WorldWideScience

Sample records for angular power spectra

  1. Reconstructing the galaxy redshift distribution from angular cross power spectra

    CERN Document Server

    Sun, L; Tao, C

    2015-01-01

    The control of photometric redshift (photo-$z$) errors is a crucial and challenging task for precision weak lensing cosmology. The spacial cross-correlations (equivalently, the angular cross power spectra) of galaxies between tomographic photo-$z$ bins are sensitive to the true redshift distribution $n_i(z)$ of each bin and hence can help calibrate the photo-$z$ error distribution for weak lensing surveys. Using Fisher matrix analysis, we investigate the contributions of various components of the angular power spectra to the constraints of $n_i(z)$ parameters and demonstrate the importance of the cross power spectra therein, especially when catastrophic photo-$z$ errors are present. We further study the feasibility of reconstructing $n_i(z)$ from galaxy angular power spectra using Markov Chain Monte Carlo estimation. Considering an LSST-like survey with $10$ photo-$z$ bins, we find that the underlying redshift distribution can be determined with a fractional precision ($\\sigma(\\theta)/\\theta$ for parameter $\\...

  2. The Angular Power Spectra of Photometric SDSS LRGs

    CERN Document Server

    Thomas, Shaun A; Lahav, Ofer

    2010-01-01

    We construct new galaxy angular power spectra based on the extended, updated and final SDSS II Luminous Red Galaxy (LRG) photometric redshift survey: MegaZ DR7. Encapsulating 7746 deg^{2} we utilise 723,556 photometrically determined LRGs between 0.45 < z < 0.65 in a 3.3 (Gpc h^{-1})^3 spherical harmonic analysis of the galaxy distribution. By combining four photometric redshift bins we find preliminary parameter constraints of f_{b} = \\Omega_{b}/\\Omega_{m} = 0.173 +/- 0.046 and \\Omega_{m} = 0.260 +/- 0.035 assuming H_{0} = 75 km s^{-1} Mpc^{-1}, n_{s}=1 and \\Omega_{k} = 0. These limits are consistent with the CMB and the previous data release (DR4). The C_{\\ell} are sensitive to redshift space distortions and therefore we also recast our constraints into a measurement of \\beta ~ \\Omega_{m}^{0.55}/b in different redshift shells. The robustness of these power spectra with respect to a number of potential systematics such as extinction, photometric redshift and ANNz training set extrapolation are examined...

  3. Estimating Discrete Power Angular Spectra in Multiprobe OTA Setups

    DEFF Research Database (Denmark)

    Fan, Wei; Nielsen, Jesper Ødum; Pedersen, Gert Frølund

    2014-01-01

    accurate direction-of-arrival estimates as well as power estimates of the impinging signals in the test zone. Simulation results match well with the target, as expected. Measurement results based on a virtual UCA in a practical 3-D multiprobe setup further support the simulation results. Possible reasons...

  4. Acoustic scale from the angular power spectra of SDSS-III DR8 photometric luminous galaxies

    CERN Document Server

    Seo, Hee-Jong; White, Martin; Cuesta, Antonio; Ross, Ashley; Saito, Shun; Reid, Beth; Padmanabhan, Nikhil; Percival, Will J; de Putter, Roland; Schlegel, David; Eisenstein, Daniel; Xu, Xiaoying; Schneider, Donald; Skibba, Ramin; Verde, Licia; Nichol, Robert; Bizyaev, Dmitry; Brewington, Howard; Brinkmann, J; Costa, Luiz; Gott, J; Malanushenko, Elena; Malanushenko, Viktor; Oravetz, Dan; Palanque-Delabrouille, Nathalie; Pan, Kaike; Prada, Francisco; Ross, Nicholas; Simmons, Audrey; Simoni, Fernando; Shelden, Alaina; Snedden, Stephanie; Zehavi, Idit

    2012-01-01

    We measure the acoustic scale from the angular power spectra of the Sloan Digital Sky Survey III (SDSS-III) Data Release 8 imaging catalog that includes 872,921 galaxies over ~ 10,000 deg^2 between 0.45~ 0.35. We report constraints on cosmological parameters from our measurement in combination with the WMAP7 data and the previous spectroscopic BAO measurements of SDSS (Percival et al. 2010) and WiggleZ (Blake et al. 2011). We refer to our companion papers (Ho et al. 2011; de Putter et al. 2011) for investigations on information of the full power spectrum.

  5. The angular power spectra of photometric Sloan Digital Sky Survey luminous red galaxies

    Science.gov (United States)

    Thomas, Shaun A.; Abdalla, Filipe B.; Lahav, Ofer

    2011-04-01

    We construct new galaxy angular power spectra Cℓ based on the extended, updated and final Sloan Digital Sky Survey (SDSS) II luminous red galaxy (LRG) photometric redshift survey - MegaZ (DR7). Encapsulating 7746 deg2 we utilize 723 556 photometrically determined LRGs between 0.45 preliminary parameter constraints of fb≡Ωb/Ωm= 0.173 ± 0.046 and Ωm= 0.260 ± 0.035 assuming H0= 75 km s-1 Mpc-1, ns= 1 and Ωk= 0. These limits are consistent with the cosmic microwave background and the previous data release (DR4). The Cℓ are sensitive to redshift space distortions and therefore we also recast our constraints into a measurement of β≈Ω0.55m/b in different redshift shells. The robustness of these power spectra with respect to a number of potential systematics such as extinction, photometric redshift and ANNz training set extrapolation are examined. The latter includes a cosmological comparison of available photometric redshift estimation codes where we find excellent agreement between template and empirical estimation methods. MegaZ DR7 represents a methodological prototype to next generation surveys such as the Dark Energy Survey and, furthermore, is a photometric precursor to the spectroscopic BOSS survey. Our galaxy catalogue and all power spectra data can be found at .

  6. A Remark on the Estimation of Angular Power Spectra in the Presence of Foregrounds

    CERN Document Server

    White, M

    1998-01-01

    It is common practice to estimate the errors on the angular power spectrum which could be obtained by an experiment with a given angular resolution and noise level. Several authors have also addressed the question of foreground subtraction using multi-frequency observations. In such observations the angular resolution of the different frequency channels is rarely the same. In this report we point out how the ``effective'' beam size and noise level change with ell in this case, and give an expression for the error on the angular power spectrum as a function of ell.

  7. Effect of the length of inflation on angular TT and TE power spectra in power-law inflation

    CERN Document Server

    Hirai, S; Hirai, Shiro; Takami, Tomoyuki

    2006-01-01

    The effect of the length of inflation on the power spectra of scalar and tensor perturbations is estimated using the power-law inflation model with a scale factor of a(t) = t^q. Considering various pre-inflation models with radiation-dominated or scalar matter-dominated periods before inflation in combination with two matching conditions, the temperature angular power spectrum (TT) and temperature-polarization cross-power spectrum (TE) are calculated and a likelihood analysis is performed. It is shown that the discrepancies between the Wilkinson Microwave Anisotropy Probe (WMAP) data and the LCDM model, such as suppression of the spectrum at l = 2,3 and oscillatory behavior, may be explained by the finite length of inflation model if the length of inflation is near 60 e-folds and q > 300. The proposed models retain similar values of chi^2 to that achieved by the LCDM model with respect to fit to the WMAP data, but display different characteristics of the angular TE power spectra at l < 20.

  8. Effect of the length of inflation on angular TT and TE power spectra in power-law inflation

    International Nuclear Information System (INIS)

    The effect of the length of inflation on the power spectra of scalar and tensor perturbations is estimated using the power-law inflation model with a scale factor of a(η) = (-η)p = tq. Considering various pre-inflation models with radiation-dominated or scalar matter-dominated periods before inflation in combination with two matching conditions, the temperature angular power spectrum (TT) and temperature-polarization cross-power spectrum (TE) are calculated and a likelihood analysis is performed. It is shown that the discrepancies between the Wilkinson microwave anisotropy probe (WMAP) data and the ΛCDM model, such as suppression of the spectrum at l = 2, 3 and oscillatory behaviour, may be explained by the finite length of inflation model if the length of inflation is near 60 e-folds and q ≥ 300. The proposed models retain similar values of χ2 to that achieved by the ΛCDM model with respect to fit to the WMAP data, but display different characteristics of the angular TE power spectra at l ≤ 20

  9. Model QPO power spectra: signatures of angular position and radial velocity of clumps in the boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Alpar, M.A.

    1986-12-01

    Model power spectra are constructed for quasi-periodic oscillations of the type observed in some galactic bulge X-ray sources. It is shown that the angular location of clumping in the boundary layer, as well as the spread in Keplerian velocities within the boundary layer, will effect the form of the power spectrum under certain conditions. The occurrence of such features in observed power spectra would yield information on the possible role of the magnetic field in clumping and on the radial velocity of matter moving through the boundary layer.

  10. Effect of initial condition of inflation on power and angular power spectra in finite slow-roll inflation

    CERN Document Server

    Hirai, Shiro

    2007-01-01

    The effect of the initial condition of inflation on the power spectra of scalar and tensor perturbations is estimated assuming a slow-roll inflation model. By defining a more general initial state in inflation particular properties of the power spectrum such as oscillation can be revealed. The behavior of the power spectrum is shown to exhibit a step-like variation with respect to finite inflation length in cases of both radiation- and scalar matter-dominated pre-inflation. The power spectrum is shown to oscillate in the radiation-dominated case. The effects of such a power spectrum on the TT and TE power spectra are examined for three typical slow-roll inflation models; a small-field model, a large field model, and a hybrid model, considering both pre-inflation models. It is found that the discrepancies between WMAP3 data and the Lambda CDM model, such as suppression of the spectrum at l=2, may be explained to a certain extent by the finite length of inflation for inflation of close to 60 e-folds. The small-...

  11. Impact of scale dependent bias and nonlinear structure growth on the integrated Sachs-Wolfe effect: Angular power spectra

    International Nuclear Information System (INIS)

    We investigate the impact of nonlinear evolution of the gravitational potentials in the ΛCDM model on the integrated Sachs-Wolfe (ISW) contribution to the cosmic microwave background (CMB) temperature power spectrum, and on the cross-power spectrum of the CMB and a set of biased tracers of the mass. We use an ensemble of N-body simulations to directly follow the potentials and compare the results to analytic PT methods. The predictions from the PT match the results to high precision for k-1. We compute the nonlinear corrections to the angular power spectrum and find them to be 100 the departures are more significant; however, the CMB signal is more than a factor 103 larger at this scale. Nonlinear ISW effects therefore play no role in shaping the CMB power spectrum for lm(z)<0.3. Numerical results confirm these expectations and we find no sign change in ISW large-scale structure cross power for low redshifts. Corrections due to nonlinearity and scale dependence of the bias are found to be <10% for l<100, and are therefore below the signal to noise of the current and future measurements. Finally, we estimate the cross-correlation coefficient between the CMB and halos and show that it can be made to match that for the dark matter and CMB to within 5% for thin redshift shells, thus mitigating the need to model bias evolution.

  12. Quantum optimal control of photoelectron spectra and angular distributions

    CERN Document Server

    Goetz, R Esteban; Santra, Robin; Koch, Christiane P

    2016-01-01

    Photoelectron spectra and photoelectron angular distributions obtained in photoionization reveal important information on e.g. charge transfer or hole coherence in the parent ion. Here we show that optimal control of the underlying quantum dynamics can be used to enhance desired features in the photoelectron spectra and angular distributions. To this end, we combine Krotov's method for optimal control theory with the time-dependent configuration interaction singles formalism and a splitting approach to calculate photoelectron spectra and angular distributions. The optimization target can account for specific desired properties in the photoelectron angular distribution alone, in the photoelectron spectrum, or in both. We demonstrate the method for hydrogen and then apply it to argon under strong XUV radiation, maximizing the difference of emission into the upper and lower hemispheres, in order to realize directed electron emission in the XUV regime.

  13. Quantum optimal control of photoelectron spectra and angular distributions

    Science.gov (United States)

    Goetz, R. Esteban; Karamatskou, Antonia; Santra, Robin; Koch, Christiane P.

    2016-01-01

    Photoelectron spectra and photoelectron angular distributions obtained in photoionization reveal important information on, e.g., charge transfer or hole coherence in the parent ion. Here we show that optimal control of the underlying quantum dynamics can be used to enhance desired features in the photoelectron spectra and angular distributions. To this end, we combine Krotov's method for optimal control theory with the time-dependent configuration interaction singles formalism and a splitting approach to calculate photoelectron spectra and angular distributions. The optimization target can account for specific desired properties in the photoelectron angular distribution alone, in the photoelectron spectrum, or in both. We demonstrate the method for hydrogen and then apply it to argon under strong XUV radiation, maximizing the difference of emission into the upper and lower hemispheres, in order to realize directed electron emission in the XUV regime.

  14. Templates for the Sunyaev-Zel'dovich Angular Power Spectrum

    CERN Document Server

    Trac, Hy; Ostriker, Jeremiah P

    2010-01-01

    We present templates for the Sunyaev-Zel'dovich (SZ) angular power spectrum based on four models for the nonlinear gas distribution. The frequency-dependent SZ temperature fluctuations, with thermal (TSZ) and kinetic (KSZ) contributions, are calculated by tracing through a dark matter simulation, processed to include gas in dark matter halos and in the filamentary intergalactic medium. Different halo gas models are compared to study how star formation, energetic feedback, and nonthermal pressure support influence the angular power spectrum. The standard model has been calibrated to reproduce the stellar and gas fractions and X-ray scaling relations measured from low redshift clusters and groups. The other models illustrate the current theoretical and empirical uncertainties relating to properties of the intracluster medium. Relative to the standard model, their angular power spectra differ by approximately 50% (TSZ), 20% (KSZ), and 40% (SZ at 148 GHz) for l=3000, sigma_8=0.8, and homogeneous reionization at z...

  15. Angular Power Spectrum in Modular Invariant Inflation Model

    CERN Document Server

    Hayashi, M J; Takami, T; Okame, Y; Takagi, K; Watanabe, T; Hayashi, Mitsuo J.; Hirai, Shiro; Takami, Tomoyuki; Okame, Yusuke; Takagi, Kenji; Watanabe, Tomoki

    2006-01-01

    We propose a scalar potential of inflation, motivated by the modular invariant supergravity and computed the angular power spectra of the adiabatic density perturbations. The potential consists of three scalar fields S, Y and T with the two free parameters. By fitting the parameters with the cosmological data at the fixed point T=1, we find the potential behaves as that of the single field S, which slowly rolls down along the minimized trajectory in Y and gives rise the sufficient inflation matching with the recent three-year WMAP data, e.g. the spectral index n_s = 0.951. The TT and TE angular power spectra obtained from our model almost completely coincides with the fitting of the LambdaCDM model. We conclude that our model is considered to be an adequate theory of inflation to explain the present data, although more theoritical foundation of the model should be required.

  16. Angular Power Spectrum in Modular Invariant Inflation Model

    International Nuclear Information System (INIS)

    A scalar potential of inflation is proposed and the angular power spectra of the adiabatic density perturbations are computed. The potential consists of three scalar fields, S, Y and T, together with two free parameters. By fitting the parameters to cosmological data at the fixed point T = 1, we find that the potential behaves like the single-field potential of S, which slowly rolls down. We further show that the inflation predictions corresponding to this potential provide a good fit to the recent three-year WMAP data, e.g. the spectral index ns = 0.951.The TT and TE angular power spectra obtained from our model almost completely coincide with the corresponding results obtained from the ΛCDM model. We conclude that our model is considered to be an adequate theory of inflation that explains the present data

  17. Correlation Functions and Power Spectra

    OpenAIRE

    Larsen, Jan

    2006-01-01

    The present lecture note is a supplement to the textbook Digital Signal Processing by J. Proakis and D.G. Manolakis used in the IMM/DTU course 02451 Digital Signal Processing and provides an extended discussion of correlation functions and power spectra. The definitions of correlation functions and spectra for discrete-time and continuous-time (analog) signals are pretty similar. Consequently, we confine the discussion mainly to real discrete-time signals. The Appendix contains detailed defin...

  18. Correlation Functions and Power Spectra

    DEFF Research Database (Denmark)

    Larsen, Jan

    2006-01-01

    possible to define correlation functions and associated spectra for aperiodic, periodic and random signals although the interpretation is different. Moreover, we will discuss correlation functions when mixing these basic signal types. In addition, the note include several examples for the purpose of......The present lecture note is a supplement to the textbook Digital Signal Processing by J. Proakis and D.G. Manolakis used in the IMM/DTU course 02451 Digital Signal Processing and provides an extended discussion of correlation functions and power spectra. The definitions of correlation functions and...... spectra for discrete-time and continuous-time (analog) signals are pretty similar. Consequently, we confine the discussion mainly to real discrete-time signals. The Appendix contains detailed definitions and properties of correlation functions and spectra for analog as well as discrete-time signals. It is...

  19. Spectra of heavy mesons with nonzero orbital angular momentum

    Energy Technology Data Exchange (ETDEWEB)

    Boryu, V.Y.; Khokhlachev, S.B. (Institute of Cosmic Research, USSR Academy of Sciences (SU))

    1989-06-01

    We show that in a number of cases the asymptotic behavior of the Wilson loop average in QCD is sufficient for calculating the interaction Hamiltonian of heavy quarks. In this paper we calculate the levels of mesons with nonzero orbital angular momentum consisting of {ital c} and {ital b} quarks.

  20. BB mode angular power spectrum of CMB from massive gravity

    CERN Document Server

    Malsawmtluangi, N

    2016-01-01

    The primordial massive gravitational waves are placed in the squeezed vacuum state and corresponding $BB$-mode correlation angular power spectrum of the cosmic microwave background is obtained for various slow roll inflation models. The angular power spectrum is compared with the limit of BICEP2/Keck and Planck joint analysis data and the hybrid inflation model is found favorable.

  1. Estimating the angular power spectrum of z > 2 BOSS QSOs using the MASTER method

    Science.gov (United States)

    Maldonado, Felipe; Huffenberger, Kevin; Rotti, Aditya

    2016-01-01

    We implement the MASTER method for angular power spectrum estimation and apply it to z > 2 quasars selected by the SDSS-III BOSS survey. Quasars are filtered for completeness and bad spectra, and include ~100,000 QSOs in the CORE sample and ~75,000 in the non-uniform BONUS sample. We estimate the angular power spectrum in redshift shells to constrain the matter power spectrum and quasar properties. In the future, we will jointly analyze overlapping Cosmic Microwave Background lensing maps from the Atacama Cosmology Telescope to place further constraints.

  2. Two-color ghost imaging with enhanced angular resolving power

    International Nuclear Information System (INIS)

    This article reports an experimental demonstration on nondegenerate, two-color, biphoton ghost imaging which reproduced a ghost image with enhanced angular resolving power by means of a greater field of view compared with that of classical imaging. With the same imaging magnification, the enhanced angular resolving power and field of view compared with those of classical imaging are 1.25:1 and 1.16:1, respectively. The enhancement of angular resolving power depends on the ratio between the idler and the signal photon frequencies, and the enhancement of the field of view depends mainly on the same ratio and also on the distances of the object plane and the imaging lens from the two-photon source. This article also reports the possibility of reproducing a ghost image with the enhancement of the angular resolving power by means of a greater imaging amplification compared with that of classical imaging.

  3. Measurement of anisotropic angular distributions of photon energy spectra for I-125 brachytherapy sources

    International Nuclear Information System (INIS)

    The angular distribution of photon energy spectra emitted from an I-125 brachytherapy source was measured using a specially designed jig in the range of ±70° in the plane of the long axis of the source. It is important to investigate the angular dependence of photon emissions from these sources for the calibration of the air kerma rate. The results show that the influence of the distributions between 0° and ±8° is small enough to allow a calibration using current primary instruments which have a large entrance window. - Highlights: ► Angular energy distribution for an I-125 brachytherapy source was measured. ► Variation of the distribution is sufficiently small. ► It is acceptable for primary calibration of the source strength. ► Distributions should be taken into consideration in some instruments.

  4. Coherent control of plasmonic spectra using the orbital angular momentum of light

    CERN Document Server

    Rury, Aaron S

    2013-01-01

    This study proposes a method to control the frequency-dependent scattering spectra from plasmonic spheres via the conservation of incident orbital angular momentum (OAM). By providing controllable distributions of OAM content, fractional vortex beams allow selective tailoring of Fano features present in coherent scattering processes. The applicability of this control methodology is briefly discussed in the context of plasmonic crystals that recent studies have shown possess modes described by a well-defined OAM content.

  5. Impact of Wind Power on the Angular Stability of a Power System

    OpenAIRE

    Djemai NAIMI; Bouktir, Tarek

    2008-01-01

    Wind energy conversion systems are very different in nature from conventional generators. Therefore dynamic studies must be addressed in order to integrate wind power into the power system. Angular stability assessment of wind power generator is one of main issues in power system security and operation. The angular stability for the wind power generator is determined by its corresponding Critical Clearing Time (CCT). In this paper, the effect of wind power on the transient fault behavior is i...

  6. A Three-Dimensional Angular Scattering Response Including Path Powers

    OpenAIRE

    Mammasis, Kostantinos; Santi, Paolo; Goulianos, Angelos

    2011-01-01

    In this paper the angular power spectrum exhibited under a three-dimensional (3-D) Gaussian scatter distribution at fixed observation points in space is investigated. Typically, these correspond to the mobile and base units respectively. Unlike other spatial channel models, the derived model accounts for the distance to each scatterer from the observation point and transforms distances into power values under the assumption of free-space propagation. The proposed 3-D spatial channel model fol...

  7. Measurement and analysis of angular neutron spectra in a manganese pile

    International Nuclear Information System (INIS)

    The energy and angular distribution of neutrons in a Mn pile were measured by the linac time-of-flight method. A cylindrical Pb target for the production of photoneutrons was placed at the center of the pile. The experimental results were compared with the theoretical calculations using the group constants from the nuclear data files, JENDL-2 and ENDF/B-IV. Good agreement can be seen in the general shapes between calculated and measured angular spectra in three decades of energy range form a few keV to a few MeV. As far as can be concluded from the intercomparison, the neutron cross section data for Mn in ENDF/B-IV may be applicable to reactor design: however, several improvements for its resonance parameters can be recommended. A little more improvements are recommended for that in JENDL-2 from this intercomparison. (orig.)

  8. Computing High Accuracy Power Spectra with Pico

    OpenAIRE

    Fendt, William A.; Wandelt, Benjamin D.

    2007-01-01

    This paper presents the second release of Pico (Parameters for the Impatient COsmologist). Pico is a general purpose machine learning code which we have applied to computing the CMB power spectra and the WMAP likelihood. For this release, we have made improvements to the algorithm as well as the data sets used to train Pico, leading to a significant improvement in accuracy. For the 9 parameter nonflat case presented here Pico can on average compute the TT, TE and EE spectra to better than 1% ...

  9. Experimental results of angular neutron flux spectra leaking from slabs of fusion reactor candidate materials, (1)

    International Nuclear Information System (INIS)

    This report summarizes experimental data of angular neutron flux spectra measured on the slab assemblies of fusion reactor candidate materials using the neutron time-of-flight (TOF) method. These experiments have been performed for graphite (carbon), beryllium and lithium-oxide. The obtained data are very suitable for the benchmark tests to check the nuclear data and calculational code systems. For use of that purpose, the experimental conditions, definitions of key terms and results obtained are compiled in figures and numerical tables. (author)

  10. Measuring the angular dependence of betatron x-ray spectra in a laser-wakefield accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Albert, F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pollock, B. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Shaw, J. L. [Univ. of California, Los Angeles, CA (United States); Marsh, K. A. [Univ. of California, Los Angeles, CA (United States); Ralph, J. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chen, Y. -H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Alessi, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pak, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Clayton, C. E. [Univ. of California, Los Angeles, CA (United States); Glenzer, S. H. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Joshi, C. [Univ. of California, Los Angeles, CA (United States)

    2014-07-22

    This paper presents a new technique to measure the angular dependence of betatron x-ray spectra in a laser-wakefield accelerator. Measurements are performed with a stacked image plates spectrometer, capable of detecting broadband x-ray radiation up to 1 MeV. It can provide measurements of the betatron x-ray spectrum at any angle of observation (within a 40 mrad cone) and of the beam profile. A detailed description of our data analysis is given, along with comparison for several shots. As a result, these measurements provide useful information on the dynamics of the electrons are they are accelerated and wiggled by the wakefield.

  11. Planck 2013 results. XV. CMB power spectra and likelihood

    CERN Document Server

    Ade, P.A.R.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartlett, J.G.; Battaner, E.; Benabed, K.; Benoit, A.; Benoit-Levy, A.; Bernard, J.P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J.J.; Bonaldi, A.; Bonavera, L.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Boulanger, F.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R.C.; Calabrese, E.; Cardoso, J.F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, L.Y.; Chiang, H.C.; Christensen, P.R.; Church, S.; Clements, D.L.; Colombi, S.; Colombo, L.P.L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B.P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R.D.; Davis, R.J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.M.; Desert, F.X.; Dickinson, C.; Diego, J.M.; Dole, H.; Donzelli, S.; Dore, O.; Douspis, M.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Elsner, F.; Ensslin, T.A.; Eriksen, H.K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A.A.; Franceschi, E.; Gaier, T.C.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Heraud, Y.; Gjerlow, E.; Gonzalez-Nuevo, J.; Gorski, K.M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J.E.; Hansen, F.K.; Hanson, D.; Harrison, D.; Helou, G.; Henrot-Versille, S.; Hernandez-Monteagudo, C.; Herranz, D.; Hildebrandt, S.R.; Hivon, E.; Hobson, M.; Holmes, W.A.; Hornstrup, A.; Hovest, W.; Huffenberger, K.M.; Hurier, G.; Jaffe, T.R.; Jaffe, A.H.; Jewell, J.; Jones, W.C.; Juvela, M.; Keihanen, E.; Keskitalo, R.; Kiiveri, K.; Kisner, T.S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lahteenmaki, A.; Lamarre, J.M.; Lasenby, A.; Lattanzi, M.; Laureijs, R.J.; Lawrence, C.R.; Le Jeune, M.; Leach, S.; Leahy, J.P.; Leonardi, R.; Leon-Tavares, J.; Lesgourgues, J.; Liguori, M.; Lilje, P.B.; Lindholm, V.; Linden-Vornle, M.; Lopez-Caniego, M.; Lubin, P.M.; Macias-Perez, J.F.; Maffei, B.; Maino, D.; Mandolesi, N.; Marinucci, D.; Maris, M.; Marshall, D.J.; Martin, P.G.; Martinez-Gonzalez, E.; Masi, S.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Meinhold, P.R.; Melchiorri, A.; Mendes, L.; Menegoni, E.; Mennella, A.; Migliaccio, M.; Millea, M.; Mitra, S.; Miville-Deschenes, M.A.; Molinari, D.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C.B.; Norgaard-Nielsen, H.U.; Noviello, F.; Novikov, D.; Novikov, I.; O'Dwyer, I.J.; Orieux, F.; Osborne, S.; Oxborrow, C.A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Paykari, P.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G.W.; Prezeau, G.; Prunet, S.; Puget, J.L.; Rachen, J.P.; Rahlin, A.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ringeval, C.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rubino-Martin, J.A.; Rusholme, B.; Sandri, M.; Sanselme, L.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M.D.; Shellard, E.P.S.; Spencer, L.D.; Starck, J.L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.S.; Sygnet, J.F.; Tauber, J.A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Turler, M.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L.A.; Wandelt, B.D.; Wehus, I.K.; White, M.; White, S.D.M.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-01-01

    We present the Planck likelihood, a complete statistical description of the two-point correlation function of the CMB temperature fluctuations. We use this likelihood to derive the Planck CMB power spectrum over three decades in l, covering 2 = 50, we employ a correlated Gaussian likelihood approximation based on angular cross-spectra derived from the 100, 143 and 217 GHz channels. We validate our likelihood through an extensive suite of consistency tests, and assess the impact of residual foreground and instrumental uncertainties on cosmological parameters. We find good internal agreement among the high-l cross-spectra with residuals of a few uK^2 at l <= 1000. We compare our results with foreground-cleaned CMB maps, and with cross-spectra derived from the 70 GHz Planck map, and find broad agreement in terms of spectrum residuals and cosmological parameters. The best-fit LCDM cosmology is in excellent agreement with preliminary Planck polarisation spectra. The standard LCDM cosmology is well constrained b...

  12. Fluctuations and power spectra in edge plasmas

    International Nuclear Information System (INIS)

    The high-frequency range of power spectra of turbulent fluctuating quantities measured at the edge of magnetized plasmas displays a variety of trends: from power laws with different spectral indices to exponential. We propose a model able to account for the whole phenomenology simply by tuning the distribution in the duration of the signal spikes. Comparisons with data from RFX-mod and Alcator C-Mod experiments are performed. An attempt to relate the statistics of the bursts with their generating mechanism is made.

  13. Power spectra of outflow-driven turbulence

    CERN Document Server

    Moraghan, Anthony; Yoon, Suk-Jin

    2015-01-01

    We investigate the power spectra of outflow-driven turbulence through high-resolution three-dimensional isothermal numerical simulations where the turbulence is driven locally in real-space by a simple spherical outflow model. The resulting turbulent flow saturates at an average Mach number of ~2.5 and is analysed through density and velocity power spectra, including an investigation of the evolution of the solenoidal and compressional components. We obtain a shallow density power spectrum with a slope of ~-1.2 attributed to the presence of a network of localised dense filamentary structures formed by strong shock interactions. The total velocity power spectrum slope is found to be ~-2.0, representative of Burgers shock dominated turbulence model. The density weighted velocity power spectrum slope is measured as ~-1.6, slightly less than the expected Kolmogorov scaling value (slope of -5/3) found in previous works. The discrepancy may be caused by the nature of our real space driving model and we suggest ther...

  14. A method for generating floor response spectra through power spectra/response spectra relationship

    International Nuclear Information System (INIS)

    In this work a method is proposed for deriving floor response spectra using probabilistic techniques. By modelling an earthquake as a stationary random process, a relationship may be derived between its power spectral density function (PSDF) and the response spectrum. Thus, given a set of base response spectra, a set of consistent PSDF's can be generated for the base of the structure. Then, making use of standard random vibration theory, PSDF's for points of interest in the structure can be obtained by appropriate multiplication of complex frequency response (transfer) functions with the derived base PSDF's. Finally, response spectra for the points of interest are obtained using the inverse form of the relationship between a PSDF and a response spectrum. To date, the approach outlined above has been used to generate response spectra of points in some actual three-dimensional structures, and comparisons with response spectra for the same points generated by the time history method have been quite favorable. The limited number of cases performed have demonstrated that the method provides close correspondence of results throughout the frequency domain. While more work is needed to completely qualify this approach, initial results have been very promising. If the approach can be completely verified and found acceptable to the appropriate regulatory bodies, considerable savings in the computation of floor response spectra would result. (orig./RW)

  15. Adaptive power-controllable orbital angular momentum (OAM) multicasting

    Science.gov (United States)

    Li, Shuhui; Wang, Jian

    2015-01-01

    We report feedback-assisted adaptive multicasting from a single Gaussian mode to multiple orbital angular momentum (OAM) modes using a single phase-only spatial light modulator loaded with a complex phase pattern. By designing and optimizing the complex phase pattern through the adaptive correction of feedback coefficients, the power of each multicast OAM channel can be arbitrarily controlled. We experimentally demonstrate power-controllable multicasting from a single Gaussian mode to two and six OAM modes with different target power distributions. Equalized power multicasting, “up-down” power multicasting and “ladder” power multicasting are realized in the experiment. The difference between measured power distributions and target power distributions is assessed to be less than 1 dB. Moreover, we demonstrate data-carrying OAM multicasting by employing orthogonal frequency-division multiplexing 64-ary quadrature amplitude modulation (OFDM 64-QAM) signal. The measured bit-error rate curves and observed optical signal-to-noise ratio penalties show favorable operation performance of the proposed adaptive power-controllable OAM multicasting. PMID:25989251

  16. Adaptive power-controllable orbital angular momentum (OAM) multicasting.

    Science.gov (United States)

    Li, Shuhui; Wang, Jian

    2015-01-01

    We report feedback-assisted adaptive multicasting from a single Gaussian mode to multiple orbital angular momentum (OAM) modes using a single phase-only spatial light modulator loaded with a complex phase pattern. By designing and optimizing the complex phase pattern through the adaptive correction of feedback coefficients, the power of each multicast OAM channel can be arbitrarily controlled. We experimentally demonstrate power-controllable multicasting from a single Gaussian mode to two and six OAM modes with different target power distributions. Equalized power multicasting, "up-down" power multicasting and "ladder" power multicasting are realized in the experiment. The difference between measured power distributions and target power distributions is assessed to be less than 1 dB. Moreover, we demonstrate data-carrying OAM multicasting by employing orthogonal frequency-division multiplexing 64-ary quadrature amplitude modulation (OFDM 64-QAM) signal. The measured bit-error rate curves and observed optical signal-to-noise ratio penalties show favorable operation performance of the proposed adaptive power-controllable OAM multicasting. PMID:25989251

  17. Modifications to Cosmological Power Spectra from Scalar-Tensor Entanglement and their Observational Consequences

    CERN Document Server

    Bolis, Nadia; Holman, Rich

    2016-01-01

    We consider the effects of entanglement in the initial quantum state of scalar and tensor fluctuations during inflation. We allow the gauge-invariant scalar and tensor fluctuations to be entangled in the initial state and compute modifications to the various cosmological power spectra. We compute the angular power spectra ($C_l$'s) for some specific cases of our entangled state and discuss what signals one might expect to find in CMB data. This entanglement also can break rotational invariance, allowing for the possibility that some of the large scale anomalies in the CMB power spectrum might be explained by this mechanism.

  18. Fast estimation of polarization power spectra using correlation functions

    CERN Document Server

    Chon, G; Prunet, S; Hivon, E; Szapudi, I; Chon, Gayoung; Challinor, Anthony; Prunet, Simon; Hivon, Eric; Szapudi, Istvan

    2003-01-01

    We present a fast method for estimating the cosmic microwave background polarization power spectra using unbiased estimates of heuristically-weighted correlation functions. This extends the O(N_pix^(3/2)) method of Szapudi et al. (2001) to polarized data. If the sky coverage allows the correlation functions to be estimated over the full range of angular separations, they can be inverted directly with integral transforms and clean separation of the electric (E) and magnetic (B) modes of polarization is obtained exactly in the mean. We assess the level of E-B mixing that arises from apodized integral transforms when the correlation function can only be estimated for a subset of angular scales, and show that it is significant for small-area observations. We introduce new estimators to deal with this case on the spherical sky that preserve E-B separation; their construction requires an additional integration of the correlation functions but the computational cost is negligible. We illustrate our methods with appl...

  19. Cosmological Information from Lensed CMB Power Spectra

    CERN Document Server

    Smith, K M; Kaplinghat, M; Smith, Kendrick M.; Hu, Wayne; Kaplinghat, Manoj

    2006-01-01

    Gravitational lensing distorts the cosmic microwave background (CMB) temperature and polarization fields and encodes valuable information on distances and growth rates at intermediate redshifts into the lensed power spectra. The non-Gaussian bandpower covariance induced by the lenses is negligible to l=2000 for all but the B polarization field where it increases the net variance by up to a factor of 10 and favors an observing strategy with 3 times more area than if it were Gaussian. To quantify the cosmological information, we introduce two lensing observables, characterizing nearly all of the information, which simplify the study of non-Gaussian impact, parameter degeneracies, dark energy models, and complementarity with other cosmological probes. Information on the intermediate redshift parameters rapidly becomes limited by constraints on the cold dark matter density and initial amplitude of fluctuations as observations improve. Extraction of this information requires deep polarization measurements on only ...

  20. Impact of Wind Power on the Angular Stability of a Power System

    Directory of Open Access Journals (Sweden)

    Djemai NAIMI

    2008-06-01

    Full Text Available Wind energy conversion systems are very different in nature from conventional generators. Therefore dynamic studies must be addressed in order to integrate wind power into the power system. Angular stability assessment of wind power generator is one of main issues in power system security and operation. The angular stability for the wind power generator is determined by its corresponding Critical Clearing Time (CCT. In this paper, the effect of wind power on the transient fault behavior is investigated by replacing the power generated by two main types of wind turbine, increasing gradually a rate of wind power penetration and changing the location of wind resources. The simulation analysis was established on a 14 bus IEEE test system by PSAT/Matlab, which gives access to an extensive library of grid components, and relevant wind turbine model.

  1. Using the CMB angular power spectrum to study Dark Matter-photon interactions

    CERN Document Server

    Wilkinson, Ryan J; Boehm, Celine

    2014-01-01

    In this paper, we explore the impact of Dark Matter-photon interactions on the CMB angular power spectrum. Using the one-year data release of the Planck satellite, we derive an upper bound on the Dark Matter-photon elastic scattering cross section of sigma_{DM-photon} 500 and l > 3000 respectively, indicating that forthcoming data from CMB polarisation experiments and Planck could help to constrain and characterise the physics of the dark sector. This essentially initiates a new type of dark matter search that is independent of whether dark matter is annihilating, decaying or asymmetric. Thus, any CMB experiment with the ability to measure the temperature and/or polarisation power spectra at high l should be able to investigate the potential interactions of dark matter and contribute to our fundamental understanding of its nature.

  2. Using the CMB angular power spectrum to study Dark Matter-photon interactions

    Energy Technology Data Exchange (ETDEWEB)

    Wilkinson, Ryan J.; Boehm, Céline [Institute for Particle Physics Phenomenology, Durham University, South Road, Durham, DH1 3LE United Kingdom (United Kingdom); Lesgourgues, Julien, E-mail: ryan.wilkinson@durham.ac.uk, E-mail: julien.lesgourgues@cern.ch, E-mail: c.m.boehm@durham.ac.uk [Institut de Théorie des Phénomènes Physiques, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015 (Switzerland)

    2014-04-01

    In this paper, we explore the impact of Dark Matter-photon interactions on the CMB angular power spectrum. Using the one-year data release of the Planck satellite, we derive an upper bound on the Dark Matter-photon elastic scattering cross section of σ{sub DM−γ} ≤ 8 × 10{sup −31} (m{sub DM}/GeV) cm{sup 2} (68% CL) if the cross section is constant and a present-day value of σ{sub DM−γ} ≤ 6 × 10{sup −40}(m{sub DM}/GeV) cm{sup 2} (68% CL) if it scales as the temperature squared. For such a limiting cross section, both the B-modes and the TT angular power spectrum are suppressed with respect to ΛCDM predictions for ℓ∼>500 and ℓ∼>3000 respectively, indicating that forthcoming data from CMB polarisation experiments and Planck could help to constrain and characterise the physics of the dark sector. This essentially initiates a new type of dark matter search that is independent of whether dark matter is annihilating, decaying or asymmetric. Thus, any CMB experiment with the ability to measure the temperature and/or polarisation power spectra at high ℓ should be able to investigate the potential interactions of dark matter and contribute to our fundamental understanding of its nature.

  3. Using the CMB angular power spectrum to study Dark Matter-photon interactions

    International Nuclear Information System (INIS)

    In this paper, we explore the impact of Dark Matter-photon interactions on the CMB angular power spectrum. Using the one-year data release of the Planck satellite, we derive an upper bound on the Dark Matter-photon elastic scattering cross section of σDM−γ ≤ 8 × 10−31 (mDM/GeV) cm2 (68% CL) if the cross section is constant and a present-day value of σDM−γ ≤ 6 × 10−40(mDM/GeV) cm2 (68% CL) if it scales as the temperature squared. For such a limiting cross section, both the B-modes and the TT angular power spectrum are suppressed with respect to ΛCDM predictions for ℓ∼>500 and ℓ∼>3000 respectively, indicating that forthcoming data from CMB polarisation experiments and Planck could help to constrain and characterise the physics of the dark sector. This essentially initiates a new type of dark matter search that is independent of whether dark matter is annihilating, decaying or asymmetric. Thus, any CMB experiment with the ability to measure the temperature and/or polarisation power spectra at high ℓ should be able to investigate the potential interactions of dark matter and contribute to our fundamental understanding of its nature

  4. Pulsed power for angular multiplexed laser fusion drivers

    International Nuclear Information System (INIS)

    The feasibility of using rare gas-halide lasers, in particular the KrF laser, as inertial confinement fusion (ICF) drivers has been assessed. These lasers are scalable to the required high energy (approx. =1-5 MJ) in a short pulse (approx. =10 ns) by optical angular multiplexing, and integration of the output from approx. =100 kJ laser amplifier subsystems. The e-beam current density (approx. =50A/cm2) and voltage (approx. =800 kV) required for these power amplifiers lead to an e-beam impedance of approx. =0.2Ω for approx. =300 ns pump time. This impedance level requires modularization of the large area e-gun, a) to achieve a diode inductance consistent with fast current risetime, b) to circumvent dielectric breakdown constraints in the pulse forming lines, and c) to reduce the requirement for guide magnetic fields. Pulsed power systems requirements, design concepts, scalability, tradeoffs, and performance projections are discussed in this paper

  5. Exploiting the full potential of photometric quasar surveys: Optimal power spectra through blind mitigation of systematics

    CERN Document Server

    Leistedt, Boris

    2014-01-01

    We present optimal measurements of the angular power spectrum of the XDQSOz catalogue of photometric quasars from the Sloan Digital Sky Survey. These measurements rely on a quadratic maximum likelihood estimator that simultaneously measures the auto- and cross-power spectra of four redshift samples, and provides minimum-variance, unbiased estimates even at the largest angular scales. Since photometric quasars are known to be strongly affected by systematics such as spatially-varying depth and stellar contamination, we introduce a new framework of extended mode projection to robustly mitigate the impact of systematics on the power spectrum measurements. This technique involves constructing template maps of potential systematics, decorrelating them on the sky, and projecting out modes which are significantly correlated with the data. Our method is able to simultaneously process several thousands of nonlinearly-correlated systematics, and mode projection is performed in a blind fashion. Using our final power spe...

  6. Constraints on massive neutrinos from the CFHTLS angular power spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Jun-Qing [Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, I-34136 Trieste (Italy); Granett, Benjamin R.; Guzzo, Luigi [INAF — Osservatorio Astronomico di Brera, Via E. Bianchi 46, 23807 Brera (Italy); Viel, Matteo [INAF — Osservatorio Astronomico di Trieste, Via G.B. Tiepolo 11, I-34131 Trieste (Italy); Bird, Simeon [School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540 (United States); Haehnelt, Martin G. [Institute of Astronomy and Kavli Institute for Cosmology, Madingley Road, CB3 0HA, Cambridge (United Kingdom); Coupon, Jean [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan (China); McCracken, Henry Joy; Mellier, Yannick, E-mail: xia@sissa.it, E-mail: ben.granett@brera.inaf.it, E-mail: viel@oats.inaf.it, E-mail: spb@ias.edu, E-mail: luigi.guzzo@brera.inaf.it, E-mail: haehnelt@ast.cam.ac.uk, E-mail: coupon@asiaa.sinica.edu.tw, E-mail: hjmcc@iap.fr, E-mail: mellier@iap.fr [Institut d' Astrophysique de Paris, UMR 7095 CNRS, Universitè Pierre et Marie Curie, 98 bis Boulevard Arago, 75014 Paris (France)

    2012-06-01

    We use the galaxy angular power spectrum at z ∼ 0.5–1.2 from the Canada-France-Hawaii-Telescope Legacy Survey Wide fields (CFHTLS-Wide) to constrain separately the total neutrino mass Σm{sub ν} and the effective number of neutrino species N{sub eff}. This survey has recently benefited from an accurate calibration of the redshift distribution, allowing new measurements of the (non-linear) matter power spectrum in a unique range of scales and redshifts sensitive to neutrino free streaming. Our analysis makes use of a recent model for the effect of neutrinos on the weakly non-linear matter power spectrum derived from accurate N-body simulations. We show that CFHTLS, combined with WMAP7 and a prior on the Hubble constant provides an upper limit of Σm{sub ν} < 0.29 eV and N{sub eff} = 4.17{sup +1.62}{sub −1.26} (2 σ confidence levels). If we omit smaller scales which may be affected by non-linearities, these constraints become Σm{sub ν} < 0.41 eV and N{sub eff} = 3.98{sup +2.02}{sub −1.20} (2 σ confidence levels). Finally we show that the addition of other large scale structures probes can further improve these constraints, demonstrating that high redshift large volumes surveys such as CFHTLS are complementary to other cosmological probes of the neutrino mass.

  7. Angular Power Spectrum and Dilatonic Inflation in Modular-Invariant Supergravity

    CERN Document Server

    Hayashi, M J; Okame, Y; Watanabe, T; Hayashi, Mitsuo J.; Hirai, Shiro; Okame, Yusuke; Watanabe, Tomoki

    2006-01-01

    The angular power spectrum is investigated in the model of supergravity, incorporating the target-space duality and the non-perturbative gaugino condensation in the hidden sector. The inflation and supersymmetry breaking occur at once by the interplay between the dilaton field as inflaton and the condensate gauge-singlet field. The model satisfies the slow-roll condition which solves the \\eta-problem. When the particle rolls down along the minimized trajectory of the potential at a duality invariant fixed point T=1, we can obtain the e-fold value \\sim 57. And then the cosmological parameters obtained from our model well match with the recent WMAP data combined with other experiments. The TT and TE angular power spectra also show that our model is compatible with the data for l > 20. However, the best fit value of \\tau in our model is smaller than that of the \\Lambda CDM model. These results suggest that, among supergravity models of inflation, the modular-invariant supergravity seems to open a hope to constru...

  8. Longitudinal correlation properties of an optical field with broad angular and frequency spectra and their manifestation in interference microscopy

    International Nuclear Information System (INIS)

    The results of theoretical and experimental studies of the longitudinal correlation properties of an optical field with broad angular and frequency spectra and manifestations of these properties in interference microscopy are presented. The joint and competitive influence of the angular and frequency spectra of the object-probing field on the longitudinal resolution and on the amplitude of the interference microscope signals from the interfaces between the media inside a multilayer object is demonstrated. The method of compensating the so-called defocusing effect that arises in the interference microscopy using objectives with a large numerical aperture is experimentally demonstrated, which consists in using as a light source in the interference microscope an illuminating interferometer with a frequency-broadband light source. This method of compensation may be used as the basis of simultaneous determination of geometric thickness and refractive index of media forming a multilayer object. (optical fields)

  9. Velocity spectra and angular distributions of evaporation residues from sup 32 S + sup 12 C at 145 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Arena, N.; Cavallaro, S.; Femino' , S.; Figuera, P.; Pirrone, S.; Porto, F.; Sambataro, S. (Dipartimento di Fisica, Universita di Catania, Universita di Messina, Istituto Nazionale di Fisica Nucleare, Sezione di Catania and Laboratorio Nazionale del Sud I-95129 Catania (Italy))

    1991-11-01

    Velocity spectra and angular and mass distributions for the evaporation residues of the {sup 32}S+{sup 12}C system at {ital E}{sup 32}S=145 MeV in the angular range 3{degree}{le}{var theta}{sub {ital L}}{le}12{degree} have been measured. In order to separate compound nucleus evaporation residues from other heavy reaction products, a kinematic analysis based on simple statistical assumptions relative to the velocity spectra was performed. The structures in the mass distribution are compared with the LILITA code predictions. The fusion excitation function of the existing results is compared with theoretical models. The total reaction cross section has been extracted by means of the modified sum of differences method.

  10. Analytical model for CMB temperature angular power spectrum from cosmic (super-)strings

    OpenAIRE

    Yamauchi, Daisuke; Takahashi, Keitaro; Sendouda, Yuuiti; Yoo, Chul-Moon; Sasaki, Misao

    2010-01-01

    We present a new analytical method to calculate the small angle CMB temperature angular power spectrum due to cosmic (super-)string segments. In particular, using our method, we clarify the dependence on the intercommuting probability $P$. We find that the power spectrum is dominated by Poisson-distributed string segments. The power spectrum for a general value of $P$ has a plateau on large angular scales and shows a power-law decrease on small angular scales. The resulting spectrum in the ca...

  11. Planck 2013 results. XV. CMB power spectra and likelihood

    DEFF Research Database (Denmark)

    Tauber, Jan; Bartlett, J.G.; Bucher, M.;

    2014-01-01

    estimate of the CMB angular power spectrum from Planck over three decades in multipole moment, covering 22500. The main source of uncertainty at 1500 is cosmic variance. Uncertainties in small-scale foreground modelling and instrumental noise dominate the error budget at higher s. For <50, our likelihood...

  12. Information rates and power spectra of digital codes

    DEFF Research Database (Denmark)

    Justesen, Jørn

    1982-01-01

    expressed in terms of the rate distortion function for a memoryless finite alphabet source and mean-square error distortion measure. A class of simple dc-free power spectra is considered in detail, and a method for constructing Markov sources with such spectra is derived. It is found that these sequences...

  13. Redshift distortions in one-dimensional power spectra

    CERN Document Server

    Desjacques, V; Desjacques, Vincent; Nusser, Adi

    2004-01-01

    We present a model for one-dimensional (1D) matter power spectra in redshift space as estimated from data provided along individual lines of sight. We derive analytic expressions for these power spectra in the linear and nonlinear regimes, focusing on redshift distortions arising from peculiar velocities. In the linear regime, redshift distortions enhance the 1D power spectra only on small scales, and do not affect the power on large scales. This is in contrast to the effect of distortions on three-dimensional (3D) power spectra estimated from data in 3D space, where the enhancement is independent of scale. For CDM cosmologies, the 1D power spectra in redshift and real space are similar for wavenumbers $q<0.1h/Mpc$ where both have a spectral index close to unity, independent of the details of the 3D power spectrum. Nonlinear corrections drive the 1D power spectrum in redshift space into a nearly universal shape over scale $q<10h/Mpc$, and suppress the power on small scales as a result of the strong velo...

  14. Angular power spectrum of sterile neutrino decay lines: the role of eROSITA

    Science.gov (United States)

    Zandanel, Fabio; Weniger, Christoph; Ando, Shin’ichiro

    2016-05-01

    We study the potential of the angular auto and cross-correlation power spectrum of the cosmic X-ray background in identifying sterile neutrino dark matter taking as reference the performances of the soon-to-be-launched eROSITA satellite. The main astrophysical background sources in this case are active galactic nuclei, galaxies powered by X-ray binaries, and clusters of galaxies. We show that while sterile neutrino decays are always subdominant in the autocorrelation power spectra, they can be efficiently enhanced when cross-correlating with tracers of the dark matter distribution. We estimate that the four-years eROSITA all-sky survey will potentially provide very stringent constraints on the sterile neutrino decay lifetime by cross-correlating the cosmic X-ray background with the 2MASS galaxy catalogue. This will allow to firmly test the recently claimed 3.56-keV X-ray line found towards several clusters and galaxies and its decaying dark matter interpretation. We finally stress that the main limitation of this approach is due to the shot noise of the galaxy catalogues used as tracers for the dark matter distribution, a limitation that we need to overcome to fully exploit the potential of the eROSITA satellite in this context.

  15. Nonlinear Excitations in Inflationary Power Spectra

    CERN Document Server

    Miranda, Vinicius; He, Chen; Motohashi, Hayato

    2016-01-01

    We develop methods to calculate the curvature power spectrum in models where features in the inflaton potential nonlinearly excite modes and generate high frequency features in the spectrum. The first nontrivial effect of excitations generating further excitations arises at third order in deviations from slow roll. If these further excitations are contemporaneous, the series can be resummed, showing the exponential sensitivity of the curvature spectrum to potential features. More generally, this exponential approximation provides a power spectrum template which nonlinearly obeys relations between excitation coefficients and whose parameters may be appropriately adjusted. For a large sharp step in the potential, it greatly improves the analytic power spectrum template and its dependence on potential parameters. For axionic oscillations in the potential, it corrects the mapping between the potential and the amplitude, phase and zero point of the curvature oscillations, which might otherwise cause erroneous infe...

  16. Development of floor response spectra using power spectral density function

    International Nuclear Information System (INIS)

    It is essential to develop floor response spectra for seismic qualification of equipment, piping and their supports for the nuclear power plants. The popular procedure used at present to generate floor response spectra is through the so called time history approach. For this purpose, it is required either use chosen input accelerogram or to generate artificial time history compatible with the ground response spectra at a given damping value. However, this approach has certain limitations. A new approach of generation of floor response spectra directly from ground response spectra independent of time history based on random vibration theory has been used to generate floor response spectra under safe shut down earthquake for the 500 MWe PHW Reactor Buildings. The method is described. The results obtained and conclusions drawn are presented

  17. Power spectra of active galactic nuclei

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The power spectral densities(PSDs)for a sample of active galactic nuclei(AGNs)are analyzed in both the frequency domain and the time domain.We find for each object that for broadband noise a character timescale-bifurcation timescale of Fourier and time-domain PSD exists in the 10 3 -10 6 s range, below which the time-domain power spectrum is systematically higher than the corresponding Fourier spectrum.The relationship between bifurcation timescale,AGN mass and luminosity is studied.Compared with the fact that similar phenomena have been found for Galactic black hole candidates(GBHs) with bifurcation timescale~0.1 s but not for accreting neutron stars,our finding indicates that AGNs and GBHs have common intrinsic nature in rapid X-ray variability with a character time parameter scaled with their masses.

  18. Power spectra of active galactic nuclei

    Institute of Scientific and Technical Information of China (English)

    WANG TaiShan; WU YuXiang; LIU Yuan

    2009-01-01

    The power spectral densities (PSDs) for a sample of active galactic nuclei (AGNs) are analyzed in both the frequency domain and the time domain. We find for each object that for broadband noise a character timescale-bifurcation timescale of Fourier and time-domain PSD exists in the 103-106 s range,below which the time-domain power spectrum is systematically higher than the corresponding Fourier spectrum. The relationship between bifurcation timescale, AGN mass and luminosity is studied. Compared with the fact that similar phenomena have been found for Galactic black hole candidates (GBHs)with bifurcation timescale ~0.1 s but not for accreting neutron stars, our finding indicates that AGNs and GBHs have common intrinsic nature in rapid X-ray variability with a character time parameter scaled with their masses.

  19. Power law in the angular velocity distribution of a granular needle

    OpenAIRE

    Piasecki, J.; Viot, P.

    2005-01-01

    We show how inelastic collisions induce a power law with exponent -3 in the decay of the angular velocity distribution of anisotropic particles with sufficiently small moment of inertia. We investigate this question within the Boltzmann kinetic theory for an elongated granular particle immersed in a bath. The power law persists so long as the collisions are inelastic for a large range of angular velocities provided the mass ratio of the anisotropic particle and the bath particles remains smal...

  20. Angular Dependence of 3 Omega 0/2 Spectra from Laser-produced Plasmas

    International Nuclear Information System (INIS)

    Scattered light at three-halves of the incident laser frequency from solid targets is observed at five different angles. When the incident laser intensity is low enough, rescattering of two plasmon decay (TPD) instability electron plasma waves by ion acoustic waves is not significant. In this regime, Thomson scattering measurements of the electron temperature and the plasma flow velocity allow quantitative comparison of the angular dependence of the spectrum to theory

  1. Planck intermediate results. XXX. The angular power spectrum of polarized dust emission at intermediate and high Galactic latitudes

    Science.gov (United States)

    Planck Collaboration; Adam, R.; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bracco, A.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chiang, H. C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Ghosh, T.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Guillet, V.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hivon, E.; Hobson, M.; Holmes, W. A.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jewell, J.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Krachmalnicoff, N.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Remazeilles, M.; Renault, C.; Renzi, A.; Ricciardi, S.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rouillé d'Orfeuil, B.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Soler, J. D.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vibert, L.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Watson, R.; Wehus, I. K.; White, M.; White, S. D. M.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-02-01

    The polarized thermal emission from diffuse Galactic dust is the main foreground present in measurements of the polarization of the cosmic microwave background (CMB) at frequencies above 100 GHz. In this paper we exploit the uniqueness of the Planck HFI polarization data from 100 to 353 GHz to measure the polarized dust angular power spectra CℓEE and CℓBB over the multipole range 40 <ℓ< 600 well away from the Galactic plane. These measurements will bring new insights into interstellar dust physics and allow a precise determination of the level of contamination for CMB polarization experiments. Despite the non-Gaussian and anisotropic nature of Galactic dust, we show that general statistical properties of the emission can be characterized accurately over large fractions of the sky using angular power spectra. The polarization power spectra of the dust are well described by power laws in multipole, Cℓ ∝ ℓα, with exponents αEE,BB = -2.42 ± 0.02. The amplitudes of the polarization power spectra vary with the average brightness in a way similar to the intensity power spectra. The frequency dependence of the dust polarization spectra is consistent with modified blackbody emission with βd = 1.59 and Td = 19.6 K down to the lowest Planck HFI frequencies. We find a systematic difference between the amplitudes of the Galactic B- and E-modes, CℓBB/CℓEE = 0.5. We verify that these general properties are preserved towards high Galactic latitudes with low dust column densities. We show that even in the faintest dust-emitting regions there are no "clean" windows in the sky where primordial CMB B-mode polarization measurements could be made without subtraction of foreground emission. Finally, we investigate the level of dust polarization in the specific field recently targeted by the BICEP2 experiment. Extrapolation of the Planck 353 GHz data to 150 GHz gives a dust power 𝒟ℓBB ≡ ℓ(ℓ+1)CℓBB/(2π) of 1.32 × 10-2 μKCMB2 over the multipole range

  2. Simple emergent power spectra from complex inflationary physics

    CERN Document Server

    Dias, Mafalda; Marsh, M C David

    2016-01-01

    We construct ensembles of random scalar potentials for $N_f$ interacting scalar fields using non-equilibrium random matrix theory, and use these to study the generation of observables during small-field inflation. For $N_f={\\cal O}({\\rm few})$, these heavily featured scalar potentials give rise to power spectra that are highly non-linear, at odds with observations. For $N_f\\gg 1$, the superhorizon evolution of the perturbations is generically substantial, yet the power spectra simplify considerably and become more predictive, with most realisations being well approximated by a linear power spectrum. This provides proof of principle that complex inflationary physics can give rise to simple emergent power spectra. We explain how these results can be understood in terms of large $N_f$ universality of random matrix theory.

  3. Power spectra of stochastic signals in reactor TRIGA

    International Nuclear Information System (INIS)

    On TRIGA Mark II reactor measurements and analyses of some stochastic signals were performed to determine their reference spectra in the frequency band from 0.01 Hz to 100 Hz. Autopower spectra of neutron flux fluctuations were computed for full power and for 50 KW and 5 KW at different cooling conditions. The spectra show a significant resonance at the frequency of 2.3 Hz which dependence on the state of the cooling system. To determine the cause of the resonance vibrations of coolant water inlet pipe, ionization chamber and control rod were also investigated. Reference power spectra of these vibrations were found and only a slight correlation between the ionization chamber and control rod vibrations and the resonance were established. Since control rod vibration are most probable cause of the resonance preliminary measurements of control rod vibrations should be improved to prove this hypothesis

  4. CMB power spectra from cosmic strings: predictions for the Planck satellite and beyond

    CERN Document Server

    Bevis, Neil; Kunz, Martin; Urrestilla, Jon

    2010-01-01

    We present a significant improvement over our previous calculations of the cosmic string contribution to cosmic microwave background (CMB) power spectra, with particular focus on sub-WMAP angular scales. These smaller scales are relevant for the now-operational Planck satellite and additional sub-orbital CMB projects that have even finer resolutions. We employ larger Abelian Higgs string simulations than before and we additionally model and extrapolate the statistical measures from our simulations to smaller length scales. We then use an efficient means of including the extrapolations into our Einstein-Boltzmann calculations in order to yield accurate results over the multipole range 2 3000 in the case of the temperature power spectrum, which then allows cautious extrapolation to even smaller scales. We find that a string contribution to the temperature power spectrum making up 10% of power at l=10 would be larger than the Silk-damped primary adiabatic contribution for l > 3500. Astrophysical contributions s...

  5. Estimation of burst-mode LDA power spectra

    DEFF Research Database (Denmark)

    Velte, Clara Marika; George, William K.; Buchhave, Preben

    2014-01-01

    The estimation of power spectra from LDA data provides signal processing challenges for fluid dynamicists for several reasons: acquisition is dictated by randomly arriving particles, the registered particle velocities tend to be biased toward higher values, and the signal is highly intermittent...... turbulent jet. These are compared with corresponding hot-wire spectra as well as to alternative algorithms for LDA signals such as the time-slot correlation method, sample-and-hold and common weighting schemes....

  6. Constraining warm dark matter with cosmic shear power spectra

    International Nuclear Information System (INIS)

    We investigate potential constraints from cosmic shear on the dark matter particle mass, assuming all dark matter is made up of light thermal relic particles. Given the theoretical uncertainties involved in making cosmological predictions in such warm dark matter scenarios we use analytical fits to linear warm dark matter power spectra and compare (i) the halo model using a mass function evaluated from these linear power spectra and (ii) an analytical fit to the non-linear evolution of the linear power spectra. We optimistically ignore the competing effect of baryons for this work. We find approach (ii) to be conservative compared to approach (i). We evaluate cosmological constraints using these methods, marginalising over four other cosmological parameters. Using the more conservative method we find that a Euclid-like weak lensing survey together with constraints from the Planck cosmic microwave background mission primary anisotropies could achieve a lower limit on the particle mass of 2.5 keV

  7. Improved Measurement of the Angular Power Spectrum of Temperature Anisotropy in the CMB from Two New Analyses of BOOMERANG Observations

    CERN Document Server

    Ruhl, J E; Bock, J J; Bond, J R; Borrill, J; Boscaleri, A; Contaldi, C R; Crill, B P; De Bernardis, P; De Troia, G; Ganga, K; Giacometti, M; Hivon, E; Hristov, V V; Iacoangeli, A; Jaffe, A H; Jones, W C; Lange, A E; Masi, S; Mason, P; Mauskopf, P D; Melchiorri, A; Montroy, T; Netterfield, C B; Pascale, E; Piacentini, F; Pogosyan, D; Polenta, G; Prunet, S; Romeo, G

    2003-01-01

    We report the most complete analysis to date of observations of the Cosmic Microwave Background (CMB) obtained during the 1998 flight of BOOMERANG. We use two quite different methods to determine the angular power spectrum of the CMB in 20 bands centered at l = 50 to 1000, applying them to 50% more data than has previously been analyzed. The power spectra produced by the two methods are in good agreement with each other, and constitute the most sensitive measurements to date over the range 300 < l < 1000. The increased precision of the power spectrum yields more precise determinations of several cosmological parameters than previous analyses of BOOMERANG data. The results continue to support an inflationary paradigm for the origin of the universe, being well fit by a 13.5 Gyr old, flat universe composed of approximately 5% baryonic matter, 30% cold dark matter, and 65% dark energy, with a scale invariant initial density perturbations.

  8. Adiabatic regularisation of power spectra in nonminimally coupled chaotic inflation

    CERN Document Server

    Alinea, Allan L

    2016-01-01

    We investigate the effect of adiabatic regularisation on both the tensor- and scalar-perturbation power spectra in \\textit{nonminimally} coupled chaotic inflation. Similar to that of the \\textit{minimally} coupled general single-field inflation, we find that the subtraction term is suppressed by an exponentially decaying factor involving the number of $ e $-folds. By following the subtraction term long enough beyond horizon crossing, the regularised power spectrum tends to the "bare" power spectrum. This study justifies the use of the unregularised ("bare") power spectrum in standard calculations.

  9. Applications and real life spectra in the power generation industry

    International Nuclear Information System (INIS)

    Loading spectra encountered in various structures, machines, and components in the Power Generation Industry are presented from the viewpoint of fatigue analysis and structural integrity assessment. Although particular attention is paid to loading transients in turbo-generators, other items such as pressure vessels, pumped storage, nuclear plant pressure circuitry and wind turbines are also considered. (author)

  10. Effects of anisotropic fluences and angular depended spectra of beta-particles in the use of large area reference sources

    International Nuclear Information System (INIS)

    Calibrations of instrument efficiency of surface contamination meters are usually made with extended reference sources which are standardized in terms of 2π surface β-particle emission rates from the source surface including backscattered particles. Extended sources supplied from various metrology institutes or calibration laboratories, but the source-types such as structure, preparation method, backing and covering materials vary between manufacturers. In this work first we show how the calibration results are dependent on the source type. Second, in order to clarify the possible reason of such discrepancy, we examined the isotropy of β-particle fluences by the use of a proportional counter and also observed the angular dependence of β-particle spectra by the use of small plastic scintillation spectrometer, where the source mount can rotate relative to the detector window at various obliquities. The discrepancy in the instrument-calibration of surface contamination meters, which are mainly used under the conditions of large source-to-detector geometry, can be explained. - Highlights: ► We show how the calibration results are dependent on the source type. ► We examined the isotropy of β-particle fluences and observed the angular dependence. ► Discrepancy of instrument efficiencies using different type of sources is explained.

  11. From Nonparametric Power Spectra to Inference About Cosmological Parameters: A Random Walk in the Cosmological Parameter Space

    OpenAIRE

    Aghamousa, Amir; Arjunwadkar, Mihir; Souradeep, Tarun

    2012-01-01

    What do the data, as distinguished from cosmological models, tell us about cosmological parameters that determined the model of the universe? In this paper, we address this question in the context of the WMAP angular power spectra for the cosmic microwave background radiation. Nonparametric methods are ideally suited for this purpose because they are model-independent by construction, and therefore allow inferences that are as data-driven as possible. Our analysis is based on a nonparametric ...

  12. Likelihood reconstruction method of real-space density and velocity power spectra from a redshift galaxy survey

    CERN Document Server

    Tang, Jiayu; Takada, Masahiro

    2011-01-01

    We develop a maximum likelihood based method of reconstructing the real-space density and velocity power spectra from the measured galaxy clustering in redshift space. Our method reconstructs band powers of the real-space power spectra, each of which depends on the redshift-space power spectrum with different powers of angular modulations mu^2n (n=0,1,2) at each wavenumber bins, including marginalization over uncertainties in the Fingers-of-God (FoG) effect. By using N-body simulations of 70 realizations and the halo catalogs, we test our method by comparing the reconstructed power spectra with the spectra directly measured from the simulations. We show that the method can well recover the power spectrum of mu^0, or equivalently the density power spectrum, up to k~0.3 h/Mpc to a few percent accuracies in amplitudes, for both dark matter and halos, if we assume an adequate functional form of the FoG effect. For the power spectrum of mu^2, which is closely related to the density-velocity power spectrum P_dv(k),...

  13. Low Power Compact Radio Galaxies at High Angular Resolution

    Energy Technology Data Exchange (ETDEWEB)

    Giroletti, Marcello; Giovannini, G.; /Bologna U. /Bologna, Ist. Radioastronomia; Taylor, G.B.; /KIPAC, Menlo Park /NRAO, Socorro

    2005-06-30

    We present sub-arcsecond resolution multi-frequency (8 and 22 GHz) VLA images of five low power compact (LPC) radio sources, and phase referenced VLBA images at 1.6 GHz of their nuclear regions. At the VLA resolution we resolve the structure and identify component positions and flux densities. The phase referenced VLBA data at 1.6 GHz reveals flat-spectrum, compact cores (down to a few milliJansky) in four of the five sources. The absolute astrometry provided by the phase referencing allows us to identify the center of activity on the VLA images. Moreover, these data reveal rich structures, including two-sided jets and secondary components. On the basis of the arcsecond scale structures and of the nuclear properties, we rule out the presence of strong relativistic effects in our LPCs, which must be intrinsically small (deprojected linear sizes {approx}< 10 kpc). Fits of continuous injection models reveal break frequencies in the GHz domain, and ages in the range 10{sup 5}-10{sup 7} yrs. In LPCs, the outermost edge may be advancing more slowly than in more powerful sources or could even be stationary; some LPCs might also have ceased their activity. In general, the properties of LPCs can be related to a number of reasons, including, but not limited to: youth, frustration, low kinematic power jets, and short-lived activity in the radio.

  14. Efficient estimation of burst-mode LDA power spectra

    DEFF Research Database (Denmark)

    Velte, Clara Marika; George, William K

    2010-01-01

    The estimation of power spectra from LDA data provides signal processing challenges for fluid dynamicists for several reasons. Acquisition is dictated by randomly arriving particles which cause the signal to be highly intermittent. This both creates self-noise and causes the measured velocities to...... increased requirements for good statistical convergence due to the random sampling of the data. In the present work, the theory for estimating burst-mode LDA spectra using residence time weighting is discussed and a practical estimator is derived and applied. A brief discussion on the self-noise in spectra...... and correlations is included, as well as one regarding the statistical convergence of the spectral estimator for random sampling. Further, the basic representation of the burst-mode LDA signal has been revisited due to observations in recent years of particles not following the flow (e.g., particle...

  15. Power Density Spectra of $\\gamma$-Ray Bursts

    CERN Document Server

    Beloborodov, A M

    1999-01-01

    Power density spectra (PDSs) of long gamma-ray bursts provide useful information on GRBs, indicating their self-similar temporal structure. The best power-law PDSs are displayed by the longest bursts (T_90 > 100 s) in which the range of self-similar time scales covers more than 2 decades. Shorter bursts have apparent PDS slopes more strongly affected by statistical fluctuations. The underlying power law can then be reproduced with high accuracy by averaging the PDSs for a large sample of bursts. This power-law has a slope alpha\\approx -5/3 and a sharp break at 1 Hz. The power-law PDS provides a new sensitive tool for studies of gamma-ray bursts. In particular, we calculate the PDSs of bright bursts in separate energy channels. The PDS flattens in the hard channel (h\

  16. Bayesian modeling and significant features exploration in wavelet power spectra

    Directory of Open Access Journals (Sweden)

    D. V. Divine

    2007-01-01

    Full Text Available This study proposes and justifies a Bayesian approach to modeling wavelet coefficients and finding statistically significant features in wavelet power spectra. The approach utilizes ideas elaborated in scale-space smoothing methods and wavelet data analysis. We treat each scale of the discrete wavelet decomposition as a sequence of independent random variables and then apply Bayes' rule for constructing the posterior distribution of the smoothed wavelet coefficients. Samples drawn from the posterior are subsequently used for finding the estimate of the true wavelet spectrum at each scale. The method offers two different significance testing procedures for wavelet spectra. A traditional approach assesses the statistical significance against a red noise background. The second procedure tests for homoscedasticity of the wavelet power assessing whether the spectrum derivative significantly differs from zero at each particular point of the spectrum. Case studies with simulated data and climatic time-series prove the method to be a potentially useful tool in data analysis.

  17. An accurate halo model for fitting non-linear cosmological power spectra and baryonic feedback models

    Science.gov (United States)

    Mead, A. J.; Peacock, J. A.; Heymans, C.; Joudaki, S.; Heavens, A. F.

    2015-12-01

    We present an optimized variant of the halo model, designed to produce accurate matter power spectra well into the non-linear regime for a wide range of cosmological models. To do this, we introduce physically motivated free parameters into the halo-model formalism and fit these to data from high-resolution N-body simulations. For a variety of Λ cold dark matter (ΛCDM) and wCDM models, the halo-model power is accurate to ≃ 5 per cent for k ≤ 10h Mpc-1 and z ≤ 2. An advantage of our new halo model is that it can be adapted to account for the effects of baryonic feedback on the power spectrum. We demonstrate this by fitting the halo model to power spectra from the OWLS (OverWhelmingly Large Simulations) hydrodynamical simulation suite via parameters that govern halo internal structure. We are able to fit all feedback models investigated at the 5 per cent level using only two free parameters, and we place limits on the range of these halo parameters for feedback models investigated by the OWLS simulations. Accurate predictions to high k are vital for weak-lensing surveys, and these halo parameters could be considered nuisance parameters to marginalize over in future analyses to mitigate uncertainty regarding the details of feedback. Finally, we investigate how lensing observables predicted by our model compare to those from simulations and from HALOFIT for a range of k-cuts and feedback models and quantify the angular scales at which these effects become important. Code to calculate power spectra from the model presented in this paper can be found at https://github.com/alexander-mead/hmcode.

  18. The Atacama Cosmology Telescope: Cosmological Parameters from the 2008 Power Spectra

    CERN Document Server

    Dunkley, J; Sievers, J; Acquaviva, V; Ade, P A R; Aguirre, P; Amiri, M; Appel, J W; Barrientos, L F; Battistelli, E S; Bond, J R; Brown, B; Burger, B; Chervenak, J; Das, S; Devlin, M J; Dicker, S R; Doriese, W Bertrand; Dunner, R; Essinger-Hileman, T; Fisher, R P; Fowler, J W; Hajian, A; Halpern, M; Hasselfield, M; Hernandez-Monteagudo, C; Hilton, G C; Hilton, M; Hincks, A D; Huffenberger, K M; Hughes, D H; Hughes, J P; Infante, L; Irwin, K D; Juin, J B; Kaul, M; Klein, J; Kosowsky, A; Lau, J M; Limon, M; Lin, Y-T; Lupton, R H; Marriage, T A; Marsden, D; Mauskopf, P; Menanteau, F; Moodley, K; Moseley, H; Netterfield, C B; Niemack, M D; Nolta, M R; Page, L A; Parker, L; Partridge, B; Reid, B; Sehgal, N; Sherwin, B; Spergel, D N; Staggs, S T; Swetz, D S; Switzer, E R; Thornton, R; Trac, H; Tucker, C; Warne, R; Wollack, E; Zhao, Y

    2010-01-01

    We present cosmological parameters derived from the angular power spectrum of the cosmic microwave background (CMB) radiation observed at 148 GHz and 218 GHz over 296 deg^2 with the Atacama Cosmology Telescope (ACT) during its 2008 season. ACT measures fluctuations at scales 500power spectra, including thermal and kinetic SZ, Poisson power from radio and infrared point sources, and clustered power from infrared point sources. The power from thermal and kinetic SZ at 148 GHz is estimated to be B_3000 = 6.8+-2.9 uK^2, where B_l=l(l+1)C_l/2pi. We estimate primary cosmological parameters from the 148 GHz spectrum, marginalizing over SZ and source power. The LCDM cosmological model is a good fit to the data, and LCDM parameters estimated from ACT+WMAP are consistent with the 7-year WMAP limits, with scale invariant n_s = 1 excluded at 99.7% CL (3sigma). A model with no CMB lensing is d...

  19. Effects of anisotropic fluences and angular depended spectra of beta-particles in the use of large area reference sources.

    Science.gov (United States)

    Yamada, Takahiro; Kawada, Yasushi; Ishizu, Hidetake; Yamamoto, Shinich; Yunoki, Akira; Sato, Yasushi; Unno, Yasuhiro; Hino, Yoshio

    2012-09-01

    Calibrations of instrument efficiency of surface contamination meters are usually made with extended reference sources which are standardized in terms of 2π surface β-particle emission rates from the source surface including backscattered particles. Extended sources supplied from various metrology institutes or calibration laboratories, but the source-types such as structure, preparation method, backing and covering materials vary between manufacturers. In this work first we show how the calibration results are dependent on the source type. Second, in order to clarify the possible reason of such discrepancy, we examined the isotropy of β-particle fluences by the use of a proportional counter and also observed the angular dependence of β-particle spectra by the use of small plastic scintillation spectrometer, where the source mount can rotate relative to the detector window at various obliquities. The discrepancy in the instrument-calibration of surface contamination meters, which are mainly used under the conditions of large source-to-detector geometry, can be explained. PMID:22424745

  20. Foregrounds in Wide-Field Redshifted 21 cm Power Spectra

    CERN Document Server

    Thyagarajan, Nithyanandan; Bowman, Judd D; Barry, N; Beardsley, A P; Bernardi, G; Briggs, F; Cappallo, R J; Carroll, P; Corey, B E; de Oliveira-Costa, A; Dillon, Joshua S; Emrich, D; Ewall-Wice, A; Feng, L; Goeke, R; Greenhill, L J; Hazelton, B J; Hewitt, J N; Hurley-Walker, N; Johnston-Hollitt, M; Kaplan, D L; Kasper, J C; Kim, Han-Seek; Kittiwisit, P; Kratzenberg, E; Lenc, E; Line, J; Loeb, A; Lonsdale, C J; Lynch, M J; McKinley, B; McWhirter, S R; Mitchell, D A; Morales, M F; Morgan, E; Neben, A R; Oberoi, D; Offringa, A R; Ord, S M; Paul, Sourabh; Pindor, B; Pober, J C; Prabu, T; Procopio, P; Riding, J; Rogers, A E E; Roshi, A; Shankar, N Udaya; Sethi, Shiv K; Srivani, K S; Subrahmanyan, R; Sullivan, I S; Tegmark, M; Tingay, S J; Trott, C M; Waterson, M; Wayth, R B; Webster, R L; Whitney, A R; Williams, A; Williams, C L; Wu, C; Wyithe, J S B

    2015-01-01

    Detection of 21 cm emission of HI from the epoch of reionization, at redshifts z>6, is limited primarily by foreground emission. We investigate the signatures of wide-field measurements and an all-sky foreground model using the delay spectrum technique that maps the measurements to foreground object locations through signal delays between antenna pairs. We demonstrate interferometric measurements are inherently sensitive to all scales, including the largest angular scales, owing to the nature of wide-field measurements. These wide-field effects are generic to all observations but antenna shapes impact their amplitudes substantially. A dish-shaped antenna yields the most desirable features from a foreground contamination viewpoint, relative to a dipole or a phased array. Comparing data from recent Murchison Widefield Array observations, we demonstrate that the foreground signatures that have the largest impact on the HI signal arise from power received far away from the primary field of view. We identify diffu...

  1. CMB polarization power spectra contributions from a network of cosmic strings

    International Nuclear Information System (INIS)

    We present the first calculation of the possible (local) cosmic string contribution to the cosmic microwave background polarization spectra from simulations of a string network (rather than a stochastic collection of unconnected string segments). We use field-theory simulations of the Abelian Higgs model to represent local U(1) strings, including their radiative decay and microphysics. Relative to previous estimates, our calculations show a shift in power to larger angular scales, making the chance of a future cosmic string detection from the B-mode polarization slightly greater. We explore a future ground-based polarization detector, taking the CLOVER project as our example. In the null hypothesis (that cosmic strings make a zero contribution) we find that CLOVER should limit the string tension μ to Gμ-6 (where G is the gravitational constant), above which it is likely that a detection would be possible

  2. Cosmology in one dimension: fractal geometry, power spectra and correlation

    International Nuclear Information System (INIS)

    Concentrations of matter, such as galaxies and galactic clusters, originated as very small density fluctuations in the early universe. The existence of galaxy clusters and super-clusters suggests that a natural scale for the matter distribution may not exist. A point of controversy is whether the distribution is fractal and, if so, over what range of scales. One-dimensional models demonstrate that the important dynamics for cluster formation occur in the position–velocity plane. Here the development of scaling behavior and multifractal geometry is investigated for a family of one-dimensional models for three different, scale-free, initial conditions. The methodology employed includes: (1) the derivation of explicit solutions for the gravitational potential and field for a one-dimensional system with periodic boundary conditions (Ewald sums for one dimension); (2) the development of a procedure for obtaining scale-free initial conditions for the growing mode in phase space for an arbitrary power-law index; (3) the evaluation of power spectra, correlation functions, and generalized fractal dimensions at different stages of the system evolution. It is shown that a simple analytic representation of the power spectra captures the main features of the evolution, including the correct time dependence of the crossover from the linear to nonlinear regime and the transition from regular to fractal geometry. A possible physical mechanism for understanding the self-similar evolution is introduced. It is shown that hierarchical cluster formation depends both on the model and on the initial power spectrum. Under special circumstances a simple relation between the power spectrum, correlation function, and correlation dimension in the highly nonlinear regime is confirmed

  3. Reduction of noise and bias in randomly sampled power spectra

    DEFF Research Database (Denmark)

    Buchhave, Preben; Velte, Clara Marika

    2015-01-01

    modifications of the ideal Poisson sample rate caused by dead time effects and correlations between velocity and sample rate. The noise and dead time effects for finite records are shown to tend to previous results for infinite time records and ensemble averages. For finite records, we show that the measured...... sampling function can be used to correct the spectra for noise and dead time effects by a deconvolution process. We also describe a novel version of a power spectral estimator based on a fast slotted autocovariance algorithm.......We consider the origin of noise and distortion in power spectral estimates of randomly sampled data, specifically velocity data measured with a burst-mode laser Doppler anemometer. The analysis guides us to new ways of reducing noise and removing spectral bias, e.g., distortions caused by...

  4. Diagnosis of power generator sets by analyzing the crank shaft angular speed

    International Nuclear Information System (INIS)

    This thesis deals with the diagnosis of a powerful 20-cylinder diesel engine which runs a generator set in a nuclear plant. The objective is to make a diagnosis by analyzing the crank shaft angular speed variations. Only combustion related faults are investigated. As the engine is very large, the first crank shaft natural modes are in the low frequencies. Torsional vibrations of the flexible crank shaft strongly complicate the analysis of the angular speed variations. Little attention has been paid to such large engines in the literature. First, a dynamical model with the assumption of a flexible crank shaft is established. The parameters of the model are optimized with the help of actual data. Then, an original automated diagnosis based on pattern recognition of the angular speed waveforms is proposed. Indeed, any faulty cylinder in combustion stroke will distort the angular speed waveform in a specific way which depends on its location with respect to nodes and anti-nodes of the modes. Reference patterns, representative of the engine conditions, are computed with the model constituting the main originality of this work. Promising results are obtained in operational phase. An experimental fuel leakage fault was correctly diagnosed, including detection and localization of the faulty cylinder and an indication of the severity of the fault. (author)

  5. WIND TURBINE SIMULATION FOR TIME-DEPENDENT ANGULAR VELOCITY, TORQUE, AND POWER

    Directory of Open Access Journals (Sweden)

    YONGHO LEE

    2013-02-01

    Full Text Available Albeit the prediction of time-dependent properties of wind turbines is not required for common applications, such time-varying properties may play an important role during transient operations occurring due to various reasons. Unlike the conventional numerical simulations of wind turbine rotations that fix the angular velocity to an assumed value, the present work numerically simulates the time-varying turbine rotation in both unsteady and quasi-steady operation regimes, without specifying the angular velocity of the turbine a priori, but by calculating the actual time-dependent angular velocity and aerodynamic torque along with other properties in the course of simulation. In the present work, successful results obtained by an efficient computational fluid dynamics technique are shown, as a demonstration, for a vertical-axis wind turbine with a two-dimensionalSavonius rotor, and the cycle-averaged output powers are compared with experimental power curves and a theory developed on the basis of experimental observations.

  6. Fiber optic sensor for angular position measurement: application for an electrical power-assisted steering system

    Science.gov (United States)

    Javahiraly, Nicolas; Chakari, Ayoub

    2013-05-01

    To achieve a very effective automotive power steering system, we need two important data, the angular position of the wheel and the torque applied on the shaft by the driver of the car. We present a new accurate optical fiber angular position sensor connected to an automotive power steering column. In this new design, the sensor allows the measurement of the angular position of a car steering wheel over a large and adjustable range (± several turns of the wheel). The wheel rotation induces micro-bending in the transducer part of the optical fiber sensing system. This system operates as an amplitude modulation sensor based on mode coupling in the transducing fiber in the case when all the modes are equally excited. We study the sensor response both theoretically and experimentally with a multimode step index optical fiber [rf (fiber radius) = 300 μm rc (core radius) = 50 μm nc (core index) = 1,457; N.A. = 0, 22 and the wavelength is 632,8 nm at the ambient Temperature (20°C)]. We show that the sensitivity can be controlled as a function of the sensor's length. We compare modeling and experimental validation and we conclude with a perspective on what could soon be an industrial sensor.

  7. Individual power density spectra of Swift gamma-ray bursts

    CERN Document Server

    Guidorzi, C; Amati, L

    2016-01-01

    Timing analysis is a powerful tool with which to shed light on the still obscure emission physics and geometry of the prompt emission of GRBs. Fourier power density spectra (PDS) characterise time series as stochastic processes and can be used to search for coherent pulsations and to investigate the dominant variability timescales. Because of the limited duration and of the statistical properties, modelling the PDS of individual GRBs is challenging, and only average PDS of large samples have been discussed in the literature. We characterise the individual PDS of GRBs in terms of a stochastic process, and carry out for the first time a systematic search for periodic signals and for a link between the PDS and other observables. We present a Bayesian procedure that uses a Markov chain Monte Carlo technique and apply it to study 215 bright long GRBs detected with the Swift Burst Alert Telescope from January 2005 to May 2015. The PDS are modelled with a power-law either with or without a break. Two classes of GRBs...

  8. Cosmological flux noise and measured noise power spectra in SQUIDs.

    Science.gov (United States)

    Beck, Christian

    2016-01-01

    The understanding of the origin of 1/f magnetic flux noise commonly observed in superconducting devices such as SQUIDs and qubits is still a major unsolved puzzle. Here we discuss the possibility that a significant part of the observed low-frequency flux noise measured in these devices is ultimately seeded by cosmological fluctuations. We consider a theory where a primordial flux noise field left over in unchanged form from an early inflationary or quantum gravity epoch of the universe intrinsically influences the phase difference in SQUIDs and qubits. The perturbation seeds generated by this field can explain in a quantitatively correct way the form and amplitude of measured low-frequency flux noise spectra in SQUID devices if one takes as a source of fluctuations the primordial power spectrum of curvature fluctuations as measured by the Planck collaboration. Our theoretical predictions are in excellent agreement with recent low-frequency flux noise measurements of various experimental groups. Magnetic flux noise, so far mainly considered as a nuisance for electronic devices, may thus contain valuable information about fluctuation spectra in the very early universe. PMID:27320418

  9. Cosmological flux noise and measured noise power spectra in SQUIDs

    Science.gov (United States)

    Beck, Christian

    2016-01-01

    The understanding of the origin of 1/f magnetic flux noise commonly observed in superconducting devices such as SQUIDs and qubits is still a major unsolved puzzle. Here we discuss the possibility that a significant part of the observed low-frequency flux noise measured in these devices is ultimately seeded by cosmological fluctuations. We consider a theory where a primordial flux noise field left over in unchanged form from an early inflationary or quantum gravity epoch of the universe intrinsically influences the phase difference in SQUIDs and qubits. The perturbation seeds generated by this field can explain in a quantitatively correct way the form and amplitude of measured low-frequency flux noise spectra in SQUID devices if one takes as a source of fluctuations the primordial power spectrum of curvature fluctuations as measured by the Planck collaboration. Our theoretical predictions are in excellent agreement with recent low-frequency flux noise measurements of various experimental groups. Magnetic flux noise, so far mainly considered as a nuisance for electronic devices, may thus contain valuable information about fluctuation spectra in the very early universe. PMID:27320418

  10. The effects of leg angular velocity on mean power frequency and amplitude of the mechanomyographic signal.

    Science.gov (United States)

    Ebersole, K T; Housh, T J; Weir, J P; Johnson, G O; Evetovich, T K; Smith, D B

    2000-01-01

    The purpose of the present investigation was to examine the effects of leg angular velocity on the mean power frequency (MPF) and amplitude of the mechanomyographic (MMG) signal during maximal concentric (CON) isokinetic muscle actions. Sixteen adult subjects performed maximal CON leg extensions on a calibrated Cybex 6000 dynamometer at leg angular velocities of 60 and 300 degrees.s-1. MMG was detected by a piezoelectric crystal contact sensor placed over the mid-portion of the vastus lateralis muscle. The results indicated a significant (p 0.05) in MMG MPF. These findings did not support our hypothesis that increases across velocity in MMG amplitude were due to decreases in muscle stiffness as a result of a shift in the contribution of slow and fast-twitch muscle fibers to PT production. Future research should examine the potential influence of actin-myosin cycling rate as well as limb movement on the MPF and amplitude of the MMG signal. PMID:10782358

  11. Energy spectra, angular spread, fluence profiles and dose distributions of 6 and 18 MV photon beams: results of Monte Carlo simulations for a Varian 2100EX accelerator

    International Nuclear Information System (INIS)

    The purpose of this study is to provide detailed characteristics of incident photon beams for different field sizes and beam energies. This information is critical to the future development of accurate treatment planning systems. It also enhances our knowledge of radiotherapy photon beams. The EGS4 Monte Carlo code, BEAM, has been used to simulate 6 and 18 MV photon beams from a Varian Clinac-2100EX accelerator. A simulated realistic beam is stored in a phase space data file, which contains details of each particle's complete history including where it has been and where it has interacted. The phase space files are analysed to obtain energy spectra, angular distribution, fluence profile and mean energy profiles at the phantom surface for particles separated according to their charge and history. The accuracy of a simulated beam is validated by the excellent agreement between the Monte Carlo calculated and measured dose distributions. Measured depth-dose curves are obtained from depth-ionization curves by accounting for newly introduced chamber fluence corrections and the stopping-power ratios for realistic beams. The study presents calculated depth-dose components from different particles as well as calculated surface dose and contribution from different particles to surface dose across the field. It is shown that the increase of surface dose with the increase of the field size is mainly due to the increase of incident contaminant charged particles. At 6 MV, the incident charged particles contribute 7% to 21% of maximum dose at the surface when the field size increases from 10x10 to 40x40 cm2. At 18 MV, their contributions are up to 11% and 29% of maximum dose at the surface for 10x10 cm2 and 40x40 cm2 fields respectively. However, the fluence of these incident charged particles is less than 1% of incident photon fluence in all cases. (author)

  12. Planck intermediate results. XXX. The angular power spectrum of polarized dust emission at intermediate and high Galactic latitudes

    CERN Document Server

    Adam, R; Aghanim, N; Arnaud, M; Aumont, J; Baccigalupi, C; Banday, A J; Barreiro, R B; Bartlett, J G; Bartolo, N; Battaner, E; Benabed, K; Benoit-Lévy, A; Bernard, J -P; Bersanelli, M; Bielewicz, P; Bonaldi, A; Bonavera, L; Bond, J R; Borrill, J; Bouchet, F R; Boulanger, F; Bracco, A; Bucher, M; Burigana, C; Butler, R C; Calabrese, E; Cardoso, J -F; Catalano, A; Challinor, A; Chamballu, A; Chary, R -R; Chiang, H C; Christensen, P R; Clements, D L; Colombi, S; Colombo, L P L; Combet, C; Couchot, F; Coulais, A; Curto, A; Cuttaia, F; Danese, L; Davies, R D; Davis, R J; de Bernardis, P; de Zotti, G; Delabrouille, J; Delouis, J -M; Désert, F -X; Dickinson, C; Diego, J M; Dolag, K; Dole, H; Donzelli, S; Doré, O; Douspis, M; Ducout, A; Dunkley, J; Dupac, X; Efstathiou, G; Elsner, F; Enßlin, T A; Eriksen, H K; Falgarone, E; Finelli, F; Forni, O; Frailis, M; Fraisse, A A; Franceschi, E; Frejsel, A; Galeotta, S; Galli, S; Ganga, K; Ghosh, T; Giard, M; Giraud-Héraud, Y; Gjerløw, E; González-Nuevo, J; Górski, K M; Gratton, S; Gregorio, A; Gruppuso, A; Guillet, V; Hansen, F K; Hanson, D; Harrison, D L; Helou, G; Henrot-Versillé, S; Hernández-Monteagudo, C; Herranz, D; Hivon, E; Holmes, W A; Huffenberger, K M; Hurier, G; Jaffe, A H; Jaffe, T R; Jewell, J; Jones, W C; Juvela, M; Keihänen, E; Keskitalo, R; Kisner, T S; Kneissl, R; Knoche, J; Knox, L; Krachmalnicoff, N; Kunz, M; Kurki-Suonio, H; Lagache, G; Lamarre, J -M; Lasenby, A; Lattanzi, M; Lawrence, C R; Leahy, J P; Leonardi, R; Lesgourgues, J; Levrier, F; Liguori, M; Lilje, P B; Linden-Vørnle, M; López-Caniego, M; Lubin, P M; Macías-Pérez, J F; Maffei, B; Maino, D; Mandolesi, N; Mangilli, A; Maris, M; Martin, P G; Martínez-González, E; Masi, S; Matarrese, S; Mazzotta, P; Melchiorri, A; Mendes, L; Mennella, A; Migliaccio, M; Mitra, S; Miville-Deschênes, M -A; Moneti, A; Montier, L; Morgante, G; Mortlock, D; Moss, A; Munshi, D; Murphy, J A; Naselsky, P; Nati, F; Natoli, P; Netterfield, C B; Nørgaard-Nielsen, H U; Noviello, F; Novikov, D; Novikov, I; Pagano, L; Pajot, F; Paladini, R; Paoletti, D; Partridge, B; Pasian, F; Patanchon, G; Pearson, T J; Perdereau, O; Perotto, L; Perrotta, F; Pettorino, V; Piacentini, F; Piat, M; Pierpaoli, E; Pietrobon, D; Plaszczynski, S; Pointecouteau, E; Polenta, G; Ponthieu, N; Popa, L; Pratt, G W; Prunet, S; Puget, J -L; Rachen, J P; Reach, W T; Rebolo, R; Remazeilles, M; Renault, C; Renzi, A; Ricciardi, S; Ristorcelli, I; Rocha, G; Rosset, C; Rossetti, M; Roudier, G; d'Orfeuil, B Rouillé; Rubiño-Martín, J A; Rusholme, B; Sandri, M; Santos, D; Savelainen, M; Savini, G; Scott, D; Soler, J D; Spencer, L D; Stolyarov, V; Stompor, R; Sudiwala, R; Sunyaev, R; Sutton, D; Suur-Uski, A -S; Sygnet, J -F; Tauber, J A; Terenzi, L; Tomasi, M; Tristram, M; Tucci, M; Tuovinen, J; Valenziano, L; Valiviita, J; Van Tent, B; Vibert, L; Vielva, P; Villa, F; Wade, L A; Wandelt, B D; Watson, R; Wehus, I K; White, M; White, S D M; Yvon, D; Zacchei, A; Zonca, A

    2016-01-01

    The polarized thermal emission from Galactic dust is the main foreground present in measurements of the polarization of the cosmic microwave background (CMB) at frequencies above 100GHz. We exploit the Planck HFI polarization data from 100 to 353GHz to measure the dust angular power spectra $C_\\ell^{EE,BB}$ over the range $40<\\ell<600$. These will bring new insights into interstellar dust physics and a precise determination of the level of contamination for CMB polarization experiments. We show that statistical properties of the emission can be characterized over large fractions of the sky using $C_\\ell$. For the dust, they are well described by power laws in $\\ell$ with exponents $\\alpha^{EE,BB}=-2.42\\pm0.02$. The amplitudes of the polarization $C_\\ell$ vary with the average brightness in a way similar to the intensity ones. The dust polarization frequency dependence is consistent with modified blackbody emission with $\\beta_d=1.59$ and $T_d=19.6$K. We find a systematic ratio between the amplitudes of ...

  13. Energy Spectra And Angular Distributions Of Imfs Produced In 8-gev Proton And 12-gev Proton And Ne-20 Induced Multifragmentation Reactions (the First Results Of The Kek-ps E393 And Nirs 11p052 Experiments)

    CERN Document Server

    Tanaka, K H; Murakami, T; Ito, H; Yasuda, K; Murata, J; Muramatsu, R; Tanaka, Y J; Hirai, Y; Miyazaki, K; Tanaka, Y; Nagasaka, Y; Haseno, M; Okuno, Y; Ushie, K; Hara, H; Tsuji, S; Satake, K; Kimura, K; Kubohara, R; Shibata, Y; Kosuge, F; Nakai, K; Ochiisi, H; Kouda, S; Nakamura, H; Morinobu, S; Sugaya, Y; Ohkuma, Y; Takada, E

    2000-01-01

    Energy Spectra And Angular Distributions Of Imfs Produced In 8-gev Proton And 12-gev Proton And Ne-20 Induced Multifragmentation Reactions (the First Results Of The Kek-ps E393 And Nirs 11p052 Experiments)

  14. Power Spectra, Power Law Exponents, and Anisotropy of Solar Wind Turbulence at Small Scales

    Science.gov (United States)

    Podesta, J. J.; Roberts, D. A.; Goldstein, M. L.

    2006-01-01

    The Wind spacecraft provides simultaneous solar wind velocity and magnetic field measurements with 3- second time resolution, roughly an order of magnitude faster than previous measurements, enabling the small scale features of solar wind turbulence to be studied in unprecedented detail. Almost the entire inertial range can now be explored (the inertial range extends from approximately 1 to 10(exp 3) seconds in the spacecraft frame) although the dissipation range of the velocity fluctuations is still out of reach. Improved measurements of solar wind turbulence spectra at 1 AU in the ecliptic plane are presented including spectra of the energy and cross-helicity, the magnetic and kinetic energies, the Alfven ratio, the normalized cross-helicity, and the Elsasser ratio. Some recent observations and theoretical challenges are discussed including the observation that the velocity and magnetic field spectra often show different power law exponents with values close to 3/2 and 5/3, respectively; the energy (kinetic plus magnetic) and cross-helicity often have approximately equal power law exponents with values intermediate between 3/2 and 5/3; and the Alfven ratio, the ratio of the kinetic to magnetic energy spectra, is often a slowly increasing function of frequency increasing from around 0.4 to 1 for frequencies in the inertial range. Differences between high- and low-speed wind are also discussed. Comparisons with phenomenological turbulence theories show that important aspects of the physics are yet unexplained.

  15. Individual power density spectra of Swift gamma-ray bursts

    Science.gov (United States)

    Guidorzi, C.; Dichiara, S.; Amati, L.

    2016-05-01

    Context. Timing analysis can be a powerful tool with which to shed light on the still obscure emission physics and geometry of the prompt emission of gamma-ray bursts (GRBs). Fourier power density spectra (PDS) characterise time series as stochastic processes and can be used to search for coherent pulsations and, more in general, to investigate the dominant variability timescales in astrophysical sources. Because of the limited duration and of the statistical properties involved, modelling the PDS of individual GRBs is challenging, and only average PDS of large samples have been discussed in the literature thus far. Aims: We aim at characterising the individual PDS of GRBs to describe their variability in terms of a stochastic process, to explore their variety, and to carry out for the first time a systematic search for periodic signals and for a link between PDS properties and other GRB observables. Methods: We present a Bayesian procedure that uses a Markov chain Monte Carlo technique and apply it to study the individual PDS of 215 bright long GRBs detected with the Swift Burst Alert Telescope in the 15-150 keV band from January 2005 to May 2015. The PDS are modelled with a power-law either with or without a break. Results: Two classes of GRBs emerge: with or without a unique dominant timescale. A comparison with active galactic nuclei (AGNs) reveals similar distributions of PDS slopes. Unexpectedly, GRBs with subsecond-dominant timescales and duration longer than a few tens of seconds in the source frame appear to be either very rare or altogether absent. Three GRBs are found with possible evidence for a periodic signal at 3.0-3.2σ (Gaussian) significance, corresponding to a multi-trial chance probability of ~1%. Thus, we found no compelling evidence for periodic signal in GRBs. Conclusions: The analogy between the PDS of GRBs and of AGNs could tentatively indicate similar stochastic processes that rule BH accretion across different BH mass scales and objects

  16. The angular power spectrum of the diffuse gamma-ray emission as measured by the Fermi Large Area Telescope and constraints on its Dark Matter interpretation

    CERN Document Server

    Fornasa, Mattia; Zavala, Jesus; Gaskins, Jennifer M; Sanchez-Conde, Miguel A; Gomez-Vargas, German; Komatsu, Eiichiro; Linden, Tim; Prada, Francisco; Zandanel, Fabio; Morselli, Aldo

    2016-01-01

    The isotropic gamma-ray background arises from the contribution of unresolved sources, including members of confirmed source classes and proposed gamma-ray emitters such as the radiation induced by dark matter annihilation and decay. Clues about the properties of the contributing sources are imprinted in the anisotropy characteristics of the gamma-ray background. We use 81 months of Pass 7 Reprocessed data from the Fermi Large Area Telescope to perform a measurement of the anisotropy angular power spectrum of the gamma-ray background. We analyze energies between 0.5 and 500 GeV, extending the range considered in the previous measurement based on 22 months of data. We also compute, for the first time, the cross-correlation angular power spectrum between different energy bins. We find that the derived angular spectra are compatible with being Poissonian, i.e. constant in multipole. Moreover, the energy dependence of the anisotropy suggests that the signal is due to two populations of sources, contributing, resp...

  17. Probing the anisotropic behaviors of black phosphorus by transmission electron microscopy, angular-dependent Raman spectra, and electronic transport measurements

    Science.gov (United States)

    Lu, Wanglin; Ma, Xiaomeng; Fei, Zhen; Zhou, Jianguang; Zhang, Zhiyong; Jin, Chuanhong; Zhang, Ze

    2015-07-01

    In this study, we correlated the angular dependence of the Raman response of black phosphorus to its crystallographic orientation by using transmission electron microscopy and Raman spectroscopy. It was found that the intensity of the Ag 2 mode reached a maximum when the polarization direction of the incident light was parallel to the zigzag crystallographic orientation. Notably, it was further confirmed that the zigzag crystallographic direction exhibited superior conductance and carrier mobility. Because of the lattice extension along the armchair direction, an intensification of the anisotropic Raman response was observed. This work provides direct evidence of the correlation between anisotropic properties and crystallographic direction and represents a turning point in the discussion of the angular-dependent electronic properties of black phosphorus.

  18. Development of probabilistic floor spectra for Loviisa Nuclear Power Plant

    International Nuclear Information System (INIS)

    The procedure used in this study for generating probabilistic floor response spectra follows the methodology developed under seismic safety margins research program (SSMRP) conducted in the beginning of eighties in the U.S. This approach will provide a complete description of seismic environment for equipment and piping and can be used directly in seismic PSA studies. The end result of the study will be mean and mean-plus-one-standard-deviation amplified response spectra in selected nodal points in the structure. In seismic PSAs, the uncertainty in structural response is required and this is given by mean and mean-plus-one-standard-deviation response spectra. In the procedure for probabilistic floor spectra generation there are five main tasks, namely, the development of control motion; the development of soil and structural models; the latin hypercube sampling for setting up the input values for each earthquake simulation and the last step is the actual response analysis. (author)

  19. Maturation of EEG Power Spectra in Early Adolescence: A Longitudinal Study

    Science.gov (United States)

    Cragg, Lucy; Kovacevic, Natasa; McIntosh, Anthony Randal; Poulsen, Catherine; Martinu, Kristina; Leonard, Gabriel; Paus, Tomas

    2011-01-01

    This study investigated the fine-grained development of the EEG power spectra in early adolescence, and the extent to which it is reflected in changes in peak frequency. It also sought to determine whether sex differences in the EEG power spectra reflect differential patterns of maturation. A group of 56 adolescents were tested at age 10 years and…

  20. Flow angle dependent photoacoustic Doppler power spectra under intensity-modulated continuous wave laser excitation

    Directory of Open Access Journals (Sweden)

    Yu Tong

    2016-02-01

    Full Text Available Photoacoustic Doppler (PAD power spectra showing an evident Doppler shift represent the major characteristics of the continuous wave-excited or burst wave-excited versions of PAD flow measurements. In this paper, the flow angle dependences of the PAD power spectra are investigated using an experiment setup that was established based on intensity-modulated continuous wave laser excitation. The setup has an overall configuration that is similar to a previously reported configuration, but is more sophisticated in that it accurately aligns the laser illumination with the ultrasound detection process, and in that it picks up the correct sample position. In the analysis of the power spectra data, we find that the background power spectra can be extracted by combining the output signals from the two channels of the lock-in amplifier, which is very useful for identification of the PAD power spectra. The power spectra are presented and analyzed in opposite flow directions, at different flow speeds, and at different flow angles. The power spectra at a 90° flow angle show the unique properties of symmetrical shapes due to PAD broadening. For the other flow angles, the smoothed power spectra clearly show a flow angle cosine relationship.

  1. A Chandra Study of the Image Power Spectra of 41 Cool Core and Non-Cool Core Galaxy Clusters

    CERN Document Server

    Zhang, Chenhao; Zhu, Zhenghao; Li, Weitian; Hu, Dan; Wang, Jingying; Gu, Junhua; Gu, Liyi; Zhang, Zhongli; Liu, Chengze; Zhu, Jie; Wu, Xiang-Ping

    2016-01-01

    In this work we propose a new diagnostic to segregate cool core (CC) clusters from non-cool core (NCC) clusters by studying the two-dimensional power spectra of the X-ray images observed with the Chandra X-ray observatory. Our sample contains 41 members ($z=0.01\\sim 0.54$), which are selected from the Chandra archive when a high photon count, an adequate angular resolution, a relatively complete detector coverage, and coincident CC-NCC classifications derived with three traditional diagnostics are simultaneously guaranteed. We find that in the log-log space the derived image power spectra can be well represented by a constant model component at large wavenumbers, while at small wavenumbers a power excess beyond the constant component appears in all clusters, with a clear tendency that the excess is stronger in CC clusters. By introducing a new CC diagnostic parameter, i.e., the power excess index (PEI), we classify the clusters in our sample and compare the results with those obtained with three traditional C...

  2. Distortions in power spectra of digitized signals - I: General formulations

    International Nuclear Information System (INIS)

    When a continuous signal f(t) is digitized and then spectrally analysed, the resultant energy spectral density R(ω) is given as R(ω) = |F(ω) * D(ω)|2, where F(ω) is the exact Fourier transform of f(t), D(ω) is the exact Fourier transform of the digitization process and * denotes convolution operation. A notable practical problem in spectral analysis is how to adequately decouple D(ω) from R(ω) and hence obtain the exact energy spectral density of f(t), i.e. |F(ω)|2, since R(ω) → |F(ω)|2 only if D(ω) → delta(ω) or (under certain conditions) when D(ω) → delta(ω-ω0) or if D(ω) → Σsub(n) delta(ω-ωsub(n)), where the latter is a sufficiently spaced series of delta functions and ωsub(j) is constant for a given j. A solution to this problem requires, among others, thorough understanding of D(ω), how it relates to F(ω) and hence the manner or degree to which D(ω) distorts or contaminates F(ω) to form R(ω). In this paper, we have developed exact analytical expressions of D(ω) that are well related to the corresponding F(ω) in the cases when f(t) is a simple sinusoid as well as when it is in the form of a more complex function. It is established that in either of these cases, D(ω) is a clear function of the salient parameters of both f(t) and F(ω). The contents of this paper are used in Part II to examine the manner and extent to which D(ω) causes distortions in R(ω) under given conditions, and also to establish a procedure by which such distortions may be decoupled from a practically computed R(ω). Other related issues such as frequency shifts in computed power spectra are also discussed therein. (author)

  3. Seismic design spectra for nuclear power plants, state-of-the-art

    International Nuclear Information System (INIS)

    The State-of-the-Art of nuclear power plant design involves the use of design response spectra together with a modal analysis of a mathematical idealization of the actual structure. The design response spectra give the maximum response to ground shaking for a family of single degree-of-freedom viscously damped oscillators. These spectra are usually described as an accelerogram giving ground acceleration as a function of time. The definition of a 'standard' design response spectra is reviewed and illustrated by data relevant to 'hard' or rock sites. Finally, the paper recommends a set of design response spectra applicable to rock sites

  4. Spectra of Grid Current Generated by High Power PWM Rectifiers

    Czech Academy of Sciences Publication Activity Database

    Šimek, Petr; Škramlík, Jiří; Tlustý, J.; Valouch, Viktor

    Ponta Delgada - Azores: APDEE, 2011, s. 1-4. ISBN 978-972-8822-23-1. [Portuguese- Spanish Conference on Electrical Engineering - XII CLEEE /12./. Ponta Delgada - Azores (PT), 30.06.2011-02.07.2011] Institutional research plan: CEZ:AV0Z20570509 Keywords : PWM rectifier * current spectra * FCC inverter Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  5. Effective dark matter power spectra in $f(R)$ gravity

    CERN Document Server

    He, Jian-hua; Hawken, Adam J

    2015-01-01

    Using N-body simulations, we measure the power spectrum of the effective dark matter density field, which is defined through the modified Poisson equation in $f(R)$ cosmologies. We find that when compared to the conventional dark matter power spectrum, the effective power spectrum deviates more significantly from the $\\Lambda$CDM model. For models with $f_{R0}=-10^{-4}$, the deviation can exceed 150\\% while the deviation of the conventional matter power spectrum is less than 50\\%. Even for models with $f_{R0}=-10^{-6}$, for which the conventional matter power spectrum is very close to the $\\Lambda$CDM prediction, the effective power spectrum shows sizeable deviations. Our results indicate that traditional analyses based on the dark matter density field may seriously underestimate the impact of $f(R)$ gravity on galaxy clustering. We therefore suggest the use of the effective density field in such studies.

  6. A study of the angular distribution of the electrons in the peak near vsub(e)=vsub(i) in the electron spectra from He+, H2+ - Ar collisions

    International Nuclear Information System (INIS)

    The peak near vsub(e)=vsub(i) in the electron spectra from He+ (0.8 MeV/amu), H2+ (0.8 MeV/amu; 1.995 MeV/amu) - Ar collisions was studied at thirteen angles from 0 deg to 180 deg. The experimental values for the position and half width (FWHM) of these peaks were compared with theoretical calculations. An example is given for the comparison of the actual shapes of the peak for different projectiles with the corresponding theoretical curves. The angular distribution of the electrons in the electron loss peak (i.e. the single differential cross section) was plotted together with the theoretical ones. (author)

  7. Cloud Turbulence Correlation Functions and Power Spectra Measured using a Gyroklystron-Powered 94 GHz Radar

    Science.gov (United States)

    Fliflet, Arne; Manheimer, Wallace; Linde, George; Cheung, Winjoy; Ngo, Mai; Gregershansen, Vilhelm; Danly, Bruce; St. Germain, Karen

    2003-10-01

    The Naval Research Laboratory (NRL) has recently developed a high power 94 GHz radar called WARLOC. This radar has unique advantages for cloud research stemming from the fact that the return from clouds scales inversely as the fourth power of the wavelength. Clouds are largely invisible to conventional radars and opaque to lidars, whereas millimeter-wave radars produce strong signals from cloud water droplets. Thus W-Band radars can be used to sense the internal structure of clouds. The WARLOC transmitter has about three orders-of-magnitude more average power than the W-Band radars used in previous cloud studies and greatly improved resolution and scanning capability. Here we report initial results on cloud studies. The new capabilities of WARLOC have allowed us to produce high-resolution images of the internal structure of clouds. Regions many square kilometers in area can be scanned with 15 m resolution in about a minute even through intervening cloud layers. The scanned cloud reflectivity yields two-dimensional cloud turbulence correlation functions and power spectra directly from spatial measurements for the first time, and with higher resolution than previously possible. We find that in the inertial range, the Kolmogorov spectral index (-5/3) agrees reasonably well with the data, but the assumption of isotropy does not. Interestingly, in two clouds studied, at longer scale lengths, the fluctuations appear to be wavelike in the vertical direction, but not in the horizontal direction.

  8. Unveiling acoustic physics of the CMB using nonparametric estimation of the temperature angular power spectrum for Planck

    International Nuclear Information System (INIS)

    Estimation of the angular power spectrum is one of the important steps in Cosmic Microwave Background (CMB) data analysis. Here, we present a nonparametric estimate of the temperature angular power spectrum for the Planck 2013 CMB data. The method implemented in this work is model-independent, and allows the data, rather than the model, to dictate the fit. Since one of the main targets of our analysis is to test the consistency of the ΛCDM model with Planck 2013 data, we use the nuisance parameters associated with the best-fit ΛCDM angular power spectrum to remove foreground contributions from the data at multipoles ℓ ≥50. We thus obtain a combined angular power spectrum data set together with the full covariance matrix, appropriately weighted over frequency channels. Our subsequent nonparametric analysis resolves six peaks (and five dips) up to ℓ ∼1850 in the temperature angular power spectrum. We present uncertainties in the peak/dip locations and heights at the 95% confidence level. We further show how these reflect the harmonicity of acoustic peaks, and can be used for acoustic scale estimation. Based on this nonparametric formalism, we found the best-fit ΛCDM model to be at 36% confidence distance from the center of the nonparametric confidence set—this is considerably larger than the confidence distance (9%) derived earlier from a similar analysis of the WMAP 7-year data. Another interesting result of our analysis is that at low multipoles, the Planck data do not suggest any upturn, contrary to the expectation based on the integrated Sachs-Wolfe contribution in the best-fit ΛCDM cosmology

  9. Effect of solar-radiation density and angular size of radiation source on efficiency of solar power plants

    Energy Technology Data Exchange (ETDEWEB)

    Krasina, E.A.; Nevezhin, O.A.; Rubanovich, I.M.

    1976-01-01

    The example of a solar thermoemission power plant is used for the analysis of certain features of solar-power-plant operating regimes for various radiation densities and angular sizes of the radiation source. The calculations are performed both on the assumption of exact pointing of the collector optical axis at the radiation source and with allowance for error. Results are reported for plant-efficiency optimization calculations, together with data on the permissible error angles of the solar tracking system.

  10. VizieR Online Data Catalog: Swift GRBs individual power density spectra (Guidorzi+, 2016)

    Science.gov (United States)

    Guidorzi, C.; Dichiara, S.; Amati, L.

    2016-03-01

    Time intervals, redshifts, best-fit parameters of the power density spectra (PDS) for 215 bright long GRBs observed with the Swift Burst Alert Telescope (BAT) from January 2005 to May 2015. Parameters refer to two alternative PDS models: either a power-law (PL) or a bent power-law (BPL) plus a constant background. (5 data files).

  11. System separation equipment to minimize power system instability using generator's angular-velocity measurements

    Energy Technology Data Exchange (ETDEWEB)

    Morioka, Y.; Tomiyama, K.; Arima, H. (Kansai Electric Power Co., Inc., Osaka (Japan)); Sawai, K.; Omata, K.; Matsushima, T.; Takagi, K.; Ishibashi, A.; Saito, H. (Toshiba Corp., Tokyo (Japan))

    1993-07-01

    The purpose of this newly developed equipment is to separate the power system when an out-of-step between two groups of generators within it is predicted. The out-of-step prediction method is based on the generator's angular-velocity data measured by electromagnetic sensors and gears that are fastened directly to the rotors. The equipment was tested by the large-scale power system simulator APSA (Advanced Power System Analyzer), that is installed in the Kansai Electric Power Co., Inc. The equipment also underwent a field test.

  12. A simplified method of estimating noise power spectra

    International Nuclear Information System (INIS)

    A technique to estimate the radial dependence of the noise power spectrum of images is proposed in which the calculations are conducted solely in the spatial domain of the noise image. The noise power spectrum averaged over a radial spatial-frequency interval is obtained form the variance of a noise image that has been convolved with a small kernel that approximates a Laplacian operator. Recursive consolidation of the image by factors of two in each dimension yields estimates of the noise power spectrum over that full range of spatial frequencies

  13. Power spectral density functions compatible with design response spectra

    International Nuclear Information System (INIS)

    Artificially generated ground acceleration time histories are often used for the analysis and design of structures subjected to earthquake ground motions. Among other possibilities, the Kanai-Tajimi power spectral density enhanced at the higher frequency range is found to be useful for generating ground acceleration time histories that satisfy NRC RG 1.60 requirements. The values of the parameters involved in the spectral density function are recommended for this purpose. Also, a suggestion is made as to how the power spectral density requirements can be placed in combinaton with those of NRC RG 1.60 to ensure both response and power spectrum requirements. (orig.)

  14. Voltage and current spectra for matrix power converters

    OpenAIRE

    Cox, Stephen M.; Creagh, Stephen C.

    2009-01-01

    Matrix power converters are used for transforming one alternating-current power supply to another, with different peak voltage and frequency. There are three input lines, with sinusoidally varying voltages which are 120◦ out of phase one from another, and the output is to be delivered as a similar three-phase supply. The matrix converter switches rapidly, to connect each output line in sequence to each of the input lines in an attempt to synthesize the prescribed output voltages. The switchin...

  15. Spectra processing at tooth enamel dosimetry: Analytical description of EPR spectrum at different microwave power

    Energy Technology Data Exchange (ETDEWEB)

    Tieliewuhan, E. [Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553 (Japan); Ivannikov, A. [Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553 (Japan) and Medical Radiological Research Center of RAMS, Korolyov str., 4, Obninsk 249036 (Russian Federation)]. E-mail: ivann@mail.ru; Zhumadilov, K. [Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553 (Japan); Nalapko, M. [Medical Radiological Research Center of RAMS, Korolyov str., 4, Obninsk 249036 (Russian Federation); Tikunov, D. [Medical Radiological Research Center of RAMS, Korolyov str., 4, Obninsk 249036 (Russian Federation); Skvortsov, V. [Medical Radiological Research Center of RAMS, Korolyov str., 4, Obninsk 249036 (Russian Federation); Stepanenko, V. [Medical Radiological Research Center of RAMS, Korolyov str., 4, Obninsk 249036 (Russian Federation); Toyoda, S. [Department of Applied Physics, Okayama University of Science, 1-1 Ridai, Okayama 700-0005 (Japan); Tanaka, K. [Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553 (Japan); Endo, S. [Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553 (Japan); Hoshi, M. [Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553 (Japan)

    2006-04-15

    Variation of the electron paramagnetic resonance (EPR) spectrum of the human tooth enamel recorded at different microwave power is investigated. The analytical models describing the native and the radiation-induced signals in the enamel are proposed, which fit the experimental spectra in wide range of microwave power. These models are designed to use for processing the spectra of irradiated enamel at determination of the absorbed dose from the intensity of the radiation-induced signal.

  16. Distribution of Acoustic Power Spectra for an Isolated Helicopter Fuselage

    Directory of Open Access Journals (Sweden)

    Kusyumov A.N.

    2016-01-01

    Full Text Available The broadband aerodynamic noise can be studied, assuming isotropic flow, turbulence and decay. Proudman’s approach allows practical calculations of noise based on CFD solutions of RANS or URANS equations at the stage of post processing and analysis of the solution. Another aspect is the broadband acoustic spectrum and the distribution of acoustic power over a range of frequencies. The acoustic energy spectrum distribution in isotropic turbulence is non monotonic and has a maximum at a certain value of Strouhal number. In the present work the value of acoustic power peak frequency is determined using a prescribed form of acoustic energy spectrum distribution presented in papers by S. Sarkar and M. Y. Hussaini and by G. M. Lilley. CFD modelling of the flow around isolated helicopter fuselage model was considered using the HMB CFD code and the RANS equations.

  17. Observed and Simulated Power Spectra of Kinetic and Magnetic Energy retrieved with 2D inversions

    CERN Document Server

    Danilovic, S; van Noort, M; Cameron, R

    2016-01-01

    We try to retrieve the power spectra with certainty to the highest spatial frequencies allowed by current instrumentation. For this, we use 2D inversion code that were able to recover information up to the instrumental diffraction limit. The retrieved power spectra have shallow slopes extending further down to much smaller scales than found before. They seem not to show any power law. The observed slopes at subgranular scales agree with those obtained from recent local dynamo simulations. Small differences are found for vertical component of kinetic energy that suggest that observations suffer from an instrumental effect that is not taken into account.

  18. Power spectra for both interrupted and perennial aging processes.

    Science.gov (United States)

    Lukovic, Mirko; Grigolini, Paolo

    2008-11-14

    We study the power spectrum of a random telegraphic noise with the distribution density of waiting times tau given by psi(tau) proportional to 1tau(mu), with mu approximately 2. The condition muproblem theoretically and numerically and we prove that the power spectrum obeys the prescription S(f)=Kf(eta), with eta=3-mu, namely, the 1f noise lives at border between the ergodic mu>2 and nonergodic muT(max) ensures the condition of interrupted aging. In this case, we find that K is a number independent of L. The latter case, Lus to the same conclusion from a somewhat more extended view valid also for the transient out-of-equilibrium case of mu>2. We do not limit our treatment to the time asymptotic case, thereby producing a prediction that accounts for the transition from the 1f(eta) to the 1f(2) regime, recently observed in an experiment on blinking quantum dots. Our theoretical approach allows us to discuss some other recent experiments on molecular intermittent fluorescence and affords indications that should help to assess whether the spectrum is determined by the LT(max) condition. PMID:19045381

  19. Spherical Harmonic Analyses of Intensity Mapping Power Spectra

    CERN Document Server

    Liu, Adrian; Parsons, Aaron R

    2016-01-01

    Intensity mapping is a promising technique for surveying the large scale structure of our Universe from $z=0$ to $z \\sim 150$, using the brightness temperature field of spectral lines to directly observe previously unexplored portions of out cosmic timeline. Examples of targeted lines include the $21\\,\\textrm{cm}$ hyperfine transition of neutral hydrogen, rotational lines of carbon monoxide, and fine structure lines of singly ionized carbon. Recent efforts have focused on detections of the power spectrum of spatial fluctuations, but have been hindered by systematics such as foreground contamination. This has motivated the decomposition of data into Fourier modes perpendicular and parallel to the line-of-sight, which has been shown to be a particularly powerful way to diagnose systematics. However, such a method is well-defined only in the limit of a narrow-field, flat-sky approximation. This limits the sensitivity of intensity mapping experiments, as it means that wide surveys must be separately analyzed as a...

  20. Power spectra of a constrained totally asymmetric simple exclusion process

    Science.gov (United States)

    Cook, L. Jonathan; Zia, R. K. P.

    2010-07-01

    In nature, all biological systems function in a far-from-equilibrium state. Here, we study the process of translation in protein synthesis, using the totally asymmetric simple exclusion process (TASEP) as a model. In particular, we explore the effects of a finite supply of particles for the TASEP, as in a living cell with a finite pool of ribosomes. Specifically, we investigate the power spectrum associated with total occupancy, utilizing both Monte Carlo simulations and theoretical analysis. New features arise, such as large suppressions at low frequencies, due to the added constraint. A theory is formulated based on a Langevin approach with discrete space and time. With good agreement between the simulation and theory, we gain some insights into the effects of finite resources on the TASEP.

  1. Damping and power spectra of quasi-periodic intensity disturbances above a solar polar coronal hole

    Science.gov (United States)

    Jiao, Fang-Ran; Xia, Li-Dong; Huang, Zheng-Hua; Li, Bo; Fu, Hui; Yuan, Ding; Chandrashekhar, Kalugodu

    2016-06-01

    We study intensity disturbances above a solar polar coronal hole that can be seen in the AIA 171 Å and 193 Å passbands, aiming to provide more insights into their physical nature. The damping and power spectra of the intensity disturbances with frequencies from 0.07 mHz to 10.5 mHz are investigated. The damping of the intensity disturbances tends to be stronger at lower frequencies, and their damping behavior below 980″ (for comparison, the limb is at 945″) is different from what happens above. No significant difference is found between the damping of the intensity disturbances in the AIA 171 Å and that in the AIA 193 Å. The indices of the power spectra of the intensity disturbances are found to be slightly smaller in the AIA 171 Å than in the AIA 193 Å, but the difference is within one standard deviation. An additional enhanced component is present in the power spectra in a period range of 8–40 min at lower heights. The power spectra of a spicule is highly correlated with its associated intensity disturbance, which suggests that the power spectra of the intensity disturbances might be a mixture of spicules and wave activities. We suggest that each intensity disturbance in the polar coronal hole is possibly a series of independent slow magnetoacoustic waves triggered by spicular activities.

  2. Precision Predictions for the Primordial Power Spectra from f(R) Models of Inflation

    CERN Document Server

    Brooker, D J; Woodard, R P

    2016-01-01

    We study the power spectra of f(R) inflation using a new technique in which the norm-squared of the mode functions is evolved. Our technique results in excellent analytic approximations for how the spectra depend upon the function $f(R)$. Although the spectra are numerically the same in the Jordan and Einstein frames for the same wave number $k$, they depend upon the geometries of these frames in quite different ways. For example, the power spectra in the two frames are different functions of the number of e-foldings until end of inflation. We discuss how future data on reheating can be used to distinguish f(R) inflation from scalar-driven inflation.

  3. Scale-invariant power spectra from a Weyl-invariant scalar-tensor theory

    Energy Technology Data Exchange (ETDEWEB)

    Myung, Yun Soo [Inje University, Institute of Basic Sciences and Department of Computer Simulation, Gimhae (Korea, Republic of); Park, Young-Jai [Sogang University, Department of Physics, Seoul (Korea, Republic of)

    2016-02-15

    We obtain scale-invariant scalar and tensor power spectra from a Weyl-invariant scalar-tensor theory in de Sitter spacetime. This implies that the Weyl invariance guarantees the implementation of the scale invariance of the power spectrum in de Sitter spacetime. We establish a deep connection between the Weyl invariance of the action and the scale invariance of the power spectrum in de Sitter spacetime. (orig.)

  4. High-power high-frequency-induced Langmuir turbulence in the smooth ionosphere at Arecibo. I. Theoretical predictions for altitude-resolved plasma line radar spectra

    International Nuclear Information System (INIS)

    This is the first of two papers comprising a theoretical and observational study of new, altitude-resolved, observations at Arecibo of Langmuir turbulence induced in the ionosphere by a powerful high-frequency (hf) heater operated at very low duty cycles. As shown in paper II [Cheung , Phys. Plasmas 8, 802 (2001)], higher power enabled the first observation at Arecibo of the well-developed decay-cascade features in the Thomson scatter radar power spectrum at the unmodified matching altitudes. New theoretical predictions are presented here for the parameters of these observations emphasizing the altitude and pump power dependence of the radar spectra and the time dependence of the spectra from the decaying spectra following heater switch-off. Further details of the strong turbulence signatures from higher altitudes are also presented. At the lower matching altitudes the increase, with hf power, of the angular width of the well-developed decay-cascade spectrum allows these spectral features to come into the view of the Arecibo radar. The favorable comparison of the simulation predictions and observations is discussed in the second paper

  5. A direct probe of cosmological power spectra of the peculiar velocity field and the gravitational lensing magnification from photometric redshift surveys

    International Nuclear Information System (INIS)

    The cosmological peculiar velocity field (deviations from the pure Hubble flow) of matter carries significant information on dark energy, dark matter and the underlying theory of gravity on large scales. Peculiar motions of galaxies introduce systematic deviations between the observed galaxy redshifts z and the corresponding cosmological redshifts zcos. A novel method for estimating the angular power spectrum of the peculiar velocity field based on observations of galaxy redshifts and apparent magnitudes m (or equivalently fluxes) is presented. This method exploits the fact that a mean relation between zcos and m of galaxies can be derived from all galaxies in a redshift-magnitude survey. Given a galaxy magnitude, it is shown that the zcos(m) relation yields its cosmological redshift with a 1σ error of σz ∼ 0.3 for a survey like Euclid ( ∼ 109 galaxies at z∼cos(m) with a high signal-to-noise ratio. At large angular separations corresponding to l∼cos(m) relation caused by gravitational lensing magnification dominate, allowing us to probe the line-of-sight integral of the gravitational potential. Effects related to the environmental dependence in the luminosity function can easily be computed and their contamination removed from the estimated power spectra. The amplitude of the combined velocity and lensing power spectra at z ∼ 1 can be measured with ∼<5% accuracy

  6. Near-field angular distributions of high velocity ions for low-power hall thrusters

    OpenAIRE

    Sullivan, Regina M.; Yost, Allison; Johnson, Lee K.

    2009-01-01

    Experimental angular distributions of high-energy primary ions in the near-field region of a small Hall thruster between 50-200 mm downstream of the thruster exit plane at a range of centerline angles have been determined using a highly-collimated, energy-selective diagnostic probe. The measurements reveal a wide angular distribution of ions exiting the thruster channel and the formation of a strong, axially-directed jet of ions along the thruster centerline. Comparisons are made to other exp...

  7. The 2008 outburst in the Young Stellar System Z CMa. III - Multi-epoch high-angular resolution images and spectra of the components in near-infrared

    CERN Document Server

    Bonnefoy, M; Dougados, C; Kospal, A; Benisty, M; Duchene, G; Bouvier, J; Garcia, P J V; Whelan, E; Antoniucci, S; Podio, L

    2016-01-01

    Z CMa is a complex pre-main sequence binary with a current separation of 100 mas, known to consist of an FU Orionis star (SE component) and an embedded Herbig Be star (NW component). Immediately when the late-2008 outburst of Z CMa was announced to the community, we initiated a high angular resolution imaging campaign with VLT/NaCo, Keck/NIRC2, VLT/SINFONI, and Keck/OSIRIS which aimed at characterizing the outburst of both components of the system in the near-infrared. We confirm that the NW star dominates the system flux in the 1.1-3.8 microns range and is responsible for the photometric outburst. We extract the first medium-resolution (R=2000-4000) near-infrared (1.1-2.4 microns) spectra of the individual components during and after the outburst. The SE component has a spectrum typical of FU Orionis objects. The NW component spectrum is characteristic of embedded outbursting protostars and EX Or objects. It displays numerous emission lines during the outburst whose intensity correlates with the system activ...

  8. Fact versus formula in the power spectra of complex systems

    Science.gov (United States)

    Watkins, Nick

    2016-04-01

    More than 100 years ago, Thomson and Tait's classic "Treatise on Natural Philosophy" cautioned its readers against "considering the formula and not the fact as physical reality". Deciding what the facts actually _were, however, was left as an exercise for the reader ... Complex systems offer many examples [1] of the ambiguity Thomson and Tait were trying to point out. This presentation will be about a formula-the "1/f" spectral shape seen in many areas of physics including climate science; and an empirical fact-the growth of rescaled range originally seen in river time series and now known as the Hurst effect. It is well known that Mandelbrot kicked off the study of long range dependence (LRD) in the mid 1960s [2] with a stationary model for 1/f noise and the Hurst effect. This fractional Gaussian model is now so well known that it is often seen as synonymous with both 1/f noise and the Hurst effect. However Mandelbrot himself was aware that there were other models that produced 1/f noise, including a family [3-6] which he called "conditionally stationary", with power law distributions of times between switching of states. Late in his life he re-emphasised the clear contrasts between their behaviour and that of fGn. I will explain why these other models are also physically interesting, and will show why real systems including climate examples may potentially map more closely to one or the other, or may in fact combine both aspects. I will also discuss his proposals for distinguishing between the models and how they may be implemented. [1] Watkins, Bunched Black Swans, Geophys Res. Lett, 2013 [2] Graves et al, A Brief History of Long Memory, arXiv:1406.6018 [stat.OT] [3] Berger and Mandelbrot, "A New Model for Error Clustering in Telephone Circuits", IBM Technical Journal, July 1963. [4] Mandelbrot, "Self-similar error clusters in communications systems, and the concept of conditional stationarity", IEEE Trans. on Communications Technology, COM-13, 71-90, 1965. [5

  9. Intrinsic dendritic filtering gives low-pass power spectra of local field potentials

    DEFF Research Database (Denmark)

    Lindén, Henrik; Pettersen, Klas H; Einevoll, Gaute T

    2010-01-01

    spectra, even for frequencies as low as 10 Hz for the example pyramidal neuron. Further, the LFP signal is found to depend sensitively on both the recording position and the position of the synaptic input: the LFP power spectra recorded close to the active synapse are typically found to be less low...... contributions to the LFP from a single layer-5 pyramidal neuron and a single layer-4 stellate neuron receiving synaptic input. An intrinsic dendritic low-pass filtering effect of the LFP signal, previously demonstrated for extracellular signatures of action potentials, is seen to strongly affect the LFP power...

  10. Soil-structure interaction and floor response spectra in nuclear power plants

    International Nuclear Information System (INIS)

    A survey of the methods of analysis for soil-structure interaction problems and the methods for generation of floor response spectra in nuclear power plants is presented. The impedance and the lumped parameter method, from one side, and the finite element method, from the other, are reviewed. A particular formulation of the finite element method is presented. The three methods for generating floor response spectra (semi-empirical, time-history, and stochastic) are presented and results obtained by the time-history and the stochastic methods are compared, indicating the actual, trend to use stochastic methods in the seismic analysis and design of nuclear power plants. (Author)

  11. A simple interpolation formula for the spectra of power-law and log potentials

    International Nuclear Information System (INIS)

    Non-relativistic potential models are considered of the pure power V(r)sgn(q)rq and logarithmic V(r)=ln(r) types. It is shown that, from the spectral viewpoint, these potentials are actually in a single family. The log spectra can be obtained from the power spectra by the limit q→0 taken in a smooth representation Pnl(q) for the eigenvalues Enl(q). A simple approximation formula is developed which yields the first 30 eigenvalues with an error less than 0.04%. (author)

  12. Fourier power spectra of the geomagnetic field for circular paths on the Earth's surface.

    Science.gov (United States)

    Alldredge, L.R.; Benton, E.R.

    1986-01-01

    The Fourier power spectra of geomagnetic component values, synthesized from spherical harmonic models, have been computed for circular paths on the Earth's surface. They are not found to be more useful than is the spectrum of magnetic energy outside the Earth for the purpose of separating core and crustal sources of the geomagnetic field. The Fourier power spectra of N and E geomagnetic components along nearly polar great circle paths exhibit some unusual characteristics that are explained by the geometric perspective of Fourier series on spheres developed by Yee. -Authors

  13. Effect of microwave power on EPR spectra of natural and synthetic dental biocompatible materials

    OpenAIRE

    Adamczyk Jakub; Ramos Paweł; Pilawa Barbara

    2015-01-01

    Paramagnetic centers in the two exemplary synthetic and natural dental biocompatible materials applied in implantology were examined by the use of an X-band (9.3 GHz) electron paramagnetic resonance (EPR) spectroscopy. The EPR spectra were measured in the range of microwave power 2.2–70 mW. The aims of this work were to compare paramagnetic centers concentrations in different dental biocompatible materials and to determine the effect of microwave power on parameters of their EPR spectra. It i...

  14. From Nonparametric Power Spectra to Inference About Cosmological Parameters: A Random Walk in the Cosmological Parameter Space

    CERN Document Server

    Aghamousa, Amir; Souradeep, Tarun

    2012-01-01

    What do the data, as distinguished from cosmological models, tell us about cosmological parameters that determined the model of the universe? In this paper, we address this question in the context of the WMAP angular power spectra for the cosmic microwave background radiation. Nonparametric methods are ideally suited for this purpose because they are model-independent by construction, and therefore allow inferences that are as data-driven as possible. Our analysis is based on a nonparametric fit to the WMAP 7-year power spectrum data, with uncertainties characterized in the form of a high-dimensional confidence set centered at this fit. For the purpose of making inferences about cosmological parameters, we have devised a sampling method to explore the projection of this confidence set around the nonparametric fit, into the space of seven cosmological parameters Omega_b, Omega_c, Omega_Lambda, Omega_k, H_0, n_s, tau). Our sampling method is justified by its computational simplicity, and validated by the fact t...

  15. Power spectra in the eikonal approximation with adiabatic and non-adiabatic modes

    CERN Document Server

    Bernardeau, Francis; Vernizzi, Filippo

    2012-01-01

    We use the so-called eikonal approximation, recently introduced in the context of cosmological perturbation theory, to compute power spectra for multi-component fluids. We demonstrate that, at any given order in standard perturbation theory, multi-point power spectra do not depend on the large-scale adiabatic modes. Moreover, we employ perturbation theories to decipher how non-adiabatic modes, such as a relative velocity between two different components, damp the small-scale matter power spectrum, a mechanism recently described in the literature. In particular, we do an explicit calculation at 1-loop order of this effect. While the 1-loop result eventually breaks down, we show how the damping effect can be fully captured by the help of the eikonal approximation. A relative velocity not only induces mode damping but also creates large-scale anisotropic modulations of the matter power spectrum amplitude. We illustrate this for the Local Group environment.

  16. A database for estimating organ dose for coronary angiography and brain perfusion CT scans for arbitrary spectra and angular tube current modulation

    International Nuclear Information System (INIS)

    Purpose: The purpose of this study was to develop a database for estimating organ dose in a voxelized patient model for coronary angiography and brain perfusion CT acquisitions with any spectra and angular tube current modulation setting. The database enables organ dose estimation for existing and novel acquisition techniques without requiring Monte Carlo simulations. Methods: The study simulated transport of monoenergetic photons between 5 and 150 keV for 1000 projections over 360° through anthropomorphic voxelized female chest and head (0° and 30° tilt) phantoms and standard head and body CTDI dosimetry cylinders. The simulations resulted in tables of normalized dose deposition for several radiosensitive organs quantifying the organ dose per emitted photon for each incident photon energy and projection angle for coronary angiography and brain perfusion acquisitions. The values in a table can be multiplied by an incident spectrum and number of photons at each projection angle and then summed across all energies and angles to estimate total organ dose. Scanner-specific organ dose may be approximated by normalizing the database-estimated organ dose by the database-estimated CTDIvol and multiplying by a physical CTDIvol measurement. Two examples are provided demonstrating how to use the tables to estimate relative organ dose. In the first, the change in breast and lung dose during coronary angiography CT scans is calculated for reduced kVp, angular tube current modulation, and partial angle scanning protocols relative to a reference protocol. In the second example, the change in dose to the eye lens is calculated for a brain perfusion CT acquisition in which the gantry is tilted 30° relative to a nontilted scan. Results: Our database provides tables of normalized dose deposition for several radiosensitive organs irradiated during coronary angiography and brain perfusion CT scans. Validation results indicate total organ doses calculated using our database are

  17. A database for estimating organ dose for coronary angiography and brain perfusion CT scans for arbitrary spectra and angular tube current modulation

    Energy Technology Data Exchange (ETDEWEB)

    Rupcich, Franco; Badal, Andreu; Kyprianou, Iacovos; Schmidt, Taly Gilat [Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin 53233 (United States); Division of Imaging and Applied Mathematics (OSEL/CDRH), US Food and Drug Administration, Silver Spring, Maryland 20905 (United States); Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin 53233 (United States)

    2012-09-15

    Purpose: The purpose of this study was to develop a database for estimating organ dose in a voxelized patient model for coronary angiography and brain perfusion CT acquisitions with any spectra and angular tube current modulation setting. The database enables organ dose estimation for existing and novel acquisition techniques without requiring Monte Carlo simulations. Methods: The study simulated transport of monoenergetic photons between 5 and 150 keV for 1000 projections over 360 Degree-Sign through anthropomorphic voxelized female chest and head (0 Degree-Sign and 30 Degree-Sign tilt) phantoms and standard head and body CTDI dosimetry cylinders. The simulations resulted in tables of normalized dose deposition for several radiosensitive organs quantifying the organ dose per emitted photon for each incident photon energy and projection angle for coronary angiography and brain perfusion acquisitions. The values in a table can be multiplied by an incident spectrum and number of photons at each projection angle and then summed across all energies and angles to estimate total organ dose. Scanner-specific organ dose may be approximated by normalizing the database-estimated organ dose by the database-estimated CTDI{sub vol} and multiplying by a physical CTDI{sub vol} measurement. Two examples are provided demonstrating how to use the tables to estimate relative organ dose. In the first, the change in breast and lung dose during coronary angiography CT scans is calculated for reduced kVp, angular tube current modulation, and partial angle scanning protocols relative to a reference protocol. In the second example, the change in dose to the eye lens is calculated for a brain perfusion CT acquisition in which the gantry is tilted 30 Degree-Sign relative to a nontilted scan. Results: Our database provides tables of normalized dose deposition for several radiosensitive organs irradiated during coronary angiography and brain perfusion CT scans. Validation results indicate

  18. WIND TURBINE SIMULATION FOR TIME-DEPENDENT ANGULAR VELOCITY, TORQUE, AND POWER

    OpenAIRE

    YONGHO LEE

    2013-01-01

    Albeit the prediction of time-dependent properties of wind turbines is not required for common applications, such time-varying properties may play an important role during transient operations occurring due to various reasons. Unlike the conventional numerical simulations of wind turbine rotations that fix the angular velocity to an assumed value, the present work numerically simulates the time-varying turbine rotation in both unsteady and quasi-steady operation regimes, without specifying th...

  19. Multifractal analysis of normal RR heart-interbeat signals in power spectra ranges

    OpenAIRE

    Makowiec, Danuta; Dudkowska, Aleksandra; Galaska, Rafal; Rynkiewicz, Andrzej

    2007-01-01

    Power spectral density is an accepted measure of heart rate variability. Two estimators of multifractal properties: Wavelet Transform Modulus Maxima and Multifractal Detrended Fluctuation Analysis are used to investigate multifractal properties for the three strongly physiologically grounded components of power spectra: low frequency (LF), very low frequency (VLF) and ultra low frequency (ULV). Circadian rhythm changes are examined by discrimination of daily activity from nocturnal rest. Inve...

  20. Exact results for noise power spectra in linear biochemical reaction networks

    OpenAIRE

    Warren, Patrick B.; Tanase-Nicola, Sorin; Wolde, Pieter Rein ten

    2005-01-01

    We present a simple method for determining the exact noise power spectra in linear chemical reaction networks. We apply the method to networks which are representative of biochemical processes such as gene expression and signal detection. Our results clarify how noise is transmitted by signal detection motifs, and indicate how to coarse-grain networks by the elimination of fast reactions.

  1. Damping and power spectra of quasi-periodic intensity disturbances above a solar polar coronal hole

    CERN Document Server

    Jiao, Fangran; Huang, Zhenghua; Li, Bo; Fu, Hui; Yuan, Ding; Chandrashekhar, Kalugodu

    2016-01-01

    We study intensity disturbances above a solar polar coronal hole seen in the AIA 171 \\AA\\ and 193 \\AA\\ passbands, aiming to provide more insights into their physical nature. The damping and power spectra of the intensity disturbances with frequencies from 0.07 mHz to 10.5 mHz are investigated. The damping of the intensity disturbances tends to be stronger at lower frequencies, and their damping behavior below 980" (for comparison, the limb is at 945") is different from what happens above. No significant difference is found between the damping of the intensity disturbances in the AIA 171 \\AA\\ and that in the AIA 193 \\AA. The indices of the power spectra of the intensity disturbances are found to be slightly smaller in the AIA 171 \\AA\\ than in the AIA 193 \\AA, but the difference is within one sigma deviation. An additional enhanced component is present in the power spectra in a period range of 8--40 minutes at lower heights. While the power spectra of spicule is highly correlated with its associated intensity d...

  2. Important influence of respiration on human R-R interval power spectra is largely ignored

    Science.gov (United States)

    Brown, T. E.; Beightol, L. A.; Koh, J.; Eckberg, D. L.

    1993-01-01

    Frequency-domain analyses of R-R intervals are used widely to estimate levels of autonomic neural traffic to the human heart. Because respiration modulates autonomic activity, we determined for nine healthy subjects the influence of breathing frequency and tidal volume on R-R interval power spectra (fast-Fourier transform method). We also surveyed published literature to determine current practices in this burgeoning field of scientific inquiry. Supine subjects breathed at rates of 6, 7.5, 10, 15, 17.1, 20, and 24 breaths/min and with nominal tidal volumes of 1,000 and 1,500 ml. R-R interval power at respiratory and low (0.06-0.14 Hz) frequencies declined significantly as breathing frequency increased. R-R interval power at respiratory frequencies was significantly greater at a tidal volume of 1,500 than 1,000 ml. Neither breathing frequency nor tidal volume influenced average R-R intervals significantly. Our review of studies reporting human R-R interval power spectra showed that 51% of the studies controlled respiratory rate, 11% controlled tidal volume, and 11% controlled both respiratory rate and tidal volume. The major implications of our analyses are that breathing parameters strongly influence low-frequency as well as respiratory frequency R-R interval power spectra and that this influence is largely ignored in published research.

  3. Generation of floor response spectra for a model structure of nuclear power plant

    International Nuclear Information System (INIS)

    The importance of Nuclear power plants and the consequences of a nuclear accident require that the nuclear structures be designed for the most severe environmental conditions. Earthquakes constitutes major design consideration for the system, structures and equipment of a nuclear power plant. The design of structures on ground is based on the ground response spectra. Many important parts of a nuclear power plant facility are attached to the principal parts of the structure and respond in a manner determined by the structural response rather than by the general ground motion to which the structure is supported. Hence the seismic response of equipment is generally based on the response spectrum of the floor on which it is mounted. In this paper such floor response spectra have been generated at different nodes of a chosen model structure of a nuclear power plant. In the present study a detailed nonlinear time history analysis has been carried out on the mathematical model of the chosen Nuclear Power Plant model structure with the spectrum compatible time history. The acceleration response results of the time history analysis has been used in the spectral analysis and the response spectra are generated. Further peak broadening has been done to account for uncertainties in the material properties and soil characteristics. (author)

  4. Symmetry-forbidden electronic state interference observed in angularly resolved NO+ (A 1Π) deexcitation spectra of the N*O(2σ(-1)2π(2)) resonance.

    Science.gov (United States)

    Demekhin, Ph V; Petrov, I D; Sukhorukov, V L; Kielich, W; Knie, A; Schmoranzer, H; Ehresmann, A

    2010-06-18

    Quantum mechanical interference between different pathways in inner-shell resonance excitation-deexcitation spectra is a realization of a double-slit experiment on the atomic scale. If the intermediate inner-shell resonances are of different symmetries, this interference is symmetry forbidden in the solid-angle-averaged or magic-angle-recorded deexcitation spectra. It has, however, been suggested that interference may by observable in off-magic-angle-recorded spectra. Here, we prove this interference in angularly resolved deexcitation spectra of the 2σ(-1)2π(2)(2Δ,2Σ±) resonances of N*O by a quantitative comparison between ab initio calculations and experiment. PMID:20867297

  5. Method and experience of computer-aided spectra control in the Greifswald nuclear power station

    International Nuclear Information System (INIS)

    At the GDR nuclear power plant in Greifswald with 4 VVER-440-type PWRs, noise analysis systems have been operating since 1975. They consist of measuring lines for incore and outcore neutron flux, acceleration from pressure vessel, main pumps and steam generators and pressure from the primary circuit. For the surveillance of these signals a method is developed for detecting real anomalies with the help of the auto power spectra of the signals. During a learning period the system estimates a mean auto power spectrum and mean values with standard deviations of the rms values in each region. These data are used for the calculation of limits to compare actual spectra with a basic and a trend feature, because after the learning period every APSD, which is classified as a normal APSD, is used for further learning. (author)

  6. Effect of microwave power on EPR spectra of natural and synthetic dental biocompatible materials

    Directory of Open Access Journals (Sweden)

    Adamczyk Jakub

    2015-07-01

    Full Text Available Paramagnetic centers in the two exemplary synthetic and natural dental biocompatible materials applied in implantology were examined by the use of an X-band (9.3 GHz electron paramagnetic resonance (EPR spectroscopy. The EPR spectra were measured in the range of microwave power 2.2–70 mW. The aims of this work were to compare paramagnetic centers concentrations in different dental biocompatible materials and to determine the effect of microwave power on parameters of their EPR spectra. It is the very first and innovatory examination of paramagnetic centers in these materials. It was pointed out that paramagnetic centers existed in both natural (~1018 spin/g and synthetic (~1019 spin/g dental biocompatible materials, but the lower free radical concentration characterized the natural sample. Continuous microwave saturation of EPR spectra indicated that faster spin-lattice relaxation processes existed in synthetic dental biocompatible materials than in natural material. Linewidths (ΔBpp of the EPR spectra of the natural dental material slightly increased for the higher microwave powers. Such effect was not observed for the synthetic material. The broad EPR lines (ΔBpp: 2.4 mT, 3.9 mT, were measured for the natural and synthetic dental materials, respectively. Probably strong dipolar interactions between paramagnetic centers in the studied samples may be responsible for their line broadening. EPR spectroscopy is the useful experimental method in the examination of paramagnetic centers in dental biocompatible materials.

  7. Measuring the galaxy power spectrum with multiresolution decomposition -- II. diagonal and off-diagonal power spectra of the LCRS galaxies

    CERN Document Server

    Yang, X H; Chu Yao Quan; Fang, L Z; Yang, Xiao-Hu; Feng, Long-Long; Chu, Yao-Quan; Fang, Li-Zhi

    2001-01-01

    The power spectrum estimator based on the discrete wavelet transform (DWT) for 3-dimensional samples has been studied. The DWT estimator for multi-dimensional samples provides two types of spectra with respect to diagonal and off-diagonal modes, which are very flexible to deal with configuration-related problems in the power spectrum detection. With simulation samples and mock catalogues of the Las Campanas redshift survey (LCRS), we show (1) the slice-like geometry of the LCRS doesn't affect the off-diagonal power spectrum with ``slice-like'' mode; (2) the Poisson sampling with the LCRS selection function doesn't cause more than 1-$\\sigma$ error in the DWT power spectrum; and (3) the powers of peculiar velocity fluctuations, which cause the redshift distortion, are approximately scale-independent. These results insure that the uncertainties of the power spectrum measurement are under control. The scatter of the DWT power spectra of the six strips of the LCRS survey is found to be rather small. It is less tha...

  8. Association of Electroencephalography (EEG) Power Spectra with Corneal Nerve Fiber Injury in Retinoblastoma Patients.

    Science.gov (United States)

    Liu, Jianliang; Sun, Juanjuan; Diao, Yumei; Deng, Aijun

    2016-01-01

    BACKGROUND In our clinical experience we discovered that EEG band power may be correlated with corneal nerve injury in retinoblastoma patients. This study aimed to investigate biomarkers obtained from electroencephalography (EEG) recordings to reflect corneal nerve injury in retinoblastoma patients. MATERIAL AND METHODS Our study included 20 retinoblastoma patients treated at the Department of Ophthalmology, Affiliated Hospital of Weifang Medical University between 2010 and 2014. Twenty normal individuals were included in the control group. EEG activity was recorded continuously with 32 electrodes using standard EEG electrode placement for detecting EEG power. A cornea confocal microscope was used to examine corneal nerve injury in retinoblastoma patients and normal individuals. Spearman rank correlation analysis was used to analyze the correlation between corneal nerve injury and EEG power changes. The sensitivity and specificity of changed EEG power in diagnosis of corneal nerve injury were also analyzed. RESULTS The predominantly slow EEG oscillations changed gradually into faster waves in retinoblastoma patients. The EEG pattern in retinoblastoma patients was characterized by a distinct increase of delta (PEEG spectra power and negatively correlated with theta EEG spectra power. The diagnostic sensitivity and specificity by compounding in the series were 60% and 67%, respectively. CONCLUSIONS Changes in delta and theta of EEG appear to be associated with occurrence of corneal nerve injury. Useful information can be provided for evaluating corneal nerve damage in retinoblastoma patients through analyzing EEG power bands. PMID:27592207

  9. Older men are more fatigable than young when matched for maximal power and knee extension angular velocity is unconstrained.

    Science.gov (United States)

    Dalton, Brian H; Power, Geoffrey A; Paturel, Justin R; Rice, Charles L

    2015-06-01

    The underlying factors related to the divergent findings of age-related fatigue for dynamic tasks are not well understood. The purpose here was to investigate age-related fatigability and recovery between a repeated constrained (isokinetic) and an unconstrained velocity (isotonic) task, in which participants performed fatiguing contractions at the velocity (isokinetic) or resistance (isotonic) corresponding with maximal power. To compare between tasks, isotonic torque-power relationships were constructed prior to and following both fatiguing tasks and during short-term recovery. Contractile properties were recorded from 9 old (~75 years) and 11 young (~25 years) men during three testing sessions. In the first session, maximal power was assessed, and sessions 2 and 3 involved an isokinetic or an isotonic concentric fatigue task performed until maximal power was reduced by 40 %. Compared with young, the older men performed the same number of contractions to task failure for the isokinetic task (~45 contractions), but 20 % fewer for the isotonic task (p < 0.05). Regardless of age and task, maximal voluntary isometric contraction strength, angular velocity, and power were reduced by ~30, ~13, and ~25 %, respectively, immediately following task failure, and only isometric torque was not recovered fully by 10 min. In conclusion, older men are more fatigable than the young when performing a repetitive maximal dynamic task at a relative resistance (isotonic) but not an absolute velocity (isokinetic), corresponding to maximal power. PMID:25943700

  10. Measurement of CIB power spectra with CAM-SPEC from Planck HFI maps

    Science.gov (United States)

    Mak, Suet Ying; Challinor, Anthony; Efstathiou, George; Lagache, Guilaine

    2015-08-01

    We present new measurements of the cosmic infrared background (CIB) anisotropies and its first likelihood using Planck HFI data at 353, 545, and 857 GHz. The measurements are based on cross-frequency power spectra and likelihood analysis using the CAM-SPEC package, rather than map based template removal of foregrounds as done in previous Planck CIB analysis. We construct the likelihood of the CIB temperature fluctuations, an extension of CAM-SPEC likelihood as used in CMB analysis to higher frequency, and use it to drive the best estimate of the CIB power spectrum over three decades in multiple moment, l, covering 50 ≤ l ≤ 2500. We adopt parametric models of the CIB and foreground contaminants (Galactic cirrus, infrared point sources, and cosmic microwave background anisotropies), and calibrate the dataset uniformly across frequencies with known Planck beam and noise properties in the likelihood construction. We validate our likelihood through simulations and extensive suite of consistency tests, and assess the impact of instrumental and data selection effects on the final CIB power spectrum constraints. Two approaches are developed for interpreting the CIB power spectrum. The first approach is based on simple parametric model which model the cross frequency power using amplitudes, correlation coefficients, and known multipole dependence. The second approach is based on the physical models for galaxy clustering and the evolution of infrared emission of galaxies. The new approaches fit all auto- and cross- power spectra very well, with the best fit of χ2ν = 1.04 (parametric model). Using the best foreground solution, we find that the cleaned CIB power spectra are in good agreement with previous Planck and Herschel measurements.

  11. In-cabinet response spectra development for nuclear power plant motor control centers

    International Nuclear Information System (INIS)

    Electrical Components within older nuclear power plant Motor Control Centers (MCC) are becoming obsolete and may require replacement. Many of these components are safety-related and are required to remain functional during and after a Safe Shutdown Earthquake (SSE). New component seismic qualification is typically demonstrated per IEEE 344 by shake table testing the components. To validate the shake table test data, the Test Response Spectra (TRS) must be shown to envelope the Required Response Spectra (RRS) of the component. Due to the panel's flexibility, the panel will amplify the floor response spectra. The amplification factor is dependent on the panel geometry, mass magnitude, and location of electrical components inside the panel. A two step approach is presented to develop the in-cabinet response spectra (i.e., RRS) at the individual electrical component's location. The modal properties of the panel are first obtained using finite element and modal analysis techniques. The modal properties, mass of the component, and the base floor response spectra are then used as input to ABB Impell's FLORA program. The FLORA program generates the RRS curves for the composite panel component system using modal synthesis and perturbation techniques taking into account the oscillator/panel coincident frequencies and the interaction between the electrical component and the MCC panel. In one case, this approach yielded a realistic Amplification Factor of 0.84 compared to factors of 3 and higher from more conservative methods

  12. Formation of Hard Power-laws in the Energetic Particle Spectra Resulting from Relativistic Magnetic Reconnection

    CERN Document Server

    Guo, Fan; Daughton, William; Liu, Yi-Hsin

    2014-01-01

    Using fully kinetic simulations, we demonstrate that magnetic reconnection in relativistic plasmas is highly efficient at accelerating particles through a first-order Fermi process resulting from the curvature drift of particles in the direction of the electric field induced by the relativistic flows. This mechanism gives to the formation of hard power-law spectra in parameter regimes where the energy density in the reconnecting field exceeds the rest mass energy density $\\sigma \\equiv B^2/(4 \\pi n m_ec^2) > 1$ and when the system size is sufficiently large. In the limit $\\sigma \\gg 1$, the spectral index approaches $p=1$ and most of the available energy is converted into non-thermal particles. A simple analytic model is proposed which explains these key features and predicts a general condition under which hard power-law spectra will be generated from magnetic reconnection.

  13. Formation of Hard Power-laws in the Energetic Particle Spectra Resulting from Relativistic Magnetic Reconnection

    OpenAIRE

    Guo, Fan; Li, Hui; Daughton, William; Liu, Yi-Hsin

    2014-01-01

    Using fully kinetic simulations, we demonstrate that magnetic reconnection in relativistic plasmas is highly efficient at accelerating particles through a first-order Fermi process resulting from the curvature drift of particles in the direction of the electric field induced by the relativistic flows. This mechanism gives rise to the formation of hard power-law spectra in parameter regimes where the energy density in the reconnecting field exceeds the rest mass energy density $\\sigma \\equiv B...

  14. Logarithmic divergences in the k-inflationary power spectra computed through the uniform approximation

    Science.gov (United States)

    Alinea, Allan L.; Kubota, Takahiro; Naylor, Wade

    2016-02-01

    We investigate a calculation method for solving the Mukhanov-Sasaki equation in slow-roll k-inflation based on the uniform approximation (UA) in conjunction with an expansion scheme for slow-roll parameters with respect to the number of e-folds about the so-called turning point. Earlier works on this method have so far gained some promising results derived from the approximating expressions for the power spectra among others, up to second order with respect to the Hubble and sound flow parameters, when compared to other semi-analytical approaches (e.g., Green's function and WKB methods). However, a closer inspection is suggestive that there is a problem when higher-order parts of the power spectra are considered; residual logarithmic divergences may come out that can render the prediction physically inconsistent. Looking at this possibility, we map out up to what order with respect to the mentioned parameters several physical quantities can be calculated before hitting a logarithmically divergent result. It turns out that the power spectra are limited up to second order, the tensor-to-scalar ratio up to third order, and the spectral indices and running converge to all orders. This indicates that the expansion scheme is incompatible with the working equations derived from UA for the power spectra but compatible with that of the spectral indices. For those quantities that involve logarithmically divergent terms in the higher-order parts, existing results in the literature for the convergent lower-order parts calculated in the equivalent fashion should be viewed with some caution; they do not rest on solid mathematical ground.

  15. The nonlinear matter and velocity power spectra in f(R) gravity

    CERN Document Server

    Li, Baojiu; Koyama, Kazuya; Zhao, Gong-Bo; Jennings, Elise; Baugh, Carlton M

    2013-01-01

    We study the matter and velocity divergence power spectra in a f(R) gravity theory and their time evolution measured from several large-volume N-body simulations with varying box sizes and resolution. We find that accurate prediction of the matter power spectrum in f(R) gravity places stronger requirements on the simulation than is the case with LCDM, because of the nonlinear nature of the fifth force. Linear perturbation theory is shown to be a poor approximation for the f(R) models, except when the chameleon effect is very weak. We show that the relative differences from the fiducial LCDM model are much more pronounced in the nonlinear tail of the velocity divergence power spectrum than in the matter power spectrum, which suggests that future surveys which target the collection of peculiar velocity data will open new opportunities to constrain modified gravity theories. A close investigation of the time evolution of the power spectra shows that there is a pattern in the evolution history, which can be expla...

  16. Methods for surveillance of noise signals from nuclear power plants using auto power spectra

    International Nuclear Information System (INIS)

    A survey of methods for noise diagnostics applied in the nuclear power plant 'Bruno Leuschner' for surveillance of primary circuit is given. Considering a special example concept of surveillance of standard deviations is explained. (author)

  17. A Measurement of the Angular Power Spectrum of the CMB Temperature Anisotropy from the 2003 Flight of Boomerang

    CERN Document Server

    Jones, W C; Bock, J; Bond, J; Borrill, J; Boscaleri, A; Cabella, P; Contaldi, C; Crill, B; De Bernardis, P; De Gasperis, G; De Oliveira-Costa, A; De Troia, G; Stefano, G D; Hivon, E; Jaffe, A; Kisner, T; Lange, A; MacTavish, C; Masi, S; Mauskopf, P; Melchiorri, A; Montroy, T; Natoli, P; Netterfield, C B; Pascale, E; Piacentini, F; Pogosyan, D; Polenta, G; Prunet, S; Ricciardi, S; Romeo, G; Ruhl, J; Santini, P; Tegmark, M; Veneziani, M; Vittorio, N

    2005-01-01

    We report on observations of the Cosmic Microwave Background (CMB) obtained during the January 2003 flight of Boomerang . These results are derived from 195 hours of observation with four 145 GHz Polarization Sensitive Bolometer (PSB) pairs, identical in design to the four 143 GHz Planck HFI polarized pixels. The data include 75 hours of observations distributed over 1.84% of the sky with an additional 120 hours concentrated on the central portion of the field, itself representing 0.22% of the full sky. From these data we derive an estimate of the angular power spectrum of temperature fluctuations of the CMB in 24 bands over the multipole range (50 900). As a consistency check, the collaboration has performed two fully independent analyses of the time ordered data, which are found to be in excellent agreement.

  18. Rejuvenating the Matter Power Spectrum III: The Cosmology Sensitivity of Gaussianized Power Spectra

    CERN Document Server

    Neyrinck, Mark C

    2011-01-01

    It was recently shown that applying a Gaussianizing transform, such as a logarithm, to the nonlinear matter density field extends the range of scales, by a factor of a few smaller, where the power spectrum excels at describing the ?field. Such a transform dramatically reduces nonlinearities in both the covariance and the shape of the power spectrum. Here, analyzing Coyote Universe real-space dark matter density fields, we investigate the consequences of these transforms for cosmological parameter estimation. The power spectrum of the log-density provides the tightest cosmological parameter error bars (marginalized or not), giving a factor of 2-3 improvement over the conventional power spectrum in all five parameters tested. For the tilt, n_s, the improvement reaches a factor of 5. Similar constraints are achieved if the log-density power spectrum and conventional power spectrum are analyzed together. Rank-order Gaussianization seems just as useful as a log transform to constrain n_s, but not other parameters....

  19. An accurate halo model for fitting non-linear cosmological power spectra and baryonic feedback models

    CERN Document Server

    Mead, Alexander; Heymans, Catherine; Joudaki, Shahab; Heavens, Alan

    2015-01-01

    We present an optimised variant of the halo model, designed to produce accurate matter power spectra well into the non-linear regime for a wide range of cosmological models. To do this, we introduce physically-motivated free parameters into the halo-model formalism and fit these to data from high-resolution N-body simulations. For a variety of $\\Lambda$CDM and $w$CDM models the halo-model power is accurate to $\\simeq 5$ per cent for $k\\leq 10h\\,\\mathrm{Mpc}^{-1}$ and $z\\leq 2$. We compare our results with recent revisions of the popular HALOFIT model and show that our predictions are more accurate. An advantage of our new halo model is that it can be adapted to account for the effects of baryonic feedback on the power spectrum. We demonstrate this by fitting the halo model to power spectra from the OWLS hydrodynamical simulation suite via parameters that govern halo internal structure. We are able to fit all feedback models investigated at the 5 per cent level using only two free parameters, and we place limi...

  20. Effect of lensing non-Gaussianity on the CMB power spectra

    CERN Document Server

    Lewis, Antony

    2016-01-01

    Observed CMB anisotropies are lensed, and the lensed power spectra can be calculated accurately assuming the lensing deflections are Gaussian. However, the lensing deflections are actually slightly non-Gaussian due to both non-linear large-scale structure growth and post-Born corrections. We calculate the leading correction to the lensed CMB power spectra from the non-Gaussianity, which is determined by the lensing bispectrum. The lowest-order result gives $\\sim 0.3\\%$ corrections to the BB and EE polarization spectra on small-scales, however we show that the effect on EE is reduced by about a factor of two by higher-order Gaussian lensing smoothing, rendering the total effect safely negligible for the foreseeable future. We give a simple analytic model for the signal expected from skewness of the large-scale lensing field; the effect is similar to a net demagnification and hence a small change in acoustic scale (and therefore out of phase with the dominant lensing smoothing that predominantly affects the pea...

  1. Double power-law spectra of energetic electrons in the Earth magnetotail

    Directory of Open Access Journals (Sweden)

    A. V. Artemyev

    2013-01-01

    Full Text Available In this paper, we consider electron acceleration in the vicinity of X-line and corresponding formation of energy spectra. We develop an analytical model including the effect of the electron trapping by electrostatic fields and surfing acceleration. Speiser, Fermi and betatron mechanisms of acceleration are also taken into account. Analytical estimates are verified by the numerical integration of electron trajectories. The surfing mechanism and adiabatic heating are responsible for the formation of the double power-law spectrum in agreement with the previous studies. The energy of the spectrum knee is about ~150 keV for typical conditions of the Earth magnetotail. We compare theoretical results with the spacecraft observations of electron double power-law spectra in the magnetotail and demonstrate that the theory is able to describe typical energy of the spectra knee. We also estimate the role of relativistic effects and magnetic field fluctuations on the electron acceleration: the acceleration is more stable for relativistic electrons, while fluctuations of the magnetic field cannot significantly decrease the gained energy for typical magnetospheric conditions.

  2. Accurate halo-model matter power spectra with dark energy, massive neutrinos and modified gravitational forces

    CERN Document Server

    Mead, Alexander; Lombriser, Lucas; Peacock, John; Steele, Olivia; Winther, Hans

    2016-01-01

    We present an accurate non-linear matter power spectrum prediction scheme for a variety of extensions to the standard cosmological paradigm, which uses the tuned halo model previously developed in Mead (2015b). We consider dark energy models that are both minimally and non-minimally coupled, massive neutrinos and modified gravitational forces with chameleon and Vainshtein screening mechanisms. In all cases we compare halo-model power spectra to measurements from high-resolution simulations. We show that the tuned halo model method can predict the non-linear matter power spectrum measured from simulations of parameterised $w(a)$ dark energy models at the few per cent level for $k0.5\\,h\\mathrm{Mpc}^{-1}$. An updated version of our publicly available HMcode can be found at https://github.com/alexander-mead/HMcode

  3. Accurate halo-model matter power spectra with dark energy, massive neutrinos and modified gravitational forces

    Science.gov (United States)

    Mead, A. J.; Heymans, C.; Lombriser, L.; Peacock, J. A.; Steele, O. I.; Winther, H. A.

    2016-06-01

    We present an accurate non-linear matter power spectrum prediction scheme for a variety of extensions to the standard cosmological paradigm, which uses the tuned halo model previously developed in Mead et al. We consider dark energy models that are both minimally and non-minimally coupled, massive neutrinos and modified gravitational forces with chameleon and Vainshtein screening mechanisms. In all cases, we compare halo-model power spectra to measurements from high-resolution simulations. We show that the tuned halo-model method can predict the non-linear matter power spectrum measured from simulations of parametrized w(a) dark energy models at the few per cent level for k 0.5 h Mpc-1. An updated version of our publicly available HMCODE can be found at https://github.com/alexander-mead/hmcode.

  4. Forward Modeling of Reduced Power Spectra From Three-Dimensional $\\mathbf{k}$-Space

    CERN Document Server

    von Papen, Michael

    2015-01-01

    We present results from a numerical forward model to evaluate one-dimensional reduced power spectral densities (PSD) from arbitrary energy distributions in $\\mathbf{k}$-space. In this model, we can separately calculate the diagonal elements of the spectral tensor for incompressible axisymmetric turbulence with vanishing helicity. Given a critically balanced turbulent cascade with $k_\\|\\sim k_\\perp^\\alpha$ and $\\alpha<1$, we explore the implications on the reduced PSD as a function of frequency. The spectra are obtained under the assumption of Taylor's hypothesis. We further investigate the functional dependence of the spectral index $\\kappa$ on the field-to-flow angle $\\theta$ between plasma flow and background magnetic field from MHD to electron kinetic scales. We show that critically balanced turbulence asymptotically develops toward $\\theta$-independent spectra with a slope corresponding to the perpendicular cascade. This occurs at a transition frequency $f_{2D}(L,\\alpha,\\theta)$, which is analytically ...

  5. Musical rhythm spectra from Bach to Joplin obey a 1/f power law

    Science.gov (United States)

    Levitin, Daniel J.; Chordia, Parag; Menon, Vinod

    2012-01-01

    Much of our enjoyment of music comes from its balance of predictability and surprise. Musical pitch fluctuations follow a 1/f power law that precisely achieves this balance. Musical rhythms, especially those of Western classical music, are considered highly regular and predictable, and this predictability has been hypothesized to underlie rhythm's contribution to our enjoyment of music. Are musical rhythms indeed entirely predictable and how do they vary with genre and composer? To answer this question, we analyzed the rhythm spectra of 1,788 movements from 558 compositions of Western classical music. We found that an overwhelming majority of rhythms obeyed a 1/fβ power law across 16 subgenres and 40 composers, with β ranging from ∼0.5–1. Notably, classical composers, whose compositions are known to exhibit nearly identical 1/f pitch spectra, demonstrated distinctive 1/f rhythm spectra: Beethoven's rhythms were among the most predictable, and Mozart's among the least. Our finding of the ubiquity of 1/f rhythm spectra in compositions spanning nearly four centuries demonstrates that, as with musical pitch, musical rhythms also exhibit a balance of predictability and surprise that could contribute in a fundamental way to our aesthetic experience of music. Although music compositions are intended to be performed, the fact that the notated rhythms follow a 1/f spectrum indicates that such structure is no mere artifact of performance or perception, but rather, exists within the written composition before the music is performed. Furthermore, composers systematically manipulate (consciously or otherwise) the predictability in 1/f rhythms to give their compositions unique identities. PMID:22355125

  6. Circadian variation of EEG power spectra in NREM and REM sleep in humans: dissociation from body temperature

    Science.gov (United States)

    Dijk, D. J.

    1999-01-01

    In humans, EEG power spectra in REM and NREM sleep, as well as characteristics of sleep spindles such as their duration, amplitude, frequency and incidence, vary with circadian phase. Recently it has been hypothesized that circadian variations in EEG spectra in humans are caused by variations in brain or body temperature and may not represent phenomena relevant to sleep regulatory processes. To test this directly, a further analysis of EEG power spectra - collected in a forced desynchrony protocol in which sleep episodes were scheduled to a 28-h period while the rhythms of body temperature and plasma melatonin were oscillating at their near 24-h period - was carried out. EEG power spectra were computed for NREM and REM sleep occurring between 90-120 and 270-300 degrees of the circadian melatonin rhythm, i.e. just after the clearance of melatonin from plasma in the 'morning' and just after the 'evening' increase in melatonin secretion. Average body temperatures during scheduled sleep at these two circadian phases were identical (36.72 degrees C). Despite identical body temperatures, the power spectra in NREM sleep were very different at these two circadian phases. EEG activity in the low frequency spindle range was significantly and markedly enhanced after the evening increase in plasma melatonin as compared to the morning phase. For REM sleep, significant differences in power spectra during these two circadian phases, in particular in the alpha range, were also observed. The results confirm that EEG power spectra in NREM and REM sleep vary with circadian phase, suggesting that the direct contribution of temperature to the circadian variation in EEG power spectra is absent or only minor, and are at variance with the hypothesis that circadian variations in EEG power spectra are caused by variations in temperature.

  7. CMB Lensing Power Spectrum Biases from Galaxies and Clusters using High-angular Resolution Temperature Maps

    CERN Document Server

    van Engelen, A; Sehgal, N; Holder, G P; Zahn, O; Nagai, D

    2013-01-01

    The lensing power spectrum from cosmic microwave background (CMB) temperature maps will be measured with unprecedented precision with upcoming experiments, including upgrades to ACT and SPT. Achieving significant improvements in cosmological parameter constraints, such as percent level errors on sigma_8 and an uncertainty on the total neutrino mass of approximately 50 meV, requires percent level measurements of the CMB lensing power. This necessitates tight control of systematic biases. We study several types of biases to the temperature-based lensing reconstruction signal from foreground sources such as radio and infrared galaxies and the thermal Sunyaev-Zel'dovich effect from galaxy clusters. These foregrounds bias the CMB lensing signal due to their non-Gaussian nature. Using simulations as well as some analytical models we find that these sources can substantially impact the measured signal if left untreated. However, these biases can be brought to the percent level if one masks galaxies with fluxes at 15...

  8. Logarithmic divergences in the $k$-inflationary power spectra computed through the uniform approximation

    CERN Document Server

    Alinea, Allan L; Naylor, Wade

    2015-01-01

    We investigate a calculation method for solving the Mukhanov-Sasaki equation in slow-roll $k$-inflation based on the uniform approximation in conjunction with an expansion scheme for slow-roll parameters with respect to the number of $e$-folds about the so-called turning point. Earlier works on this method has so far gained sensible calculation results for the resulting expression for power spectra among others, up to second order with respect to the Hubble and sound flow parameters, when compared to other semi-analytical approaches (e.g., Green's function and WKB methods). However, a closer inspection is suggestive that this may not hold when higher-order parts of the power spectra are considered; residual logarithmic divergences may come out that would make the prediction problematic. Looking at this possibility, we map out up to what order with respect to the mentioned parameters several physical quantities can be calculated before hitting a logarithmically divergent result. It turns out that the power spe...

  9. Using Leaked Power to Measure Intrinsic AGN Power Spectra of Red-noise Time Series

    Science.gov (United States)

    Zhu, S. F.; Xue, Y. Q.

    2016-07-01

    Fluxes emitted at different wavebands from active galactic nuclei (AGNs) fluctuate at both long and short timescales. The variation can typically be characterized by a broadband power spectrum, which exhibits a red-noise process at high frequencies. The standard method of estimating the power spectral density (PSD) of AGN variability is easily affected by systematic biases such as red-noise leakage and aliasing, in particular when the observation spans a relatively short period and is gapped. Focusing on the high-frequency PSD that is strongly distorted due to red-noise leakage and usually not significantly affected by aliasing, we develop a novel and observable normalized leakage spectrum (NLS), which sensitively describes the effects of leaked red-noise power on the PSD at different temporal frequencies. Using Monte Carlo simulations, we demonstrate how an AGN underlying PSD sensitively determines the NLS when there is severe red-noise leakage, and thereby how the NLS can be used to effectively constrain the underlying PSD.

  10. Using Leaked Power to Measure Intrinsic AGN Power Spectra of Red-Noise Time Series

    CERN Document Server

    Zhu, S F

    2016-01-01

    Fluxes emitted at different wavebands from active galactic nuclei (AGNs) fluctuate at both long and short timescales. The variation can typically be characterized by a broadband power spectrum, which exhibits a red-noise process at high frequencies. The standard method of estimating power spectral density (PSD) of AGN variability is easily affected by systematic biases such as red-noise leakage and aliasing, in particular, when the observation spans a relatively short period and is gapped. Focusing on the high-frequency PSD that is strongly distorted due to red-noise leakage and usually not significantly affected by aliasing, we develop a novel and observable normalized leakage spectrum (NLS), which describes sensitively the effects of leaked red-noise power on the PSD at different temporal frequencies. Using Monte Carlo simulations, we demonstrate how an AGN underlying PSD sensitively determines the NLS when there is severe red-noise leakage and thereby how the NLS can be used to effectively constrain the un...

  11. Model-based fit procedure for power-law-like spectra

    CERN Document Server

    Milotti, E

    2005-01-01

    $1/f^\\alpha$ noises are ubiquitous and affect many measurements. These noises are both a nuisance and a peculiarity of several physical systems; in dielectrics, glasses and networked liquids it is very common to study this noise to gather useful information. Sometimes it happens that the noise has a power-law shape only in a certain frequency range, and contains other important features, that are however difficult to study because simple fits often fail. Here I propose a model-based fit procedure that performs well on spectra obtained in a molecular dynamics simulation.

  12. The importance of the cosmic web and halo substructure for power spectra

    OpenAIRE

    Pace, Francesco; Manera, Marc; Bacon, David J.; Crittenden, Robert; Percival, Will J.

    2015-01-01

    In this work we study the relevance of the cosmic web and substructures on the matter and lensing power spectra measured from halo mock catalogues extracted from the N-body simulations. Since N-body simulations are computationally expensive, it is common to use faster methods that approximate the dark matter field as a set of halos. In this approximation, we replace mass concentrations in N-body simulations by a spherically symmetric Navarro-Frenk-White halo density profile. We also consider ...

  13. Tapering the sky response for angular power spectrum estimation from low-frequency radio-interferometric data

    CERN Document Server

    Choudhuri, Samir; Roy, Nirupam; Ghosh, Abhik; Ali, Sk Saiyad

    2016-01-01

    It is important to correctly subtract point sources from radio-interferometric data in order to measure the power spectrum of diffuse radiation like the Galactic synchrotron or the Epoch of Reionization 21-cm signal. It is computationally very expensive and challenging to image a very large area and accurately subtract all the point sources from the image. The problem is particularly severe at the sidelobes and the outer parts of the main lobe where the antenna response is highly frequency dependent and the calibration also differs from that of the phase center. Here we show that it is possible to overcome this problem by tapering the sky response. Using simulated 150 MHz observations, we demonstrate that it is possible to suppress the contribution due to point sources from the outer parts by using the Tapered Gridded Estimator to measure the angular power spectrum C_l of the sky signal. We also show from the simulation that this method can self-consistently compute the noise bias and accurately subtract it t...

  14. Tapering the sky response for angular power spectrum estimation from low-frequency radio-interferometric data

    Science.gov (United States)

    Choudhuri, Samir; Bharadwaj, Somnath; Roy, Nirupam; Ghosh, Abhik; Ali, Sk. Saiyad

    2016-06-01

    It is important to correctly subtract point sources from radio-interferometric data in order to measure the power spectrum of diffuse radiation like the Galactic synchrotron or the Epoch of Reionization 21-cm signal. It is computationally very expensive and challenging to image a very large area and accurately subtract all the point sources from the image. The problem is particularly severe at the sidelobes and the outer parts of the main lobe where the antenna response is highly frequency dependent and the calibration also differs from that of the phase centre. Here, we show that it is possible to overcome this problem by tapering the sky response. Using simulated 150 MHz observations, we demonstrate that it is possible to suppress the contribution due to point sources from the outer parts by using the Tapered Gridded Estimator to measure the angular power spectrum Cℓ of the sky signal. We also show from the simulation that this method can self-consistently compute the noise bias and accurately subtract it to provide an unbiased estimation of Cℓ.

  15. CMB lensing power spectrum biases from galaxies and clusters using high-angular resolution temperature maps

    International Nuclear Information System (INIS)

    The lensing power spectrum from cosmic microwave background (CMB) temperature maps will be measured with unprecedented precision with upcoming experiments, including upgrades to the Atacama Cosmology Telescope and the South Pole Telescope. Achieving significant improvements in cosmological parameter constraints, such as percent level errors on σ8 and an uncertainty on the total neutrino mass of ∼50 meV, requires percent level measurements of the CMB lensing power. This necessitates tight control of systematic biases. We study several types of biases to the temperature-based lensing reconstruction signal from foreground sources such as radio and infrared galaxies and the thermal Sunyaev-Zel'dovich effect from galaxy clusters. These foregrounds bias the CMB lensing signal due to their non-Gaussian nature. Using simulations as well as some analytical models we find that these sources can substantially impact the measured signal if left untreated. However, these biases can be brought to the percent level if one masks galaxies with fluxes at 150 GHz above 1 mJy and galaxy clusters with masses above M vir = 1014 M ☉. To achieve such percent level bias, we find that only modes up to a maximum multipole of l max ∼ 2500 should be included in the lensing reconstruction. We also discuss ways to minimize additional bias induced by such aggressive foreground masking by, for example, exploring a two-step masking and in-painting algorithm.

  16. CMB lensing power spectrum biases from galaxies and clusters using high-angular resolution temperature maps

    Energy Technology Data Exchange (ETDEWEB)

    Van Engelen, A.; Sehgal, N. [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States); Bhattacharya, S. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Holder, G. P. [Department of Physics, McGill University, 3600 Rue University, Montreal, Quebec H3A 2T8 (Canada); Zahn, O. [Berkeley Center for Cosmological Physics, Department of Physics, University of California, and Lawrence Berkeley National Labs, Berkeley, CA 94720 (United States); Nagai, D. [Department of Physics, Department of Astronomy and Yale Center for Astronomy and Astrophysics, Yale University, New Haven, CT 06520 (United States)

    2014-05-01

    The lensing power spectrum from cosmic microwave background (CMB) temperature maps will be measured with unprecedented precision with upcoming experiments, including upgrades to the Atacama Cosmology Telescope and the South Pole Telescope. Achieving significant improvements in cosmological parameter constraints, such as percent level errors on σ{sub 8} and an uncertainty on the total neutrino mass of ∼50 meV, requires percent level measurements of the CMB lensing power. This necessitates tight control of systematic biases. We study several types of biases to the temperature-based lensing reconstruction signal from foreground sources such as radio and infrared galaxies and the thermal Sunyaev-Zel'dovich effect from galaxy clusters. These foregrounds bias the CMB lensing signal due to their non-Gaussian nature. Using simulations as well as some analytical models we find that these sources can substantially impact the measured signal if left untreated. However, these biases can be brought to the percent level if one masks galaxies with fluxes at 150 GHz above 1 mJy and galaxy clusters with masses above M {sub vir} = 10{sup 14} M {sub ☉}. To achieve such percent level bias, we find that only modes up to a maximum multipole of l {sub max} ∼ 2500 should be included in the lensing reconstruction. We also discuss ways to minimize additional bias induced by such aggressive foreground masking by, for example, exploring a two-step masking and in-painting algorithm.

  17. Interim Report on the Power Law Index of Interplanetary Suprathermal Ion Spectra

    International Nuclear Information System (INIS)

    There is a continuing debate about the applicability of the theory presented by Fisk and Gloeckler (FG) regarding the formation of suprathermal ion tails in phase space density vs. velocity spectra; in the solar wind frame the FG theory predicts a power law index of-5 (which is equivalent to a differential intensity vs. energy index of-1.5). There has also been uncertainty and perhaps misunderstanding regarding the extent to which such spectra are actually observed; i.e., is there really a significant preference for the -5 index? Here we report the results of an interim technique we use to analyze ∼1-100 keV/nucleon interplanetary suprathermal H+, He+, and He++, spectra measured at the Cassini spacecraft by the Charge Energy Mass Spectrometer (CHEMS) instrument of the Magnetospheric Imaging Instrument (MIMI) suite during the cruise to Saturn. We analyzed 18 active periods and report a mean index in the solar wind frame of 4.9±0.4 for protons, 5.2±0.5 for He+, and 4.7±0.2 for alpha particles. MIMI/CHEMS offers much needed independent observations of heliospheric ions in the suprathermal energy range.

  18. Interim Report on the Power Law Index of Interplanetary Suprathermal Ion Spectra

    Science.gov (United States)

    Hill, M. E.; Hamilton, D. C.

    2010-12-01

    There is a continuing debate about the applicability of the theory presented by Fisk and Gloeckler (FG) regarding the formation of suprathermal ion tails in phase space density vs. velocity spectra; in the solar wind frame the FG theory predicts a power law index of-5 (which is equivalent to a differential intensity vs. energy index of-1.5). There has also been uncertainty and perhaps misunderstanding regarding the extent to which such spectra are actually observed; i.e., is there really a significant preference for the -5 index? Here we report the results of an interim technique we use to analyze ~1-100 keV/nucleon interplanetary suprathermal H+, He+, and He++, spectra measured at the Cassini spacecraft by the Charge Energy Mass Spectrometer (CHEMS) instrument of the Magnetospheric Imaging Instrument (MIMI) suite during the cruise to Saturn. We analyzed 18 active periods and report a mean index in the solar wind frame of 4.9+/-0.4 for protons, 5.2+/-0.5 for He+, and 4.7+/-0.2 for alpha particles. MIMI/CHEMS offers much needed independent observations of heliospheric ions in the suprathermal energy range.

  19. Testing chirality of primordial gravitational waves with Planck and future CMB data: no hope from angular power spectra

    CERN Document Server

    Gerbino, Martina; Natoli, Paolo; Shiraishi, Maresuke; Melchiorri, Alessandro

    2016-01-01

    We use the 2015 Planck likelihood in combination with the Bicep2/Keck likelihood (BKP and BK14) to constrain the chirality, $\\chi$, of primordial gravitational waves in a scale-invariant scenario. In this framework, the parameter $\\chi$ enters theory always coupled to the tensor-to-scalar ratio, $r$, e.g. in combination of the form $\\chi \\cdot r$. Thus, the capability to detect $\\chi$ critically depends on the value of $r$. We find that with present data set $\\chi$ is \\textit{de facto}unconstrained. We also provide forecasts for $\\chi$ from future CMB experiments, as COrE+, exploring several fiducial values of $r$. We find that the current limit on $r$ is tight enough to disfavor a neat detection of $\\chi$. For example in the unlikely case in which $r\\sim0.1(0.05)$, then the maximal chirality case, i.e. $\\chi = \\pm1$, could be detected with a significance of $\\sim2.5(1.5)\\sigma$ at best. We conclude that the two-point statistics at the basis of CMB likelihood functions is currently unable to constrain chirali...

  20. Testing chirality of primordial gravitational waves with Planck and future CMB data: no hope from angular power spectra

    Science.gov (United States)

    Gerbino, Martina; Gruppuso, Alessandro; Natoli, Paolo; Shiraishi, Maresuke; Melchiorri, Alessandro

    2016-07-01

    We use the 2015 Planck likelihood in combination with the Bicep2/Keck likelihood (BKP and BK14) to constrain the chirality, χ, of primordial gravitational waves in a scale-invariant scenario. In this framework, the parameter χ enters theory always coupled to the tensor-to-scalar ratio, r, e.g. in combination of the form χ ṡ r. Thus, the capability to detect χ critically depends on the value of r. We find that with present data sets χ is de facto unconstrained. We also provide forecasts for χ from future CMB experiments, including COrE+, exploring several fiducial values of r. We find that the current limit on r is tight enough to disfavor a neat detection of χ. For example, in the unlikely case in which r~0.1(0.05), the maximal chirality case, i.e. χ = ±1, could be detected with a significance of ~2.5(1.5)σ at best. We conclude that the two-point statistics at the basis of CMB likelihood functions is currently unable to constrain chirality and may only provide weak limits on χ in the most optimistic scenarios. Hence, it is crucial to investigate the use of other observables, e.g. provided by higher order statistics, to constrain these kinds of parity violating theories with the CMB.

  1. Bifurcation timescales in power spectra of black hole binaries and ultraluminous X-ray sources

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    For black hole binaries(BHBs) and active galactic nuclei(AGNs),bifurcation timescales(BTs) Δtb exist,below which time-domain power is significantly higher than the corresponding Fourier power.Quasi-periodic oscillations(QPOs) are removed from the Fourier spectra of BHBs.A relationship between BT,black hole mass and bolometric luminosity is derived.Strong anti-correlation between BT and luminosity of Cyg X-1 is found.After removing the QPOs,BTs are also obtained for two ultraluminous X-ray sources(ULXs),M82 X-1 and NGC5408 X-1.The results support that they harbor intermediate mass black holes(IMBHs).

  2. Confirmation of Wide-Field Signatures in Redshifted 21 cm Power Spectra

    CERN Document Server

    Thyagarajan, Nithyanandan; Bowman, Judd D; Barry, N; Beardsley, A P; Bernardi, G; Briggs, F; Cappallo, R J; Carroll, P; Deshpande, A A; de Oliveira-Costa, A; Dillon, Joshua S; Ewall-Wice, A; Feng, L; Greenhill, L J; Hazelton, B J; Hernquist, L; Hewitt, J N; Hurley-Walker, N; Johnston-Hollitt, M; Kaplan, D L; Kim, Han-Seek; Kittiwisit, P; Lenc, E; Line, J; Loeb, A; Lonsdale, C J; McKinley, B; McWhirter, S R; Mitchell, D A; Morales, M F; Morgan, E; Neben, A R; Oberoi, D; Offringa, A R; Ord, S M; Paul, Sourabh; Pindor, B; Pober, J C; Prabu, T; Procopio, P; Riding, J; Shankar, N Udaya; Sethi, Shiv K; Srivani, K S; Subrahmanyan, R; Sullivan, I S; Tegmark, M; Tingay, S J; Trott, C M; Wayth, R B; Webster, R L; Williams, A; Williams, C L; Wyithe, J S B

    2015-01-01

    We confirm our recent prediction of the "pitchfork" foreground signature in power spectra of high-redshift 21 cm measurements, wherein the interferometer is sensitive to large-scale structure on all baselines. This is due to the inherent response of a wide-field instrument and is characterized by enhanced power from foreground emission in Fourier modes adjacent to those considered to be most sensitive to the cosmological HI signal. In our recent paper, many signatures from the simulation which predicted this feature were validated against Murchison Widefield Array (MWA) data but this key pitchfork signature was close to the noise level. In this paper, we improve the data sensitivity through coherent averaging of 12 independent snapshots with identical instrument settings, and provide the first confirmation of the prediction with a signal-noise ratio > 10. This wide-field effect can be mitigated by careful antenna designs that suppress sensitivity near the horizon. Simple models for antenna apertures proposed ...

  3. Cosmological parameters, shear maps and power spectra from CFHTLenS using Bayesian hierarchical inference

    CERN Document Server

    Alsing, Justin; Jaffe, Andrew H

    2016-01-01

    We apply two Bayesian hierarchical inference schemes to infer shear power spectra, shear maps and cosmological parameters from the CFHTLenS weak lensing survey - the first application of this method to data. In the first approach, we sample the joint posterior distribution of the shear maps and power spectra by Gibbs sampling, with minimal model assumptions. In the second approach, we sample the joint posterior of the shear maps and cosmological parameters, providing a new, accurate and principled approach to cosmological parameter inference from cosmic shear data. As a first demonstration on data we perform a 2-bin tomographic analysis to constrain cosmological parameters and investigate the possibility of photometric redshift bias in the CFHTLenS data. Under the baseline $\\Lambda$CDM model we constrain $S_8 = \\sigma_8(\\Omega_\\mathrm{m}/0.3)^{0.5} = 0.67 ^{\\scriptscriptstyle+ 0.03 }_{\\scriptscriptstyle- 0.03 }$ $(68\\%)$, consistent with previous CFHTLenS analysis but in tension with Planck. Adding neutrino m...

  4. The importance of the cosmic web and halo substructure for power spectra

    CERN Document Server

    Pace, Francesco; Bacon, David J; Crittenden, Robert; Percival, Will J

    2015-01-01

    In this work we study the relevance of the cosmic web and substructures on the matter and lensing power spectra measured from halo mock catalogues extracted from the N-body simulations. Since N-body simulations are computationally expensive, it is common to use faster methods that approximate the dark matter field as a set of halos. In this approximation, we replace mass concentrations in N-body simulations by a spherically symmetric Navarro-Frenk-White halo density profile. We also consider the full mass field as the sum of two distinct fields: dark matter halos ($M>9\\times 10^{12}~M_{\\odot}$/h) and particles not included into halos. Mock halos reproduce well the matter power spectrum, but underestimate the lensing power spectrum on large and small scales. For sources at $z_{\\rm s}=1$ the lensing power spectrum is underestimated by up to 40% at $\\ell\\approx 10^4$ with respect to the simulated halos. The large scale effect can be alleviated by combining the mock catalogue with the dark matter distribution out...

  5. Coronal Fourier power spectra: implications for coronal seismology and coronal heating

    CERN Document Server

    Ireland, Jack; Inglis, Andrew R

    2014-01-01

    The dynamics of regions of the solar corona are investigated using Atmospheric Imaging Assembly (AIA) 171\\AA\\ and 193\\AA\\ data. The coronal emission from the quiet Sun, coronal loop footprints, coronal moss, and from above a sunspot is studied. It is shown that the mean Fourier power spectra in these regions can be described by a power law at lower frequencies that tails to flat spectrum at higher frequencies, plus a Gaussian-shaped contribution that varies depending on the region studied. This Fourier spectral shape is in contrast to the commonly-held assumption that coronal time-series are well described by the sum of a long time-scale background trend plus Gaussian-distributed noise, with some specific locations also showing an oscillatory signal. The implications of this discovery to the field of coronal seismology and the automated detections of oscillations are discussed. The power law contribution to the shape of the Fourier power spectrum is interpreted as being due to the summation of a distribution ...

  6. Magnetic power spectra from Faraday rotation maps - REALMAF and its use on Hydra A

    CERN Document Server

    Kuchar, Petr

    2009-01-01

    We develop a novel maximum a posterior method to measure magnetic power spectra from Faraday rotation data and implement it in the REALMAF code. Using a sophisticated model for the magnetic autocorrelation in real space permits us to alleviate previously required simplifying assumptions in the processing. We also introduce a way to treat the divergence relation of the magnetic field with a multiplicative factor in Fourier space, which allows us to model the magnetic autocorrelation as a spherically symmetric function. Applied to the dataset of Hydra A north, we find a power law power spectrum between spatial scales of 0.3 kpc to 8 kpc, with no visible turnover at large scales within this range and a spectral index consistent with a Kolmogorov-like power law regime. The magnetic field strength profile seems to follow the electron density profile with an index alpha=1. A variation of alpha from 0.5 to 1.5 would lead to a spectral index between 1.55 and 2.05. The extrapolated magnetic field strength in the clust...

  7. Laser power influence on Raman spectra of ZnO(Co) nanoparticles

    Science.gov (United States)

    Hadžić, B.; Romčević, N.; Sibera, D.; Narkiewicz, U.; Kuryliszyn-Kudelska, I.; Dobrowolski, W.; Romčević, M.

    2016-04-01

    Influence of laser power on nanocrystalline samples of ZnO(Co) prepared by commonly used wet chemistry method followed by calcination was investigated. Previous confirmation of the existence of ZnO and Co3O4 phases was based on the X-ray diffraction measurements. Here we report the experimental spectra of non-resonant Raman scattering in the range between 100 cm-1 and 1600 cm-1, for a series of samples irradiated with four different laser power densities. The laser power density has different influence on relative intensity of peaks that belong to ZnO phase than on those corresponding to Co3O4 phase. Both peak types show characteristic broadening and red shift toward lower frequencies. The laser power densities used in our study did not cause thermal destruction in any of the investigated samples. Laser-induced local heating effects in samples caused formation of cobalt dimers on the surface of Co3O4.

  8. Origin of multiple periodicities in the Fourier power spectra of the Plasmodium falciparum genome

    Directory of Open Access Journals (Sweden)

    Nunes Miriam CS

    2011-12-01

    Full Text Available Abstract Background Fourier transforms and their associated power spectra are used for detecting periodicities and protein-coding genes and is generally regarded as a well established technique. Many of the periodicities which have been found with this method are quite well understood such as the periodicity of 3 nt which is associated to codon usage. But what is the origin of the peculiar frequency multiples k/21 which were reported for a tiny section of chromosome 2 in P. falciparum? Are these present in other chromosomes and perhaps in related organisms? And how should we interpret fractional periodicities in genomes? Results We applied the binary indicator power spectrum to all chromosomes of P. falciparum, and found that the frequency overtones k/21 are present only in non-coding sections. We did not find such frequency overtones in any other related genomes. Furthermore, the frequency overtones were identified as artifacts of the way the genome is encoded into a numerical sequence, that is, they are frequency aliases. By choosing a different way to encode the sequence the overtones do not appear. In view of these results, we revisited early applications of this technique to proteins where frequency overtones were reported. Conclusions Some authors hinted recently at the possibility of mapping artifacts and frequency aliases in power spectra. However, in the case of P. falciparum the frequency aliases are particularly strong and can mask the 1/3 frequency which is used for gene detecting. This shows that albeit being a well known technique, with a long history of application in proteins, few researchers seem to be aware of the problems represented by frequency aliases.

  9. Information Content in the Galaxy Angular Power Spectrum from the Sloan Digital Sky Survey and Its Implication on Weak Lensing Analysis

    CERN Document Server

    Lee, Jounghun

    2008-01-01

    We analyze the photometric redshift catalog of the Sloan Digital Sky Survey Data Release 5 (SDSS DR5) to estimate the Fisher information in the galaxy angular power spectrum with the help of the Rimes-Hamilton technique. It is found that the amount of Fisher information contained in the galaxy angular power spectrum is saturated at lensing multipole scale 300<= l <= 2000 in the redshift range 0.1<= photo-z <0.5. At l=2000, the observed information is two orders of magnitude lower than the case of Gaussian fluctuations. This supports observationally that the translinear regime of the density power spectrum contains little independent information about the initial cosmological conditions, which is consistent with the numerical trend shown by Rimes-Hamilton. Our results also suggest that the Gaussian-noise description may not be valid in weak lensing measurements.

  10. The importance of the cosmic web and halo substructure for power spectra

    Science.gov (United States)

    Pace, Francesco; Manera, Marc; Bacon, David J.; Crittenden, Robert; Percival, Will J.

    2015-11-01

    In this work, we study the relevance of the cosmic web and substructures on the matter and lensing power spectra measured from halo mock catalogues extracted from the N-body simulations. Since N-body simulations are computationally expensive, it is common to use faster methods that approximate the dark matter field as a set of haloes. In this approximation, we replace mass concentrations in N-body simulations by a spherically symmetric Navarro-Frenk-White halo density profile. We also consider the full mass field as the sum of two distinct fields: dark matter haloes (M > 9 × 1012 M⊙ h-1) and particles not included into haloes. Mock haloes reproduce well the matter power spectrum, but underestimate the lensing power spectrum on large and small scales. For sources at zs = 1 the lensing power spectrum is underestimated by up to 40 per cent at ℓ ≈ 104 with respect to the simulated haloes. The large-scale effect can be alleviated by combining the mock catalogue with the dark matter distribution outside the haloes. In addition, to evaluate the contribution of substructures we have smeared out the intrahalo substructures in an N-body simulation while keeping the halo density profiles unchanged. For the matter power spectrum the effect of this smoothing is only of the order of 5 per cent, but for lensing substructures and ellipticity are much more important: for ℓ ≈ 104 modifications to the internal structure contribute to 30 per cent of the total spectrum. These findings have important implications in the way mock catalogues have to be created, suggesting that some approximate methods currently used for galaxy surveys will be inadequate for future weak lensing surveys.

  11. Theoretical power spectra of mixed modes in low mass red giant stars

    CERN Document Server

    Grosjean, M; Belkacem, K; Montalban, J; Samadi, R; Mosser, B

    2014-01-01

    CoRoT and Kepler observations of red giant stars revealed very rich spectra of non-radial solar-like oscillations. Of particular interest was the detection of mixed modes that exhibit significant amplitude, both in the core and at the surface of the stars. It opens the possibility of probing the internal structure from their inner-most layers up to their surface along their evolution on the red giant branch as well as on the red-clump. Our objective is primarily to provide physical insight into the physical mechanism responsible for mixed-modes amplitudes and lifetimes. Subsequently, we aim at understanding the evolution and structure of red giants spectra along with their evolution. The study of energetic aspects of these oscillations is also of great importance to predict the mode parameters in the power spectrum. Non-adiabatic computations, including a time-dependent treatment of convection, are performed and provide the lifetimes of radial and non-radial mixed modes. We then combine these mode lifetimes a...

  12. Planck 2015 results. XI. CMB power spectra, likelihoods, and robustness of parameters

    CERN Document Server

    Aghanim, N; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartlett, J.G.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoit, A.; Benoit-Levy, A.; Bernard, J.P.; Bersanelli, M.; Bielewicz, P.; Bock, J.J.; Bonaldi, A.; Bonavera, L.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R.C.; Calabrese, E.; Cardoso, J.F.; Catalano, A.; Challinor, A.; Chiang, H.C.; Christensen, P.R.; Clements, D.L.; Colombo, L.P.L.; Combet, C.; Coulais, A.; Crill, B.P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R.D.; Davis, R.J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Desert, F.X.; Di Valentino, E.; Dickinson, C.; Diego, J.M.; Dolag, K.; Dole, H.; Donzelli, S.; Dore, O.; Douspis, M.; Ducout, A.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Elsner, F.; Ensslin, T.A.; Eriksen, H.K.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A.A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Gauthier, C.; Gerbino, M.; Giard, M.; Gjerlow, E.; Gonzalez-Nuevo, J.; Gorski, K.M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J.E.; Hamann, J.; Hansen, F.K.; Harrison, D.L.; Helou, G.; Henrot-Versille, S.; Hernandez-Monteagudo, C.; Herranz, D.; Hildebrandt, S.R.; Hivon, E.; Holmes, W.A.; Hornstrup, A.; Huffenberger, K.M.; Hurier, G.; Jaffe, A.H.; Jones, W.C.; Juvela, M.; Keihanen, E.; Keskitalo, R.; Kiiveri, K.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lahteenmaki, A.; Lamarre, J.M.; Lasenby, A.; Lattanzi, M.; Lawrence, C.R.; Le Jeune, M.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Lewis, A.; Liguori, M.; Lilje, P.B.; Lilley, M.; Linden-Vornle, M.; Lindholm, V.; Lopez-Caniego, M.; Macias-Perez, J.F.; Maffei, B.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P.G.; Martinez-Gonzalez, E.; Masi, S.; Matarrese, S.; Meinhold, P.R.; Melchiorri, A.; Migliaccio, M.; Millea, M.; Miville-Deschenes, M.A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J.A.; Narimani, A.; Naselsky, P.; Nati, F.; Natoli, P.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C.A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T.J.; Perdereau, O.; Perotto, L.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Pratt, G.W.; Prunet, S.; Puget, J.L.; Rachen, J.P.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rossetti, M.; Roudier, G.; d'Orfeuil, B.Rouille; Rubino-Martin, J.A.; Rusholme, B.; Salvati, L.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Serra, P.; Spencer, L.D.; Spinelli, M.; Stolyarov, V.; Stompor, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.S.; Sygnet, J.F.; Tauber, J.A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Trombetti, T.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L.A.; Wandelt, B.D.; Wehus, I.K.; Yvon, D.; Zacchei, A.; Zonca, A.

    2015-01-01

    This paper presents the Planck 2015 likelihoods, statistical descriptions of the 2-point correlation functions of CMB temperature and polarization. They use the hybrid approach employed previously: pixel-based at low multipoles, $\\ell$, and a Gaussian approximation to the distribution of cross-power spectra at higher $\\ell$. The main improvements are the use of more and better processed data and of Planck polarization data, and more detailed foreground and instrumental models. More than doubling the data allows further checks and enhanced immunity to systematics. Progress in foreground modelling enables a larger sky fraction, contributing to enhanced precision. Improvements in processing and instrumental models further reduce uncertainties. Extensive tests establish robustness and accuracy, from temperature, from polarization, and from their combination, and show that the {\\Lambda}CDM model continues to offer a very good fit. We further validate the likelihood against specific extensions to this baseline, suc...

  13. A technique for filling gaps in time series with complicated power spectra

    International Nuclear Information System (INIS)

    Fahlman and Ulrych (1982) describe a method for estimating the power and phase spectra of gapped time series, using a maximum-entropy reconstruction of the data in the gaps. It has proved difficult to apply this technique to solar oscillations data, because of the great complexity of the solar oscillations spectrum. We describe a means for avoiding this difficulty, and report the results of a series of blind tests of the modified technique. The main results of these tests are: 1. Gap-filling gives good results, provided that the signal-to-noise ration in the original data is large enough, and provided the gaps are short enough. For low-noise data, the duty cycle of the observations should not be less than about 50%. 2. The frequencies and widths of narrow spectrum features are well reproduced by the technique. 3. The technique systematically reduces the apparent amplitudes of small features in the spectrum relative to large ones. (orig.)

  14. Reflection of gamma radiation in a spherical steel-lined, concrete-walled room Part II: Energy spectra and angular distributions

    International Nuclear Information System (INIS)

    A study of the behavior of reflected gamma radiation inside a spherical, steel-lined, concrete-walled room has been conducted using the discrete ordinates S/sub n/ code ANISN. The purpose of this study was to investigate the effect of the scattered radiation on the calculated gamma dose rate expected following a severe accident inside a reactor containment building. This paper presents an analysis of the angular, radial, and energy dependence of the scattered fluence. An empirical approximation for the radial dependence of the contribution of the scattered radiation is presented. Major conclusions are that the total scattered radiation is approximately twice the product of the incident fluence and the albedo near the wall, and that the presence of a steel liner significantly reduces the scattered radiation. Generally, good agreement was observed between the discrete ordinates results and published Monte Carlo data

  15. Experimental investigation of the hyperfine spectra of Pr I-lines: Discovery of new fine structure levels with high angular momentum

    Science.gov (United States)

    Siddiqui, Imran; Khan, Shamim; Windholz, Laurentius

    2014-05-01

    We present 66 even and 58 odd parity newly discovered fine structure levels of Pr I with high angular momentum: J = 15/2, 17/2 and 19/2 and 21/2. Spectral lines in the range 4200 Å to 7500 Å were experimentally investigated using laser induced fluorescence spectroscopy in a hollow cathode discharge lamp. The levels were discovered by analysis of the recorded hyperfine patterns of the investigated transitions. More than 800 spectral lines could be classified with help of these levels. Supplementary material in the form of one pdf file available from the Journal web page at http://dx.doi.org/10.1140/epjd/e2014-50025-7

  16. Cosmology Large Angular Scale Surveyor (CLASS) Focal Plane Development

    CERN Document Server

    Chuss, D T; Amiri, M; Appel, J; Bennett, C L; Colazo, F; Denis, K L; Dünner, R; Essinger-Hileman, T; Eimer, J; Fluxa, P; Gothe, D; Halpern, M; Harrington, K; Hilton, G; Hinshaw, G; Hubmayr, J; Iuliano, J; Marriage, T A; Miller, N; Moseley, S H; Mumby, G; Petroff, M; Reintsema, C; Rostem, K; U-Yen, K; Watts, D; Wagner, E; Wollack, E J; Xu, Z; Zeng, L

    2015-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) will measure the polarization of the Cosmic Microwave Background to search for and characterize the polarized signature of inflation. CLASS will operate from the Atacama Desert and observe $\\sim$70% of the sky. A variable-delay polarization modulator (VPM) modulates the polarization at $\\sim$10 Hz to suppress the 1/f noise of the atmosphere and enable the measurement of the large angular scale polarization modes. The measurement of the inflationary signal across angular scales that span both the recombination and reionization features allows a test of the predicted shape of the polarized angular power spectra in addition to a measurement of the energy scale of inflation. CLASS is an array of telescopes covering frequencies of 38, 93, 148, and 217 GHz. These frequencies straddle the foreground minimum and thus allow the extraction of foregrounds from the primordial signal. Each focal plane contains feedhorn-coupled transition-edge sensors that simultaneously d...

  17. Experimental study of angular neutron flux spectra on a slab surface to assess nuclear data and calculational methods for a fusion reactor design

    International Nuclear Information System (INIS)

    This paper presents an experimental approach to interpret the results of integral experiments for fusion neutronics research. The measurement is described of the angular neutron flux on a restricted area of slab assemblies with D-T neutron bombardment by using the time-of-flight (TOF) method with an NE213 neutron detector over an energy range from 0.05 to 15 MeV. A two bias scheme was developed to obtain an accurate detection efficiency over a wide energy range. The detector-collimator response function was introduced to define the restricted surface area and to determine the effective measured area. A series of measurements of the angular neutron flux on slabs of fusion blanket materials, i.e., Be, C, and Li2O, as functions of neutron leaking angle and slab thickness have been performed to examine neutron transport characteristics in bulk materials. The calculational analyses of the experimental results have been also carried out by using Monte Carlo neutron transport codes, i.e., MORSE-DD and MCNP. The existing nuclear data files, i.e., JENDL-3PR1, -3PR2, ENDF/B-IV and -V were tested by comparing with the experimental results. From the comparisons, the data on C and 7Li in the present files are fairly sufficient. Those on beryllium, however, is insufficient for the estimation of high threshold reactions such as tritium production in a fusion reactor blanket design. It is also found that the total and elastic cross sections are more important for accurate predictions of neutronic parameters at deep position. The comparisons between the measured and calculated results provide information to understand the results of the previous integral experiments for confirmation of accuracy of fusion reactor designs. (author)

  18. Wavelet analysis of angular spectra of relativistic particles in 208Pb induced collisions with emulsion nuclei at 158A GeV/c

    International Nuclear Information System (INIS)

    The continuous wavelet transform is applied to the pseudorapidity spectra of relativistic secondary particles created in Pb + Em nuclear collisions at 158A GeV/c. The wavelet pseudorapidity spectra are subsequently surveyed at different scales to look for signs of ring-like correlations whose presence could be explained either via the production of Cherenkov gluons or the propagation of Mach shock waves in excited nuclear medium. The presented approach is established on the basic prerequisite that the both effects would lead to excess of particles at certain typical pseudorapidities. Furthermore, the particles contributing to the ring-like structures are expected to have uniform azimuthal distributions. The multiscale analysis of the wavelet pseudorapidity spectra reveals the irregularities which are interpreted as the favoured pseudorapidities of groups of produced particles. A uniformity of the azimuthal structure of the disclosed pseudorapidity irregularities is examined, eventually leading to the conclusion that the irregularities are not related to correlations of a ring-like nature

  19. Clarifying Slow Roll Inflation and the Quantum Corrections to the Observable Power Spectra

    CERN Document Server

    Boyanovsky, D; Sánchez, N G

    2006-01-01

    Slow-roll inflation can be studied as an effective field theory. The form of the inflaton potential consistent with the data is V(phi) = N M^4 w(phi/[sqrt{N} M_{Pl}]) where phi is the inflaton field, M is the inflation energy scale, and N ~ 50 the number of efolds. The dimensionless function w(chi) and field chi are O(1). This form of the potential encodes the slow-roll expansion as an expansion in 1/N.A The Hubble parameter, inflaton mass and non-linear couplings are of the see-saw form in terms of M/M_{Pl}. The quartic coupling is lambda~1/N (M/M_{Pl})^4. The smallness of the non-linear couplings is not a result of fine tuning but a natural consequence of the validity of the effective field theory and slow roll approximation. Quantum corrections to slow roll inflation are computed and turn to be an expansion in powers (H/M_{Pl})^2. The corrections to the inflaton effective potential and its equation of motion are computed, as well as the quantum corrections to the observable power spectra. The near scale in...

  20. A method for the estimation of p-mode parameters from averaged solar oscillation power spectra

    CERN Document Server

    Reiter, J; Kosovichev, A G; Schou, J; Scherrer, P H; Larson, T P

    2015-01-01

    A new fitting methodology is presented which is equally well suited for the estimation of low-, medium-, and high-degree mode parameters from $m$-averaged solar oscillation power spectra of widely differing spectral resolution. This method, which we call the "Windowed, MuLTiple-Peak, averaged spectrum", or WMLTP Method, constructs a theoretical profile by convolving the weighted sum of the profiles of the modes appearing in the fitting box with the power spectrum of the window function of the observing run using weights from a leakage matrix that takes into account both observational and physical effects, such as the distortion of modes by solar latitudinal differential rotation. We demonstrate that the WMLTP Method makes substantial improvements in the inferences of the properties of the solar oscillations in comparison with a previous method that employed a single profile to represent each spectral peak. We also present an inversion for the internal solar structure which is based upon 6,366 modes that we ha...

  1. Reconstruction of the primordial power spectra with Planck and BICEP2

    CERN Document Server

    Hu, Bin; Guo, Zong-Kuan; Cai, Rong-Gen

    2014-01-01

    By using the cubic spline interpolation method, we reconstruct the shape of the primordial scalar and tensor power spectra from the recently released {\\it Planck} temperature and BICEP2 polarization cosmic microwave background data. We find that the vanishing scalar index running ($\\dd n_s/\\dd\\ln k$) model is strongly disfavored with more than $3\\sigma$ confidence level on the $k=0.0002$ Mpc$^{-1}$ scale. Furthermore, the power-law parameterization gives a blue-tilt tensor spectrum, no matter using only the first 5 bandpowers $n_t = 1.20^{+0.56}_{-0.64}~(95\\% {\\rm CL})$ or the full 9 bandpowers $n_t = 1.24^{+0.51}_{-0.58}~(95\\% {\\rm CL})$ of BICEP2 data sets. Compared with the large tensor-to-scalar ratio value ($r\\sim0.20$) under the scale-invariant tensor spectrum assumption, our interpolation approach gives $r_{0.002} < 0.060~(95\\% {\\rm CL})$ by using the first 5 bandpowers of BICEP2 data.

  2. Statistics of the Chi-Square Type, with Application to the Analysis of Multiple Time-Series Power Spectra

    CERN Document Server

    Sturrock, P A

    2003-01-01

    It is often necessary to compare the power spectra of two or more time series: one may, for instance, wish to estimate what the power spectrum of the combined data sets might have been, or one may wish to estimate the significance of a particular peak that shows up in two or more power spectra. Also, one may occasionally need to search for a complex of peaks in a single power spectrum, such as a fundamental and one or more harmonics, or a fundamental plus sidebands, etc. Visual inspection can be revealing, but it can also be misleading. This leads one to look for one or more ways of forming statistics, which readily lend themselves to significance estimation, from two or more power spectra. The familiar chi-square statistic provides a convenient mechanism for combining variables drawn from normal distributions, and one may generalize the chi-square statistic to be any function of any number of variables with arbitrary distributions. In dealing with power spectra, we are interested mainly in exponential distri...

  3. One-dimensional photonic crystals with a planar oriented nematic layer: Temperature and angular dependence of the spectra of defect modes

    International Nuclear Information System (INIS)

    Transmission spectra of a one-dimensional photonic crystal (PC) formed by two multilayer dielectric mirrors and a planar oriented layer of 5CB nematic liquid crystal (LC) that is sandwiched between these mirrors and serves as a structure defect are investigated experimentally. Specific features of the behavior of the spectrum of defect modes as a function of the angle of incidence of light on the crystal are studied for two polarizations: parallel and perpendicular to the director of the LC; the director either lies in the plane of incidence or is perpendicular to it. It is shown that, for the configurations considered, the maxima of the defect modes shift toward the short-wavelength region as the tilt angle of incidence radiation increases; this tendency is more manifest for the parallel-polarized component, when the director lies in the plane of incidence. In the latter case, the width of the photonic band gap (PBG) appreciably decreases. The temperature dependence of the polarization components of the transmission spectra of a PC is investigated in the case of normal incidence of light. The spectral shift of defect modes due to the variation of the refractive index of the LC at the nematic-isotropic liquid phase transition point is measured. It is shown that, in real PCs, the amplitude of defect modes decreases when approaching the center of the band gap, as well as when the number of layers in the dielectric mirrors increases. Theoretical transmission spectra of the PCs calculated by the method of recurrence relations with regard to the decay of defect modes are in good agreement with experimental data.

  4. One-dimensional photonic crystals with a planar oriented nematic layer: Temperature and angular dependence of the spectra of defect modes

    International Nuclear Information System (INIS)

    Transmission spectra of a one-dimensional photonic crystal (PC) formed by two multilayer dielectric mirrors and a planar oriented layer of 5CB nematic liquid crystal (LC) that is sandwiched between these mirrors and serves as a structure defect are investigated experimentally. Specific features of the behavior of the spectrum of defect modes as a function of the angle of incidence of light on the crystal are studied for two polarizations: parallel and perpendicular to the director of the LC; the director either lies in the plane of incidence or is perpendicular to it. It is shown that, for the configurations considered, the maxima of the defect modes shift toward the short-wavelength region as the tilt angle of incidence radiation increases; this tendency is more manifest for the parallel-polarized component, when the director lies in the plane of incidence. In the latter case, the width of the photonic band gap (PBG) appreciably decreases. The temperature dependence of the polarization components of the transmission spectra of a PC is investigated in the case of normal incidence of light. The spectral shift of defect modes due to the variation of the refractive index of the LC at the nematic-isotropic liquid phase transition point is measured. It is shown that, in real PCs, the amplitude of defect modes decreases when approaching the center of the band gap, as well as when the number of layers in the dielectric mirrors increases. Theoretical transmission spectra of the PCs calculated by the method of recurrence relations with regard to the decay of defect modes are in good agreement with experimental data

  5. One-dimensional photonic crystals with a planar oriented nematic layer: Temperature and angular dependence of the spectra of defect modes

    Science.gov (United States)

    Arkhipkin, V. G.; Gunyakov, V. A.; Myslivets, S. A.; Gerasimov, V. P.; Zyryanov, V. Ya.; Vetrov, S. Ya.; Shabanov, V. F.

    2008-02-01

    Transmission spectra of a one-dimensional photonic crystal (PC) formed by two multilayer dielectric mirrors and a planar oriented layer of 5CB nematic liquid crystal (LC) that is sandwiched between these mirrors and serves as a structure defect are investigated experimentally. Specific features of the behavior of the spectrum of defect modes as a function of the angle of incidence of light on the crystal are studied for two polarizations: parallel and perpendicular to the director of the LC; the director either lies in the plane of incidence or is perpendicular to it. It is shown that, for the configurations considered, the maxima of the defect modes shift toward the short-wavelength region as the tilt angle of incidence radiation increases; this tendency is more manifest for the parallel-polarized component, when the director lies in the plane of incidence. In the latter case, the width of the photonic band gap (PBG) appreciably decreases. The temperature dependence of the polarization components of the transmission spectra of a PC is investigated in the case of normal incidence of light. The spectral shift of defect modes due to the variation of the refractive index of the LC at the nematic-isotropic liquid phase transition point is measured. It is shown that, in real PCs, the amplitude of defect modes decreases when approaching the center of the band gap, as well as when the number of layers in the dielectric mirrors increases. Theoretical transmission spectra of the PCs calculated by the method of recurrence relations with regard to the decay of defect modes are in good agreement with experimental data.

  6. Red-shift of the frequency spectra of high-power microwaves reflected from a magnetized plasma

    International Nuclear Information System (INIS)

    Frequency spectra of high-power microwaves reflected from and/or transmitted through a magnetized plasma are measured. The red-shifts of the spectra for reflected waves are found in such a case that the incident microwave is totally reflected from the plasma. No appreciable frequency shifts are observed in reflected and transmitted waves, when the incident microwave can transmit through the plasma. The red-shifts we observe are attributed to a Doppler-shift caused by a deformation of the plasma column, previously reported by the authors, due to the incident high-power microwaves. (auth.)

  7. Spectra, temporal structure, and angular directivity of laser radiation of a Yb:YAG crystal and ytterbium glass pumped by low-coherence radiation from a F2+:LiF colour centre laser

    International Nuclear Information System (INIS)

    By focusing radiation from a F2+:LiF colour centre laser (emitting in the range from 0.89 to 0.95 μm) on plates of a Yb:YAG crystal with the 20% concentration of Yb and of ytterbium glass with the 10% concentration of Yb, we observed nanosecond radiation pulses of Yb3+ ions in the spectral region from 1.00 to 1.06 μm with the spectral width up to 20 nm in Yb:YAG and up to 50 nm in the ytterbium glass. Lasing appeared in the active medium in the region of excitation of the SBS of pump radiation with a diameter less than 200 μm. The angular divergence of the broadband laser radiation (10-3-10-4 rad) was one-two orders of magnitude smaller than the diffraction limit. The mechanism of generation of short broadband high-directional laser pulses in the spatial structure of thin layers with inversion produced in the region of propagation of an intense acoustic wave in the medium is discussed. The interpretation of experimental data on the angular divergence of radiation is based on a new concept of the spatial distribution of the electromagnetic field of a photon not in the form of a travelling wave but with the field structures located in fixed positions along the propagation direction. The features of the temporal picture and narrowband lasing spectra of Yb:YAG and ytterbium glass in a resonator upon relaxation of the SBS excitation region in the active medium are considered. The possibility of diagnostics of medium parameters using the shift of spectra of the lasing at the resonator modes in different sites of the SBS excitation region is discussed. (active media. lasers)

  8. Spectra and angular distributions of atmospheric gamma rays from 0.3 to 10 MeV at lambda = 40 deg

    Science.gov (United States)

    Ling, J. C.; Gruber, D. E.

    1977-01-01

    Measurements of the spectral and angular distributions of atmospheric gamma sq cm rays in the energy range 0.3-10 MeV over Palestine, Texas, at residual depths of 2.5 and 70 g/sq cm are reported. In confirmation of the general features of a model prediction, the measurements show at 2.5 g/sq cm upward moving fluxes greater than the downward moving fluxes, the effect increasing with energy, and approximate isotropy at 70 g/sq cm. Numerous characteristic gamma-ray lines were observed, most prominently at 0.511, 1.6, 2.3, 4.4, and 6.1 MeV. Their intensities were also compared with model predictions. Observations were made with an actively shielded scintillator counter with two detectors, one of aperture 50 deg FWHM and the other of 120 deg FWHM. Above 1 MeV, contributions to the counting rate from photons penetrating the shield annulus and from neutron interactions were large; they were studied by means of a Monte Carlo code and are extensively discussed.

  9. A modeling and computer simulation approach to determine optimal lower extremity joint angular velocities based on a criterion to maximize individual muscle power.

    Science.gov (United States)

    Hawkins, D

    1994-03-01

    A computer program was developed in conjunction with a musculoskeletal modeling scheme to determine lower extremity joint angular velocity profiles which allow specific muscles, if activated tetanically, to generate their greatest power. As input the program requires subject anthropometric and joint configuration data. Muscle-tendon (MT) attachment location data and a straight line MT model are used to calculate MT lengths for each joint configuration. The shortening velocity which allows an active muscle to generate its greatest power is calculated based on muscle architecture and a relationship between power and shortening velocity. A finite difference technique is used to calculate the time between sequential joint configurations which will produce the optimal muscle shortening velocity. This time is then used to calculate optimal joint angular velocities for each muscle and and for each joint configuration. The utility of this program is demonstrated by calculating optimal joint angular velocities for fifteen muscles and comparing calculated knee extension velocities with experimental results cited in the literature. PMID:8062553

  10. Cusp-latitude Pc3 spectra: band-limited and power-law components

    Directory of Open Access Journals (Sweden)

    P. V. Ponomarenko

    Full Text Available This work attempts to fill a gap in comparative studies of upstream-generated Pc3–4 waves and broad band ULF noise observed at cusp latitudes. We performed a statistical analysis of the spectral properties of three years of cusp-latitude ground magnetometer data, finding that the average daytime Pc3–4 spectra are characterized by two principal components: an upstream-related band-limited enhancement (‘signal’ and a power-law background (‘noise’ with S(f a  f -4 . Based on this information we developed an algorithm allowing for the deconvolution of these two components in the spectral domain. The frequency of the signal enhancement increases linearly with IMF magnitude as f [mHz] ~ 4.4 | BIMF | [nT], and its power maximizes around IMF cone angles qxB ~ 20 and 160° and at 10:30–11:00 MLT. Both spectral components exhibit similar semiannual variations with equinoctial maxima. The back-ground noise power grows with increasing southward Bz and remains nearly constant for northward Bz . Its diurnal variation resembles that of Pc5 field-line resonance power, with a maximum near 09:00 MLT. Both the band-limited signal and broad band noise components show power-law growth with solar wind velocity a V 5.71sw and a V 4.12sw, respectively. Thus, the effective signal-to-noise ratio increases with in-creasing Vsw. The observations suggest that the noise generation is associated with reconnection processes.

    Key words. Magnetospheric physics (magnetopause, cusp, and boundary layers; MHD waves and instabilities; solar wind magnetosphere interactions

  11. Angular Cheilitis

    Science.gov (United States)

    ... A This image displays a frequent location for candida infection (angular cheilitis), the corners of the mouth. Overview ... infection, those affected may also have thrush (oral candidiasis). The areas are generally slightly painful. The condition ...

  12. A survey of neutron energy spectra and angular distributions of the 9Be(p,n)9B reaction for fast neutron radiotherapy

    International Nuclear Information System (INIS)

    Encouraging findings in radiobiology have stimulated a renewed use of fast neutrons in radiotherapy. The physical characteristics required for neutron beams to be suitable for radiotherapy are well established. As a result, the tendency is to replace the previous machines which generated the neutron beams from deuteron bombardment of thick targets (T, Li, Be) by hospital based cyclotrons which accelerate protons on thick Beryllium targets. This report surveys the available experimental data of the 9Be(p,n) reaction (cross sections, neutron spectra, yields, mean neutron energies) from the threshold to the proton energy Esub(p)=120 MeV and the works using this reaction in dosimetry measurements, with an emphasis on the data since 1977

  13. Broadband conductivity spectra of fast-ion-conducting silver selenite glasses: Dependence on power law and scaling

    Science.gov (United States)

    Deb, B.; Bhattacharya, S.; Ghosh, A.

    2011-11-01

    In this letter we have studied broadband conductivity spectra (10 Hz-3 GHz) of fast-ion-conducting silver selenite glasses of compositions xAgI-(1-x)(yAg2O-(1-y)SeO2). We have observed that the conductivity spectra below 10 MHz are characterized by a power law with exponent less than unity, while the conductivity spectra in the high-frequency range (above 10 MHz) have been adequately explained in the framework of the unified site relaxation model with exponent greater than unity. The scaling of the conductivity spectra indicates that the time-temperature superposition principle is valid in the low-frequency regime, but not in the high-frequency regime.

  14. A Method for the Estimation of p-Mode Parameters from Averaged Solar Oscillation Power Spectra

    Science.gov (United States)

    Reiter, J.; Rhodes, E. J., Jr.; Kosovichev, A. G.; Schou, J.; Scherrer, P. H.; Larson, T. P.

    2015-04-01

    A new fitting methodology is presented that is equally well suited for the estimation of low-, medium-, and high-degree mode parameters from m-averaged solar oscillation power spectra of widely differing spectral resolution. This method, which we call the “Windowed, MuLTiple-Peak, averaged-spectrum” or WMLTP Method, constructs a theoretical profile by convolving the weighted sum of the profiles of the modes appearing in the fitting box with the power spectrum of the window function of the observing run, using weights from a leakage matrix that takes into account observational and physical effects, such as the distortion of modes by solar latitudinal differential rotation. We demonstrate that the WMLTP Method makes substantial improvements in the inferences of the properties of the solar oscillations in comparison with a previous method, which employed a single profile to represent each spectral peak. We also present an inversion for the internal solar structure, which is based upon 6366 modes that we computed using the WMLTP method on the 66 day 2010 Solar and Heliospheric Observatory/MDI Dynamics Run. To improve both the numerical stability and reliability of the inversion, we developed a new procedure for the identification and correction of outliers in a frequency dataset. We present evidence for a pronounced departure of the sound speed in the outer half of the solar convection zone and in the subsurface shear layer from the radial sound speed profile contained in Model S of Christensen-Dalsgaard and his collaborators that existed in the rising phase of Solar Cycle 24 during mid-2010.

  15. Effect of microwave power on EPR spectra of thermally sterilized eucerinum anhydricum

    Directory of Open Access Journals (Sweden)

    Ramos Paweł

    2015-07-01

    Full Text Available Free radicals formed during thermal sterilization of eucerinum anhydricum – the pharmaceutical base were examined by an X-band (9.3 GHz spectrometer. Eucerinum anhydricum was sterilized at different physical conditions according to the Polish Pharmacopeia norms. The samples were heated at temperatures: 160°C (120 min, 170°C (60 min, and 180°C (30 min. The aim of this study is to compare free radical concentration and effect of microwave power on EPR spectra of eucerinum anhydricum base thermally sterilized at different temperatures and periods of time. The effect of time storage on the free radicals in the heated samples was tested. Free radical concentrations in the sample stored 15 min strongly decreased with the increasing of sterilization temperature, probably as the result of recombination. Storage caused strong decrease of free radical concentrations in the samples, probably as the result of interactions with oxygen. It was observed to be independent of sterilization conditions from 2 days of storage and longer. Because of the lowest free radical concentration, for eucerinum anhydricum thermal sterilization at 180°C for 30 min is recommended. The sterilized samples should be stored at inert atmosphere without oxygen molecules. Fast spin-lattice relaxation processes existed in sterilized eucerinum anhydricum. The character of changes of amplitudes and linewidths of EPR lines with increasing of microwave power was the same for different storage times. The parameters of thermal sterilization and storage time influenced free radical concentration in eucerinum anhydricum, but magnetic spin-lattice interactions were unchanged. The usefulness of EPR spectroscopy in optimization of thermal sterilization process of eucerinum anhydricum was confirmed.

  16. EEG theta and beta power spectra in adolescents with ADHD versus adolescents with ASD + ADHD.

    Science.gov (United States)

    Bink, M; van Boxtel, G J M; Popma, A; Bongers, I L; Denissen, A J M; van Nieuwenhuizen, Ch

    2015-08-01

    Attention problems are common in youngsters with attention deficit hyperactivity disorder (ADHD) as well as in adolescents with combined autism spectrum disorder (ASD) and ADHD. However, it is unknown whether there is psychophysiological overlap and/or a difference in electroencephalogram (EEG) power spectra between ADHD and comorbid ASD and ADHD (ASD + ADHD), on and off stimulant medication. To explore potential differences and overlap, measures of theta and beta power in adolescents diagnosed with ADHD (n = 33) versus adolescents with combined ASD + ADHD (n = 20), categorized by stimulant medication use (57 % of the total sample), were compared. EEG measures were acquired in three conditions: (1) resting state, eyes closed (2) resting state, eyes open and (3) during an oddball task. In addition, performance on the d2 attention test was analyzed. Adolescents with ADHD displayed more absolute theta activity than adolescents with ASD + ADHD during the eyes open and task conditions, independent of stimulant medication use. In addition, only the adolescents with ADHD showed an association between diminished attention test performance and increased theta in the eyes open condition. Results of the current study suggest that although there is behavioral overlap between ADHD characteristics in adolescents with ADHD and adolescents with combined ASD + ADHD, the underlying psychophysiological mechanisms may be different. Adolescents with ASD + ADHD exhibited fewer of the EEG physiological signs usually associated with ADHD, although there was an overlap in attentional problems between the groups. This may indicate that treatments developed for ADHD work differently in some adolescents with ASD + ADHD and adolescents with ADHD only. PMID:25374034

  17. Signatures of X-ray reverberation in the power spectra of AGN

    Science.gov (United States)

    Papadakis, I.; Pecháček, T.; Dovčiak, M.; Epitropakis, A.; Emmanoulopoulos, D.; Karas, V.

    2016-04-01

    Aims: We study the effects of X-ray reprocessing in the power spectra (PSDs) of active galactic nuclei (AGNs). Methods: We compute fully relativistic disc response functions in the case of lamp-post geometry using the full observed reflection spectrum for various X-ray source heights, disc inclination, and spin values of the central black hole. Since the observed PSD is equal to the product of the intrinsic power spectrum with the transfer function (i.e. the Fourier transform of the disc response function), we are able to predict the observed PSDs in the case of X-ray illumination of the inner disc. Results: The observed PSD should show a prominent dip at high frequencies and an oscillatory behaviour with a decreasing amplitude at higher frequencies. The reverberation echo features should be more prominent in energy bands where the reflection component is more pronounced. The frequency of the dip is independent of energy, and it is mainly determined by the black hole mass and the X-ray source height. The amplitude of the dip increases with increasing black hole spin and inclination angle, as long as the height of the lamp is smaller than ~10 gravitational radii. Conclusions: The detection of the X-ray reverberation signals in the PSDs can provide further evidence for X-ray illumination of the inner disc in AGN. Our results are largely independent of the assumed geometry of the disc-corona system, as long as it does not change with time, and the disc response function is characterized by a sharp rise, a plateau, and a decline at longer times. Irrespective of the geometry, the frequency of the main dip should decrease with increasing mean time of the response function, and the amplitude of the dip should increase with increasing reflection fraction.

  18. Sensitivity of Cosmic-Ray Proton Spectra to the Low-wavenumber Behavior of the 2D Turbulence Power Spectrum

    Science.gov (United States)

    Engelbrecht, N. E.; Burger, R. A.

    2015-12-01

    In this study, a novel ab initio cosmic ray (CR) modulation code that solves a set of stochastic transport equations equivalent to the Parker transport equation, and that uses output from a turbulence transport code as input for the diffusion tensor, is introduced. This code is benchmarked with a previous approach to ab initio modulation. The sensitivity of computed galactic CR proton spectra at Earth to assumptions made as to the low-wavenumber behavior of the two-dimensional (2D) turbulence power spectrum is investigated using perpendicular mean free path expressions derived from two different scattering theories. Constraints on the low-wavenumber behavior of the 2D power spectrum are inferred from the qualitative comparison of computed CR spectra with spacecraft observations at Earth. Another key difference from previous studies is that observed and inferred CR intensity spectra at 73 AU are used as boundary spectra instead of the usual local interstellar spectrum. Furthermore, the results presented here provide a tentative explanation as to the reason behind the unusually high galactic proton intensity spectra observed in 2009 during the recent unusual solar minimum.

  19. A high-frequency Doppler feature in the power spectra of simulated GRMHD black hole accretion disks

    International Nuclear Information System (INIS)

    Black hole binaries exhibit a wide range of variability phenomena, from large-scale state changes to broadband noise and quasi-periodic oscillations, but the physical nature of much of this variability is poorly understood. We examine the variability properties of three GRMHD simulations of thin accretion disks around black holes of varying spin, producing light curves and power spectra as would be seen by observers. We find that the simulated power spectra show a broad feature at high frequency, which increases in amplitude with the inclination of the observer. We show that this high-frequency feature is a product of the Doppler effect and that its location is a function of the mass and spin of the black hole. This Doppler feature demonstrates that power spectral properties of the accretion disk can be tied to, and potentially used to determine, physical properties of the black hole

  20. A High-Frequency Doppler Feature in the Power Spectra of Simulated GRMHD Black Hole Accretion Disks

    CERN Document Server

    Wellons, Sarah; Psaltis, Dimitrios; Narayan, Ramesh; McClintock, Jeffrey E

    2013-01-01

    Black hole binaries exhibit a wide range of variability phenomena, from large-scale state changes to broadband noise and quasi-periodic oscillations, but the physical nature of much of this variability is poorly understood. We examine the variability properties of three GRMHD simulations of thin accretion disks around black holes of varying spin, producing light curves and power spectra as would be seen by observers. We find that the simulated power spectra show a broad feature at high frequency, which increases in amplitude with the inclination of the observer. We show that this high-frequency feature is a product of the Doppler effect and that its location is a function of the mass and spin of the black hole. This Doppler feature demonstrates that power spectral properties of the accretion disk can be tied to, and potentially used to determine, physical properties of the black hole.

  1. Constraining Polarized Foregrounds for EoR Experiments I: 2D Power Spectra from the PAPER-32 Imaging Array

    CERN Document Server

    Kohn, S A; Nunhokee, C; Bernardi, G; Pober, J; Ali, Z; Bradley, R; Carilli, C; DeBoer, D; Gugliucci, N; Jacobs, D; Klima, P; MacMahon, D; Manley, J; Moore, D; Parsons, A; Stefan, I; Walbrugh, W

    2016-01-01

    Current-generation low frequency interferometers constructed with the objective of detecting the high-redshift 21 cm background, aim to generate power spectra of the brightness-temperature contrast of neutral hydrogen in primordial intergalactic medium. Two-dimensional power spectra (power in Fourier modes parallel and perpendicular to the line of sight) formed from interferometric visibilities have been shown to delineate a boundary between spectrally-smooth foregrounds (known as the wedge) and spectrally-structured 21 cm background emission (the EoR-window). However, polarized foregrounds are known to possess spectral structure due to Faraday rotation, which can leak into the EoR window. In this work, we create and analyze 2D power spectra from the PAPER-32 imaging array in Stokes I, Q, U and V. These allow us to observe and diagnose systematic effects in our calibration at high signal-to-noise within the Fourier space most relevant to EoR experiments. We observe well-defined windows in the Stokes visibilit...

  2. THE RELATION BETWEEN GAS DENSITY AND VELOCITY POWER SPECTRA IN GALAXY CLUSTERS: QUALITATIVE TREATMENT AND COSMOLOGICAL SIMULATIONS

    International Nuclear Information System (INIS)

    We address the problem of evaluating the power spectrum of the velocity field of the intracluster medium using only information on the plasma density fluctuations, which can be measured today by Chandra and XMM-Newton observatories. We argue that for relaxed clusters there is a linear relation between the rms density and velocity fluctuations across a range of scales, from the largest ones, where motions are dominated by buoyancy, down to small, turbulent scales: (δρk/ρ)2=η12(V1,k/cs)2, where δρ k/ρ is the spectral amplitude of the density perturbations at wavenumber k, V1,k2=Vk2/3 is the mean square component of the velocity field, cs is the sound speed, and η1 is a dimensionless constant of the order of unity. Using cosmological simulations of relaxed galaxy clusters, we calibrate this relation and find η1 ≈ 1 ± 0.3. We argue that this value is set at large scales by buoyancy physics, while at small scales the density and velocity power spectra are proportional because the former are a passive scalar advected by the latter. This opens an interesting possibility to use gas density power spectra as a proxy for the velocity power spectra in relaxed clusters across a wide range of scales

  3. Calculated in-air leakage spectra and power levels for the ANSI standard minimum accident of concern. Final report

    International Nuclear Information System (INIS)

    This document represents Phase I of a two-phase project. The entire project consists of determining a series of minimum accidents of concern and their associated neutron and photon leakage spectra that may be used to determine Criticality Accident Alarm compliance with ANSI/ANS-8.3. The inadvertent assembly of a critical mass of material presents a multitude of unknown quantities. Depending on the particular process, one can make an educated guess as to fissile material. In a gaseous diffusion cascade, this material is assumed to be uranyl fluoride. However, educated assumptions cannot be readily made for the other variables. Phase I of this project is determining a bounding minimum accident of concern and its associated neutron and photon leakage spectra. To determine the composition of the bounding minimum accident of concern, work was done to determine the effects of geometry, moderation level, and enrichment on the leakage spectra of a critical assembly. The minimum accident of concern is defined as the accident that may be assumed to deliver the equivalent of an absorbed dose in free air of 20 rad at a distance of 2 meters from the reacting material within 60 seconds. To determine this dose, an analyst makes an assumption and choose an appropriate flux to dose response function. The power level required of a critical assembly to constitute a minimum accident of concern depends heavily on the response function chosen. The first step in determining the leakage spectra was to attempt to isolate the effects of geometry, after which all calculations were conducted on critical spheres. The moderation level and enrichment of the spheres were varied and their leakage spectra calculated. These spectra were then multiplied by three different response functions: the Henderson Flux to Dose conversion factors, the ICRU 44 Kerma in Air, and the MCNP Heating Detector. The power level required to produce a minimum accident of concern was then calculated for each combination

  4. A measurement of the polarization-temperature angular cross power spectrum of the Cosmic Microwave Background from the 2003 flight of BOOMERANG

    CERN Document Server

    Piacentini, F; Bock, J; Bond, J; Borrill, J; Boscaleri, A; Cabella, P; Contaldi, C; Crill, B; De Bernardis, P; De Gasperis, G; De Oliveira-Costa, A; De Troia, G; Stefano, G D; Hivon, E; Jaffe, A; Kisner, T; Jones, W; Lange, A; Masi, S; Mauskopf, P; MacTavish, C; Melchiorri, A; Montroy, T; Natoli, P; Netterfield, C B; Pascale, E; Pogosyan, D; Polenta, G; Prunet, S; Ricciardi, S; Romeo, G; Ruhl, J; Santini, P; Tegmark, M; Veneziani, M; Vittorio, N

    2005-01-01

    We present a measurement of the temperature-polarization angular cross power spectrum, , of the Cosmic Microwave Background. The result is based on $\\sim 200$ hours of data from 8 polarization sensitive bolometers operating at 145 GHz during the 2003 flight of BOOMERANG. We detect a significant correlation in the $\\ell$-range between 50 and 950 with a statistical significance > 3.5 sigma. Contamination by polarized foreground emission and systematic effects are negligible in comparison with statistical uncertainty. The spectrum is consistent with previous detections and with the "concordance model" that assumes adiabatic initial conditions. This is the first measurement of using bolometric detectors.

  5. New Limits on Polarized Power Spectra at 126 and 164 MHz: Relevance to Epoch of Reionization Measurements

    CERN Document Server

    Moore, David; Parsons, Aaron; Ali, Zaki; Bradley, Richard; Carilli, Chris; DeBoer, David; Dexter, Matthew; Gugliucci, Nicole; Jacobs, Daniel; Klima, Pat; Liu, Adrian; MacMahon, David; Manley, Jason; Pober, Jonathan; Stefan, Irina; Walbrugh, William

    2015-01-01

    Polarized foreground emission is a potential contaminant of attempts to measure the fluctuation power spectrum of highly redshifted 21 cm H{\\sc i} emission from the epoch of reionization, yet observational constraints on the level of polarized emission are poor. Using the Donald C. Backer Precision Array for Probing the Epoch of Reionization (PAPER), we present the first limits on the power spectra of all four Stokes parameters in two frequency bands, centered at 126 MHz ($z=10.3$) and 164 MHz ($z=7.66$). This data comes from from a three-month observing campaign of a 32-antenna deployment, for which unpolarized power spectrum results have been reported at $z=7.7$ (Parsons et al 2014) and $7.5 < z < 10.5$ (Jacobs et al 2014). The power spectra in this paper are processed in the same way, and show no definitive detection of polarized power. The limits are sufficiently low that we are able to show that the excess unpolarized power reported in those works is not due to leakage of Faraday-rotated polarized ...

  6. THE ANGULAR POWER SPECTRUM OF DUST-OBSCURED GALAXIES AND ITS IMPACT ON SUNYAEV ZEL'DOVICH STUDIES

    Directory of Open Access Journals (Sweden)

    A. A. Montaña

    2011-01-01

    Full Text Available En este trabajo medimos el espectro angular de potencias de la población de galaxias milimétricas (SMGs a partir de observaciones a 1.1 mm realizadas con la cámara AzTEC en el Atacama Submillimeter Telescope Experiment (ASTE y el James Clerk Maxwell Telecope (JCMT. La muestra de campos observados nos permite comparar el espectro angular de potencias de las SMGs medido en la dirección de regiones del Universo sin sesgo y otras sobre densas. Nuestras mediciones permiten acotar el impacto que tiene la población de SMGs en mediciones del espectro de potencias de las fluctuaciones primarias y secundarias del fondo cósmico de radiación de microndas (CMB, que actualmente están siendo medidas por una nueva generación de experimentos con resoluciones espaciales del orden de minutos de arco y que operan a longitudes de onda milimétricas.

  7. Image simulation and a model of noise power spectra across a range of mammographic beam qualities

    Energy Technology Data Exchange (ETDEWEB)

    Mackenzie, Alistair, E-mail: alistairmackenzie@nhs.net; Dance, David R.; Young, Kenneth C. [National Coordinating Centre for the Physics of Mammography, Royal Surrey County Hospital, Guildford GU2 7XX, United Kingdom and Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Diaz, Oliver [Centre for Vision, Speech and Signal Processing, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom and Computer Vision and Robotics Research Institute, University of Girona, Girona 17071 (Spain)

    2014-12-15

    Purpose: The aim of this work is to create a model to predict the noise power spectra (NPS) for a range of mammographic radiographic factors. The noise model was necessary to degrade images acquired on one system to match the image quality of different systems for a range of beam qualities. Methods: Five detectors and x-ray systems [Hologic Selenia (ASEh), Carestream computed radiography CR900 (CRc), GE Essential (CSI), Carestream NIP (NIPc), and Siemens Inspiration (ASEs)] were characterized for this study. The signal transfer property was measured as the pixel value against absorbed energy per unit area (E) at a reference beam quality of 28 kV, Mo/Mo or 29 kV, W/Rh with 45 mm polymethyl methacrylate (PMMA) at the tube head. The contributions of the three noise sources (electronic, quantum, and structure) to the NPS were calculated by fitting a quadratic at each spatial frequency of the NPS against E. A quantum noise correction factor which was dependent on beam quality was quantified using a set of images acquired over a range of radiographic factors with different thicknesses of PMMA. The noise model was tested for images acquired at 26 kV, Mo/Mo with 20 mm PMMA and 34 kV, Mo/Rh with 70 mm PMMA for three detectors (ASEh, CRc, and CSI) over a range of exposures. The NPS were modeled with and without the noise correction factor and compared with the measured NPS. A previous method for adapting an image to appear as if acquired on a different system was modified to allow the reference beam quality to be different from the beam quality of the image. The method was validated by adapting the ASEh flat field images with two thicknesses of PMMA (20 and 70 mm) to appear with the imaging characteristics of the CSI and CRc systems. Results: The quantum noise correction factor rises with higher beam qualities, except for CR systems at high spatial frequencies, where a flat response was found against mean photon energy. This is due to the dominance of secondary quantum noise

  8. Stopping power and energy straggling of protons in graphite and amorphous carbon obtained from a resonance in BS spectra

    Energy Technology Data Exchange (ETDEWEB)

    Tosaki, Mitsuo [Radioisotope Research Center, Kyoto University, Kyoto 606-8501 (Japan)], E-mail: tosaki@barium.rirc.kyoto-u.ac.jp; Isozumi, Yasuhito [Radioisotope Research Center, Kyoto University, Kyoto 606-8501 (Japan)

    2009-08-15

    Backscattering (BS) spectra with a sharp 4.8-MeV resonance for carbon targets have been measured using proton beams in an energy range 4.85-6.1 MeV per 100-keV step. By systematic analyses of the resonance peak profiles, values of stopping power and energy straggling have been deduced for proton energies from 0.8 to 3.4 MeV which corresponds to a penetration depth of 88 {mu}m. In particular, to investigate the difference in stopping power and straggling caused by target inhomogeneity, we used two target materials which were highly oriented pyrolytic graphite (HOPG, 2.26 g/cm{sup 3}) as a homogeneous material and amorphous carbon (1.73 g/cm{sup 3}) as an inhomogeneous material. We describe a method of measuring stopping power and straggling using a resonance in the BS spectra. The stopping powers obtained are compared with the values determined by SRIM-2006. Moreover, collision straggling and a density straggling due to the inhomogeneity of the target materials are evaluated from the width broadening of resonance peaks.

  9. Stopping power and energy straggling of protons in graphite and amorphous carbon obtained from a resonance in BS spectra

    International Nuclear Information System (INIS)

    Backscattering (BS) spectra with a sharp 4.8-MeV resonance for carbon targets have been measured using proton beams in an energy range 4.85-6.1 MeV per 100-keV step. By systematic analyses of the resonance peak profiles, values of stopping power and energy straggling have been deduced for proton energies from 0.8 to 3.4 MeV which corresponds to a penetration depth of 88 μm. In particular, to investigate the difference in stopping power and straggling caused by target inhomogeneity, we used two target materials which were highly oriented pyrolytic graphite (HOPG, 2.26 g/cm3) as a homogeneous material and amorphous carbon (1.73 g/cm3) as an inhomogeneous material. We describe a method of measuring stopping power and straggling using a resonance in the BS spectra. The stopping powers obtained are compared with the values determined by SRIM-2006. Moreover, collision straggling and a density straggling due to the inhomogeneity of the target materials are evaluated from the width broadening of resonance peaks.

  10. Envelope broadening and scattering attenuation of a scalar wavelet in random media having power-law spectra

    Science.gov (United States)

    Sato, Haruo

    2016-01-01

    Peak delay and envelope broadening of an S-wavelet with travel distance increasing are seen in short-period seismograms of small earthquakes. Those phenomena are results of scattering by random velocity inhomogeneities in the earth medium. As shown in sonic well-log data we may suppose that random velocity fluctuation has power-law spectra even in the seismic spectral range. As a simple mathematical model, we study how the envelope of a scalar wavelet varies in von Kármán-type random media, which have power-law spectra at large wavenumbers. Since the centre wavenumber of a wavelet is a unique scale in the power-law spectral range, using it as a reference, we divide the random media into the low-wavenumber spectral (long-scale) component and the high-wavenumber spectral (short-scale) component. For the wave propagation through the long-scale component of random media, we may apply the parabolic approximation to the wave equation. Using the Markov approximation, which is a stochastic extension of the phase screen method, we directly synthesize the energy density, which is the mean-square (MS) envelope of a wavelet in a given frequency band. The envelope duration increases according to the second power of travel distance. There is an additional factor, the wandering effect which increases the envelope duration according to the traveltime fluctuation. Wide angle scattering caused by the short-scale component of random media attenuates wave amplitude with travel distance increasing. We use the total scattering coefficient of the short-scale component as a measure of scattering attenuation per distance, which is well described by the Born approximation. Multiplying the exponential scattering attenuation factor by the MS envelope derived by the Markov approximation, we can synthesize the MS envelope reflecting all the spectral components of random media. When the random medium power spectra have a steep role-off at large wavenumbers, the envelope broadening is small and

  11. Impact of power spectral density function licensing requirement on PVRC damping response spectra for replicate piping design

    International Nuclear Information System (INIS)

    In November 1989, the USNRC issued Revision 2 of the Standard Review Plan (SRP), Section 3.7.1. The revision requires acceleration time histories (ATH) used in the seismic analysis of nuclear power plant (NPP) structures meet a target power spectral density function (PSDF) in addition to meeting the USNRC Regulatory Guide 1.60 design ground response spectrum (DGRS). Three statistically independent ATH (Original ATH) developed prior to 1989 do not fully envelop the new SRP target PSDF. Consequently, these Original ATH were numerically modified to meet the target PSDF (Modified ATH). At the same time, a new set of artificial ATH was also developed (New ATH). A three-dimensional seismic analysis of a NPP containment structure is performed using each of the three sets of ATH. Three sets of in-structure response spectra are developed at a representative location. From which ASME Code Case N-411-1 damping (PVRC damping) response spectra are developed. The three sets of PVRC damping response spectra are used as inputs to response spectrum analyses of four typical piping systems and the resulting responses compared and discussed

  12. Estimates of the solar internal angular velocity obtained with the Mt. Wilson 60-foot solar tower

    Science.gov (United States)

    Rhodes, Edward J., Jr.; Cacciani, Alessandro; Woodard, Martin; Tomczyk, Steven; Korzennik, Sylvain

    1987-01-01

    Estimates are obtained of the solar internal angular velocity from measurements of the frequency splittings of p-mode oscillations. A 16-day time series of full-disk Dopplergrams obtained during July and August 1984 at the 60-foot tower telescope of the Mt. Wilson Observatory is analyzed. Power spectra were computed for all of the zonal, tesseral, and sectoral p-modes from l = 0 to 89 and for all of the sectoral p-modes from l = 90 to 200. A mean power spectrum was calculated for each degree up to 89. The frequency differences of all of the different nonzonal modes were calculated for these mean power spectra.

  13. The Cosmology Large Angular Scale Surveyor (CLASS)

    Science.gov (United States)

    Harrington, Kathleen; Marriange, Tobias; Aamir, Ali; Appel, John W.; Bennett, Charles L.; Boone, Fletcher; Brewer, Michael; Chan, Manwei; Chuss, David T.; Colazo, Felipe; Denis, Kevin; Moseley, Samuel H.; Rostem, Karwan; Wollack, Edward

    2016-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) is a four telescope array designed to characterize relic primordial gravitational waves from in ation and the optical depth to reionization through a measurement of the polarized cosmic microwave background (CMB) on the largest angular scales. The frequencies of the four CLASS telescopes, one at 38 GHz, two at 93 GHz, and one dichroic system at 145/217 GHz, are chosen to avoid spectral regions of high atmospheric emission and span the minimum of the polarized Galactic foregrounds: synchrotron emission at lower frequencies and dust emission at higher frequencies. Low-noise transition edge sensor detectors and a rapid front-end polarization modulator provide a unique combination of high sensitivity, stability, and control of systematics. The CLASS site, at 5200 m in the Chilean Atacama desert, allows for daily mapping of up to 70% of the sky and enables the characterization of CMB polarization at the largest angular scales. Using this combination of a broad frequency range, large sky coverage, control over systematics, and high sensitivity, CLASS will observe the reionization and recombination peaks of the CMB E- and B-mode power spectra. CLASS will make a cosmic variance limited measurement of the optical depth to reionization and will measure or place upper limits on the tensor-to-scalar ratio, r, down to a level of 0.01 (95% C.L.).

  14. Method to generate generic floor response spectra for operating nuclear power plant

    International Nuclear Information System (INIS)

    The general approach in the development of the response spectra was to study the effects on the dynamic characteristics of each of the elements in the chain of events that goes between the loads and the responses. This includes the loads, the soils and the structures. A free-field earthquake response spectra was used to generate horizontal earthquake time histories. The excitation was applied through the soil and into the various structures to produce responses in equipment. An entire range of soil conditions was used with each structure, from soft soil to solid rock. Actual PWR and BWR - Mark I structural models were used as representative of a class of structures. For each model, the stiffness properties were varied, with the same mass, so as to extend the fundamental base structure natural frequency from 2 cps to 36 cps. This resulted in fundamental mode coupled natural frequencies as low as 0.86 cps and as high as 30 cps. From all of these models of soils and structures, floor response spectra were generated at each floor level. The natural frequencies of the structures were varied to obtain maximum response conditions. The actual properties were first used to locate the natural frequencies. The stiffness properties were then varied, with the same mass, to extend the range of the fundamental base structure natural frequency. The intention was to have the coupled structural material frequencies in the vicinity of the peak amplitude frequency content of the excitation spectrum. Particular attention was therefore given to the frequency band between 2 Hz and 4 Hz. A horizontal generic floor response spectra is proposed for the top level of a generic structure. Reduction factors are applied to the peak acceleration for equipment at lower levels

  15. A method to generate generic floor response spectra for operating nuclear power plants

    International Nuclear Information System (INIS)

    A free-field earthquake response spectra was used to generate horizontal earthquake time histories. The excitation was applied through the soil and into the various structures to produce responses in equipment. An entire range of soil conditions was used with each structure, from soft soil to solid rock. Actual PWR and BWR - Mark I structural models were used as representative of a class of structures. For each model, the stiffness properties were varied, with the same mass, so as to extend the fundamental base structure natural frequency from 2 cps to 36 cps. This resulted in fundamental mode coupled natural frequencies as low as 0.86 cps and as high as 30 cps. From all of these models of soils and structures, floor response spectra were generated at each floor level. The natural frequencies of the structures were varied to obtain maximum response conditions. The actual properties were first used to locate the natural frequencies. The stiffness properties were than varied, with the same mass, to extend the range of the fundamental base structure natural frequency. The intention was to have the coupled structural material frequencies in the vicinity of the peak amplitude frequency content of the excitation spectrum. Particular attention was therefore given to the frequency band between 2 Hz and 4 Hz. A horizontal generic floor response spectra is proposed for the top level of a generic structure. Reduction factors are applied to the peak acceleration for equipment at lower levels. (orig./HP)

  16. Faint AGN in z>~6 Lyman-break Galaxies Powered by Cold Accretion and Rapid Angular Momentum Transport

    CERN Document Server

    Munoz, Joseph A

    2012-01-01

    We develop a radiation pressure-balanced model for the interstellar medium of high-redshift galaxies that describes many facets of galaxy formation at z>~6, including star formation rates and distributions and gas accretion onto central black holes. We first show that the vertical gravitational force in the disk of such a model is dominated by the disk self-gravity but that both radiation pressure on dust grains and turbulent pressure from dense clumps and disk instabilities are negligible compared with the radiation pressure of starlight on gas. Constraining our model to reproduce the UV luminosity function of Lyman-break galaxies (LBGs), we limit the available parameter-space to wind mass-loading factors 1--4 times the canonical value for momentum-driven winds. We then focus our study by exploring the effects of different angular momentum transport mechanisms in the galactic disk and find that viscosity driven by gravitational torques, such as from linear spiral waves or non-linear orbit crossings, can buil...

  17. Ringing the initial Universe: the response of overdensity and transformed-density power spectra to initial spikes

    CERN Document Server

    Neyrinck, Mark C

    2013-01-01

    We present an experiment in which we 'ring' a set of cosmological N-body-simulation initial conditions, placing spikes in its initial power spectrum at different wavenumber bins. We then measure where these spikes end up in the final conditions. In the usual, overdensity power spectrum, most sensitive to contracting and collapsing dense regions, initial power on slightly non-linear scales (k ~ 0.3 h/Mpc) smears to smaller scales, coming to dominate the initial power once there. In log-density and Gaussianized-density power spectra, the sensitivity to low-density (expanding) as well as high-density regions produces a different response: initial spikes spread symmetrically in scale, both upward and downward. We also test the difference between a crude approximation of the Ly-{\\alpha} flux field, and its Gaussianized form. In the power spectrum of the reciprocal density, 1/(1 + {\\delta}), spikes migrate to larger scales, indicating the magnifying effect voids have on small-scale modes. We give a toy model that q...

  18. Older men are more fatigable than young when matched for maximal power and knee extension angular velocity is unconstrained

    OpenAIRE

    Dalton, Brian H.; Power, Geoffrey A; Paturel, Justin R.; Rice, Charles L.

    2015-01-01

    The underlying factors related to the divergent findings of age-related fatigue for dynamic tasks are not well understood. The purpose here was to investigate age-related fatigability and recovery between a repeated constrained (isokinetic) and an unconstrained velocity (isotonic) task, in which participants performed fatiguing contractions at the velocity (isokinetic) or resistance (isotonic) corresponding with maximal power. To compare between tasks, isotonic torque–power relationships were...

  19. Power scaling of mini-bar-based high-power 780-980nm pump modules at Spectra-Physics

    Science.gov (United States)

    Liu, Daming; Cutillas, Serge; Jin, Xu; Park, Sang-Ki; Johnson, Kelly; Li, Hanxuan; Truchan, Tom; Wolak, Ed; Towe, Terry; Chyr, Irving; Miller, Robert; Meissner, Arne; Lenarduzzi, Dino; Bullock, Robert; Mott, Jeff; Harrison, James

    2009-02-01

    Continued advances in high power diode laser technology enable new applications and enhance existing ones. Recently, mini-bar based modules have been demonstrated which combine the advantages of independent emitter failures previously shown in single-stripe architectures with the improved brightness retention enabled by multi-stripe architectures. In this work we highlight advances in a family of compact, environmentally rugged mini-bar based fiber coupled Orion modules. Advances in PCE (power conversion efficiency) and reliable operating power from a 9xx nm wavelength unit are shown from such modules. Additionally, highly reliable fiber coupled operation and performance data is demonstrated in other wavelengths in the 780 - 980 nm range. Data demonstrating the scaling this technology to 25W and higher power levels will be given.

  20. Development of simultaneous measurement system of birefringence, optical rotational power, and transmission spectra for chiral liquid crystal phases

    Science.gov (United States)

    Feng, Zhengyu; Ishikawa, Ken

    2016-05-01

    A novel experimental setup used to measure the important optical properties of liquid crystal materials is proposed. The setup allows us to measure electric-field-induced birefringence, optical rotational power, and transmission spectra consecutively. This system can be widely applied to characterize liquid crystal materials including blue phases, ferroelectric liquid crystals, and other chiral phases. We adopted this system to study the phase transition behavior of a V-shape switching ferroelectric liquid crystal mixture and made an important correction of experimental results previously reported by Sandhya et al. [ Europhys. Lett. 90, 56005 (2010)]. This finding proves the advantage of this system compared with the measurement method using individual systems.

  1. Polarization-dependent difference of the power spectra from two-dimensional random media with different shapes

    Institute of Scientific and Technical Information of China (English)

    LIU Hai; LIU JinSong; L(U) JianTao; WANG KeJia

    2009-01-01

    Polarization-dependent difference of the power spectra from a set of two-dimensional (2D) passive random media is investigated by simultaneously solving Maxwell's equations for both transverse magnetic (TM) and transverse electric (TE) fields. The random media have the same random constitution but different shapes. Results show that both two polarized states are morphology dependent,and the variety of the shapes has more influence on the selection of TM polarized modes than that of TE polarized modes. Such polarization-dependent difference of morphology property presents a new modeselecting technique for random lasers.

  2. Survival of deterministic dynamics in the presence of noise and the exponential decay of power spectra at high frequency

    International Nuclear Information System (INIS)

    Power spectra from continuous-time dynamical systems exhibiting determinstic chaos decay exponentially at high frequency. Power spectra from noisy systems decay via a power law. Since noise is always present in real systems, one can, in practice, observe only a finite region of exponential decay before the spectrum flattens into the power-law decay characteristic of noise. Numerical results are presented that show that, in the Lorenz and Rossler models [J. Atmos. Sci. {f 20}, 130 (1963); Phys. Lett. {f (57A), 397 (1976)], the preservation of a portion of the region of exponential decay in the presence of noise is equivalent to the preservation of a portion of the scaling region of the attractor giving the correct correlation dimension. This suggests that the observation of a finite region of exponential decay is a sufficient condition for the dynamics of the system to be essentially deterministic. In addition, theoretical arguments are presented that suggest that preservation of the exponential decay is a sufficient condition for the existence of finite-time shadowing orbits. These results are applied to the numerical simulation of ordinary differential equations leading to the conclusion that the survival of the region of exponential decay in the power spectrum should guarantee that round-off error and truncation error arising from the discretization of time are not changing the dynamics of the simulation from the dynamics of the original ordinary differential equation. It is conjectured that analogous results should hold for the wave number spectrum in spatiotemporally chaotic systems, that is, that the survival of a region of exponential decay in the wave number spectrum should guarantee that truncation error arising from the discretization of space is not fundamentally changing the dynamics of the system. This is shown to be true for the special case of simulations of fully turbulent flows

  3. Dirac mass spectra of Qanti q-like mesons in a power-law potential

    International Nuclear Information System (INIS)

    The mass spectra of Qanti q-like mesons are studied in the Dirac equation with an equally mixed 4-vector and scalar powerlaw potential of the form V(r)=Arsup(0.1) + V0. It is found that this flavor-independent potential can satisfactorily describe the mass levels of D, F and B mesons along with those of PSI and T families in a unified manner and that the quark masses in quarkonia and Qanti q-like mesons are very close to the current quark masses. (orig.)

  4. Linked Scatter Plots, A Powerful Exploration Tool For Very Large Sets of Spectra

    Science.gov (United States)

    Carbon, Duane Francis; Henze, Christopher

    2015-08-01

    We present a new tool, based on linked scatter plots, that is designed to efficiently explore very large spectrum data sets such as the SDSS, APOGEE, LAMOST, GAIA, and RAVE data sets.The tool works in two stages: the first uses batch processing and the second runs interactively. In the batch stage, spectra are processed through our data pipeline which computes the depths relative to the local continuum at preselected feature wavelengths. These depths, and any additional available variables such as local S/N level, magnitudes, colors, positions, and radial velocities, are the basic measured quantities used in the interactive stage.The interactive stage employs the NASA hyperwall, a configuration of 128 workstation displays (8x16 array) controlled by a parallelized software suite running on NASA's Pleiades supercomputer. Each hyperwall panel is used to display a fully linked 2-D scatter plot showing the depth of feature A vs the depth of feature B for all of the spectra. A and B change from panel to panel. The relationships between the various (A,B) strengths and any distinctive clustering, as well as unique outlier groupings, are visually apparent when examining and inter-comparing the different panels on the hyperwall. In addition, the data links between the scatter plots allow the user to apply a logical algebra to the measurements. By graphically selecting the objects in any interesting region of any 2-D plot on the hyperwall, the tool immediately and clearly shows how the selected objects are distributed in all the other 2-D plots. The selection process may be repeated multiple times and, at each step, the selections can represent a sequence of logical constraints on the measurements, revealing those objects which satisfy all the constraints thus far. The spectra of the selected objects may be examined at any time on a connected workstation display.Using over 945,000,000 depth measurements from 569,738 SDSS DR10 stellar spectra, we illustrate how to quickly

  5. Dark matter velocity dispersion effects on CMB and matter power spectra

    CERN Document Server

    Piattella, O F; Fabris, J C; Pacheco, J A de Freitas

    2015-01-01

    Effects of velocity dispersion of dark matter particles on the CMB TT power spectrum and on the matter linear power spectrum are investigated using a modified CAMB code. Cold dark matter originated from thermal equilibrium processes does not produce appreciable effects but this is not the case if particles have a non-thermal origin. A cut-off in the matter power spectrum at small scales, similar to that produced by warm dark matter or that produced in the late forming dark matter scenario, appears as a consequence of velocity dispersion effects, which acts as a pressure perturbation.

  6. The diagnostic value of power spectra analysis of the sleep electroencephalography in narcoleptic patients

    DEFF Research Database (Denmark)

    Christensen, Julie Anja Engelhard; Munk, Emil Gammelmark Schreiner; Peppard, Paul E.;

    2015-01-01

    stages in NC versus controls. Methods: EEG power spectral density (PSD) was computed in 136 NC patients and 510 sex- and agematched controls. Features reflecting differences in PSD curves were computed. A Lasso-regularized regression model was used to find an optimal feature subset, which was validated...... on 19 NC patients and 708 non-NC patients from a sleep clinic. Reproducible features were analyzed using receiver operating characteristic (ROC) curves. Results: Thirteen features were selected based on the training dataset. Three were applicable in the validation dataset, indicating that NC patients...... show (1) increased alpha power in REM sleep, (2) decreased sigma power in wakefulness, and (3) decreased delta power in stage N1 versus wakefulness. Sensitivity of these features ranged from 4% to 10% with specificity around 98%, and it did not vary substantially with and without treatment. Conclusions...

  7. A model of the steep power law spectra and high-frequency quasi-periodic oscillations in luminous black hole X-ray binaries

    OpenAIRE

    Dexter, Jason; Blaes, Omer

    2013-01-01

    We propose a new model of the steep power law state of luminous black hole X-ray binaries. The model uses the fact that at high luminosities, the inner radii of radiation pressure dominated accretion discs are expected to i) become effectively optically thin and ii) produce significant luminosities. The gas temperature therefore rises sharply inwards, producing local saturated Compton spectra with rapidly increasing peak energy. These spectra sum together to form a steep power law tail to the...

  8. 1/f 2 Characteristics and isotropy in the fourier power spectra of visual art, cartoons, comics, mangas, and different categories of photographs.

    Directory of Open Access Journals (Sweden)

    Michael Koch

    Full Text Available Art images and natural scenes have in common that their radially averaged (1D Fourier spectral power falls according to a power-law with increasing spatial frequency (1/f(2 characteristics, which implies that the power spectra have scale-invariant properties. In the present study, we show that other categories of man-made images, cartoons and graphic novels (comics and mangas, have similar properties. Further on, we extend our investigations to 2D power spectra. In order to determine whether the Fourier power spectra of man-made images differed from those of other categories of images (photographs of natural scenes, objects, faces and plants and scientific illustrations, we analyzed their 2D power spectra by principal component analysis. Results indicated that the first fifteen principal components allowed a partial separation of the different image categories. The differences between the image categories were studied in more detail by analyzing whether the mean power and the slope of the power gradients from low to high spatial frequencies varied across orientations in the power spectra. Mean power was generally higher in cardinal orientations both in real-world photographs and artworks, with no systematic difference between the two types of images. However, the slope of the power gradients showed a lower degree of mean variability across spectral orientations (i.e., more isotropy in art images, cartoons and graphic novels than in photographs of comparable subject matters. Taken together, these results indicate that art images, cartoons and graphic novels possess relatively uniform 1/f(2 characteristics across all orientations. In conclusion, the man-made stimuli studied, which were presumably produced to evoke pleasant and/or enjoyable visual perception in human observers, form a subset of all images and share statistical properties in their Fourier power spectra. Whether these properties are necessary or sufficient to induce aesthetic

  9. Study on ground numerical models for floor response spectra analysis of nuclear power plant and their influences

    International Nuclear Information System (INIS)

    In the framework of numerical model of lumped parameters, a time-frequency domain coupled model of ground is presented and recommended in this paper to analyze the dynamic interaction, which solves the soil dynamic impedance based on the harmonic response analysis and maintains the necessary accuracy in the numerical transformation between time and frequency domains by using continued fraction expansion. The proposed dynamic analysis method can be easily utilized in practical engineering with inhomogeneous soil layers, and can play a positive role in enhancing the associated seismic analysis of nuclear power plants in China. Finally, by taking the analysis of dynamic stiffness of soil and the floor response spectra for a certain 1000 MW Nuclear Power Plant as an example, specific numerical comparison analyses are carried out to study the impact influences for various soil models, in which the numerical precision for the new proposed method is well validated. (authors)

  10. ANALYSIS OF HIGH CADENCE IN SITU SOLAR WIND IONIC COMPOSITION DATA USING WAVELET POWER SPECTRA CONFIDENCE LEVELS

    International Nuclear Information System (INIS)

    The variability inherent in solar wind composition has implications for the variability of the physical conditions in its coronal source regions, providing constraints on models of coronal heating and solar wind generation. We present a generalized prescription for constructing a wavelet power significance measure (confidence level) for the purpose of characterizing the effects of missing data in high cadence solar wind ionic composition measurements. We describe the data gaps present in the 12 minute Advanced Composition Explorer/Solar Wind Ionic Composition Spectrometer observations of O7+/O6+ during 2008. The decomposition of the in situ observations into 'good measurement' and 'no-measurement' signals allows us to evaluate the performance of a filler signal, i.e., various prescriptions for filling the data gaps. We construct Monte Carlo simulations of synthetic O7+/O6+ composition data and impose the actual data gaps that exist in the observations in order to investigate two different filler signals: one, a linear interpolation between neighboring good data points, and two, the constant mean value of the measured data. Applied to these synthetic data plus filler signal combinations, we quantify the ability of the power spectra significance level procedure to reproduce the ensemble-averaged time-integrated wavelet power per scale of an ideal case, i.e., the synthetic data without imposed data gaps. Finally, we present the wavelet power spectra for the O7+/O6+ data using the confidence levels derived from both the mean value and linear interpolation data gap filling signals and discuss the results

  11. Power spectra trends in imaging polarimetry of outdoor solar illuminated scenes

    Science.gov (United States)

    Kupinski, Meredith; Chipman, Russell

    2016-05-01

    The 1=∫2 power law (where ∫ is spatial frequency) characterizes the spatial power spectrum of non-polarimetric images of outdoor scenes when averaged over an appropriately large ensemble. This empirical result has been repeatedly verified in diverse imaging applications. In this work we compare the ensemble-averaged power spectrum of radiance and polarized radiance images. Outdoor scenes have been imaged over the past three-years using JPL's Ground-based Multiangle SpectroPolarimetric Imager (Ground-MSPI)[1] at the University of Arizona (UA). Ground-MSPI is an eight-band spectropolarimetric camera mounted on a rotating gimbal to acquire pushbroom imagery of solar illuminated outdoor landscapes. This Ground-MSPI image library offers a unique opportunity to quantify the statistical trends between polarimetric and non-polarimetric measurements. From power spectrum analysis of 1,975 images in our collection we report that the magnitude of the 1=∫-exponent is lower for the polarized radiance image than the corresponding radiance image. This result quantifies the contrast mechanism difference for imaging polarimetry, indicates higher spatial frequency content in passive polarimetry of outdoor environments, and supports the assertion that polarimetry offers unique detection capabilities.

  12. The Effect of a Finite Measurement Volume on Power Spectra from a Burst Type LDA

    DEFF Research Database (Denmark)

    Buchhave, Preben; Velte, Clara Marika; K. George, William

    2014-01-01

    We analyze the effects of a finite size measurement volume on the power spectrum computed fromdata acquired with a burst-type laser Doppler anemometer. The finite measurement volume causes temporal distortions in acquisition of the data resulting in phenomena such as finite processing time and de...

  13. Forward Modeling of Reduced Power Spectra From Three-Dimensional k-Space

    OpenAIRE

    von Papen, Michael; Saur, Joachim

    2015-01-01

    We present results from a numerical forward model to evaluate one-dimensional reduced power spectral densities (PSD) from arbitrary energy distributions in $\\mathbf{k}$-space. In this model, we can separately calculate the diagonal elements of the spectral tensor for incompressible axisymmetric turbulence with vanishing helicity. Given a critically balanced turbulent cascade with $k_\\|\\sim k_\\perp^\\alpha$ and $\\alpha

  14. Musical rhythm spectra from Bach to Joplin obey a 1/f power law

    OpenAIRE

    Levitin, Daniel J.; Chordia, Parag; Menon, Vinod

    2012-01-01

    Much of our enjoyment of music comes from its balance of predictability and surprise. Musical pitch fluctuations follow a 1/f power law that precisely achieves this balance. Musical rhythms, especially those of Western classical music, are considered highly regular and predictable, and this predictability has been hypothesized to underlie rhythm's contribution to our enjoyment of music. Are musical rhythms indeed entirely predictable and how do they vary with genre and composer? To answer thi...

  15. Multiple Peaks in the Angular Power Spectrum of the Cosmic Microwave Background Significance and Consequences for Cosmology

    CERN Document Server

    De Bernardis, P; Bock, J J; Bond, J R; Borrill, J; Boscaleri, A; Coble, K; Contaldi, C R; Crill, B P; De Troia, G; Farese, P; Ganga, K; Giacometti, M; Hivon, E; Hristov, V V; Iacoangeli, A; Jaffe, A H; Jones, W C; Lange, A E; Martinis, L; Masi, S; Mason, P; Mauskopf, P D; Melchiorri, A; Montroy, T; Netterfield, C B; Pascale, E; Piacentini, F; Pogosyan, D; Polenta, G; Pongetti, F; Prunet, S; Romeo, G; Ruhl, J E; Scaramuzzi, F

    2002-01-01

    Three peaks and two dips have been detected in the power spectrum of the cosmic microwave background from the BOOMERANG experiment, at $\\ell \\sim 210, 540, 840$ and $\\ell \\sim 420, 750$, respectively. Using model-independent analyses, we find that all five features are statistically significant and we measure their location and amplitude. These are consistent with the adiabatic inflationary model. We also calculate the mean and variance of the peak and dip locations and amplitudes in a large 7-dimensional parameter space of such models, which gives good agreement with the model-independent estimates, and forecast where the next few peaks and dips should be found if the basic paradigm is correct. We test the robustness of our results by comparing Bayesian marginalization techniques on this space with likelihood maximization techniques applied to a second 7-dimensional cosmological parameter space, using an independent computational pipeline, and find excellent agreement: $\\Omega_{\\rm tot} = 1.02^{+0.06}_{-0.05...

  16. Model-based fit procedure for power-law-like spectra

    OpenAIRE

    Milotti, Edoardo

    2005-01-01

    $1/f^\\alpha$ noises are ubiquitous and affect many measurements. These noises are both a nuisance and a peculiarity of several physical systems; in dielectrics, glasses and networked liquids it is very common to study this noise to gather useful information. Sometimes it happens that the noise has a power-law shape only in a certain frequency range, and contains other important features, that are however difficult to study because simple fits often fail. Here I propose a model-based fit proce...

  17. Power Spectra of a Totally Asymmetric Simple Exclusion Process with Finite Resources

    Science.gov (United States)

    Cook, L. Jonathan; Zia, Royce K. P.

    2010-03-01

    In a cell, a mRNA has only a finite number of ribosomes to use during protein synthesis. We take this constraint into account in the modeling of translation by a totally asymmetric simple exclusion process (TASEP). Through Monte Carlo simulations and analytical methods, we study the power spectrum of the total particle occupancy of the TASEP. New features are found, such as a severe suppression at low frequencies. We formulate a theory based on a linearized Langevin equation with discrete space and time. With good agreement between the theoretical approach and the simulations, we gain some insight in how finite resources affect a TASEP.

  18. Application of the noise power spectrum in modern diagnostic MDCT: part II. Noise power spectra and signal to noise

    International Nuclear Information System (INIS)

    Balancing dose and image quality requires signal-to-noise (SNR) metrics which incorporate both the variance and the spatial frequency characteristics of noise. In this study, the non-prewhitening matched filter SNR metric is calculated for 2 mm slices of a 1 cm diameter sphere under three different conditions: (1) constant pixel standard deviation (2) constant dose and (3) constant reconstruction filter. For the constant pixel standard deviation condition, an increase of 260% in SNR was found with increasing filter sharpness. For constant dose, the SNR remained level for smooth to medium filters, then declined by up to 55% with increasing filter sharpness. For a constant reconstruction filter, the SNR increased with dose, but not as high as photon statistics would predict. However, when structured noise was removed from the noise power spectrum, the SNR did vary with quanta statistics. These results offer protocol design guidance for low-frequency-dominated objects

  19. The rotation of accretion-disks and the power spectra of X-rays 'flickering'

    International Nuclear Information System (INIS)

    The X-ray producing, inner region of the accretion disk in Active Galactic Nuclei (AGN) is likely to be non-stationary and non-axisymmetric. This non-stationarity and non-axisymmetry in disk surface brightness may be modeled by considering the pre-sense of many 'hot spots' on a steady, axisymmetric disk. As long as a 'spot' can survive for a few orbital periods, its orbital frequency can be introduced into the light curve either by relativistic orbital motion or by eclipsing of the spot by the disk. These rotational effects vary with the local properties of the spot population. Depending on the radial variation of spot brightness, lifetime and number density, the observed variability power spectrum may differ from that due to the intrinsic variability of spots alone, within the orbital frequency range in which these spots occur. In this paper, we explore the relation between properties assumed for the spot population and the resulting predictions for the observed variability. The implications of our results for the 'flickering' of X-ray sources powered by accretion disks (both AGN and galactic sources) are also discussed. (author). 24 refs, 6 figs

  20. SYNCHROTRON POLARIZATION AND SYNCHROTRON SELF-ABSORPTION SPECTRA FOR A POWER-LAW PARTICLE DISTRIBUTION WITH FINITE ENERGY RANGE

    International Nuclear Information System (INIS)

    We have derived asymptotic forms for the degree of polarization of the optically thin synchrotron and for synchrotron self-absorption (SSA) spectra assuming a power-law particle distribution of the form N(γ) ∼ γ–p with γ1 2, especially for a finite high-energy limit, γ2, in the case of an arbitrary pitch angle. The new results inferred concern more especially the high-frequency range x >> η2 with parameter η = γ2/γ1. The calculated SSA spectra concern instantaneous photon emission where cooling effects are not considered. They have been obtained by also ignoring likely effects such as Comptonization, pair creation and annihilation, as well as magnetic photon splitting. To that aim, in addition to the two usual absorption frequencies, a third possible one has been derived and expressed in terms of the Lambert W function based on the analytical asymptotic form of the absorption coefficient, αν, for the high-frequency range ν >> ν2 (with ν2 the synchrotron frequency corresponding to γ2). We have shown that the latter frequency may not have realistic applications in astrophysics, except in the case of an adequate set of parameters allowing one to neglect Comptonization effects. More detailed calculations and discussions are presented.

  1. Delta-electron spectra, inelastic cross sections, and stopping powers of ions in silicon: Comparison between different models

    Energy Technology Data Exchange (ETDEWEB)

    Akkerman, A.; Murat, M., E-mail: michael@soreq.gov.il; Barak, J.

    2014-02-15

    The energy spectrum of the δ-electrons ejected by an ion moving in the bulk of a solid is the origin of numerous effects which follow the transport of these electrons. This spectrum cannot be measured directly. Therefore, it should be derived theoretically. The present work aims to investigate the uncertainties introduced when applying commonly used theoretical approaches like BEA, CDFT, and PWBA to calculate δ-electron spectrum. Our calculations show that, above a certain δ-electron energy, the energy spectra of the δ-electrons obtained using the various approaches behave similarly. Below this energy, the spectra found using these approaches differ significantly due to the manner in which the solid state character of the target material is taken into account in each approach. This results in differences in the inelastic cross sections and stopping powers for the ions, which in turn result in different ion track structures. Also discussed in this paper is the effect of the uncertainty in the effective ion charge on the accuracy of ion track calculations. The results obtained for silicon allow estimating the possible uncertainties of the calculated ion track properties and related effects.

  2. Multiple Peaks in the Angular Power Spectrum of the CosmicMicrowave Background: Significance and Consequences for Cosmology

    Energy Technology Data Exchange (ETDEWEB)

    de Bernardis, P.; Ade, P.A.R.; Bock, J.J.; Bond, J.R.; Borrill,J.; Boscaleri, A.; Coble, K.; Contaldi, C.R.; Crill, B.P.; De Troia, G.; Farese, P.; Ganga, K.; Giacometti, M.; Hivon, E.; Hristov, V.V.; Iacoangeli, A.; Jaffe, A.H.; Jones, W.C.; Lange, A.E.; Martinis, L.; Masi, S.; Mason, P.; Mauskopf, P.D.; Melchiorri, A.; Montroy, T.; Netterfield, C.B.; Pascale, E.; Piacentini, F.; Pogosyan, D.; Polenta,G.; Pongetti, F.; Prunet, S.; Romeo, G.; Ruhl, J.E.; Scaramuzzi, F.

    2001-05-17

    Three peaks and two dips have been detected in the power spectrum of the cosmic microwave background from the BOOMERANG experiment, at {ell} {approx} 210, 540, 840 and {ell} {approx} 420, 750, respectively. Using model-independent analyses, we find that all five features are statistically significant and we measure their location and amplitude. These are consistent with the adiabatic inflationary model. We also calculate the mean and variance of the peak and dip locations and amplitudes in a large 7-dimensional parameter space of such models, which gives good agreement with the model-independent estimates, and forecast where the next few peaks and dips should be found if the basic paradigm is correct. We test the robustness of our results by comparing Bayesian marginalization techniques on this space with likelihood maximization techniques applied to a second 7-dimensional cosmological parameter space, using an independent computational pipeline, and find excellent agreement: {Omega}{sub tot} = 1.02{sub -0.05}{sup +0.06} vs. 1.04 {+-} 0.05, {Omega}{sub b}h{sup 2} = 0.022{sub -0.003}{sup +0.004} vs. 0.019{sub -0.004}{sup +0.005}, and n{sub s} = 0.96{sub -0.09}{sup +0.10} vs. 0.90 {+-} 0.08. The deviation in primordial spectral index n{sub s} is a consequence of the strong correlation with the optical depth.

  3. Signatures of X-ray reverberation in the power spectra of AGN

    CERN Document Server

    Papadakis, I; Dovciak, M; Epitropakis, A; Emmanoulopoulos, D; Karas, V

    2016-01-01

    We compute fully relativistic disc response functions in the case of the "lamp-post" geometry using the full observed reflection spectrum for various X-ray source heights, disc inclination, and spin values of the central black hole. Since the observed PSD is equal to the product of the intrinsic power spectrum with the "transfer function" (i.e. the Fourier transform of the disc response function), we are able to predict the observed PSDs in the case of X-ray illumination of the inner disc. The observed PSD should show a prominent dip at high frequencies and an oscillatory behaviour, with a decreasing amplitude, at higher frequencies. The reverberation "echo" features should be more prominent in energy bands where the reflection component is more pronounced. The frequency of the dip is independent of energy, and it is mainly determined by the black hole mass and the X-ray source height. The amplitude of the dip increases with increasing black hole spin and inclination angle, as long as the height of the "lamp"...

  4. Development of a spectrometer for the measurement of (n,xp), (n,xd), and (n,xα) cross sections, angular distributions, and spectra at E/sub n/ = 15 MeV

    International Nuclear Information System (INIS)

    A spectrometer to measure neutron-induced charged-particle-producing reactions was developed and yields data with greatly improved signal-to-background ratios. It consists of a magnetic quadrupole lens which focuses the charged particles onto a silicon surface-barrier detector or a two-detector telescope which is more than 2 meters from the sample being irradiated. The efficiency of the spectrometer is calibrated experimentally and depends only on values for the (n,p) elastic cross section and the stopping power of polyethylene. Further development is under way to replace the surface-barrier ΔE counter with a proportional counter of larger area. This detector, combined with a larger E counter (surface-barrier) could increase the effective solid angle by a factor of five. The results for (n,xp), (n,xd) and (n,xα) cross sections are summarized for the eight target materials studied so far. Measurements of the charged-particle spectra established that cross sections for production of protons below 2.5 MeV are significant for some targets; in fact, protons as low as 800 keV were detected from aluminum. These low-energy protons would be quite difficult to measure with conventional counter telescope spectrometers. 4 figures, 1 table

  5. The power spectra of non-circular motions in disk galaxies

    Science.gov (United States)

    Westfall, Kyle; Laws, Anna S. E.; MaNGA Team

    2016-01-01

    Using data from the first year of the SDSS-IV/MaNGA survey, we present a preliminary study of the amplitude of non-circular motions in a sample of disk galaxies. We select galaxies that have either a visual classification as a spiral galaxy by the Galaxy Zoo project (Lintott et al. 2011) and/or a measured Sersic index of less than 2.5 from the NASA-Sloan Atlas (nsatlas.org). We also remove high-inclination systems by selecting galaxies with isophotal ellipticity measurements of less than 0.6, implying an inclination of less than 65 degrees. For each galaxy, we fit a tilted-disk model to the observed line-of-sight velocities (Andersen & Bershady 2013). The geometric projection of the circularly rotating disk is simultaneously fit to both the ionized-gas (H-alpha) and stellar kinematics, whereas the rotation curves of the two dynamical tracers are allowed to be independent. We deproject the residuals of the velocity-field fit to the disk-plane polar coordinates and select a radial region that is fully covered in aziumuth, yet not undersampled by the on-sky spaxel. Similar to the approach taken by Bovy et al. (2015) for the Milky Way, we then compute the two-dimensional power spectrum of this velocity-residual map, which provides the amplitude of non-circular motions at all modes probed by the data. Our preliminary analysis reveals disk-plane non-circular motions in both the stars and ionized-gas with typical peak amplitudes of approximately 20 km/s. Additionally, our initial findings appear to demonstrate that non-circular motions in barred galaxies are stronger in the ionized gas than in the stars, a trend not seen in unbarred galaxies.

  6. Complete angular distribution measurements of pp spin correlation parameters Axx, Ayy, and Axz and analyzing power Ay at 197.4 MeV

    International Nuclear Information System (INIS)

    Measurements of pp spin correlation coefficients Axx, Ayy, and Axz and analyzing power Ay for pp elastic scattering at 197.4 MeV over the laboratory angular range 3.5 degree - 43.5 degree (θc.m.=7 degree - 90 degree) have been carried out. The typical statistical accuracy per 1 degree angle bin is better than 0.02 for the Amn and better than 0.005 for Ay. Systematic errors are negligible except for an overall normalization uncertainty of 2.5% for Amn and 1.3% for Ay. The experiment makes use of a polarized hydrogen gas target internal to a proton storage ring (IUCF Cooler) and a circulating beam of polarized protons. The target polarization is switched in sign and direction (x,y,z) every 2 s by reversing a weak guide field (∼0.3 mT). Scattered and recoil protons are detected in coincidence by two sets of wire chambers, by scintillators, and by silicon-strip recoil detectors placed 5 cm from the proton beam. Analysis methods and comparison to recent pp partial-wave analyses and NN potential models are described. copyright 1998 The American Physical Society

  7. Influence of ionisation zone motion in high power impulse magnetron sputtering on angular ion flux and NbO$_x$ film growth

    CERN Document Server

    Franz, Robert; Kolbeck, Jonathan; Anders, André

    2016-01-01

    The ion energies and fluxes in the high power impulse magnetron sputtering plasma from a Nb target were analysed angularly resolved along the tangential direction of the racetrack. A reactive oxygen-containing atmosphere was used as such discharge conditions are typically employed for the synthesis of thin films. Asymmetries in the flux distribution of the recorded ions as well as their energies and charge states were noticed when varying the angle between mass-energy analyser and target surface. More positively charged ions with higher count rates in the medium energy range of their distributions were detected in $+\\mathbf{E}\\times \\mathbf{B}$ than in $-\\mathbf{E}\\times \\mathbf{B}$ direction, thus confirming the notion that ionisation zones are associated with moving potential humps. The motion of the recorded negatively charged high-energy oxygen ions was unaffected. NbO$_x$ thin films at different angles and positions were synthesised and analysed as to their structure and properties in order to correlate ...

  8. Angular and energy distribution of Sn ion debris ejected from a laser-produced plasma source, for laser power densities in the range suitable for extreme ultraviolet lithography

    International Nuclear Information System (INIS)

    In this paper, experimental results are presented for the spatial and energy distributions of charge-discriminated Sn ions ejected from laser-produced plasmas. The plasmas were formed on solid, planar Sn targets, irradiated with a Nd:YAG laser. Ions were investigated using a calibrated electrostatic sector analyzer, scanning an energy-to-charge ratio range of 0.22 to 2.2 keV/e for emission angles between 20 and 80 degrees relative to target normal. Results were obtained for three laser power densities, in the region suitable for inducing significant extreme ultraviolet emission, of the order 1.5-8.1 x 1011 W/cm2. The fully differentiated data were found to be well characterized by Gaussian fits, which allowed trends in the emission profiles to be readily quantified. Ions of set energy and charge were observed to possess a preferential angle of emission, the superposition of which yields a physical basis for the total angular emission observed previously and in this work. The experimental results obtained have been related to physical processes within the plasma that influence the energy and angle of ejection of ions from laser produced plasmas.

  9. Probing anisotropies of gravitational-wave backgrounds with a space-based interferometer: geometric properties of antenna patterns and their angular power

    CERN Document Server

    Kudoh, H; Kudoh, Hideaki; Taruya, Atsushi

    2005-01-01

    We discuss the sensitivity to anisotropies of stochastic gravitational-wave backgrounds (GWBs) observed via space-based interferometer. In addition to the un-resolved Galactic binaries as the most promising GWB source of the planned Laser Interferometer Space Antenna (LISA), the extra-galactic sources for GWBs might be detected in the future space missions. The anisotropies of the GWBs thus play a crucial role to discriminate various components of the GWBs. We study general features of antenna pattern sensitivity to the anisotropies of GWBs beyond the low-frequency approximation. We show that the sensitivity of space-based interferometer to GWBs is severely restricted by the data combinations and the symmetries of the detector configuration. The spherical harmonic analysis of the antenna pattern functions reveals that the angular power of the detector response increases with frequency and the detectable multipole moments with effective sensitivity h_{eff}\\sim 10^{-20} Hz^{-1/2} may reach $\\ell \\sim $ 8 - 10 a...

  10. Probing anisotropies of gravitational-wave backgrounds with a space-based interferometer: Geometric properties of antenna patterns and their angular power

    International Nuclear Information System (INIS)

    We discuss the sensitivity to anisotropies of stochastic gravitational-wave backgrounds (GWBs) observed via space-based interferometer. In addition to the unresolved galactic binaries as the most promising GWB source of the planned Laser Interferometer Space Antenna (LISA), the extragalactic sources for GWBs might be detected in the future space missions. The anisotropies of the GWBs thus play a crucial role to discriminate various components of the GWBs. We study general features of antenna pattern sensitivity to the anisotropies of GWBs beyond the low-frequency approximation. We show that the sensitivity of space-based interferometer to GWBs is severely restricted by the data combinations and the symmetries of the detector configuration. The spherical harmonic analysis of the antenna pattern functions reveals that the angular power of the detector response increases with frequency and the detectable multipole moments with effective sensitivity heff∼10-20 Hz-1/2 may reach l∼8-10 at f∼f*=10 mHz in the case of the single LISA detector. However, the cross correlation of optimal interferometric variables is blind to the monopole (l=0) intensity anisotropy, and also to the dipole (l=1) in some case, irrespective of the frequency band. Besides, all the self-correlated signals are shown to be blind to the odd multipole moments (l=odd), independently of the frequency band

  11. Cosmology Large Angular Scale Surveyor (CLASS) Focal Plane Development

    Science.gov (United States)

    Chuss, D. T.; Ali, A.; Amiri, M.; Appel, J.; Bennett, C. L.; Colazo, F.; Denis, K. L.; Dünner, R.; Essinger-Hileman, T.; Eimer, J.; Fluxa, P.; Gothe, D.; Halpern, M.; Harrington, K.; Hilton, G.; Hinshaw, G.; Hubmayr, J.; Iuliano, J.; Marriage, T. A.; Miller, N.; Moseley, S. H.; Mumby, G.; Petroff, M.; Reintsema, C.; Rostem, K.; U-Yen, K.; Watts, D.; Wagner, E.; Wollack, E. J.; Xu, Z.; Zeng, L.

    2015-12-01

    The Cosmology Large Angular Scale Surveyor (CLASS) will measure the polarization of the Cosmic Microwave Background to search for and characterize the polarized signature of inflation. CLASS will operate from the Atacama Desert and observe ˜ 70 % of the sky. A variable-delay polarization modulator provides modulation of the polarization at ˜ 10 Hz to suppress the 1/f noise of the atmosphere and enable the measurement of the large angular scale polarization modes. The measurement of the inflationary signal across angular scales that spans both the recombination and reionization features allows a test of the predicted shape of the polarized angular power spectra in addition to a measurement of the energy scale of inflation. CLASS is an array of telescopes covering frequencies of 38, 93, 148, and 217 GHz. These frequencies straddle the foreground minimum and thus allow the extraction of foregrounds from the primordial signal. Each focal plane contains feedhorn-coupled transition-edge sensors that simultaneously detect two orthogonal linear polarizations. The use of single-crystal silicon as the dielectric for the on-chip transmission lines enables both high efficiency and uniformity in fabrication. Integrated band definition has been implemented that both controls the bandpass of the single-mode transmission on the chip and prevents stray light from coupling to the detectors.

  12. Cosmology Large Angular Scale Surveyor (CLASS) Focal Plane Development

    Science.gov (United States)

    Chuss, D. T.; Ali, A.; Amiri, M.; Appel, J.; Bennett, C. L.; Colazo, F.; Denis, K. L.; Dünner, R.; Essinger-Hileman, T.; Eimer, J.; Fluxa, P.; Gothe, D.; Halpern, M.; Harrington, K.; Hilton, G.; Hinshaw, G.; Hubmayr, J.; Iuliano, J.; Marriage, T. A.; Miller, N.; Moseley, S. H.; Mumby, G.; Petroff, M.; Reintsema, C.; Rostem, K.; U-Yen, K.; Watts, D.; Wagner, E.; Wollack, E. J.; Xu, Z.; Zeng, L.

    2016-08-01

    The Cosmology Large Angular Scale Surveyor (CLASS) will measure the polarization of the Cosmic Microwave Background to search for and characterize the polarized signature of inflation. CLASS will operate from the Atacama Desert and observe ˜ 70 % of the sky. A variable-delay polarization modulator provides modulation of the polarization at ˜ 10 Hz to suppress the 1/ f noise of the atmosphere and enable the measurement of the large angular scale polarization modes. The measurement of the inflationary signal across angular scales that spans both the recombination and reionization features allows a test of the predicted shape of the polarized angular power spectra in addition to a measurement of the energy scale of inflation. CLASS is an array of telescopes covering frequencies of 38, 93, 148, and 217 GHz. These frequencies straddle the foreground minimum and thus allow the extraction of foregrounds from the primordial signal. Each focal plane contains feedhorn-coupled transition-edge sensors that simultaneously detect two orthogonal linear polarizations. The use of single-crystal silicon as the dielectric for the on-chip transmission lines enables both high efficiency and uniformity in fabrication. Integrated band definition has been implemented that both controls the bandpass of the single-mode transmission on the chip and prevents stray light from coupling to the detectors.

  13. Infrared spectra and tensile elongation of irradiated cable insulation materials used in nuclear power plants

    International Nuclear Information System (INIS)

    This paper presents the results of an investigation in which the Infrared spectroscopy and tensile elongation experiments were used to study the behaviour of polymeric insulation materials used in nuclear power plant (NPP) instrumentation and control (l and C) cables. A low voltage polyvinyl chloride (PVC) insulated and PVC sheathed control cable was subjected to gamma radiation from 5M Rad to 50 MRad and the extent of degradation due to radiation ageing was assessed using Fourier transform infrared (FTIR) spectroscopy. It was observed from the infrared spectroscopy that there is an improvement in the properties of insulation materials at lower dose levels; however, the properties degrade at elevated dose conditions. This change in material properties may be due to the fact that the high energy radiation can either induce cross-linking or degradation in a polymer matrix depending on the properties of base materials and radiation parameters. In order to benchmark the findings of FTIR spectroscopy, ultimate tensile testing experimental studies were also carried out and the correlation of infrared transmittance with elongation-at-break (EAB) was established. It was evident that the FTIR findings are in good agreement with the tensile testing results at all dose levels except for a case of 5 MRad in case of sheath material. Although the chemical structure of sheath material is not affected much due to gamma radiation at 5 MRad, a reduction in EAB was seen at this dose condition. This reduction in EAB may be due to the presence of other additives in the sheath material (or physical, mechanical and environmental protection. Analysis of variance (Anova) was also performed at specific peaks of infrared transmittance to study the extent of degradation due to gamma radiation between various dose conditions, It was apparent from Anova study that there is a significant degradation due to radiation in insulation at different dose conditions at 5% significance level; however

  14. Two-Dimensional Helioseismic Power, Phase, and Coherence Spectra of {\\it Solar Dynamics Observatory} Photospheric and Chromospheric Observables

    CERN Document Server

    Howe, Rachel; Bogart, Richard S; Haber, Deborah A; Baldner, Charles S

    2012-01-01

    While the {\\it Helioseismic and Magnetic Imager} (HMI) onboard the {\\it Solar Dynamics Observatory} (SDO) provides Doppler velocity [$V$], continuum intensity [$I_C$], and line-depth [$Ld$] observations, each of which is sensitive to the five-minute acoustic spectrum, the {\\it Atmospheric Imaging Array} (AIA) also observes at wavelengths -- specifically the 1600 and 1700 Angstrom bands -- that are partly formed in the upper photosphere and have good sensitivity to acoustic modes. In this article we consider the characteristics of the spatio--temporal Fourier spectra in AIA and HMI observables for a 15-degree region around NOAA Active Region 11072. We map the spatio--temporal-power distribution for the different observables and the HMI Line Core [$I_L$], or Continuum minus Line Depth, and the phase and coherence functions for selected observable pairs, as a function of position and frequency. Five-minute oscillation power in all observables is suppressed in the sunspot and also in plage areas. Above the acoust...

  15. KamLAND neutrino spectra in energy and time: Indications for reactor power variations and constraints on the georeactor

    CERN Document Server

    Fogli, G L; Palazzo, A; Rotunno, A M

    2005-01-01

    The Kamioka Liquid scintillator Anti-Neutrino Detector (KamLAND) is sensitive to the neutrino event spectrum from (mainly Japanese) nuclear reactors in both the energy domain and the time domain. While the energy spectrum of KamLAND events allows the determination of the neutrino oscillation parameters, the time spectrum can be used to monitor known and unknown neutrino sources. By using available monthly-binned data on event-by-event energies in KamLAND and on reactor powers in Japan, we perform a likelihood analysis of the neutrino event spectra in energy and time, and find significant indications in favor of time variations of the known reactor sources, as compared with the hypothetical case of constant reactor neutrino flux. We also find that the KamLAND data place interesting upper limits on the power of a speculative nuclear reactor operating in the Earth's core (the so-called georeactor); such limits are strengthened by including solar neutrino constraints on the neutrino mass and mixing parameters. Ou...

  16. The relation between gas density and velocity power spectra in galaxy clusters: qualitative treatment and cosmological simulations

    CERN Document Server

    Zhuravleva, I; Schekochihin, A A; Lau, E T; Nagai, D; Gaspari, M; Allen, S W; Nelson, K; Parrish, I J

    2014-01-01

    We address the problem of evaluating the power spectrum of the velocity field of the ICM using only information on the plasma density fluctuations, which can be measured today by Chandra and XMM-Newton observatories. We argue that for relaxed clusters there is a linear relation between the rms density and velocity fluctuations across a range of scales, from the largest ones, where motions are dominated by buoyancy, down to small, turbulent scales: $(\\delta\\rho_k/\\rho)^2 = \\eta_1^2 (V_{1,k}/c_s)^2$, where $\\delta\\rho_k/\\rho$ is the spectral amplitude of the density perturbations at wave number $k$, $V_{1,k}^2=V_k^2/3$ is the mean square component of the velocity field, $c_s$ is the sound speed, and $\\eta_1$ is a dimensionless constant of order unity. Using cosmological simulations of relaxed galaxy clusters, we calibrate this relation and find $\\eta_1\\approx 1 \\pm 0.3$. We argue that this value is set at large scales by buoyancy physics, while at small scales the density and velocity power spectra are proporti...

  17. A direct probe of cosmological power spectra of the peculiar velocity field and the gravitational lensing magnification from photometric redshift surveys

    CERN Document Server

    Nusser, Adi; Feix, Martin

    2012-01-01

    The cosmological peculiar velocity field (deviations from the pure Hubble flow) of matter carries significant information on dark energy, dark matter and the underlying theory of gravity on large scales. Peculiar motions of galaxies introduce systematic deviations between the observed galaxy redshifts z and the corresponding cosmological redshifts z_cos. A novel method for estimating the angular power spectrum of the peculiar velocity field based on observations of galaxy redshifts and apparent magnitudes m (or equivalently fluxes) is presented. This method exploits the fact that a mean relation between z_cos and m of galaxies can be derived from all galaxies in a redshift-magnitude survey. Given a galaxy magnitude, it is shown that the z_cos(m) relation yields its cosmological redshift with a 1-sigma error of sigma_z~0.3 for a survey like Euclid (~10^9 galaxies at z<~2), and can be used to constrain the angular power spectrum of z-z_cos(m) with a high signal-to-noise ratio. At large angular separations co...

  18. First Season QUIET Observations: Measurements of CMB Polarization Power Spectra at 43 GHz in the Multipole Range 25 <= ell <= 475

    CERN Document Server

    Bischoff, C; Buder, I; Chinone, Y; Cleary, K; Dumoulin, R N; Kusaka, A; Monsalve, R; Næss, S K; Newburgh, L B; Reeves, R; Smith, K M; Wehus, I K; Zuntz, J A; Zwart, J T L; Bronfman, L; Bustos, R; Church, S E; Dickinson, C; Eriksen, H K; Ferreira, P G; Gaier, T; Gundersen, J O; Hasegawa, M; Hazumi, M; Huffenberger, K M; Jones, M E; Kangaslahti, P; Kapner, D J; Lawrence, C R; Limon, M; May, J; McMahon, J J; Miller, A D; Nguyen, H; Nixon, G W; Pearson, T J; Piccirillo, L; Radford, S J E; Readhead, A C S; Richards, J L; Samtleben, D; Seiffert, M; Shepherd, M C; Staggs, S T; Tajima, O; Thompson, K L; Vanderlinde, K; Williamson, R; Winstein, B

    2010-01-01

    The Q/U Imaging ExperimenT (QUIET) employs coherent receivers at 43GHz and 95GHz, operating on the Chajnantor plateau in the Atacama Desert in Chile, to measure the anisotropy in the polarization of the CMB. QUIET primarily targets the B modes from primordial gravitational waves. The combination of these frequencies gives sensitivity to foreground contributions from diffuse Galactic synchrotron radiation. Between 2008 October and 2010 December, >10,000hours of data were collected, first with the 19-element 43GHz array (3458hours) and then with the 90-element 95GHz array. Each array observes the same four fields, selected for low foregrounds, together covering ~1000deg^2. This paper reports initial results from the 43GHz receiver which has an array sensitivity to CMB fluctuations of 69uK sqrt(s). The data were extensively studied with a large suite of null tests before the power spectra, determined with two independent pipelines, were examined. Analysis choices, including data selection, were modified until th...

  19. Power spectra of low frequency MHD turbulence up- and downstream of interplanetary fast shocks within 1 AU

    International Nuclear Information System (INIS)

    Studies of cosmic ray modulation and Fermi acceleration of charged particles at interplanetary shock waves benefit from information on the characteristics of low frequency MHD turbulence immediately up- and downstream of these events. Using 40.5 s averages of the magnetic field and plasma parameters preceding and following 20 fast transient interplanetary shock waves, power spectra covering the frequency range from 3.9 x 10-4 to 1.2 x 10 -2 Hz were computed. These shocks were observed by the Helios spacecraft at heliocentric radial distances between 0.29 and 1 AU and with various angles between the shock normal and the upstream magnetic field direction θ (n, B1). An increase with increasing distance in the up- and downstream wave activity is observed - particularly in the compressional fluctuations, whereas a radial decrease has been reported for the average, non-shock associated Alfvenic turbulence. Compressional fluctuations are found to be most intense for large values of θ (n, B1)

  20. CALCLENS: Weak Lensing Simulations for Large-area Sky Surveys and Second-order Effects in Cosmic Shear Power Spectra

    CERN Document Server

    Becker, Matthew R

    2012-01-01

    I present a new algorithm, CALCLENS, for efficiently computing weak gravitational lensing shear signals from large N-body light cone simulations over a curved sky. This new algorithm properly accounts for the sky curvature and boundary conditions, is able to produce redshift-dependent shear signals including corrections to the Born approximation by using multiple-plane ray tracing, and properly computes the lensed images of source galaxies in the light cone. The key feature of this algorithm is a new, computationally efficient Poisson solver for the sphere that combines spherical harmonic transform and multgrid methods. As a result, large areas of sky (~10, 000 square degrees) can be ray traced efficiently at high-resolution using only a few hundred cores on widely available machines. Using this new algorithm and curved-sky calculations that only use a slower but more accurate spherical harmonic transform Poisson solver, I study the shear B-mode and rotation mode power spectra. Employing full-sky E/B-mode dec...

  1. From CFT Spectra to CMB Multipoles in Quantum Gravity Cosmology

    CERN Document Server

    Hamada, Ken-ji; Yukawa, Tetsuyuki

    2009-01-01

    We study the inflation process of universe based on the renormalizable quantum gravity formulated as a conformal field theory (CFT). We show that the power-law CFT spectrum approaches to that of the Harrison-Zel'dovich-Peebles type as the amplitude of gravitational potential gradually reduces during the inflation. The non-Gaussanity parameter is preserved within order of unity due to the diffeomorphism invariance. Sharp fall-off of the angular power spectrum of cosmic microwave background (CMB) at large scale is understood as a consequence of the existence of dynamical scale of the quantum gravity \\Lambda_QG (\\simeq 10^{17})GeV. The angular power spectra are computed and compared with the WMAP5 and ACBAR data with a quality of \\chi^2/dof \\simeq 1.1.

  2. Application of bounding spectra to seismic design of piping based on the performance of above ground piping in power plants subjected to strong motion earthquakes

    International Nuclear Information System (INIS)

    This report extends the potential application of Bounding Spectra evaluation procedures, developed as part of the A-46 Unresolved Safety Issue applicable to seismic verification of in-situ electrical and mechanical equipment, to in-situ safety related piping in nuclear power plants. The report presents a summary of earthquake experience data which define the behavior of typical U.S. power plant piping subject to strong motion earthquakes. The report defines those piping system caveats which would assure the seismic adequacy of the piping systems which meet those caveats and whose seismic demand are within the bounding spectra input. Based on the observed behavior of piping in strong motion earthquakes, the report describes the capabilities of the piping system to carry seismic loads as a function of the type of connection (i.e. threaded versus welded). This report also discusses in some detail the basic causes and mechanisms for earthquake damages and failures to power plant piping systems

  3. Techniques for studying gravity waves and turbulence: Vertical wind speed power spectra from the troposphere and stratosphere obtained under light wind conditions

    Science.gov (United States)

    Ecklund, W. L.; Balsley, B. B.; Crochet, M.; Carter, D. A.; Riddle, A. C.; Garello, R.

    1983-01-01

    A joint France/U.S. experiment was conducted near the mouth of the Rhone river in southern France as part of the ALPEX program. This experiment used 3 vertically directed 50 MHz radars separated by 4 to 6 km. The main purpose of this experiment was to study the spatial characteristics of gravity waves. The good height resolution (750 meters) and time resolution (1 minute) and the continuous operation over many weeks have yielded high resolution vertical wind speed power spectra under a variety of synoptic conditions. Vertical spectra obtained during very quiet (low wind) conditions in the troposphere and lower stratosphere from a single site are presented.

  4. Professional AngularJS

    CERN Document Server

    Karpov, Valeri

    2015-01-01

    A comprehensive guide to AngularJS, Google's open-source client-side framework for app development. Most of the existing guides to AngularJS struggle to provide simple and understandable explanations for more advanced concepts. As a result, some developers who understand all the basic concepts of AngularJS struggle when it comes to building more complex real-world applications. Professional AngularJS provides a thorough understanding of AngularJS, covering everything from basic concepts, such as directives and data binding, to more advanced concepts like transclusion, build systems, and auto

  5. A model of the steep power law spectra and high-frequency quasi-periodic oscillations in luminous black hole X-ray binaries

    CERN Document Server

    Dexter, Jason

    2013-01-01

    We propose a new model of the steep power law state of luminous black hole X-ray binaries. The model uses the fact that at high luminosities, the inner radii of radiation pressure dominated accretion discs are expected to i) become effectively optically thin and ii) produce significant luminosities. The gas temperature therefore rises sharply inwards, producing local saturated Compton spectra with rapidly increasing peak energy. These spectra sum together to form a steep power law tail to the spectrum. A given photon energy on this tail corresponds to a narrow range in radius, so that local vertical oscillations of the disc naturally produce high quality high-frequency quasi-periodic oscillations (HFQPOs) in the hard X-ray band. The two lowest order modes have a robust frequency ratio of ~1.53. This model explains the appearance of steep power law spectra and HFQPOs at high luminosity, the 3:2 HFQPO frequency ratios, and their association with the power law spectral component. We predict an increase in QPO qu...

  6. Angular dependent light emission from planar waveguides

    International Nuclear Information System (INIS)

    We have investigated the angular dependence of amplified spontaneous emission (ASE) and laser emission from an asymmetric and free-standing polymer thin films doped with rhodamine 6G, which is transversely pumped by a pulsed Nd:YAG laser. A semi-leaky waveguide or quasi-waveguide structure has been developed by spin coating technique. In these waveguides, the light was confined by the film/air-film/glass substrate interfaces. At the film/substrate interface, a portion of light will reflect back into the film (guided mode) and the remaining refracted to the substrate resulting in cutoff modes. A blue-shift in ASE has been observed when the pump power was increased from 8 to 20 mW allowing a limited range of tuning of emission wavelength. To study the directionality of the ASE from the waveguide, we have measured the output intensity and FWHM of emission spectra as a function of viewing angle (θ) from the plane parallel to film. From the detailed examination of the output emission spectra, as +θ increases from 0° there has been an initial decrease in output intensity, but at a particular angle ≈10° an increase in output intensity was observed. This additional peak in output intensity as +θ is a clear indication of coexistence of the cutoff mode. We also present a compact solid-state laser based on leaky mode propagation from the dye-doped polymer free-standing film (∼50 μm thickness) waveguide. The partial reflections from the broad lateral surfaces of the free-standing films provided the optical feedback for the laser emission with high directionality. For a pump power of 22 mW, an intense line with FWHM <0.2 nm was observed at 578 nm

  7. Detection of distinct power spectra in soft and hard X-ray bands in the hard state of GRS 1915+105

    CERN Document Server

    Stiele, H

    2014-01-01

    The well-known black hole X-ray binary GRS 1915+105 is a unique source in the sense that it cannot be classified within the standard picture of black hole binary states. In this work we study archival XMM-Newton observations taken between 2003 and 2004 of the \\c{hi} variability class of GRS 1915+105, which corresponds to the hard state in the standard black hole X-ray binary state classification. The crucial point of our study is that by using XMM-Newton data we can access the variability below 3 keV, an energy range that is not covered with RXTE. We focus on the study of the power spectral shape in the soft and hard X-ray band, in light of our work done with Swift on MAXI J1659-152. In the hard band (above 2.5 keV) power density spectra consist of band-limited noise and quasi-periodic oscillations, corresponding to the power spectral shape seen in the hard or intermediate state, while in the soft band the averaged power density spectrum is consistent with a power-law noise, corresponding to the power spectra...

  8. Probing the multi-scale interplay between gravity and turbulence - Power-law like gravitational energy spectra of the Orion Complex

    CERN Document Server

    Li, Guang-Xing

    2016-01-01

    Gravity plays a determining role in the evolution of the molecular ISM. In Li \\& Burkert. (2016), we proposed a measure called gravitational energy spectra to quantify the importance of gravity on multiple physical scales. In this work, using a wavelet-based decomposition technique, we derive the gravitational energy spectra of the Orion A and the Orion B molecular cloud from observational data. The gravitational energy spectra are found to exhibit power-law-like behaviors. At sub-parsec scale, the Orion A and Orion B molecular cloud have $E_{\\rm p}(k)\\sim k^{-1.88}$ and $E_{\\rm p}(k)\\sim k^{-2.09}$, respectively. These scaling exponents are close to the scaling exponents of the kinetic energy power spectra of compressible turbulence (where $E\\sim k^{-2}$), with near-equipartition of turbulent versus gravitational energy on multiple scales. This provides a clear evidence that gravity is able to counteract effectively against turbulent motion for these length scales. The results confirm our earlier analyti...

  9. Experimental investigation of the hyperfine spectra of Pr I-lines: discovery of new fine structure energy levels of Pr I using LIF spectroscopy with medium angular momentum quantum number between 7/2 and 13/2

    Science.gov (United States)

    Siddiqui, Imran; Khan, Shamim; Windholz, Laurentius

    2016-03-01

    We present 39 even and 60 odd parity newly discovered fine structure levels of Pr I with angular momentum quantum numbers J = 7 / 2, 9/2, 11/2 and 13/2. Spectral lines in the wavelength range of 4200 Å to 7500 Å were investigated experimentally using laser-induced fluorescence spectroscopy or optogalvanic spectroscopy. Free Pr atoms were produced in a hollow cathode discharge. A high resolution Fourier transform spectrum of Pr was used to extract excitation wavelengths. From an analysis of the recorded hyperfine patterns, together with excitation and fluorescence wavelengths, we were able to find the unknown levels involved in the formation of the investigated lines. More than 500 spectral lines could be classified by the new levels. Supplementary material in the form of one pdf file available from the Journal web page at http://dx.doi.org/10.1140/epjd/e2016-60485-2

  10. Revealing discriminating power of the elements in edible sea salts: Line-intensity correlation analysis from laser-induced plasma emission spectra

    International Nuclear Information System (INIS)

    We have investigated the discriminating power of the elements in edible sea salts using Laser-Induced Breakdown Spectroscopy (LIBS). For the ten different sea salts from South Korea, China, Japan, France, Mexico and New Zealand, LIBS spectra were recorded in the spectral range between 190 and 1040 nm, identifying the presence of Na, Cl, K, Ca, Mg, Li, Sr, Al, Si, Ti, Fe, C, O, N, and H. Intensity correlation analysis of the observed emission lines provided a valuable insight into the discriminating power of the different elements in the sea salts. The correlation analysis suggests that the elements with independent discrimination power can be categorized into three groups; those that represent dissolved ions in seawater (K, Li, and Mg), those that are associated with calcified particles (Ca and Sr), and those that are present in soils contained in the sea salts (Al, Si, Ti, and Fe). Classification models using a few emission lines selected based on the results from intensity correlation analysis and full broadband LIBS spectra were developed based on Principal Component Analysis (PCA) and Partial Least Squares-Discriminant Analysis (PLS-DA) and their performances were compared. Our results indicate that effective combination of a few emission lines can provide a dependable model for discriminating the edible sea salts and the performance is not much degraded from that based on the full broadband spectra. This can be rationalized by the intensity correlation results. - Highlights: • Broadband LIBS spectra of various edible sea salts were obtained. • Intensity correlation of emission lines of the elements in edible sea salts was analyzed. • The elements were categorized into three groups with independent discriminating power. • The effective combination of a few lines can provide dependable classification models

  11. Development of CAD based on ANN analysis of power spectra for pneumoconiosis in chest radiographs: effect of three new enhancement methods

    OpenAIRE

    Okumura, Eiichiro; Kawashita, Ikuo; Ishida, Takayuki

    2014-01-01

    We have been developing a computer-aided detection (CAD) scheme for pneumoconiosis based on a rule-based plus artificial neural network (ANN) analysis of power spectra. In this study, we have developed three enhancement methods for the abnormal patterns to reduce false-positive and false-negative values. The image database consisted of 2 normal and 15 abnormal chest radiographs. The International Labour Organization standard chest radiographs with pneumoconiosis were categorized as subcategor...

  12. Revealing discriminating power of the elements in edible sea salts: Line-intensity correlation analysis from laser-induced plasma emission spectra

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yonghoon, E-mail: yhlee@mokpo.ac.kr [Department of Chemistry, Mokpo National University, Jeonnam 534-729 (Korea, Republic of); Ham, Kyung-Sik [Department of Food Engineering, Mokpo National University, Jeonnam 534-729 (Korea, Republic of); Han, Song-Hee [Division of Maritime Transportation System, Mokpo National Maritime University, Jeonnam 530-729 (Korea, Republic of); Yoo, Jonghyun, E-mail: jyoo@appliedspectra.com [Applied Spectra, Inc., 46665 Fremont Boulevard, Fremont, CA 94538 (United States); Jeong, Sungho [School of Mechatronics, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of)

    2014-11-01

    We have investigated the discriminating power of the elements in edible sea salts using Laser-Induced Breakdown Spectroscopy (LIBS). For the ten different sea salts from South Korea, China, Japan, France, Mexico and New Zealand, LIBS spectra were recorded in the spectral range between 190 and 1040 nm, identifying the presence of Na, Cl, K, Ca, Mg, Li, Sr, Al, Si, Ti, Fe, C, O, N, and H. Intensity correlation analysis of the observed emission lines provided a valuable insight into the discriminating power of the different elements in the sea salts. The correlation analysis suggests that the elements with independent discrimination power can be categorized into three groups; those that represent dissolved ions in seawater (K, Li, and Mg), those that are associated with calcified particles (Ca and Sr), and those that are present in soils contained in the sea salts (Al, Si, Ti, and Fe). Classification models using a few emission lines selected based on the results from intensity correlation analysis and full broadband LIBS spectra were developed based on Principal Component Analysis (PCA) and Partial Least Squares-Discriminant Analysis (PLS-DA) and their performances were compared. Our results indicate that effective combination of a few emission lines can provide a dependable model for discriminating the edible sea salts and the performance is not much degraded from that based on the full broadband spectra. This can be rationalized by the intensity correlation results. - Highlights: • Broadband LIBS spectra of various edible sea salts were obtained. • Intensity correlation of emission lines of the elements in edible sea salts was analyzed. • The elements were categorized into three groups with independent discriminating power. • The effective combination of a few lines can provide dependable classification models.

  13. Quark Orbital Angular Momentum

    OpenAIRE

    Burkardt Matthias

    2015-01-01

    Definitions of orbital angular momentum based on Wigner distributions are used as a framework to discuss the connection between the Ji definition of the quark orbital angular momentum and that of Jaffe and Manohar. We find that the difference between these two definitions can be interpreted as the change in the quark orbital angular momentum as it leaves the target in a DIS experiment. The mechanism responsible for that change is similar to the mechanism that causes transverse single-spin asy...

  14. Partonic orbital angular momentum

    Science.gov (United States)

    Arash, Firooz; Taghavi-Shahri, Fatemeh; Shahveh, Abolfazl

    2013-04-01

    Ji's decomposition of nucleon spin is used and the orbital angular momentum of quarks and gluon are calculated. We have utilized the so called valon model description of the nucleon in the next to leading order. It is found that the average orbital angular momentum of quarks is positive, but small, whereas that of gluon is negative and large. Individual quark flavor contributions are also calculated. Some regularities on the total angular momentum of the quarks and gluon are observed.

  15. Revealing discriminating power of the elements in edible sea salts: Line-intensity correlation analysis from laser-induced plasma emission spectra

    Science.gov (United States)

    Lee, Yonghoon; Ham, Kyung-Sik; Han, Song-Hee; Yoo, Jonghyun; Jeong, Sungho

    2014-11-01

    We have investigated the discriminating power of the elements in edible sea salts using Laser-Induced Breakdown Spectroscopy (LIBS). For the ten different sea salts from South Korea, China, Japan, France, Mexico and New Zealand, LIBS spectra were recorded in the spectral range between 190 and 1040 nm, identifying the presence of Na, Cl, K, Ca, Mg, Li, Sr, Al, Si, Ti, Fe, C, O, N, and H. Intensity correlation analysis of the observed emission lines provided a valuable insight into the discriminating power of the different elements in the sea salts. The correlation analysis suggests that the elements with independent discrimination power can be categorized into three groups; those that represent dissolved ions in seawater (K, Li, and Mg), those that are associated with calcified particles (Ca and Sr), and those that are present in soils contained in the sea salts (Al, Si, Ti, and Fe). Classification models using a few emission lines selected based on the results from intensity correlation analysis and full broadband LIBS spectra were developed based on Principal Component Analysis (PCA) and Partial Least Squares-Discriminant Analysis (PLS-DA) and their performances were compared. Our results indicate that effective combination of a few emission lines can provide a dependable model for discriminating the edible sea salts and the performance is not much degraded from that based on the full broadband spectra. This can be rationalized by the intensity correlation results.

  16. Power spectra and auto correlation analysis of hyperfine-induced long period oscillations in the tunneling current of coupled quantum dots

    International Nuclear Information System (INIS)

    We outline power spectra and auto correlation analysis performed on temporal oscillations in the tunneling current of coupled vertical quantum dots. The current is monitored for ∼2325 s blocks as the magnetic field is stepped through a high bias feature displaying hysteresis and switching: hallmarks of the hyperfine interaction. Quasi-periodic oscillations of ∼2 pA amplitude and of ∼100 s period are observed in the current inside the hysteretic feature. Compared to the baseline current outside the hysteretic feature the power spectral density is enhanced by up to three orders of magnitude and the auto correlation displays clear long lived oscillations about zero

  17. Power spectra and auto correlation analysis of hyperfine-induced long period oscillations in the tunneling current of coupled quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Harack, B.; Leary, A.; Coish, W. A.; Hilke, M. [Department of Physics, McGill University, Ernest Rutherford Building, 3600 rue University, Montreal, Quebec H3A 2T8 (Canada); Yu, G.; Gupta, J. A. [National Research Council of Canada, M50, Montreal Road, Ottawa, Ontario K1A 0R6 (Canada); Payette, C.; Austing, D. G. [Department of Physics, McGill University, Ernest Rutherford Building, 3600 rue University, Montreal, Quebec H3A 2T8, Canada and National Research Council of Canada, M50, Montreal Road, Ottawa, Ontario K1A 0R6 (Canada)

    2013-12-04

    We outline power spectra and auto correlation analysis performed on temporal oscillations in the tunneling current of coupled vertical quantum dots. The current is monitored for ∼2325 s blocks as the magnetic field is stepped through a high bias feature displaying hysteresis and switching: hallmarks of the hyperfine interaction. Quasi-periodic oscillations of ∼2 pA amplitude and of ∼100 s period are observed in the current inside the hysteretic feature. Compared to the baseline current outside the hysteretic feature the power spectral density is enhanced by up to three orders of magnitude and the auto correlation displays clear long lived oscillations about zero.

  18. Large-scale CMB temperature and polarization cross-spectra likelihoods

    CERN Document Server

    Mangilli, A; Tristram, M

    2015-01-01

    One of the main challenges left for the present and future Cosmic Microwave Background (CMB) experiments is the high precision measurement of the CMB polarization anisotropies at large angular scales. The reionization bump in the CMB polarization power spectra encodes unique informations about the reionization history of the Universe and the inflationary epoch. Such valuable information can be accessed only with an unprecedented accuracy and care on each step of the data analysis and its interpretation. In this paper we present a cross-spectra based approach for the analysis of the CMB data at large angular scales to constrain the reionization optical depth, the tensor to scalar ratio and the amplitude of the primordial scalar perturbations. Using cross-spectra has the advantage to eliminate spurious noise bias and to give a better handle of residual systematics with respect to the pixel-based approach used so far, allowing to efficiently combine the cosmological information encoded in cross-frequency or cros...

  19. Non-linear Galaxy Power Spectrum and Cosmological Parameters

    OpenAIRE

    Cooray, Asantha

    2003-01-01

    The galaxy power spectrum is now a well-known tool of precision cosmology. In addition to the overall shape, baryon oscillations and the small-scale suppression of power by massive neutrinos capture complimentary information on cosmological parameters when compared to the angular power spectrum of cosmic microwave background anisotropies. We study both the real space and redshift space galaxy power spectra in the context of non-linear effects and model them based on the halo approach to large...

  20. A model of the steep power-law spectra and high-frequency quasi-periodic oscillations in luminous black hole X-ray binaries

    Science.gov (United States)

    Dexter, Jason; Blaes, Omer

    2014-03-01

    We propose a new model of the steep power-law state of luminous black hole X-ray binaries. The model uses the fact that at high luminosities, the inner radii of radiation pressure dominated accretion discs are expected to (i) become effectively optically thin and (ii) produce significant luminosities. The gas temperature therefore rises sharply inwards, producing local saturated Compton spectra with rapidly increasing peak energies. These spectra sum together to form a steep power-law tail to the spectrum. A given photon energy on this tail corresponds to a narrow range in radius, so that local vertical oscillations of the disc naturally produce high-quality high-frequency quasi-periodic oscillations (HFQPOs) in the hard X-ray band. The two lowest order modes have a robust frequency ratio of sqrt{7/3}˜eq 1.53. This model explains the appearance of steep power-law spectra and HFQPOs at high luminosity, the 3:2 HFQPO frequency ratios, and their association with the power-law spectral component. We predict an increase in QPO quality factor when the power spectrum is restricted to a narrower photon energy band, and an increase in HFQPO frequency at higher X-ray energies or lower luminosities. Future X-ray telescopes could detect additional HFQPOs from higher order modes. We demonstrate how this model could be used to measure black hole spin from HFQPOs, and qualitatively estimate the spin of GRO J1655-40 as a/M ˜ 0.4-0.7.

  1. Rotations and angular momentum

    International Nuclear Information System (INIS)

    This paper is devoted to the analysis of rotational invariance and the properties of angular momentum in quantum mechanics. In particular, the problem of addition of angular momenta is treated in detail, and tables of Clebsch-Gordan coefficients are included

  2. ZKDR Distance, Angular Size and Phantom Cosmology

    OpenAIRE

    R.C. Santos; Lima, J. A. S.

    2006-01-01

    The influence of mass inhomogeneities on the angular size-redshift test is investigated for a large class of flat cosmological models driven by dark energy plus a cold dark matter component. The results are presented in two steps. First, the mass inhomogeneities are modeled by a generalized Zeldovich-Kantowski-Dyer-Roeder (ZKDR) distance which is characterized by a smoothness parameter $\\alpha(z)$ and a power index $\\gamma$, and, second, we provide a statistical analysis to angular size data ...

  3. Applications and limitations of constrained high-resolution peak fitting on low resolving power mass spectra from the ToF-ACSM

    Science.gov (United States)

    Timonen, Hilkka; Cubison, Mike; Aurela, Minna; Brus, David; Lihavainen, Heikki; Hillamo, Risto; Canagaratna, Manjula; Nekat, Bettina; Weller, Rolf; Worsnop, Douglas; Saarikoski, Sanna

    2016-07-01

    The applicability, methods and limitations of constrained peak fitting on mass spectra of low mass resolving power (m/Δm50 ˜ 500) recorded with a time-of-flight aerosol chemical speciation monitor (ToF-ACSM) are explored. Calibration measurements as well as ambient data are used to exemplify the methods that should be applied to maximise data quality and assess confidence in peak-fitting results. Sensitivity analyses and basic peak fit metrics such as normalised ion separation are employed to demonstrate which peak-fitting analyses commonly performed in high-resolution aerosol mass spectrometry are appropriate to perform on spectra of this resolving power. Information on aerosol sulfate, nitrate, sodium chloride, methanesulfonic acid as well as semi-volatile metal species retrieved from these methods is evaluated. The constants in a commonly used formula for the estimation of the mass concentration of hydrocarbon-like organic aerosol may be refined based on peak-fitting results. Finally, application of a recently published parameterisation for the estimation of carbon oxidation state to ToF-ACSM spectra is validated for a range of organic standards and its use demonstrated for ambient urban data.

  4. Automated analysis for large amount gaseous fission product gamma-scanning spectra from nuclear power plant and its data mining

    International Nuclear Information System (INIS)

    Based on the Linssi database and UniSampo/Shaman software, an automated analysis platform has been setup for the analysis of large amounts of gamma-spectra from the primary coolant monitoring systems of a CANDU reactor. Thus, a database inventory of gaseous and volatile fission products in the primary coolant of a CANDU reactor has been established. This database is comprised of 15,000 spectra of radioisotope analysis records. Records from the database inventory were retrieved by a specifically designed data-mining module and subjected to further analysis. Results from the analysis were subsequently used to identify the reactor coolant half-life of 135Xe and 133Xe, as well as the correlations of 135Xe and 88Kr activities. (author)

  5. Sequential amplitude divided angular multiplexing encoding optical system design for high power excimer laser system%连续分振幅式高功率准分子激光角多路编码光路设计

    Institute of Scientific and Technical Information of China (English)

    胡云; 王大辉; 赵学庆

    2016-01-01

    In high power excimer laser system, angular multiplexing technique is employed to achieve both high energy and narrow pulse output. In this article, angular multiplexing technique was introduced, and a multiplexing encoding method was presented. This method encoded seed beam in two steps by sequential amplitude splitting. The optical elements were arranged in rectangle arrays and piled by layers. A specific optical design was made for XeCl high power excimer laser system in this laboratory. This method of angular multiplexing encoding has advantages of compacted space, small encoding error, good compatibility with alignment and measurement, and is also easy to fabricate and assemble. This design is adopted in the system and performs well.%在高功率准分子激光系统中,一般采用光学角多路技术来获得高能量窄脉冲输出。文中介绍了角多路技术原理,提出了一种采用矩形阵列和空间层叠光路结构的连续分振幅两次编码方式,并针对该实验室的XeCl高功率准分子激光系统进行了具体的编码光路设计,给出了设计实例。该方法具有编码结构紧凑,编码精度高,与光路准直、激光参数测量系统等兼容性好,便于加工制作和安装调节等优点,目前已在系统中应用,效果良好。

  6. DVL Angular Velocity Recorder

    Science.gov (United States)

    Liebe, Wolfgang

    1944-01-01

    In many studies, especially of nonstationary flight motion, it is necessary to determine the angular velocities at which the airplane rotates about its various axes. The three-component recorder is designed to serve this purpose. If the angular velocity for one flight attitude is known, other important quantities can be derived from its time rate of change, such as the angular acceleration by differentiations, or - by integration - the angles of position of the airplane - that is, the angles formed by the airplane axes with the axis direction presented at the instant of the beginning of the motion that is to be investigated.

  7. Quark Orbital Angular Momentum

    Directory of Open Access Journals (Sweden)

    Burkardt Matthias

    2015-01-01

    Full Text Available Definitions of orbital angular momentum based on Wigner distributions are used as a framework to discuss the connection between the Ji definition of the quark orbital angular momentum and that of Jaffe and Manohar. We find that the difference between these two definitions can be interpreted as the change in the quark orbital angular momentum as it leaves the target in a DIS experiment. The mechanism responsible for that change is similar to the mechanism that causes transverse single-spin asymmetries in semi-inclusive deep-inelastic scattering.

  8. The breaks and the hidden components in the power-law spectra of synchrotron radiation of the self-consistent current structures

    International Nuclear Information System (INIS)

    Widespread use of a broken-power-law description of the spectra of synchrotron emission of various plasma objects requires an analysis of origin and a proper interpretation of spectral components. We show that, for a self-consistent magnetic configuration in a collisionless plasma, these components may be angle-dependent according to an anisotropic particle momentum distribution and may have no counterparts in a particle energy distribution. That has never been studied analytically and is in contrast to a usual model of synchrotron radiation, assuming an external magnetic field and a particle ensemble with isotropic momentum distribution. We demonstrate that for the wide intervals of observation angle the power-law spectra and, in particular, the positions and number of spectral breaks may be essentially different for the cases of the self-consistent and not-self-consistent magnetic fields in current structures responsible for the synchrotron radiation of the ensembles of relativistic particles with the multi-power-law energy distributions

  9. Optical Angular Momentum

    International Nuclear Information System (INIS)

    For many years the Institute of Physics has published books on hot topics based on a collection of reprints from different journals, including some remarks by the editors of each volume. The book on Optical Angular Momentum, edited by L Allen, S M Barnett and M J Padgett, is a recent addition to the series. It reproduces forty four papers originally published in different journals and in a few cases it provides direct access to works not easily accessible to a web navigator. The collection covers nearly a hundred years of progress in physics, starting from an historic 1909 paper by Poynting, and ending with a 2002 paper by Padgett, Barnett and coworkers on the measurement of the orbital angular momentum of a single photon. The field of optical angular momentum has expanded greatly, creating an interdisciplinary attraction for researchers operating in quantum optics, atomic physics, solid state physics, biophysics and quantum information theory. The development of laser optics, especially the control of single mode sources, has made possible the specific design of optical radiation modes with a high degree of control on the light angular momentum. The editors of this book are important figures in the field of angular momentum, having contributed to key progress in the area. L Allen published an historical paper in 1999, he and M J Padgett (together with M Babiker) produced few years ago a long review article which is today still the most complete basic introduction to the angular momentum of light, while S M Barnett has contributed several high quality papers to the progress of this area of physics. The editors' choice provides an excellent overview to all readers, with papers classified into eight different topics, covering the basic principles of the light and spin and orbital angular momentum, the laboratory tools for creating laser beams carrying orbital angular momentum, the optical forces and torques created by laser beams carrying angular momentum on

  10. Average Angular Velocity

    OpenAIRE

    Van Essen, H.

    2004-01-01

    This paper addresses the problem of the separation of rotational and internal motion. It introduces the concept of average angular velocity as the moment of inertia weighted average of particle angular velocities. It extends and elucidates the concept of Jellinek and Li (1989) of separation of the energy of overall rotation in an arbitrary (non-linear) $N$-particle system. It generalizes the so called Koenig's theorem on the two parts of the kinetic energy (center of mass plus internal) to th...

  11. Angular velocity discrimination

    Science.gov (United States)

    Kaiser, Mary K.

    1990-01-01

    Three experiments designed to investigate the ability of naive observers to discriminate rotational velocities of two simultaneously viewed objects are described. Rotations are constrained to occur about the x and y axes, resulting in linear two-dimensional image trajectories. The results indicate that observers can discriminate angular velocities with a competence near that for linear velocities. However, perceived angular rate is influenced by structural aspects of the stimuli.

  12. Orbital angular momentum effects

    International Nuclear Information System (INIS)

    This paper reports that in the context of the parton model description of baryon structure orbital angular momentum effects have long been considered negligible. However, recent results obtained within the framework of QCD and presented in this talk indicate that a substantial fraction of the baryon spin may be carried as orbital angular momentum of its constituents. These results are of particular relevance in the light of new data on the spin structure of the proton recently published by the EMC collaboration

  13. Effect of the energy spectrum and angular momentum of pre-scission neutrons on the prediction of fission fragment angular anisotropy by the models

    Science.gov (United States)

    Soheyli, Saeed; Khanlari, Marzieh Varasteh

    2016-04-01

    Effects of the various neutron emission energy spectra, as well as the influence of the angular momentum of pre-scission neutrons on theoretical predictions of fission fragment angular anisotropies for several heavy-ion induced fission systems are considered. Although theoretical calculations of angular anisotropy are very sensitive to neutron emission correction, the effects of the different values of kinetic energy of emitted neutrons derived from the various neutron emission energy spectra before reaching to the saddle point on the prediction of fission fragment angular distribution by the model are not significant and can be neglected, since these effects on angular anisotropies of fission fragments for a wide range of fissility parameters and excitation energies of compound nuclei are not more than 10%. Furthermore, the theoretical prediction of fission fragment angular anisotropy is not sensitive to the angular momentum of emitted neutrons.

  14. QUASI-PERIODIC PULSATIONS IN SOLAR AND STELLAR FLARES: RE-EVALUATING THEIR NATURE IN THE CONTEXT OF POWER-LAW FLARE FOURIER SPECTRA

    International Nuclear Information System (INIS)

    The nature of quasi-periodic pulsations (QPPs) in solar and stellar flares remains debated. Recent work has shown that power-law-like Fourier power spectra are an intrinsic property of solar and stellar flare signals, a property that many previous studies of this phenomenon have not accounted for. Hence a re-evaluation of the existing interpretations and assumptions regarding QPPs is needed. We adopt a Bayesian method for investigating this phenomenon, fully considering the Fourier power-law properties of flare signals. Using data from the PROBA2/Large Yield Radiometer, Fermi/Gamma-ray Burst Monitor, Nobeyama Radioheliograph, and Yohkoh/HXT instruments, we study a selection of flares from the literature identified as QPP events. Additionally, we examine optical data from a recent stellar flare that appears to exhibit oscillatory properties. We find that, for all but one event tested, an explicit oscillation is not required to explain the observations. Instead, the flare signals are adequately described as a manifestation of a power law in the Fourier power spectrum. However, for the flare of 1998 May 8, strong evidence for an explicit oscillation with P ≈ 14-16 s is found in the 17 GHz radio data and the 13-23 keV Yohkoh/HXT data. We conclude that, most likely, many previously analyzed events in the literature may be similarly described by power laws in the flare Fourier power spectrum, without invoking a narrowband, oscillatory component. Hence the prevalence of oscillatory signatures in solar and stellar flares may be less than previously believed. The physical mechanism behind the appearance of the observed power laws is discussed

  15. QUASI-PERIODIC PULSATIONS IN SOLAR AND STELLAR FLARES: RE-EVALUATING THEIR NATURE IN THE CONTEXT OF POWER-LAW FLARE FOURIER SPECTRA

    Energy Technology Data Exchange (ETDEWEB)

    Inglis, A. R.; Ireland, J. [Solar Physics Laboratory, Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Dominique, M. [Solar-Terrestrial Center of Excellence, Royal Observatory of Belgium, Avenue Circulaire 3, B-1180, Brussels (Belgium)

    2015-01-10

    The nature of quasi-periodic pulsations (QPPs) in solar and stellar flares remains debated. Recent work has shown that power-law-like Fourier power spectra are an intrinsic property of solar and stellar flare signals, a property that many previous studies of this phenomenon have not accounted for. Hence a re-evaluation of the existing interpretations and assumptions regarding QPPs is needed. We adopt a Bayesian method for investigating this phenomenon, fully considering the Fourier power-law properties of flare signals. Using data from the PROBA2/Large Yield Radiometer, Fermi/Gamma-ray Burst Monitor, Nobeyama Radioheliograph, and Yohkoh/HXT instruments, we study a selection of flares from the literature identified as QPP events. Additionally, we examine optical data from a recent stellar flare that appears to exhibit oscillatory properties. We find that, for all but one event tested, an explicit oscillation is not required to explain the observations. Instead, the flare signals are adequately described as a manifestation of a power law in the Fourier power spectrum. However, for the flare of 1998 May 8, strong evidence for an explicit oscillation with P ≈ 14-16 s is found in the 17 GHz radio data and the 13-23 keV Yohkoh/HXT data. We conclude that, most likely, many previously analyzed events in the literature may be similarly described by power laws in the flare Fourier power spectrum, without invoking a narrowband, oscillatory component. Hence the prevalence of oscillatory signatures in solar and stellar flares may be less than previously believed. The physical mechanism behind the appearance of the observed power laws is discussed.

  16. Quasi-periodic Pulsations in Solar and Stellar Flares: Re-evaluating their Nature in the Context of Power-law Flare Fourier Spectra

    Science.gov (United States)

    Inglis, A. R.; Ireland, J.; Dominique, M.

    2015-01-01

    The nature of quasi-periodic pulsations (QPPs) in solar and stellar flares remains debated. Recent work has shown that power-law-like Fourier power spectra are an intrinsic property of solar and stellar flare signals, a property that many previous studies of this phenomenon have not accounted for. Hence a re-evaluation of the existing interpretations and assumptions regarding QPPs is needed. We adopt a Bayesian method for investigating this phenomenon, fully considering the Fourier power-law properties of flare signals. Using data from the PROBA2/Large Yield Radiometer, Fermi/Gamma-ray Burst Monitor, Nobeyama Radioheliograph, and Yohkoh/HXT instruments, we study a selection of flares from the literature identified as QPP events. Additionally, we examine optical data from a recent stellar flare that appears to exhibit oscillatory properties. We find that, for all but one event tested, an explicit oscillation is not required to explain the observations. Instead, the flare signals are adequately described as a manifestation of a power law in the Fourier power spectrum. However, for the flare of 1998 May 8, strong evidence for an explicit oscillation with P ≈ 14-16 s is found in the 17 GHz radio data and the 13-23 keV Yohkoh/HXT data. We conclude that, most likely, many previously analyzed events in the literature may be similarly described by power laws in the flare Fourier power spectrum, without invoking a narrowband, oscillatory component. Hence the prevalence of oscillatory signatures in solar and stellar flares may be less than previously believed. The physical mechanism behind the appearance of the observed power laws is discussed.

  17. Model of hopping excitons in GaInNAs: simulations of sharp lines in micro-photoluminescence spectra and their dependence on the excitation power and temperature.

    Science.gov (United States)

    Baranowski, M; Latkowska, M; Kudrawiec, R; Misiewicz, J

    2011-05-25

    The model of hopping excitons in semiconductors proposed by Baranovskii et al (1998 Phys. Rev. B 58 13081) has been modified and applied to explain sharp lines observed in micro-photoluminescence (μ-PL) spectra of GaInNAs alloys and their changes with excitation power and temperature. Instead of two types of recombination centres (radiative and nonradiative centres) introduced by Baranovskii et alwe have proposed one kind of localization centre with radiative and nonradiative rates. Such a modification is justifiable due to our recent experimental observations for GaInNAs alloys and allows us to explain the fast thermal quenching of localized emission from this alloy. Our simulations clearly show that the individual sharp PL lines observed at low temperatures appear for this material due to exciton hopping between localization centres. Taking into account saturation effects and the exciton dissociation phenomenon, it has been shown that the observed changes in power- and temperature dependent μ-PL spectra can be excellently reproduced by the modified model. PMID:21540495

  18. Model of hopping excitons in GaInNAs: simulations of sharp lines in micro-photoluminescence spectra and their dependence on the excitation power and temperature

    Energy Technology Data Exchange (ETDEWEB)

    Baranowski, M; Latkowska, M; Kudrawiec, R; Misiewicz, J, E-mail: michal.baranowski@pwr.wroc.pl [Institute of Physics, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland)

    2011-05-25

    The model of hopping excitons in semiconductors proposed by Baranovskii et al (1998 Phys. Rev. B 58 13081) has been modified and applied to explain sharp lines observed in micro-photoluminescence ({mu}-PL) spectra of GaInNAs alloys and their changes with excitation power and temperature. Instead of two types of recombination centres (radiative and nonradiative centres) introduced by Baranovskii et alwe have proposed one kind of localization centre with radiative and nonradiative rates. Such a modification is justifiable due to our recent experimental observations for GaInNAs alloys and allows us to explain the fast thermal quenching of localized emission from this alloy. Our simulations clearly show that the individual sharp PL lines observed at low temperatures appear for this material due to exciton hopping between localization centres. Taking into account saturation effects and the exciton dissociation phenomenon, it has been shown that the observed changes in power- and temperature dependent {mu}-PL spectra can be excellently reproduced by the modified model.

  19. Fourier relationship between angular position and optical orbital angular momentum

    OpenAIRE

    Yao, E.; Franke-Arnold, S.; Courtial, J.; Barnett, S.; Padgett, M. J.

    2006-01-01

    We demonstrate the Fourier relationship between angular position and angular momentum for a light mode. In particular we measure the distribution of orbital angular momentum states of light that has passed through an aperture and verify that the orbital angular momentum distribution is given by the complex Fourier-transform of the aperture function. We use spatial light modulators, configured as diffractive optical components, to define the initial orbital angular momentum state of the beam, ...

  20. Study of the influence of grain size on the ESR angular response in alanine radicals

    International Nuclear Information System (INIS)

    The simulation of electron paramagnetic resonance (EPR) spectra of radicals potentially due to alanine radiolysis has been done. Combining theoretical spectra in varying proportions allows computing different alanine spectra. The small changes in specific regions of experimental spectra correspond to weak variations in the proportion of radicals. As the study of several parameters, such as ESR angular response of powder or time after irradiation, is not possible in simulated spectra, experimental analyses have been carried out for the ESR angular response dependence on grain size in various combinations, corresponding to an available external surface. The stabilization of the angular response is associated with a spatial reorganization of radicals. It seems that available surface and radical proportions are linked. Predicted values of angular response calculated from pure powders do not correspond to experimental ones. Weak changes in spectra seem to confirm that these variations may be interpreted as a transformation of one radical into another

  1. Structure of high-resolution NMR spectra

    CERN Document Server

    Corio, PL

    2012-01-01

    Structure of High-Resolution NMR Spectra provides the principles, theories, and mathematical and physical concepts of high-resolution nuclear magnetic resonance spectra.The book presents the elementary theory of magnetic resonance; the quantum mechanical theory of angular momentum; the general theory of steady state spectra; and multiple quantum transitions, double resonance and spin echo experiments.Physicists, chemists, and researchers will find the book a valuable reference text.

  2. Fluidic angular velocity sensor

    Science.gov (United States)

    Berdahl, C. M. (Inventor)

    1986-01-01

    A fluidic sensor providing a differential pressure signal proportional to the angular velocity of a rotary input is described. In one embodiment the sensor includes a fluid pump having an impeller coupled to a rotary input. A housing forming a constricting fluid flow chamber is connected to the fluid input of the pump. The housing is provided with a fluid flow restrictive input to the flow chamber and a port communicating with the interior of the flow chamber. The differential pressure signal measured across the flow restrictive input is relatively noise free and proportional to the square of the angular velocity of the impeller. In an alternative embodiment, the flow chamber has a generally cylindrical configuration and plates having flow restrictive apertures are disposed within the chamber downstream from the housing port. In this embodiment, the differential pressure signal is found to be approximately linear with the angular velocity of the impeller.

  3. Metamaterial broadband angular selectivity

    Science.gov (United States)

    Shen, Yichen; Ye, Dexin; Wang, Li; Celanovic, Ivan; Ran, Lixin; Joannopoulos, John D.; Soljačić, Marin

    2014-09-01

    We demonstrate how broadband angular selectivity can be achieved with stacks of one-dimensionally periodic photonic crystals, each consisting of alternating isotropic layers and effective anisotropic layers, where each effective anisotropic layer is constructed from a multilayered metamaterial. We show that by simply changing the structure of the metamaterials, the selective angle can be tuned to a broad range of angles; and, by increasing the number of stacks, the angular transmission window can be made as narrow as desired. As a proof of principle, we realize the idea experimentally in the microwave regime. The angular selectivity and tunability we report here can have various applications such as in directional control of electromagnetic emitters and detectors.

  4. Metamaterial Broadband Angular Selectivity

    CERN Document Server

    Shen, Yichen; Wang, Zhiyu; Wang, Li; Celanovic, Ivan; Ran, Lixin; Joannopoulos, John D; Soljacic, Marin

    2014-01-01

    We demonstrate how broadband angular selectivity can be achieved with stacks of one-dimensionally periodic photonic crystals, each consisting of alternating isotropic layers and effective anisotropic layers, where each effective anisotropic layer is constructed from a multilayered metamaterial. We show that by simply changing the structure of the metamaterials, the selective angle can be tuned to a broad range of angles; and, by increasing the number of stacks, the angular transmission window can be made as narrow as desired. As a proof of principle, we realize the idea experimentally in the microwave regime. The angular selectivity and tunability we report here can have various applications such as in directional control of electromagnetic emitters and detectors.

  5. First Season QUIET Observations: Measurements of CMB Polarization Power Spectra at 43 GHz in the Multipole Range 25 (le) (ell) (le) 475

    International Nuclear Information System (INIS)

    The Q/U Imaging ExperimenT (QUIET) employs coherent receivers at 43GHz and 95GHz, operating on the Chajnantor plateau in the Atacama Desert in Chile, to measure the anisotropy in the polarization of the CMB. QUIET primarily targets the B modes from primordial gravitational waves. The combination of these frequencies gives sensitivity to foreground contributions from diffuse Galactic synchrotron radiation. Between 2008 October and 2010 December, over 10,000 hours of data were collected, first with the 19-element 43-GHz array (3458 hours) and then with the 90-element 95-GHz array. Each array observes the same four fields, selected for low foregrounds, together covering ∼ 1000 square degrees. This paper reports initial results from the 43-GHz receiver which has an array sensitivity to CMB fluctuations of 69 μK√s. The data were extensively studied with a large suite of null tests before the power spectra, determined with two independent pipelines, were examined. Analysis choices, including data selection, were modified until the null tests passed. Cross correlating maps with different telescope pointings is used to eliminate a bias. This paper reports the EE, BB, and EB power spectra in the multipole range (ell) = 25-475. With the exception of the lowest multipole bin for one of the fields, where a polarized foreground, consistent with Galactic synchrotron radiation, is detected with 3-σ significance, the E-mode spectrum is consistent with the ΛCDM model, confirming the only previous detection of the first acoustic peak. The B-mode spectrum is consistent with zero, leading to a measurement of the tensor-to-scalar ratio of r = 0.35-0.87+1.06. The combination of a new time-stream 'double-demodulation' technique, Mizuguchi-Dragone optics, natural sky rotation, and frequent boresight rotation leads to the lowest level of systematic contamination in the B-mode power so far reported, below the level of r = 0.1.

  6. Modifications of EEG Power Spectra in Mesial Temporal Lobe during n-back tasks of increasing difficulty. A sLORETA study.

    Directory of Open Access Journals (Sweden)

    Claudio eImperatori

    2013-04-01

    Full Text Available The n-back task is widely used to investigate the neural basis of Working Memory (WM processes. The principal aim of this study was to explore and compare the EEG power spectra during two n-back tests with different levels of difficulty (1-back vs 3-back.Fourteen healthy subjects were enrolled (7 men and 7 women, mean age 31.21±7.05 years, range: 23-48. EEG was recorded while performing the N-back test, by means of 19 surface electrodes referred to joint mastoids. EEG analysis were conducted by means of the standardized LOw Resolution brain Electric Tomography (sLORETA software. The statistical comparison between EEG power spectra in the two conditions was performed using paired t-statistics on the coherence values after Fisher’s z transformation available in the LORETA program package. The frequency bands considered were: delta (0.5-4 Hz; theta (4.5–7.5 Hz; alpha (8–12.5 Hz; beta (13–30 Hz; gamma (30.5–100 Hz. Significant changes occurred in the delta band: in the 3-back condition an increased delta power was localized in a brain region corresponding to the Brodmann Area (BA 28 in the left posterior entorhinal cortex (T = 3.112; p<0.05 and in the BA 35 in the left peririnhal cortex in the parahippocampal gyrus (T = 2.876; p<0.05. No significant differences were observed in the right hemisphere and in the alpha, theta, beta and gamma frequency bands. Our results indicate that the most prominent modification induced by the increased complexity of the task occur in the mesial left temporal lobe structures.

  7. Digital simulation of two-dimensional random fields with arbitrary power spectra and non-Gaussian probability distribution functions

    DEFF Research Database (Denmark)

    Yura, Harold; Hanson, Steen Grüner

    2012-01-01

    Methods for simulation of two-dimensional signals with arbitrary power spectral densities and signal amplitude probability density functions are disclosed. The method relies on initially transforming a white noise sample set of random Gaussian distributed numbers into a corresponding set with the...... desired spectral distribution, after which this colored Gaussian probability distribution is transformed via an inverse transform into the desired probability distribution. In most cases the method provides satisfactory results and can thus be considered an engineering approach. Several illustrative...

  8. Average Angular Velocity

    CERN Document Server

    Essén, H

    2003-01-01

    This paper addresses the problem of the separation of rotational and internal motion. It introduces the concept of average angular velocity as the moment of inertia weighted average of particle angular velocities. It extends and elucidates the concept of Jellinek and Li (1989) of separation of the energy of overall rotation in an arbitrary (non-linear) $N$-particle system. It generalizes the so called Koenig's theorem on the two parts of the kinetic energy (center of mass plus internal) to three parts: center of mass, rotational, plus the remaining internal energy relative to an optimally translating and rotating frame.

  9. Angular Scaling In Jets

    Energy Technology Data Exchange (ETDEWEB)

    Jankowiak, Martin; Larkoski, Andrew J.; /SLAC

    2012-02-17

    We introduce a jet shape observable defined for an ensemble of jets in terms of two-particle angular correlations and a resolution parameter R. This quantity is infrared and collinear safe and can be interpreted as a scaling exponent for the angular distribution of mass inside the jet. For small R it is close to the value 2 as a consequence of the approximately scale invariant QCD dynamics. For large R it is sensitive to non-perturbative effects. We describe the use of this correlation function for tests of QCD, for studying underlying event and pile-up effects, and for tuning Monte Carlo event generators.

  10. Probabilistic calculation for angular dependence collision

    International Nuclear Information System (INIS)

    This collision probabilistic method is broadly used in cylindrical geometry (in one- or two-dimensions). It constitutes a powerful tool for the heterogeneous Response Method where, the coupling current is of the cosine type, that is, without angular dependence at azimuthal angle θ and proportional to μ (cosine of the θ polar angle). (Author)

  11. BETA SPECTRA. I. Negatrons spectra

    International Nuclear Information System (INIS)

    Using the Fermi theory of beta decay, the beta spectra for 62 negatrons emitters have been computed introducing a correction factor for unique forbidden transitions. These spectra are plotted vs. energy, once normal i sed, and tabulated with the related Fermi functions. The average and median energies are calculated. (Author)

  12. Quasi-periodic pulsations in solar and stellar flares: re-evaluating their nature in the context of power-law flare Fourier spectra

    CERN Document Server

    Inglis, A R; Dominique, M

    2014-01-01

    The nature of quasi-periodic pulsations in solar and stellar flares remains debated. Recent work has shown that power-law-like Fourier power spectra, also referred to as 'red' noise processes, are an intrinsic property of solar and stellar flare signals, a property that many previous studies of this phenomenon have not accounted for. Hence a re-evaluation of the existing interpretations and assumptions regarding QPP is needed. Here we adopt a Bayesian method for investigating this phenomenon, fully considering the Fourier power law properties of flare signals. Using data from the PROBA2/LYRA, Fermi/GBM, Nobeyama Radioheliograph and Yohkoh/HXT instruments, we study a selection of flares from the literature identified as QPP events. Additionally we examine optical data from a recent stellar flare that appears to exhibit oscillatory properties. We find that, for all but one event tested, an explicit oscillation is not required in order to explain the observations. Instead, the flare signals are adequately descri...

  13. Electron interaction cross sections in Al and Al2O3; calculations of mean free paths, stopping powers, and electron slowing-down spectra

    International Nuclear Information System (INIS)

    An area of concern in the study of slowing-down spectra and interaction cross sections has been the lack of adequate theoretical information on electron interaction probabilities in solids, particularly in the electron energy region below a few keV. By using previously developed models, new calculations of cross sections for ionization by electrons of inner shells in Al and O atoms and a model insulator theory used to describe the valence band in Al2O3 are discussed. These new calculations are combined with earlier work to provide an improved description of electron interactions in Al metal and in the insulator Al2O3. Some examples of mean free path, stopping power, and electron slowing-down flux calculations for these materials are described. (7 figures) (U.S.)

  14. Continuous improvement of high-efficiency high-power 800-980nm diode lasers at Spectra-Physics

    Science.gov (United States)

    Li, Hanxuan; Towe, Terry; Chyr, Irving; Jin, Xu; Miller, Robert; Romero, Oscar; Liu, Daming; Brown, Denny; Truchan, Tom; Nguyen, Touyen; Crum, Trevor; Wolak, Ed; Bullock, Robert; Mott, Jeff; Harrison, James

    2009-02-01

    New-generation multi-mode 9xx mini-bars used in fiber pump modules have been developed. The epitaxial designs have been improved for lower fast-axis and slow-axis divergence, higher slope efficiency and PCE by optimizing layer structures as well as minimizing internal loss. For 915nm mini-bars with 5-mm cavity length, maximum PCE is as high as ~61% for 35W operation and remains above 59% at 45W. For 808nm, a PCE of 56% at 135W CW operation has been demonstrated with 36%-fill-factor, 3-mm-cavity-length, water-cooled bars at 50°C coolant temperature. On passive-cooled standard CS heatsinks, PCE of >51% is measured for 100W operation at 50°C heatsink temperature. Leveraging these improvements has enabled low-cost bars for high-power, high-temperature applications.

  15. Are There Three Peaks in the Power Spectra of GX 339-4 and Cyg X-1?

    CERN Document Server

    Nowak, M A

    2000-01-01

    Among the variability behaviour exhibited by neutron star systems are the so-called ``horizontal branch oscillations'' (HBO, with frequencies ~50 Hz), the ``lower-frequency kHz quasi-periodic oscillation'' (QPO) and the ``upper-frequency kHz QPO'', with the latter two features being separated in frequency by an amount comparable to, but varying slightly from, the suspected spin-frequency of the neutron star. Recently, Psaltis, Belloni, & van der Klis (1999) have suggested that there exists a correlation between these three frequencies that, when certain identifications of variability features are made, even encompasses black hole sources. We consider this hypothesis by reanalyzing a set of GX 339-4 observations. The power spectral density (PSD) constructed from a composite of 7 separate, but very similar, observations shows evidence for three broad peaks in the PSD. If the peak frequencies of these features are identified with ``QPO'', then their frequencies approximately fit the correlations suggested by...

  16. Constraining higher-order parameters for primordial non-Gaussianities from power spectra and bispectra of imaging surveys

    Science.gov (United States)

    Hashimoto, Ichihiko; Taruya, Atsushi; Matsubara, Takahiko; Namikawa, Toshiya; Yokoyama, Shuichiro

    2016-05-01

    We investigate the statistical power of higher-order statistics and cross-correlation statistics to constrain the primordial non-Gaussianity from the imaging surveys. In particular, we consider the local-type primordial non-Gaussianity and discuss how well one can tightly constrain the higher-order non-Gaussian parameters (gNL and τNL) as well as the leading-order parameter fNL from the halo/galaxy clustering and weak gravitational lensing measurements. Making use of a strong scale-dependent behavior in the galaxy/halo clustering, Fisher matrix analysis reveals that the bispectra can break the degeneracy between non-Gaussian parameters (fNL, gNL and τNL), and this will give simultaneous constraints on those three parameters. The combination of cross-correlation statistics further improves the constraints by a factor of 2. As a result, upcoming imaging surveys like the Large Synoptic Survey Telescope have the potential to improve the constraints on the primordial non-Gaussianity much tighter than those obtained from the CMB measurement by Planck, giving us an opportunity to test the single-sourced consistency relation, τNL≥(36 /25 )fNL2 .

  17. Constraining higher-order parameters for primordial non-Gaussianities from power spectra and bispectra of imaging survey

    CERN Document Server

    Hashimoto, Ichihiko; Matsubara, Takahiko; Namikawa, Toshiya; Yokoyama, Shuichiro

    2015-01-01

    We investigate the statistical power of higher-order statistics and cross-correlation statistics to constrain the primordial non-Gaussianity from the imaging surveys. In particular, we consider the local-type primordial non- Gaussianity and discuss how well one can tightly constrain the higher-order non-Gaussian parameters ($g_{\\rm NL}$ and $\\tau_{\\rm NL}$) as well as the leading order parameter $f_{\\rm NL}$ from the halo/galaxy clustering and weak gravitational lensing measurements. Making use of a strong scale-dependent behavior in the galaxy/halo clustering, Fisher matrix analysis reveals that the bispectra can break the degeneracy between non-Gaussian parameters ($f_{\\rm NL}$, $g_{\\rm NL}$ and $\\tau_{\\rm NL}$) and this will give simultaneous constraints on those three parameters. The combination of cross-correlation statistics further improves the constraints by factor of 2. As a result, upcoming imaging surveys like the Large Synoptic Survey Telescope have the potential to improve the constraints on the ...

  18. Angular momentum projected semiclassics

    Science.gov (United States)

    Hasse, Rainer W.

    1987-06-01

    By using angular momentum projected plane waves as wave functions, we derive semiclassical expressions for the single-particle propagator, the partition function, the nonlocal density matrix, the single-particle density and the one particle-one hole level density for fixed angular momentum and fixed z-component or summed over the z-components. Other quantities can be deduced from the propagator. In coordinate space ( r, r') the relevant quantities depend on |r-r'| instead of | r- r'| and in Wigner space ( R, P) they become proportional to the angular momentum constraints δ(| R × P|/ h̵-l) and δ( R × P) z/ h̵-m) . As applications we calculate the single-particle and one-particle-one hole level densities for harmonic oscillator and Hill-Wheeler box potentials and the imaginary part of the optical potential and its volume integral with an underlying harmonic oscillator potential and a zero range two-body interaction.

  19. FIRST SEASON QUIET OBSERVATIONS: MEASUREMENTS OF COSMIC MICROWAVE BACKGROUND POLARIZATION POWER SPECTRA AT 43 GHz IN THE MULTIPOLE RANGE 25 ≤ l ≤ 475

    International Nuclear Information System (INIS)

    The Q/U Imaging ExperimenT (QUIET) employs coherent receivers at 43 GHz and 94 GHz, operating on the Chajnantor plateau in the Atacama Desert in Chile, to measure the anisotropy in the polarization of the cosmic microwave background (CMB). QUIET primarily targets the B modes from primordial gravitational waves. The combination of these frequencies gives sensitivity to foreground contributions from diffuse Galactic synchrotron radiation. Between 2008 October and 2010 December, over 10,000 hr of data were collected, first with the 19 element 43 GHz array (3458 hr) and then with the 90 element 94 GHz array. Each array observes the same four fields, selected for low foregrounds, together covering ≈1000 deg2. This paper reports initial results from the 43 GHz receiver, which has an array sensitivity to CMB fluctuations of 69 μK√s. The data were extensively studied with a large suite of null tests before the power spectra, determined with two independent pipelines, were examined. Analysis choices, including data selection, were modified until the null tests passed. Cross-correlating maps with different telescope pointings is used to eliminate a bias. This paper reports the EE, BB, and EB power spectra in the multipole range l = 25-475. With the exception of the lowest multipole bin for one of the fields, where a polarized foreground, consistent with Galactic synchrotron radiation, is detected with 3σ significance, the E-mode spectrum is consistent with the ΛCDM model, confirming the only previous detection of the first acoustic peak. The B-mode spectrum is consistent with zero, leading to a measurement of the tensor-to-scalar ratio of r = 0.35+1.06–0.87. The combination of a new time-stream 'double-demodulation' technique, side-fed Dragonian optics, natural sky rotation, and frequent boresight rotation leads to the lowest level of systematic contamination in the B-mode power so far reported, below the level of r = 0.1.

  20. Planck early results. XVIII. The power spectrum of cosmic infrared background anisotropies

    DEFF Research Database (Denmark)

    Bucher, M.; Delabrouille, J.; Giraud-Héraud, Y.; Patanchon, G.; Piat, M.; Remazeilles, M.; Rosset, C.; Stompor, R.; Hobson, M.; Stolyarov, V.; Bhatia, R.; Blagrave, K.; Bond, J.R.; Martin, P.; Helou, G.; Shellard, P.; Yvon, D.; Linden-Vørnle, Michael; Nørgaard-Nielsen, Hans Ulrik; Toffolatti, L.; Netterfield, C.B.; Pinheiro Gonçalves, D.; Scott, D.; Oliver, S.; Juvela, M.; Keihänen, E.; Chiang, C.; Jones, W.C.; Cayón, L.; White, M.; Knox, L.; Lubin, P.M.; Zonca, A.; Matarrese, S.; De Bernardis, P.; Masi, S.; Melchiorri, A.; Piacentini, F.; Gregorio, A.; Balbi, A.; Cabella, P.; De Gasperis, G.; Mazzotta, P.; Vittorio, N.; Kneissl, R.; Dupac, X.; Mendes, L.; Giardino, G.; Laureijs, R.J.; Leonardi, R.; Tauber, J.A.; Kurki-Suonio, H.; Poutanen, T.; Umana, G.; Bonaldi, A.; Polenta, G.; Frailis, M.; Galeotta, S.; Maris, M.; Mennella, A.; Pasian, F.; Zacchei, A.; Burigana, C.; Cuttaia, F.; De Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Ricciardi, S.; Sandri, M.; Terenzi, L.; Valenziano, L.; Villa, F.; Bersanelli, M.; Maino, D.; Tomasi, M.; Stivoli, F.; Désert, F.-X.; Chamballu, A.; Clements, D.L.; Jaffe, A.H.; Mortlock, D.; Novikov, D.; Rowan-Robinson, M.; Ganga, K.; Rusholme, B.; Benoît, A.; Aghanim, N.; Aumont, J.; Dole, H.; Douspis, M.; Grain, J.; Lagache, G.; Miville-Deschênes, M.-A.; Pajot, F.; Ponthieu, N.; Puget, J.-L.; Torre, J.-P.; Benabed, K.; Bouchet, F.R.; Colombi, S.; Delouis, J.-M.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J.-F.; Wandelt, B.D.; Fosalba, P.; Chiang, L.-Y.; Efstathiou, G.; Donzelli, S.; Eriksen, H.K.; Hansen, F.K.; Lilje, P.B.; Hoyland, R.J.; Rubiño-Martín, J.A.; Barreiro, R.B.; Herranz, D.; López-Caniego, M.; Martínez-González, E.; Vielva, P.; Bartlett, J.G.; Bock, J.J.; Doré, O.; Holmes, W.A.; Keskitalo, R.; Lawrence, C.R.; Mitra, S.; O'Dwyer, I.J.; Prézeau, G.; Rocha, G.; Seiffert, M.D.; Wade, L.A.; Davies, R.D.; Davis, R.J.; Maffei, B.; Ashdown, M.; Challinor, A.; Gratton, S.; Harrison, D.; Lasenby, A.; MacTavish, C.J.; Catalano, A.; Coulais, A.; Lamarre, J.-M.; Arnaud, M.; Starck, J.-L.; Cardoso, J.-F.; Hildebrandt, S.R.; MacÍas-Pérez, J.F.; Perotto, L.; Renault, C.; Santos, D.; Couchot, F.; Henrot-Versillé, S.; Perdereau, O.; Plaszczynski, S.; Tristram, M.; Kisner, T.S.; Smoot, G.F.; Dörl, U.; Enßlin, T.A.; Hovest, W.; Matthai, F.; Rachen, J.P.; Reinecke, M.; Riller, T.; Tuovinen, J.; Lockman, F.J.; Murphy, A.; Christensen, P.R.; Naselsky, P.; Novikov, I.; Crill, B.P.; Savini, G.; Baccigalupi, C.; Bonavera, L.; Danese, L.; De Zotti, G.; González-Nuevo, J.; Leach, S.; Perrotta, F.; Mann, R.; Ade, P.A.R.; Munshi, D.; Sudiwala, R.; Sunyaev, R.; Borrill, J.; Osborne, S.; Banday, A.J.; Bernard, J.-P.; Forni, O.; Giard, M.; Leroy, C.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.; Reach, W.T.; Battaner, E.; Huffenberger, K.M.; Górski, K.M.

    2011-01-01

    Using Planck maps of six regions of low Galactic dust emission with a total area of about 140 deg2, we determine the angular power spectra of cosmic infrared background (CIB) anisotropies from multipole = 200 to = 2000 at 217, 353, 545 and 857 GHz. We use 21-cm observations of Hi as a tracer of t...

  1. FTIR spectra

    Czech Academy of Sciences Publication Activity Database

    Machovič, Vladimír; Novák, František; Madronová, L.; Novák, J.

    New York : Nova Science Publisher, 2011 - (Madronová, L.), s. 21-33 ISBN 978-1-61668-965-0. - ( Chemistry Research and Applications) Institutional research plan: CEZ:AV0Z30460519; CEZ:AV0Z60660521 Keywords : FTIR spectra * humic acids * soil Subject RIV: DB - Geology ; Mineralogy

  2. Quark Orbital Angular Momentum

    Science.gov (United States)

    Burkardt, Matthias

    2016-06-01

    Generalized parton distributions provide information on the distribution of quarks in impact parameter space. For transversely polarized nucleons, these impact parameter distributions are transversely distorted and this deviation from axial symmetry leads on average to a net transverse force from the spectators on the active quark in a DIS experiment. This force when acting along the whole trajectory of the active quark leads to transverse single-spin asymmetries. For a longitudinally polarized nucleon target, the transverse force implies a torque acting on the quark orbital angular momentum (OAM). The resulting change in OAM as the quark leaves the target equals the difference between the Jaffe-Manohar and Ji OAMs.

  3. Quark Orbital Angular Momentum

    Science.gov (United States)

    Burkardt, Matthias

    2016-03-01

    Generalized parton distributions provide information on the distribution of quarks in impact parameter space. For transversely polarized nucleons, these impact parameter distributions are transversely distorted and this deviation from axial symmetry leads on average to a net transverse force from the spectators on the active quark in a DIS experiment. This force when acting along the whole trajectory of the active quark leads to transverse single-spin asymmetries. For a longitudinally polarized nucleon target, the transverse force implies a torque acting on the quark orbital angular momentum (OAM). The resulting change in OAM as the quark leaves the target equals the difference between the Jaffe-Manohar and Ji OAMs.

  4. AngularJS directives

    CERN Document Server

    Vanston, Alex

    2013-01-01

    This book uses a practical, step-by-step approach, starting with how to build directives from the ground up before moving on to creating web applications comprised of multiple modules all working together to provide the best user experience possible.This book is intended for intermediate JavaScript developers who are looking to enhance their understanding of single-page web application development with a focus on AngularJS and the JavaScript MVC frameworks.It is expected that readers will understand basic JavaScript patterns and idioms and can recognize JSON formatted data.

  5. Perturbative QCD- and Power-Corrected Hadron Spectra and Spectral Moments in the Decay $B \\to X_{s} \\ell^{+} \\ell^{-}$

    CERN Document Server

    Ali, A

    1998-01-01

    We compute the leading order (in $\\alpha_s$) perturbative QCD and power ($1/m_b^2)$ corrections to the hadronic invariant mass and hadron energy spectra in the decay $B \\to X_s \\ell^+ \\ell^-$ in standard model. This is done both by using the heavy quark expansion technique (HQET) and a perturbative-QCD improved Fermi motion (FM) model which takes into account $B$-meson wave-function effects. The corrections in the hadron energy ($E_H$) spectrum are found to be small over a good part of this spectrum in both the methods. However, the expansion in $1/m_b$ in HQET fails near the lower kinematic end-point and at the $c\\bar{c}$ threshold. The hadronic invariant mass ($S_H$) spectrum is calculable only over a limited range $S_H > \\bar{\\Lambda}m_B$ in the heavy quark expansion, where $\\bar{\\Lambda} \\simeq m_B-m_b$. We also present results for the first two hadronic moments $$ and $$, $n=1,2$, working out their sensitivity on the HQET and FM model parameters. For equivalent values of these parameters, the moments in ...

  6. Clustering, Angular Size and Dark Energy

    OpenAIRE

    R.C. Santos; Lima, J. A. S.

    2008-01-01

    The influence of dark matter inhomogeneities on the angular size-redshift test is investigated for a large class of flat cosmological models driven by dark energy plus a cold dark matter component (XCDM model). The results are presented in two steps. First, the mass inhomogeneities are modeled by a generalized Zeldovich-Kantowski-Dyer-Roeder (ZKDR) distance which is characterized by a smoothness parameter $\\alpha(z)$ and a power index $\\gamma$, and, second, we provide a statistical analysis t...

  7. Measurement of the angular distribution of dielectronic recombination into highly charged krypton ions

    International Nuclear Information System (INIS)

    Angular distribution of x-rays emitted in the process of Dielectronic Recombination (DR) was studied at the Electron Beam Ion Trap. For this the photon emission spectra were observed along and perpendicular the electron beam propagation direction. X-ray line intensities differ drastically between the two acquired spectra. This indicates a strong alignment of the total angular momentum vector of the excited states populated by DR with respect to the electron beam propagation direction.

  8. Study of the fission fragments angular momenta

    International Nuclear Information System (INIS)

    The work represents the results of angular distribution measurements performed for prompt gamma-rays in the range of 1.1. ... 1.2. MeV due to the 233U (n,f) and 239Pu (n,f) reactions. The measurements yielded anisotropy values found to be consistent with values previously measured and using the same technique at different gamma energy bands. Such consistency, also found to exist between anisotropy values previously measured for the 235U (n,f) reaction, is a strong evidence about the energy independence of the anisotropy and indicates that the gamma spectra (at 180deg and 90deg to the fission direction) are essentially the same. The average values of the fragment angular momentum were calculated according to Strutinsky and Nix-Swiatecki theories. It was found that the values of the average angular momentum calculated for 234U, 236U and 240Pu according to Strutinsky's formula (at different gamma energy bands) are consistent and yield average values which are in good agreement with those obtained from direct measurements. (orig.)

  9. γ - γ Angular Correlation Measurements With GRIFFIN

    Science.gov (United States)

    Maclean, Andrew; Griffin Collaboration

    2015-10-01

    When an excited nuclear state emits successive γ-rays causing a γ - γ cascade an anisotropy is found in the spatial distribution of γ2 with respect to γ1. Defining the direction of γ1 as the z-axis, the intermediate level, in general will have an uneven distribution of m-states. This causes an anisotropy in the angular correlation of the second γ-ray with respect to the first. These angular correlations are expressed by the W (θ) that depends on numerical coefficients described by the sequence of spin-parity values for the nuclear states involved, the multipolarities and mixing ratios. Angular correlations can be used for the assignment of spins and parities for the nuclear states, and thus provide a powerful means to elucidate the structure of nuclei far from stability through β - γ - γ coincidence measurements. In order to explore the sensitivity of the new 16 clover-detector GRIFFIN γ-ray spectrometer at TRIUMF-ISAC to such γ - γ angular correlations, and to optimize its performance for these measurements we have studied a well known γ - γ cascade from 60Co decay through both experimental measurements and Geant4 simulation. Results will be shown in this talk. Work supported by the Canada Foundation for Innovation, the Natural Sciences and Engineering Research Council of Canada and the National Research Council of Canada.

  10. Orbital angular momentum microlaser

    Science.gov (United States)

    Miao, Pei; Zhang, Zhifeng; Sun, Jingbo; Walasik, Wiktor; Longhi, Stefano; Litchinitser, Natalia M.; Feng, Liang

    2016-07-01

    Structured light provides an additional degree of freedom for modern optics and practical applications. The effective generation of orbital angular momentum (OAM) lasing, especially at a micro- and nanoscale, could address the growing demand for information capacity. By exploiting the emerging non-Hermitian photonics design at an exceptional point, we demonstrate a microring laser producing a single-mode OAM vortex lasing with the ability to precisely define the topological charge of the OAM mode. The polarization associated with OAM lasing can be further manipulated on demand, creating a radially polarized vortex emission. Our OAM microlaser could find applications in the next generation of integrated optoelectronic devices for optical communications in both quantum and classical regimes.

  11. Orbital angular momentum microlaser.

    Science.gov (United States)

    Miao, Pei; Zhang, Zhifeng; Sun, Jingbo; Walasik, Wiktor; Longhi, Stefano; Litchinitser, Natalia M; Feng, Liang

    2016-07-29

    Structured light provides an additional degree of freedom for modern optics and practical applications. The effective generation of orbital angular momentum (OAM) lasing, especially at a micro- and nanoscale, could address the growing demand for information capacity. By exploiting the emerging non-Hermitian photonics design at an exceptional point, we demonstrate a microring laser producing a single-mode OAM vortex lasing with the ability to precisely define the topological charge of the OAM mode. The polarization associated with OAM lasing can be further manipulated on demand, creating a radially polarized vortex emission. Our OAM microlaser could find applications in the next generation of integrated optoelectronic devices for optical communications in both quantum and classical regimes. PMID:27471299

  12. A BAYESIAN ASSESSMENT OF P-VALUES FOR SIGNIFICANCE ESTIMATION OF POWER SPECTRA AND AN ALTERNATIVE PROCEDURE, WITH APPLICATION TO SOLAR NEUTRINO DATA

    International Nuclear Information System (INIS)

    The usual procedure for estimating the significance of a peak in a power spectrum is to calculate the probability of obtaining that value or a larger value by chance (known as the 'p-value'), on the assumption that the time series contains only noise-typically that the measurements are derived from random samplings of a Gaussian distribution. However, since the use of p-values in other contexts is known to be misleading, it seems prudent to examine the implications of using p-values for significance estimation of power spectra. We really need to know the probability that the time series is-or is not-compatible with the 'null hypothesis' that the measurements are derived from noise. This probability can be calculated by Bayesian analysis, but this requires one to specify and evaluate a second hypothesis that the time series does contain a contribution other than noise. We show that the requirement that the p-value should be identical to the probability that the null hypothesis is true leads to an unacceptable form for the likelihood function associated with this hypothesis. We claim that, for this reason, the p-value is not an acceptable method for significance estimation of a power spectrum. In order to obtain an acceptable significance estimate, it is necessary to explicitly consider a second hypothesis, and the key challenge is to identify an appropriate likelihood function for this hypothesis. We first propose four simple conditions that it seems reasonable to impose on this function. We then examine a general functional form for the function, and find the simplest form (which has one free parameter) that meets these conditions. We then define two different ways of combining information derived from two independent power estimates. One procedure is to calculate the post-probabilities of the null hypothesis, convert these to odds-values, and sum the log-odds. The second procedure is to combine the p-values using a procedure due to R.A. Fisher, and to calculate

  13. On the relation between angular momentum and angular velocity

    Science.gov (United States)

    Silva, J. P.; Tavares, J. M.

    2007-01-01

    Students of mechanics usually have difficulties when they learn about the rotation of a rigid body. These difficulties are rooted in the relation between angular momentum and angular velocity, because these vectors are not parallel, and we need in general to utilize a rotating frame of reference or a time dependent inertia tensor. We discuss a series of problems that introduce both difficulties.

  14. Differential reflective fiber-optic angular displacement sensor

    Science.gov (United States)

    Shan, Mingguang; Min, Rui; Zhong, Zhi; Wang, Ying; Zhang, Yabin

    2015-05-01

    Using the characteristic that the distance apart between the emitting fiber and receiving fiber only shifts the angular-power curve, a differential reflective fiber-optic sensor for angular displacement measurement is presented through subtraction of two power signals from two receiving fibers placed on both sides of one emitting fiber. A theoretical model is established to characterize the performance of the differential reflective fiber-optic angular displacement sensor. The measurements made indicate that the general behavior of the experimental results agrees with that of the theoretical results, and the sensor can improve sensitivity by about 120%, resulting in the significant improvement of anti-interference capability, which will be more suitable for high accuracy bipolar absolute angular displacement measurement. Design guidelines are also suggested to achieve desired sensor performances.

  15. On Angular Sampling Methods for 3-D Spatial Channel Models

    DEFF Research Database (Denmark)

    Fan, Wei; Jämsä, Tommi; Nielsen, Jesper Ødum; Pedersen, Gert Frølund

    2015-01-01

    This paper discusses generating three dimensional (3D) spatial channel models with emphasis on the angular sampling methods. Three angular sampling methods, i.e. modified uniform power sampling, modified uniform angular sampling, and random pairing methods are proposed and investigated in detail....... The random pairing method, which uses only twenty sinusoids in the ray-based model for generating the channels, presents good results if the spatial channel cluster is with a small elevation angle spread. For spatial clusters with large elevation angle spreads, however, the random pairing method would...

  16. Angular momentum in subbarrier fusion

    International Nuclear Information System (INIS)

    We have measured the ratio of the isomer to ground-state yields of 137Ce produced in the fusion reactions 128Te(12C,3n), 133Cs(7Li,3n), 136Ba(3He,2n), 136Ba(4He,3n), and 137Ba(3He,3n), from energies above the Coulomb barrier to energies typically 20--30% below the barrier by observing the delayed x- and γ-ray emission. We deduce the average angular momentum, , from the measured isomer ratios with a statistical model. In the first three reactions we observe that the values of exhibit the behavior predicted for low energies and the expected variation with the reduced mass of the entrance channel. We analyze these data and the associated cross sections with a barrier penetration model that includes the coupling of inelastic channels. Measurements of average angular momenta and cross sections made on other systems using the γ-multiplicity and fission-fragment angular correlation techniques are then analyzed in a similar way with this model. The discrepancies with theory for the γ-multiplicity data show correlations in cross section and angular momentum that suggest a valid model can be found. The measurements of angular momentum using the fission fragment angular correlation technique, however, do not appear reconcilable with the energy dependence of the cross sections. This systematic overview suggests, in particular, that our current understanding of the relationship of angular momentum and anisotropy in fission fragment angular correlations is incomplete. 26 refs

  17. Angular signal radiography.

    Science.gov (United States)

    Li, Panyun; Zhang, Kai; Bao, Yuan; Ren, Yuqi; Ju, Zaiqiang; Wang, Yan; He, Qili; Zhu, Zhongzhu; Huang, Wanxia; Yuan, Qingxi; Zhu, Peiping

    2016-03-21

    Microscopy techniques using visible photons, x-rays, neutrons, and electrons have made remarkable impact in many scientific disciplines. The microscopic data can often be expressed as the convolution of the spatial distribution of certain properties of the specimens and the inherent response function of the imaging system. The x-ray grating interferometer (XGI), which is sensitive to the deviation angle of the incoming x-rays, has attracted significant attention in the past years due to its capability in achieving x-ray phase contrast imaging with low brilliance source. However, the comprehensive and analytical theoretical framework is yet to be presented. Herein, we propose a theoretical framework termed angular signal radiography (ASR) to describe the imaging process of the XGI system in a classical, comprehensive and analytical manner. We demonstrated, by means of theoretical deduction and synchrotron based experiments, that the spatial distribution of specimens' physical properties, including absorption, refraction and scattering, can be extracted by ASR in XGI. Implementation of ASR in XGI offers advantages such as simplified phase retrieval algorithm, reduced overall radiation dose, and improved image acquisition speed. These advantages, as well as the limitations of the proposed method, are systematically investigated in this paper. PMID:27136780

  18. Scalable broadband OPCPA in Lithium Niobate with signal angular dispersion

    Science.gov (United States)

    Tóth, György; Pálfalvi, László; Tokodi, Levente; Hebling, János; Fülöp, József András

    2016-07-01

    Angular dispersion of the signal beam is proposed for efficient, scalable high-power few-cycle pulse generation in LiNbO3 by optical parametric chirped-pulse amplification (OPCPA) in the 1.4 to 2.1 μm wavelength range. An optimized double-grating setup can provide the required angular dispersion. Calculations predict 16.8 fs (3 cycles) pulses with 13 TW peak power. Further scalability of the scheme towards the 100-TW power level is feasible by using efficient, cost-effective, compact diode-pumped solid-state lasers for pumping directly at 1 μm, without second-harmonic generation.

  19. Positronium Yields in Liquids Determined by Lifetime and Angular Correlation Measurements

    DEFF Research Database (Denmark)

    Mogensen, O. E.; Jacobsen, F. M.

    1982-01-01

    Positron lifetime and angular correlation spectra were measured for 36 pure liquids, CCl4 mixtures with hexane and diethylether, and C6F6 mixtures with hexane. Apparent ortho-Ps yields, I'3, were determined as the intensity of the long-lived component in the lifetime spectra, while the apparent...

  20. AngularJS testing cookbook

    CERN Document Server

    Bailey, Simon

    2015-01-01

    This book is intended for developers who have an understanding of the basic principles behind both AngularJS and test-driven development. You, as a developer, are interested in eliminating the fear related to either introducing tests to an existing codebase or starting out testing on a fresh AngularJS application. If you're a team leader or part of a QA team with the responsibility of ensuring full test coverage of an application, then this book is ideal for you to comprehend the full testing scope required by your developers. Whether you're new to or are well versed with AngularJS, this book

  1. Power-law spectra found in plant signal of the Borssele NPP. An analysis using wavelet. Application of wavelet for wide-frequency range investigation and investigation (spectrum) for the secondary system signals

    Energy Technology Data Exchange (ETDEWEB)

    Suzudo, T. [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan); Verhoef, J.P. [Netherlands Energy Research Foundation (ECN), Petten (Netherlands); Tuerkcan, E. [Netherlands Energy Research Foundation (ECN), Petten (Netherlands)

    1996-09-01

    Power-law spectra were found in the temperature signals of the secondary loop in the Borssele Nuclear Power Plant, a PWR in the Netherlands. The coolant temperature before the steam generator inlet was found to fluctuate such that its power spectrum density S, follows S{proportional_to}f{sup -{alpha}}, where {alpha} is {proportional_to}4/3. Analyses using PSD suggested that the value of {alpha} is roughly constant over years. Detailed analyses were conducted using wavelet, with the discovery that the power-law appears constantly only at around 0.1 Hz, and the estimated {alpha} was found between 1.26 and 1.36. The feedwater pressure signal and feedwater flow rate signal in the same frequency range were white noise and Borwnian motion respectively, and the indication of {alpha}=4/3 was not found from them. (orig.).

  2. Power-law spectra found in plant signal of the Borssele NPP. An analysis using wavelet. Application of wavelet for wide-frequency range investigation and investigation (spectrum) for the secondary system signals

    International Nuclear Information System (INIS)

    Power-law spectra were found in the temperature signals of the secondary loop in the Borssele Nuclear Power Plant, a PWR in the Netherlands. The coolant temperature before the steam generator inlet was found to fluctuate such that its power spectrum density S, follows S∝f-α, where α is ∝4/3. Analyses using PSD suggested that the value of α is roughly constant over years. Detailed analyses were conducted using wavelet, with the discovery that the power-law appears constantly only at around 0.1 Hz, and the estimated α was found between 1.26 and 1.36. The feedwater pressure signal and feedwater flow rate signal in the same frequency range were white noise and Borwnian motion respectively, and the indication of α=4/3 was not found from them. (orig.)

  3. The integration of angular velocity

    OpenAIRE

    Boyle, Michael

    2016-01-01

    A common problem in physics and engineering is determination of the orientation of an object given its angular velocity. When the direction of the angular velocity changes in time, this is a nontrivial problem involving coupled differential equations. Several possible approaches are examined, along with various improvements over previous efforts. These are then evaluated numerically by comparison to a complicated but analytically known rotation that is motivated by the important astrophysical...

  4. Achromatic orbital angular momentum generator

    OpenAIRE

    Bouchard, Frédéric; Mand, Harjaspreet; Mirhosseini, Mohammad; Karimi, Ebrahim; Boyd, Robert W

    2014-01-01

    We describe a novel approach for generating light beams that carry orbital angular momentum (OAM) by means of total internal reflection in an isotropic medium. A continuous space-varying cylindrically symmetric reflector, in the form of \\textit{two glued hollow axicons}, is used to introduce a nonuniform rotation of polarisation into a linearly polarised input beam. This device acts as a full spin-to-orbital angular momentum convertor. It functions by switching the helicity of the incoming be...

  5. MBL Experiment in Angular Momentum

    Science.gov (United States)

    Gluck, Paul

    2002-04-01

    Among the series of beautiful take-home experiments designed by A.P. French and J.G. King for MIT students, the one on angular momentum studies the loss and conservation of angular momentum using a small dc motor as generator. Here we describe a version of the experiment that increases its accuracy, enables students to perform detailed rotational dynamics calculations, and sharpens the ability to isolate the region where the collision occurs.

  6. The 0.3-30 Kev Spectra Of Powerful Starburst Galaxies: Nustar And Chandra Observations Of Ngc 3256 And Ngc 3310

    DEFF Research Database (Denmark)

    Lehmer, B. D.; Tyler, J. B.; Hornschemeier, A. E.;

    2015-01-01

    -law distributions with Γ ≈ 2.6 at E > 5-7 keV. Using new and archival Chandra data, we search for signatures of heavily obscured or low luminosity active galactic nuclei (AGNs). We find that both NGC 3256 and NGC 3310 have X-ray detected sources coincident with nuclear regions; however, the steep NuSTAR spectra of...

  7. Analysis of x-ray spectra emitted from highly ionized atoms in the vacuum spark and laser-produced high power plasma sources

    International Nuclear Information System (INIS)

    The interest in atomic spectroscopy has greatly been reinforced in the last ten years. This gain of interest is directly related to the developments in different fields of research where hot plasmas are created. These fields include in particular controlled thermonuclear fusion research by means of inertial or magnetic confinement approaches and also the most recent efforts to achieve lasers in the XUV region. The present work is based on the specific contribution of the atomic spectroscopy group at the Hebrew University. The recent development of both theoretical and experimental tools allowed us to progress in the understanding of the highly ionized states of heavy elements. In this work the low-inductance vacuum-spark developed at the Hebrew University was used as the hot plasma source. The spectra were recorded in the 7-300 A range by means of a high-resolution extreme-grazing-incidence spectrometer developed at the Racah Institute by Profs. J.L. Schwob and B.S. Fraenkel. To the extend the spectroscopic studies to higher-Z atoms, the laser-produced plasma facility at Soreq Nuclear Center was used. In this work the spectra of the sixth row elements were recorded in the x-rays by means of a crystal spectrometer. All these experimental systems are briefly described in chapter one. Chapter two deals with the theoretical methods used in the present work for the atomic calculations. Chapter three deals with the spectra of elements of the fifth row emitted from the vacuum-spark in the 30-150 A range. These spectra as experimental data were used in order to test ab-initio computations along the NiI sequence 3d-nl transitions. The results of this work are presented in chapter four. Chapter five is devoted to the measurement and analysis of spectra emitted from the vacuum-spark by rare-earth elements. (author)

  8. Energy Extraction from a Black Hole and Its Influence on X-Ray Spectra

    Science.gov (United States)

    Huang, Chang-Yin; Gong, Xiao-Long; Wang, Ding-Xiong

    2014-12-01

    Taking into account the energy and angular momentum transferred from a rotating black hole (BH) to the inner accretion disk by the magnetic connection (MC) process, we simulate the x-ray spectra from the disk-corona system with two different magnetic configurations using the Monte Carlo method. The results show that the MC process reduces the ratio of the power dissipated in the corona to the total and softens the spectrum. The influence of the MC process is stronger with a higher BH spin, a larger accretion rate, and a larger and more centralized magnetic flux threading the disk. The comparison of the model spectra with the observational data suggests that large-scale magnetic fields accumulating in the inner disk could be a candidate explanation for the hard-to-soft state evolutions in BH binaries.

  9. Power

    OpenAIRE

    Bowles, Samuel; Gintis, Herbert

    2007-01-01

    We consider the exercise of power in competitive markets for goods, labour and credit. We offer a definition of power and show that if contracts are incomplete it may be exercised either in Pareto-improving ways or to the disadvantage of those without power. Contrasting conceptions of power including bargaining power, market power, and consumer sovereignty are considered. Because the exercise of power may alter prices and other aspects of exchanges, abstracting from power may miss essential a...

  10. Factors influencing perceived angular velocity

    Science.gov (United States)

    Kaiser, Mary K.; Calderone, Jack B.

    1991-01-01

    Angular velocity perception is examined for rotations both in depth and in the image plane and the influence of several object properties on this motion parameter is explored. Two major object properties are considered, namely, texture density which determines the rate of edge transitions for rotations in depth, i.e., the number of texture elements that pass an object's boundary per unit of time, and object size which determines the tangential linear velocities and 2D image velocities of texture elements for a given angular velocity. Results of experiments show that edge-transition rate biased angular velocity estimates only when edges were highly salient. Element velocities had an impact on perceived angular velocity; this bias was associated with 2D image velocity rather than 3D tangential velocity. Despite these biases judgements were most strongly determined by the true angular velocity. Sensitivity to this higher order motion parameter appeared to be good for rotations both in depth (y-axis) and parallel to the line of sight (z-axis).

  11. Evolution of the angular momentum of protogalaxies from tidal torques Zel,,'=..dovich approximation

    CERN Document Server

    Catelan, P; Catelan, Paolo; Theuns, Tom

    1996-01-01

    The growth of the angular momentum L of protogalaxies induced by tidal torques is reconsidered within the Zel'dovich approximation. We obtain a general expression for the ensemble expectation value of the square of L in terms of the first and second invariant of the inertia tensor of the Lagrangian volume enclosing the protoobject's collapsing mass. We then specialize the formalism to the particular case in which this volume is centered on a peak of the smoothed Gaussian density field and approximated by an isodensity ellipsoid. The result is the appropriate analytical estimate for the rms angular momentum of peaks to be compared against simulations that make use of the Hoffman-Ribak algorithm to set up a constrained density field that contains a peak with given shape. Extending the work of Heavens & Peacock, we calculate the joint probability distribution function for several spin parameters and peak mass M using the distribution of peak shapes, for different initial power spectra. The values of observed...

  12. Achromatic orbital angular momentum generator

    CERN Document Server

    Bouchard, Frédéric; Mirhosseini, Mohammad; Karimi, Ebrahim; Boyd, Robert W

    2014-01-01

    We describe a novel approach for generating light beams that carry orbital angular momentum (OAM) by means of total internal reflection in an isotropic medium. A continuous space-varying cylindrically symmetric reflector, in the form of \\textit{two glued hollow axicons}, is used to introduce a nonuniform rotation of polarisation into a linearly polarised input beam. This device acts as a full spin-to-orbital angular momentum convertor. It functions by switching the helicity of the incoming beam's polarisation, and by conservation of total angular momentum thereby generates a well-defined value of OAM. Our device is broadband, since the phase shift due to total internal reflection is nearly independent of wavelength. We verify the broad-band behaviour by measuring the conversion efficiency of the device for three different wavelengths corresponding to the RGB colours, red, green and blue. An average conversion efficiency of $95\\%$ for these three different wavelengths is observed. %, which confirms its wavelen...

  13. Instant AngularJS starter

    CERN Document Server

    Menard, Dan

    2013-01-01

    Get to grips with a new technology, understand what it is and what it can do for you, and then get to work with the most important features and tasks. This book is written in an easytoread style, with a strong emphasis on realworld, practical examples. Stepbystep explanations are provided for performing important tasks.This book is for web developers familiar with JavascriptIt doesn't cover the history of AngularJS, and it's not a pitch to convince you that AngularJS is the best framework on the entire web. It's a guide to help you learn everything you need to know about AngularJS in as few pa

  14. Non-Colinearity of Angular Velocity and Angular Momentum

    Science.gov (United States)

    Burr, A. F.

    1974-01-01

    Discusses the principles, construction, and operation of an apparatus which serves to demonstrate the non-colinearity of the angular velocity and momentum vectors as well as the inertial tensors. Applications of the apparatus to teaching of advanced undergraduate mechanics courses are recommended. (CC)

  15. Quantum theory of angular momentum

    International Nuclear Information System (INIS)

    This monograph pertains to the angular momentum coupling and recoupling coefficients and their relation to generalized hypergeometric functions; their q-generalization; their polynomial zeros; their relation to orthogonal polynomials; and their numerical computation. The book builds on standard textbook material on Angular Momentum Theory and leads the reader to the recent developments in the selected topics. Fortran programs for the computation of the 3-j, 6-j and 9-j coefficients are included for use by atomic, molecular and nuclear physicists/chemists. (orig.)

  16. The angular resolution of air shower gamma ray telescopes

    Science.gov (United States)

    Morello, C.; Navarra, G.; Periale, L.; Vallania, P.

    1985-01-01

    A crucial charactristic of air shower arrays in the field of high energy gamma-ray astronomy is their angular resolving power, the arrival directions being obtained by the time of flight measurements. A small air shower array-telescope is used to study the resolution in the definition of the shower front as a function of the shower size.

  17. Universal bellows joint restraint permits angular and offset movement

    Science.gov (United States)

    Kuhn, R. F., Jr.

    1965-01-01

    Universal joint-type restraint that employs ball joints permits maximum angular and lateral offset movement in a bellows joint without danger of rupture or pressure drop in the line. It is used in high pressure and high temperature applications in refineries, steam plants, or stationary power plants.

  18. Turbodrill rod angular velocity indicator

    Energy Technology Data Exchange (ETDEWEB)

    Rogachev, O.K.; Belozerova, L.P.; Konenkov, A.K.

    1984-01-01

    This paper outlines shortcomings of existing types of telemetry systems which resulted in production of the IChT-1 unit. Unit is intended for control of angular velocity of serially produced turbodrill rods, during drilling of wells up to 5000 m deep, and bottomhole temperatures to 100C. The paper provides a detailed description and diagrams for installing this unit.

  19. Fission at high angular momenta

    International Nuclear Information System (INIS)

    By studies on the system 40Ar+165Ho by means of selected measuring methods which made a differential selection of certain angular momentum ranges and by this a discrimination between ''fast fission'' and compound-nucleus fission possible the validity of fundamental predictions of the model of the ''fast fission'' hitherto experimentally no yet confirmed was studied: 1) At the turning point of the trajectory for ''fast fission'' calculated by Gregoire the corresponding shape of which must be responsible for the angular distribution the centers of the two fragments must be separated by about 11 fm. 2) The widths of the mass distributions after ''fast fission'' and compound-nucleus fission must be different by a factor 2. The measurements of the angular dependence showed that both prediction cannot be simultaneously brought into accordance with the experimental results. The results of coincidence measurements between fission fragments and alpha particles confirmed the assumption mentioned under topic 2. The analysis of the angular dependence then yielded for the shape of the nuclear complex leading to ''fast fission'' a more compact shape than that indicated by Gregoire, namely with a distance of the fragments of about 7 fm. (orig.)

  20. Stopping power measurements with 17-GeV/c protons at the AGS or inclusive proton spectra from proton-nucleus interactions at 17 GeV/c

    International Nuclear Information System (INIS)

    The problem of nuclear stopping power and its importance to the study of nucleus-nucleus collisions at very high energies was brought to general attention one year ago at Quark Matter 83 by Busza and Goldhaber. In this context, nuclear stopping power can be thought of as the rate of energy (or rapidity) loss of a proton traversing nuclear matter. It does not directly address the important question of energy deposition. Busza and Goldhaber showed that knowledge of nuclear stopping power is needed to estimate the minimum center-of-mass energy required in nucleus-nucleus collisions to ensure the production of very high temperatures at low baryon density. At cm energies of about 1 to 10 GeV/A, the stopping power is important in the estimation of the maximum baryon densities attainable in nucleus-nucleus collisions. The data presented are more relevant to this latter point

  1. Inverse cascades of angular momentum

    International Nuclear Information System (INIS)

    Most theoretical and computational studies of turbulence in Navier-Stokes fluids and/or guiding-centre plasmas have been carried out in the presence of spatially periodic boundary conditions. In view of the frequently reproduced result that two-dimensional and/or MHD decaying turbulence leads to structures comparable in length scae to a box dimension, it is natural to ask if periodic boundary conditions are an adequate representation of any physical situation. Here, we study, computationally, the decay of two-dimensional turbulence in a Navier-Stokes fluid or guiding-centre plasma in the presence of circular no-slip rigid walls. The method is wholly spectral, and relies on a Galerkin approximation by a set of functions that obey two boundary conditions at the wall radius (analogues of the Chandrasekhar-Reid functions). It is possible to explore Reynolds numbers up to the order of 1250, based on an RMS velocity and a box radius. It is found that decaying turbulence is altered significantly by the no-slip boundaries. First, strong boundary layers serve as sources of vorticity and enstrophy and enhance the early-time energy decay rate, for a given Reynolds number, well above the periodic boundary condition values. More importantly, angular momentum turns out to be an even more slowly decaying ideal invariant than energy, and to a considerable extent governs the dynamics of the decay. Angular momentum must be taken into account, for example, in order to achieve quantitative agreement with the prediction of maximum entropy, or 'most probable', states. These are predictions of conditions that are established after several eddy turnover times but before the energy has decayed away. Angular momentum will cascade to lower azimuthal mode numbers, even if absent there initially, and the angular momentum modal spectrum is eventually dominated by the lowest mode available. When no initial angular momentum is present, no behaviour that suggests the likelihood of inverse cascades

  2. Pitch-angular anisotropy of solar protons according to measurements in the stratosphere

    International Nuclear Information System (INIS)

    A pitch-angular distribution of solar protons with 100-300 MeV energy is studied on the base of the measurements of spectra of these particles with balloons in Apatites. The proton energy spectra are determined using the high-level absorption curve of excess radiation (above the galactic cosmic ray phone) during the radiosonde ascention into the stratosphere. The pitch-angular anisotropy of solar protons is registered. It is shown that an appearance of anisotropy with the maximum at high pitch angles corresponds to the closed Earth magnetosphere

  3. The evolution of black-hole mass and angular momentum

    CERN Document Server

    King, A R

    1999-01-01

    We show that neither accretion nor angular momentum extraction are likely to lead to significant changes in the mass M_1 or angular momentum parameter a_* of a black hole in a binary system with realistic parameters. Current values of M_1 and a_* therefore probably reflect those at formation. We show further that sufficiently energetic jet ejection powered by the black hole's rotational energy can stabilize mass transfer in systems with large adverse mass ratios, and even reduce the mass transfer rate to the point where the binary becomes transient.

  4. Response spectra in alluvial soils

    International Nuclear Information System (INIS)

    For aseismic design of structures, the ground motion data is assumed either in the form of ground acceleration as a function of time or indirectly in the form of response spectra. Though the response spectra approach has limitations like not being applicable for nonlinear problems, it is usually used for structures like nuclear power plants. Fifty accelerograms recorded at alluvial sites have been processed. Since different empirical formulas relating acceleration with magnitude and distance give a wide scatter of values, peak ground acceleration alone cannot be the parameter as is assumed by a number of authors. The spectra corresponding to 5% damping have been normalised with respect to three parameters, namely, peak ground acceleration, peak ground velocity and a nondimensional quantity ad/v2. Envelopee of maxima and minima as well as average response spectra has been obtained. A comparison with the USAEC spectra has been made. A relation between ground acceleration, ground velocity and ad/v2 has been obtained which would nearly give the same magnification of the response. A design response spectra for alluvial soils has been recommended. (author)

  5. Angular dispersion of protons transmitted through thin gold films

    International Nuclear Information System (INIS)

    The angular distributions of protons travelling through thin polycrystalline gold targets (∝15 nm) with incident energies in the range of 4-10 keV have been measured. The results confirm previous experiments at higher energies showing deviations from theoretical predictions based on the standard multiple scattering theory. In order to prove that the effect of crystal structure is one of the main causes of these deviations we have performed numerical simulations. To simulate the polycrystalline structure in a realistic way, we have made an analysis of the target by means of transmission electron microscopy (TEM) techniques. Including these characteristics in the simulation, together with the effect of vibrations and crystal disorder we analyzed the corresponding angular distribution. To evaluate the role of channeling, we also measured angular distributions of protons in a left angle 100 right angle gold foil and made the corresponding numerical simulations. The results show the critical influence of the target structure in the angular spectra of transmitted ions. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Stopping power measurements with 17-GeV/c protons at the AGS or inclusive proton spectra from proton-nucleus interactions at 17 GeV/c

    International Nuclear Information System (INIS)

    The goal of the experiment was to obtain inclusive proton spectra over the ranges of 0 to 1 GeV/c in Psub(T) and 0 to 1 in xsub(F). The targets used were C, Al, Cu, Ag, and Pb. A limited set of data was also taken with a liquid hydrogen target in order to check some of the calibrations, but this has not yet been analyzed. All of the data from the nuclear targets has been analyzed once, but further refinement is needed. The results available now must therefore be considered preliminary and subject to change, but nevertheless the general features of the results are clear. (orig./HSI)

  7. Plate tectonics conserves angular momentum

    Directory of Open Access Journals (Sweden)

    C. Bowin

    2009-03-01

    Full Text Available A new combined understanding of plate tectonics, Earth internal structure, and the role of impulse in deformation of the Earth's crust is presented. Plate accelerations and decelerations have been revealed by iterative filtering of the quaternion history for the Euler poles that define absolute plate motion history for the past 68 million years, and provide an unprecedented precision for plate angular rotation variations with time at 2-million year intervals. Stage poles represent the angular rotation of a plate's motion between adjacent Euler poles, and from which the maximum velocity vector for a plate can be determined. The consistent maximum velocity variations, in turn, yield consistent estimates of plate accelerations and decelerations. The fact that the Pacific plate was shown to accelerate and decelerate, implied that conservation of plate tectonic angular momentum must be globally conserved, and that is confirmed by the results shown here (total angular momentum ~1.4 E+27 kgm2s−1. Accordingly, if a plate decelerates, other plates must increase their angular momentums to compensate. In addition, the azimuth of the maximum velocity vectors yields clues as to why the "bend" in the Emperor-Hawaiian seamount trend occurred near 46 Myr. This report summarizes processing results for 12 of the 14 major tectonic plates of the Earth (except for the Juan de Fuca and Philippine plates. Plate accelerations support the contention that plate tectonics is a product of torques that most likely are sustained by the sinking of positive density anomalies due to phase changes in subducted gabbroic lithosphere at depth in the upper lower mantle (above 1200 km depth. The tectonic plates are pulled along by the sinking of these positive mass anomalies, rather than moving at near constant velocity on the crests of convection cells driven by rising heat. These results imply that spreading centers are primarily passive reactive

  8. Different spectra with the same neutron source

    International Nuclear Information System (INIS)

    Using as source term the spectrum of a 239Pu-Be source several neutron spectra have been calculated using Monte Carlo methods. The source term was located in the centre of spherical moderators made of light water, heavy water and polyethylene of different diameters. Also a 239Pu-Be source was used to measure its neutron spectrum, bare and moderated by water. The neutron spectra were measured at 100 cm with a Bonner spheres spectrometer. Monte Carlo calculations were used to calculate the neutron spectra of bare and water-moderated spectra that were compared with those measured with the spectrometer. Resulting spectra are similar to those found in power plants with PWR, BWR and Candu nuclear reactors. Beside the spectra the dosimetric features were determined. Using moderators and a single neutron source can be produced neutron spectra alike those found in workplaces, this neutron fields can be utilized to calibrate neutron dosimeters and area monitors. (Author)

  9. Absolute angular calibration of a submarine km3 neutrino telescope

    International Nuclear Information System (INIS)

    A requirement for neutrino telescope is the ability to resolve point sources of neutrinos. In order to understand its resolving power a way to perform absolute angular calibration with muons is required. Muons produced by cosmic rays in the atmosphere offer an abundant calibration source. By covering a surface vessel with 200 modules of 5 m2 plastic scintillator a surface air shower array can be set up. Running this array in coincidence with a deep-sea km3 size neutrino detector, where the coincidence is defined by the absolute clock timing stamp for each event, would allow absolute angular calibration to be performed. Monte Carlo results simulating the absolute angular calibration of the km3 size neutrino detector will be presented. Future work and direction will be discussed.

  10. Orbital angular momentum in phase space

    OpenAIRE

    Rigas, I.; Sanchez-Soto, L. L.; Klimov, A. B.; Rehacek, J.; Hradil, Z.

    2010-01-01

    A comprehensive theory of the Weyl-Wigner formalism for the canonical pair angle-angular momentum is presented. Special attention is paid to the problems linked to rotational periodicity and angular-momentum discreteness.

  11. AngularJS test-driven development

    CERN Document Server

    Chaplin, Tim

    2015-01-01

    This book is for developers who want to learn about AngularJS development by applying testing techniques. You are assumed to have a basic knowledge and understanding of HTML, JavaScript, and AngularJS.

  12. Phonons with orbital angular momentum

    Energy Technology Data Exchange (ETDEWEB)

    Ayub, M. K. [Theoretical Plasma Physics Division, PINSTECH, P. O. Nilore, Islamabad (Pakistan); National Centre for Physics, Shahdra Valley Road, Quaid-i-Azam University Campus, Islamabad 44000 (Pakistan); Ali, S. [National Centre for Physics, Shahdra Valley Road, Quaid-i-Azam University Campus, Islamabad 44000 (Pakistan); Mendonca, J. T. [IPFN, Instituto Superior Tecnico, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal)

    2011-10-15

    Ion accoustic waves or phonon modes are studied with orbital angular momentum (OAM) in an unmagnetized collissionless uniform plasma, whose constituents are the Boltzmann electrons and inertial ions. For this purpose, we have employed the fluid equations to obtain a paraxial equation in terms of ion density perturbations and discussed its Gaussian beam and Laguerre-Gauss (LG) beam solutions. Furthermore, an approximate solution for the electrostatic potential problem is presented, allowing to express the components of the electric field in terms of LG potential perturbations. The energy flux due to phonons is also calculated and the corresponding OAM is derived. Numerically, it is shown that the parameters such as azimuthal angle, radial and angular mode numbers, and beam waist, strongly modify the profiles of the phonon LG potential. The present results should be helpful in understanding the phonon mode excitations produced by Brillouin backscattering of laser beams in a uniform plasma.

  13. Phonons with orbital angular momentum

    International Nuclear Information System (INIS)

    Ion accoustic waves or phonon modes are studied with orbital angular momentum (OAM) in an unmagnetized collissionless uniform plasma, whose constituents are the Boltzmann electrons and inertial ions. For this purpose, we have employed the fluid equations to obtain a paraxial equation in terms of ion density perturbations and discussed its Gaussian beam and Laguerre-Gauss (LG) beam solutions. Furthermore, an approximate solution for the electrostatic potential problem is presented, allowing to express the components of the electric field in terms of LG potential perturbations. The energy flux due to phonons is also calculated and the corresponding OAM is derived. Numerically, it is shown that the parameters such as azimuthal angle, radial and angular mode numbers, and beam waist, strongly modify the profiles of the phonon LG potential. The present results should be helpful in understanding the phonon mode excitations produced by Brillouin backscattering of laser beams in a uniform plasma.

  14. Angular momentum in QGP holography

    Directory of Open Access Journals (Sweden)

    Brett McInnes

    2014-10-01

    Full Text Available The quark chemical potential is one of the fundamental parameters describing the quark–gluon plasma produced by sufficiently energetic heavy-ion collisions. It is not large at the extremely high temperatures probed by the LHC, but it plays a key role in discussions of the beam energy scan programmes at the RHIC and other facilities. On the other hand, collisions at such energies typically (that is, in peripheral collisions give rise to very high values of the angular momentum density. Here we explain that holographic estimates of the quark chemical potential of a rotating sample of plasma can be very considerably improved by taking the angular momentum into account.

  15. Angular distribution of coherent bremsstrahlung

    International Nuclear Information System (INIS)

    The angular distribution of the linearly polarised photon beam produced by coherent bremsstrahlung from an aligned diamond radiator has been measured at the MAMI A2 tagged photon facility. The measurements were made with a prototype position sensitive photon detector which utilises the pair production process and a double sided silicon strip detector. This polarised photon beam is used for nuclear and hadronic experiments and in their analysis the polarisation is obtained from a calculation, which matches the experimental intensity spectrum. As the polarisation is related to the photon beam angular distribution, the present measurements can be used to test this calculation. The overall agreement is found to be good although there are some regions where significant discrepancies exist.

  16. The integration of angular velocity

    CERN Document Server

    Boyle, Michael

    2016-01-01

    A common problem in physics and engineering is determination of the orientation of an object given its angular velocity. When the direction of the angular velocity changes in time, this is a nontrivial problem involving coupled differential equations. Several possible approaches are examined, along with various improvements over previous efforts. These are then evaluated numerically by comparison to a complicated but analytically known rotation that is motivated by the important astrophysical problem of precessing black-hole binaries. It is shown that a straightforward solution directly using quaternions is most efficient and accurate, and that the norm of the quaternion is irrelevant. Integration of the generator of the rotation can also be made roughly as efficient as integration of the rotation. Both methods will typically be twice as efficient naive vector- or matrix-based methods. Implementation by means of standard general-purpose numerical integrators is stable and efficient, so that such problems can ...

  17. On Dunkl angular momenta algebra

    Science.gov (United States)

    Feigin, Misha; Hakobyan, Tigran

    2015-11-01

    We consider the quantum angular momentum generators, deformed by means of the Dunkl operators. Together with the reflection operators they generate a subalgebra in the rational Cherednik algebra associated with a finite real reflection group. We find all the defining relations of the algebra, which appear to be quadratic, and we show that the algebra is of Poincaré-Birkhoff-Witt (PBW) type. We show that this algebra contains the angular part of the Calogero-Moser Hamiltonian and that together with constants it generates the centre of the algebra. We also consider the gl( N ) version of the subalge-bra of the rational Cherednik algebra and show that it is a non-homogeneous quadratic algebra of PBW type as well. In this case the central generator can be identified with the usual Calogero-Moser Hamiltonian associated with the Coxeter group in the harmonic confinement.

  18. Beta spectra. II-Positron spectra

    International Nuclear Information System (INIS)

    Using the Fermi theory of beta decay, the beta spectra for 30 positron emitters have been computed, introducing a correction factor for unique forbidden transitions. The spectra are ploted vs. energy, once normalised, and tabulated with the related Fermi functions. The average and median energies are calculated. (author)

  19. Integrating rotation from angular velocity

    OpenAIRE

    Zupan, Eva; Saje, Miran

    2011-01-01

    Abstract The integration of the rotation from a given angular velocity is often required in practice. The present paper explores how the choice of the parametrization of rotation, when employed in conjuction with different numerical time-integration schemes, effects the accuracy and the computational efficiency. Three rotation parametrizations – the rotational vector, the Argyris tangential vector and the rotational quaternion – are combined with three different numerical time-integration ...

  20. Collective spectra along the fission barrier

    Directory of Open Access Journals (Sweden)

    Pigni M. T.

    2012-12-01

    Full Text Available Discrete and continuous spectra of fissioning nuclei at the humps of fission barriers (Bohr transition states and in the intermediate wells (superdeformed and hyperdeformed states play a key role in the calculation of fission cross sections. A theoretical evaluation of the collective parts of the spectra is possible within the framework of the dinuclear system model, which treats the wave function of the fissioning nucleus as a superposition of a mononucleus configuration and two–cluster configurations in a dynamical way, permitting exchange of upper–shell nucleons between clusters. The impact of theoretical spectra on neutron–induced fission cross sections and, in combination with an improved version of the scission–point model, on angular distribution of fission fragments is evaluated for plutonium isotopes of interest to nuclear energy applications.

  1. Angular evolution of peripheral heavy ion reactions at intermediate energies

    International Nuclear Information System (INIS)

    Energy spectra and angular distributions of projectile-like fragments have been measured in the vicinity of the grazing angle for the 40Ar+40Ca and 40Ar+208Pb reactions at 44MeV/nucleon. Measurements of the 40Ar+40Ca system at 27MeV/nucleon and 20Ne+208Pb reaction at 44MeV/nucleon at one angle have also been performed. For fragments with charge and mass close to the projectile numerous deviations from the standard fragmentation model have been observed including rapidly changing shapes of the angular distributions with the fragment mass. Moreover the isotopic distributions and mean fragment velocities are strongly dependent on detection angle. A surface transfer reaction component dominant at the grazing angle can be separated from a second component which cannot be entirely accounted for by a simple fragmentation mechanism

  2. Interference effects in angular streaking with a rotating terahertz field

    Science.gov (United States)

    Kazansky, A. K.; Bozhevolnov, A. V.; Sazhina, I. P.; Kabachnik, N. M.

    2016-01-01

    A method of angular streaking with a rotating terahertz electric field for photoelectrons produced by femtosecond extreme ultraviolet pulses is suggested and theoretically analyzed. The method can be used for free electron laser (FEL) pulse characterization on a shot-to-shot basis. It is shown that in related measurements an interesting phenomenon appears: formation of very bright and sharp features in the angular resolved electron spectra measured in the plane perpendicular to the collinear beam direction. These features are similar to the conventional caustics in the wave propagation. The caustics are accompanied by a well-developed interference structure. The intensity distribution along the caustic is determined by the envelope of the FEL pulse.

  3. Orbital angular momentum is dependent on polarization

    OpenAIRE

    Li, Chun-Fang

    2009-01-01

    It is shown that the momentum density of free electromagnetic field splits into two parts. One has no contribution to the net momentum due to the transversality condition. The other yields all the momentum. The angular momentum that originates from the former part is spin, and the angular momentum that originates from the latter part is orbital angular momentum. Expressions for the spin and orbital angular momentum are given in terms of the electric vector in reciprocal space. The spin and or...

  4. Achromatic orbital angular momentum generator

    International Nuclear Information System (INIS)

    We describe a novel approach for generating light beams that carry orbital angular momentum (OAM) by means of total internal reflection in an isotropic medium. A continuous space-varying cylindrically symmetric reflector, in the form of two glued hollow axicons, is used to introduce a nonuniform rotation of polarization into a linearly polarized input beam. This device acts as a full spin-to-orbital angular momentum convertor. It functions by switching the helicity of the incoming beam's polarization, and by conservation of total angular momentum thereby generates a well-defined value of OAM. Our device is broadband, since the phase shift due to total internal reflection is nearly independent of wavelength. We verify the broad-band behaviour by measuring the conversion efficiency of the device for three different wavelengths corresponding to the RGB colours, red, green and blue. An average conversion efficiency of 95% for these three different wavelengths is observed. This device may find applications in imaging from micro- to astronomical systems where a white vortex beam is needed. (paper)

  5. Effects of Angular Momentum on Halo Profiles

    CERN Document Server

    Lentz, Erik W; Rosenberg, Leslie J

    2016-01-01

    The near universality of DM halo density profiles provided by N-body simulations has proven to be robust against changes in total mass density, power spectrum, and some forms of initial velocity dispersion. In this letter we study the effects of coherently spinning up an isolated DM-only progenitor on halo structure. Halos with spins within several standard deviations of the simulated mean ($\\lambda \\lesssim 0.20$) produce profiles with negligible deviations from the universal form. Only when the spin becomes quite large ($\\lambda \\gtrsim 0.20$) do departures become evident. The angular momentum distribution also exhibits a near universal form, which is also independent of halo spin up to $\\lambda \\lesssim 0.20$. A correlation between these epidemic profiles and the presence of a strong bar in the virialized halo is also observed. These bar structures bear resemblance to the radial orbit instability in the rotationless limit.

  6. Spin Angular Momentum Imparted by Gravitational Waves

    OpenAIRE

    Sharif, M.

    2007-01-01

    Following the demonstration that gravitational waves impart linear momentum, it is argued that if they are polarized they should impart angular momentum to appropriately placed 'test rods' in their path. A general formula for this angular momentum is obtained and used to provide expressions for the angular momentum imparted by plane and cylindrical gravitational waves.

  7. Angular Momentum Decomposition for an Electron

    OpenAIRE

    Burkardt, Matthias; BC, Hikmat

    2008-01-01

    We calculate the orbital angular momentum of the `quark' in the scalar diquark model as well as that of the electron in QED (to order $\\alpha$). We compare the orbital angular momentum obtained from the Jaffe-Manohar decomposition to that obtained from the Ji relation and estimate the importance of the vector potential in the definition of orbital angular momentum.

  8. AngularJS web application development

    CERN Document Server

    Darwin, Peter Bacon

    2013-01-01

    The book will be a step-by-step guide showing the readers how to build a complete web app with AngularJSJavaScript developers who want to learn AngularJS for developing web apps. Knowledge of JavaScript and HTML is expected. No knowledge of AngularJS is required.

  9. Power

    DEFF Research Database (Denmark)

    Elmholdt, Claus Westergård; Fogsgaard, Morten

    2016-01-01

    In this chapter, we will explore the dynamics of power in processes of creativity, and show its paradoxical nature as both a bridge and a barrier to creativity in organisations. Recent social psychological experimental research (Slighte, de Dreu & Nijstad, 2011) on the relation between power and...... creativity suggests that when managers give people the opportunity to gain power and explicate that there is reason to be more creative, people will show a boost in creative behaviour. Moreover, this process works best in unstable power hierarchies, which implies that power is treated as a negotiable and...... floating source for empowering people in the organisation. We will explore and discuss here the potentials, challenges and pitfalls of power in relation to creativity in the life of organisations today. The aim is to demonstrate that power struggles may be utilised as constructive sources of creativity. It...

  10. Measurement of the Orbital Angular Momentum Spectrum of Partially Coherent Fields using Double Angular Slit Interference

    CERN Document Server

    Malik, Mehul; Leach, Jonathan; Boyd, Robert W

    2012-01-01

    We implement an interferometric method using two angular slits to measure the orbital angular momentum (OAM) mode spectrum of a partially coherent field. As the angular separation of the slits changes, an interference pattern for a particular OAM mode is obtained. The visibility of this interference pattern as a function of angular separation is equivalent to the angular correlation function of the field. By Fourier transforming the angular correlation function obtained from the double angular slit interference, we are able to calculate the OAM spectrum of the partially coherent field. This method has potential application for characterizing the OAM spectrum in high-dimensional quantum information protocols.

  11. The rotational spectra of the most asymmetric molecules

    International Nuclear Information System (INIS)

    We consider the Schroedinger equation for the rotational spectra of the most asymmetric molecules. The energy eigenfunctions are also eigenfunctions of the square of the angular momentum vector and of one component of the angular momentum in the inertial frame. We follow our point of view in which the properties of the angular momentum spectra are used to delete, without loss of generality, one constant of motion and one of the Euler's angles. Then, instead of using Euler's angles, the Schrodinger equation and the energy eigenfunctions are expressed in terms of spheroconal coordinates in which that equation may be separable. The most asymmetric case is specially analyzed. The characteristic symmetries of this problem are used to reduce the number of differential equations considered and the number of steps for a complete solution. (Author)

  12. Dependency injection with AngularJS

    CERN Document Server

    Knol, Alex

    2013-01-01

    This book is a practical, hands-on approach to using dependency injection and implementing test-driven development using AngularJS. Dependency Injection with AngularJS is aimed at developers who are aware of AngularJS but need to get started with using it in real life applications. Also, developers who want to get into test-driven development with AngularJS can use this book as practical guide. Even if you know about dependency injection, it can serve as a good reference on how it is used within AngularJS. Readers are expected to have some experience with JavaScript.

  13. Naturally enhanced ion-line spectra around the equatorial 150-km region

    Directory of Open Access Journals (Sweden)

    J. L. Chau

    2009-03-01

    Full Text Available For many years strong radar echoes coming from 140–170 km altitudes at low latitudes have been associated to the existence of field-aligned irregularities (FAIs (the so called 150-km echoes. In this work, we present frequency spectra as well as angular distribution of 150-km echoes. When the 150-km region is observed with beams perpendicular to the magnetic field (B the observed radar spectra are very narrow with spectral widths between 3–12 m/s. On the other hand, when few-degrees off-perpendicular beams are used, the radar spectra are wide with spectral widths comparable to those expected from ion-acoustic waves at these altitudes (>1000 m/s. Moreover the off-perpendicular spectral width increases with increasing altitude. The strength of the received echoes is one to two orders of magnitude stronger than the expected level of waves in thermal equilibrium at these altitudes. Such enhancement is not due to an increase in electron density. Except for the enhancement in power, the spectra characteristics of off-perpendicular and perpendicular echoes are in reasonable agreement with expected incoherent scatter spectra at these angles and altitudes. 150-km echoes are usually observed in narrow layers (2 to 5. Bistatic common volume observations as well as observations made few kilometers apart show that, for most of the layers, there is very high correlation on power fluctuations without a noticeable time separation between simultaneous echoes observed with Off-perpendicular and Perpendicular beams. However, in one of the central layers, the echoes are the strongest in the perpendicular beam and absent or very weak in the off-perpendicular beams, suggesting that they are generated by a plasma instability. Our results indicate that most echoes around 150-km region are not as aspect sensitive as originally thought, and they come from waves that have been enhanced above waves in thermal equilibrium.

  14. Power and polarization dependences of ultra-narrow electromagnetically induced absorption (EIA) spectra of 85 Rb atoms in degenerate two-level system

    Science.gov (United States)

    Qureshi, Muhammad Mohsin; Rehman, Hafeez Ur; Noh, Heung-Ryoul; Kim, Jin-Tae

    2016-05-01

    We have investigated ultra-narrow EIA spectral features with respect to variations of polarizations and powers of pump laser beam in a degenerate two-level system of the transition of 85 Rb D2 transition line. Polarizations of the probe laser beam in two separate experiments were fixed at right circular and horizontal linear polarizations, respectively while the polarizations of the pump lasers were varied from initial polarizations same as the probe laser beams to orthogonal to probe polarizations. One homemade laser combined with AOMs was used to the pump and probe laser beams instead of two different lasers to overcome broad linewidths of the homemade lasers. Theoretically, probe absorption coefficients have been calculated from optical Bloch equations of the degenerate two level system prepared by a pump laser beam. In the case of the circular polarization, EIA signal was obtained as expected theoretically although both pump and probe beams have same polarization. The EIA signal become smaller as power increases and polarizations of the pump and probe beams were same. When the polarization of the pump beam was linear polarization, maximum EIA signal was obtained theoretically and experimentally. Experimental EIA spectral shapes with respect to variations of the pump beam polarization shows similar trends as the theoretical results.

  15. Matter waves with angular momentum

    CERN Document Server

    Bracher, C; Kleber, M; Bracher, Christian; Kramer, Tobias; Kleber, Manfred

    2003-01-01

    An alternative description of quantum scattering processes rests on inhomogeneous terms amended to the Schr\\"odinger equation. We detail the structure of sources that give rise to multipole scattering waves of definite angular momentum, and introduce pointlike multipole sources as their limiting case. Partial wave theory is recovered for freely propagating particles. We obtain novel results for ballistic scattering in an external uniform force field, where we provide analytical solutions for both the scattering waves and the integrated particle flux. As an illustration of the theory, we predict some properties of vortex-bearing atom laser beams outcoupled from a rotating Bose--Einstein condensate under the influence of gravity.

  16. Two-axis angular effector

    International Nuclear Information System (INIS)

    A new class of coplanar two-axis angular effectors is described. These effectors combine a two-axis rotational joint analogous to a Cardan joint with linear actuators in a manner to produce a wider range of rotational motion about both axes defined by the joint. This new class of effectors also allows design of robotic manipulators having very high strength and efficiency. These effectors are particularly suited for remote operation in unknown surroundings, because of their extraordinary versatility. An immediate application is to the problems which arise in nuclear waste remediation. 11 figs

  17. Angular distribution of ions and extreme ultraviolet emission in laser-produced tin droplet plasma

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hong; Duan, Lian; Lan, Hui [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China); Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 (China); Wang, Xinbing, E-mail: xbwang@hust.edu.cn; Chen, Ziqi; Zuo, Duluo [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 (China); Lu, Peixiang [School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2015-05-21

    Angular-resolved ion time-of-flight spectra as well as extreme ultraviolet radiation in laser-produced tin droplet plasma are investigated experimentally and theoretically. Tin droplets with a diameter of 150 μm are irradiated by a pulsed Nd:YAG laser. The ion time-of-flight spectra measured from the plasma formed by laser irradiation of the tin droplets are interpreted in terms of a theoretical elliptical Druyvesteyn distribution to deduce ion density distributions including kinetic temperatures of the plasma. The opacity of the plasma for extreme ultraviolet radiation is calculated based on the deduced ion densities and temperatures, and the angular distribution of extreme ultraviolet radiation is expressed as a function of the opacity using the Beer–Lambert law. Our results show that the calculated angular distribution of extreme ultraviolet radiation is in satisfactory agreement with the experimental data.

  18. Comprehensive thermal characterization using ruby R fluorescence lines of sapphire and GaNE2-high Raman mode from Raman spectra in high-power flip-chip InGaN/GaN LEDs

    International Nuclear Information System (INIS)

    A comprehensive temperature characterization method based on the GaNE2-high Raman mode and sapphire ruby R fluorescence lines from Raman spectra was developed to analyse the thermal distribution and heat transfer process of high-power flip-chip InGaN/GaN LEDs (FC LEDs). Our analysis demonstrated that in addition to the known problem that the edges of mesa were always the hottest point of FC LEDs, which was due to the current crowding effect, a noteworthy temperature difference was first observed between the sapphire substrate and n-GaN when the injection current was above 300 mA. A 'heat reservoir' was suggested to occur at the interface between the sapphire and n-GaN due to poor thermal conductivity of sapphire when a large amount of heat from the hottest spot cannot be effectively transferred to the Si mount via the active region under high injection currents.

  19. The dijet mass spectrum and angular distributions with the D0 detector

    International Nuclear Information System (INIS)

    We present preliminary results from an analysis of dijet data collected during the 1994-95 Tevatron Collider run with an integrated luminosity of 91 pb-1. Measurements of dijet mass spectra and dijet angular distributions in anti pp collisions at √s- = 1.8 TeV are compared with next-to-leading order QCD theory

  20. The relation between gas density and velocity power spectra in galaxy clusters: high-resolution hydrodynamic simulations and the role of conduction

    CERN Document Server

    Gaspari, M; Nagai, D; Lau, E T; Zhuravleva, I

    2014-01-01

    Exploring the ICM power spectrum can help us to probe the physics of galaxy clusters. Using high-resolution 3D plasma simulations, we study the statistics of the velocity field and its relation with the thermodynamic perturbations. The normalization of the ICM spectrum (density, entropy, or pressure) is linearly tied to the level of large-scale motions, which excite both gravity and sound waves due to stratification. For low 3D Mach number M~0.25, gravity waves mainly drive entropy perturbations, traced by preferentially tangential turbulence. For M>0.5, sound waves start to significantly contribute, passing the leading role to compressive pressure fluctuations, associated with isotropic turbulence (or a slight radial bias). Density and temperature fluctuations are then characterized by the dominant process: isobaric (low M), adiabatic (high M), or isothermal (strong conduction). Most clusters reside in the intermediate regime, showing a mixture of gravity and sound waves, hence drifting towards isotropic vel...

  1. Dissecting the Power Sources of Low-Luminosity Emission-Line Galaxy Nuclei via Comparison of HST-STIS and Ground-Based Spectra

    Science.gov (United States)

    Constantin, Anca; Shields, Joseph C.; Ho, Luis C.; Barth, Aaron J.; Filippenko, Alexei V.; Castillo, Christopher A.

    2015-12-01

    Using a sample of ∼100 nearby line-emitting galaxy nuclei, we have built the currently definitive atlas of spectroscopic measurements of Hα and neighboring emission lines at subarcsecond scales. We employ these data in a quantitative comparison of the nebular emission in Hubble Space Telescope (HST) and ground-based apertures, which offer an order-of-magnitude difference in contrast, and provide new statistical constraints on the degree to which transition objects and low-ionization nuclear emission-line regions (LINERs) are powered by an accreting black hole at ≲10 pc. We show that while the small-aperture observations clearly resolve the nebular emission, the aperture dependence in the line ratios is generally weak, and this can be explained by gradients in the density of the line-emitting gas: the higher densities in the more nuclear regions potentially flatten the excitation gradients, suppressing the forbidden emission. The transition objects show a threefold increase in the incidence of broad Hα emission in the high-resolution data, as well as the strongest density gradients, supporting the composite model for these systems as accreting sources surrounded by star-forming activity. The narrow-line LINERs appear to be the weaker counterparts of the Type 1 LINERs, where the low accretion rates cause the disappearance of the broad-line component. The enhanced sensitivity of the HST observations reveals a 30% increase in the incidence of accretion-powered systems at z ≈ 0. A comparison of the strength of the broad-line emission detected at different epochs implies potential broad-line variability on a decade-long timescale, with at least a factor of three in amplitude. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  2. Flicker noise pulsar radio spectra

    CERN Document Server

    Krzeszowski, K; Słowikowska, A; Jessner, A

    2014-01-01

    We present new results of fitting 108 spectra of radio pulsars with the flicker noise model proposed by Loehmer et al. (2008) and compare them with the spectral indices of power-law fits published by Maron et al. (2000). The fits to the model were carried out using the Markov chain Monte Carlo (MCMC) method appropriate for the non-linear fits. Our main conclusion is that pulsar radio spectra can be statistically very well described by the flicker noise model over wide frequency range from a few tens of MHz up to tens of GHz. Moreover, our dataset allows us to conduct statistical analysis of the model parameters. As our results show, there is a strong negative correlation between the flicker noise spectrum model parameters log $S_0$ and $n$ and a strong positive relationship between n and the power-law spectral index $\\alpha$. The latter implies that their physical meaning is similar, however the flicker noise model has an advantage over broken power-law model. Not only it describes the spectra in higher frequ...

  3. Molecular above-threshold-ionization angular distributions with attosecond bichromatic intense XUV laser pulses

    Science.gov (United States)

    Yuan, Kai-Jun; Bandrauk, André D.

    2012-01-01

    Angular distributions of molecular above-threshold ionization (MATI) in bichromatic attosecond extreme ultraviolet (XUV) linear polarization laser pulses have been theoretically investigated. Multiphoton ionization in a prealigned molecular ion H2+ produces clear MATI spectra which show a forward-backward asymmetry in angular and momentum distributions which is critically sensitive to the carrier envelope phase (CEP) φ, the time delay Δτ between the two laser pulses, and the photoelectron kinetic energies Ee. The features of the asymmetry in MATI angular distributions are described well by multiphoton perturbative ionization models. Phase differences of continuum electron wave functions can be extracted from the CEP φ and time delay Δτ dependent ionization asymmetry ratio created by interfering multiphoton ionization pathways. At large internuclear distances MATI angular distributions exhibit more complex features due to laser-induced electron diffraction where continuum electron wavelengths are less than the internuclear distance.

  4. Low symmetry EPR spectra in trigonal double molybdates

    International Nuclear Information System (INIS)

    Gd3+ EPR spectra in trigonal double molybdates with a high asymmetry of angular dependence relative to a basal plane is studied. The EPR spectra are shown to correspond to paramagnetic ions in positions with the anti3 local symmetry. The parameters of a spin-hamiltonian for Gd3+ in KSc(MoO4)2 and RbSc(MoO4)2 are determined. Low symmetry of the EPR spectra enables to refer a number of isostructural trigonal double molybdates and tungstates to the Dsub(3d)sup(4)=P anti 3c1(z=2) space group

  5. Controlling neutron orbital angular momentum.

    Science.gov (United States)

    Clark, Charles W; Barankov, Roman; Huber, Michael G; Arif, Muhammad; Cory, David G; Pushin, Dmitry A

    2015-09-24

    The quantized orbital angular momentum (OAM) of photons offers an additional degree of freedom and topological protection from noise. Photonic OAM states have therefore been exploited in various applications ranging from studies of quantum entanglement and quantum information science to imaging. The OAM states of electron beams have been shown to be similarly useful, for example in rotating nanoparticles and determining the chirality of crystals. However, although neutrons--as massive, penetrating and neutral particles--are important in materials characterization, quantum information and studies of the foundations of quantum mechanics, OAM control of neutrons has yet to be achieved. Here, we demonstrate OAM control of neutrons using macroscopic spiral phase plates that apply a 'twist' to an input neutron beam. The twisted neutron beams are analysed with neutron interferometry. Our techniques, applied to spatially incoherent beams, demonstrate both the addition of quantum angular momenta along the direction of propagation, effected by multiple spiral phase plates, and the conservation of topological charge with respect to uniform phase fluctuations. Neutron-based studies of quantum information science, the foundations of quantum mechanics, and scattering and imaging of magnetic, superconducting and chiral materials have until now been limited to three degrees of freedom: spin, path and energy. The optimization of OAM control, leading to well defined values of OAM, would provide an additional quantized degree of freedom for such studies. PMID:26399831

  6. Reactor Neutrino Spectra

    CERN Document Server

    Hayes, A C

    2016-01-01

    We present a review of the antineutrino spectra emitted from reactors. Knowledge of these and their associated uncertainties are crucial for neutrino oscillation studies. The spectra used to-date have been determined by either conversion of measured electron spectra to antineutrino spectra or by summing over all of the thousands of transitions that makeup the spectra using modern databases as input. The uncertainties in the subdominant corrections to beta-decay plague both methods, and we provide estimates of these uncertainties. Improving on current knowledge of the antineutrino spectra from reactors will require new experiments. Such experiments would also address the so-called reactor neutrino anomaly and the possible origin of the shoulder observed in the antineutrino spectra measured in recent high-statistics reactor neutrino experiments.

  7. Dissecting the Power Sources of Low-Luminosity Emission-Line Galaxy Nuclei via Comparison of HST-STIS and Ground-Based Spectra

    CERN Document Server

    Constantin, Anca; Ho, Luis C; Barth, Aaron J; Filippenko, Alexei V; Castillo, Christopher A

    2015-01-01

    Using a sample of ~100 nearby line-emitting galaxy nuclei, we have built the currently definitive atlas of spectroscopic measurements of H_alpha and neighboring emission lines at subarcsecond scales. We employ these data in a quantitative comparison of the nebular emission in Hubble Space Telescope (HST) and ground-based apertures, which offer an order-of-magnitude difference in contrast, and provide new statistical constraints on the degree to which Transition Objects and low-ionization nuclear emission-line regions (LINERs) are powered by an accreting black hole at <10 pc. We show that while the small-aperture observations clearly resolve the nebular emission, the aperture dependence in the line ratios is generally weak, and this can be explained by gradients in the density of the line-emitting gas: the higher densities in the more nuclear regions potentially flatten the excitation gradients, suppressing the forbidden emission. The Transition Objects show a threefold increase in the incidence of broad H_...

  8. Basis of γ-γ directional angular correlation theory

    International Nuclear Information System (INIS)

    In nuclear spectroscopy, the measurement of directional angular correlations of nuclear radiations is a powerful technique for determining the spins and parities of nuclear states. In part I the theoretic basis of this technique are described for a double gamma cascade. The methods of analyses which are specially used in this technique are presented in part II and the final part of the text is devoted to computer processing of experimental data. (author)

  9. The spectra and dynamics of diatomic molecules

    CERN Document Server

    Lefebvre-Brion, Helene

    2004-01-01

    This book is written for graduate students just beginning research, for theorists curious about what experimentalists actually can and do measure, and for experimentalists bewildered by theory. It is a guide for potential users of spectroscopic data, and uses language and concepts that bridge the frequency-and time-domain spectroscopic communities. Key topics, concepts, and techniques include: the assignment of simple spectra, basic experimental techniques, definition of Born-Oppenheimer and angular momentum basis sets and the associated spectroscopic energy level patterns (Hund's ca

  10. Characterization of foreground emission at degree angular scale for CMB B-modes observations. Thermal Dust and Synchrotron signal from Planck and WMAP data

    CERN Document Server

    Krachmalnicoff, N; Aumont, J; Bersanelli, M; Mennella, A

    2015-01-01

    We quantify the contamination from polarized diffuse Galactic synchrotron and thermal dust emissions to the B-modes of the CMB anisotropies on the degree angular scale, using data from the Planck and WMAP satellites. We compute power spectra of foreground polarized emissions in 352 circular sky patches located at Galactic latitude |b|>20{\\deg}, each of which covering a fraction of the sky of about 1.5%. We make use of the spectral properties derived from Planck and WMAP data to extrapolate, in frequency, the amplitude of synchrotron and thermal dust B-modes spectra in the multipole bin centered at $\\ell\\simeq80$. In this way we estimate, for each analyzed region, the amplitude and frequency of the foreground minimum. We detect both dust and synchrotron signal, at degree angular scale and at 3 confidence level, in 28 regions. Here the minimum of the foreground emission is found at frequencies between 60 and 100 GHz with an amplitude,expressed in terms of the equivalent tensor-to-scalar ratio, r_FG, between ~0....

  11. The relation between gas density and velocity power spectra in galaxy clusters: High-resolution hydrodynamic simulations and the role of conduction

    Science.gov (United States)

    Gaspari, M.; Churazov, E.; Nagai, D.; Lau, E. T.; Zhuravleva, I.

    2014-09-01

    Exploring the power spectrum of fluctuations and velocities in the intracluster medium (ICM) can help us to probe the gas physics of galaxy clusters. Using high-resolution 3D plasma simulations, we study the statistics of the velocity field and its intimate relation with the ICM thermodynamic perturbations. The normalization of the ICM spectrum (related to density, entropy, or pressure fluctuations) is linearly tied to the level of large-scale motions, which excite both gravity and sound waves due to stratification. For a low 3D Mach number M ~ 0.25, gravity waves mainly drive entropy perturbations, which are traced by preferentially tangential turbulence. For M> 0.5, sound waves start to significantly contribute and pass the leading role to compressive pressure fluctuations, which are associated with isotropic (or slightly radial) turbulence. Density and temperature fluctuations are then characterized by the dominant process: isobaric (low M), adiabatic (high M), or isothermal (strong conduction). Most clusters reside in the intermediate regime, showing a mixture of gravity and sound waves, hence drifting toward isotropic velocities. Remarkably, regardless of the regime, the variance of density perturbations is comparable to the 1D Mach number, M1D ~ δρ/ρ. This linear relation allows us to easily convert between gas motions and ICM perturbations (δρ/ρthermodynamic perturbations (which can be generally described by log-normal distributions) act as effective tracers of the velocity field, in broad agreement with the Kolmogorov-Obukhov-Corrsin advection theory. The cluster radial gradients and compressive features induce a flattening in the cascade of the perturbations. Thermal conduction, on the other hand, acts to damp the thermodynamic fluctuations, washing out the filamentary structures and steepening the spectrum, while leaving the velocity cascade unaltered. The ratio of the velocity and density spectrum thus inverts the downtrend shown by the non

  12. Partial friction fault diagnosis of electric submersible pump based on power spectra of wavelet coefficients%基于小波系数功率谱的潜油电泵偏磨故障诊断

    Institute of Scientific and Technical Information of China (English)

    姚诚; 刘广孚; 李忠国; 陶凤阳

    2011-01-01

    潜油电泵偏磨故障的诊断对于油田的安全生产具有重要意义.根据潜油电泵碰磨的理论分析,观察了振动信号小波系数的特点,提出了采用小波分解系数功率谱的层内最大值作为特征参数进行偏磨诊断的思想.通过交叉验证,以5次测试的平均识别率作为评价指标,使用改进粒子群算法对支持向量机的参数进行了优化.在径向基宽度为-0.310 9,惩罚参数C为429.127 8时,平均识别率最高为90%.研究结果表明,在潜油电泵偏磨故障的诊断中,小波系数功率谱优于小波分解后层内系数的傅里叶变换最大值和层内系数的方差.使用小波系数功率谱参数可以成功地实现潜油电泵偏磨诊断.%Diagnosing the partial friction fault of Electric Submersible Pump (ESP) is very important in oil field. Ac-cording to the theoretic analysis of ESP collision and friction, after observing the wavelet coefficient characters of vi-bration signal, a diagnosis idea is proposed, which uses the maximums of wavelet coefficient power spectra in every layer as the features to diagnose the partial friction of ESP. With cross-validation, the average recognition rate of five tests is taken as the evaluation indicator, and improved particle swarm optimization algorithm is used to optimize the parameters of support vector machine (SVM). The highest average recognition rate is as high as 90% when radial basis function width is -0. 310 9 and penalty parameter is 429. 127 8. Research results indicate that the wavelet co-efficient power spectra are more competent for partial friction diagnosis than the maximums of wavelet coefficient Fast Fourier Transform ( FFT) and the variances of wavelet coefficients in every layer. Wavelet coefficient power spectrum parameters can achieve good performance in partial friction fault diagnosis of ESP.

  13. The difficulty of measuring orbital angular momentum

    OpenAIRE

    Preece, D; Nieminen, T. A.; Asavei, T.; Heckenberg, N. R.; Rubinsztein-Dunlop, H.

    2011-01-01

    Light can carry angular momentum as well as energy and momentum; the transfer of this angular momentum to an object results in an optical torque. The development of a rotational analogue to the force measurement capability of optical tweezers is hampered by the difficulty of optical measurement of orbital angular momentum. We present an experiment with encouraging results, but emphasise the difficulty of the task.

  14. The difficulty of measuring orbital angular momentum

    Directory of Open Access Journals (Sweden)

    D. Preece

    2011-09-01

    Full Text Available Light can carry angular momentum as well as energy and momentum; the transfer of this angular momentum to an object results in an optical torque. The development of a rotational analogue to the force measurement capability of optical tweezers is hampered by the difficulty of optical measurement of orbital angular momentum. We present an experiment with encouraging results, but emphasise the difficulty of the task.

  15. Orbital angular momentum and the parton model

    Energy Technology Data Exchange (ETDEWEB)

    Ratcliffe, P.G.

    1987-06-25

    The role of orbital angular momentum is discussed within the framework of the parton model. It is shown that a consistent interpretation of the Altarelli-Parisi equations governing the Q/sup 2/-evolution of helicity-weighted parton distributions necessitates the assumption that partons carry a large orbital angular momentum, contrary to popular belief. In developing the arguments presented, the Altarelli-Parisi formalism is extended to include orbital angular momentum dependence.

  16. Photoionization with Orbital Angular Momentum Beams

    OpenAIRE

    Picón, A.; Mompart, J.; de Aldana, J. R. Vázquez; Plaja, L.; Calvo, G. F.; Roso, L.

    2010-01-01

    Intense laser ionization expands Einstein's photoelectric effect rules giving a wealth of phenomena widely studied over the last decades. In all cases, so far, photons were assumed to carry one unit of angular momentum. However it is now clear that photons can possess extra angular momentum, the orbital angular momentum (OAM), related to their spatial profile. We show a complete description of photoionization by OAM photons, including new selection rules involving more than one unit of angula...

  17. Quantum formulation of fractional orbital angular momentum

    OpenAIRE

    Götte, Jörg B; Franke-Arnold, Sonja; Zambrini, Roberta; Barnett, Stephen M.

    2007-01-01

    The quantum theory of rotation angles (S. M. Barnett and D. T. Pegg, Phys. Rev. A, 41, 3427-3425 (1990)) is generalised to non-integer values of the orbital angular momentum. This requires the introduction of an additional parameter, the orientation of a phase discontinuity associated with fractional values of the orbital angular momentum. We apply our formalism to the propagation of light modes with fractional orbital angular momentum in the paraxial and non-paraxial regime.

  18. Orbital angular momentum induced beam shifts

    OpenAIRE

    Hermosa N.; Merano M.; Aiello A.; Woerdman J.P.

    2011-01-01

    We present experiments on Orbital Angular Momentum (OAM) induced beam shifts in optical reflection. Specifically, we observe the spatial Goos-H\\"anchen shift in which the beam is displaced parallel to the plane of incidence and the angular Imbert-Fedorov shift which is a transverse angular deviation from the geometric optics prediction. Experimental results agree well with our theoretical predictions. Both beam shifts increase with the OAM of the beam; we have measured these for OAM indices u...

  19. Orbital angular momentum in phase space

    International Nuclear Information System (INIS)

    Research highlights: → We propose a comprehensive Weyl-Wigner formalism for the canonical pair angle-angular momentum. → We present a simple and useful toolkit for the practitioner. → We derive simple evolution equations in terms of a star product in the semiclassical limit. - Abstract: A comprehensive theory of the Weyl-Wigner formalism for the canonical pair angle-angular momentum is presented. Special attention is paid to the problems linked to rotational periodicity and angular-momentum discreteness.

  20. Useful angular selectivity in oblique columnar aluminum

    Science.gov (United States)

    Ditchburn, R. J.; Smith, G. B.

    1991-03-01

    A useful magnitude of angular selective transmittance of incident unpolarized light is demonstrated in obliquely deposited aluminum. Required deposition procedures and anisotropic optical properties are discussed. Angular selectivity is very strong at visible wavelengths but both experiment and theory indicate that a single oblique layer with well defined columns gives high transmittance at near-infrared wavelengths compared with normal films. There are ways of reducing this to enhance the energy control capability. Both solar and luminous angular selectivity are reported.

  1. The angular two-point correlation of NVSS galaxies revisited

    CERN Document Server

    Chen, Song

    2015-01-01

    We measure the angular two-point correlation and angular power spectrum from the NRAO VLA Sky Survey (NVSS) of radio galaxies. Contrary to previous claims in the literature, we show that it is consistent with primordial Gaussianity on all angular scales and it is consistent with the best-fit cosmological model from the Planck analysis, as well as the redshift distribution obtained from the Combined EIS-NVSS Survey Of Radio Sources (CENSORS). Our analysis is based on an optimal estimation of the two-point correlation function and makes use of a new mask, which takes into account direction dependent effects of the observations, side lobe effects of bright sources and galactic foreground. We also use a lower flux threshold and take the cosmic radio dipole into account. The latter turns out to be an essential step in the analysis. This improved cosmological analysis of the NVSS stresses the importance of a flux calibration that is robust and stable on large angular scales for future radio continuum surveys.

  2. The Angular Momentum of the Solar System

    Science.gov (United States)

    Cang, Rongquin; Guo, Jianpo; Hu, Juanxiu; He, Chaoquiong

    2016-05-01

    The angular momentum of the Solar System is a very important physical quantity to the formation and evolution of the Solar System. Previously, the spin angular momentum of the Sun and the orbital angular momentum of the Eight Giant Planets were only taken into consideration, when researchers calculated the angular momentum of the Solar System. Nowadays, it seems narrow and conservative. Using Eggleton's code, we calculate the rotational inertia of the Sun. Furthermore, we obtain that the spin angular momentum of the Sun is 1.8838 x 10^41 kg m^2 s^-1. Besides the spin angular momentum of the Sun and the orbital angular momentum of the Eight Giant Planets, we also account for the orbital angular momentum of the Asteroid Belt, the Kuiper Belt, the Oort Cloud, the Ninth Giant Planet and the Solar Companion. We obtain that the angular momentum of the whole Solar System is 3.3212 x 10^45 kg m^2 s^-1.

  3. Realistic neutron spectra for radiation protection and other applications at AERI, Budapest

    CERN Document Server

    Pálfalvi, J; Sajo-Bohus, L

    2002-01-01

    The reconstruction of the Budapest Research Reactor (BRR) gave a good possibility to develop mixed neutron-gamma radiation fields for different applications like: simulation of operational spectra at power reactors, dosimeter development, neutron radiography, biological experiments. Recently, there are 3 horizontal channels available. In addition, isotopic neutron sources are in use in a separate laboratory. In a rotatable holder 4 different sources can be stored and automatically moved into irradiation position. There are changeable collimators and absorbers to modify the spectrum. In the large hall there are possibilities to study the room scatter, angular dependence of detectors, phantom albedo effect etc. Recently available sources are different Pu-Be (from 10 sup 5 -10 sup 7 n/s yield), Ra-Be and Cf. 76.

  4. Differing self-similarity in light scattering spectra: A potential tool for pre-cancer detection

    CERN Document Server

    Ghosh, Sayantan; Purwar, Harsh; Jagtap, Jaidip; Pradhan, Asima; Ghosh, Nirmalya; Panigrahi, Prasanta K

    2011-01-01

    The fluctuations in the elastic light scattering spectra of normal and dysplastic human cervical tissues analyzed through wavelet transform based techniques reveal clear signatures of self-similar behavior in the spectral fluctuations. Significant differences in the power law behavior ascertained through the scaling exponent was observed in these tissues. The strong dependence of the elastic light scattering on the size distribution of the scatterers manifests in the angular variation of the scaling exponent. Interestingly, the spectral fluctuations in both these tissues showed multi-fractality (non-stationarity in fluctuations), the degree of multi-fractality being marginally higher in the case of dysplastic tissues. These findings using the multi-resolution analysis capability of the discrete wavelet transform can contribute to the recent surge in the exploration for non-invasive optical tools for pre-cancer detection.

  5. Graphics of diffraction spectra for PC

    International Nuclear Information System (INIS)

    The materials can be studied by means of diffraction if these are crystalline; of the type of study will depend the technique to apply, the first step is the obtaining of a digital register that allows to build the corresponding spectra. The digital register should have well-known the initial and final angular data. The main objective of this work, is starting of a digital register of data or an arrangement CPSi type (counts per second measured by the detection system) generated by means of the diffractometer, to create the graph of the corresponding spectra in visual form in the screen of a microcomputer and if is required, to obtain the graph in printed form by means of the same computer program for microcomputer. (Author)

  6. Transverse and longitudinal angular momenta of light

    International Nuclear Information System (INIS)

    We review basic physics and novel types of optical angular momentum. We start with a theoretical overview of momentum and angular momentum properties of generic optical fields, and discuss methods for their experimental measurements. In particular, we describe the well-known longitudinal (i.e., aligned with the mean momentum) spin and orbital angular momenta in polarized vortex beams. Then, we focus on the transverse (i.e., orthogonal to the mean momentum) spin and orbital angular momenta, which were recently actively discussed in theory and observed in experiments. First, the recently-discovered transverse spin  angular momenta appear in various structured fields: evanescent waves, interference fields, and focused beams. We show that there are several kinds of transverse spin angular momentum, which differ strongly in their origins and physical properties. We describe extraordinary features of the transverse optical spins and overview recent experiments. In particular, the helicity-independent transverse spin inherent in edge evanescent waves offers robust spin–direction coupling at optical interfaces (the quantum spin Hall effect of light). Second, we overview the transverse orbital angular momenta of light, which can be both extrinsic and intrinsic. These two types of the transverse orbital angular momentum are produced by spatial shifts of the optical beams (e.g., in the spin Hall effect of light) and their Lorentz boosts, respectively. Our review is underpinned by a unified theory of the angular momentum of light based on the canonical momentum and spin densities, which avoids complications associated with the separation of spin and orbital angular momenta in the Poynting picture. It allows us to construct a comprehensive classification of all known optical angular momenta based on their key parameters and main physical properties

  7. Transverse and longitudinal angular momenta of light

    Energy Technology Data Exchange (ETDEWEB)

    Bliokh, Konstantin Y., E-mail: k.bliokh@gmail.com [Center for Emergent Matter Science, RIKEN, Wako-shi, Saitama 351-0198 (Japan); Nonlinear Physics Centre, RSPhysE, The Australian National University, Canberra, ACT 0200 (Australia); Nori, Franco [Center for Emergent Matter Science, RIKEN, Wako-shi, Saitama 351-0198 (Japan); Physics Department, University of Michigan, Ann Arbor, MI 48109-1040 (United States)

    2015-08-26

    We review basic physics and novel types of optical angular momentum. We start with a theoretical overview of momentum and angular momentum properties of generic optical fields, and discuss methods for their experimental measurements. In particular, we describe the well-known longitudinal (i.e., aligned with the mean momentum) spin and orbital angular momenta in polarized vortex beams. Then, we focus on the transverse (i.e., orthogonal to the mean momentum) spin and orbital angular momenta, which were recently actively discussed in theory and observed in experiments. First, the recently-discovered transverse spin  angular momenta appear in various structured fields: evanescent waves, interference fields, and focused beams. We show that there are several kinds of transverse spin angular momentum, which differ strongly in their origins and physical properties. We describe extraordinary features of the transverse optical spins and overview recent experiments. In particular, the helicity-independent transverse spin inherent in edge evanescent waves offers robust spin–direction coupling at optical interfaces (the quantum spin Hall effect of light). Second, we overview the transverse orbital angular momenta of light, which can be both extrinsic and intrinsic. These two types of the transverse orbital angular momentum are produced by spatial shifts of the optical beams (e.g., in the spin Hall effect of light) and their Lorentz boosts, respectively. Our review is underpinned by a unified theory of the angular momentum of light based on the canonical momentum and spin densities, which avoids complications associated with the separation of spin and orbital angular momenta in the Poynting picture. It allows us to construct a comprehensive classification of all known optical angular momenta based on their key parameters and main physical properties.

  8. Angular momentum of non-paraxial light beam: Dependence of orbital angular momentum on polarization

    OpenAIRE

    Li, Chun-Fang

    2009-01-01

    It is shown that the momentum density of free electromagnetic field splits into two parts. One has no contribution to the net momentum due to the transversality condition. The other yields all the momentum. The angular momentum that is associated with the former part is spin, and the angular momentum that is associated with the latter part is orbital angular momentum. Expressions for the spin and orbital angular momentum are given in terms of the electric vector in reciprocal space. The spin ...

  9. General Notes on Processes and Their Spectra

    Directory of Open Access Journals (Sweden)

    Gustav Cepciansky

    2012-01-01

    Full Text Available The frequency spectrum performs one of the main characteristics of a process. The aim of the paper is to show the coherence between the process and its own spectrum and how the behaviour and properties of a process itself can be deduced from its spectrum. Processes are categorized and general principles of their spectra calculation and recognition are given. The main stress is put on power spectra of electric and optic signals, as they also perform a kind of processes. These spectra can be directly measured, observed and examined by means of spectral analyzers and they are very important characteristics which can not be omitted at transmission techniques in telecommunication technologies. Further, the paper also deals with non electric processes, mainly with processes and spectra at mass servicing and how these spectra can be utilised in praxis.

  10. Angular correlations of α-particles from decay of 40Ca following fusion of 28Si + 12C

    International Nuclear Information System (INIS)

    Angular correlations of α-particles from decay of 40Ca following fusion of 28Si + 12C were measured. The results for events leading to the ground state of 32S were quantitatively analysed, using the statistical model. Angular correlations in appropriate experimental conditions permitted to verify angular momentum selection predictions for each of the steps involved. Whereas the mean behaviour is well reproduced, more detailed comparison shows significant disagreement. Strongly structured coincident energy spectra were observed. It is shown that these structures are not compatible with standard statistical level densities

  11. Orbital angular momentum control by a multihelicoidal fibre with a twist defect

    International Nuclear Information System (INIS)

    We have theoretically demonstrated that by creating a controllable twist defect in an l-helicoidal fibre one can control the orbital angular momentum of the generated beam at a constant power. We have studied the passage of the Gaussian beam through such a defect fibre and shown that by varying the twist defect angle one can change the total orbital angular momentum of the generated optical field from 0 to l (in dimensionless units). We have also studied the distribution of the angular momentum density in the cross-section of the generated optical field. (paper)

  12. Spectra of alkali atoms

    International Nuclear Information System (INIS)

    Emission spectra of alkali atoms has been determined by using spectrometer at the ultraviolet to infra red waves range. The spectra emission can be obtained by absorption spectrophotometric analysis. Comparative evaluations between experimental data and data handbook obtained by spark method were also presented. (author tr.)

  13. Experimental determination of high angular momentum states

    International Nuclear Information System (INIS)

    The current knowledge of the atomic nucleus structure is summarized. A short abstract of the nuclear properties at high angular momentum and a more detailed description of the experimental methods used in the study of high angular momenta is made. (L.C.)

  14. Orbital Angular Momentum in the Nucleon

    OpenAIRE

    Garvey, Gerald T.

    2010-01-01

    Analysis of the measured value of the integrated \\bar{d}-\\bar{u} asymmetry (Ifas = 0.147+-0.027) in the nucleon show it to arise from nucleon fluctuations into baryon plus pion. Requiring angular momentum conservation in these fluctuations shows the associated orbital angular momentum is equal to the value of the flavor asymmetry.

  15. Detecting orbital angular momentum in radio signals

    OpenAIRE

    Then, H.; Thidé, B.; Mendonça, J T; Carozzi, T.D.; Bergman, J.; Baan, W. A.; Mohammadi, S. (Siawoosh); Eliasson, B.

    2008-01-01

    Electromagnetic waves with an azimuthal phase shift are known to have a well defined orbital angular momentum. Different methods that allow for the detection of the angular momentum are proposed. For some, we discuss the required experimental setup and explore the range of applicability.

  16. The Orbital Angular Momentum Sum Rule

    Science.gov (United States)

    Aslan, Fatma; Burkardt, Matthias

    2015-10-01

    As an alternative to the Ji sum rule for the quark angular momentum, a sum rule for the quark orbital angular momentum, based on a twist-3 generalized parton distribution, has been suggested. We study the validity of this sum rule in the context of scalar Yukawa interactions as well as in QED for an electron.

  17. Responsive web design with AngularJS

    CERN Document Server

    Patel, Sandeep Kumar

    2014-01-01

    If you are an AngularJS developer who wants to learn about responsive web application development, this book is ideal for you. Responsive Web Design with AngularJS is intended for web developers or designers with a basic knowledge of HTML, CSS, and JavaScript.

  18. Exposing Library Services with AngularJS

    OpenAIRE

    Jakob Voß; Moritz Horn

    2014-01-01

    This article provides an introduction to the JavaScript framework AngularJS and specific AngularJS modules for accessing library services. It shows how information such as search suggestions, additional links, and availability can be embedded in any website. The ease of reuse may encourage more libraries to expose their services via standard APIs to allow usage in different contexts.

  19. Angular-Rate Estimation Using Quaternion Measurements

    Science.gov (United States)

    Azor, Ruth; Bar-Itzhack, Y.; Deutschmann, Julie K.; Harman, Richard R.

    1998-01-01

    In most spacecraft (SC) there is a need to know the SC angular rate. Precise angular rate is required for attitude determination, and a coarse rate is needed for attitude control damping. Classically, angular rate information is obtained from gyro measurements. These days, there is a tendency to build smaller, lighter and cheaper SC, therefore the inclination now is to do away with gyros and use other means and methods to determine the angular rate. The latter is also needed even in gyro equipped satellites when performing high rate maneuvers whose angular-rate is out of range of the on board gyros or in case of gyro failure. There are several ways to obtain the angular rate in a gyro-less SC. When the attitude is known, one can differentiate the attitude in whatever parameters it is given and use the kinematics equation that connects the derivative of the attitude with the satellite angular-rate and compute the latter. Since SC usually utilize vector measurements for attitude determination, the differentiation of the attitude introduces a considerable noise component in the computed angular-rate vector.

  20. Angular momentum decomposition of Richardson's pairs

    International Nuclear Information System (INIS)

    The angular momentum decomposition of pairs obtained using Richardson's exact solution of the pairing Hamiltonian for the deformed 174Yb nucleus are displayed. The probabilities for low angular momenta of the collective pairs are strikingly different from the ones obtained in the BCS ground state

  1. Potentials and challenges of using orbital angular momentum communications in optical interconnects.

    Science.gov (United States)

    Yu, Siyuan

    2015-02-01

    Ultra-short- and short-reach optical interconnects are the new high growth applications for optical communications. High capacity density, high spectral efficiency, low cost, low power consumption, and fast configurability are some of the key requirements for potential optical transmission technology candidates. Based on recent progress in orbital angular momentum multiplexed optical transmission and optical device technologies, this paper discusses the potentials and challenges of using orbital angular momentum multiplexing in optical interconnect applications scenarios to meet above requirements. PMID:25836167

  2. Nonlinear management of the angular momentum of soliton clusters: Theory and experiment

    International Nuclear Information System (INIS)

    We demonstrate, both theoretically and experimentally, how to acquire nonlinear control over the angular momentum of a cluster of solitary waves. Our results, stemming from a universal theoretical model, show that the angular momentum can be adjusted by acting on the global energy input in the system. The phenomenon is experimentally ascertained in nematic liquid crystals by observing a power-dependent rotation of a two-soliton ensemble

  3. Quark angular momentum in a spectator model

    International Nuclear Information System (INIS)

    We investigate the quark angular momentum in a model with the nucleon being a quark and a spectator. Both scalar and axial-vector spectators are included. We perform the calculations in the light-cone formalism where the parton concept is well defined. We calculate the quark helicity and canonical orbital angular momentum. Then we calculate the gravitational form factors which are often related to the kinetic angular momentums, and find that even in a no gauge field model we cannot identify the canonical angular momentums with half the sum of gravitational form factors. In addition, we examine the model relation between the orbital angular momentum and pretzelosity, and find it is violated in the axial-vector case

  4. Quark angular momentum in a spectator model

    Directory of Open Access Journals (Sweden)

    Tianbo Liu

    2015-02-01

    Full Text Available We investigate the quark angular momentum in a model with the nucleon being a quark and a spectator. Both scalar and axial-vector spectators are included. We perform the calculations in the light-cone formalism where the parton concept is well defined. We calculate the quark helicity and canonical orbital angular momentum. Then we calculate the gravitational form factors which are often related to the kinetic angular momentums, and find that even in a no gauge field model we cannot identify the canonical angular momentums with half the sum of gravitational form factors. In addition, we examine the model relation between the orbital angular momentum and pretzelosity, and find it is violated in the axial-vector case.

  5. Does high harmonic generation conserve angular momentum?

    CERN Document Server

    Fleischer, Avner; Diskin, Tzvi; Sidorenko, Pavel; Cohen, Oren

    2013-01-01

    High harmonic generation (HHG) is a unique and useful process in which infrared or visible radiation is frequency up converted into the extreme ultraviolet and x ray spectral regions. As a parametric process, high harmonic generation should conserve the radiation energy, momentum and angular momentum. Indeed, conservation of energy and momentum have been demonstrated. Angular momentum of optical beams can be divided into two components: orbital and spin (polarization). Orbital angular momentum is assumed to be conserved and recently observed deviations were attributed to propagation effects. On the other hand, conservation of spin angular momentum has thus far never been studied, neither experimentally nor theoretically. Here, we present the first study on the role of spin angular momentum in extreme nonlinear optics by experimentally generating high harmonics of bi chromatic elliptically polarized pump beams that interact with isotropic media. While observing that the selection rules qualitatively correspond...

  6. Physical Angular Momentum Separation for QED

    CERN Document Server

    Sun, Weimin

    2016-01-01

    We study the non-uniqueness problem of the gauge-invariant angular momentum separation for the case of QED, which stems from the recent controversy concerning the proper definitions of the orbital angular momentum and spin operator of the individual parts of a gauge field system. For the free quantum electrodynamics without matter, we show that the basic requirement of Euclidean symmetry selects a unique physical angular momentum separation scheme from the multitude of the possible angular momentum separation schemes constructed using the various Gauge Invariant Extentions. Based on these results, we propose a set of natural angular momentum separation schemes for the case of interacting QED by invoking the formalism of asymptotic fields. Some perspectives on such a problem for the case of QCD are briefly discussed.

  7. Angular velocity and centripetal acceleration relationship

    Science.gov (United States)

    Monteiro, Martín; Cabeza, Cecilia; Marti, Arturo C.; Vogt, Patrik; Kuhn, Jochen

    2014-05-01

    During the last few years, the growing boom of smartphones has given rise to a considerable number of applications exploiting the functionality of the sensors incorporated in these devices. A sector that has unexpectedly taken advantage of the power of these tools is physics teaching, as reflected in several recent papers. In effect, the use of smartphones has been proposed in several physics experiments spanning mechanics, electromagnetism, optics, oscillations, and waves, among other subjects. Although mechanical experiments have received considerable attention, most of them are based on the use of the accelerometer. An aspect that has received less attention is the use of rotation sensors or gyroscopes. An additional advance in the use of these devices is given by the possibility of obtaining data using the accelerometer and the gyroscope simultaneously. The aim of this paper is to consider the relation between the centripetal acceleration and the angular velocity. Instead of using a formal laboratory setup, in this experiment a smartphone is attached to the floor of a merry-go-round, found in many playgrounds. Several experiments were performed with the roundabout rotating in both directions and with the smart-phone at different distances from the center. The coherence of the measurements is shown.

  8. CLASS: The Cosmology Large Angular Scale Surveyor

    CERN Document Server

    Essinger-Hileman, Thomas; Amiri, Mandana; Appel, John W; Araujo, Derek; Bennett, Charles L; Boone, Fletcher; Chan, Manwei; Cho, Hsiao-Mei; Chuss, David T; Colazo, Felipe; Crowe, Erik; Denis, Kevin; Dünner, Rolando; Eimer, Joseph; Gothe, Dominik; Halpern, Mark; Harrington, Kathleen; Hilton, Gene; Hinshaw, Gary F; Huang, Caroline; Irwin, Kent; Jones, Glenn; Karakla, John; Kogut, Alan J; Larson, David; Limon, Michele; Lowry, Lindsay; Marriage, Tobias; Mehrle, Nicholas; Miller, Amber D; Miller, Nathan; Moseley, Samuel H; Novak, Giles; Reintsema, Carl; Rostem, Karwan; Stevenson, Thomas; Towner, Deborah; U-Yen, Kongpop; Wagner, Emily; Watts, Duncan; Wollack, Edward; Xu, Zhilei; Zeng, Lingzhen

    2014-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) is an experiment to measure the signature of a gravita-tional-wave background from inflation in the polarization of the cosmic microwave background (CMB). CLASS is a multi-frequency array of four telescopes operating from a high-altitude site in the Atacama Desert in Chile. CLASS will survey 70\\% of the sky in four frequency bands centered at 38, 93, 148, and 217 GHz, which are chosen to straddle the Galactic-foreground minimum while avoiding strong atmospheric emission lines. This broad frequency coverage ensures that CLASS can distinguish Galactic emission from the CMB. The sky fraction of the CLASS survey will allow the full shape of the primordial B-mode power spectrum to be characterized, including the signal from reionization at low $\\ell$. Its unique combination of large sky coverage, control of systematic errors, and high sensitivity will allow CLASS to measure or place upper limits on the tensor-to-scalar ratio at a level of $r=0.01$ and make a cosmi...

  9. CLASS: The Cosmology Large Angular Scale Surveyor

    Science.gov (United States)

    Essinger-Hileman, Thomas; Ali, Aamir; Amiri, Mandana; Appel, John W.; Araujo, Derek; Bennett, Charles L.; Boone, Fletcher; Chan, Manwei; Cho, Hsiao-Mei; Chuss, David T.; Colazo, Felipe; Crowe, Erik; Denis, Kevin; Dunner, Rolando; Eimer, Joseph; Gothe, Dominik; Halpern, Mark; Kogut, Alan J.; Miller, Nathan; Moseley, Samuel; Rostem, Karwan; Stevenson, Thomas; Towner, Deborah; U-Yen, Kongpop; Wollack, Edward

    2014-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) is an experiment to measure the signature of a gravitational wave background from inflation in the polarization of the cosmic microwave background (CMB). CLASS is a multi-frequency array of four telescopes operating from a high-altitude site in the Atacama Desert in Chile. CLASS will survey 70% of the sky in four frequency bands centered at 38, 93, 148, and 217 GHz, which are chosen to straddle the Galactic-foreground minimum while avoiding strong atmospheric emission lines. This broad frequency coverage ensures that CLASS can distinguish Galactic emission from the CMB. The sky fraction of the CLASS survey will allow the full shape of the primordial B-mode power spectrum to be characterized, including the signal from reionization at low-length. Its unique combination of large sky coverage, control of systematic errors, and high sensitivity will allow CLASS to measure or place upper limits on the tensor-to-scalar ratio at a level of r = 0:01 and make a cosmic-variance-limited measurement of the optical depth to the surface of last scattering, tau. (c) (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  10. Perturbed angular correlations and distributions

    International Nuclear Information System (INIS)

    The present index comprises original works and review papers on the perturbed angular correlations (PAC) and distributions (PAD). The articles published in the Soviet and foreign journals as well as the materials of conferences, monographs and collections published in the USSR and abroad, the preprints produced by various institutes and abstracts of disertations are included from 1948 up to 1973. The whole material compiled in this index is divided into three parts. Part one is a bibliographic index. All papers in this part are divided into three sections. Section one comprises the papers devoted to the theoretical works on PAC, review papers, monographs, materials of conferences. Section two deals with the works of methodical character where correlation spectrometers as well as the treatment of experimental data are described. In section three experimental works with concrete nuclei are compiled. Part two gives the characteristic of works performed with concrete nuclei. This part is presented in the form of the table in which the works are systematized according to the chemical elements and isotopes. The table shows the characteristics of the nuclear levels used in the investigations by PAC as well as brief characteristics of experiments and results obtained. Part three - appendix contains alphabetic index of the authors, the list of the used editions with the abbreviations of the titles of these editions. The lists indicating the dynamic of the quantity of works on PAC and the distribution according to the literature sources are also given

  11. Cosmological forecasts from photometric measurements of the angular correlation function

    International Nuclear Information System (INIS)

    We study forecasts for the accuracy of the determination of cosmological parameters from future large-scale photometric surveys obtained using the full shape of the 2-point galaxy angular correlation function. The effects of linear redshift-space distortion, photometric redshift Gaussian errors, galaxy bias and nonlinearities in the power spectrum are included on our analysis. The Fisher information matrix is constructed with the full covariance matrix, including the correlation between nearby redshift shells arising from the photometric redshift error. We show that under some reasonable assumptions, a survey such as the imminent Dark Energy Survey should be able to constrain the dark energy equation of state parameter w and the cold dark matter density Ωcdm with a precision of the order of 20% and 13%, respectively, from the full shape of the angular correlation function alone. When combined with priors from other observations the precision in the determination of these parameters improve to 8% and 4%, respectively.

  12. Cosmological forecasts from photometric measurements of the angular correlation function

    CERN Document Server

    Sobreira, F; Rosenfeld, R; da Costa, L A N; Maia, M A G; Makler, M

    2011-01-01

    We study forecasts for the accuracy of the determination of cosmological parameters from future large scale photometric surveys obtained using the full shape of the 2-point galaxy angular correlation function. The effects of linear redshift-space distortion, photometric redshift gaussian errors, galaxy bias and non-linearities in the power spectrum are included on our analysis. The Fisher information matrix is constructed with the full covariance matrix, including the correlation between nearby redshift shells arising from the photometric redshift error. We show that under some reasonable assumptions, a survey such as the imminent Dark Energy Survey should be able to constrain the dark energy equation of state parameter w and the cold dark matter density \\Omega_{cdm} with a precison of the order of 20% and 13% respectively from the full shape of the angular correlation function alone. When combined with priors from other observations the precision in the determination of these parameters improve to 8% and 4% ...

  13. Power Spectra of Multipath Faded Pulse Trains

    OpenAIRE

    Ridolfi, Andrea; Win, Moe

    2005-01-01

    We address the problem of modeling received pulse trains in a multipath fading channel and of computing their exact spectrum. We propose a model based on point processes. Such model is very general, simple and tractable and it allows to account for various phenomena that affect the transmission. We then give the exact spectrum of the output of such a model. Spectral formula of specific configurations are then derived from a singular general formula, where the various features of the channe...

  14. Action spectra again?

    Science.gov (United States)

    Coohill, T P

    1991-11-01

    Action spectroscopy has a long history and is of central importance to photobiological studies. Action spectra were among the first assays to point to chlorophyll as the molecule most responsible for plant growth and to DNA as the genetic material. It is useful to construct action spectra early in the investigation of new areas of photobiological research in an attempt to determine the wavelength limits of the radiation region causing the studied response. But due to the severe absorption of ultraviolet (UV) radiation by biological samples, UV action spectra were first limited to small cells (bacteria and fungi). Advances in techniques (e.g. single cell culture) and analysis allowed accurate action spectra to be reported even for mammalian cells. But precise analytical action spectra are often difficult to obtain when large, pigmented, or groups of cells are investigated. Here some action spectra are limited in interpretation and merely supply a wavelength vs effect curve. When polychromatic sources are employed, the interpretation of action spectra is even more complex and formidable. But such polychromatic action spectra can be more directly related to ambient responses. Since precise action spectra usually require the completion of a relatively large number of careful experiments using somewhat sophisticated equipment over a range of at least six wavelengths, they are often not pursued. But they remain central to the elucidation of the effect being studied. The worldwide community has agreed that stratospheric ozone is depleting, with the possibility of a consequent rise in the amount of UV-B (290-320 nm) reaching the earth's surface. It is therefore essential that new action spectra be completed for UV-B effects on a large variety of responses of human, animal, and aquatic plant systems. Combining these action spectra with the known amounts of UV-B reaching the biosphere can give rise to solar UV effectiveness spectra that, in turn, can give rise to estimates

  15. Comprehensive thermal characterization using ruby R fluorescence lines of sapphire and GaNE{sub 2}-high Raman mode from Raman spectra in high-power flip-chip InGaN/GaN LEDs

    Energy Technology Data Exchange (ETDEWEB)

    Cui, M; Zhou, T F; Wang, M R; Huang, J; Huang, H J; Zhang, J P; Xu, K; Yang, H, E-mail: kxu2006@sinano.ac.cn, E-mail: tfzhou2007@sinano.ac.cn [Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123 (China)

    2011-09-07

    A comprehensive temperature characterization method based on the GaNE{sub 2}-high Raman mode and sapphire ruby R fluorescence lines from Raman spectra was developed to analyse the thermal distribution and heat transfer process of high-power flip-chip InGaN/GaN LEDs (FC LEDs). Our analysis demonstrated that in addition to the known problem that the edges of mesa were always the hottest point of FC LEDs, which was due to the current crowding effect, a noteworthy temperature difference was first observed between the sapphire substrate and n-GaN when the injection current was above 300 mA. A 'heat reservoir' was suggested to occur at the interface between the sapphire and n-GaN due to poor thermal conductivity of sapphire when a large amount of heat from the hottest spot cannot be effectively transferred to the Si mount via the active region under high injection currents.

  16. Nonlinear FMR spectra in yttrium iron garnet

    Directory of Open Access Journals (Sweden)

    Yu.M. Bunkov, P.M. Vetoshko, I.G. Motygullin, T.R. Safin, M.S. Tagirov, N.A. Tukmakova

    2015-12-01

    Full Text Available Results of demagnetizing effect studies in yttrium iron garnet Y3Fe5O12 thin films are reported. Experiments were performed on X-Band of electron paramagnetic resonance spectrometer at room temperature. The ferromagnetic resonance (FMR spectra were obtained for one-layer single crystal YIG films for different values of the applied microwave power. Nonlinear FMR spectra transformation by the microwave power increasing in various directions of magnetic field sweep was observed. It is explained by the influence of the demagnetization action of nonequilibrium magnons.

  17. Spectra for commutative algebraists

    OpenAIRE

    Greenlees, J. P. C.

    2006-01-01

    The article is designed to explain to commutative algebraists what spectra (in the sense of algebraic topology) are, why they were originally defined, and how they can be useful for commutative algebra.

  18. Angular velocity: a new dimension in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Diamond, R.M.; Stephens, F.S.

    1984-08-09

    Nuclei can be studied from their ground states (approx.O(h/2..pi..)) up to angular momenta of order 100 (h/2..pi..), where they are literally pulled apart by centrifugal effects. This range of angular momenta can be viewed as resulting from cranking the nucleus around a rotation axis, where the critical variable is the cranking velocity. The calculated response of nuclei to such an imposed angular velocity corresponds well with recent observations, and includes a rich and varied interplay of collective and single-particle phenomena.

  19. Angular momentum conservation for dynamical black holes

    OpenAIRE

    Hayward, Sean A.

    2006-01-01

    Angular momentum can be defined by rearranging the Komar surface integral in terms of a twist form, encoding the twisting around of space-time due to a rotating mass, and an axial vector. If the axial vector is a coordinate vector and has vanishing transverse divergence, it can be uniquely specified under certain generic conditions. Along a trapping horizon, a conservation law expresses the rate of change of angular momentum of a general black hole in terms of angular momentum densities of ma...

  20. Quartz angular rate sensor for automotive navigation

    Energy Technology Data Exchange (ETDEWEB)

    Nozoe, Toshiyuki; Ichinose, Toshihiko; Kawasaki, Syusaku; Hatanaka, Masakazu; Kuroda, Keisuke [Matsushita Electronic Components Co. Ltd. (Japan); Yamamoto, Kohji; Ogata, Motoki; Takeno, Shoichi [Fukui Matsushita Electric Co. Ltd. (Japan); Ishihara, Minoru; Ishii, Tadashi; Umeki, Mitoshi [Nihonn Denpa Kogyo Co. Ltd. (Japan)

    1999-07-01

    Many of the recent automotive navigation systems are introducing an angular rate sensor that detect vehicle yaw in their system due to the advantage of higher accuracy, in addition to a conventional GPS (Global Positioning System) and vehicle speed signals. Though there are a couple of other methods to get a vehicle direction information, the angular rate sensor is the most suitable device as a gyro in accuracy and reliability point of view. Matsushita developed a new compact angular rate sensor using quartz crystal for automotive navigation systems. The sensor's operation is based upon Coriolis force imposed on a vibrating quartz tuning fork. (orig.)

  1. Mathematical treatment of digitalized spectra of the neutron diffractometer for microcomputer

    International Nuclear Information System (INIS)

    For the study of materials by means of diffraction, it is required in the first place that the sample is a crystalline material so that the diffraction is possible and the digitized spectra of corresponding diffraction can be generated. This spectra, for any type of study consists of a great number of readings (counting or counts per second Cps) that of some way are related to a determined angle to be able to reproduce a diagram that will be evaluated to conclude the study according to it is. Since the evaluation will depend on the angular readings that are carried out in the mentioned spectra, it is required of a good definition of the curves for its angular reading. Well-known the problem of the no enough definition of the spectra to be able to carry out the angular reading, it was proceeds to outline a possible solution which consists on making a mathematical treatment to the spectra with the purpose of being able to define the angular positions of interest and to correct some operation factors that appear in the spectra. (Author)

  2. Angular momentum projection for a Nilsson mean-field plus pairing model

    Science.gov (United States)

    Wang, Yin; Pan, Feng; Launey, Kristina D.; Luo, Yan-An; Draayer, J. P.

    2016-06-01

    The angular momentum projection for the axially deformed Nilsson mean-field plus a modified standard pairing (MSP) or the nearest-level pairing (NLP) model is proposed. Both the exact projection, in which all intrinsic states are taken into consideration, and the approximate projection, in which only intrinsic states with K = 0 are taken in the projection, are considered. The analysis shows that the approximate projection with only K = 0 intrinsic states seems reasonable, of which the configuration subspace considered is greatly reduced. As simple examples for the model application, low-lying spectra and electromagnetic properties of 18O and 18Ne are described by using both the exact and approximate angular momentum projection of the MSP or the NLP, while those of 20Ne and 24Mg are described by using the approximate angular momentum projection of the MSP or NLP.

  3. Energy transfer, orbital angular momentum, and discrete current in a double-ring fiber array

    Energy Technology Data Exchange (ETDEWEB)

    Alexeyev, C. N.; Volyar, A. V. [Taurida National V.I. Vernadsky University, Vernadsky Prospekt, 4, Simferopol, 95007, Crimea (Ukraine); Yavorsky, M. A. [Taurida National V.I. Vernadsky University, Vernadsky Prospekt, 4, Simferopol, 95007, Crimea (Ukraine); Universite Bordeaux and CNRS, LOMA, UMR 5798, FR-33400 Talence (France)

    2011-12-15

    We study energy transfer and orbital angular momentum of supermodes in a double-ring array of evanescently coupled monomode optical fibers. The structure of supermodes and the spectra of their propagation constants are obtained. The geometrical parameters of the array, at which the energy is mostly confined within the layers, are determined. The developed method for finding the supermodes of concentric arrays is generalized for the case of multiring arrays. The orbital angular momentum carried by a supermode of a double-ring array is calculated. The discrete lattice current is introduced. It is shown that the sum of discrete currents over the array is a conserved quantity. The connection of the total discrete current with orbital angular momentum of discrete optical vortices is made.

  4. Energy transfer, orbital angular momentum, and discrete current in a double-ring fiber array

    International Nuclear Information System (INIS)

    We study energy transfer and orbital angular momentum of supermodes in a double-ring array of evanescently coupled monomode optical fibers. The structure of supermodes and the spectra of their propagation constants are obtained. The geometrical parameters of the array, at which the energy is mostly confined within the layers, are determined. The developed method for finding the supermodes of concentric arrays is generalized for the case of multiring arrays. The orbital angular momentum carried by a supermode of a double-ring array is calculated. The discrete lattice current is introduced. It is shown that the sum of discrete currents over the array is a conserved quantity. The connection of the total discrete current with orbital angular momentum of discrete optical vortices is made.

  5. Carbon K-shell photoelectron angular distribution from fixed-in-space CO2 molecules

    International Nuclear Information System (INIS)

    Measurements of photoelectron angular distributions for carbon K-shell ionization of fixed-in-space CO2 molecules with the molecular axis oriented along, perpendicular and at 45 degrees to the electric vector of the light are reported. The major features of these measured spectra are fairly well reproduced by calculations employing a relaxed-core Hartree-Fock approach. In contrast to the angular distribution for K-shell ionization of N2, which exhibits a rich structure dominated by the f-wave (l=3) at the shape resonance, the angular distribution for carbon K-shell photoionization of CO2 is quite unstructured over the entire observed range across the shape resonance. (letter to the editor)

  6. Gravitational waves carrying orbital angular momentum

    Science.gov (United States)

    Bialynicki-Birula, Iwo; Bialynicka-Birula, Zofia

    2016-02-01

    Spinorial formalism is used to map every electromagnetic wave into the gravitational wave (within the linearized gravity). In this way we can obtain the gravitational counterparts of Bessel, Laguerre-Gauss, and other light beams carrying orbital angular momentum.

  7. The physics of angular momentum radio

    CERN Document Server

    Thidé, B; Then, H; Someda, C G; Ravanelli, R A

    2014-01-01

    Wireless communications, radio astronomy and other radio science applications are mainly implemented with techniques built on top of the electromagnetic linear momentum (Poynting vector) physical layer. As a supplement and/or alternative to this conventional approach, techniques rooted in the electromagnetic angular momentum physical layer have been advocated, and promising results from proof-of-concept radio communication experiments using angular momentum were recently published. This sparingly exploited physical observable describes the rotational (spinning and orbiting) physical properties of the electromagnetic fields and the rotational dynamics of the pertinent charge and current densities. In order to facilitate the exploitation of angular momentum techniques in real-world implementations, we present a systematic, comprehensive theoretical review of the fundamental physical properties of electromagnetic angular momentum observable. Starting from an overview that puts it into its physical context among ...

  8. Angular Momentum Acquisition in Galaxy Halos

    CERN Document Server

    Stewart, Kyle R; Bullock, James S; Maller, Ariyeh H; Diemand, Juerg; Wadsley, James; Moustakas, Leonidas A

    2013-01-01

    We use high-resolution cosmological hydrodynamic simulations to study the angular momentum acquisition of gaseous halos around Milky Way sized galaxies. We find that cold mode accreted gas enters a galaxy halo with ~70% more specific angular momentum than dark matter averaged over cosmic time (though with a very large dispersion). In fact, we find that all matter has a higher spin parameter when measured at accretion than when averaged over the entire halo lifetime, and is well characterized by \\lambda~0.1, at accretion. Combined with the fact that cold flow gas spends a relatively short time (1-2 dynamical times) in the halo before sinking to the center, this naturally explains why cold flow halo gas has a specific angular momentum much higher than that of the halo and often forms "cold flow disks". We demonstrate that the higher angular momentum of cold flow gas is related to the fact that it tends to be accreted along filaments.

  9. Gravitational waves carrying orbital angular momentum

    CERN Document Server

    Bialynicki-Birula, Iwo

    2015-01-01

    Spinorial formalism is used to map every electromagnetic wave into the gravitational wave (within the linearized gravity). In this way we can obtain the gravitational counterparts of Bessel, Laguerre-Gauss, and other light beams carrying orbital angular momentum.

  10. Radiofrequency encoded angular-resolved light scattering

    DEFF Research Database (Denmark)

    Buckley, Brandon W.; Akbari, Najva; Diebold, Eric D.;

    2015-01-01

    The sensitive, specific, and label-free classification of microscopic cells and organisms is one of the outstanding problems in biology. Today, instruments such as the flow cytometer use a combination of light scatter measurements at two distinct angles to infer the size and internal complexity...... of cells at rates of more than 10,000 per second. However, by examining the entire angular light scattering spectrum it is possible to classify cells with higher resolution and specificity. Current approaches to performing these angular spectrum measurements all have significant throughput limitations...... Encoded Angular-resolved Light Scattering (REALS), this technique multiplexes angular light scattering in the radiofrequency domain, such that a single photodetector captures the entire scattering spectrum from a particle over approximately 100 discrete incident angles on a single shot basis. As a proof...

  11. Angular Fock coefficients. Fixing the errors, and further development

    CERN Document Server

    Liverts, Evgeny Z

    2015-01-01

    The angular coefficients $\\psi_{k,p}(\\alpha,\\theta)$ of the Fock expansion characterizing the S-state wave function of the two-electron atomic system, are calculated in hyperspherical angular coordinates $\\alpha$ and $\\theta$. To solve the problem the Fock recurrence relations separated into the independent individual equations associated with definite power $j$ of the nucleus charge $Z$, are applied. The "pure" $j$-components of the angular Fock coefficients, orthogonal to of the hyperspherical harmonics $Y_{kl}$, are found for even values of $k$. To this end, the specific coupling equation is proposed and applied. Effective techniques for solving the individual equations with simplest nonseparable and separable right-hand sides are proposed. Some mistakes/misprints made earlier in representations of $\\psi_{2,0}$, were noted and corrected. All $j$-components of $\\psi_{4,1}$ and the majority of components and subcomponents of $\\psi_{3,0}$ are calculated and presented for the first time. All calculations were ...

  12. Mastering AngularJD for .NET developers

    CERN Document Server

    Majid, Mohammad Wadood

    2015-01-01

    This book is envisioned for traditional developers and programmers who want to develop client-side applications using the AngularJS framework and ASP.NET Web API 2 with Visual Studio. .NET developers who have already built web applications or web services and who have a fundamental knowledge of HTML, JavaScript, and CSS and want to explore single-page applications will also find this guide useful. Basic knowledge of AngularJS would be helpful.

  13. Shell effects and fission fragments angular anisotropy

    International Nuclear Information System (INIS)

    The impact of the shell corrections attenuation effect with growth of the fissionable nuclei temperature on the angular anisotropy of the fission fragments is considered. The experimental data on the anisotropy of the fission fragments angular distributions of the compound nucleus, formed in the 4He + 238U reactions, are analyzed within the frames of the transition states model in the fission barriers saddle point and statistic theory of nuclear reactions. The obvious kind of the shell corrections attenuation function is obtained

  14. Integrating rotation and angular velocity from curvature

    OpenAIRE

    Saje, Miran; Treven, Anita

    2016-01-01

    The problem of integrating the rotational vector from a given angular velocity vector is met in such diverse fields as the navigation, robotics, computer graphics, optical tracking and non-linear dynamics of flexible beams. For example, if the numerical formulation of non-linear dynamics of flexible beams is based on the interpolation of curvature, one needs to derive the rotation from the assumed curvature field. The relation between the angular velocity and the rotation is described by the ...

  15. Angular velocity nonlinear observer from vector measurements

    OpenAIRE

    Magnis, Lionel; Petit, Nicolas

    2015-01-01

    The paper proposes a technique to estimate the angular velocity of a rigid body from vector measurements. Compared to the approaches presented in the literature, it does not use attitude information nor rate gyros as inputs. Instead, vector measurements are directly filtered through a nonlinear observer estimating the angular velocity. Convergence is established using a detailed analysis of the linear-time varying dynamics appearing in the estimation error equation. This equation stems from t...

  16. Generalized Uncertainty Principle and Angular Momentum

    CERN Document Server

    Bosso, Pasquale

    2016-01-01

    Various models of quantum gravity suggest a modification of the Heisenberg's Uncertainty Principle, to the so-called Generalized Uncertainty Principle, between position and momentum. In this work we show how this modification influences the theory of angular momentum in Quantum Mechanics. In particular, we compute Planck scale corrections to angular momentum eigenvalues, the Hydrogen atom spectrum, the Stern-Gerlach experiment and the Clebsch-Gordan coefficients. We also examine effects of the Generalized Uncertainty Principle on multi-particle systems.

  17. Multipolar expansion of orbital angular momentum modes

    OpenAIRE

    Molina-Terriza, Gabriel

    2008-01-01

    In this letter a general method for expanding paraxial beams into multipolar electromagnetic fields is presented. This method is applied to the expansion of paraxial modes with orbital angular momentum (OAM), showing how the paraxial OAM is related to the general angular momentum of an electromagnetic wave. This method can be extended to quasi-paraxial beams, i.e. highly focused laser beams. Some applications to the control of electronic transitions in atoms are discussed.

  18. Orbital angular momentum in the nucleons

    OpenAIRE

    Lorcé, Cédric

    2014-01-01

    In the last decade, it has been realized that the orbital angular momentum of partons inside the nucleon plays a major role. It contributes significantly to nucleon properties and is at the origin of many asymmetries observed in spin physics. It is therefore of paramount importance to determine this quantity if we want to understand the nucleon internal structure and experimental observables. This triggered numerous discussions and controversies about the proper definition of orbital angular ...

  19. Orbital angular momentum of partially coherent beams

    OpenAIRE

    Serna Galán, Julio; Movilla Serrano, Jesús María

    2001-01-01

    The definition of the orbital angular momentum established for coherent beams is extended to partially coherent beams, expressed in terms of two elements of the beam matrix. This extension is justified by use of the Mercer expansion of partially coherent fields. General Gauss-Schell-model fields are considered, and the relation between the twist; parameter and the orbital angular momentum is analyzed. © 2001 Optical Society of America.

  20. Entanglement of Polarization and Orbital Angular Momentum

    OpenAIRE

    Bhatti, Daniel; von Zanthier, Joachim; Agarwal, Girish S.

    2015-01-01

    We investigate two-photon entangled states using two important degrees of freedom of the electromagnetic field, namely orbital angular momentum (OAM) and spin angular momentum. For photons propagating in the same direction we apply the idea of $\\textit{entanglement duality}$ and develop schemes to do $\\textit{entanglement sorting}$ based either on OAM or polarization. In each case the entanglement is tested using appropriate witnesses. We finally present generalizations of these ideas to thre...