Constraints on massive neutrinos from the CFHTLS angular power spectrum
Energy Technology Data Exchange (ETDEWEB)
Xia, Jun-Qing [Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, I-34136 Trieste (Italy); Granett, Benjamin R.; Guzzo, Luigi [INAF — Osservatorio Astronomico di Brera, Via E. Bianchi 46, 23807 Brera (Italy); Viel, Matteo [INAF — Osservatorio Astronomico di Trieste, Via G.B. Tiepolo 11, I-34131 Trieste (Italy); Bird, Simeon [School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540 (United States); Haehnelt, Martin G. [Institute of Astronomy and Kavli Institute for Cosmology, Madingley Road, CB3 0HA, Cambridge (United Kingdom); Coupon, Jean [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan (China); McCracken, Henry Joy; Mellier, Yannick, E-mail: xia@sissa.it, E-mail: ben.granett@brera.inaf.it, E-mail: viel@oats.inaf.it, E-mail: spb@ias.edu, E-mail: luigi.guzzo@brera.inaf.it, E-mail: haehnelt@ast.cam.ac.uk, E-mail: coupon@asiaa.sinica.edu.tw, E-mail: hjmcc@iap.fr, E-mail: mellier@iap.fr [Institut d' Astrophysique de Paris, UMR 7095 CNRS, Universitè Pierre et Marie Curie, 98 bis Boulevard Arago, 75014 Paris (France)
2012-06-01
We use the galaxy angular power spectrum at z ∼ 0.5–1.2 from the Canada-France-Hawaii-Telescope Legacy Survey Wide fields (CFHTLS-Wide) to constrain separately the total neutrino mass Σm{sub ν} and the effective number of neutrino species N{sub eff}. This survey has recently benefited from an accurate calibration of the redshift distribution, allowing new measurements of the (non-linear) matter power spectrum in a unique range of scales and redshifts sensitive to neutrino free streaming. Our analysis makes use of a recent model for the effect of neutrinos on the weakly non-linear matter power spectrum derived from accurate N-body simulations. We show that CFHTLS, combined with WMAP7 and a prior on the Hubble constant provides an upper limit of Σm{sub ν} < 0.29 eV and N{sub eff} = 4.17{sup +1.62}{sub −1.26} (2 σ confidence levels). If we omit smaller scales which may be affected by non-linearities, these constraints become Σm{sub ν} < 0.41 eV and N{sub eff} = 3.98{sup +2.02}{sub −1.20} (2 σ confidence levels). Finally we show that the addition of other large scale structures probes can further improve these constraints, demonstrating that high redshift large volumes surveys such as CFHTLS are complementary to other cosmological probes of the neutrino mass.
The angular power spectrum of radio emission at 2.3 GHz
Giardino, G; Fosalba, P; Górski, K M; Jonas, J L; O'Mullane, W; Tauber, J A
2001-01-01
We have analysed the Rhodes/HartRAO survey at 2326 MHz and derived the global angular power spectrum of Galactic continuum emission. In order to measure the angular power spectrum of the diffuse component, point sources were removed from the map by median filtering. A least-square fit to the angular power spectrum of the entire survey with a power law spectrum C_l proportional to l^{-alpha}, gives alpha = 2.43 +/- 0.01 for l = 2-100. The angular power spectrum of radio emission appears to steepen at high Galactic latitudes and for observed regions with |b| > 20 deg, the fitted spectral index is alpha = 2.92 +/- 0.07. We have extrapolated this result to 30 GHz (the lowest frequency channel of Planck) and estimate that no significant contribution to the sky temperature fluctuation is likely to come from synchrotron at degree-angular scales
Slow-roll inflation and BB-mode angular power spectrum of CMB
Energy Technology Data Exchange (ETDEWEB)
Malsawmtluangi, N.; Suresh, P.K. [University of Hyderabad, School of Physics, Hyderabad (India)
2016-05-15
The BB-mode correlation angular power spectrum of CMB is obtained by considering the primordial gravitational waves in the squeezed vacuum state for various inflationary models and results are compared with the joint analysis of the BICEP2/Keck Array and Planck 353 GHz data. The present results may constrain several models of inflation. (orig.)
The 2MASS galaxy angular power spectrum: Probing the galaxy distribution to Gigaparsec scales
Frith, W J
2005-01-01
We present an angular power spectrum analysis of the 2MASS full release extended source catalogue. The main sample used includes 518,576 galaxies below an extinction-corrected magnitude of K=13.5 and limited to |b|>20. The power spectrum results provide an estimate of the galaxy density fluctuations at extremely large scales, r50 Mpc). We obtain constraints on the galaxy power spectrum shape of Gamma=0.14+/-0.02, in good agreement with previous estimates inferred at smaller scales. We also constrain the galaxy power spectrum normalisation to sigma_8 b^2=1.36+/-0.10; in combination with previous constraints on sigma_8 we infer a K-band bias of b=1.27+/-0.04. We are also able to provide weak constraints on Omega_m h and Omega_b/Omega_m. These results are based on the usual assumption that the errors derived from the Hubble Volume mocks are applicable to all other models. If we instead assume that the error is proportional to the C_l amplitude then the constraints weaken; for example it becomes more difficult to...
Using the CMB angular power spectrum to study Dark Matter-photon interactions
Energy Technology Data Exchange (ETDEWEB)
Wilkinson, Ryan J.; Boehm, Céline [Institute for Particle Physics Phenomenology, Durham University, South Road, Durham, DH1 3LE United Kingdom (United Kingdom); Lesgourgues, Julien, E-mail: ryan.wilkinson@durham.ac.uk, E-mail: julien.lesgourgues@cern.ch, E-mail: c.m.boehm@durham.ac.uk [Institut de Théorie des Phénomènes Physiques, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015 (Switzerland)
2014-04-01
In this paper, we explore the impact of Dark Matter-photon interactions on the CMB angular power spectrum. Using the one-year data release of the Planck satellite, we derive an upper bound on the Dark Matter-photon elastic scattering cross section of σ{sub DM−γ} ≤ 8 × 10{sup −31} (m{sub DM}/GeV) cm{sup 2} (68% CL) if the cross section is constant and a present-day value of σ{sub DM−γ} ≤ 6 × 10{sup −40}(m{sub DM}/GeV) cm{sup 2} (68% CL) if it scales as the temperature squared. For such a limiting cross section, both the B-modes and the TT angular power spectrum are suppressed with respect to ΛCDM predictions for ℓ∼>500 and ℓ∼>3000 respectively, indicating that forthcoming data from CMB polarisation experiments and Planck could help to constrain and characterise the physics of the dark sector. This essentially initiates a new type of dark matter search that is independent of whether dark matter is annihilating, decaying or asymmetric. Thus, any CMB experiment with the ability to measure the temperature and/or polarisation power spectra at high ℓ should be able to investigate the potential interactions of dark matter and contribute to our fundamental understanding of its nature.
Using the CMB angular power spectrum to study Dark Matter-photon interactions
International Nuclear Information System (INIS)
In this paper, we explore the impact of Dark Matter-photon interactions on the CMB angular power spectrum. Using the one-year data release of the Planck satellite, we derive an upper bound on the Dark Matter-photon elastic scattering cross section of σDM−γ ≤ 8 × 10−31 (mDM/GeV) cm2 (68% CL) if the cross section is constant and a present-day value of σDM−γ ≤ 6 × 10−40(mDM/GeV) cm2 (68% CL) if it scales as the temperature squared. For such a limiting cross section, both the B-modes and the TT angular power spectrum are suppressed with respect to ΛCDM predictions for ℓ∼>500 and ℓ∼>3000 respectively, indicating that forthcoming data from CMB polarisation experiments and Planck could help to constrain and characterise the physics of the dark sector. This essentially initiates a new type of dark matter search that is independent of whether dark matter is annihilating, decaying or asymmetric. Thus, any CMB experiment with the ability to measure the temperature and/or polarisation power spectra at high ℓ should be able to investigate the potential interactions of dark matter and contribute to our fundamental understanding of its nature
The CMBR ISW and HI 21-cm Cross-correlation Angular Power Spectrum
Sarkar, Tapomoy Guha; Bharadwaj, Somnath
2008-01-01
The late-time growth of large scale structures (LSS) is imprinted in the CMBR anisotropy through the Integrated Sachs Wolfe (ISW) effect. This is perceived to be a very important observational probe of dark energy. Future observations of redshifted 21-cm radiation from the cosmological neutral hydrogen (HI) distribution hold the potential of probing the LSS over a large redshift range. We have investigated the possibility of detecting the ISW through cross-correlations between the CMBR anisotropies and redshifted 21-cm observations. Assuming that the HI traces the dark matter, we find that the ISW-HI cross-correlation angular power spectrum at an angular multipole l is proportional to the dark matter power spectrum evaluated at the comoving wave number l/r, where r is the comoving distance to the redshift from which the HI signal originated. The amplitude of the cross-correlation signal depends on parameters related to the HI distribution and the growth of cosmological perturbations. However the cross-correla...
Using the CMB angular power spectrum to study Dark Matter-photon interactions
Wilkinson, Ryan J; Boehm, Celine
2014-01-01
In this paper, we explore the impact of Dark Matter-photon interactions on the CMB angular power spectrum. Using the one-year data release of the Planck satellite, we derive an upper bound on the Dark Matter-photon elastic scattering cross section of sigma_{DM-photon} 500 and l > 3000 respectively, indicating that forthcoming data from CMB polarisation experiments and Planck could help to constrain and characterise the physics of the dark sector. This essentially initiates a new type of dark matter search that is independent of whether dark matter is annihilating, decaying or asymmetric. Thus, any CMB experiment with the ability to measure the temperature and/or polarisation power spectra at high l should be able to investigate the potential interactions of dark matter and contribute to our fundamental understanding of its nature.
Angular Power Spectrum and Dilatonic Inflation in Modular-Invariant Supergravity
Hayashi, M J; Okame, Y; Watanabe, T; Hayashi, Mitsuo J.; Hirai, Shiro; Okame, Yusuke; Watanabe, Tomoki
2006-01-01
The angular power spectrum is investigated in the model of supergravity, incorporating the target-space duality and the non-perturbative gaugino condensation in the hidden sector. The inflation and supersymmetry breaking occur at once by the interplay between the dilaton field as inflaton and the condensate gauge-singlet field. The model satisfies the slow-roll condition which solves the \\eta-problem. When the particle rolls down along the minimized trajectory of the potential at a duality invariant fixed point T=1, we can obtain the e-fold value \\sim 57. And then the cosmological parameters obtained from our model well match with the recent WMAP data combined with other experiments. The TT and TE angular power spectra also show that our model is compatible with the data for l > 20. However, the best fit value of \\tau in our model is smaller than that of the \\Lambda CDM model. These results suggest that, among supergravity models of inflation, the modular-invariant supergravity seems to open a hope to constru...
Angular power spectrum of sterile neutrino decay lines: the role of eROSITA
Zandanel, Fabio; Weniger, Christoph; Ando, Shin’ichiro
2016-05-01
We study the potential of the angular auto and cross-correlation power spectrum of the cosmic X-ray background in identifying sterile neutrino dark matter taking as reference the performances of the soon-to-be-launched eROSITA satellite. The main astrophysical background sources in this case are active galactic nuclei, galaxies powered by X-ray binaries, and clusters of galaxies. We show that while sterile neutrino decays are always subdominant in the autocorrelation power spectra, they can be efficiently enhanced when cross-correlating with tracers of the dark matter distribution. We estimate that the four-years eROSITA all-sky survey will potentially provide very stringent constraints on the sterile neutrino decay lifetime by cross-correlating the cosmic X-ray background with the 2MASS galaxy catalogue. This will allow to firmly test the recently claimed 3.56-keV X-ray line found towards several clusters and galaxies and its decaying dark matter interpretation. We finally stress that the main limitation of this approach is due to the shot noise of the galaxy catalogues used as tracers for the dark matter distribution, a limitation that we need to overcome to fully exploit the potential of the eROSITA satellite in this context.
A Measurement of the Angular Power Spectrum of the CMB from l = 100 to 400
Miller, A D; Devlin, M J; Dorwart, W B; Herbig, T; Nolta, M R; Page, L A; Puchalla, J; Torbet, E; Tran, H T
1999-01-01
We report on a measurement of the angular spectrum of the CMB between $l\\approx 100$ and $l\\approx 400$ made at 144 GHz from Cerro Toco in the Chilean altiplano. When the new data are combined with previous data at 30 and 40 GHz, taken with the same instrument observing the same section of sky, we find: 1) a rise in the angular spectrum to a maximum with $\\delta T_l \\approx 85~\\mu$K at $l\\approx 200$ and a fall at $l>300$, thereby localizing the peak near $l\\approx 200$; and 2) that the anisotropy at $l\\approx 200$ has the spectrum of the CMB.
Characterizing the peak in the cosmic microwave background angular power spectrum
Knox; Page
2000-08-14
A peak has been unambiguously detected in the cosmic microwave background angular spectrum. Here we characterize its properties with fits to phenomenological models. We find that the TOCO and BOOM/NA data determine the peak location to be in the range 175-243 and 151-259, respectively (at 95% confidence) and determine the peak amplitude to be between approximately 70 and 90 &mgr;K. The peak shape is consistent with inflation-inspired flat, cold dark matter plus cosmological constant models of structure formation with adiabatic, nearly scale invariant initial conditions. It is inconsistent with open models and presents a great challenge to defect models.
van Engelen, A; Sehgal, N; Holder, G P; Zahn, O; Nagai, D
2013-01-01
The lensing power spectrum from cosmic microwave background (CMB) temperature maps will be measured with unprecedented precision with upcoming experiments, including upgrades to ACT and SPT. Achieving significant improvements in cosmological parameter constraints, such as percent level errors on sigma_8 and an uncertainty on the total neutrino mass of approximately 50 meV, requires percent level measurements of the CMB lensing power. This necessitates tight control of systematic biases. We study several types of biases to the temperature-based lensing reconstruction signal from foreground sources such as radio and infrared galaxies and the thermal Sunyaev-Zel'dovich effect from galaxy clusters. These foregrounds bias the CMB lensing signal due to their non-Gaussian nature. Using simulations as well as some analytical models we find that these sources can substantially impact the measured signal if left untreated. However, these biases can be brought to the percent level if one masks galaxies with fluxes at 15...
Choudhuri, Samir; Roy, Nirupam; Ghosh, Abhik; Ali, Sk Saiyad
2016-01-01
It is important to correctly subtract point sources from radio-interferometric data in order to measure the power spectrum of diffuse radiation like the Galactic synchrotron or the Epoch of Reionization 21-cm signal. It is computationally very expensive and challenging to image a very large area and accurately subtract all the point sources from the image. The problem is particularly severe at the sidelobes and the outer parts of the main lobe where the antenna response is highly frequency dependent and the calibration also differs from that of the phase center. Here we show that it is possible to overcome this problem by tapering the sky response. Using simulated 150 MHz observations, we demonstrate that it is possible to suppress the contribution due to point sources from the outer parts by using the Tapered Gridded Estimator to measure the angular power spectrum C_l of the sky signal. We also show from the simulation that this method can self-consistently compute the noise bias and accurately subtract it t...
Ross, Ashley J; Myers, Adam D
2008-01-01
We present a novel technique to measure $\\sigma_8$, by measuring the dependence of the second-order bias of a density field on $\\sigma_8$ using two separate techniques. Each technique employs area-averaged angular correlation functions ($\\bar{\\omega}_N$), one relying on the shape of $\\bar{\\omega}_2$, the other relying on the amplitude of $s_3$ ($s_3 =\\bar{\\omega}_3/\\bar{\\omega}_2^2$). We confirm the validity of the method by testing it on a mock catalog drawn from Millennium Simulation data and finding $\\sigma_8^{measured}- \\sigma_8^{true} = -0.002 \\pm 0.062$. We create a catalog of photometrically selected LRGs from SDSS DR5 and separate it into three distinct data sets by photometric redshift, with median redshifts of 0.47, 0.53, and 0.61. Measurements of $c_2$, and $\\sigma_8$ are made for each data set, assuming flat geometry and WMAP3 best-fit priors on $\\Omega_m$, $h$, and $\\Gamma$. We find, with increasing redshfit, $c_2 = 0.09 \\pm 0.04$, $0.09 \\pm 0.05$, and $0.09 \\pm 0.03$ and $\\sigma_8 = 0.78 \\pm 0.0...
Lee, Jounghun
2008-01-01
We analyze the photometric redshift catalog of the Sloan Digital Sky Survey Data Release 5 (SDSS DR5) to estimate the Fisher information in the galaxy angular power spectrum with the help of the Rimes-Hamilton technique. It is found that the amount of Fisher information contained in the galaxy angular power spectrum is saturated at lensing multipole scale 300<= l <= 2000 in the redshift range 0.1<= photo-z <0.5. At l=2000, the observed information is two orders of magnitude lower than the case of Gaussian fluctuations. This supports observationally that the translinear regime of the density power spectrum contains little independent information about the initial cosmological conditions, which is consistent with the numerical trend shown by Rimes-Hamilton. Our results also suggest that the Gaussian-noise description may not be valid in weak lensing measurements.
Ali, Sk Saiyad; Choudhuri, Samir; Ghosh, Abhik; Roy, Nirupam
2016-01-01
The diffuse Galactic syncrotron emission (DGSE) is the most important diffuse foreground component for future cosmological 21-cm observations. The DGSE is also an important probe of the cosmic ray electron and magnetic field distributions in the turbulent interstellar medium (ISM) of our Galaxy. In this paper we briefly review the Tapered Gridded Estimator (TGE) which can be used to quantify the angular power spectrum of the sky signal directly from the visibilities measured in radio-interferometric observations. The salient features of the TGE are (1.) it deals with the gridded data which makes it computationally very fast (2.) it avoids a positive noise bias which normally arises from the system noise inherent to the visibility data, and (3.) it allows us to taper the sky response and thereby suppresses the contribution from unsubtracted point sources in the outer parts and the sidelobes of the antenna beam pattern. We also summarize earlier work where the TGE was used to measure the C_l of the DGSE using 1...
The Large Local Hole in the Galaxy Distribution: The 2MASS Galaxy Angular Power Spectrum
Frith, W J
2004-01-01
We present new evidence for a large deficiency in the local galaxy distribution situated in the 4000 sq.deg. APM survey area. We use models guided by the 2dF Galaxy Redshift Survey (2dFGRS) n(z) as a probe of the underlying LSS. We first check the usefulness of this technique by comparing the 2dFGRS n(z) model prediction with the K-band and B-band number counts extracted from the 2MASS and 2dFGRS parent catalogues over the 2dFGRS Northern and Southern declination strips, before turning to a comparison with the APM counts. We find that the APM counts in both the B and K-bands indicate a deficiency in the local galaxy distribution of approx. 30% to z=0.1 over the entire APM survey area. We examine the implied significance of such a large local hole, considering several possible forms for the real-space correlation function. We find that such a deficiency in the APM survey area indicates an excess of power at large scales over what is expected from the correlation function observed in the 2dFGRS correlation func...
Fornasa, Mattia; Zavala, Jesus; Gaskins, Jennifer M; Sanchez-Conde, Miguel A; Gomez-Vargas, German; Komatsu, Eiichiro; Linden, Tim; Prada, Francisco; Zandanel, Fabio; Morselli, Aldo
2016-01-01
The isotropic gamma-ray background arises from the contribution of unresolved sources, including members of confirmed source classes and proposed gamma-ray emitters such as the radiation induced by dark matter annihilation and decay. Clues about the properties of the contributing sources are imprinted in the anisotropy characteristics of the gamma-ray background. We use 81 months of Pass 7 Reprocessed data from the Fermi Large Area Telescope to perform a measurement of the anisotropy angular power spectrum of the gamma-ray background. We analyze energies between 0.5 and 500 GeV, extending the range considered in the previous measurement based on 22 months of data. We also compute, for the first time, the cross-correlation angular power spectrum between different energy bins. We find that the derived angular spectra are compatible with being Poissonian, i.e. constant in multipole. Moreover, the energy dependence of the anisotropy suggests that the signal is due to two populations of sources, contributing, resp...
Planck Collaboration; Adam, R.; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bracco, A.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chiang, H. C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Ghosh, T.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Guillet, V.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hivon, E.; Hobson, M.; Holmes, W. A.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jewell, J.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Krachmalnicoff, N.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Remazeilles, M.; Renault, C.; Renzi, A.; Ricciardi, S.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rouillé d'Orfeuil, B.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Soler, J. D.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vibert, L.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Watson, R.; Wehus, I. K.; White, M.; White, S. D. M.; Yvon, D.; Zacchei, A.; Zonca, A.
2016-02-01
The polarized thermal emission from diffuse Galactic dust is the main foreground present in measurements of the polarization of the cosmic microwave background (CMB) at frequencies above 100 GHz. In this paper we exploit the uniqueness of the Planck HFI polarization data from 100 to 353 GHz to measure the polarized dust angular power spectra CℓEE and CℓBB over the multipole range 40 <ℓ< 600 well away from the Galactic plane. These measurements will bring new insights into interstellar dust physics and allow a precise determination of the level of contamination for CMB polarization experiments. Despite the non-Gaussian and anisotropic nature of Galactic dust, we show that general statistical properties of the emission can be characterized accurately over large fractions of the sky using angular power spectra. The polarization power spectra of the dust are well described by power laws in multipole, Cℓ ∝ ℓα, with exponents αEE,BB = -2.42 ± 0.02. The amplitudes of the polarization power spectra vary with the average brightness in a way similar to the intensity power spectra. The frequency dependence of the dust polarization spectra is consistent with modified blackbody emission with βd = 1.59 and Td = 19.6 K down to the lowest Planck HFI frequencies. We find a systematic difference between the amplitudes of the Galactic B- and E-modes, CℓBB/CℓEE = 0.5. We verify that these general properties are preserved towards high Galactic latitudes with low dust column densities. We show that even in the faintest dust-emitting regions there are no "clean" windows in the sky where primordial CMB B-mode polarization measurements could be made without subtraction of foreground emission. Finally, we investigate the level of dust polarization in the specific field recently targeted by the BICEP2 experiment. Extrapolation of the Planck 353 GHz data to 150 GHz gives a dust power 𝒟ℓBB ≡ ℓ(ℓ+1)CℓBB/(2π) of 1.32 × 10-2 μKCMB2 over the multipole range
Adam, R; Aghanim, N; Arnaud, M; Aumont, J; Baccigalupi, C; Banday, A J; Barreiro, R B; Bartlett, J G; Bartolo, N; Battaner, E; Benabed, K; Benoit-Lévy, A; Bernard, J -P; Bersanelli, M; Bielewicz, P; Bonaldi, A; Bonavera, L; Bond, J R; Borrill, J; Bouchet, F R; Boulanger, F; Bracco, A; Bucher, M; Burigana, C; Butler, R C; Calabrese, E; Cardoso, J -F; Catalano, A; Challinor, A; Chamballu, A; Chary, R -R; Chiang, H C; Christensen, P R; Clements, D L; Colombi, S; Colombo, L P L; Combet, C; Couchot, F; Coulais, A; Curto, A; Cuttaia, F; Danese, L; Davies, R D; Davis, R J; de Bernardis, P; de Zotti, G; Delabrouille, J; Delouis, J -M; Désert, F -X; Dickinson, C; Diego, J M; Dolag, K; Dole, H; Donzelli, S; Doré, O; Douspis, M; Ducout, A; Dunkley, J; Dupac, X; Efstathiou, G; Elsner, F; Enßlin, T A; Eriksen, H K; Falgarone, E; Finelli, F; Forni, O; Frailis, M; Fraisse, A A; Franceschi, E; Frejsel, A; Galeotta, S; Galli, S; Ganga, K; Ghosh, T; Giard, M; Giraud-Héraud, Y; Gjerløw, E; González-Nuevo, J; Górski, K M; Gratton, S; Gregorio, A; Gruppuso, A; Guillet, V; Hansen, F K; Hanson, D; Harrison, D L; Helou, G; Henrot-Versillé, S; Hernández-Monteagudo, C; Herranz, D; Hivon, E; Holmes, W A; Huffenberger, K M; Hurier, G; Jaffe, A H; Jaffe, T R; Jewell, J; Jones, W C; Juvela, M; Keihänen, E; Keskitalo, R; Kisner, T S; Kneissl, R; Knoche, J; Knox, L; Krachmalnicoff, N; Kunz, M; Kurki-Suonio, H; Lagache, G; Lamarre, J -M; Lasenby, A; Lattanzi, M; Lawrence, C R; Leahy, J P; Leonardi, R; Lesgourgues, J; Levrier, F; Liguori, M; Lilje, P B; Linden-Vørnle, M; López-Caniego, M; Lubin, P M; Macías-Pérez, J F; Maffei, B; Maino, D; Mandolesi, N; Mangilli, A; Maris, M; Martin, P G; Martínez-González, E; Masi, S; Matarrese, S; Mazzotta, P; Melchiorri, A; Mendes, L; Mennella, A; Migliaccio, M; Mitra, S; Miville-Deschênes, M -A; Moneti, A; Montier, L; Morgante, G; Mortlock, D; Moss, A; Munshi, D; Murphy, J A; Naselsky, P; Nati, F; Natoli, P; Netterfield, C B; Nørgaard-Nielsen, H U; Noviello, F; Novikov, D; Novikov, I; Pagano, L; Pajot, F; Paladini, R; Paoletti, D; Partridge, B; Pasian, F; Patanchon, G; Pearson, T J; Perdereau, O; Perotto, L; Perrotta, F; Pettorino, V; Piacentini, F; Piat, M; Pierpaoli, E; Pietrobon, D; Plaszczynski, S; Pointecouteau, E; Polenta, G; Ponthieu, N; Popa, L; Pratt, G W; Prunet, S; Puget, J -L; Rachen, J P; Reach, W T; Rebolo, R; Remazeilles, M; Renault, C; Renzi, A; Ricciardi, S; Ristorcelli, I; Rocha, G; Rosset, C; Rossetti, M; Roudier, G; d'Orfeuil, B Rouillé; Rubiño-Martín, J A; Rusholme, B; Sandri, M; Santos, D; Savelainen, M; Savini, G; Scott, D; Soler, J D; Spencer, L D; Stolyarov, V; Stompor, R; Sudiwala, R; Sunyaev, R; Sutton, D; Suur-Uski, A -S; Sygnet, J -F; Tauber, J A; Terenzi, L; Tomasi, M; Tristram, M; Tucci, M; Tuovinen, J; Valenziano, L; Valiviita, J; Van Tent, B; Vibert, L; Vielva, P; Villa, F; Wade, L A; Wandelt, B D; Watson, R; Wehus, I K; White, M; White, S D M; Yvon, D; Zacchei, A; Zonca, A
2016-01-01
The polarized thermal emission from Galactic dust is the main foreground present in measurements of the polarization of the cosmic microwave background (CMB) at frequencies above 100GHz. We exploit the Planck HFI polarization data from 100 to 353GHz to measure the dust angular power spectra $C_\\ell^{EE,BB}$ over the range $40<\\ell<600$. These will bring new insights into interstellar dust physics and a precise determination of the level of contamination for CMB polarization experiments. We show that statistical properties of the emission can be characterized over large fractions of the sky using $C_\\ell$. For the dust, they are well described by power laws in $\\ell$ with exponents $\\alpha^{EE,BB}=-2.42\\pm0.02$. The amplitudes of the polarization $C_\\ell$ vary with the average brightness in a way similar to the intensity ones. The dust polarization frequency dependence is consistent with modified blackbody emission with $\\beta_d=1.59$ and $T_d=19.6$K. We find a systematic ratio between the amplitudes of ...
Energy Technology Data Exchange (ETDEWEB)
de Bernardis, P.; Ade, P.A.R.; Bock, J.J.; Bond, J.R.; Borrill,J.; Boscaleri, A.; Coble, K.; Contaldi, C.R.; Crill, B.P.; De Troia, G.; Farese, P.; Ganga, K.; Giacometti, M.; Hivon, E.; Hristov, V.V.; Iacoangeli, A.; Jaffe, A.H.; Jones, W.C.; Lange, A.E.; Martinis, L.; Masi, S.; Mason, P.; Mauskopf, P.D.; Melchiorri, A.; Montroy, T.; Netterfield, C.B.; Pascale, E.; Piacentini, F.; Pogosyan, D.; Polenta,G.; Pongetti, F.; Prunet, S.; Romeo, G.; Ruhl, J.E.; Scaramuzzi, F.
2001-05-17
Three peaks and two dips have been detected in the power spectrum of the cosmic microwave background from the BOOMERANG experiment, at {ell} {approx} 210, 540, 840 and {ell} {approx} 420, 750, respectively. Using model-independent analyses, we find that all five features are statistically significant and we measure their location and amplitude. These are consistent with the adiabatic inflationary model. We also calculate the mean and variance of the peak and dip locations and amplitudes in a large 7-dimensional parameter space of such models, which gives good agreement with the model-independent estimates, and forecast where the next few peaks and dips should be found if the basic paradigm is correct. We test the robustness of our results by comparing Bayesian marginalization techniques on this space with likelihood maximization techniques applied to a second 7-dimensional cosmological parameter space, using an independent computational pipeline, and find excellent agreement: {Omega}{sub tot} = 1.02{sub -0.05}{sup +0.06} vs. 1.04 {+-} 0.05, {Omega}{sub b}h{sup 2} = 0.022{sub -0.003}{sup +0.004} vs. 0.019{sub -0.004}{sup +0.005}, and n{sub s} = 0.96{sub -0.09}{sup +0.10} vs. 0.90 {+-} 0.08. The deviation in primordial spectral index n{sub s} is a consequence of the strong correlation with the optical depth.
THE ANGULAR POWER SPECTRUM OF DUST-OBSCURED GALAXIES AND ITS IMPACT ON SUNYAEV ZEL'DOVICH STUDIES
Directory of Open Access Journals (Sweden)
A. A. Montaña
2011-01-01
Full Text Available En este trabajo medimos el espectro angular de potencias de la población de galaxias milimétricas (SMGs a partir de observaciones a 1.1 mm realizadas con la cámara AzTEC en el Atacama Submillimeter Telescope Experiment (ASTE y el James Clerk Maxwell Telecope (JCMT. La muestra de campos observados nos permite comparar el espectro angular de potencias de las SMGs medido en la dirección de regiones del Universo sin sesgo y otras sobre densas. Nuestras mediciones permiten acotar el impacto que tiene la población de SMGs en mediciones del espectro de potencias de las fluctuaciones primarias y secundarias del fondo cósmico de radiación de microndas (CMB, que actualmente están siendo medidas por una nueva generación de experimentos con resoluciones espaciales del orden de minutos de arco y que operan a longitudes de onda milimétricas.
Angular Spectrum Simulation of Pulsed Ultrasound Fields
DEFF Research Database (Denmark)
Du, Yigang; Jensen, Henrik; Jensen, Jørgen Arendt
2009-01-01
The optimization of non-linear ultrasound imaging should in a first step be based on simulation, as this makes parameter studies considerably easier than making transducer prototypes. Such a simulation program should be capable of simulating non-linear pulsed fields for arbitrary transducer...... geometries for any kind of focusing and apodization. The Angular Spectrum Approach (ASA) is capable of simulating monochromatic non-linear acoustic wave propagation. However, for ultrasound imaging the time response of each specific point in space is required, and a pulsed ASA simulation with multi temporal....... The RMS error of the pulses for all points in the simulated plane is 10.9%. The good agreement between ASA and Field II simulation for the pulsed ultrasound fields obtained in this paper makes it possible to expand Field II to non-linear pulsed fields....
True CMB Power Spectrum Estimation
Paykari, P; Fadili, M J
2012-01-01
The cosmic microwave background (CMB) power spectrum is a powerful cosmological probe as it entails almost all the statistical information of the CMB perturbations. Having access to only one sky, the CMB power spectrum measured by our experiments is only a realization of the true underlying angular power spectrum. In this paper we aim to recover the true underlying CMB power spectrum from the one realization that we have without a need to know the cosmological parameters. The sparsity of the CMB power spectrum is first investigated in two dictionaries; Discrete Cosine Transform (DCT) and Wavelet Transform (WT). The CMB power spectrum can be recovered with only a few percentage of the coefficients in both of these dictionaries and hence is very compressible in these dictionaries. We study the performance of these dictionaries in smoothing a set of simulated power spectra. Based on this, we develop a technique that estimates the true underlying CMB power spectrum from data, i.e. without a need to know the cosmo...
Non-gaussian CMBR angular power spectra
Magueijo, J
1995-01-01
In this paper we show how the prediction of CMBR angular power spectra C_l in non-Gaussian theories is affected by a cosmic covariance problem, that is (C_l,C_{l'}) correlations impart features on any observed C_l spectrum which are absent from the average C^l spectrum. Therefore the average spectrum is rendered a bad observational prediction, and two new prediction strategies, better adjusted to these theories, are proposed. In one we search for hidden random indices conditional to which the theory is released from the correlations. Contact with experiment can then be made in the form of the conditional power spectra plus the random index distribution. In another approach we apply to the problem a principal component analysis. We discuss the effect of correlations on the predictivity of non-Gaussian theories. We finish by showing how correlations may be crucial in delineating the borderline between predictions made by non-Gaussian and Gaussian theories. In fact, in some particular theories, correlations may ...
Estimating Discrete Power Angular Spectra in Multiprobe OTA Setups
DEFF Research Database (Denmark)
Fan, Wei; Nielsen, Jesper Ødum; Pedersen, Gert Frølund
2014-01-01
The letter discusses over-the-air (OTA) testing for multiple-input–multiple-output (MIMO) capable terminals with emphasis on estimating discrete power angular spectrum modeled at the receiver (Rx) side in the test zone. Two techniques based on a uniform circular array (UCA) are proposed to obtain...
A Three-Dimensional Angular Scattering Response Including Path Powers
Mammasis, Kostantinos; Santi, Paolo; Goulianos, Angelos
2011-01-01
In this paper the angular power spectrum exhibited under a three-dimensional (3-D) Gaussian scatter distribution at fixed observation points in space is investigated. Typically, these correspond to the mobile and base units respectively. Unlike other spatial channel models, the derived model accounts for the distance to each scatterer from the observation point and transforms distances into power values under the assumption of free-space propagation. The proposed 3-D spatial channel model fol...
A Remark on the Estimation of Angular Power Spectra in the Presence of Foregrounds
White, M
1998-01-01
It is common practice to estimate the errors on the angular power spectrum which could be obtained by an experiment with a given angular resolution and noise level. Several authors have also addressed the question of foreground subtraction using multi-frequency observations. In such observations the angular resolution of the different frequency channels is rarely the same. In this report we point out how the ``effective'' beam size and noise level change with ell in this case, and give an expression for the error on the angular power spectrum as a function of ell.
Effect of higher orbital angular momenta in the baryon spectrum
Garcilazo, H; Fernández, F
2001-01-01
We have performed a Faddeev calculation of the baryon spectrum for the chiral constituent quark model including higher orbital angular momentum states. We have found that the effect of these states is important, although a description of the baryon spectrum of the same quality as the one given by including only the lowest-order configurations can be obtained. We have studied the effect of the pseudoscalar quark-quark interaction on the relative position of the positive- and negative-parity excitations of the nucleon as well as the effect of varying the strength of the color-magnetic interaction.
Supernovae anisotropy power spectrum
Ghodsi, Hoda; Habibi, Farhang
2016-01-01
We contribute another anisotropy study to this field of research using Supernovae Type Ia (SNe Ia). In this work, we utilise the power spectrum calculation method and apply it to both the current SNe Ia data and simulation. Our simulations are constructed with the characteristics of the upcoming survey of the Large Synoptic Survey Telescope (LSST), which shall bring us the largest SNe Ia collection to date. We make predictions for the amplitude of a possible dipole anisotropy or anisotropy in higher multipole moments that would be detectable by the LSST.
Červinka, L
2011-01-01
In this contribution we undertake an attempt to interpret the anisotropy spectrum of relict radiation after its transformation into a special two-fold reciprocal space in which the interaction of relict photons with the matter (electrons or ions) is described by a relict radiation factor. This factor enabled us to process the transformed CMB anisotropy spectrum by a Fourier transform and thus calculate a radial distribution function of objects in a reciprocal space. In this way we were able to calculate distances between larger objects of the order $\\sim10^{2}$ [km] and the value for the density of ordinary matter $\\sim9\\times 10^{-23}$ [kg.m$^{-3}$]. A transformation of the anisotropy spectrum of CMB radiation into a simple reciprocal space and appropriate modelling of the transformed CMB spectrum indicated that the internal structure of larger objects may be formed by clusters distant $\\sim$10 [cm], whereas the internal structure of a cluster consisted of particles distant $\\sim$0.3 [nm].
Off-axis angular spectrum method with variable sampling interval
Kim, Yong-Hae; Byun, Chun-Won; Oh, Himchan; Pi, Jae-Eun; Choi, Ji-Hun; Kim, Gi Heon; Lee, Myung-Lae; Ryu, Hojun; Hwang, Chi-Sun
2015-08-01
We proposed a novel off-axis angular spectrum method (ASM) for simulating free space wave propagation with a large shifted destination plane. The off-axis numerical simulation took wave propagation between a parallel source and a destination plane, but a destination plane was shifted from a source plane. The shifted angular spectrum method was proposed for diffraction simulation with a shifted destination plane and satisfied the Nyquist condition for sampling by limiting a bandwidth of a propagation field to avoid an aliasing error due to under sampling. However, the effective sampling number of the shifted ASM decreased when the shifted distance of the destination plane was large which caused a numerical error in the diffraction simulation. To compensate for the decrease of an effective sampling number for the large shifted destination plane, we used a variable sampling interval in a Fourier space to maintain the same effective sampling number independent of the shifted distance of the destination plane. As a result, our proposed off-axis ASM with a variable sampling interval can produce simulation results with high accuracy for nearly every shifted distance of a destination plane when an off-axis angle is less than 75°. We compared the performances of the off-axis ASM using the Chirp Z transform and non-uniform FFT for implementing a variable spatial frequency in a Fourier space.
Zhou, Hailong; Dong, Jianji; Zhang, Pei; Chen, Dongxu; Cai, Xinlun; Li, Fuli; Zhang, Xinliang
2016-01-01
The function to measure orbital angular momentum (OAM) distribution of vortex light is essential for OAM applications. Although there are lots of works to measure OAM modes, it is difficult to measure the power distribution of different OAM modes quantitatively and instantaneously, let alone measure the phase distribution among them. In this work, we demonstrate an OAM complex spectrum analyzer, which enables to measure the power and phase distribution of OAM modes simultaneously by employing rotational Doppler Effect. The original OAM mode distribution is mapped to electrical spectrum of beating signals with a photodetector. The power distribution and phase distribution of superimposed OAM beams are successfully retrieved by analyzing the electrical spectrum. We also extend the measurement to other spatial modes, such as linear polarization modes. These results represent a new landmark of spatial mode analysis and show great potentials in optical communication and OAM quantum state tomography.
Non-linear Galaxy Power Spectrum and Cosmological Parameters
Cooray, Asantha
2003-01-01
The galaxy power spectrum is now a well-known tool of precision cosmology. In addition to the overall shape, baryon oscillations and the small-scale suppression of power by massive neutrinos capture complimentary information on cosmological parameters when compared to the angular power spectrum of cosmic microwave background anisotropies. We study both the real space and redshift space galaxy power spectra in the context of non-linear effects and model them based on the halo approach to large...
Investigation of an angular spectrum approach for pulsed ultrasound fields
DEFF Research Database (Denmark)
Du, Yigang; Jensen, Henrik; Jensen, Jørgen Arendt
2013-01-01
An Angular Spectrum Approach (ASA)is formulated and employed to simulate linear pulsed ultra sound fields for high bandwidth signals. Ageometrically focused piston transducer is used as the acoustic source. Signals are cross-correlated to findthe true sound speed during the measurement to make...... the simulated and measured pulses in phase for comparisons. The calculated sound speed in the measurement is varied between 1487.45 m/s and 1487.75 m/s by using different initial values in the ASA simulation. Results from the pulsed ASA simulation susing both Field II simulated and hydrophone measured acoustic...... sources are compared to the Field II simulated and hydroph one measure dpulses, respectively. The total relative root mean squar e(RMS)errors of the pulsed ASA are investigated by using different time-point, zero-padding factors, spatial sampling interval and temporal sampling frequency in the sim ulation...
International Nuclear Information System (INIS)
The possibility of the influence of adiabatic scalar perturbations on the angular velocity spectrum of extragalactic sources is considered. The multipole expansion coefficients of the angular velocity field in terms of vector spherical harmonics are calculated. We show that there is no contribution from adiabatic perturbations to the angular spectrum for a spatially flat Universe at the dusty stage, while there is a contribution only to the electric multiple coefficients at the stage of Λ-term domination. The cases of long-wavelength and short-wavelength perturbations are considered separately. The relationship between the multipole angular velocity spectrum and the primordial scalar perturbation spectrum is discussed.
Marakulin, A. O.; Sazhina, O. S.; Sazhin, M. V.
2012-07-01
The possibility of the influence of adiabatic scalar perturbations on the angular velocity spectrum of extragalactic sources is considered. The multipole expansion coefficients of the angular velocity field in terms of vector spherical harmonics are calculated. We show that there is no contribution from adiabatic perturbations to the angular spectrum for a spatially flat Universe at the dusty stage, while there is a contribution only to the electric multiple coefficients at the stage of Λ-term domination. The cases of long-wavelength and short-wavelength perturbations are considered separately. The relationship between the multipole angular velocity spectrum and the primordial scalar perturbation spectrum is discussed.
Energy Technology Data Exchange (ETDEWEB)
Marakulin, A. O., E-mail: marakulin@physics.msu.ru; Sazhina, O. S.; Sazhin, M. V. [Moscow State University (Russian Federation)
2012-07-15
The possibility of the influence of adiabatic scalar perturbations on the angular velocity spectrum of extragalactic sources is considered. The multipole expansion coefficients of the angular velocity field in terms of vector spherical harmonics are calculated. We show that there is no contribution from adiabatic perturbations to the angular spectrum for a spatially flat Universe at the dusty stage, while there is a contribution only to the electric multiple coefficients at the stage of {Lambda}-term domination. The cases of long-wavelength and short-wavelength perturbations are considered separately. The relationship between the multipole angular velocity spectrum and the primordial scalar perturbation spectrum is discussed.
Angular spectrum characters of high gain non-critical phase match optical parametric oscillators
Institute of Scientific and Technical Information of China (English)
Liu Jian-Hui; Liu Qiang; Gong Ma-Li
2011-01-01
The angular spectrum gain characters and the power magnification characters of high gain non-walk-off colinear optical parametric oscillators have been studied using the non-colinear phase match method for the first time. The experimental results of the KTiOAsO4 and the KTiOPO4 crystals are discussed in detail. At the high energy single resonant condition, low reflective ratio of the output mirror for the signal and long non-linear crystal are beneficial for small divergence angles. This method can also be used for other high gain non-walk-off phase match optical parametric processes.
Primordial power spectrum of tensor perturbations in Finsler spacetime
Energy Technology Data Exchange (ETDEWEB)
Li, Xin [Chongqing University, Department of Physics, Chongqing (China); Chinese Academy of Sciences, State Key Laboratory Theoretical Physics, Institute of Theoretical Physics, Beijing (China); Wang, Sai [Chinese Academy of Sciences, State Key Laboratory Theoretical Physics, Institute of Theoretical Physics, Beijing (China)
2016-02-15
We first investigate the gravitational wave in the flat Finsler spacetime. In the Finslerian universe, we derive the perturbed gravitational field equation with tensor perturbations. The Finslerian background spacetime breaks rotational symmetry and induces parity violation. Then we obtain the modified primordial power spectrum of the tensor perturbations. The parity violation feature requires that the anisotropic effect contributes to the TT, TE, EE, BB angular correlation coefficients with l{sup '} = l + 1 and TB, EB with l{sup '} = l. The numerical results show that the anisotropic contributions to the angular correlation coefficients depend on m, and TE and ET angular correlation coefficients are different. (orig.)
Modelling the TSZ power spectrum
Energy Technology Data Exchange (ETDEWEB)
Bhattacharya, Suman [Los Alamos National Laboratory; Shaw, Laurie D [YALE; Nagai, Daisuke [YALE
2010-01-01
The structure formation in university is a hierarchical process. As universe evolves, tiny density fluctuations that existed in the early universe grows under gravitational instability to form massive large scale structures. The galaxy clusters are the massive viralized objects that forms by accreting smaller clumps of mass until they collapse under their self-gravity. As such galaxy clusters are the youngest objects in the universe which makes their abundance as a function of mass and redshift, very sensitive to dark energy. Galaxy clusters can be detected by measuring the richness in optical waveband, by measuring the X-ray flux, and in the microwave sky using Sunyaev-Zel'dovich (SZ) effect. The Sunyaev-Zel'dovich (SZ) effect has long been recognized as a powerful tool for detecting clusters and probing the physics of the intra-cluster medium. Ongoing and future experiments like Atacama Cosmology Telescope, the South Pole Telescope and Planck survey are currently surveying the microwave sky to develop large catalogs of galaxy clusters that are uniformly selected by the SZ flux. However one major systematic uncertainties that cluster abundance is prone to is the connection between the cluster mass and the SZ flux. As shown by several simulation studies, the scatter and bias in the SZ flux-mass relation can be a potential source of systematic error to using clusters as a cosmology probe. In this study they take a semi-analytic approach for modeling the intra-cluster medium in order to predict the tSZ power spectrum. The advantage of this approach is, being analytic, one can vary the parameters describing gas physics and cosmology simultaneously. The model can be calibrated against X-ray observations of massive, low-z clusters, and using the SZ power spectrum which is sourced by high-z lower mass galaxy groups. This approach allows us to include the uncertainty in gas physics, as dictated by the current observational uncertainties, while measuring the
Angular spectrum characters of high gain non-critical phase match optical parametric oscillators
International Nuclear Information System (INIS)
The angular spectrum gain characters and the power magnification characters of high gain non-walk-off colinear optical parametric oscillators have been studied using the non-colinear phase match method for the first time. The experimental results of the KTiOAsO4 and the KTiOPO4 crystals are discussed in detail. At the high energy single resonant condition, low reflective ratio of the output mirror for the signal and long non-linear crystal are beneficial for small divergence angles. This method can also be used for other high gain non-walk-off phase match optical parametric processes. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)
Impact of Wind Power on the Angular Stability of a Power System
Djemai NAIMI; Bouktir, Tarek
2008-01-01
Wind energy conversion systems are very different in nature from conventional generators. Therefore dynamic studies must be addressed in order to integrate wind power into the power system. Angular stability assessment of wind power generator is one of main issues in power system security and operation. The angular stability for the wind power generator is determined by its corresponding Critical Clearing Time (CCT). In this paper, the effect of wind power on the transient fault behavior is i...
Measuring an electron beam's orbital angular momentum spectrum
Grillo, incenzo; Venturi, Federico; Larocque, Hugo; Balboni, Roberto; Gazzadi, Gian Carlo; Frabboni, Stefano; Lu, Peng-Han; Mafakheri, Erfan; Bouchard, Frédéric; Dunin-Borkowski, Rafal E; Boyd, Robert W; Lavery, Martin P J; Padgett, Miles J; Karimi, Ebrahim
2016-01-01
Quantum complementarity states that particles, e.g. electrons, can exhibit wave-like properties such as diffraction and interference upon propagation. \\textit{Electron waves} defined by a helical wavefront are referred to as twisted electrons~\\cite{uchida:10,verbeeck:10,mcmorran:11}. These electrons are also characterised by a quantized and unbounded magnetic dipole moment parallel to their propagation direction, as they possess a net charge of $-|e|$~\\cite{bliokh:07}. When interacting with magnetic materials, the wavefunctions of twisted electrons are inherently modified~\\cite{lloyd:12b,schattschneider:14a,asenjo:14}. Such variations therefore motivate the need to analyze electron wavefunctions, especially their wavefronts, in order to obtain information regarding the material's structure~\\cite{harris:15}. Here, we propose, design, and demonstrate the performance of a device for measuring an electron's azimuthal wavefunction, i.e. its orbital angular momentum (OAM) content. Our device consists of nanoscale h...
Absorption spectrum of Gafchromic EBT2 film with angular rotation
Park, Soah; Hwang, Taejin; Yoon, Jai-Woong; Han, Taejin; Kim, Haeyoung; Lee, Me-Yeon; Kim, KyoungJu; Bae, Hoonsik; Kang, Sei-Kwon
2015-01-01
It is important to study absorption spectrum in film dosimetry because the spectral absorbance of the film relates to the film's total absorption dose. We investigated the absorption spectra of Gafchromic EBT2 film with various rotational angles in a visible wavelength band. The film was irradiated with 6 MV photon beams and a total dose of 300 cGy. Absorption spectra were taken under different rotational angles after 24 h after irradiation and we fitted the spectra using Lorentzian functions. There were two dominant absorption peaks at approximately 586 nm (green) and 634 nm (red). The measured spectrum was decomposed 542 nm, 558 nm, 578 nm, 586 nm, 626 nm, 634 nm, and 641 nm. The maximum total area of the red band absorption spectrum was at 45{\\deg}(225{\\deg}) and the minimum at 90{\\deg}(270{\\deg}). As the angle of rotation changed, the intensity and integrated area of the blue and green peaks also changed with 180{\\deg} period, with minima at 90{\\deg} and 270{\\deg}, and maxima at 0{\\deg} and 180{\\deg}, alt...
The validity of high-pass angular spectrum filter in solid immersion lens system
Institute of Scientific and Technical Information of China (English)
Zheng Chong-Wei; Dai Yu-Xing
2005-01-01
The focal field of a solid immersion lens (SIL) system with a high-pass angular spectrum filter is calculated by using a vector method. Numerical results show that for a radially (azimuthally) polarized input field, a high-pass angular spectrum filter can reduce the light-spot (dark-spot) size of the SIL system. For a linearly polarized input field,however, the focal field cannot be optimized and the optical storage density of the SIL system cannot be improved by using a simple high-pass filter, either.
Reconstructing the galaxy redshift distribution from angular cross power spectra
Sun, L; Tao, C
2015-01-01
The control of photometric redshift (photo-$z$) errors is a crucial and challenging task for precision weak lensing cosmology. The spacial cross-correlations (equivalently, the angular cross power spectra) of galaxies between tomographic photo-$z$ bins are sensitive to the true redshift distribution $n_i(z)$ of each bin and hence can help calibrate the photo-$z$ error distribution for weak lensing surveys. Using Fisher matrix analysis, we investigate the contributions of various components of the angular power spectra to the constraints of $n_i(z)$ parameters and demonstrate the importance of the cross power spectra therein, especially when catastrophic photo-$z$ errors are present. We further study the feasibility of reconstructing $n_i(z)$ from galaxy angular power spectra using Markov Chain Monte Carlo estimation. Considering an LSST-like survey with $10$ photo-$z$ bins, we find that the underlying redshift distribution can be determined with a fractional precision ($\\sigma(\\theta)/\\theta$ for parameter $\\...
Shear Power Spectrum Reconstruction using Pseudo-Spectrum Method
Hikage, Chiaki; Hamana, Takashi; Spergel, David
2010-01-01
This paper develops a pseudo power spectrum technique for measuring the lensing power spectrum from weak lensing surveys in both the full sky and flat sky limits. The power spectrum approaches have a number of advantages over the traditional correlation function approach. We test the pseudo spectrum method by using numerical simulations with square-shape boundary that include masked regions with complex configuration due to bright stars and saturated spikes. Even when 25% of total area of the survey is masked, the method recovers the E-mode power spectrum at a sub-percent precision over a wide range of multipoles 100
Acoustic scale from the angular power spectra of SDSS-III DR8 photometric luminous galaxies
Seo, Hee-Jong; White, Martin; Cuesta, Antonio; Ross, Ashley; Saito, Shun; Reid, Beth; Padmanabhan, Nikhil; Percival, Will J; de Putter, Roland; Schlegel, David; Eisenstein, Daniel; Xu, Xiaoying; Schneider, Donald; Skibba, Ramin; Verde, Licia; Nichol, Robert; Bizyaev, Dmitry; Brewington, Howard; Brinkmann, J; Costa, Luiz; Gott, J; Malanushenko, Elena; Malanushenko, Viktor; Oravetz, Dan; Palanque-Delabrouille, Nathalie; Pan, Kaike; Prada, Francisco; Ross, Nicholas; Simmons, Audrey; Simoni, Fernando; Shelden, Alaina; Snedden, Stephanie; Zehavi, Idit
2012-01-01
We measure the acoustic scale from the angular power spectra of the Sloan Digital Sky Survey III (SDSS-III) Data Release 8 imaging catalog that includes 872,921 galaxies over ~ 10,000 deg^2 between 0.45~ 0.35. We report constraints on cosmological parameters from our measurement in combination with the WMAP7 data and the previous spectroscopic BAO measurements of SDSS (Percival et al. 2010) and WiggleZ (Blake et al. 2011). We refer to our companion papers (Ho et al. 2011; de Putter et al. 2011) for investigations on information of the full power spectrum.
Theory of $\\omega^{-4/3}$ law of the power spectrum in dissipative flows
Hayakawa, Hisao
2005-01-01
It is demonstrated that $\\omega^{-4/3}$ law of the power spectrum with the angular frequency $\\omega$ in dissipative flows is produced by the emission of dispersive waves from the antikink of an congested domain. The analytic theory predicts the spectrum is proportional to $\\omega^{-2}$ for relatively low frequency and $\\omega^{-4/3}$ for high frequency.
Power calculation of linear and angular incremental encoders
Prokofev, Aleksandr V.; Timofeev, Aleksandr N.; Mednikov, Sergey V.; Sycheva, Elena A.
2016-04-01
Automation technology is constantly expanding its role in improving the efficiency of manufacturing and testing processes in all branches of industry. More than ever before, the mechanical movements of linear slides, rotary tables, robot arms, actuators, etc. are numerically controlled. Linear and angular incremental photoelectric encoders measure mechanical motion and transmit the measured values back to the control unit. The capabilities of these systems are undergoing continual development in terms of their resolution, accuracy and reliability, their measuring ranges, and maximum speeds. This article discusses the method of power calculation of linear and angular incremental photoelectric encoders, to find the optimum parameters for its components, such as light emitters, photo-detectors, linear and angular scales, optical components etc. It analyzes methods and devices that permit high resolutions in the order of 0.001 mm or 0.001°, as well as large measuring lengths of over 100 mm. In linear and angular incremental photoelectric encoders optical beam is usually formulated by a condenser lens passes through the measuring unit changes its value depending on the movement of a scanning head or measuring raster. Past light beam is converting into an electrical signal by the photo-detecter's block for processing in the electrical block. Therefore, for calculating the energy source is a value of the desired value of the optical signal at the input of the photo-detecter's block, which reliably recorded and processed in the electronic unit of linear and angular incremental optoelectronic encoders. Automation technology is constantly expanding its role in improving the efficiency of manufacturing and testing processes in all branches of industry. More than ever before, the mechanical movements of linear slides, rotary tables, robot arms, actuators, etc. are numerically controlled. Linear and angular incremental photoelectric encoders measure mechanical motion and
Gouesbet, Gérard; Lock, James A.
2016-07-01
When dealing with light scattering and propagation of an electromagnetic beam, there are essentially two kinds of expansions which have been used to describe the incident beam (i) a discrete expansion involving beam shape coefficients and (ii) a continuous expansion in terms of an angular spectrum of plane waves. In this paper, we demonstrate that the angular spectrum decomposition readily leads to two important consequences, (i) laser light beams travel in free space with an effective velocity that is smaller than the speed of light c, and (ii) the optical theorem does not hold for arbitrary shaped beams, both in the case of electromagnetic waves and scalar waves, e.g. quantum and acoustical waves.
International Nuclear Information System (INIS)
We present a theoretical and experimental analysis of the joint effects of the transverse electric field distribution and of the nonlinear crystal characteristics on the properties of photon pairs generated by spontaneous parametric downconversion (SPDC). While it is known that for a sufficiently short crystal the pump electric field distribution fully determines the joint signal–idler properties, for longer crystals the nonlinear crystal properties also play an important role. In this paper we present experimental measurements of the angular spectrum (AS) and of the conditional angular spectrum (CAS) of photon pairs produced by SPDC, carried out through spatially resolved photon counting. In our experiment we control whether or not the source operates in the short-crystal regime through the degree of pump focusing, and explicitly show how the AS and CAS measurements differ in these two regimes. Our theory provides an understanding of the boundary between these two regimes and also predicts the corresponding differing behaviors. (paper)
Precision Prediction of the Log Power Spectrum
Repp, Andrew
2016-01-01
At translinear scales, the log power spectrum captures significantly more cosmological information than the standard power spectrum. At high wavenumbers $k$, the cosmological information in the standard power spectrum $P(k)$ fails to increase in proportion to $k$ due to correlations between large- and small-scale modes. As a result, $P(k)$ suffers from an information plateau on these translinear scales, so that analysis with the standard power spectrum cannot access the information contained in these small-scale modes. The log power spectrum $P_A(k)$, on the other hand, captures the majority of this otherwise lost information. Until now there has been no means of predicting the amplitude of the log power spectrum apart from cataloging the results of simulations. We here present a cosmology-independent prescription for the log power spectrum, and we find this prescription to display accuracy comparable to that of Smith et al. (2003), over a range of redshifts and smoothing scales, and for wavenumbers up to $1....
Adaptive power-controllable orbital angular momentum (OAM) multicasting
Li, Shuhui; Wang, Jian
2015-01-01
We report feedback-assisted adaptive multicasting from a single Gaussian mode to multiple orbital angular momentum (OAM) modes using a single phase-only spatial light modulator loaded with a complex phase pattern. By designing and optimizing the complex phase pattern through the adaptive correction of feedback coefficients, the power of each multicast OAM channel can be arbitrarily controlled. We experimentally demonstrate power-controllable multicasting from a single Gaussian mode to two and six OAM modes with different target power distributions. Equalized power multicasting, “up-down” power multicasting and “ladder” power multicasting are realized in the experiment. The difference between measured power distributions and target power distributions is assessed to be less than 1 dB. Moreover, we demonstrate data-carrying OAM multicasting by employing orthogonal frequency-division multiplexing 64-ary quadrature amplitude modulation (OFDM 64-QAM) signal. The measured bit-error rate curves and observed optical signal-to-noise ratio penalties show favorable operation performance of the proposed adaptive power-controllable OAM multicasting. PMID:25989251
Tensor power spectrum and disformal transformations
Fumagalli, Jacopo; Postma, Marieke
2016-01-01
In a general effective theory description of inflation a disformal transformation can be used to set the tensor sound speed to one. After the transformation, the tensor power spectrum then automatically only depends on the Hubble parameter. We show that this disformal transformation, however, is nothing else than a change of units. It is a very useful tool for simplifying and interpreting computations, but it cannot change any physics. While the apparent parametrical dependence of the tensor power spectrum does change under a disformal transformation, the physics described is frame invariant. We further illustrate the frame invariance of the tensor power spectrum by writing it exclusively in terms of separately invariant quantities.
Sensitivity of a Bolometric Interferometer to the CMB power spectrum
Hamilton, J -Ch; Cressiot, C; Kaplan, J; Piat, M; Rosset, C
2008-01-01
Context. The search for the B-mode polarization fluctuations in the Cosmic Microwave Background is one of the main challenges of modern cosmology. The expected level of the B-mode signal is very low and therefore implies the development of highly sensitive and low systematics instruments. An appealing possibility is bolometric interferometry. Aims. We compare in this article the sensitivity on the CMB angular power spectrum achieved with direct imaging, heterodyne and bolometric interferometry. Methods. Using a simple power spectrum estimator, we calculate its variance leading to the counterpart for Bolometric Interferometry of the well known Knox formula for direct imaging. Results. We find that bolometric interferometry is almost as sensitive as direct imaging for very large scales but suffers from the lack of equivalent/redondant baselines at smaller scales. However, as expected, it ends up being more sensitive than heterodyne interferometry thanks to the low noise of the bolometers. It therefore appears a...
Violation of statistical isotropy and homogeneity in the 21-cm power spectrum
Shiraishi, Maresuke; Kamionkowski, Marc; Raccanelli, Alvise
2016-01-01
Most inflationary models predict primordial perturbations to be statistically isotropic and homogeneous. Cosmic-Microwave-Background (CMB) observations, however, indicate a possible departure from statistical isotropy in the form of a dipolar power modulation at large angular scales. Alternative models of inflation, beyond the simplest single-field slow-roll models, can generate a small power asymmetry, consistent with these observations. Observations of clustering of quasars show, however, agreement with statistical isotropy at much smaller angular scales. Here we propose to use off-diagonal components of the angular power spectrum of the 21-cm fluctuations during the dark ages to test this power asymmetry. We forecast results for the planned SKA radio array, a future radio array, and the cosmic-variance-limited case as a theoretical proof of principle. Our results show that the 21-cm-line power spectrum will enable access to information at very small scales and at different redshift slices, thus improving u...
Impact of Wind Power on the Angular Stability of a Power System
Directory of Open Access Journals (Sweden)
Djemai NAIMI
2008-06-01
Full Text Available Wind energy conversion systems are very different in nature from conventional generators. Therefore dynamic studies must be addressed in order to integrate wind power into the power system. Angular stability assessment of wind power generator is one of main issues in power system security and operation. The angular stability for the wind power generator is determined by its corresponding Critical Clearing Time (CCT. In this paper, the effect of wind power on the transient fault behavior is investigated by replacing the power generated by two main types of wind turbine, increasing gradually a rate of wind power penetration and changing the location of wind resources. The simulation analysis was established on a 14 bus IEEE test system by PSAT/Matlab, which gives access to an extensive library of grid components, and relevant wind turbine model.
H-ATLAS: The cosmic abundance of dust from the far-infrared background power spectrum
Thacker, Cameron; Smidt, Joseph; de Bernardis, Francesco; Mitchell-Wynne, K; Amblard, A; Auld, R; Baes, M; Clements, D L; Dariush, A; De Zotti, G; Dunne, L; Eales, S; Hopwood, R; Hoyos, C; Ibar, E; Jarvis, M; Maddox, S; Michalowski, M J; Pascale, E; Scott, D; Serjeant, S; Smith, M W L; Valiante, E; Van der Werf, P
2012-01-01
We present a measurement of the angular power spectrum of the cosmic far-infrared background (CFIRB) anisotropies in one of the extragalactic fields of the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS) at 250, 350 and 500 \\mu m bands. Consistent with recent measurements of the CFIRB power spectrum in Herschel-SPIRE maps, we confirm the existence of a clear one-halo term of galaxy clustering on arcminute angular scales with large-scale two-halo term of clustering at 30 arcminutes to angular scales of a few degrees. The power spectrum at the largest angular scales, especially at 250 \\mu m, is contaminated by the Galactic cirrus. The angular power spectrum is modeled using a conditional luminosity function approach to describe the spatial distribution of unresolved galaxies that make up the bulk of the CFIRB. Integrating over the dusty galaxy population responsible for the background anisotropies, we find that the cosmic abundance of dust, relative to the critical density, to be between \\Omega_dus...
H-ATLAS: THE COSMIC ABUNDANCE OF DUST FROM THE FAR-INFRARED BACKGROUND POWER SPECTRUM
Energy Technology Data Exchange (ETDEWEB)
Thacker, Cameron; Cooray, Asantha; Smidt, Joseph; De Bernardis, Francesco; Mitchell-Wynne, K. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Amblard, A. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Auld, R.; Eales, S.; Pascale, E. [School of Physics and Astronomy, Cardiff University, The Parade, Cardiff, CF24 3AA (United Kingdom); Baes, M.; Michalowski, M. J. [Sterrenkundig Observatorium, Universiteit Gent, KrijgslAAn 281 S9, B-9000 Gent (Belgium); Clements, D. L.; Dariush, A.; Hopwood, R. [Physics Department, Imperial College London, South Kensington campus, London, SW7 2AZ (United Kingdom); De Zotti, G. [INAF, Osservatorio Astronomico di Padova, Vicolo Osservatorio 5, I-35122 Padova (Italy); Dunne, L.; Maddox, S. [Department of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch (New Zealand); Hoyos, C. [School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD (United Kingdom); Ibar, E. [UK Astronomy Technology Centre, The Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ (United Kingdom); Jarvis, M. [Astrophysics, Department of Physics, Keble Road, Oxford, OX1 3RH (United Kingdom); and others
2013-05-01
We present a measurement of the angular power spectrum of the cosmic far-infrared background (CFIRB) anisotropies in one of the extragalactic fields of the Herschel Astrophysical Terahertz Large Area Survey at 250, 350, and 500 {mu}m bands. Consistent with recent measurements of the CFIRB power spectrum in Herschel-SPIRE maps, we confirm the existence of a clear one-halo term of galaxy clustering on arcminute angular scales with large-scale two-halo term of clustering at 30 arcmin to angular scales of a few degrees. The power spectrum at the largest angular scales, especially at 250 {mu}m, is contaminated by the Galactic cirrus. The angular power spectrum is modeled using a conditional luminosity function approach to describe the spatial distribution of unresolved galaxies that make up the bulk of the CFIRB. Integrating over the dusty galaxy population responsible for the background anisotropies, we find that the cosmic abundance of dust, relative to the critical density, to be between {Omega}{sub dust} = 10{sup -6} and 8 Multiplication-Sign 10{sup -6} in the redshift range z {approx} 0-3. This dust abundance is consistent with estimates of the dust content in the universe using quasar reddening and magnification measurements in the Sloan Digital Sky Survey.
Accurate calculation of computer-generated holograms using angular-spectrum layer-oriented method.
Zhao, Yan; Cao, Liangcai; Zhang, Hao; Kong, Dezhao; Jin, Guofan
2015-10-01
Fast calculation and correct depth cue are crucial issues in the calculation of computer-generated hologram (CGH) for high quality three-dimensional (3-D) display. An angular-spectrum based algorithm for layer-oriented CGH is proposed. Angular spectra from each layer are synthesized as a layer-corresponded sub-hologram based on the fast Fourier transform without paraxial approximation. The proposed method can avoid the huge computational cost of the point-oriented method and yield accurate predictions of the whole diffracted field compared with other layer-oriented methods. CGHs of versatile formats of 3-D digital scenes, including computed tomography and 3-D digital models, are demonstrated with precise depth performance and advanced image quality. PMID:26480062
Wang, Guangjun; Wang, Huaying; Wang, Dayong; Xie, Jianjun; Zhao, Jie
2007-12-01
A simple holographic high-resolution imaging system without pre-magnification, which is based on off-axis lensless Fourier transform configuration, has been developed. Experimental investigations are performed on USAF resolution test target. The method based on angular spectrum theory for reconstructing lensless Fourier hologram is given. The reconstructed results of the same hologram at different reconstructing distances are presented for what is to our knowledge the first time. Approximate diffraction limited lateral resolution is achieved. The results show that the angular spectrum method has several advantages over more commonly used Fresnel transform method. Lossless reconstruction can be achieved for any numerical aperture holograms as long as the wave field is calculated at a special reconstructing distance, which is determined by the light wavelength and the chip size and the pixel size of the CCD sensor. This is very important for reconstructing an extremely large numerical aperture hologram. Frequency-domain spectrum filtering can be applied conveniently to remove the disturbance of zero-order. The reconstructed image wave field is accurate so long as the sampling theorem is not violated. The experimental results also demonstrate that for a high quality hologram, special image processing is unnecessary to obtain a high quality image.
Effect of Coma Aberration on Orbital Angular Momentum Spectrum of Vortex Beams
Institute of Scientific and Technical Information of China (English)
CHEN Zi-Yang; PU Ji-Xiong
2009-01-01
Spiral spectra of vortex beams with coma aberration are studied.It is shown that the orbital angular momentum (OAM) states of vortex beams with coma aberration are different from those aberration-free vortex beams.Spiral spectra of beams with coma aberration are spreading.It is found that in the presence of coma aberration,the vortex beams contain not only the original OAM component but also other components.A larger coma aberration coefficient and/or a larger beam waist will lead to a wider spreading of the spiral spectrum. The results may have potential applications in information encoding and transmittance.
Feasibility of non-linear simulation for Field II using an angular spectrum approach
DEFF Research Database (Denmark)
Du, Yigang; Jensen, Jørgen Arendt
2008-01-01
this procedure is to find the accuracy of the approach for linear propagation, where the result can be validated using Field II simulations. The ASA calculations are carried out by 3D fast Fourier transform using Matlab, where lambda=2 is chosen as the spatial sampling rate to reduce aliasing errors. Zero...... is restricted to simulate these for the linear case and the purpose of this paper is to develop a general frame work for extending it to non-linear simulation. The extension to the non-linear domain is made by using the angular spectrum approach (ASA), where the field is calculated in a plane close...
Ultrasonic oil-film thickness measurement: An angular spectrum approach to assess performance limits
Zhang, J.; Drinkwater, B. W.; Dwyer-Joyce, R.S.
2007-01-01
The performance of ultrasonic oil-film thickness measurement in a ball bearing is quantified. A range of different viscosity oils (Shell T68, VG15, and VG5) are used to explore the lowest reflection coefficient and hence the thinnest oil-film thickness that the system can measure. The results show a minimum reflection coefficient of 0.07 for both oil VG15 and VG5 and 0.09 for oil T68 at 50 MHz. This corresponds to an oil-film thickness of 0.4 Î¼m for T68 oil. An angular spectrum (or Fourier d...
Relativistic Corrections to the Thermal Sunyaev-Zel'dovich Power Spectrum
Institute of Scientific and Technical Information of China (English)
Hai-Ning Li
2003-01-01
We present a quantitative estimate of the relativistic corrections to the thermal SZ power spectrum produced by the energetic electrons in massive clusters. The corrections are well within 10% for current experiments with working frequencies below v ＜ 100 GHz, but become non-negligible at high frequencies v ＞350 GHz. Moreover, the corrections appear to be slightly smaller at higher e or smaller angular scales. We conclude that there is no need to include the relativistic corrections in the theoretical study of the SZ power spectrum especially at low frequencies unless the SZ power spectrum is used for precision cosmology.
Power spectrum analysis for optical tweezers
DEFF Research Database (Denmark)
Berg-Sørensen, K.; Flyvbjerg, H.
2004-01-01
The force exerted by an optical trap on a dielectric bead in a fluid is often found by fitting a Lorentzian to the power spectrum of Brownian motion of the bead in the trap. We present explicit functions of the experimental power spectrum that give the values of the parameters fitted, including...... error bars and correlations, for the best such chi(2) fit in a given frequency range. We use these functions to determine the information content of various parts of the power spectrum, and find, at odds with lore, much information at relatively high frequencies. Applying the method to real data, we...... the Lorentzian provides. This is achieved using old and new theory for Brownian motion in an incompressible fluid, and new results for a popular photodetection system. The trap and photodetection system are then calibrated simultaneously in a manner that makes optical tweezers a tool of precision for force...
Quantum hyper-entanglement and angular spectrum decomposition applied to sensors
Smith, James F.
2016-05-01
Hyper-entanglement with an emphasis on mode type is used to extend a previously developed atmospheric imaging system. Angular spectrum expansions combined with second quantization formalism permits many different mode types to be considered using a common formalism. Fundamental Gaussian, standard Hermite-Gaussian, standard Laguerre- Gaussian, and Bessel modes are developed. Hyper-entanglement refers to entanglement in more than one degree of freedom, e.g. polarization, energy-time and orbital angular momentum. The system functions at optical or infrared frequencies. Only the signal photon propagates in the atmosphere, the ancilla photon is retained within the detector. This results in loss being essentially classical, giving rise to stronger forms of entanglement. A simple atomic physics based model of the scattering target is developed. This model permits the derivation in closed form of the loss coefficient for photons with a given mode type scattering from the target. Signal loss models for propagation, transmission, detection, and scattering are developed and applied. The probability of detection of photonic orbital angular momentum is considered in terms of random media theory. A model of generation and detection efficiencies for the different degrees of freedom is also considered. The implications of loss mechanisms for signal to noise ratio (SNR), and other quantum information theoretic quantities are discussed. Techniques for further enhancing the system's SNR and resolution through adaptive optics are examined. The formalism permits random noise and entangled or nonentangled sources of interference to be modeled.
Pulsed power for angular multiplexed laser fusion drivers
International Nuclear Information System (INIS)
The feasibility of using rare gas-halide lasers, in particular the KrF laser, as inertial confinement fusion (ICF) drivers has been assessed. These lasers are scalable to the required high energy (approx. =1-5 MJ) in a short pulse (approx. =10 ns) by optical angular multiplexing, and integration of the output from approx. =100 kJ laser amplifier subsystems. The e-beam current density (approx. =50A/cm2) and voltage (approx. =800 kV) required for these power amplifiers lead to an e-beam impedance of approx. =0.2Ω for approx. =300 ns pump time. This impedance level requires modularization of the large area e-gun, a) to achieve a diode inductance consistent with fast current risetime, b) to circumvent dielectric breakdown constraints in the pulse forming lines, and c) to reduce the requirement for guide magnetic fields. Pulsed power systems requirements, design concepts, scalability, tradeoffs, and performance projections are discussed in this paper
The Angular Power Spectra of Photometric SDSS LRGs
Thomas, Shaun A; Lahav, Ofer
2010-01-01
We construct new galaxy angular power spectra based on the extended, updated and final SDSS II Luminous Red Galaxy (LRG) photometric redshift survey: MegaZ DR7. Encapsulating 7746 deg^{2} we utilise 723,556 photometrically determined LRGs between 0.45 < z < 0.65 in a 3.3 (Gpc h^{-1})^3 spherical harmonic analysis of the galaxy distribution. By combining four photometric redshift bins we find preliminary parameter constraints of f_{b} = \\Omega_{b}/\\Omega_{m} = 0.173 +/- 0.046 and \\Omega_{m} = 0.260 +/- 0.035 assuming H_{0} = 75 km s^{-1} Mpc^{-1}, n_{s}=1 and \\Omega_{k} = 0. These limits are consistent with the CMB and the previous data release (DR4). The C_{\\ell} are sensitive to redshift space distortions and therefore we also recast our constraints into a measurement of \\beta ~ \\Omega_{m}^{0.55}/b in different redshift shells. The robustness of these power spectra with respect to a number of potential systematics such as extinction, photometric redshift and ANNz training set extrapolation are examined...
Energy Technology Data Exchange (ETDEWEB)
Alpar, M.A.
1986-12-01
Model power spectra are constructed for quasi-periodic oscillations of the type observed in some galactic bulge X-ray sources. It is shown that the angular location of clumping in the boundary layer, as well as the spread in Keplerian velocities within the boundary layer, will effect the form of the power spectrum under certain conditions. The occurrence of such features in observed power spectra would yield information on the possible role of the magnetic field in clumping and on the radial velocity of matter moving through the boundary layer.
Enhancing the Cosmic Shear Power Spectrum
Simpson, Fergus; Heymans, Catherine; Jimenez, Raul; Verde, Licia
2015-01-01
Applying a transformation to a non-Gaussian field can enhance the information content of the resulting power spectrum, by reducing the correlations between Fourier modes. In the context of weak gravitational lensing, it has been shown that this gain in information content is significantly compromised by the presence of shape noise. We apply clipping to mock convergence fields, a technique which is known to be robust in the presence of noise and has been successfully applied to galaxy number density fields. When analysed in isolation the resulting convergence power spectrum returns degraded constraints on cosmological parameters. However substantial gains can be achieved by performing a combined analysis of the power spectra derived from both the original and transformed fields. Even in the presence of realistic levels of shape noise, we demonstrate that this approach is capable of reducing the area of likelihood contours within the $\\Omega_m - \\sigma_8$ plane by more than a factor of three.
Angular spectrum approach for fast simulation of pulsed non-linear ultrasound fields
DEFF Research Database (Denmark)
Du, Yigang; Jensen, Henrik; Jensen, Jørgen Arendt
2011-01-01
The paper presents an Angular Spectrum Approach (ASA) for simulating pulsed non-linear ultrasound fields. The source of the ASA is generated by Field II, which can simulate array transducers of any arbitrary geometry and focusing. The non-linear ultrasound simulation program - Abersim, is used...... as the reference. A linear array transducer with 64 active elements is simulated by both Field II and Abersim. The excitation is a 2-cycle sine wave with a frequency of 5 MHz. The second harmonic field in the time domain is simulated using ASA. Pulse inversion is used in the Abersim simulation to remove...... the fundamental and keep the second harmonic field, since Abersim simulates non-linear fields with all harmonic components. ASA and Abersim are compared for the pulsed fundamental and second harmonic fields in the time domain at depths of 30 mm, 40 mm (focal depth) and 60 mm. Full widths at -6 dB (FWHM) are f0...
Low Power Compact Radio Galaxies at High Angular Resolution
Energy Technology Data Exchange (ETDEWEB)
Giroletti, Marcello; Giovannini, G.; /Bologna U. /Bologna, Ist. Radioastronomia; Taylor, G.B.; /KIPAC, Menlo Park /NRAO, Socorro
2005-06-30
We present sub-arcsecond resolution multi-frequency (8 and 22 GHz) VLA images of five low power compact (LPC) radio sources, and phase referenced VLBA images at 1.6 GHz of their nuclear regions. At the VLA resolution we resolve the structure and identify component positions and flux densities. The phase referenced VLBA data at 1.6 GHz reveals flat-spectrum, compact cores (down to a few milliJansky) in four of the five sources. The absolute astrometry provided by the phase referencing allows us to identify the center of activity on the VLA images. Moreover, these data reveal rich structures, including two-sided jets and secondary components. On the basis of the arcsecond scale structures and of the nuclear properties, we rule out the presence of strong relativistic effects in our LPCs, which must be intrinsically small (deprojected linear sizes {approx}< 10 kpc). Fits of continuous injection models reveal break frequencies in the GHz domain, and ages in the range 10{sup 5}-10{sup 7} yrs. In LPCs, the outermost edge may be advancing more slowly than in more powerful sources or could even be stationary; some LPCs might also have ceased their activity. In general, the properties of LPCs can be related to a number of reasons, including, but not limited to: youth, frustration, low kinematic power jets, and short-lived activity in the radio.
Converting Multi-Shell and Diffusion Spectrum Imaging to High Angular Resolution Diffusion Imaging.
Yeh, Fang-Cheng; Verstynen, Timothy D
2016-01-01
Multi-shell and diffusion spectrum imaging (DSI) are becoming increasingly popular methods of acquiring diffusion MRI data in a research context. However, single-shell acquisitions, such as diffusion tensor imaging (DTI) and high angular resolution diffusion imaging (HARDI), still remain the most common acquisition schemes in practice. Here we tested whether multi-shell and DSI data have conversion flexibility to be interpolated into corresponding HARDI data. We acquired multi-shell and DSI data on both a phantom and in vivo human tissue and converted them to HARDI. The correlation and difference between their diffusion signals, anisotropy values, diffusivity measurements, fiber orientations, connectivity matrices, and network measures were examined. Our analysis result showed that the diffusion signals, anisotropy, diffusivity, and connectivity matrix of the HARDI converted from multi-shell and DSI were highly correlated with those of the HARDI acquired on the MR scanner, with correlation coefficients around 0.8~0.9. The average angular error between converted and original HARDI was 20.7° at voxels with signal-to-noise ratios greater than 5. The network topology measures had less than 2% difference, whereas the average nodal measures had a percentage difference around 4~7%. In general, multi-shell and DSI acquisitions can be converted to their corresponding single-shell HARDI with high fidelity. This supports multi-shell and DSI acquisitions over HARDI acquisition as the scheme of choice for diffusion acquisitions.
Converting Multi-Shell and Diffusion Spectrum Imaging to High Angular Resolution Diffusion Imaging
Yeh, Fang-Cheng; Verstynen, Timothy D.
2016-01-01
Multi-shell and diffusion spectrum imaging (DSI) are becoming increasingly popular methods of acquiring diffusion MRI data in a research context. However, single-shell acquisitions, such as diffusion tensor imaging (DTI) and high angular resolution diffusion imaging (HARDI), still remain the most common acquisition schemes in practice. Here we tested whether multi-shell and DSI data have conversion flexibility to be interpolated into corresponding HARDI data. We acquired multi-shell and DSI data on both a phantom and in vivo human tissue and converted them to HARDI. The correlation and difference between their diffusion signals, anisotropy values, diffusivity measurements, fiber orientations, connectivity matrices, and network measures were examined. Our analysis result showed that the diffusion signals, anisotropy, diffusivity, and connectivity matrix of the HARDI converted from multi-shell and DSI were highly correlated with those of the HARDI acquired on the MR scanner, with correlation coefficients around 0.8~0.9. The average angular error between converted and original HARDI was 20.7° at voxels with signal-to-noise ratios greater than 5. The network topology measures had less than 2% difference, whereas the average nodal measures had a percentage difference around 4~7%. In general, multi-shell and DSI acquisitions can be converted to their corresponding single-shell HARDI with high fidelity. This supports multi-shell and DSI acquisitions over HARDI acquisition as the scheme of choice for diffusion acquisitions. PMID:27683539
Electron density power spectrum in the local interstellar medium
Armstrong, J. W.; Rickett, B. J.; Spangler, S. R.
1995-01-01
Interstellar scintillation (ISS), fluctuations in the amplitude and phase of radio waves caused by scattering in the interstellar medium, is important as a diagnostic of interstellar plasma turbulence. ISS is also of interest because it is noise for other radio astronomical observations. The unifying concern is the power spectrum of the interstellar electron density. Here we use ISS observations through the nearby (less than or approximately =1 kpc) (ISM) to estimate the spectrum. From measurements of angular broadening of pulsars and extragalactic sources, decorrelation bandwidth of pulsars, refractive steering of features in pulsar dynamic spectra, dispersion measured fluctuations of pulsars, and refractive scintillation index measurements, we construct a composite structure function that is approximately power law over 2 x 10(exp 6) m less than scale less than 10(exp 13) m. The data are consistent with the structure function having a logarithmic slope versus baseline less than 2; thus there is a meaningful connection between scales in the radiowave fluctuation field and the scales in the electron density field causing the scattering. The data give an upper limit to the inner scale, l(sub o) less than or approximately 10(exp 8) m and are consistent with much smaller values. We construct a composite electron density spectrum that is approximately power law over at least the approximately = 5 decade wavenumber range 10(exp -13)/m less than wavenumber less than 10(exp -8)/m and that may extend to higher wavenumbers. The average spectral index of electron density over this wavenumber range is approximately = 3.7, very close to the value expected for a Kolmogorov process. The outer scale size, L(sub o), must be greater than or approximately = 10(exp 13) m (determined from dispersion measure fluctuations). When the ISS data are combined with measurements of differential Faraday rotation angle, and gradients in the average electron density, constraints can be put on the
Power Spectrum Analysis of Three-Dimensional Redshift Surveys
Feldman, H A; Peacock, J A; Feldman, Hume A.; Kaiser, Nick; Peacock, John A.
1994-01-01
We develop a general method for power spectrum analysis of three dimensional redshift surveys. We present rigorous analytical estimates for the statistical uncertainty in the power and we are able to derive a rigorous optimal weighting scheme under the reasonable (and largely empirically verified) assumption that the long wavelength Fourier components are Gaussian distributed. We apply the formalism to the updated 1-in-6 QDOT IRAS redshift survey, and compare our results to data from other probes: APM angular correlations; the CfA and the Berkeley 1.2Jy IRAS redshift surveys. Our results bear out and further quantify the impression from e.g.\\ counts-in-cells analysis that there is extra power on large scales as compared to the standard CDM model with $\\Omega h\\simeq 0.5$. We apply likelihood analysis using the CDM spectrum with $\\Omega h$ as a free parameter as a phenomenological family of models; we find the best fitting parameters in redshift space and transform the results to real space. Finally, we calcul...
CHIPS: The Cosmological HI Power Spectrum Estimator
Trott, Cathryn M; Procopio, Pietro; Wayth, Randall B; Mitchell, Daniel A; McKinley, Benjamin; Tingay, Steven J; Barry, N; Beardsley, A P; Bernardi, G; Bowman, Judd D; Briggs, F; Cappallo, R J; Carroll, P; de Oliveira-Costa, A; Dillon, Joshua S; Ewall-Wice, A; Feng, L; Greenhill, L J; Hazelton, B J; Hewitt, J N; Hurley-Walker, N; Johnston-Hollitt, M; Jacobs, Daniel C; Kaplan, D L; Kim, HS; Lenc, E; Line, J; Loeb, A; Lonsdale, C J; Morales, M F; Morgan, E; Neben, A R; Thyagarajan, Nithyanandan; Oberoi, D; Offringa, A R; Ord, S M; Paul, S; Pober, J C; Prabu, T; Riding, J; Shankar, N Udaya; Sethi, Shiv K; Srivani, K S; Subrahmanyan, R; Sullivan, I S; Tegmark, M; Webster, R L; Williams, A; Williams, C L; Wu, C; Wyithe, J S B
2016-01-01
Detection of the cosmological neutral hydrogen signal from the Epoch of Reionization, and estimation of its basic physical parameters, is the principal scientific aim of many current low-frequency radio telescopes. Here we describe the Cosmological HI Power Spectrum Estimator (CHIPS), an algorithm developed and implemented with data from the Murchison Widefield Array (MWA), to compute the two-dimensional and spherically-averaged power spectrum of brightness temperature fluctuations. The principal motivations for CHIPS are the application of realistic instrumental and foreground models to form the optimal estimator, thereby maximising the likelihood of unbiased signal estimation, and allowing a full covariant understanding of the outputs. CHIPS employs an inverse-covariance weighting of the data through the maximum likelihood estimator, thereby allowing use of the full parameter space for signal estimation ("foreground suppression"). We describe the motivation for the algorithm, implementation, application to ...
Power Spectrum Super-Sample Covariance
Takada, Masahiro
2013-01-01
We provide a simple, unified approach to describing the impact of super-sample covariance on power spectrum estimation in a finite-volume survey. For a wide range of survey volumes, the sample variance that arises from modes that are larger than the survey dominates the covariance of power spectrum estimators for modes much smaller than the survey. The perturbative and deeply nonlinear versions of this effect are known as beat coupling and halo sample variance respectively. We show that they are unified by the matter trispectrum of squeezed configurations and that such configurations obey a consistency relation which relates them to the response of the power spectrum to a change in the background density. Our method also applies to statistics that are based on radial projections of the density field such as weak lensing shear. While we use the halo model for an analytic description to expose the nature of the effect, the consistency description enables an accurate calibration of the full effect directly from ...
Observability of secondary Doppler peaks in the CMBR power spectrum by experiments with small fields
Hobson, M P; Magueijo, Joao
1996-01-01
We investigate the effects of finite sky coverage on the spectral resolution \\Delta\\ell in the estimation of the CMBR angular power spectrum C^{\\ell}. A method is developed for obtaining quasi-independent estimates of the power spectrum, and the cosmic/sample variance of these estimates is calculated. The effect of instrumental noise is also considered for prototype interferometer and single-dish experiments. By proposing a statistic for the detection of secondary (Doppler) peaks in the CMBR power spectrum, we then compute the significance level at which such peaks may be detected for a large range of model CMBR experiments. In particular, we investigate experimental design features required to distinguish between competing cosmological theories, such as cosmic strings and inflation, by establishing whether or not secondary peaks are present in the CMBR power spectrum.
Planck 2013 results. XXI. All-sky Compton parameter power spectrum and high-order statistics
Ade, P.A.R.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartlett, J.G.; Battaner, E.; Benabed, K.; Benoit, A.; Benoit-Levy, A.; Bernard, J.P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J.J.; Bonaldi, A.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R.C.; Cardoso, J.F.; Carvalho, P.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, L.Y.; Chiang, H.C.; Christensen, P.R.; Church, S.; Clements, D.L.; Colombi, S.; Colombo, L.P.L.; Comis, B.; Couchot, F.; Coulais, A.; Crill, B.P.; Curto, A.; Cuttaia, F.; Da Silva, A.; Danese, L.; Davies, R.D.; Davis, R.J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.M.; Desert, F.X.; Dickinson, C.; Diego, J.M.; Dolag, K.; Dole, H.; Donzelli, S.; Dore, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Ensslin, T.A.; Eriksen, H.K.; Finelli, F.; Flores-Cacho, I.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Genova-Santos, R.T.; Giard, M.; Giardino, G.; Giraud-Heraud, Y.; Gonzalez-Nuevo, J.; Gorski, K.M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F.K.; Hanson, D.; Harrison, D.; Henrot-Versille, S.; Hernandez-Monteagudo, C.; Herranz, D.; Hildebrandt, S.R.; Hivon, E.; Hobson, M.; Holmes, W.A.; Hornstrup, A.; Hovest, W.; Huffenberger, K.M.; Hurier, G.; Jaffe, T.R.; Jaffe, A.H.; Jones, W.C.; Juvela, M.; Keihanen, E.; Keskitalo, R.; Kisner, T.S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lacasa, F.; Lagache, G.; Lahteenmaki, A.; Lamarre, J.M.; Lasenby, A.; Laureijs, R.J.; Lawrence, C.R.; Leahy, J.P.; Leonardi, R.; Leon-Tavares, J.; Lesgourgues, J.; Liguori, M.; Lilje, P.B.; Linden-Vornle, M.; Lopez-Caniego, M.; Lubin, P.M.; Macias-Perez, J.F.; Maffei, B.; Maino, D.; Mandolesi, N.; Marcos-Caballero, A.; Maris, M.; Marshall, D.J.; Martin, P.G.; Martinez-Gonzalez, E.; Masi, S.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Melchiorri, A.; Melin, J.B.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschenes, M.A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C.B.; Norgaard-Nielsen, H.U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Oxborrow, C.A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G.W.; Prezeau, G.; Prunet, S.; Puget, J.L.; Rachen, J.P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubino-Martin, J.A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M.D.; Shellard, E.P.S.; Spencer, L.D.; Starck, J.L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.S.; Sygnet, J.F.; Tauber, J.A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L.A.; Wandelt, B.D.; White, S.D.M.; Yvon, D.; Zacchei, A.; Zonca, A.
2014-01-01
We have constructed the first all-sky map of the thermal Sunyaev-Zeldovich (tSZ) effect by applying specifically tailored component separation algorithms to the 100 to 857 GHz frequency channel maps from the Planck survey. These maps show an obvious galaxy cluster tSZ signal that is well matched with blindly detected clusters in the Planck SZ catalogue. To characterize the signal in the tSZ map we have computed its angular power spectrum. At large angular scales ($\\ell 500$) the clustered Cosmic Infrared Background (CIB) and residual point sources are the major contaminants. These foregrounds are carefully modelled and subtracted. We measure the tSZ power spectrum in angular scales, $0.17^{\\circ} \\lesssim \\theta \\lesssim 3.0^{\\circ}$, that were previously unexplored. The measured tSZ power spectrum is consistent with that expected from the Planck catalogue of SZ sources, with additional clear evidence of signal from unresolved clusters and, potentially, diffuse warm baryons. We use the tSZ power spectrum to ...
The visibility based Tapered Gridded Estimator (TGE) for the redshifted 21-cm power spectrum
Choudhuri, Samir; Chatterjee, Suman; Ali, Sk Saiyad; Roy, Nirupam; Ghosh, Abhik
2016-01-01
We present the improved visibility based Tapered Gridded Estimator (TGE) for the power spectrum of the diffuse sky signal. The visibilities are gridded to reduce the computation, and tapered through a convolution to suppress the contribution from the outer regions of the telescope's field of view. The TGE also internally estimates the noise bias, and subtracts this out to give an unbiased estimate of the power spectrum. An earlier version of the 2D TGE for the angular power spectrum $C_{\\ell}$ is improved and then extended to obtain the 3D TGE for the power spectrum $P({\\bf k})$ of the 21-cm brightness temperature fluctuations. Analytic formulas are also presented for predicting the variance of the binned power spectrum. The estimator and its variance predictions are validated using simulations of $150 \\, {\\rm MHz}$ GMRT observations. We find that the estimator accurately recovers the input model for the 1D Spherical Power Spectrum $P(k)$ and the 2D Cylindrical Power Spectrum $P(k_\\perp,k_\\parallel)$, and the...
Acoustic oscillations in the SDSS DR4 Luminous Red Galaxy sample power spectrum
Huetsi, Gert
2005-01-01
We calculate the redshift-space power spectrum of the Sloan Digital Sky Survey (SDSS) Data Release 4 (DR4) Luminous Red Galaxy (LRG) sample, finding evidence for a full series of acoustic features down to the scales of \\sim 0.2 hMpc^{-1}. This corresponds up to the 7th peak in the CMB angular power spectrum. The acoustic scale derived, (105.4 \\pm 2.3) h^{-1}Mpc, agrees very well with the ``concordance'' model prediction and also with the one determined via the analysis of the spatial two-poin...
Power law in the angular velocity distribution of a granular needle
Piasecki, J.; Viot, P.
2005-01-01
We show how inelastic collisions induce a power law with exponent -3 in the decay of the angular velocity distribution of anisotropic particles with sufficiently small moment of inertia. We investigate this question within the Boltzmann kinetic theory for an elongated granular particle immersed in a bath. The power law persists so long as the collisions are inelastic for a large range of angular velocities provided the mass ratio of the anisotropic particle and the bath particles remains smal...
The CMB power spectrum out to l=1400 measured by the VSA
Grainge, K; Cleary, K; Davies, R D; Davis, R J; Dickinson, C; Genova-Santos, R; Gutíerrez, C M; Hafez, Y A; Hobson, M P; Jones, M E; Kneissl, R; Lancaster, K; Lasenby, A; Leahy, J P; Maisinger, K; Pooley, G G; Rebolo, R; Rubiño-Martín, J A; Molina, P S; Odman, C; Rusholme, B A; Saunders, R D E; Savage, R; Scott, P F; Slosar, A; Taylor, A C; Titterington, D; Waldram, E M; Watson, R A; Wilkinson, A; Grainge, Keith; Carreira, Pedro; Cleary, Kieran; Davies, Rod D.; Davis, Richard J.; Dickinson, Clive; Genova-Santos, Ricardo; Gutierrez, Carlos M.; Hafez, Yaser A.; Hobson, Michael P.; Jones, Michael E.; Kneissl, Rudiger; Lancaster, Katy; Lasenby, Anthony; Maisinger, Klaus; Pooley, Guy G.; Rebolo, Rafael; Rubino-Martin, Jose Alberto; Molina, Pedro Sosa; Odman, Carolina; Rusholme, Ben; Saunders, Richard D.E.; Savage, Richard; Scott, Paul F.; Slosar, Anze; Taylor, Angela C.; Titterington, David; Waldram, Elizabeth; Watson, Robert A.; Wilkinson, Althea
2003-01-01
We have observed the cosmic microwave background (CMB) in three regions of sky using the Very Small Array (VSA) in an extended configuration with antennas of beamwidth 2 degrees at 34 GHz. Combined with data from previous VSA observations using a more compact array with larger beamwidth, we measure the power spectrum of the primordial CMB anisotropies between angular multipoles l = 160 - 1400. Such measurements at high l are vital for breaking degeneracies in parameter estimation from the CMB power spectrum and other cosmological data. The power spectrum clearly resolves the first three acoustic peaks, shows the expected fall off in power at high l and starts to constrain the position and height of a fourth peak.
Whole-body angular momentum during stair walking using passive and powered lower-limb prostheses.
Pickle, Nathaniel T; Wilken, Jason M; Aldridge, Jennifer M; Neptune, Richard R; Silverman, Anne K
2014-10-17
Individuals with a unilateral transtibial amputation have a greater risk of falling compared to able-bodied individuals, and falling on stairs can lead to serious injuries. Individuals with transtibial amputations have lost ankle plantarflexor muscle function, which is critical for regulating whole-body angular momentum to maintain dynamic balance. Recently, powered prostheses have been designed to provide active ankle power generation with the goal of restoring biological ankle function. However, the effects of using a powered prosthesis on the regulation of whole-body angular momentum are unknown. The purpose of this study was to use angular momentum to evaluate dynamic balance in individuals with a transtibial amputation using powered and passive prostheses relative to able-bodied individuals during stair ascent and descent. Ground reaction forces, external moment arms, and joint powers were also investigated to interpret the angular momentum results. A key result was that individuals with an amputation had a larger range of sagittal-plane angular momentum during prosthetic limb stance compared to able-bodied individuals during stair ascent. There were no significant differences in the frontal, transverse, or sagittal-plane ranges of angular momentum or maximum magnitude of the angular momentum vector between the passive and powered prostheses during stair ascent or descent. These results indicate that individuals with an amputation have altered angular momentum trajectories during stair walking compared to able-bodied individuals, which may contribute to an increased fall risk. The results also suggest that a powered prosthesis provides no distinct advantage over a passive prosthesis in maintaining dynamic balance during stair walking.
Power spectrum analysis for defect screening in integrated circuit devices
Tangyunyong, Paiboon; Cole Jr., Edward I.; Stein, David J.
2011-12-01
A device sample is screened for defects using its power spectrum in response to a dynamic stimulus. The device sample receives a time-varying electrical signal. The power spectrum of the device sample is measured at one of the pins of the device sample. A defect in the device sample can be identified based on results of comparing the power spectrum with one or more power spectra of the device that have a known defect status.
Oh, Seungtaik; Jeong, Il Kwon
2015-11-16
We will introduce a new simple analytic formula of the Fourier coefficient of the 3D field distribution of a point light source to generate a cylindrical angular spectrum which captures the object wave in 360° in the 3D Fourier space. Conceptually, the cylindrical angular spectrum can be understood as a cylindrical version of the omnidirectional spectral approach of Sando et al. Our Fourier coefficient formula is based on an intuitive observation that a point light radiates uniformly in all directions. Our formula is defined over all frequency vectors lying on the entire sphere in the 3D Fourier space and is more natural and computationally more efficient for all around recording of the object wave than that of the previous omnidirectional spectral method. A generalized frequency-based occlusion culling method for an arbitrary complex object is also proposed to enhance the 3D quality of a hologram. As a practical application of the cylindrical angular spectrum, an interactive hologram example is presented together with implementation details.
Non-linear corrections to inflationary power spectrum
Gong, Jinn-Ouk(Asia Pacific Center for Theoretical Physics, 67 Cheongam-ro, Pohang, 790-784, Korea); Noh, Hyerim; Hwang, Jai-chan
2010-01-01
We study non-linear contributions to the power spectrum of the curvature perturbation on super-horizon scales, produced during slow-roll inflation driven by a canonical single scalar field. We find that on large scales the linear power spectrum completely dominates and leading non-linear corrections remain totally negligible, indicating that we can safely rely on linear perturbation theory to study inflationary power spectrum. We also briefly comment on the infrared and ultraviolet behaviour ...
Dependence of the Cosmic Microwave Background Lensing Power Spectrum on the Matter Density
Pan, Z; White, M
2014-01-01
The anisotropies in the cosmic microwave background (CMB) provide our best laboratory for testing models of the formation and evolution of large-scale structure. The rich features in the cosmic microwave background anisotropy spectrum, in combination with highly precise observations and theoretical predictions, also allow us to simultaneously constrain a number of cosmological parameters. As observations have progressed, measurements at smaller angular scales have provided increasing leverage. These smaller angular scales provide sensitive measures of the matter density through the effect of gravitational lensing. In this work we provide an analytic explanation of the manner in which the lensing of CMB anisotropies depends on the matter density, finding that the dominant effect comes from the shape of the matter power spectrum set by the decay of small-scale potentials between horizon crossing and matter-radiation equality.
Wind speed power spectrum analysis for Bushland, Texas
Energy Technology Data Exchange (ETDEWEB)
Eggleston, E.D. [USDA-Agricultural Research Service, Bushland, TX (United States)
1996-12-31
Numerous papers and publications on wind turbulence have referenced the wind speed spectrum presented by Isaac Van der Hoven in his article entitled Power Spectrum of Horizontal Wind Speed Spectrum in the Frequency Range from 0.0007 to 900 Cycles per Hour. Van der Hoven used data measured at different heights between 91 and 125 meters above the ground, and represented the high frequency end of the spectrum with data from the peak hour of hurricane Connie. These facts suggest we should question the use of his power spectrum in the wind industry. During the USDA - Agricultural Research Service`s investigation of wind/diesel system power storage, using the appropriate wind speed power spectrum became a significant issue. We developed a power spectrum from 13 years of hourly average data, 1 year of 5 minute average data, and 2 particularly gusty day`s 1 second average data all collected at a height of 10 meters. While the general shape is similar to the Van der Hoven spectrum, few of his peaks were found in the Bushland spectrum. While higher average wind speeds tend to suggest higher amplitudes in the high frequency end of the spectrum, this is not always true. Also, the high frequency end of the spectrum is not accurately described by simple wind statistics such as standard deviation and turbulence intensity. 2 refs., 5 figs., 1 tab.
The concept of mass angular scattering power and its relation to the diffusion constant
Sandison, G A
1998-01-01
An understanding of the scattering of high energy charged particle beams by tissue is required in radiotherapy since the particle trajectories determine the pattern of radiation dose deposition in patients. Numerical calculations of radiation dose often utilize energy dependent values of the angular scattering power. However, the physics literature is replete with confused interpretations of the concept of angular scattering power and its relation to the single scattering cross section for the medium or the diffusion constant in the diffusional limit. The purpose of this article is to clarify these notions.
Large Scale Magnetic Fields: Density Power Spectrum in Redshift Space
Indian Academy of Sciences (India)
Rajesh Gopal; Shiv K. Sethi
2003-09-01
We compute the density redshift-space power spectrum in the presence of tangled magnetic fields and compare it with existing observations. Our analysis shows that if these magnetic fields originated in the early universe then it is possible to construct models for which the shape of the power spectrum agrees with the large scale slope of the observed power spectrum. However requiring compatibility with observed CMBR anisotropies, the normalization of the power spectrum is too low for magnetic fields to have significant impact on the large scale structure at present. Magnetic fields of a more recent origin generically give density power spectrum ∝ 4 which doesn’t agree with the shape of the observed power spectrum at any scale. Magnetic fields generate curl modes of the velocity field which increase both the quadrupole and hexadecapole of the redshift space power spectrum. For curl modes, the hexadecapole dominates over quadrupole. So the presence of curl modes could be indicated by an anomalously large hexadecapole, which has not yet been computed from observation. It appears difficult to construct models in which tangled magnetic fields could have played a major role in shaping the large scale structure in the present epoch. However if they did, one of the best ways to infer their presence would be from the redshift space effects in the density power spectrum.
Constraints on the High-l Power Spectrum of Millimeter-wave Anisotropies from APEX-SZ
Reichardt, C L; Ade, P A R; Basu, K; Bender, A N; Bertoldi, F; Cho, H -M; Chon, G; Dobbs, M; Ferrusca, D; Halverson, N W; Holzapfel, W L; Horellou, C; Johansson, D; Johnson, B R; Kennedy, J; Kneissl, R; Lanting, T; Lee, A T; Lueker, M; Mehl, J; Menten, K M; Nord, M; Pacaud, F; Richards, P L; Schaaf, R; Schwan, D; Spieler, H; Weiss, A; Westbrook, B
2009-01-01
We present measurements of the angular power spectrum of millimeter wave anisotropies with the APEX-SZ instrument. APEX-SZ has mapped 0.8 square degrees of sky at a frequency of 150 GHz with an angular resolution of 1'. These new measurements significantly improve the power constraints at 150 GHz over the range of angular multipoles 3000 < l < 10,000, limiting the total astronomical anisotropy in a flat band power to be less than 105 microK^2 at 95% CL. We expect both submillimeter-bright, dusty galaxies and secondary CMB anisotropies from the Sunyaev-Zel'dovich effect (SZE) to significantly contribute to the observed power. Subtracting the SZE power spectrum expected for sigma_8=0.8 and masking bright sources, the best fit value for the remaining power is C_l = 1.1^{+0.9}_{-0.8} x 10^{-5} micro K^2 (1.7^{+1.4}_{-1.3} Jy^2 sr^{-1}). This agrees well with model predictions for power due to submillimeter-bright, dusty galaxies. Simultaneously fitting for the amplitude of the SZE power spectrum and a Poiss...
Power spectrum extraction for redshifted 21-cm Epoch of Reionization experiments: the LOFAR case
Harker, Geraint; Zaroubi, Saleem; Bernardi, Gianni; Brentjens, Michiel A.; de Bruyn, A. G.; Ciardi, Benedetta; Jelić, Vibor; Koopmans, Leon V. E.; Labropoulos, Panagiotis; Mellema, Garrelt; Offringa, André; Pandey, V. N.; Pawlik, Andreas H.; Schaye, Joop; Thomas, Rajat M.; Yatawatta, Sarod
2010-07-01
One of the aims of the Low Frequency Array (LOFAR) Epoch of Reionization (EoR) project is to measure the power spectrum of variations in the intensity of redshifted 21-cm radiation from the EoR. The sensitivity with which this power spectrum can be estimated depends on the level of thermal noise and sample variance, and also on the systematic errors arising from the extraction process, in particular from the subtraction of foreground contamination. We model the extraction process using realistic simulations of the cosmological signal, the foregrounds and noise, and so estimate the sensitivity of the LOFAR EoR experiment to the redshifted 21-cm power spectrum. Detection of emission from the EoR should be possible within 360 h of observation with a single station beam. Integrating for longer, and synthesizing multiple station beams within the primary (tile) beam, then enables us to extract progressively more accurate estimates of the power at a greater range of scales and redshifts. We discuss different observational strategies which compromise between depth of observation, sky coverage and frequency coverage. A plan in which lower frequencies receive a larger fraction of the time appears to be promising. We also study the nature of the bias which foreground fitting errors induce on the inferred power spectrum and discuss how to reduce and correct for this bias. The angular and line-of-sight power spectra have different merits in this respect, and we suggest considering them separately in the analysis of LOFAR data.
The dijet mass spectrum and angular distributions with the D0 detector
International Nuclear Information System (INIS)
We present preliminary results from an analysis of dijet data collected during the 1994-95 Tevatron Collider run with an integrated luminosity of 91 pb-1. Measurements of dijet mass spectra and dijet angular distributions in anti pp collisions at √s- = 1.8 TeV are compared with next-to-leading order QCD theory
Institute of Scientific and Technical Information of China (English)
ZHUANG You-Yi; ZHANG Yao-Ju
2009-01-01
A new design is presented to improve the magnetic recording density in all-optical magnetic storage.By using the high numerical lens with a high-pass angular spectrum filter, circularly polarized laser pulses are focused into the magneto-optic film with the perpendicular anisotropy.Magnetization of the film is induced by the inverse Faraday effect.As the obstructed angle of the filter increases the magnetic recording density increases evidently.The magnetization intensity and the sidelobe effect are also discussed.
The thermal Sunyaev Zel'dovich effect power spectrum in light of Planck
McCarthy, Ian G; Schaye, Joop; Holder, Gilbert P
2013-01-01
(Abridged) The amplitude of the thermal Sunyaev Zel'dovich effect (tSZ) power spectrum is extremely sensitive to the abundance of galaxy clusters and therefore to fundamental cosmological parameters that control their growth, such as sigma_8 and Omega_m. Here we explore the sensitivity of the tSZ power spectrum to important non-gravitational ('sub-grid') physics by employing the cosmo-OWLS suite of large-volume cosmological hydrodynamical simulations, run in both the Planck and WMAP7 best-fit cosmologies. On intermediate and small angular scales (ell > ~1000, or theta < ~10 arcmin), accessible with the South Pole Telescope and the Atacama Cosmology Telescope, the predicted tSZ power spectrum is highly model dependent, with AGN feedback having a particularly large effect. However, at large scales, observable with the Planck telescope, the effects of sub-grid physics are minor. Comparing the simulations with observations, we find a significant amplitude offset on all measured angular scales (including large ...
Piccirillo, Bruno; Slussarenko, Sergei; Marrucci, Lorenzo; Santamato, Enrico
2015-01-01
The standard method for experimentally determining the probability distribution of an observable in quantum mechanics is the measurement of the observable spectrum. However, for infinite-dimensional degrees of freedom, this approach would require ideally infinite or, more realistically, a very large number of measurements. Here we consider an alternative method which can yield the mean and variance of an observable of an infinite-dimensional system by measuring only a two-dimensional pointer weakly coupled with the system. In our demonstrative implementation, we determine both the mean and the variance of the orbital angular momentum of a light beam without acquiring the entire spectrum, but measuring the Stokes parameters of the optical polarization (acting as pointer), after the beam has suffered a suitable spin–orbit weak interaction. This example can provide a paradigm for a new class of useful weak quantum measurements. PMID:26477715
Piezoelectric generator based on torsional modes for power harvesting from angular vibrations
Institute of Scientific and Technical Information of China (English)
CHEN Zi-guang; HU Yuan-tai; YANG Jia-shi
2007-01-01
Torsional vibration of a circular piezoelectric shell of polarized ceramics mounted on a rotationally vibrating base is analyzed. The shell is properly electroded and connected to a circuit such that an electric output is generated. The structure analyzed represents a piezoelectric generator for converting mechanical energy from angular vibrations to electrical energy. Analytical expressions and numerical results for the output voltage, current, power, efficiency and power density are given.
Kayo, Issha
2013-01-01
We re-examine a genuine power of weak lensing bispectrum tomography for constraining cosmological parameters, when combined with the power spectrum tomography, based on the Fisher information matrix formalism. To account for the full information at two- and three-point levels, we include all the power spectrum and bispectrum information built from all-available combinations of tomographic redshift bins, multipole bins and different triangle configurations over a range of angular scales (up to lmax=2000 as our fiducial choice). For the parameter forecast, we use the halo model approach in Kayo, Takada & Jain (2013) to model the non-Gaussian error covariances as well as the cross-covariance between the power spectrum and the bispectrum, including the halo sample variance or the nonlinear version of beat-coupling. We find that adding the bispectrum information leads to about 60% improvement in the dark energy figure-of-merit compared to the lensing power spectrum tomography alone, for three redshift-bin tomo...
Asymptotic Spectrum of Kerr Black Holes in the Small Angular Momentum Limit
Daghigh, Ramin G; Mulligan, Brian W
2010-01-01
We study analytically the highly damped quasinormal modes of Kerr black holes in the small angular momentum limit. To check the previous analytic calculations in the literature, which use a combination of radial and tortoise coordinates, we reproduce all the results using the radial coordinate only. According to the earlier calculations, the real part of the highly damped quasinormal mode frequency of Kerr black holes approaches zero in the limit where the angular momentum goes to zero. This result is not consistent with the Schwarzschild limit where the real part of the highly damped quasinormal mode frequency is equal to c^3 ln(3)/(8 pi G M). In this paper, our calculations suggest that the highly damped quasinormal modes of Kerr black holes in the zero angular momentum limit make a continuous transition from the Kerr value to the Schwarzschild value. We explore the nature of this transition using a combination of analytical and numerical techniques. Finally, we calculate the highly damped quasinormal modes...
Reference MWA EoR Power Spectrum analysis
Hazelton, Bryna; Pober, Jonathan; Beardsley, Adam; Morales, Miguel F.; Sullivan, Ian S.; MWA Collaboration
2015-01-01
Observations of the Epoch of Reionization using redshifted 21cm HI emission promise to provide sensitive new cosmological constraints in the next few years. The current generation of HI EoR telescopes are targeting a statistical detection of the EoR in the power spectrum of the 21cm emission. The principal challenge lies in extracting the faint cosmological signal in the face of bright foregrounds and instrumental systematics that threaten to overwhelm it.We present the UW EoR power spectrum code, the reference code for the MWA and the first power spectrum analysis to analytically propagate the error bars through the full data analysis pipeline. We demonstrate the sensitivity of the power spectrum as a diagnostic tool for identifying subtle systematics and show power spectra of the first season of MWA observations.
The Murchison Widefield Array 21 cm Power Spectrum Analysis Methodology
Jacobs, Daniel C; Trott, C M; Dillon, Joshua S; Pindor, B; Sullivan, I S; Pober, J C; Barry, N; Beardsley, A P; Bernardi, G; Bowman, Judd D; Briggs, F; Cappallo, R J; Carroll, P; Corey, B E; de Oliveira-Costa, A; Emrich, D; Ewall-Wice, A; Feng, L; Gaensler, B M; Goeke, R; Greenhill, L J; Hewitt, J N; Hurley-Walker, N; Johnston-Hollitt, M; Kaplan, D L; Kasper, J C; Kim, H S; Kratzenberg, E; Lenc, E; Line, J; Loeb, A; Lonsdale, C J; Lynch, M J; McKinley, B; McWhirter, S R; Mitchell, D A; Morales, M F; Morgan, E; Neben, A R; Thyagarajan, N; Oberoi, D; Offringa, A R; Ord, S M; Paul, S; Prabu, T; Procopio, P; Riding, J; Rogers, A E E; Roshi, A; Shankar, N Udaya; Sethi, Shiv K; Srivani, K S; Subrahmanyan, R; Tegmark, M; Tingay, S J; Waterson, M; Wayth, R B; Webster, R L; Whitney, A R; Williams, A; Williams, C L; Wu, C; Wyithe, J S B
2016-01-01
We present the 21 cm power spectrum analysis approach of the Murchison Widefield Array Epoch of Reionization project. In this paper, we compare the outputs of multiple pipelines for the purpose of validating statistical limits cosmological hydrogen at redshifts between 6 and 12. Multiple, independent, data calibration and reduction pipelines are used to make power spectrum limits on a fiducial night of data. Comparing the outputs of imaging and power spectrum stages highlights differences in calibration, foreground subtraction and power spectrum calculation. The power spectra found using these different methods span a space defined by the various tradeoffs between speed, accuracy, and systematic control. Lessons learned from comparing the pipelines range from the algorithmic to the prosaically mundane; all demonstrate the many pitfalls of neglecting reproducibility. We briefly discuss the way these different methods attempt to handle the question of evaluating a significant detection in the presence of foregr...
The Murchison Widefield Array 21 cm Power Spectrum Analysis Methodology
Jacobs, Daniel C.; Hazelton, B. J.; Trott, C. M.; Dillon, Joshua S.; Pindor, B.; Sullivan, I. S.; Pober, J. C.; Barry, N.; Beardsley, A. P.; Bernardi, G.; Bowman, Judd D.; Briggs, F.; Cappallo, R. J.; Carroll, P.; Corey, B. E.; de Oliveira-Costa, A.; Emrich, D.; Ewall-Wice, A.; Feng, L.; Gaensler, B. M.; Goeke, R.; Greenhill, L. J.; Hewitt, J. N.; Hurley-Walker, N.; Johnston-Hollitt, M.; Kaplan, D. L.; Kasper, J. C.; Kim, HS; Kratzenberg, E.; Lenc, E.; Line, J.; Loeb, A.; Lonsdale, C. J.; Lynch, M. J.; McKinley, B.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Neben, A. R.; Thyagarajan, N.; Oberoi, D.; Offringa, A. R.; Ord, S. M.; Paul, S.; Prabu, T.; Procopio, P.; Riding, J.; Rogers, A. E. E.; Roshi, A.; Udaya Shankar, N.; Sethi, Shiv K.; Srivani, K. S.; Subrahmanyan, R.; Tegmark, M.; Tingay, S. J.; Waterson, M.; Wayth, R. B.; Webster, R. L.; Whitney, A. R.; Williams, A.; Williams, C. L.; Wu, C.; Wyithe, J. S. B.
2016-07-01
We present the 21 cm power spectrum analysis approach of the Murchison Widefield Array Epoch of Reionization project. In this paper, we compare the outputs of multiple pipelines for the purpose of validating statistical limits cosmological hydrogen at redshifts between 6 and 12. Multiple independent data calibration and reduction pipelines are used to make power spectrum limits on a fiducial night of data. Comparing the outputs of imaging and power spectrum stages highlights differences in calibration, foreground subtraction, and power spectrum calculation. The power spectra found using these different methods span a space defined by the various tradeoffs between speed, accuracy, and systematic control. Lessons learned from comparing the pipelines range from the algorithmic to the prosaically mundane; all demonstrate the many pitfalls of neglecting reproducibility. We briefly discuss the way these different methods attempt to handle the question of evaluating a significant detection in the presence of foregrounds.
Aghanim, N; Ashdown, M; Aumont, J; Ballardini, M; Banday, A J; Barreiro, R B; Bartolo, N; Basak, S; Benabed, K; Bersanelli, M; Bielewicz, P; Bonaldi, A; Bonavera, L; Bond, J R; Borrill, J; Bouchet, F R; Burigana, C; Calabrese, E; Cardoso, J -F; Challinor, A; Chiang, H C; Colombo, L P L; Combet, C; Crill, B P; Curto, A; Cuttaia, F; de Bernardis, P; de Rosa, A; de Zotti, G; Delabrouille, J; Di Valentino, E; Dickinson, C; Diego, J M; Doré, O; Ducout, A; Dupac, X; Dusini, S; Efstathiou, G; Elsner, F; Enßlin, T A; Eriksen, H K; Fantaye, Y; Finelli, F; Forastieri, F; Frailis, M; Franceschi, E; Frolov, A; Galeotta, S; Galli, S; Ganga, K; Génova-Santos, R T; Gerbino, M; González-Nuevo, J; Górski, K M; Gruppuso, A; Gudmundsson, J E; Herranz, D; Hivon, E; Huang, Z; Jaffe, A H; Jones, W C; Keihänen, E; Keskitalo, R; Kiiveri, K; Kim, J; Kisner, T S; Knox, L; Krachmalnicoff, N; Kunz, M; Kurki-Suonio, H; Lagache, G; Lamarre, J -M; Lasenby, A; Lattanzi, M; Lawrence, C R; Jeune, M Le; Levrier, F; Lewis, A; Lilje, P B; Lilley, M; Lindholm, V; López-Caniego, M; Lubin, P M; Ma, Y -Z; Macías-Pérez, J F; Maggio, G; Maino, D; Mandolesi, N; Mangilli, A; Maris, M; Martin, P G; Martínez-González, E; Matarrese, S; Mauri, N; McEwen, J D; Meinhold, P R; Mennella, A; Migliaccio, M; Millea, M; Miville-Deschênes, M -A; Molinari, D; Moneti, A; Montier, L; Morgante, G; Moss, A; Narimani, A; Natoli, P; Oxborrow, C A; Pagano, L; Paoletti, D; Patanchon, G; Patrizii, L; Pettorino, V; Piacentini, F; Polastri, L; Polenta, G; Puget, J -L; Rachen, J P; Racine, B; Reinecke, M; Remazeilles, M; Renzi, A; Rossetti, M; Roudier, G; Rubiño-Martín, J A; Ruiz-Granados, B; Salvati, L; Sandri, M; Savelainen, M; Scott, D; Sirignano, C; Sirri, G; Stanco, L; Suur-Uski, A -S; Tauber, J A; Tavagnacco, D; Tenti, M; Toffolatti, L; Tomasi, M; Tristram, M; Trombetti, T; Valiviita, J; Van Tent, F; Vielva, P; Villa, F; Vittorio, N; Wandelt, B D; Wehus, I K; White, M; Zacchei, A; Zonca, A
2016-01-01
The six parameters of the standard $\\Lambda$CDM model have best-fit values derived from the Planck temperature power spectrum that are shifted somewhat from the best-fit values derived from WMAP data. These shifts are driven by features in the Planck temperature power spectrum at angular scales that had never before been measured to cosmic-variance level precision. We investigate these shifts to determine whether they are within the range of expectation and to understand their origin in the data. Taking our parameter set to be the optical depth of the reionized intergalactic medium $\\tau$, the baryon density $\\omega_{\\rm b}$, the matter density $\\omega_{\\rm m}$, the angular size of the sound horizon $\\theta_*$, the spectral index of the primordial power spectrum, $n_{\\rm s}$, and $A_{\\rm s}e^{-2\\tau}$ (where $A_{\\rm s}$ is the amplitude of the primordial power spectrum), we examine the change in best-fit values between a WMAP-like large angular-scale data set (with multipole moment $\\ell800$, or splitting at ...
The CMB Power Spectrum from the Background Emission Anisotropy Scanning Telescope (BEAST) Experiment
O'Dwyer, I J; Childers, J; Figueiredo, N; Halevi, D; Huey, G G; Lubin, P M; Maino, D; Mandolesi, N; Marvil, J; Meinhold, P R; Mejia, J; Natoli, P; O'Neill, H; Pina, A; Seiffert, M D; Stebor, N C; Tello, C A S; Villela, T; Wandelt, B D; Williams, B; Wünsche, C A; Dwyer, Ian J. O'; Bersanelli, Marco; Childers, Jeffrey; Figueiredo, Newton; Halevi, Doron; Huey, Gregory G.; Lubin, Philip M.; Maino, Davide; Mandolesi, Nazzareno; Marvil, Joshua; Meinhold, Peter R.; Mejia, Jorge; Natoli, Paolo; Neill, Hugh O'; Pina, Agenor; Seiffert, Michael D.; Stebor, Nathan C.; Tello, Camilo; Villela, Thyrso; Wandelt, Benjamin D.; Williams, Brian; Wuensche, Carlos Alexandre
2003-01-01
The Background Emission Anisotropy Scanning Telescope (BEAST) is a 2.2m off-axis telescope with an 8 element mixed Q (38-45GHz) and Ka (26-36GHz) band focal plane, designed for balloon borne and ground based studies of the Cosmic Microwave Background. Here we present the Cosmic Microwave Background (CMB) angular power spectrum calculated from 682 hours of data observed with the BEAST instrument. We use a binned pseudo-Cl estimator (the MASTER method). We find results that are consistent with other determinations of the CMB anisotropy for angular wavenumber l between 100 and 600. We also perform cosmological parameter estimation. The BEAST data alone produces a good constraint on Omega_k = 1-Omega_tot=-0.074 +/- 0.070, consistent with a flat Universe. A joint parameter estimation analysis with a number of previous CMB experiments produces results consistent with previous determinations.
Updating constraints on inflationary features in the primordial power spectrum with the Planck data
Benetti, Micol
2013-01-01
We present new constraints on possible features in the primordial inflationary density perturbations power spectrum in light of the recent Cosmic Microwave Background Anisotropies measurements from the Planck satellite. We found that the Planck data hints for the presence of features in two different ranges of angular scales, corresponding to multipoles 10< l <60 and 150< l < 300, with a decrease in the best fit chi^2 value with respect to the featureless "vanilla" LCDM model of Delta chi^2 around 9 in both cases.
The CMB Power Spectrum from the Background Emission Anisotropy Scanning Telescope (BEAST) Experiment
O'Dwyer, Ian J.; Bersanelli, Marco; Childers, Jeffrey; Figueiredo, Newton; Halevi, Doron; Huey, Gregory G.; Lubin, Philip M.; Maino, Davide; Mandolesi, Nazzareno; Marvil, Joshua; Meinhold, Peter R.; Mejia, Jorge; Natoli, Paolo; O'Neill, Hugh,; Pina, Agenor
2003-01-01
The Background Emission Anisotropy Scanning Telescope (BEAST) is a 2.2m off-axis telescope with an 8 element mixed Q (38-45GHz) and Ka (26-36GHz) band focal plane, designed for balloon borne and ground based studies of the Cosmic Microwave Background. Here we present the Cosmic Microwave Background (CMB) angular power spectrum calculated from 682 hours of data observed with the BEAST instrument. We use a binned pseudo-Cl estimator (the MASTER method). We find results that are consistent with ...
Diagnosis of power generator sets by analyzing the crank shaft angular speed
International Nuclear Information System (INIS)
This thesis deals with the diagnosis of a powerful 20-cylinder diesel engine which runs a generator set in a nuclear plant. The objective is to make a diagnosis by analyzing the crank shaft angular speed variations. Only combustion related faults are investigated. As the engine is very large, the first crank shaft natural modes are in the low frequencies. Torsional vibrations of the flexible crank shaft strongly complicate the analysis of the angular speed variations. Little attention has been paid to such large engines in the literature. First, a dynamical model with the assumption of a flexible crank shaft is established. The parameters of the model are optimized with the help of actual data. Then, an original automated diagnosis based on pattern recognition of the angular speed waveforms is proposed. Indeed, any faulty cylinder in combustion stroke will distort the angular speed waveform in a specific way which depends on its location with respect to nodes and anti-nodes of the modes. Reference patterns, representative of the engine conditions, are computed with the model constituting the main originality of this work. Promising results are obtained in operational phase. An experimental fuel leakage fault was correctly diagnosed, including detection and localization of the faulty cylinder and an indication of the severity of the fault. (author)
International Nuclear Information System (INIS)
Ultrasonic arrays have seen increasing use for the characterisation of composite materials. In this paper, ultrasonic wave propagation in multilayer anisotropic materials has been modelled using plane wave and angular spectrum decomposition techniques. Different matrix techniques, such as the stiffness matrix method and the transfer matrix method, are used to calculate the reflection and transmission coefficients of ultrasonic plane waves in the considered media. Then, an angular decomposition technique is used to derive the bounded beams from finite-width ultrasonic array elements from the plane wave responses calculated earlier. This model is considered to be an analytical exact solution for the problem; hence the diffraction of waves in such composite materials can be calculated for different incident angles for a very wide range of frequencies. This model is validated against experimental measurements using the Full-Matrix Capture (FMC) of array data in both a homogeneous isotropic material, i.e. aluminium, and an inhomogeneous multilayer anisotropic material, i.e. a carbon fibre reinforced composite
Jabir, M V; Aadhi, A; Samanta, G K
2016-01-01
The perfect vortex is a new class of optical vortex beam having ring radius independent of its topological charge (order). One of the simplest techniques to generate such beams is the Fourier transformation of the Bessel-Gauss beam. The variation in ring radius of such vortices require Fourier lenses of different focal lengths and or complicated imaging setup. Here we report a novel experimental scheme to generate perfect vortex of any ring radius using a convex lens and an axicon. As a proof of principle, using a lens of focal length f=200mm, we have varied the radius of the vortex beam across 0.3-1.18mm simply by adjusting the separation between the lens and axicon. This is also a simple scheme to measure the apex angle of an axicon with ease. Using such vortices we have studied non-collinear interaction of photons having orbital angular momentum (OAM) in spontaneous parametric down-conversion (SPDC) process and observed that the angular spectrum of the SPDC photons are independent of OAM of the pump photon...
1/f noise in music and speech. [Power spectrum studies
Energy Technology Data Exchange (ETDEWEB)
Voss, R.F.; Clarke, J.
1975-11-27
The power spectrum, S(f), of many fluctuating physical variables, V(t), is approximately ''1/f-like.'' Loudness fluctuations in music and speech and pitch (melody) fluctuations in music were found to exhibit 1/f power spectra. This observation has implications for stochastic music composition. 3 figures. (RWR)
Fowler, J W; Ade, P A R; Aguirre, P; Amiri, M; Appel, J W; Barrientos, L F; Battistelli, E S; Bond, J R; Brown, B; Burger, B; Chervenak, J; Das, S; Devlin, M J; Dicker, S R; Doriese, W B; Dunkley, J; Dünner, R; Essinger-Hileman, T; Fisher, R P; Hajian, A; Halpern, M; Hasselfield, M; Hernández-Monteagudo, C; Hilton, G C; Hilton, M; Hincks, A D; Hlozek, R; Huffenberger, K M; Hughes, D H; Hughes, J P; Infante, L; Irwin, K D; Jimenez, R; Juin, J B; Kaul, M; Klein, J; Kosowsky, A; Lau, J M; Limon, M; Lin, Y -T; Lupton, R H; Marriage, T A; Marsden, D; Martocci, K; Mauskopf, P; Menanteau, F; Moodley, K; Moseley, H; Netterfield, C B; Niemack, M D; Nolta, M R; Page, L A; Parker, L; Partridge, B; Quintana, H; Reid, B; Sehgal, N; Sievers, J; Spergel, D N; Staggs, S T; Swetz, D S; Switzer, E R; Thornton, R; Trac, H; Tucker, C; Verde, L; Warne, R; Wilson, G; Wollack, E; Zhao, Y
2010-01-01
We present a measurement of the angular power spectrum of the cosmic microwave background (CMB) radiation observed at 148 GHz. The measurement uses maps with 1.4' angular resolution made with data from the Atacama Cosmology Telescope (ACT). The observations cover 228 square degrees of the southern sky, in a 4.2-degree-wide strip centered on declination 53 degrees South. The CMB at arcminute angular scales is particularly sensitive to the Silk damping scale, to the Sunyaev-Zel'dovich (SZ) effect from galaxy clusters, and to emission by radio sources and dusty galaxies. After masking the 108 brightest point sources in our maps, we estimate the power spectrum between 600 < \\ell < 8000 using the adaptive multi-taper method to minimize spectral leakage and maximize use of the full data set. Our absolute calibration is based on observations of Uranus. To verify the calibration and test the fidelity of our map at large angular scales, we cross-correlate the ACT map to the WMAP map and recover the WMAP power sp...
Das, Sudeep; Nolta, Michael R; Addison, Graeme E; Battistelli, Elia S; Bond, J Richard; Calabrese, Erminia; Devlin, Devin Crichton Mark J; Dicker, Simon; Dunkley, Joanna; Dünner, Rolando; Fowler, Joseph W; Gralla, Megan; Hajian, Amir; Halpern, Mark; Hasselfield, Matthew; Hilton, Matt; Hincks, Adam D; Hlozek, Renée; Huffenberger, Kevin M; Hughes, John P; Irwin, Kent D; Kosowsky, Arthur; Lupton, Robert H; Marriage, Tobias A; Marsden, Danica; Menanteau, Felipe; Moodley, Kavilan; Niemack, Michael D; Page, Lyman A; Partridge, Bruce; Reese, Erik D; Schmitt, Benjamin L; Sehgal, Neelima; Sherwin, Blake D; Sievers, Jonathan L; Spergel, David N; Staggs, Suzanne T; Swetz, Daniel S; Switzer, Eric R; Thornton, Robert; Trac, Hy; Wollack, Ed
2013-01-01
We present the temperature power spectra of the cosmic microwave background (CMB) derived from the three seasons of data from the Atacama Cosmology Telescope (ACT) at 148 GHz and 218 GHz, as well as the cross-frequency spectrum between the two channels. We detect and correct for contamination due to the Galactic cirrus in our equatorial maps. We present the results of a number of tests for possible systematic error and conclude that any effects are not significant compared to the statistical errors we quote. Where they overlap, we cross-correlate the ACT and the South Pole Telescope (SPT) maps and show they are consistent. The measurements of higher-order peaks in the CMB power spectrum provide an additional test of the Lambda CDM cosmological model, and help constrain extensions beyond the standard model. The small angular scale power spectrum also provides constraining power on the Sunyaev-Zel'dovich effects and extragalactic foregrounds. We also present a measurement of the CMB gravitational lensing conver...
Sunyaev-Zel'dovich power spectrum with decaying cold dark matter
Takahashi, Keitaro; Oguri, Masamune; Ichiki, Kiyotomo
2004-07-01
Recent studies of the structures of galaxies and clusters imply that dark matter might be unstable and may decay with lifetime Γ-1, about the age of the Universe. We study the effects of the decay of cold dark matter on the Sunyaev-Zel'dovich (SZ) power spectrum. We analytically calculate the SZ power spectrum taking the finite lifetime of cold dark matter into account. We find the finite lifetime of dark matter decreases the power at large scale (l 4000). This is in marked contrast with the dependence of other cosmological parameters such as the amplitude of mass fluctuations σ8 and the cosmological constant Ωλ (under the assumption of a flat Universe) which mainly change the normalization of the angular power spectrum. This difference allows one to determine the lifetime and other cosmological parameters separately. We also investigate the sensitivity of future SZ surveys to the cosmological parameters including the lifetime, assuming a fiducial model Γ-1 = 10 h-1 Gyr, σ8 = 1.0 and Ωλ = 0.7. We show that future SZ surveys such as ACT, AMIBA and BOLOCAM can determine the lifetime within a factor of 2 even if σ8 and Ωλ are marginalized.
Sunyaev-Zel'dovich power spectrum with decaying cold dark matter
Takahashi, K; Ichiki, K; Takahashi, Keitaro; Oguri, Masamune; Ichiki, Kiyotomo
2003-01-01
Recent studies of structures of galaxies and clusters imply that dark matter might be unstable and decay with lifetime $\\Gamma^{-1}$ about the age of universe. We study the effects of the decay of cold dark matter on the Sunyaev-Zel'dovich (SZ) power spectrum. We analytically calculate the SZ power spectrum taking finite lifetime of cold dark matter into account. We find the finite lifetime of dark matter decreases the power at large scale ($l 4000$). This is in marked contrast with the dependence of other cosmological parameters such as the amplitude of mass fluctuations $\\sigma_{8}$ and the cosmological constant $\\Omega_{\\lambda}$ (under the assumption of a flat universe) which mainly change the normalization of the angular power spectrum. This difference allows one to determine the lifetime and other cosmological parameters rather separately. We also investigate sensitivity of a future SZ survey to the cosmological parameters including the life time, assuming a fiducial model $\\Gamma^{-1} = 10 h^{-1} {\\rm...
On the information content of the matter power spectrum
Carron, J.; Wolk, M.; Szapudi, I.
2015-10-01
We discuss an analytical approximation for the matter power spectrum covariance matrix and its inverse on translinear scales, k ˜ 0.1h - 0.8 h Mpc-1 at z = 0. We proceed to give an analytical expression for the Fisher information matrix of the non-linear density-field spectrum, and derive implications for its cosmological information content. We find that the spectrum information is characterized by a pair of upper bounds, `plateaux', caused by the trispectrum, and a `knee' in the presence of white noise. The effective number of Fourier modes, normally growing as a power law, is bounded from above by these plateaux, explaining naturally earlier findings from N-body simulations. These plateaux limit best possible measurements of the non-linear power at the per cent level in an h-3 Gpc3 volume; the extraction of model parameters from the spectrum is limited explicitly by their degeneracy to the non-linear amplitude. The value of the first, supersurvey (SS) plateau depends on the characteristic survey volume and the large-scale power; the second, intra-survey plateau is set by the small-scale power. While both have simple interpretations within the hierarchical Ansatz, the SS plateau can be predicted and generalized to still smaller scales within Takada and Hu's spectrum response formalism. Finally, the noise knee is naturally set by the density of tracers.
WIND TURBINE SIMULATION FOR TIME-DEPENDENT ANGULAR VELOCITY, TORQUE, AND POWER
Directory of Open Access Journals (Sweden)
YONGHO LEE
2013-02-01
Full Text Available Albeit the prediction of time-dependent properties of wind turbines is not required for common applications, such time-varying properties may play an important role during transient operations occurring due to various reasons. Unlike the conventional numerical simulations of wind turbine rotations that fix the angular velocity to an assumed value, the present work numerically simulates the time-varying turbine rotation in both unsteady and quasi-steady operation regimes, without specifying the angular velocity of the turbine a priori, but by calculating the actual time-dependent angular velocity and aerodynamic torque along with other properties in the course of simulation. In the present work, successful results obtained by an efficient computational fluid dynamics technique are shown, as a demonstration, for a vertical-axis wind turbine with a two-dimensionalSavonius rotor, and the cycle-averaged output powers are compared with experimental power curves and a theory developed on the basis of experimental observations.
Javahiraly, Nicolas; Chakari, Ayoub
2013-05-01
To achieve a very effective automotive power steering system, we need two important data, the angular position of the wheel and the torque applied on the shaft by the driver of the car. We present a new accurate optical fiber angular position sensor connected to an automotive power steering column. In this new design, the sensor allows the measurement of the angular position of a car steering wheel over a large and adjustable range (± several turns of the wheel). The wheel rotation induces micro-bending in the transducer part of the optical fiber sensing system. This system operates as an amplitude modulation sensor based on mode coupling in the transducing fiber in the case when all the modes are equally excited. We study the sensor response both theoretically and experimentally with a multimode step index optical fiber [rf (fiber radius) = 300 μm rc (core radius) = 50 μm nc (core index) = 1,457; N.A. = 0, 22 and the wavelength is 632,8 nm at the ambient Temperature (20°C)]. We show that the sensitivity can be controlled as a function of the sensor's length. We compare modeling and experimental validation and we conclude with a perspective on what could soon be an industrial sensor.
Ebersole, K T; Housh, T J; Weir, J P; Johnson, G O; Evetovich, T K; Smith, D B
2000-01-01
The purpose of the present investigation was to examine the effects of leg angular velocity on the mean power frequency (MPF) and amplitude of the mechanomyographic (MMG) signal during maximal concentric (CON) isokinetic muscle actions. Sixteen adult subjects performed maximal CON leg extensions on a calibrated Cybex 6000 dynamometer at leg angular velocities of 60 and 300 degrees.s-1. MMG was detected by a piezoelectric crystal contact sensor placed over the mid-portion of the vastus lateralis muscle. The results indicated a significant (p 0.05) in MMG MPF. These findings did not support our hypothesis that increases across velocity in MMG amplitude were due to decreases in muscle stiffness as a result of a shift in the contribution of slow and fast-twitch muscle fibers to PT production. Future research should examine the potential influence of actin-myosin cycling rate as well as limb movement on the MPF and amplitude of the MMG signal. PMID:10782358
Joint resonant CMB power spectrum and bispectrum estimation
Meerburg, P Daniel; Wandelt, Benjamin
2015-01-01
We develop the tools necessary to assess the statistical significance of resonant features in the CMB correlation functions, combining power spectrum and bispectrum measurements. This significance is typically addressed by running a large number of simulations to derive the probability density function (PDF) of the feature-amplitude in the Gaussian case. Although these simulations are tractable for the power spectrum, for the bispectrum they require significant computational resources. We show that, by assuming that the PDF is given by a multi-variate Gaussian where the covariance is determined by the Fisher matrix of the sine and cosine terms, we can efficiently produce spectra that are statistically close to those derived from full simulations. By drawing a large number of spectra from this PDF, both for the power spectrum and the bispectrum, we can quickly determine the statistical significance of candidate signatures in the CMB, considering both single frequency and multi-frequency estimators. We show tha...
Methods for Bayesian power spectrum inference with galaxy surveys
Jasche, Jens
2013-01-01
We derive and implement a full Bayesian large scale structure inference method aiming at precision recovery of the cosmological power spectrum from galaxy redshift surveys. Our approach improves over previous Bayesian methods by performing a joint inference of the three dimensional density field, the cosmological power spectrum, luminosity dependent galaxy biases and corresponding normalizations. We account for all joint and correlated uncertainties between all inferred quantities. Classes of galaxies with different biases are treated as separate sub samples. The method therefore also allows the combined analysis of more than one galaxy survey. In particular, it solves the problem of inferring the power spectrum from galaxy surveys with non-trivial survey geometries by exploring the joint posterior distribution with efficient implementations of multiple block Markov chain and Hybrid Monte Carlo methods. Our Markov sampler achieves high statistical efficiency in low signal to noise regimes by using a determini...
Statistics of the Sunyaev-Zel'dovich Effect power spectrum
Peel, Michael W; Kay, Scott T
2009-01-01
Using large numbers of simulations of the microwave sky, incorporating the Cosmic Microwave Background (CMB) and the Sunyaev-Zel'dovich (SZ) effect due to clusters, we investigate the statistics of the power spectrum at microwave frequencies between spherical multipoles of 1000 and 10000. From these virtual sky maps, we find that the spectrum of the SZ effect has a larger standard deviation by a factor of 3 than would be expected from purely Gaussian realizations, and has a distribution that is significantly skewed towards higher values, especially when small map sizes are used. The standard deviation is also increased by around 10 percent compared to the trispectrum calculation due to the clustering of galaxy clusters. We also consider the effects of including residual point sources and uncertainties in the gas physics. This has implications for the excess power measured in the CMB power spectrum by the Cosmic Background Imager and BIMA experiments. Our results indicate that the observed excess could be expl...
Power Spectrum Estimation of Randomly Sampled Signals
DEFF Research Database (Denmark)
Velte, C. M.; Buchhave, P.; K. George, W.
The random, but velocity dependent, sampling of the LDA presents non-trivial signal processing challenges due to the high velocity bias and the arbitrariness of particle path through the measuring volume, among other factors. To obtain the desired non-biased statistics, it has previously been shown...... is that if the algorithms are not able to produce correct statistics from this simple signal, then they will certainly not be able to function well for a more complex measured LDA signal. This is, of course, true also for other methods that are based on the tested algorithms. The extremes are tested by increasing, e....... Residence time weighting provides non-biased estimates regardless of setting. The free-running processor was also tested and compared to residence time weighting using actual LDA measurements in a turbulent round jet. Power spectra from measurements on the jet centerline and the outer part of the jet...
Power Spectrum Estimation of Randomly Sampled Signals
DEFF Research Database (Denmark)
Velte, Clara M.; Buchhave, Preben; K. George, William
2014-01-01
The random, but velocity dependent, sampling of the LDA presents non-trivial signal processing challengesdue to the high velocity bias and the arbitrariness of particle path through the measuring volume, among other factors.To obtain the desired non-biased statistics, it has previously been shown...... proportional to velocity magnitude that consist of well-defined frequency content, which makes bias easy to spot. The idea is that if the algorithms are not able to produce correct statistics from this simple signal, then they will certainly not be able to function well for a more complex measured LDA signal...... with high data rate and low inherent bias, respectively, while residence time weighting provides non-biased estimates regardless of setting. The free-running processor was also tested and compared to residence time weighting using actual LDA measurements in a turbulent round jet. Power spectra from...
Methods for Bayesian Power Spectrum Inference with Galaxy Surveys
Jasche, Jens; Wandelt, Benjamin D.
2013-12-01
We derive and implement a full Bayesian large scale structure inference method aiming at precision recovery of the cosmological power spectrum from galaxy redshift surveys. Our approach improves upon previous Bayesian methods by performing a joint inference of the three-dimensional density field, the cosmological power spectrum, luminosity dependent galaxy biases, and corresponding normalizations. We account for all joint and correlated uncertainties between all inferred quantities. Classes of galaxies with different biases are treated as separate subsamples. This method therefore also allows the combined analysis of more than one galaxy survey. In particular, it solves the problem of inferring the power spectrum from galaxy surveys with non-trivial survey geometries by exploring the joint posterior distribution with efficient implementations of multiple block Markov chain and Hybrid Monte Carlo methods. Our Markov sampler achieves high statistical efficiency in low signal-to-noise regimes by using a deterministic reversible jump algorithm. This approach reduces the correlation length of the sampler by several orders of magnitude, turning the otherwise numerically unfeasible problem of joint parameter exploration into a numerically manageable task. We test our method on an artificial mock galaxy survey, emulating characteristic features of the Sloan Digital Sky Survey data release 7, such as its survey geometry and luminosity-dependent biases. These tests demonstrate the numerical feasibility of our large scale Bayesian inference frame work when the parameter space has millions of dimensions. This method reveals and correctly treats the anti-correlation between bias amplitudes and power spectrum, which are not taken into account in current approaches to power spectrum estimation, a 20% effect across large ranges in k space. In addition, this method results in constrained realizations of density fields obtained without assuming the power spectrum or bias parameters
Power spectrum sensitivity of raster-scanned CMB experiments in the presence of 1/f noise
Crawford, Tom
2007-09-01
We investigate the effects of 1/f noise on the ability of a particular class of cosmic microwave background experiments to measure the angular power spectrum of temperature anisotropy. We concentrate on experiments that operate primarily in raster-scan mode and develop formalism that allows us to calculate analytically the effect of 1/f noise on power-spectrum sensitivity for this class of experiments and determine the benefits of raster-scanning at different angles relative to the sky field versus scanning at only a single angle (cross-linking versus not cross-linking). We find that the sensitivity of such experiments in the presence of 1/f noise is not significantly degraded at moderate spatial scales (ℓ˜100) for reasonable values of scan speed and 1/f knee. We further find that the difference between cross-linked and non-cross-linked experiments is small in all cases and that the non-cross-linked experiments are preferred from a raw sensitivity standpoint in the noise-dominated regime—i.e., in experiments in which the instrument noise is greater than the sample variance of the target power spectrum at the scales of interest. This analysis does not take into account systematic effects.
Spatial correlation in 3D MIMO channels using fourier coefficients of power spectrums
Nadeem, Qurrat Ul Ain
2015-03-01
In this paper, an exact closed-form expression for the Spatial Correlation Function (SCF) is derived for the standardized three-dimensional (3D) multiple-input multiple-output (MIMO) channel. This novel SCF is developed for a uniform linear array of antennas with non-isotropic antenna patterns. The proposed method resorts to the spherical harmonic expansion (SHE) of plane waves and the trigonometric expansion of Legendre and associated Legendre polynomials to obtain a closed-form expression for the SCF for arbitrary angular distributions and antenna patterns. The resulting expression depends on the underlying angular distributions and antenna patterns through the Fourier Series (FS) coefficients of power azimuth and elevation spectrums. The novelty of the proposed method lies in the SCF being valid for any 3D propagation environment. Numerical results validate the proposed analytical expression and study the impact of angular spreads on the correlation. The derived SCF will help evaluate the performance of correlated 3D MIMO channels in the future. © 2015 IEEE.
Matter density perturbation and power spectrum in running vacuum model
Geng, Chao-Qiang
2016-01-01
We investigate the matter density perturbation $\\delta_m$ and power spectrum $P(k)$ in the running vacuum model (RVM) with the cosmological constant being a function of the Hubble parameter, given by $\\Lambda = \\Lambda_0 + 6 \\sigma H H_0+ 3\
Massive Neutrinos and the Non-linear Matter Power Spectrum
Bird, Simeon; Haehnelt, Martin G
2011-01-01
We perform an extensive suite of N-body simulations of the matter power spectrum, incorporating massive neutrinos in the range M = 0.15-0.6 eV, probing the non-linear regime at scales k < 10 hMpc-1 at z < 3. We extend the widely used HALOFIT approximation (Smith et al. 2003) to account for the effect of massive neutrinos on the power spectrum. In the strongly non-linear regime HALOFIT systematically over-predicts the suppression due to the free-streaming of the neutrinos. The maximal discrepancy occurs at k \\sim 1hMpc-1, and is at the level of 10% of the total suppression. Most published constraints on neutrino masses based on HALOFIT are not affected, as they rely on data probing the matter power spectrum in the linear or mildly non-linear regime. However, predictions for future galaxy, Lyman-alpha forest and weak lensing surveys extending to more non-linear scales will benefit from the improved approximation to the non-linear matter power spectrum we provide. Our approximation reproduces the induced n...
Conti, Eugenia; Pannek, Kerstin; Calderoni, Sara; Gaglianese, Anna; Fiori, Simona; Brovedani, Paola; Scelfo, Danilo; Rose, Stephen; Tosetti, Michela; Cioni, Giovanni; Guzzetta, Andrea
2015-01-01
In recent years, the use of brain diffusion MRI has led to the hypothesis that children with autism spectrum disorder (ASD) show abnormally connected brains. We used the model of disease-discordant identical twins to test the hypothesis that higher-order diffusion MRI protocols are able to detect abnormal connectivity in a single subject. We studied the structural connectivity of the brain of a child with ASD, and of that of his unaffected identical twin, using high angular resolution diffusion imaging (HARDI) probabilistic tractography. Cortical regions were automatically parcellated from high-resolution structural images, and HARDI-based connection matrices were produced for statistical comparison. Differences in diffusion indexes between subjects were tested by Wilcoxon signed rank test. Tracts were defined as discordant when they showed a between-subject difference of 10 percent or more. Around 11 percent of the discordant intra-hemispheric tracts showed lower fractional anisotropy (FA) values in the ASD twin, while only 1 percent showed higher values. This difference was significant. Our findings in a disease-discordant identical twin pair confirm previous literature consistently reporting lower FA values in children with ASD. PMID:26446271
Spectrum Reorganization and Bundling for Power Efficient Mobile Networks
DEFF Research Database (Denmark)
Micallef, Gilbert; Mogensen, Preben; Scheck, Hans-Otto
2012-01-01
are still required for supporting legacy devices and providing wider network coverage. In order to facilitate and reduce the cost of rolling out a new network, mobile operators often reuse existing sites. Radio frequency modules in base station sites house power amplifiers, which are designed to operate...... within a specific frequency band. Since some access technologies have spectrum split onto multiple bands, this results in operators installing multiple modules for each access technology. This paper quantifies the power savings that can be achieved by assuming that the available spectrum for an operator...... in the elimination of at least four separate modules in each site, reducing the power consumption of by 31%. Indirectly, this also translates into a reduced site space of 40%. These savings are crucial for mobile network operators to reach the energy and carbon emission targets they have committed for....
The very low frequency power spectrum of Centaurus X-3
Gruber, D. E.
1988-01-01
The long-term variability of Cen X-3 on time scales ranging from days to years has been examined by combining data obtained by the HEAO 1 A-4 instrument with data from Vela 5B. A simple interpretation of the data is made in terms of the standard alpha-disk model of accretion disk structure and dynamics. Assuming that the low-frequency variance represents the inherent variability of the mass transfer from the companion, the decline in power at higher frequencies results from the leveling of radial structure in the accretion disk through viscous mixing. The shape of the observed power spectrum is shown to be in excellent agreement with a calculation based on a simplified form of this model. The observed low-frequency power spectrum of Cen X-3 is consistent with a disk in which viscous mixing occurs about as rapidly as possible and on the largest scale possible.
Unbiased pseudo-Cl power spectrum estimation with mode projection
Elsner, Franz; Peiris, Hiranya V
2016-01-01
With the steadily improving sensitivity afforded by current and future galaxy surveys, a robust extraction of two-point correlation function measurements may become increasingly hampered by the presence of astrophysical foregrounds or observational systematics. The concept of mode projection has been introduced as a means to remove contaminants for which it is possible to construct a spatial map reflecting the expected signal contribution. Owing to its computational efficiency compared to minimum-variance methods, the sub-optimal pseudo-Cl (PCL) power spectrum estimator is a popular tool for the analysis of high-resolution data sets. Here, we integrate mode projection into the framework of PCL power spectrum estimation. In contrast to results obtained with optimal estimators, we show that the uncorrected projection of template maps leads to biased power spectra. Based on analytical calculations, we find exact closed-form expressions for the expectation value of the bias and demonstrate that they can be recast...
Application of beam deconvolution technique to power spectrum estimation for CMB measurements
Keihänen, Elina; Kurki-Suonio, Hannu; Reinecke, Martin
2016-01-01
We present two novel methods for the estimation of the angular power spectrum of cosmic microwave background (CMB) anisotropies. We assume an absolute CMB experiment with arbitrary asymmetric beams and arbitrary sky coverage. The methods differ from earlier ones in that the power spectrum is estimated directly from time-ordered data, without first compressing the data into a sky map, and they take into account the effect of asymmetric beams. In particular, they correct the beam-induced leakage from temperature to polarization. The methods are applicable to a case where part of the sky has been masked out to remove foreground contamination, leaving a pure CMB signal, but incomplete sky coverage. The first method (DQML) is derived as the optimal quadratic estimator, which simultaneously yields an unbiased spectrum estimate, and minimizes its variance. We successfully apply it to multipoles up to $\\ell$=200. The second method is derived as an weak-signal approximation from the first one. It yields an unbiased es...
On the information content of the matter power spectrum
Carron, Julien; Szapudi, István
2014-01-01
We discuss an analytical approximation for the matter power spectrum covariance matrix and its inverse on translinear scales, $k \\sim 0.1h - 0.8h/\\textrm{Mpc}$ at $z = 0$. We proceed to give an analytical expression for the Fisher information matrix of the nonlinear density field spectrum, and derive implications for its cosmological information content. We find that the spectrum information is characterized by a pair of upper bounds, 'plateaux', caused by the trispectrum, and a 'knee' in the presence of white noise. The effective number of Fourier modes, normally growing as a power law, is bounded from above by these plateaux, explaining naturally earlier findings from $N$-body simulations. These plateaux limit best possible measurements of the nonlinear power at the percent level in a $h^{-3}\\textrm{Gpc}^3$ volume; the extraction of model parameters from the spectrum is limited explicitly by their degeneracy to the nonlinear amplitude. The value of the first, super-survey (SS) plateau depends on the charact...
Constraining the primordial power spectrum from SNIa lensing dispersion
Energy Technology Data Exchange (ETDEWEB)
Ben-Dayan, Ido [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kalaydzhyan, Tigran [State Univ. of New York, Stony Brook, NY (United States). Dept. of Physics and Astronomy
2013-09-15
The (absence of detecting) lensing dispersion of Supernovae type Ia (SNIa) can be used as a novel and extremely efficient probe of cosmology. In this preliminary example we analyze its consequences for the primordial power spectrum. The main setback is the knowledge of the power spectrum in the non-linear regime, 1 Mpc{sup -1}
Power spectrum of an injection-locked Josephson oscillator
International Nuclear Information System (INIS)
Experiments have shown that a Josephson oscillator, exposed to a weak narrow-band input signal, exhibits behavior characteristic of an injection-locked oscillator. When in lock, Adler's theory of injection locking describes the experimental observations reasonably well. The range of applicability of the theory is extended to the out-of-lock regime where a spectrum of output frequencies is observed. Obtaining the theoretical output power spectrum requires solving a differential equation having the same form as the equation describing the resistively shunted junction model of Stewart and of McCumber. Experimental measurements of the output spectrum of a nearly locked Josephson oscillator are shown to be in reasonable agreement with the theory. Additional results discussed briefly include the observation of a frequency dependence of the locked Josephson oscillator output and experiments in which a Josephson oscillator-mixer was injection locked by a weak signal at the rf
Power Spectrum Analysis of Polarized Emission from the Canadian Galactic Plane Survey
Stutz, R A; Kothes, R; Landecker, T
2014-01-01
Angular power spectra are calculated and presented for the entirety of the Canadian Galactic Plane Survey polarization dataset at 1.4 GHz covering an area of 1060 deg$^2$. The data analyzed are a combination of data from the 100-m Effelsberg Telescope, the 26-m Telescope at the Dominion Radio Astrophysical Observatory, and the Synthesis Telescope at the Dominion Radio Astrophysical Observatory, allowing all scales to be sampled down to arcminute resolution. The resulting power spectra cover multipoles from $\\ell \\approx 60$ to $\\ell \\approx 10^4$ and display both a power-law component at low multipoles and a flattening at high multipoles from point sources. We fit the power spectrum with a model that accounts for these components and instrumental effects. The resulting power-law indices are found to have a mode of 2.3, similar to previous results. However, there are significant regional variations in the index, defying attempts to characterize the emission with a single value. The power-law index is found to ...
CMB anisotropy due to filamentary gas: power spectrum and cosmological parameter bias
Energy Technology Data Exchange (ETDEWEB)
Shimon, Meir; Sadeh, Sharon; Rephaeli, Yoel, E-mail: meirs@wise.tau.ac.il, E-mail: shrs@post.tau.ac.il, E-mail: yoelr@wise.tau.ac.il [School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978 (Israel)
2012-10-01
Hot gas in filamentary structures induces CMB aniostropy through the SZ effect. Guided by results from N-body simulations, we model the morphology and gas properties of filamentary gas and determine the power spectrum of the anisotropy. Our treatment suggests that power levels can be an appreciable fraction of the cluster contribution at multipoles l∼<1500. Its spatially irregular morphology and larger characteristic angular scales can help to distinguish this SZ signature from that of clusters. In addition to intrinsic interest in this most extended SZ signal as a probe of filaments, its impact on cosmological parameter estimation should also be assessed. We find that filament 'noise' can potentially bias determination of A{sub s}, n{sub s}, and w (the normalization of the primordial power spectrum, the scalar index, and the dark energy equation of state parameter, respectively) by more than the nominal statistical uncertainty in Planck SZ survey data. More generally, when inferred from future optimal cosmic-variance-limited CMB experiments, we find that virtually all parameters will be biased by more than the nominal statistical uncertainty estimated for these next generation CMB experiments.
Constraining the intra-cluster pressure profile from the thermal SZ power spectrum
Ramos-Ceja, M E; Pacaud, F; Bertoldi, F
2014-01-01
The angular power spectrum of the thermal Sunyaev-Zel'dovich (tSZ) effect is highly sensitive to cosmological parameters such as sigma8 and OmegaM, but its use as a precision cosmological probe is hindered by the astrophysical uncertainties in modeling the gas pressure profile in galaxy groups and clusters. In this paper we assume that the relevant cosmological parameters are accurately known, and explore the ability of current and future tSZ power spectrum measurements to constrain the intra-cluster gas pressure or the evolution of the gas mass fraction, f_gas. We use the CMB bandpower measurements from the South Pole Telescope and a Bayesian MCMC method to quantify deviations from the standard, universal gas pressure model. We explore analytical model extensions that bring the predictions for the tSZ power in agreement with experimental data. We find that a steeper pressure profile in the cluster outskirts or an evolving f_gas have mild to severe conflicts with experimental data or simulations. Varying more...
Earthquake accelerogram simulation with statistical law of evolutionary power spectrum
Institute of Scientific and Technical Information of China (English)
ZHANG Cui-ran; CHEN Hou-qun; LI Min
2007-01-01
By using the technique for evolutionary power spectrum proposed by Nakayama and with reference to the Kameda formula, an evolutionary spectrum prediction model for given earthquake magnitude and distance is established based on the 80 near-source acceleration records at rock surface with large magnitude from the ground motion database of western U.S.. Then a new iteration method is developed for generation of random accelerograms non-stationary both in amplitude and frequency which are compatible with target evolutionary spectrum. The phase spectra of those simulated accelerograms are also non-stationary in time and frequency domains since the interaction between amplitude and phase angle has been considered during the generation. Furthermore, the sign of the phase spectrum increment is identified to accelerate the iteration. With the proposed statistical model for predicting evolutionary power spectra and the new method for generating compatible time history, the artificial random earthquake accelerograms non-stationary both in amplitude and frequency for certain magnitude and distance can be provided.
On Removing Interloper Contamination from Intensity Mapping Power Spectrum Measurements
Lidz, Adam
2016-01-01
Line intensity mapping experiments seek to trace large scale structure by measuring the spatial fluctuations in the combined emission, in some convenient spectral line, from individually unresolved galaxies. An important systematic concern for these surveys is line confusion from foreground or background galaxies emitting in other lines that happen to lie at the same observed frequency as the "target" emission line of interest. We develop an approach to separate this "interloper" emission at the power spectrum level. If one adopts the redshift of the target emission line in mapping from observed frequency and angle on the sky to co-moving units, the interloper emission is mapped to the wrong co-moving coordinates. Since the mapping is different in the line of sight and transverse directions, the interloper contribution to the power spectrum becomes anisotropic, especially if the interloper and target emission are at widely separated redshifts. This distortion is analogous to the Alcock-Paczynski test, but her...
Unbiased contaminant removal for 3D galaxy power spectrum measurements
Kalus, Benedict; Bacon, David; Samushia, Lado
2016-01-01
We assess and develop techniques to remove contaminants when calculating the 3D galaxy power spectrum. We separate the process into three separate stages: (i) removing the contaminant signal, (ii) estimating the uncontaminated cosmological power spectrum, (iii) debiasing the resulting estimates. For (i), we show that removing the best-fit contaminant (template subtraction), and setting the contaminated components of the covariance to be infinite (mode deprojection) are mathematically equivalent. For (ii), performing a Quadratic Maximum Likelihood (QML) estimate after mode deprojection gives an optimal unbiased solution, although it requires the manipulation of large $(N_{\\rm mode}^2)$ matrices, which is unfeasible for recent 3D galaxy surveys. Measuring a binned average of the modes for (ii) as proposed by Feldman, Kaiser & Peacock (1994, FKP) is faster and simpler, but is sub-optimal and gives rise to a biased solution. We present a method to debias the resulting FKP measurements that does not require an...
The Turbulence Power Spectrum in Optically Thick Interstellar Clouds
Burkhart, Blakesley; Ossenkopf, V; Stutzki, J
2013-01-01
The Fourier power spectrum is one of the most widely used statistical tools to analyze the nature of magnetohydrodynamic turbulence in the interstellar medium. Lazarian & Pogosyan (2004) predicted that the spectral slope should saturate to -3 for an optically thick medium and many observations exist in support of their prediction. However, there have not been any numerical studies to-date testing these results. We analyze the spatial power spectrum of MHD simulations with a wide range of sonic and Alfv\\'enic Mach numbers, which include radiative transfer effects of the $^{13}$CO transition. We confirm numerically the predictions of Lazarian & Pogosyan (2004) that the spectral slope of line intensity maps of an optically thick medium saturates to -3. Furthermore, for very optically thin supersonic CO gas, where the density or CO abundance values are too low to excite emission in all but the densest shock compressed gas, we find that the spectral slope is shallower than expected from the column density....
Multiple Cosmic Collisions and the Microwave Background Power Spectrum
Kozaczuk, Jonathan
2012-01-01
Collisions between cosmic bubbles of different vacua are a generic feature of false vacuum eternal inflation scenarios. While previous studies have focused on the consequences of a single collision event in an observer's past, we begin here an investigation of the more general scenario allowing for many "mild" collisions intersecting our past light cone (and one another). We discuss the general features of multiple collision scenarios and consider their impact on the cosmic microwave background (CMB) temperature power spectrum, treating the collisions perturbatively. In a large class of models, one can approximate a multiple collision scenario as a superposition of individual collision events governed by nearly isotropic and scale-invariant distributions, most appearing to take up less than half of the sky. In this case, the shape of the expected CMB temperature spectrum maintains statistical isotropy and typically features a dramatic increase in power in the low multipoles relative to that of the best-fit $\\...
Rejuvenating the Matter Power Spectrum III: The Cosmology Sensitivity of Gaussianized Power Spectra
Neyrinck, Mark C
2011-01-01
It was recently shown that applying a Gaussianizing transform, such as a logarithm, to the nonlinear matter density field extends the range of scales, by a factor of a few smaller, where the power spectrum excels at describing the ?field. Such a transform dramatically reduces nonlinearities in both the covariance and the shape of the power spectrum. Here, analyzing Coyote Universe real-space dark matter density fields, we investigate the consequences of these transforms for cosmological parameter estimation. The power spectrum of the log-density provides the tightest cosmological parameter error bars (marginalized or not), giving a factor of 2-3 improvement over the conventional power spectrum in all five parameters tested. For the tilt, n_s, the improvement reaches a factor of 5. Similar constraints are achieved if the log-density power spectrum and conventional power spectrum are analyzed together. Rank-order Gaussianization seems just as useful as a log transform to constrain n_s, but not other parameters....
Testing the Rastall's theory using matter power spectrum
Batista, C. E. M.; Fabris, J. C.; Daouda, M. Hamani
2010-01-01
The Rastall's theory is a modification of the General Relativity theory leading to a different expression for the conservation law in the matter sector compared with the usual one. It has been argued recently that such a theory may have applications to the dark energy problem, since a pressureless fluid may lead to an accelerated universe. In the present work we confront the Rastall's theory with the power spectrum data. The results indicate a configuration that essentially reduces the Rastal...
Cosmological constraints from thermal Sunyaev Zeldovich power spectrum revisited
Horowitz, Benjamin
2016-01-01
Thermal Sunyaev-Zeldovich (tSZ) power spectrum is one of the most sensitive methods to constrain cosmological parameters, scaling as the amplitude $\\sigma_8^8$. It is determined by the integral over the halo mass function multiplied by the total pressure content of clusters, and further convolved by the cluster gas pressure profile. It has been shown that various feedback effects can change significantly the pressure profile, strongly affecting the tSZ power spectrum at high $l$. Energetics arguments and SZ-halo mass scaling relations suggest feedback is unlikely to significantly change the total pressure content, making low $l$ tSZ power spectrum more robust against feedback effects. Furthermore, the separation between the cosmic infrared background (CIB) and tSZ is more reliable at low $l$. Low $l$ modes are however probing very small volumes, giving rise to very large non-gaussian sampling variance errors. By computing the trispectrum contribution we identify $90
Information content of the non-linear matter power spectrum
Rimes, C D
2005-01-01
We use an ensemble of N-body simulations of the currently favoured (concordance) cosmological model to measure the amount of information contained in the non-linear matter power spectrum, and its pre-whitened counterpart, about the amplitude of the initial power spectrum. Two surprising results emerge from this study: (i) that there is very little independent information in the power spectrum in the translinear regime (k ~ 0.2-0.8 Mpc/h at the present day) over and above the information at linear scales and (ii) that the cumulative information begins to rise sharply again with increasing wavenumber in the non-linear regime. In the fully non-linear regime, the simulations are consistent with no loss of information during translinear and non-linear evolution. If this is indeed the case then the results suggest a picture in which translinear collapse is very rapid, and is followed by a bounce prior to virialization, impelling a wholesale revision of the HKLM-PD formalism.
Power spectrum oscillations from Planck-suppressed operators in monodromy inflation
Price, Layne C
2015-01-01
We consider a phenomenological model of monodromy inflation where the inflaton is the phase of a complex scalar field $\\Phi$. Planck-suppressed operators of $\\mathcal O(f^5/M_\\mathrm{pl})$ modify the geometry of the vev $\\left \\langle \\Phi \\right \\rangle$ at first order in the decay constant $f$, which adds a first-order periodic term to the definition of the canonically normalized inflaton $\\phi$. This correction to the inflaton induces a fixed number of extra oscillatory terms in the monodromy potential $V \\sim \\theta^p$. We derive the same result in a toy scenario where the vacuum $\\left \\langle \\Phi \\right \\rangle$ is an ellipse with an arbitrarily large eccentricity. These extra oscillations change the form of the power spectrum as a function of scale $k$ and provide a possible mechanism for differentiating EFT-motivated monodromy inflation from models where the angular shift symmetry is a gauge symmetry.
Price, Layne C.
2015-11-01
We consider a phenomenological model of inflation where the inflaton is the phase of a complex scalar field Φ . Planck-suppressed operators of O (f5/Mpl) modify the geometry of the vev ⟨Φ ⟩ at first order in the decay constant f , which adds a first-order periodic term to the definition of the canonically normalized inflaton ϕ . This correction to the inflaton induces a fixed number of extra oscillatory terms in the potential V ˜θp. We derive the same result in a toy scenario where the vacuum ⟨Φ ⟩ is an ellipse with an arbitrarily large eccentricity. These extra oscillations change the form of the power spectrum as a function of scale k and provide a possible mechanism for differentiating effective field theory motivated inflation from models where the angular shift symmetry is a gauge symmetry.
Deconvolution of window effect in galaxy power spectrum analysis
Sato, Takahiro; Yamamoto, Kazuhiro
2010-01-01
We develop a new method for deconvolving the smearing effect of the survey window in the analysis of the galaxy multipole power spectra from a redshift survey. This method is based on the deconvolution theorem, and is compatible with the use of the fast Fourier transform. It is possible to measure the multipole power spectra deconvolved from the window effect efficiently. Applying this method to the luminous red galaxy sample of the Sloan Digital Sky Survey data release 7 as well as mock catalogues, we demonstrate how the method works properly. Using this deconvolution technique, the amplitude of the multipole power spectrum is corrected. Besides, the covariance matrices of the deconvolved power spectra get quite close to the diagonal form. This is also advantageous in the study of the BAO signature.
The angular power spectra of photometric Sloan Digital Sky Survey luminous red galaxies
Thomas, Shaun A.; Abdalla, Filipe B.; Lahav, Ofer
2011-04-01
We construct new galaxy angular power spectra Cℓ based on the extended, updated and final Sloan Digital Sky Survey (SDSS) II luminous red galaxy (LRG) photometric redshift survey - MegaZ (DR7). Encapsulating 7746 deg2 we utilize 723 556 photometrically determined LRGs between 0.45 preliminary parameter constraints of fb≡Ωb/Ωm= 0.173 ± 0.046 and Ωm= 0.260 ± 0.035 assuming H0= 75 km s-1 Mpc-1, ns= 1 and Ωk= 0. These limits are consistent with the cosmic microwave background and the previous data release (DR4). The Cℓ are sensitive to redshift space distortions and therefore we also recast our constraints into a measurement of β≈Ω0.55m/b in different redshift shells. The robustness of these power spectra with respect to a number of potential systematics such as extinction, photometric redshift and ANNz training set extrapolation are examined. The latter includes a cosmological comparison of available photometric redshift estimation codes where we find excellent agreement between template and empirical estimation methods. MegaZ DR7 represents a methodological prototype to next generation surveys such as the Dark Energy Survey and, furthermore, is a photometric precursor to the spectroscopic BOSS survey. Our galaxy catalogue and all power spectra data can be found at .
Galactic densities, substructure and the initial power spectrum
International Nuclear Information System (INIS)
Although the currently favored cold dark matter plus cosmological constant model for structure formation assumes an n = 1 scale-invariant initial power spectrum, most inflation models produce at least mild deviations from n = 1. Because the lever arm from the CMB normalization to galaxy scales is long, even a small 'tilt' can have important implications for galactic observations. Here we calculate the COBS-normalized power spectra for several well-motivated models of inflation and compute implications for the substructure content and central densities of galaxy halos. Using an analytic model, normalized against N-body simulations, we show that while halos in the standard (n = 1) model are overdense by a factor of ∼ 6 compared to observations, several of our example inflation+LCDM models predict halo densities well within the range of observations, which prefer models with n ∼ 0.85. We go on to use a semi-analytic model (also normalized against N-body simulations) to follow the merger histories of galaxy-sized halos and track the orbital decay, disruption, and evolution of the merging substructure. Models with n ∼ 0.85 predict a factor of ∼ 3 fewer subhalos at a fixed circular velocity than the standard n 1 case. Although this level of reduction does not resolve the 'dwarf satellite problem', it does imply that the level of feedback required to match the observed number of dwarfs is sensitive to the initial power spectrum. Finally, the fraction of galaxy-halo mass that is bound up in substructure is consistent with limits imposed by multiply imaged quasars for all models considered: fsat > 0.01 even for an effective tilt of n ∼ 0.8. We conclude that, at their current level, lensing constraints of this kind do not provide an interesting probe of the primordial power spectrum
International Nuclear Information System (INIS)
Using a nonparametric function estimation methodology, we present a comparative analysis of the Wilkinson Microwave Anisotropy Probe (WMAP) 1-, 3-, 5-, and 7-year data releases for the cosmic microwave background (CMB) angular power spectrum with respect to the following key questions. (1) How well is the power spectrum determined by the data alone? (2) How well is the ΛCDM model supported by a model-independent, data-driven analysis? (3) What are the realistic uncertainties on peak/dip locations and heights? Our results show that the height of the power spectrum is well determined by data alone for multipole l approximately less than 546 (1-year), 667 (3-year), 804 (5-year), and 842 (7-year data). We show that parametric fits based on the ΛCDM model are remarkably close to our nonparametric fits in l-regions where data are sufficiently precise. In contrast, the power spectrum for an HΛCDM model is progressively pushed away from our nonparametric fit as data quality improves with successive data realizations, suggesting incompatibility of this particular cosmological model with respect to the WMAP data sets. We present uncertainties on peak/dip locations and heights at the 95% (2σ) level of confidence and show how these uncertainties translate into hyperbolic 'bands' on the acoustic scale (lA ) and peak shift (φm) parameters. Based on the confidence set for the 7-year data, we argue that the low-l upturn in the CMB power spectrum cannot be ruled out at any confidence level in excess of about 10% (≈0.12σ). Additional outcomes of this work are a numerical formulation for minimization of a noise-weighted risk function subject to monotonicity constraints, a prescription for obtaining nonparametric fits that are closer to cosmological expectations on smoothness, and a method for sampling cosmologically meaningful power spectrum variations from the confidence set of a nonparametric fit.
HI power spectrum of the spiral galaxy NGC628
Dutta, Prasun; Bharadwaj, Somnath; Chengalur, Jayaram N
2007-01-01
We have measured the HI power spectrum of the nearly face-on spiral galaxy NGC628 (M74) using a visibility based estimator. The power spectrum is well fitted by a power law $P(U)=AU^{\\alpha}$, with $\\alpha =- 1.6\\pm0.2$ over the length scale $800 {\\rm pc} {\\rm to} 8 {\\rm kpc}$. The slope is found to be independent of the width of the velocity channel. This value of the slope is a little more than one in excess of what has been seen at considerably smaller length scales in the Milky-Way, Small Magellanic Cloud (LMC), Large Magellanic Cloud (SMC) and the dwarf galaxy DDO210. We interpret this difference as indicating a transition from three dimensional turbulence at small scales to two dimensional turbulence in the plane of the galaxy's disk at length scales larger than galaxy's HI scale height. The slope measured here is similar to that found at large scales in the LMC. Our analysis also places an upper limit to the galaxy's scale height at $800\\ {\\rm pc}$ .
EEG Power Spectrum Analysis in Children with ADHD
Kamida, Akira; Shimabayashi, Kenta; Oguri, Masayoshi; Takamori, Toshihiro; Ueda, Naoyuki; Koyanagi, Yuki; Sannomiya, Naoko; Nagira, Haruki; Ikunishi, Saeko; Hattori, Yuiko; Sato, Kengo; Fukuda, Chisako; Hirooka, Yasuaki; Maegaki, Yoshihiro
2016-01-01
Background Attention deficit disorder/hyperactivity disorder (ADHD) is a pathological condition that is not fully understood. In this study, we investigated electroencephalographic (EEG) power differences between children with ADHD and healthy control children. Methods EEGs were recorded as part of routine medical care received by 80 children with ADHD aged 4–15 years at the Department of Pediatric Neurology in Tottori University Hospital. Additionally, we recorded in 59 control children aged 4–15 years after obtaining informed consent. Specifically, awake EEG signals were recorded from each child using the international 10–20 system, and we used ten 3-s epochs on the EEG power spectrum to calculate the powers of individual EEG frequency bands. Results The powers of different EEG bands were significantly higher in the frontal brain region of those in the ADHD group compared with the control group. In addition, the power of the beta band in the ADHD group was significantly higher in all brain regions, except for the occipital region, compared with control children. With regard to developmental changes, the power of the alpha band in the occipital region showed an age-dependent decrease in both groups, with slightly lower power in the ADHD group. Additionally, the intergroup difference decreased in children aged 11 years or older. As with the alpha band in the occipital region, the beta band in the frontal region showed an age-dependent decrease in both groups. Unlike the alpha band, the power of the beta band was higher in the ADHD group than in the control group for children of all ages. Conclusion The observed intergroup differences in EEG power may provide insight into the brain function of children with ADHD. PMID:27493489
Jabir, M. V.; Apurv Chaitanya, N.; Aadhi, A.; Samanta, G. K.
2016-02-01
The “perfect” vortex is a new class of optical vortex beam having ring radius independent of its topological charge (order). One of the simplest techniques to generate such beams is the Fourier transformation of the Bessel-Gauss beams. The variation in ring radius of such vortices require Fourier lenses of different focal lengths and or complicated imaging setup. Here we report a novel experimental scheme to generate perfect vortex of any ring radius using a convex lens and an axicon. As a proof of principle, using a lens of focal length f = 200 mm, we have varied the radius of the vortex beam across 0.3-1.18 mm simply by adjusting the separation between the lens and axicon. This is also a simple scheme to measure the apex angle of an axicon with ease. Using such vortices we have studied non-collinear interaction of photons having orbital angular momentum (OAM) in spontaneous parametric down-conversion (SPDC) process and observed that the angular spectrum of the SPDC photons are independent of OAM of the pump photons rather depends on spatial profile of the pump beam. In the presence of spatial walk-off effect in nonlinear crystals, the SPDC photons have asymmetric angular spectrum with reducing asymmetry at increasing vortex radius.
Power Spectrum Density of Stochastic Oscillating Accretion Disk
Indian Academy of Sciences (India)
G. B. Long; J. W. Ou; Y. G. Zheng
2016-06-01
In this paper, we employ a stochastic oscillating accretion disk model for the power spectral index and variability of BL Lac object S5 0716+714. In the model, we assume that there is a relativistic oscillation of thin accretion disks and it interacts with an external thermal bath through a friction force and a random force. We simulate the light curve and the power spectrum density (PSD) at (i) over-damped, (ii) critically damped and (iii) under-damped cases, respectively. Our results show that the simulated PSD curves depend on the intrinsic property of the accretion disk, and it could be produced in a wide interval ranging from 0.94 to 2.05 by changing the friction coefficient in a stochastic oscillating accretion disk model. We argue that accretion disk stochastic oscillating could be a possible interpretation for observed PSD variability.
Reconstructing the primordial power spectrum from the CMB
Gauthier, Christopher
2012-01-01
We propose a straightforward and model independent methodology for characterizing the sensitivity of CMB and other experiments to wiggles, irregularities, and features in the primordial power spectrum. Assuming that the primordial cosmological perturbations are adiabatic, we present a function space generalization of the usual Fisher matrix formalism, applied to a CMB experiment resembling Planck with and without ancillary data. This work is closely related to other work on recovering the inflationary potential and exploring specific models of non-minimal, or perhaps baroque, primordial power spectra. The approach adopted here, however, most directly expresses what the data is really telling us. We explore in detail the structure of the available information and quantify exactly what features can be reconstructed and at what statistical significance.
Reconstructing the primordial power spectrum from the CMB
Gauthier, Christopher; Bucher, Martin
2012-10-01
We propose a straightforward and model independent methodology for characterizing the sensitivity of CMB and other experiments to wiggles, irregularities, and features in the primordial power spectrum. Assuming that the primordial cosmological perturbations are adiabatic, we present a function space generalization of the usual Fisher matrix formalism applied to a CMB experiment resembling Planck with and without ancillary data. This work is closely related to other work on recovering the inflationary potential and exploring specific models of non-minimal, or perhaps baroque, primordial power spectra. The approach adopted here, however, most directly expresses what the data is really telling us. We explore in detail the structure of the available information and quantify exactly what features can be reconstructed and at what statistical significance.
Power spectrum for the Bose-Einstein condensate dark matter
Energy Technology Data Exchange (ETDEWEB)
Velten, Hermano, E-mail: velten@physik.uni-bielefeld.de [Departamento de Fisica, UFES, Vitoria, 29075-910 Espirito Santo (Brazil); Fakultaet fuer Physik, Universitaet Bielefeld, Postfach 100131, 33501 Bielefeld (Germany); Wamba, Etienne [Laboratory of Mechanics, Department of Physics, Faculty of Science, University of Yaounde I, P.O. Box 812, Yaounde (Cameroon)
2012-03-13
We assume that dark matter is composed of scalar particles that form a Bose-Einstein condensate (BEC) at some point during the cosmic evolution. Afterwards, cold dark matter is in the form of a condensate and behaves slightly different from the standard dark matter component. We study the large scale perturbative dynamics of the BEC dark matter in a model where this component coexists with baryonic matter and cosmological constant. The perturbative dynamics is studied using neo-Newtonian cosmology (where the pressure is dynamically relevant for the homogeneous and isotropic background) which is assumed to be correct for small values of the sound speed. We show that BEC dark matter effects can be seen in the matter power spectrum if the mass of the condensate particle lies in the range 15 MeV
Power Spectrum Analysis of Polarized Emission from the Canadian Galactic Plane Survey
Stutz, R. A.; Rosolowsky, E. W.; Kothes, R.; Landecker, T. L.
2014-05-01
Angular power spectra are calculated and presented for the entirety of the Canadian Galactic Plane Survey polarization data set at 1.4 GHz covering an area of 1060 deg2. The data analyzed are a combination of data from the 100 m Effelsberg Telescope, the 26 m Telescope at the Dominion Radio Astrophysical Observatory, and the Synthesis Telescope at the Dominion Radio Astrophysical Observatory, allowing all scales to be sampled down to arcminute resolution. The resulting power spectra cover multipoles from l ≈ 60 to l ≈ 104 and display both a power-law component at low multipoles and a flattening at high multipoles from point sources. We fit the power spectrum with a model that accounts for these components and instrumental effects. The resulting power-law indices are found to have a mode of 2.3, similar to previous results. However, there are significant regional variations in the index, defying attempts to characterize the emission with a single value. The power-law index is found to increase away from the Galactic plane. A transition from small-scale to large-scale structure is evident at b = 9°, associated with the disk-halo transition in a 15° region around l = 108°. Localized variations in the index are found toward H II regions and supernova remnants, but the interpretation of these variations is inconclusive. The power in the polarized emission is anticorrelated with bright thermal emission (traced by Hα emission) indicating that the thermal emission depolarizes background synchrotron emission.
Power Allocation for Balancing Spectrum Efficiency and Power Consumption in Cognitive Relay Networks
Directory of Open Access Journals (Sweden)
Lun Tang
2011-10-01
Full Text Available In order to guarantee the QoS requirement of secondary users and not to affect the outage probability of primary user in cognitive relay networks, we propose two optimal power allocation models: (1 maximizing the transmission rate of secondary users; (2 minimizing the total power consumption. Theory analysis shows that two optimal power allocation models conflict between spectrum efficiency and power consumption. Furthermore, an optimal power allocation model which joints the transmission rate and the total power consumption in cognitive relay networks is proposed. By using the Lagrangian method, the optimization algorithm for this model is designed. The proposed algorithm can achieve the trade-off between the transmission rate and the total power consumption by varying the weight. Simulation results show that the proposed algorithm can effectively adjust the transmission rate and the total power consumption of secondary users.
Power Spectrum and Non-Gaussianities in Anisotropic Inflation
Dey, Anindya; Paban, Sonia
2014-01-01
We study the planar regime of curvature perturbations for single field inflationary models in an axially symmetric Bianchi I background. In a theory with standard scalar field action, the power spectrum for such modes has a pole as the planarity parameter goes to zero. We show that constraints from back reaction lead to a strong lower bound on the planarity parameter for high-momentum planar modes and use this bound to calculate the signal-to-noise ratio of the anisotropic power spectrum in the CMB, which in turn places an upper bound on the Hubble scale during inflation allowed in our model. We find that non-Gaussianities for these planar modes are enhanced for the flattened triangle and the squeezed triangle configurations, but show that the estimated values of the f_NL parameters remain well below the experimental bounds from the CMB for generic planar modes (other, more promising signatures are also discussed). For a standard action, f_NL from the squeezed configuration turns out to be larger compared to ...
Testing for new physics: neutrinos and the primordial power spectrum
Canac, Nicolas; Aslanyan, Grigor; Abazajian, Kevork N.; Easther, Richard; Price, Layne C.
2016-09-01
We test the sensitivity of neutrino parameter constraints from combinations of CMB and LSS data sets to the assumed form of the primordial power spectrum (PPS) using Bayesian model selection. Significantly, none of the tested combinations, including recent high-precision local measurements of H0 and cluster abundances, indicate a signal for massive neutrinos or extra relativistic degrees of freedom. For PPS models with a large, but fixed number of degrees of freedom, neutrino parameter constraints do not change significantly if the location of any features in the PPS are allowed to vary, although neutrino constraints are more sensitive to PPS features if they are known a priori to exist at fixed intervals in log k. Although there is no support for a non-standard neutrino sector from constraints on both neutrino mass and relativistic energy density, we see surprisingly strong evidence for features in the PPS when it is constrained with data from Planck 2015, SZ cluster counts, and recent high-precision local measurements of H0. Conversely combining Planck with matter power spectrum and BAO measurements yields a much weaker constraint. Given that this result is sensitive to the choice of data this tension between SZ cluster counts, Planck and H0 measurements is likely an indication of unmodeled systematic bias that mimics PPS features, rather than new physics in the PPS or neutrino sector.
First Results from COPSS: The CO Power Spectrum Survey
Keating, Garrett K; Marrone, Daniel P; DeBoer, David R; Heiles, Carl; Chang, Tzu-Ching; Carlstrom, John E; Greer, Christopher H; Hawkins, David; Lamb, James W; Leitch, Erik; Miller, Amber D; Muchovej, Stephen; Woody, David P
2015-01-01
We present constraints on the abundance of carbon-monoxide in the early Universe from the CO Power Spectrum Survey (COPSS). We utilize a data set collected between 2005 and 2008 using the Sunyaev-Zel'dovich Array (SZA), which were previously used to measure arcminute-scale fluctuations of the CMB. This data set features observations of 44 fields, covering an effective area of 1.7 square degrees, over a frequency range of 27 to 35 GHz. Using the technique of intensity mapping, we are able to probe the CO(1-0) transition, with sensitivity to spatial modes between $k=0.5{-}2\\ h\\,\\textrm{Mpc}^{-1}$ over a range in redshift of $z=2.3{-}3.3$, spanning a comoving volume of $3.6\\times10^{6}\\ h^{-3}\\,\\textrm{Mpc}^{3}$. We demonstrate our ability to mitigate foregrounds, and present estimates of the impact of continuum sources on our measurement. We constrain the CO power spectrum to $P_{\\textrm{CO}}<2.6\\times10^{4}\\ \\mu\\textrm{K}^{2} (h^{-1}\\,\\textrm{Mpc})^{3}$, or $\\Delta^{2}_{\\textrm{CO}}(k\\! = \\! 1 \\ h\\,\\textrm{...
Matter power spectrum and the challenge of percent accuracy
Schneider, Aurel; Potter, Doug; Stadel, Joachim; Onions, Julian; Reed, Darren S; Smith, Robert E; Springel, Volker; Pearce, Frazer R
2015-01-01
Future galaxy surveys require one percent precision in the theoretical knowledge of the power spectrum over a large range including very nonlinear scales. While this level of accuracy is easily obtained in the linear regime with perturbation theory, it represents a serious challenge for small scales where numerical simulations are required. In this paper we quantify the accuracy of present-day $N$-body methods, identifying main potential error sources from the set-up of initial conditions to the measurement of the final power spectrum. We directly compare three widely used $N$-body codes, Ramses, Pkdgrav3, and Gadget3 which represent three main discretisation techniques: the particle-mesh method, the tree method, and a hybrid combination of the two. For standard run parameters, the codes agree to within one percent at $k\\leq1$ $h\\,\\rm Mpc^{-1}$ and to within three percent at $k\\leq10$ $h\\,\\rm Mpc^{-1}$. In a second step, we quantify potential errors due to initial conditions, box size, and resolution using an...
Unbiased contaminant removal for 3D galaxy power spectrum measurements
Kalus, B.; Percival, W. J.; Bacon, D. J.; Samushia, L.
2016-08-01
We assess and develop techniques to remove contaminants when calculating the 3D galaxy power spectrum. We separate the process into three separate stages: (i) removing the contaminant signal, (ii) estimating the uncontaminated cosmological power spectrum, (iii) debiasing the resulting estimates. For (i), we show that removing the best-fit contaminant (mode subtraction), and setting the contaminated components of the covariance to be infinite (mode deprojection) are mathematically equivalent. For (ii), performing a Quadratic Maximum Likelihood (QML) estimate after mode deprojection gives an optimal unbiased solution, although it requires the manipulation of large N_mode^2 matrices (Nmode being the total number of modes), which is unfeasible for recent 3D galaxy surveys. Measuring a binned average of the modes for (ii) as proposed by Feldman, Kaiser & Peacock (1994, FKP) is faster and simpler, but is sub-optimal and gives rise to a biased solution. We present a method to debias the resulting FKP measurements that does not require any large matrix calculations. We argue that the sub-optimality of the FKP estimator compared with the QML estimator, caused by contaminants is less severe than that commonly ignored due to the survey window.
Power spectrum for inflation models with quantum and thermal noises
International Nuclear Information System (INIS)
We determine the power spectrum for inflation models covering all regimes from cold (isentropic) to warm (nonisentropic) inflation. We work in the context of the stochastic inflation approach, which can nicely describe both types of inflationary regimes concomitantly. A throughout analysis is carried out to determine the allowed parameter space for simple single field polynomial chaotic inflation models that is consistent with the most recent cosmological data from the nine-year Wilkinson Microwave Anisotropy Probe (WMAP) and in conjunction with other observational cosmological sources. We present the results for both the amplitude of the power spectrum, the spectral index and for the tensor to scalar curvature perturbation amplitude ratio. We briefly discuss cases when running is present. Despite single field polynomial-type inflaton potential models be strongly disfavored, or even be already ruled out in their simplest versions in the case of cold inflation, this is not the case for nonisentropic inflation models in general (warm inflation in particular), though higher order polynomial potentials (higher than quartic order) tend to become less favorable also in this case, presenting a much smaller region of parameter space compatible with the recent observational cosmological data
Cosmic Emulation: Fast Predictions for the Galaxy Power Spectrum
Kwan, Juliana; Habib, Salman; Padmanabhan, Nikhil; Finkel, Hal; Frontiere, Nick; Pope, Adrian
2013-01-01
The halo occupation distribution (HOD) approach has proven to be an effective method for modeling galaxy clustering and bias. In this approach, galaxies of a given type are probabilistically assigned to individual halos in N-body simulations. In this paper, we present a fast emulator for predicting the fully nonlinear galaxy power spectrum over a range of freely specifiable HOD modeling parameters. The emulator is constructed using results from 100 HOD models run on a large LCDM N-body simulation, with Gaussian Process interpolation applied to a PCA-based representation of the galaxy power spectrum. The total error is currently ~3% (~2% in the simulation and ~1% in the emulation process) from z=1 to z=0, over the considered parameter range. We use the emulator to investigate parametric dependencies in the HOD model, as well as the behavior of galaxy bias as a function of HOD parameters. The emulator is publicly available at http://www.hep.anl.gov/cosmology/CosmicEmu/emu.html.
Energy Technology Data Exchange (ETDEWEB)
Morioka, Y.; Tomiyama, K.; Arima, H. (Kansai Electric Power Co., Inc., Osaka (Japan)); Sawai, K.; Omata, K.; Matsushima, T.; Takagi, K.; Ishibashi, A.; Saito, H. (Toshiba Corp., Tokyo (Japan))
1993-07-01
The purpose of this newly developed equipment is to separate the power system when an out-of-step between two groups of generators within it is predicted. The out-of-step prediction method is based on the generator's angular-velocity data measured by electromagnetic sensors and gears that are fastened directly to the rotors. The equipment was tested by the large-scale power system simulator APSA (Advanced Power System Analyzer), that is installed in the Kansai Electric Power Co., Inc. The equipment also underwent a field test.
Constraining the intracluster pressure profile from the thermal SZ power spectrum
Ramos-Ceja, M. E.; Basu, K.; Pacaud, F.; Bertoldi, F.
2015-11-01
The angular power spectrum of the thermal Sunyaev-Zel'dovich (tSZ) effect is highly sensitive to cosmological parameters such as σ8 and Ωm, but its use as a precision cosmological probe is hindered by the astrophysical uncertainties in modeling the gas pressure profile in galaxy groups and clusters. In this paper we assume that the relevant cosmological parameters are accurately known and explore the ability of current and future tSZ power spectrum measurements to constrain the intracluster gas pressure or the evolution of the gas mass fraction, fgas. We use the CMB bandpower measurements from the South Pole Telescope and a Bayesian Markov chain Monte Carlo (MCMC) method to quantify deviations from the standard, universal gas pressure model. We explore analytical model extensions that bring the predictions for the tSZ power into agreement with experimental data. We find that a steeper pressure profile in the cluster outskirts or an evolving fgas have mild-to-severe conflicts with experimental data or simulations. Varying more than one parameter in the pressure model leads to strong degeneracies that cannot be broken with current observational constraints. We use simulated bandpowers from future tSZ survey experiments, in particular a possible 2000 deg2 CCAT survey, to show that future observations can provide almost an order of magnitude better precision on the same model parameters. This will allow us to break the current parameter degeneracies and place simultaneous constraints on the gas pressure profile and its redshift evolution, for example.
Energy Technology Data Exchange (ETDEWEB)
Araujo, D.; Dumoulin, R. N.; Newburgh, L. B.; Zwart, J. T. L. [Department of Physics and Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Bischoff, C.; Brizius, A.; Buder, I.; Kusaka, A. [Kavli Institute for Cosmological Physics, Department of Physics, Enrico Fermi Institute, The University of Chicago, Chicago, IL 60637 (United States); Chinone, Y. [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Cleary, K.; Reeves, R. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, 1200 E. California Blvd M/C 249-17, Pasadena, CA 91125 (United States); Monsalve, R.; Bustos, R. [Department of Physics, University of Miami, 1320 Campo Sano Drive, Coral Gables, FL 33146 (United States); Naess, S. K.; Eriksen, H. K. [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, NO-0315 Oslo (Norway); Wehus, I. K. [Department of Astrophysics, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Bronfman, L. [Departamento de Astronomia, Universidad de Chile, Casilla 36-D, Santiago (Chile); Church, S. E. [Kavli Institute for Particle Astrophysics and Cosmology and Department of Physics, Stanford University, Varian Physics Building, 382 Via Pueblo Mall, Stanford, CA 94305 (United States); Dickinson, C. [Jodrell Bank Centre for Astrophysics, Alan Turing Building, School of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Gaier, T., E-mail: ibuder@uchicago.edu [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Collaboration: QUIET Collaboration; and others
2012-12-01
The Q/U Imaging ExperimenT (QUIET) has observed the cosmic microwave background (CMB) at 43 and 95 GHz. The 43 GHz results have been published in a previous paper, and here we report the measurement of CMB polarization power spectra using the 95 GHz data. This data set comprises 5337 hr of observations recorded by an array of 84 polarized coherent receivers with a total array sensitivity of 87 {mu}K{radical}s. Four low-foreground fields were observed, covering a total of {approx}1000 deg{sup 2} with an effective angular resolution of 12.'8, allowing for constraints on primordial gravitational waves and high signal-to-noise measurements of the E-modes across three acoustic peaks. The data reduction was performed using two independent analysis pipelines, one based on a pseudo-C {sub l} (PCL) cross-correlation approach, and the other on a maximum-likelihood (ML) approach. All data selection criteria and filters were modified until a predefined set of null tests had been satisfied before inspecting any non-null power spectrum. The results derived by the two pipelines are in good agreement. We characterize the EE, EB, and BB power spectra between l = 25 and 975 and find that the EE spectrum is consistent with {Lambda}CDM, while the BB power spectrum is consistent with zero. Based on these measurements, we constrain the tensor-to-scalar ratio to r = 1.1{sup +0.9} {sub -0.8} (r < 2.8 at 95% C.L.) as derived by the ML pipeline, and r = 1.2{sup +0.9} {sub -0.8} (r < 2.7 at 95% C.L.) as derived by the PCL pipeline. In one of the fields, we find a correlation with the dust component of the Planck Sky Model, though the corresponding excess power is small compared to statistical errors. Finally, we derive limits on all known systematic errors, and demonstrate that these correspond to a tensor-to-scalar ratio smaller than r = 0.01, the lowest level yet reported in the literature.
Power-law modulation of the scalar power spectrum from a heavy field with a monomial potential
Huang, Qing-Guo
2016-01-01
The effects of heavy fields modulate the scalar power spectrum during inflation. We analytically calculate the modulations of the scalar power spectrum from a heavy field with a separable monomial potential, i.e. V(\\phi)~\\phi^n. In general the modulation is characterized by a power-law oscillation which is reduced to the logarithmic oscillation in the case of n=2.
Power Spectrum Density of long-term MAXI data
Sugimoto, Juri; Sugizaki, Mutsumi; Serino, Motoko; Kitamoto, Shunji; Sato, Ryousuke; Ueda, Yoshihiro; Ueno, Shiro
2013-01-01
Monitor of All-sky X-ray Image (MAXI) on the International Space Station has been observing the X-ray sky since 2009 August 15. It has accumulated the X-ray data for about four years, so far. X-ray objects are usually variable and their variability can be studied by the power spectrum density (PSD) of the X-ray light curves.We applied our method to calculate PSDs of several kinds of objects observed with MAXI. We obtained significant PSDs from 16 Seyfert galaxies.For blackhole binary Cygnus X-1 there was a difference in the shape of PSD between the hard state and the soft state. For high mass X-ray binaries, Cen X-3, SMC X-1, and LMC X-4, there were several peaks in the PSD corresponding to the orbital period and the superorbital period.
Power Spectrum Density of Long-Term MAXI Data
Sugimoto, Juri; Mihara, Tatehiro; Sugizaki, Mutsumi; Serino, Motoko; Kitamoto, Shunji; Sato, Ryousuke; Ueda, Yoshihiro; Ueno, Shiro
Monitor of All-sky X-ray Image (MAXI) on the International Space Station has been observing the X-ray sky since 2009 August 15. It has accumulated the X-ray data for about four years, so far. X-ray objects are usually variable and their variability can be studied by the power spectrum density (PSD) of the X-ray light curves. We applied our method to calculate PSDs of several kinds of objects observed with MAXI. We obtained significant PSDs from 16 Seyfert galaxies. For blackhole binary Cygnus X-1 there was a difference in the shape of PSD between the hard state and the soft state. For high mass X-ray binaries, Cen X-3, SMC X-1, and LMC X-4, there were several peaks in the PSD corresponding to the orbital period and the superorbital period.
Towards optimal estimation of the galaxy power spectrum
Smith, Robert E
2015-01-01
The galaxy power spectrum encodes a wealth of information about cosmology and the matter fluctuations. Its unbiased and optimal estimation is therefore of great importance. In this paper we generalise the framework of Feldman et al. (1994) to take into account the fact that galaxies are not simply a Poisson sampling of the underlying dark matter distribution. Besides finite survey-volume effects and flux-limits, our optimal estimation scheme incorporates several of the key tenets of galaxy formation: galaxies form and reside exclusively in dark matter haloes; a given dark matter halo may host several galaxies of various luminosities; galaxies inherit part of their large-scale bias from their host halo. Under these broad assumptions, we prove that the optimal weights "do not" explicitly depend on galaxy luminosity, other than through defining the maximum survey volume and effective galaxy density at a given position. Instead, they depend on the bias associated with the host halo; the first and second factorial...
Contribution of domain wall networks to the CMB power spectrum
Energy Technology Data Exchange (ETDEWEB)
Lazanu, A., E-mail: A.Lazanu@damtp.cam.ac.uk [Centre for Theoretical Cosmology, Department of Applied Mathematics and Theoretical Physics, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Martins, C.J.A.P., E-mail: Carlos.Martins@astro.up.pt [Centro de Astrofísica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Instituto de Astrofísica e Ciências do Espaço, CAUP, Rua das Estrelas, 4150-762 Porto (Portugal); Shellard, E.P.S., E-mail: E.P.S.Shellard@damtp.cam.ac.uk [Centre for Theoretical Cosmology, Department of Applied Mathematics and Theoretical Physics, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)
2015-07-30
We use three domain wall simulations from the radiation era to the late-time dark energy domination era based on the PRS algorithm to calculate the energy–momentum tensor components of domain wall networks in an expanding universe. Unequal time correlators in the radiation, matter and cosmological constant epochs are calculated using the scaling regime of each of the simulations. The CMB power spectrum of a network of domain walls is determined. The first ever quantitative constraint for the domain wall surface tension is obtained using a Markov chain Monte Carlo method; an energy scale of domain walls of 0.93 MeV, which is close but below the Zel'dovich bound, is determined.
Shrinkage Estimation of the Power Spectrum Covariance Matrix
Pope, Adrian C
2007-01-01
We introduce a novel statistical technique, shrinkage estimation, to estimate the power spectrum covariance matrix from a limited number of simulations. We optimally combine an empirical estimate of the covariance with a model (the target) to minimize the total mean squared error compared to the true underlying covariance. We test our technique on N-body simulations and evaluate its performance by estimating cosmological parameters. Using a simple diagonal target, we show that the shrinkage estimator significantly outperforms both the empirical covariance and the target individually when using a small number of simulations. We find that reducing noise in the covariance estimate is essential for properly estimating the values of cosmological parameters as well as their confidence intervals. We extend our method to the jackknife covariance estimator and again find significant improvement, though simulations give better results. Even for thousands of simulations we still find evidence that our method improves es...
Contribution of domain wall networks to the CMB power spectrum
Directory of Open Access Journals (Sweden)
A. Lazanu
2015-07-01
Full Text Available We use three domain wall simulations from the radiation era to the late-time dark energy domination era based on the PRS algorithm to calculate the energy–momentum tensor components of domain wall networks in an expanding universe. Unequal time correlators in the radiation, matter and cosmological constant epochs are calculated using the scaling regime of each of the simulations. The CMB power spectrum of a network of domain walls is determined. The first ever quantitative constraint for the domain wall surface tension is obtained using a Markov chain Monte Carlo method; an energy scale of domain walls of 0.93 MeV, which is close but below the Zel'dovich bound, is determined.
Contribution of domain wall networks to the CMB power spectrum
Lazanu, A; Shellard, E P S
2015-01-01
We use three domain wall simulations from the radiation era to the late time dark energy domination era based on the PRS algorithm to calculate the energy-momentum tensor components of domain wall networks in an expanding universe. Unequal time correlators in the radiation, matter and cosmological constant epochs are calculated using the scaling regime of each of the simulations. The CMB power spectrum of a network of domain walls is determined. The first ever quantitative constraint for the domain wall surface tension is obtained using a Markov chain Monte Carlo method; an energy scale of domain walls of 0.93 MeV, which is close but below the Zel'dovich bound, is determined.
Measuring the VIPERS galaxy power spectrum at z∼1
Rota, Stefano; Bel, Julien; Granett, Ben; Guzzo, Luigi
2016-10-01
The VIMOS Public Extragalactic Redshift Survey [VIPERS, Guzzo et al. 2014] is using the VIMOS spectrograph at the ESO VLT to measure redshifts for ~ 100,000 galaxies with IAB < 22.5 and 0.5 < z < 1.2, over an area of 24 deg2 (split over the W1 and W4 fields of CFHTLS). VIPERS currently provides, at such redshifts, the best compromise between volume, number of galaxies and dense spatial sampling. We present here the first estimate of the power spectrum of the galaxy distribution, P(k), at redshifts z ~ 0.75 and z ~ 1, obtained from the ~ 55,000 redshifts of the PDR-1 data release. We discuss first constraints on cosmological quantities, as the matter density and the baryonic fraction, obtained for the first time at an epoch when the Universe was about half its current age.
On Removing Interloper Contamination from Intensity Mapping Power Spectrum Measurements
Lidz, Adam; Taylor, Jessie
2016-07-01
Line intensity mapping experiments seek to trace large-scale structures by measuring the spatial fluctuations in the combined emission, in some convenient spectral line, from individually unresolved galaxies. An important systematic concern for these surveys is line confusion from foreground or background galaxies emitting in other lines that happen to lie at the same observed frequency as the “target” emission line of interest. We develop an approach to separate this “interloper” emission at the power spectrum level. If one adopts the redshift of the target emission line in mapping from observed frequency and angle on the sky to co-moving units, the interloper emission is mapped to the wrong co-moving coordinates. Because the mapping is different in the line of sight and transverse directions, the interloper contribution to the power spectrum becomes anisotropic, especially if the interloper and target emission are at widely separated redshifts. This distortion is analogous to the Alcock–Paczynski test, but here the warping arises from assuming the wrong redshift rather than an incorrect cosmological model. We apply this to the case of a hypothetical [C ii] emission survey at z˜ 7 and find that the distinctive interloper anisotropy can, in principle, be used to separate strong foreground CO emission fluctuations. In our models, however, a significantly more sensitive instrument than currently planned is required, although there are large uncertainties in forecasting the high-redshift [C ii] emission signal. With upcoming surveys, it may nevertheless be useful to apply this approach after first masking pixels suspected of containing strong interloper contamination.
International Nuclear Information System (INIS)
We propose a high-precision method for measuring the orbital angular momentum (OAM) spectrum of ultra-broadband optical-vortex (OV) pulses from fork-like interferograms between OV pulses and a reference plane-wave pulse. It is based on spatial reconstruction of the electric fields of the pulses to be measured from the frequency-resolved interference pattern. Our method is demonstrated experimentally by obtaining the OAM spectra for different spectral components of the OV pulses, enabling us to characterize the frequency dispersion of the topological charge of the OAM spectrum by a simple experimental setup. Retrieval is carried out in quasi-real time, allowing us to investigate OAM spectra dynamically. Furthermore, we determine the relative phases (including the sign) of the topological-charge-resolved electric-field amplitudes, which are significant for evaluating OVs or OV pulses with arbitrarily superposed modes. (paper)
Ade, P A R; Anthony, A E; Arnold, K; Atlas, M; Barron, D; Boettger, D; Borrill, J; Chapman, S; Chinone, Y; Dobbs, M; Elleflot, T; Errard, J; Fabbian, G; Feng, C; Flanigan, D; Gilbert, A; Grainger, W; Halverson, N W; Hasegawa, M; Hattori, K; Hazumi, M; Holzapfel, W L; Hori, Y; Howard, J; Hyland, P; Inoue, Y; Jaehnig, G C; Jaffe, A H; Keating, B; Kermish, Z; Keskitalo, R; Kisner, T; Jeune, M Le; Lee, A T; Leitch, E M; Linder, E; Lungu, M; Matsuda, F; Matsumura, T; Meng, X; Miller, N J; Morii, H; Moyerman, S; Myers, M J; Navaroli, M; Nishino, H; Paar, H; Peloton, J; Poletti, D; Quealy, E; Rebeiz, G; Reichardt, C L; Richards, P L; Ross, C; Schanning, I; Schenck, D E; Sherwin, B D; Shimizu, A; Shimmin, C; Shimon, M; Siritanasak, P; Smecher, G; Spieler, H; Stebor, N; Steinbach, B; Stompor, R; Suzuki, A; Takakura, S; Tomaru, T; Wilson, B; Yadav, A; Zahn, O
2014-01-01
We report a measurement of the B-mode polarization power spectrum in the cosmic microwave background (CMB) using the POLARBEAR experiment in Chile. The faint B-mode polarization signature carries information about the Universe's entire history of gravitational structure formation, and the cosmic inflation that may have occurred in the very early Universe. Our measurement covers the angular multipole range 500 < l < 2100 and is based on observations of 30 square degrees with 3.5 arcmin resolution at 150 GHz. On these angular scales, gravitational lensing of the CMB by intervening structure in the Universe is expected to be the dominant source of B-mode polarization. Including both systematic and statistical uncertainties, the hypothesis of no B-mode polarization power from gravitational lensing is rejected at 97.5% confidence. The band powers are consistent with the standard cosmological model. Fitting a single lensing amplitude parameter A_BB to the measured band powers, A_BB = 1.12 +/- 0.61 (stat) +0.0...
Unscreening modified gravity in the matter power spectrum
Lombriser, Lucas; Mead, Alexander
2015-01-01
Viable modifications of gravity that may produce cosmic acceleration need to be screened in high-density regions such as the Solar System, where general relativity is well tested. Screening mechanisms also prevent strong anomalies in the large-scale structure and limit the constraints that can be inferred on these gravity models from cosmology. We find that by suppressing the contribution of the screened high-density regions in the matter power spectrum, allowing a greater contribution of unscreened low densities, modified gravity models can be more readily discriminated from the concordance cosmology. Moreover, by variation of density thresholds, degeneracies with other effects may be dealt with more adequately. Specializing to chameleon gravity as a worked example for screening in modified gravity, employing N-body simulations of f(R) models and the halo model of chameleon theories, we demonstrate the effectiveness of this method. We find that a percent-level measurement of the clipped power at k < 0.3 h...
BP-Neural-Network-Based Tool Wear Monitoring by Using Wavelet Decomposition of the Power Spectrum
Institute of Scientific and Technical Information of China (English)
ZHENG Jian-ming; XI Chang-qing; LI Yan; XIAO Ji-ming
2004-01-01
In a drilling process, the power spectrum of the drilling force is related to the tool wear and is widely applied in the monitoring of tool wear. But the feature extraction and identification of the power spectrum have always been an unresolved difficult problem. This paper solves it through decomposition of the power spectrum in multilayers using wavelet transform and extraction of the low frequency decomposition coefficient us the envelope information of the power spectrum. Intelligent identification of the tool wear status is achieved in the drilling process through fusing the wavelet decomposition coefficient of the power spectrum by using a BP ( Back Propagation) neural network. The experimental results show that the features of the power spectrum can be extracted efficiently through this method, and the trained neural networks show high identification precision and the ability of extension.
Infrared divergence of pure Einstein gravity contributions to cosmological density power spectrum
Noh, Hyerim; Jeong, Donghui; Hwang, Jai-chan
2009-01-01
We probe the pure Einstein's gravity contributions to the second-order density power spectrum. In the small-scale, we discover that the Einstein's gravity contribution is negligibly small. This guarantees that Newton's gravity is sufficient to handle the baryon acoustic oscillation scale. In the large scale, however, we discover that the Einstein's gravity contribution to the second-order power spectrum dominates the linear-order power spectrum. Thus, pure Einstein gravity contribution appear...
Noh, Hyerim; Jeong, Donghui; Hwang, Jai-Chan
2009-07-10
We probe the pure Einstein gravity contributions to the second-order density power spectrum. On the small scale, we discover that Einstein's gravity contribution is negligibly small. This guarantees that Newton's gravity is currently sufficient to handle the baryon acoustic oscillation scale. On the large scale, however, we discover that Einstein's gavity contribution to the second-order power spectrum dominates the linear-order power spectrum. Thus, the pure Einstein gravity contribution appearing in the third-order perturbation leads to an infrared divergence in the power spectrum. PMID:19659195
Near-field angular distributions of high velocity ions for low-power hall thrusters
Sullivan, Regina M.; Yost, Allison; Johnson, Lee K.
2009-01-01
Experimental angular distributions of high-energy primary ions in the near-field region of a small Hall thruster between 50-200 mm downstream of the thruster exit plane at a range of centerline angles have been determined using a highly-collimated, energy-selective diagnostic probe. The measurements reveal a wide angular distribution of ions exiting the thruster channel and the formation of a strong, axially-directed jet of ions along the thruster centerline. Comparisons are made to other exp...
Energy Technology Data Exchange (ETDEWEB)
Battaglia, N. [Department of Astronomy and Astrophysics, University of Toronto, 50 St George, Toronto, ON M5S 3H4 (Canada); Bond, J. R.; Pfrommer, C.; Sievers, J. L. [Canadian Institute for Theoretical Astrophysics, 60 St George, Toronto, ON M5S 3H8 (Canada)
2012-10-20
Secondary anisotropies in the cosmic microwave background are a treasure-trove of cosmological information. Interpreting current experiments probing them are limited by theoretical uncertainties rather than by measurement errors. Here we focus on the secondary anisotropies resulting from the thermal Sunyaev-Zel'dovich (tSZ) effect; the amplitude of which depends critically on the average thermal pressure profile of galaxy groups and clusters. To this end, we use a suite of hydrodynamical TreePM-SPH simulations that include radiative cooling, star formation, supernova feedback, and energetic feedback from active galactic nuclei. We examine in detail how the pressure profile depends on cluster radius, mass, and redshift and provide an empirical fitting function. We employ three different approaches for calculating the tSZ power spectrum: an analytical approach that uses our pressure profile fit, a semianalytical method of pasting our pressure fit onto simulated clusters, and a direct numerical integration of our simulated volumes. We demonstrate that the detailed structure of the intracluster medium and cosmic web affect the tSZ power spectrum. In particular, the substructure and asphericity of clusters increase the tSZ power spectrum by 10%-20% at l {approx} 2000-8000, with most of the additional power being contributed by substructures. The contributions to the power spectrum from radii larger than R {sub 500} is {approx}20% at l = 3000, thus clusters interiors (r < R {sub 500}) dominate the power spectrum amplitude at these angular scales.
Matter density perturbation and power spectrum in running vacuum model
Geng, Chao-Qiang; Lee, Chung-Chi
2016-10-01
We investigate the matter density perturbation δm and power spectrum P(k) in the running vacuum model (RVM) with the cosmological constant being a function of the Hubble parameter, given by Λ = Λ0 + 6σHH0 + 3νH2, in which the linear and quadratic terms of H would originate from the QCD vacuum condensation and cosmological renormalization group, respectively. Taking the dark energy perturbation into consideration, we derive the evolution equation for δm and find a specific scale dcr = 2π/kcr, which divides the evolution of the universe into the sub and super-interaction regimes, corresponding to k ≪ kcr and k ≫ kcr, respectively. For the former, the evolution of δm has the same behavior as that in the ΛCDM model, while for the latter, the growth of δm is frozen (greatly enhanced) when ν + σ > ( matter and dark energy. It is clear that the observational data rule out the cases with ν < 0 and ν + σ < 0, while the allowed window for the model parameters is extremely narrow with ν , |σ | ≲ {O}(10^{-7}).
Perturbative approach to covariance matrix of the matter power spectrum
Mohammed, Irshad; Vlah, Zvonimir
2016-01-01
We evaluate the covariance matrix of the matter power spectrum using perturbation theory up to dominant terms at 1-loop order and compare it to numerical simulations. We decompose the covariance matrix into the disconnected (Gaussian) part, trispectrum from the modes outside the survey (beat coupling or super-sample variance), and trispectrum from the modes inside the survey, and show how the different components contribute to the overall covariance matrix. We find the agreement with the simulations is at a 10\\% level up to $k \\sim 1 h {\\rm Mpc^{-1}}$. We show that all the connected components are dominated by the large-scale modes ($k<0.1 h {\\rm Mpc^{-1}}$), regardless of the value of the wavevectors $k,\\, k'$ of the covariance matrix, suggesting that one must be careful in applying the jackknife or bootstrap methods to the covariance matrix. We perform an eigenmode decomposition of the connected part of the covariance matrix, showing that at higher $k$ it is dominated by a single eigenmode. The full cova...
Testing for New Physics: Neutrinos and the Primordial Power Spectrum
Canac, Nicolas; Abazajian, Kevork N; Easther, Richard; Price, Layne C
2016-01-01
We test the sensitivity of neutrino parameter constraints from combinations of CMB and LSS data sets to the assumed form of the primordial power spectrum (PPS) using Bayesian model selection. Significantly, none of the tested combinations, including recent high-precision local measurements of $\\mathrm{H}_0$ and cluster abundances, indicate a signal for massive neutrinos or extra relativistic degrees of freedom. For PPS models with a large, but fixed number of degrees of freedom, neutrino parameter constraints do not change significantly if the location of any features in the PPS are allowed to vary, although neutrino constraints are more sensitive to PPS features if they are known a priori to exist at fixed intervals in $\\log k$. Although there is no support for a non-standard neutrino sector from constraints on both neutrino mass and relativistic energy density, we see surprisingly strong evidence for features in the PPS when it is constrained with data from Planck 2015, SZ cluster counts, and recent high-pr...
On minimally parametric primordial power spectrum reconstruction and the evidence for a red tilt
International Nuclear Information System (INIS)
The latest cosmological data seem to indicate a significant deviation from scale invariance of the primordial power spectrum when parameterized either by a power law or by a spectral index with non-zero 'running'. This deviation, by itself, serves as a powerful tool for discriminating among theories for the origin of cosmological structures such as inflationary models. Here, we use a minimally parametric smoothing spline technique to reconstruct the shape of the primordial power spectrum. This technique is well suited to searching for smooth features in the primordial power spectrum such as deviations from scale invariance or a running spectral index, although it would recover sharp features of high statistical significance. We use the WMAP three-year results in combination with data from a suite of higher resolution cosmic microwave background experiments (including the latest ACBAR 2008 release), as well as large-scale structure data from SDSS and 2dFGRS. We employ cross-validation to assess, using the data themselves, the optimal amount of smoothness in the primordial power spectrum consistent with the data. This minimally parametric reconstruction supports the evidence for a power law primordial power spectrum with a red tilt, but not for deviations from a power law power spectrum. Smooth variations in the primordial power spectrum are not significantly degenerate with the other cosmological parameters
Trainor, Thomas A
2016-01-01
According to the flow narrative commonly applied to high-energy nuclear collisions a 1D cylindrical-quadrupole component of 2D angular correlations conventionally denoted by quantity $v_2$ is interpreted to represent elliptic flow: azimuth modulation of transverse or radial flow in noncentral nucleus-nucleus (A-A) collisions. The nonjet (NJ) quadrupole component exhibits various properties inconsistent with a flow or hydro interpretation, including the observation that NJ-quadrupole centrality variation in $A$-$A$ collisions has no relation to strongly-varying jet modification ("jet quenching") in those collisions commonly attributed to jet interaction with a dense flowing medium. In the present study I report isolation of quadrupole spectra from $p_t$-differential $v_2(p_t)$ data obtained at the relativistic heavy ion collider (RHIC) and large hadron collider (LHCr). I demonstrate that NJ quadrupole spectra have characteristics very different from the single-particle spectra for most hadrons, that quadrupole...
Red, Straight, no bends: primordial power spectrum reconstruction from CMB and large-scale structure
Ravenni, Andrea; Cuesta, Antonio J
2016-01-01
We present a minimally parametric, model independent reconstruction of the shape of the primordial power spectrum. Our smoothing spline technique is well-suited to search for smooth features such as deviations from scale invariance, and deviations from a power law such as running of the spectral index or small-scale power suppression. We use a comprehensive set of the state-of the art cosmological data: {\\it Planck} observations of the temperature and polarisation anisotropies of the cosmic microwave background, WiggleZ and Sloan Digital Sky Survey Data Release 7 galaxy power spectra and the Canada-France-Hawaii Lensing Survey correlation function. This reconstruction strongly supports the evidence for a power law primordial power spectrum with a red tilt and disfavours deviations from a power law power spectrum including small-scale power suppression such as that induced by significantly massive neutrinos. This offers a powerful confirmation of the inflationary paradigm, justifying the adoption of the inflat...
Moskaletz, O. D.; Paraskun, A. S.; Vaganov, M. A.
2016-08-01
The problem of receiving of an energy spectrum estimation of optical radiations in the new analyzer of optical signals is considered. It is the parallel resonant optical spectrum analyzer (SPECTRUM ANALYZER). Its resolving system is a set of narrow-band optical resonators in the form of interference filters. Each optical resonator is equivalent to a system with lumped parameters. This allows us to consider only oscillations of an optical field in the form of a scalar functions and adopt as a model of analyzed signal harmonized scalar random process. The photodetector operation and average of photocurrent using an integrator and integrating circuit is considered too. On the basis of the application prolate entire spheroidal wave function theory energy spectrum estimation by the integral of photocurrent is obtained. This energy spectrum estimation is consistent and asymptotically unbiased.
Influence of motor unit firing statistics on the median frequency of the EMG power spectrum
van Boxtel, Anton; Schomaker, L R
1984-01-01
Changes in the EMG power spectrum during static fatiguing contractions are often attributed to changes in muscle fibre action potential conduction velocity. Mathematical models of the EMG power spectrum, which have been empirically confirmed, predict that under certain conditions a distinct maximum
WIND TURBINE SIMULATION FOR TIME-DEPENDENT ANGULAR VELOCITY, TORQUE, AND POWER
YONGHO LEE
2013-01-01
Albeit the prediction of time-dependent properties of wind turbines is not required for common applications, such time-varying properties may play an important role during transient operations occurring due to various reasons. Unlike the conventional numerical simulations of wind turbine rotations that fix the angular velocity to an assumed value, the present work numerically simulates the time-varying turbine rotation in both unsteady and quasi-steady operation regimes, without specifying th...
Position-dependent power spectrum: a new observable in the large-scale structure
Chiang, Chi-Ting
2015-01-01
We present a new observable, position-dependent power spectrum, to measure the large-scale structure bispectrum in the squeezed configuration, where one wavenumber is much smaller than the other two. The squeezed-limit bispectrum measures how the small-scale power spectrum is modulated by a long-wavelength overdensity, which is due to gravitational evolution and possibly inflationary physics. We divide a survey into small subvolumes, compute the local power spectrum and the mean overdensity in each subvolume, and measure the correlation between them. The correlation measures the integral of the bispectrum, which is dominated by squeezed configurations if the scale of the local power spectrum is much smaller than the subvolume size. We use the separate universe approach to model how the small-scale power spectrum is affected by a long-wavelength overdensity gravitationally. This models the nonlinearity of the bispectrum better than the perturbation theory approach. Not only the new observable is easy to interp...
Model Independent Foreground Power Spectrum Estimation using WMAP 5-year Data
Ghosh, Tuhin; Jain, Pankaj; Souradeep, Tarun
2009-01-01
In this paper, we propose & implement on WMAP 5-year data, a model independent approach of foreground power spectrum estimation for multifrequency observations of CMB experiments. Recently a model independent approach of CMB power spectrum estimation was proposed by Saha et al. 2006. This methodology demonstrates that CMB power spectrum can be reliably estimated solely from WMAP data without assuming any template models for the foreground components. In the current paper, we extend this work to estimate the galactic foreground power spectrum using the WMAP 5 year maps following a self contained analysis. We apply the model independent method in harmonic basis to estimate the foreground power spectrum and frequency dependence of combined foregrounds. We also study the behaviour of synchrotron spectral index variation over different regions of the sky. We compare our results with those obtained from MEM foreground maps which are formed in pixel space. We find that relative to our model independent estimates...
Energy Technology Data Exchange (ETDEWEB)
Borovskiy, A. V. [Department of Computer Science and Cybernetics, Baikal State University of Economics and Law, 11 Lenin Street, Irkutsk 664003 (Russian Federation); Galkin, A. L. [Coherent and Nonlinear Optics Department, A.M. Prokhorov General Physics Institute of the RAS, 38 Vavilov Street, Moscow 119991 (Russian Federation); Department of Physics of MBF, Pirogov Russian National Research Medical University, 1 Ostrovitianov Street, Moscow 117997 (Russian Federation); Kalashnikov, M. P., E-mail: galkin@kapella.gpi.ru [Max-Born-Institute for Nonlinear Optics and Short-Time Spectroscopy, 2a Max-Born-Strasse, Berlin 12489 (Germany)
2015-04-15
The new method of calculating energy spectra of accelerated electrons, based on the parameterization by their initial coordinates, is proposed. The energy spectra of electrons accelerated by Gaussian ultra-short relativistic laser pulse at a selected angle to the axis of the optical system focusing the laser pulse in a low density gas are theoretically calculated. The two-peak structure of the electron energy spectrum is obtained. Discussed are the reasons for its appearance as well as an applicability of other models of the laser field.
Minimally Parametric Power Spectrum Reconstruction from the Lyman-alpha Forest
Bird, Simeon; Viel, Matteo; Verde, Licia
2010-01-01
Current results from the Lyman alpha forest assume that the primordial power spectrum of density perturbations follows a simple power law form. We present the first analysis of Lyman alpha data to study the effect of relaxing this strong assumption on primordial and astrophysical constraints. We perform a large suite of numerical simulations, using them to calibrate a minimally parametric framework for describing the power spectrum. Combined with cross-validation, a statistical technique which prevents over-fitting of the data, this framework allows us to reconstruct the power spectrum shape without strong prior assumptions. We find no evidence for deviation from scale-invariance; our analysis also shows that current Lyman alpha data do not have sufficient statistical power to robustly probe the shape of the power spectrum at these scales. In contrast, the ongoing Baryon Oscillation Sky Survey (BOSS) will be able to do so with high precision. Furthermore, this near-future data will be able to break degeneraci...
Sunyaev-Zel'dovich power spectrum with decaying cold dark matter
Takahashi, Keitaro; Oguri, Masamune; Ichiki, Kiyotomo
2003-01-01
Recent studies of structures of galaxies and clusters imply that dark matter might be unstable and decay with lifetime $\\Gamma^{-1}$ about the age of universe. We study the effects of the decay of cold dark matter on the Sunyaev-Zel'dovich (SZ) power spectrum. We analytically calculate the SZ power spectrum taking finite lifetime of cold dark matter into account. We find the finite lifetime of dark matter decreases the power at large scale ($l 4000$...
Evidence for a continuous, power law, electron density irregularity spectrum
Cronyn, W. M.
1972-01-01
The spectral form of the irregularities in electron density that cause interplanetary scintillation (IPS) of small angular diameter radio sources is discussed. The intensity scintillation technique always yields an irregularity scale size, which is of the order of the first Fresnel zone for the wavelength at which the observations are taken. This includes not only the radio wavelength measurements of the structure of the interplanetary medium, but also radio wavelength measurements of the irregularity structure of the ionosphere and interstellar medium, and optical wavelength measurements of the irregularity structure of the atmosphere.
Dalton, Brian H; Power, Geoffrey A; Paturel, Justin R; Rice, Charles L
2015-06-01
The underlying factors related to the divergent findings of age-related fatigue for dynamic tasks are not well understood. The purpose here was to investigate age-related fatigability and recovery between a repeated constrained (isokinetic) and an unconstrained velocity (isotonic) task, in which participants performed fatiguing contractions at the velocity (isokinetic) or resistance (isotonic) corresponding with maximal power. To compare between tasks, isotonic torque-power relationships were constructed prior to and following both fatiguing tasks and during short-term recovery. Contractile properties were recorded from 9 old (~75 years) and 11 young (~25 years) men during three testing sessions. In the first session, maximal power was assessed, and sessions 2 and 3 involved an isokinetic or an isotonic concentric fatigue task performed until maximal power was reduced by 40 %. Compared with young, the older men performed the same number of contractions to task failure for the isokinetic task (~45 contractions), but 20 % fewer for the isotonic task (p < 0.05). Regardless of age and task, maximal voluntary isometric contraction strength, angular velocity, and power were reduced by ~30, ~13, and ~25 %, respectively, immediately following task failure, and only isometric torque was not recovered fully by 10 min. In conclusion, older men are more fatigable than the young when performing a repetitive maximal dynamic task at a relative resistance (isotonic) but not an absolute velocity (isokinetic), corresponding to maximal power. PMID:25943700
Energy Technology Data Exchange (ETDEWEB)
Djukanovic, M. (Inst. ' Nikola Tesla' , Belgrade (Yugoslavia)); Sobajic, D.J.; Yohhan Pao (Case Western Reserve Univ., Cleveland, OH (United States). Dept. of Electrical Engineering and Applied Physics Case Western Reserve Univ., Cleveland, OH (United States). Dept. of Computer Engineering and Science AI WARE inc., Cleveland, OH (United States))
1992-10-01
In heavily stressed power systems, post-fault transient voltage dips can lead to undesired tripping of industrial drives and large induction motors. The lowest transient voltage dips occur when fault clearing times are less than critical ones. In this paper, we propose a new iterative analytical methodology to obtain more accurate estimates of voltage dips at maximum angular swing in direct transient stability analysis. We also propose and demonstrate the possibility of storing the results of these computations in the associative memory (AM) system, which exhibits remarkable generalization capabilities. Feature-based models stored in the AM can be utilized for fast and accurate prediction of the location, duration and the amount of the worst voltage dips, thereby avoiding the need and cost for lengthy time-domain simulations. Numerical results obtained using the example of the New England power system are presented to illustrate our approach. (Author)
Classical and modern power spectrum estimation for tune measurement in CSNS RCS
Yang, Xiaoyu; Fu, Shinian; Zeng, Lei; Bian, Xiaojuan
2013-01-01
Precise measurement of betatron tune is required for good operating condition of CSNS RCS. The fractional part of betatron tune is important and it can be measured by analyzing the signals of beam position from the appointed BPM. Usually these signals are contaminated during the acquisition process, therefore several power spectrum methods are used to improve the frequency resolution. In this article classical and modern power spectrum methods are used. In order to compare their performance, the results of simulation data and IQT data from J-PARC RCS are discussed. It is shown that modern power spectrum estimation has better performance than the classical ones, though the calculation is more complex.
Schwinger, J.
1952-01-26
The commutation relations of an arbitrary angular momentum vector can be reduced to those of the harmonic oscillator. This provides a powerful method for constructing and developing the properties of angular momentum eigenvectors. In this paper many known theorems are derived in this way, and some new results obtained. Among the topics treated are the properties of the rotation matrices; the addition of two, three, and four angular momenta; and the theory of tensor operators.
Yang, X H; Chu Yao Quan; Fang, L Z; Yang, Xiao-Hu; Feng, Long-Long; Chu, Yao-Quan; Fang, Li-Zhi
2001-01-01
The power spectrum estimator based on the discrete wavelet transform (DWT) for 3-dimensional samples has been studied. The DWT estimator for multi-dimensional samples provides two types of spectra with respect to diagonal and off-diagonal modes, which are very flexible to deal with configuration-related problems in the power spectrum detection. With simulation samples and mock catalogues of the Las Campanas redshift survey (LCRS), we show (1) the slice-like geometry of the LCRS doesn't affect the off-diagonal power spectrum with ``slice-like'' mode; (2) the Poisson sampling with the LCRS selection function doesn't cause more than 1-$\\sigma$ error in the DWT power spectrum; and (3) the powers of peculiar velocity fluctuations, which cause the redshift distortion, are approximately scale-independent. These results insure that the uncertainties of the power spectrum measurement are under control. The scatter of the DWT power spectra of the six strips of the LCRS survey is found to be rather small. It is less tha...
Wind tunnel study of the power output spectrum in a micro wind farm
Bossuyt, Juliaan; Howland, Michael F.; Meneveau, Charles; Meyers, Johan
2016-09-01
Instrumented small-scale porous disk models are used to study the spectrum of a surrogate for the power output in a micro wind farm with 100 models of wind turbines. The power spectra of individual porous disk models in the first row of the wind farm show the expected -5/3 power law at higher frequencies. Downstream models measure an increased variance due to wake effects. Conversely, the power spectrum of the sum of the power over the entire wind farm shows a peak at the turbine-to-turbine travel frequency between the model turbines, and a near -5/3 power law region at a much wider range of lower frequencies, confirming previous LES results. Comparison with the spectrum that would result when assuming that the signals are uncorrelated, highlights the strong effects of correlations and anti-correlations in the fluctuations at various frequencies.
Effect of noise on the power spectrum of passively mode-locked lasers
Eliyahu, Danny; Salvatore, Randal A.; Yariv, Amnon
1997-01-01
We analyze the effects of noise on the power spectrum of pulse trains generated by a continuously operating passively mode-locked laser. The shape of the different harmonics of the power spectrum is calculated in the presence of correlated timing fluctuations between neighboring pulses and in the presence of amplitude fluctuations. The spectra at the different harmonics are influenced mainly by the nonstationary timing-jitter fluctuations; amplitude fluctuations slightly modify the spectral t...
Estimating magnetic field power spectrum using CRRES magnetometer data
Ali, A.; Elkington, S. R.
2013-05-01
Radial diffusion is one of the acceleration mechanisms responsible for populating and depleting the Van Allen radiation belts with high energy charged particles. We use the magnetometer data from the Combined Release and Radiation Effects Satellite (CRRES) to estimate the power spectral density in the compressional component of the geomagnetic field in the frequency range of 0.8mHz-16.3mHz. We see a clear dependence of power spectral density on radial distance L, measure of geomagnetic disturbance Kp, and magnetic local time. Comparing total integrated power, the noon sector contains more power with no significant difference between other sectors during periods of low activity. During high activity the dusk sector has significantly more power than dawn sector with the difference sometimes being an order of magnitude higher with power increasing slightly as we move radially outward to higher L-shells. We then recompute the power spectral density without local time dependence and compute the electromagnetic part of the radial diffusion coefficient. The electromagnetic diffusion coefficients are then compared with the electrostatic coefficients computed by Brautigam et al. (2005). The dependence of the diffusion coefficients is then studied on parameters of L, Kp, and the first invariant. For a fixed first invariant the diffusion coefficient can be up to two orders of magnitude higher as we move from the inner magnetosphere (L=3.5) to the outer magnetosphere (L=6.5). During high activity, radial diffusion is also significantly faster than at quiet times.
Siemens's spectrum of deliveries and services for nuclear power plants
International Nuclear Information System (INIS)
In 2001, Siemens and Framatome merged their nuclear activities in the present Areva NP joint venture. Siemens has since focused on the construction and further development of conventional power plants and on the so-called conventional island (CI), the non-nuclear part of a nuclear power plant, i.e. the steam turbine, generator, and plant I and C systems, and also on service for the conventional part of nuclear power plants. Its role as a minority shareholder in Areva NP constrained Siemens. For this reason, the company in January 2009 decided to terminate its interest in Areva NP effective January 30, 2012. By January 2012 at the latest, Siemens will transfer to the majority shareholder Areva, holding 66 percent of the shares, its interest in the joint venture. For the time being, the joint venture still entails certain limitations to Siemens's activities in the nuclear field. Its delivery of the conventional island for the Olkiluoto 3 (OL3) nuclear power plant in Finland confirms the company's know-how in power plant construction. When commissioned, its 1,720 MW power will make OL3 the world's largest nuclear generating unit. The turbo-generator of the CI comprises a double-flow HP turbine and a 6-flow LP turbine. The driven 4-pole generator with a power of up to 2,200 MVA consists of a water-cooled stator and a hydrogen-cooled rotor. (orig.)
Perturbation theory for nonlinear halo power spectrum: the renormalized bias and halo bias
Nishizawa, Atsushi J; Nishimichi, Takahiro
2013-01-01
We revisit an analytical model to describe the halo-matter cross-power spectrum and the halo auto-power spectrum in the weakly nonlinear regime, by combining the perturbation theory (PT) for matter clustering, the local bias model, and the halo bias. Nonlinearities in the power spectra arise from the nonlinear clustering of matter as well as the nonlinear relation between the matter and halo density fields. By using the "renormalization" approach, we express the nonlinear power spectra by a sum of the two contributions: the nonlinear matter power spectrum with the effective linear bias parameter, and the higher-order PT spectra having the halo bias parameters as the coefficients. The halo auto-power spectrum includes the residual shot noise contamination that needs to be treated as additional free parameter. The term(s) of the higher-order PT spectra and the residual shot noise cause a scale-dependent bias function relative to the nonlinear matter power spectrum in the weakly nonlinear regime. We show that th...
Power Versus Spectrum 2-D Sensing in Energy Harvesting Cognitive Radio Networks
Zhang, Yanyan; Han, Weijia; Li, Di; Zhang, Ping; Cui, Shuguang
2015-12-01
Energy harvester based cognitive radio is a promising solution to address the shortage of both spectrum and energy. Since the spectrum access and power consumption patterns are interdependent, and the power value harvested from certain environmental sources are spatially correlated, the new power dimension could provide additional information to enhance the spectrum sensing accuracy. In this paper, the Markovian behavior of the primary users is considered, based on which we adopt a hidden input Markov model to specify the primary vs. secondary dynamics in the system. Accordingly, we propose a 2-D spectrum and power (harvested) sensing scheme to improve the primary user detection performance, which is also capable of estimating the primary transmit power level. Theoretical and simulated results demonstrate the effectiveness of the proposed scheme, in term of the performance gain achieved by considering the new power dimension. To the best of our knowledge, this is the first work to jointly consider the spectrum and power dimensions for the cognitive primary user detection problem.
Paul, Sourabh; Morales, Miguel F; Dwarkanath, K S; Shankar, N Udaya; Subrahmanyan, Ravi; Barry, N; Beardsley, A P; Bowman, Judd D; Briggs, F; Carroll, P; de Oliveira-Costa, A; Dillon, Joshua S; Ewall-Wice, A; Feng, L; Greenhill, L J; Gaensler, B M; Hazelton, B J; Hewitt, J N; Hurley-Walker, N; Jacobs, D J; Kim, Han-Seek; Kittiwisit, P; Lenc, E; Line, J; Loeb, A; McKinley, B; Mitchell, D A; Neben, A R; Offringa, A R; Pindor, B; Pober, J C; Procopio, P; Riding, J; Sullivan, I S; Tegmark, M; Thyagarajan, Nithyanandan; Tingay, S J; Trott, C M; Wayth, R B; Webster, R L; Wyithe, J S B; Cappallo, Roger; Johnston-Hollitt, M; Kaplan, D L; Lonsdale, C J; McWhirter, S R; Morgan, E; Oberoi, D; Ord, S M; Prabu, T; Srivani, K S; Williams, A; Williams, C L
2016-01-01
The Detection of redshifted 21 cm emission from the epoch of reionization (EoR) is a challenging task owing to strong foregrounds that dominate the signal. In this paper, we propose a general method, based on the delay spectrum approach, to extract HI power spectra that is applicable to tracking observations using an imaging radio interferometer (Delay Spectrum with Imaging Arrays (DSIA)). Our method is based on modelling the HI signal taking into account the impact of wide field effects such as the $w$-term which are then used as appropriate weights in cross-correlating the measured visibilities. Our method is applicable to any radio interferometer that tracks a phase center and could be utilized for arrays such as MWA, LOFAR, GMRT, PAPER and HERA. In the literature the delay spectrum approach has been implemented for near-redundant baselines using drift scan observations. In this paper we explore the scheme for non-redundant tracking arrays, and this is the first application of delay spectrum methodology to...
Energy Technology Data Exchange (ETDEWEB)
Heitmann, Katrin [Los Alamos National Laboratory; Habib, Salman [Los Alamos National Laboratory; Higdon, David [Los Alamos National Laboratory; Williams, Brian J [Los Alamos National Laboratory; White, Martin [Los Alamos National Laboratory; Wagner, Christian [Los Alamos National Laboratory
2008-01-01
The power spectrum of density fluctuations is a foundational source of cosmological information. Precision cosmological probes targeted primarily at investigations of dark energy require accurate theoretical determinations of the power spectrum in the nonlinear regime. To exploit the observational power of future cosmological surveys, accuracy demands on the theory are at the one percent level or better. Numerical simulations are currently the only way to produce sufficiently error-controlled predictions for the power spectrum. The very high computational cost of (precision) N-body simulations is a major obstacle to obtaining predictions in the nonlinear regime, while scanning over cosmological parameters. Near-future observations, however, are likely to provide a meaningful constraint only on constant dark energy equation of state 'wCDM' cosmologies. In this paper we demonstrate that a limited set of only 37 cosmological models -- the 'Coyote Universe' suite -- can be used to predict the nonlinear matter power spectrum at the required accuracy over a prior parameter range set by cosmic microwave background observations. This paper is the second in a series of three, with the final aim to provide a high-accuracy prediction scheme for the nonlinear matter power spectrum for wCDM cosmologies.
Heitmann, Katrin; Higdon, David; White, Martin; Habib, Salman; Williams, Brian J.; Lawrence, Earl; Wagner, Christian
2009-11-01
The power spectrum of density fluctuations is a foundational source of cosmological information. Precision cosmological probes targeted primarily at investigations of dark energy require accurate theoretical determinations of the power spectrum in the nonlinear regime. To exploit the observational power of future cosmological surveys, accuracy demands on the theory are at the 1% level or better. Numerical simulations are currently the only way to produce sufficiently error-controlled predictions for the power spectrum. The very high computational cost of (precision) N-body simulations is a major obstacle to obtaining predictions in the nonlinear regime, while scanning over cosmological parameters. Near-future observations, however, are likely to provide a meaningful constraint only on constant dark energy equation of state, "wCDM", cosmologies. In this paper, we demonstrate that a limited set of only 37 cosmological models—the "Coyote Universe" suite—can be used to predict the nonlinear matter power spectrum to 1% over a prior parameter range set by current cosmic microwave background observations. This paper is the second in a series of three, with the final aim to provide a high-accuracy prediction scheme for the nonlinear matter power spectrum for wCDM cosmologies.
Minimally Parametric Constraints on the Primordial Power Spectrum from Lyman-alpha
Bird, Simeon
2010-01-01
Current analyses of the Lyman-alpha forest assume that the primordial power spectrum of density perturbations obeys a simple power law, a strong theoretical assumption which should be tested. Employing a large suite of numerical simulations which drop this assumption, we reconstruct the shape of the primordial power spectrum using Lyman-alpha data from the Sloan Digital Sky Survey (SDSS). Our method combines a minimally parametric framework with cross-validation, a technique used to avoid over-fitting the data. Future work will involve predictions for the upcoming Baryon Oscillation Sky Survey (BOSS), which will provide new Lyman-alpha data with vastly decreased statistical errors.
The Non-Linear Power Spectrum of the Lyman Alpha Forest
Arinyo-i-Prats, Andreu; Miralda-Escudé, Jordi; Viel, Matteo; Cen, Renyue
2015-01-01
The Lyman alpha forest power spectrum has been measured on large scales by the BOSS survey in SDSS-III at $z\\sim 2.3$, has been shown to agree well with linear theory predictions, and has provided the first measurement of Baryon Acoustic Oscillations at this redshift. However, the power at small scales, affected by non-linearities, has not been well examined so far. We present results from a variety of hydrodynamic simulations to predict the redshift space non-linear power spectrum of the Lym...
High Performance Power Spectrum Analysis Using a FPGA Based Reconfigurable Computing Platform
Abhyankar, Yogindra; Agarwal, Yogesh; Subrahmanya, C R; Prasad, Peeyush; 10.1109/RECONF.2006.307786
2011-01-01
Power-spectrum analysis is an important tool providing critical information about a signal. The range of applications includes communication-systems to DNA-sequencing. If there is interference present on a transmitted signal, it could be due to a natural cause or superimposed forcefully. In the latter case, its early detection and analysis becomes important. In such situations having a small observation window, a quick look at power-spectrum can reveal a great deal of information, including frequency and source of interference. In this paper, we present our design of a FPGA based reconfigurable platform for high performance power-spectrum analysis. This allows for the real-time data-acquisition and processing of samples of the incoming signal in a small time frame. The processing consists of computation of power, its average and peak, over a set of input values. This platform sustains simultaneous data streams on each of the four input channels.
Heitmann, Katrin; White, Martin; Habib, Salman; Williams, Brian J; Wagner, Christian
2009-01-01
The power spectrum of density fluctuations is a foundational source of cosmological information. Precision cosmological probes targeted primarily at investigations of dark energy require accurate theoretical determinations of the power spectrum in the nonlinear regime. To exploit the observational power of future cosmological surveys, accuracy demands on the theory are at the one percent level or better. Numerical simulations are currently the only way to produce sufficiently error-controlled predictions for the power spectrum. The very high computational cost of (precision) N-body simulations is a major obstacle to obtaining predictions in the nonlinear regime, while scanning over cosmological parameters. Near-future observations, however, are likely to provide a meaningful constraint only on constant dark energy equation of state 'wCDM' cosmologies. In this paper we demonstrate that a limited set of only 37 cosmological models -- the "Coyote Universe" suite -- can be used to predict the nonlinear matter pow...
Detection of a high frequency break in the X-ray power spectrum of Ark 564
Papadakis, I E; Negoro, H; Gliozzi, M
2001-01-01
We present a power spectrum analysis of the long ASCA observation of Ark 564 in June/July 2001. The observed power spectrum covers a frequency range of ~ 3.5 decades. We detect a high frequency break at ~ 0.002 Hz. The power spectrum has an rms of ~30% and a slope of ~ -1 and ~ -2 below and above the break frequency. When combined with the results from a long RXTE observation (Pounds et al. 2001), the observed power spectra of Ark 564 and Cyg X-1 (in the low/hard state) are almost identical, showing a similar shape and rms amplitude. However, the ratio of the high frequency breaks is very small (~ 10e{3-4}), implying that these characteristic frequencies are not indicative of the black hole mass. This result supports the idea of a small black hole mass/high accretion rate in Ark 564.
Red, Straight, no bends: primordial power spectrum reconstruction from CMB and large-scale structure
Ravenni, Andrea; Verde, Licia; Cuesta, Antonio J.
2016-08-01
We present a minimally parametric, model independent reconstruction of the shape of the primordial power spectrum. Our smoothing spline technique is well-suited to search for smooth features such as deviations from scale invariance, and deviations from a power law such as running of the spectral index or small-scale power suppression. We use a comprehensive set of the state-of the art cosmological data: Planck observations of the temperature and polarisation anisotropies of the cosmic microwave background, WiggleZ and Sloan Digital Sky Survey Data Release 7 galaxy power spectra and the Canada-France-Hawaii Lensing Survey correlation function. This reconstruction strongly supports the evidence for a power law primordial power spectrum with a red tilt and disfavours deviations from a power law power spectrum including small-scale power suppression such as that induced by significantly massive neutrinos. This offers a powerful confirmation of the inflationary paradigm, justifying the adoption of the inflationary prior in cosmological analyses.
Adaptive discrete rate and power transmission for spectrum sharing systems
Abdallah, Mohamed M.
2012-04-01
In this paper we develop a framework for optimizing the performance of the secondary link in terms of the average spectral efficiency assuming quantized channel state information (CSI) of the secondary and the secondary-to-primary interference channels available at the secondary transmitter. We consider the problem under the constraints of maximum average interference power levels at the primary receiver. We develop a sub-optimal computationally efficient iterative algorithm for finding the optimal CSI quantizers as well as the discrete power and rate employed at the cognitive transmitter for each quantized CSI level so as to maximize the average spectral efficiency. We show via analysis and simulations that the proposed algorithm converges for Rayleigh fading channels. Our numerical results give the number of bits required to sufficiently represent the CSI to achieve almost the maximum average spectral efficiency attained using full knowledge of the CSI. © 2012 IEEE.
Simulations of Baryon Acoustic Oscillations II: Covariance matrix of the matter power spectrum
Takahashi, Ryuichi; Takada, Masahiro; Matsubara, Takahiko; Sugiyama, Naoshi; Kayo, Issha; Nishizawa, Atsushi J; Nishimichi, Takahiro; Saito, Shun; Taruya, Atsushi
2009-01-01
We use 5000 cosmological N-body simulations of 1(Gpc/h)^3 box for the concordance LCDM model in order to study the sampling variances of nonlinear matter power spectrum. We show that the non-Gaussian errors can be important even on large length scales relevant for baryon acoustic oscillations (BAO). Our findings are (1) the non-Gaussian errors degrade the cumulative signal-to-noise ratios (S/N) for the power spectrum amplitude by up to a factor of 2 and 4 for redshifts z=1 and 0, respectively. (2) There is little information on the power spectrum amplitudes in the quasi-nonlinear regime, confirming the previous results. (3) The distribution of power spectrum estimators at BAO scales, among the realizations, is well approximated by a Gaussian distribution with variance that is given by the diagonal covariance component. (4) For the redshift-space power spectrum, the degradation in S/N by non-Gaussian errors is mitigated due to nonlinear redshift distortions. (5) For an actual galaxy survey, the additional shot...
Predictions for the 21cm-galaxy cross-power spectrum observable with LOFAR and Subaru
Vrbanec, Dijana; Jelić, Vibor; Jensen, Hannes; Zaroubi, Saleem; Fernandez, Elizabeth R; Ghosh, Abhik; Iliev, Ilian T; Kakiichi, Koki; Koopmans, Léon V E; Mellema, Garrelt
2016-01-01
The 21cm-galaxy cross-power spectrum is expected to be one of the promising probes of the Epoch of Reionization (EoR), as it could offer information about the progress of reionization and the typical scale of ionized regions at different redshifts. With upcoming observations of 21cm emission from the EoR with the Low Frequency Array (LOFAR), and of high redshift Lyalpha emitters (LAEs) with Subaru's Hyper Suprime Cam (HSC), we investigate the observability of such cross-power spectrum with these two instruments, which are both planning to observe the ELAIS-N1 field at z=6.6. In this paper we use N-body + radiative transfer (both for continuum and Lyalpha photons) simulations at redshift 6.68, 7.06 and 7.3 to compute the 3D theoretical 21cm-galaxy cross-power spectrum, as well as to predict the 2D 21cm-galaxy cross-power spectrum expected to be observed by LOFAR and HSC. Once noise and projection effects are accounted for, our predictions of the 21cm-galaxy cross-power spectrum show clear anti-correlation on s...
The ESR/alanine dosimeter - power dependence of the X-band spectrum
Energy Technology Data Exchange (ETDEWEB)
Arber, J.M.; Sharpe, P.H.G. (National Physical Lab., Teddington (UK)); Joly, H.A.; Morton, J.R.; Preston, K.F. (National Research Council, Ottawa (Canada). Steacie Inst. for Molecular Sciences)
1991-01-01
Satellite lines which accompany the central feature of the X-band ESR spectrum of {alpha}-alanine dosimeters are shown to be due to forbidden ''spin-flip'' transitions associated with methyl protons on nearby molecules. At microwave powers in excess of 1 mW the satellites increase in intensity relative to the central feature, and thus measurements at higher microwave powers must be based on experimentally determined calibration curves at the appropriate power levels. (author).
Einasto Profiles and the Dark Matter Power Spectrum
Ludlow, Aaron D
2016-01-01
We study the mass accretion histories (MAHs) and density profiles of dark matter halos using N-body simulations of self-similar gravitational clustering from scale-free power spectra, $P(k)\\propto k^n$. We pay particular attention to the density profile curvature, which we characterize using the shape parameter, $\\alpha$, of an Einasto profile. In agreement with previous findings our results suggest that, despite vast differences in their MAHs, the density profiles of virialized halos are remarkably alike. Nonetheless, clear departures from self-similarity are evident: for a given spectral index, $\\alpha$ increases slightly but systematically with "peak height", $\
Negro, Francesco; Keenan, Kevin; Farina, Dario
2015-01-01
OBJECTIVE: The identification of common oscillatory inputs to motor neurons in the electromyographic (EMG) signal power spectrum is often preceded by EMG rectification for enhancing the low-frequency oscillatory components. However, rectification is a nonlinear operator and its influence on the EMG signal spectrum is not fully understood. In this study, we aim at determining when EMG rectification is beneficial in the study of oscillatory inputs to motor neurons. APPROACH: We provide a f...
The Scale-invariant Power Spectrum of Primordial Curvature Perturbation in CSTB Cosmos
Li, Changhong; Cheung, Yeuk-Kwan E.
2013-01-01
We investigate the spectrum of cosmological perturbations in a bounce cosmos modeled by a scalar field coupled to the string tachyon field (CSTB cosmos). By explicit computation of its primordial spectral index we show the power spectrum of curvature perturbations, generated during the tachyon matter dominated contraction phase, to be nearly scale invariant. We propose a unified space of parameters for a systematic study of inflationary/bouncing cosmologies. We find that CSTB cosmos is dual--...
An Attempt to Observe Stellar Convection via Power Spectrum
Vazquez Ramio, Hector; Roca Cortes, Teodoro; Regulo, Clara
It is known that the convective motions at solar photosphere level are visible in the frequency domain through the so called ""solar noise"". Time-resolved differential CCD photometry time series form 2 to 4 days long obtained at the Observatorio del Teide Izaña (Tenerife) using the 1m telescope of the Optical Ground Station (OGS) have been taken of five different stellar fields containing late type stars (spectral types F G and K) using de-focusing technique. It is expected they present convective activity at stellar surface and hence its signature must appear in their power spectra. By analogy with the solar case information about time scales of the possible stellar convective structures may be inferred. One of the observed stellar fields contained Uranus which reflects the light coming from the Sun and may be used to calibrate the stellar power spectra of the surrounding stars in the field since solar one is known from space observations carried out by Variability of the solar IRradiance and Gravity Oscillations (VIRGO) instrument.
Regularization and conformal transformations of the power spectrum in general single field inflation
Nakanishi, Yukari
2015-01-01
The regularization of the CMB power spectrum is an important issue of cosmology. Most approaches assume that there is no need to regularize the power spectrum, while Parker advocated the new regularization approach for the power spectrum in 2007: the adiabatic regularization, which was originally developed for particle creation in curved spacetime. This thesis focuses on this issue, especially concerning adiabatic subtraction terms. The subtraction terms for minimally coupled slow-roll inflation are well known. We extend the view to more generic inflation models, and derive the subtraction terms for k-inflation models. Via the method of Urakawa-Starobinsky, we consider the time development of the subtraction term at late times. We also consider the non-minimally coupled case, and show that the adiabatic regularization is independent of the frame: Jordan or Einstein frames.
Constraining High Redshift X-ray Sources with Next Generation 21 cm Power Spectrum Measurements
Ewall-Wice, Aaron; Mesinger, Andrei; Dillon, Joshua S; Liu, Adrian; Pober, Jonathan
2015-01-01
We use the Fisher matrix formalism and semi-numerical simulations to derive quantitative predictions of the constraints that power spectrum measurements on next-generation interferometers, such as the Hydrogen Epoch of Reionization Array (HERA) and the Square Kilometre Array (SKA), will place on the characteristics of the X-ray sources that heated the high redshift intergalactic medium. Incorporating observations between $z=5$ and $z=25$, we find that the proposed 331 element HERA and SKA phase 1 will be capable of placing $\\lesssim 10\\%$ constraints on the spectral properties of these first X-ray sources, even if one is unable to perform measurements within the foreground contaminated "wedge" or the FM band. When accounting for the enhancement in power spectrum amplitude from spin temperature fluctuations, we find that the observable signatures of reionization extend well beyond the peak in the power spectrum usually associated with it. We also find that lower redshift degeneracies between the signatures of ...
Power spectrum nulls due to nonstandard inflationary evolution
Goswami, Gaurav; Souradeep, Tarun
2011-01-01
The simplest models of inflation based on slow roll produce nearly scale invariant primordial power spectra (PPS). But there are also numerous models that predict radically broken scale invariant PPS. In particular, markedly cuspy dips in the PPS correspond to nulls where the perturbation amplitude, hence PPS, goes through a zero at a specific wave number. Near this wave number, the true quantum nature of the generation mechanism of the primordial fluctuations may be revealed. Naively these features may appear to arise from fine-tuned initial conditions. However, we show that this behavior arises under fairly generic set of conditions involving super-Hubble scale evolution of perturbation modes during inflation. We illustrate this with the well-studied examples of punctuated inflation and the Starobinsky-break model.
Power spectrum nulls due to non-standard inflationary evolution
Goswami, Gaurav
2010-01-01
The simplest models of inflation based on slow roll produce nearly scale invariant primordial power spectra (PPS). But there are also numerous models that predict radically broken scale invariant PPS. In particular, markedly cuspy dips in the PPS correspond to nulls where the perturbation amplitude, hence PPS, goes through a zero at a specific wavenumber. Near this wavenumber, the true quantum nature of the generation mechanism of the primordial fluctuations may be revealed. Naively these features may appear to arise from fine tuned initial conditions. However, we show that this behavior arises under fairly generic set of conditions involving super-Hubble scale evolution of perturbation modes during inflation. We illustrate this with the well-studied examples of punctuated inflation and the Starobinsky-break model.
Contamination of the Epoch of Reionization power spectrum in the presence of foregrounds
Sims, Peter H.; Lentati, Lindley; Alexander, Paul; Carilli, Chris L.
2016-11-01
We construct foreground simulations comprising spatially correlated extragalactic and diffuse Galactic emission components and calculate the `intrinsic' (instrument-free) two-dimensional spatial power spectrum and the cylindrically and spherically averaged three-dimensional k-space power spectra of the Epoch of Reionization (EoR) and our foreground simulations using a Bayesian power spectral estimation framework. This leads us to identify a model-dependent region of optimal signal estimation for our foreground and EoR models, within which the spatial power in the EoR signal relative to the foregrounds is maximized. We identify a target field-dependent region, in k-space, of intrinsic foreground power spectral contamination at low k⊥ and k∥ and a transition to a relatively foreground-free intrinsic EoR window in the complement to this region. The contaminated region of k-space demonstrates that simultaneous estimation of the EoR and foregrounds is important for obtaining statistically robust estimates of the EoR power spectrum; biased results will be obtained from methodologies that ignore their covariance. Using simulated observations with frequency-dependent uv-coverage and primary beam, with the former derived for the Hydrogen Epoch of Reionization Array in 37-antenna and 331-antenna configuration, we recover instrumental power spectra consistent with their intrinsic counterparts. We discuss the implications of these results for optimal strategies for unbiased estimation of the EoR power spectrum.
The thermal Sunyaev Zel'dovich effect power spectrum in light of Planck
McCarthy, Ian G.; Brun, Amandine M. C. Le; Schaye, Joop; Holder, Gilbert P.
2013-01-01
(Abridged) The amplitude of the thermal Sunyaev Zel'dovich effect (tSZ) power spectrum is extremely sensitive to the abundance of galaxy clusters and therefore to fundamental cosmological parameters that control their growth, such as sigma_8 and Omega_m. Here we explore the sensitivity of the tSZ power spectrum to important non-gravitational ('sub-grid') physics by employing the cosmo-OWLS suite of large-volume cosmological hydrodynamical simulations, run in both the Planck and WMAP7 best-fit...
Model independent signatures of new physics in the inflationary power spectrum.
Jackson, Mark G; Schalm, Koenraad
2012-03-16
We compute the universal generic corrections to the inflationary power spectrum due to unknown high-energy physics. We arrive at this result via a careful integrating out of massive fields in the "in-in" formalism yielding a consistent and predictive low-energy effective description in time-dependent backgrounds. We find that the power spectrum is universally modified at order H/M, where H is the scale of inflation. This is qualitatively different from the universal corrections in time-independent backgrounds, and it suggests that such effects may be present in upcoming cosmological observations.
Power spectrum of electron number density perturbations at cosmological recombination epoch
Venhlovska, B
2008-01-01
The power spectrum of number density perturbations of free electrons is obtained for the epoch of cosmological recombination of hydrogen. It is shown that amplitude of the electron perturbations power spectrum of scales larger than acoustic horizon exceeds by factor of 17 the amplitude of baryon matter density ones (atoms and ions of hydrogen and helium). In the range of the first and second acoustic peaks such relation is 18, in the range of the third one 16. The dependence of such relations on cosmological parameters is analysed too.
Primordial Black Holes as Dark Matter: The Power Spectrum and Evaporation of Early Structures
Afshordi, N; McDonald, P; Spergel, D. N.
2003-01-01
We consider the possibility that massive primordial black holes are the dominant form of dark matter. Black hole formation generates entropy fluctuations that adds a Poisson noise to the matter power spectrum. We use Lyman-alpha forest observations to constrain this Poisson term in matter power spectrum, then we constrain the mass of black holes to be less than few times 10^4 solar mass. We also find that structures with less than ~ 10^3 primordial black holes evaporate by now.
Nadeem, Qurrat-Ul-Ain
2015-05-07
Previous studies have confirmed the adverse impact of fading correlation on the mutual information (MI) of two-dimensional (2D) multiple-input multiple-output (MIMO) systems. More recently, the trend is to enhance the system performance by exploiting the channel’s degrees of freedom in the elevation, which necessitates the derivation and characterization of three-dimensional (3D) channels in the presence of spatial correlation. In this paper, an exact closed-form expression for the Spatial Correlation Function (SCF) is derived for 3D MIMO channels. This novel SCF is developed for a uniform linear array of antennas with nonisotropic antenna patterns. The proposed method resorts to the spherical harmonic expansion (SHE) of plane waves and the trigonometric expansion of Legendre and associated Legendre polynomials. The resulting expression depends on the underlying arbitrary angular distributions and antenna patterns through the Fourier Series (FS) coefficients of power azimuth and elevation spectrums. The novelty of the proposed method lies in the SCF being valid for any 3D propagation environment. The developed SCF determines the covariance matrices at the transmitter and the receiver that form the Kronecker channel model. In order to quantify the effects of correlation on the system performance, the information-theoretic deterministic equivalents of the MI for the Kronecker model are utilized in both mono-user and multi-user cases. Numerical results validate the proposed analytical expressions and elucidate the dependence of the system performance on azimuth and elevation angular spreads and antenna patterns. Some useful insights into the behaviour of MI as a function of downtilt angles are provided. The derived model will help evaluate the performance of correlated 3D MIMO channels in the future.
Cui, Weiguang; Yang, Xiaohu
2010-01-01
A large fraction of cosmological information on dark energy and gravity is encoded in the nonlinear regime. Precision cosmology thus requires precision modeling of nonlinearities in general dark energy and modified gravity models. We modify the Gadget-2 code and run a series of N-body simulations on modified gravity cosmology to study the nonlinearities. The modified gravity model that we investigate in the present paper is characterized by a single parameter \\zeta, which determines the enhancement of particle acceleration with respect to general relativity (GR), given the identical mass distribution (\\zeta = 1 in GR). The first nonlinear statistics we investigate is the nonlinear matter power spectrum at k < 3h/Mpc, which is the relevant range for robust weak lensing power spectrum modeling at l < 2000. In this study, we focus on the relative difference in the nonlinear power spectra at corresponding redshifts where different gravity models have the same linear power spectra. This particular statistics...
Power Control for Maximum Throughput in Spectrum Underlay Cognitive Radio Networks
Tadrous, John; Nafie, Mohammed; El-Keyi, Amr
2010-01-01
We investigate power allocation for users in a spectrum underlay cognitive network. Our objective is to find a power control scheme that allocates transmit power for both primary and secondary users so that the overall network throughput is maximized while maintaining the quality of service (QoS) of the primary users greater than a certain minimum limit. Since an optimum solution to our problem is computationally intractable, as the optimization problem is non-convex, we propose an iterative algorithm based on sequential geometric programming, that is proved to converge to at least a local optimum solution. We use the proposed algorithm to show how a spectrum underlay network would achieve higher throughput with secondary users operation than with primary users operating alone. Also, we show via simulations that the loss in primary throughput due to the admission of the secondary users is accompanied by a reduction in the total primary transmit power.
Hou, Dong; Wang, Jingwei; Gao, Lijun; Liang, Xuejie; Li, Xiaoning; Liu, Xingsheng
2016-03-01
The high power diode lasers have been widely used in many fields. In this work, a sophisticated high power and high performance horizontal array of diode laser stacks have been developed and fabricated with high duty cycle using hard solder bonding technology. CTE-matched submount and Gold Tin (AuSn) hard solder are used for bonding the diode laser bar to achieve the performances of anti-thermal fatigue, higher reliability and longer lifetime. This array consists of 30 bars with the expected optical output peak power of 6000W. By means of numerical simulation and analytical results, the diode laser bars are aligned on suitable positions along the water cooled cooler in order to achieve the uniform wavelength with narrow spectrum and accurate central wavelength. The performance of the horizontal array, such as output power, spectrum, thermal resistance, life time, etc., is characterized and analyzed.
Distance Dependent Model for the Delay Power Spectrum of In-room Radio Channels
DEFF Research Database (Denmark)
Steinböck, Gerhard; Pedersen, Troels; Fleury, Bernard Henri;
2013-01-01
A model based on experimental observations of the delay power spectrum in closed rooms is proposed. The model includes the distance between the transmitter and the receiver as a parameter which makes it suitable for range based radio localization. The experimental observations motivate the proposed...... model of the delay power spectrum with a primary (early) component and a reverberant component (tail). The primary component is modeled as a Dirac delta function weighted according to an inverse distance power law (d-n). The reverberant component is an exponentially decaying function with onset equal...... to the propagation time between transmitter and receiver. Its power decays exponentially with distance. The proposed model allows for the prediction of e.g. the path loss, mean delay, root mean squared (rms) delay spread, and kurtosis versus the distance. The model predictions are validated by measurements...
Claudia Menzel; Hayn-Leichsenring, Gregor U.; Oliver Langner; Holger Wiese; Christoph Redies
2015-01-01
We investigated whether low-level processed image properties that are shared by natural scenes and artworks - but not veridical face photographs - affect the perception of facial attractiveness and age. Specifically, we considered the slope of the radially averaged Fourier power spectrum in a log-log plot. This slope is a measure of the distribution of special frequency power in an image. Images of natural scenes and artworks possess - compared to face images - a relatively shallow slope (i.e...
Modelling the autocovariance of the power spectrum of a solar-type oscillator
DEFF Research Database (Denmark)
Campante , T.L.; Karoff, Christoffer
2010-01-01
originates from a radial or a dipolar oscillation mode. In order to overcome this problem, we present a procedure for modelling and fitting the autocovariance of the power spectrum which can be used to obtain global seismic parameters of solar-type stars, doing so in an automated fashion without the need......Asteroseismology is able to conduct studies on the interiors of solar-type stars from the analysis of stellar acoustic spectra. However, such an analysis process often has to rely upon subjective choices made throughout. A recurring problem is to determine whether a signal in the acoustic spectrum...... to make subjective choices. From the set of retrievable global seismic parameters we emphasize the mean small frequency separation and, depending on the intrinsic characteristics of the power spectrum, the mean rotational frequency splitting. Since this procedure is automated, it can serve as a useful...
An Assessment of the Information Content of the Power Spectrum and Bispectrum
Chan, Kwan Chuen
2016-01-01
We study the covariance matrix of the power spectrum and bispectrum for dark matter and halos. Using a large suite of simulations from the DEUS-PUR project, we find that the non-Gaussian contributions to the covariance of the power spectrum and bispectrum are significant for both dark matter and halos already at the mildly nonlinear scales. We compute the leading disconnected non-Gaussian correction to the matter bispectrum covariance, and find that the predictions improve the agreement in the mildly nonlinear regime. The shot noise contributions to the covariance of the halo power spectrum and bispectrum are computed. When the ensemble averaged number density is used, the Poisson model covariances are in decent agreement with the measurements. When the number density is estimated and subtracted from each realization, the covariances are significantly reduced and get close to the Gaussian ones. The signal-to-noise ratio, S/N of the halo power spectrum levels off in the mildly nonlinear regime, $k \\sim 0.1 - 0...
Joint likelihood function of cluster number counts and weak lensing power spectrum
Takada, Masahiro
2013-01-01
A coherent over- or under-density contrast across a finite survey volume causes an upward- or downward- fluctuation in the number of halos. This fluctuation in halo number adds a significant co-variant scatter in the observed amplitudes of weak lensing power spectrum at nonlinear, small scales. Because of this covariance, the amount of information that can be extracted from a measurement of the weak lensing power spectrum is significantly smaller than naive estimates. In this paper, we show that by measuring both the number counts of clusters and the power spectrum in the same survey region, we can mitigate this loss of information and significantly enhance the scientific return from the upcoming surveys. First, using the halo model approach, we derive the joint likelihood function of the halo number counts and the weak lensing power spectrum, taking into account the super-sample co-variance effect on the two observables. We show that the analytical model matches the distributions measured from 1000 realizati...
van Diessen, Eric; Senders, Joeky; Jansen, Floor E.; Boersma, Maria; Bruining, Hilgo
2015-01-01
Experimental studies suggest that increased resting-state power of gamma oscillations is associated with autism spectrum disorder (ASD). To extend the clinical applicability of this finding, we retrospectively investigated routine electroencephalography (EEG) recordings of 19 patients with ASD and 1
Crossover in the power spectrum of a driven diffusive lattice-gas model
DEFF Research Database (Denmark)
Andersen, Jørgen Vitting; Jensen, Henrik Jeldtoft; Mouritsen, Ole G.
1991-01-01
A driven diffusive lattice-gas model with stochastic dynamics is used to study, via a Monte Carlo simulation, the fluctuations in the particle density and the lifetime of the particles in the system. The scaling properties of the power spectrum S(f) and the lifetime distribution function D...
Reproducing neutrino effects on the matter power spectrum through a degenerate Fermi gas approach
International Nuclear Information System (INIS)
Modifications on the predictions about the matter power spectrum based on the hypothesis of a tiny contribution from a degenerate Fermi gas (DFG) test-fluid to some dominant cosmological scenario are investigated. Reporting about the systematic way of accounting for all the cosmological perturbations, through the Boltzmann equation we obtain the analytical results for density fluctuation, δ, and fluid velocity divergence, θ, of the DFG. Small contributions to the matter power spectrum are analytically obtained for the radiation-dominated background, through an ultra-relativistic approximation, and for the matter-dominated and Λ-dominated eras, through a non-relativistic approximation. The results can be numerically reproduced and compared with those of considering non-relativistic and ultra-relativistic neutrinos into the computation of the matter power spectrum. Lessons concerning the formation of large scale structures of a DFG are depicted, and consequent deviations from standard ΛCDM predictions for the matter power spectrum (with and without neutrinos) are quantified
Reproducing neutrino effects on the matter power spectrum through a degenerate Fermi gas approach
Energy Technology Data Exchange (ETDEWEB)
Perico, E.L.D. [Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, PO Box 6165, 13083-970, Campinas, SP (Brazil); Bernardini, A.E., E-mail: elduarte@ifi.unicamp.br, E-mail: alexeb@ufscar.br [Departamento de Física, Universidade Federal de São Carlos, PO Box 676, 13565-905, São Carlos, SP (Brazil)
2011-06-01
Modifications on the predictions about the matter power spectrum based on the hypothesis of a tiny contribution from a degenerate Fermi gas (DFG) test-fluid to some dominant cosmological scenario are investigated. Reporting about the systematic way of accounting for all the cosmological perturbations, through the Boltzmann equation we obtain the analytical results for density fluctuation, δ, and fluid velocity divergence, θ, of the DFG. Small contributions to the matter power spectrum are analytically obtained for the radiation-dominated background, through an ultra-relativistic approximation, and for the matter-dominated and Λ-dominated eras, through a non-relativistic approximation. The results can be numerically reproduced and compared with those of considering non-relativistic and ultra-relativistic neutrinos into the computation of the matter power spectrum. Lessons concerning the formation of large scale structures of a DFG are depicted, and consequent deviations from standard ΛCDM predictions for the matter power spectrum (with and without neutrinos) are quantified.
An ideal mass assignment scheme for measuring the Power Spectrum with FFTs
Cui, Weiguang; Yang, Xiaohu; Wang, Yu; Feng, Longlong; Springel, Volker
2008-01-01
In measuring the power spectrum of the distribution of large numbers of dark matter particles in simulations, or galaxies in observations, one has to use Fast Fourier Transforms (FFT) for calculational efficiency. However, because of the required mass assignment onto grid points in this method, the measured power spectrum $\\la |\\delta^f(k)|^2\\ra$ obtained with an FFT is not the true power spectrum $P(k)$ but instead one that is convolved with a window function $|W(\\vec k)|^2$ in Fourier space. In a recent paper, Jing (2005) proposed an elegant algorithm to deconvolve the sampling effects of the window function and to extract the true power spectrum, and tests using N-body simulations show that this algorithm works very well for the three most commonly used mass assignment functions, i.e., the Nearest Grid Point (NGP), the Cloud In Cell (CIC) and the Triangular Shaped Cloud (TSC) methods. In this paper, rather than trying to deconvolve the sampling effects of the window function, we propose to select a particu...
Directory of Open Access Journals (Sweden)
Ahmad Ghasemloonia
2011-01-01
Full Text Available The role of gears in industry for speed and torque variation purposes is obvious. The gearbox diagnostic methods have been improved quickly in recent years. In this paper, two of the newest methods, the resonance demodulation technique (R.D, and the instantaneous power spectrum technique (IPS are applied to gearbox vibration signals and their capabilities in fault detection are compared. Yet, the important role of time averaging should not be dispensed with, as it is the primary step for both techniques. In the present study, the mathematical method of these techniques, according to the mathematical vibration model of gears, is introduced, these techniques are applied to the test rig data, and finally the results of both methods are compared. The results indicate that in each method, the location of fault can be estimated and it is located in the same angular position in both methods. The IPS method is applicable to severe faults, whereas the resonance demodulation technique is a simple tool to recognize the fault at each severity and at the early stages of fault generation.
Predictions for the 21 cm-galaxy cross-power spectrum observable with LOFAR and Subaru
Vrbanec, Dijana; Ciardi, Benedetta; Jelić, Vibor; Jensen, Hannes; Zaroubi, Saleem; Fernandez, Elizabeth R.; Ghosh, Abhik; Iliev, Ilian T.; Kakiichi, Koki; Koopmans, Léon V. E.; Mellema, Garrelt
2016-03-01
The 21 cm-galaxy cross-power spectrum is expected to be one of the promising probes of the Epoch of Reionization (EoR), as it could offer information about the progress of reionization and the typical scale of ionized regions at different redshifts. With upcoming observations of 21 cm emission from the EoR with the Low Frequency Array (LOFAR), and of high-redshift Ly α emitters with Subaru's Hyper Suprime-Cam (HSC), we investigate the observability of such cross-power spectrum with these two instruments, which are both planning to observe the ELAIS-N1 field at z = 6.6. In this paper, we use N-body + radiative transfer (both for continuum and Ly α photons) simulations at redshift 6.68, 7.06 and 7.3 to compute the 3D theoretical 21 cm-galaxy cross-power spectrum and cross-correlation function, as well as to predict the 2D 21 cm-galaxy cross-power spectrum and cross-correlation function expected to be observed by LOFAR and HSC. Once noise and projection effects are accounted for, our predictions of the 21 cm-galaxy cross-power spectrum show clear anti-correlation on scales larger than ˜60 h-1 Mpc (corresponding to k ˜ 0.1 h Mpc-1), with levels of significance p = 0.003 at z = 6.6 and p = 0.08 at z = 7.3. On smaller scales, instead, the signal is completely contaminated. On the other hand, our 21 cm-galaxy cross-correlation function is strongly contaminated by noise on all scales, since the noise is no longer being separated by its k modes.
Polarization angular spectra of Galactic synchrotron emission on arcminute scales
Tucci, M; Cecchini, S; Nicastro, L; Fabbri, R; Gaensler, B M; Dickey, J M; McClure-Griffiths, N M
2002-01-01
We study the angular power spectra of the polarized component of the Galactic synchrotron emission in the 28-deg^2 Test Region of the Southern Galactic Plane Survey at 1.4 GHz. These data were obtained by the Australia Telescope Compact Array and allow us to investigate angular power spectra down to arcminute scales. We find that, at this frequency, the polarization spectra for E- and B-modes seem to be affected by Faraday rotation produced in compact foreground screens. A different behavior is shown by the angular spectrum of the polarized intensity PI=\\sqrt{Q^2+U^2}. This is well fitted by a power law with slope \\~1.7, which agrees with higher frequency results and can probably be more confidently extrapolated to the cosmological window.
Choi, Kwang-Ho; Cho, Seong Jin; Kang, Suk-Yun; Ahn, Seong Hun
2016-01-01
To identify physical and sensory responses to acupuncture point stimulation (APS), nonacupuncture point stimulation (NAPS) and no stimulation (NS), changes in the high-frequency power spectrum before and after stimulation were evaluated with electroencephalography (EEG). A total of 37 healthy subjects received APS at the LI4 point, NAPS, or NS with their eyes closed. Background brain waves were measured before, during, and after stimulation using 8 channels. Changes in the power spectra of gamma waves and high beta waves before, during, and after stimulation were comparatively analyzed. After NAPS, absolute high beta power (AHBP), relative high beta power (RHBP), absolute gamma power (AGP), and relative gamma power (RGP) tended to increase in all channels. But no consistent notable changes were found for APS and NS. NAPS is believed to cause temporary reactions to stress, tension, and sensory responses of the human body, while APS responds stably compared to stimulation of other parts of the body.
Directory of Open Access Journals (Sweden)
Kwang-Ho Choi
2016-01-01
Full Text Available To identify physical and sensory responses to acupuncture point stimulation (APS, nonacupuncture point stimulation (NAPS and no stimulation (NS, changes in the high-frequency power spectrum before and after stimulation were evaluated with electroencephalography (EEG. A total of 37 healthy subjects received APS at the LI4 point, NAPS, or NS with their eyes closed. Background brain waves were measured before, during, and after stimulation using 8 channels. Changes in the power spectra of gamma waves and high beta waves before, during, and after stimulation were comparatively analyzed. After NAPS, absolute high beta power (AHBP, relative high beta power (RHBP, absolute gamma power (AGP, and relative gamma power (RGP tended to increase in all channels. But no consistent notable changes were found for APS and NS. NAPS is believed to cause temporary reactions to stress, tension, and sensory responses of the human body, while APS responds stably compared to stimulation of other parts of the body.
General Requirements on Matter Power Spectrum Predictions for Cosmology with Weak Lensing Tomography
Hearin, Andrew P; Ma, Zhaoming
2011-01-01
Forthcoming projects such as DES, LSST, WFIRST, and Euclid aim to measure weak lensing shear correlations with unprecedented precision, constraining the dark energy equation of state at the percent level. Reliance on photometrically-determined redshifts constitutes a major source of uncertainty for these surveys. Additionally, interpreting the weak lensing signal requires a detailed understanding of the nonlinear physics of gravitational collapse. We present a new analysis of the stringent calibration requirements for weak lensing analyses of future imaging surveys that addresses both photo-z uncertainty and errors in the calibration of the matter power spectrum. We find that when photo-z uncertainty is taken into account the requirements on the level of precision in the prediction for the matter power spectrum are more stringent than previously thought. Including degree-scale galaxy clustering statistics in a joint analysis with weak lensing not only strengthens the survey's constraining power by ~20% but ca...
Baryon Acoustic Oscillations in 2D: Modeling Redshift-space Power Spectrum from Perturbation Theory
Taruya, Atsushi; Saito, Shun
2010-01-01
We present an improved prescription for matter power spectrum in redshift space taking a proper account of both the non-linear gravitational clustering and redshift distortion, which are of particular importance for accurately modeling baryon acoustic oscillations (BAOs). Contrary to the models of redshift distortion phenomenologically introduced but frequently used in the literature, the new model includes the corrections arising from the non-linear coupling between the density and velocity fields associated with two competitive effects of redshift distortion, i.e., Kaiser and Finger-of-God effects. Based on the improved treatment of perturbation theory for gravitational clustering, we compare our model predictions with monopole and quadrupole power spectra of N-body simulations, and an excellent agreement is achieved over the scales of BAOs. Potential impacts on constraining dark energy and modified gravity from the redshift-space power spectrum are also investigated based on the Fisher-matrix formalism. We...
Power spectrum features of the near-Earth atmospheric electric field in Kamchatka
Directory of Open Access Journals (Sweden)
S. E. Smirnov
2004-06-01
Full Text Available Power spectrum of the diurnal variations of the quasi-electrostatic field Ez in the near-Earth atmosphere have been presented for the first time. The Ez power spectrum variations in the period of fine weather have been shown to exhibit two bands of the periods of natural atmospheric oscillations with T = 1-5 and 6-24 h. These oscillations are the modes of the internal gravity and tidal waves in the lower atmosphere. On the days under atmospheric precipitation, the spectral power of Ez increases by an order of magnitude. During the pre-earthquake period, when the diurnal Ez variation had an anomaly, the intensity of harmonics with T = 1.8, 2.2, and 3.8 h increased by an order of magnitude or more in comparison with the Ez spectra in fine weather. Two additional spectral bands with T = 0.6 and 1 h have appeared simultaneously.
The effects of galaxy formation on the matter power spectrum: A challenge for precision cosmology
van Daalen, Marcel P; Booth, C M; Vecchia, Claudio Dalla
2011-01-01
Upcoming weak lensing surveys, such as LSST, EUCLID, and WFIRST, aim to measure the matter power spectrum with unprecedented accuracy. In order to fully exploit these observations, models are needed that, given a set of cosmological parameters, can predict the non-linear matter power spectrum at the level of 1% or better for scales corresponding to comoving wave numbers 0.170 h/Mpc. Therefore, baryons, and particularly AGN feedback, cannot be ignored in theoretical power spectra for k>0.3 h/Mpc. It will thus be necessary to improve our understanding of feedback processes in galaxy formation, or at least to constrain them through auxiliary observations, before we can fulfil the goals of upcoming weak lensing surveys.
DEFF Research Database (Denmark)
Sørensen, Simon Toft; Larsen, Casper; Møller, Uffe;
2012-01-01
The noise properties of a supercontiuum can be significantly improved both in terms of coherence and intensity stability by modulating the input pulse with a seed. In this paper, we numerically investigate the influence of the seed wavelength, the pump power, and the modulation instability gain...... spectrum. Finally, we show that the coherent pulse breakup afforded by seeding is washed out by turbulent solitonic dynamics when the pump power is increased to the kilowatt level. Thus our results show that seeding cannot improve the noise performance of a high power supercontinuum source....
Probing the Scale Invariance of the Inflationary Power Spectrum in Expanding Dipolar Condensates
Chä, Seok-Yeong
2016-01-01
We consider an analogue de Sitter cosmos in an expanding quasi-two-dimensional Bose-Einstein condensate, with dominant dipole-dipole interactions between the atoms or molecules in the ultracold gas. It is demonstrated that a hallmark signature of inflationary cosmology, the scale invariance of the power spectrum of inflaton field correlations, experiences strong modifications when at the initial stage of expansion the excitation spectrum displays a roton minimum. Dipolar quantum gases thus furnish a viable laboratory tool to experimentally investigate, with well-defined and controllable initial conditions, whether primordial oscillation spectra deviating from Lorentz invariance at trans-Planckian momenta violate standard predictions of inflationary cosmology.
... A This image displays a frequent location for candida infection (angular cheilitis), the corners of the mouth. Overview ... infection, those affected may also have thrush (oral candidiasis). The areas are generally slightly painful. The condition ...
Hawkins, D
1994-03-01
A computer program was developed in conjunction with a musculoskeletal modeling scheme to determine lower extremity joint angular velocity profiles which allow specific muscles, if activated tetanically, to generate their greatest power. As input the program requires subject anthropometric and joint configuration data. Muscle-tendon (MT) attachment location data and a straight line MT model are used to calculate MT lengths for each joint configuration. The shortening velocity which allows an active muscle to generate its greatest power is calculated based on muscle architecture and a relationship between power and shortening velocity. A finite difference technique is used to calculate the time between sequential joint configurations which will produce the optimal muscle shortening velocity. This time is then used to calculate optimal joint angular velocities for each muscle and and for each joint configuration. The utility of this program is demonstrated by calculating optimal joint angular velocities for fifteen muscles and comparing calculated knee extension velocities with experimental results cited in the literature. PMID:8062553
The DWT Power Spectrum of the two-degree Field Galaxy Redshift Survey
Cai, Y C; Zhao, Y H; Feng, L L; Fang, L Z; Cai, Yan-Chuan; Pan, Jun; Zhao, Yong-Heng; Feng, Long-Long; Fang, Li-Zhi
2006-01-01
The power spectrum of the two-degree Field Galaxy Redshift Survey (2dFGRS) sample is estimated with the discrete wavelet transform (DWT) method. The DWT power spectra within $0.04
Multi-redshift limits on the 21cm power spectrum from PAPER
Pober, Daniel C Jacobs Jonathan C; Aguirre, James E; Ali, Zaki; Bowman, Judd; Bradley, Richard F; Carilli, Chris L; DeBoer, David R; Dexter, Matthew R; Gugliucci, Nicole E; Klima, Pat; Liu, Adrian; MacMahon, Dave H E; Manley, Jason R; Moore, David F; Stefan, Irina I; Walbrugh, William P
2014-01-01
The epoch of reionization power spectrum is expected to evolve strongly with redshift, and it is this variation with cosmic history that will allow us to begin to place constraints on the physics of reionization. The primary obstacle to the measurement of the EoR power spectrum is bright foreground emission. We present an analysis of observations from the Donald C. Backer Precision Array for Probing the Epoch of Reionization (PAPER) telescope which place new limits on the HI power spectrum over the redshift range of $7.5
What is the optimal way to measure the galaxy power spectrum?
Smith, Robert E.; Marian, Laura
2016-04-01
Measurements of the galaxy power spectrum contain a wealth of cosmological information. In Smith & Marian, we generalized the power spectrum methodology of Feldman et al. to take into account the key tenets of galaxy formation: galaxies form and reside exclusively in dark matter haloes; a given dark matter halo may host galaxies of various luminosities; galaxies inherit the large-scale bias of their host halo. In this paradigm, we derived the optimal weighting scheme for maximizing the signal-to-noise ({S}/{N}) on a given band power estimate. For a future all-sky flux-limited galaxy redshift survey of depth bJ > 22, we demonstrate that the optimal weighting scheme does indeed provide improved {S}/{N} at the level of ˜20 per cent when compared to Feldman et al. and ˜60 per cent relative to Percival et al., for scales of the order of k ˜ 0.5 h Mpc-1. Using a Fisher matrix approach, we show the cosmological information yield is also increased relative to these alternate methods - especially the primordial power spectrum amplitude and dark energy equation of state. Caveats: uncertainties in cluster masses, non-linear halo bias and redshift distortions may reduce information gains.
Power spectrum extraction for redshifted 21-cm epoch of reionization experiments: the LOFAR case
Harker, Geraint; Bernardi, Gianni; Brentjens, Michiel A; de Bruyn, A G; Ciardi, Benedetta; Jelic, Vibor; Koopmans, Leon V E; Labropoulos, Panagiotis; Mellema, Garrelt; Offringa, Andre; Pandey, V N; Pawlik, Andreas H; Schaye, Joop; Thomas, Rajat M; Yatawatta, Sarod
2010-01-01
One of the aims of the Low Frequency Array (LOFAR) Epoch of Reionization (EoR) project is to measure the power spectrum of variations in the intensity of redshifted 21-cm radiation from the EoR. The sensitivity with which this power spectrum can be estimated depends on the level of thermal noise and sample variance, and also on the systematic errors arising from the extraction process, in particular from the subtraction of foreground contamination. We model the extraction process using realistic simulations of the cosmological signal, the foregrounds and noise, and so estimate the sensitivity of the LOFAR EoR experiment to the redshifted 21-cm power spectrum. Detection of emission from the EoR should be possible within 360 hours of observation with a single station beam. Integrating for longer, and synthesizing multiple station beams within the primary (tile) beam, then enables us to extract progressively more accurate estimates of the power at a greater range of scales and redshifts. We discuss different obs...
First Limits on the 21 cm Power Spectrum during the Epoch of X-ray heating
Ewall-Wice, A; Hewitt, J N; Loeb, A; Mesinger, A; Neben, A R; Offringa, A R; Tegmark, M; Barry, N; Beardsley, A P; Bernardi, G; Bowman, Judd D; Briggs, F; Cappallo, R J; Carroll, P; Corey, B E; de Oliveira-Costa, A; Emrich, D; Feng, L; Gaensler, B M; Goeke, R; Greenhill, L J; Hazelton, B J; Hurley-Walker, N; Johnston-Hollit, M; Jacobs, Daniel C; Kaplan, D L; Kasper, J C; Kim, HS; Kratzenberg, E; Lenc, E; Line, J; Lonsdale, C J; Lynch, M J; McKinley, B; McWhirter, S R; Mitchell, D A; Morales, M F; Morgan, E; Thyagarajan, Nithyanandan; Oberoi, D; Ord, S M; Paul, S; Pindor, B; Pober, J C; Prabu, T; Procopio, P; Riding, J; Rogers, A E E; Roshi, A; Shankar, N Udaya; Sethi, Shiv K; Srivani, K S; Subrahmanyan, R; Sullivan, I S; Tingay, S J; Trott, C M; Waterson, M; Wayth, R B; Webster, R L; Whitney, A R; Williams, A; Williams, C L; Wu, C; Wyithe, J S B
2016-01-01
We present first results from radio observations with the Murchison Widefield Array seeking to constrain the power spectrum of 21 cm brightness temperature fluctuations between the redshifts of 11.6 and 17.9 (113 and 75 MHz). Three hours of observations were conducted over two nights with significantly different levels of ionospheric activity. We use these data to assess the impact of systematic errors at low frequency, including the ionosphere and radio-frequency interference, on a power spectrum measurement. We find that after the 1-3 hours of integration presented here, our measurements at the Murchison Radio Observatory are not limited by RFI, even within the FM band, and that the ionosphere does not appear to affect the level of power in the modes that we expect to be sensitive to cosmology. Power spectrum detections, inconsistent with noise, due to fine spectral structure imprinted on the foregrounds by reflections in the signal-chain, occupy the spatial Fourier modes where we would otherwise be most se...
First Limits on the 21 cm Power Spectrum during the Epoch of X-ray heating.
Ewall-Wice, A.; Dillon, Joshua S.; Hewitt, J. N.; Loeb, A.; Mesinger, A.; Neben, A. R.; Offringa, A. R.; Tegmark, M.; Barry, N.; Beardsley, A. P.; Bernardi, G.; Bowman, Judd D.; Briggs, F.; Cappallo, R. J.; Carroll, P.; Corey, B. E.; de Oliveira-Costa, A.; Emrich, D.; Feng, L.; Gaensler, B. M.; Goeke, R.; Greenhill, L. J.; Hazelton, B. J.; Hurley-Walker, N.; Johnston-Hollitt, M.; Jacobs, Daniel C.; Kaplan, D. L.; Kasper, J. C.; Kim, HS; Kratzenberg, E.; Lenc, E.; Line, J.; Lonsdale, C. J.; Lynch, M. J.; McKinley, B.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Thyagarajan, Nithyanandan; Oberoi, D.; Ord, S. M.; Paul, S.; Pindor, B.; Pober, J. C.; Prabu, T.; Procopio, P.; Riding, J.; Rogers, A. E. E.; Roshi, A.; Shankar, N. Udaya; Sethi, Shiv K.; Srivani, K. S.; Subrahmanyan, R.; Sullivan, I. S.; Tingay, S. J.; Trott, C. M.; Waterson, M.; Wayth, R. B.; Webster, R. L.; Whitney, A. R.; Williams, A.; Williams, C. L.; Wu, C.; Wyithe, J. S. B.
2016-05-01
We present first results from radio observations with the Murchison Widefield Array seeking to constrain the power spectrum of 21 cm brightness temperature fluctuations between the redshifts of 11.6 and 17.9 (113 and 75 MHz). Three hours of observations were conducted over two nights with significantly different levels of ionospheric activity. We use these data to assess the impact of systematic errors at low frequency, including the ionosphere and radio-frequency interference, on a power spectrum measurement. We find that after the 1-3 hours of integration presented here, our measurements at the Murchison Radio Observatory are not limited by RFI, even within the FM band, and that the ionosphere does not appear to affect the level of power in the modes that we expect to be sensitive to cosmology. Power spectrum detections, inconsistent with noise, due to fine spectral structure imprinted on the foregrounds by reflections in the signal-chain, occupy the spatial Fourier modes where we would otherwise be most sensitive to the cosmological signal. We are able to reduce this contamination using calibration solutions derived from autocorrelations so that we achieve an sensitivity of 104 mK on comoving scales k ≲ 0.5 hMpc-1. This represents the first upper limits on the 21 cm power spectrum fluctuations at redshifts 12 ≲ z ≲ 18 but is still limited by calibration systematics. While calibration improvements may allow us to further remove this contamination, our results emphasize that future experiments should consider carefully the existence of and their ability to calibrate out any spectral structure within the EoR window.
First limits on the 21 cm power spectrum during the Epoch of X-ray heating
Ewall-Wice, A.; Dillon, Joshua S.; Hewitt, J. N.; Loeb, A.; Mesinger, A.; Neben, A. R.; Offringa, A. R.; Tegmark, M.; Barry, N.; Beardsley, A. P.; Bernardi, G.; Bowman, Judd D.; Briggs, F.; Cappallo, R. J.; Carroll, P.; Corey, B. E.; de Oliveira-Costa, A.; Emrich, D.; Feng, L.; Gaensler, B. M.; Goeke, R.; Greenhill, L. J.; Hazelton, B. J.; Hurley-Walker, N.; Johnston-Hollitt, M.; Jacobs, Daniel C.; Kaplan, D. L.; Kasper, J. C.; Kim, HS; Kratzenberg, E.; Lenc, E.; Line, J.; Lonsdale, C. J.; Lynch, M. J.; McKinley, B.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Thyagarajan, Nithyanandan; Oberoi, D.; Ord, S. M.; Paul, S.; Pindor, B.; Pober, J. C.; Prabu, T.; Procopio, P.; Riding, J.; Rogers, A. E. E.; Roshi, A.; Shankar, N. Udaya; Sethi, Shiv K.; Srivani, K. S.; Subrahmanyan, R.; Sullivan, I. S.; Tingay, S. J.; Trott, C. M.; Waterson, M.; Wayth, R. B.; Webster, R. L.; Whitney, A. R.; Williams, A.; Williams, C. L.; Wu, C.; Wyithe, J. S. B.
2016-08-01
We present first results from radio observations with the Murchison Widefield Array seeking to constrain the power spectrum of 21 cm brightness temperature fluctuations between the redshifts of 11.6 and 17.9 (113 and 75 MHz). 3 h of observations were conducted over two nights with significantly different levels of ionospheric activity. We use these data to assess the impact of systematic errors at low frequency, including the ionosphere and radio-frequency interference, on a power spectrum measurement. We find that after the 1-3 h of integration presented here, our measurements at the Murchison Radio Observatory are not limited by RFI, even within the FM band, and that the ionosphere does not appear to affect the level of power in the modes that we expect to be sensitive to cosmology. Power spectrum detections, inconsistent with noise, due to fine spectral structure imprinted on the foregrounds by reflections in the signal-chain, occupy the spatial Fourier modes where we would otherwise be most sensitive to the cosmological signal. We are able to reduce this contamination using calibration solutions derived from autocorrelations so that we achieve an sensitivity of 104 mK on comoving scales k ≲ 0.5 h Mpc-1. This represents the first upper limits on the 21 cm power spectrum fluctuations at redshifts 12 ≲ z ≲ 18 but is still limited by calibration systematics. While calibration improvements may allow us to further remove this contamination, our results emphasize that future experiments should consider carefully the existence of and their ability to calibrate out any spectral structure within the EoR window.
The Coyote Universe. I. Precision Determination of the Nonlinear Matter Power Spectrum
Heitmann, Katrin; White, Martin; Wagner, Christian; Habib, Salman; Higdon, David
2010-05-01
Near-future cosmological observations targeted at investigations of dark energy pose stringent requirements on the accuracy of theoretical predictions for the nonlinear clustering of matter. Currently, N-body simulations comprise the only viable approach to this problem. In this paper, we study various sources of computational error and methods to control them. By applying our methodology to a large suite of cosmological simulations we show that results for the (gravity-only) nonlinear matter power spectrum can be obtained at 1% accuracy out to k ~ 1 h Mpc-1. The key components of these high accuracy simulations are precise initial conditions, very large simulation volumes, sufficient mass resolution, and accurate time stepping. This paper is the first in a series of three; the final aim is a high-accuracy prediction scheme for the nonlinear matter power spectrum that improves current fitting formulae by an order of magnitude.
The Coyote Universe I: Precision Determination of the Nonlinear Matter Power Spectrum
Heitmann, Katrin; Wagner, Christian; Habib, Salman; Higdon, David
2008-01-01
Near-future cosmological observations targeted at investigations of dark energy pose stringent requirements on the accuracy of theoretical predictions for the clustering of matter. Currently, N-body simulations comprise the only viable approach to this problem. In this paper we demonstrate that N-body simulations can indeed be sufficiently controlled to fulfill these requirements for the needs of ongoing and near-future weak lensing surveys. By performing a large suite of cosmological simulation comparison and convergence tests we show that results for the nonlinear matter power spectrum can be obtained at 1% accuracy out to k~1 h/Mpc. The key components of these high accuracy simulations are: precise initial conditions, very large simulation volumes, sufficient mass resolution, and accurate time stepping. This paper is the first in a series of three, with the final aim to provide a high-accuracy prediction scheme for the nonlinear matter power spectrum.
arXiv Neutrino masses and cosmology with Lyman-alpha forest power spectrum
Palanque-Delabrouille, Nathalie; Baur, Julien; Magneville, Christophe; Rossi, Graziano; Lesgourgues, Julien; Borde, Arnaud; Burtin, Etienne; LeGoff, Jean-Marc; Rich, James; Viel, Matteo; Weinberg, David
2015-01-01
We present constraints on neutrino masses, the primordial fluctuation spectrum from inflation, and other parameters of the $\\Lambda$CDM model, using the one-dimensional Ly$\\alpha$-forest power spectrum measured by Palanque-Delabrouille et al. (2013) from SDSS-III/BOSS, complemented by Planck 2015 cosmic microwave background (CMB) data and other cosmological probes. This paper improves on the previous analysis by Palanque-Delabrouille et al. (2015) by using a more powerful set of calibrating hydrodynamical simulations that reduces uncertainties associated with resolution and box size, by adopting a more flexible set of nuisance parameters for describing the evolution of the intergalactic medium, by including additional freedom to account for systematic uncertainties, and by using Planck 2015 constraints in place of Planck 2013. Fitting Ly$\\alpha$ data alone leads to cosmological parameters in excellent agreement with the values derived independently from CMB data, except for a weak tension on the scalar index ...
A Perturbative Approach to the Redshift Space Power Spectrum: Beyond the Standard Model
Bose, Benjamin
2016-01-01
We develop a code to produce the power spectrum in redshift space based on standard perturbation theory (SPT) at 1-loop order. The code can be applied to a wide range of modified gravity and dark energy models using a recently proposed numerical method by A.Taruya. This includes Horndeski's theory with a general potential, which accommodates both chameleon and Vainshtein screening mechanisms and provides a non-linear extension of the effective theory of dark energy up to third order. Focus is on a recent non-linear model of the redshift space power spectrum which has been shown to model the anisotropy very well at relevant scales for the SPT framework, as well as capturing relevant non-linear effects typical of modified gravity theories. We provide consistency checks of the code against established results and elucidate it's application within the light of upcoming high precision RSD data.
On the Soft Limit of the Large Scale Structure Power Spectrum: UV Dependence
Garny, Mathias; Porto, Rafael A; Sagunski, Laura
2015-01-01
We derive a non-perturbative equation for the large scale structure power spectrum of long-wavelength modes. Thereby, we use an operator product expansion together with relations between the three-point function and power spectrum in the soft limit. The resulting equation encodes the coupling to ultraviolet (UV) modes in two time-dependent coefficients, which may be obtained from response functions to (anisotropic) parameters, such as spatial curvature, in a modified cosmology. We argue that both depend weakly on fluctuations deep in the UV. As a byproduct, this implies that the renormalized leading order coefficient(s) in the effective field theory (EFT) of large scale structures receive most of their contribution from modes close to the non-linear scale. Consequently, the UV dependence found in explicit computations within standard perturbation theory stems mostly from counter-term(s). We confront a simplified version of our non-perturbative equation against existent numerical simulations, and find good agr...
Effect of dark energy sound speed and equation of state on CDM power spectrum
Ansari, Rizwan Ul Haq
2014-01-01
We study the influence of equation of state $w$ and effective sound speed $c_e$ of the dark energy perturbations on the cold dark matter(CDM) power spectrum.We consider different cases of the equation of state and the effective sound speed, the cold dark matter power spectrum is found to be generically suppressed in these cases as compared to the $\\Lambda$CDM model. The suppression at different length scales depends on the value of $w$ and $c_e$, and the effect of different $w$ is profoundly seen at all length scales. The influence of sound speed is significantly seen only at the intermediate length scales and is negligible at scales very much larger and smaller than the Hubble scale.
Imprint of inhomogeneous and anisotropic primordial power spectrum on CMB polarization
Kothari, Rahul; Ghosh, Shamik; Rath, Pranati K.; Kashyap, Gopal; Jain, Pankaj
2016-08-01
We consider an inhomogeneous model and independently an anisotropic model of primordial power spectrum in order to describe the observed hemispherical anisotropy in cosmic microwave background radiation (CMBR). This anisotropy can be parametrized in terms of the dipole modulation model of the temperature field. Both the models lead to correlations between spherical harmonic coefficients corresponding to multipoles, l and l ± 1. We obtain the model parameters by making a fit to TT correlations in CMBR data. Using these parameters we predict the signature of our models for correlations among different multipoles for the case of the TE and EE modes. These predictions can be used to test whether the observed hemispherical anisotropy can be correctly described in terms of a primordial power spectrum. Furthermore these may also allow us to distinguish between an inhomogeneous and an anisotropic model.
The power spectrum of systematics in cosmic shear tomography and the bias on cosmological parameters
Cardone, V F; Calabrese, E; Galli, S; Huang, Z; Maoli, R; Melchiorri, A; Scaramella, R
2013-01-01
Cosmic shear tomography has emerged as one of the most promising tools to both investigate the nature of dark energy and discriminate between General Relativity and modified gravity theories. In order to successfully achieve these goals, systematics in shear measurements have to be taken into account; their impact on the weak lensing power spectrum has to be carefully investigated in order to estimate the bias induced on the inferred cosmological parameters. To this end, we develop here an efficient tool to compute the power spectrum of systematics by propagating, in a realistic way, shear measurement, source properties and survey setup uncertainties. Starting from analytical results for unweighted moments and general assumptions on the relation between measured and actual shear, we derive analytical expressions for the multiplicative and additive bias, showing how these terms depend not only on the shape measurement errors, but also on the properties of the source galaxies (namely, size, magnitude and spectr...
A perturbative approach to the redshift space power spectrum: beyond the Standard Model
Bose, Benjamin; Koyama, Kazuya
2016-08-01
We develop a code to produce the power spectrum in redshift space based on standard perturbation theory (SPT) at 1-loop order. The code can be applied to a wide range of modified gravity and dark energy models using a recently proposed numerical method by A.Taruya to find the SPT kernels. This includes Horndeski's theory with a general potential, which accommodates both chameleon and Vainshtein screening mechanisms and provides a non-linear extension of the effective theory of dark energy up to the third order. Focus is on a recent non-linear model of the redshift space power spectrum which has been shown to model the anisotropy very well at relevant scales for the SPT framework, as well as capturing relevant non-linear effects typical of modified gravity theories. We provide consistency checks of the code against established results and elucidate its application within the light of upcoming high precision RSD data.
Lacot, Eric; Girardeau, Vadim; Hugon, Olivier; Jacquin, Olivier
2016-01-01
In this article, we study the non-linear coupling between the stationary (i.e. the beating modulation signal) and transient (i.e. the laser quantum noise) dynamics of a laser subjected to frequency shifted optical feedback. We show how the noise power spectrum and more specifically the relaxation oscillation frequency of the laser are modified under different optical feedback condition. Specifically we study the influence of (i) the amount of light returning to the laser cavity and (ii) the initial detuning between the frequency shift and intrinsic relaxation frequency. The present work shows how the relaxation frequency is related to the strength of the beating signal and the shape of the noise power spectrum gives an image of the Transfer Modulation Function (i.e. of the amplification gain) of the nonlinear-laser dynamics.The theoretical predictions, confirmed by numerical resolutions, are in good agreements with the experimental data.
EFFECTS OF THE NEUTRINO MASS SPLITTING ON THE NONLINEAR MATTER POWER SPECTRUM
International Nuclear Information System (INIS)
We have performed cosmological N-body simulations which include the effect of the masses of the individual neutrino species. The simulations were aimed at studying the effect of different neutrino hierarchies on the matter power spectrum. Compared to the linear theory predictions, we find that nonlinearities enhance the effect of hierarchy on the matter power spectrum at mildly nonlinear scales. The maximum difference between the different hierarchies is about 0.5% for a sum of neutrino masses of 0.1 eV. Albeit this is a small effect, it is potentially measurable from upcoming surveys. In combination with neutrinoless double-β decay experiments, this opens up the possibility of using the sky to determine if neutrinos are Majorana or Dirac fermions.
Reproducing neutrino effects on the matter power spectrum through a degenerate Fermi gas approach
Perico, Eder L D
2011-01-01
Modifications on the predictions for the matter power spectrum based on the hypothesis of a tiny contribution due to a degenerate Fermi gas (DFG) test fluid in some dominant cosmological backgrounds are investigated. Reporting about the systematic way of accounting for all the cosmological perturbations through the Boltzmann equation, we obtain analytical results for the density fluctuation, $\\delta$, and the fluid velocity divergence, $\\theta$, of a DFG test fluid at the radiation-dominated background, through a ultra-relativistic approximation, and at the matter-dominated and $\\Lambda$-dominated eras, through a non-relativistic approximation. Small contributions to the matter power spectrum are obtained and reproduced by numerical calculations, in order to be compared with those ones for non-relativistic massive and ultra-relativistic massless neutrinos. Lessons concerning the formation of large scale structures of degenerate Fermi fluids are depicted, and consequent deviations from standard $\\Lambda$CDM pr...
Power Spectrum of Out-of-equilibrium Forces in Living Cells : Amplitude and Frequency Dependence
Gallet, Francois; Bohec, Pierre; Richert, Alain
2009-01-01
Living cells exhibit an important out-of-equilibrium mechanical activity, mainly due to the forces generated by molecular motors. These motor proteins, acting individually or collectively on the cytoskeleton, contribute to the violation of the fluctuation-dissipation theorem in living systems. In this work we probe the cytoskeletal out-of-equilibrium dynamics by performing simultaneous active and passive microrheology experiments, using the same micron-sized probe specifically bound to the actin cortex. The free motion of the probe exhibits a constrained, subdiffusive behavior at short time scales (t < 2s), and a directed, superdiffusive behavior at larger time scales, while, in response to a step force, its creep function presents the usual weak power law dependence with time. Combining the results of both experiments, we precisely measure for the first time the power spectrum of the force fluctuations exerted on this probe, which lies more than one order of magnitude above the spectrum expected at equili...
Non-linear evolution of f(R) cosmologies II: power spectrum
Oyaizu, Hiroaki; Hu, Wayne
2008-01-01
We carry out a suite of cosmological simulations of modified action f(R) models where cosmic acceleration arises from an alteration of gravity instead of dark energy. These models introduce an extra scalar degree of freedom which enhances the force of gravity below the inverse mass or Compton scale of the scalar. The simulations exhibit the so-called chameleon mechanism, necessary for satisfying local constraints on gravity, where this scale depends on environment, in particular the depth of the local gravitational potential. We find that the chameleon mechanism can substantially suppress the enhancement of power spectrum in the non-linear regime if the background field value is comparable to or smaller than the depth of the gravitational potentials of typical structures. Nonetheless power spectrum enhancements at intermediate scales remain at a measurable level for models even when the expansion history is indistinguishable from a cosmological constant, cold dark matter model. Simple scaling relations that t...
DEFF Research Database (Denmark)
Adam, R.; Ade, P. A. R.; Aghanim, N.;
2016-01-01
The polarized thermal emission from diffuse Galactic dust is the main foreground present in measurements of the polarization of the cosmic microwave background (CMB) at frequencies above 100 GHz. In this paper we exploit the uniqueness of the Planck HFI polarization data from 100 to 353 GHz to me...
Noise-induced synchronization in a system with a 1 / f power spectrum
Koverda, V. P.; Skokov, V. N.
2016-06-01
A spatially distributed system with 1/ f fluctuations at coupled nonequilibrium phase transitions have been simulated by two nonlinear stochastic equations. It is shown numerically that at sufficiently high intensity of white noise in the system there arises noise-induced synchronization, which is a nonequilibrium phase transition. To the critical point of the nonequilibrium phase transition corresponds the 1/ f power spectrum and the maximum of informational entropy.
Neutrino mass limits: Robust information from the power spectrum of galaxy surveys
Cuesta, Antonio J.; Niro, Viviana; Verde, Licia
2016-09-01
We present cosmological upper limits on the sum of active neutrino masses using large-scale power spectrum data from the WiggleZ Dark Energy Survey and from the Sloan Digital Sky Survey - Data Release 7 (SDSS-DR7) sample of Luminous Red Galaxies (LRG). Combining measurements on the Cosmic Microwave Background temperature and polarisation anisotropies by the Planck satellite together with WiggleZ power spectrum results in a neutrino mass bound of 0.37 eV at 95% C.L., while replacing WiggleZ by the SDSS-DR7 LRG power spectrum, the 95% C.L. bound on the sum of neutrino masses is 0.38 eV. Adding Baryon Acoustic Oscillation (BAO) distance scale measurements, the neutrino mass upper limits greatly improve, since BAO data break degeneracies in parameter space. Within a ΛCDM model, we find an upper limit of 0.13 eV (0.14 eV) at 95% C.L., when using SDSS-DR7 LRG (WiggleZ) together with BAO and Planck. The addition of BAO data makes the neutrino mass upper limit robust, showing only a weak dependence on the power spectrum used. We also quantify the dependence of neutrino mass limit reported here on the CMB lensing information. The tighter upper limit (0.13 eV) obtained with SDSS-DR7 LRG is very close to that recently obtained using Lyman-alpha clustering data, yet uses a completely different probe and redshift range, further supporting the robustness of the constraint. This constraint puts under some pressure the inverted mass hierarchy and favours the normal hierarchy.
Subpixel Image Registration by Estimating the Polyphase Decomposition of the Cross Power Spectrum
Shekarforoush, Hassan; Berthod, Marc; Zerubia, Josiane
1995-01-01
A method of registering images at subpixel accuracy has been propos ed, which does not resort to interpolation. The method is based on the phase co rrelation method and is remarkably robust to correlated noise and uniform varia tions of luminance. We have shown that the cross power spectrum of two images, containing subpixel shifts, is a polyphase decomposition of a Dirac delta funct ion. By estimating the sum of polyphase components one can then determine subpi xel shifts along each axis.
The Effect of a Refractory Period on the Power Spectrum of Neuronal Discharge
Franklin, Joel; Bair, Wyeth
1995-01-01
The interspike intervals in steady-state neuron firing are assumed to be independently and identically distributed random variables. In the simplest model discussed, each interval is assumed to be the sum of a random neuron refractory period and a statistically independent interval due to a stationary external process, whose statistics are assumed known. The power spectral density (hence the autocorrelation) of the composite neuron-firing renewal process is derived from the known spectrum of ...
Lawrence, Earl; Heitmann, Katrin; White, Martin; Higdon, David; Wagner, Christian; Habib, Salman; Williams, Brian
2010-04-01
Many of the most exciting questions in astrophysics and cosmology, including the majority of observational probes of dark energy, rely on an understanding of the nonlinear regime of structure formation. In order to fully exploit the information available from this regime and to extract cosmological constraints, accurate theoretical predictions are needed. Currently, such predictions can only be obtained from costly, precision numerical simulations. This paper is the third in a series aimed at constructing an accurate calibration of the nonlinear mass power spectrum on Mpc scales for a wide range of currently viable cosmological models, including dark energy models with w ≠ -1. The first two papers addressed the numerical challenges and the scheme by which an interpolator was built from a carefully chosen set of cosmological models. In this paper, we introduce the "Coyote Universe" simulation suite which comprises nearly 1000 N-body simulations at different force and mass resolutions, spanning 38 w CDM cosmologies. This large simulation suite enables us to construct a prediction scheme, or emulator, for the nonlinear matter power spectrum accurate at the percent level out to k ~= 1 h Mpc-1. We describe the construction of the emulator, explain the tests performed to ensure its accuracy, and discuss how the central ideas may be extended to a wider range of cosmological models and applications. A power spectrum emulator code is released publicly as part of this paper.
Neutrino mass constraint with SDSS LRG power spectrum and perturbation theory
Saito, Shun; Taruya, Atsushi
2010-01-01
We compare the model power spectrum, computed based on the perturbation theory (PT) of structure formation, with the power spectrum of luminous red galaxies (LRG) measured from the Sloan Digital Sky Survey Data Release 7 catalog, assuming a flat, cold dark matter-dominated cosmology. The model includes the effects of massive neutrinos, nonlinear matter clustering and nonlinear, scale-dependent galaxy bias in a self-consistent manner. Combining with the recent results from Wilkinson Microwave Background Anisotropy Probe (WMAP), we found that the PT model well matches the LRG power spectrum down to k=0.1 h/Mpc. We then derive a upper limit on the sum of neutrino masses, sigma(m_nu,tot) < 0.81 eV (95% C.L.), marginalized over other parameters including nonlinear bias parameters and dark energy equation of state parameter. The neutrino mass limit is improved by a factor of 1.85 compared to the limit from the WMAP5 alone.
Simulations of Baryon Acoustic Oscillations III: Likelihood analysis of the matter power spectrum
Takahashi, Ryuichi; Takada, Masahiro; Matsubara, Takahiko; Sugiyama, Naoshi; Kayo, Issha; Nishimichi, Takahiro; Saito, Shun; Taruya, Atsushi
2009-01-01
We study the sample variance of the matter power spectrum for the standard Lambda Cold Dark Matter universe. We use a total of 5000 cosmological N-body cosmological simulations to study in detail the distribution of the best-fit cosmological parameters and the baryon acoustic peak positions. The obtained distribution is compared with the results from the Fisher matrix analysis with and without including non-Gaussian errors. For the Fisher matrix analysis, we compute the derivatives of the matter power spectrum with respect to cosmological parameters using directly full nonlinear simulations. We show that the non-Gaussian errors increase the unmarginalized errors by up to a factor 5 for k_{max}=0.4h/Mpc if there is only one free parameter provided other parameters are well determined by external information. On the other hand, for multi-parameter fitting, the impact of the non-Gaussian errors is significantly mitigated due to severe parameter degeneracies in the power spectrum. The distribution of the acoustic...
Isocurvature and Curvaton Perturbations with Red Power Spectrum and Large Hemispherical Asymmetry
McDonald, John
2013-01-01
We calculate the power spectrum and hemispherical asymmetry of isocurvature and curvaton perturbations due to a complex field \\Phi which is evolving along the tachyonic part of its potential. Using a semi-classical evolution of initially sub-horizon quantum fluctuations, we compute the power spectrum, mean field and hemispherical asymmetry as a function of the number of e-foldings of tachyonic growth \\Delta N and the tachyonic mass term cH^2. We find that a large hemispherical asymmetry due to the modulation of |\\Phi| can easily be generated via the spatial modulation of |\\Phi| across the horizon, with Delta |\\Phi|/|\\Phi| > 0.5 when the observed Universe exits the horizon within 10-40 e-foldings of the beginning of tachyonic evolution and c is in the range 0.1-1. The spectral index of the isocurvature and curvaton perturbations is generally negative, corresponding to a red power spectrum. Dark matter isocurvature perturbations due to an axion-like curvaton with a large hemispherical asymmetry may be able to e...
Cosmology Constraints from the Weak Lensing Peak Counts and the Power Spectrum in CFHTLenS
Liu, Jia; Haiman, Zoltan; Hui, Lam; Kratochvil, Jan M; May, Morgan
2014-01-01
Lensing peaks have been proposed as a useful statistic, containing cosmological information from non-Gaussianities that is inaccessible from traditional two-point statistics such as the power spectrum or two-point correlation functions. Here we examine constraints on cosmological parameters from weak lensing peak counts, using the publicly available data from the 154 deg^2 CFHTLenS survey. We utilize a new suite of ray-tracing N-body simulations on a grid of 91 cosmological models, covering broad ranges of the three parameters Omega_m, sigma_8, and w, and replicating the galaxy sky positions, redshifts, and shape noise in the CFHTLenS observations. We then build an emulator that interpolates the power spectrum and the peak counts to an accuracy of <= 5%, and compute the likelihood in the three-dimensional parameter space (Omega_m, sigma_8, w) from both observables. We find that constraints from peak counts are comparable to those from the power spectrum, and somewhat tighter when different smoothing scales...
Spherical collapse, formation hysteresis and the deeply non-linear cosmological power spectrum
Mead, Alexander
2016-01-01
I examine differences in non-linear structure formation between cosmological models that share a $z=0$ linear power spectrum in both shape and amplitude, but that differ via their growth history. $N$-body simulations of these models display an approximately identical large-scale-structure skeleton, but reveal deeply non-linear differences in the demographics and properties of haloes. I investigate to what extent the spherical-collapse model can help in understanding these differences, in both real and redshift space. I discuss how this is difficult to do if one attempts to identify haloes directly, because in that case one is subject to the vagaries of halo finding algorithms. However, I demonstrate that the halo model of structure formation provides an accurate non-linear response in the power spectrum, but only if results from spherical collapse that include formation hysteresis are properly incorporated. I comment on how this fact can be used to provide per cent level accurate matter power spectrum predict...
Spherical collapse, formation hysteresis and the deeply non-linear cosmological power spectrum
Mead, A. J.
2016-09-01
I examine differences in non-linear structure formation between cosmological models that share a z = 0 linear power spectrum in both shape and amplitude, but that differ via their growth history. N-body simulations of these models display an approximately identical large-scale-structure skeleton, but reveal deeply non-linear differences in the demographics and properties of haloes. I investigate to what extent the spherical-collapse model can help in understanding these differences, in both real and redshift space. I discuss how this is difficult to do if one attempts to identify haloes directly, because in that case one is subject to the vagaries of halo finding algorithms. However, I demonstrate that the halo model of structure formation provides an accurate non-linear response in the power spectrum, but only if results from spherical collapse that include formation hysteresis are properly incorporated. I comment on how this fact can be used to provide per cent level accurate matter power spectrum predictions for dark energy models for k ≤ 5 hMpc-1 by using the halo model as a correction to accurate ΛCDM simulations. In the appendix I provide some fitting functions for the linear-collapse threshold (δc) and virialized overdensity (Δv) that are valid for a wide range of dark energy models. I also make my spherical-collapse code available at https://github.com/alexander-mead/collapse.
An effective field theory during inflation II: stochastic dynamics and power spectrum suppression
Boyanovsky, D
2015-01-01
We obtain the non-equilibrium effective action of an inflaton like scalar field --the system-- by tracing over sub Hubble degrees of freedom of ``environmental'' light scalar fields. The effective action is stochastic leading to effective Langevin equations of motion for the fluctuations of the inflaton-like field, with self-energy corrections and stochastic noise correlators that obey a de Sitter space-time analog of a fluctuation dissipation relation. We solve the Langevin equation implementing a dynamical renormalization group resummation of the leading secular terms and obtain the corrections to the power spectrum of super Hubble fluctuations of the inflaton field, $\\mathcal{P}(k;\\eta) = \\mathcal{P}_0(k)\\,e^{-\\gamma(k;\\eta)}$ where $\\mathcal{P}_0(k)$ is the nearly scale invariant power spectrum in absence of coupling. $\\gamma(k;\\eta)>0$ describes the suppression of the power spectrum, it features Sudakov-type double logarithms and entails violations of scale invariance. We also obtain the effective action...
Detecting the 21cm Forest in the 21 cm Power Spectrum
Ewall-Wice, Aaron; Mesinger, Andrei; Hewitt, Jacqueline
2013-01-01
Measurements of the 21 cm brightness temperature at high redshift are expected to yield tremendous insight into the nature of the first stars and black holes. A first generation of experiments is already underway, seeking a first detection. The brightness temperature fluctuations to be measured, also contain absorption features in the spectra of high redshift radio sources, the 21 cm forest. We describe a new technique for constraining the radio loud population of active galactic nuclei at high redshift by measuring the imprint of the 21 cm forest on the 21 cm power spectrum. We analytically relate the 21 cm forest power spectrum to the optical depth power spectrum and the radio loud luminosity function. Using semi-numeric simulations of the intergalactic medium and a semi-empirical source population, we show that the 21 cm forest dominates a distinctive region of k-space, $k \\gtrsim 0.5 \\Mpci$, allowing for the simultaneous determination of the intergalactic medium's thermal properties and the radio loud pop...
Constraining high-redshift X-ray sources with next generation 21-cm power spectrum measurements
Ewall-Wice, Aaron; Hewitt, Jacqueline; Mesinger, Andrei; Dillon, Joshua S.; Liu, Adrian; Pober, Jonathan
2016-05-01
We use the Fisher matrix formalism and seminumerical simulations to derive quantitative predictions of the constraints that power spectrum measurements on next-generation interferometers, such as the Hydrogen Epoch of Reionization Array (HERA) and the Square Kilometre Array (SKA), will place on the characteristics of the X-ray sources that heated the high-redshift intergalactic medium. Incorporating observations between z = 5 and 25, we find that the proposed 331 element HERA and SKA phase 1 will be capable of placing ≲ 10 per cent constraints on the spectral properties of these first X-ray sources, even if one is unable to perform measurements within the foreground contaminated `wedge' or the FM band. When accounting for the enhancement in power spectrum amplitude from spin temperature fluctuations, we find that the observable signatures of reionization extend well beyond the peak in the power spectrum usually associated with it. We also find that lower redshift degeneracies between the signatures of heating and reionization physics lead to errors on reionization parameters that are significantly greater than previously predicted. Observations over the heating epoch are able to break these degeneracies and improve our constraints considerably. For these two reasons, 21-cm observations during the heating epoch significantly enhance our understanding of reionization as well.
Analysing MUAP of EMG Signal with Power Density Spectrum in Matlab
Directory of Open Access Journals (Sweden)
Akash Kumar Bhoi
2013-07-01
Full Text Available The lack of a proper description of the EMG signal is probably the greatest single factor which has hampered the development of electromyography into a precise discipline. Our proposed methodology described the relationship between the EMG signal and the properties of a contracting muscle by analysing its power density spectrum. We have also discussed the basic concepts on Motor Unit Action potential and analyzed the spectral density of a healthy person EMG signal. The Power spectral Density is calculated with Welch's PSD estimate method by taking Hamming {&} Kaiser Window. This model can be useful for the study of gate analysis and control scheme of the peripheral nervous system
Achievable rate of spectrum sharing cognitive radio systems over fading channels at low-power regime
Sboui, Lokman
2014-11-01
We study the achievable rate of cognitive radio (CR) spectrum sharing systems at the low-power regime for general fading channels and then for Nakagami fading. We formally define the low-power regime and present the corresponding closed-form expressions of the achievable rate lower bound under various types of interference and/or power constraints, depending on the available channel state information of the cross link (CL) between the secondary-user transmitter and the primary-user receiver. We explicitly characterize two regimes where either the interference constraint or the power constraint dictates the optimal power profile. Our framework also highlights the effects of different fading parameters on the secondary link (SL) ergodic achievable rate. We also study more realistic scenarios when there is either 1-bit quantized channel feedback from the CL alone or 2-bit feedback from both the CL and the SL and propose simple power control schemes and show that these schemes achieve the previously achieved rate at the low-power regime. Interestingly, we show that the low-power regime analysis provides a specific insight into the maximum achievable rate behavior of CR that has not been reported by previous studies.
Borde, Arnaud; Palanque-Delabrouille, Nathalie; Rossi, Graziano; Viel, Matteo; Bolton, James S.; Yèche, Christophe; LeGoff, Jean-Marc; Rich, Jim
2014-07-01
Current experiments are providing measurements of the flux power spectrum from the Lyman-α forests observed in quasar spectra with unprecedented accuracy. Their interpretation in terms of cosmological constraints requires specific simulations of at least equivalent precision. In this paper, we present a suite of cosmological N-body simulations with cold dark matter and baryons, specifically aiming at modeling the low-density regions of the inter-galactic medium as probed by the Lyman-α forests at high redshift. The simulations were run using the GADGET-3 code and were designed to match the requirements imposed by the quality of the current SDSS-III/BOSS or forthcoming SDSS-IV/eBOSS data. They are made using either 2 × 7683 simeq 1 billion or 2 × 1923 simeq 14 million particles, spanning volumes ranging from (25 Mpc h-1)3 for high-resolution simulations to (100 Mpc h-1)3 for large-volume ones. Using a splicing technique, the resolution is further enhanced to reach the equivalent of simulations with 2 × 30723 simeq 58 billion particles in a (100 Mpc h-1)3 box size, i.e. a mean mass per gas particle of 1.2 × 105Msolar h-1. We show that the resulting power spectrum is accurate at the 2% level over the full range from a few Mpc to several tens of Mpc. We explore the effect on the one-dimensional transmitted-flux power spectrum of four cosmological parameters (ns, σ8, Ωm and H0) and two astrophysical parameters (T0 and γ) that are related to the heating rate of the intergalactic medium. By varying the input parameters around a central model chosen to be in agreement with the latest Planck results, we built a grid of simulations that allows the study of the impact on the flux power spectrum of these six relevant parameters. We improve upon previous studies by not only measuring the effect of each parameter individually, but also probing the impact of the simultaneous variation of each pair of parameters. We thus provide a full second-order expansion, including
Spectrum resolving power of hearing: measurements, baselines, and influence of maskers
Directory of Open Access Journals (Sweden)
Alexander Ya. Supin
2011-06-01
Full Text Available Contemporary methods of measurement of frequency tuning in the auditory system are reviewed. Most of them are based on the frequency-selective masking paradigm and require multi-point measurements (a number of masked thresholds should be measured to obtain a single frequency-tuning estimate. Therefore, they are rarely used for practical needs. As an alternative approach, frequency-selective properties of the auditory system may be investigated using probes with complex frequency spectrum patterns, in particular, rippled noise that is characterized by a spectrum with periodically alternating maxima and minima. The maximal ripple density discriminated by the auditory system is a convenient measure of the spectrum resolving power (SRP. To find the highest resolvable ripple density, a phase-reversal test has been suggested. Using this technique, normal SRP, its dependence on probe center frequency, spectrum contrast, and probe level were measured. The results were not entirely predictable by frequency-tuning data obtained by masking methods. SRP is influenced by maskers, with on- and off-frequency maskers influencing SRP very differently. Dichotic separation of the probe and masker results in almost complete release of SRP from influence of maskers.
Shakur, Asif; Sinatra, Taylor
2013-01-01
The gyroscope in a smartphone was employed in a physics laboratory setting to verify the conservation of angular momentum and the nonconservation of rotational kinetic energy. As is well-known, smartphones are ubiquitous on college campuses. These devices have a panoply of built-in sensors. This creates a unique opportunity for a new paradigm in…
So You Think the Crab is Described by a Power-Law Spectrum
Weisskopf, Martin C.
2008-01-01
X-ray observations of the Crab Nebula and its pulsar have played a prominent role in the history of X-ray astronomy. Discoveries range from the detection of the X-ray Nebula and pulsar and the measurement of the Nebula-averaged X-ray polarization, to the observation of complex X-ray morphology, including jets emanating from the pulsar and the ring defining the shocked pulsar wind. The synchrotron origin of much of the radiation has been deduced by detailed studies across the electromagnetic spectrum, yet has fooled many X-ray astronomers into believing that the integrated spectrum from this system ought to be a power law. In many cases, this assumption has led observers to adjust the experiment response function(s) to guarantee such a result. We shall discuss why one should not observe a power-law spectrum, and present simulations using the latest available response matrices showing what should have been observed for a number of representative cases including the ROSAT IPC, XMM-Newton, and RXTE. We then discuss the implications, if any, for current calibrations.
Perturbation theory, effective field theory, and oscillations in the power spectrum
Vlah, Zvonimir; Seljak, Uroš; Yat Chu, Man; Feng, Yu
2016-03-01
We explore the relationship between the nonlinear matter power spectrum and the various Lagrangian and Standard Perturbation Theories (LPT and SPT). We first look at it in the context of one dimensional (1-d) dynamics, where 1LPT is exact at the perturbative level and one can exactly resum the SPT series into the 1LPT power spectrum. Shell crossings lead to non-perturbative effects, and the PT ignorance can be quantified in terms of their ratio, which is also the transfer function squared in the absence of stochasticity. At the order of PT we work, this parametrization is equivalent to the results of effective field theory (EFT), and can thus be expanded in terms of the same parameters. We find that its radius of convergence is larger than the SPT loop expansion. The same EFT parametrization applies to all SPT loop terms and if stochasticity can be ignored, to all N-point correlators. In 3-d, the LPT structure is considerably more complicated, and we find that LPT models with parametrization motivated by the EFT exhibit running with k and that SPT is generally a better choice. Since these transfer function expansions contain free parameters that change with cosmological model their usefulness for broadband power is unclear. For this reason we test the predictions of these models on baryonic acoustic oscillations (BAO) and other primordial oscillations, including string monodromy models, for which we ran a series of simulations with and without oscillations. Most models are successful in predicting oscillations beyond their corresponding PT versions, confirming the basic validity of the model. We show that if primordial oscillations are localized to a scale q, the wiggles in power spectrum are approximately suppressed as exp[-k2Σ2(q)/2], where Σ(q) is rms displacement of particles separated by q, which saturates on large scales, and decreases as q is reduced. No oscillatory features survive past k ~ 0.5h/Mpc at z = 0.
Strong Lensing Probabilities in a Cosmological Model with a Running Primordial Power Spectrum
Zhang, T J; Yang, Z L; He, X T; Zhang, Tong-Jie; Chen, Da-Ming; Yang, Zhi-Liang; He, Xiang-Tao
2004-01-01
The combination of the first-year Wilkinson Microwave Anisotropy Probe (WMAP) data with other finer scale cosmic microwave background (CMB) experiments (CBI and ACBAR) and two structure formation measurements (2dFGRS and Lyman $\\alpha$ forest) suggest a $\\Lambda$CDM cosmological model with a running spectral power index of primordial density fluctuations. Motivated by this new result on the index of primordial power spectrum, we present the first study on the predicted lensing probabilities of image separation in a spatially flat $\\Lambda$CDM model with a running spectral index (RSI-$\\Lambda$CDM model). It is shown that the RSI-$\\Lambda$CDM model suppress the predicted lensing probabilities on small splitting angles of less than about 4$^{''}$ compared with that of standard power-law $\\Lambda$CDM (PL-$\\Lambda$CDM) model.
The Scale-invariant Power Spectrum of Primordial Curvature Perturbation in CSTB Cosmos
Li, Changhong
2014-01-01
We investigate the spectrum of cosmological perturbations in a bounce cosmos modeled by a scalar field coupled to the string tachyon field (CSTB cosmos). By explicit computation of its primordial spectral index we show the power spectrum of curvature perturbations, generated during the tachyon matter dominated contraction phase, to be nearly scale invariant. We propose a unified space of parameters for a systematic study of inflationary/bouncing cosmologies. We find that CSTB cosmos is dual--in Wands's sense--to the slow-roll inflation model as can be easily seen from this unified parameter space. Guaranteed by the dynamical attractor behavior of CSTB Cosmos, this scale invariance is free of the fine-tuning problem, in contrast to the slow-roll inflation model.
Reconstruction of the primordial power spectrum of curvature perturbations using multiple data sets
DEFF Research Database (Denmark)
Hunt, Paul; Sarkar, Subir
2014-01-01
Detailed knowledge of the primordial power spectrum of curvature perturbations is essential both in order to elucidate the physical mechanism (`inflation') which generated it, and for estimating the cosmological parameters from observations of the cosmic microwave background and large......-scale structure. Hence it ought to be extracted from such data in a model-independent manner, however this is difficult because relevant cosmological observables are given by a convolution of the primordial perturbations with some smoothing kernel which depends on both the assumed world model and the matter...... content of the universe. Moreover the deconvolution problem is ill-conditioned so a regularisation scheme must be employed to control error propagation. We demonstrate that `Tikhonov regularisation' can robustly reconstruct the primordial spectrum from multiple cosmological data sets, a significant...
The Power Spectrum of Ionic Nanopore Currents: The Role of Ion Correlations
Zorkot, Mira; Bonthuis, Douwe Jan
2015-01-01
We calculate the power spectrum of electric-field-driven ion transport through cylindrical nanometer-scale pores using both linearized mean-field theory and Langevin dynamics simulations. With the atom-sized cutoff radius as the only fitting parameter, the linearized mean-field theory accurately captures the dependence of the simulated power spectral density on the pore radius and the applied electric field. Remarkably, the linearized mean-field theory predicts a plateau in the power spectral density at low frequency ${\\omega}$, which is confirmed by the Langevin dynamics simulations at low ion concentration. At high ion concentration, however, the power spectral density follows a power law that is reminiscent of the $1/{\\omega}^{\\alpha}$ dependence found experimentally at low frequency. Based on simulations with and without ion-ion interactions, we attribute the low-frequency power law dependence to ion-ion correlations. Finally, we show that the surface charge density has no effect on the frequency dependen...
Tan, Liying; Zhai, Chao; Yu, Siyuan; Ma, Jing; Lu, Gaoyuan
2015-05-01
In the past decades, both the increasing experimental evidence and some results of theoretical investigation on non-Kolmogorov turbulence have been reported. This has prompted the study of optical propagation in non-Kolmogorov atmospheric turbulence. In this paper, based on the thin phase screen model and a non-Kolmogorov power spectrum which owns a generalized power law instead of standard Kolmogorov power law value 11/3 and a generalized amplitude factor instead of constant value 0.033, the temporal power spectrum of irradiance fluctuations for a Gaussian-beam wave is derived in the weak fluctuation regime for a horizontal path. The analytic expressions are obtained and then used to analyze the influence of spectral power law variations on the temporal power spectrum of irradiance fluctuations.
Cosmological Density and Power Spectrum from Peculiar Velocities Nonlinear Corrections and PCA
Silberman, L; Eldar, A; Zehavi, I
2001-01-01
we allow for nonlinear effects in the likelihood analysis of galaxy peculiar velocities, and obtain ~35%-lower values for the cosmological density parameter and for the amplitude of mass-density fluctuations. The power spectrum in the linear regime is assumed to be a flat LCDM model (h=0.65, n=1, COBE) with only Om_m as a free parameter. Since the likelihood is driven by the nonlinear regime, we "break" the power spectrum at k_b=0.2 h/Mpc and fit a power law at k>k_b. This allows for independent matching of the nonlinear behavior and an unbiased fit in the linear regime. The analysis assumes Gaussian fluctuations and errors, and a linear relation between velocity and density. Tests using mock catalogs that properly simulate nonlinear effects demonstrate that this procedure results in a reduced bias and a better fit. We find for the Mark3 and SFI data Om_m=0.32+-0.06 and 0.37+-0.09 respectively, with sigma_8*Om_m^0.6 =0.49+-0.06 and 0.63+-0.08, in agreement with constraints from other data. The quoted 90% erro...
What is the optimal way to measure the galaxy power spectrum?
Smith, Robert E
2015-01-01
Measurements of the galaxy power spectrum contain a wealth of information about the Universe. Its optimal extraction is vital if we are to truly understand the micro-physical nature of dark matter and dark energy. In Smith & Marian (2015) we generalized the power spectrum methodology of Feldman et al. (1994) to take into account the key tenets of galaxy formation: galaxies form and reside exclusively in dark matter haloes; a given dark matter halo may host galaxies of various luminosities; galaxies inherit the large-scale bias associated with their host halo. In this paradigm we derived the optimal weighting and reconstruction scheme for maximizing the signal-to-noise on a given band power estimate. For a future all-sky flux-limited galaxy redshift survey of depth b_J ~22, we now demonstrate that the optimal weighting scheme does indeed provide improved S/N at the level of ~20% when compared to Feldman et al. (1994) and ~60% relative to Percival et al. (2003), for scales of order k~0.5 Mpc/h. Using a Fish...
The Quantum Corrected Mode Function and Power Spectrum for a Scalar Field during Inflation
Onemli, V K
2013-01-01
We compute the one- and two-loop corrected mode function of a massless minimally coupled scalar endowed with a quartic self-interaction in the locally de Sitter background of an inflating universe for a state which is released in Bunch-Davies vacuum at time $t=0$. We then employ it to correct the scalar's tree-order scale invariant power spectrum $\\Delta^2_\\varphi$. The corrections are secular, and have scale dependent part that can be expanded in even powers of $k/(Ha)$, where $k$ is the comoving wave number, $H$ is the expansion rate and $a$ is the cosmic scale factor. At one-loop, the scale invariant shift in the power spectrum grows as $(Ht)^2$ in leading order. The $k$-dependent shifts, however, are constants for each mode, in the late time limit. At two-loop order, on the other hand, the scale invariant shift grows as $(Ht)^4$ whereas the $k$-dependent shifts grow as $(Ht)^2$, in leading order. We finally calculate the scalar's spectral index $n_\\varphi$ and the running of the spectral index $\\alpha_\\va...
Analytic model for the matter power spectrum, its covariance matrix, and baryonic effects
Mohammed, Irshad
2014-01-01
We develop a model for the matter power spectrum as the sum of quasi-linear Zeldovich approximation and even powers of $k$, i.e., $A_0 - A_2k^2 + A_4k^4 - ...$, compensated at low $k$. The model can predict the true power spectrum to a few percent accuracy up to $k \\sim 0.7\\ h \\rm{Mpc}^{-1}$, over a wide range of redshifts and models, including massive neutrino models. We write a simple form of the covariance matrix as a sum of Gaussian part and $A_0$ variance and we find that it reproduces well the simulations. We investigate the super-sample variance effect and show it induces a relation between the Zeldovich term and $A_0$ that differs from the amplitude change, allowing it to be modeled as an additional parameter that can be determined from the data. The $A_n$ coefficients contain information about cosmology, in particular the amplitude of fluctuations $\\sigma_8$. We explore their information content, showing that $A_0$ contains the bulk of amplitude information, scaling as $\\sigma_8^{3.9}$, which allows ...
The one-dimensional Ly-alpha forest power spectrum from BOSS
Palanque-Delabrouille, Nathalie; Borde, Arnaud; Goff, Jean-Marc Le; Rossi, Graziano; Viel, Matteo; Aubourg, Éric; Bailey, Stephen; Bautista, Julian; Blomqvist, Michael; Bolton, Adam; Bolton, James S; Busca, Nicolás G; Carithers, Bill; Croft, Rupert A C; Dawson, Kyle S; Delubac, Timothée; Font-Ribera, Andreu; Ho, Shirley; Kirkby, David; Lee, Khee-Gan; Margala, Daniel; Miralda-Escudé, Jordi; Muna, Demitri; Myers, Adam D; Noterdaeme, Pasquier; Pâris, Isabelle; Petitjean, Patrick; Pieri, Matthew M; Rich, James; Rollinde, Emmanuel; Ross, Nicholas P; Schlegel, David J; Schneider, Donald P; Slosar, Anže; Weinberg, David H
2013-01-01
We have developed two independent methods to measure the one-dimensional power spectrum of the transmitted flux in the Lyman-$\\alpha$ forest. The first method is based on a Fourier transform, and the second on a maximum likelihood estimator. The two methods are independent and have different systematic uncertainties. The determination of the noise level in the data spectra was subject to a novel treatment, because of its significant impact on the derived power spectrum. We applied the two methods to 13,821 quasar spectra from SDSS-III/BOSS DR9 selected from a larger sample of over 60,000 spectra on the basis of their high quality, large signal-to-noise ratio, and good spectral resolution. The power spectra measured using either approach are in good agreement over all twelve redshift bins from $ = 2.2$ to $ = 4.4$, and scales from 0.001 $\\rm(km/s)^{-1}$ to $0.02 \\rm(km/s)^{-1}$. We determine the methodological and instrumental systematic uncertainties of our measurements. We provide a preliminary cosmological ...
DOUBLE POWER LAWS IN THE EVENT-INTEGRATED SOLAR ENERGETIC PARTICLE SPECTRUM
Energy Technology Data Exchange (ETDEWEB)
Zhao, Lulu; Zhang, Ming; Rassoul, Hamid K., E-mail: lzhao@fit.edu [Physics and Space Sciences Department, Florida Institute of Technology, Melbourne, FL 32901 (United States)
2016-04-10
A double power law or a power law with exponential rollover at a few to tens of MeV nucleon{sup −1} of the event-integrated differential spectra has been reported in many solar energetic particle (SEP) events. The rollover energies per nucleon of different elements correlate with a particle's charge-to-mass ratio (Q/A). The probable causes are suggested as residing in shock finite lifetimes, shock finite sizes, shock geometry, and an adiabatic cooling effect. In this work, we conduct a numerical simulation to investigate a particle's transport process in the inner heliosphere. We solve the focused transport equation using a time-backward Markov stochastic approach. The convection, magnetic focusing, adiabatic cooling effect, and pitch-angle scattering are included. The effects that the interplanetary turbulence imposes on the shape of the resulting SEP spectra are examined. By assuming a pure power-law differential spectrum at the Sun, a perfect double-power-law feature with a break energy ranging from 10 to 120 MeV nucleon{sup −1} is obtained at 1 au. We found that the double power law of the differential energy spectrum is a robust result of SEP interplanetary propagation. It works for many assumptions of interplanetary turbulence spectra that give various forms of momentum dependence of a particle's mean free path. The different spectral shapes in low-energy and high-energy ends are not just a transition from the convection-dominated propagation to diffusion-dominated propagation.
Blind Carrier Frequency Offset Estimation via Power Spectrum Analysis in MIMO OFDM Systems
Institute of Scientific and Technical Information of China (English)
WU Lu; ZHANG Xianda
2009-01-01
As a generalization of orthogonal frequency-division multiplexing (OFDM) systems,multi-input multi-output (MIMO) OFDM systems are very sensitive to carrier frequency offset (CFO).This paper proposes a blind CFO estimation method based on power spectrum analysis,which has high bandwidth efficiency and is much less complex.This method can be used to estimate the residual CFO,which is less than half of the subcarrier spacing.The method uses a cosine cost function to get a closed-form CFO estimate.Simulation results illustrate that the method is effective for MIMO OFDM systems.
Cosmological Leverage from the Matter Power Spectrum in the Presence of Baryon and Nonlinear Effects
Bielefeld, Jannis; Linder, Eric V
2014-01-01
We investigate how the use of higher wavenumbers (smaller scales) in the galaxy clustering power spectrum influences cosmological constraints. We take into account uncertainties from nonlinear density fluctuations, (scale dependent) galaxy bias, and baryonic effects. Allowing for substantially model independent uncertainties through separate fit parameters in each wavenumber bin that also allow for the redshift evolution, we quantify strong gains in dark energy and neutrino mass leverage with increasing maximum wavenumber, despite marginalizing over numerous (up to 125) extra fit parameters. The leverage is due to not only an increased number of modes but, more significantly, breaking of degeneracies beyond the linear regime.
Contamination of the Epoch of Reionization power spectrum in the presence of foregrounds
Sims, Peter H; Alexander, Paul; Carilli, Chris L
2016-01-01
We construct foreground simulations comprising spatially correlated extragalactic and diffuse Galactic emission components and calculate the `intrinsic' (instrument-free) two-dimensional spatial power spectrum and the cylindrically and spherically averaged three-dimensional k-space power spectra of the Epoch of Reionization (EoR) and our foreground simulations using a Bayesian power spectral estimation framework. This leads us to identify a model dependent region of optimal signal estimation for our foreground and EoR models, within which the spatial power in the EoR signal relative to foregrounds is maximised. We identify a target field dependent region, in k-space, of intrinsic foreground power spectral contamination at low k_perp and k_parallel and a transition to a relatively foreground-free intrinsic EoR window in the complement to this region. The contaminated region of k-space demonstrates that simultaneous estimation of the EoR and foregrounds is important for obtaining statistically robust estimates ...
Developmental trajectories of resting EEG power: an endophenotype of autism spectrum disorder.
Directory of Open Access Journals (Sweden)
Adrienne L Tierney
Full Text Available Current research suggests that autism spectrum disorder (ASD is characterized by asynchronous neural oscillations. However, it is unclear whether changes in neural oscillations represent an index of the disorder or are shared more broadly among both affected and unaffected family members. Additionally, it remains unclear how early these differences emerge in development and whether they remain constant or change over time. In this study we examined developmental trajectories in spectral power in infants at high- or low-risk for ASD. Spectral power was extracted from resting EEG recorded over frontal regions of the scalp when infants were 6, 9, 12, 18 and 24 months of age. We used multilevel modeling to assess change over time between risk groups in the delta, theta, low alpha, high alpha, beta, and gamma frequency bands. The results indicated that across all bands, spectral power was lower in high-risk infants as compared to low-risk infants at 6-months of age. Furthermore high-risk infants showed different trajectories of change in spectral power in the subsequent developmental window indicating that not only are the patterns of change different, but that group differences are dynamic within the first two years of life. These findings remained the same after removing data from a subset of participants who displayed ASD related behaviors at 24 or 36 months. These differences in the nature of the trajectories of EEG power represent important endophenotypes of ASD.
Possible Detection of Baryonic Fluctuations in the Large-Scale Structure Power Spectrum
Miller, C J; Batuski, D J; Miller, Christopher J.; Nichol, Robert C.; Batuski, David J.
2001-01-01
We present a joint analysis of the power spectra of density fluctuations from three independent cosmological redshift surveys; the PSCz galaxy catalog, the APM galaxy cluster catalog and the Abell/ACO cluster catalog. Over the range 0.03 <= k <= 0.15 h/Mpc,the amplitudes of these three power spectra are related through a simple linear biasing model with b = 1.5 and b = 3.6 for Abell/ACO versus APM and Abell/ACO versus the PSCz respectively. Furthermore, the shape of these power spectra are remarkably similar despite the fact that they are comprised of significantly different objects (individual galaxies through to rich clusters). Individually, each of these surveys show visible evidence for ``valleys'' in their power spectra. We use a newly developed statistical technique called the False Discovery Rate, to show that these ``valleys'' are statistically significant. One favored cosmological explanation for such features in the power spectrum is the presence of a non-negligible baryon fraction (Omega_b/Om...
Selection of noise power ratio spectrum models for electronic measurement of the Boltzmann constant
Coakley, Kevin J
2016-01-01
In the electronic measurement of the Boltzmann constant based on Johnson noise thermometry, the ratio of the power spectral densities of thermal noise across a resistor and pseudo-random noise synthetically generated by a quantum-accurate voltage-noise source varies with frequency due to mismatch between transmission lines. We model this ratio spectrum as an even polynomial function of frequency. For any given frequency range, defined by the maximum frequency $f_{max}$, we select the optimal polynomial ratio spectrum model with a cross-validation method and estimate the conditional uncertainty of the constant term in the ratio spectrum model in a way that accounts for both random and systematic effects associated with imperfect knowledge of the model with a resampling method. We select $f_{max}$ by minimizing this conditional uncertainty. Since many values of $f_{max}$ yield conditional uncertainties close to the observed minimum value on a frequency grid, we quantify an additional component of uncertainty as...
Anderson, Todd; Herbst, Eric; De Lucia, Frank C.
1992-01-01
The high-resolution laboratory millimeter- and submillimeter-wave spectra of C-12H(3)OH and C-13H(3)OH have been extended to include transitions involving significantly higher angular momentum quantum numbers than studied previously. For C-12H(3)OH, the data set now includes 549 A torsional substate transitions and 524 E torsional substate transitions through J is not greater than 24, exclusive of blends. For C-13H(3)OH the data set now includes 453 A torsional substate transitions and 440 E torsional substate transitions through J is not greater than 24, exclusive of blends. The extended internal axis method Hamiltonian has been used to analyze the transitions to experimental accuracy. The molecular constants determined by this approach have been used to predict accurately the frequencies of many transitions through J = 25 not measured in the laboratory.
Prospects for ACT: simulations, power spectrum, and non-Gaussian analysis
Huffenberger, Kevin M; Huffenberger, Kevin M.; Seljak, Uros
2004-01-01
A new generation of instruments will reveal the microwave sky at high resolution. We focus on one of these, the Atacama Cosmology Telescope, which probes scales 1000
The effect of thermal neutrino motion on the non-linear cosmological matter power spectrum
Energy Technology Data Exchange (ETDEWEB)
Brandbyge, Jacob; Hannestad, Steen; Haugbolle, Troels; Thomsen, Bjarne, E-mail: jacobb@phys.au.dk, E-mail: sth@phys.au.dk, E-mail: haugboel@phys.au.dk, E-mail: bt@phys.au.dk [Department of Physics and Astronomy, University of Aarhus, Ny Munkegade, Bygn. 1520, 8000, Aarhus (Denmark)
2008-08-15
We have performed detailed studies of non-linear structure formation in cosmological models with light neutrinos. For the first time the effect of neutrino thermal velocities has been included in a consistent way, and the effect on the matter power spectrum is found to be significant. The effect is large enough to be measured in future, high precision surveys. Additionally, we provide a simple but accurate analytic expression for the suppression of fluctuation power due to massive neutrinos. Finally, we describe a simple and fast method for including the effect of massive neutrinos in large-scale N-body simulations which is accurate at the 1% level for {Sigma}m{sub {nu}}{approx}<0.15 eV.
The effect of thermal neutrino motion on the non-linear cosmological matter power spectrum
International Nuclear Information System (INIS)
We have performed detailed studies of non-linear structure formation in cosmological models with light neutrinos. For the first time the effect of neutrino thermal velocities has been included in a consistent way, and the effect on the matter power spectrum is found to be significant. The effect is large enough to be measured in future, high precision surveys. Additionally, we provide a simple but accurate analytic expression for the suppression of fluctuation power due to massive neutrinos. Finally, we describe a simple and fast method for including the effect of massive neutrinos in large-scale N-body simulations which is accurate at the 1% level for Σmν∼<0.15 eV
Paciga, Gregory; Bandura, Kevin; Chang, Tzu-Ching; Gupta, Yashwant; Hirata, Christopher; Odegova, Julia; Pen, Ue-Li; Peterson, Jeffrey B; Roy, Jayanta; Shaw, Richard; Sigurdson, Kris; Voytek, Tabitha
2013-01-01
The GMRT Epoch of Reionization (EoR) experiment is an ongoing effort to measure the power spectrum from neutral hydrogen at high redshift. We have previously reported an upper limit of (70 mK)^2 at wavenumbers of k=0.65 h/Mpc using a basic piecewise-linear foreground subtraction. In this paper we explore the use of a singular value decomposition to remove foregrounds with fewer assumptions about the foreground structure. Using this method we also quantify, for the first time, the signal loss due to the foreground filter and present new power spectra adjusted for this loss, providing a revised measurement of a 2-sigma upper limit at (248 mK)^2 for k=0.50 h/Mpc. While this revised limit is larger than previously reported, we believe it to be more robust and still represents the best current constraints on reionization at z=8.6.
Elementary Theoretical Forms for the Spatial Power Spectrum of Earth's Crustal Magnetic Field
Voorhies, C.
1998-01-01
The magnetic field produced by magnetization in Earth's crust and lithosphere can be distinguished from the field produced by electric currents in Earth's core because the spatial magnetic power spectrum of the crustal field differs from that of the core field. Theoretical forms for the spectrum of the crustal field are derived by treating each magnetic domain in the crust as the point source of a dipole field. The geologic null-hypothesis that such moments are uncorrelated is used to obtain the magnetic spectrum expected from a randomly magnetized, or unstructured, spherical crust of negligible thickness. This simplest spectral form is modified to allow for uniform crustal thickness, ellipsoidality, and the polarization of domains by an periodically reversing, geocentric axial dipole field from Earth's core. Such spectra are intended to describe the background crustal field. Magnetic anomalies due to correlated magnetization within coherent geologic structures may well be superimposed upon this background; yet representing each such anomaly with a single point dipole may lead to similar spectral forms. Results from attempts to fit these forms to observational spectra, determined via spherical harmonic analysis of MAGSAT data, are summarized in terms of amplitude, source depth, and misfit. Each theoretical spectrum reduces to a source factor multiplied by the usual exponential function of spherical harmonic degree n due to geometric attenuation with attitude above the source layer. The source factors always vary with n and are approximately proportional to n(exp 3) for degrees 12 through 120. The theoretical spectra are therefore not directly proportional to an exponential function of spherical harmonic degree n. There is no radius at which these spectra are flat, level, or otherwise independent of n.
An analytic model for the non-linear redshift-space power spectrum
Kang, X; Mo, H J; Börner, G
2002-01-01
We use N-body simulations to test the predictions of the redshift distortion in the power spectrum given by the halo model in which the clustering of dark matter particles is considered as a result of the clustering of dark halos in space and the distribution of dark matter particles in individual dark halos. The predicted redshift distortion depends sensitively on several model parameters in a way different from the real-space power spectrum. An accurate model of the redshift distortion can be constructed if the following properties of the halo population are modelled accurately: the mass function of dark halos, the velocity dispersion among dark halos, and the non-linear nature of halo bias on small scales. The model can be readily applied to interpreting the clustering properties and the velocity dispersion of different populations of galaxies once a cluster-weighted bias (or equivalently an halo occupation number model) is specified for the galaxies. Some non-trivial bias features observed from redshift s...
The Scaling of the Redshift Power Spectrum Observations from the Las Campanas Redshift Survey
Jing, Y P
2001-01-01
In a recent paper we have studied the redshift power spectrum $P^S(k,\\mu)$ in three CDM models with the help of high resolution simulations. Here we apply the method to the largest available redshift survey, the Las Campanas Redshift Survey (LCRS). The basic model is to express $P^S(k,\\mu)$ as a product of three factors P^S(k,\\mu)=P^R(k)(1+\\beta\\mu^2)^2 D(k,\\mu). Here $\\mu$ is the cosine of the angle between the wave vector and the line of sight. The damping function $D$ for the range of scales accessible to an accurate analysis of the LCRS is well approximated by the Lorentz factor D=[1+{1\\over 2}(k\\mu\\sigma_{12})^2]^{-1}. We have investigated different values for $\\beta$ ($\\beta=0.4$, 0.5, 0.6), and measured $P^R(k)$ and $\\sigma_{12}(k)$ from $P^S(k,\\mu)$ for different values of $\\mu$. The velocity dispersion $\\sigma_{12}(k)$ is nearly a constant from $k=0.5$ to 3 $\\mpci$. The average value for this range is $510\\pm 70 \\kms$. The power spectrum $P^R(k)$ decreases with $k$ approximately with $k^{-1.7}$ for $...
Galaxy power spectrum in redshift space: combining perturbation theory with the halo model
Okumura, Teppei; Seljak, Uros; Vlah, Zvonimir; Desjacques, Vincent
2015-01-01
Theoretical modeling of the redshift-space power spectrum of galaxies is crucially important to correctly extract cosmological information from redshift surveys. The task is complicated by the nonlinear biasing and redshift space distortion effects, which change with halo mass, and by the wide distribution of halo masses and their occupations by galaxies. One of the main modeling challenges is the existence of satellite galaxies that have both radial distribution and large virial velocities inside halos, a phenomenon known as the Finger-of-God effect. We present a model for the galaxy power spectrum of in which we decompose a given galaxy sample into central and satellite galaxies and relate different contributions to 1- and 2-halo terms in a halo model. Our primary goal is to ensure that any parameters that we introduce have physically meaningful values, and are not just fitting parameters. For the 2-halo terms we use the previously developed RSD modeling of halos in the context of distribution function and ...
Early structure formation from primordial density fluctuations with a blue-tilted power spectrum
Hirano, Shingo; Yoshida, Naoki; Spergel, David; Yorke, Harold W
2015-01-01
While observations of large-scale structure and the cosmic microwave background (CMB) provide strong constraints on the amplitude of the primordial power spectrum (PPS) on scales larger than 10 Mpc, the amplitude of the power spectrum on sub-galactic length scales is much more poorly constrained. We study early structure formation in a cosmological model with a blue-tilted PPS. We assume that the standard scale-invariant PPS is modified at small length scales as $P(k) \\sim k^{m_{\\rm s}}$ with $m_{\\rm s} > 1$. We run a series of cosmological hydrodynamic simulations to examine the dependence of the formation epoch and the characteristic mass of primordial stars on the tilt of the PPS. In models with $m_{\\rm s} > 1$, star-forming gas clouds are formed at $z > 100$, when formation of hydrogen molecules is inefficient because the intense CMB radiation destroys chemical intermediates. Without efficient coolant, the gas clouds gravitationally contract while keeping a high temperature. The protostars formed in such ...
Perturbation theory, effective field theory, and oscillations in the power spectrum
Vlah, Zvonimir; Chu, Man Yat; Feng, Yu
2015-01-01
We explore the relationship between the nonlinear matter power spectrum and the various Lagrangian and Standard Perturbation Theories (LPT and SPT). We first look at it in the context of one dimensional (1-d) dynamics, where 1LPT is exact at the perturbative level and one can exactly resum the SPT series into the 1LPT power spectrum. Shell crossings lead to non-perturbative effects, and the PT ignorance can be quantified in terms of their ratio, which is also the transfer function squared in the absence of stochasticity. At the order of PT we work, this parametrization is equivalent to the results of effective field theory (EFT), and can thus be expanded in terms of the same parameters. We find that its radius of convergence is larger than the SPT loop expansion. The same EFT parametrization applies to all SPT loop terms and, if stochasticity can be ignored, to all N-point correlators. In 3-d, the LPT structure is considerably more complicated, and we find that LPT models with parametrization motivated by the...
Gas Density Fluctuations in the Perseus Cluster: Clumping Factor and Velocity Power Spectrum
Zhuravleva, I; Arevalo, P; Schekochihin, A A; Allen, S W; Fabian, A C; Forman, W R; Sanders, J S; Simionescu, A; Sunyaev, R; Vikhlinin, A; Werner, N
2015-01-01
X-ray surface brightness fluctuations in the core of the Perseus Cluster are analyzed, using deep observations with the Chandra observatory. The amplitude of gas density fluctuations on different scales is measured in a set of radial annuli. It varies from 8 to 12 per cent on scales of ~10-30 kpc within radii of 30-160 kpc from the cluster center and from 9 to 7 per cent on scales of ~20-30 kpc in an outer, 60-220 kpc annulus. Using a statistical linear relation between the observed amplitude of density fluctuations and predicted velocity, the characteristic velocity of gas motions on each scale is calculated. The typical amplitudes of the velocity outside the central 30 kpc region are 90-140 km/s on ~20-30 kpc scales and 70-100 km/s on smaller scales ~7-10 kpc. The velocity power spectrum is consistent with cascade of turbulence and its slope is in a broad agreement with the slope for canonical Kolmogorov turbulence. The gas clumping factor estimated from the power spectrum of the density fluctuations is low...
A Fast Method for Power Spectrum and Foreground Analysis for 21 cm Cosmology
Dillon, Joshua S; Tegmark, Max
2012-01-01
We develop and demonstrate an acceleration of the Liu & Tegmark quadratic estimator formalism for inverse variance foreground subtraction and power spectrum estimation in 21 cm tomography from O(N^3) to O(N log N), where N is the number of voxels of data. This technique makes feasible the megavoxel scale analysis necessary for current and upcoming radio interferometers by making only moderately restrictive assumptions about foreground models and survey geometry. We exploit iterative and Monte Carlo techniques and the symmetries of the foreground covariance matrices to quickly estimate the 21 cm brightness temperature power spectrum, P(k_parallel, k_perpendicular), the Fisher information matrix, the error bars, the window functions, and the bias. We also extend the Liu & Tegmark foreground model to include bright point sources with known positions in a way that scales as O[(N log N)(N point sources)] < O(N^5/3). As a first application of our method, we forecast error bars and window functions for th...
The Effect of Fiber Collisions on the Galaxy Power Spectrum Multipole
Hahn, ChangHoon; Blanton, Michael R; Tinker, Jeremy L; Rodriguez-Torres, Sergio
2016-01-01
Fiber-fed multi-object spectroscopic surveys, with their ability to collect an unprecedented number of redshifts, currently dominate large-scale structure studies. However, physical constraints limit these surveys from successfully collecting redshifts from galaxies too close to each other on the focal plane. This ultimately leads to significant systematic effects on galaxy clustering measurements. Using simulated mock catalogs, we demonstrate that fiber collisions have a significant impact on the power spectrum, $P(k)$, monopole and quadrupole that exceeds sample variance at scales smaller than $k\\sim0.1~h/Mpc$. We present two methods to account for fiber collisions in the power spectrum. The first, statistically reconstructs the clustering of fiber collided galaxy pairs by modeling the distribution of the line-of-sight displacements between them. It also properly accounts for fiber collisions in the shot-noise correction term of the $P(k)$ estimator. Using this method, we recover the true $P(k)$ monopole of...
On the soft limit of the large scale structure power spectrum. UV dependence
Energy Technology Data Exchange (ETDEWEB)
Garny, Mathias [European Organization for Nuclear Research (CERN), Geneva (Switzerland). Theory Div.; Konstandin, Thomas; Sagunski, Laura [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group; Porto, Rafael A. [ICTP South American Institute for Fundamental Research, Sao Paulo (Brazil)
2015-08-15
We derive a non-perturbative equation for the large scale structure power spectrum of long-wavelength modes. Thereby, we use an operator product expansion together with relations between the three-point function and power spectrum in the soft limit. The resulting equation encodes the coupling to ultraviolet (UV) modes in two time-dependent coefficients, which may be obtained from response functions to (anisotropic) parameters, such as spatial curvature, in a modified cosmology. We argue that both depend weakly on fluctuations deep in the UV. As a byproduct, this implies that the renormalized leading order coefficient(s) in the effective field theory (EFT) of large scale structures receive most of their contribution from modes close to the non-linear scale. Consequently, the UV dependence found in explicit computations within standard perturbation theory stems mostly from counter-term(s). We confront a simplified version of our non-perturbative equation against existent numerical simulations, and find good agreement within the expected uncertainties. Our approach can in principle be used to precisely infer the relevance of the leading order EFT coefficient(s) using small volume simulations in an 'anisotropic separate universe' framework. Our results suggest that the importance of these coefficient(s) is a ∝ 10% effect, and plausibly smaller.
On the soft limit of the large scale structure power spectrum: UV dependence
Garny, Mathias; Konstandin, Thomas; Porto, Rafael A.; Sagunski, Laura
2015-11-01
We derive a non-perturbative equation for the large scale structure power spectrum of long-wavelength modes. Thereby, we use an operator product expansion together with relations between the three-point function and power spectrum in the soft limit. The resulting equation encodes the coupling to ultraviolet (UV) modes in two time-dependent coefficients, which may be obtained from response functions to (anisotropic) parameters, such as spatial curvature, in a modified cosmology. We argue that both depend weakly on fluctuations deep in the UV. As a byproduct, this implies that the renormalized leading order coefficient(s) in the effective field theory (EFT) of large scale structures receive most of their contribution from modes close to the non-linear scale. Consequently, the UV dependence found in explicit computations within standard perturbation theory stems mostly from counter-term(s). We confront a simplified version of our non-perturbative equation against existent numerical simulations, and find good agreement within the expected uncertainties. Our approach can in principle be used to precisely infer the relevance of the leading order EFT coefficient(s) using small volume simulations in an `anisotropic separate universe' framework. Our results suggest that the importance of these coefficient(s) is a ~ 10% effect, and plausibly smaller.
First Season MWA EoR Power Spectrum Results at Redshift 7
Beardsley, A P; Sullivan, I S; Carroll, P; Barry, N; Rahimi, M; Pindor, B; Trott, C M; Line, J; Jacobs, Daniel C; Morales, M F; Pober, J C; Bernardi, G; Bowman, Judd D; Busch, M P; Briggs, F; Cappallo, R J; Corey, B E; de Oliveira-Costa, A; Dillon, Joshua S; Emrich, D; Ewall-Wice, A; Feng, L; Gaensler, B M; Goeke, R; Greenhill, L J; Hewitt, J N; Hurley-Walker, N; Johnston-Hollitt, M; Kaplan, D L; Kasper, J C; Kim, H S; Kratzenberg, E; Lenc, E; Loeb, A; Lonsdale, C J; Lynch, M J; McKinley, B; McWhirter, S R; Mitchell, D A; Morgan, E; Neben, A R; Thyagarajan, Nithyanandan; Oberoi, D; Offringa, A R; Ord, S M; Paul, S; Prabu, T; Procopio, P; Riding, J; Rogers, A E E; Roshi, A; Shankar, N Udaya; Sethi, Shiv K; Srivani, K S; Subrahmanyan, R; Tegmark, M; Tingay, S J; Waterson, M; Wayth, R B; Webster, R L; Whitney, A R; Williams, A; Williams, C L; Wu, C; Wyithe, J S B
2016-01-01
The Murchison Widefield Array (MWA) has collected hundreds of hours of Epoch of Reionization (EoR) data and now faces the challenge of overcoming foreground and systematic contamination to reduce the data to a cosmological measurement. We introduce several novel analysis techniques such as cable reflection calibration, hyper-resolution gridding kernels, diffuse foreground model subtraction, and quality control methods. Each change to the analysis pipeline is tested against a two dimensional power spectrum figure of merit to demonstrate improvement. We incorporate the new techniques into a deep integration of 32 hours of MWA data. This data set is used to place a systematic-limited upper limit on the cosmological power spectrum of $\\Delta^2 \\leq 2.7 \\times 10^4$ mK$^2$ at $k=0.27$ h~Mpc$^{-1}$ and $z=7.1$, consistent with other published limits, and a modest improvement (factor of 1.4) over previous MWA results. From this deep analysis we have identified a list of improvements to be made to our EoR data analys...
Directory of Open Access Journals (Sweden)
Hongze Li
2014-01-01
Full Text Available Short-term power load forecasting is one of the most important issues in the economic and reliable operation of electricity power system. Taking the characteristics of randomness, tendency, and periodicity of short-term power load into account, a new method (SSA-AR model which combines the univariate singular spectrum analysis and autoregressive model is proposed. Firstly, the singular spectrum analysis (SSA is employed to decompose and reconstruct the original power load series. Secondly, the autoregressive (AR model is used to forecast based on the reconstructed power load series. The employed data is the hourly power load series of the Mid-Atlantic region in PJM electricity market. Empirical analysis result shows that, compared with the single autoregressive model (AR, SSA-based linear recurrent method (SSA-LRF, and BPNN (backpropagation neural network model, the proposed SSA-AR method has a better performance in terms of short-term power load forecasting.
Separating Fractal and Oscillatory Components in the Power Spectrum of Neurophysiological Signal.
Wen, Haiguang; Liu, Zhongming
2016-01-01
Neurophysiological field-potential signals consist of both arrhythmic and rhythmic patterns indicative of the fractal and oscillatory dynamics arising from likely distinct mechanisms. Here, we present a new method, namely the irregular-resampling auto-spectral analysis (IRASA), to separate fractal and oscillatory components in the power spectrum of neurophysiological signal according to their distinct temporal and spectral characteristics. In this method, we irregularly resampled the neural signal by a set of non-integer factors, and statistically summarized the auto-power spectra of the resampled signals to separate the fractal component from the oscillatory component in the frequency domain. We tested this method on simulated data and demonstrated that IRASA could robustly separate the fractal component from the oscillatory component. In addition, applications of IRASA to macaque electrocorticography and human magnetoencephalography data revealed a greater power-law exponent of fractal dynamics during sleep compared to wakefulness. The temporal fluctuation in the broadband power of the fractal component revealed characteristic dynamics within and across the eyes-closed, eyes-open and sleep states. These results demonstrate the efficacy and potential applications of this method in analyzing electrophysiological signatures of large-scale neural circuit activity. We expect that the proposed method or its future variations would potentially allow for more specific characterization of the differential contributions of oscillatory and fractal dynamics to distributed neural processes underlying various brain functions.
Power Spectrum of Cerenkov Radiation from Laser Wakefield in Magnetized Plasma
Gao, Hong; Higashiguchi, Takeshi; Yugami, Noboru; Ito, Hiroaki; Nishida, Yasushi
2000-10-01
An angle and radiation frequecy distribution of the output power of the electromagnetic wave radiation from the laser wakefield in a magnetized plasma (Cerenkov wakes radiaiton) have been calculated. The magnetic field here is applied for the far field electromagnetic wave radiation = requirement. The radiation frequency is confined from ωp to = ω_h. The electromagnetic wave generation originates from the coupling between the DC perpendicular magnetic field and the plasma electron longitudinal = disturbance caused by the laser ponderomotive force. Under Coulomb gauge condition, the wave equation can be completely partitioned for the scale potential = and the vector field, so it can be easily obtained from the near zone static = field and far zone radiation field. The former has well been studied as the = static wakefield acceleration. Here we wish to present the detailed study on = the feature of the radiated electromagnetic field for the later case. The radiation = power spectrum which depends on the magnetic field, the laser pulse length, = the radiation frequency and the corresponding refraction index have been = given. The analysis shows that at the direction of \\cos θ= c=3D1/β n, where n is the refraction index of the magnetized plasma, the output = power has the maximum which satisfies the Cerenkov radiation angle condition, = so that the output power for the radiation frequency of ωp = is mainly located at the forward direction.
Evidence for Power Law in the Spectrum of the Coronal Ly-alpha Line
Telloni, Daniele; Antonucci, Ester; Bruno, Roberto; D'Amicis, Raffaella
Long time series of the intensity of the hydrogen Lyα line revealed the existence of f-2 power spectra in the corona at low and mid latitudes and very close to the Sun, at 1.7 solar radii. These observations are performed with the UltraViolet Coronagraph Spectrometer (UVCS) on board the Solar and Heliospheric Observatory (SoHO). A preliminary analysis indicates that this scaling extends for more than a decade and terminates at higher frequencies with a flat spectrum indicating the presence of white-noise fluctuations. The frequency corresponding to the knee which separates these two different spectral regimes moves to lower and lower values for observations performed at higher and higher heliographic latitudes. Low-frequency power spectra with a f-2 dependence may be due rapid changes (jumps) in the time series. If these coherent structures are removed from the time series, hydrogen coronal intensity power spectra seem to show a power law following the f-1 scaling which would suggest that 1/f interplanetary noise originates in corona.
THE POWER SPECTRUM OF THE MILKY WAY: VELOCITY FLUCTUATIONS IN THE GALACTIC DISK
Energy Technology Data Exchange (ETDEWEB)
Bovy, Jo [Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540 (United States); Bird, Jonathan C. [Department of Physics and Astronomy, Vanderbilt University, 6301 Stevenson Center, Nashville, TN 37235 (United States); Pérez, Ana E. García; Majewski, Steven R. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States); Nidever, David L. [Department of Astronomy, University of Michigan, Ann Arbor, MI 48104 (United States); Zasowski, Gail, E-mail: bovy@ias.edu [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States)
2015-02-20
We investigate the kinematics of stars in the mid-plane of the Milky Way (MW) on scales between 25 pc and 10 kpc with data from the Apache Point Observatory Galactic Evolution Experiment (APOGEE), the Radial Velocity Experiment (RAVE), and the Geneva-Copenhagen survey (GCS). Using red-clump (RC) stars in APOGEE, we determine the large-scale line-of-sight velocity field out to 5 kpc from the Sun in (0.75 kpc){sup 2} bins. The solar motion V{sub ☉} {sub –} {sub c} with respect to the circular velocity V{sub c} is the largest contribution to the power on large scales after subtracting an axisymmetric rotation field; we determine the solar motion by minimizing the large-scale power to be V{sub ☉} {sub –} {sub c} = 24 ± 1 (ran.) ± 2 (syst. [V{sub c} ]) ± 5 (syst.[large-scale]) km s{sup –1}, where the systematic uncertainty is due to (1) a conservative 20 km s{sup –1} uncertainty in V{sub c} and (2) the estimated power on unobserved larger scales. Combining the APOGEE peculiar-velocity field with RC stars in RAVE out to 2 kpc from the Sun and with local GCS stars, we determine the power spectrum of residual velocity fluctuations in the MW's disk on scales between 0.2 kpc{sup –1} ≤ k ≤ 40 kpc{sup –1}. Most of the power is contained in a broad peak between 0.2 kpc{sup –1} < k < 0.9 kpc{sup –1}. We investigate the expected power spectrum for various non-axisymmetric perturbations and demonstrate that the central bar with commonly used parameters but of relatively high mass can explain the bulk of velocity fluctuations in the plane of the Galactic disk near the Sun. Streaming motions ≈10 km s{sup –1} on ≳ 3 kpc scales in the MW are in good agreement with observations of external galaxies and directly explain why local determinations of the solar motion are inconsistent with global measurements.
Campbell, Abbi; Tincani, Matt
2011-01-01
The Power Card strategy is a strength-based intervention to promote social skills of children with autism spectrum disorders (ASD) by capitalizing on their special interests. Although preliminary studies have shown that the Power Card strategy is a promising approach to teach social skills, additional research is needed. The purpose of this study…
Tunable high-power narrow-spectrum external-cavity diode laser based on tapered amplifier at 668 nm
DEFF Research Database (Denmark)
Chi, Mingjun; Erbert, G.; Sumpf, B.;
2010-01-01
A 668 nm tunable high-power narrow-spectrum diode laser system based on a tapered semiconductor optical amplifier in external cavity is demonstrated. The laser system is tunable from 659 to 675 nm. As high as 1.38 W output power is obtained at 668.35 nm. The emission spectral bandwidth is less than...
The power spectrum of galaxies in the 2dF 100k redshift survey
Tegmark, Max; Hamilton, Andrew J. S.; Xu, Yongzhong
2002-10-01
We compute the real-space power spectrum and the redshift-space distortions of galaxies in the 2dF 100k galaxy redshift survey using pseudo-Karhunen-Loève eigenmodes and the stochastic bias formalism. Our results agree well with those published by the 2dFGRS team, and have the added advantage of producing easy-to-interpret uncorrelated minimum-variance measurements of the galaxy-galaxy, galaxy-velocity and velocity-velocity power spectra in 27 k-bands, with narrow and well-behaved window functions in the range 0.01 h Mpc-1 wiggles, although our results are consistent with a standard flat ΩΛ= 0.7`concordance' model and previous tantalizing hints of baryonic oscillations. We measure the galaxy-matter correlation coefficient r > 0.4 and the redshift-distortion parameter β= 0.49 +/- 0.16 for r= 1 (β= 0.47 +/- 0.16 without finger-of-god compression). Since this is an apparent-magnitude limited sample, luminosity-dependent bias may cause a slight red-tilt in the power spectrum. A battery of systematic error tests indicate that the survey is not only impressive in size, but also unusually clean, free of systematic errors at the level to which our tests are sensitive. Our measurements and window functions are available at http://www.hep.upenn.edu/~max/2df.html together with the survey mask, radial selection function and uniform subsample of the survey that we have constructed.
DEFF Research Database (Denmark)
Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.;
2014-01-01
We have constructed the first all-sky map of the thermal Sunyaev-Zeldovich (tSZ) effect by applying specifically tailored component separation algorithms to the 100 to 857 GHz frequency channel maps from the Planck survey. This map shows an obvious galaxy cluster tSZ signal that is well matched....... The measured tSZ power spectrum is consistent with that expected from the Planck catalogue of SZ sources, with clear evidence of additional signal from unresolved clusters and, potentially, diffuse warm baryons. Marginalized band-powers of the Planck tSZ power spectrum and the best-fit model are given. The non...
Second Season QUIET Observations: Measurements of the CMB Polarization Power Spectrum at 95 GHz
Araujo, D; Brizius, A; Buder, I; Chinone, Y; Cleary, K; Dumoulin, R N; Kusaka, A; Monsalve, R; Næss, S K; Newburgh, L B; Reeves, R; Wehus, I K; Zwart, J T L; Bronfman, L; Bustos, R; Church, S E; Dickinson, C; Eriksen, H K; Gaier, T; Gundersen, J O; Hasegawa, M; Hazumi, M; Huffenberger, K M; Ishidoshiro, K; Jones, M E; Kangaslahti, P; Kapner, D J; Kubik, D; Lawrence, C R; Limon, M; McMahon, J J; Miller, A D; Nagai, M; Nguyen, H; Nixon, G; Pearson, T J; Piccirillo, L; Radford, S J E; Readhead, A C S; Richards, J L; Samtleben, D; Seiffert, M; Shepherd, M C; Smith, K M; Staggs, S T; Tajima, O; Thompson, K L; Vanderlinde, K; Williamson, R
2012-01-01
The Q/U Imaging ExperimenT (QUIET) has observed the cosmic microwave background (CMB) at 43 and 95GHz. The 43-GHz results have been published in QUIET Collaboration et al. (2011), and here we report the measurement of CMB polarization power spectra using the 95-GHz data. This data set comprises 5337 hours of observations recorded by an array of 84 polarized coherent receivers with a total array sensitivity of 87 uK sqrt(s). Four low-foreground fields were observed, covering a total of ~1000 square degrees with an effective angular resolution of 12.8', allowing for constraints on primordial gravitational waves and high-signal-to-noise measurements of the E-modes across three acoustic peaks. The data reduction was performed using two independent analysis pipelines, one based on a pseudo-Cl (PCL) cross-correlation approach, and the other on a maximum-likelihood (ML) approach. All data selection criteria and filters were modified until a predefined set of null tests had been satisfied before inspecting any non-nu...
Directory of Open Access Journals (Sweden)
Kurt James Werner
2016-10-01
Full Text Available The magnitude of the Discrete Fourier Transform (DFT of a discrete-time signal has a limited frequency definition. Quadratic interpolation over the three DFT samples surrounding magnitude peaks improves the estimation of parameters (frequency and amplitude of resolved sinusoids beyond that limit. Interpolating on a rescaled magnitude spectrum using a logarithmic scale has been shown to improve those estimates. In this article, we show how to heuristically tune a power scaling parameter to outperform linear and logarithmic scaling at an equivalent computational cost. Although this power scaling factor is computed heuristically rather than analytically, it is shown to depend in a structured way on window parameters. Invariance properties of this family of estimators are studied and the existence of a bias due to noise is shown. Comparing to two state-of-the-art estimators, we show that an optimized power scaling has a lower systematic bias and lower mean-squared-error in noisy conditions for ten out of twelve common windowing functions.
Delay analysis of a point-to-multipoint spectrum sharing network with CSI based power allocation
Khan, Fahd Ahmed
2012-10-01
In this paper, we analyse the delay performance of a point-to-multipoint cognitive radio network which is sharing the spectrum with a point-to-multipoint primary network. The channel is assumed to be independent but not identically distributed and has Nakagami-m fading. A constraint on the peak transmit power of the secondary user transmitter (SU-Tx) is also considered in addition to the peak interference power constraint. Based on the constraints, a power allocation scheme which requires knowledge of the instantaneous channel state information (CSI) of the interference links is derived. The SU-Tx is assumed to be equipped with a buffer and is modelled using the M/G/1 queueing model. Closed form expressions for the probability distribution function (PDF) and cumulative distribution function (CDF) of the packet transmission time is derived. Using the PDF, the expressions for the moments of transmission time are obtained. In addition, using the moments, the expressions for the performance measures such as the total average waiting time of packets and the average number of packets waiting in the buffer of the SU-Tx are also obtained. Numerical simulations corroborate the theoretical results. © 2012 IEEE.
The Linear Theory Power Spectrum from the Lyman-alpha Forest in the Sloan Digital Sky Survey
McDonald, P; Cen, R; Weinberg, D H; Burles, S; Schneider, D P; Schlegel, D J; Bahcall, Neta A; Brinkmann, J; Ivezic, Z; Kent, S; Vanden Berk, Daniel E
2004-01-01
We analyze the SDSS Lyman-alpha forest P_F(k,z) measurement to determine the linear theory power spectrum. Our analysis is based on fully hydrodynamic simulations, extended using hydro-PM simulations. We account for the effect of absorbers with damping wings, which leads to an increase in the slope of the linear power spectrum. We break the degeneracy between the mean level of absorption and the linear power spectrum without significant use of external constraints, which is possible because of the high precision of the P_F(k,z) measurements over a wide range of redshift and scale. We infer linear theory power spectrum amplitude Delta^2_L(k_p=0.009s/km,z_p=3.0)=0.452_{-0.057-0.116}^{+0.069+0.141} and slope n_eff(k_p,z_p)=-2.321_{-0.047-0.102}^{+0.055+0.131} (errors are Delta chi^2=1 and 4, with possible systematic errors included through nuisance parameters in the fit; the errors are correlated with r~0.63). The inferred curvature of the linear power spectrum and the evolution of its amplitude and slope with r...
Correlation between peak energy and Fourier power density spectrum slope in gamma-ray bursts
Dichiara, S; Amati, L; Frontera, F; Margutti, R
2016-01-01
The origin of the gamma-ray burst (GRB) prompt emission still defies explanation, in spite of recent progress made, for example, on the occasional presence of a thermal component in the spectrum along with the ubiquitous non-thermal component that is modelled with a Band function. The combination of finite duration and aperiodic modulations make GRBs hard to characterise temporally. Although correlations between GRB luminosity and spectral hardness on one side and time variability on the other side have long been known, the loose and often arbitrary definition of the latter makes the interpretation uncertain. We characterise the temporal variability in an objective way and search for a connection with rest-frame spectral properties for a number of well-observed GRBs. We studied the individual power density spectra (PDS) of 123 long gamma-ray bursts with measured redshift, rest-frame peak energy Ep,i of the time-averaged nuFnu spectrum, and well-constrained PDS slope alpha detected with Swift, Fermi and past s...
First X-ray observations of Low-Power Compact Steep Spectrum Sources
Kunert-Bajraszewska, M; Siemiginowska, A; Guainazzi, M
2013-01-01
We report first X-ray Chandra observations of a sample of seven low luminosity compact (LLC) sources. They belong to a class of young compact steep spectrum (CSS) radio sources. Four of them have been detected, the other three have upper limit estimations for X-ray flux, one CSS galaxy is associated with an X-ray cluster. We have used the new observations together with the observational data for known strong CSS and gigahertz-peaked spectrum (GPS) objects and large scale FRIs and FRIIs to study the relation between morphology, X-ray properties and excitation modes in radio-loud AGNs. We found that: (1) The low power objects fit well to the already established X-ray - radio luminosity correlation for AGNs and occupy the space among, weaker in the X-rays, FRI objects. (2) The high excitation galaxies (HEG) and low excitation galaxies (LEG) occupy distinct locus in the radio/X-ray luminosity plane, notwithstanding their evolutionary stage. This is in agreement with the postulated different origin of the X-ray em...
Radiofrequency encoded angular-resolved light scattering
DEFF Research Database (Denmark)
Buckley, Brandon W.; Akbari, Najva; Diebold, Eric D.;
2015-01-01
Encoded Angular-resolved Light Scattering (REALS), this technique multiplexes angular light scattering in the radiofrequency domain, such that a single photodetector captures the entire scattering spectrum from a particle over approximately 100 discrete incident angles on a single shot basis. As a proof...
Munoz, Joseph A
2012-01-01
We develop a radiation pressure-balanced model for the interstellar medium of high-redshift galaxies that describes many facets of galaxy formation at z>~6, including star formation rates and distributions and gas accretion onto central black holes. We first show that the vertical gravitational force in the disk of such a model is dominated by the disk self-gravity but that both radiation pressure on dust grains and turbulent pressure from dense clumps and disk instabilities are negligible compared with the radiation pressure of starlight on gas. Constraining our model to reproduce the UV luminosity function of Lyman-break galaxies (LBGs), we limit the available parameter-space to wind mass-loading factors 1--4 times the canonical value for momentum-driven winds. We then focus our study by exploring the effects of different angular momentum transport mechanisms in the galactic disk and find that viscosity driven by gravitational torques, such as from linear spiral waves or non-linear orbit crossings, can buil...
Lawrence, Earl; White, Martin; Higdon, David; Wagner, Christian; Habib, Salman; Williams, Brian
2009-01-01
Many of the most exciting questions in astrophysics and cosmology, including the majority of observational probes of dark energy, rely on an understanding of the nonlinear regime of structure formation. In order to fully exploit the information available from this regime and to extract cosmological constraints, accurate theoretical predictions are needed. Currently such predictions can only be obtained from costly, precision numerical simulations. This paper is the third in a series aimed at constructing an accurate calibration of the nonlinear mass power spectrum on Mpc scales for a wide range of currently viable cosmological models, including dark energy. The first two papers addressed the numerical challenges, and the scheme by which an interpolator was built from a carefully chosen set of cosmological models. In this paper we introduce the ``Coyote Universe'' simulation suite which comprises nearly 1,000 N-body simulations at different force and mass resolutions, spanning 38 wCDM cosmologies. This large s...
Power Allocation and Spectrum Sharing in Multi-User, Multi-Channel Systems with Strategic Users
Kakhbod, Ali
2010-01-01
We consider the decentralized power allocation and spectrum sharing problem in multi-user, multi-channel systems with strategic users. We present a mechanism/game form that has the following desirable features. (1) It is individually rational. (2) It is budget balanced at every Nash equilibrium of the game induced by the game form as well as off equilibrium. (3) The allocation corresponding to every Nash equilibrium (NE) of the game induced by the mechanism is a Lindahl allocation, that is a weakly Pareto optimal allocation. Our proposed game form/mechanism achieves all the above desirable properties without any assumption about, concavity, differentiability, monotonicity, or quasi-linearity of the users' utility functions.
Foreground Contamination in Interferometric Measurements of the Redshifted 21 cm Power Spectrum
Bowman, Judd D; Hewitt, Jacqueline N
2008-01-01
Subtraction of astrophysical foreground contamination from dirty sky maps produced by simulated measurements of the Murchison Widefield Array (MWA) has been performed by fitting a 2nd-order polynomial along the spectral dimension of each pixel in the data cubes. The simulations include the effects of the frequency-dependent primary antenna beams and synthesized array beams and recover the one-dimensional spherically binned input redshifted 21 cm power spectrum to within approximately 1% over the scales probed most sensitively by the MWA (0.01 < k < 1 Mpc^-1). We find that the weighting function used to produce the dirty sky maps from the gridded visibility measurements is important to the success of the technique. Uniform weighting of the visibility measurements produces the best results, whereas natural weighting significantly worsens the foreground subtraction by coupling structure in the density of the visibility measurements to spectral structure in the dirty sky map data cube. The extremely dense u...
Rolling Element Bearing Fault Diagnosis Using Laplace-Wavelet Envelope Power Spectrum
Directory of Open Access Journals (Sweden)
Roy Asok
2007-01-01
Full Text Available The bearing characteristic frequencies (BCF contain very little energy, and are usually overwhelmed by noise and higher levels of macro-structural vibrations. They are difficult to find in their frequency spectra when using the common technique of fast fourier transforms (FFT. Therefore, Envelope Detection (ED has always been used with FFT to identify faults occurring at the BCF. However, the computation of the ED is suffering to strictly define the resonance frequency band. In this paper, an alternative approach based on the Laplace-wavelet enveloped power spectrum is proposed. The Laplace-Wavelet shape parameters are optimized based on Kurtosis maximization criteria. The results for simulated as well as real bearing vibration signal show the effectiveness of the proposed method to extract the bearing fault characteristic frequencies from the resonant frequency band.
Fourier Power Spectrum Analysis of Exons for the Period-3 Behavior
Institute of Scientific and Technical Information of China (English)
Yuan Xin TIAN; Chao CHEN; Xiao Yong ZOU; Jian Ding QIU; Pei Xiang CAI; Jin Yuan MO
2005-01-01
The period-3 behaviors of 105 exons from 20 genes in human were studied by Fourier power spectrum. The results indicated that not all exons show the period-3 behavior. The exons were adjusted in order to make them accord with the order of the protein translated, and we found that the period-3 character is relation to the length of exons and the bases distribution in the three codon position. Furthermore, as long as the exons with period-3 behavior accord with the order of protein translated, they would exhibit the synonymous codons usage preference, and the codons with g/c at the third position are used in higher frequency. The results are significant to the gene prediction and the research on the introns.
Liu, Adrian
2015-01-01
Improvements in current instruments and the advent of next-generation instruments will soon push observational 21 cm cosmology into a new era, with high significance measurements of both the power spectrum and the mean ("global") signal of the 21 cm brightness temperature. In this paper we use the recently commenced Hydrogen Epoch of Reionization Array as a worked example to provide forecasts on astrophysical and cosmological parameter constraints. In doing so we improve upon previous forecasts in a number of ways. First, we provide updated forecasts using the latest best-fit cosmological parameters from the Planck satellite, exploring the impact of different Planck datasets on 21 cm experiments. We also show that despite the exquisite constraints that other probes have placed on cosmological parameters, the remaining uncertainties are still large enough to have a non-negligible impact on upcoming 21 cm data analyses. While this complicates high-precision constraints on reionization models, it provides an ave...
The power spectrum and bispectrum of SDSS DR11 BOSS galaxies II: cosmological interpretation
Gil-Marín, Héctor; Noreña, Jorge; Cuesta, Antonio J; Samushia, Lado; Percival, Will J; Wagner, Christian; Manera, Marc; Schneider, Donald P
2014-01-01
We examine the cosmological implications of the measurements of the linear growth rate of cosmological structure obtained in a companion paper from the power spectrum and bispectrum monopoles of the Sloan Digital Sky Survey III Baryon Oscillation Spectroscopic Survey Data, Release 11, CMASS galaxies. This measurement was of $f^{0.43}\\sigma_8$, where $\\sigma_8$ is the amplitude of dark matter density fluctuations, and $f$ is the linear growth rate, at the effective redshift of the survey, $z_{\\rm eff}=0.57$. In conjunction with Cosmic Microwave Background (CMB) data, interesting constraints can be placed on models with non-standard neutrino properties and models where gravity deviates from general relativity on cosmological scales. In particular, the sum of the masses of the three species of the neutrinos is constrained to $m_\
International Nuclear Information System (INIS)
In the context of two-field inflation characterized by a light direction and a heavy direction, we revisit the question of the impact of the massive modes on the power spectrum produced after a turn in the inflationary trajectory. We consider in particular the resonant effect due to the background oscillations following a sharp turn. Working in the mass basis, i.e. in the basis spanned by the eigenvectors of the effective mass matrix for the perturbations, we provide an analytical estimate of the resonant effect, using the in-in formalism. In comparison with earlier estimates, we find the same the spectral dependence but a smaller amplitude. We also compute, again via the in-in formalism, the effect of the direct coupling between the light and heavy modes at the instant of the turn and confirm our previous results obtained via a different method
Dalton, Brian H.; Power, Geoffrey A; Paturel, Justin R.; Rice, Charles L.
2015-01-01
The underlying factors related to the divergent findings of age-related fatigue for dynamic tasks are not well understood. The purpose here was to investigate age-related fatigability and recovery between a repeated constrained (isokinetic) and an unconstrained velocity (isotonic) task, in which participants performed fatiguing contractions at the velocity (isokinetic) or resistance (isotonic) corresponding with maximal power. To compare between tasks, isotonic torque–power relationships were...
The power spectrum of galaxies in the 2dF 100k redshift survey
Tegmark, M; Xu, Y; Tegmark, Max; Hamilton, Andrew J. S.; Xu, Yongzhong
2002-01-01
We compute the real-space power spectrum and the redshift-space distortions of galaxies in the 2dF 100k galaxy redshift survey using pseudo-Karhunen-Loeve eigenmodes and the stochastic bias formalism. Our results agree well with those published by the 2dFGRS team, and have the added advantage of producing easy-to-interpret uncorrelated measurements of the galaxy-galaxy, galaxy-velocity and velocity-velocity power spectra in 27 k-bands, with narrow and well-behaved window functions in the range 0.01 h/Mpc 0.4 and the redshift-distortion parameter beta=0.49 +/- 0.16 for r=1 (beta=0.47 +/- 0.16 without finger-of-god compression). A battery of systematic error tests indicate that the survey is not only impressive in size, but also unusually clean. Our measurements and window functions are available at http://www.hep.upenn.edu/~max/2df.html together with the survey mask, radial selection function and uniform subsample of the survey that we have constructed.
Directory of Open Access Journals (Sweden)
Baudais Jean-Yves
2007-01-01
Full Text Available Bit-loading techniques based on orthogonal frequency division mutiplexing (OFDM are frequently used over wireline channels. In the power line context, channel state information can reasonably be obtained at both transmitter and receiver sides, and adaptive loading can advantageously be carried out. In this paper, we propose to apply loading principles to an spread spectrum OFDM (SS-OFDM waveform which is a multicarrier system using 2D spreading in the time and frequency domains. The presented algorithm handles the subcarriers, spreading codes, bits and energies assignment in order to maximize the data rate and the range of the communication system. The optimization is realized at a target symbol error rate and under spectral mask constraint as usually imposed. The analytical study shows that the merging principle realized by the spreading code improves the rate and the range of the discrete multitone (DMT system in single and multiuser contexts. Simulations have been run over measured power line communication (PLC channel responses and highlight that the proposed system is all the more interesting than the received signal-to-noise ratio (SNR is low.
Probing reionization with the cross power spectrum of 21 cm and near-infrared radiation backgrounds
Mao, Xiao-Chun
2014-01-01
The cross-correlation between the 21 cm emission from the high-redshift intergalactic medium and the near-infrared (NIR) background light from the high-redshift galaxies promises to be a powerful probe of cosmic reionization. In this paper, we investigate the cross power spectrum during the epoch of reionization. We employ an improved halo approach to derive the distribution of the density field and consider two stellar populations in the star formation model: metal-free stars and metal-poor stars. The reionization history is further generated to be consistent with the electron-scattering optical depth from cosmic microwave background measurements. Then the intensity of NIR background is estimated by collecting emission from stars in the first-light galaxies. On large scales, we find the 21 cm and NIR radiation backgrounds are positively correlated during the very early stages of reionization. However, these two radiation backgrounds quickly become anti-correlated as reionization proceeds. The maximum absolut...
Gil-Marín, Héctor; Percival, Will J.; Brownstein, Joel R.; Chuang, Chia-Hsun; Grieb, Jan Niklas; Ho, Shirley; Kitaura, Francisco-Shu; Maraston, Claudia; Prada, Francisco; Rodríguez-Torres, Sergio; Ross, Ashley J.; Samushia, Lado; Schlegel, David J.; Thomas, Daniel; Tinker, Jeremy L.; Zhao, Gong-Bo
2016-08-01
We measure and analyse the clustering of the Baryon Oscillation Spectroscopic Survey (BOSS) relative to the line of sight (LOS), for LOWZ and CMASS galaxy samples drawn from the final Data Release 12. The LOWZ sample contains 361 762 galaxies with an effective redshift of zlowz = 0.32, and the CMASS sample 777 202 galaxies with an effective redshift of zcmass = 0.57. From the power spectrum monopole and quadrupole moments around the LOS, we measure the growth of structure parameter f times the amplitude of dark matter density fluctuations σ8 by modelling the redshift-space distortion signal. When the geometrical Alcock-Paczynski effect is also constrained from the same data, we find joint constraints on fσ8, the product of the Hubble constant and the comoving sound horizon at the baryon-drag epoch H(z)rs(zd), and the angular distance parameter divided by the sound horizon DA(z)/rs(zd). We find f(zlowz)σ8(zlowz) = 0.394 ± 0.062, DA(zlowz)/rs(zd) = 6.35 ± 0.19, H(zlowz)rs(zd) = (11.41 ± 0.56) 103 km s- 1 for the LOWZ sample, and f(zcmass)σ8(zcmass) = 0.444 ± 0.038, DA(zcmass)/rs(zd) = 9.42 ± 0.15, H(zcmass)rs(zd) = (13.92 ± 0.44) 103 km s- 1 for the CMASS sample. We find general agreement with previous BOSS DR11 measurements. Assuming the Hubble parameter and angular distance parameter are fixed at fiducial Λcold dark matter values, we find f(zlowz)σ8(zlowz) = 0.485 ± 0.044 and f(zcmass)σ8(zcmass) = 0.436 ± 0.022 for the LOWZ and CMASS samples, respectively.
The WiggleZ Dark Energy Survey: the selection function and z=0.6 galaxy power spectrum
Blake, Chris; Colless, Matthew; Couch, Warrick; Croom, Scott; Davis, Tamara; Drinkwater, Michael J; Forster, Karl; Glazebrook, Karl; Jelliffe, Ben; Jurek, Russell J; Li, I-hui; Madore, Barry; Martin, Chris; Pimbblet, Kevin; Poole, Gregory B; Pracy, Michael; Sharp, Rob; Wisnioski, Emily; Woods, David; Wyder, Ted
2010-01-01
We report one of the most accurate measurements of the three-dimensional large-scale galaxy power spectrum achieved to date, using 56,159 redshifts of bright emission-line galaxies at effective redshift z=0.6 from the WiggleZ Dark Energy Survey at the Anglo-Australian Telescope. We describe in detail how we construct the survey selection function allowing for the varying target completeness and redshift completeness. We measure the total power with an accuracy of approximately 5% in wavenumber bands of dk=0.01 h/Mpc. A model power spectrum including non-linear corrections, combined with a linear galaxy bias factor and a simple model for redshift-space distortions, provides a good fit to our data for scales k < 0.4 h/Mpc. The large-scale shape of the power spectrum is consistent with the best-fitting matter and baryon densities determined by observations of the Cosmic Microwave Background radiation. By splitting the power spectrum measurement as a function of tangential and radial wavenumbers we delineate t...
Directory of Open Access Journals (Sweden)
Claudia Menzel
Full Text Available We investigated whether low-level processed image properties that are shared by natural scenes and artworks - but not veridical face photographs - affect the perception of facial attractiveness and age. Specifically, we considered the slope of the radially averaged Fourier power spectrum in a log-log plot. This slope is a measure of the distribution of special frequency power in an image. Images of natural scenes and artworks possess - compared to face images - a relatively shallow slope (i.e., increased high spatial frequency power. Since aesthetic perception might be based on the efficient processing of images with natural scene statistics, we assumed that the perception of facial attractiveness might also be affected by these properties. We calculated Fourier slope and other beauty-associated measurements in face images and correlated them with ratings of attractiveness and age of the depicted persons (Study 1. We found that Fourier slope - in contrast to the other tested image properties - did not predict attractiveness ratings when we controlled for age. In Study 2A, we overlaid face images with random-phase patterns with different statistics. Patterns with a slope similar to those in natural scenes and artworks resulted in lower attractiveness and higher age ratings. In Studies 2B and 2C, we directly manipulated the Fourier slope of face images and found that images with shallower slopes were rated as more attractive. Additionally, attractiveness of unaltered faces was affected by the Fourier slope of a random-phase background (Study 3. Faces in front of backgrounds with statistics similar to natural scenes and faces were rated as more attractive. We conclude that facial attractiveness ratings are affected by specific image properties. An explanation might be the efficient coding hypothesis.
International Nuclear Information System (INIS)
We present a generic inference method for inflation models from observational data by the usage of higher-order statistics of the curvature perturbation on uniform density hypersurfaces. This method is based on the calculation of the posterior for the primordial non-Gaussianity parameters fNL and gNL, which in general depend on specific parameters of inflation and reheating models, and enables to discriminate among the still viable inflation models. To keep analyticity as far as possible to dispense with numerically expensive sampling techniques a saddle-point approximation is introduced, whose precision is validated for a numerical toy example. The mathematical formulation is done in a generic way so that the approach remains applicable to cosmic microwave background data as well as to large scale structure data. Additionally, we review a few currently interesting inflation models and present numerical toy examples thereof in two and three dimensions to demonstrate the efficiency of the higher-order statistics method. A second quantity of interest is the primordial power spectrum. Here, we present two Bayesian methods to infer it from observational data, the so called critical filter and an extension thereof with smoothness prior, both allowing for a non-parametric spectrum reconstruction. These methods are able to reconstruct the spectra of the observed perturbations and the primordial ones of curvature perturbation even in case of non-Gaussianity and partial sky coverage. We argue that observables like T- and B-modes permit to measure both spectra. This also allows to infer the level of non-Gaussianity generated since inflation
Energy Technology Data Exchange (ETDEWEB)
Dorn, Sebastian; Enßlin, Torsten A. [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, Garching, D-85748 (Germany); Ramirez, Erandy [Instituto de Ciencias Nucleares, UNAM A. Postal 70-543, Mexico, D.F., 04510 Mexico (Mexico); Kunze, Kerstin E. [Departamento de Física Fundamental and IUFFyM, Universidad de Salamanca, Plaza de la Merced s/n, Salamanca, 37008 (Spain); Hofmann, Stefan, E-mail: sdorn@mpa-garching.mpg.de, E-mail: ena.ramirez@correo.nucleares.unam.mx, E-mail: kkunze@usal.es, E-mail: stefan.hofmann@physik.lmu.de, E-mail: ensslin@mpa-garching.mpg.de [Arnold Sommerfeld Center for Theoretical Physics, Ludwigs-Maximilians-Universität München, Theresienstraße 37, Munich, D-80333 (Germany)
2014-06-01
We present a generic inference method for inflation models from observational data by the usage of higher-order statistics of the curvature perturbation on uniform density hypersurfaces. This method is based on the calculation of the posterior for the primordial non-Gaussianity parameters f{sub NL} and g{sub NL}, which in general depend on specific parameters of inflation and reheating models, and enables to discriminate among the still viable inflation models. To keep analyticity as far as possible to dispense with numerically expensive sampling techniques a saddle-point approximation is introduced, whose precision is validated for a numerical toy example. The mathematical formulation is done in a generic way so that the approach remains applicable to cosmic microwave background data as well as to large scale structure data. Additionally, we review a few currently interesting inflation models and present numerical toy examples thereof in two and three dimensions to demonstrate the efficiency of the higher-order statistics method. A second quantity of interest is the primordial power spectrum. Here, we present two Bayesian methods to infer it from observational data, the so called critical filter and an extension thereof with smoothness prior, both allowing for a non-parametric spectrum reconstruction. These methods are able to reconstruct the spectra of the observed perturbations and the primordial ones of curvature perturbation even in case of non-Gaussianity and partial sky coverage. We argue that observables like T- and B-modes permit to measure both spectra. This also allows to infer the level of non-Gaussianity generated since inflation.
Correlation between peak energy and Fourier power density spectrum slope in gamma-ray bursts
Dichiara, S.; Guidorzi, C.; Amati, L.; Frontera, F.; Margutti, R.
2016-05-01
Context. The origin of the gamma-ray burst (GRB) prompt emission still defies explanation, in spite of recent progress made, for example, on the occasional presence of a thermal component in the spectrum along with the ubiquitous non-thermal component that is modelled with a Band function. The combination of finite duration and aperiodic modulations make GRBs hard to characterise temporally. Although correlations between GRB luminosity and spectral hardness on one side and time variability on the other side have long been known, the loose and often arbitrary definition of the latter makes the interpretation uncertain. Aims: We characterise the temporal variability in an objective way and search for a connection with rest-frame spectral properties for a number of well-observed GRBs. Methods: We studied the individual power density spectra (PDS) of 123 long GRBs with measured redshift, rest-frame peak energy Ep,i of the time-averaged ν Fν spectrum, and well-constrained PDS slope α detected with Swift, Fermi and past spacecraft. The PDS were modelled with a power law either with or without a break adopting a Bayesian Markov chain Monte Carlo technique. Results: We find a highly significant Ep,i-α anti-correlation. The null hypothesis probability is ~10-9. Conclusions: In the framework of the internal shock synchrotron model, the Ep,i-α anti-correlation can hardly be reconciled with the predicted Ep,i ∝ Γ-2, unless either variable microphysical parameters of the shocks or continual electron acceleration are assumed. Alternatively, in the context of models based on magnetic reconnection, the PDS slope and Ep,i are linked to the ejecta magnetisation at the dissipation site, so that more magnetised outflows would produce more variable GRB light curves at short timescales (≲1 s), shallower PDS, and higher values of Ep,i. Full Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc
Yao eWang; Sokhadze, Estate M.; Ayman eEI-Baz; Xiaoli eLi; Lonnie eSears; Casanova, Manuel F.; Allan eTasman
2016-01-01
Neurofeedback is a mode of treatment that is potentially useful for improving self-regulation skills in persons with autism spectrum disorder. We proposed that operant conditioning of EEG in neurofeedback mode can be accompanied by changes in the relative power of EEG bands. However, the details on the change of the relative power of EEG bands during neurofeedback training course in autism are not yet well explored. In this study, we analyzed the EEG recordings of children diagnosed with auti...
Measurement of Redshift Space Power Spectrum for BOSS galaxies and the Growth Rate at redshift 0.57
Li, Zhigang; Zhang, Pengjie; Cheng, Dalong
2016-01-01
We present a measurement of two-dimensional (2D) redshift-space power spectrum for the Baryon Oscillation Spectroscopic Survey (BOSS) Data Release 11 CMASS galaxies in the North Galactic Cap (NGC) based on the method developed by Jing & Borner (2001). In this method, we first measure the 2D redshift-space correlation function for the CMASS galaxies, and obtain the 2D power spectrum based on Fourier Transform of the correlation function. The method is tested with an N-body mock galaxy catalog, which demonstrates that the method can yield an accurate and unbiased measurement of the redshift-space power spectrum given the input 2D correlation function is correct. Compared with previous measurements in literature that are usually based on direct Fourier Transform in redshift space, our method has the advantages that the window function and shot-noise are fully corrected. In fact, our 2D power spectrum, by its construction, can accurately reproduce the 2D correlation function, and in the meanwhile can reproduc...
Saito, Shun; Taruya, Atsushi
2009-01-01
Future or ongoing galaxy redshift surveys can put stringent constraints on neutrinos masses via the high-precision measurements of galaxy power spectrum, when combined with cosmic microwave background (CMB) information. In this paper we develop a method to model galaxy power spectrum in the weakly nonlinear regime for a mixed dark matter (CDM plus finite-mass neutrinos) model, based on perturbation theory (PT) whose validity is well tested by simulations for a CDM model. In doing this we carefully study various aspects of the nonlinear clustering and then arrive at a useful approximation allowing for a quick computation of the nonlinear power spectrum as in the CDM case. The nonlinear galaxy bias is also included in a self-consistent manner within the PT framework. Thus the use of our PT model can give a more robust understanding of the measured galaxy power spectrum as well as allow for higher sensitivity to neutrino masses due to the gain of Fourier modes beyond the linear regime. Based on the Fisher matrix...
Nasir, Fahad; Becker, George D
2016-01-01
We use cosmological hydrodynamical simulations to assess the feasibility of constraining the thermal history of the intergalactic medium during reionisation with the Ly$\\alpha$ forest at $z \\simeq 5$. Pressure smoothing has a measurable impact on the transmitted flux power spectrum that can be isolated from Doppler broadening at this redshift. We parameterise the effect of pressure smoothing on the power spectrum using the cumulative energy per proton, $u_0$, deposited into a gas parcel at the mean background density, a quantity that is tightly linked with the integrated thermal history and the gas density power spectrum in the simulations. We construct mock observations of the line of sight Ly$\\alpha$ forest power spectrum and use a Markov Chain Monte Carlo approach to recover $u_{0}$ at redshifts $5 \\leq z \\leq 12$. A statistical uncertainty of $\\sim 20$ per cent is expected (at 68 per cent confidence) at $z\\simeq 5$ using high resolution spectra with a total redshift path length of $\\Delta z=4$ and a typic...
Anatomical background noise power spectrum in differential phase contrast breast images
Garrett, John; Ge, Yongshuai; Li, Ke; Chen, Guang-Hong
2015-03-01
In x-ray breast imaging, the anatomical noise background of the breast has a significant impact on the detection of lesions and other features of interest. This anatomical noise is typically characterized by a parameter, β, which describes a power law dependence of anatomical noise on spatial frequency (the shape of the anatomical noise power spectrum). Large values of β have been shown to reduce human detection performance, and in conventional mammography typical values of β are around 3.2. Recently, x-ray differential phase contrast (DPC) and the associated dark field imaging methods have received considerable attention as possible supplements to absorption imaging for breast cancer diagnosis. However, the impact of these additional contrast mechanisms on lesion detection is not yet well understood. In order to better understand the utility of these new methods, we measured the β indices for absorption, DPC, and dark field images in 15 cadaver breast specimens using a benchtop DPC imaging system. We found that the measured β value for absorption was consistent with the literature for mammographic acquisitions (β = 3.61±0.49), but that both DPC and dark field images had much lower values of β (β = 2.54±0.75 for DPC and β = 1.44±0.49 for dark field). In addition, visual inspection showed greatly reduced anatomical background in both DPC and dark field images. These promising results suggest that DPC and dark field imaging may help provide improved lesion detection in breast imaging, particularly for those patients with dense breasts, in whom anatomical noise is a major limiting factor in identifying malignancies.
Institute of Scientific and Technical Information of China (English)
李光华; 滕树云
2013-01-01
文章依据角谱理论研究了纳米小孔的近场衍射,采用矢量和标量角谱理论研究了电磁场的矢量性和衍射场中倏逝波对纳米小孔近场衍射的影响,给出了小孔近场衍射的数学表达式.理论计算了纳米尺寸下小孔的横向和纵向近场衍射光强分布,并获得了电磁场的矢量性和衍射倏逝波在小孔近场衍射的作用%The near - field diffraction of a nanometer aperture is studied according to the angular spectrum theory. The influences of the vector property of the electromagnetic field and the evanescent wave on the diffraction in near field are analyzed respectively by means of vector and scalar diffraction theory, and the mathematic expressions of the near - field diffraction are presented. The transverse and longitudinal diffraction light intensity distributions of a nanometer aperture in near - field are theoretically calculated, and the results show the important roles of the the vector property of the electromagnetic field and the evanescent wave on the near - field diffraction of a small aperture.
International Nuclear Information System (INIS)
As the essential foundation of noise reduction, many noise source identification methods have been developed and applied to engineering practice. To identify the noise source in the board-band frequency of different engine parts at various typical speeds, this paper presents an integrated noise source identification method based on the ensemble empirical mode decomposition (EEMD), the coherent power spectrum analysis, and the improved analytic hierarchy process (AHP). The measured noise is decomposed into several IMFs with physical meaning, which ensures the coherence analysis of the IMFs and the vibration signals are meaningful. An improved AHP is developed by introducing an objective weighting function to replace the traditional subjective evaluation, which makes the results no longer dependent on the subject performances and provides a better consistency in the meantime. The proposed noise identification model is applied to identifying a diesel engine surface radiated noise. As a result, the frequency-dependent contributions of different engine parts to different test points at different speeds are obtained, and an overall weight order is obtained as oil pan > left body > valve chamber cover > gear chamber casing > right body > flywheel housing, which provides an effectual guidance for the noise reduction. (paper)
The Coyote Universe Extended: Precision Emulation of the Matter Power Spectrum
Heitmann, Katrin; Kwan, Juliana; Habib, Salman; Higdon, David
2013-01-01
Modern sky surveys are returning precision measurements of cosmological statistics such as weak lensing shear correlations, the distribution of galaxies, and cluster abundance. To fully exploit these observations, theorists must provide predictions that are at least as accurate as the measurements, as well as robust estimates of systematic errors that are inherent to the modeling process. In the nonlinear regime of structure formation, this challenge can only be overcome by developing a large-scale, multi-physics simulation capability covering a range of cosmological models and astrophysical processes. As a first step to achieving this goal, we have recently developed a prediction scheme for the matter power spectrum (a so-called emulator), accurate at the 1% level out to k~1/Mpc and z=1 for wCDM cosmologies based on a set of high-accuracy N-body simulations. It is highly desirable to increase the range in both redshift and wavenumber and to extend the reach in cosmological parameter space. To make progress i...
A new probe of the magnetic field power spectrum in cosmic web filaments
Hales, Christopher A.; Greiner, Maksim; Ensslin, Torsten A.
2015-08-01
Establishing the properties of magnetic fields on scales larger than galaxy clusters is critical for resolving the unknown origin and evolution of galactic and cluster magnetism. More generally, observations of magnetic fields on cosmic scales are needed for assessing the impacts of magnetism on cosmology, particle physics, and structure formation over the full history of the Universe. However, firm observational evidence for magnetic fields in large scale structure remains elusive. In an effort to address this problem, we have developed a novel statistical method to infer the magnetic field power spectrum in cosmic web filaments using observation of the two-point correlation of Faraday rotation measures from a dense grid of extragalactic radio sources. Here we describe our approach, which embeds and extends the pioneering work of Kolatt (1998) within the context of Information Field Theory (a statistical theory for Bayesian inference on spatially distributed signals; Enfllin et al., 2009). We describe prospects for observation, for example with forthcoming data from the ultra-deep JVLA CHILES Con Pol survey and future surveys with the SKA.
Power spectrum estimation from high-resolution maps by Gibbs sampling
Eriksen, H K; Jewell, J B; Wandelt, B D; Larson, D L; Górski, K M; Levin, S; Banday, A J; Lilje, P B
2004-01-01
We revisit a recently introduced power spectrum estimation technique based on Gibbs sampling, with the goal of applying it to the high-resolution WMAP data. In order to facilitate this analysis, a number of sophistications have to be introduced, each of which is discussed in detail. We have implemented two independent versions of the algorithm to cross-check the computer codes, and to verify that a particular solution to any given problem does not affect the scientific results. We then apply these programs to simulated data with known properties at intermediate (N_side = 128) and high (N_side = 512) resolutions, to study effects such as incomplete sky coverage and white vs. correlated noise. From these simulations we also establish the Markov chain correlation length as a function of signal-to-noise ratio, and give a few comments on the properties of the correlation matrices involved. Parallelization issues are also discussed, with emphasis on real-world limitations imposed by current super-computer facilitie...
The power spectrum and bispectrum of SDSS DR11 BOSS galaxies I: bias and gravity
Gil-Marín, Héctor; Verde, Licia; Percival, Will J; Wagner, Christian; Manera, Marc; Schneider, Donald P
2014-01-01
We analyse the anisotropic clustering of the Baryon Oscillation Spectroscopic Survey (BOSS) CMASS Data Release 11 sample, which consists of 690827 galaxies in the redshift range 0.43
A supervised machine learning estimator for the non-linear matter power spectrum - SEMPS
Mohammed, Irshad
2015-01-01
In this article, we argue that models based on machine learning (ML) can be very effective in estimating the non-linear matter power spectrum ($P(k)$). We employ the prediction ability of the supervised ML algorithms to build an estimator for the $P(k)$. The estimator is trained on a set of cosmological models, and redshifts for which the $P(k)$ is known, and it learns to predict $P(k)$ for any other set. We review three ML algorithms -- Random Forest, Gradient Boosting Machines, and K-Nearest Neighbours -- and investigate their prime parameters to optimize the prediction accuracy of the estimator. We also compute an optimal size of the training set, which is realistic enough, and still yields high accuracy. We find that, employing the optimal values of the internal parameters, a set of $50-100$ cosmological models is enough to train the estimator that can predict the $P(k)$ for a wide range of cosmological models, and redshifts. Using this configuration, we build a blackbox -- Supervised Estimator for Matter...
Disentangling redshift-space distortions and nonlinear bias using the 2D power spectrum
Jennings, Elise
2015-01-01
We present the nonlinear 2D galaxy power spectrum, $P(k,\\mu)$, in redshift space, measured from the Dark Sky simulations, using galaxy catalogs constructed with both halo occupation distribution and subhalo abundance matching methods, chosen to represent an intermediate redshift sample of luminous red galaxies. We find that the information content in individual $\\mu$ (cosine of the angle to the line of sight) bins is substantially richer then multipole moments, and show that this can be used to isolate the impact of nonlinear growth and redshift space distortion (RSD) effects. Using the $\\mu<0.2$ simulation data, which we show is not impacted by RSD effects, we can successfully measure the nonlinear bias to an accuracy of $\\sim 5$% at $k<0.6 h$Mpc$^{-1}$. This use of individual $\\mu $ bins to extract the nonlinear bias successfully removes a large parameter degeneracy when constraining the linear growth rate of structure. We carry out a joint parameter estimation, using the low $\\mu$ simulation data to ...
Halo Zeldovich model and perturbation theory: dark matter power spectrum and correlation function
Seljak, Uroš
2015-01-01
Perturbation theory for dark matter clustering has received a lot of attention in recent years, but its convergence properties remain poorly justified and there is no successful model that works both for correlation function and for power spectrum. Here we present Halo Zeldovich approach combined with perturbation theory (HZPT), in which we use standard perturbation theory at one loop order (SPT) at very low $k$, and connect it to a version of the halo model, for which we adopt the Zeldovich approximation plus a Pade expansion of a compensated one halo term. This low $k$ matching allows us to determine the one halo term amplitude and redshift evolution, both of which are in an excellent agreement with simulations, and approximately agree with the expected value from the halo model. Our Pade expansion approach of the one halo term added to Zeldovich approximation identifies two typical halo scales averaged over the halo mass function, the halo radius scale of order of 1Mpc/h, and the halo mass compensation sca...
Zhang, Junhong; Wang, Jian; Lin, Jiewei; Bi, Fengrong; Guo, Qian; Chen, Kongwu; Ma, Liang
2015-09-01
As the essential foundation of noise reduction, many noise source identification methods have been developed and applied to engineering practice. To identify the noise source in the board-band frequency of different engine parts at various typical speeds, this paper presents an integrated noise source identification method based on the ensemble empirical mode decomposition (EEMD), the coherent power spectrum analysis, and the improved analytic hierarchy process (AHP). The measured noise is decomposed into several IMFs with physical meaning, which ensures the coherence analysis of the IMFs and the vibration signals are meaningful. An improved AHP is developed by introducing an objective weighting function to replace the traditional subjective evaluation, which makes the results no longer dependent on the subject performances and provides a better consistency in the meantime. The proposed noise identification model is applied to identifying a diesel engine surface radiated noise. As a result, the frequency-dependent contributions of different engine parts to different test points at different speeds are obtained, and an overall weight order is obtained as oil pan > left body > valve chamber cover > gear chamber casing > right body > flywheel housing, which provides an effectual guidance for the noise reduction.
Huang, Qing-Guo; Zhao, Wen
2015-01-01
By taking into account the contamination of foreground radiations, we employ the Fisher matrix to forecast the future sensitivity on the tilt of power spectrum of primordial tensor perturbations for several ground-based (AdvACT, CLASS, Keck/BICEP3, Simons Array, SPT-3G), balloon-borne (EBEX, Spider) and satellite (CMBPol, COrE, LiteBIRD) experiments of B-mode polarizations. For the fiducial model $n_t=0$, our results show that the satellite experiments give good sensitivity on the tensor tilt $n_t$ to the level $\\sigma_{n_t}\\lesssim0.1$ for $r\\gtrsim2\\times10^{-3}$, while the ground-based and balloon-borne experiments give worse sensitivity. By considering the BICEP2/Keck Array and Planck (BKP) constraint on the tensor-to-scalar ratio $r$, we see that it is impossible for these experiments to test the consistency relation $n_t=-r/8$ in the canonical single-field slow-roll inflation models.
Statistical connection of peak counts to power spectrum and moments in weak lensing field
Shirasaki, Masato
2016-01-01
The number density of local maxima of weak lensing field, referred to as weak-lensing peak counts, can be used as a cosmological probe. However, its relevant cosmological information is still unclear. We study the relationship between the peak counts and other statistics in weak lensing field by using 1000 ray-tracing simulations. We construct a local transformation of lensing field $\\cal K$ to a new Gaussian field $y$, named local-Gaussianized transformation. We calibrate the transformation with numerical simulations so that the one-point distribution and the power spectrum of $\\cal K$ can be reproduced from a single Gaussian field $y$ and monotonic relation between $y$ and $\\cal K$. Therefore, the correct information of two-point clustering and any order of moments in weak lensing field should be preserved under local-Gaussianized transformation. We then examine if local-Gaussianized transformation can predict weak-lensing peak counts in simulations. The local-Gaussianized transformation is insufficient to ...
Hemantha, Maddumage Don P; Chuang, Chia-Hsun
2013-01-01
We present a method to measure the Hubble parameter $H(z)$ and the angular diameter distance $D_A(z)$ simultaneously from the two-dimensional matter power spectrum from galaxy surveys with broad sky coverage. We validate this method by applying it to the LasDamas mock galaxy catalogs. Then we apply this method to Sloan Digital Sky Survey (SDSS) Data Release 7 and obtain measurements of $\\Omega_mh^2=0.1268 \\pm 0.0085$, $H(z=0.35)=81.3\\pm 3.8$km/s/Mpc, $D_A(z=0.35) = 1037\\pm44$Mpc, without assuming a dark energy model or a flat universe. We also find that the derived parameters $H(0.35)r_s(z_d)/c=0.0431 \\pm 0.0018$ and $D_A(0.35)/r_s(z_d)=6.48 \\pm 0.25$. These are in excellent agreement with similar measurements from the two-dimensional correlation function of the same data.
Gil-Marín, Héctor; Verde, Licia; Brownstein, Joel R; Chuang, Chia-Hsun; Kitaura, Francisco-Shu; Rodríguez-Torres, Sergio A; Olmstead, Matthew D
2016-01-01
We measure and analyse the bispectrum of the final, Data Release 12, galaxy sample provided by the Baryon Oscillation Spectroscopic Survey, splitting by selection algorithm into LOWZ and CMASS galaxies. The LOWZ sample contains 361762 galaxies with an effective redshift of $z_{\\rm LOWZ}=0.32$, and the CMASS sample 777202 galaxies with an effective redshift of $z_{\\rm CMASS}=0.57$. Combining the power spectrum, measured relative to the line-of-sight, with the spherically averaged bispectrum, we are able to constrain the product of the growth of structure parameter, $f$, and the amplitude of dark matter density fluctuations, $\\sigma_8$, along with the geometric Alcock-Paczynski parameters, the product of the Hubble constant and the comoving sound horizon at the baryon drag epoch, $H(z)r_s(z_d)$, and the angular distance parameter divided by the sound horizon, $D_A(z)/r_s(z_d)$. We find $f(z_{\\rm LOWZ})\\sigma_8(z_{\\rm LOWZ})=0.460\\pm 0.066$, $D_A(z_{\\rm LOWZ})/r_s(z_d)=6.74 \\pm 0.22$, $H(z_{\\rm LOWZ})r_s(z_d)=(1...
Gil-Marín, Héctor; Brownstein, Joel R; Chuang, Chia-Hsun; Grieb, Jan Niklas; Ho, Shirley; Kitaura, Francisco-Shu; Maraston, Claudia; Prada, Francisco; Rodríguez-Torres, Sergio; Ross, Ashley J; Samushia, Lado; Schlegel, David J; Thomas, Daniel; Tinker, Jeremy L; Zhao, Gong-Bo
2015-01-01
We measure and analyse the clustering of the Baryon Oscillation Spectroscopic Survey (BOSS) relative to the line-of-sight (LOS), for LOWZ and CMASS galaxy samples drawn from the final Data Release 12 (DR12). The LOWZ sample contains 361\\,762 galaxies with an effective redshift of $z_{\\rm lowz}=0.32$, and the CMASS sample 777\\,202 galaxies with an effective redshift of $z_{\\rm cmass}=0.57$. From the power spectrum monopole and quadrupole moments around the LOS, we measure the growth of structure parameter $f$ times the amplitude of dark matter density fluctuations $\\sigma_8$ by modeling the Redshift-Space Distortion signal. When the geometrical Alcock-Paczynski effect is also constrained from the same data, we find joint constraints on $f\\sigma_8$, the product of the Hubble constant and the comoving sound horizon at the baryon drag epoch $H(z)r_s(z_d)$, and the angular distance parameter divided by the sound horizon $D_A(z)/r_s(z_d)$. We find $f(z_{\\rm lowz})\\sigma_8(z_{\\rm lowz})=0.394\\pm0.062$, $D_A(z_{\\rm l...
Effects of Angular Momentum on Halo Profiles
Lentz, Erik W; Rosenberg, Leslie J
2016-01-01
The near universality of DM halo density profiles provided by N-body simulations has proven to be robust against changes in total mass density, power spectrum, and some forms of initial velocity dispersion. In this letter we study the effects of coherently spinning up an isolated DM-only progenitor on halo structure. Halos with spins within several standard deviations of the simulated mean ($\\lambda \\lesssim 0.20$) produce profiles with negligible deviations from the universal form. Only when the spin becomes quite large ($\\lambda \\gtrsim 0.20$) do departures become evident. The angular momentum distribution also exhibits a near universal form, which is also independent of halo spin up to $\\lambda \\lesssim 0.20$. A correlation between these epidemic profiles and the presence of a strong bar in the virialized halo is also observed. These bar structures bear resemblance to the radial orbit instability in the rotationless limit.
Directory of Open Access Journals (Sweden)
Xin Liu
2014-01-01
Full Text Available In multichannel, cognitive radio (CR, the secondary user (SU is allowed to utilize multiple subaltern frequency bands of the primary user (PU, when these bands, namely, subchannels are not currently being used. To support this spectrum reuse functionality, the SU is required to sense each subchannel, and only the subchannels wherein the PU is inactive are available for the spectrum access of the SU. In this paper, a multislot spectrum sensing and transfer scheme for multichannel CR is proposed, whose sensing stage is divided into several time slots allocated to the subchannels for spectrum sensing. While guaranteeing the spectrum sensing performance on each subchannel and limiting the interference to the PU, we formulate an optimization problem that maximizes the SU’s aggregate throughput by jointly allocating the optimal number of sensing time slots and the optimal transfer power to each subchannel. Theoretical analysis is given to prove the feasibility of the proposed optimization problem and simulation results are presented to show the notable improvement on the SU’s throughput when the sensing time slots and the transfer power are both optimized by the proposed scheme.
Institute of Scientific and Technical Information of China (English)
熊辉; 李正良; 晏致涛; 汪之松; 张晓敏
2011-01-01
时程分析法作为目前结构地震响应分析中最为精准的方法,其准确性在很大程度上依赖于地震波的选取.然而,目前可用的地震记录较少,此时人工合成地震动不失为一个合理的选择.人工地震波的合成有一个基本的要求:模拟结果能与目标反应谱符合得较好,这就要求对地震动的功率谱、傅立叶谱以及反应谱等有较清楚的认识.本文详细地阐述了地震动模拟中涉及到的反应谱、功率谱和傅立叶谱的概念以及三者之间的关系,并初步讨论了目前地震动模拟中存在的一些缺陷,展望了未来地震动模型的发展方向.%The time history analysis method is recognized as the most accurate method in the structure's seismic response analysis, and its accuracy,to a great extent, determined by the selection of seismic wave.Because of the real seismic record is not enough, so that the numerical simulation of the earthquake acceleration time histories is a substitute.A basic require of the artificial earthquake wave that the numerical simulation result can match with the target response spectrum, and then the earthquake response spectrum, power spectrum and Fourier spectrum should be clearly recognized.Therefore, the relation between the earthquake response spectrum, power spectrum and Fourier spectrum is discussed, and some prospect is proposed in the numerical simulation of seismic wave.
Franz, Robert; Kolbeck, Jonathan; Anders, André
2016-01-01
The ion energies and fluxes in the high power impulse magnetron sputtering plasma from a Nb target were analysed angularly resolved along the tangential direction of the racetrack. A reactive oxygen-containing atmosphere was used as such discharge conditions are typically employed for the synthesis of thin films. Asymmetries in the flux distribution of the recorded ions as well as their energies and charge states were noticed when varying the angle between mass-energy analyser and target surface. More positively charged ions with higher count rates in the medium energy range of their distributions were detected in $+\\mathbf{E}\\times \\mathbf{B}$ than in $-\\mathbf{E}\\times \\mathbf{B}$ direction, thus confirming the notion that ionisation zones are associated with moving potential humps. The motion of the recorded negatively charged high-energy oxygen ions was unaffected. NbO$_x$ thin films at different angles and positions were synthesised and analysed as to their structure and properties in order to correlate ...
Kudoh, H; Kudoh, Hideaki; Taruya, Atsushi
2005-01-01
We discuss the sensitivity to anisotropies of stochastic gravitational-wave backgrounds (GWBs) observed via space-based interferometer. In addition to the un-resolved Galactic binaries as the most promising GWB source of the planned Laser Interferometer Space Antenna (LISA), the extra-galactic sources for GWBs might be detected in the future space missions. The anisotropies of the GWBs thus play a crucial role to discriminate various components of the GWBs. We study general features of antenna pattern sensitivity to the anisotropies of GWBs beyond the low-frequency approximation. We show that the sensitivity of space-based interferometer to GWBs is severely restricted by the data combinations and the symmetries of the detector configuration. The spherical harmonic analysis of the antenna pattern functions reveals that the angular power of the detector response increases with frequency and the detectable multipole moments with effective sensitivity h_{eff}\\sim 10^{-20} Hz^{-1/2} may reach $\\ell \\sim $ 8 - 10 a...
International Nuclear Information System (INIS)
We discuss the sensitivity to anisotropies of stochastic gravitational-wave backgrounds (GWBs) observed via space-based interferometer. In addition to the unresolved galactic binaries as the most promising GWB source of the planned Laser Interferometer Space Antenna (LISA), the extragalactic sources for GWBs might be detected in the future space missions. The anisotropies of the GWBs thus play a crucial role to discriminate various components of the GWBs. We study general features of antenna pattern sensitivity to the anisotropies of GWBs beyond the low-frequency approximation. We show that the sensitivity of space-based interferometer to GWBs is severely restricted by the data combinations and the symmetries of the detector configuration. The spherical harmonic analysis of the antenna pattern functions reveals that the angular power of the detector response increases with frequency and the detectable multipole moments with effective sensitivity heff∼10-20 Hz-1/2 may reach l∼8-10 at f∼f*=10 mHz in the case of the single LISA detector. However, the cross correlation of optimal interferometric variables is blind to the monopole (l=0) intensity anisotropy, and also to the dipole (l=1) in some case, irrespective of the frequency band. Besides, all the self-correlated signals are shown to be blind to the odd multipole moments (l=odd), independently of the frequency band
Systematic Observation of Time-Dependent Phenomena in the RF Output Spectrum of High Power Gyrotrons
Directory of Open Access Journals (Sweden)
Kern Stefan
2012-09-01
Full Text Available At IHM/KIT, high power gyrotrons with conventional cavity (e.g. 1 MW CW at 140 GHz for the stellarator Wendelstein 7-X and coaxial cavity (2 MW shortpulse at 170 GHz for ITER for fusion applications are being developed and verified experimentally. Especially with respect to the problem of parasitic RF oscillations in the beam tunnel of some W7-X tubes, investigations of the gyrotron RF output spectrum have proved to be a valuable source of diagnostic information. Signs of transient effects in millisecond pulses, like frequency switching or intermittent low-frequency modulation, have indicated that truly time-dependent measurements with high frequency resolution and dynamic range could give deeper insight into these phenomena. In this paper, an improved measurement system is presented, which employs a fast oscilloscope as receiver. Shorttime Fourier transform (STFT is applied to the time-domain signal, yielding time-variant spectra with frequency resolutions only limited by acquisition length and STFT segmentation choice. Typical reasonable resolutions are in the range of 100 kHz to 10 MHz with a currently memory-limited maximum acquisition length of 4 ms. A key feature of the system consists in the unambiguity of frequency measurement: The system receives through two parallel channels, each using a harmonic mixer (h = 9 – 12 to convert the signal from RF millimeter wave frequencies (full D-Band, 110 – 170 GHz to IF (0 – 3 GHz. For each IF output signal of each individual mixer, injection side and receiving harmonic are initially not known. Using accordingly determined LO frequencies, this information is retrieved from the redundancy of the channels, yielding unambiguously reconstructed RF spectra with a total span of twice the usable receiver IF bandwidth, up to ≈ 6 GHz in our case. Using the system, which is still being improved continuously, various transient effects like cavity mode switching, parasitic oscillation frequency variation
The Coyote Universe Extended: Precision Emulation of the Matter Power Spectrum
Heitmann, Katrin; Lawrence, Earl; Kwan, Juliana; Habib, Salman; Higdon, David
2014-01-01
Modern sky surveys are returning precision measurements of cosmological statistics such as weak lensing shear correlations, the distribution of galaxies, and cluster abundance. To fully exploit these observations, theorists must provide predictions that are at least as accurate as the measurements, as well as robust estimates of systematic errors that are inherent to the modeling process. In the nonlinear regime of structure formation, this challenge can only be overcome by developing a large-scale, multi-physics simulation capability covering a range of cosmological models and astrophysical processes. As a first step to achieving this goal, we have recently developed a prediction scheme for the matter power spectrum (a so-called emulator), accurate at the 1% level out to k ~ 1 Mpc-1 and z = 1 for wCDM cosmologies based on a set of high-accuracy N-body simulations. It is highly desirable to increase the range in both redshift and wavenumber and to extend the reach in cosmological parameter space. To make progress in this direction, while minimizing computational cost, we present a strategy that maximally reuses the original simulations. We demonstrate improvement over the original spatial dynamic range by an order of magnitude, reaching k ~ 10 h Mpc-1, a four-fold increase in redshift coverage, to z = 4, and now include the Hubble parameter as a new independent variable. To further the range in k and z, a new set of nested simulations run at modest cost is added to the original set. The extension in h is performed by including perturbation theory results within a multi-scale procedure for building the emulator. This economical methodology still gives excellent error control, ~5% near the edges of the domain of applicability of the emulator. A public domain code for the new emulator is released as part of the work presented in this paper.
Systematic Observation of Time-Dependent Phenomena in the RF Output Spectrum of High Power Gyrotrons
Schlaich, Andreas; Gantenbein, Gerd; Kern, Stefan; Thumm, Manfred
2012-09-01
At IHM/KIT, high power gyrotrons with conventional cavity (e.g. 1 MW CW at 140 GHz for the stellarator Wendelstein 7-X) and coaxial cavity (2 MW shortpulse at 170 GHz for ITER) for fusion applications are being developed and verified experimentally. Especially with respect to the problem of parasitic RF oscillations in the beam tunnel of some W7-X tubes, investigations of the gyrotron RF output spectrum have proved to be a valuable source of diagnostic information. Signs of transient effects in millisecond pulses, like frequency switching or intermittent low-frequency modulation, have indicated that truly time-dependent measurements with high frequency resolution and dynamic range could give deeper insight into these phenomena. In this paper, an improved measurement system is presented, which employs a fast oscilloscope as receiver. Shorttime Fourier transform (STFT) is applied to the time-domain signal, yielding time-variant spectra with frequency resolutions only limited by acquisition length and STFT segmentation choice. Typical reasonable resolutions are in the range of 100 kHz to 10 MHz with a currently memory-limited maximum acquisition length of 4 ms. A key feature of the system consists in the unambiguity of frequency measurement: The system receives through two parallel channels, each using a harmonic mixer (h = 9 - 12) to convert the signal from RF millimeter wave frequencies (full D-Band, 110 - 170 GHz) to IF (0 - 3 GHz). For each IF output signal of each individual mixer, injection side and receiving harmonic are initially not known. Using accordingly determined LO frequencies, this information is retrieved from the redundancy of the channels, yielding unambiguously reconstructed RF spectra with a total span of twice the usable receiver IF bandwidth, up to ≈ 6 GHz in our case. Using the system, which is still being improved continuously, various transient effects like cavity mode switching, parasitic oscillation frequency variation, and lowfrequency
The coyote universe extended: Precision emulation of the matter power spectrum
Energy Technology Data Exchange (ETDEWEB)
Heitmann, Katrin; Kwan, Juliana; Habib, Salman [High Energy Physics Division, Argonne National Laboratory, Lemont, IL 60439 (United States); Lawrence, Earl; Higdon, David [CCS-6, CCS Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)
2014-01-01
Modern sky surveys are returning precision measurements of cosmological statistics such as weak lensing shear correlations, the distribution of galaxies, and cluster abundance. To fully exploit these observations, theorists must provide predictions that are at least as accurate as the measurements, as well as robust estimates of systematic errors that are inherent to the modeling process. In the nonlinear regime of structure formation, this challenge can only be overcome by developing a large-scale, multi-physics simulation capability covering a range of cosmological models and astrophysical processes. As a first step to achieving this goal, we have recently developed a prediction scheme for the matter power spectrum (a so-called emulator), accurate at the 1% level out to k ∼ 1 Mpc{sup –1} and z = 1 for wCDM cosmologies based on a set of high-accuracy N-body simulations. It is highly desirable to increase the range in both redshift and wavenumber and to extend the reach in cosmological parameter space. To make progress in this direction, while minimizing computational cost, we present a strategy that maximally reuses the original simulations. We demonstrate improvement over the original spatial dynamic range by an order of magnitude, reaching k ∼ 10 h Mpc{sup –1}, a four-fold increase in redshift coverage, to z = 4, and now include the Hubble parameter as a new independent variable. To further the range in k and z, a new set of nested simulations run at modest cost is added to the original set. The extension in h is performed by including perturbation theory results within a multi-scale procedure for building the emulator. This economical methodology still gives excellent error control, ∼5% near the edges of the domain of applicability of the emulator. A public domain code for the new emulator is released as part of the work presented in this paper.
Noise Power Spectrum Measurements in Digital Imaging With Gain Nonuniformity Correction.
Kim, Dong Sik
2016-08-01
The noise power spectrum (NPS) of an image sensor provides the spectral noise properties needed to evaluate sensor performance. Hence, measuring an accurate NPS is important. However, the fixed pattern noise from the sensor's nonuniform gain inflates the NPS, which is measured from images acquired by the sensor. Detrending the low-frequency fixed pattern is traditionally used to accurately measure NPS. However, detrending methods cannot remove high-frequency fixed patterns. In order to efficiently correct the fixed pattern noise, a gain-correction technique based on the gain map can be used. The gain map is generated using the average of uniformly illuminated images without any objects. Increasing the number of images n for averaging can reduce the remaining photon noise in the gain map and yield accurate NPS values. However, for practical finite n , the photon noise also significantly inflates NPS. In this paper, a nonuniform-gain image formation model is proposed and the performance of the gain correction is theoretically analyzed in terms of the signal-to-noise ratio (SNR). It is shown that the SNR is O(√n) . An NPS measurement algorithm based on the gain map is then proposed for any given n . Under a weak nonuniform gain assumption, another measurement algorithm based on the image difference is also proposed. For real radiography image detectors, the proposed algorithms are compared with traditional detrending and subtraction methods, and it is shown that as few as two images ( n=1 ) can provide an accurate NPS because of the compensation constant (1+1/n) . PMID:27254867
Cosmological forecasts from photometric measurements of the angular correlation function
International Nuclear Information System (INIS)
We study forecasts for the accuracy of the determination of cosmological parameters from future large-scale photometric surveys obtained using the full shape of the 2-point galaxy angular correlation function. The effects of linear redshift-space distortion, photometric redshift Gaussian errors, galaxy bias and nonlinearities in the power spectrum are included on our analysis. The Fisher information matrix is constructed with the full covariance matrix, including the correlation between nearby redshift shells arising from the photometric redshift error. We show that under some reasonable assumptions, a survey such as the imminent Dark Energy Survey should be able to constrain the dark energy equation of state parameter w and the cold dark matter density Ωcdm with a precision of the order of 20% and 13%, respectively, from the full shape of the angular correlation function alone. When combined with priors from other observations the precision in the determination of these parameters improve to 8% and 4%, respectively.
Cosmological forecasts from photometric measurements of the angular correlation function
Sobreira, F; Rosenfeld, R; da Costa, L A N; Maia, M A G; Makler, M
2011-01-01
We study forecasts for the accuracy of the determination of cosmological parameters from future large scale photometric surveys obtained using the full shape of the 2-point galaxy angular correlation function. The effects of linear redshift-space distortion, photometric redshift gaussian errors, galaxy bias and non-linearities in the power spectrum are included on our analysis. The Fisher information matrix is constructed with the full covariance matrix, including the correlation between nearby redshift shells arising from the photometric redshift error. We show that under some reasonable assumptions, a survey such as the imminent Dark Energy Survey should be able to constrain the dark energy equation of state parameter w and the cold dark matter density \\Omega_{cdm} with a precison of the order of 20% and 13% respectively from the full shape of the angular correlation function alone. When combined with priors from other observations the precision in the determination of these parameters improve to 8% and 4% ...
Directory of Open Access Journals (Sweden)
S. Azmat. Hussain
2013-12-01
Full Text Available With the rapid growth of vigilance that cognitive radio participate an essential task in wireless communication to resolve the spectrum scarcity vs. under-utilization dilemma owing to the dormant spectrum supervision policies. In this study, we explore the innovative scenario that the secondary user frequently has to trade off between two goals at the same time: one is to maximize its own throughput; and the other is to minimize interference at primary receiver. In conclusion, the author give a novel idea about the seminal work of spectrum sharing by minimizing transmit power strategy and maximizing Signal to Interference plus Noise Ratio (SINR strategy which are inversely and directly proportional according to the condition of separation angles.
Benetti, Micol; Lattanzi, Massimiliano; Martinelli, Matteo; Melchiorri, Alessandro
2012-01-01
Using the most recent data from the WMAP, ACT and SPT experiments, we update the constraints on models with oscillatory features in the primordial power spectrum of scalar perturbations. This kind of features can appear in models of inflation where slow-roll is interrupted, like multifield models. We also derive constraints for the case in which, in addition to cosmic microwave observations, we also consider the data on the spectrum of luminous red galaxies from the 7th SDSS catalog, and the SNIa Union Compilation 2 data. We have found that: (i) considering a model with features in the primordial power spectrum increases the agreement with data with the respect of the featureless "vanilla" LCDM model by Delta(chi^2) ~ 7; (ii) the uncertainty on the determination of the standard parameters is not degraded when features are included; (iii) the best fit for the features model locates the step in the primordial spectrum at a scale k ~ 0.005 Mpc^-1, corresponding to the scale where the outliers in the WMAP7 data a...
Liu, Xin
2015-10-30
In a cognitive sensor network (CSN), the wastage of sensing time and energy is a challenge to cooperative spectrum sensing, when the number of cooperative cognitive nodes (CNs) becomes very large. In this paper, a novel wireless power transfer (WPT)-based weighed clustering cooperative spectrum sensing model is proposed, which divides all the CNs into several clusters, and then selects the most favorable CNs as the cluster heads and allows the common CNs to transfer the received radio frequency (RF) energy of the primary node (PN) to the cluster heads, in order to supply the electrical energy needed for sensing and cooperation. A joint resource optimization is formulated to maximize the spectrum access probability of the CSN, through jointly allocating sensing time and clustering number. According to the resource optimization results, a clustering algorithm is proposed. The simulation results have shown that compared to the traditional model, the cluster heads of the proposed model can achieve more transmission power and there exists optimal sensing time and clustering number to maximize the spectrum access probability.
Information Content of the Angular Multipoles of Redshift-Space Galaxy Bispectrum
Gagrani, Praful
2016-01-01
The redshift-space bispectrum (three point statistics) of galaxies depends on the expansion rate, the growth rate, and geometry of the Universe, and hence can be used to measure key cosmological parameters. In a homogeneous Universe the bispectrum is a function of five variables and unlike its two point statistics counterpart -- the power spectrum, which is a function of only two variables -- is difficult to analyse unless the information is somehow reduced. The most commonly considered reduction schemes rely on computing angular integrals over possible orientations of the bispectrum triangle, thus reducing it to sets of function of only three variables describing the triangle shape. We use Fisher information formalism to study the information loss associated with this angular integration. Without any reduction, the bispectrum alone can deliver constraints on the growth rate parameter $f$ that are better by a factor of $2.5$ compared to the power spectrum, for a sample of luminous red galaxies expected from n...
Droste, Felix
2016-01-01
The response properties of excitable systems driven by colored noise are of great interest, but are usually mathematically only accessible via approximations. For this reason, dichotomous noise, a rare example of a colored noise leading often to analytically tractable problems, has been extensively used in the study of stochastic systems. Here, we calculate exact expressions for the power spectrum and the susceptibility of a leaky integrate-and-fire neuron driven by asymmetric dichotomous noise. While our results are in excellent agreement with simulations, they also highlight a limitation of using dichotomous noise as a simple model for more complex fluctuations: Both power spectrum and susceptibility exhibit an undamped periodic structure, the origin of which we discuss in detail.
Barry, N; Sullivan, I; Morales, M F; Pober, J C
2016-01-01
21 cm Epoch of Reionization observations promise to transform our understanding of galaxy formation, but these observations are impossible without unprecedented levels of instrument calibration. We present end-to-end simulations of a full EoR power spectrum analysis including all of the major components of a real data processing pipeline: models of astrophysical foregrounds and EoR signal, frequency-dependent instrument effects, sky-based antenna calibration, and the full PS analysis. This study reveals that traditional sky-based per-frequency antenna calibration can only be implemented in EoR measurement analyses if the calibration model is unrealistically accurate. For reasonable levels of catalog completeness, the calibration introduces contamination in otherwise foreground-free power spectrum modes, precluding a PS measurement. We explore the origin of this contamination and potential mitigation techniques. We show that there is a strong joint constraint on the precision of the calibration catalog and the...
Paciga, Gregory
The Epoch of Reionization (EoR) is the transitional period in the universe's evolution which starts when the first luminous sources begin to ionize the intergalactic medium for the first time since recombination, and ends when the most of the hydrogen is ionized by about a redshift of 6. Observations of the 21cm emission from hyperfine splitting of the hydrogen atom can carry a wealth of cosmological information from this epoch since the redshifted line can probe the entire volume. The GMRT-EoR experiment is an ongoing effort to make a statistical detection of the power spectrum of 21cm neutral hydrogen emission due to the patchwork of neutral and ionized regions present during the transition. In this work we detail approximately five years of observations at the GMRT, comprising over 900 hours, and an in-depth analysis of about 50 hours which have lead to the first upper limits on the 21cm power spectrum in the range z = 8.1 to 9.2. This includes a concentrated radio frequency interference (RFI) mitigation campaign around the GMRT area, a novel method for removing broadband RFI with a singular value decomposition, and calibration with a pulsar as both a phase and polarization calibrator. Preliminary results from 2011 showed a 2-sigma upper limit to the power spectrum of (70 mK). 2. However, we find that foreground removalstrategies tend to reduce the cosmological signal significantly, and modeling this signal loss is crucial for interpretation of power spectrum measurements. Using a simulated signal to estimate the transfer function of the real 21cm signal through the foreground removal procedure, we are able to find the optimal level of foreground removal and correct for the signal loss. Using this correction, we report a 2-sigma upper limit of (248 mK)2 at k = 0.5 h Mpc-1.
What next-generation 21 cm power spectrum measurements can teach us about the epoch of reionization
International Nuclear Information System (INIS)
A number of experiments are currently working toward a measurement of the 21 cm signal from the epoch of reionization (EoR). Whether or not these experiments deliver a detection of cosmological emission, their limited sensitivity will prevent them from providing detailed information about the astrophysics of reionization. In this work, we consider what types of measurements will be enabled by the next generation of larger 21 cm EoR telescopes. To calculate the type of constraints that will be possible with such arrays, we use simple models for the instrument, foreground emission, and the reionization history. We focus primarily on an instrument modeled after the ∼0.1 km2 collecting area Hydrogen Epoch of Reionization Array concept design and parameterize the uncertainties with regard to foreground emission by considering different limits to the recently described 'wedge' footprint in k space. Uncertainties in the reionization history are accounted for using a series of simulations that vary the ionizing efficiency and minimum virial temperature of the galaxies responsible for reionization, as well as the mean free path of ionizing photons through the intergalactic medium. Given various combinations of models, we consider the significance of the possible power spectrum detections, the ability to trace the power spectrum evolution versus redshift, the detectability of salient power spectrum features, and the achievable level of quantitative constraints on astrophysical parameters. Ultimately, we find that 0.1 km2 of collecting area is enough to ensure a very high significance (≳ 30σ) detection of the reionization power spectrum in even the most pessimistic scenarios. This sensitivity should allow for meaningful constraints on the reionization history and astrophysical parameters, especially if foreground subtraction techniques can be improved and successfully implemented.
Dunn, H. J.
1981-01-01
A computer program for performing frequency analysis of time history data is presented. The program uses circular convolution and the fast Fourier transform to calculate power density spectrum (PDS) of time history data. The program interfaces with the advanced continuous simulation language (ACSL) so that a frequency analysis may be performed on ACSL generated simulation variables. An example of the calculation of the PDS of a Van de Pol oscillator is presented.
Lee, Jeffrey S
2016-01-01
In this note, the Cosmic Microwave Background (CMB) Radiation is shown to be capable of functioning as a Random Bit Generator, and constitutes an effectively infinite supply of truly random one-time pad values of arbitrary length. It is further argued that the CMB power spectrum potentially conforms to the FIPS 140-2 standard. Additionally, its applicability to the generation of a (n x n) random key matrix for a Vernam cipher is established.
Yang, Yupeng
2015-01-01
Many inflation theories predict that the primordial power spectrum is scale invariant. The amplitude of the power spectrum can be constrained by different observations such as the cosmic microwave background (CMB), Lyman-$\\alpha$, large-scale structures and primordial black holes (PBHs). Although the constraints from the CMB are robust, the corresponding scales are very large ($10^{-4} 1 \\mathrm{Mpc^{-1}}$), the research on the PBHs provides much weaker limits. Recently, ultracompact dark matter minihalos (UCMHs) was proposed and it was found that they could be used to constraint the small-scale primordial power spectrum. The limits obtained by the research on the UCMHs are much better than that of PBHs. Most of previous works focus on the dark matter annihilation within the UCMHs, but if the dark matter particles do not annihilate the decay is another important issue. In previous work~\\cite{EPL}, we investigated the gamma-ray flux from the UCMHs due to the dark matter decay. In addition to these flux, the ne...
International Nuclear Information System (INIS)
We address the issue of setting up generic non-Gaussian initial conditions for N-body simulations. We consider inflationary-motivated primordial non-Gaussianity where the perturbations in the Bardeen potential are given by a dominant Gaussian part plus a non-Gaussian part specified by its bispectrum. The approach we explore here is suitable for any bispectrum, i.e. it does not have to be of the so-called separable or factorizable form. The procedure of generating a non-Gaussian field with a given bispectrum (and a given power spectrum for the Gaussian component) is not univocal, and care must be taken so that higher-order corrections do not leave a too large signature on the power spectrum. This is so far a limiting factor of our approach. We then run N-body simulations for the most popular inflationary-motivated non-Gaussian shapes. The halo mass function and the non-linear power spectrum agree with theoretical analytical approximations proposed in the literature, even if they were so far developed and tested only for a particular shape (the local one). We plan to make the simulations outputs available to the community via the non-Gaussian simulations comparison project web site http://icc.ub.edu/~liciaverde/NGSCP.html
Institute of Scientific and Technical Information of China (English)
TANG Xinglun; ZHANG Zhijing; ZHOU Zhaoying; YANG Xiaodong
2006-01-01
The identification of the inter-electrode gap size in the high frequency group pulse micro-electrochemical machining (HGPECM) is mainly discussed. The auto-regressive(AR) model of group pulse current flowing across the cathode and the anode are created under different situations with different processing parameters and inter-electrode gap size. The AR model based on the current signals indicates that the order of the AR model is obviously different relating to the different processing conditions and the inter-electrode gap size; Moreover, it is different about the stability of the dynamic system, i.e. the white noise response of the Green's function of the dynamic system is diverse. In addition, power spectrum method is used in the analysis of the dynamic time series about the current signals with different inter-electrode gap size, the results show that there exists a strongest power spectrum peak, characteristic power spectrum(CPS), to the current signals related to the different inter-electrode gap size in the range of 0～5 kHz. Therefore, the CPS of current signals can implement the identification of the inter-electrode gap.
Wiersma, R P C; Thomas, R M; Harker, G J A; Zaroubi, S; Bernardi, G; Brentjens, M; de Bruyn, A G; Daiboo, S; Jelic, V; Kazemi, S; Koopmans, L V E; Labropoulos, P; Martinez, O; Mellema, G; Offringa, A; Pandey, V N; Schaye, J; Veligatla, V; Vedantham, H; Yatawatta, S
2012-01-01
Using a combination of N-body simulations, semi-analytic models and radiative transfer calculations, we have estimated the theoretical cross power spectrum between galaxies and the 21cm emission from neutral hydrogen during the epoch of reionization. In accordance with previous studies, we find that the 21cm emission is initially correlated with halos on large scales (> 30 Mpc), anti-correlated on intermediate (~ 5 Mpc), and uncorrelated on small (< 3 Mpc) scales. This picture quickly changes as reionization proceeds and the two fields become anti-correlated on large scales. The normalization of the cross power spectrum can be used to set constraints on the average neutral fraction in the intergalactic medium and its shape can be a tool to study the topology of reionization. When we apply a drop-out technique to select galaxies and add to the 21cm signal the noise expected from the LOFAR telescope, we find that while the normalization of the cross power spectrum remains a useful tool for probing reionizati...
Generalized Uncertainty Principle and Angular Momentum
Bosso, Pasquale
2016-01-01
Various models of quantum gravity suggest a modification of the Heisenberg's Uncertainty Principle, to the so-called Generalized Uncertainty Principle, between position and momentum. In this work we show how this modification influences the theory of angular momentum in Quantum Mechanics. In particular, we compute Planck scale corrections to angular momentum eigenvalues, the Hydrogen atom spectrum, the Stern-Gerlach experiment and the Clebsch-Gordan coefficients. We also examine effects of the Generalized Uncertainty Principle on multi-particle systems.
Das, Sudeep; Ade, Peter A R; Aguirre, Paula; Amir, Mandana; Appel, John W; Barrientos, L Felipe; Battistelli, Elia S; Bond, J Richard; Brown, Ben; Burger, Bryce; Chervenak, Jay; Devlin, Mark J; Dicker, Simon R; Doriese, W Bertrand; Dunkley, Joanna; Dünner, Rolando; Essinger-Hileman, Thomas; Fisher, Ryan P; Fowler, Joseph W; Hajian, Amir; Halpern, Mark; Hasselfield, Matthew; Hernández-Monteagudo, Carlos; Hilton, Gene C; Hilton, Matt; Hincks, Adam D; Hlozek, Renée; Huffenberger, Kevin M; Hughes, David H; Hughes, John P; Infante, Leopoldo; Irwin, Kent D; Juin, Jean Baptiste; Kaul, Madhuri; Klein, Jeff; Kosowsky, Arthur; Lau, Judy M; Limon, Michele; Lin, Yen-Ting; Lupton, Robert H; Marsden, Danica; Martocci, Krista; Mauskopf, Phil; Menanteau, Felipe; Moodley, Kavilan; Moseley, Harvey; Netterfield, Calvin B; Niemack, Michael D; Nolta, Michael R; Page, Lyman A; Parker, Lucas; Partridge, Bruce; Reid, Beth; Sehgal, Neelima; Sherwin, Blake D; Sievers, Jon; Spergel, David N; Staggs, Suzanne T; Swetz, Daniel S; Switzer, Eric R; Thornton, Robert; Trac, Hy; Tucker, Carole; Warne, Ryan; Wollack, Ed; Zhao, Yue
2010-01-01
We present measurements of the cosmic microwave background (CMB) power spectrum made by the Atacama Cosmology Telescope at 148 GHz and 218 GHz, as well as the cross-frequency spectrum between the two channels. Our results clearly show the second through the seventh acoustic peaks in the CMB power spectrum. The measurements of these higher-order peaks provide an additional test of the {\\Lambda}CDM cosmological model. At l > 3000, we detect power in excess of the primary anisotropy spectrum of the CMB. At lower multipoles 500 < l < 3000, we find evidence for gravitational lensing of the CMB in the power spectrum at the 2.8{\\sigma} level. We also detect a low level of Galactic dust in our maps, which demonstrates that we can recover known faint, diffuse signals.
International Nuclear Information System (INIS)
We present measurements of the cosmic microwave background (CMB) power spectrum made by the Atacama Cosmology Telescope at 148 GHz and 218 GHz, as well as the cross-frequency spectrum between the two channels. Our results clearly show the second through the seventh acoustic peaks in the CMB power spectrum. The measurements of these higher-order peaks provide an additional test of the ΛCDM cosmological model. At l>3000, we detect power in excess of the primary anisotropy spectrum of the CMB. At lower multipoles 500 < l < 3000, we find evidence for gravitational lensing of the CMB in the power spectrum at the 2.8σ level. We also detect a low level of Galactic dust in our maps, which demonstrates that we can recover known faint, diffuse signals.
Nir, Vincent Le; Verlinden, Jan; Guenach, Mamoun
2010-01-01
Recently, the duality between Multiple Input Multiple Output (MIMO) Multiple Access Channels (MAC) and MIMO Broadcast Channels (BC) has been established under a total power constraint. The same set of rates for MAC can be achieved in BC exploiting the MAC-BC duality formulas while preserving the total power constraint. In this paper, we describe the BC optimal power allo- cation applying this duality in a downstream x-Digital Subscriber Lines (xDSL) context under a total power constraint for all modems over all tones. Then, a new algorithm called BC-Optimal Spectrum Balancing (BC-OSB) is devised for a more realistic power allocation under per-modem total power constraints. The capacity region of the primal BC problem under per-modem total power constraints is found by the dual optimization problem for the BC under per-modem total power constraints which can be rewritten as a dual optimization problem in the MAC by means of a precoder matrix based on the Lagrange multipliers. We show that the duality gap betwe...
Chandran
2000-11-27
Scattering rates for a Goldreich-Sridhar (GS) spectrum of anisotropic, incompressible, magnetohydrodynamic turbulence are calculated in the quasilinear approximation. Because the small-scale fluctuations are constrained to have wave vectors nearly perpendicular to the background magnetic field, scattering is too weak to provide either the mean-free paths commonly used in Galactic cosmic-ray propagation models or the mean-free paths required for acceleration of cosmic rays at quasiparallel shocks. Where strong pitch-angle scattering occurs, it is due to fluctuations not described by the GS spectrum, such as fluctuations generated by streaming cosmic rays. PMID:11082620
Engelbrecht, N. E.; Burger, R. A.
2015-12-01
In this study, a novel ab initio cosmic ray (CR) modulation code that solves a set of stochastic transport equations equivalent to the Parker transport equation, and that uses output from a turbulence transport code as input for the diffusion tensor, is introduced. This code is benchmarked with a previous approach to ab initio modulation. The sensitivity of computed galactic CR proton spectra at Earth to assumptions made as to the low-wavenumber behavior of the two-dimensional (2D) turbulence power spectrum is investigated using perpendicular mean free path expressions derived from two different scattering theories. Constraints on the low-wavenumber behavior of the 2D power spectrum are inferred from the qualitative comparison of computed CR spectra with spacecraft observations at Earth. Another key difference from previous studies is that observed and inferred CR intensity spectra at 73 AU are used as boundary spectra instead of the usual local interstellar spectrum. Furthermore, the results presented here provide a tentative explanation as to the reason behind the unusually high galactic proton intensity spectra observed in 2009 during the recent unusual solar minimum.
Institute of Scientific and Technical Information of China (English)
YANG; Xiaohu
2001-01-01
［1］Vogeley, M. S., Szalay, A. S., Eigenmode analysis of galaxy redsh ift surveys. I. theory and methods, ApJ, 1996, 465: 34-53.［2］Fang, L. Z., Pando, J., Large-scale structures revealed by wavel et decomposition, The 5th Current Topics of Astrofundamental Physics (eds. Sanch ez, N., Zichichi, A.), Singapore: World Scientific, 1997.［3］Pando, J., Fang, L. Z., Detecting the non-Gaussian spectrum of Q SO's Lyalpha absorption line distribution, A&A, 1998, 340: 335-342.［4］Xu, W., Fang, L. Z., Deng, Z. G., Scale invariance of rich cluste r abundance: A possible test for models of structure formation, ApJ, 1998, 508: 472-482.［5］Pando, J., Valls-Gabaud, D., Fang, L. Z., Evidence for scale-sc ale correlations in the cosmic microwave background radiation, PRL, 1998, 81: 45 68-4571.［6］Feng, L. L., Fang, L. Z., Non-Gaussianity and the recovery of th e mass power spectrum from the Lyα forest, ApJ, 2000, 535: 519-529.［7］Feng, L. L., Deng, Z. G., Fang, L. Z., Breaking degeneracy of dar k matter models by the scale-scale correlations of galaxies, ApJ, 2000, 530: 53 -61.［8］Fang, L. Z., Feng, L. L., Measuring the galaxy power spectrum and scale-scale correlations with multiresolution-decomposed covariance-I. metho d, ApJ, 2000, 539: 9-22.［9］Tegmark, M., Hamilton, A. J. S., Vogeley, M. S. et al., Measuring the galaxy power spectrum with future redshift surveys, ApJ, 1998, 499: 555-57 6.［10］Bardeen, J. M., Bond, J. R., Kaiser, N. et al., The statistics of peak s of Gauss random fields, ApJ, 1986, 304: 15-61.［11］Peacock, J. A., Dodds, S. J., Linear power spectrum of cosmological ma ss fluctuations, MNRAS, 1994, 267: 1020-1034.［12］White, S. D. M., Efstathiou, G., Frenk, C. S., The amplitude of mass f luctuations in the universe, MNRAS, 1993, 262: 1023-1028.［13］Peacock, J. A., Dodds, S. J., Non-linear evolution of cosmological po wer spectra, MNRAS, 1996, 280: L19-L26.［14］Loveday, J., Peterson, B. A., Efstathiou, G. et al., The
Estimates of the solar internal angular velocity obtained with the Mt. Wilson 60-foot solar tower
Rhodes, Edward J., Jr.; Cacciani, Alessandro; Woodard, Martin; Tomczyk, Steven; Korzennik, Sylvain
1987-01-01
Estimates are obtained of the solar internal angular velocity from measurements of the frequency splittings of p-mode oscillations. A 16-day time series of full-disk Dopplergrams obtained during July and August 1984 at the 60-foot tower telescope of the Mt. Wilson Observatory is analyzed. Power spectra were computed for all of the zonal, tesseral, and sectoral p-modes from l = 0 to 89 and for all of the sectoral p-modes from l = 90 to 200. A mean power spectrum was calculated for each degree up to 89. The frequency differences of all of the different nonzonal modes were calculated for these mean power spectra.
Ekas, Naomi V.; Timmons, Lisa; Pruitt, Megan; Ghilain, Christine; Alessandri, Michael
2015-01-01
The current study uses the actor-partner interdependence model to examine the predictors of relationship satisfaction for mothers and fathers of children with autism spectrum disorder. Sixty-seven couples completed measures of optimism, benefit finding, coping strategies, social support, and relationship satisfaction. Results indicated that…
Large-Angular Scales CMB Anisotropy from Excited Initial Mode
Sojasi, A; Yusofi, E
2015-01-01
According to the inflationary cosmology, the CMB anisotropy gives an opportunity to test predictions of the new physics hypothesis. Initial state of quantum fluctuations is one of the important options at high energy scale, which can affect on the observables such as CMB power spectrum. In this study a quasi-de Sitter inflationary background with approximate de Sitter mode function built over the Bunch-Davies mode is applied to investigate the scale-dependency of the CMB anisotropy. Indeed, considering the recent Planck constraint on spectral index, motivated us to examine the effect of new excited mode function (instead of pure de Sitter mode) on the CMB anisotropy in large-angular scales. In so doing, it was revealed that the angular scale-invariance in the CMB temperature fluctuations is broken and in the limit $ \\ell<200 $ the tiny deviation is appeared. Also, it was shown that the power spectrum of CMB anisotropy is dependent on the slow-roll parameter $\\epsilon $.
Miller, N J; Marriage, T A; Wollack, E J; Appel, J W; Bennett, C L; Eimer, J; Essinger-Hileman, T; Fixsen, D J; Harrington, K; Moseley, S H; Rostem, K; Switzer, E R; Watts, D J
2015-01-01
Polarimetric surveys of the microwave sky at large angular scales are crucial in testing cosmic inflation, as inflation predicts a divergence-free $B$-mode angular power spectrum that extends to the largest scales on the sky. A promising technique for realizing such large surveys is through the use of rapid polarization modulation to mitigate variations in the atmosphere, coupling to the environment, and drifts in instrumental response. VPMs change the state of polarization by introducing a controlled, adjustable delay between orthogonal linear polarizations resulting in transformations between linear and circular polarization states. VPMs are currently being implemented in experiments designed to measure the polarization of the cosmic microwave background on large angular scales because of their capability for providing rapid, front-end polarization modulation and control over systematic errors. Despite the advantages provided by the VPM, it is important to identify and mitigate any time-varying effects that...
Karpov, Valeri
2015-01-01
A comprehensive guide to AngularJS, Google's open-source client-side framework for app development. Most of the existing guides to AngularJS struggle to provide simple and understandable explanations for more advanced concepts. As a result, some developers who understand all the basic concepts of AngularJS struggle when it comes to building more complex real-world applications. Professional AngularJS provides a thorough understanding of AngularJS, covering everything from basic concepts, such as directives and data binding, to more advanced concepts like transclusion, build systems, and auto
X-ray variability of 104 active galactic nuclei. XMM-Newton power-spectrum density profiles
Gonzalez-Martin, O
2012-01-01
AGN, powered by accretion onto SMBHs, are thought to be scaled up versions of Galactic black hole X-ray binaries (BH-XRBs). In the past few years evidence of such correspondence include similarities in the broadband shape of the X-ray variability power spectra, with characteristic bend times-scales scaling with mass. We have performed a uniform analysis of the power spectrum densities (PSDs) of 104 nearby (z<0.4) AGN using 209 XMM-Newton/pn observations. The PSDs have been estimated in three energy bands: 0.2-10, 0.2-2, and 2-10 keV. The sample comprises 61 Type-1 AGN, 21 Type-2 AGN, 15 NLSy1, and 7 BLLACS. We have fitted each PSD to two models: (1) a single power-law model and (2) a bending power-law model. Among the entire sample, 72% show significant variability in at least one of the three bands tested. A high percentage of low-luminosity AGN do not show any significant variability. The PSD of the majority of the variable AGN was well described by a simple power-law with a mean index of 2. In 15 source...
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Based on the discrete wavelet transformation (DWT), we prese nt apixelized method of estimating the power spectra of galaxy samples. With lo cal properties of wavelet both in physical and wavenumber spaces, DWT power spec trum is equal to the corresponding band average of Fourier power spectrum. The D WT estimator is optimized in the sense that the spatial resolution is adaptive a utomatically to the perturbation wavelength to be studied. Under the assumption of ergodicity, the spatial average of local DWT fluctuation modes provides a fai r estimation of the ensemble average. We test DWT spectra of four typical cold da rk matter (CDM) structure formation models with numerical simulations. To consid er the infections of various observation effects to the DWT spectra, we introduc e irregular survey geometries, a given sampling rate, radial selection effects a nd redshift distortion effects into our mock samples. The numerical results show that, owing to its local properties, DWT spectrum is less affected by the sampl ing rate, survey geometry, and statistical ensemble fluctuations. With fast wave let decomposition algorithm, DWT can be used to analyze large survey samples, wh i ch is of direct significance in precise measurement of the cosmological paramete rs from the galaxy redshift surveys of next generation.
Wolfson, Ira
2016-01-01
We study scale dependence of the cosmic microwave background (CMB) power spectrum in a class of small, single-field models of inflation which lead to a high value of the tensor to scalar ratio. The inflaton potentials that we consider are degree 5 polynomials, for which we calculate the power spectrum numerically and extract the cosmological parameters: the scalar index $n_s$, the running of the scalar index $n_{run}$ and the tensor to scalar ratio $r$. We first demonstrate the precision of the numerical analysis by comparing results to a case with an exact analytic solution - power law inflation. We then scan the possible values of potential parameters for which the cosmological parameters are within the allowed range by observations. The 5 parameter class is able to reproduce all the allowed values of the $n_s$ and $n_{run}$ for values of $r$ that are as high as 0.001. We find that for non-vanishing $n_{run}$, the numerically extracted values of $n_s$ and $n_{run}$ deviate significantly from analytic projec...
Shear viscous effects on the primordial power spectrum from warm inflation
Bastero-Gil, M; Ramos, R O
2011-01-01
We compute the primordial curvature spectrum generated during warm inflation, including shear viscous effects. The primordial spectrum is dominated by the thermal fluctuations of the radiation bath, sourced by the dissipative term of the inflaton field. The dissipative coefficient \\Upsilon, computed from first principles in the close-to-equilibrium approximation, depends in general on the temperature T, and this dependence renders the system of the linear fluctuations coupled. Whenever the dissipative coefficient is larger than the Hubble expansion rate H, there is a growing mode in the fluctuations before horizon crossing. However, dissipation intrinsically means departures from equilibrium, and therefore the presence of a shear viscous pressure in the radiation fluid. This in turn acts as an extra friction term for the radiation fluctuations that tends to damp the growth of the perturbations. Independently of the T functional dependence of the dissipation and the shear viscosity, we find that when the shear...
Xia, Minghua
2012-06-01
Since the electromagnetic spectrum resource becomes more and more scarce, improving spectral efficiency is extremely important for the sustainable development of wireless communication systems and services. Integrating cooperative relaying techniques into spectrum-sharing cognitive radio systems sheds new light on higher spectral efficiency. In this paper, we analyze the end-to-end performance of cooperative amplify-and-forward (AF) relaying in spectrum-sharing systems. In order to achieve the optimal end-to-end performance, the transmit powers of the secondary source and the relays are optimized with respect to average interference power constraints at primary users and Nakagami-$m$ fading parameters of interference channels (for mathematical tractability, the desired channels from secondary source to relay and from relay to secondary destination are assumed to be subject to Rayleigh fading). Also, both partial and opportunistic relay-selection strategies are exploited to further enhance system performance. Based on the exact distribution functions of the end-to-end signal-to-noise ratio (SNR) obtained herein, the outage probability, average symbol error probability, diversity order, and ergodic capacity of the system under study are analytically investigated. Our results show that system performance is dominated by the resource constraints and it improves slowly with increasing average SNR. Furthermore, larger Nakagami-m fading parameter on interference channels deteriorates system performance slightly. On the other hand, when interference power constraints are stringent, opportunistic relay selection can be exploited to improve system performance significantly. All analytical results are corroborated by simulation results and they are shown to be efficient tools for exact evaluation of system performance.
Exact third-order density perturbation and one-loop power spectrum in general dark energy models
Directory of Open Access Journals (Sweden)
Seokcheon Lee
2014-09-01
Full Text Available Under the standard perturbation theory (SPT, we obtain the fully consistent third-order density fluctuation and kernels for the general dark energy models without using the Einstein–de Sitter (EdS universe assumption for the first time. We also show that even though the temporal and spatial components of the SPT solutions cannot be separable, one can find the exact solutions to any order in general dark energy models. With these exact solutions, we obtain the less than % error correction of one-loop matter power spectrum compared to that obtained from the EdS assumption for k=0.1 hMpc−1 mode at z=0(1,1.5. Thus, the EdS assumption works very well at this scale. However, if one considers the correction for P13, the error is about 6 (9, 11% for the same mode at z=0(1,1.5. One absorbs P13 into the linear power spectrum in the renormalized perturbation theory (RPT and thus one should use the exact solution instead of the approximation one. The error on the resummed propagator N of RPT is about 14 (8, 6% at z=0(1,1.5 for k=0.4 hMpc−1. For k=1 hMpc−1, the error correction of the total matter power spectrum is about 3.6 (4.6, 4.5% at z=0(1,1.5. Upcoming observation is required to archive the sub-percent accuracy to provide the strong constraint on the dark energy and this consistent solution is prerequisite for the model comparison.
Murder on the mind: tyranical power and other points along the perverse spectrum.
Tuch, Richard
2010-02-01
This paper illustrates the breadth and depth of the spectrum of perversion and perversity as currently represented in the psychoanalytic literature, raises questions about recent tendencies to include a host of diverse-seeming phenomena under the same conceptual umbrella, and strives to demonstrate what these phenomena have in common that justifies lumping them together under the same rubric. One end of this spectrum is represented by the employment of simple fetishes introduced into a sexual scene in order to promote sexual arousal. Moving along the continuum, one encounters increasing complex behavioral patterns including the enactment of scripts that actualize one's perverse fantasies, including the assumption of complementary roles (e.g. sadomasochism) that equally serve the needs, and represent the desires, of both parties involved. A unique clinical entity, 'perverse modes of relatedness,' lies on the extreme end of the spectrum, representing the reification of the relationship as it becomes little more than a vehicle to take possession and control one's object for the gratification of one's sole needs and desires. What each of these phenomena share in common is both the insertion of a thing or condition - ranging from a simple fetishistic object to an elaborate style of relating that reduces the other into pawn played upon the pervert's chessboard, between the two 'relating' objects as well as a less than honest relationship with reality. PMID:20433479
Loeb, Abraham; Wyithe, J Stuart B
2008-04-25
Measurements of the 21 cm line emission by residual cosmic hydrogen after reionization can be used to trace the power spectrum of density perturbations through a significant fraction of the observable volume of the Universe. We show that a dedicated 21 cm observatory could probe a number of independent modes that is 2 orders of magnitude larger than currently available, and enable a cosmic-variance limited detection of the signature of a neutrino mass approximately 0.05 eV. The evolution of the linear growth factor with redshift could also constrain exotic theories of gravity or dark energy to an unprecedented precision. PMID:18518181
Rodriguez-Meza, M. A.
2010-01-01
We study the large-scale structure formation in the Universe in the frame of scalar-tensor theories as an alternative to general relativity. We review briefly the Newtonian limit of non-minimally coupled scalar-tensor theories and the evolution equations of the $N$-body system that is appropriate to study large-scale structure formation in the Universe. We compute the power-spectrum of the universe at present epoch and show how the large-scale structure depends on the scalar field contribution.
Energy Technology Data Exchange (ETDEWEB)
Rodriguez-Meza, M A, E-mail: marioalberto.rodriguez@inin.gob.m [Instituto Avanzado de Cosmologia, IAC, Instituto Nacional de Investigaciones Nucleares, Col. Escandon, Apdo. Postal 18-1027, 11801 Mexico D.F. (Mexico)
2010-05-01
We study the large-scale structure formation in the Universe in the frame of scalar-tensor theories as an alternative to general relativity. We review briefly the Newtonian limit of non-minimally coupled scalar-tensor theories and the evolution equations of the N-body system that is appropriate to study large-scale structure formation in the Universe. We compute the power-spectrum of the universe at present epoch and show how the large-scale structure depends on the scalar field contribution.
A model for the non-universal power-law of the solar wind sub-ion scale magnetic spectrum
Passot, T
2015-01-01
A phenomenological turbulence model for kinetic Alfv\\'en waves in a magnetized collisionless plasma, able to reproduce the non-universal power-law spectra observed at the sub-ion scales in the solar wind and the terrestrial magnetosphere, is presented. Nonlocal interactions are retained, and critical balance, characteristic of a strong turbulence regime, establishes dynamically as the cascade proceeds. The process of temperature homogenization along distorted magnetic field lines, induced by Landau damping, affects the turbulence transfer time and results in a steepening of the sub-ion power-law spectrum of critically-balanced turbulence, whose exponent is in particular sensitive to the ratio between the Alfv\\'en wave period and the nonlinear timescale.
A MODEL FOR THE NON-UNIVERSAL POWER LAW OF THE SOLAR WIND SUB-ION-SCALE MAGNETIC SPECTRUM
Energy Technology Data Exchange (ETDEWEB)
Passot, T.; Sulem, P. L., E-mail: passot@oca.eu, E-mail: sulem@oca.eu [Laboratoire Lagrange, Université Côte d’Azur, CNRS, Observatoire de la Côte d’Azur, CS 34229, F-06304 Nice Cedex 4 (France)
2015-10-20
A phenomenological turbulence model for kinetic Alfvén waves in a magnetized collisionless plasma that is able to reproduce the non-universal power-law spectra observed at the sub-ion scales in the solar wind and the terrestrial magnetosphere is presented. The process of temperature homogenization along distorted magnetic field lines, induced by Landau damping, affects the turbulence transfer time and results in a steepening of the sub-ion power-law spectrum of critically balanced turbulence, whose exponent is sensitive to the ratio between the Alfvén wave period and the nonlinear timescale. Transition from large-scale weak turbulence to smaller scale strong turbulence is captured and nonlocal interactions, relevant in the case of steep spectra, are accounted for.
International Nuclear Information System (INIS)
This paper presents a new family of indices for the frequency domain analysis of heart rate variability time series that do not need any frequency band definition. After proper detrending of the time series, a cumulated power spectrum is obtained and frequencies that contain a certain percentage of the power below them are identified, so median frequency, bandwidth and a measure of the power spectrum asymmetry are proposed to complement or improve the classical spectral indices as the ratio of the powers of LF and HF bands (LF/HF). In normal conditions the median frequency provides similar information as the classical indices, while the bandwidth and asymmetry can be complementary measures of the physiological state of the tested subject. The proposed indices seem to be a good choice for tracking changes in the power spectrum in exercise stress, and they can guide in the determination of frequency band limits in other animal species
On the quantisation of the angular momentum
Ho, V B
1994-01-01
When a hydrogen-like atom is treated as a two dimensional system whose configuration space is multiply connected, then in order to obtain the same energy spectrum as in the Bohr model the angular momentum must be half-integral.
Neutron spectrum and radial power distribution measurements in a TRIGA reactor fuel element
International Nuclear Information System (INIS)
The neutron spectrum in the Illinois Advanced TRIGA Reactor was measured by a crystal spectrometer utilizing an LiF(1, 1, 1) crystal monochromator whose reflectivity was determined experimentally. The fission heat source distribution in a fuel element was also determined as a function of the fuel element temperature. These two measurements were used to investigate the effects of fuel element temperature and the local core loading on the thermal diffusion length in a fuel element. Changes in the thermal diffusion lengths during a reactor pulse underlie the proposed temperature feedback mechanism for the ZrH fuel material. The results of the measurements confirm, in part, this proposed temperature feedback mechanism
RFI excision using a higher order statistics analysis of the power spectrum
Fridman, P A
2010-01-01
A method of radio frequency interference (RFI) suppression in radio astronomy spectral observations is described based on the analysis of the probability distribution of an instantaneous spectrum. This method allows the separation of the gaussian component due to the natural radio source and the non-gaussian RFI signal. Examples are presented in the form of %computer simulations of this method of RFI suppression and of WSRT observations with this method applied. The application %of real time digital signal processing for RFI suppression is found to be effective for radio astronomy telescopes %operating in a worsening spectral environment.
Ekas, Naomi V; Timmons, Lisa; Pruitt, Megan; Ghilain, Christine; Alessandri, Michael
2015-07-01
The current study uses the actor-partner interdependence model to examine the predictors of relationship satisfaction for mothers and fathers of children with autism spectrum disorder. Sixty-seven couples completed measures of optimism, benefit finding, coping strategies, social support, and relationship satisfaction. Results indicated that parent's positive strengths predicted better personal relationship satisfaction. Moreover, parents' benefit finding, use of emotional support, and perceived social support from their partner also predicted their partner's relationship satisfaction. The results of this study highlight the importance of focusing on positive factors that can enhance relationship quality. Implications for the development of parent-focused interventions are discussed.
Institute of Scientific and Technical Information of China (English)
汤浩
2013-01-01
Objective To explore the discrepancies of magne-toencephalography(MEG) spectral power between female patients with major depressive disorder and nondepressed subjects in resting state. Methods Whole head MEG recordings were obtained in 12 female patients with major
Spectrum analysis of all parameter noises in repetition-rate laser pulse train
Institute of Scientific and Technical Information of China (English)
Junhua Tang; Yuncai Wang
2006-01-01
@@ The theoretical investigation of all parameter noises in repetition-rate laser pulse train was presented. The expression of power spectrum of laser pulse trains with all parameter noises was derived, and the power spectra of pulse trains with different noise parameters were numerically simulated. By comparing the power spectra with and without pulse-width jitter, we noted that pulse-width jitter could not be neglected compared with amplitude noise and timing jitter and contributed a great amount of noise into the power spectrum under the condition that the product of pulse width and angular frequency was larger than 1.
Yang, Xiuyuan; Huffenberger, Kevin; Haiman, Zoltán; May, Morgan
2012-01-01
Peaks in two-dimensional weak lensing (WL) maps contain significant cosmological information, complementary to the WL power spectrum. This has recently been demonstrated using N-body simulations which neglect baryonic effects. Here we employ ray-tracing N-body simulations in which we manually steepen the density profile of each dark matter halo, mimicking the cooling and concentration of baryons into dark matter potential wells. We find, in agreement with previous works, that this causes a significant increase in the amplitude of the WL power spectrum on small scales (spherical harmonic index l>1,000). We then study the impact of the halo concentration increase on the peak counts, and find the following. (i) Low peaks (with convergence 0.02 0.5 R_vir); as a result, they are insensitive to the central halo density profiles. These peaks contain most of the cosmological information, and thus provide an unusually sensitive and unbiased probe. (ii) The number of high peaks (with convergence kappa_peak > 0.08) is ...
Bertolini, Daniele; Schutz, Katelin; Solon, Mikhail P.; Walsh, Jonathan R.; Zurek, Kathryn M.
2016-06-01
We compute the non-Gaussian contribution to the covariance of the matter power spectrum at one-loop order in standard perturbation theory (SPT), using the framework of the effective field theory (EFT) of large scale structure (LSS). The complete one-loop contributions are evaluated for the first time, including the leading EFT corrections that involve seven independent operators, of which four appear in the power spectrum and bispectrum. We compare the non-Gaussian part of the one-loop covariance computed with both SPT and EFT of LSS to two separate simulations. In one simulation, we find that the one-loop prediction from SPT reproduces the simulation well to ki+kj˜0.25 h /Mpc , while in the other simulation we find a substantial improvement of EFT of LSS (with one free parameter) over SPT, more than doubling the range of k where the theory accurately reproduces the simulation. The disagreement between these two simulations points to unaccounted for systematics, highlighting the need for improved numerical and analytic understanding of the covariance.
Schmittfull, Marcel
2016-01-01
Modeling the large-scale structure of the universe on nonlinear scales has the potential to substantially increase the science return of upcoming surveys by increasing the number of modes available for model comparisons. One way to achieve this is to model nonlinear scales perturbatively. Unfortunately, this involves high-dimensional loop integrals that are cumbersome to evaluate. Trying to simplify this, we show how all 2-loop (next-to-next-to-leading order) corrections to the density power spectrum can be reduced to one-dimensional, radial integrals. Each of those can be evaluated with a one-dimensional Fast Fourier Transform. This provides a way to evaluate the 2-loop power spectrum using only one-dimensional Fast Fourier Transforms, which is significantly faster than the five-dimensional Monte-Carlo integrals that are needed otherwise. The general idea of this FFT-PT method is to change between Fourier and position space to avoid convolutions, integrate over orientations, and evaluate the remaining radial...
Bertolini, Daniele; Solon, Mikhail P; Walsh, Jonathan R; Zurek, Kathryn M
2015-01-01
We compute the non-Gaussian contribution to the covariance of the matter power spectrum at one-loop order in Standard Perturbation Theory (SPT), and using the framework of the effective field theory (EFT) of large scale structure (LSS). The complete one-loop contributions are evaluated for the first time, including the leading EFT corrections that involve seven independent operators, of which four appear in the power spectrum and bispectrum. In the basis where the three new operators are maximally uncorrelated, we find that two of them are suppressed at the few percent level relative to other contributions, and may thus be neglected. We extract the single remaining coefficient from N-body simulations, and obtain robust predictions for the non-Gaussian part of the covariance $C(k_i, k_j)$ up to $k_i + k_j \\sim$ 0.3 h/Mpc. The one-parameter prediction from EFT improves over SPT, with the analytic reach in wavenumber more than doubled.
Angular dependence of primordial trispectra and CMB spectral distortions
Shiraishi, Maresuke; Bartolo, Nicola; Liguori, Michele
2016-10-01
Under the presence of anisotropic sources in the inflationary era, the trispectrum of the primordial curvature perturbation has a very specific angular dependence between each wavevector that is distinguishable from the one encountered when only scalar fields are present, characterized by an angular dependence described by Legendre polynomials. We examine the imprints left by curvature trispectra on the TTμ bispectrum, generated by the correlation between temperature anisotropies (T) and chemical potential spectral distortions (μ) of the Cosmic Microwave Background (CMB). Due to the angular dependence of the primordial signal, the corresponding TTμ bispectrum strongly differs in shape from TTμ sourced by the usual gNL or τNL local trispectra, enabling us to obtain an unbiased estimation. From a Fisher matrix analysis, we find that, in a cosmic-variance-limited (CVL) survey of TTμ, a minimum detectable value of the quadrupolar Legendre coefficient is d2 ~ 0.01, which is 4 orders of magnitude better than the best value attainable from the TTTT CMB trispectrum. In the case of an anisotropic inflationary model with a f(phi)F2 interaction (coupling the inflaton field phi with a vector kinetic term F2), the size of the curvature trispectrum is related to that of quadrupolar power spectrum asymmetry, g*. In this case, a CVL measurement of TTμ makes it possible to measure g* down to 10‑3.
Partonic orbital angular momentum
Arash, Firooz; Taghavi-Shahri, Fatemeh; Shahveh, Abolfazl
2013-04-01
Ji's decomposition of nucleon spin is used and the orbital angular momentum of quarks and gluon are calculated. We have utilized the so called valon model description of the nucleon in the next to leading order. It is found that the average orbital angular momentum of quarks is positive, but small, whereas that of gluon is negative and large. Individual quark flavor contributions are also calculated. Some regularities on the total angular momentum of the quarks and gluon are observed.
Quark Orbital Angular Momentum
Burkardt Matthias
2015-01-01
Definitions of orbital angular momentum based on Wigner distributions are used as a framework to discuss the connection between the Ji definition of the quark orbital angular momentum and that of Jaffe and Manohar. We find that the difference between these two definitions can be interpreted as the change in the quark orbital angular momentum as it leaves the target in a DIS experiment. The mechanism responsible for that change is similar to the mechanism that causes transverse single-spin asy...
Dust and gas power-spectrum in M33 (HERM33ES)
Combes, F; Kramer, C; Xilouris, E M; Bertoldi, F; Braine, J; Buchbender, C; Calzetti, D; Gratier, P; Israel, F; Koribalski, B; Lord, S; Quintana-Lacaci, G; Relano, M; Roellig, M; Stacey, G; Tabatabaei, F S; Tilanus, R P J; van der Tak, F; van der Werf, P; Verley, S
2012-01-01
Power spectra of de-projected images of late-type galaxies in gas and/or dust emission are very useful diagnostics of the dynamics and stability of their interstellar medium. Previous studies have shown that the power spectra can be approximated as two power-laws, a shallow one at large scales (larger than 500 pc) and a steeper one at small scales, with the break between the two corresponding to the line-of-sight thickness of the galaxy disk. We present a thorough analysis of the power spectra of the dust and gas emission at several wavelengths in the nearby galaxy M33. In particular, we use the recently obtained images at five wavelengths by PACS and SPIRE onboard Herschel. The large dynamical range (2-3 dex in scale) of most images allow us to determine clearly the change in slopes from -1.5 to -4, with some variations with wavelength. The break scale is increasing with wavelength, from 100 pc at 24 and 100micron to 350 pc at 500micron, suggesting that the cool dust lies in a thicker disk than the warm dust...
New evidence for lack of CMB power on large scales
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
A digitalized temperature map is recovered from the first light sky survey image published by the Planck team, from which an angular power spectrum of the cosmic microwave background (CMB) is derived. The amplitudes of the low multipoles (low-l) measured from the preliminary Planck power spectrum are significantly lower than those reported by the WMAP team. Possible systematical effects are far from enough to explain the observed low-l differences.
Study on the factors of the angular dispersion power for the triple prism%三棱镜角色散性能的影响因素研究
Institute of Scientific and Technical Information of China (English)
王玉梅
2013-01-01
In this paper, the refractive index of visible light in the triple prism was measured by the methord of minimum deviation. Based on the expirical foumula of Cauchy, the experimental data was investigated in Origin software, and the dispersion curvers of the triple prism were obtained. The parameters A0 and B0 of the ZF1 optical glass and the K9 optical glass were determined and the angular diapersion power of two optical glass were obtained. The experimental results show that the angular dispersion power of triple prism related to not only prism materials but also the wave length of the incident light. The angular dispersion power increases with the increase of refraction index and increases with the decrease of wave length.%用最小偏向角法测定了可见光中不同波长的光在三棱镜中的折射率,按照Cauchy经验公式用Origin软件拟合实验数据,得出了三棱镜材料的色散关系曲线;确定了玻璃ZF1和玻璃K9色散关系中的参量A0、B0值;确定了两种玻璃棱镜的角色散本领;分析得出了三棱镜的角色散本领与棱镜材料的折射率及入射波的波长有关,三棱镜的角色散本领随棱镜材料折射率的增大而增大,随入射波波长的减小而增大.
Szabo, Adam; Koval, A.
2011-01-01
The newly reprocessed high time resolution (11/22 vectors/sec) Wind mission interplanetary magnetic field data and the similar observations made by the MESSENGER spacecraft in the inner heliosphere affords an opportunity to compare magnetic field power spectral density variations as a function of radial distance from the Sun under different solar wind conditions. In the reprocessed Wind Magnetic Field Investigation (MFI) data, the spin tone and its harmonics are greatly reduced that allows the meaningful fitting of power spectra to the approx.2 Hz limit above which digitization noise becomes apparent. The powe'r spectral density is computed and the spectral index is fitted for the MHD and ion inertial regime separately along with the break point between the two for various solar wind conditions. Wind and MESSENGER magnetic fluctuations are compared for times when the two spacecraft are close to radial and Parker field alignment. The functional dependence of the ion inertial spectral index and break point on solar wind plasma and magnetic field conditions will be discussed.
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
In most of real operational conditions only response data are measurable while the actual excitations are unknown, so modal parameter must be extracted only from responses. This paper gives a theoretical formulation for the cross-correlation functions and cross-power spectra between the outputs under the assumption of white-noise excitation. It widens the field of modal analysis under ambient excitation because many classical methods by impulse response functions or frequency response functions can be used easily for modal analysis under unknown excitation. The Polyreference Complex Exponential method and Eigensystem Realization Algorithm using cross-correlation functions in time domain and Orthogonal Polynomial method using cross-power spectra in frequency domain are applied to a steel frame to extract modal parameters under operational conditions. The modal properties of the steel frame from these three methods are compared with those from frequency response functions analysis. The results show that the modal analysis method using cross-correlation functions or cross-power spectra presented in this paper can extract modal parameters efficiently under unknown excitation.
Error analysis of quadratic power spectrum estimates for CMB polarization: sampling covariance
Challinor, A; Challinor, Anthony; Chon, Gayoung
2004-01-01
Quadratic methods with heuristic weighting (e.g. pseudo-C_l or correlation function methods) represent an efficient way to estimate power spectra of the cosmic microwave background (CMB) anisotropies and their polarization. We construct the sample covariance properties of such estimators for CMB polarization, and develop semi-analytic techniques to approximate the pseudo-C_l sample covariance matrices at high Legendre multipoles, taking account of the geometric effects of mode coupling and the mixing between the electric (E) and magnetic (B) polarization that arise for observations covering only part of the sky. The E-B mixing ultimately limits the applicability of heuristically-weighted quadratic methods to searches for the gravitational-wave signal in the large-angle B-mode polarization, even for methods that can recover (exactly) unbiased estimates of the B-mode power. We show that for surveys covering one or two per cent of the sky, the contribution of E-mode power to the covariance of the recovered B-mod...
ZKDR Distance, Angular Size and Phantom Cosmology
R.C. Santos; Lima, J. A. S.
2006-01-01
The influence of mass inhomogeneities on the angular size-redshift test is investigated for a large class of flat cosmological models driven by dark energy plus a cold dark matter component. The results are presented in two steps. First, the mass inhomogeneities are modeled by a generalized Zeldovich-Kantowski-Dyer-Roeder (ZKDR) distance which is characterized by a smoothness parameter $\\alpha(z)$ and a power index $\\gamma$, and, second, we provide a statistical analysis to angular size data ...
The influence of methylphenidate on the power spectrum of ADHD children – an MEG study
Directory of Open Access Journals (Sweden)
Bauer Susanne
2005-07-01
Full Text Available Abstract Background The present study was dedicated to investigate the influence of Methylphenidate (MPH on cortical processing of children who were diagnosed with different subtypes of Attention Deficit Hyperactivity Disorder (ADHD. As all of the previous studies investigating power differences in different frequency bands have been using EEG, mostly with a relatively small number of electrodes our aim was to obtain new aspects using high density magnetoencephalography (MEG. Methods 35 children (6 female, 29 male participated in this study. Mean age was 11.7 years (± 1.92 years. 17 children were diagnosed of having an Attention-Deficit/Hyperactivity Disorder of the combined type (ADHDcom, DSM IV code 314.01; the other 18 were diagnosed for ADHD of the predominantly inattentive type (ADHDin, DSM IV code 314.0. We measured the MEG during a 5 minute resting period with a 148-channel magnetometer system (MAGNES™ 2500 WH, 4D Neuroimaging, San Diego, USA. Power values were averaged for 5 bands: Delta (D, 1.5–3.5 Hz, Theta (T, 3.5–7.5 Hz, Alpha (A, 7.5–12.5 Hz, Beta (B, 12.5–25 Hz and Global (GL, 1.5–25 Hz.. Additionally, attention was measured behaviourally using the D2 test of attention with and without medication. Results The global power of the frequency band from 1.5 to 25 Hz increased with MPH. Relative Theta was found to be higher in the left hemisphere after administration of MPH than before. A positive correlation was found between D2 test improvement and MPH-induced power changes in the Theta band over the left frontal region. A linear regression was computed and confirmed that the larger the improvement in D2 test performance, the larger the increase in Theta after MPH application. Conclusion Main effects induced by medication were found in frontal regions. Theta band activity increased over the left hemisphere after MPH application. This finding contradicts EEG results of several groups who found lower levels of Theta power
X-ray variability of 104 active galactic nuclei. XMM-Newton power-spectrum density profiles
Gonzalez-Martin, Omaira; Vaughan, Simon; de la Cierva, Juan
2012-09-01
Active galactic nuclei (AGN), powered by accretion onto supermassive black holes (SMBHs), are thought to be scaled up versions of Galactic black hole X-ray binaries (BH-XRBs). In the past few years evidence of such correspondence include similarities in the broadband shape of the X-ray variability power spectra, with characteristic bend times-cales scaling with mass. We have characterized the X-ray temporal properties of a sample of AGN to study the connection among different classes of AGN and their connection with BH-XRBs. We have performed a uniform analysis of the power spectrum densities (PSDs) of 104 nearby (zfundamental plane" relating variability timescale, black hole mass, and luminosity is studied using the new X-ray timing results presented here together with a compilation of the previously detected timescales from the literature. Both quantitative (i.e. scaling with BH mass) and qualitative (overall PSD shapes) found in this sample of AGN are in agreement with the expectations for the SMBHs and BH-XRBs being the same phenomenon scaled-up with the size of the BH. The steep PSD slopes above the high frequency bend bear a closer resemblance to those of the "soft/thermal dominated" BH- XRB states than other states.
Upper Limits on the 21 cm Power Spectrum at z = 5.9 from Quasar Absorption Line Spectroscopy
Pober, Jonathan C; Mesinger, Andrei
2016-01-01
We present upper limits on the 21 cm power spectrum at $z = 5.9$ calculated from the model-independent limit on the neutral fraction of the intergalactic medium of $x_{\\rm H{\\small I }} < 0.06 + 0.05\\ (1\\sigma)$ derived from dark pixel statistics of quasar absorption spectra. Using 21CMMC, a Markov chain Monte Carlo Epoch of Reionization analysis code, we explore the probability distribution of 21 cm power spectra consistent with this constraint on the neutral fraction. We present 99 per cent confidence upper limits of $\\Delta^2(k) < 10$ to $20\\ {\\rm mK}^2$ over a range of $k$ from 0.5 to $2.0\\ h{\\rm Mpc}^{-1}$, with the exact limit dependent on the sampled $k$ mode. This limit can be used as a null test for 21 cm experiments: a detection of power at $z=5.9$ in excess of this value is highly suggestive of residual foreground contamination or other systematic errors affecting the analysis.
Diego-Rodriguez, J M; Silk, J; Barcons, X; Voges, W
2003-01-01
We use the X-ray power spectrum of the ROSAT all-sky survey in the R6 band (approximately 0.9-1.3 keV) to set an upper limit on the galaxy cluster power spectrum. The cluster power spectrum is modelled with a minimum number of robust assumptions regarding the structure of the clusters. The power spectrum of ROSAT sets an upper limit on the Omega_m-sigma_8 plane which excludes all the models with sigma_8 above sigma_8 = 0.5/(Omega_m^0.38) in a flat LCDM universe. We discuss the possible sources of systematic errors in our conclusions, mainly dominated by the assumed L_x-T relation. Alternatively, this relation could be constrained by using the X-ray power spectrum, if the cosmological model is known. Our conclusions suggest that only models with a low value of sigma_8 (sigma_8 < 0.8 for Omega_m = 0.3) may be compatible with our upper limit. We also find that models predicting lower luminosities in galaxy clusters are favoured. Reconciling our cosmological constraints with these arising by other methods migh...
International Nuclear Information System (INIS)
The influence of large-scale density fluctuations on structure formation on small scales is described by the three-point correlation function (bispectrum) in the so-called ''squeezed configurations,'' in which one wavenumber, say k3, is much smaller than the other two, i.e., k3 << k1 ≈ k2. This bispectrum is generated by non-linear gravitational evolution and possibly also by inflationary physics. In this paper, we use this fact to show that the bispectrum in the squeezed configurations can be measured without employing three-point function estimators. Specifically, we use the ''position-dependent power spectrum,'' i.e., the power spectrum measured in smaller subvolumes of the survey (or simulation box), and correlate it with the mean overdensity of the corresponding subvolume. This correlation directly measures an integral of the bispectrum dominated by the squeezed configurations. Measuring this correlation is only slightly more complex than measuring the power spectrum itself, and sidesteps the considerable complexity of the full bispectrum estimation. We use cosmological N-body simulations of collisionless particles with Gaussian initial conditions to show that the measured correlation between the position-dependent power spectrum and the long-wavelength overdensity agrees with the theoretical expectation. The position-dependent power spectrum thus provides a new, efficient, and promising way to measure the squeezed-limit bispectrum from large-scale structure observations such as galaxy redshift surveys
Zhang, Xingyu; Chakravarty, Swapnajit; Chung, Chi-Jui; Pan, Zeyu; Yan, Hai; Chen, Ray T.
2016-03-01
We design, fabricate and experimentally demonstrate a compact thermo-optic gate switch comprising a 3.78μm-long coupled L0-type photonic crystal microcavities on a silicon-on-insulator substrate. A nanohole is inserted in the center of each individual L0 photonic crystal microcavity. Coupling between identical microcavities gives rise to bonding and antibonding states of the coupled photonic molecules. The coupled photonic crystal microcavities are numerically simulated and experimentally verified with a 6nm-wide flat-bottom resonance in its transmission spectrum, which enables wider operational spectrum range than microring resonators. An integrated micro-heater is in direct contact with the silicon core to efficiently drive the device. The thermo-optic switch is measured with an optical extinction ratio of 20dB, an on-off switching power of 18.2mW, a therm-optic tuning efficiency of 0.63nm/mW, a rise time of 14.8μsec and a fall time of 18.5μsec. The measured on-chip loss on the transmission band is as low as 1dB.
Saito, Shun; Vlah, Zvonimir; Seljak, Uroš; Okumura, Teppei; McDonald, Patrick
2014-01-01
Understanding the relation between underlying matter distribution and biased tracers such as galaxy or dark matter halo is essential to extract cosmological information from ongoing or future galaxy redshift surveys. At sufficiently large scales such as the BAO scale, a standard approach for the bias problem on the basis of the perturbation theory (PT) is to assume the `local bias' model in which the density field of biased tracers is deterministically expanded in terms of matter density field at the same position. The higher-order bias parameters are then determined by combining the power spectrum with higher-order statistics such as the bispectrum. As is pointed out by recent studies, however, nonlinear gravitational evolution naturally induces nonlocal bias terms even if initially starting only with purely local bias. As a matter of fact, previous works showed that the second-order nonlocal bias term, which corresponds to the gravitational tidal field, is important to explain the characteristic scale-depen...
Binder, Tobias; Kamada, Ayuki; Murayama, Hitoshi; Takahashi, Tomo; Yoshida, Naoki
2016-01-01
Dark Matter (DM) models providing possible alternative solutions to the small-scale crisis of standard cosmology are nowadays of growing interest. We consider DM interacting with light hidden fermions via well motivated fundamental operators showing the resultant matter power spectrum is suppressed on subgalactic scales within a plausible parameter region. Our basic description of evolution of cosmological perturbations relies on a fully consistent first principle derivation of a perturbed Fokker-Planck type equation, generalizing existing literature. The cosmological perturbation of the Fokker-Planck equation is presented for the first time in two different gauges, where the results transform into each other according to the rules of gauge transformation. Furthermore, our focus lies on a derivation of a broadly applicable and easily computable collision term showing important phenomenological differences to other existing approximations. As one of the main results and concerning the small-scale crisis, we sh...
Liu, Jia; Sherwin, Blake D; Petri, Andrea; Böhm, Vanessa; Haiman, Zoltán
2016-01-01
Unprecedentedly precise cosmic microwave background (CMB) data are expected from ongoing and near-future CMB Stage-III and IV surveys, which will yield reconstructed CMB lensing maps with effective resolution approaching several arcminutes. The small-scale CMB lensing fluctuations receive non-negligible contributions from nonlinear structure in the late-time density field. These fluctuations are not fully characterized by traditional two-point statistics, such as the power spectrum. Here, we use $N$-body ray-tracing simulations of CMB lensing maps to examine two higher-order statistics: the lensing convergence one-point probability distribution function (PDF) and peak counts. We show that these statistics contain significant information not captured by the two-point function, and provide specific forecasts for the ongoing Stage-III Advanced Atacama Cosmology Telescope (AdvACT) experiment. Considering only the temperature-based reconstruction estimator, we forecast 30$\\sigma$ (PDF) and 10$\\sigma$ (peaks) detec...
Energy Technology Data Exchange (ETDEWEB)
Wang, Sai, E-mail: wangsai@itp.ac.cn [State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, 100049, Beijing (China); Chang, Zhe [State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, 100049, Beijing (China); Institute of High Energy Physics, Chinese Academy of Sciences, 100049, Beijing (China)
2015-06-11
We propose the gravity’s rainbow scenario as a possible alternative of the inflation paradigm to account for the flatness and horizon problems. We focus on studying the cosmological scalar perturbations which are seeded by the quantum fluctuations in the very early universe. The scalar power spectrum is expected to be nearly scale-invariant. We estimate the rainbow index λ and energy scale M in the gravity’s rainbow scenario by analyzing the Planck temperature and WMAP polarization datasets. The constraints on them are given by λ=2.933±0.012 and ln(10{sup 5}M/M{sub p})=-0.401{sub -0.451}{sup +0.457} at the 68 % confidence level.
Energy Technology Data Exchange (ETDEWEB)
Wang, Sai [Chinese Academy of Sciences, State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Beijing (China); Chang, Zhe [Chinese Academy of Sciences, State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Beijing (China); Chinese Academy of Sciences, Institute of High Energy Physics, Beijing (China)
2015-06-15
We propose the gravity's rainbow scenario as a possible alternative of the inflation paradigm to account for the flatness and horizon problems. We focus on studying the cosmological scalar perturbations which are seeded by the quantum fluctuations in the very early universe. The scalar power spectrum is expected to be nearly scale-invariant. We estimate the rainbow index λ and energy scale M in the gravity's rainbow scenario by analyzing the Planck temperature and WMAP polarization datasets. The constraints on them are given by λ = 2.933 ± 0.012 and ln(10{sup 5}M/M{sub p}) = -0.401{sub -0.451}{sup +0.457} at the 68% confidence level. (orig.)
Battaglia, N; Pfrommer, C; Sievers, J L
2011-01-01
Secondary anisotropies in the cosmic microwave background are a treasure-trove of cosmological information. Interpreting current experiments probing them are limited by theoretical uncertainties rather than by measurement errors. Here we focus on the secondary anisotropies resulting from the thermal Sunyaev-Zel'dovich (tSZ) effect; the amplitude of which depends critically on the average thermal pressure profile of galaxy groups and clusters. To this end, we use a suite of SPH simulations that include radiative cooling, star formation, supernova feedback, and energetic feedback from active galactic nuclei (AGN). We examine in detail how the pressure profile depends on cluster radius, mass, and redshift and provide an empirical fitting function. We employ three different approaches for calculating the tSZ power spectrum: an analytical approach that uses our pressure profile fit, a semi-analytical method of pasting our pressure fit onto simulated clusters, and a direct numerical integration of our simulated vol...
Achucarro, Ana; Ortiz, Pablo; Torrado, Jesus
2013-01-01
We perform a search for localized oscillatory features in the Planck CMB power spectrum, assuming they are caused by a transient reduction in the speed of sound of the adiabatic mode during effectively single-field, uninterrupted slow-roll inflation. We find several fits, for which we calculate the expected correlated signal in the primordial bispectrum, and compare it to the search for scale dependent bispectrum features carried out by the Planck collaboration. Where both searches overlap, we reproduce the Planck results reasonably well. In addition, some of our best fits lie outside the scales and frequency ranges surveyed by Planck, which calls for an extension in frequencies and envelopes of the templates used in Planck's search. By exploiting correlations between different observables, our results strongly suggest that current data might already be sensitive enough to detect transient reductions in the speed of sound as mild as a few percent, opening a new window for the presence of extra degrees of free...
DEFF Research Database (Denmark)
Hamann, Jan; Hannestad, Steen; Sloth, Martin Snoager;
2008-01-01
We revisit the issue of ripples in the primordial power spectra caused by trans-Planckian physics, and the potential for their detection by future cosmological probes. We find that for reasonably large values of the first slow-roll parameter epsilon (> 0.001), a positive detection of trans......-Planckian ripples can be made even if the amplitude is as low as 10^-4. Data from the Large Synoptic Survey Telescope (LSST) and the proposed future 21 cm survey with the Fast Fourier Transform Telescope (FFTT) will be particularly useful in this regard. If the scale of inflation is close to its present upper bound...
Yuvaraj, R; Murugappan, M; Ibrahim, Norlinah Mohamed; Omar, Mohd Iqbal; Sundaraj, Kenneth; Mohamad, Khairiyah; Palaniappan, R; Satiyan, M
2014-03-01
Deficits in the ability to process emotions characterize several neuropsychiatric disorders and are traits of Parkinson's disease (PD), and there is need for a method of quantifying emotion, which is currently performed by clinical diagnosis. Electroencephalogram (EEG) signals, being an activity of central nervous system (CNS), can reflect the underlying true emotional state of a person. This study applied machine-learning algorithms to categorize EEG emotional states in PD patients that would classify six basic emotions (happiness and sadness, fear, anger, surprise and disgust) in comparison with healthy controls (HC). Emotional EEG data were recorded from 20 PD patients and 20 healthy age-, education level- and sex-matched controls using multimodal (audio-visual) stimuli. The use of nonlinear features motivated by the higher-order spectra (HOS) has been reported to be a promising approach to classify the emotional states. In this work, we made the comparative study of the performance of k-nearest neighbor (kNN) and support vector machine (SVM) classifiers using the features derived from HOS and from the power spectrum. Analysis of variance (ANOVA) showed that power spectrum and HOS based features were statistically significant among the six emotional states (p happiness, surprise) compared with HC. These results demonstrate the effectiveness of applying machine learning techniques to the classification of emotional states in PD patients in a user independent manner using EEG signals. The accuracy of the system can be improved by investigating the other HOS based features. This study might lead to a practical system for noninvasive assessment of the emotional impairments associated with neurological disorders. PMID:24738541
Dummer, Benjamin; Wieland, Stefan; Lindner, Benjamin
2014-01-01
A major source of random variability in cortical networks is the quasi-random arrival of presynaptic action potentials from many other cells. In network studies as well as in the study of the response properties of single cells embedded in a network, synaptic background input is often approximated by Poissonian spike trains. However, the output statistics of the cells is in most cases far from being Poisson. This is inconsistent with the assumption of similar spike-train statistics for pre- and postsynaptic cells in a recurrent network. Here we tackle this problem for the popular class of integrate-and-fire neurons and study a self-consistent statistics of input and output spectra of neural spike trains. Instead of actually using a large network, we use an iterative scheme, in which we simulate a single neuron over several generations. In each of these generations, the neuron is stimulated with surrogate stochastic input that has a similar statistics as the output of the previous generation. For the surrogate input, we employ two distinct approximations: (i) a superposition of renewal spike trains with the same interspike interval density as observed in the previous generation and (ii) a Gaussian current with a power spectrum proportional to that observed in the previous generation. For input parameters that correspond to balanced input in the network, both the renewal and the Gaussian iteration procedure converge quickly and yield comparable results for the self-consistent spike-train power spectrum. We compare our results to large-scale simulations of a random sparsely connected network of leaky integrate-and-fire neurons (Brunel, 2000) and show that in the asynchronous regime close to a state of balanced synaptic input from the network, our iterative schemes provide an excellent approximations to the autocorrelation of spike trains in the recurrent network.
Directory of Open Access Journals (Sweden)
Benjamin eDummer
2014-09-01
Full Text Available A major source of random variability in cortical networks is the quasi-random arrival of presynaptic action potentials from many other cells. In network studies as well as in the study of the response properties of single cells embedded in a network, synaptic background input is often approximated by Poissonian spike trains. However, the output statistics of the cells is in most cases far from being Poisson. This is inconsistent with the assumption of similar spike-train statistics for pre- and postsynaptic cells in a recurrent network. Here we tackle this problem for the popular class of integrate-and-fire neurons and study a self-consistent statistics of input and output spectra of neural spike trains. Instead of actually using a large network, we use an iterative scheme, in which we simulate a single neuron over several generations. In each of these generations, the neuron is stimulated with surrogate stochastic input that has a similar statistics as the output of the previous generation. For the surrogate input, we employ two distinct approximations: (i a superposition of renewal spike trains with the same interspike interval density as observed in the previous generation and (ii a Gaussian current with a power spectrum proportional to that observed in the previous generation. For input parameters that correspond to balanced input in the network, both the renewal and the Gaussian iteration procedure converge quickly and yield comparable results for the self-consistent spike-train power spectrum. We compare our results to large-scale simulations of a random sparsely connected network of leaky integrate-and-fire neurons (Brunel, J. Comp. Neurosci. 2000 and show that in the asynchronous regime close to a state of balanced synaptic input from the network, our iterative schemes provide excellent approximations to the autocorrelation of spike trains in the recurrent network.
Gil-Marín, Héctor; Percival, Will J.; Cuesta, Antonio J.; Brownstein, Joel R.; Chuang, Chia-Hsun; Ho, Shirley; Kitaura, Francisco-Shu; Maraston, Claudia; Prada, Francisco; Rodríguez-Torres, Sergio; Ross, Ashley J.; Schlegel, David J.; Schneider, Donald P.; Thomas, Daniel; Tinker, Jeremy L.; Tojeiro, Rita; Vargas Magaña, Mariana; Zhao, Gong-Bo
2016-08-01
We present an anisotropic analysis of the baryon acoustic oscillation (BAO) scale in the twelfth and final data release of the Baryon Oscillation Spectroscopic Survey (BOSS). We independently analyse the LOWZ and CMASS galaxy samples: the LOWZ sample contains 361 762 galaxies with an effective redshift of zLOWZ = 0.32; the CMASS sample consists of 777 202 galaxies with an effective redshift of zCMASS = 0.57. We extract the BAO peak position from the monopole power-spectrum moment, α0, and from the μ2 moment, α2, where μ is the cosine of the angle to the line of sight. The μ2-moment provides equivalent information to that available in the quadrupole but is simpler to analyse. After applying a reconstruction algorithm to reduce the BAO suppression by bulk motions, we measure the BAO peak position in the monopole and μ2-moment, which are related to radial and angular shifts in scale. We report H(zLOWZ)rs(zd) = (11.60 ± 0.60) × 103 km s-1 and DA(zLOWZ)/rs(zd) = 6.66 ± 0.16 with a cross-correlation coefficient of r_{HD_A}=0.41, for the LOWZ sample; and H(zCMASS)rs(zd) = (14.56 ± 0.37) × 103 km s-1 and DA(zCMASS)/rs(zd) = 9.42 ± 0.13 with a cross-correlation coefficient of r_{HD_A}=0.47, for the CMASS sample. We demonstrate that our results are not affected by the fiducial cosmology assumed for the analysis. We combine these results with the measurements of the BAO peak position in the monopole and quadrupole correlation function of the same data set (Cuesta et al. 2016, companion paper) and report the consensus values: H(zLOWZ)rs(zd) = (11.63 ± 0.69) × 103 km s-1 and DA(zLOWZ)/rs(zd) = 6.67 ± 0.15 with r_{HD_A}=0.35 for the LOWZ sample; H(zCMASS)rs(zd) = (14.67 ± 0.42) × 103 km s-1 and DA(zCMASS)/rs(zd) = 9.47 ± 0.12 with r_{HD_A}=0.52 for the CMASS sample.
The power spectrum and correlation of flow noise for an axisymmetric body in water
Institute of Scientific and Technical Information of China (English)
Li Xue-Gang; Yang Kun-De; Wang Yong
2011-01-01
Understanding the physical features of the flow noise for an axisymmetric body is important for improving the performance of a sonar mounted on an underwater platform. Analytical calculation and numerical analysis of the physical features of the flow noise for an axisymmetric body are presented and a simulation scheme for the noise correlation on the hydrophones is given. It is shown that the numerical values of the flow noise coincide well with the analytical values. The main physical features of flow noise are obtained. The flow noises of two different models are compared and a model with a rather optimal fore-body shape is given. The flow noise in horizontal symmetry profile of the axisymmetric body is non-uniform, but it is omni-directional and has little difference in the cross section of the body. The loss of noise diffraction has a great effect on the flow noise from boundary layer transition. Meanwhile, based on the simulation, the noise power level increases with velocity to approximately the fifth power at high frequencies,which is consistent with the experiment data reported in the literature. Furthermore, the flow noise received by the acoustic array has lower correlation at a designed central frequency, which is important for sonar system design.
Energy Technology Data Exchange (ETDEWEB)
Rath, Pranati K.; Mudholkar, Tanmay; Jain, Pankaj [Dept. of Physics, Indian Institue of Technology Kanpur, Kanpur - 208016 (India); Aluri, Pavan K.; Panda, Sukanta, E-mail: pranati@iitk.ac.in, E-mail: mtanmay@iitk.ac.in, E-mail: pkjain@iitk.ac.in, E-mail: aluri@iiserb.ac.in, E-mail: sukanta@iiserb.ac.in [Dept. of Physics, Indian Institue of Science Education and Research Bhopal, Bhopal - 462023 (India)
2013-04-01
We study several anisotropic inflationary models and their implications for the observed violation of statistical isotropy in the CMBR data. In two of these models the anisotropy decays very quickly during the inflationary phase of expansion. We explicitly show that these models lead to violation of isotropy only for low l CMBR modes. Our primary aim is to fit the observed alignment of l = 2,3 multipoles to the theoretical models. We use two measures, based on the power tensor, which contains information about the alignment of each multipole, to quantify the anisotropy in data. One of the measures uses the dispersion in eigenvalues of the power tensor. We also define another measure which tests the overall correlation between two different multipoles. We perturbatively compute these measures of anisotropy and fix the theoretical parameters by making a best fit to l = 2,3 multipoles. We show that some of the models studied are able to consistently explain the observed violation of statistical isotropy.