasized, which is of great importance for radar-seeker applications. Furthermore, with the HRRP based angular glint, an approach to rigorously determine range resolution cel s which own relatively smal er angular glint is provided. Numerical results are presented with new findings to demonstrate the useful-ness of the developed formulations.

  6. 3D light robotics

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Palima, Darwin; Villangca, Mark Jayson;

    2016-01-01

    As celebrated by the Nobel Prize 2014 in Chemistry light-based technologies can now overcome the diffraction barrier for imaging with nanoscopic resolution by so-called super-resolution microscopy1. However, interactive investigations coupled with advanced imaging modalities at these small scale ...... research discipline that could potentially be able to offer the full packet needed for true "active nanoscopy" by use of so-called light-driven micro-robotics or Light Robotics in short....

  7. LOTT RANCH 3D PROJECT

    International Nuclear Information System (INIS)

    The Lott Ranch 3D seismic prospect located in Garza County, Texas is a project initiated in September of 1991 by the J.M. Huber Corp., a petroleum exploration and production company. By today's standards the 126 square mile project does not seem monumental, however at the time it was conceived it was the most intensive land 3D project ever attempted. Acquisition began in September of 1991 utilizing GEO-SEISMIC, INC., a seismic data contractor. The field parameters were selected by J.M. Huber, and were of a radical design. The recording instruments used were GeoCor IV amplifiers designed by Geosystems Inc., which record the data in signed bit format. It would not have been practical, if not impossible, to have processed the entire raw volume with the tools available at that time. The end result was a dataset that was thought to have little utility due to difficulties in processing the field data. In 1997, Yates Energy Corp. located in Roswell, New Mexico, formed a partnership to further develop the project. Through discussions and meetings with Pinnacle Seismic, it was determined that the original Lott Ranch 3D volume could be vastly improved upon reprocessing. Pinnacle Seismic had shown the viability of improving field-summed signed bit data on smaller 2D and 3D projects. Yates contracted Pinnacle Seismic Ltd. to perform the reprocessing. This project was initiated with high resolution being a priority. Much of the potential resolution was lost through the initial summing of the field data. Modern computers that are now being utilized have tremendous speed and storage capacities that were cost prohibitive when this data was initially processed. Software updates and capabilities offer a variety of quality control and statics resolution, which are pertinent to the Lott Ranch project. The reprocessing effort was very successful. The resulting processed data-set was then interpreted using modern PC-based interpretation and mapping software. Production data, log data

  8. Imaging Nuclear Waste Plumes at the Hanford Site using Large Domain 3D High Resolution Resistivity Methods and the New Parallel-Processing EarthImager3DCL Program

    Science.gov (United States)

    Greenwood, J.; Rucker, D.; Levitt, M.; Yang, X.; Lagmanson, M.

    2007-12-01

    High Resolution Resistivity data is currently used by hydroGEOPHYSICS, Inc to detect and characterize the distribution of suspected contaminant plumes beneath leaking tanks and disposal sites within the U.S. Department of Energy Hanford Site, in Eastern Washington State. The success of the characterization effort has led to resistivity data acquisition in extremely large survey areas exceeding 0.6 km2 and containing over 6,000 electrodes. Optimal data processing results are achieved by utilizing 105 data points within a single finite difference or finite element model domain. The large number of measurements and electrodes and high resolution of the modeling domain requires a model mesh of over 106 nodes. Existing commercially available resistivity inversion software could not support the domain size due to software and hardware limitations. hydroGEOPHYSICS, Inc teamed with Advanced Geosciences, Inc to advance the existing EarthImager3D inversion software to allow for parallel-processing and large memory support under a 64 bit operating system. The basis for the selection of EarthImager3D is demonstrated with a series of verification tests and benchmark comparisons using synthetic test models, field scale experiments and 6 months of intensive modeling using an array of multi-processor servers. The results of benchmark testing show equivalence to other industry standard inversion codes that perform the same function on significantly smaller domain models. hydroGEOPHYSICS, Inc included the use of 214 steel-cased monitoring wells as "long electrodes", 6000 surface electrodes and 8 buried point source electrodes. Advanced Geosciences, Inc. implemented a long electrode modeling function to support the Hanford Site well casing data. This utility is unique to commercial resistivity inversion software, and was evaluated through a series of laboratory and field scale tests using engineered subsurface plumes. The Hanford site is an ideal proving ground for these methods due

  9. Effects of angular range on image quality of chest digital tomosynthesis

    Science.gov (United States)

    Lee, Haenghwa; Kim, Ye-seul; Choi, Sunghoon; Lee, Dong-Hoon; Choi, Seungyeon; Kim, Hee-Joung

    2016-03-01

    Chest digital tomosynthesis (CDT) is a new 3D imaging technique that can be expected to improve clinical diagnosis over conventional chest radiography. We investigated the effect of the angular range of data acquisition on the image quality using newly developed CDT system. The four different acquisition sets were studied using +/-15°, +/-20°, +/-30°, and +/-35° angular ranges with 21 projection views (PVs). The point spread function (PSF), modulation transfer function (MTF), artifact spread function (ASF), and normalized contrast-to-noise ratio (CNR) were used to evaluate the image quality. We found that increasing angular ranges improved vertical resolution. The results indicated that there was the opposite relationship of the CNR with angular range for the two tissue types. While CNR for heart tissue increased with increasing angular range, CNR for spine bone decreased. The results showed that the angular range is an important parameter for the CDT exam.

  10. Shaping 3-D boxes

    DEFF Research Database (Denmark)

    Stenholt, Rasmus; Madsen, Claus B.

    2011-01-01

    Enabling users to shape 3-D boxes in immersive virtual environments is a non-trivial problem. In this paper, a new family of techniques for creating rectangular boxes of arbitrary position, orientation, and size is presented and evaluated. These new techniques are based solely on position data......, making them different from typical, existing box shaping techniques. The basis of the proposed techniques is a new algorithm for constructing a full box from just three of its corners. The evaluation of the new techniques compares their precision and completion times in a 9 degree-of-freedom (Do......F) docking experiment against an existing technique, which requires the user to perform the rotation and scaling of the box explicitly. The precision of the users' box construction is evaluated by a novel error metric measuring the difference between two boxes. The results of the experiment strongly indicate...

  11. Volume holographic printing using unconventional angular multiplexing for three-dimensional display.

    Science.gov (United States)

    Cao, Liangcai; Wang, Zheng; Zhang, Hao; Jin, Guofan; Gu, Claire

    2016-08-01

    We propose and demonstrate a volume holographic printing method for dynamic three-dimensional (3D) display with an expanded space-bandwidth product (SBP) using unconventional angular multiplexing techniques. By wavefront encoding of the 3D scene, with the help of computer-generated holography, the object beam is loaded onto a 2D phase spatial light modulator (SLM) with a limited SBP. The printing method then writes a single hologram through the interference of the object beam with a reference beam as a holographic element (hogel) in the volume holographic polymer. In addition, multiple 3D scenes can be recorded and dynamically reconstructed by angular multiplexing in the same hogel location. The SBP can be increased by two orders of magnitude compared to the conventional holographic printing method, showing the potential to realize a dynamic and high-resolution 3D display. PMID:27505387

  12. 3D Maps Representation Using GNG

    Directory of Open Access Journals (Sweden)

    Vicente Morell

    2014-01-01

    Full Text Available Current RGB-D sensors provide a big amount of valuable information for mobile robotics tasks like 3D map reconstruction, but the storage and processing of the incremental data provided by the different sensors through time quickly become unmanageable. In this work, we focus on 3D maps representation and propose the use of the Growing Neural Gas (GNG network as a model to represent 3D input data. GNG method is able to represent the input data with a desired amount of neurons or resolution while preserving the topology of the input space. Experiments show how GNG method yields a better input space adaptation than other state-of-the-art 3D map representation methods.

  13. 3-D-scintigraphy

    International Nuclear Information System (INIS)

    The application of complex Fresnel-zone collimators as coded apertures is apt to open new dimensions in the visualization of three-dimensional activity destribution in nuclear medicine. Most important advantages of this method are better resolution, high sensitivity and tomographic imaging. (orig.)

  14. Recent progress in 3-D imaging of sea freight containers

    Science.gov (United States)

    Fuchs, Theobald; Schön, Tobias; Dittmann, Jonas; Sukowski, Frank; Hanke, Randolf

    2015-03-01

    The inspection of very large objects like sea freight containers with X-ray Computed Tomography (CT) is an emerging technology. A complete 3-D CT scan of a see-freight container takes several hours. Of course, this is too slow to apply it to a large number of containers. However, the benefits of a 3-D CT for sealed freight are obvious: detection of potential threats or illicit cargo without being confronted with legal complications or high time consumption and risks for the security personnel during a manual inspection. Recently distinct progress was made in the field of reconstruction of projections with only a relatively low number of angular positions. Instead of today's 500 to 1000 rotational steps, as needed for conventional CT reconstruction techniques, this new class of algorithms provides the potential to reduce the number of projection angles approximately by a factor of 10. The main drawback of these advanced iterative methods is the high consumption for numerical processing. But as computational power is getting steadily cheaper, there will be practical applications of these complex algorithms in a foreseeable future. In this paper, we discuss the properties of iterative image reconstruction algorithms and show results of their application to CT of extremely large objects scanning a sea-freight container. A specific test specimen is used to quantitatively evaluate the image quality in terms of spatial and contrast resolution and depending on different number of projections.

  15. Recent progress in 3-D imaging of sea freight containers

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, Theobald, E-mail: theobold.fuchs@iis.fraunhofer.de; Schön, Tobias, E-mail: theobold.fuchs@iis.fraunhofer.de; Sukowski, Frank [Fraunhofer Development Center X-ray Technology EZRT, Flugplatzstr. 75, 90768 Fürth (Germany); Dittmann, Jonas; Hanke, Randolf [Chair of X-ray Microscopy, Institute of Physics and Astronomy, Julius-Maximilian-University Würzburg, Josef-Martin-Weg 63, 97074 Würzburg (Germany)

    2015-03-31

    The inspection of very large objects like sea freight containers with X-ray Computed Tomography (CT) is an emerging technology. A complete 3-D CT scan of a see-freight container takes several hours. Of course, this is too slow to apply it to a large number of containers. However, the benefits of a 3-D CT for sealed freight are obvious: detection of potential threats or illicit cargo without being confronted with legal complications or high time consumption and risks for the security personnel during a manual inspection. Recently distinct progress was made in the field of reconstruction of projections with only a relatively low number of angular positions. Instead of today’s 500 to 1000 rotational steps, as needed for conventional CT reconstruction techniques, this new class of algorithms provides the potential to reduce the number of projection angles approximately by a factor of 10. The main drawback of these advanced iterative methods is the high consumption for numerical processing. But as computational power is getting steadily cheaper, there will be practical applications of these complex algorithms in a foreseeable future. In this paper, we discuss the properties of iterative image reconstruction algorithms and show results of their application to CT of extremely large objects scanning a sea-freight container. A specific test specimen is used to quantitatively evaluate the image quality in terms of spatial and contrast resolution and depending on different number of projections.

  16. 3D printing for dummies

    CERN Document Server

    Hausman, Kalani Kirk

    2014-01-01

    Get started printing out 3D objects quickly and inexpensively! 3D printing is no longer just a figment of your imagination. This remarkable technology is coming to the masses with the growing availability of 3D printers. 3D printers create 3-dimensional layered models and they allow users to create prototypes that use multiple materials and colors.  This friendly-but-straightforward guide examines each type of 3D printing technology available today and gives artists, entrepreneurs, engineers, and hobbyists insight into the amazing things 3D printing has to offer. You'll discover methods for

  17. Two-photon polymerization of a three dimensional structure using beams with orbital angular momentum

    International Nuclear Information System (INIS)

    The focus of a beam with orbital angular momentum exhibits internal structure instead of an elliptical intensity distribution of a Gaussian beam, and the superposition of Gauss-Laguerre beams realized by two-dimensional phase modulation can generate a complex three-dimensional (3D) focus. By taking advantage of the flexibility of this 3D focus tailoring, we have fabricated a 3D microstructure with high resolution by two-photon polymerization with a single exposure. Furthermore, we have polymerized an array of double-helix structures that demonstrates optical chirality

  18. Two-photon polymerization of a three dimensional structure using beams with orbital angular momentum

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shi-Jie; Li, Yan, E-mail: li@pku.edu.cn; Liu, Zhao-Pei; Ren, Jin-Li; Xiao, Yun-Feng; Yang, Hong; Gong, Qihuang [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871, People' s Republic of China and Collaborative Innovation Center of Quantum Matter, Beijing 100871 (China)

    2014-08-11

    The focus of a beam with orbital angular momentum exhibits internal structure instead of an elliptical intensity distribution of a Gaussian beam, and the superposition of Gauss-Laguerre beams realized by two-dimensional phase modulation can generate a complex three-dimensional (3D) focus. By taking advantage of the flexibility of this 3D focus tailoring, we have fabricated a 3D microstructure with high resolution by two-photon polymerization with a single exposure. Furthermore, we have polymerized an array of double-helix structures that demonstrates optical chirality.

  19. High angular resolution Sunyaev-Zel'dovich observations of MACS J1423.8+2404 with NIKA: multi-wavelength analysis

    CERN Document Server

    Adam, R; Bartalucci, I; Adane, A; Ade, P; André, P; Arnaud, M; Beelen, A; Belier, B; Benoît, A; Bideaud, A; Billot, N; Bourrion, O; Calvo, M; Catalano, A; Coiffard, G; D'Addabbo, A; Désert, F -X; Doyle, S; Goupy, J; Hasnoun, B; Hermelo, I; Kramer, C; Lagache, G; Leclercq, S; Macías-Pérez, J -F; Martino, J; Mauskopf, P; Mayet, F; Monfardini, A; Pajot, F; Pascale, E; Perotto, L; Pointecouteau, E; Ponthieu, N; Pratt, G W; Revéret, V; Ritacco, A; Rodriguez, L; Savini, G; Schuster, K; Sievers, A; Triqueneaux, S; Tucker, C; Zylka, R

    2015-01-01

    NIKA, the prototype of the NIKA2 camera, is an instrument operating at the IRAM 30m telescope that can observe the sky simultaneously at 150 and 260GHz. One of the main goals of NIKA is to measure the pressure distribution in galaxy clusters at high angular resolution using the Sunyaev-Zel'dovich (SZ) effect. Such observations have already proved to be an excellent probe of cluster pressure distributions even at high redshifts. However, an important fraction of clusters host submm and/or radio point sources that can significantly affect the reconstructed signal. Here we report <20arcsec angular resolution observations at 150 and 260GHz of the cluster MACSJ1424, which hosts both radio and submm point sources. We examine the morphological distribution of the SZ signal and compare it to other datasets. The NIKA data are combined with Herschel satellite data to study the SED of the submm point source contaminants. We then perform a joint reconstruction of the ICM electronic pressure and density by combining NI...

  20. 3D monitor

    OpenAIRE

    Szkandera, Jan

    2009-01-01

    Tato bakalářská práce se zabývá návrhem a realizací systému, který umožní obraz scény zobrazovaný na ploše vnímat prostorově. Prostorové vnímání 2D obrazové informace je umožněno jednak stereopromítáním a jednak tím, že se obraz mění v závislosti na poloze pozorovatele. Tato práce se zabývá hlavně druhým z těchto problémů. This Bachelor's thesis goal is to design and realize system, which allows user to perceive 2D visual information as three-dimensional. 3D visual preception of 2D image i...

  1. 3D light robotics

    Science.gov (United States)

    Glückstad, Jesper; Palima, Darwin; Villangca, Mark; Banas, Andrew

    2016-04-01

    As celebrated by the Nobel Prize 2014 in Chemistry light-based technologies can now overcome the diffraction barrier for imaging with nanoscopic resolution by so-called super-resolution microscopy1. However, interactive investigations coupled with advanced imaging modalities at these small scale domains gradually demand the development of a new generation of disruptive tools, not only for passively observing at nanoscopic scales, but also for actively reaching into and effectively handling constituents in this size domain. This intriguing mindset has recently led to the emergence of a novel research discipline that could potentially be able to offer the full packet needed for true "active nanoscopy" by use of so-called light-driven micro-robotics or Light Robotics in short.

  2. 3D game environments create professional 3D game worlds

    CERN Document Server

    Ahearn, Luke

    2008-01-01

    The ultimate resource to help you create triple-A quality art for a variety of game worlds; 3D Game Environments offers detailed tutorials on creating 3D models, applying 2D art to 3D models, and clear concise advice on issues of efficiency and optimization for a 3D game engine. Using Photoshop and 3ds Max as his primary tools, Luke Ahearn explains how to create realistic textures from photo source and uses a variety of techniques to portray dynamic and believable game worlds.From a modern city to a steamy jungle, learn about the planning and technological considerations for 3D modelin

  3. X3D: Extensible 3D Graphics Standard

    OpenAIRE

    Daly, Leonard; Brutzman, Don

    2007-01-01

    The article of record as published may be located at http://dx.doi.org/10.1109/MSP.2007.905889 Extensible 3D (X3D) is the open standard for Web-delivered three-dimensional (3D) graphics. It specifies a declarative geometry definition language, a run-time engine, and an application program interface (API) that provide an interactive, animated, real-time environment for 3D graphics. The X3D specification documents are freely available, the standard can be used without paying any royalties,...

  4. 3D Printing an Octohedron

    OpenAIRE

    Aboufadel, Edward F.

    2014-01-01

    The purpose of this short paper is to describe a project to manufacture a regular octohedron on a 3D printer. We assume that the reader is familiar with the basics of 3D printing. In the project, we use fundamental ideas to calculate the vertices and faces of an octohedron. Then, we utilize the OPENSCAD program to create a virtual 3D model and an STereoLithography (.stl) file that can be used by a 3D printer.

  5. Salient Local 3D Features for 3D Shape Retrieval

    CERN Document Server

    Godil, Afzal

    2011-01-01

    In this paper we describe a new formulation for the 3D salient local features based on the voxel grid inspired by the Scale Invariant Feature Transform (SIFT). We use it to identify the salient keypoints (invariant points) on a 3D voxelized model and calculate invariant 3D local feature descriptors at these keypoints. We then use the bag of words approach on the 3D local features to represent the 3D models for shape retrieval. The advantages of the method are that it can be applied to rigid as well as to articulated and deformable 3D models. Finally, this approach is applied for 3D Shape Retrieval on the McGill articulated shape benchmark and then the retrieval results are presented and compared to other methods.

  6. Reliable planning and monitoring tools by dismantling 3D photographic image of high resolution and document management systems. Application MEDS system; Planificacion fiable y seguimiento del desmantelamiento mediante herramientas 3D, imagen fotografica de alta resolucion y sistemas de gestion documental. Aplicacion del sistema MEDS

    Energy Technology Data Exchange (ETDEWEB)

    Vela Morales, F.

    2010-07-01

    MEDS system (Metric Environment Documentation System) is a method developed by CT3 based engineering documentation generation metric of a physical environment using measurement tools latest technology and high precision, such as the Laser Scanner. With this equipment it is possible to obtain three-dimensional information of a physical environment through the 3D coordinates of millions of points. This information is processed by software that is very useful tool for modeling operations and 3D simulations.

  7. 3D modelling and recognition

    OpenAIRE

    Rodrigues, Marcos; Robinson, Alan; Alboul, Lyuba; Brink, Willie

    2006-01-01

    3D face recognition is an open field. In this paper we present a method for 3D facial recognition based on Principal Components Analysis. The method uses a relatively large number of facial measurements and ratios and yields reliable recognition. We also highlight our approach to sensor development for fast 3D model acquisition and automatic facial feature extraction.

  8. ASSESSING 3D PHOTOGRAMMETRY TECHNIQUES IN CRANIOMETRICS

    Directory of Open Access Journals (Sweden)

    M. C. Moshobane

    2016-06-01

    Full Text Available Morphometrics (the measurement of morphological features has been revolutionized by the creation of new techniques to study how organismal shape co-varies with several factors such as ecophenotypy. Ecophenotypy refers to the divergence of phenotypes due to developmental changes induced by local environmental conditions, producing distinct ecophenotypes. None of the techniques hitherto utilized could explicitly address organismal shape in a complete biological form, i.e. three-dimensionally. This study investigates the use of the commercial software, Photomodeler Scanner® (PMSc® three-dimensional (3D modelling software to produce accurate and high-resolution 3D models. Henceforth, the modelling of Subantarctic fur seal (Arctocephalus tropicalis and Antarctic fur seal (Arctocephalus gazella skulls which could allow for 3D measurements. Using this method, sixteen accurate 3D skull models were produced and five metrics were determined. The 3D linear measurements were compared to measurements taken manually with a digital caliper. In addition, repetitive measurements were recorded by varying researchers to determine repeatability. To allow for comparison straight line measurements were taken with the software, assuming that close accord with all manually measured features would illustrate the model’s accurate replication of reality. Measurements were not significantly different demonstrating that realistic 3D skull models can be successfully produced to provide a consistent basis for craniometrics, with the additional benefit of allowing non-linear measurements if required.

  9. Assessing 3d Photogrammetry Techniques in Craniometrics

    Science.gov (United States)

    Moshobane, M. C.; de Bruyn, P. J. N.; Bester, M. N.

    2016-06-01

    Morphometrics (the measurement of morphological features) has been revolutionized by the creation of new techniques to study how organismal shape co-varies with several factors such as ecophenotypy. Ecophenotypy refers to the divergence of phenotypes due to developmental changes induced by local environmental conditions, producing distinct ecophenotypes. None of the techniques hitherto utilized could explicitly address organismal shape in a complete biological form, i.e. three-dimensionally. This study investigates the use of the commercial software, Photomodeler Scanner® (PMSc®) three-dimensional (3D) modelling software to produce accurate and high-resolution 3D models. Henceforth, the modelling of Subantarctic fur seal (Arctocephalus tropicalis) and Antarctic fur seal (Arctocephalus gazella) skulls which could allow for 3D measurements. Using this method, sixteen accurate 3D skull models were produced and five metrics were determined. The 3D linear measurements were compared to measurements taken manually with a digital caliper. In addition, repetitive measurements were recorded by varying researchers to determine repeatability. To allow for comparison straight line measurements were taken with the software, assuming that close accord with all manually measured features would illustrate the model's accurate replication of reality. Measurements were not significantly different demonstrating that realistic 3D skull models can be successfully produced to provide a consistent basis for craniometrics, with the additional benefit of allowing non-linear measurements if required.

  10. 高分辨真三维显示中的体素化及均匀化方法%The Voxelization and Homogenization methods of High-Resolution Volumetric 3D Display

    Institute of Scientific and Technical Information of China (English)

    田丰; 夏雪; 田晶; 张文俊; 王鹤

    2013-01-01

    In order to obtain radial uniform luminance and increase the effective numbers of voxels for volumetric 3D display based on projection,a voxelization and homogenization method is proposed.Regarding the problem of high luminance of voxels near central axis,the cause of excessive loss of voxels in the existing sampling methods is analyzed.By replacing three-dimensional sampling with two-dimensional plane-filling algorithm,the voxelization method in radial extent filling is proposed.Homogenization method based on dithering technique is proposed,which helps to correct voxel luminance distortion in cylindrical space.Demonstrated in the experiments,about 60% of the display resolution is retained and the effective voxel number reaches 200 million.The volumetric 3D display prototype is able to show clear and uniform stereo images with all viewing angles under the condition of indoor light.%为了使基于投影的真三维显示获得径向均匀亮度,并提高有效体素数量,提出一种体素化和均匀化方法.针对体素中轴亮度高和外围亮度低的问题,分析了现有体素采样方法导致体素数量损失过多的原因;然后以二维平面填充算法替代三维体素采样,提出基于径向范围填充的体素化方法,以及基于抖动技术的均匀化方法,以修正了柱空间内体素亮度失真.实验结果证明,文中方法保留了约60%的体显示分辨率,有效体素数量达到2亿个,真三维显示样机能够在室内光环境下显示清晰且均匀的全角度立体影像.

  11. The interactive presentation of 3D information obtained from reconstructed datasets and 3D placement of single histological sections with the 3D portable document format

    OpenAIRE

    de Boer, B. A.; Soufan, A. T.; Hagoort, J.; Mohun, T. J.; van den Hoff, M. J. B.; Hasman, A.; Voorbraak, F. P. J. M.; Moorman, A. F. M.; Ruijter, J.M.

    2011-01-01

    Interpretation of the results of anatomical and embryological studies relies heavily on proper visualization of complex morphogenetic processes and patterns of gene expression in a three-dimensional (3D) context. However, reconstruction of complete 3D datasets is time consuming and often researchers study only a few sections. To help in understanding the resulting 2D data we developed a program (TRACTS) that places such arbitrary histological sections into a high-resolution 3D model of the de...

  12. 3D visualization of polymer nanostructure

    Energy Technology Data Exchange (ETDEWEB)

    Werner, James H [Los Alamos National Laboratory

    2009-01-01

    Soft materials and structured polymers are extremely useful nanotechnology building blocks. Block copolymers, in particular, have served as 2D masks for nanolithography and 3D scaffolds for photonic crystals, nanoparticle fabrication, and solar cells. F or many of these applications, the precise 3 dimensional structure and the number and type of defects in the polymer is important for ultimate function. However, directly visualizing the 3D structure of a soft material from the nanometer to millimeter length scales is a significant technical challenge. Here, we propose to develop the instrumentation needed for direct 3D structure determination at near nanometer resolution throughout a nearly millimeter-cubed volume of a soft, potentially heterogeneous, material. This new capability will be a valuable research tool for LANL missions in chemistry, materials science, and nanoscience. Our approach to soft materials visualization builds upon exciting developments in super-resolution optical microscopy that have occurred over the past two years. To date, these new, truly revolutionary, imaging methods have been developed and almost exclusively used for biological applications. However, in addition to biological cells, these super-resolution imaging techniques hold extreme promise for direct visualization of many important nanostructured polymers and other heterogeneous chemical systems. Los Alamos has a unique opportunity to lead the development of these super-resolution imaging methods for problems of chemical rather than biological significance. While these optical methods are limited to systems transparent to visible wavelengths, we stress that many important functional chemicals such as polymers, glasses, sol-gels, aerogels, or colloidal assemblies meet this requirement, with specific examples including materials designed for optical communication, manipulation, or light-harvesting Our Research Goals are: (1) Develop the instrumentation necessary for imaging materials

  13. Dislocation Content Measured Via 3D HR-EBSD Near a Grain Boundary in an AlCu Oligocrystal

    Science.gov (United States)

    Ruggles, Timothy; Hochhalter, Jacob; Homer, Eric

    2016-01-01

    Interactions between dislocations and grain boundaries are poorly understood and crucial to mesoscale plasticity modeling. Much of our understanding of dislocation-grain boundary interaction comes from atomistic simulations and TEM studies, both of which are extremely limited in scale. High angular resolution EBSD-based continuum dislocation microscopy provides a way of measuring dislocation activity at length scales and accuracies relevant to crystal plasticity, but it is limited as a two-dimensional technique, meaning the character of the grain boundary and the complete dislocation activity is difficult to recover. However, the commercialization of plasma FIB dual-beam microscopes have made 3D EBSD studies all the more feasible. The objective of this work is to apply high angular resolution cross correlation EBSD to a 3D EBSD data set collected by serial sectioning in a FIB to characterize dislocation interaction with a grain boundary. Three dimensional high angular resolution cross correlation EBSD analysis was applied to an AlCu oligocrystal to measure dislocation densities around a grain boundary. Distortion derivatives associated with the plasma FIB serial sectioning were higher than expected, possibly due to geometric uncertainty between layers. Future work will focus on mitigating the geometric uncertainty and examining more regions of interest along the grain boundary to glean information on dislocation-grain boundary interaction.

  14. An extension of the high-resolution millimeter- and submillimeter-wave spectrum of methanol to high angular momentum quantum numbers

    Science.gov (United States)

    Anderson, Todd; Herbst, Eric; De Lucia, Frank C.

    1992-01-01

    The high-resolution laboratory millimeter- and submillimeter-wave spectra of C-12H(3)OH and C-13H(3)OH have been extended to include transitions involving significantly higher angular momentum quantum numbers than studied previously. For C-12H(3)OH, the data set now includes 549 A torsional substate transitions and 524 E torsional substate transitions through J is not greater than 24, exclusive of blends. For C-13H(3)OH the data set now includes 453 A torsional substate transitions and 440 E torsional substate transitions through J is not greater than 24, exclusive of blends. The extended internal axis method Hamiltonian has been used to analyze the transitions to experimental accuracy. The molecular constants determined by this approach have been used to predict accurately the frequencies of many transitions through J = 25 not measured in the laboratory.

  15. Spectroradiometric characterization of autostereoscopic 3D displays

    Science.gov (United States)

    Rubiño, Manuel; Salas, Carlos; Pozo, Antonio M.; Castro, J. J.; Pérez-Ocón, Francisco

    2013-11-01

    Spectroradiometric measurements have been made for the experimental characterization of the RGB channels of autostereoscopic 3D displays, giving results for different measurement angles with respect to the normal direction of the plane of the display. In the study, 2 different models of autostereoscopic 3D displays of different sizes and resolutions were used, making measurements with a spectroradiometer (model PR-670 SpectraScan of PhotoResearch). From the measurements made, goniometric results were recorded for luminance contrast, and the fundamental hypotheses have been evaluated for the characterization of the displays: independence of the RGB channels and their constancy. The results show that the display with the lower angle variability in the contrast-ratio value and constancy of the chromaticity coordinates nevertheless presented the greatest additivity deviations with the measurement angle. For both displays, when the parameters evaluated were taken into account, lower angle variability consistently resulted in the 2D mode than in the 3D mode.

  16. Multiplane 3D superresolution optical fluctuation imaging

    CERN Document Server

    Geissbuehler, Stefan; Godinat, Aurélien; Bocchio, Noelia L; Dubikovskaya, Elena A; Lasser, Theo; Leutenegger, Marcel

    2013-01-01

    By switching fluorophores on and off in either a deterministic or a stochastic manner, superresolution microscopy has enabled the imaging of biological structures at resolutions well beyond the diffraction limit. Superresolution optical fluctuation imaging (SOFI) provides an elegant way of overcoming the diffraction limit in all three spatial dimensions by computing higher-order cumulants of image sequences of blinking fluorophores acquired with a conventional widefield microscope. So far, three-dimensional (3D) SOFI has only been demonstrated by sequential imaging of multiple depth positions. Here we introduce a versatile imaging scheme which allows for the simultaneous acquisition of multiple focal planes. Using 3D cross-cumulants, we show that the depth sampling can be increased. Consequently, the simultaneous acquisition of multiple focal planes reduces the acquisition time and hence the photo-bleaching of fluorescent markers. We demonstrate multiplane 3D SOFI by imaging the mitochondria network in fixed ...

  17. High mass resolution, high angular acceptance time-of-flight mass spectroscopy for planetary missions under the Planetary Instrument Definition and Development Program (PIDDP)

    Science.gov (United States)

    Young, David T.

    1991-01-01

    This final report covers three years and several phases of work in which instrumentation for the Planetary Instrument Definition and Development Program (PIDDP) were successfully developed. There were two main thrusts to this research: (1) to develop and test methods for electrostatically scanning detector field-of-views, and (2) to improve the mass resolution of plasma mass spectrometers to M/delta M approximately 25, their field-of-view (FOV) to 360 degrees, and their E-range to cover approximately 1 eV to 50 keV. Prototypes of two different approaches to electrostatic scanning were built and tested. The Isochronous time-of-flight (TOF) and the linear electric field 3D TOF devices were examined.

  18. 3D-skannaukseen perehtyminen

    OpenAIRE

    Santaluoto, Olli

    2012-01-01

    Tässä insinöörityössä tarkastellaan erilaisia 3D-skannaustekniikoita ja menetelmiä. Työssä myös kerrotaan esimerkkien avulla eri 3D-skannaustekniikoiden käyttökohteista. 3D-skannaus on Suomessa vielä melko harvinaista, siksi eri tekniikat ja käyttömahdollisuudet ovat monille tuntemattomia. 3D-skanneri on laite, jolla tutkitaan reaalimaailman esineitä tai ympäristöä keräämällä dataa kohteen muodoista. 3D-skannerit ovat hyvin paljon vastaavia tavallisen kameran kanssa. Kuten kameroilla, 3D...

  19. 3D Printing Functional Nanocomposites

    OpenAIRE

    Leong, Yew Juan

    2016-01-01

    3D printing presents the ability of rapid prototyping and rapid manufacturing. Techniques such as stereolithography (SLA) and fused deposition molding (FDM) have been developed and utilized since the inception of 3D printing. In such techniques, polymers represent the most commonly used material for 3D printing due to material properties such as thermo plasticity as well as its ability to be polymerized from monomers. Polymer nanocomposites are polymers with nanomaterials composited into the ...

  20. 3-D architecture modeling using high-resolution seismic data and sparse well control: Example from the Mars {open_quotes}Pink{close_quotes} reservoir, Mississippi Canyon Area, Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Chapin, M.A.; Tiller, G.M.; Mahaffie, M.J.

    1996-12-31

    Economic considerations of the deep-water turbidite play, in the Gulf of Mexico and elsewhere, require large reservoir volumes to be drained by relatively few, very expensive wells. Deep-water development projects to date have been planned on the basis of high-quality 3-D seismic data and sparse well control. The link between 3-D seismic, well control, and the 3-D geological and reservoir architecture model are demonstrated here for Pliocene turbidite sands of the {open_quotes}Pink{close_quotes} reservoir, Prospect Mars, Mississippi Canyon Areas 763 and 807, Gulf of Mexico. This information was used to better understand potential reservoir compartments for development well planning.

  1. 3D Elevation Program—Virtual USA in 3D

    Science.gov (United States)

    Lukas, Vicki; Stoker, J.M.

    2016-01-01

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.  

  2. 3D IBFV : Hardware-Accelerated 3D Flow Visualization

    NARCIS (Netherlands)

    Telea, Alexandru; Wijk, Jarke J. van

    2003-01-01

    We present a hardware-accelerated method for visualizing 3D flow fields. The method is based on insertion, advection, and decay of dye. To this aim, we extend the texture-based IBFV technique for 2D flow visualization in two main directions. First, we decompose the 3D flow visualization problem in a

  3. Interactive 3D multimedia content

    CERN Document Server

    Cellary, Wojciech

    2012-01-01

    The book describes recent research results in the areas of modelling, creation, management and presentation of interactive 3D multimedia content. The book describes the current state of the art in the field and identifies the most important research and design issues. Consecutive chapters address these issues. These are: database modelling of 3D content, security in 3D environments, describing interactivity of content, searching content, visualization of search results, modelling mixed reality content, and efficient creation of interactive 3D content. Each chapter is illustrated with example a

  4. 3D Bayesian contextual classifiers

    DEFF Research Database (Denmark)

    Larsen, Rasmus

    2000-01-01

    We extend a series of multivariate Bayesian 2-D contextual classifiers to 3-D by specifying a simultaneous Gaussian distribution for the feature vectors as well as a prior distribution of the class variables of a pixel and its 6 nearest 3-D neighbours.......We extend a series of multivariate Bayesian 2-D contextual classifiers to 3-D by specifying a simultaneous Gaussian distribution for the feature vectors as well as a prior distribution of the class variables of a pixel and its 6 nearest 3-D neighbours....

  5. 3-D printers for libraries

    CERN Document Server

    Griffey, Jason

    2014-01-01

    As the maker movement continues to grow and 3-D printers become more affordable, an expanding group of hobbyists is keen to explore this new technology. In the time-honored tradition of introducing new technologies, many libraries are considering purchasing a 3-D printer. Jason Griffey, an early enthusiast of 3-D printing, has researched the marketplace and seen several systems first hand at the Consumer Electronics Show. In this report he introduces readers to the 3-D printing marketplace, covering such topics asHow fused deposition modeling (FDM) printing workBasic terminology such as build

  6. 3D for Graphic Designers

    CERN Document Server

    Connell, Ellery

    2011-01-01

    Helping graphic designers expand their 2D skills into the 3D space The trend in graphic design is towards 3D, with the demand for motion graphics, animation, photorealism, and interactivity rapidly increasing. And with the meteoric rise of iPads, smartphones, and other interactive devices, the design landscape is changing faster than ever.2D digital artists who need a quick and efficient way to join this brave new world will want 3D for Graphic Designers. Readers get hands-on basic training in working in the 3D space, including product design, industrial design and visualization, modeling, ani

  7. Using 3D in Visualization

    DEFF Research Database (Denmark)

    Wood, Jo; Kirschenbauer, Sabine; Döllner, Jürgen;

    2005-01-01

    to display 3D imagery. The extra cartographic degree of freedom offered by using 3D is explored and offered as a motivation for employing 3D in visualization. The use of VR and the construction of virtual environments exploit navigational and behavioral realism, but become most usefil when combined...... with abstracted representations embedded in a 3D space. The interactions between development of geovisualization, the technology used to implement it and the theory surrounding cartographic representation are explored. The dominance of computing technologies, driven particularly by the gaming industry...

  8. 2D/3D Monte Carlo Feature Profile Simulator FPS-3D

    Science.gov (United States)

    Moroz, Paul

    2010-11-01

    Numerical simulation of etching/deposition profiles is important for semiconductor industry, as it allows analysis and prediction of the outcome of materials processing on a micron and sub-micron scale. The difficulty, however, is in making such a simulator a reliable, general, and easy to use tool applicable to different situations, for example, with different ratios of ion to neutral fluxes, different chemistries, different energies of incoming particles, and different angular and energy dependencies for surface reactions, without recompiling the code each time when the parameters change. The FPS-3D simulator [1] does not need recompilation when the features, materials, gases, or plasma are changed -- modifications to input, chemistry, and flux files are enough. The code allows interaction of neutral low-energy species with the surface mono-layer, while considering finite penetration depth into the volume for fast particles and ions. The FPS-3D code can simulate etching and deposition processes, both for 2D and 3D geometries. FPS-3D is using an advanced graphics package from HFS for presenting real-time process and profile evolution. The presentation will discuss the FPS-3D code with examples for different process conditions. The author is thankful to Drs. S.-Y. Kang of TEL TDC and P. Miller of HFS for valuable discussions. [4pt] [1] P. Moroz, URP.00101, GEC, Saratoga, NY, 2009.

  9. 3D bioprinting for engineering complex tissues.

    Science.gov (United States)

    Mandrycky, Christian; Wang, Zongjie; Kim, Keekyoung; Kim, Deok-Ho

    2016-01-01

    Bioprinting is a 3D fabrication technology used to precisely dispense cell-laden biomaterials for the construction of complex 3D functional living tissues or artificial organs. While still in its early stages, bioprinting strategies have demonstrated their potential use in regenerative medicine to generate a variety of transplantable tissues, including skin, cartilage, and bone. However, current bioprinting approaches still have technical challenges in terms of high-resolution cell deposition, controlled cell distributions, vascularization, and innervation within complex 3D tissues. While no one-size-fits-all approach to bioprinting has emerged, it remains an on-demand, versatile fabrication technique that may address the growing organ shortage as well as provide a high-throughput method for cell patterning at the micrometer scale for broad biomedical engineering applications. In this review, we introduce the basic principles, materials, integration strategies and applications of bioprinting. We also discuss the recent developments, current challenges and future prospects of 3D bioprinting for engineering complex tissues. Combined with recent advances in human pluripotent stem cell technologies, 3D-bioprinted tissue models could serve as an enabling platform for high-throughput predictive drug screening and more effective regenerative therapies.

  10. Planetary Torque in 3D Isentropic Disks

    CERN Document Server

    Fung, Jeffrey; Lega, Elena; Velasco, David

    2016-01-01

    Planet migration is inherently a three-dimensional (3D) problem, because Earth-size planetary cores are deeply embedded in protoplanetary disks. Simulations of these 3D disks remain challenging due to the steep requirement in resolution. Using two different hydrodynamics code, FARGO3D and PEnGUIn, we simulate disk-planet interaction for a 1 to 5 Earth-mass planet embedded in an isentropic disk. We measure the torque on the planet and ensure that the measurements are converged both in resolution and between the two codes. We find that the torque is independent of the smoothing length of the planet's potential ($r_{\\rm s}$), and that it has a weak dependence on the adiabatic index of the gaseous disk ($\\gamma$). The torque values correspond to an inward migration rate qualitatively similar to previous linear calculations. We perform additional simulations with explicit radiative transfer using FARGOCA, and again find agreement between 3D simulations and existing torque formulae. We also present the flow pattern...

  11. The application of high-resolution 3D seismic data to model the distribution of mechanical and hydrogeological properties of a potential host rock for the deep storage of radioactive waste in France

    CERN Document Server

    Mari, Jean-Luc

    2014-01-01

    In the context of a deep geological repository of high-level radioactive wastes, the French National Radioactive Waste Management Agency (Andra) has conducted an extensive characterization of the Callovo-Oxfordian argillaceous rock and surrounding formations in the Eastern Paris Basin. As part of this project, an accurate 3D seismic derived geological model is needed. The paper shows the procedure used for building the 3D seismic constrained geological model in depth by combining time-to-depth conversion of seismic horizons, consistent seismic velocity model and elastic impedance in time. It also shows how the 3D model is used for mechanical and hydrogeological studies. The 3D seismic field data example illustrates the potential of the proposed depth conversion procedure for estimating density and velocity distributions, which are consistent with the depth conversion of seismic horizons using the Bayesian Kriging method. The geological model shows good agreement with well log data obtained from a reference we...

  12. The application of high-resolution 3D seismic data to model the distribution of mechanical and hydrogeological properties of a potential host rock for the deep storage of radioactive waste in France

    OpenAIRE

    Mari, Jean-Luc; Yven, Béatrice

    2014-01-01

    In the context of a deep geological repository of high-level radioactive wastes, the French National Radioactive Waste Management Agency (Andra) has conducted an extensive characterization of the Callovo-Oxfordian argillaceous rock and surrounding formations in the Eastern Paris Basin. As part of this project, an accurate 3D seismic derived geological model is needed. The paper shows the procedure used for building the 3D seismic constrained geological model in depth by combining time-to-dept...

  13. SiC/SiO2界面的原子分辨率三维重构%Atomic resolution 3 D reconstruction of SiC/SiO2 interface

    Institute of Scientific and Technical Information of China (English)

    刘培植; 许并社; 郭俊杰

    2015-01-01

    Silicon carbide ( SiC) is widely used in high power electronics as a substitute of silicon. The key problem of SiC based metal⁃oxide⁃semiconductor field effect transistors ( MOSFET) is the relatively low channel electron mobility, and the transition layer of SiC/SiO2 interface is considered to be the main cause for the reduced electron mobility. However, the atomic structure of the transition layer is still unclear. In this paper, the transition layer was investigated with a 5th order spherical aberration corrected scanning transmission electron microscope. Depth sectioning images of SiC/SiO2 interface were obtained with the through⁃focal series technique, and an atomic resolution 3D structure of the interface was reconstructed with the through⁃focal series images. The clear 3D interface structure suggests that tshe interface has an atomic scale roughness, and the transition layer is a contrast of the roughness. The kinks, steps and microfacets increase the scattering probability of channel electrons, resulting in reducing the channel mobility of the MOSFET devices.%碳化硅( SiC)作为一种新型材料被广泛应用于高功率半导体器件中。目前的SiC基金属氧化物半导体场效应晶体管器件存在的主要问题是沟道电子迁移率低。 SiC/SiO2界面处的过渡层被认为是造成沟道电子迁移率低的主要原因,但是该过渡层的原子结构尚不清楚。本文利用球差矫正扫描透射电子显微镜深入研究了SiC/SiO2的界面。以变聚焦序列技术得到了界面过渡层不同深度的原子分辨率断层扫描图像,用变聚焦序列图像重构了界面的原子分辨率三维结构。精确的界面原子结构表明SiC/SiO2界面处的过渡区是由于邻晶界面上台阶突起和微刻面构成的。它是界面原子尺度的粗糙度的反映。邻晶界面上的台阶突起和微刻面增加了电子在界面传输过程中的散射几率,造成了沟道电子迁移率过低。

  14. Improvement of 3D Scanner

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The disadvantage remaining in 3D scanning system and its reasons are discussed. A new host-and-slave structure with high speed image acquisition and processing system is proposed to quicken the image processing and improve the performance of 3D scanning system.

  15. 3D Printing for Bricks

    OpenAIRE

    ECT Team, Purdue

    2015-01-01

    Building Bytes, by Brian Peters, is a project that uses desktop 3D printers to print bricks for architecture. Instead of using an expensive custom-made printer, it uses a normal standard 3D printer which is available for everyone and makes it more accessible and also easier for fabrication.

  16. Vertical Flow Lithography for Fabrication of 3D Anisotropic Particles.

    Science.gov (United States)

    Habasaki, Shohei; Lee, Won Chul; Yoshida, Shotaro; Takeuchi, Shoji

    2015-12-22

    A microfluidics-based method for the 3D fabrication of anisotropic particles is reported. The method uses a vertical microchannel where tunable light patterns solidify photocurable resins for stacking multiple layers of the resins, thus enabling an application of stereolithography concepts to conventional flow lithography. Multilayered, tapered, and angular compartmental microparticles are demonstrated. PMID:26551590

  17. The 2008 outburst in the Young Stellar System Z CMa. III - Multi-epoch high-angular resolution images and spectra of the components in near-infrared

    CERN Document Server

    Bonnefoy, M; Dougados, C; Kospal, A; Benisty, M; Duchene, G; Bouvier, J; Garcia, P J V; Whelan, E; Antoniucci, S; Podio, L

    2016-01-01

    Z CMa is a complex pre-main sequence binary with a current separation of 100 mas, known to consist of an FU Orionis star (SE component) and an embedded Herbig Be star (NW component). Immediately when the late-2008 outburst of Z CMa was announced to the community, we initiated a high angular resolution imaging campaign with VLT/NaCo, Keck/NIRC2, VLT/SINFONI, and Keck/OSIRIS which aimed at characterizing the outburst of both components of the system in the near-infrared. We confirm that the NW star dominates the system flux in the 1.1-3.8 microns range and is responsible for the photometric outburst. We extract the first medium-resolution (R=2000-4000) near-infrared (1.1-2.4 microns) spectra of the individual components during and after the outburst. The SE component has a spectrum typical of FU Orionis objects. The NW component spectrum is characteristic of embedded outbursting protostars and EX Or objects. It displays numerous emission lines during the outburst whose intensity correlates with the system activ...

  18. 3D printing in dentistry.

    Science.gov (United States)

    Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A

    2015-12-01

    3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery. PMID:26657435

  19. 3D printing in dentistry.

    Science.gov (United States)

    Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A

    2015-12-01

    3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery.

  20. PLOT3D user's manual

    Science.gov (United States)

    Walatka, Pamela P.; Buning, Pieter G.; Pierce, Larry; Elson, Patricia A.

    1990-01-01

    PLOT3D is a computer graphics program designed to visualize the grids and solutions of computational fluid dynamics. Seventy-four functions are available. Versions are available for many systems. PLOT3D can handle multiple grids with a million or more grid points, and can produce varieties of model renderings, such as wireframe or flat shaded. Output from PLOT3D can be used in animation programs. The first part of this manual is a tutorial that takes the reader, keystroke by keystroke, through a PLOT3D session. The second part of the manual contains reference chapters, including the helpfile, data file formats, advice on changing PLOT3D, and sample command files.

  1. Forward ramp in 3D

    Science.gov (United States)

    1997-01-01

    Mars Pathfinder's forward rover ramp can be seen successfully unfurled in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. This ramp was not used for the deployment of the microrover Sojourner, which occurred at the end of Sol 2. When this image was taken, Sojourner was still latched to one of the lander's petals, waiting for the command sequence that would execute its descent off of the lander's petal.The image helped Pathfinder scientists determine whether to deploy the rover using the forward or backward ramps and the nature of the first rover traverse. The metallic object at the lower left of the image is the lander's low-gain antenna. The square at the end of the ramp is one of the spacecraft's magnetic targets. Dust that accumulates on the magnetic targets will later be examined by Sojourner's Alpha Proton X-Ray Spectrometer instrument for chemical analysis. At right, a lander petal is visible.The IMP is a stereo imaging system with color capability provided by 24 selectable filters -- twelve filters per 'eye.' It stands 1.8 meters above the Martian surface, and has a resolution of two millimeters at a range of two meters.Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  2. 3-D Video Processing for 3-D TV

    Science.gov (United States)

    Sohn, Kwanghoon; Kim, Hansung; Kim, Yongtae

    One of the most desirable ways of realizing high quality information and telecommunication services has been called "The Sensation of Reality," which can be achieved by visual communication based on 3-D (Three-dimensional) images. These kinds of 3-D imaging systems have revealed potential applications in the fields of education, entertainment, medical surgery, video conferencing, etc. Especially, three-dimensional television (3-D TV) is believed to be the next generation of TV technology. Figure 13.1 shows how TV's display technologies have evolved , and Fig. 13.2 details the evolution of TV broadcasting as forecasted by the ETRI (Electronics and Telecommunications Research Institute). It is clear that 3-D TV broadcasting will be the next development in this field, and realistic broadcasting will soon follow.

  3. Providing stringent star formation rate limits of z$\\sim$2 QSO host galaxies at high angular resolution

    CERN Document Server

    Vayner, Andrey; Do, Tuan; Larkin, James E; Armus, Lee; Gallagher, Sarah C

    2014-01-01

    We present integral field spectrograph (IFS) with laser guide star adaptive optics (LGS-AO) observations of z=2 quasi-stellar objects (QSOs) designed to resolve extended nebular line emission from the host galaxy. Our data was obtained with W. M. Keck and Gemini-North Observatories using OSIRIS and NIFS coupled with the LGS-AO systems. We have conducted a pilot survey of five QSOs, three observed with NIFS+AO and two observed with OSIRIS+AO at an average redshift of z=2.15. We demonstrate that the combination of AO and IFS provides the necessary spatial and spectral resolutions required to separate QSO emission from its host. We present our technique for generating a PSF from the broad-line region of the QSO and performing PSF subtraction of the QSO emission to detect the host galaxy. We detect H$\\alpha$ and [NII] for two sources, SDSS J1029+6510 and SDSS J0925+06 that have both star formation and extended narrow-line emission. Assuming that the majority of narrow-line H$\\alpha$ is from star formation, we inf...

  4. ADT-3D Tumor Detection Assistant in 3D

    Directory of Open Access Journals (Sweden)

    Jaime Lazcano Bello

    2008-12-01

    Full Text Available The present document describes ADT-3D (Three-Dimensional Tumor Detector Assistant, a prototype application developed to assist doctors diagnose, detect and locate tumors in the brain by using CT scan. The reader may find on this document an introduction to tumor detection; ADT-3D main goals; development details; description of the product; motivation for its development; result’s study; and areas of applicability.

  5. Atmospheric Corrections Using MODTRAN for TOA and Surface BRDF Characteristics from High Resolution Spectroradiometric/Angular Measurements from a Helicopter Platform

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    High-resolution spectral radiance measurements were taken by a spectral radiometer on board a heli copter over the US Oklahoma Southern Great Plain near the Atmospheric Radiation Measurements (ARM) site during August 1998. The radiometer has a spectral range from 350 nm to 2500 nm at 1 nm resolution. The measurements covered several grass and cropland scene types at multiple solar zenith angles. Detailed atmospheric corrections using the Moderate Resolution Transmittance (MODTRAN) radiation model and in-situ sounding and aerosol measurements have been applied to the helicopter measurements in order to re trieve the surface and top of atmosphere (TOA) Bidirectional Reflectance Distribution Function (BRDF) characteristics. The atmospheric corrections are most significant in the visible wavelengths and in the strong water vapor absorption wavelengths in the near infrared region. Adjusting the BRDF to TOA requires a larger correction in the visible channels since Rayleigh scattering contributes significantly to the TOA reflectance. The opposite corrections to the visible and near infrarred wavelengths can alter the radiance dif ference and ratio that many remote sensing techniques are based on, such as the normalized difference vege tation index (NDVI). The data show that surface BRDFs and spectral albedos are highly sensitive to the veg etation type and solar zenith angle while BRDF at TOA depends more on atmospheric conditions and the vi ewing geometry. Comparison with the Clouds and the Earth's Radiant Energy System (CERES) derived clear sky Angular Distribution Model (ADM) for crop and grass scene type shows a standard deviation of 0.08 in broadband anisotropic function at 25° solar zenith angle and 0.15 at 50° solar zenith angle, respectively.

  6. Unassisted 3D camera calibration

    Science.gov (United States)

    Atanassov, Kalin; Ramachandra, Vikas; Nash, James; Goma, Sergio R.

    2012-03-01

    With the rapid growth of 3D technology, 3D image capture has become a critical part of the 3D feature set on mobile phones. 3D image quality is affected by the scene geometry as well as on-the-device processing. An automatic 3D system usually assumes known camera poses accomplished by factory calibration using a special chart. In real life settings, pose parameters estimated by factory calibration can be negatively impacted by movements of the lens barrel due to shaking, focusing, or camera drop. If any of these factors displaces the optical axes of either or both cameras, vertical disparity might exceed the maximum tolerable margin and the 3D user may experience eye strain or headaches. To make 3D capture more practical, one needs to consider unassisted (on arbitrary scenes) calibration. In this paper, we propose an algorithm that relies on detection and matching of keypoints between left and right images. Frames containing erroneous matches, along with frames with insufficiently rich keypoint constellations, are detected and discarded. Roll, pitch yaw , and scale differences between left and right frames are then estimated. The algorithm performance is evaluated in terms of the remaining vertical disparity as compared to the maximum tolerable vertical disparity.

  7. Handbook of 3D integration

    CERN Document Server

    Garrou , Philip; Ramm , Peter

    2014-01-01

    Edited by key figures in 3D integration and written by top authors from high-tech companies and renowned research institutions, this book covers the intricate details of 3D process technology.As such, the main focus is on silicon via formation, bonding and debonding, thinning, via reveal and backside processing, both from a technological and a materials science perspective. The last part of the book is concerned with assessing and enhancing the reliability of the 3D integrated devices, which is a prerequisite for the large-scale implementation of this emerging technology. Invaluable reading fo

  8. Tuotekehitysprojekti: 3D-tulostin

    OpenAIRE

    Pihlajamäki, Janne

    2011-01-01

    Opinnäytetyössä tutustuttiin 3D-tulostamisen teknologiaan. Työssä käytiin läpi 3D-tulostimesta tehty tuotekehitysprojekti. Sen lisäksi esiteltiin yleisellä tasolla tuotekehitysprosessi ja syntyneiden tulosten mahdollisia suojausmenetelmiä. Tavoitteena tässä työssä oli kehittää markkinoilta jo löytyvää kotitulostin-tasoista 3D-laiteteknologiaa lähemmäksi ammattilaistason ratkaisua. Tavoitteeseen pyrittiin keskittymällä parantamaan laitteella saavutettavaa tulostustarkkuutta ja -nopeutt...

  9. 3D on the internet

    OpenAIRE

    Puntar, Matej

    2012-01-01

    The purpose of this thesis is the presentation of already established and new technologies of displaying 3D content in a web browser. The thesis begins with a short presentation of the history of 3D content available on the internet and its development together with advantages and disadvantages of individual technologies. The latter two are described in detail as well is their use and the differences among them. Special emphasis has been given to WebGL, the newest technology of 3D conte...

  10. Color 3D Reverse Engineering

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This paper presents a principle and a method of col or 3D laser scanning measurement. Based on the fundamental monochrome 3D measureme nt study, color information capture, color texture mapping, coordinate computati on and other techniques are performed to achieve color 3D measurement. The syste m is designed and composed of a line laser light emitter, one color CCD camera, a motor-driven rotary filter, a circuit card and a computer. Two steps in captu ring object's images in the measurement process: Firs...

  11. Exploration of 3D Printing

    OpenAIRE

    Lin, Zeyu

    2014-01-01

    3D printing technology is introduced and defined in this Thesis. Some methods of 3D printing are illustrated and their principles are explained with pictures. Most of the essential parts are presented with pictures and their effects are explained within the whole system. Problems on Up! Plus 3D printer are solved and a DIY product is made with this machine. The processes of making product are recorded and the items which need to be noticed during the process are the highlight in this th...

  12. 分子轨道近似在八面体共价晶体中3d过渡金属离子轨道角动量和旋-轨耦合中的应用%Application of Approximate Molecular-orbital Approach to the Angular Momentum and Spin-orbit Coupling of 3d Transition-metal Ions in Octahetral Covalent Crystals

    Institute of Scientific and Technical Information of China (English)

    周一阳

    2001-01-01

    用分子轨道近似推导了3d过渡金属离子在八面体晶体中轨道角动量和旋-轨耦合矩阵,同时得到了这些矩阵元与3d离子在纯晶体场近似下的矩阵之间的关系.通过以上矩阵元和关系可以很容易地计算3d离子在八面体晶体中的旋-轨、自旋-自旋和塞曼作用矩阵.%The matrices of angular momentum and spin-orbit coupling for 3dtransition-metal ions in octahetral symmetry are derived by an approximate molecular-orbital approach. The relationships of these matrices with those for 3d ions within pure crystal-field approximation are also obtained. From above matrices and relationships one can calculate easily the spin-orbit, spin-spin and Zeeman interaction matrices for 3d ions in octahetral symmetry.

  13. Providing Stringent Star Formation Rate Limits of z ˜ 2 QSO Host Galaxies at High Angular Resolution

    Science.gov (United States)

    Vayner, Andrey; Wright, Shelley A.; Do, Tuan; Larkin, James E.; Armus, Lee; Gallagher, S. C.

    2016-04-01

    We present integral field spectrograph (IFS) with laser guide star adaptive optics (LGS-AO) observations of z ˜ 2 quasi-stellar objects (QSOs) designed to resolve extended nebular line emission from the host galaxy. Our data was obtained with W. M. Keck and Gemini North Observatories, using OSIRIS and NIFS coupled with the LGS-AO systems, respectively. We have conducted a pilot survey of five QSOs, three observed with NIFS+AO and two observed with OSIRIS+AO at an average redshift of z = 2.2. We demonstrate that the combination of AO and IFSs provides the necessary spatial and spectral resolutions required to separate QSO emission from its host. We present our technique for generating a point-spread function (PSF) from the broad-line region of the QSO and performing PSF subtraction of the QSO emission to detect the host galaxy emission at a separation of ˜0.″2 (˜1.4 kpc). We detect Hα narrow-line emission for two sources, SDSS J1029+6510 (zHα = 2.182) and SDSS J0925+0655 (zHα = 2.197), that have evidence for both star formation and extended narrow-line emission. Assuming that the majority of narrow-line Hα emission is from star formation, we infer a star formation rate (SFR) for SDSS J1029+6510 of 78.4 M⊙ yr-1 originating from a compact region that is kinematically offset by 290-350 km s-1. For SDSS J0925+0655 we infer a SFR of 29 M⊙ yr-1 distributed over three clumps that are spatially offset by ˜7 kpc. The null detections on three of the QSOs are used to infer surface brightness limits and we find that at 1.4 kpc from the QSO the un-reddened star formation limit is ≲0.3 M⊙ yr-1 kpc-2. If we assume typical extinction values for z = 2 type-1 QSOs, the dereddened SFR for our null detections would be ≲0.6 M⊙ yr-1 kpc-2. These IFS observations indicate that while the central black hole is accreting mass at 10%-40% of the Eddington rate, if star formation is present in the host (1.4-20 kpc) it would have to occur diffusely with significant

  14. 3D-Barolo: a new 3D algorithm to derive rotation curves of galaxies

    CERN Document Server

    Di Teodoro, Enrico

    2015-01-01

    We present 3D-Barolo, a new code that derives rotation curves of galaxies from emission-line observations. This software fits 3D tilted-ring models to spectroscopic data-cubes and can be used with a variety of observations: from HI and molecular lines to optical/IR recombination lines. We describe the structure of the main algorithm and show that it performs much better than the standard 2D approach on velocity fields. A number of successful applications, from high to very low spatial resolution data are presented and discussed. 3D-Barolo can recover the true rotation curve and estimate the intrinsic velocity dispersion even in barely resolved galaxies (about 2 resolution elements) provided that the signal to noise of the data is larger that 2-3. It can also be run automatically thanks to its source-detection and first-estimate modules, which make it suitable for the analysis of large 3D datasets. These features make 3D-Barolo a uniquely useful tool to derive reliable kinematics for both local and high-redshi...

  15. Materialedreven 3d digital formgivning

    DEFF Research Database (Denmark)

    Hansen, Flemming Tvede

    2010-01-01

    traditionel keramisk produktionssammenhæng. Problemstillingen opmuntrede endvidere til i et samarbejde med en programmør at udvikle et 3d digitalt redskab, der er blevet kaldt et digitalt interaktivt formgivningsredskab (DIF). Eksperimentet undersøger interaktive 3d digitale dynamiske systemer, der...... samarbejder med designere fra fagområder som interaktionsdesign og programmering. Afhandlingen peger på et fremtidigt forskningsfelt indenfor generative og responderende digitale systemer til 3d formgivning, der ligeledes inkluderer følesansen. Endvidere er det relevant at forske i, hvordan de RP teknikker...... formgivning og Rapid Prototyping (RP). RP er en fællesbetegnelse for en række af de teknikker, der muliggør at overføre den digitale form til 3d fysisk form. Forskningsprojektet koncentrerer sig om to overordnede forskningsspørgsmål. Det første handler om, hvordan viden og erfaring indenfor det keramiske...

  16. The New Realm of 3-D Vision

    Science.gov (United States)

    2002-01-01

    Dimension Technologies Inc., developed a line of 2-D/3-D Liquid Crystal Display (LCD) screens, including a 15-inch model priced at consumer levels. DTI's family of flat panel LCD displays, called the Virtual Window(TM), provide real-time 3-D images without the use of glasses, head trackers, helmets, or other viewing aids. Most of the company initial 3-D display research was funded through NASA's Small Business Innovation Research (SBIR) program. The images on DTI's displays appear to leap off the screen and hang in space. The display accepts input from computers or stereo video sources, and can be switched from 3-D to full-resolution 2-D viewing with the push of a button. The Virtual Window displays have applications in data visualization, medicine, architecture, business, real estate, entertainment, and other research, design, military, and consumer applications. Displays are currently used for computer games, protein analysis, and surgical imaging. The technology greatly benefits the medical field, as surgical simulators are helping to increase the skills of surgical residents. Virtual Window(TM) is a trademark of Dimension Technologies Inc.

  17. PROVIDING STRINGENT STAR FORMATION RATE LIMITS OF z ∼ 2 QSO HOST GALAXIES AT HIGH ANGULAR RESOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Vayner, Andrey; Wright, Shelley A. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON, M5S 3H4 (Canada); Do, Tuan [Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON, M5S 3H4 (Canada); Larkin, James E. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Armus, Lee [Spitzer Science Center, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125 (United States); Gallagher, S. C. [Department of Physics and Astronomy, The University of Western Ontario, London, ON N6A 3K7 (Canada)

    2016-04-10

    We present integral field spectrograph (IFS) with laser guide star adaptive optics (LGS-AO) observations of z ∼ 2 quasi-stellar objects (QSOs) designed to resolve extended nebular line emission from the host galaxy. Our data was obtained with W. M. Keck and Gemini North Observatories, using OSIRIS and NIFS coupled with the LGS-AO systems, respectively. We have conducted a pilot survey of five QSOs, three observed with NIFS+AO and two observed with OSIRIS+AO at an average redshift of z = 2.2. We demonstrate that the combination of AO and IFSs provides the necessary spatial and spectral resolutions required to separate QSO emission from its host. We present our technique for generating a point-spread function (PSF) from the broad-line region of the QSO and performing PSF subtraction of the QSO emission to detect the host galaxy emission at a separation of ∼0.″2 (∼1.4 kpc). We detect Hα narrow-line emission for two sources, SDSS J1029+6510 (z{sub Hα} = 2.182) and SDSS J0925+0655 (z{sub Hα} = 2.197), that have evidence for both star formation and extended narrow-line emission. Assuming that the majority of narrow-line Hα emission is from star formation, we infer a star formation rate (SFR) for SDSS J1029+6510 of 78.4 M{sub ⊙} yr{sup −1} originating from a compact region that is kinematically offset by 290–350 km s{sup −1}. For SDSS J0925+0655 we infer a SFR of 29 M{sub ⊙} yr{sup −1} distributed over three clumps that are spatially offset by ∼7 kpc. The null detections on three of the QSOs are used to infer surface brightness limits and we find that at 1.4 kpc from the QSO the un-reddened star formation limit is ≲0.3 M{sub ⊙} yr{sup −1} kpc{sup −2}. If we assume typical extinction values for z = 2 type-1 QSOs, the dereddened SFR for our null detections would be ≲0.6 M{sub ⊙} yr{sup −1} kpc{sup −2}. These IFS observations indicate that while the central black hole is accreting mass at 10%–40% of the Eddington rate, if

  18. 3D Face Apperance Model

    DEFF Research Database (Denmark)

    Lading, Brian; Larsen, Rasmus; Astrom, K

    2006-01-01

    We build a 3D face shape model, including inter- and intra-shape variations, derive the analytical Jacobian of its resulting 2D rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations......We build a 3D face shape model, including inter- and intra-shape variations, derive the analytical Jacobian of its resulting 2D rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations...

  19. Main: TATCCAYMOTIFOSRAMY3D [PLACE

    Lifescience Database Archive (English)

    Full Text Available TATCCAYMOTIFOSRAMY3D S000256 01-August-2006 (last modified) kehi TATCCAY motif foun...d in rice (O.s.) RAmy3D alpha-amylase gene promoter; Y=T/C; a GATA motif as its antisense sequence; TATCCAY ...motif and G motif (see S000130) are responsible for sugar repression (Toyofuku et al. 1998); GATA; amylase; sugar; repression; rice (Oryza sativa) TATCCAY ...

  20. Combinatorial 3D Mechanical Metamaterials

    Science.gov (United States)

    Coulais, Corentin; Teomy, Eial; de Reus, Koen; Shokef, Yair; van Hecke, Martin

    2015-03-01

    We present a class of elastic structures which exhibit 3D-folding motion. Our structures consist of cubic lattices of anisotropic unit cells that can be tiled in a complex combinatorial fashion. We design and 3d-print this complex ordered mechanism, in which we combine elastic hinges and defects to tailor the mechanics of the material. Finally, we use this large design space to encode smart functionalities such as surface patterning and multistability.

  1. AI 3D Cybug Gaming

    CERN Document Server

    Ahmed, Zeeshan

    2010-01-01

    In this short paper I briefly discuss 3D war Game based on artificial intelligence concepts called AI WAR. Going in to the details, I present the importance of CAICL language and how this language is used in AI WAR. Moreover I also present a designed and implemented 3D War Cybug for AI WAR using CAICL and discus the implemented strategy to defeat its enemies during the game life.

  2. 3D Face Appearance Model

    DEFF Research Database (Denmark)

    Lading, Brian; Larsen, Rasmus; Åström, Kalle

    2006-01-01

    We build a 3d face shape model, including inter- and intra-shape variations, derive the analytical jacobian of its resulting 2d rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations.}......We build a 3d face shape model, including inter- and intra-shape variations, derive the analytical jacobian of its resulting 2d rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations.}...

  3. Dynamics of 3D isolated thermal filaments

    CERN Document Server

    Walkden, N R; Militello, F; Omotani, J T

    2016-01-01

    Simulations have been carried out to establish how electron thermal physics, introduced in the form of a dynamic electron temperature, affects isolated filament motion and dynamics in 3D. It is found that thermal effects impact filament motion in two major ways when the filament has a significant temperature perturbation compared to its density perturbation: They lead to a strong increase in filament propagation in the bi-normal direction and a significant decrease in net radial propagation. Both effects arise from the temperature dependence of the sheath current which leads to a non-uniform floating potential, with the latter effect supplemented by faster pressure loss. The reduction in radial velocity can only occur when the filament cross-section loses angular symmetry. The behaviour is observed across different filament sizes and suggests that filaments with much larger temperature perturbations than density perturbations are more strongly confined to the near SOL region.

  4. Visualization of 3D optical lattices

    Science.gov (United States)

    Lee, Hoseong; Clemens, James

    2016-05-01

    We describe the visualization of 3D optical lattices based on Sisyphus cooling implemented with open source software. We plot the adiabatic light shift potentials found by diagonalizing the effective Hamiltonian for the light shift operator. Our program incorporates a variety of atomic ground state configurations with total angular momentum ranging from j = 1 / 2 to j = 4 and a variety of laser beam configurations including the two-beam lin ⊥ lin configuration, the four-beam umbrella configuration, and four beams propagating in two orthogonal planes. In addition to visualizing the lattice the program also evaluates lattice parameters such as the oscillation frequency for atoms trapped deep in the wells. The program is intended to help guide experimental implementations of optical lattices.

  5. MPML3D: Scripting Agents for the 3D Internet.

    Science.gov (United States)

    Prendinger, Helmut; Ullrich, Sebastian; Nakasone, Arturo; Ishizuka, Mitsuru

    2011-05-01

    The aim of this paper is two-fold. First, it describes a scripting language for specifying communicative behavior and interaction of computer-controlled agents ("bots") in the popular three-dimensional (3D) multiuser online world of "Second Life" and the emerging "OpenSimulator" project. While tools for designing avatars and in-world objects in Second Life exist, technology for nonprogrammer content creators of scenarios involving scripted agents is currently missing. Therefore, we have implemented new client software that controls bots based on the Multimodal Presentation Markup Language 3D (MPML3D), a highly expressive XML-based scripting language for controlling the verbal and nonverbal behavior of interacting animated agents. Second, the paper compares Second Life and OpenSimulator platforms and discusses the merits and limitations of each from the perspective of agent control. Here, we also conducted a small study that compares the network performance of both platforms.

  6. Angular resolution measurements at SPring-8 of a hard X-ray optic for the New Hard X-ray Mission

    CERN Document Server

    Spiga, D; Furuzawa, A; Basso, S; Binda, R; Borghi, G; Cotroneo, V; Grisoni, G; Kunieda, H; Marioni, F; Matsumoto, H; Mori, H; Miyazawa, T; Negri, B; Orlandi, A; Pareschi, G; Salmaso, B; Tagliaferri, G; Uesugi, K; Valsecchi, G; Vernani, D

    2015-01-01

    The realization of X-ray telescopes with imaging capabilities in the hard (> 10 keV) X-ray band requires the adoption of optics with shallow (10 m shall be produced and tested. Full-illumination tests of such mirrors are usually performed with on- ground X-ray facilities, aimed at measuring their effective area and the angular resolution; however, they in general suffer from effects of the finite distance of the X-ray source, e.g. a loss of effective area for double reflection. These effects increase with the focal length of the mirror under test; hence a "partial" full-illumination measurement might not be fully representative of the in-flight performances. Indeed, a pencil beam test can be adopted to overcome this shortcoming, because a sector at a time is exposed to the X-ray flux, and the compensation of the beam divergence is achieved by tilting the optic. In this work we present the result of a hard X-ray test campaign performed at the BL20B2 beamline of the SPring-8 synchrotron radiation facility, aime...

  7. PKS 1502+106: A high-redshift Fermi blazar at extreme angular resolution. Structural dynamics with VLBI imaging up to 86 GHz

    CERN Document Server

    Karamanavis, V; Krichbaum, T P; Angelakis, E; Hodgson, J; Nestoras, I; Myserlis, I; Zensus, J A; Sievers, A; Ciprini, S

    2016-01-01

    Context. Blazars are among the most energetic objects in the Universe. In 2008 August, Fermi/LAT detected the blazar PKS 1502+106 showing a rapid and strong gamma-ray outburst followed by high and variable flux over the next months. This activity at high energies triggered an intensive multi-wavelength campaign covering also the radio, optical, UV, and X-ray bands indicating that the flare was accompanied by a simultaneous outburst at optical/UV/X-rays and a delayed outburst at radio bands. Aims: In the current work we explore the phenomenology and physical conditions within the ultra-relativistic jet of the gamma-ray blazar PKS 1502+106. Additionally, we address the question of the spatial localization of the MeV/GeV-emitting region of the source. Methods: We utilize ultra-high angular resolution mm-VLBI observations at 43 and 86 GHz complemented by VLBI observations at 15 GHz. We also employ single-dish radio data from the F-GAMMA program at frequencies matching the VLBI monitoring. Results: PKS 1502+106 sh...

  8. Stellar Diameters and Temperatures VI. High angular resolution measurements of the transiting exoplanet host stars HD 189733 and HD 209458 and implications for models of cool dwarfs

    CERN Document Server

    Boyajian, Tabetha; Feiden, Gregory A; Huber, Daniel; Basu, Sarbani; Demarque, Pierre; Fischer, Debra A; Schaefer, Gail; Mann, Andrew W; White, Timothy R; Maestro, Vicente; Brewer, John; Lamell, C Brooke; Spada, Federico; López-Morales, Mercedes; Ireland, Michael; Farrington, Chris; van Belle, Gerard T; Kane, Stephen R; Jones, Jeremy; Brummelaar, Theo A ten; Ciardi, David R; McAlister, Harold A; Ridgway, Stephen; Goldfinger, P J; Turner, Nils H; Sturmann, Laszlo

    2014-01-01

    We present direct radii measurements of the well-known transiting exoplanet host stars HD 189733 and HD 209458 using the CHARA Array interferometer. We find the limb-darkened angular diameters to be theta_LD = 0.3848 +/- 0.0055 and 0.2254 +/- 0.0072 milliarcsec for HD 189733 and HD 209458, respectively. HD 189733 and HD 209458 are currently the only two transiting exoplanet systems where detection of the respective planetary companion's orbital motion from high resolution spectroscopy has revealed absolute masses for both star and planet. We use our new measurements together with the orbital information from radial velocity and photometric time series data, Hipparcos distances, and newly measured bolometric fluxes to determine the stellar effective temperatures (T_eff = 4875 +/- 43, 6093 +/- 103 K), stellar linear radii (R_* = 0.805 +/- 0.016, 1.203 +/- 0.061 R_sun), mean stellar densities (rho_* = 1.62 +/- 0.11, 0.58 +/- 0.14 rho_sun), planetary radii (R_p = 1.216 +/- 0.024, 1.451 +/- 0.074 R_Jup), and mean ...

  9. A deep look at the nuclear region of UGC 5101 through high angular resolution mid-IR data with GTC/CanariCam

    CERN Document Server

    Martínez-Paredes, M; Aretxaga, I; Almeida, C Ramos; Hernán-Caballero, A; González-Martín, O; Pereira-Santaella, M; Packham, C; Ramos, A Asensio; Díaz-Santos, T; Elitzur, M; Esquej, P; García-Bernete, I; Imanishi, M; Levenson, N A; Espinosa, J M Rodríguez

    2015-01-01

    We present an analysis of the nuclear infrared (IR, 1.6 to 18 $\\mu$m) emission of the ultraluminous IR galaxy UGC 5101 to derive the properties of its active galactic nucleus (AGN) and its obscuring material. We use new mid-IR high angular resolution ($0.3-0.5$ arcsec) imaging using the Si-2 filter ($\\lambda_{C}=8.7\\, \\mu$m) and $7.5-13$ $\\mu$m spectroscopy taken with CanariCam (CC) on the 10.4m Gran Telescopio CANARIAS. We also use archival HST/NICMOS and Subaru/COMICS imaging and Spitzer/IRS spectroscopy. We estimate the near- and mid-IR unresolved nuclear emission by modelling the imaging data with GALFIT. We decompose the Spitzer/IRS and CC spectra using a power-law component, which represents the emission due to dust heated by the AGN, and a starburst component, both affected by foreground extinction. We model the resulting unresolved near- and mid-IR, and the starburst subtracted CC spectrum with the CLUMPY torus models of Nenkova et al. The derived geometrical properties of the torus, including the lar...

  10. 3D-printed phantom for the characterization of non-uniform rotational distortion (Conference Presentation)

    Science.gov (United States)

    Hohert, Geoffrey; Pahlevaninezhad, Hamid; Lee, Anthony; Lane, Pierre M.

    2016-03-01

    Endoscopic catheter-based imaging systems that employ a 2-dimensional rotary or 3-dimensional rotary-pullback scanning mechanism require constant angular velocity at the distal tip to ensure correct angular registration of the collected signal. Non-uniform rotational distortion (NURD) - often present due to a variety of mechanical issues - can result in inconsistent position and velocity profiles at the tip, limiting the accuracy of any measurements. Since artifacts like NURD are difficult to identify and characterize during tissue imaging, phantoms with well-defined patterns have been used to quantify position and/or velocity error. In this work we present a fast, versatile, and cost-effective method for making fused deposition modeling 3D printed phantoms for identifying and quantifying NURD errors along an arbitrary user-defined pullback path. Eight evenly-spaced features are present at the same orientation at all points on the path such that deviations from expected geometry can be quantified for the imaging catheter. The features are printed vertically and then folded together around the path to avoid issues with printer head resolution. This method can be adapted for probes of various diameters and for complex imaging paths with multiple bends. We demonstrate imaging using the 3D printed phantoms with a 1mm diameter rotary-pullback OCT catheter and system as a means of objectively evaluating the mechanical performance of similarly constructed probes.

  11. YouDash3D: exploring stereoscopic 3D gaming for 3D movie theaters

    Science.gov (United States)

    Schild, Jonas; Seele, Sven; Masuch, Maic

    2012-03-01

    Along with the success of the digitally revived stereoscopic cinema, events beyond 3D movies become attractive for movie theater operators, i.e. interactive 3D games. In this paper, we present a case that explores possible challenges and solutions for interactive 3D games to be played by a movie theater audience. We analyze the setting and showcase current issues related to lighting and interaction. Our second focus is to provide gameplay mechanics that make special use of stereoscopy, especially depth-based game design. Based on these results, we present YouDash3D, a game prototype that explores public stereoscopic gameplay in a reduced kiosk setup. It features live 3D HD video stream of a professional stereo camera rig rendered in a real-time game scene. We use the effect to place the stereoscopic effigies of players into the digital game. The game showcases how stereoscopic vision can provide for a novel depth-based game mechanic. Projected trigger zones and distributed clusters of the audience video allow for easy adaptation to larger audiences and 3D movie theater gaming.

  12. 3D printing in chemistry: past, present and future

    Science.gov (United States)

    Shatford, Ryan; Karanassios, Vassili

    2016-05-01

    During the last years, 3d printing for rapid prototyping using additive manufacturing has been receiving increased attention in the technical and scientific literature including some Chemistry-related journals. Furthermore, 3D printing technology (defining size and resolution of 3D objects) and properties of printed materials (e.g., strength, resistance to chemical attack, electrical insulation) proved to be important for chemistry-related applications. In this paper these are discussed in detail. In addition, application of 3D printing for development of Micro Plasma Devices (MPDs) is discussed and 2d-profilometry data of a 3D printed surfaces is reported. And, past and present chemistry and bio-related applications of 3D printing are reviewed and possible future directions are postulated.

  13. Remote 3D Medical Consultation

    Science.gov (United States)

    Welch, Greg; Sonnenwald, Diane H.; Fuchs, Henry; Cairns, Bruce; Mayer-Patel, Ketan; Yang, Ruigang; State, Andrei; Towles, Herman; Ilie, Adrian; Krishnan, Srinivas; Söderholm, Hanna M.

    Two-dimensional (2D) video-based telemedical consultation has been explored widely in the past 15-20 years. Two issues that seem to arise in most relevant case studies are the difficulty associated with obtaining the desired 2D camera views, and poor depth perception. To address these problems we are exploring the use of a small array of cameras to synthesize a spatially continuous range of dynamic three-dimensional (3D) views of a remote environment and events. The 3D views can be sent across wired or wireless networks to remote viewers with fixed displays or mobile devices such as a personal digital assistant (PDA). The viewpoints could be specified manually or automatically via user head or PDA tracking, giving the remote viewer virtual head- or hand-slaved (PDA-based) remote cameras for mono or stereo viewing. We call this idea remote 3D medical consultation (3DMC). In this article we motivate and explain the vision for 3D medical consultation; we describe the relevant computer vision/graphics, display, and networking research; we present a proof-of-concept prototype system; and we present some early experimental results supporting the general hypothesis that 3D remote medical consultation could offer benefits over conventional 2D televideo.

  14. Novel 3D media technologies

    CERN Document Server

    Dagiuklas, Tasos

    2015-01-01

    This book describes recent innovations in 3D media and technologies, with coverage of 3D media capturing, processing, encoding, and adaptation, networking aspects for 3D Media, and quality of user experience (QoE). The contributions are based on the results of the FP7 European Project ROMEO, which focuses on new methods for the compression and delivery of 3D multi-view video and spatial audio, as well as the optimization of networking and compression jointly across the future Internet. The delivery of 3D media to individual users remains a highly challenging problem due to the large amount of data involved, diverse network characteristics and user terminal requirements, as well as the user’s context such as their preferences and location. As the number of visual views increases, current systems will struggle to meet the demanding requirements in terms of delivery of consistent video quality to fixed and mobile users. ROMEO will present hybrid networking solutions that combine the DVB-T2 and DVB-NGH broadcas...

  15. 3D future internet media

    CERN Document Server

    Dagiuklas, Tasos

    2014-01-01

    This book describes recent innovations in 3D media and technologies, with coverage of 3D media capturing, processing, encoding, and adaptation, networking aspects for 3D Media, and quality of user experience (QoE). The main contributions are based on the results of the FP7 European Projects ROMEO, which focus on new methods for the compression and delivery of 3D multi-view video and spatial audio, as well as the optimization of networking and compression jointly across the Future Internet (www.ict-romeo.eu). The delivery of 3D media to individual users remains a highly challenging problem due to the large amount of data involved, diverse network characteristics and user terminal requirements, as well as the user’s context such as their preferences and location. As the number of visual views increases, current systems will struggle to meet the demanding requirements in terms of delivery of constant video quality to both fixed and mobile users. ROMEO will design and develop hybrid-networking solutions that co...

  16. The EISCAT_3D Science Case

    Science.gov (United States)

    Tjulin, A.; Mann, I.; McCrea, I.; Aikio, A. T.

    2013-05-01

    EISCAT_3D will be a world-leading international research infrastructure using the incoherent scatter technique to study the atmosphere in the Fenno-Scandinavian Arctic and to investigate how the Earth's atmosphere is coupled to space. The EISCAT_3D phased-array multistatic radar system will be operated by EISCAT Scientific Association and thus be an integral part of an organisation that has successfully been running incoherent scatter radars for more than thirty years. The baseline design of the radar system contains a core site with transmitting and receiving capabilities located close to the intersection of the Swedish, Norwegian and Finnish borders and five receiving sites located within 50 to 250 km from the core. The EISCAT_3D project is currently in its Preparatory Phase and can smoothly transit into implementation in 2014, provided sufficient funding. Construction can start 2016 and first operations in 2018. The EISCAT_3D Science Case is prepared as part of the Preparatory Phase. It is regularly updated with annual new releases, and it aims at being a common document for the whole future EISCAT_3D user community. The areas covered by the Science Case are atmospheric physics and global change; space and plasma physics; solar system research; space weather and service applications; and radar techniques, new methods for coding and analysis. Two of the aims for EISCAT_3D are to understand the ways natural variability in the upper atmosphere, imposed by the Sun-Earth system, can influence the middle and lower atmosphere, and to improve the predictivity of atmospheric models by providing higher resolution observations to replace the current parametrised input. Observations by EISCAT_3D will also be used to monitor the direct effects from the Sun on the ionosphere-atmosphere system and those caused by solar wind magnetosphere-ionosphere interaction. In addition, EISCAT_3D will be used for remote sensing the large-scale behaviour of the magnetosphere from its

  17. 3D Imager and Method for 3D imaging

    NARCIS (Netherlands)

    Kumar, P.; Staszewski, R.; Charbon, E.

    2013-01-01

    3D imager comprising at least one pixel, each pixel comprising a photodetectorfor detecting photon incidence and a time-to-digital converter system configured for referencing said photon incidence to a reference clock, and further comprising a reference clock generator provided for generating the re

  18. Modification of 3D milling machine to 3D printer

    OpenAIRE

    Halamíček, Lukáš

    2015-01-01

    Tato práce se zabývá přestavbou gravírovací frézky na 3D tiskárnu. V první části se práce zabývá možnými technologiemi 3D tisku a možností jejich využití u přestavby. Dále jsou popsány a vybrány vhodné součásti pro přestavbu. V další části je realizováno řízení ohřevu podložky, trysky a řízení posuvu drátu pomocí softwaru TwinCat od společnosti Beckhoff na průmyslovém počítači. Výsledkem práce by měla být oživená 3D tiskárna. This thesis deals with rebuilding of engraving machine to 3D pri...

  19. MRI of the anterior talofibular ligament, talar cartilage and os subfibulare: Comparison of isotropic resolution 3D and conventional 2D T2-weighted fast spin-echo sequences at 3.0 T

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Jisook; Cha, Jang Gyu [Soonchunhyang University Bucheon Hospital, Department of Radiology, Wonmi-gu, Bucheon-si (Korea, Republic of); Lee, Young Koo [Soonchunhyang University Bucheon Hospital, Department of Orthopedics, Wonmi-gu, Bucheon-si (Korea, Republic of); Lee, Bo Ra [Soonchunhyang University Bucheon Hospital, Department of Biomedical Statistics, Wonmi-gu, Bucheon-si (Korea, Republic of); Jeon, Chan Hong [Soonchunhyang University Bucheon Hospital, Division of Rheumatology, Department of Internal Medicine, Wonmi-gu, Bucheon-si (Korea, Republic of)

    2016-07-15

    To determine the accuracy of a three-dimensional (3D) T2-weighted fast spin-echo (FSE) magnetic resonance (MR) sequence compared with two-dimensional (2D) sequence for diagnosing anterior talofibular ligament (ATFL) tears, chondral lesion of the talus (CLT) and os subfibulare/avulsion fracture of the distal fibula (OSF). Thirty-five patients were included, who had undergone ankle MRI with 3D T2-weighted FSE and 2D T2-weighted FSE sequences, as well as subsequent ankle arthroscopy, between November 2013 and July 2014. Each MR imaging sequence was independently scored by two readers retrospectively for the presence of ATFL tears, CLT and OSF. The area under the receiver operating curve (AUC) was compared to determine the discriminatory power of the two image sequences. Interobserver agreement was expressed as unweighted kappa value. Arthroscopic findings confirmed 21 complete tears of the ATFL, 14 partial tears of the ATFL, 17 CLTs and 7 OSFs. There were no significant differences in the diagnoses of ATFL tears (p = 0.074-0.501), CLT (p = 0.090-0.450) and OSF (p = 0.317) obtained from the 2D and 3D sequences by either reader. The interobserver agreement rates between two readers using the 3D T2-weighted FSE sequence versus those obtained with the 2D sequence were substantial (κ = 0.659) versus moderate (κ = 0.553) for ATFL tears, moderate (κ = 0.499) versus substantial (κ = 0.676) for CLT and substantial (κ = 0.621) versus substantial (κ = 0.689) for OSF. Three-dimensional isotropic T2-weighted FSE MRI of the ankle resulted in no statistically significant difference in diagnostic performance compared to two-dimensional T2-weighted FSE MRI in the evaluation of ATFL tears, CLTs and OSFs. (orig.)

  20. Markerless 3D Face Tracking

    DEFF Research Database (Denmark)

    Walder, Christian; Breidt, Martin; Bulthoff, Heinrich;

    2009-01-01

    We present a novel algorithm for the markerless tracking of deforming surfaces such as faces. We acquire a sequence of 3D scans along with color images at 40Hz. The data is then represented by implicit surface and color functions, using a novel partition-of-unity type method of efficiently...... combining local regressors using nearest neighbor searches. Both these functions act on the 4D space of 3D plus time, and use temporal information to handle the noise in individual scans. After interactive registration of a template mesh to the first frame, it is then automatically deformed to track...... the scanned surface, using the variation of both shape and color as features in a dynamic energy minimization problem. Our prototype system yields high-quality animated 3D models in correspondence, at a rate of approximately twenty seconds per timestep. Tracking results for faces and other objects...

  1. Crowded Field 3D Spectroscopy

    CERN Document Server

    Becker, T; Roth, M M; Becker, Thomas; Fabrika, Sergei; Roth, Martin M.

    2003-01-01

    The quantitative spectroscopy of stellar objects in complex environments is mainly limited by the ability of separating the object from the background. Standard slit spectroscopy, restricting the field of view to one dimension, is obviously not the proper technique in general. The emerging Integral Field (3D) technique with spatially resolved spectra of a two-dimensional field of view provides a great potential for applying advanced subtraction methods. In this paper an image reconstruction algorithm to separate point sources and a smooth background is applied to 3D data. Several performance tests demonstrate the photometric quality of the method. The algorithm is applied to real 3D observations of a sample Planetary Nebula in M31, whose spectrum is contaminated by the bright and complex galaxy background. The ability of separating sources is also studied in a crowded stellar field in M33.

  2. 3D-grafiikkamoottori mobiililaitteille

    OpenAIRE

    Vahlman, Lauri

    2014-01-01

    Tässä insinöörityössä käydään läpi mobiililaitteille suunnatun yksinkertaisen 3D-grafiikkamoottorin suunnittelu ja toteutus käyttäen OpenGL ES -rajapintaa. Työssä esitellään grafiikkamoottorin toteutuksessa käytettyjä tekniikoita sekä tutustutaan moottorin rakenteeseen ja toteutuksellisiin yksityiskohtiin. Työn alkupuolella tutustutaan myös modernin 3D-grafiikan yleisiin periaatteisiin ja toimintaan sekä käydään läpi 3D-grafiikkaan liittyviä suorituskykyongelmia. Työn loppupuolella esitel...

  3. 3D vector flow imaging

    DEFF Research Database (Denmark)

    Pihl, Michael Johannes

    The main purpose of this PhD project is to develop an ultrasonic method for 3D vector flow imaging. The motivation is to advance the field of velocity estimation in ultrasound, which plays an important role in the clinic. The velocity of blood has components in all three spatial dimensions, yet...... conventional methods can estimate only the axial component. Several approaches for 3D vector velocity estimation have been suggested, but none of these methods have so far produced convincing in vivo results nor have they been adopted by commercial manufacturers. The basis for this project is the Transverse...... on the TO fields are suggested. They can be used to optimize the TO method. In the third part, a TO method for 3D vector velocity estimation is proposed. It employs a 2D phased array transducer and decouples the velocity estimation into three velocity components, which are estimated simultaneously based on 5...

  4. High-Resolution Reciprocal Space Mapping for Characterizing Deformation Structures

    DEFF Research Database (Denmark)

    Pantleon, Wolfgang; Wejdemann, Christian; Jakobsen, Bo;

    2014-01-01

    With high-angular resolution three-dimensional X-ray diffraction (3DXRD), quantitative information is gained about dislocation structures in individual grains in the bulk of a macroscopic specimen by acquiring reciprocal space maps. In high-resolution 3D reciprocal space maps of tensile-deformed ......With high-angular resolution three-dimensional X-ray diffraction (3DXRD), quantitative information is gained about dislocation structures in individual grains in the bulk of a macroscopic specimen by acquiring reciprocal space maps. In high-resolution 3D reciprocal space maps of tensile...... relaxation occurs, but no changes in number, size and orientation of the subgrains are observed. The radial profile asymmetry becomes reversed, when pre-deformed specimens are deformed in tension along a perpendicular axis....

  5. Microfluidic 3D Helix Mixers

    Directory of Open Access Journals (Sweden)

    Georgette B. Salieb-Beugelaar

    2016-10-01

    Full Text Available Polymeric microfluidic systems are well suited for miniaturized devices with complex functionality, and rapid prototyping methods for 3D microfluidic structures are increasingly used. Mixing at the microscale and performing chemical reactions at the microscale are important applications of such systems and we therefore explored feasibility, mixing characteristics and the ability to control a chemical reaction in helical 3D channels produced by the emerging thread template method. Mixing at the microscale is challenging because channel size reduction for improving solute diffusion comes at the price of a reduced Reynolds number that induces a strictly laminar flow regime and abolishes turbulence that would be desired for improved mixing. Microfluidic 3D helix mixers were rapidly prototyped in polydimethylsiloxane (PDMS using low-surface energy polymeric threads, twisted to form 2-channel and 3-channel helices. Structure and flow characteristics were assessed experimentally by microscopy, hydraulic measurements and chromogenic reaction, and were modeled by computational fluid dynamics. We found that helical 3D microfluidic systems produced by thread templating allow rapid prototyping, can be used for mixing and for controlled chemical reaction with two or three reaction partners at the microscale. Compared to the conventional T-shaped microfluidic system used as a control device, enhanced mixing and faster chemical reaction was found to occur due to the combination of diffusive mixing in small channels and flow folding due to the 3D helix shape. Thus, microfluidic 3D helix mixers can be rapidly prototyped using the thread template method and are an attractive and competitive method for fluid mixing and chemical reactions at the microscale.

  6. Sodium 3D COncentration MApping (COMA 3D) Using 23Na and Proton MRI

    Science.gov (United States)

    Truong, Milton L.; Harrington, Michael G.; Schepkin, Victor D.; Chekmenev, Eduard Y.

    2014-01-01

    Functional changes of sodium 3D MRI signals were converted into millimolar concentration changes using an open-source fully automated MATLAB toolbox. These concentration changes are visualized via 3D sodium concentration maps, and they are overlaid over conventional 3D proton images to provide high-resolution co-registration for easy correlation of functional changes to anatomical regions. Nearly 5000/hour concentration maps were generated on a personal computer (ca. 2012) using 21.1 T 3D sodium MRI brain images of live rats with spatial resolution of 0.8×0.8×0.8 mm3 and imaging matrices of 60×60×60. The produced concentration maps allowed for non-invasive quantitative measurement of in vivo sodium concentration in the normal rat brain as a functional response to migraine-like conditions. The presented work can also be applied to sodium-associated changes in migraine, cancer, and other metabolic abnormalities that can be sensed by molecular imaging. The MATLAB toolbox allows for automated image analysis of the 3D images acquired on the Bruker platform and can be extended to other imaging platforms. The resulting images are presented in a form of series of 2D slices in all three dimensions in native MATLAB and PDF formats. The following is provided: (a) MATLAB source code for image processing, (b) the detailed processing procedures, (c) description of the code and all sub-routines, (d) example data sets of initial and processed data. The toolbox can be downloaded at: http://www.vuiis.vanderbilt.edu/~truongm/COMA3D/ PMID:25261742

  7. Sodium 3D COncentration MApping (COMA 3D) using 23Na and proton MRI

    Science.gov (United States)

    Truong, Milton L.; Harrington, Michael G.; Schepkin, Victor D.; Chekmenev, Eduard Y.

    2014-10-01

    Functional changes of sodium 3D MRI signals were converted into millimolar concentration changes using an open-source fully automated MATLAB toolbox. These concentration changes are visualized via 3D sodium concentration maps, and they are overlaid over conventional 3D proton images to provide high-resolution co-registration for easy correlation of functional changes to anatomical regions. Nearly 5000/h concentration maps were generated on a personal computer (ca. 2012) using 21.1 T 3D sodium MRI brain images of live rats with spatial resolution of 0.8 × 0.8 × 0.8 mm3 and imaging matrices of 60 × 60 × 60. The produced concentration maps allowed for non-invasive quantitative measurement of in vivo sodium concentration in the normal rat brain as a functional response to migraine-like conditions. The presented work can also be applied to sodium-associated changes in migraine, cancer, and other metabolic abnormalities that can be sensed by molecular imaging. The MATLAB toolbox allows for automated image analysis of the 3D images acquired on the Bruker platform and can be extended to other imaging platforms. The resulting images are presented in a form of series of 2D slices in all three dimensions in native MATLAB and PDF formats. The following is provided: (a) MATLAB source code for image processing, (b) the detailed processing procedures, (c) description of the code and all sub-routines, (d) example data sets of initial and processed data. The toolbox can be downloaded at: http://www.vuiis.vanderbilt.edu/~truongm/COMA3D/.

  8. Sodium 3D COncentration MApping (COMA 3D) using (23)Na and proton MRI.

    Science.gov (United States)

    Truong, Milton L; Harrington, Michael G; Schepkin, Victor D; Chekmenev, Eduard Y

    2014-10-01

    Functional changes of sodium 3D MRI signals were converted into millimolar concentration changes using an open-source fully automated MATLAB toolbox. These concentration changes are visualized via 3D sodium concentration maps, and they are overlaid over conventional 3D proton images to provide high-resolution co-registration for easy correlation of functional changes to anatomical regions. Nearly 5000/h concentration maps were generated on a personal computer (ca. 2012) using 21.1T 3D sodium MRI brain images of live rats with spatial resolution of 0.8×0.8×0.8 mm(3) and imaging matrices of 60×60×60. The produced concentration maps allowed for non-invasive quantitative measurement of in vivo sodium concentration in the normal rat brain as a functional response to migraine-like conditions. The presented work can also be applied to sodium-associated changes in migraine, cancer, and other metabolic abnormalities that can be sensed by molecular imaging. The MATLAB toolbox allows for automated image analysis of the 3D images acquired on the Bruker platform and can be extended to other imaging platforms. The resulting images are presented in a form of series of 2D slices in all three dimensions in native MATLAB and PDF formats. The following is provided: (a) MATLAB source code for image processing, (b) the detailed processing procedures, (c) description of the code and all sub-routines, (d) example data sets of initial and processed data. The toolbox can be downloaded at: http://www.vuiis.vanderbilt.edu/~truongm/COMA3D/.

  9. Angular Cheilitis

    Science.gov (United States)

    ... A This image displays a frequent location for candida infection (angular cheilitis), the corners of the mouth. Overview ... infection, those affected may also have thrush (oral candidiasis). The areas are generally slightly painful. The condition ...

  10. Ideal 3D asymmetric concentrator

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Botella, Angel [Departamento Fisica Aplicada a los Recursos Naturales, Universidad Politecnica de Madrid, E.T.S.I. de Montes, Ciudad Universitaria s/n, 28040 Madrid (Spain); Fernandez-Balbuena, Antonio Alvarez; Vazquez, Daniel; Bernabeu, Eusebio [Departamento de Optica, Universidad Complutense de Madrid, Fac. CC. Fisicas, Ciudad Universitaria s/n, 28040 Madrid (Spain)

    2009-01-15

    Nonimaging optics is a field devoted to the design of optical components for applications such as solar concentration or illumination. In this field, many different techniques have been used for producing reflective and refractive optical devices, including reverse engineering techniques. In this paper we apply photometric field theory and elliptic ray bundles method to study 3D asymmetric - without rotational or translational symmetry - concentrators, which can be useful components for nontracking solar applications. We study the one-sheet hyperbolic concentrator and we demonstrate its behaviour as ideal 3D asymmetric concentrator. (author)

  11. Advanced 3-D Ultrasound Imaging

    DEFF Research Database (Denmark)

    Rasmussen, Morten Fischer

    The main purpose of the PhD project was to develop methods that increase the 3-D ultrasound imaging quality available for the medical personnel in the clinic. Acquiring a 3-D volume gives the medical doctor the freedom to investigate the measured anatomy in any slice desirable after the scan has...... beamforming. This is achieved partly because synthetic aperture imaging removes the limitation of a fixed transmit focal depth and instead enables dynamic transmit focusing. Lately, the major ultrasound companies have produced ultrasound scanners using 2-D transducer arrays with enough transducer elements...

  12. Development of an automultiscopic true 3D display (Invited Paper)

    Science.gov (United States)

    Kurtz, Russell M.; Pradhan, Ranjit D.; Aye, Tin M.; Yu, Kevin H.; Okorogu, Albert O.; Chua, Kang-Bin; Tun, Nay; Win, Tin; Schindler, Axel

    2005-05-01

    True 3D displays, whether generated by volume holography, merged stereopsis (requiring glasses), or autostereoscopic methods (stereopsis without the need for special glasses), are useful in a great number of applications, ranging from training through product visualization to computer gaming. Holography provides an excellent 3D image but cannot yet be produced in real time, merged stereopsis results in accommodation-convergence conflict (where distance cues generated by the 3D appearance of the image conflict with those obtained from the angular position of the eyes) and lacks parallax cues, and autostereoscopy produces a 3D image visible only from a small region of space. Physical Optics Corporation is developing the next step in real-time 3D displays, the automultiscopic system, which eliminates accommodation-convergence conflict, produces 3D imagery from any position around the display, and includes true image parallax. Theory of automultiscopic display systems is presented, together with results from our prototype display, which produces 3D video imagery with full parallax cues from any viewing direction.

  13. PubChem3D: Biologically relevant 3-D similarity

    Directory of Open Access Journals (Sweden)

    Kim Sunghwan

    2011-07-01

    Full Text Available Abstract Background The use of 3-D similarity techniques in the analysis of biological data and virtual screening is pervasive, but what is a biologically meaningful 3-D similarity value? Can one find statistically significant separation between "active/active" and "active/inactive" spaces? These questions are explored using 734,486 biologically tested chemical structures, 1,389 biological assay data sets, and six different 3-D similarity types utilized by PubChem analysis tools. Results The similarity value distributions of 269.7 billion unique conformer pairs from 734,486 biologically tested compounds (all-against-all from PubChem were utilized to help work towards an answer to the question: what is a biologically meaningful 3-D similarity score? The average and standard deviation for the six similarity measures STST-opt, CTST-opt, ComboTST-opt, STCT-opt, CTCT-opt, and ComboTCT-opt were 0.54 ± 0.10, 0.07 ± 0.05, 0.62 ± 0.13, 0.41 ± 0.11, 0.18 ± 0.06, and 0.59 ± 0.14, respectively. Considering that this random distribution of biologically tested compounds was constructed using a single theoretical conformer per compound (the "default" conformer provided by PubChem, further study may be necessary using multiple diverse conformers per compound; however, given the breadth of the compound set, the single conformer per compound results may still apply to the case of multi-conformer per compound 3-D similarity value distributions. As such, this work is a critical step, covering a very wide corpus of chemical structures and biological assays, creating a statistical framework to build upon. The second part of this study explored the question of whether it was possible to realize a statistically meaningful 3-D similarity value separation between reputed biological assay "inactives" and "actives". Using the terminology of noninactive-noninactive (NN pairs and the noninactive-inactive (NI pairs to represent comparison of the "active/active" and

  14. 3D exploration of light scattering from live cells in the presence of gold nanomarkers using holographic microscopy

    CERN Document Server

    Joud, Fadwa; Bun, P; Verpillat, Frédéric; Suck, Sarah Y; Tessier, G; Atlan, Michael; Desbiolles, Pierre; Coppey-Moisan, Maite; Abboud, Marie; Gross, Michel

    2011-01-01

    In this paper, we explore the 3D structure of light scattering from dark-field illuminated live 3T3 cells in the presence of 40 nm gold nanomarkers. For this purpose, we use a high resolution holographic microscope combining the off-axis heterodyne geometry and the phase-shifting acquisition of the digital holograms. A comparative study of the 3D reconstructions of the scattered fields allows us to locate the gold markers which yield, contrarily to the cell structures, well defined bright scattering patterns that are not angularly titled and clearly located along the optical axis (z). This characterization is an unambiguous signature of the presence of gold biological nanomarkers, and validates the capability of digital holographic microscopy to discriminate them from background signals in live ce

  15. 3D Face Apperance Model

    OpenAIRE

    Lading, Brian; Larsen, Rasmus; Astrom, K

    2006-01-01

    We build a 3D face shape model, including inter- and intra-shape variations, derive the analytical Jacobian of its resulting 2D rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations

  16. 3D Face Appearance Model

    OpenAIRE

    Lading, Brian; Larsen, Rasmus; Åström, Kalle

    2006-01-01

    We build a 3d face shape model, including inter- and intra-shape variations, derive the analytical jacobian of its resulting 2d rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations.}

  17. Making Inexpensive 3-D Models

    Science.gov (United States)

    Manos, Harry

    2016-01-01

    Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the "TPT" theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity…

  18. When Art Meets 3D

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The presentation of the vanguard work,My Dream3D,the innovative production by the China Disabled People’s Performing Art Troupe(CDPPAT),directed by Joy Joosang Park,provided the film’s domestic premiere at Beijing’s Olympic Park onApril7.The show provided an intriguing insight not

  19. 3D terahertz beam profiling

    DEFF Research Database (Denmark)

    Pedersen, Pernille Klarskov; Strikwerda, Andrew; Wang, Tianwu;

    2013-01-01

    We present a characterization of THz beams generated in both a two-color air plasma and in a LiNbO3 crystal. Using a commercial THz camera, we record intensity images as a function of distance through the beam waist, from which we extract 2D beam profiles and visualize our measurements into 3D beam...

  20. 3D Printing: Exploring Capabilities

    Science.gov (United States)

    Samuels, Kyle; Flowers, Jim

    2015-01-01

    As 3D printers become more affordable, schools are using them in increasing numbers. They fit well with the emphasis on product design in technology and engineering education, allowing students to create high-fidelity physical models to see and test different iterations in their product designs. They may also help students to "think in three…

  1. Viewing galaxies in 3D

    CERN Document Server

    Krajnović, Davor

    2016-01-01

    Thanks to a technique that reveals galaxies in 3D, astronomers can now show that many galaxies have been wrongly classified. Davor Krajnovi\\'c argues that the classification scheme proposed 85 years ago by Edwin Hubble now needs to be revised.

  2. Angular Scaling In Jets

    Energy Technology Data Exchange (ETDEWEB)

    Jankowiak, Martin; Larkoski, Andrew J.; /SLAC

    2012-02-17

    We introduce a jet shape observable defined for an ensemble of jets in terms of two-particle angular correlations and a resolution parameter R. This quantity is infrared and collinear safe and can be interpreted as a scaling exponent for the angular distribution of mass inside the jet. For small R it is close to the value 2 as a consequence of the approximately scale invariant QCD dynamics. For large R it is sensitive to non-perturbative effects. We describe the use of this correlation function for tests of QCD, for studying underlying event and pile-up effects, and for tuning Monte Carlo event generators.

  3. Angular resolution measurements at SPring-8 of a hard x-ray optic for the New Hard X-ray Mission

    Science.gov (United States)

    Spiga, D.; Raimondi, L.; Furuzawa, A.; Basso, S.; Binda, R.; Borghi, G.; Cotroneo, V.; Grisoni, G.; Kunieda, H.; Marioni, F.; Matsumoto, H.; Mori, H.; Miyazawa, T.; Negri, B.; Orlandi, A.; Pareschi, G.; Salmaso, B.; Tagliaferri, G.; Uesugi, K.; Valsecchi, G.; Vernani, D.

    2011-09-01

    The realization of X-ray telescopes with imaging capabilities in the hard (> 10 keV) X-ray band requires the adoption of optics with shallow (=10 m shall be produced and tested. Full-illumination tests of such mirrors are usually performed with onground X-ray facilities, aimed at measuring their effective area and the angular resolution; however, they in general suffer from effects of the finite distance of the X-ray source, e.g. a loss of effective area for double reflection. These effects increase with the focal length of the mirror under test; hence a "partial" full-illumination measurement might not be fully representative of the in-flight performances. Indeed, a pencil beam test can be adopted to overcome this shortcoming, because a sector at a time is exposed to the X-ray flux, and the compensation of the beam divergence is achieved by tilting the optic. In this work we present the result of a hard X-ray test campaign performed at the BL20B2 beamline of the SPring-8 synchrotron radiation facility, aimed at characterizing the Point Spread Function (PSF) of a multilayer-coated Wolter-I mirror shell manufactured by Nickel electroforming. The mirror shell is a demonstrator for the NHXM hard X-ray imaging telescope (0.3 - 80 keV), with a predicted HEW (Half Energy Width) close to 20 arcsec. We show some reconstructed PSFs at monochromatic X-ray energies of 15 to 63 keV, and compare them with the PSFs computed from post-campaign metrology data, self-consistently treating profile and roughness data by means of a method based on the Fresnel diffraction theory. The modeling matches the measured PSFs accurately.

  4. Complex light in 3D printing

    Science.gov (United States)

    Moser, Christophe; Delrot, Paul; Loterie, Damien; Morales Delgado, Edgar; Modestino, Miguel; Psaltis, Demetri

    2016-03-01

    3D printing as a tool to generate complicated shapes from CAD files, on demand, with different materials from plastics to metals, is shortening product development cycles, enabling new design possibilities and can provide a mean to manufacture small volumes cost effectively. There are many technologies for 3D printing and the majority uses light in the process. In one process (Multi-jet modeling, polyjet, printoptical©), a printhead prints layers of ultra-violet curable liquid plastic. Here, each nozzle deposits the material, which is then flooded by a UV curing lamp to harden it. In another process (Stereolithography), a focused UV laser beam provides both the spatial localization and the photo-hardening of the resin. Similarly, laser sintering works with metal powders by locally melting the material point by point and layer by layer. When the laser delivers ultra-fast focused pulses, nonlinear effects polymerize the material with high spatial resolution. In these processes, light is either focused in one spot and the part is made by scanning it or the light is expanded and covers a wide area for photopolymerization. Hence a fairly "simple" light field is used in both cases. Here, we give examples of how "complex light" brings additional level of complexity in 3D printing.

  5. 3D structure of muscle dihydropyridine receptor

    Directory of Open Access Journals (Sweden)

    Montserrat Samsó

    2015-01-01

    Full Text Available Excitation contraction coupling, the rapid and massive Ca2+ release under control of an action potential that triggers muscle contraction, takes places at specialized regions of the cell called triad junctions. There, a highly ordered supramolecular complex between the dihydropyridine receptor (DHPR and the ryanodine receptor (RyR1 mediates the quasi‐instantaneous conversion from T‐tubule depolarization into Ca2+ release from the sarcoplasmic reticulum (SR. The DHPR has several key modules required for EC coupling: the voltage sensors and II‐III loop in the alpha1s subunit, and the beta subunit. To gain insight into their molecular organization, this review examines the most updated 3D structure of the DHPR as obtained by transmission electron microscopy and image reconstruction. Although structure determination of a heteromeric membrane protein such as the DHPR is challenging, novel technical advances in protein expression and 3D labeling facilitated this task. The 3D structure of the DHPR complex consists of a main body with five irregular corners around its perimeter encompassing the transmembrane alpha 1s subunit besides the intracellular beta subunit, an extended extracellular alpha 2 subunit, and a bulky intracellular II‐III loop. The structural definition attained at 19 Å resolution enabled docking of the atomic coordinates of structural homologs of the alpha1s and beta subunits. These structural features, together with their relative location with respect to the RyR1, are discussed in the context of the functional data.

  6. Full Parallax Integral 3D Display and Image Processing Techniques

    Directory of Open Access Journals (Sweden)

    Byung-Gook Lee

    2015-02-01

    Full Text Available Purpose – Full parallax integral 3D display is one of the promising future displays that provide different perspectives according to viewing direction. In this paper, the authors review the recent integral 3D display and image processing techniques for improving the performance, such as viewing resolution, viewing angle, etc.Design/methodology/approach – Firstly, to improve the viewing resolution of 3D images in the integral imaging display with lenslet array, the authors present 3D integral imaging display with focused mode using the time-multiplexed display. Compared with the original integral imaging with focused mode, the authors use the electrical masks and the corresponding elemental image set. In this system, the authors can generate the resolution-improved 3D images with the n×n pixels from each lenslet by using n×n time-multiplexed display. Secondly, a new image processing technique related to the elemental image generation for 3D scenes is presented. With the information provided by the Kinect device, the array of elemental images for an integral imaging display is generated.Findings – From their first work, the authors improved the resolution of 3D images by using the time-multiplexing technique through the demonstration of the 24 inch integral imaging system. Authors’ method can be applied to a practical application. Next, the proposed method with the Kinect device can gain a competitive advantage over other methods for the capture of integral images of big 3D scenes. The main advantage of fusing the Kinect and the integral imaging concepts is the acquisition speed, and the small amount of handled data.Originality / Value – In this paper, the authors review their recent methods related to integral 3D display and image processing technique.Research type – general review.

  7. Priprava 3D modelov za 3D tisk

    OpenAIRE

    Pikovnik, Tomaž

    2015-01-01

    Po mnenju nekaterih strokovnjakov bo aditivna proizvodnja (ali 3D tiskanje) spremenila proizvodnjo industrijo, saj si bo vsak posameznik lahko natisnil svoj objekt po želji. V diplomski nalogi so predstavljene nekatere tehnologije aditivne proizvodnje. V nadaljevanju diplomske naloge je predstavljena izdelava makete hiše v merilu 1:100, vse od modeliranja do tiskanja. Poseben poudarek je posvečen predelavi modela, da je primeren za tiskanje, kjer je razvit pristop za hitrejše i...

  8. Post processing of 3D models for 3D printing

    OpenAIRE

    Pikovnik, Tomaž

    2015-01-01

    According to the opinion of some experts the additive manufacturing or 3D printing will change manufacturing industry, because any individual could print their own model according to his or her wishes. In this graduation thesis some of the additive manufacturing technologies are presented. Furthermore in the production of house scale model in 1:100 is presented, starting from modeling to printing. Special attention is given to postprocessing of the building model elements us...

  9. 3D Cameras: 3D Computer Vision of Wide Scope

    OpenAIRE

    May, Stefan; Pervoelz, Kai; Surmann, Hartmut

    2007-01-01

    First of all, a short comparison of range sensors and their underlying principles was given. The chapter further focused on 3D cameras. The latest innovations have given a significant improvement for the measurement accuracy, wherefore this technology has attracted attention in the robotics community. This was also the motivation for the examination in this chapter. On this account, several applications were presented, which represents common problems in the domain of autonomous robotics. For...

  10. DYNA3D2000*, Explicit 3-D Hydrodynamic FEM Program

    International Nuclear Information System (INIS)

    1 - Description of program or function: DYNA3D2000 is a nonlinear explicit finite element code for analyzing 3-D structures and solid continuum. The code is vectorized and available on several computer platforms. The element library includes continuum, shell, beam, truss and spring/damper elements to allow maximum flexibility in modeling physical problems. Many materials are available to represent a wide range of material behavior, including elasticity, plasticity, composites, thermal effects and rate dependence. In addition, DYNA3D has a sophisticated contact interface capability, including frictional sliding, single surface contact and automatic contact generation. 2 - Method of solution: Discretization of a continuous model transforms partial differential equations into algebraic equations. A numerical solution is then obtained by solving these algebraic equations through a direct time marching scheme. 3 - Restrictions on the complexity of the problem: Recent software improvements have eliminated most of the user identified limitations with dynamic memory allocation and a very large format description that has pushed potential problem sizes beyond the reach of most users. The dominant restrictions remain in code execution speed and robustness, which the developers constantly strive to improve

  11. Light field display and 3D image reconstruction

    Science.gov (United States)

    Iwane, Toru

    2016-06-01

    Light field optics and its applications become rather popular in these days. With light field optics or light field thesis, real 3D space can be described in 2D plane as 4D data, which we call as light field data. This process can be divided in two procedures. First, real3D scene is optically reduced with imaging lens. Second, this optically reduced 3D image is encoded into light field data. In later procedure we can say that 3D information is encoded onto a plane as 2D data by lens array plate. This transformation is reversible and acquired light field data can be decoded again into 3D image with the arrayed lens plate. "Refocusing" (focusing image on your favorite point after taking a picture), light-field camera's most popular function, is some kind of sectioning process from encoded 3D data (light field data) to 2D image. In this paper at first I show our actual light field camera and our 3D display using acquired and computer-simulated light field data, on which real 3D image is reconstructed. In second I explain our data processing method whose arithmetic operation is performed not in Fourier domain but in real domain. Then our 3D display system is characterized by a few features; reconstructed image is of finer resolutions than density of arrayed lenses and it is not necessary to adjust lens array plate to flat display on which light field data is displayed.

  12. 3D Printable Graphene Composite.

    Science.gov (United States)

    Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong

    2015-07-08

    In human being's history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today's personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite's linear thermal coefficient is below 75 ppm·°C(-1) from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process.

  13. 3-D Relativistic MHD Simulations

    Science.gov (United States)

    Nishikawa, K.-I.; Frank, J.; Koide, S.; Sakai, J.-I.; Christodoulou, D. M.; Sol, H.; Mutel, R. L.

    1998-12-01

    We present 3-D numerical simulations of moderately hot, supersonic jets propagating initially along or obliquely to the field lines of a denser magnetized background medium with Lorentz factors of W = 4.56 and evolving in a four-dimensional spacetime. The new results are understood as follows: Relativistic simulations have consistently shown that these jets are effectively heavy and so they do not suffer substantial momentum losses and are not decelerated as efficiently as their nonrelativistic counterparts. In addition, the ambient magnetic field, however strong, can be pushed aside with relative ease by the beam, provided that the degrees of freedom associated with all three spatial dimensions are followed self-consistently in the simulations. This effect is analogous to pushing Japanese ``noren'' or vertical Venetian blinds out of the way while the slats are allowed to bend in 3-D space rather than as a 2-D slab structure.

  14. 3D Printed Robotic Hand

    Science.gov (United States)

    Pizarro, Yaritzmar Rosario; Schuler, Jason M.; Lippitt, Thomas C.

    2013-01-01

    Dexterous robotic hands are changing the way robots and humans interact and use common tools. Unfortunately, the complexity of the joints and actuations drive up the manufacturing cost. Some cutting edge and commercially available rapid prototyping machines now have the ability to print multiple materials and even combine these materials in the same job. A 3D model of a robotic hand was designed using Creo Parametric 2.0. Combining "hard" and "soft" materials, the model was printed on the Object Connex350 3D printer with the purpose of resembling as much as possible the human appearance and mobility of a real hand while needing no assembly. After printing the prototype, strings where installed as actuators to test mobility. Based on printing materials, the manufacturing cost of the hand was $167, significantly lower than other robotic hands without the actuators since they have more complex assembly processes.

  15. Forensic 3D Scene Reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    LITTLE,CHARLES Q.; PETERS,RALPH R.; RIGDON,J. BRIAN; SMALL,DANIEL E.

    1999-10-12

    Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a feasible prototype of a fast, accurate, 3D measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene.

  16. BAORadio : Cartographie 3D de la distribution de gaz H$_I$ dans l'Univers

    CERN Document Server

    Ansari, R; Colom, P; Magneville, C; Martin, J M; Moniez, M; Rich, J; Yèche, C

    2011-01-01

    3D mapping of matter distribution in the universe through the 21 cm radio emission of atomic hydrogen is a complementary approach to optical surveys for the study of the Large Scale Structures, in particular for measuring the BAO (Baryon Acoustic Oscillation) scale up to redshifts z <~ 3 and constrain dark energy. We propose to carry such a survey through a novel method, called intensity mapping, without detecting individual galaxies radio emission. This method requires a wide band instrument, 100 MHz or larger, and multiple beams, while a rather modest angular resolution of 10 arcmin would be sufficient. The instrument would have a few thousand square meters of collecting area and few hundreds of simultaneous beams. These constraints could be fulfilled with a dense array of receivers in interferometric mode, or a phased array at the focal plane of a large antenna.

  17. From ATLASGAL to SEDIGISM: Towards a Complete 3D View of the Dense Galactic Interstellar Medium

    Science.gov (United States)

    Schuller, F.; Urquhart, J.; Bronfman, L.; Csengeri, T.; Bontemps, S.; Duarte-Cabral, A.; Giannetti, A.; Ginsburg, A.; Henning, T.; Immer, K.; Leurini, S.; Mattern, M.; Menten, K.; Molinari, S.; Muller, E.; Sánchez-Monge, A.; Schisano, E.; Suri, S.; Testi, L.; Wang, K.; Wyrowski, F.; Zavagno, A.

    2016-09-01

    The ATLASGAL survey has provided the first unbiased view of the inner Galactic Plane at sub-millimetre wavelengths. This is the largest ground-based survey of its kind to date, covering 420 square degrees at a wavelength of 870 µm. The reduced data, consisting of images and a catalogue of > 104 compact sources, are available from the ESO Science Archive Facility through the Phase 3 infrastructure. The extremely rich statistics of this survey initiated several follow-up projects, including spectroscopic observations to explore molecular complexity and high angular resolution imaging with the Atacama Large Millimeter/submillimeter Array (ALMA), aimed at resolving individual protostars. The most extensive follow-up project is SEDIGISM, a 3D mapping of the dense interstellar medium over a large fraction of the inner Galaxy. Some notable results of these surveys are highlighted.

  18. 3D Continuum Radiative Transfer. An adaptive grid construction algorithm based on the Monte Carlo method

    Science.gov (United States)

    Niccolini, G.; Alcolea, J.

    Solving the radiative transfer problem is a common problematic to may fields in astrophysics. With the increasing angular resolution of spatial or ground-based telescopes (VLTI, HST) but also with the next decade instruments (NGST, ALMA, ...), astrophysical objects reveal and will certainly reveal complex spatial structures. Consequently, it is necessary to develop numerical tools being able to solve the radiative transfer equation in three dimensions in order to model and interpret these observations. I present a 3D radiative transfer program, using a new method for the construction of an adaptive spatial grid, based on the Monte Claro method. With the help of this tools, one can solve the continuum radiative transfer problem (e.g. a dusty medium), computes the temperature structure of the considered medium and obtain the flux of the object (SED and images).

  19. [Real time 3D echocardiography

    Science.gov (United States)

    Bauer, F.; Shiota, T.; Thomas, J. D.

    2001-01-01

    Three-dimensional representation of the heart is an old concern. Usually, 3D reconstruction of the cardiac mass is made by successive acquisition of 2D sections, the spatial localisation and orientation of which require complex guiding systems. More recently, the concept of volumetric acquisition has been introduced. A matricial emitter-receiver probe complex with parallel data processing provides instantaneous of a pyramidal 64 degrees x 64 degrees volume. The image is restituted in real time and is composed of 3 planes (planes B and C) which can be displaced in all spatial directions at any time during acquisition. The flexibility of this system of acquisition allows volume and mass measurement with greater accuracy and reproducibility, limiting inter-observer variability. Free navigation of the planes of investigation allows reconstruction for qualitative and quantitative analysis of valvular heart disease and other pathologies. Although real time 3D echocardiography is ready for clinical usage, some improvements are still necessary to improve its conviviality. Then real time 3D echocardiography could be the essential tool for understanding, diagnosis and management of patients.

  20. Fast and precise 3D fluorophore localization by gradient fitting

    Science.gov (United States)

    Ma, Hongqiang; Xu, Jianquan; Jin, Jingyi; Gao, Ying; Lan, Li; Liu, Yang

    2016-02-01

    Astigmatism imaging is widely used to encode the 3D position of fluorophore in single-particle tracking and super-resolution localization microscopy. Here, we present a fast and precise localization algorithm based on gradient fitting to decode the 3D subpixel position of the fluorophore. This algorithm determines the center of the emitter by finding the position with the best-fit gradient direction distribution to the measured point spread function (PSF), and can retrieve the 3D subpixel position of the emitter in a single iteration. Through numerical simulation and experiments with mammalian cells, we demonstrate that our algorithm yields comparable localization precision to the traditional iterative Gaussian function fitting (GF) based method, while exhibits over two orders-of-magnitude faster execution speed. Our algorithm is a promising online reconstruction method for 3D super-resolution microscopy.