Efficient evaluation of angular power spectra and bispectra
Assassi, Valentin; Simonović, Marko; Zaldarriaga, Matias
2017-11-01
Angular statistics of cosmological observables are hard to compute. The main difficulty is due to the presence of highly-oscillatory Bessel functions which need to be integrated over. In this paper, we provide a simple and fast method to compute the angular power spectrum and bispectrum of any observable. The method is based on using an FFTlog algorithm to decompose the momentum-space statistics onto a basis of power-law functions. For each power law, the integrals over Bessel functions have a simple analytical solution. This allows us to efficiently evaluate these integrals, independently of the value of the multipole l. In particular, this method significantly speeds up the evaluation of the angular bispectrum compared to existing methods. To illustrate our algorithm, we compute the galaxy, lensing and CMB temperature angular power spectrum and bispectrum.
Angular power spectra of eROSITA mock cluster all-skymaps
Zandanel, F.; Fornasa, M.; Pacaud, F.; Reiprich, T.; Prada, F.; Klypin, A.
2017-10-01
We developed a phenomenological model to generate mock galaxy cluster catalogues from the MultiDark N-body simulations that reproduce current X-ray and Sunyaev-Zel'dovich observations. We generated many mock all-sky maps and light-cone cluster catalogues and use them to simulate complete realizations of the eROSITA all-sky survey. We present the analysis of the corresponding angular power spectra showing the potential of the eROSITA survey in improving our current understanding of clusters of galaxies both for astrophysics and cosmology.
Continuous particle spectra and their angular distributions
International Nuclear Information System (INIS)
Sastry, Ch.V.; Jain, R.K.; Rama Rao, J.; Ernst, J.; Machner, H.
1996-01-01
The angular distribution of continuous particle spectra in pre-equilibrium reactions is still an unsolved problem, particularly so at forward angles. In the present work, the angular distributions of alpha particles emitted in (α, α',x) reactions in the target elements gold and rhodium have been studied in detail. Alpha particle beams of energy 60 MeV from the Variable Energy Cyclotron of Calcutta were used in these experiments. The theoretical calculations were done using an extended exciton model of Kalbach incorporated into the Computer Code PRECO-D2. The formalism used in the exciton model was modified to include division of pre equilibrium cross section into multi-step direct (MSD) and multi-step compound (MSC) components. These MSD and MSC cross sections were used to calculate the angular distributions in terms of Legendre polynomials whose coefficients are given by simple phenomenological relations. Even with a reasonable set of parameters, the agreement between theory and experiment was far from satisfactory at forward angles. Similar conclusion was also drawn in the case of continuous particle spectra of deuterons in (d, d'x) reactions at 25 MeV in various targets. (author). 10 refs., 2 figs
Correlation Functions and Power Spectra
DEFF Research Database (Denmark)
Larsen, Jan
2006-01-01
The present lecture note is a supplement to the textbook Digital Signal Processing by J. Proakis and D.G. Manolakis used in the IMM/DTU course 02451 Digital Signal Processing and provides an extended discussion of correlation functions and power spectra. The definitions of correlation functions....... It is possible to define correlation functions and associated spectra for aperiodic, periodic and random signals although the interpretation is different. Moreover, we will discuss correlation functions when mixing these basic signal types. In addition, the note include several examples for the purpose...
Prospects of Measuring the Angular Power Spectrum of the Diffuse ...
Indian Academy of Sciences (India)
Review. J. Astrophys. Astr. (2016) 37: 35. DOI: 10.1007/s12036-016-9413-x. Prospects of Measuring the Angular Power Spectrum of the Diffuse. Galactic .... In this section we briefly review the Tapered Gridded Estimator (TGE), the details ... of the product of the primary beam pattern A(θ) and δI(θ) the angular fluctuation.
Power spectra of currents off Bombay
Digital Repository Service at National Institute of Oceanography (India)
Varkey, M.J.
Current measurements were carried out using a recording current meter across the continental shelf off Bombay, Maharashtra, India at 4 stations from an anchored ship. Power spectra were computed for selected lengths of records. Spectral energy...
Negative power spectra in quantum field theory
International Nuclear Information System (INIS)
Hsiang, Jen-Tsung; Wu, Chun-Hsien; Ford, L.H.
2011-01-01
We consider the spatial power spectra associated with fluctuations of quadratic operators in field theory, such as quantum stress tensor components. We show that the power spectrum can be negative, in contrast to most fluctuation phenomena where the Wiener-Khinchin theorem requires a positive power spectrum. We show why the usual argument for positivity fails in this case, and discuss the physical interpretation of negative power spectra. Possible applications to cosmology are discussed. -- Highlights: → Wiener-Khinchin theorem usually implies a positive power spectrum of fluctuations. → We show this is not always the case in quantum field theory. → Quantum stress tensor fluctuations can have a negative power spectrum. → Negative power interchanges correlations and anticorrelations.
Artificial intelligence analysis of paraspinal power spectra.
Oliver, C W; Atsma, W J
1996-10-01
OBJECTIVE: As an aid to discrimination of sufferers with back pain an artificial intelligence neural network was constructed to differentiate paraspinal power spectra. DESIGN: Clinical investigation using surface electromyography. METHOD: The surface electromyogram power spectra from 60 subjects, 33 non-back-pain sufferers and 27 chronic back pain sufferers were used to construct a back propagation neural network that was then tested. Subjects were placed on a test frame in 30 degrees of lumbar forward flexion. An isometric load of two-thirds maximum voluntary contraction was held constant for 30 s whilst surface electromyograms were recorded at the level of the L(4-5). Paraspinal power spectra were calculated and loaded into the input layer of a three-layer back propagation network. The neural network classified the spectra into normal or back pain type. RESULTS: The back propagation neural was shown to have satisfactory convergence with a specificity of 79% and a sensitivity of 80%. CONCLUSIONS: Artificial intelligence neural networks appear to be a useful method of differentiating paraspinal power spectra in back-pain sufferers.
Measuring the angular dependence of betatron x-ray spectra in a laser-wakefield accelerator
Energy Technology Data Exchange (ETDEWEB)
Albert, F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pollock, B. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Shaw, J. L. [Univ. of California, Los Angeles, CA (United States); Marsh, K. A. [Univ. of California, Los Angeles, CA (United States); Ralph, J. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chen, Y. -H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Alessi, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pak, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Clayton, C. E. [Univ. of California, Los Angeles, CA (United States); Glenzer, S. H. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Joshi, C. [Univ. of California, Los Angeles, CA (United States)
2014-07-22
This paper presents a new technique to measure the angular dependence of betatron x-ray spectra in a laser-wakefield accelerator. Measurements are performed with a stacked image plates spectrometer, capable of detecting broadband x-ray radiation up to 1 MeV. It can provide measurements of the betatron x-ray spectrum at any angle of observation (within a 40 mrad cone) and of the beam profile. A detailed description of our data analysis is given, along with comparison for several shots. As a result, these measurements provide useful information on the dynamics of the electrons are they are accelerated and wiggled by the wakefield.
International Nuclear Information System (INIS)
Satpathy, L.; Schmid, K.W.; Krewald, S.; Faessler, A.
1974-01-01
Multi-Configuration-Hartree-Fock (MCHF) calculations with angular momentum projection before the variation of the internal degree of freedom have been performed for the nuclei Ne 20 and Ne 22 . This procedure yields different correlated intrinsic states for the different members of a rotational band. Thus, the angular momentum dependence of correlations has been studied. Experimentally, the ground state spectra of Ne 20 and Ne 22 show properties similar to the phase transitions observed in some rare earth nuclei which have been well reproduced through the present calculations. The calculated spectra show a significant improvement compared to the ones obtained by variation before the angular momentum projection is effected. (author)
Power calculation of linear and angular incremental encoders
Prokofev, Aleksandr V.; Timofeev, Aleksandr N.; Mednikov, Sergey V.; Sycheva, Elena A.
2016-04-01
Automation technology is constantly expanding its role in improving the efficiency of manufacturing and testing processes in all branches of industry. More than ever before, the mechanical movements of linear slides, rotary tables, robot arms, actuators, etc. are numerically controlled. Linear and angular incremental photoelectric encoders measure mechanical motion and transmit the measured values back to the control unit. The capabilities of these systems are undergoing continual development in terms of their resolution, accuracy and reliability, their measuring ranges, and maximum speeds. This article discusses the method of power calculation of linear and angular incremental photoelectric encoders, to find the optimum parameters for its components, such as light emitters, photo-detectors, linear and angular scales, optical components etc. It analyzes methods and devices that permit high resolutions in the order of 0.001 mm or 0.001°, as well as large measuring lengths of over 100 mm. In linear and angular incremental photoelectric encoders optical beam is usually formulated by a condenser lens passes through the measuring unit changes its value depending on the movement of a scanning head or measuring raster. Past light beam is converting into an electrical signal by the photo-detecter's block for processing in the electrical block. Therefore, for calculating the energy source is a value of the desired value of the optical signal at the input of the photo-detecter's block, which reliably recorded and processed in the electronic unit of linear and angular incremental optoelectronic encoders. Automation technology is constantly expanding its role in improving the efficiency of manufacturing and testing processes in all branches of industry. More than ever before, the mechanical movements of linear slides, rotary tables, robot arms, actuators, etc. are numerically controlled. Linear and angular incremental photoelectric encoders measure mechanical motion and
Attenuated total reflection angular spectra of a system of alternating plasma-dielectric layers.
Kovacs, G J; Scott, G D
1978-11-15
The attenuated total reflection (ATR) angular spectra of a five-film system have been observed. Successive layers of Ag-LiF-Ag-LiF-Ag are evaporated onto the base of a glass prism. Surface plasma wave resonances corresponding to coupled oscillations at the plasma-dielectric interfaces were found for p-polarization. Guided light modes coupled between the two dielectric layers were observed in both p- and s-polarized spectra. If guided mode reflectance resonances occur at less than the critical angle they have associated with them resonance transmissions. In general the ATR resonances of the five-film system occur as doublets, which form a splitting of the resonances of a single dielectric slab bounded by Ag layers. The resonant oscillations are demonstrated by detailed calculations of the Poynting vector field and electric field oscillations, which also help in understanding the source of discrepancies between experimental and calculated ATR spectra. These discrepancies are thought to be due largely to the surface roughness of evaporated LiF films. The roughness is modeled as thin cermet layers at the LiF-Ag interfaces, and the optical constants of the cermets are calculated by the Maxwell Garnett theory. When the ATR spectra are then computed with the pseudolayers inserted, much improved agreement with experiment can be obtained.
Running of featureful primordial power spectra
Gariazzo, Stefano; Mena, Olga; Miralles, Victor; Ramírez, Héctor; Boubekeur, Lotfi
2017-06-01
Current measurements of the temperature and polarization anisotropy power spectra of the cosmic microwave background (CMB) seem to indicate that the naive expectation for the slow-roll hierarchy within the most simple inflationary paradigm may not be respected in nature. We show that a primordial power spectrum with localized features could in principle give rise to the observed slow-roll anarchy when fitted to a featureless power spectrum. From a model comparison perspective, and assuming that nature has chosen a featureless primordial power spectrum, we find that, while with mock Planck data there is only weak evidence against a model with localized features, upcoming CMB missions may provide compelling evidence against such a nonstandard primordial power spectrum. This evidence could be reinforced if a featureless primordial power spectrum is independently confirmed from bispectrum and/or galaxy clustering measurements.
Planck 2013 results. XV. CMB power spectra and likelihood
Ade, P.A.R.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartlett, J.G.; Battaner, E.; Benabed, K.; Benoit, A.; Benoit-Levy, A.; Bernard, J.P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J.J.; Bonaldi, A.; Bonavera, L.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Boulanger, F.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R.C.; Calabrese, E.; Cardoso, J.F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, L.Y.; Chiang, H.C.; Christensen, P.R.; Church, S.; Clements, D.L.; Colombi, S.; Colombo, L.P.L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B.P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R.D.; Davis, R.J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.M.; Desert, F.X.; Dickinson, C.; Diego, J.M.; Dole, H.; Donzelli, S.; Dore, O.; Douspis, M.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Elsner, F.; Ensslin, T.A.; Eriksen, H.K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A.A.; Franceschi, E.; Gaier, T.C.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Heraud, Y.; Gjerlow, E.; Gonzalez-Nuevo, J.; Gorski, K.M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J.E.; Hansen, F.K.; Hanson, D.; Harrison, D.; Helou, G.; Henrot-Versille, S.; Hernandez-Monteagudo, C.; Herranz, D.; Hildebrandt, S.R.; Hivon, E.; Hobson, M.; Holmes, W.A.; Hornstrup, A.; Hovest, W.; Huffenberger, K.M.; Hurier, G.; Jaffe, T.R.; Jaffe, A.H.; Jewell, J.; Jones, W.C.; Juvela, M.; Keihanen, E.; Keskitalo, R.; Kiiveri, K.; Kisner, T.S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lahteenmaki, A.; Lamarre, J.M.; Lasenby, A.; Lattanzi, M.; Laureijs, R.J.; Lawrence, C.R.; Le Jeune, M.; Leach, S.; Leahy, J.P.; Leonardi, R.; Leon-Tavares, J.; Lesgourgues, J.; Liguori, M.; Lilje, P.B.; Lindholm, V.; Linden-Vornle, M.; Lopez-Caniego, M.; Lubin, P.M.; Macias-Perez, J.F.; Maffei, B.; Maino, D.; Mandolesi, N.; Marinucci, D.; Maris, M.; Marshall, D.J.; Martin, P.G.; Martinez-Gonzalez, E.; Masi, S.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Meinhold, P.R.; Melchiorri, A.; Mendes, L.; Menegoni, E.; Mennella, A.; Migliaccio, M.; Millea, M.; Mitra, S.; Miville-Deschenes, M.A.; Molinari, D.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C.B.; Norgaard-Nielsen, H.U.; Noviello, F.; Novikov, D.; Novikov, I.; O'Dwyer, I.J.; Orieux, F.; Osborne, S.; Oxborrow, C.A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Paykari, P.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G.W.; Prezeau, G.; Prunet, S.; Puget, J.L.; Rachen, J.P.; Rahlin, A.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ringeval, C.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rubino-Martin, J.A.; Rusholme, B.; Sandri, M.; Sanselme, L.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M.D.; Shellard, E.P.S.; Spencer, L.D.; Starck, J.L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.S.; Sygnet, J.F.; Tauber, J.A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Turler, M.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L.A.; Wandelt, B.D.; Wehus, I.K.; White, M.; White, S.D.M.; Yvon, D.; Zacchei, A.; Zonca, A.
2014-01-01
We present the Planck likelihood, a complete statistical description of the two-point correlation function of the CMB temperature fluctuations. We use this likelihood to derive the Planck CMB power spectrum over three decades in l, covering 2 = 50, we employ a correlated Gaussian likelihood approximation based on angular cross-spectra derived from the 100, 143 and 217 GHz channels. We validate our likelihood through an extensive suite of consistency tests, and assess the impact of residual foreground and instrumental uncertainties on cosmological parameters. We find good internal agreement among the high-l cross-spectra with residuals of a few uK^2 at l <= 1000. We compare our results with foreground-cleaned CMB maps, and with cross-spectra derived from the 70 GHz Planck map, and find broad agreement in terms of spectrum residuals and cosmological parameters. The best-fit LCDM cosmology is in excellent agreement with preliminary Planck polarisation spectra. The standard LCDM cosmology is well constrained b...
Angular power spectrum in publically released ALICE events
Llanes-Estrada, Felipe J.; Muñoz Martinez, Jose L.
2018-02-01
We study the particles emitted in the fireball following a Relativistic Heavy Ion Collision with the traditional angular analysis employed in cosmology and earth sciences, producing Mollweide plots of the number and pt distribution of a few actual, publically released ALICE-collaboration events and calculating their angular power spectrum. We also examine the angular spectrum of a simple two-particle correlation. While this may not be the optimal way of analyzing heavy ion data, our intention is to provide a one to one comparison to analysis in cosmology. With the limited statistics at hand, we do not find evidence for acoustic peaks but a decrease of Cl that is reminiscent of viscous attenuation, but subject to a strong effect from the rapidity acceptance which probably dominates (so we also subtract the m = 0 component). As an exercise, we still extract a characteristic Silk damping length (proportional to the square root of the viscosity over entropy density ratio) to illustrate the method. The absence of acoustic-like peaks is also compatible with a crossover from the QGP to the hadron gas (because a surface tension at domain boundaries would effect a restoring force that could have driven acoustic oscillations). Presently we do not understand a depression of the l = 6 multipole strength; perhaps ALICE could reexamine it with full statistics.
Impact of Wind Power on the Angular Stability of a Power System
Directory of Open Access Journals (Sweden)
Djemai NAIMI
2008-06-01
Full Text Available Wind energy conversion systems are very different in nature from conventional generators. Therefore dynamic studies must be addressed in order to integrate wind power into the power system. Angular stability assessment of wind power generator is one of main issues in power system security and operation. The angular stability for the wind power generator is determined by its corresponding Critical Clearing Time (CCT. In this paper, the effect of wind power on the transient fault behavior is investigated by replacing the power generated by two main types of wind turbine, increasing gradually a rate of wind power penetration and changing the location of wind resources. The simulation analysis was established on a 14 bus IEEE test system by PSAT/Matlab, which gives access to an extensive library of grid components, and relevant wind turbine model.
Pulsed power for angular multiplexed laser fusion drivers
International Nuclear Information System (INIS)
Eninger, J.E.
1983-01-01
The feasibility of using rare gas-halide lasers, in particular the KrF laser, as inertial confinement fusion (ICF) drivers has been assessed. These lasers are scalable to the required high energy (approx. =1-5 MJ) in a short pulse (approx. =10 ns) by optical angular multiplexing, and integration of the output from approx. =100 kJ laser amplifier subsystems. The e-beam current density (approx. =50A/cm 2 ) and voltage (approx. =800 kV) required for these power amplifiers lead to an e-beam impedance of approx. =0.2Ω for approx. =300 ns pump time. This impedance level requires modularization of the large area e-gun, a) to achieve a diode inductance consistent with fast current risetime, b) to circumvent dielectric breakdown constraints in the pulse forming lines, and c) to reduce the requirement for guide magnetic fields. Pulsed power systems requirements, design concepts, scalability, tradeoffs, and performance projections are discussed in this paper
International Nuclear Information System (INIS)
Lyakin, D V; Ryabukho, V P
2013-01-01
The results of theoretical and experimental studies of the longitudinal correlation properties of an optical field with broad angular and frequency spectra and manifestations of these properties in interference microscopy are presented. The joint and competitive influence of the angular and frequency spectra of the object-probing field on the longitudinal resolution and on the amplitude of the interference microscope signals from the interfaces between the media inside a multilayer object is demonstrated. The method of compensating the so-called defocusing effect that arises in the interference microscopy using objectives with a large numerical aperture is experimentally demonstrated, which consists in using as a light source in the interference microscope an illuminating interferometer with a frequency-broadband light source. This method of compensation may be used as the basis of simultaneous determination of geometric thickness and refractive index of media forming a multilayer object. (optical fields)
Meson Spectra: Power Law Potential Model in the Dirac Equation ...
African Journals Online (AJOL)
A single mass-spectra potential model has been used to predict the spectra of both light and heavy mesons (including leptonic decay-widths) in the Dirac equation. In fact a power law potential has been proposed with effective power where is the mass of the constituent quarks (in GeV) of the mesons considered.
Schäfer, Björn Malte; Merkel, Philipp M.
2017-09-01
This paper describes intrinsic ellipticity correlations between galaxies, their statistical properties, their observability with future surveys and their interference with weak gravitational lensing measurements. Using an angular-momentum-based, quadratic intrinsic alignment model we derive correlation functions of the ellipticity components and project them to yield the four non-zero angular ellipticity spectra C^ɛ _E(ℓ), C^ɛ _B(ℓ), C^ɛ _C(ℓ) and C^ɛ _S(ℓ) in their generalization to tomographic surveys. For a Euclid-like survey, these spectra would have amplitudes smaller than the weak lensing effect on non-linear structures, but would constitute an important systematics. Computing estimation biases for cosmological parameters derived from an alignment-contaminated survey suggests biases of +5σw for the dark energy equation of state parameter w, -20σ _{Ω _m} for the matter density Ωm and -12σ _{σ _8} for the spectrum normalization σ8. Intrinsic alignments yield a signal that is easily observable with a survey similar to Euclid: while not independent, significances for estimates of each of the four spectra reach values of tens of σ if weak lensing and shape noise are considered as noise sources, which suggests relative uncertainties on alignment parameters at the percent level, implying that galaxy alignment mechanisms can be investigated by future surveys.
Planck Collaboration; Adam, R.; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bracco, A.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chiang, H. C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Ghosh, T.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Guillet, V.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hivon, E.; Hobson, M.; Holmes, W. A.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jewell, J.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Krachmalnicoff, N.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Remazeilles, M.; Renault, C.; Renzi, A.; Ricciardi, S.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rouillé d'Orfeuil, B.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Soler, J. D.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vibert, L.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Watson, R.; Wehus, I. K.; White, M.; White, S. D. M.; Yvon, D.; Zacchei, A.; Zonca, A.
2016-02-01
The polarized thermal emission from diffuse Galactic dust is the main foreground present in measurements of the polarization of the cosmic microwave background (CMB) at frequencies above 100 GHz. In this paper we exploit the uniqueness of the Planck HFI polarization data from 100 to 353 GHz to measure the polarized dust angular power spectra CℓEE and CℓBB over the multipole range 40 <ℓ< 600 well away from the Galactic plane. These measurements will bring new insights into interstellar dust physics and allow a precise determination of the level of contamination for CMB polarization experiments. Despite the non-Gaussian and anisotropic nature of Galactic dust, we show that general statistical properties of the emission can be characterized accurately over large fractions of the sky using angular power spectra. The polarization power spectra of the dust are well described by power laws in multipole, Cℓ ∝ ℓα, with exponents αEE,BB = -2.42 ± 0.02. The amplitudes of the polarization power spectra vary with the average brightness in a way similar to the intensity power spectra. The frequency dependence of the dust polarization spectra is consistent with modified blackbody emission with βd = 1.59 and Td = 19.6 K down to the lowest Planck HFI frequencies. We find a systematic difference between the amplitudes of the Galactic B- and E-modes, CℓBB/CℓEE = 0.5. We verify that these general properties are preserved towards high Galactic latitudes with low dust column densities. We show that even in the faintest dust-emitting regions there are no "clean" windows in the sky where primordial CMB B-mode polarization measurements could be made without subtraction of foreground emission. Finally, we investigate the level of dust polarization in the specific field recently targeted by the BICEP2 experiment. Extrapolation of the Planck 353 GHz data to 150 GHz gives a dust power 𝒟ℓBB ≡ ℓ(ℓ+1)CℓBB/(2π) of 1.32 × 10-2 μKCMB2 over the multipole range
Calculation of power spectra for block coded signals
DEFF Research Database (Denmark)
Justesen, Jørn
2001-01-01
We present some improvements in the procedure for calculating power spectra of signals based on finite state descriptions and constant block size. In addition to simplified calculations, our results provide some insight into the form of the closed expressions and to the relation between the spectra...
Distortions in power spectra of digitized signals - II: Suggested solution
International Nuclear Information System (INIS)
Njau, E.C.
1982-04-01
In Part I of this report we developed analytical expressions which represent exactly the energy density spectra of ''digitization processes'' that are essentially involved in spectral analysis of continuous signals. Besides, we related the spectral energy density of each digitization process to the parameters of the exact spectral energy density of the corresponding signal. On this basis, we briefly discussed the forms of distortions (or false structures) which are present in normally computed power spectra when the corresponding spectra of the digitization processes are not sufficiently decoupled from or nullified in the computed spectra. The biggest worry with regard to these distortions is not only that they may mask the actual information contained in the original signal, but also they may tempt the researcher to establish false characteristics about the signal involved. It is, in this context, that any reasonable method that could be used (even conditionally) to pinpoint false structures in computed power spectra would be both timely and useful. A simple, handy guidance through which some portions of computed energy density spectra which are dominated by the false structures mentioned above, can be located is presented herein. Equations are presented which give the various frequencies at which false peaks may be located in such ''contaminated'' portions of computed energy density spectra. The occurrence of frequency shifts in computed power spectra is also briefly discussed. (author)
Olivari, L. C.; Dickinson, C.; Battye, R. A.; Ma, Y.-Z.; Costa, A. A.; Remazeilles, M.; Harper, S.
2018-01-01
H I intensity mapping is a new observational technique to survey the large-scale structure of matter using the 21 cm emission line of atomic hydrogen (H I). In this work, we simulate BINGO (BAO from Integrated Neutral Gas Observations) and SKA (Square Kilometre Array) phase-1 dish array operating in autocorrelation mode. For the optimal case of BINGO with no foregrounds, the combination of the H I angular power spectra with Planck results allows w to be measured with a precision of 4 per cent, while the combination of the BAO acoustic scale with Planck gives a precision of 7 per cent. We consider a number of potentially complicating effects, including foregrounds and redshift-dependent bias, which increase the uncertainty on w but not dramatically; in all cases, the final uncertainty is found to be Δw ideal conditions, w can be measured with a precision of 4 per cent for the redshift range 0.35 < z < 3 (350-1050 MHz) and 2 per cent for 0 < z < 0.49 (950-1421 MHz). Extending the model to include the sum of neutrino masses yields a 95 per cent upper limit of ∑mν < 0.24 eV for BINGO and ∑mν < 0.08 eV for SKA phase 1, competitive with the current best constraints in the case of BINGO and significantly better than them in the case of SKA.
Simple emergent power spectra from complex inflationary physics
International Nuclear Information System (INIS)
Dias, Mafalda; Frazer, Jonathan; Marsh, M.C. David
2016-04-01
We construct ensembles of random scalar potentials for N f interacting scalar fields using non-equilibrium random matrix theory, and use these to study the generation of observables during small-field inflation. For N f =O(few), these heavily featured scalar potentials give rise to power spectra that are highly non-linear, at odds with observations. For N f >>1, the superhorizon evolution of the perturbations is generically substantial, yet the power spectra simplify considerably and become more predictive, with most realisations being well approximated by a linear power spectrum. This provides proof of principle that complex inflationary physics can give rise to simple emergent power spectra. We explain how these results can be understood in terms of large N f universality of random matrix theory.
Power spectra of extinction in the fossil record
Newman, M. E. J.; Eble, Gunther J.
1998-01-01
Recent Fourier analyses of fossil extinction data have indicated that the power spectrum of extinction during the Phanerozoic may take the form of 1/f noise, a result which, it has been suggested, could be indicative of the presence of `critical dynamics' in the processes giving rise to extinction. In this paper we examine extinction power spectra in some detail, using family-level data from two widely available compilations. We find that although the average form of the power spectrum roughl...
International Nuclear Information System (INIS)
Gabriel, T.A.; Bishop, B.L.
1978-01-01
The sensitivity of primary knock-on atom (PKA) spectra and displacement per atom (DPA) cross sections to different secondary neutron energy and angular distributions and ''in-group'' weighting schemes is investigated. It is shown that the sensitivity of the PKA spectra and DPA cross sections for the (n,n' unresolved) and (n,2n) reactions in Fe to different angular distributions and the same secondary neutron spectrum is reasonably large (approximately 15%), whereas the sensitivity of these quantities to grossly different secondary neutron spectra and the same angular distribution is unexpectedly small. It is also shown that for Al the sensitivity of damage energy cross sections to different ''in-group'' weighting schemes is, for the most part, small
The concept of mass angular scattering power and its relation to the diffusion constant
International Nuclear Information System (INIS)
Sandison, George A.; Papiez, Lech S.
1998-01-01
An understanding of the scattering of high energy charged particle beams by tissue is required in radiotherapy since the particle trajectories determine the pattern of radiation dose deposition in patients. Numerical calculations of radiation dose often utilize energy dependent values of the angular scattering power. However, the physics literature is replete with confused interpretations of the concept of angular scattering power and its relation to the single scattering cross section for the medium or the diffusion constant in the diffusional limit. The purpose of this article is to clarify these notions
Information rates and power spectra of digital codes
DEFF Research Database (Denmark)
Justesen, Jørn
1982-01-01
is expressed in terms of the rate distortion function for a memoryless finite alphabet source and mean-square error distortion measure. A class of simple dc-free power spectra is considered in detail, and a method for constructing Markov sources with such spectra is derived. It is found that these sequences......The encoding of independent data symbols as a sequence of discrete amplitude, real variables with given power spectrum is considered. The maximum rate of such an encoding is determined by the achievable entropy of the discrete sequence with the given constraints. An upper bound to this entropy...... have greater entropies than most codes with similar spectra that have been suggested earlier, and that they often come close to the upper bound. When the constraint on the power spectrum is replaced by a constraint On the variance of the sum of the encoded symbols, a stronger upper bound to the rate...
International Nuclear Information System (INIS)
Merz, A.; Ruf, M.; Hotop, H.
1992-01-01
We present the first angle-dependent energy spectra for the basic autoionization process He * (2 3 S)+H(1 2 S) leading to Penning ionization (→He+H + +e - ; PI) and associative ionization [→HeH + (v + ,J + )+e - ; AI]. Our results include electron energy spectra for both reaction channels and the H + -ion energy spectra for PI. The variation of the electron spectra with angle demonstrates the presence of substantial contributions from non-s-type electron partial waves, with the angle-dependent electron signals due to AI yielding clear information on the internal electron angular distribution of the autoionizing quasimolecule
DEFF Research Database (Denmark)
Adam, R.; Ade, P. A. R.; Aghanim, N.
2016-01-01
blackbody emission with beta(d) = 1.59 and T-d = 19.6 K down to the lowest Planck HFI frequencies. We find a systematic difference between the amplitudes of the Galactic B-and E-modes, C-l(BB) = C-l(EE) = 0.5. We verify that these general properties are preserved towards high Galactic latitudes with low...... experiments. Despite the non-Gaussian and anisotropic nature of Galactic dust, we show that general statistical properties of the emission can be characterized accurately over large fractions of the sky using angular power spectra. The polarization power spectra of the dust are well described by power laws...... field recently targeted by the BICEP2 experiment. Extrapolation of the Planck 353 GHz data to 150 GHz gives a dust power D-l(BB) equivalent to l(l + 1)C-l(BB)/(2 pi) of 1.32 x 10(-2) mu K-CMB(2) over the multipole range of the primordial recombination bump (40
Efficient estimation of burst-mode LDA power spectra
DEFF Research Database (Denmark)
Velte, Clara Marika; George, William K
2010-01-01
The estimation of power spectra from LDA data provides signal processing challenges for fluid dynamicists for several reasons. Acquisition is dictated by randomly arriving particles which cause the signal to be highly intermittent. This both creates self-noise and causes the measured velocities...... the velocity bias effects. Residence time weighting should also be used to compute velocity spectra. The residence time-weighted direct Fourier transform can, however, be computationally heavy, especially for the large data sets needed to eliminate finite time window effects and given the increased...... requirements for good statistical convergence due to the random sampling of the data. In the present work, the theory for estimating burst-mode LDA spectra using residence time weighting is discussed and a practical estimator is derived and applied. A brief discussion on the self-noise in spectra...
Anisotropic Behaviour of Magnetic Power Spectra in Solar Wind Turbulence.
Banerjee, S.; Saur, J.; Gerick, F.; von Papen, M.
2017-12-01
Introduction:High altitude fast solar wind turbulence (SWT) shows different spectral properties as a function of the angle between the flow direction and the scale dependent mean magnetic field (Horbury et al., PRL, 2008). The average magnetic power contained in the near perpendicular direction (80º-90º) was found to be approximately 5 times larger than the average power in the parallel direction (0º- 10º). In addition, the parallel power spectra was found to give a steeper (-2) power law than the perpendicular power spectral density (PSD) which followed a near Kolmogorov slope (-5/3). Similar anisotropic behaviour has also been observed (Chen et al., MNRAS, 2011) for slow solar wind (SSW), but using a different method exploiting multi-spacecraft data of Cluster. Purpose:In the current study, using Ulysses data, we investigate (i) the anisotropic behaviour of near ecliptic slow solar wind using the same methodology (described below) as that of Horbury et al. (2008) and (ii) the dependence of the anisotropic behaviour of SWT as a function of the heliospheric latitude.Method:We apply the wavelet method to calculate the turbulent power spectra of the magnetic field fluctuations parallel and perpendicular to the local mean magnetic field (LMF). According to Horbury et al., LMF for a given scale (or size) is obtained using an envelope of the envelope of that size. Results:(i) SSW intervals always show near -5/3 perpendicular spectra. Unlike the fast solar wind (FSW) intervals, for SSW, we often find intervals where power parallel to the mean field is not observed. For a few intervals with sufficient power in parallel direction, slow wind turbulence also exhibit -2 parallel spectra similar to FSW.(ii) The behaviours of parallel and perpendicular power spectra are found to be independent of the heliospheric latitude. Conclusion:In the current study we do not find significant influence of the heliospheric latitude on the spectral slopes of parallel and perpendicular
Metzkes, J; Karsch, L; Kraft, S D; Pawelke, J; Richter, C; Schürer, M; Sobiella, M; Stiller, N; Zeil, K; Schramm, U
2012-12-01
In recent years, a new generation of high repetition rate (~10 Hz), high power (~100 TW) laser systems has stimulated intense research on laser-driven sources for fast protons. Considering experimental instrumentation, this development requires online diagnostics for protons to be added to the established offline detection tools such as solid state track detectors or radiochromic films. In this article, we present the design and characterization of a scintillator-based online detector that gives access to the angularly resolved proton distribution along one spatial dimension and resolves 10 different proton energy ranges. Conceived as an online detector for key parameters in laser-proton acceleration, such as the maximum proton energy and the angular distribution, the detector features a spatial resolution of ~1.3 mm and a spectral resolution better than 1.5 MeV for a maximum proton energy above 12 MeV in the current design. Regarding its areas of application, we consider the detector a useful complement to radiochromic films and Thomson parabola spectrometers, capable to give immediate feedback on the experimental performance. The detector was characterized at an electrostatic Van de Graaff tandetron accelerator and tested in a laser-proton acceleration experiment, proving its suitability as a diagnostic device for laser-accelerated protons.
A Comparison of Maps and Power Spectra Determined from South Pole Telescope and Planck Data
Hou, Z.; Aylor, K.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Cho, H.-M.; Chown, R.; Crawford, T. M.; Crites, A. T.; de Haan, T.; Dobbs, M. A.; Everett, W. B.; Follin, B.; George, E. M.; Halverson, N. W.; Harrington, N. L.; Holder, G. P.; Holzapfel, W. L.; Hrubes, J. D.; Keisler, R.; Knox, L.; Lee, A. T.; Leitch, E. M.; Luong-Van, D.; Marrone, D. P.; McMahon, J. J.; Meyer, S. S.; Millea, M.; Mocanu, L. M.; Mohr, J. J.; Natoli, T.; Omori, Y.; Padin, S.; Pryke, C.; Reichardt, C. L.; Ruhl, J. E.; Sayre, J. T.; Schaffer, K. K.; Shirokoff, E.; Staniszewski, Z.; Stark, A. A.; Story, K. T.; Vanderlinde, K.; Vieira, J. D.; Williamson, R.
2018-01-01
We study the consistency of 150 GHz data from the South Pole Telescope (SPT) and 143 GHz data from the Planck satellite over the patch of sky covered by the SPT-SZ survey. We first visually compare the maps and find that the residuals appear consistent with noise after accounting for differences in angular resolution and filtering. We then calculate (1) the cross-spectrum between two independent halves of SPT data, (2) the cross-spectrum between two independent halves of Planck data, and (3) the cross-spectrum between SPT and Planck data. We find that the three cross-spectra are well fit (PTE = 0.30) by the null hypothesis in which both experiments have measured the same sky map up to a single free calibration parameter—i.e., we find no evidence for systematic errors in either data set. As a by-product, we improve the precision of the SPT calibration by nearly an order of magnitude, from 2.6% to 0.3% in power. Finally, we compare all three cross-spectra to the full-sky Planck power spectrum and find marginal evidence for differences between the power spectra from the SPT-SZ footprint and the full sky. We model these differences as a power law in spherical harmonic multipole number. The best-fit value of this tilt is consistent among the three cross-spectra in the SPT-SZ footprint, implying that the source of this tilt is a sample variance fluctuation in the SPT-SZ region relative to the full sky. The consistency of cosmological parameters derived from these data sets is discussed in a companion paper.
Spatial variation of AIA coronal Fourier power spectra
Ireland, J.; Mcateer, R. T. J.
2015-12-01
We describe a study of the spatial distribution of the properties of the Fourier power spectrum of time-series of AIA 171Å and 193Å data. The area studied includes examples of physically different components of the corona, such as coronal moss, a sunspot, quiet Sun and fan loop footpoints. We show that a large fraction of the power spectra are well modeled by a power spectrum that behaves like a power law f-n (n>0)at lower frequencies f, dropping to a constant value at higher frequencies. We also show that there are areas where the power spectra are better described by the above power spectrum model, plus a narrow band oscillatory feature, centered in the 3-5 minute oscillation range. These narrow-band spectral features are thought to be due to the propagation of oscillations from lower down in solar atmosphere to hotter. This allows us to produce maps of large areas of the corona showing where the propagation from one waveband to another does and does not occur. This is an important step in understanding wave propagation in different layers in the corona. We also show the 171Å and 193Å power spectrum power law indices are correlated, with 171Å power law indices in the range n = 1.8 to 2.8, and 193Å power law indices n = 2 to 3.5 approximately. Maps of the power law index show that different ranges of values of the power law indices occur in spatially contiguous parts of the corona, indicating that local spatial structure may play a role in defining the power law index value. Taken with our previous result from Ireland et al. (2015) that physically different parts of the corona have different mean values of the power law index, this new result strongly suggests that the same mechanism producing the observed power law power spectrum is operating everywhere across the corona. We discuss the nanoflare hypothesis as a possible explanation of these observations.
Issues concerning loop corrections to the primordial power spectra
Energy Technology Data Exchange (ETDEWEB)
Miao, S.P. [Institute for Theoretical Physics and Spinoza Institute, Utrecht University, Leuvenlaan 4, Postbus 80.195, 3508 TD Utrecht (Netherlands); Woodard, R.P., E-mail: S.Miao@uu.nl, E-mail: woodard@phys.ufl.edu [Department of Physics, University of Florida, Gainesville, FL 32611 (United States)
2012-07-01
We expound ten principles in an attempt to clarify the debate over infrared loop corrections to the primordial scalar and tensor power spectra from inflation. Among other things we note that existing proposals for nonlinear extensions of the scalar fluctuation field ζ introduce new ultraviolet divergences which no one understands how to renormalize. Loop corrections and higher correlators of these putative observables would also be enhanced by inverse powers of the slow roll parameter ε. We propose an extension which should be better behaved.
The characteristics of EEG power spectra changes after ACL rupture.
Directory of Open Access Journals (Sweden)
Xin Miao
Full Text Available Reestablishing knee stability is the core of the treatment of ACL (Anterior Cruciate Ligament injury. Some patients still have a feeling of instability of the knee after ACL injury treatment. This unstable feeling may be caused by central nervous system changes after ACL rupture.To identify the central changes after ACL rupture, EEG spectra were recorded to compare ACL patients and healthy controls when they were walking, jogging, and landing.There was a significant increase in delta, theta, alpha and beta band power during walking, jogging and landing in ACL patients. We also found an asymmetry phenomenon of EEG only in the ACL patients, mainly in the frontal area and central-parietal area. The asymmetry of beta band power extended to the frontal and the central area during jogging and landing task.There were significant differences in EEG power spectra between the ACL patients and healthy people. ACL patients showed high EEG band power activities and an asymmetry phenomenon. EEG power changes were affected by movements, the asymmetry extended when performing more complicated movements.
Diagnosis of power generator sets by analyzing the crank shaft angular speed
International Nuclear Information System (INIS)
Desbazeille, M.
2010-07-01
This thesis deals with the diagnosis of a powerful 20-cylinder diesel engine which runs a generator set in a nuclear plant. The objective is to make a diagnosis by analyzing the crank shaft angular speed variations. Only combustion related faults are investigated. As the engine is very large, the first crank shaft natural modes are in the low frequencies. Torsional vibrations of the flexible crank shaft strongly complicate the analysis of the angular speed variations. Little attention has been paid to such large engines in the literature. First, a dynamical model with the assumption of a flexible crank shaft is established. The parameters of the model are optimized with the help of actual data. Then, an original automated diagnosis based on pattern recognition of the angular speed waveforms is proposed. Indeed, any faulty cylinder in combustion stroke will distort the angular speed waveform in a specific way which depends on its location with respect to nodes and anti-nodes of the modes. Reference patterns, representative of the engine conditions, are computed with the model constituting the main originality of this work. Promising results are obtained in operational phase. An experimental fuel leakage fault was correctly diagnosed, including detection and localization of the faulty cylinder and an indication of the severity of the fault. (author)
Energy Technology Data Exchange (ETDEWEB)
Jeon, Jong Ho, E-mail: jhjeon07@ibs.re.kr; Nakajima, Kazuhisa, E-mail: naka115@dia-net.ne.jp; Rhee, Yong Joo; Pathak, Vishwa Bandhu; Cho, Myung Hoon; Shin, Jung Hun; Yoo, Byung Ju; Jo, Sung Ha; Shin, Kang Woo [Center for Relativistic Laser Science, Institute for Basic Science (IBS), Gwangju 61005 (Korea, Republic of); Kim, Hyung Taek; Sung, Jae Hee; Lee, Seong Ku; Choi, Il Woo [Center for Relativistic Laser Science, Institute for Basic Science (IBS), Gwangju 61005 (Korea, Republic of); Advanced Photonics Research Institute, GIST, Gwangju 61005 (Korea, Republic of); Hojbota, Calin; Bae, Lee Jin; Jung, Jaehyung; Cho, Min Sang; Cho, Byoung Ick; Nam, Chang Hee [Center for Relativistic Laser Science, Institute for Basic Science (IBS), Gwangju 61005 (Korea, Republic of); Department of Physics and Photon Science, GIST, Gwangju 61005 (Korea, Republic of)
2016-07-15
Measurement of angularly dependent spectra of betatron gamma-rays radiated by GeV electron beams from laser wakefield accelerators (LWFAs) are presented. The angle-resolved spectrum of betatron radiation was deconvolved from the position dependent data measured for a single laser shot with a broadband gamma-ray spectrometer comprising four-quadrant sectored range filters and an unfolding algorithm, based on the Monte Carlo code GEANT4. The unfolded gamma-ray spectra in the photon energy range of 0.1–10 MeV revealed an approximately isotropic angular dependence of the peak photon energy and photon energy-integrated fluence. As expected by the analysis of betatron radiation from LWFAs, the results indicate that unpolarized gamma-rays are emitted by electrons undergoing betatron motion in isotropically distributed orbit planes.
Reduction of noise and bias in randomly sampled power spectra
DEFF Research Database (Denmark)
Buchhave, Preben; Velte, Clara Marika
2015-01-01
by modifications of the ideal Poisson sample rate caused by dead time effects and correlations between velocity and sample rate. The noise and dead time effects for finite records are shown to tend to previous results for infinite time records and ensemble averages. For finite records, we show that the measured...... sampling function can be used to correct the spectra for noise and dead time effects by a deconvolution process. We also describe a novel version of a power spectral estimator based on a fast slotted autocovariance algorithm.......We consider the origin of noise and distortion in power spectral estimates of randomly sampled data, specifically velocity data measured with a burst-mode laser Doppler anemometer. The analysis guides us to new ways of reducing noise and removing spectral bias, e.g., distortions caused...
Adam, R.; Aghanim, N.; Arnaud, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartlett, J.G.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoit-Levy, A.; Bernard, J.P.; Bersanelli, M.; Bielewicz, P.; Bonaldi, A.; Bonavera, L.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Boulanger, F.; Bracco, A.; Bucher, M.; Burigana, C.; Butler, R.C.; Calabrese, E.; Cardoso, J.F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.R.; Chiang, H.C.; Christensen, P.R.; Clements, D.L.; Colombi, S.; Colombo, L.P.L.; Combet, C.; Couchot, F.; Coulais, A.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R.D.; Davis, R.J.; de Bernardis, P.; de Zotti, G.; Delabrouille, J.; Delouis, J.M.; Desert, F.X.; Dickinson, C.; Diego, J.M.; Dolag, K.; Dole, H.; Donzelli, S.; Dore, O.; Douspis, M.; Ducout, A.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Elsner, F.; Ensslin, T.A.; Eriksen, H.K.; Falgarone, E.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A.A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Ghosh, T.; Giard, M.; Giraud-Heraud, Y.; Gjerlow, E.; Gonzalez-Nuevo, J.; Gorski, K.M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Guillet, V.; Hansen, F.K.; Hanson, D.; Harrison, D.L.; Helou, G.; Henrot-Versille, S.; Hernandez-Monteagudo, C.; Herranz, D.; Hivon, E.; Holmes, W.A.; Huffenberger, K.M.; Hurier, G.; Jaffe, A.H.; Jaffe, T.R.; Jewell, J.; Jones, W.C.; Juvela, M.; Keihanen, E.; Keskitalo, R.; Kisner, T.S.; Kneissl, R.; Knoche, J.; Knox, L.; Krachmalnicoff, N.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.M.; Lasenby, A.; Lattanzi, M.; Lawrence, C.R.; Leahy, J.P.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P.B.; Linden-Vornle, M.; Lopez-Caniego, M.; Lubin, P.M.; Macias-Perez, J.F.; Maffei, B.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P.G.; Martinez-Gonzalez, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschenes, M.A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J.A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C.B.; Norgaard-Nielsen, H.U.; Noviello, F.; Novikov, D.; Novikov, I.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T.J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Pratt, G.W.; Prunet, S.; Puget, J.L.; Rachen, J.P.; Reach, W.T.; Rebolo, R.; Remazeilles, M.; Renault, C.; Renzi, A.; Ricciardi, S.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; d'Orfeuil, B.Rouille; Rubino-Martin, J.A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Soler, J.D.; Spencer, L.D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.S.; Sygnet, J.F.; Tauber, J.A.; Terenzi, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vibert, L.; Vielva, P.; Villa, F.; Wade, L.A.; Wandelt, B.D.; Watson, R.; Wehus, I.K.; White, M.; White, S.D.M.; Yvon, D.; Zacchei, A.; Zonca, A.
2016-02-09
The polarized thermal emission from Galactic dust is the main foreground present in measurements of the polarization of the cosmic microwave background (CMB) at frequencies above 100GHz. We exploit the Planck HFI polarization data from 100 to 353GHz to measure the dust angular power spectra $C_\\ell^{EE,BB}$ over the range $40<\\ell<600$. These will bring new insights into interstellar dust physics and a precise determination of the level of contamination for CMB polarization experiments. We show that statistical properties of the emission can be characterized over large fractions of the sky using $C_\\ell$. For the dust, they are well described by power laws in $\\ell$ with exponents $\\alpha^{EE,BB}=-2.42\\pm0.02$. The amplitudes of the polarization $C_\\ell$ vary with the average brightness in a way similar to the intensity ones. The dust polarization frequency dependence is consistent with modified blackbody emission with $\\beta_d=1.59$ and $T_d=19.6$K. We find a systematic ratio between the amplitudes of ...
Running from features: Optimized evaluation of inflationary power spectra
Motohashi, Hayato; Hu, Wayne
2015-08-01
In models like axion monodromy, temporal features during inflation which are not associated with its ending can produce scalar, and to a lesser extent, tensor power spectra where deviations from scale-free power law spectra can be as large as the deviations from scale invariance itself. Here the standard slow-roll approach breaks down since its parameters evolve on an e -folding scale Δ N much smaller than the e -folds to the end of inflation. Using the generalized slow-roll approach, we show that the expansion of observables in a hierarchy of potential or Hubble evolution parameters comes from a Taylor expansion of the features around an evaluation point that can be optimized. Optimization of the leading-order expression provides a sufficiently accurate approximation for current data as long as the power spectrum can be described over the well-observed few e -folds by the local tilt and running. Standard second-order approaches, often used in the literature, ironically are worse than leading-order approaches due to inconsistent evaluation of observables. We develop a new optimized next-order approach which predicts observables to 10-3 even for Δ N ˜1 where all parameters in the infinite hierarchy are of comparable magnitude. For models with Δ N ≪1 , the generalized slow-roll approach provides integral expressions that are accurate to second order in the deviation from scale invariance. Their evaluation in the monodromy model provides highly accurate explicit relations between the running oscillation amplitude, frequency, and phase in the curvature spectrum and parameters of the potential.
Energy Technology Data Exchange (ETDEWEB)
Hilger, T.; Krassnigg, A. [University of Graz, NAWI Graz, Institute of Physics, Graz (Austria); Gomez-Rocha, M. [ECT*, Villazzano, Trento (Italy)
2017-09-15
We investigate the light-quarkonium spectrum using a covariant Dyson-Schwinger-Bethe-Salpeter-equation approach to QCD. We discuss splittings among as well as orbital angular momentum properties of various states in detail and analyze common features of mass splittings with regard to properties of the effective interaction. In particular, we predict the mass of anti ss exotic 1{sup -+} states, and identify orbital angular momentum content in the excitations of the ρ meson. Comparing our covariant model results, the ρ and its second excitation being predominantly S-wave, the first excitation being predominantly D-wave, to corresponding conflicting lattice-QCD studies, we investigate the pion-mass dependence of the orbital-angular-momentum assignment and find a crossing at a scale of m{sub π} ∝ 1.4 GeV. If this crossing turns out to be a feature of the spectrum generated by lattice-QCD studies as well, it may reconcile the different results, since they have been obtained at different values of m{sub π}. (orig.)
Power Spectra, Power Law Exponents, and Anisotropy of Solar Wind Turbulence at Small Scales
Podesta, J. J.; Roberts, D. A.; Goldstein, M. L.
2006-01-01
The Wind spacecraft provides simultaneous solar wind velocity and magnetic field measurements with 3- second time resolution, roughly an order of magnitude faster than previous measurements, enabling the small scale features of solar wind turbulence to be studied in unprecedented detail. Almost the entire inertial range can now be explored (the inertial range extends from approximately 1 to 10(exp 3) seconds in the spacecraft frame) although the dissipation range of the velocity fluctuations is still out of reach. Improved measurements of solar wind turbulence spectra at 1 AU in the ecliptic plane are presented including spectra of the energy and cross-helicity, the magnetic and kinetic energies, the Alfven ratio, the normalized cross-helicity, and the Elsasser ratio. Some recent observations and theoretical challenges are discussed including the observation that the velocity and magnetic field spectra often show different power law exponents with values close to 3/2 and 5/3, respectively; the energy (kinetic plus magnetic) and cross-helicity often have approximately equal power law exponents with values intermediate between 3/2 and 5/3; and the Alfven ratio, the ratio of the kinetic to magnetic energy spectra, is often a slowly increasing function of frequency increasing from around 0.4 to 1 for frequencies in the inertial range. Differences between high- and low-speed wind are also discussed. Comparisons with phenomenological turbulence theories show that important aspects of the physics are yet unexplained.
Cho, Hyunsu; Lee, Hyunkoo; Lee, Jonghee; Sung, Woo Jin; Kwon, Byoung-Hwa; Joo, Chul-Woong; Shin, Jin-Wook; Han, Jun-Han; Moon, Jaehyun; Lee, Jeong-Ik; Cho, Seungmin; Cho, Nam Sung
2017-05-01
In this work, we suggest a graphene/ poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) composite as a transparent electrode for stabilizing white emission of organic light-emitting diodes (OLEDs). Graphene/PEDOT:PSS composite electrodes have increased reflectance when compared to graphene itself, but their reflectance is still lower than that of ITO itself. Changes in the reflectance of the composite electrode have the advantage of suppressing the angular spectral distortion of white emission OLEDs and achieving an efficiency of 16.6% for white OLEDs, comparable to that achieved by graphene-only electrodes. By controlling the OLED structure to compensate for the two-beam interference effect, the CIE color coordinate change (Δxy) of OLEDs based on graphene/PEDOT:PSS composite electrodes is 0.018, less than that based on graphene-only electrode, i.e.,0.027.
Directory of Open Access Journals (Sweden)
Yu Tong
2016-02-01
Full Text Available Photoacoustic Doppler (PAD power spectra showing an evident Doppler shift represent the major characteristics of the continuous wave-excited or burst wave-excited versions of PAD flow measurements. In this paper, the flow angle dependences of the PAD power spectra are investigated using an experiment setup that was established based on intensity-modulated continuous wave laser excitation. The setup has an overall configuration that is similar to a previously reported configuration, but is more sophisticated in that it accurately aligns the laser illumination with the ultrasound detection process, and in that it picks up the correct sample position. In the analysis of the power spectra data, we find that the background power spectra can be extracted by combining the output signals from the two channels of the lock-in amplifier, which is very useful for identification of the PAD power spectra. The power spectra are presented and analyzed in opposite flow directions, at different flow speeds, and at different flow angles. The power spectra at a 90° flow angle show the unique properties of symmetrical shapes due to PAD broadening. For the other flow angles, the smoothed power spectra clearly show a flow angle cosine relationship.
Distortions in power spectra of digitized signals - I: General formulations
International Nuclear Information System (INIS)
Njau, E.C.
1982-04-01
When a continuous signal f(t) is digitized and then spectrally analysed, the resultant energy spectral density R(ω) is given as R(ω) = |F(ω) * D(ω)| 2 , where F(ω) is the exact Fourier transform of f(t), D(ω) is the exact Fourier transform of the digitization process and * denotes convolution operation. A notable practical problem in spectral analysis is how to adequately decouple D(ω) from R(ω) and hence obtain the exact energy spectral density of f(t), i.e. |F(ω)| 2 , since R(ω) → |F(ω)| 2 only if D(ω) → delta(ω) or (under certain conditions) when D(ω) → delta(ω-ω 0 ) or if D(ω) → Σsub(n) delta(ω-ωsub(n)), where the latter is a sufficiently spaced series of delta functions and ωsub(j) is constant for a given j. A solution to this problem requires, among others, thorough understanding of D(ω), how it relates to F(ω) and hence the manner or degree to which D(ω) distorts or contaminates F(ω) to form R(ω). In this paper, we have developed exact analytical expressions of D(ω) that are well related to the corresponding F(ω) in the cases when f(t) is a simple sinusoid as well as when it is in the form of a more complex function. It is established that in either of these cases, D(ω) is a clear function of the salient parameters of both f(t) and F(ω). The contents of this paper are used in Part II to examine the manner and extent to which D(ω) causes distortions in R(ω) under given conditions, and also to establish a procedure by which such distortions may be decoupled from a practically computed R(ω). Other related issues such as frequency shifts in computed power spectra are also discussed therein. (author)
Tang, Jiayu; Kayo, Issha; Takada, Masahiro
2011-09-01
We develop a maximum likelihood based method of reconstructing the band powers of the density and velocity power spectra at each wavenumber bin from the measured clustering features of galaxies in redshift space, including marginalization over uncertainties inherent in the small-scale, non-linear redshift distortion, the Fingers-of-God (FoG) effect. The reconstruction can be done assuming that the density and velocity power spectra depend on the redshift-space power spectrum having different angular modulations of μ with μ2n (n= 0, 1, 2) and that the model FoG effect is given as a multiplicative function in the redshift-space spectrum. By using N-body simulations and the halo catalogues, we test our method by comparing the reconstructed power spectra with the spectra directly measured from the simulations. For the spectrum of μ0 or equivalently the density power spectrum Pδδ(k), our method recovers the amplitudes to an accuracy of a few per cent up to k≃ 0.3 h Mpc-1 for both dark matter and haloes. For the power spectrum of μ2, which is equivalent to the density-velocity power spectrum Pδθ(k) in the linear regime, our method can recover, within the statistical errors, the input power spectrum for dark matter up to k≃ 0.2 h Mpc-1 and at both redshifts z= 0 and 1, if the adequate FoG model being marginalized over is employed. However, for the halo spectrum that is least affected by the FoG effect, the reconstructed spectrum shows greater amplitudes than the spectrum Pδθ(k) inferred from the simulations over a range of wavenumbers 0.05 ≤k≤ 0.3 h Mpc-1. We argue that the disagreement may be ascribed to a non-linearity effect that arises from the cross-bispectra of density and velocity perturbations. Using the perturbation theory and assuming Einstein gravity as in simulations, we derive the non-linear correction term to the redshift-space spectrum, and find that the leading-order correction term is proportional to μ2 and increases the μ2-power
Seismic design spectra for nuclear power plants, state-of-the-art
International Nuclear Information System (INIS)
Michalopoulos, A.P.; Shukla, D.K.
1976-01-01
The State-of-the-Art of nuclear power plant design involves the use of design response spectra together with a modal analysis of a mathematical idealization of the actual structure. The design response spectra give the maximum response to ground shaking for a family of single degree-of-freedom viscously damped oscillators. These spectra are usually described as an accelerogram giving ground acceleration as a function of time. The definition of a 'standard' design response spectra is reviewed and illustrated by data relevant to 'hard' or rock sites. Finally, the paper recommends a set of design response spectra applicable to rock sites
Planck 2013 results. XV. CMB power spectra and likelihood
DEFF Research Database (Denmark)
Tauber, Jan; Bartlett, J.G.; Bucher, M.
2014-01-01
This paper presents the Planck 2013 likelihood, a complete statistical description of the two-point correlation function of the CMB temperature fluctuations that accounts for all known relevant uncertainties, both instrumental and astrophysical in nature. We use this likelihood to derive our best......, as well as with cross-spectra derived from the 70 GHz Planck map, and find broad agreement in terms of spectrum residuals and cosmological parameters. We further show that the best-fit CDM cosmology is in excellent agreement with preliminary PlanckEE and TE polarisation spectra. We find that the standard...... CDM cosmology is well constrained by Planck from the measurements at 1500. One specific example is the spectral index of scalar perturbations, for which we report a 5.4 deviation from scale invariance, n= 1. Increasingthe multipole range beyond 1500 does not increase our accuracy for the CDM...
Crustal geomagnetic field - Two-dimensional intermediate-wavelength spatial power spectra
Mcleod, M. G.
1983-01-01
Two-dimensional Fourier spatial power spectra of equivalent magnetization values are presented for a region that includes a large portion of the western United States. The magnetization values were determined by inversion of POGO satellite data, assuming a magnetic crust 40 km thick, and were located on an 11 x 10 array with 300 km grid spacing. The spectra appear to be in good agreement with values of the crustal geomagnetic field spatial power spectra given by McLeod and Coleman (1980) and with the crustal field model given by Serson and Hannaford (1957). The spectra show evidence of noise at low frequencies in the direction along the satellite orbital track (N-S). indicating that for this particular data set additional filtering would probably be desirable. These findings illustrate the value of two-dimensional spatial power spectra both for describing the geomagnetic field statistically and as a guide for diagnosing possible noise sources.
Estimation of burst-mode LDA power spectra
DEFF Research Database (Denmark)
Velte, Clara Marika; George, William K.; Buchhave, Preben
2014-01-01
. The signal can be interpreted correctly by applying residence time weighting to all statistics and using the residence time-weighted discrete Fourier transform to compute the Fourier transform. A new spectral algorithm using the latter is applied to two experiments: a cylinder wake and an axisymmetric...... turbulent jet. These are compared with corresponding hot-wire spectra as well as to alternative algorithms for LDA signals such as the time-slot correlation method, sample-and-hold and common weighting schemes....
A simplified method of estimating noise power spectra
International Nuclear Information System (INIS)
Hanson, K.M.
1998-01-01
A technique to estimate the radial dependence of the noise power spectrum of images is proposed in which the calculations are conducted solely in the spatial domain of the noise image. The noise power spectrum averaged over a radial spatial-frequency interval is obtained form the variance of a noise image that has been convolved with a small kernel that approximates a Laplacian operator. Recursive consolidation of the image by factors of two in each dimension yields estimates of the noise power spectrum over that full range of spatial frequencies
A simplified method of estimating noise power spectra
Energy Technology Data Exchange (ETDEWEB)
Hanson, K.M.
1998-12-01
A technique to estimate the radial dependence of the noise power spectrum of images is proposed in which the calculations are conducted solely in the spatial domain of the noise image. The noise power spectrum averaged over a radial spatial-frequency interval is obtained form the variance of a noise image that has been convolved with a small kernel that approximates a Laplacian operator. Recursive consolidation of the image by factors of two in each dimension yields estimates of the noise power spectrum over that full range of spatial frequencies.
Exponential power spectra, deterministic chaos and Lorentzian pulses in plasma edge dynamics
International Nuclear Information System (INIS)
Maggs, J E; Morales, G J
2012-01-01
Exponential spectra have been observed in the edges of tokamaks, stellarators, helical devices and linear machines. The observation of exponential power spectra is significant because such a spectral character has been closely associated with the phenomenon of deterministic chaos by the nonlinear dynamics community. The proximate cause of exponential power spectra in both magnetized plasma edges and nonlinear dynamics models is the occurrence of Lorentzian pulses in the time signals of fluctuations. Lorentzian pulses are produced by chaotic behavior in the separatrix regions of plasma E × B flow fields or the limit cycle regions of nonlinear models. Chaotic advection, driven by the potential fields of drift waves in plasmas, results in transport. The observation of exponential power spectra and Lorentzian pulses suggests that fluctuations and transport at the edge of magnetized plasmas arise from deterministic, rather than stochastic, dynamics. (paper)
Normalizations of High Taylor Reynolds Number Power Spectra
Puga, Alejandro; Koster, Timothy; Larue, John C.
2014-11-01
The velocity power spectrum provides insight in how the turbulent kinetic energy is transferred from larger to smaller scales. Wind tunnel experiments are conducted where high intensity turbulence is generated by means of an active turbulence grid modeled after Makita's 1991 design (Makita, 1991) as implemented by Mydlarski and Warhaft (M&W, 1998). The goal of this study is to document the evolution of the scaling region and assess the relative collapse of several proposed normalizations over a range of Rλ from 185 to 997. As predicted by Kolmogorov (1963), an asymptotic approach of the slope (n) of the inertial subrange to - 5 / 3 with increasing Rλ is observed. There are three velocity power spectrum normalizations as presented by Kolmogorov (1963), Von Karman and Howarth (1938) and George (1992). Results show that the Von Karman and Howarth normalization does not collapse the velocity power spectrum as well as the Kolmogorov and George normalizations. The Kolmogorov normalization does a good job of collapsing the velocity power spectrum in the normalized high wavenumber range of 0 . 0002 University of California, Irvine Research Fund.
Distribution of Acoustic Power Spectra for an Isolated Helicopter Fuselage
Directory of Open Access Journals (Sweden)
Kusyumov A.N.
2016-01-01
Full Text Available The broadband aerodynamic noise can be studied, assuming isotropic flow, turbulence and decay. Proudman’s approach allows practical calculations of noise based on CFD solutions of RANS or URANS equations at the stage of post processing and analysis of the solution. Another aspect is the broadband acoustic spectrum and the distribution of acoustic power over a range of frequencies. The acoustic energy spectrum distribution in isotropic turbulence is non monotonic and has a maximum at a certain value of Strouhal number. In the present work the value of acoustic power peak frequency is determined using a prescribed form of acoustic energy spectrum distribution presented in papers by S. Sarkar and M. Y. Hussaini and by G. M. Lilley. CFD modelling of the flow around isolated helicopter fuselage model was considered using the HMB CFD code and the RANS equations.
Spherical Harmonic Analyses of Intensity Mapping Power Spectra
Liu, Adrian; Zhang, Yunfan; Parsons, Aaron R.
2016-12-01
Intensity mapping is a promising technique for surveying the large-scale structure of our universe from z = 0 to z ˜ 150, using the brightness temperature field of spectral lines to directly observe previously unexplored portions of our cosmic timeline. Examples of targeted lines include the 21 cm hyperfine transition of neutral hydrogen, rotational lines of carbon monoxide, and fine-structure lines of singly ionized carbon. Recent efforts have focused on detections of the power spectrum of spatial fluctuations, but have been hindered by systematics such as foreground contamination. This has motivated the decomposition of data into Fourier modes perpendicular and parallel to the line of sight, which has been shown to be a particularly powerful way to diagnose systematics. However, such a method is well-defined only in the limit of a narrow-field, flat-sky approximation. This limits the sensitivity of intensity mapping experiments, as it means that wide surveys must be separately analyzed as a patchwork of smaller fields. In this paper, we develop a framework for analyzing intensity mapping data in a spherical Fourier-Bessel basis, which incorporates curved sky effects without difficulty. We use our framework to generalize a number of techniques in intensity mapping data analysis from the flat sky to the curved sky. These include visibility-based estimators for the power spectrum, treatments of interloper lines, and the “foreground wedge” signature of spectrally smooth foregrounds.
SPHERICAL HARMONIC ANALYSES OF INTENSITY MAPPING POWER SPECTRA
Energy Technology Data Exchange (ETDEWEB)
Liu, Adrian; Zhang, Yunfan; Parsons, Aaron R., E-mail: acliu@berkeley.edu [Department of Astronomy and Radio Astronomy Laboratory, University of California Berkeley, Berkeley, CA 94720 (United States)
2016-12-20
Intensity mapping is a promising technique for surveying the large-scale structure of our universe from z = 0 to z ∼ 150, using the brightness temperature field of spectral lines to directly observe previously unexplored portions of our cosmic timeline. Examples of targeted lines include the 21 cm hyperfine transition of neutral hydrogen, rotational lines of carbon monoxide, and fine-structure lines of singly ionized carbon. Recent efforts have focused on detections of the power spectrum of spatial fluctuations, but have been hindered by systematics such as foreground contamination. This has motivated the decomposition of data into Fourier modes perpendicular and parallel to the line of sight, which has been shown to be a particularly powerful way to diagnose systematics. However, such a method is well-defined only in the limit of a narrow-field, flat-sky approximation. This limits the sensitivity of intensity mapping experiments, as it means that wide surveys must be separately analyzed as a patchwork of smaller fields. In this paper, we develop a framework for analyzing intensity mapping data in a spherical Fourier–Bessel basis, which incorporates curved sky effects without difficulty. We use our framework to generalize a number of techniques in intensity mapping data analysis from the flat sky to the curved sky. These include visibility-based estimators for the power spectrum, treatments of interloper lines, and the “foreground wedge” signature of spectrally smooth foregrounds.
Measurement of CIB power spectra over large sky areas from Planck HFI maps
Mak, Daisy Suet Ying; Challinor, Anthony; Efstathiou, George; Lagache, Guilaine
2017-04-01
We present new measurements of the power spectra of the cosmic infrared background (CIB) anisotropies using the Planck 2015 full-mission High frequency instrument data at 353, 545 and 857 GHz over 20 000 deg2. We use techniques similar to those applied for the cosmological analysis of Planck, subtracting dust emission at the power spectrum level. Our analysis gives stable solutions for the CIB power spectra with increasing sky coverage up to about 50 per cent of the sky. These spectra agree well with H I-cleaned spectra from Planck measured on much smaller areas of sky with low Galactic dust emission. At 545 and 857 GHz, our CIB spectra agree well with those measured from Herschel data. We find that the CIB spectra at ℓ ≳ 500 are well fitted by a power-law model for the clustered CIB, with a shallow index γcib = 0.53 ± 0.02. This is consistent with the CIB results at 217 GHz from the cosmological parameter analysis of Planck. We show that a linear combination of the 545 and 857 GHz Planck maps is dominated by the CIB fluctuations at multipoles ℓ ≳ 300.
A Comparison of Maps and Power Spectra Determined from South Pole Telescope and Planck Data
Energy Technology Data Exchange (ETDEWEB)
Hou, Z.; Aylor, K.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Cho, H-M.; Chown, R.; Crawford, T. M.; Crites, A. T.; de Haan, T.; Dobbs, M. A.; Everett, W. B.; Follin, B.; George, E. M.; Halverson, N. W.; Harrington, N. L.; Holder, G. P.; Holzapfel, W. L.; Hrubes, J. D.; Keisler, R.; Knox, L.; Lee, A. T.; Leitch, E. M.; Luong-Van, D.; Marrone, D. P.; McMahon, J. J.; Meyer, S. S.; Millea, M.; Mocanu, L. M.; Mohr, J. J.; Natoli, T.; Omori, Y.; Padin, S.; Pryke, C.; Reichardt, C. L.; Ruhl, J. E.; Sayre, J. T.; Schaffer, K. K.; Shirokoff, E.; Staniszewski, Z.; Stark, A. A.; Story, K. T.; Vanderlinde, K.; Vieira, J. D.; Williamson, R.
2018-01-17
We study the consistency of 150 GHz data from the South Pole Telescope (SPT) and 143 GHz data from the \\textit{Planck} satellite over the 2540 $\\text{deg}^2$ patch of sky covered by the SPT-SZ survey. We first visually compare the maps and find that the map residuals appear consistent with noise after we account for differences in angular resolution and filtering. To make a more quantitative comparison, we calculate (1) the cross-spectrum between two independent halves of SPT 150 GHz data, (2) the cross-spectrum between two independent halves of \\textit{Planck} 143 GHz data, and (3) the cross-spectrum between SPT 150 GHz and \\textit{Planck} 143 GHz data. We find the three cross-spectra are well-fit (PTE = 0.30) by the null hypothesis in which both experiments have measured the same sky map up to a single free parameter characterizing the relative calibration between the two. As a by-product of this analysis, we improve the calibration of SPT data by nearly an order of magnitude, from 2.6\\% to 0.3\\% in power; the best-fit power calibration factor relative to the most recent published SPT calibration is $1.0174 \\pm 0.0033$. Finally, we compare all three cross-spectra to the full-sky \\textit{Planck} $143 \\times 143$ power spectrum and find a hint ($\\sim$1.5$\\sigma$) for differences in the power spectrum of the SPT-SZ footprint and the full-sky power spectrum, which we model and fit as a power law in the spectrum. The best-fit value of this tilt is consistent between the three cross-spectra in the SPT-SZ footprint, implying that the source of this tilt---assuming it is real---is a sample variance fluctuation in the SPT-SZ region relative to the full sky. Despite the precision of our tests, we find no evidence for systematic errors in either data set. The consistency of cosmological parameters derived from these datasets is discussed in a companion paper.
Energy Technology Data Exchange (ETDEWEB)
Rupcich, Franco; Badal, Andreu; Kyprianou, Iacovos; Schmidt, Taly Gilat [Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin 53233 (United States); Division of Imaging and Applied Mathematics (OSEL/CDRH), US Food and Drug Administration, Silver Spring, Maryland 20905 (United States); Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin 53233 (United States)
2012-09-15
Purpose: The purpose of this study was to develop a database for estimating organ dose in a voxelized patient model for coronary angiography and brain perfusion CT acquisitions with any spectra and angular tube current modulation setting. The database enables organ dose estimation for existing and novel acquisition techniques without requiring Monte Carlo simulations. Methods: The study simulated transport of monoenergetic photons between 5 and 150 keV for 1000 projections over 360 Degree-Sign through anthropomorphic voxelized female chest and head (0 Degree-Sign and 30 Degree-Sign tilt) phantoms and standard head and body CTDI dosimetry cylinders. The simulations resulted in tables of normalized dose deposition for several radiosensitive organs quantifying the organ dose per emitted photon for each incident photon energy and projection angle for coronary angiography and brain perfusion acquisitions. The values in a table can be multiplied by an incident spectrum and number of photons at each projection angle and then summed across all energies and angles to estimate total organ dose. Scanner-specific organ dose may be approximated by normalizing the database-estimated organ dose by the database-estimated CTDI{sub vol} and multiplying by a physical CTDI{sub vol} measurement. Two examples are provided demonstrating how to use the tables to estimate relative organ dose. In the first, the change in breast and lung dose during coronary angiography CT scans is calculated for reduced kVp, angular tube current modulation, and partial angle scanning protocols relative to a reference protocol. In the second example, the change in dose to the eye lens is calculated for a brain perfusion CT acquisition in which the gantry is tilted 30 Degree-Sign relative to a nontilted scan. Results: Our database provides tables of normalized dose deposition for several radiosensitive organs irradiated during coronary angiography and brain perfusion CT scans. Validation results indicate
Rupcich, Franco; Badal, Andreu; Kyprianou, Iacovos; Schmidt, Taly Gilat
2012-09-01
The purpose of this study was to develop a database for estimating organ dose in a voxelized patient model for coronary angiography and brain perfusion CT acquisitions with any spectra and angular tube current modulation setting. The database enables organ dose estimation for existing and novel acquisition techniques without requiring Monte Carlo simulations. The study simulated transport of monoenergetic photons between 5 and 150 keV for 1000 projections over 360° through anthropomorphic voxelized female chest and head (0° and 30° tilt) phantoms and standard head and body CTDI dosimetry cylinders. The simulations resulted in tables of normalized dose deposition for several radiosensitive organs quantifying the organ dose per emitted photon for each incident photon energy and projection angle for coronary angiography and brain perfusion acquisitions. The values in a table can be multiplied by an incident spectrum and number of photons at each projection angle and then summed across all energies and angles to estimate total organ dose. Scanner-specific organ dose may be approximated by normalizing the database-estimated organ dose by the database-estimated CTDI(vol) and multiplying by a physical CTDI(vol) measurement. Two examples are provided demonstrating how to use the tables to estimate relative organ dose. In the first, the change in breast and lung dose during coronary angiography CT scans is calculated for reduced kVp, angular tube current modulation, and partial angle scanning protocols relative to a reference protocol. In the second example, the change in dose to the eye lens is calculated for a brain perfusion CT acquisition in which the gantry is tilted 30° relative to a nontilted scan. Our database provides tables of normalized dose deposition for several radiosensitive organs irradiated during coronary angiography and brain perfusion CT scans. Validation results indicate total organ doses calculated using our database are within 1% of those
International Nuclear Information System (INIS)
Rupcich, Franco; Badal, Andreu; Kyprianou, Iacovos; Schmidt, Taly Gilat
2012-01-01
Purpose: The purpose of this study was to develop a database for estimating organ dose in a voxelized patient model for coronary angiography and brain perfusion CT acquisitions with any spectra and angular tube current modulation setting. The database enables organ dose estimation for existing and novel acquisition techniques without requiring Monte Carlo simulations. Methods: The study simulated transport of monoenergetic photons between 5 and 150 keV for 1000 projections over 360° through anthropomorphic voxelized female chest and head (0° and 30° tilt) phantoms and standard head and body CTDI dosimetry cylinders. The simulations resulted in tables of normalized dose deposition for several radiosensitive organs quantifying the organ dose per emitted photon for each incident photon energy and projection angle for coronary angiography and brain perfusion acquisitions. The values in a table can be multiplied by an incident spectrum and number of photons at each projection angle and then summed across all energies and angles to estimate total organ dose. Scanner-specific organ dose may be approximated by normalizing the database-estimated organ dose by the database-estimated CTDI vol and multiplying by a physical CTDI vol measurement. Two examples are provided demonstrating how to use the tables to estimate relative organ dose. In the first, the change in breast and lung dose during coronary angiography CT scans is calculated for reduced kVp, angular tube current modulation, and partial angle scanning protocols relative to a reference protocol. In the second example, the change in dose to the eye lens is calculated for a brain perfusion CT acquisition in which the gantry is tilted 30° relative to a nontilted scan. Results: Our database provides tables of normalized dose deposition for several radiosensitive organs irradiated during coronary angiography and brain perfusion CT scans. Validation results indicate total organ doses calculated using our database are
Balaguera-Antolínez, A.; Bilicki, M.; Branchini, E.; Postiglione, A.
2018-02-01
Using the almost all-sky 2MASS Photometric Redshift catalogue (2MPZ) we perform for the first time a tomographic analysis of galaxy angular clustering in the local Universe (z z⟩ = 0.05 up to 2.1^{+0.3}_{-0.5} at ⟨z⟩ = 0.2, largely because of the flux-limited nature of the dataset. The results obtained here for the local Universe agree with those derived with the same methodology at higher redshifts, and confirm the importance of the tomographic technique for next-generation photometric surveys such as Euclid or LSST.
Power spectra beyond the slow roll approximation in theories with non-canonical kinetic terms
International Nuclear Information System (INIS)
De Bruck, Carsten van; Robinson, Mathew
2014-01-01
We derive analytical expressions for the power spectra at the end of inflation in theories with two inflaton fields and non-canonical kinetic terms. We find that going beyond the slow-roll approximation is necessary and that the nature of the non-canonical terms have an important impact on the final power spectra at the end of inflation. We study five models numerically and find excellent agreement with our analytical results. Our results emphasise the fact that going beyond the slow-roll approximation is important in times of high-precision data coming from cosmological observations
Directory of Open Access Journals (Sweden)
Imhan Khalil Ibraheem
2017-01-01
Full Text Available Laser tube bending is a new technique of laser material forming to produce a complex and accurate shape due to its flexibility and high controllability. Moreover, the defects during conventional tube forming such as thinning, wrinkling, spring back and ovalization can be avoided in laser tube bending process, because there is no external force used. In this paper an analytical investigation has been conducted to analyses the effects of average laser power and laser scanning speed on laser tube bending process, the analytical results have been verified experimentally. The model used in this study is in the same trend of the experiment. The results show that the bending angle increased with the increasing of average laser power and decreased with the increasing of angular scanning speed.
International Nuclear Information System (INIS)
Larson, D.; Bennett, C. L.; Gold, B.; Dunkley, J.; Hinshaw, G.; Kogut, A.; Wollack, E.; Komatsu, E.; Nolta, M. R.; Halpern, M.; Hill, R. S.; Odegard, N.; Weiland, J. L.; Jarosik, N.; Page, L.; Limon, M.; Meyer, S. S.; Smith, K. M.; Spergel, D. N.; Tucker, G. S.
2011-01-01
The WMAP mission has produced sky maps from seven years of observations at L2. We present the angular power spectra derived from the seven-year maps and discuss the cosmological conclusions that can be inferred from WMAP data alone. With the seven-year data, the temperature (TT) spectrum measurement has a signal-to-noise ratio per multipole that exceeds unity for l m h 2 = 0.1334 +0.0056 -0.0055 , and on the epoch of matter-radiation equality, z eq = 3196 +134 -133 . The temperature-polarization (TE) spectrum is detected in the seven-year data with a significance of 20σ, compared to 13σ with the five-year data. We now detect the second dip in the TE spectrum near l ∼ 450 with high confidence. The TB and EB spectra remain consistent with zero, thus demonstrating low systematic errors and foreground residuals in the data. The low-l EE spectrum, a measure of the optical depth due to reionization, is detected at 5.5σ significance when averaged over l = 2-7: l(l + 1)C EE l /(2π) = 0.074 +0.034 -0.025 μK 2 (68% CL). We now detect the high-l, 24 ≤ l ≤ 800, EE spectrum at over 8σ. The BB spectrum, an important probe of gravitational waves from inflation, remains consistent with zero; when averaged over l = 2-7, l(l + 1)C BB l /(2π) 2 (95% CL). The upper limit on tensor modes from polarization data alone is a factor of two lower with the seven-year data than it was using the five-year data. The data remain consistent with the simple ΛCDM model: the best-fit TT spectrum has an effective χ 2 of 1227 for 1170 degrees of freedom, with a probability to exceed of 9.6%. The allowable volume in the six-dimensional space of ΛCDM parameters has been reduced by a factor of 1.5 relative to the five-year volume, while the ΛCDM model that allows for tensor modes and a running scalar spectral index has a factor of three lower volume when fit to the seven-year data. We test the parameter recovery process for bias and find that the scalar spectral index, n s , is biased
A theoretical and experimental analysis of modulated laser fields and power spectra
DEFF Research Database (Denmark)
Olesen, Henning; Jacobsen, G.
1982-01-01
A general theoretical description of modulated laser fields and power spectra for a current modulated single-mode laser is derived, taking into account both the intensity and frequency modulation (IM and FM) of the emitted light. The theory relies on an explicit knowledge of the modulus as well...
Sleep-wake variables and EEG power spectra in Mongolian gerbils and Wistar rats.
Ambrosini, M V; Gambelunghe, C; Mariucci, G; Bruschelli, G; Adami, M; Giuditta, A
1994-11-01
Using electroencephalographic methods (EEG), we have analyzed the basal sleep structure and the EEG power spectra of gerbils and rats during periods of wakefulness (W), synchronized sleep (SS) and paradoxical sleep (PS). During the 6 hr light period examined, duration of sleep was similar for rats and gerbils, but gerbils showed fewer PS episodes and a longer amount of SS episodes followed by wakefulness. In addition, SS episodes preceding PS were of longer duration in gerbils than in rats. EEG power spectral analysis indicated a higher relative output in the 1-4 Hz range in gerbils in comparison with rats. On the whole, the data indicate the existence of significant differences in the basal sleep structure and EEG power spectra of gerbils and rats. This background information might be useful in the comparison of the effects of a given experimental treatment, such as cerebral ischemia, on the EEG activity of these two animal species.
Liu, Jianliang; Sun, Juanjuan; Diao, Yumei; Deng, Aijun
2016-09-04
BACKGROUND In our clinical experience we discovered that EEG band power may be correlated with corneal nerve injury in retinoblastoma patients. This study aimed to investigate biomarkers obtained from electroencephalography (EEG) recordings to reflect corneal nerve injury in retinoblastoma patients. MATERIAL AND METHODS Our study included 20 retinoblastoma patients treated at the Department of Ophthalmology, Affiliated Hospital of Weifang Medical University between 2010 and 2014. Twenty normal individuals were included in the control group. EEG activity was recorded continuously with 32 electrodes using standard EEG electrode placement for detecting EEG power. A cornea confocal microscope was used to examine corneal nerve injury in retinoblastoma patients and normal individuals. Spearman rank correlation analysis was used to analyze the correlation between corneal nerve injury and EEG power changes. The sensitivity and specificity of changed EEG power in diagnosis of corneal nerve injury were also analyzed. RESULTS The predominantly slow EEG oscillations changed gradually into faster waves in retinoblastoma patients. The EEG pattern in retinoblastoma patients was characterized by a distinct increase of delta (Pretinoblastoma patients. Corneal nerve injury was positively correlated with delta EEG spectra power and negatively correlated with theta EEG spectra power. The diagnostic sensitivity and specificity by compounding in the series were 60% and 67%, respectively. CONCLUSIONS Changes in delta and theta of EEG appear to be associated with occurrence of corneal nerve injury. Useful information can be provided for evaluating corneal nerve damage in retinoblastoma patients through analyzing EEG power bands.
On the causes of spectral enhancements in solar wind power spectra
Unti, T.; Russell, C. T.
1976-01-01
Enhancements in power spectra of the solar-wind ion flux in the frequency neighborhood of 0.5 Hz had been noted by Unti et al. (1973). It was speculated that these were due to convected small-scale density irregularities. In this paper, 54 flux spectra calculated from OGO 5 data are examined. It is seen that the few prominent spectral peaks which occur were not generated by density irregularities, but were due to several different causes, including convected discontinuities and propagating transverse waves. A superposition of many spectra, however, reveals a moderate enhancement at a frequency corresponding to convected features with a correlation length of a proton gyroradius, consistent with the results of Neugebauer (1975).
Angular dependences of the tensor analyzing powers in the dd→3Hen reaction at intermediate energies
International Nuclear Information System (INIS)
Ladygin, V.P.; Ladygina, N.B.
2002-01-01
The tensor analyzing powers A yy , A xx , and A xz in the dd→ 3 Hen reaction at intermediate energies are considered in the framework of the one-nucleon-exchange approximation. Their strong sensitivity to the 3 He and deuteron spin structure at short distances is shown
Preliminary Design of a Hydraulic Power Supply for a Laminar Jet Angular Rate Sensor.
1981-11-01
operation within 30 min follow- ing a soak at -60*F, a 400-W immersion heater has been added to the system. In the proposed design, the only active control is...type Remarks Almond Inst. DC-DC Switch regulated Probably can do the job. Alpha Power AC-DC only Not suitable for job. CEA of Berkleonics DC-DC Switch
Skresanova, Iryna V; Barannik, Evgen A
2012-07-01
Ultrasound Doppler methods are widely used in clinical practice as prospective investigational tool to study the vascular system and soft biological tissues. Meanwhile, the most general relationship between the power Doppler spectra, spectral characteristics of the scattering fluctuations and the probing ultrasound field parameters for some clinical implementations are still unexplored. Based upon the continuum model of scattering inhomogeneities, a set of the closed-form expressions for the correlation functions and the spectra of Doppler response of soft tissues and blood have been derived. The influence of the correlation among inhomogeneities and the diffusion processes on the Doppler power spectra formed by stationary flows have been examined. Computer simulations of Doppler spectra were performed for different values of correlation radius and diffusion coefficient. With simulation results the effects of the correlation among inhomogeneities and the diffusion processes on the spectral width and mean frequency are established and discussed in respect to turbulent flows. Closed-form expressions for correlation functions and Doppler spectra for the vibrational sonoelastography technique for visualizing malignant tumors in tissues have been derived. Based on the peculiarities of the obtained Doppler spectra, it is shown that the differentiation of soft tissues with respect to the amplitude value of constrained oscillations is feasible. The expressions were derived for the cases of non-stationary accelerated blood movement. It has been found that the frequency dependence reveals solely at a finite time of observation and depends on the initial phase of the accelerated movement. Copyright Â© 2012 Elsevier B.V. All rights reserved.
Intrinsic dendritic filtering gives low-pass power spectra of local field potentials
DEFF Research Database (Denmark)
Lindén, Henrik; Pettersen, Klas H; Einevoll, Gaute T
2010-01-01
The local field potential (LFP) is among the most important experimental measures when probing neural population activity, but a proper understanding of the link between the underlying neural activity and the LFP signal is still missing. Here we investigate this link by mathematical modeling...... of contributions to the LFP from a single layer-5 pyramidal neuron and a single layer-4 stellate neuron receiving synaptic input. An intrinsic dendritic low-pass filtering effect of the LFP signal, previously demonstrated for extracellular signatures of action potentials, is seen to strongly affect the LFP power...... spectra, even for frequencies as low as 10 Hz for the example pyramidal neuron. Further, the LFP signal is found to depend sensitively on both the recording position and the position of the synaptic input: the LFP power spectra recorded close to the active synapse are typically found to be less low...
Guo, Fan; Li, Hui; Daughton, William; Liu, Yi-Hsin
2014-10-10
Using fully kinetic simulations, we demonstrate that magnetic reconnection in relativistic plasmas is highly efficient at accelerating particles through a first-order Fermi process resulting from the curvature drift of particles in the direction of the electric field induced by the relativistic flows. This mechanism gives rise to the formation of hard power-law spectra in parameter regimes where the energy density in the reconnecting field exceeds the rest mass energy density σ ≡ B(2)/(4πnm(e)c(2))>1 and when the system size is sufficiently large. In the limit σ ≫ 1, the spectral index approaches p = 1 and most of the available energy is converted into nonthermal particles. A simple analytic model is proposed which explains these key features and predicts a general condition under which hard power-law spectra will be generated from magnetic reconnection.
Waking EEG power spectra in the rat: correlations with training performance.
Mandile, Paola; Giuditta, Antonio; Romano, Fabio; Montagnese, Paola; Piscopo, Stefania; Cotugno, Mario; Vescia, Stefania
2003-06-01
Adult rats chronically implanted with supradural electrodes were telemetrically EEG recorded during a baseline session, a training session for a two-way active avoidance task, and a retention session. Rats were assigned to a fast learning (FL), slow learning (SL) and non learning (NL) group if they achieved criterion during the training session, the retention session, or in neither session. High-resolution EEG analyses indicated that intergroup differences were present in the low frequency range of waking baseline power spectra. Moreover, baseline delta emissions directly correlated with freezings, and inversely correlated with avoidances, while emissions at 7-10 Hz directly correlated with avoidances and inversely correlated with freezings. Interestingly, during the first training period, waking delta emission selectively increased in FL rats in concomitance with a marked performance improvement; instead, SL and NL rats displayed increments at 7-9 Hz. In addition, freezings scored during the first two training periods directly correlated with post-training waking emission at 2 Hz, and inversely correlated with emission at 7-10 Hz. Conversely, escapes and avoidances directly correlated with waking emission at 7-10 Hz. The data indicate that (i) waking baseline power spectra differ among behavioral groups, and correlate with behavioral performance the following day; (ii) selective modifications of waking power spectra occur in each behavioral group during training; and (iii) behavioral responses during training correlate with post-training waking power spectra. Notably, the delta increment selectively occurring in training FL rats is assumed to reflect online memory processing leading to better performance. The latter observation supports the primary involvement of delta waves in learning.
International Nuclear Information System (INIS)
Takada, Masahiro; Bridle, Sarah
2007-01-01
Several dark energy experiments are available from a single large-area imaging survey and may be combined to improve cosmological parameter constraints and/or test inherent systematics. Two promising experiments are cosmic shear power spectra and counts of galaxy clusters. However, the two experiments probe the same cosmic mass density field in large-scale structure, therefore the combination may be less powerful than first thought. We investigate the cross-covariance between the cosmic shear power spectra and the cluster counts based on the halo model approach, where the cross-covariance arises from the three-point correlations of the underlying mass density field. Fully taking into account the cross-covariance, as well as non-Gaussian errors on the lensing power spectrum covariance, we find a significant cross-correlation between the lensing power spectrum signals at multipoles l∼10 3 and the cluster counts containing halos with masses M∼>10 14 M o-dot . Including the cross-covariance for the combined measurement degrades and in some cases improves the total signal-to-noise (S/N) ratios up to ∼±20% relative to when the two are independent. For cosmological parameter determination, the cross-covariance has a smaller effect as a result of working in a multi-dimensional parameter space, implying that the two observables can be considered independent to a good approximation. We also discuss the fact that cluster count experiments using lensing-selected mass peaks could be more complementary to cosmic shear tomography than mass-selected cluster counts of the corresponding mass threshold. Using lensing selected clusters with a realistic usable detection threshold ((S/N) cluster ∼6 for a ground-based survey), the uncertainty on each dark energy parameter may be roughly halved by the combined experiments, relative to using the power spectra alone
Uplink Array Calibration via Power Spectra in the Presence of Phase and Delay Errors
Vilnrotter, V. A.
2017-08-01
In uplink array operations, alignment of the carrier phase and modulation delay from each antenna is of fundamental importance in achieving maximum array gain. The power spectrum of the combined signal can be obtained at the spacecraft and relayed to the ground for processing, or in near-Earth radar applications the echo signals from small targets can be collected and processed at the ground receiver. Expressions are derived for the power spectrum of a transmitting array of K elements in the presence of phase and delay alignment errors, and simulation results are provided to validate the theoretical results. It is shown that the power spectra are generally sensitive to errors in carrier and modulation alignment, thus enabling uplink array calibration directly from the power spectrum of the combined array signal.
International Nuclear Information System (INIS)
Shyu, Y.-S.; Luh, Gary G.; Blum, Arie
2004-01-01
This paper proposes a procedure for generating floor response spectra compatible time histories used for equipment seismic qualification in nuclear power plants. From the 84th percentile power spectrum density function of an earthquake ensemble of four randomly generated time history motions, a statistically equivalent time history can be obtained by converting the power spectrum density function from the frequency domain into the time domain. With minor modification, if needed, the converted time history will satisfy both the spectral and the power spectrum density enveloping criteria, as required by the USNRC per Revision 2 of the Standard Review Plan, Section 3.7.1. Step-by-step generating procedures and two numerical examples are presented to illustrate the applications of the methodology. (author)
Methods for surveillance of noise signals from nuclear power plants using auto power spectra
International Nuclear Information System (INIS)
Streich, M.
1988-01-01
A survey of methods for noise diagnostics applied in the nuclear power plant 'Bruno Leuschner' for surveillance of primary circuit is given. Considering a special example concept of surveillance of standard deviations is explained. (author)
High-power Bessel beams with orbital angular momentum in the terahertz range
Choporova, Yu. Yu.; Knyazev, B. A.; Kulipanov, G. N.; Pavelyev, V. S.; Scheglov, M. A.; Vinokurov, N. A.; Volodkin, B. O.; Zhabin, V. N.
2017-08-01
In this paper, we have performed experimental, analytical, and numerical studies of beams with topological charges of ±1 and ±2 formed by silicon binary phase axicons (BPAs) with spiral zone structures. The axicons were illuminated with the Novosibirsk free electron laser radiation (a continuous stream of 100-ps pulses at f =5.6 MHz). The cw power of the beams produced reached 30 W and can by doubled via antireflection coating of the axicons. The intensity distribution in the beam cross sections was in good agreement with the Bessel functions and was kept constant within a distance of about L /r ≈190 and 100, where the first ring radii of the beams r were 0.9 and 1.5 mm for the Bessel beams of the first and second orders, respectively. Although the characteristics of the beams (Bessel cross section, "diffraction-free" propagation, self-recovery after passing obstacles, and randomly inhomogeneous media) corresponded to the properties of ideal Bessel beams, their spatial Fourier spectrum (the image in the focal plane of the lens) was, instead of an ideal ring, intertwined segments of arcs with phases shifted by π , the number of which was equal to the double value of the topological charge. This feature can be used, for example, in a demultiplexing unit of a free vortex-wave communication system or for identification of beam topological charge. We also revisited Young's double-slit diffraction and rotation of beams obstructed by a half-plane, previously applied to Laguerre-Gaussian beam characterization, in the case of the Bessel beams. The Young diffraction pattern demonstrated in this case a complicated intensity-phase distribution. It was shown that the Bessel beams formed by BPAs have two important advantages, which can be used in applications, in comparison with other methods of generation, e.g., a combination of an axicon lens with a spiral phase plate. Although the phase jumps of the axicons are designed for a determined wavelength (141 μ m in our case
Beltrametti, M.
1980-01-01
The analytic solutions for radiatively driven winds are given for the case in which the winds are driven by absorption of line and continuum radiation. The wind solutions are analytically estimated for different parameters of the central source and for different power law spectra. For flat spectra, three sonic points can exist; it is shown, however, that only one of these sonic points is physically realistic. Parameters of the central source are given which generate winds of further interest for explaining the narrow and broad absorption lines in quasars. For the quasar model presented here, winds which could give rise to the narrow absorption lines are generated by central sources with parameters which are not realistic for quasars.
Dijk, D. J.
1999-01-01
In humans, EEG power spectra in REM and NREM sleep, as well as characteristics of sleep spindles such as their duration, amplitude, frequency and incidence, vary with circadian phase. Recently it has been hypothesized that circadian variations in EEG spectra in humans are caused by variations in brain or body temperature and may not represent phenomena relevant to sleep regulatory processes. To test this directly, a further analysis of EEG power spectra - collected in a forced desynchrony protocol in which sleep episodes were scheduled to a 28-h period while the rhythms of body temperature and plasma melatonin were oscillating at their near 24-h period - was carried out. EEG power spectra were computed for NREM and REM sleep occurring between 90-120 and 270-300 degrees of the circadian melatonin rhythm, i.e. just after the clearance of melatonin from plasma in the 'morning' and just after the 'evening' increase in melatonin secretion. Average body temperatures during scheduled sleep at these two circadian phases were identical (36.72 degrees C). Despite identical body temperatures, the power spectra in NREM sleep were very different at these two circadian phases. EEG activity in the low frequency spindle range was significantly and markedly enhanced after the evening increase in plasma melatonin as compared to the morning phase. For REM sleep, significant differences in power spectra during these two circadian phases, in particular in the alpha range, were also observed. The results confirm that EEG power spectra in NREM and REM sleep vary with circadian phase, suggesting that the direct contribution of temperature to the circadian variation in EEG power spectra is absent or only minor, and are at variance with the hypothesis that circadian variations in EEG power spectra are caused by variations in temperature.
Musical rhythm spectra from Bach to Joplin obey a 1/f power law.
Levitin, Daniel J; Chordia, Parag; Menon, Vinod
2012-03-06
Much of our enjoyment of music comes from its balance of predictability and surprise. Musical pitch fluctuations follow a 1/f power law that precisely achieves this balance. Musical rhythms, especially those of Western classical music, are considered highly regular and predictable, and this predictability has been hypothesized to underlie rhythm's contribution to our enjoyment of music. Are musical rhythms indeed entirely predictable and how do they vary with genre and composer? To answer this question, we analyzed the rhythm spectra of 1,788 movements from 558 compositions of Western classical music. We found that an overwhelming majority of rhythms obeyed a 1/f(β) power law across 16 subgenres and 40 composers, with β ranging from ∼0.5-1. Notably, classical composers, whose compositions are known to exhibit nearly identical 1/f pitch spectra, demonstrated distinctive 1/f rhythm spectra: Beethoven's rhythms were among the most predictable, and Mozart's among the least. Our finding of the ubiquity of 1/f rhythm spectra in compositions spanning nearly four centuries demonstrates that, as with musical pitch, musical rhythms also exhibit a balance of predictability and surprise that could contribute in a fundamental way to our aesthetic experience of music. Although music compositions are intended to be performed, the fact that the notated rhythms follow a 1/f spectrum indicates that such structure is no mere artifact of performance or perception, but rather, exists within the written composition before the music is performed. Furthermore, composers systematically manipulate (consciously or otherwise) the predictability in 1/f rhythms to give their compositions unique identities.
From the Cover: Musical rhythm spectra from Bach to Joplin obey a 1/f power law
Levitin, Daniel J.; Chordia, Parag; Menon, Vinod
2012-03-01
Much of our enjoyment of music comes from its balance of predictability and surprise. Musical pitch fluctuations follow a 1/f power law that precisely achieves this balance. Musical rhythms, especially those of Western classical music, are considered highly regular and predictable, and this predictability has been hypothesized to underlie rhythm's contribution to our enjoyment of music. Are musical rhythms indeed entirely predictable and how do they vary with genre and composer? To answer this question, we analyzed the rhythm spectra of 1,788 movements from 558 compositions of Western classical music. We found that an overwhelming majority of rhythms obeyed a 1/fβ power law across 16 subgenres and 40 composers, with β ranging from ∼0.5-1. Notably, classical composers, whose compositions are known to exhibit nearly identical 1/f pitch spectra, demonstrated distinctive 1/f rhythm spectra: Beethoven's rhythms were among the most predictable, and Mozart's among the least. Our finding of the ubiquity of 1/f rhythm spectra in compositions spanning nearly four centuries demonstrates that, as with musical pitch, musical rhythms also exhibit a balance of predictability and surprise that could contribute in a fundamental way to our aesthetic experience of music. Although music compositions are intended to be performed, the fact that the notated rhythms follow a 1/f spectrum indicates that such structure is no mere artifact of performance or perception, but rather, exists within the written composition before the music is performed. Furthermore, composers systematically manipulate (consciously or otherwise) the predictability in 1/f rhythms to give their compositions unique identities.
Musical rhythm spectra from Bach to Joplin obey a 1/f power law
Levitin, Daniel J.; Chordia, Parag; Menon, Vinod
2012-01-01
Much of our enjoyment of music comes from its balance of predictability and surprise. Musical pitch fluctuations follow a 1/f power law that precisely achieves this balance. Musical rhythms, especially those of Western classical music, are considered highly regular and predictable, and this predictability has been hypothesized to underlie rhythm's contribution to our enjoyment of music. Are musical rhythms indeed entirely predictable and how do they vary with genre and composer? To answer this question, we analyzed the rhythm spectra of 1,788 movements from 558 compositions of Western classical music. We found that an overwhelming majority of rhythms obeyed a 1/fβ power law across 16 subgenres and 40 composers, with β ranging from ∼0.5–1. Notably, classical composers, whose compositions are known to exhibit nearly identical 1/f pitch spectra, demonstrated distinctive 1/f rhythm spectra: Beethoven's rhythms were among the most predictable, and Mozart's among the least. Our finding of the ubiquity of 1/f rhythm spectra in compositions spanning nearly four centuries demonstrates that, as with musical pitch, musical rhythms also exhibit a balance of predictability and surprise that could contribute in a fundamental way to our aesthetic experience of music. Although music compositions are intended to be performed, the fact that the notated rhythms follow a 1/f spectrum indicates that such structure is no mere artifact of performance or perception, but rather, exists within the written composition before the music is performed. Furthermore, composers systematically manipulate (consciously or otherwise) the predictability in 1/f rhythms to give their compositions unique identities. PMID:22355125
SPEFO---A Simple, Yet Powerful Program for One-Dimensional Spectra Processing
Skoda, Petr
SPEFO is a small, yet powerful program used for processing stellar spectra at the Astronomical Institute of the Academy of Sciences of the Czech Republic in Ondřejov. It was originally written in 1990 by Dr. Jiři Horn for processing spectral plates obtained with the 2m telescope of the Ondřejov observatory and scanned with the local five channel microphotometer. Since then the code had been under constant improvement until the sudden death of the author in December 1994. Currently SPEFO is used mainly for the reduction of data from the Ondřejov Reticon detector (1872 pixels, 12 bit A/D), however it can process data from other instruments too, provided that they are in FITS one-dimensional format. The code was written in Turbo Pascal for MS-DOS; the size of the binaries is less than 350 KB. SPEFO will run on an ordinary PC computer with very modest hardware demands (PC AT 286, 1 MB RAM, 30 MB HD color EGA or VGA). Despite its small size the program is very powerful, and user friendly as well. The basic data reduction tasks such as derivation of the dispersion function, spectrum rectification, Fourier noise filtering, radial velocity and equivalent width measurements are performed in an easy manner, and the user can immediately see changes to the data on a screen plot (e.g., the line position is determined in the ``oscilloscopic'' mode by finding the coincidence of the displayed line and its interactively shifted mirrored profile, the continuum level spline is recalculated after fixing each new point, etc.). The main output of SPEFO is a table of radial velocities of measured stellar lines (including the atmospheric line correction), their equivalent widths and higher order moments, relative central line intensities and FWHM, together with the HPGL plot file. The program can do basic operations on spectra like comparison of two spectra, subtraction, adding, production of differential spectra or the transformation by rotational broadening. SPEFO can also deal with
Dual regression physiological modeling of resting-state EPI power spectra: Effects of healthy aging.
Viessmann, Olivia; Möller, Harald E; Jezzard, Peter
2018-02-02
Aging and disease-related changes in the arteriovasculature have been linked to elevated levels of cardiac cycle-induced pulsatility in the cerebral microcirculation. Functional magnetic resonance imaging (fMRI), acquired fast enough to unalias the cardiac frequency contributions, can be used to study these physiological signals in the brain. Here, we propose an iterative dual regression analysis in the frequency domain to model single voxel power spectra of echo planar imaging (EPI) data using external recordings of the cardiac and respiratory cycles as input. We further show that a data-driven variant, without external physiological traces, produces comparable results. We use this framework to map and quantify cardiac and respiratory contributions in healthy aging. We found a significant increase in the spatial extent of cardiac modulated white matter voxels with age, whereas the overall strength of cardiac-related EPI power did not show an age effect. Copyright © 2018. Published by Elsevier Inc.
Statistical Properties of Maximum Likelihood Estimators of Power Law Spectra Information
Howell, L. W., Jr.
2003-01-01
A simple power law model consisting of a single spectral index, sigma(sub 2), is believed to be an adequate description of the galactic cosmic-ray (GCR) proton flux at energies below 10(exp 13) eV, with a transition at the knee energy, E(sub k), to a steeper spectral index sigma(sub 2) greater than sigma(sub 1) above E(sub k). The maximum likelihood (ML) procedure was developed for estimating the single parameter sigma(sub 1) of a simple power law energy spectrum and generalized to estimate the three spectral parameters of the broken power law energy spectrum from simulated detector responses and real cosmic-ray data. The statistical properties of the ML estimator were investigated and shown to have the three desirable properties: (Pl) consistency (asymptotically unbiased), (P2) efficiency (asymptotically attains the Cramer-Rao minimum variance bound), and (P3) asymptotically normally distributed, under a wide range of potential detector response functions. Attainment of these properties necessarily implies that the ML estimation procedure provides the best unbiased estimator possible. While simulation studies can easily determine if a given estimation procedure provides an unbiased estimate of the spectra information, and whether or not the estimator is approximately normally distributed, attainment of the Cramer-Rao bound (CRB) can only be ascertained by calculating the CRB for an assumed energy spectrum- detector response function combination, which can be quite formidable in practice. However, the effort in calculating the CRB is very worthwhile because it provides the necessary means to compare the efficiency of competing estimation techniques and, furthermore, provides a stopping rule in the search for the best unbiased estimator. Consequently, the CRB for both the simple and broken power law energy spectra are derived herein and the conditions under which they are stained in practice are investigated.
Forward Modeling of Reduced Power Spectra from Three-dimensional k-space
von Papen, Michael; Saur, Joachim
2015-06-01
We present results from a numerical forward model to evaluate one-dimensional reduced power spectral densities (PSDs) from arbitrary energy distributions in {\\boldsymbol{k}} -space. In this model, we can separately calculate the diagonal elements of the spectral tensor for incompressible axisymmetric turbulence with vanishing helicity. Given a critically balanced turbulent cascade with {{k}\\parallel }∼ k\\bot α and α \\lt 1, we explore the implications on the reduced PSD as a function of frequency. The spectra are obtained under the assumption of Taylor’s hypothesis. We further investigate the functional dependence of the spectral index κ on the field-to-flow angle θ between plasma flow and background magnetic field from MHD to electron kinetic scales. We show that critically balanced turbulence asymptotically develops toward θ-independent spectra with a slope corresponding to the perpendicular cascade. This occurs at a transition frequency {{f}2D}(L,α ,θ ), which is analytically estimated and depends on outer scale L, critical balance exponent α, and field-to-flow angle θ. We discuss anisotropic damping terms acting on the {\\boldsymbol{k}} -space distribution of energy and their effects on the PSD. Further, we show that the spectral anisotropies κ (θ ) as found by Horbury et al. and Chen et al. in the solar wind are in accordance with a damped critically balanced cascade of kinetic Alfvén waves. We also model power spectra obtained by Papen et al. in Saturn’s plasma sheet and find that the change of spectral indices inside 9 {{R}s} can be explained by damping on electron scales.
Power spectrum of nuclear spectra with missing levels and mixed symmetries
Energy Technology Data Exchange (ETDEWEB)
Molina, R.A. [Max-Planck-Institut fuer Physik Komplexer Systeme, Noethnitzer Str. 38, D-01187 Dresden (Germany) and Instituto de Estructura de la Materia, CSIC, Serrano 123, E-28006 Madrid (Spain)]. E-mail: molina@iem.cfmac.csic.es; Retamosa, J. [Departamento de Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid, E-28040 Madrid (Spain); Munoz, L. [Departamento de Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid, E-28040 Madrid (Spain); Relano, A. [Departamento de Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid, E-28040 Madrid (Spain); Instituto de Estructura de la Materia, CSIC, Serrano 123, E-28006 Madrid (Spain); Faleiro, E. [Departamento de Fisica Aplicada, Universidad Politecnica de Madrid, E-28012 (Spain)
2007-01-04
Sequences of energy levels in nuclei are often plagued with missing levels whose number and position are unknown. It is also quite usual that all the quantum numbers of certain levels cannot be experimentally determined, and thus levels of different symmetries are mixed in the same sequence. The analysis of these imperfect spectra (from the point of view of spectral statistics) is unavoidable if one wants to extract some statistical information. The power spectrum of the {delta}{sub q} statistic has emerged in recent years as an important tool for the study of quantum chaos and spectral statistics. We derive analytical expressions for the observed power spectrum in terms of the fraction of observed levels and the number of mixed sequences. These expressions are tested with large shell model spectra simulating realistic experimental situations. A good estimation of the number of mixed symmetries and the fraction of missing levels is obtained by means of a least-squares fit in a wide set of different situations.
Sander, B; Golas, M M; Stark, H
2003-06-01
Three-dimensional electron cryomicroscopy of randomly oriented single particles is a method that is suitable for the determination of three-dimensional structures of macromolecular complexes at molecular resolution. However, the electron-microscopical projection images are modulated by a contrast transfer function (CTF) that prevents the calculation of three-dimensional reconstructions of biological complexes at high resolution from uncorrected images. We describe here an automated method for the accurate determination and correction of the CTF parameters defocus, twofold astigmatism and amplitude-contrast proportion from single-particle images. At the same time, the method allows the frequency-dependent signal decrease (B factor) and the non-convoluted background signal to be estimated. The method involves the classification of the power spectra of single-particle images into groups with similar CTF parameters; this is done by multivariate statistical analysis (MSA) and hierarchically ascending classification (HAC). Averaging over several power spectra generates class averages with enhanced signal-to-noise ratios. The correct CTF parameters can be deduced from these class averages by applying an iterative correlation procedure with theoretical CTF functions; they are then used to correct the raw images. Furthermore, the method enables the tilt axis of the sample holder to be determined and allows the elimination of individual poor-quality images that show high drift or charging effects.
International Nuclear Information System (INIS)
Oyama, Yukio
1988-06-01
This paper presents an experimental approach to interpret the results of integral experiments for fusion neutronics research. The measurement is described of the angular neutron flux on a restricted area of slab assemblies with D-T neutron bombardment by using the time-of-flight (TOF) method with an NE213 neutron detector over an energy range from 0.05 to 15 MeV. A two bias scheme was developed to obtain an accurate detection efficiency over a wide energy range. The detector-collimator response function was introduced to define the restricted surface area and to determine the effective measured area. A series of measurements of the angular neutron flux on slabs of fusion blanket materials, i.e., Be, C, and Li 2 O, as functions of neutron leaking angle and slab thickness have been performed to examine neutron transport characteristics in bulk materials. The calculational analyses of the experimental results have been also carried out by using Monte Carlo neutron transport codes, i.e., MORSE-DD and MCNP. The existing nuclear data files, i.e., JENDL-3PR1, -3PR2, ENDF/B-IV and -V were tested by comparing with the experimental results. From the comparisons, the data on C and 7 Li in the present files are fairly sufficient. Those on beryllium, however, is insufficient for the estimation of high threshold reactions such as tritium production in a fusion reactor blanket design. It is also found that the total and elastic cross sections are more important for accurate predictions of neutronic parameters at deep position. The comparisons between the measured and calculated results provide information to understand the results of the previous integral experiments for confirmation of accuracy of fusion reactor designs. (author)
Detecting higher spin fields through statistical anisotropy in the CMB and galaxy power spectra
Bartolo, Nicola; Kehagias, Alex; Liguori, Michele; Riotto, Antonio; Shiraishi, Maresuke; Tansella, Vittorio
2018-01-01
Primordial inflation may represent the most powerful collider to test high-energy physics models. In this paper we study the impact on the inflationary power spectrum of the comoving curvature perturbation in the specific model where massive higher spin fields are rendered effectively massless during a de Sitter epoch through suitable couplings to the inflaton field. In particular, we show that such fields with spin s induce a distinctive statistical anisotropic signal on the power spectrum, in such a way that not only the usual g2 M-statistical anisotropy coefficients, but also higher-order ones (i.e., g4 M,g6 M,…,g(2 s -2 )M and g(2 s )M) are nonvanishing. We examine their imprints in the cosmic microwave background and galaxy power spectra. Our Fisher matrix forecasts indicate that the detectability of gL M depends very weakly on L : all coefficients could be detected in near future if their magnitudes are bigger than about 10-3.
Origin of multiple periodicities in the Fourier power spectra of the Plasmodium falciparum genome
Directory of Open Access Journals (Sweden)
Nunes Miriam CS
2011-12-01
Full Text Available Abstract Background Fourier transforms and their associated power spectra are used for detecting periodicities and protein-coding genes and is generally regarded as a well established technique. Many of the periodicities which have been found with this method are quite well understood such as the periodicity of 3 nt which is associated to codon usage. But what is the origin of the peculiar frequency multiples k/21 which were reported for a tiny section of chromosome 2 in P. falciparum? Are these present in other chromosomes and perhaps in related organisms? And how should we interpret fractional periodicities in genomes? Results We applied the binary indicator power spectrum to all chromosomes of P. falciparum, and found that the frequency overtones k/21 are present only in non-coding sections. We did not find such frequency overtones in any other related genomes. Furthermore, the frequency overtones were identified as artifacts of the way the genome is encoded into a numerical sequence, that is, they are frequency aliases. By choosing a different way to encode the sequence the overtones do not appear. In view of these results, we revisited early applications of this technique to proteins where frequency overtones were reported. Conclusions Some authors hinted recently at the possibility of mapping artifacts and frequency aliases in power spectra. However, in the case of P. falciparum the frequency aliases are particularly strong and can mask the 1/3 frequency which is used for gene detecting. This shows that albeit being a well known technique, with a long history of application in proteins, few researchers seem to be aware of the problems represented by frequency aliases.
One-dimensional power spectrum and neutrino mass in the spectra of BOSS
International Nuclear Information System (INIS)
Borde, Arnaud
2014-01-01
The framework of the studies presented in this thesis is the one-dimensional power spectrum of the transmitted flux in the Lyman-alpha forests. The Lyman-alpha forest is an absorption pattern seen in the spectra of high redshift quasars corresponding to the absorption of the quasar light by the hydrogen clouds along the line of sight. It is a powerful cosmological tool as it probes relatively small scales, of the order of a few Mpc. It is also sensible to small non-linear effects such as the one induced by massive neutrinos. First, we have developed two independent methods to measure the one-dimensional power spectrum of the transmitted flux in the Lyman-alpha forest. The first method is based on a Fourier transform, and the second on a maximum likelihood estimator. The two methods are independent and have different systematic uncertainties. The determination of the noise level in the data spectra was subject to a novel treatment, because of its significant impact on the derived power spectrum. We applied the two methods to 13,821 quasar spectra from SDSS-III/BOSS DR9 selected from a larger sample of over 60,000 spectra on the basis of their high quality, large signal-to-noise ratio, and good spectral resolution. The power spectra measured using either approach are in good agreement over all twelve redshift bins from
Codis, Sandrine; Gavazzi, Raphaël; Pichon, Christophe; Gouin, Céline
2017-09-01
Aims: Gravitational lensing allows us to quantify the angular distribution of the convergence field around clusters of galaxies to constrain their connectivity to the cosmic web. We describe the corresponding theory in Lagrangian space in which analytical results can be obtained by identifying clusters to peaks in the initial field. Methods: We derived the three-point Gaussian statistics of a two-dimensional (2D) field and its first and second derivatives. The formalism allowed us to study the statistics of the field in a shell around a central peak, in particular its multipolar decomposition. Results: The peak condition is shown to significantly remove power from the dipolar contribution and to modify the monopole and quadrupole. As expected, higher order multipoles are not significantly modified by the constraint. Analytical predictions are successfully checked against measurements in Gaussian random fields. The effect of substructures and radial weighting is shown to be small and does not change the qualitative picture.The non-linear evolution is shown to induce a non-linear bias of all multipoles proportional to the cluster mass. Conclusions: We predict the Gaussian and weakly non-Gaussian statistics of multipolar moments of a 2D field around a peak as a proxy for the azimuthal distribution of the convergence field around a cluster of galaxies. A quantitative estimate of this multipolar decomposition of the convergence field around clusters in numerical simulations of structure formation and in observations will be presented in two forthcoming papers.
Oscillations in the power spectra of motor unit signals caused by refractoriness variations
Hu, X. L.; Tong, K. Y.; Hung, L. K.
2004-09-01
The refractory period of a motor unit is an important mechanism that regulates the motor unit firing, and its variation has been found in many physiological cases. In this study, a new observation that an increase in the motor unit refractoriness results in an enhancement of oscillations, or ripple effects, in the motor unit output power density spectra (PDS) has been identified and studied. The effects of the refractoriness variation on the PDS of motor unit firing were investigated on three levels: theoretical modeling, simulation and electromyographic (EMG) experimentation on human subjects. Both theoretical modeling and simulation showed the enhanced oscillations, ripple effects, in MUAPT PDS, given the increase in the refractoriness. It was also found that the extent of the increment in output PDS oscillation could be related to the motor unit size and the mean firing rate of the stimulation. A needle EMG experiment on biceps brachii muscles of five healthy human subjects was carried out during isometric contraction at 20% maximum voluntary contraction (MVC) for 20 s with a fatigue effort proceeded by MVC. The increased oscillations in the PDS of the real MUAPTs were observed with the rising of the motor unit refractoriness due to fatigue. The study gives new information for EMG spectra interpretation, and also provides a potential method for accessing neuromuscular transmission failure (NTF) due to fatigue during voluntary contraction.
Matter power spectra in viable f(R gravity models with massive neutrinos
Directory of Open Access Journals (Sweden)
Chao-Qiang Geng
2015-01-01
Full Text Available We investigate the matter power spectra in the power law and exponential types of viable f(R theories along with massive neutrinos. The enhancement of the matter power spectrum is found to be a generic feature in these models. In particular, we show that in the former type, such as the Starobinsky model, the spectrum is magnified much larger than the latter one, such as the exponential model. A greater scale of the total neutrino mass, ∑mν, is allowed in the viable f(R models than that in the ΛCDM one. We obtain the constraints on the neutrino masses by using the CosmoMC package with the modified MGCAMB. Explicitly, we get ∑mν<0.451(0.214 eV at 95% C.L. in the Starobinsky (exponential model, while the corresponding one for the ΛCDM model is ∑mν<0.200 eV. Furthermore, by treating the effective number of neutrino species Neff as a free parameter along with ∑mν, we find that Neff=3.78−0.84+0.64(3.47−0.60+0.74 and ∑mν=0.533−0.411+0.254 (<0.386 eV at 95% C.L. in the Starobinsky (exponential model.
Matter power spectra in viable f(R) gravity models with massive neutrinos
International Nuclear Information System (INIS)
Geng, Chao-Qiang; Lee, Chung-Chi; Shen, Jia-Liang
2015-01-01
We investigate the matter power spectra in the power law and exponential types of viable f(R) theories along with massive neutrinos. The enhancement of the matter power spectrum is found to be a generic feature in these models. In particular, we show that in the former type, such as the Starobinsky model, the spectrum is magnified much larger than the latter one, such as the exponential model. A greater scale of the total neutrino mass, ∑m ν , is allowed in the viable f(R) models than that in the ΛCDM one. We obtain the constraints on the neutrino masses by using the CosmoMC package with the modified MGCAMB. Explicitly, we get ∑m ν <0.451(0.214) eV at 95% C.L. in the Starobinsky (exponential) model, while the corresponding one for the ΛCDM model is ∑m ν <0.200 eV. Furthermore, by treating the effective number of neutrino species N eff as a free parameter along with ∑m ν , we find that N eff =3.78 −0.84 +0.64 (3.47 −0.60 +0.74 ) and ∑m ν =0.533 −0.411 +0.254 (<0.386) eV at 95% C.L. in the Starobinsky (exponential) model
A technique for filling gaps in time series with complicated power spectra
International Nuclear Information System (INIS)
Brown, T.M.
1984-01-01
Fahlman and Ulrych (1982) describe a method for estimating the power and phase spectra of gapped time series, using a maximum-entropy reconstruction of the data in the gaps. It has proved difficult to apply this technique to solar oscillations data, because of the great complexity of the solar oscillations spectrum. We describe a means for avoiding this difficulty, and report the results of a series of blind tests of the modified technique. The main results of these tests are: 1. Gap-filling gives good results, provided that the signal-to-noise ration in the original data is large enough, and provided the gaps are short enough. For low-noise data, the duty cycle of the observations should not be less than about 50%. 2. The frequencies and widths of narrow spectrum features are well reproduced by the technique. 3. The technique systematically reduces the apparent amplitudes of small features in the spectrum relative to large ones. (orig.)
Planck 2015 results. XI. CMB power spectra, likelihoods, and robustness of parameters
Aghanim, N.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartlett, J.G.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoit, A.; Benoit-Levy, A.; Bernard, J.P.; Bersanelli, M.; Bielewicz, P.; Bock, J.J.; Bonaldi, A.; Bonavera, L.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R.C.; Calabrese, E.; Cardoso, J.F.; Catalano, A.; Challinor, A.; Chiang, H.C.; Christensen, P.R.; Clements, D.L.; Colombo, L.P.L.; Combet, C.; Coulais, A.; Crill, B.P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R.D.; Davis, R.J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Desert, F.X.; Di Valentino, E.; Dickinson, C.; Diego, J.M.; Dolag, K.; Dole, H.; Donzelli, S.; Dore, O.; Douspis, M.; Ducout, A.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Elsner, F.; Ensslin, T.A.; Eriksen, H.K.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A.A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Gauthier, C.; Gerbino, M.; Giard, M.; Gjerlow, E.; Gonzalez-Nuevo, J.; Gorski, K.M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J.E.; Hamann, J.; Hansen, F.K.; Harrison, D.L.; Helou, G.; Henrot-Versille, S.; Hernandez-Monteagudo, C.; Herranz, D.; Hildebrandt, S.R.; Hivon, E.; Holmes, W.A.; Hornstrup, A.; Huffenberger, K.M.; Hurier, G.; Jaffe, A.H.; Jones, W.C.; Juvela, M.; Keihanen, E.; Keskitalo, R.; Kiiveri, K.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lahteenmaki, A.; Lamarre, J.M.; Lasenby, A.; Lattanzi, M.; Lawrence, C.R.; Le Jeune, M.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Lewis, A.; Liguori, M.; Lilje, P.B.; Lilley, M.; Linden-Vornle, M.; Lindholm, V.; Lopez-Caniego, M.; Macias-Perez, J.F.; Maffei, B.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P.G.; Martinez-Gonzalez, E.; Masi, S.; Matarrese, S.; Meinhold, P.R.; Melchiorri, A.; Migliaccio, M.; Millea, M.; Miville-Deschenes, M.A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J.A.; Narimani, A.; Naselsky, P.; Nati, F.; Natoli, P.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C.A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T.J.; Perdereau, O.; Perotto, L.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Pratt, G.W.; Prunet, S.; Puget, J.L.; Rachen, J.P.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rossetti, M.; Roudier, G.; d'Orfeuil, B.Rouille; Rubino-Martin, J.A.; Rusholme, B.; Salvati, L.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Serra, P.; Spencer, L.D.; Spinelli, M.; Stolyarov, V.; Stompor, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.S.; Sygnet, J.F.; Tauber, J.A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Trombetti, T.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L.A.; Wandelt, B.D.; Wehus, I.K.; Yvon, D.; Zacchei, A.; Zonca, A.
2016-01-01
This paper presents the Planck 2015 likelihoods, statistical descriptions of the 2-point correlation functions of CMB temperature and polarization. They use the hybrid approach employed previously: pixel-based at low multipoles, $\\ell$, and a Gaussian approximation to the distribution of cross-power spectra at higher $\\ell$. The main improvements are the use of more and better processed data and of Planck polarization data, and more detailed foreground and instrumental models. More than doubling the data allows further checks and enhanced immunity to systematics. Progress in foreground modelling enables a larger sky fraction, contributing to enhanced precision. Improvements in processing and instrumental models further reduce uncertainties. Extensive tests establish robustness and accuracy, from temperature, from polarization, and from their combination, and show that the {\\Lambda}CDM model continues to offer a very good fit. We further validate the likelihood against specific extensions to this baseline, suc...
Shakur, Asif; Sinatra, Taylor
2013-01-01
The gyroscope in a smartphone was employed in a physics laboratory setting to verify the conservation of angular momentum and the nonconservation of rotational kinetic energy. As is well-known, smartphones are ubiquitous on college campuses. These devices have a panoply of built-in sensors. This creates a unique opportunity for a new paradigm in…
Energy Technology Data Exchange (ETDEWEB)
Kohn, S. A.; Aguirre, J. E.; Moore, D. F. [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA (United States); Nunhokee, C. D.; Bernardi, G. [Department of Physics and Electronics, Rhodes University, Grahamstown (South Africa); Pober, J. C. [Department of Physics, Brown University, Providence, RI (United States); Ali, Z. S.; DeBoer, D. R.; Parsons, A. R. [Astronomy Department, University of California, Berkeley, CA (United States); Bradley, R. F. [Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA (United States); Carilli, C. L. [National Radio Astronomy Observatory, Socorro, NM (United States); Gugliucci, N. E. [Saint Anselm College, Manchester, NH (United States); Jacobs, D. C. [School of Earth and Space Exploration, Arizona State University, Tempe, AZ (United States); Klima, P. [National Radio Astronomy Observatory, Charlottesville, VA (United States); MacMahon, D. H. E. [Radio Astronomy Laboratory, University of California, Berkeley, CA (United States); Manley, J. R.; Walbrugh, W. P. [SKA South Africa, Pinelands (South Africa); Stefan, I. I., E-mail: saulkohn@sas.upenn.edu [Cavendish Laboratory, Cambridge (United Kingdom)
2016-06-01
Current generation low-frequency interferometers constructed with the objective of detecting the high-redshift 21 cm background aim to generate power spectra of the brightness temperature contrast of neutral hydrogen in primordial intergalactic medium. Two-dimensional (2D) power spectra (power in Fourier modes parallel and perpendicular to the line of sight) that formed from interferometric visibilities have been shown to delineate a boundary between spectrally smooth foregrounds (known as the wedge ) and spectrally structured 21 cm background emission (the EoR window ). However, polarized foregrounds are known to possess spectral structure due to Faraday rotation, which can leak into the EoR window. In this work we create and analyze 2D power spectra from the PAPER-32 imaging array in Stokes I, Q, U, and V. These allow us to observe and diagnose systematic effects in our calibration at high signal-to-noise within the Fourier space most relevant to EoR experiments. We observe well-defined windows in the Stokes visibilities, with Stokes Q, U, and V power spectra sharing a similar wedge shape to that seen in Stokes I. With modest polarization calibration, we see no evidence that polarization calibration errors move power outside the wedge in any Stokes visibility to the noise levels attained. Deeper integrations will be required to confirm that this behavior persists to the depth required for EoR detection.
Kumar, Jagadish; Ananthakrishna, G
2018-01-01
Scale-invariant power-law distributions for acoustic emission signals are ubiquitous in several plastically deforming materials. However, power-law distributions for acoustic emission energies are reported in distinctly different plastically deforming situations such as hcp and fcc single and polycrystalline samples exhibiting smooth stress-strain curves and in dilute metallic alloys exhibiting discontinuous flow. This is surprising since the underlying dislocation mechanisms in these two types of deformations are very different. So far, there have been no models that predict the power-law statistics for discontinuous flow. Furthermore, the statistics of the acoustic emission signals in jerky flow is even more complex, requiring multifractal measures for a proper characterization. There has been no model that explains the complex statistics either. Here we address the problem of statistical characterization of the acoustic emission signals associated with the three types of the Portevin-Le Chatelier bands. Following our recently proposed general framework for calculating acoustic emission, we set up a wave equation for the elastic degrees of freedom with a plastic strain rate as a source term. The energy dissipated during acoustic emission is represented by the Rayleigh-dissipation function. Using the plastic strain rate obtained from the Ananthakrishna model for the Portevin-Le Chatelier effect, we compute the acoustic emission signals associated with the three Portevin-Le Chatelier bands and the Lüders-like band. The so-calculated acoustic emission signals are used for further statistical characterization. Our results show that the model predicts power-law statistics for all the acoustic emission signals associated with the three types of Portevin-Le Chatelier bands with the exponent values increasing with increasing strain rate. The calculated multifractal spectra corresponding to the acoustic emission signals associated with the three band types have a maximum
Energy Technology Data Exchange (ETDEWEB)
Simard, G.; et al.
2017-12-20
We report constraints on cosmological parameters from the angular power spectrum of a cosmic microwave background (CMB) gravitational lensing potential map created using temperature data from 2500 deg$^2$ of South Pole Telescope (SPT) data supplemented with data from Planck in the same sky region, with the statistical power in the combined map primarily from the SPT data. We fit the corresponding lensing angular power spectrum to a model including cold dark matter and a cosmological constant ($\\Lambda$CDM), and to models with single-parameter extensions to $\\Lambda$CDM. We find constraints that are comparable to and consistent with constraints found using the full-sky Planck CMB lensing data. Specifically, we find $\\sigma_8 \\Omega_{\\rm m}^{0.25}=0.598 \\pm 0.024$ from the lensing data alone with relatively weak priors placed on the other $\\Lambda$CDM parameters. In combination with primary CMB data from Planck, we explore single-parameter extensions to the $\\Lambda$CDM model. We find $\\Omega_k = -0.012^{+0.021}_{-0.023}$ or $M_{\
Evaluation of Reduced Power Spectra from Three-Dimensional k-Space
Saur, J.; von Papen, M.
2014-12-01
We present a new tool to evaluate one dimensional reduced power spectral densities (PSD) from arbitrary energy distributions in kk-space. This enables us to calculate the power spectra as they are measured in spacecraft frame for any given measurement geometry assuming Taylor's frozen-in approximation. It is possible to seperately calculate the diagonal elements of the spectral tensor and also to insert additional, non-turbulent energy in kk-space (e.g. mirror mode waves). Given a critically balanced turbulent cascade with k∥˜kα⊥k_\\|sim k_perp^alpha, we explore the implications on the spectral form of the PSD and the functional dependence of the spectral index κkappa on the field-to-flow angle θtheta between plasma flow and background magnetic field. We show that critically balanced turbulence develops a θtheta-independent cascade with the spectral slope of the perpendicular cascade κ(θ=90∘)kappa(theta{=}90^circ). This happens at frequencies f>fmaxf>f_mathrm{max}, where fmax(L,α,θ)f_mathrm{max}(L,alpha,theta) is a function of outer scale LL, critical balance exponent αalpha and field-to-flow angle θtheta. We also discuss potential damping terms acting on the kk-space distribution of energy and their effect on the PSD. Further, we show that the functional dependence κ(θ)kappa(theta) as found by textit{Horbury et al.} (2008) and textit{Chen et al.} (2010) can be explained with a damped critically balanced turbulence model.
Motamedi, Mohammad; Müller, Rolf
2014-06-01
The biosonar beampatterns found across different bat species are highly diverse in terms of global and local shape properties such as overall beamwidth or the presence, location, and shape of multiple lobes. It may be hypothesized that some of this variability reflects evolutionary adaptation. To investigate this hypothesis, the present work has searched for patterns in the variability across a set of 283 numerical predictions of emission and reception beampatterns from 88 bat species belonging to four major families (Rhinolophidae, Hipposideridae, Phyllostomidae, Vespertilionidae). This was done using a lossy compression of the beampatterns that utilized real spherical harmonics as basis functions. The resulting vector representations showed differences between the families as well as between emission and reception. These differences existed in the means of the power spectra as well as in their distribution. The distributions were characterized in a low dimensional space found through principal component analysis. The distinctiveness of the beampatterns across the groups was corroborated by pairwise classification experiments that yielded correct classification rates between ~85 and ~98%. Beamwidth was a major factor but not the sole distinguishing feature in these classification experiments. These differences could be seen as an indication of adaptive trends at the beampattern level.
An analytical examination of distortions in power spectra due to sampling errors
International Nuclear Information System (INIS)
Njau, E.C.
1982-06-01
Distortions introduced into spectral energy densities of sinusoid signals as well as those of more complex signals through different forms of errors in signal sampling are developed and shown analytically. The approach we have adopted in doing this involves, firstly, developing for each type of signal and for the corresponding form of sampling errors an analytical expression that gives the faulty digitization process involved in terms of the features of the particular signal. Secondly, we take advantage of a method described elsewhere [IC/82/44] to relate, as much as possible, the true spectral energy density of the signal and the corresponding spectral energy density of the faulty digitization process. Thirdly, we then develop expressions which reveal the distortions that are formed in the directly computed spectral energy density of the digitized signal. It is evident from the formulations developed herein that the types of sampling errors taken into consideration may create false peaks and other distortions that are of non-negligible concern in computed power spectra. (author)
Pickle, Nathaniel T; Silverman, Anne K; Wilken, Jason M; Fey, Nicholas P
2017-07-01
Understanding the effects of an assistive device on dynamic balance is crucial, particularly for robotic leg prostheses. Analyses of dynamic balance commonly evaluate the range of whole-body angular momentum (H). However, the contributions of individual body segments to overall H throughout gait may yield futher insights, specifically for people with transtibial amputation using powered prostheses. We evaluated segment contributions to H using Statistical Parametric Mapping to assess the effects of prosthesis type (powered vs passive) and ramp angle on segmental coordination. The slope main effect was significant in all segments, the prosthesis main effect was significant in the prosthetic leg (device and residuum) and trunk, and the slope by prosthesis interaction effect was significant in the prosthetic leg and trunk. The magnitude of contributions to sagittal-plane H from the prosthetic leg was larger when using the powered prosthesis. The trunk contributed more positive (backward) H after prosthetic leg toe-off when using the powered prosthesis on inclines, similar to the soleus muscle. However, trunk contributions to H on declines were similar when using a powered and passive prosthesis, suggesting that the powered prosthesis may not replicate soleus function when walking downhill. Our novel assessment method evaluated robotic leg prostheses not only based on local joint mechanics, but also considering whole-body biomechanics.
Multi-phase Turbulence Density Power Spectra in the Perseus Molecular Cloud
Pingel, N. M.; Lee, Min-Young; Burkhart, Blakesley; Stanimirović, Snežana
2018-04-01
We derive two-dimensional spatial power spectra of four distinct interstellar medium tracers, H I, 12CO(J = 1–0), 13CO(J = 1–0), and dust, in the Perseus molecular cloud, covering linear scales ranging from ∼0.1 pc to ∼90 pc. Among the four tracers, we find the steepest slopes of ‑3.23 ± 0.05 and ‑3.22 ± 0.05 for the uncorrected and opacity-corrected H I column density images. This result suggests that the H I in and around Perseus traces a non-gravitating, transonic medium on average, with a negligible effect from opacity. On the other hand, we measure the shallowest slope of ‑2.72 ± 0.12 for the 2MASS dust extinction data and interpret this as the signature of a self-gravitating, supersonic medium. Possible variations in the dust-to-gas ratio likely do not alter our conclusion. Finally, we derive slopes of ‑3.08 ± 0.08 and ‑2.88 ± 0.07 for the 12CO(1–0) and 13CO(1–0) integrated intensity images. Based on theoretical predictions for an optically thick medium, we interpret these slopes of roughly ‑3 as implying that both CO lines are susceptible to the opacity effect. While simple tests for the impact of CO formation and depletion indicate that the measured slopes of 12CO(1–0) and 13CO(1–0) are not likely affected by these chemical effects, our results generally suggest that chemically more complex and/or fully optically thick media may not be a reliable observational tracer for characterizing turbulence.
The Cosmology Large Angular Scale Surveyor
Harrington, Kathleen; Marriage, Tobias; Ali, Aamir; Appel, John; Bennett, Charles; Boone, Fletcher; Brewer, Michael; Chan, Manwei; Chuss, David T.; Colazo, Felipe;
2016-01-01
The Cosmology Large Angular Scale Surveyor (CLASS) is a four telescope array designed to characterize relic primordial gravitational waves from inflation and the optical depth to reionization through a measurement of the polarized cosmic microwave background (CMB) on the largest angular scales. The frequencies of the four CLASS telescopes, one at 38 GHz, two at 93 GHz, and one dichroic system at 145217 GHz, are chosen to avoid spectral regions of high atmospheric emission and span the minimum of the polarized Galactic foregrounds: synchrotron emission at lower frequencies and dust emission at higher frequencies. Low-noise transition edge sensor detectors and a rapid front-end polarization modulator provide a unique combination of high sensitivity, stability, and control of systematics. The CLASS site, at 5200 m in the Chilean Atacama desert, allows for daily mapping of up to 70% of the sky and enables the characterization of CMB polarization at the largest angular scales. Using this combination of a broad frequency range, large sky coverage, control over systematics, and high sensitivity, CLASS will observe the reionization and recombination peaks of the CMB E- and B-mode power spectra. CLASS will make a cosmic variance limited measurement of the optical depth to reionization and will measure or place upper limits on the tensor-to-scalar ratio, r, down to a level of 0.01 (95% C.L.).
The Cosmology Large Angular Scale Surveyor (CLASS)
Harrington, Kathleen; Marriange, Tobias; Aamir, Ali; Appel, John W.; Bennett, Charles L.; Boone, Fletcher; Brewer, Michael; Chan, Manwei; Chuss, David T.; Colazo, Felipe;
2016-01-01
The Cosmology Large Angular Scale Surveyor (CLASS) is a four telescope array designed to characterize relic primordial gravitational waves from in ation and the optical depth to reionization through a measurement of the polarized cosmic microwave background (CMB) on the largest angular scales. The frequencies of the four CLASS telescopes, one at 38 GHz, two at 93 GHz, and one dichroic system at 145/217 GHz, are chosen to avoid spectral regions of high atmospheric emission and span the minimum of the polarized Galactic foregrounds: synchrotron emission at lower frequencies and dust emission at higher frequencies. Low-noise transition edge sensor detectors and a rapid front-end polarization modulator provide a unique combination of high sensitivity, stability, and control of systematics. The CLASS site, at 5200 m in the Chilean Atacama desert, allows for daily mapping of up to 70% of the sky and enables the characterization of CMB polarization at the largest angular scales. Using this combination of a broad frequency range, large sky coverage, control over systematics, and high sensitivity, CLASS will observe the reionization and recombination peaks of the CMB E- and B-mode power spectra. CLASS will make a cosmic variance limited measurement of the optical depth to reionization and will measure or place upper limits on the tensor-to-scalar ratio, r, down to a level of 0.01 (95% C.L.).
THE RELATION BETWEEN GAS DENSITY AND VELOCITY POWER SPECTRA IN GALAXY CLUSTERS: QUALITATIVE TREATMENT AND COSMOLOGICAL SIMULATIONS
Energy Technology Data Exchange (ETDEWEB)
Zhuravleva, I.; Allen, S. W. [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 452 Lomita Mall, Stanford, CA 94305 (United States); Churazov, E. M.; Gaspari, M. [Max Planck Institute for Astrophysics, Karl-Schwarzschild-Strasse 1, D-85741 Garching (Germany); Schekochihin, A. A. [The Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3NP (United Kingdom); Lau, E. T.; Nagai, D. [Department of Physics, Yale University, New Haven, CT 06520 (United States); Nelson, K. [Department of Astronomy, Yale University, New Haven, CT 06520 (United States); Parrish, I. J., E-mail: zhur@stanford.edu [Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St. George Street, Toronto, ON M5S 3H8 (Canada)
2014-06-10
We address the problem of evaluating the power spectrum of the velocity field of the intracluster medium using only information on the plasma density fluctuations, which can be measured today by Chandra and XMM-Newton observatories. We argue that for relaxed clusters there is a linear relation between the rms density and velocity fluctuations across a range of scales, from the largest ones, where motions are dominated by buoyancy, down to small, turbulent scales: (δρ{sub k}/ρ){sup 2}=η{sub 1}{sup 2}(V{sub 1,k}/c{sub s}){sup 2}, where δρ {sub k}/ρ is the spectral amplitude of the density perturbations at wavenumber k, V{sub 1,k}{sup 2}=V{sub k}{sup 2}/3 is the mean square component of the velocity field, c{sub s} is the sound speed, and η{sub 1} is a dimensionless constant of the order of unity. Using cosmological simulations of relaxed galaxy clusters, we calibrate this relation and find η{sub 1} ≈ 1 ± 0.3. We argue that this value is set at large scales by buoyancy physics, while at small scales the density and velocity power spectra are proportional because the former are a passive scalar advected by the latter. This opens an interesting possibility to use gas density power spectra as a proxy for the velocity power spectra in relaxed clusters across a wide range of scales.
Yan, Xu; Guo, Lixin; Cheng, Mingjian; Li, Jiangting; Huang, Qingqing; Sun, Ridong
2017-06-26
The probability densities of orbital angular momentum (OAM) modes of the autofocusing Airy beam (AAB) carrying power-exponent-phase vortex (PEPV) after passing through the weak anisotropic non-Kolmogorov turbulent atmosphere are theoretically formulated. It is found that the AAB carrying PEPV is the result of the weighted superposition of multiple OAM modes at differing positions within the beam cross-section, and the mutual crosstalk among different OAM modes will compensate the distortion of each OAM mode and be helpful for boosting the anti-jamming performance of the communication link. Based on numerical calculations, the role of the wavelength, waist width, topological charge and power order of PEPV in the probability density distribution variations of OAM modes of the AAB carrying PEPV is explored. Analysis shows that a relatively small beam waist and longer wavelength are good for separating the detection regions between signal OAM mode and crosstalk OAM modes. The probability density distribution of the signal OAM mode does not change obviously with the topological charge variation; but it will be greatly enhanced with the increase of power order. Furthermore, it is found that the detection region center position of crosstalk OAM mode is an emergent property resulting from power order and topological charge. Therefore, the power order can be introduced as an extra steering parameter to modulate the probability density distributions of OAM modes. These results provide guidelines for the design of an optimal detector, which has potential application in optical vortex communication systems.
International Nuclear Information System (INIS)
Vorontsov, Sergei V.; Jefferies, Stuart M.
2013-01-01
We describe a global parametric model for the observed power spectra of solar oscillations of intermediate and low degree. A physically motivated parameterization is used as a substitute for a direct description of mode excitation and damping as these mechanisms remain poorly understood. The model is targeted at the accurate fitting of power spectra coming from Doppler-velocity measurements and uses an adaptive response function that accounts for both the vertical and horizontal components of the velocity field on the solar surface and for possible instrumental and observational distortions. The model is continuous in frequency, can easily be adapted to intensity measurements, and extends naturally to the analysis of high-frequency pseudomodes (interference peaks at frequencies above the atmospheric acoustic cutoff).
Energy Technology Data Exchange (ETDEWEB)
Vorontsov, Sergei V. [Astronomy Unit, School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Jefferies, Stuart M., E-mail: S.V.Vorontsov@qmul.ac.uk, E-mail: stuartj@ifa.hawaii.edu [Institute for Astronomy, University of Hawaii, 34 Ohia Ku Street, Pukalani, HI 96768 (United States)
2013-11-20
We describe a global parametric model for the observed power spectra of solar oscillations of intermediate and low degree. A physically motivated parameterization is used as a substitute for a direct description of mode excitation and damping as these mechanisms remain poorly understood. The model is targeted at the accurate fitting of power spectra coming from Doppler-velocity measurements and uses an adaptive response function that accounts for both the vertical and horizontal components of the velocity field on the solar surface and for possible instrumental and observational distortions. The model is continuous in frequency, can easily be adapted to intensity measurements, and extends naturally to the analysis of high-frequency pseudomodes (interference peaks at frequencies above the atmospheric acoustic cutoff).
Self-Consistent Scheme for Spike-Train Power Spectra in Heterogeneous Sparse Networks.
Pena, Rodrigo F O; Vellmer, Sebastian; Bernardi, Davide; Roque, Antonio C; Lindner, Benjamin
2018-01-01
Recurrent networks of spiking neurons can be in an asynchronous state characterized by low or absent cross-correlations and spike statistics which resemble those of cortical neurons. Although spatial correlations are negligible in this state, neurons can show pronounced temporal correlations in their spike trains that can be quantified by the autocorrelation function or the spike-train power spectrum. Depending on cellular and network parameters, correlations display diverse patterns (ranging from simple refractory-period effects and stochastic oscillations to slow fluctuations) and it is generally not well-understood how these dependencies come about. Previous work has explored how the single-cell correlations in a homogeneous network (excitatory and inhibitory integrate-and-fire neurons with nearly balanced mean recurrent input) can be determined numerically from an iterative single-neuron simulation. Such a scheme is based on the fact that every neuron is driven by the network noise (i.e., the input currents from all its presynaptic partners) but also contributes to the network noise, leading to a self-consistency condition for the input and output spectra. Here we first extend this scheme to homogeneous networks with strong recurrent inhibition and a synaptic filter, in which instabilities of the previous scheme are avoided by an averaging procedure. We then extend the scheme to heterogeneous networks in which (i) different neural subpopulations (e.g., excitatory and inhibitory neurons) have different cellular or connectivity parameters; (ii) the number and strength of the input connections are random (Erdős-Rényi topology) and thus different among neurons. In all heterogeneous cases, neurons are lumped in different classes each of which is represented by a single neuron in the iterative scheme; in addition, we make a Gaussian approximation of the input current to the neuron. These approximations seem to be justified over a broad range of parameters as
Planck 2015 results: XI. CMB power spectra, likelihoods, and robustness of parameters
DEFF Research Database (Denmark)
Aghanim, N.; Arnaud, M.; Ashdown, M.
2016-01-01
, in particular with regard to small-scale foreground properties. Progress in the modelling of foreground emission enables the retention of a larger fraction of the sky to determine the properties of the CMB, which also contributes to the enhanced precision of the spectra. Improvements in data processing...... on the same hybrid approach used for the previous release, i.e., a pixel-based likelihood at low multipoles (ℓ spectra at higher multipoles. The main improvements are the use of more and better processed data and of Planck polarization....... For instance, the effective number of neutrino species remains compatible with the canonical value of 3.046. For this first detailed analysis of Planck polarization spectra, we concentrate at high multipoles on the E modes, leaving the analysis of the weaker B modes to future work. At low multipoles we use...
Ladygin, V P
2002-01-01
The tensor analyzing powers A sub y sub y , A sub x sub x , and A sub x sub z in the dd -> sup 3 Hen reaction at intermediate energies are considered in the framework of the one-nucleon-exchange approximation. Their strong sensitivity to the sup 3 He and deuteron spin structure at short distances is shown
International Nuclear Information System (INIS)
Ladygin, V.P.; Ladygina, N.B.; )
2002-01-01
The tensor analyzing powers A yy , A xx , and A xz in the dd → 3 Hen reaction at intermediate energies are considered in the framework of the one-nucleon-exchange approximation. Their strong sensitivity to the 3 He and deuteron spin structure at short distances is shown [ru
Image simulation and a model of noise power spectra across a range of mammographic beam qualities
Energy Technology Data Exchange (ETDEWEB)
Mackenzie, Alistair, E-mail: alistairmackenzie@nhs.net; Dance, David R.; Young, Kenneth C. [National Coordinating Centre for the Physics of Mammography, Royal Surrey County Hospital, Guildford GU2 7XX, United Kingdom and Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Diaz, Oliver [Centre for Vision, Speech and Signal Processing, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom and Computer Vision and Robotics Research Institute, University of Girona, Girona 17071 (Spain)
2014-12-15
Purpose: The aim of this work is to create a model to predict the noise power spectra (NPS) for a range of mammographic radiographic factors. The noise model was necessary to degrade images acquired on one system to match the image quality of different systems for a range of beam qualities. Methods: Five detectors and x-ray systems [Hologic Selenia (ASEh), Carestream computed radiography CR900 (CRc), GE Essential (CSI), Carestream NIP (NIPc), and Siemens Inspiration (ASEs)] were characterized for this study. The signal transfer property was measured as the pixel value against absorbed energy per unit area (E) at a reference beam quality of 28 kV, Mo/Mo or 29 kV, W/Rh with 45 mm polymethyl methacrylate (PMMA) at the tube head. The contributions of the three noise sources (electronic, quantum, and structure) to the NPS were calculated by fitting a quadratic at each spatial frequency of the NPS against E. A quantum noise correction factor which was dependent on beam quality was quantified using a set of images acquired over a range of radiographic factors with different thicknesses of PMMA. The noise model was tested for images acquired at 26 kV, Mo/Mo with 20 mm PMMA and 34 kV, Mo/Rh with 70 mm PMMA for three detectors (ASEh, CRc, and CSI) over a range of exposures. The NPS were modeled with and without the noise correction factor and compared with the measured NPS. A previous method for adapting an image to appear as if acquired on a different system was modified to allow the reference beam quality to be different from the beam quality of the image. The method was validated by adapting the ASEh flat field images with two thicknesses of PMMA (20 and 70 mm) to appear with the imaging characteristics of the CSI and CRc systems. Results: The quantum noise correction factor rises with higher beam qualities, except for CR systems at high spatial frequencies, where a flat response was found against mean photon energy. This is due to the dominance of secondary quantum noise
Method to generate generic floor response spectra for operating nuclear power plant
International Nuclear Information System (INIS)
Curreri, J.; Costantino, C.; Subudhi, M.; Reich, M.
1985-01-01
The general approach in the development of the response spectra was to study the effects on the dynamic characteristics of each of the elements in the chain of events that goes between the loads and the responses. This includes the loads, the soils and the structures. A free-field earthquake response spectra was used to generate horizontal earthquake time histories. The excitation was applied through the soil and into the various structures to produce responses in equipment. An entire range of soil conditions was used with each structure, from soft soil to solid rock. Actual PWR and BWR - Mark I structural models were used as representative of a class of structures. For each model, the stiffness properties were varied, with the same mass, so as to extend the fundamental base structure natural frequency from 2 cps to 36 cps. This resulted in fundamental mode coupled natural frequencies as low as 0.86 cps and as high as 30 cps. From all of these models of soils and structures, floor response spectra were generated at each floor level. The natural frequencies of the structures were varied to obtain maximum response conditions. The actual properties were first used to locate the natural frequencies. The stiffness properties were then varied, with the same mass, to extend the range of the fundamental base structure natural frequency. The intention was to have the coupled structural material frequencies in the vicinity of the peak amplitude frequency content of the excitation spectrum. Particular attention was therefore given to the frequency band between 2 Hz and 4 Hz. A horizontal generic floor response spectra is proposed for the top level of a generic structure. Reduction factors are applied to the peak acceleration for equipment at lower levels
A method to generate generic floor response spectra for operating nuclear power plants
International Nuclear Information System (INIS)
Curreri, J.; Costantino, C.; Subudhi, M.; Reich, M.
1985-01-01
A free-field earthquake response spectra was used to generate horizontal earthquake time histories. The excitation was applied through the soil and into the various structures to produce responses in equipment. An entire range of soil conditions was used with each structure, from soft soil to solid rock. Actual PWR and BWR - Mark I structural models were used as representative of a class of structures. For each model, the stiffness properties were varied, with the same mass, so as to extend the fundamental base structure natural frequency from 2 cps to 36 cps. This resulted in fundamental mode coupled natural frequencies as low as 0.86 cps and as high as 30 cps. From all of these models of soils and structures, floor response spectra were generated at each floor level. The natural frequencies of the structures were varied to obtain maximum response conditions. The actual properties were first used to locate the natural frequencies. The stiffness properties were than varied, with the same mass, to extend the range of the fundamental base structure natural frequency. The intention was to have the coupled structural material frequencies in the vicinity of the peak amplitude frequency content of the excitation spectrum. Particular attention was therefore given to the frequency band between 2 Hz and 4 Hz. A horizontal generic floor response spectra is proposed for the top level of a generic structure. Reduction factors are applied to the peak acceleration for equipment at lower levels. (orig./HP)
Directory of Open Access Journals (Sweden)
L. G. Balázs
2012-01-01
Full Text Available We studied the complete randomness of the angular distribution of BATSE gamma-ray bursts (GRBs. Based on their durations and peak fluxes, we divided the BATSE sample into 5 subsamples (short1, short2, intermediate, long1, long2 and studied the angular distributions separately. We used three methods to search for non-randomness in the subsamples: Voronoi tesselation, minimal spanning tree, and multifractal spectra. To study any non-randomness in the subsamples we defined 13 test-variables (9 from Voronoi tesselation, 3 from the minimal spanning tree and one from the multifractal spectrum. We made Monte Carlo simulations taking into account the BATSE’s sky-exposure function. We tested therandomness by introducing squared Euclidean distances in the parameter space of the test-variables. We recognized that the short1, short2 groups deviate significantly (99.90%, 99.98% from the fully random case in the distribution of the squared Euclidean distances but this is not true for the long samples. In the intermediate group, the squared Euclidean distances also give significant deviation (98.51%.
Angular momentum from tidal torques
International Nuclear Information System (INIS)
Barnes, J.; Efstathiou, G.; Cambridge Univ., England)
1987-01-01
The origin of the angular momentum of bound objects in large N-body simulations is studied using three sets of models. One model with white-noise initial conditions is analyzed as well as two in which the initial conditions have more power on large scales, as predicted in models with cold dark matter. The growth and distribution of angular momentum in individual objects is studied and it is found that the specific angular momentum distribution of bound clumps increases in a near linear fashion with radius while the orientation of the angular momentum in the inner high-density regions is often poorly correlated with that of the outer parts. It is also found that the dimensionless spin parameter is insensitive to the initial perturbation spectrum and has a median value of about 0.05. 61 references
Kalina, E.; Cione, J.; Bryan, G. H.; Lenschow, D. H.; Fairall, C. W.
2016-12-01
Open-ocean measurements of turbulence variables in the tropical cyclone (TC) boundary layer are rare, given the dangers posed by convective downdrafts, high waves, and sea spray to manned hurricane reconnaissance aircraft. The Coyote Unmanned Aircraft System (UAS) represents an opportunity to mitigate the risk to personnel while simultaneously collecting low-altitude measurements of air pressure, temperature, humidity, and wind in TCs. In 2014, the Coyote UAS flew at a height of h = 760 m in Hurricane Edouard for 45 min. The resulting wind velocity measurements were used to estimate the turbulent eddy dissipation rate (ɛ) along the Coyote flight track, using power spectra and the second-order velocity structure function. Power spectra of both the longitudinal (Suu) and transverse wind components (Svv) exhibited well-defined inertial subranges with five-thirds scaling, as expected from Kolmogorov (1941). The ratio Svv:Suu was 4:3, in agreement with theory. Under the moderate wind speeds (15-25 m s-1) sampled by the Coyote, estimates of ɛ from the power spectra and structure function ranged from 2-3.5×10-4 m2 s-3. An idealized TC simulation with Cloud Model version 1 (CM1) and a horizontal grid spacing of dx = 20 m was then used to support the observed estimates of ɛ. Along the mock Coyote flight path, the model domain-averaged value of ɛ was 3.0×10-4 m2 s-3, which is within the range of the observationally-based estimates. This agreement was achieved despite the relatively slow sampling rate (1 Hz) of the Coyote sensors and occasional missing data. Therefore, a 1-Hz sampling rate may be adequate for estimating ɛ, and time series with missing samples may still contain the necessary information to estimate the power spectra and structure functions, and thus ɛ. These findings are motivating subsequent Coyote flights into high-wind regions of TCs to collect turbulence measurements that will be used to evaluate subgrid turbulence schemes for numerical models
Janssen, T.W.P.; Bink, M.; Gelade, K.; van Mourik, R.; Maras, A.; Oosterlaan, J.
2016-01-01
Background The clinical and neurophysiological effects of neurofeedback (NF) as treatment for children with ADHD are still unclear. This randomized controlled trial (RCT) examined electroencephalogram (EEG) power spectra before and after NF compared to methylphenidate (MPH) treatment and physical
James, LM; Iannone, R; Palcza, J; Renger, JJ; Calder, N; Cerchio, K; Gottesdiener, K; Hargreaves, R; Murphy, MG; Boyle, J; Dijk, DJ
2011-01-01
Rationale Histamine and dopamine contribute to the maintenance of wakefulness. Objective This study aims to conduct an exploratory analysis of the effects of 10 and 50 mg of MK-0249, a novel histamine subtype-3 receptor inverse agonist, and 200 mg of modafinil, a presumed dopaminergic compound, on EEG power spectra during sleep deprivation and subsequent recovery sleep. Methods A total of 25 healthy men were recruited to a double-blind, placebo-controlled cross-over design. EEG power spectra,...
On the origin of power-law X-ray spectra of active galactic nuclei
Schlosman, I.; Shaham, J.; Shaviv, G.
1984-01-01
In the present analytical model for a power law X-ray continuum production in active galactic nuclei, the dissipation of turbulent energy flux above the accretion disk forms an optically thin transition layer with an inverted temperature gradient. The emitted thermal radiation has a power law spectrum in the 0.1-100 keV range, with a photon energy spectral index gamma of about 0.4-1.0. Thermal X-ray contribution from the layer is 5-10 percent of the total disk luminosity. The gamma value of 0.75 is suggested as a 'natural' power law index for Seyfert galaxies and QSOs.
Dark matter velocity dispersion effects on CMB and matter power spectra
International Nuclear Information System (INIS)
Piattella, O.F.; Casarini, L.; Fabris, J.C.; Pacheco, J.A. de Freitas
2016-01-01
Effects of velocity dispersion of dark matter particles on the CMB TT power spectrum and on the matter linear power spectrum are investigated using a modified CAMB code. Cold dark matter originated from thermal equilibrium processes does not produce appreciable effects but this is not the case if particles have a non-thermal origin. A cut-off in the matter power spectrum at small scales, similar to that produced by warm dark matter or that produced in the late forming dark matter scenario, appears as a consequence of velocity dispersion effects, which act as a pressure perturbation
The Effect of a Finite Measurement Volume on Power Spectra from a Burst Type LDA
DEFF Research Database (Denmark)
Buchhave, Preben; Velte, Clara Marika; K. George, William
2014-01-01
We analyze the effects of a finite size measurement volume on the power spectrum computed fromdata acquired with a burst-type laser Doppler anemometer. The finite measurement volume causes temporal distortions in acquisition of the data resulting in phenomena such as finite processing time and dead...... time.We compare analytical expressions for the bias and distortion of the velocity power spectrum computed from computer-generated data. We then compare the spectrum from the computer-generated data and a power spectrum from a measurement on a free turbulent jet in air and conclude that we have a valid...
Koch, Michael; Denzler, Joachim; Redies, Christoph
2010-08-19
Art images and natural scenes have in common that their radially averaged (1D) Fourier spectral power falls according to a power-law with increasing spatial frequency (1/f(2) characteristics), which implies that the power spectra have scale-invariant properties. In the present study, we show that other categories of man-made images, cartoons and graphic novels (comics and mangas), have similar properties. Further on, we extend our investigations to 2D power spectra. In order to determine whether the Fourier power spectra of man-made images differed from those of other categories of images (photographs of natural scenes, objects, faces and plants and scientific illustrations), we analyzed their 2D power spectra by principal component analysis. Results indicated that the first fifteen principal components allowed a partial separation of the different image categories. The differences between the image categories were studied in more detail by analyzing whether the mean power and the slope of the power gradients from low to high spatial frequencies varied across orientations in the power spectra. Mean power was generally higher in cardinal orientations both in real-world photographs and artworks, with no systematic difference between the two types of images. However, the slope of the power gradients showed a lower degree of mean variability across spectral orientations (i.e., more isotropy) in art images, cartoons and graphic novels than in photographs of comparable subject matters. Taken together, these results indicate that art images, cartoons and graphic novels possess relatively uniform 1/f(2) characteristics across all orientations. In conclusion, the man-made stimuli studied, which were presumably produced to evoke pleasant and/or enjoyable visual perception in human observers, form a subset of all images and share statistical properties in their Fourier power spectra. Whether these properties are necessary or sufficient to induce aesthetic perception remains
Directory of Open Access Journals (Sweden)
Michael Koch
2010-08-01
Full Text Available Art images and natural scenes have in common that their radially averaged (1D Fourier spectral power falls according to a power-law with increasing spatial frequency (1/f(2 characteristics, which implies that the power spectra have scale-invariant properties. In the present study, we show that other categories of man-made images, cartoons and graphic novels (comics and mangas, have similar properties. Further on, we extend our investigations to 2D power spectra. In order to determine whether the Fourier power spectra of man-made images differed from those of other categories of images (photographs of natural scenes, objects, faces and plants and scientific illustrations, we analyzed their 2D power spectra by principal component analysis. Results indicated that the first fifteen principal components allowed a partial separation of the different image categories. The differences between the image categories were studied in more detail by analyzing whether the mean power and the slope of the power gradients from low to high spatial frequencies varied across orientations in the power spectra. Mean power was generally higher in cardinal orientations both in real-world photographs and artworks, with no systematic difference between the two types of images. However, the slope of the power gradients showed a lower degree of mean variability across spectral orientations (i.e., more isotropy in art images, cartoons and graphic novels than in photographs of comparable subject matters. Taken together, these results indicate that art images, cartoons and graphic novels possess relatively uniform 1/f(2 characteristics across all orientations. In conclusion, the man-made stimuli studied, which were presumably produced to evoke pleasant and/or enjoyable visual perception in human observers, form a subset of all images and share statistical properties in their Fourier power spectra. Whether these properties are necessary or sufficient to induce aesthetic
Koch, Michael; Denzler, Joachim; Redies, Christoph
2010-01-01
Art images and natural scenes have in common that their radially averaged (1D) Fourier spectral power falls according to a power-law with increasing spatial frequency (1/f2 characteristics), which implies that the power spectra have scale-invariant properties. In the present study, we show that other categories of man-made images, cartoons and graphic novels (comics and mangas), have similar properties. Further on, we extend our investigations to 2D power spectra. In order to determine whether the Fourier power spectra of man-made images differed from those of other categories of images (photographs of natural scenes, objects, faces and plants and scientific illustrations), we analyzed their 2D power spectra by principal component analysis. Results indicated that the first fifteen principal components allowed a partial separation of the different image categories. The differences between the image categories were studied in more detail by analyzing whether the mean power and the slope of the power gradients from low to high spatial frequencies varied across orientations in the power spectra. Mean power was generally higher in cardinal orientations both in real-world photographs and artworks, with no systematic difference between the two types of images. However, the slope of the power gradients showed a lower degree of mean variability across spectral orientations (i.e., more isotropy) in art images, cartoons and graphic novels than in photographs of comparable subject matters. Taken together, these results indicate that art images, cartoons and graphic novels possess relatively uniform 1/f2 characteristics across all orientations. In conclusion, the man-made stimuli studied, which were presumably produced to evoke pleasant and/or enjoyable visual perception in human observers, form a subset of all images and share statistical properties in their Fourier power spectra. Whether these properties are necessary or sufficient to induce aesthetic perception remains to be
DEFF Research Database (Denmark)
Christensen, Julie Anja Engelhard; Munk, Emil Gammelmark Schreiner; Peppard, Paul E.
2015-01-01
Objective: Manifestations of narcolepsy with cataplexy (NC) include disturbed nocturnal sleep – hereunder sleep–wake instability, decreased latency to rapid eye movement (REM) sleep, and dissociated REM sleep events. In this study, we characterized the electroencephalography (EEG) of various sleep...... on 19 NC patients and 708 non-NC patients from a sleep clinic. Reproducible features were analyzed using receiver operating characteristic (ROC) curves. Results: Thirteen features were selected based on the training dataset. Three were applicable in the validation dataset, indicating that NC patients...... show (1) increased alpha power in REM sleep, (2) decreased sigma power in wakefulness, and (3) decreased delta power in stage N1 versus wakefulness. Sensitivity of these features ranged from 4% to 10% with specificity around 98%, and it did not vary substantially with and without treatment. Conclusions...
Cosmology Large Angular Scale Surveyor (CLASS) Focal Plane Development
Chuss, D. T.; Ali, A.; Amiri, M.; Appel, J.; Bennett, C. L.; Colazo, F.; Denis, K. L.; Dünner, R.; Essinger-Hileman, T.; Eimer, J.; Fluxa, P.; Gothe, D.; Halpern, M.; Harrington, K.; Hilton, G.; Hinshaw, G.; Hubmayr, J.; Iuliano, J.; Marriage, T. A.; Miller, N.; Moseley, S. H.; Mumby, G.; Petroff, M.; Reintsema, C.; Rostem, K.; U-Yen, K.; Watts, D.; Wagner, E.; Wollack, E. J.; Xu, Z.; Zeng, L.
2016-08-01
The Cosmology Large Angular Scale Surveyor (CLASS) will measure the polarization of the Cosmic Microwave Background to search for and characterize the polarized signature of inflation. CLASS will operate from the Atacama Desert and observe ˜ 70 % of the sky. A variable-delay polarization modulator provides modulation of the polarization at ˜ 10 Hz to suppress the 1/ f noise of the atmosphere and enable the measurement of the large angular scale polarization modes. The measurement of the inflationary signal across angular scales that spans both the recombination and reionization features allows a test of the predicted shape of the polarized angular power spectra in addition to a measurement of the energy scale of inflation. CLASS is an array of telescopes covering frequencies of 38, 93, 148, and 217 GHz. These frequencies straddle the foreground minimum and thus allow the extraction of foregrounds from the primordial signal. Each focal plane contains feedhorn-coupled transition-edge sensors that simultaneously detect two orthogonal linear polarizations. The use of single-crystal silicon as the dielectric for the on-chip transmission lines enables both high efficiency and uniformity in fabrication. Integrated band definition has been implemented that both controls the bandpass of the single-mode transmission on the chip and prevents stray light from coupling to the detectors.
Cosmology Large Angular Scale Surveyor (CLASS) Focal Plane Development
Chuss, D. T.; Ali, A.; Amiri, M.; Appel, J.; Bennett, C. L.; Colazo, F.; Denis, K. L.; Dunner, R.; Essinger-Hileman, T.; Eimer, J.;
2015-01-01
The Cosmology Large Angular Scale Surveyor (CLASS) will measure the polarization of the Cosmic Microwave Background to search for and characterize the polarized signature of inflation. CLASS will operate from the Atacama Desert and observe approx.70% of the sky. A variable-delay polarization modulator provides modulation of the polarization at approx.10Hz to suppress the 1/f noise of the atmosphere and enable the measurement of the large angular scale polarization modes. The measurement of the inflationary signal across angular scales that spans both the recombination and reionization features allows a test of the predicted shape of the polarized angular power spectra in addition to a measurement of the energy scale of inflation. CLASS is an array of telescopes covering frequencies of 38, 93, 148, and 217 GHz. These frequencies straddle the foreground minimum and thus allow the extraction of foregrounds from the primordial signal. Each focal plane contains feedhorn-coupled transition-edge sensors that simultaneously detect two orthogonal linear polarizations. The use of single-crystal silicon as the dielectric for the on-chip transmission lines enables both high efficiency and uniformity in fabrication. Integrated band definition has been implemented that both controls the bandpass of the single-mode transmission on the chip and prevents stray light from coupling to the detectors.
3D simulations with boosted primordial power spectra and ultracompact minihalos
Gosenca, Mateja; Adamek, Julian; Byrnes, Christian T.; Hotchkiss, Shaun
2017-12-01
We perform three-dimensional simulations of structure formation in the early Universe, when boosting the primordial power spectrum on ˜kpc scales. We demonstrate that our simulations are capable of producing power-law profiles close to the steep ρ ∝r-9 /4 halo profiles that are commonly assumed to be a good approximation to ultracompact minihalos (UCMHs). However, we show that for more realistic initial conditions in which halos are neither perfectly symmetric nor isolated the steep power-law profile is disrupted, and we find that the Navarro-Frenk-White profile is a better fit to most halos. In the presence of background fluctuations, even extreme, nearly spherical initial conditions do not remain exceptional. Nonetheless, boosting the amplitude of initial fluctuations causes all structures to form earlier and thus at larger densities. With a sufficiently large amplitude of fluctuations, we find that values for the concentration of typical halos in our simulations can become very large. However, despite the signal coming from dark matter annihilation inside the cores of these halos being enhanced, it is still orders of magnitude smaller compared to the usually assumed UCMH profile. The upper bound on the primordial power spectrum from the nonobservation of UCMHs should therefore be reevaluated.
Effect of clomipramine on sleep and EEG power spectra in the diurnal rodent Eutamias sibiricus
Dijk, D.J.; Strijkstra, A.; Daan, S.; Beersma, D.G.M.; Hoofdakker, R.H. van den
1991-01-01
Sleep was recorded in the diurnal rodent Eutamias sibiricus, chronically implanted with EEG and EMG electrodes. The tricyclic antidepressant drug clomipramine suppressed the duration of REM sleep and EEG power density in the frequencies between 1.5 and 13.5 Hz in nonREM sleep. During the
Power spectra trends in imaging polarimetry of outdoor solar illuminated scenes
Kupinski, Meredith; Chipman, Russell
2016-05-01
The 1=∫2 power law (where ∫ is spatial frequency) characterizes the spatial power spectrum of non-polarimetric images of outdoor scenes when averaged over an appropriately large ensemble. This empirical result has been repeatedly verified in diverse imaging applications. In this work we compare the ensemble-averaged power spectrum of radiance and polarized radiance images. Outdoor scenes have been imaged over the past three-years using JPL's Ground-based Multiangle SpectroPolarimetric Imager (Ground-MSPI)[1] at the University of Arizona (UA). Ground-MSPI is an eight-band spectropolarimetric camera mounted on a rotating gimbal to acquire pushbroom imagery of solar illuminated outdoor landscapes. This Ground-MSPI image library offers a unique opportunity to quantify the statistical trends between polarimetric and non-polarimetric measurements. From power spectrum analysis of 1,975 images in our collection we report that the magnitude of the 1=∫-exponent is lower for the polarized radiance image than the corresponding radiance image. This result quantifies the contrast mechanism difference for imaging polarimetry, indicates higher spatial frequency content in passive polarimetry of outdoor environments, and supports the assertion that polarimetry offers unique detection capabilities.
Yuan, Yaochu; Yang, Chenghao; Tseng, Yu-heng; Zhu, Xiao-Hua; Wang, Huiqun; Chen, Hong
2017-08-01
Longer period variation of the Kuroshio into the Luzon Strait (LS) was identified using acoustic Doppler current profiler (ADCP) observations as well as pressure and temperature time series data recorded by two TDs (manufactured by the RBR Ltd.) at mooring station N2 (20°40.441‧N, 120°38.324‧E). The ADCP was deployed at depths of 50-300 m between July 7, 2009 and April 10, 2011, and the TDs at around 340 and 365 m between July 9, 2009 and July 9, 2011. Observations provide strong evidence of longer period variation of the Kuroshio into the LS using the Vector rotary spectra (VRS) and Rectified wavelet power spectra analysis (RWPSA). RWPSA of the observations allowed the identification of two types of dominant periods. The first type, with the strongest power spectral density (PSD), had a dominant period of 112 d and was found throughout the upper 300 m. For example, the maximum PSD for western and northern velocity components time series were 3800 and 3550 at 50 m, respectively. The maximum power spectral density decrease with deeper depths, i.e., the depth dependence of maximum PSD. The 112 d period was also identified in the pressure and temperature time series data, at 340 m and 365 m. Combined RWPSA with VRS and mechanism analysis, it is clear that the occurrence of the most dominant period of 112 d in the upper 300 m is related to the clockwise meandering of the Kuroshio into the LS, which is caused by westward propagating stronger anticyclonic eddies from the interior ocean due to the interaction of Rossby eddies with the Kuroshio. The second type of dominant period, for example a 40 d period, is related to the anticlockwise meandering of the Kuroshio. The final dominant period of 14 d coincides with the fortnightly spring-neap tidal period.
Scargle, Jeffrey D.; Way, M. J.; Gazis, P. G.
2017-01-01
We demonstrate the effectiveness of a relatively straightforward analysis of the complex 3D Fourier transform of galaxy coordinates derived from redshift surveys. Numerical demonstrations of this approach are carried out on a volume-limited sample of the Sloan Digital Sky Survey redshift survey. The direct unbinned transform yields a complex 3D data cube quite similar to that from the Fast Fourier Transform of finely binned galaxy positions. In both cases, deconvolution of the sampling window function yields estimates of the true transform. Simple power spectrum estimates from these transforms are roughly consistent with those using more elaborate methods. The complex Fourier transform characterizes spatial distributional properties beyond the power spectrum in a manner different from (and we argue is more easily interpreted than) the conventional multipoint hierarchy. We identify some threads of modern large-scale inference methodology that will presumably yield detections in new wider and deeper surveys.
Indian Academy of Sciences (India)
PowerPoint Presentation · Slide 2 · Slide 3 · Slide 4 · Slide 5 · Slide 6 · Slide 7 · Planck CMB sky map · Slide 9 · Planck Angular power spectrum · CMB Polarization spectra · Slide 12 · Slide 13 · Cosmological Parameters · Slide 15 · Slide 16 · Slide 17 · Slide 18 · Slide 19 · Hemispherical asymmetry · Modulation model of SI ...
Deconvolving the wedge: maximum-likelihood power spectra via spherical-wave visibility modelling
Ghosh, A.; Mertens, F. G.; Koopmans, L. V. E.
2018-03-01
Direct detection of the Epoch of Reionization (EoR) via the red-shifted 21-cm line will have unprecedented implications on the study of structure formation in the infant Universe. To fulfil this promise, current and future 21-cm experiments need to detect this weak EoR signal in the presence of foregrounds that are several orders of magnitude larger. This requires extreme noise control and improved wide-field high dynamic-range imaging techniques. We propose a new imaging method based on a maximum likelihood framework which solves for the interferometric equation directly on the sphere, or equivalently in the uvw-domain. The method uses the one-to-one relation between spherical waves and spherical harmonics (SpH). It consistently handles signals from the entire sky, and does not require a w-term correction. The SpH coefficients represent the sky-brightness distribution and the visibilities in the uvw-domain, and provide a direct estimate of the spatial power spectrum. Using these spectrally smooth SpH coefficients, bright foregrounds can be removed from the signal, including their side-lobe noise, which is one of the limiting factors in high dynamics-range wide-field imaging. Chromatic effects causing the so-called `wedge' are effectively eliminated (i.e. deconvolved) in the cylindrical (k⊥, k∥) power spectrum, compared to a power spectrum computed directly from the images of the foreground visibilities where the wedge is clearly present. We illustrate our method using simulated Low-Frequency Array observations, finding an excellent reconstruction of the input EoR signal with minimal bias.
Emission spectra from direct current and microwave powered Hg lamps at very high pressure
International Nuclear Information System (INIS)
Hamady, M; Stafford, L; Lister, G G
2013-01-01
Discharge lamps containing mercury at pressures above 100 bar are commercially used in data projectors and television projector systems. Due to their small size, these lamps are difficult to investigate experimentally, but spectral measurements, combined with radiation transport calculations, have provided useful information on the visible spectrum. However, classical spectral line broadening theory is inadequate to describe the UV portion of the spectrum, so self-consistent modelling of these discharges is not possible at present. This paper discusses the differences between discharges containing electrodes and discharges sustained by a microwave (mw) electromagnetic field, on the basis of the experimentally measured temperature profile in an electroded discharge, and a temperature profile computed from a 1D power balance model for a microwave discharge. A model based on the ray-tracing method is employed to simulate the radiation transport in these lamps. The model has been validated by comparing the emission spectrum from dc discharge lamps with those obtained experimentally. The output flux, luminous flux, luminous efficacy, the correlated colour temperature, the chromaticity coordinates and photometric curves of the lamp were then obtained. These results were also compared with those of a theoretically calculated temperature profile for the same lamp, excited by microwave power in the TM 010 mode. (paper)
Becker, Matthew R.
2013-10-01
I present a new algorithm, Curved-sky grAvitational Lensing for Cosmological Light conE simulatioNS (CALCLENS), for efficiently computing weak gravitational lensing shear signals from large N-body light cone simulations over a curved sky. This new algorithm properly accounts for the sky curvature and boundary conditions, is able to produce redshift-dependent shear signals including corrections to the Born approximation by using multiple-plane ray tracing and properly computes the lensed images of source galaxies in the light cone. The key feature of this algorithm is a new, computationally efficient Poisson solver for the sphere that combines spherical harmonic transform and multigrid methods. As a result, large areas of sky (˜10 000 square degrees) can be ray traced efficiently at high resolution using only a few hundred cores. Using this new algorithm and curved-sky calculations that only use a slower but more accurate spherical harmonic transform Poisson solver, I study the convergence, shear E-mode, shear B-mode and rotation mode power spectra. Employing full-sky E/B-mode decompositions, I confirm that the numerically computed shear B-mode and rotation mode power spectra are equal at high accuracy (≲1 per cent) as expected from perturbation theory up to second order. Coupled with realistic galaxy populations placed in large N-body light cone simulations, this new algorithm is ideally suited for the construction of synthetic weak lensing shear catalogues to be used to test for systematic effects in data analysis procedures for upcoming large-area sky surveys. The implementation presented in this work, written in C and employing widely available software libraries to maintain portability, is publicly available at http://code.google.com/p/calclens.
Angular Accelerating White Light
CSIR Research Space (South Africa)
Dudley, Angela L
2015-08-01
Full Text Available angular acceleration during propagation which is achieved by superpositions of Bessel beams with non-canonical phase functions. They demonstrate these angular accelerating fields by modulating the phase and amplitude of a supercontinuum source with the use...
Shafiq-Ul-Hassan, Muhammad; Zhang, Geoffrey G; Hunt, Dylan C; Latifi, Kujtim; Ullah, Ghanim; Gillies, Robert J; Moros, Eduardo G
2018-01-01
Large variability in computed tomography (CT) radiomics feature values due to CT imaging parameters can have subsequent implications on the prognostic or predictive significance of these features. Here, we investigated the impact of pitch, dose, and reconstruction kernel on CT radiomic features. Moreover, we introduced correction factors to reduce feature variability introduced by reconstruction kernels. The credence cartridge radiomics and American College of Radiology (ACR) phantoms were scanned on five different scanners. ACR phantom was used for 3-D noise power spectrum (NPS) measurements to quantify correlated noise. The coefficient of variation (COV) was used as the variability assessment metric. The variability in texture features due to different kernels was reduced by applying the NPS peak frequency and region of interest (ROI) maximum intensity as correction factors. Most texture features were dose independent but were strongly kernel dependent, which is demonstrated by a significant shift in NPS peak frequency among kernels. Percentage improvement in robustness was calculated for each feature from original and corrected %COV values. Percentage improvements in robustness of 19 features were in the range of 30% to 78% after corrections. We show that NPS peak frequency and ROI maximum intensity can be used as correction factors to reduce variability in CT texture feature values due to reconstruction kernels.
The power spectra of non-circular motions in disk galaxies
Westfall, Kyle; Laws, Anna S. E.; MaNGA Team
2016-01-01
Using data from the first year of the SDSS-IV/MaNGA survey, we present a preliminary study of the amplitude of non-circular motions in a sample of disk galaxies. We select galaxies that have either a visual classification as a spiral galaxy by the Galaxy Zoo project (Lintott et al. 2011) and/or a measured Sersic index of less than 2.5 from the NASA-Sloan Atlas (nsatlas.org). We also remove high-inclination systems by selecting galaxies with isophotal ellipticity measurements of less than 0.6, implying an inclination of less than 65 degrees. For each galaxy, we fit a tilted-disk model to the observed line-of-sight velocities (Andersen & Bershady 2013). The geometric projection of the circularly rotating disk is simultaneously fit to both the ionized-gas (H-alpha) and stellar kinematics, whereas the rotation curves of the two dynamical tracers are allowed to be independent. We deproject the residuals of the velocity-field fit to the disk-plane polar coordinates and select a radial region that is fully covered in aziumuth, yet not undersampled by the on-sky spaxel. Similar to the approach taken by Bovy et al. (2015) for the Milky Way, we then compute the two-dimensional power spectrum of this velocity-residual map, which provides the amplitude of non-circular motions at all modes probed by the data. Our preliminary analysis reveals disk-plane non-circular motions in both the stars and ionized-gas with typical peak amplitudes of approximately 20 km/s. Additionally, our initial findings appear to demonstrate that non-circular motions in barred galaxies are stronger in the ionized gas than in the stars, a trend not seen in unbarred galaxies.
Karpov, Valeri
2015-01-01
A comprehensive guide to AngularJS, Google's open-source client-side framework for app development. Most of the existing guides to AngularJS struggle to provide simple and understandable explanations for more advanced concepts. As a result, some developers who understand all the basic concepts of AngularJS struggle when it comes to building more complex real-world applications. Professional AngularJS provides a thorough understanding of AngularJS, covering everything from basic concepts, such as directives and data binding, to more advanced concepts like transclusion, build systems, and auto
International Nuclear Information System (INIS)
Kato, K.G.; Benford, G.; Tzach, D.
1983-01-01
Prodigious quantities of microwave energy distributed uniformly across a wide frequency band are observed when a relativistic electron beam (REB) penetrates a plasma. Typical measured values are 20 MW total for Δνapprox. =40 GHz with preliminary observations of bandwidths as large as 100 GHz. An intense annular pulsed REB (Iapprox. =128 kA; rapprox. =3 cm; Δrapprox. =1 cm; 50 nsec FWHM; γapprox. =3) is sent through an unmagnetized or weakly magnetized plasma column (n/sub plasma/approx.10 13 cm -3 ). Beam-to-plasma densities of 0.01 >ω/sub p/ and weak harmonic structure is wholly unanticipated from Langmuir scattering or soliton collapse models. A model of Compton-like boosting of ambient plasma waves by the beam electrons, with collateral emission of high-frequency photons, qualitatively explains these spectra. Power emerges largely in an angle approx.1/γ, as required by Compton mechanisms. As n/sub b//n/sub p/ falls, ω/sub p/-2ω/sub p/ structure and harmonic power ratios consistent with soliton collapse theories appear. With further reduction of n/sub b//n/sub p/ only the ω/sub p/ line persists
Thijssen, Sandra; Rashid, Barnaly; Gopal, Shruti; Nyalakanti, Prashanth; Calhoun, Vince D; Kiehl, Kent A
2017-09-01
Cannabis and alcohol are believed to have widespread effects on the brain. Although adolescents are at increased risk for substance use, the adolescent brain may also be particularly vulnerable to the effects of drug exposure due to its rapid maturation. Here, we examined the association between cannabis and alcohol use duration and resting-state functional connectivity in a large sample of male juvenile delinquents. The present sample was drawn from the Southwest Advanced Neuroimaging Cohort, Youth sample, and from a youth detention facility in Wisconsin. All participants were scanned at the maximum-security facilities using The Mind Research Network's 1.5T Avanto SQ Mobile MRI scanner. Information on cannabis and alcohol regular use duration was collected using self-report. Resting-state networks were computed using group independent component analysis in 201 participants. Associations with cannabis and alcohol use were assessed using Mancova analyses controlling for age, IQ, smoking and psychopathy scores in the complete case sample of 180 male juvenile delinquents. No associations between alcohol or cannabis use and network spatial maps were found. Longer cannabis use was associated with decreased low frequency power of the default mode network, the executive control networks (ECNs), and several sensory networks, and with decreased functional network connectivity. Duration of alcohol use was associated with decreased low frequency power of the right frontoparietal network, salience network, dorsal attention network, and several sensory networks. Our findings suggest that adolescent cannabis and alcohol use are associated with widespread differences in resting-state time course power spectra, which may persist even after abstinence. Copyright © 2017 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Ferguson, A.J.
1974-01-01
An outline of the theory of angular correlations is presented, and the difference between the modern density matrix method and the traditional wave function method is stressed. Comments are offered on particular angular correlation theoretical techniques. A brief discussion is given of recent studies of gamma ray angular correlations of reaction products recoiling with high velocity into vacuum. Two methods for optimization to obtain the most accurate expansion coefficients of the correlation are discussed. (1 figure, 53 references) (U.S.)
Czech Academy of Sciences Publication Activity Database
Hippler, R.; Hubička, Zdeněk; Čada, Martin; Kšírová, Petra; Wulff, H.; Helm, C.A.; Straňák, V.
2017-01-01
Roč. 121, č. 17 (2017), s. 1-9, č. článku 171906. ISSN 0021-8979 R&D Projects: GA ČR(CZ) GA15-00863S Institutional support: RVO:68378271 Keywords : HiPIMS * Langmuir probe * titanium dioxide * angular dependence * XRD * SEM Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.068, year: 2016
Angular Acceleration without Torque?
Kaufman, Richard D.
2012-01-01
Hardly. Just as Robert Johns qualitatively describes angular acceleration by an internal force in his article "Acceleration Without Force?" here we will extend the discussion to consider angular acceleration by an internal torque. As we will see, this internal torque is due to an internal force acting at a distance from an instantaneous center.
Rotations and angular momentum
International Nuclear Information System (INIS)
Nyborg, P.; Froyland, J.
1979-01-01
This paper is devoted to the analysis of rotational invariance and the properties of angular momentum in quantum mechanics. In particular, the problem of addition of angular momenta is treated in detail, and tables of Clebsch-Gordan coefficients are included
Energy Technology Data Exchange (ETDEWEB)
Stevenson, J.D. [Stevenson and Associates, Cleveland, OH (United States)
1995-02-01
This report extends the potential application of Bounding Spectra evaluation procedures, developed as part of the A-46 Unresolved Safety Issue applicable to seismic verification of in-situ electrical and mechanical equipment, to in-situ safety related piping in nuclear power plants. The report presents a summary of earthquake experience data which define the behavior of typical U.S. power plant piping subject to strong motion earthquakes. The report defines those piping system caveats which would assure the seismic adequacy of the piping systems which meet those caveats and whose seismic demand are within the bounding spectra input. Based on the observed behavior of piping in strong motion earthquakes, the report describes the capabilities of the piping system to carry seismic loads as a function of the type of connection (i.e. threaded versus welded). This report also discusses in some detail the basic causes and mechanisms for earthquake damages and failures to power plant piping systems.
International Nuclear Information System (INIS)
Stevenson, J.D.
1995-02-01
This report extends the potential application of Bounding Spectra evaluation procedures, developed as part of the A-46 Unresolved Safety Issue applicable to seismic verification of in-situ electrical and mechanical equipment, to in-situ safety related piping in nuclear power plants. The report presents a summary of earthquake experience data which define the behavior of typical U.S. power plant piping subject to strong motion earthquakes. The report defines those piping system caveats which would assure the seismic adequacy of the piping systems which meet those caveats and whose seismic demand are within the bounding spectra input. Based on the observed behavior of piping in strong motion earthquakes, the report describes the capabilities of the piping system to carry seismic loads as a function of the type of connection (i.e. threaded versus welded). This report also discusses in some detail the basic causes and mechanisms for earthquake damages and failures to power plant piping systems
Ecklund, W. L.; Balsley, B. B.; Crochet, M.; Carter, D. A.; Riddle, A. C.; Garello, R.
1983-01-01
A joint France/U.S. experiment was conducted near the mouth of the Rhone river in southern France as part of the ALPEX program. This experiment used 3 vertically directed 50 MHz radars separated by 4 to 6 km. The main purpose of this experiment was to study the spatial characteristics of gravity waves. The good height resolution (750 meters) and time resolution (1 minute) and the continuous operation over many weeks have yielded high resolution vertical wind speed power spectra under a variety of synoptic conditions. Vertical spectra obtained during very quiet (low wind) conditions in the troposphere and lower stratosphere from a single site are presented.
Quark Orbital Angular Momentum
Directory of Open Access Journals (Sweden)
Burkardt Matthias
2015-01-01
Full Text Available Definitions of orbital angular momentum based on Wigner distributions are used as a framework to discuss the connection between the Ji definition of the quark orbital angular momentum and that of Jaffe and Manohar. We find that the difference between these two definitions can be interpreted as the change in the quark orbital angular momentum as it leaves the target in a DIS experiment. The mechanism responsible for that change is similar to the mechanism that causes transverse single-spin asymmetries in semi-inclusive deep-inelastic scattering.
International Nuclear Information System (INIS)
Nikolaev, Ivan S.; Lodahl, Peter; Vos, Willem L.
2005-01-01
We have performed angle-resolved measurements of spontaneous-emission spectra from laser dyes and quantum dots in opal and inverse opal photonic crystals. Pronounced directional dependencies of the emission spectra are observed: angular ranges of strongly reduced emission adjoin with angular ranges of enhanced emission. It appears that emission from embedded light sources is affected both by the periodicity and by the structural imperfections of the crystals: the photons are Bragg diffracted by lattice planes and scattered by unavoidable structural disorder. Using a model comprising diffuse light transport and photonic band structure, we quantitatively explain the directional emission spectra. This work provides detailed understanding of the transport of spontaneously emitted light in real photonic crystals, which is essential in the interpretation of quantum optics in photonic-band-gap crystals and for applications wherein directional emission and total emission power are controlled
International Nuclear Information System (INIS)
Arimondo, Ennio
2004-01-01
For many years the Institute of Physics has published books on hot topics based on a collection of reprints from different journals, including some remarks by the editors of each volume. The book on Optical Angular Momentum, edited by L Allen, S M Barnett and M J Padgett, is a recent addition to the series. It reproduces forty four papers originally published in different journals and in a few cases it provides direct access to works not easily accessible to a web navigator. The collection covers nearly a hundred years of progress in physics, starting from an historic 1909 paper by Poynting, and ending with a 2002 paper by Padgett, Barnett and coworkers on the measurement of the orbital angular momentum of a single photon. The field of optical angular momentum has expanded greatly, creating an interdisciplinary attraction for researchers operating in quantum optics, atomic physics, solid state physics, biophysics and quantum information theory. The development of laser optics, especially the control of single mode sources, has made possible the specific design of optical radiation modes with a high degree of control on the light angular momentum. The editors of this book are important figures in the field of angular momentum, having contributed to key progress in the area. L Allen published an historical paper in 1999, he and M J Padgett (together with M Babiker) produced few years ago a long review article which is today still the most complete basic introduction to the angular momentum of light, while S M Barnett has contributed several high quality papers to the progress of this area of physics. The editors' choice provides an excellent overview to all readers, with papers classified into eight different topics, covering the basic principles of the light and spin and orbital angular momentum, the laboratory tools for creating laser beams carrying orbital angular momentum, the optical forces and torques created by laser beams carrying angular momentum on
International Nuclear Information System (INIS)
Lee, Yonghoon; Ham, Kyung-Sik; Han, Song-Hee; Yoo, Jonghyun; Jeong, Sungho
2014-01-01
We have investigated the discriminating power of the elements in edible sea salts using Laser-Induced Breakdown Spectroscopy (LIBS). For the ten different sea salts from South Korea, China, Japan, France, Mexico and New Zealand, LIBS spectra were recorded in the spectral range between 190 and 1040 nm, identifying the presence of Na, Cl, K, Ca, Mg, Li, Sr, Al, Si, Ti, Fe, C, O, N, and H. Intensity correlation analysis of the observed emission lines provided a valuable insight into the discriminating power of the different elements in the sea salts. The correlation analysis suggests that the elements with independent discrimination power can be categorized into three groups; those that represent dissolved ions in seawater (K, Li, and Mg), those that are associated with calcified particles (Ca and Sr), and those that are present in soils contained in the sea salts (Al, Si, Ti, and Fe). Classification models using a few emission lines selected based on the results from intensity correlation analysis and full broadband LIBS spectra were developed based on Principal Component Analysis (PCA) and Partial Least Squares-Discriminant Analysis (PLS-DA) and their performances were compared. Our results indicate that effective combination of a few emission lines can provide a dependable model for discriminating the edible sea salts and the performance is not much degraded from that based on the full broadband spectra. This can be rationalized by the intensity correlation results. - Highlights: • Broadband LIBS spectra of various edible sea salts were obtained. • Intensity correlation of emission lines of the elements in edible sea salts was analyzed. • The elements were categorized into three groups with independent discriminating power. • The effective combination of a few lines can provide dependable classification models
Energy Technology Data Exchange (ETDEWEB)
Lee, Yonghoon, E-mail: yhlee@mokpo.ac.kr [Department of Chemistry, Mokpo National University, Jeonnam 534-729 (Korea, Republic of); Ham, Kyung-Sik [Department of Food Engineering, Mokpo National University, Jeonnam 534-729 (Korea, Republic of); Han, Song-Hee [Division of Maritime Transportation System, Mokpo National Maritime University, Jeonnam 530-729 (Korea, Republic of); Yoo, Jonghyun, E-mail: jyoo@appliedspectra.com [Applied Spectra, Inc., 46665 Fremont Boulevard, Fremont, CA 94538 (United States); Jeong, Sungho [School of Mechatronics, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of)
2014-11-01
We have investigated the discriminating power of the elements in edible sea salts using Laser-Induced Breakdown Spectroscopy (LIBS). For the ten different sea salts from South Korea, China, Japan, France, Mexico and New Zealand, LIBS spectra were recorded in the spectral range between 190 and 1040 nm, identifying the presence of Na, Cl, K, Ca, Mg, Li, Sr, Al, Si, Ti, Fe, C, O, N, and H. Intensity correlation analysis of the observed emission lines provided a valuable insight into the discriminating power of the different elements in the sea salts. The correlation analysis suggests that the elements with independent discrimination power can be categorized into three groups; those that represent dissolved ions in seawater (K, Li, and Mg), those that are associated with calcified particles (Ca and Sr), and those that are present in soils contained in the sea salts (Al, Si, Ti, and Fe). Classification models using a few emission lines selected based on the results from intensity correlation analysis and full broadband LIBS spectra were developed based on Principal Component Analysis (PCA) and Partial Least Squares-Discriminant Analysis (PLS-DA) and their performances were compared. Our results indicate that effective combination of a few emission lines can provide a dependable model for discriminating the edible sea salts and the performance is not much degraded from that based on the full broadband spectra. This can be rationalized by the intensity correlation results. - Highlights: • Broadband LIBS spectra of various edible sea salts were obtained. • Intensity correlation of emission lines of the elements in edible sea salts was analyzed. • The elements were categorized into three groups with independent discriminating power. • The effective combination of a few lines can provide dependable classification models.
Lee, Yonghoon; Ham, Kyung-Sik; Han, Song-Hee; Yoo, Jonghyun; Jeong, Sungho
2014-11-01
We have investigated the discriminating power of the elements in edible sea salts using Laser-Induced Breakdown Spectroscopy (LIBS). For the ten different sea salts from South Korea, China, Japan, France, Mexico and New Zealand, LIBS spectra were recorded in the spectral range between 190 and 1040 nm, identifying the presence of Na, Cl, K, Ca, Mg, Li, Sr, Al, Si, Ti, Fe, C, O, N, and H. Intensity correlation analysis of the observed emission lines provided a valuable insight into the discriminating power of the different elements in the sea salts. The correlation analysis suggests that the elements with independent discrimination power can be categorized into three groups; those that represent dissolved ions in seawater (K, Li, and Mg), those that are associated with calcified particles (Ca and Sr), and those that are present in soils contained in the sea salts (Al, Si, Ti, and Fe). Classification models using a few emission lines selected based on the results from intensity correlation analysis and full broadband LIBS spectra were developed based on Principal Component Analysis (PCA) and Partial Least Squares-Discriminant Analysis (PLS-DA) and their performances were compared. Our results indicate that effective combination of a few emission lines can provide a dependable model for discriminating the edible sea salts and the performance is not much degraded from that based on the full broadband spectra. This can be rationalized by the intensity correlation results.
Angular distributions of bremsstrahlung photons from ECR plasma
Kumwenda, M. J.; Ahn, J. K.; Lee, J. W.; Lugendo, I. J.; Kim, S. J.; Park, J. Y.; Won, M. S.
2017-12-01
High-energy bremsstrahlung photon emission beyond a critical energy from electron cyclotron resonance (ECR) heating has long attracted much attention, and its nature has yet been unsolved. We have measured bremsstrahlung photons from the 28-GHz ECR ion source at Busan Center of Korean Basic Science Institute. The gamma-ray detection system consists of three NaI(Tl) scintillation detectors placed 62 cm radially from the beam axis and a NaI(Tl) scintillation detector at the extraction port for monitoring the photon intensity along the beam axis. Bremsstrahlung photon energy spectra were measured at nine azimuthal angles at the RF power of 1 kW. Azimuthal angular distributions of bremsstrahlung photons were found to be in coincidence with the structure the ECR ion source and the shape of ECR plasma.
Soheyli, Saeed; Khanlari, Marzieh Varasteh
2016-04-01
Effects of the various neutron emission energy spectra, as well as the influence of the angular momentum of pre-scission neutrons on theoretical predictions of fission fragment angular anisotropies for several heavy-ion induced fission systems are considered. Although theoretical calculations of angular anisotropy are very sensitive to neutron emission correction, the effects of the different values of kinetic energy of emitted neutrons derived from the various neutron emission energy spectra before reaching to the saddle point on the prediction of fission fragment angular distribution by the model are not significant and can be neglected, since these effects on angular anisotropies of fission fragments for a wide range of fissility parameters and excitation energies of compound nuclei are not more than 10%. Furthermore, the theoretical prediction of fission fragment angular anisotropy is not sensitive to the angular momentum of emitted neutrons.
Fission fragment angular momentum
International Nuclear Information System (INIS)
Frenne, D. De
1991-01-01
Most of the energy released in fission is converted into translational kinetic energy of the fragments. The remaining excitation energy will be distributed among neutrons and gammas. An important parameter characterizing the scission configuration is the primary angular momentum of the nascent fragments. Neutron emission is not expected to decrease the spin of the fragments by more than one unit of angular momentum and is as such of less importance in the determination of the initial fragment spins. Gamma emission is a suitable tool in studying initial fragment spins because the emission time, number, energy, and multipolarity of the gammas strongly depend on the value of the primary angular momentum. The main conclusions of experiments on gamma emission were that the initial angular momentum of the fragments is large compared to the ground state spin and oriented perpendicular to the fission axis. Most of the recent information concerning initial fragment spin distributions comes from the measurement of isomeric ratios for isomeric pairs produced in fission. Although in nearly every mass chain isomers are known, only a small number are suitable for initial fission fragment spin studies. Yield and half-life considerations strongly limit the number of candidates. This has the advantage that the behavior of a specific isomeric pair can be investigated for a number of fissioning systems at different excitation energies of the fragments and fissioning nuclei. Because most of the recent information on primary angular momenta comes from measurements of isomeric ratios, the global deexcitation process of the fragments and the calculation of the initial fragment spin distribution from measured isomeric ratios are discussed here. The most important results on primary angular momentum determinations are reviewed and some theoretical approaches are given. 45 refs., 7 figs., 2 tabs
Gomez, Daniel O.; Martens, Petrus C. H.; Golub, Leon
1993-01-01
Fourier analysis is applied to very high resolution image of coronal active regions obtained by the Normal Incidence X-Ray Telescope is used to find a broad isotropic power-law spectrum of the spatial distribution of soft X-ray intensities. Magnetic structures of all sizes are present down to the resolution limit of the instrument. Power spectra for the X-ray intensities of a sample of topologically different active regions are found which fall off with increasing wavenumber as 1/k-cubed. A model is presented that relates the basic features of coronal magnetic fluctuations to the subphotospheric hydrodynamic turbulence that generates them. The model is used to find a theoretical power spectrum for the X-ray intensity which falls off with increasing wavenumber as 1/k-cubed. The implications of a turbulent regime in active regions are discussed.
International Nuclear Information System (INIS)
Weihua Zhang; Kurt Ungar; Ian Hoffman; Ryan Lawrie; Jarmo Ala-Heikkila
2010-01-01
Based on the Linssi database and UniSampo/Shaman software, an automated analysis platform has been setup for the analysis of large amounts of gamma-spectra from the primary coolant monitoring systems of a CANDU reactor. Thus, a database inventory of gaseous and volatile fission products in the primary coolant of a CANDU reactor has been established. This database is comprised of 15,000 spectra of radioisotope analysis records. Records from the database inventory were retrieved by a specifically designed data-mining module and subjected to further analysis. Results from the analysis were subsequently used to identify the reactor coolant half-life of 135 Xe and 133 Xe, as well as the correlations of 135 Xe and 88 Kr activities. (author)
International Nuclear Information System (INIS)
Curreri, J.; Costantino, C.; Subudhi, M.; Reich, M.
1983-09-01
Generic floor response spectra were developed for use in the qualification of electrical and mechanical equipment in operating nuclear power plants. The characteristics of 1000 floor response spectra were studied to determine the generic spectra. The procedure developed uses as much or as little information that currently exists at the plant relating to the question of equipment qualification. The general approach was to study the effects on the dynamic characteristics of each of the elements in the chain of events that goes between the loads and the responses. This includes the loads, the soils and the structures. A free-field earthquake response spectra was used to generate horizontal earthquake time histories. The excitation was applied through the soil and into the various structures to produce responses in equipment. An entire range of soil conditions was used with each structure. Actual PWR and BWR - Mark I structural models were used. For each model, the stiffness properties were varied, with the same mass, so as to extend the fundamental base structure natural frequency from 2 cps to 36 cps. The natural frequencies of the structures were varied to obtain maximum response conditions. The actual properties were first used to locate the natural frequencies. The stiffness properties were than varied, with the same mass, to extend the range of the fundamental base structure natural frequency. The intention was to have the coupled structural material frequencies in the vicinity of the peak amplitude frequency content of the excitation spectrum. Particular attention was therefore given to the frequency band between 2 Hz and 4 Hz. A horizontal generic floor response spectra is proposed for the top level of a generic structure. Reduction factors are applied to the peak acceleration for equipment at lower levels
James, Lynette M; Iannone, Robert; Palcza, John; Renger, John J; Calder, Nicole; Cerchio, Kristine; Gottesdiener, Keith; Hargreaves, Richard; Murphy, M Gail; Boyle, Julia; Dijk, Derk-Jan
2011-06-01
Histamine and dopamine contribute to the maintenance of wakefulness. This study aims to conduct an exploratory analysis of the effects of 10 and 50 mg of MK-0249, a novel histamine subtype-3 receptor inverse agonist, and 200 mg of modafinil, a presumed dopaminergic compound, on EEG power spectra during sleep deprivation and subsequent recovery sleep. A total of 25 healthy men were recruited to a double-blind, placebo-controlled cross-over design. EEG power spectra, an electrophysiological marker of changes in sleepiness and vigilance, were obtained at the beginning of wake maintenance tests at two-hourly intervals throughout a night and day of sleep deprivation, which is an established model of excessive sleepiness. After placebo, sleep deprivation was associated with enhancements in delta and theta and reductions in alpha and beta activity. Following dosing at 02:00 h, MK-0249 and modafinil reduced delta and theta activity and enhanced alpha and beta activity, compared to placebo. During recovery sleep initiated at 21:00 h, latency to sleep onset and number of awakenings were not different from placebo for any of the active treatments. Wake after sleep onset and stage 1% was increased and total sleep time, SWS% and REM% were reduced after both doses of MK-0249. Compared to placebo, MK-0249, the 50-mg dose in particular, reduced activity in some delta and theta/alpha frequencies and enhanced beta activity during NREM sleep and REM sleep. After modafinil, no changes were observed for power spectra during sleep. Both MK-0249 and modafinil exert effects on the EEG which are consistent with wake promotion.
Probabilistic calculation for angular dependence collision
International Nuclear Information System (INIS)
Villarino, E.A.
1990-01-01
This collision probabilistic method is broadly used in cylindrical geometry (in one- or two-dimensions). It constitutes a powerful tool for the heterogeneous Response Method where, the coupling current is of the cosine type, that is, without angular dependence at azimuthal angle θ and proportional to μ (cosine of the θ polar angle). (Author) [es
Zhang, Y.; Dong, Q.-L.; Wang, S.-J.; Li, Y.-T.; Zhang, J.; Wei, H.-G.; Shi, J.-R.; Zhao, G.; Zhang, J.-Y.; Wen, T.-S.; Zhang, W.-H.; Hu, X.; Liu, S.-Y.; Ding, Y.-K.; Zhang, L.; Tang, Y.-J.; Zhang, B.-H.; Zheng, Z.-J.; Nishimura, H.; Fujioka, S.; Takabe, H.
2008-05-01
We studied the opacity effect of the SiO2 aerogel plasma heated by x-ray radiation produced by high power laser pulses irradiating the inner surface of golden 'dog-bone' targets. The PET crystal spectrometer was used to measure the absorption spectra of the plasmas in the range from 6.4 Å to 7.4 Å, among which the line emissions involving the K shell of Si ions from He-like to neutral atom were located. The experimental results were analyzed with Detailed-Level-Accounting method. As the plasma temperature increased, the characteristic lines of highly ionized ions gradually dominated the absorption spectrum.
International Nuclear Information System (INIS)
Kato, K.G.; Benford, G.; Tzach, D.
1983-01-01
Prodigious quantities of microwave energy are observed uniformly across a wide frequency band when a relativistic electron beam (REB) penetrates a plasma. Measurement calculations are illustrated. A model of Compton-like boosting of ambient plasma waves by beam electrons, with collateral emission of high frequency photons, qualitatively explain the spectra. A transition in spectral behavior is observed from the weak to strong turbulence theories advocated for Type III solar burst radiation, and further into the regime the authors characterize as super-strong REB-plasma interactions
Energy Technology Data Exchange (ETDEWEB)
Aylor, K.; Hou, Z.; Knox, L.; Story, K. T.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Cho, H-M.; Chown, R.; Crawford, T. M.; Crites, A. T.; Haan, T. de; Dobbs, M. A.; Everett, W. B.; George, E. M.; Halverson, N. W.; Harrington, N. L.; Holder, G. P.; Holzapfel, W. L.; Hrubes, J. D.; Keisler, R.; Lee, A. T.; Leitch, E. M.; Luong-Van, D.; Marrone, D. P.; McMahon, J. J.; Meyer, S. S.; Millea, M.; Mocanu, L. M.; Mohr, J. J.; Natoli, T.; Omori, Y.; Padin, S.; Pryke, C.; Reichardt, C. L.; Ruhl, J. E.; Sayre, J. T.; Schaffer, K. K.; Shirokoff, E.; Staniszewski, Z.; Stark, A. A.; Vanderlinde, K.; Vieira, J. D.; Williamson, R.
2017-11-20
The Planck cosmic microwave background temperature data are best fit with a Lambda CDM model that mildly contradicts constraints from other cosmological probes. The South Pole Telescope (SPT) 2540 deg(2) SPT-SZ survey offers measurements on sub-degree angular scales (multipoles 650 <= l <= 2500) with sufficient precision to use as an independent check of the Planck data. Here we build on the recent joint analysis of the SPT-SZ and Planck data in Hou et al. by comparing Lambda CDM parameter estimates using the temperature power spectrum from both data sets in the SPT-SZ survey region. We also restrict the multipole range used in parameter fitting to focus on modes measured well by both SPT and Planck, thereby greatly reducing sample variance as a driver of parameter differences and creating a stringent test for systematic errors. We find no evidence of systematic errors from these tests. When we expand the maximum multipole of SPT data used, we see low-significance shifts in the angular scale of the sound horizon and the physical baryon and cold dark matter densities, with a resulting trend to higher Hubble constant. When we compare SPT and Planck data on the SPT-SZ sky patch to Planck full-sky data but keep the multipole range restricted, we find differences in the parameters n(s) and A(s)e(-2 tau). We perform further checks, investigating instrumental effects and modeling assumptions, and we find no evidence that the effects investigated are responsible for any of the parameter shifts. Taken together, these tests reveal no evidence for systematic errors in SPT or Planck data in the overlapping sky coverage and multipole range and at most weak evidence for a breakdown of Lambda CDM or systematic errors influencing either the Planck data outside the SPT-SZ survey area or the SPT data at l > 2000.
Neu, Daniel; Mairesse, Olivier; Verbanck, Paul; Le Bon, Olivier
2015-10-01
To investigate slow wave sleep (SWS) spectral power proportions in distinct clinical conditions sharing non-restorative sleep and fatigue complaints without excessive daytime sleepiness (EDS), namely the chronic fatigue syndrome (CFS) and primary insomnia (PI). Impaired sleep homeostasis has been suspected in both CFS and PI. We compared perceived sleep quality, fatigue and sleepiness symptom-intensities, polysomnography (PSG) and SWS spectral power distributions of drug-free CFS and PI patients without comorbid sleep or mental disorders, with a good sleeper control group. Higher fatigue without EDS and impaired perceived sleep quality were confirmed in both patient groups. PSG mainly differed in sleep fragmentation and SWS durations. Spectral analysis revealed a similar decrease in central ultra slow power (0.3-0.79Hz) proportion during SWS for both CFS and PI and an increase in frontal power proportions of faster frequencies during SWS in PI only. The latter was correlated to affective symptoms whereas lower central ultra slow power proportions were related to fatigue severity and sleep quality impairment. In combination with normal (PI) or even increased SWS durations (CFS), we found consistent evidence for lower proportions of slow oscillations during SWS in PI and CFS. Observing normal or increased SWS durations but lower proportions of ultra slow power, our findings suggest a possible quantitative compensation of altered homeostatic regulation. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Structure of high-resolution NMR spectra
Corio, PL
2012-01-01
Structure of High-Resolution NMR Spectra provides the principles, theories, and mathematical and physical concepts of high-resolution nuclear magnetic resonance spectra.The book presents the elementary theory of magnetic resonance; the quantum mechanical theory of angular momentum; the general theory of steady state spectra; and multiple quantum transitions, double resonance and spin echo experiments.Physicists, chemists, and researchers will find the book a valuable reference text.
Angular momentum projected semiclassics
International Nuclear Information System (INIS)
Hasse, R.W.
1986-10-01
By using angular momentum projected plane waves as wave functions, we derive semiclassical expressions for the single-particle propagator, the partition function, the nonlocal density matrix, the single-particle density and the one particle- one hole level density for fixed angular momentum and fixed z-component or summed over the z-components. Other quantities can be deduced from the propagator. In coordinate space (r, r') the relevant quantities depend on vertical stroker - r 3 vertical stroke instead of vertical stroker - r'vertical stroke and in Wigner space (R, P) they become proportional to the angular momentum constraints δ(vertical strokeRxPvertical stroke/ℎ - l) and δ((RxP) z /ℎ - m). As applications we calculate the single-particle and one particle- one hole level densities for harmonic oscillator and Hill-Wheeler box potentials and the imaginary part of the optical potential and its volume integral with an underlying harmonic oscillator potential and a zero range two-body interaction. (orig.)
Gönnenwein, F.; Bunakov, V.; Dorvaux, O.; Gagarski, A.; Guseva, I.; Hanappe, F.; Kadmensky, S.; von Kalben, J.; Khlebnikov, S.; Kinnard, V.; Kopatch, Yu.; Mutterer, M.; Nesvizhevsky, V.; Petrov, G.; Prokhorova, E.; Rubchenya, V.; Sillanpää, M.; Simpson, G.; Sokolov, V.; Soldner, T.; Stuttgé, L.; Tiourine, G.; Trzaska, W.; Tsekhanovich, I.; Wagemans, C.; Wollersheim, H.-J.; Zavarukhina, T.; Zimmer, O.
2008-04-01
Three novel experiments in spontaneous and thermal neutron induced fission all with a bearing on angular momentum in fission are reviewed. In the first experiment it was observed that, in the reaction 235U(n, f) with incident polarized cold neutrons, the nucleus undergoing scission is rotating. This was inferred from the shift in angular distributions of ternary particles being dependent on the orientation of neutron spin. In the second study the properties of the angular momentum of spherical fission fragments was investigated. Current theories trace the spin of fragments to their deformations allowing for collective rotational vibrations at scission. However, in particular the spherical 132Te isotope exhibits a large spin at variance with theory. Exploiting the specific properties of cold deformed fission it could be proven that, for 132Te, single particle excitations instead of collective modes are responsible for the large spin observed. In a third project a pilot study was exploring the possibility to search for an evaporation of neutrons from fragments being anisotropic in their own cm-system. Due to fragment spin this anisotropy is claimed since decades to exist. It was so far never observed. A scheme has been devised and tested were triple coincidences between a fragment and two neutrons are evaluated in a way to bring the cm-anisotropy into the foreground while getting rid of the kinematical anisotropy in the lab-system due to evaporation from moving fragments. The test was run for spontaneous fission of 252Cf.
Energy Technology Data Exchange (ETDEWEB)
Usmani, A. [Amec Foster Wheeler, Toronto, ON (Canada); Baughman, P.D. [Paul D. Baughman Consulting, Exeter, NH (United States)
2015-07-01
The Uniform Hazard Spectrum (UHS) is developed from a probabilistic seismic hazard assessment and represents a response spectrum for which the amplitude at each frequency has a specified and uniform (equal) probability of exceedance. The high spectral acceleration at high frequencies in the UHS can result mainly from small non-damaging low energy earthquakes. Historically Canadian and U.S. nuclear power plants have been designed using the standard shape spectrum given in CSA N289.3 or USNRC Regulatory Guide 1.60, which have maximum spectral accelerations in the lower (2-10 Hz.) frequency range. The impact of the high frequency content of UHS on the nuclear power plant SSCs is required to be assessed. This paper briefly describes the methodologies used for screening and evaluation of the effects of UHS high frequency content on the nuclear power SSCs that have been designed using the CSA N289.3 standard shape spectrum. (author)
Multichannel system for angular distribution measurements
International Nuclear Information System (INIS)
Burjan, V.; Kroha, V.; Putz, K.
A description is given of the individual blocks of the spectrometric apparatus used for measuring the angular distribution of particle spectra and excitation functions of (d,p) reactions at an electrostatic accelerator and the U-120 M cyclotron, both operating at the Nuclear Physics Institute of the Czechoslovak Academy of Sciences at Rez. Main attention was devoted to attaining maximum energy resolution at a high measurement efficiency, this by installing 8 independent spectrometric chains allowing simultaneous measurement of angular distribution in 8 points of the beam. The semiconductor detectors were cooled to -40 degC to -60 degC, which significantly reduced the level of inherent detector noise. An energy resolution of 13 keV was attained using Tesla detectors at a particle energy of 11 MeV. A brief review of data processing and software is given. (B.S.)
Directory of Open Access Journals (Sweden)
Claudio eImperatori
2013-04-01
Full Text Available The n-back task is widely used to investigate the neural basis of Working Memory (WM processes. The principal aim of this study was to explore and compare the EEG power spectra during two n-back tests with different levels of difficulty (1-back vs 3-back.Fourteen healthy subjects were enrolled (7 men and 7 women, mean age 31.21±7.05 years, range: 23-48. EEG was recorded while performing the N-back test, by means of 19 surface electrodes referred to joint mastoids. EEG analysis were conducted by means of the standardized LOw Resolution brain Electric Tomography (sLORETA software. The statistical comparison between EEG power spectra in the two conditions was performed using paired t-statistics on the coherence values after Fisher’s z transformation available in the LORETA program package. The frequency bands considered were: delta (0.5-4 Hz; theta (4.5–7.5 Hz; alpha (8–12.5 Hz; beta (13–30 Hz; gamma (30.5–100 Hz. Significant changes occurred in the delta band: in the 3-back condition an increased delta power was localized in a brain region corresponding to the Brodmann Area (BA 28 in the left posterior entorhinal cortex (T = 3.112; p<0.05 and in the BA 35 in the left peririnhal cortex in the parahippocampal gyrus (T = 2.876; p<0.05. No significant differences were observed in the right hemisphere and in the alpha, theta, beta and gamma frequency bands. Our results indicate that the most prominent modification induced by the increased complexity of the task occur in the mesial left temporal lobe structures.
DEFF Research Database (Denmark)
Yura, Harold; Hanson, Steen Grüner
2012-01-01
Methods for simulation of two-dimensional signals with arbitrary power spectral densities and signal amplitude probability density functions are disclosed. The method relies on initially transforming a white noise sample set of random Gaussian distributed numbers into a corresponding set with the......Methods for simulation of two-dimensional signals with arbitrary power spectral densities and signal amplitude probability density functions are disclosed. The method relies on initially transforming a white noise sample set of random Gaussian distributed numbers into a corresponding set...... with the desired spectral distribution, after which this colored Gaussian probability distribution is transformed via an inverse transform into the desired probability distribution. In most cases the method provides satisfactory results and can thus be considered an engineering approach. Several illustrative...
Optical angular momentum and atoms.
Franke-Arnold, Sonja
2017-02-28
Any coherent interaction of light and atoms needs to conserve energy, linear momentum and angular momentum. What happens to an atom's angular momentum if it encounters light that carries orbital angular momentum (OAM)? This is a particularly intriguing question as the angular momentum of atoms is quantized, incorporating the intrinsic spin angular momentum of the individual electrons as well as the OAM associated with their spatial distribution. In addition, a mechanical angular momentum can arise from the rotation of the entire atom, which for very cold atoms is also quantized. Atoms therefore allow us to probe and access the quantum properties of light's OAM, aiding our fundamental understanding of light-matter interactions, and moreover, allowing us to construct OAM-based applications, including quantum memories, frequency converters for shaped light and OAM-based sensors.This article is part of the themed issue 'Optical orbital angular momentum'. © 2017 The Author(s).
Vanston, Alex
2013-01-01
This book uses a practical, step-by-step approach, starting with how to build directives from the ground up before moving on to creating web applications comprised of multiple modules all working together to provide the best user experience possible.This book is intended for intermediate JavaScript developers who are looking to enhance their understanding of single-page web application development with a focus on AngularJS and the JavaScript MVC frameworks.It is expected that readers will understand basic JavaScript patterns and idioms and can recognize JSON formatted data.
BETA SPECTRA. I. Negatrons spectra
International Nuclear Information System (INIS)
Grau Malonda, A.; Garcia-Torano, E.
1978-01-01
Using the Fermi theory of beta decay, the beta spectra for 62 negatrons emitters have been computed introducing a correction factor for unique forbidden transitions. These spectra are plotted vs. energy, once normal i sed, and tabulated with the related Fermi functions. The average and median energies are calculated. (Author)
A perturbed angular correlation spectrometer for material science ...
Indian Academy of Sciences (India)
Abstract. A four-detector perturbed angular correlation (PAC) spectrometer has been developed with ultra-fast BaF2 detectors to acquire four coincidence spectra simultane- ously, two at 180° and two at 90°. This spectrometer has double efficiency compared to that of a three-detector set-up. Higher efficiency is desirable for ...
A perturbed angular correlation spectrometer for material science ...
Indian Academy of Sciences (India)
A four-detector perturbed angular correlation (PAC) spectrometer has been developed with ultra-fast BaF2 detectors to acquire four coincidence spectra simultaneously, two at 180° and two at 90°. This spectrometer has double efficiency compared to that of a three-detector set-up. Higher efficiency is desirable for PAC ...
Continuous improvement of high-efficiency high-power 800-980nm diode lasers at Spectra-Physics
Li, Hanxuan; Towe, Terry; Chyr, Irving; Jin, Xu; Miller, Robert; Romero, Oscar; Liu, Daming; Brown, Denny; Truchan, Tom; Nguyen, Touyen; Crum, Trevor; Wolak, Ed; Bullock, Robert; Mott, Jeff; Harrison, James
2009-02-01
New-generation multi-mode 9xx mini-bars used in fiber pump modules have been developed. The epitaxial designs have been improved for lower fast-axis and slow-axis divergence, higher slope efficiency and PCE by optimizing layer structures as well as minimizing internal loss. For 915nm mini-bars with 5-mm cavity length, maximum PCE is as high as ~61% for 35W operation and remains above 59% at 45W. For 808nm, a PCE of 56% at 135W CW operation has been demonstrated with 36%-fill-factor, 3-mm-cavity-length, water-cooled bars at 50°C coolant temperature. On passive-cooled standard CS heatsinks, PCE of >51% is measured for 100W operation at 50°C heatsink temperature. Leveraging these improvements has enabled low-cost bars for high-power, high-temperature applications.
Application of instantaneous angular acceleration to diesel engine fault diagnosis
Ren, Yunpeng; Hu, Tianyou; Liu, Xin
2005-12-01
Diesel engine is a kind of important power generating machine, of which the running state monitoring and fault diagnosis attracts increasing attention. The theory and the method of diesel engine fault diagnosis based on angular acceleration measurement were studied, since angular acceleration contains a lot of information for diesel engine fault diagnosing and its power balance evaluating. USB data acquisition system was designed for the angular acceleration measurement, and it was composed with AVRAT09S8515 micro-processor and PDIUSBD12 USB interface IC. At the same time, the high speed micro-processor AVRAT09S8515 with unique function of automatically capturing the rising or falling edge of square wave was studied, and it was utilized in the diesel engine's crankshaft angular acceleration measuring system. The software and hardware of the whole system was designed, which supplied a whole solution to diesel engine fault diagnosis and power balance evaluation between each cylinder.
Imperatori, Claudio; Fabbricatore, Mariantonietta; Innamorati, Marco; Farina, Benedetto; Quintiliani, Maria Isabella; Lamis, Dorian A; Mazzucchi, Edoardo; Contardi, Anna; Vollono, Catello; Della Marca, Giacomo
2015-12-01
We evaluated the modifications of electroencephalographic (EEG) power spectra and EEG connectivity in overweight and obese patients with elevated food addiction (FA) symptoms. Fourteen overweight and obese patients (3 men and 11 women) with three or more FA symptoms and fourteen overweight and obese patients (3 men and 11 women) with two or less FA symptoms were included in the study. EEG was recorded during three different conditions: 1) five minutes resting state (RS), 2) five minutes resting state after a single taste of a chocolate milkshake (ML-RS), and 3) five minutes resting state after a single taste of control neutral solution (N-RS). EEG analyses were conducted by means of the exact Low Resolution Electric Tomography software (eLORETA). Significant modification was observed only in the ML-RS condition. Compared to controls, patients with three or more FA symptoms showed an increase of delta power in the right middle frontal gyrus (Brodmann Area [BA] 8) and in the right precentral gyrus (BA 9), and theta power in the right insula (BA 13) and in the right inferior frontal gyrus (BA 47). Furthermore, compared to controls, patients with three or more FA symptoms showed an increase of functional connectivity in fronto-parietal areas in both the theta and alpha band. The increase of functional connectivity was also positively associated with the number of FA symptoms. Taken together, our results show that FA has similar neurophysiological correlates of other forms of substance-related and addictive disorders suggesting similar psychopathological mechanisms.
Angular integrals in d dimensions
International Nuclear Information System (INIS)
Somogyi, Gabor
2011-01-01
We discuss the evaluation of certain d dimensional angular integrals which arise in perturbative field theory calculations. We find that the angular integral with n denominators can be computed in terms of a certain special function, the so-called H-function of several variables. We also present several illustrative examples of the general result and briefly consider some applications. (orig.)
Angular-domain scattering interferometry.
Shipp, Dustin W; Qian, Ruobing; Berger, Andrew J
2013-11-15
We present an angular-scattering optical method that is capable of measuring the mean size of scatterers in static ensembles within a field of view less than 20 μm in diameter. Using interferometry, the method overcomes the inability of intensity-based models to tolerate the large speckle grains associated with such small illumination areas. By first estimating each scatterer's location, the method can model between-scatterer interference as well as traditional single-particle Mie scattering. Direct angular-domain measurements provide finer angular resolution than digitally transformed image-plane recordings. This increases sensitivity to size-dependent scattering features, enabling more robust size estimates. The sensitivity of these angular-scattering measurements to various sizes of polystyrene beads is demonstrated. Interferometry also allows recovery of the full complex scattered field, including a size-dependent phase profile in the angular-scattering pattern.
Okumura, Eiichiro; Kawashita, Ikuo; Ishida, Takayuki
2014-07-01
We have been developing a computer-aided detection (CAD) scheme for pneumoconiosis based on a rule-based plus artificial neural network (ANN) analysis of power spectra. In this study, we have developed three enhancement methods for the abnormal patterns to reduce false-positive and false-negative values. The image database consisted of 2 normal and 15 abnormal chest radiographs. The International Labour Organization standard chest radiographs with pneumoconiosis were categorized as subcategory, size, and shape of pneumoconiosis. Regions of interest (ROIs) with a matrix size of 32 × 32 were selected from normal and abnormal lungs. Three new enhanced methods were obtained by window function, top-hat transformation, and gray-level co-occurrence matrix analysis. We calculated the power spectrum (PS) of all ROIs by Fourier transform. For the classification between normal and abnormal ROIs, we applied a combined analysis using the ruled-based plus the ANN method. To evaluate the overall performance of this CAD scheme, we employed ROC analysis for distinguishing between normal and abnormal ROIs. On the chest radiographs of the highest categories (severe pneumoconiosis) and the lowest categories (early pneumoconiosis), this CAD scheme achieved area under the curve (AUC) values of 0.93 ± 0.02 and 0.72 ± 0.03. The combined rule-based plus ANN method with the three new enhanced methods obtained the highest classification performance for distinguishing between abnormal and normal ROIs. Our CAD system based on the three new enhanced methods would be useful in assisting radiologists in the classification of pneumoconiosis.
Nikolaev, I.; Lodahl, P.; Vos, Willem L.
2005-01-01
We have performed angle-resolved measurements of spontaneous-emission spectra from laser dyes and quantum dots in opal and inverse opal photonic crystals. Pronounced directional dependencies of the emission spectra are observed: angular ranges of strongly reduced emission adjoin with angular ranges
Bailey, Simon
2015-01-01
This book is intended for developers who have an understanding of the basic principles behind both AngularJS and test-driven development. You, as a developer, are interested in eliminating the fear related to either introducing tests to an existing codebase or starting out testing on a fresh AngularJS application. If you're a team leader or part of a QA team with the responsibility of ensuring full test coverage of an application, then this book is ideal for you to comprehend the full testing scope required by your developers. Whether you're new to or are well versed with AngularJS, this book
Positronium Yields in Liquids Determined by Lifetime and Angular Correlation Measurements
DEFF Research Database (Denmark)
Mogensen, O. E.; Jacobsen, F. M.
1982-01-01
Positron lifetime and angular correlation spectra were measured for 36 pure liquids, CCl4 mixtures with hexane and diethylether, and C6F6 mixtures with hexane. Apparent ortho-Ps yields, I'3, were determined as the intensity of the long-lived component in the lifetime spectra, while the apparent...
Solar Energetic Particle Spectra
Ryan, J. M.; Boezio, M.; Bravar, U.; Bruno, A.; Christian, E. R.; de Nolfo, G. A.; Martucci, M.; Mergè, M.; Munini, R.; Ricci, M.; Sparvoli, R.; Stochaj, S.
2017-12-01
We report updated event-integrated spectra from several SEP events measured with PAMELA. The measurements were made from 2006 to 2014 in the energy range starting at 80 MeV and extending well above the neutron monitor threshold. The PAMELA instrument is in a high inclination, low Earth orbit and has access to SEPs when at high latitudes. Spectra have been assembled from these high-latitude measurements. The field of view of PAMELA is small and during the high-latitude passes it scans a wide range of asymptotic directions as the spacecraft orbits. Correcting for data gaps, solid angle effects and improved background corrections, we have compiled event-integrated intensity spectra for twenty-eight SEP events. Where statistics permit, the spectra exhibit power law shapes in energy with a high-energy exponential roll over. The events analyzed include two genuine ground level enhancements (GLE). In those cases the roll-over energy lies above the neutron monitor threshold ( 1 GV) while the others are lower. We see no qualitative difference between the spectra of GLE vs. non-GLE events, i.e., all roll over in an exponential fashion with rapidly decreasing intensity at high energies.
Lidar Orbital Angular Momentum Sensor
National Aeronautics and Space Administration — The recognition in recent decades that electromagnetic fields have angular momentum (AM) in the form of not only polarization (or spin AM) but also orbital (OAM) has...
Plasmons with orbital angular momentum
International Nuclear Information System (INIS)
Mendonca, J. T.; Ali, S.; Thide, B.
2009-01-01
Electron plasma waves carrying orbital angular momentum are investigated in an unmagnetized collisionless plasma composed of inertial electrons and static ions. For this purpose, the usual plasmon dispersion relation is employed to derive an approximate paraxial equation. The latter is analyzed with a Gaussian beam solution. For a finite angular momentum associated with the plasmon, Laguerre-Gaussian (LG) solutions are employed for solving the electrostatic potential problem which gives approximate solution and is valid for plasmon beams in the paraxial approximation. The LG potential determines the electric field components and energy flux of plasmons with finite angular momentum. Numerical illustrations show that the radial and angular mode numbers strongly modify the profiles of the LG potential.
Angular momentum dependence of the nuclear level density parameter
Directory of Open Access Journals (Sweden)
Gohil M.
2014-03-01
Full Text Available Neutron evaporation spectra alongwith γ-multiplicity has been measured from the 185Re* compound nucleus at the excitation energies ~27 and 37 MeV. Statistical model analysis of the experimental data has been carried out to extract the value of the inverse level density parameter k at different angular momentum regions (J corresponding to different γ-multiplicity. It is observed that, for the present system the value of k remains almost constant for different J. The present results on the angular momentum dependence of the nuclear level density (NLD parameter ã (=A/k, for nuclei with A ~180 is quite different from our earlier measurements in case of light and medium mass systems. The present analysis provides useful information to understand the angular momentum dependence of NLD at different nuclear mass regions.
Energy Technology Data Exchange (ETDEWEB)
Nagano, Koji, E-mail: knagano@icrr.u-tokyo.ac.jp [KAGRA Observatory, Institute for Cosmic Ray Research, The University of Tokyo, 5-1-5 Kashiwa-no-Ha, Kashiwa, Chiba 277-8582 (Japan); Enomoto, Yutaro; Nakano, Masayuki [KAGRA Observatory, Institute for Cosmic Ray Research, The University of Tokyo, 5-1-5 Kashiwa-no-Ha, Kashiwa, Chiba 277-8582 (Japan); Furusawa, Akira [Department of Applied Physics, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Kawamura, Seiji [KAGRA Observatory, Institute for Cosmic Ray Research, The University of Tokyo, 5-1-5 Kashiwa-no-Ha, Kashiwa, Chiba 277-8582 (Japan)
2016-12-01
To observe radiation pressure noise in optical cavities consisting of suspended mirrors, high laser power is necessary. However, because the radiation pressure on the mirrors could cause an angular anti-spring effect, the high laser power could induce angular instability to the cavity. An angular control system using radiation pressure as an actuator, which was previously invented to reduce the anti-spring effect for the low power case, was applied to the higher power case where the angular instability would occur. As a result the angular instability was mitigated. It was also demonstrated that the cavity was unstable without this control system. - Highlights: • High laser power could cause angular instability to a suspended Fabry–Perot cavity. • To mitigate the instability, the control system using radiation pressure is applied. • Mitigating the radiation-pressure-induced angular instability is demonstrated. • It is also confirmed that the cavity would be unstable without the control system.
Rectilinear Graphs and Angular Resolution
Bodlaender, H.L.; Tel, G.
2003-01-01
In this note we show that a planar graph with angular resolution at least π/2 can be drawn with all angles an integer multiple of π/2, that is, in a rectilinear manner. Moreover, we show that for d ≠ 4, d › 2, having an angular resolution of 2π/d does not imply that the graph can be drawn with all
Uncertainty principle for angular position and angular momentum
International Nuclear Information System (INIS)
Franke-Arnold, Sonja; Barnett, Stephen M; Yao, Eric; Leach, Jonathan; Courtial, Johannes; Padgett, Miles
2004-01-01
The uncertainty principle places fundamental limits on the accuracy with which we are able to measure the values of different physical quantities (Heisenberg 1949 The Physical Principles of the Quantum Theory (New York: Dover); Robertson 1929 Phys. Rev. 34 127). This has profound effects not only on the microscopic but also on the macroscopic level of physical systems. The most familiar form of the uncertainty principle relates the uncertainties in position and linear momentum. Other manifestations include those relating uncertainty in energy to uncertainty in time duration, phase of an electromagnetic field to photon number and angular position to angular momentum (Vaccaro and Pegg 1990 J. Mod. Opt. 37 17; Barnett and Pegg 1990 Phys. Rev. A 41 3427). In this paper, we report the first observation of the last of these uncertainty relations and derive the associated states that satisfy the equality in the uncertainty relation. We confirm the form of these states by detailed measurement of the angular momentum of a light beam after passage through an appropriate angular aperture. The angular uncertainty principle applies to all physical systems and is particularly important for systems with cylindrical symmetry
Goodworth, Adam D; Paquette, Caroline; Jones, Geoffrey Melvill; Block, Edward W; Fletcher, William A; Hu, Bin; Horak, Fay B
2012-05-01
Linear and angular control of trunk and leg motion during curvilinear navigation was investigated in subjects with cerebellar ataxia and age-matched control subjects. Subjects walked with eyes open around a 1.2-m circle. The relationship of linear to angular motion was quantified by determining the ratios of trunk linear velocity to trunk angular velocity and foot linear position to foot angular position. Errors in walking radius (the ratio of linear to angular motion) also were quantified continuously during the circular walk. Relative variability of linear and angular measures was compared using coefficients of variation (CoV). Patterns of variability were compared using power spectral analysis for the trunk and auto-covariance analysis for the feet. Errors in radius were significantly increased in patients with cerebellar damage as compared to controls. Cerebellar subjects had significantly larger CoV of feet and trunk in angular, but not linear, motion. Control subjects also showed larger CoV in angular compared to linear motion of the feet and trunk. Angular and linear components of stepping differed in that angular, but not linear, foot placement had a negative correlation from one stride to the next. Thus, walking in a circle was associated with more, and a different type of, variability in angular compared to linear motion. Results are consistent with increased difficulty of, and role of the cerebellum in, control of angular trunk and foot motion for curvilinear locomotion.
Isotropic gates and large gamma detector arrays versus angular distributions
International Nuclear Information System (INIS)
Iacob, V.E.; Duchene, G.
1997-01-01
Angular information extracted from in-beam γ ray measurements are of great importance for γ ray multipolarity and nuclear spin assignments. In our days large Ge detector arrays became available allowing the measurements of extremely weak γ rays in almost 4π sr solid angle (e.g., EUROGAM detector array). Given the high detector efficiency it is common for the mean suppressed coincidence multiplicity to reach values as high as 4 to 6. Thus, it is possible to gate on particular γ rays in order to enhance the relative statistics of a definite reaction channel and/or a definite decaying path in the level scheme of the selected residual nucleus. As compared to angular correlations, the conditioned angular distribution spectra exhibit larger statistics because in the latter the gate-setting γ ray may be observed by all the detectors in the array, relaxing somehow the geometrical restrictions of the angular correlations. Since the in-beam γ ray emission is anisotropic one could inquire that gate setting as mentioned above, based on anisotropic γ ray which would perturb the angular distributions in the unfolded events. As our work proved, there is no reason to worry about this if the energy gate runs over the whole solid angle in an ideal 4π sr detector, i.e., if the gate is isotropic. In real quasi 4π sr detector arrays the corresponding quasi isotropic gate preserves the angular properties of the unfolded data, too. However extraction of precise angular distribution coefficient especially a 4 , requires the consideration of the deviation of the quasi isotropic gate relative to the (ideal) isotropic gate
Menard, Dan
2013-01-01
Get to grips with a new technology, understand what it is and what it can do for you, and then get to work with the most important features and tasks. This book is written in an easytoread style, with a strong emphasis on realworld, practical examples. Stepbystep explanations are provided for performing important tasks.This book is for web developers familiar with JavascriptIt doesn't cover the history of AngularJS, and it's not a pitch to convince you that AngularJS is the best framework on the entire web. It's a guide to help you learn everything you need to know about AngularJS in as few pa
Automated Angular Momentum Recoupling Algebra
Williams, H. T.; Silbar, Richard R.
1992-04-01
We present a set of heuristic rules for algebraic solution of angular momentum recoupling problems. The general problem reduces to that of finding an optimal path from one binary tree (representing the angular momentum coupling scheme for the reduced matrix element) to another (representing the sub-integrals and spin sums to be done). The method lends itself to implementation on a microcomputer, and we have developed such an implementation using a dialect of LISP. We describe both how our code, called RACAH, works and how it appears to the user. We illustrate the use of RACAH for several transition and scattering amplitude matrix elements occurring in atomic, nuclear, and particle physics.
The Atacama Cosmology Telescope: Two-Season ACTPol Spectra and Parameters
Louis, Thibaut; Grace, Emily; Hasselfield, Matthew; Lungu, Marius; Maurin, Loic; Addison, Graeme E.; Adem Peter A. R.; Aiola, Simone; Allison, Rupert; Amiri, Mandana;
2017-01-01
We present the temperature and polarization angular power spectra measuredby the Atacama Cosmology Telescope Polarimeter (ACTPol). We analyze night-time datacollected during 2013-14 using two detector arrays at 149 GHz, from 548 deg(exp. 2) of sky onthe celestial equator. We use these spectra, and the spectra measured with the MBAC camera on ACT from 2008-10, in combination with Planck and WMAP data to estimate cosmological parameters from the temperature, polarization, and temperature-polarization cross-correlations. We find the new ACTPol data to be consistent with the CDM model. The ACTPol temperature-polarization cross-spectrum now provides stronger constraints on multiple parameters than the ACTPol temperature spectrum, including the baryon density, the acoustic peak angular scale, and the derived Hubble constant. The new ACTPol dataprovide information on damping tail parameters. The joint uncertainty on the number of neutrino species and the primordial helium fraction is reduced by 20% when adding ACTPol to Planck temperature data alone.
The Atacama Cosmology Telescope: two-season ACTPol spectra and parameters
Energy Technology Data Exchange (ETDEWEB)
Louis, Thibaut [UPMC Univ Paris 06, UMR7095, Institut d' Astrophysique de Paris, F-75014, Paris (France); Grace, Emily; Aiola, Simone; Choi, Steve K. [Joseph Henry Laboratories of Physics, Jadwin Hall, Princeton University, Princeton, NJ 08544 (United States); Hasselfield, Matthew [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Lungu, Marius; Angile, Elio [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Maurin, Loïc [Instituto de Astrofísica and Centro de Astro-Ingeniería, Facultad de Física, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, 7820436 Macul, Santiago (Chile); Addison, Graeme E. [Department of Physics and Astronomy, The Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218-2686 (United States); Ade, Peter A. R. [School of Physics and Astronomy, Cardiff University, The Parade, Cardiff, Wales, CF24 3AA (United Kingdom); Allison, Rupert; Calabrese, Erminia [Sub-Department of Astrophysics, University of Oxford, Keble Road, Oxford, OX1 3RH (United Kingdom); Amiri, Mandana [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z4 (Canada); Battaglia, Nicholas [Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08544 (United States); Beall, James A.; Britton, Joe; Cho, Hsiao-mei [NIST Quantum Devices Group, 325 Broadway Mailcode 817.03, Boulder, CO 80305 (United States); De Bernardis, Francesco [Department of Physics, Cornell University, Ithaca, NY 14853 (United States); Bond, J Richard, E-mail: louis@iap.fr [Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, ON, M5S 3H8 (Canada); and others
2017-06-01
We present the temperature and polarization angular power spectra measured by the Atacama Cosmology Telescope Polarimeter (ACTPol). We analyze night-time data collected during 2013–14 using two detector arrays at 149 GHz, from 548 deg{sup 2} of sky on the celestial equator. We use these spectra, and the spectra measured with the MBAC camera on ACT from 2008–10, in combination with planck and wmap data to estimate cosmological parameters from the temperature, polarization, and temperature-polarization cross-correlations. We find the new ACTPol data to be consistent with the ΛCDM model. The ACTPol temperature-polarization cross-spectrum now provides stronger constraints on multiple parameters than the ACTPol temperature spectrum, including the baryon density, the acoustic peak angular scale, and the derived Hubble constant. The new ACTPol data provide information on damping tail parameters. The joint uncertainty on the number of neutrino species and the primordial helium fraction is reduced by 20% when adding ACTPol to Planck temperature data alone.
van Uitert, Edo; Joachimi, Benjamin; Joudaki, Shahab; Amon, Alexandra; Heymans, Catherine; Köhlinger, Fabian; Asgari, Marika; Blake, Chris; Choi, Ami; Erben, Thomas; Farrow, Daniel J.; Harnois-Déraps, Joachim; Hildebrandt, Hendrik; Hoekstra, Henk; Kitching, Thomas D.; Klaes, Dominik; Kuijken, Konrad; Merten, Julian; Miller, Lance; Nakajima, Reiko; Schneider, Peter; Valentijn, Edwin; Viola, Massimo
2018-03-01
We present cosmological parameter constraints from a joint analysis of three cosmological probes: the tomographic cosmic shear signal in ˜450 deg2 of data from the Kilo Degree Survey (KiDS), the galaxy-matter cross-correlation signal of galaxies from the Galaxies And Mass Assembly (GAMA) survey determined with KiDS weak lensing, and the angular correlation function of the same GAMA galaxies. We use fast power spectrum estimators that are based on simple integrals over the real-space correlation functions, and show that they are practically unbiased over relevant angular frequency ranges. We test our full pipeline on numerical simulations that are tailored to KiDS and retrieve the input cosmology. By fitting different combinations of power spectra, we demonstrate that the three probes are internally consistent. For all probes combined, we obtain S_8≡ σ _8 √{Ω _m/0.3}=0.800_{-0.027}^{+0.029}, consistent with Planck and the fiducial KiDS-450 cosmic shear correlation function results. Marginalising over wide priors on the mean of the tomographic redshift distributions yields consistent results for S8 with an increase of 28% in the error. The combination of probes results in a 26% reduction in uncertainties of S8 over using the cosmic shear power spectra alone. The main gain from these additional probes comes through their constraining power on nuisance parameters, such as the galaxy intrinsic alignment amplitude or potential shifts in the redshift distributions, which are up to a factor of two better constrained compared to using cosmic shear alone, demonstrating the value of large-scale structure probe combination.
Raman spectra of lithium compounds
Gorelik, V. S.; Bi, Dongxue; Voinov, Y. P.; Vodchits, A. I.; Gorshunov, B. P.; Yurasov, N. I.; Yurasova, I. I.
2017-11-01
The paper is devoted to the results of investigating the spontaneous Raman scattering spectra in the lithium compounds crystals in a wide spectral range by the fibre-optic spectroscopy method. We also present the stimulated Raman scattering spectra in the lithium hydroxide and lithium deuteride crystals obtained with the use of powerful laser source. The symmetry properties of the lithium hydroxide, lithium hydroxide monohydrate and lithium deuteride crystals optical modes were analyzed by means of the irreducible representations of the point symmetry groups. We have established the selection rules in the Raman and infrared absorption spectra of LiOH, LiOH·H2O and LiD crystals.
International Nuclear Information System (INIS)
Suzudo, T.; Verhoef, J.P.; Tuerkcan, E.
1996-09-01
Power-law spectra were found in the temperature signals of the secondary loop in the Borssele Nuclear Power Plant, a PWR in the Netherlands. The coolant temperature before the steam generator inlet was found to fluctuate such that its power spectrum density S, follows S∝f -α , where α is ∝4/3. Analyses using PSD suggested that the value of α is roughly constant over years. Detailed analyses were conducted using wavelet, with the discovery that the power-law appears constantly only at around 0.1 Hz, and the estimated α was found between 1.26 and 1.36. The feedwater pressure signal and feedwater flow rate signal in the same frequency range were white noise and Borwnian motion respectively, and the indication of α=4/3 was not found from them. (orig.)
Introduction to the graphical theory of angular momentum Case studies
Balcar, Ewald
2009-01-01
Application of quantum mechanics in physics and chemistry often entails manipulation and evaluation of sums and products of coupling coefficients for the theory of angular momentum. Challenges encountered in such work can be tamed by graphical techniques that provide both the insight and analytical power. The book is the first step-by-step exposition of a graphical method grounded in established work. Copious exercises recover standard results but demonstrate the power to go beyond.
The instantaneous torque-angular velocity relation in plantar flexion during jumping
van Ingen Schenau, G J; Bobbert, M F; Huijing, P A; Woittiez, R D
Torques, angular velocities, and power of the ankle joint during plantar flexion were measured in jumping experiments in order to achieve insight into shape and magnitude of the instantaneous torque-angular velocity relation in a complex movement. Twelve trained subjects performed maximal vertical
Angular dispersion of protons transmitted through thin gold films
International Nuclear Information System (INIS)
Archubi, C.; Eckardt, J.C.; Lantschner, G.H.; Lovey, F.; Arista, N.R.; Denton, C.; Parra, C.; Valdes, J.; Zappa, F.
2004-01-01
The angular distributions of protons travelling through thin polycrystalline gold targets (∝15 nm) with incident energies in the range of 4-10 keV have been measured. The results confirm previous experiments at higher energies showing deviations from theoretical predictions based on the standard multiple scattering theory. In order to prove that the effect of crystal structure is one of the main causes of these deviations we have performed numerical simulations. To simulate the polycrystalline structure in a realistic way, we have made an analysis of the target by means of transmission electron microscopy (TEM) techniques. Including these characteristics in the simulation, together with the effect of vibrations and crystal disorder we analyzed the corresponding angular distribution. To evaluate the role of channeling, we also measured angular distributions of protons in a left angle 100 right angle gold foil and made the corresponding numerical simulations. The results show the critical influence of the target structure in the angular spectra of transmitted ions. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Radio source orientation and the angular diameter-redshift relation
Onuora, L. I.
1991-08-01
The effect of a nonrandom source orientation on the angular diameter-redshift relation was considered for the 3CR sample of Laing et al., based on the 'unified' scheme of Barthel. For an inhomogeneous sample of objects displaying milliarcsecond scale structure, it was found that there was no evidence for a systematic variation for orientation angle with redshift. However, if it was assumed that quasars are closer to the line of sight than powerful extended radio galaxies, then the observed angular size-redshift relation could be interpreted in terms of source orientation, rather than linear size evolution.
The Cosmology Large Angular Scale Surveyor (CLASS)
Cleary, Joseph
2018-01-01
The Cosmology Large Angular Scale Surveyor (CLASS) is an array of four telescopes designed to measure the polarization of the Cosmic Microwave Background. CLASS aims to detect the B-mode polarization from primordial gravitational waves predicted by cosmic inflation theory, as well as the imprint left by reionization upon the CMB E-mode polarization. This will be achieved through a combination of observing strategy and state-of-the-art instrumentation. CLASS is observing 70% of the sky to characterize the CMB at large angular scales, which will measure the entire CMB power spectrum from the reionization peak to the recombination peak. The four telescopes operate at frequencies of 38, 93, 145, and 217 GHz, in order to estimate Galactic synchrotron and dust foregrounds while avoiding atmospheric absorption. CLASS employs rapid polarization modulation to overcome atmospheric and instrumental noise. Polarization sensitive cryogenic detectors with low noise levels provide CLASS the sensitivity required to constrain the tensor-to-scalar ratio down to levels of r ~ 0.01 while also measuring the optical depth the reionization to sample-variance levels. These improved constraints on the optical depth to reionization are required to pin down the mass of neutrinos from complementary cosmological data. CLASS has completed a year of observations at 38 GHz and is in the process of deploying the rest of the telescope array. This poster provides an overview and update on the CLASS science, hardware and survey operations.
Electromagnetic angular positioner based on DC micromotor
Directory of Open Access Journals (Sweden)
Bodnicki Maciej
2018-01-01
Full Text Available The presented works concerned launching of an angular positioner powered by an electromagnetic actuator, designed for performing angular micromovements within a range of few microradians. The principle of operation is based on balancing the electromagnetic torque of the motor with a torque that is twisting a compliant element. As electrodynamic actuators have no distinguished controlled positions, therefore in typical positioning systems desired positions are obtained applying a closed-loop position control. Usually, such systems employ also a feedback (dumping related to velocity of the moving elements, what simplifies forming of dynamics of the system. The design of the physical model employs a DC micromotor, whose rotor is coupled with a torsional torquemeter. A feedback signal is generated by resistive strain gauges. The paper presents a mathematical model of the positioning system, results of simulation study as well as results of experimental study. The simulation study indicates that it is possible to select such design features and such type of the micoromotor that a high dynamics of positioning is ensured.
On Dunkl angular momenta algebra
Energy Technology Data Exchange (ETDEWEB)
Feigin, Misha [School of Mathematics and Statistics, University of Glasgow,15 University Gardens, Glasgow G12 8QW (United Kingdom); Hakobyan, Tigran [Yerevan State University,1 Alex Manoogian, 0025 Yerevan (Armenia); Tomsk Polytechnic University,Lenin Ave. 30, 634050 Tomsk (Russian Federation)
2015-11-17
We consider the quantum angular momentum generators, deformed by means of the Dunkl operators. Together with the reflection operators they generate a subalgebra in the rational Cherednik algebra associated with a finite real reflection group. We find all the defining relations of the algebra, which appear to be quadratic, and we show that the algebra is of Poincaré-Birkhoff-Witt (PBW) type. We show that this algebra contains the angular part of the Calogero-Moser Hamiltonian and that together with constants it generates the centre of the algebra. We also consider the gl(N) version of the subalgebra of the rational Cherednik algebra and show that it is a non-homogeneous quadratic algebra of PBW type as well. In this case the central generator can be identified with the usual Calogero-Moser Hamiltonian associated with the Coxeter group in the harmonic confinement.
Phonons with orbital angular momentum
International Nuclear Information System (INIS)
Ayub, M. K.; Ali, S.; Mendonca, J. T.
2011-01-01
Ion accoustic waves or phonon modes are studied with orbital angular momentum (OAM) in an unmagnetized collissionless uniform plasma, whose constituents are the Boltzmann electrons and inertial ions. For this purpose, we have employed the fluid equations to obtain a paraxial equation in terms of ion density perturbations and discussed its Gaussian beam and Laguerre-Gauss (LG) beam solutions. Furthermore, an approximate solution for the electrostatic potential problem is presented, allowing to express the components of the electric field in terms of LG potential perturbations. The energy flux due to phonons is also calculated and the corresponding OAM is derived. Numerically, it is shown that the parameters such as azimuthal angle, radial and angular mode numbers, and beam waist, strongly modify the profiles of the phonon LG potential. The present results should be helpful in understanding the phonon mode excitations produced by Brillouin backscattering of laser beams in a uniform plasma.
Angular momentum in QGP holography
Directory of Open Access Journals (Sweden)
Brett McInnes
2014-10-01
Full Text Available The quark chemical potential is one of the fundamental parameters describing the quark–gluon plasma produced by sufficiently energetic heavy-ion collisions. It is not large at the extremely high temperatures probed by the LHC, but it plays a key role in discussions of the beam energy scan programmes at the RHIC and other facilities. On the other hand, collisions at such energies typically (that is, in peripheral collisions give rise to very high values of the angular momentum density. Here we explain that holographic estimates of the quark chemical potential of a rotating sample of plasma can be very considerably improved by taking the angular momentum into account.
AngularJS test-driven development
Chaplin, Tim
2015-01-01
This book is for developers who want to learn about AngularJS development by applying testing techniques. You are assumed to have a basic knowledge and understanding of HTML, JavaScript, and AngularJS.
Angular Momentum of Topologically Structured Darkness.
Alperin, Samuel N; Siemens, Mark E
2017-11-17
We theoretically analyze and experimentally measure the extrinsic angular momentum contribution of topologically structured darkness found within fractional vortex beams, and show that this structured darkness can be explained by evanescent waves at phase discontinuities in the generating optic. We also demonstrate the first direct measurement of the intrinsic orbital angular momentum of light with both intrinsic and extrinsic angular momentum, and explain why the total orbital angular momenta of fractional vortices do not match the winding number of their generating phases.
Orbital Angular Momentum Multiplexing over Visible Light Communication Systems
Tripathi, Hardik Rameshchandra
This thesis proposes and explores the possibility of using Orbital Angular Momentum multiplexing in Visible Light Communication system. Orbital Angular Momentum is mainly applied for laser and optical fiber transmissions, while Visible Light Communication is a technology using the light as a carrier for wireless communication. In this research, the study of the state of art and experiments showing some results on multiplexing based on Orbital Angular Momentum over Visible Light Communication system were done. After completion of the initial stage; research work and simulations were performed on spatial multiplexing over Li-Fi channel modeling. Simulation scenarios which allowed to evaluate the Signal-to-Noise Ratio, Received Power Distribution, Intensity and Illuminance were defined and developed.
AngularJS web application development
Darwin, Peter Bacon
2013-01-01
The book will be a step-by-step guide showing the readers how to build a complete web app with AngularJSJavaScript developers who want to learn AngularJS for developing web apps. Knowledge of JavaScript and HTML is expected. No knowledge of AngularJS is required.
Topological photonic orbital-angular-momentum switch
Luo, Xi-Wang; Zhang, Chuanwei; Guo, Guang-Can; Zhou, Zheng-Wei
2018-04-01
The large number of available orbital-angular-momentum (OAM) states of photons provides a unique resource for many important applications in quantum information and optical communications. However, conventional OAM switching devices usually rely on precise parameter control and are limited by slow switching rate and low efficiency. Here we propose a robust, fast, and efficient photonic OAM switch device based on a topological process, where photons are adiabatically pumped to a target OAM state on demand. Such topological OAM pumping can be realized through manipulating photons in a few degenerate main cavities and involves only a limited number of optical elements. A large change of OAM at ˜10q can be realized with only q degenerate main cavities and at most 5 q pumping cycles. The topological photonic OAM switch may become a powerful device for broad applications in many different fields and motivate a topological design of conventional optical devices.
Scikit-spectra: Explorative Spectroscopy in Python
Directory of Open Access Journals (Sweden)
Adam Hughes
2015-06-01
Full Text Available Scikit-spectra is an intuitive framework for explorative spectroscopy in Python. Scikit-spectra leverages the Pandas library for powerful data processing to provide datastructures and an API designed for spectroscopy. Utilizing the new IPython Notebook widget system, scikit-spectra is headed towards a GUI when you want it, API when you need it approach to spectral analysis. As an application, analysis is presented of the surface-plasmon resonance shift in a solution of gold nanoparticles induced by proteins binding to the gold’s surface. Please refer to the scikit-spectra website for full documentation and support: http://hugadams.github.io/scikit-spectra/
Optical angular momentum in classical electrodynamics
Mansuripur, Masud
2017-06-01
Invoking Maxwell’s classical equations in conjunction with expressions for the electromagnetic (EM) energy, momentum, force, and torque, we use a few simple examples to demonstrate the nature of the EM angular momentum. The energy and the angular momentum of an EM field will be shown to have an intimate relationship; a source radiating EM angular momentum will, of necessity, pick up an equal but opposite amount of mechanical angular momentum; and the spin and orbital angular momenta of the EM field, when absorbed by a small particle, will be seen to elicit different responses from the particle.
Dependency injection with AngularJS
Knol, Alex
2013-01-01
This book is a practical, hands-on approach to using dependency injection and implementing test-driven development using AngularJS. Dependency Injection with AngularJS is aimed at developers who are aware of AngularJS but need to get started with using it in real life applications. Also, developers who want to get into test-driven development with AngularJS can use this book as practical guide. Even if you know about dependency injection, it can serve as a good reference on how it is used within AngularJS. Readers are expected to have some experience with JavaScript.
Angular distribution of ions and extreme ultraviolet emission in laser-produced tin droplet plasma
Chen, Hong; Wang, Xinbing; Duan, Lian; Lan, Hui; Chen, Ziqi; Zuo, Duluo; Lu, Peixiang
2015-05-01
Angular-resolved ion time-of-flight spectra as well as extreme ultraviolet radiation in laser-produced tin droplet plasma are investigated experimentally and theoretically. Tin droplets with a diameter of 150 μm are irradiated by a pulsed Nd:YAG laser. The ion time-of-flight spectra measured from the plasma formed by laser irradiation of the tin droplets are interpreted in terms of a theoretical elliptical Druyvesteyn distribution to deduce ion density distributions including kinetic temperatures of the plasma. The opacity of the plasma for extreme ultraviolet radiation is calculated based on the deduced ion densities and temperatures, and the angular distribution of extreme ultraviolet radiation is expressed as a function of the opacity using the Beer-Lambert law. Our results show that the calculated angular distribution of extreme ultraviolet radiation is in satisfactory agreement with the experimental data.
Vortex-MEMS filters for wavelength-selective orbital-angular-momentum beam generation
DEFF Research Database (Denmark)
Paul, Sujoy; Lyubopytov, Vladimir; Schumann, Martin F.
2017-01-01
and orbital angular momentum (OAM) domains at around 1550 nm, is considered as a compact, robust and cost-effective solution for simultaneous OAM- and WDM optical communications. Experimental spectra for azimuthal orders 1, 2 and 3 show OAM state purity >92% across 30 nm wavelength range. A demonstration...
Response spectra in alluvial soils
International Nuclear Information System (INIS)
Chandrasekharan, A.R.; Paul, D.K.
1975-01-01
For aseismic design of structures, the ground motion data is assumed either in the form of ground acceleration as a function of time or indirectly in the form of response spectra. Though the response spectra approach has limitations like not being applicable for nonlinear problems, it is usually used for structures like nuclear power plants. Fifty accelerograms recorded at alluvial sites have been processed. Since different empirical formulas relating acceleration with magnitude and distance give a wide scatter of values, peak ground acceleration alone cannot be the parameter as is assumed by a number of authors. The spectra corresponding to 5% damping have been normalised with respect to three parameters, namely, peak ground acceleration, peak ground velocity and a nondimensional quantity ad/v 2 . Envelopee of maxima and minima as well as average response spectra has been obtained. A comparison with the USAEC spectra has been made. A relation between ground acceleration, ground velocity and ad/v 2 has been obtained which would nearly give the same magnification of the response. A design response spectra for alluvial soils has been recommended. (author)
Different spectra with the same neutron source
Energy Technology Data Exchange (ETDEWEB)
Vega C, H. R.; Ortiz R, J. M.; Hernandez D, V. M.; Martinez B, M. R.; Hernandez A, B.; Ortiz H, A. A. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Mercado, G. A., E-mail: fermineutron@yahoo.co [Universidad Autonoma de Zacatecas, Unidad Academica de Matematicas, Jardin Juarez No. 147, 98000 Zacatecas (Mexico)
2010-02-15
Using as source term the spectrum of a {sup 239}Pu-Be source several neutron spectra have been calculated using Monte Carlo methods. The source term was located in the centre of spherical moderators made of light water, heavy water and polyethylene of different diameters. Also a {sup 239}Pu-Be source was used to measure its neutron spectrum, bare and moderated by water. The neutron spectra were measured at 100 cm with a Bonner spheres spectrometer. Monte Carlo calculations were used to calculate the neutron spectra of bare and water-moderated spectra that were compared with those measured with the spectrometer. Resulting spectra are similar to those found in power plants with PWR, BWR and Candu nuclear reactors. Beside the spectra the dosimetric features were determined. Using moderators and a single neutron source can be produced neutron spectra alike those found in workplaces, this neutron fields can be utilized to calibrate neutron dosimeters and area monitors. (Author)
Different spectra with the same neutron source
International Nuclear Information System (INIS)
Vega C, H. R.; Ortiz R, J. M.; Hernandez D, V. M.; Martinez B, M. R.; Hernandez A, B.; Ortiz H, A. A.; Mercado, G. A.
2010-01-01
Using as source term the spectrum of a 239 Pu-Be source several neutron spectra have been calculated using Monte Carlo methods. The source term was located in the centre of spherical moderators made of light water, heavy water and polyethylene of different diameters. Also a 239 Pu-Be source was used to measure its neutron spectrum, bare and moderated by water. The neutron spectra were measured at 100 cm with a Bonner spheres spectrometer. Monte Carlo calculations were used to calculate the neutron spectra of bare and water-moderated spectra that were compared with those measured with the spectrometer. Resulting spectra are similar to those found in power plants with PWR, BWR and Candu nuclear reactors. Beside the spectra the dosimetric features were determined. Using moderators and a single neutron source can be produced neutron spectra alike those found in workplaces, this neutron fields can be utilized to calibrate neutron dosimeters and area monitors. (Author)
Concentration dependence of inhomogeneous broadening in perturbed angular correlation spectroscopy
Moreno, Carlos; Hodges, Jeffery A.; Park, Tyler; Stufflebeam, Michael; Evenson, W.; Matheson, P.; Zacate, M. O.
2008-10-01
Since real crystals always include defects, the effect of the defects on crystal properties depends on how many defects are present, i.e. on defect concentration. In perturbed angular correlation (PAC), these defects produce damping of the correlation signal in time and broadening of the frequency spectrum. This ``inhomogeneous broadening'' depends quantitatively on defect concentration, so the size of the broadening in a PAC spectrum can be a measure of the concentration of defects. Using simulated PAC spectra and independent component analysis to obtain the probability distribution function for electric field gradient (EFG) components, we have found defect concentration-dependent parameters for the probability functions. This allows us to calculate broadened PAC spectra for any selected defect concentration. It also allows us to fit defect concentration from an experimental PAC spectrum. This work will be applied initially to broadened PAC data from β-Mn, Al-doped β-Mn, and Sr2RuO4.
Integrated spectral study of small angular diameter galactic open clusters
Clariá, J. J.; Ahumada, A. V.; Bica, E.; Pavani, D. B.; Parisi, M. C.
2017-10-01
This paper presents flux-calibrated integrated spectra obtained at Complejo Astronómico El Leoncito (CASLEO, Argentina) for a sample of 9 Galactic open clusters of small angular diameter. The spectra cover the optical range (3800-6800 Å), with a resolution of ˜14 Å. With one exception (Ruprecht 158), the selected clusters are projected into the fourth Galactic quadrant (282o evaluate their membership status. The current cluster sample complements that of 46 open clusters previously studied by our group in an effort to gather a spectral library with several clusters per age bin. The cluster spectral library that we have been building is an important tool to tie studies of resolved and unresolved stellar content.
Angular distribution of ejected electrons from 20 keV He/sup +/ impact on He
Energy Technology Data Exchange (ETDEWEB)
Tokoro, N.; Takenouchi, S.; Urakawa, J.; Oda, N. (Tokyo Inst. of Tech. (Japan). Research Lab. of Nuclear Reactor)
1982-10-28
The angular distributions of ejected electrons in the energy range 5-70 eV have been measured at angles from 30 to 150/sup 0/ for 20 keV He/sup +/ impact on He. The angular dependence of excitation cross sections of autoionisation states 2s/sup 2/ /sup 1/S and 2p/sup 2/ /sup 1/D+2s2p /sup 1/P are in good agreement with previous data measured by Bordenave-Montesquieu et al (Phys. Rev.; A25:245 (1982)). The continuous parts of the electron spectra show symmetrical angular distributions around 90/sup 0/ in the laboratory frame for low-energy electrons (
DEFF Research Database (Denmark)
Lehmer, B. D.; Tyler, J. B.; Hornschemeier, A. E.
2015-01-01
-law distributions with Γ ≈ 2.6 at E > 5-7 keV. Using new and archival Chandra data, we search for signatures of heavily obscured or low luminosity active galactic nuclei (AGNs). We find that both NGC 3256 and NGC 3310 have X-ray detected sources coincident with nuclear regions; however, the steep NuSTAR spectra...... observations therefore constrain the average spectral shape of galaxy-wide populations of luminous accreting binaries (i.e., ULXs). Interestingly, despite a completely different galaxy sample selection, emphasizing here a range of SFRs and stellar masses, these properties are similar to those of super...... likely explained by the relatively low metallicity of the young stellar population in this galaxy, a property that is expected to produce an excess of luminous X-ray binaries for a given SFR....
Collective spectra along the fission barrier
Directory of Open Access Journals (Sweden)
Pigni M. T.
2012-12-01
Full Text Available Discrete and continuous spectra of fissioning nuclei at the humps of fission barriers (Bohr transition states and in the intermediate wells (superdeformed and hyperdeformed states play a key role in the calculation of fission cross sections. A theoretical evaluation of the collective parts of the spectra is possible within the framework of the dinuclear system model, which treats the wave function of the fissioning nucleus as a superposition of a mononucleus configuration and two–cluster configurations in a dynamical way, permitting exchange of upper–shell nucleons between clusters. The impact of theoretical spectra on neutron–induced fission cross sections and, in combination with an improved version of the scission–point model, on angular distribution of fission fragments is evaluated for plutonium isotopes of interest to nuclear energy applications.
Collective spectra along the fission barrier
Shneidman, T. M.; Andreev, A. V.; Pigni, M. T.; Massimi, C.; Vannini, G.; Ventura, A.
2012-12-01
Discrete and continuous spectra of fissioning nuclei at the humps of fission barriers (Bohr transition states) and in the intermediate wells (superdeformed and hyperdeformed states) play a key role in the calculation of fission cross sections. A theoretical evaluation of the collective parts of the spectra is possible within the framework of the dinuclear system model, which treats the wave function of the fissioning nucleus as a superposition of a mononucleus configuration and two-cluster configurations in a dynamical way, permitting exchange of upper-shell nucleons between clusters. The impact of theoretical spectra on neutron-induced fission cross sections and, in combination with an improved version of the scission-point model, on angular distribution of fission fragments is evaluated for plutonium isotopes of interest to nuclear energy applications.
Nuclear level density parameter 's dependence on angular momentum
International Nuclear Information System (INIS)
Aggarwal, Mamta; Kailas, S.
2009-01-01
Nuclear level densities represent a very important ingredient in the statistical Model calculations of nuclear reaction cross sections and help to understand the microscopic features of the excited nuclei. Most of the earlier experimental nuclear level density measurements are confined to low excitation energy and low spin region. A recent experimental investigation of nuclear level densities in high excitation energy and angular momentum domain with some interesting results on inverse level density parameter's dependence on angular momentum in the region around Z=50 has motivated us to study and analyse these experimental results in a microscopic theoretical framework. In the experiment, heavy ion fusion reactions are used to populate the excited and rotating nuclei and measured the α particle evaporation spectra in coincidence with ray multiplicity. Residual nuclei are in the range of Z R 48-55 with excitation energy range 30 to 40 MeV and angular momentum in 10 to 25. The inverse level density parameter K is found to be in the range of 9.0 - 10.5 with some exceptions
Angular Positioning Sensor for Space Mechanisms
Steiner, Nicolas; Chapuis, Dominique
2013-09-01
Angular position sensors are used on various rotating mechanisms such as solar array drive mechanisms, antenna pointing mechanisms, scientific instruments, motors or actuators.Now a days, potentiometers and encoders are mainly used for angular measurement purposes. Both of them have their own pros and cons.As alternative, Ruag Space Switzerland Nyon (RSSN) is developing and qualifying two innovative technologies of angular position sensors which offer easy implementation, medium to very high lifetime and high flexibility with regards to the output signal shape/type.The Brushed angular position sensor uses space qualified processes which are already flying on RSSN's sliprings for many years. A large variety of output signal shape can be implemented to fulfill customer requirements (digital, analog, customized, etc.).The contactless angular position sensor consists in a new radiation hard Application Specific Integrated Circuit (ASIC) based on the Hall effect and providing the angular position without complex processing algorithm.
Oral candidiasis and angular cheilitis.
Sharon, Victoria; Fazel, Nasim
2010-01-01
Candidiasis, an often encountered oral disease, has been increasing in frequency. Most commonly caused by the overgrowth of Candida albicans, oral candidiasis can be divided into several categories including acute and chronic forms, and angular cheilitis. Risk factors for the development of oral candidiasis include immunosuppression, wearing of dentures, pharmacotherapeutics, smoking, infancy and old age, endocrine dysfunction, and decreased salivation. Oral candidiasis may be asymptomatic. More frequently, however, it is physically uncomfortable, and the patient may complain of burning mouth, dysgeusia, dysphagia, anorexia, and weight loss, leading to nutritional deficiency and impaired quality of life. A plethora of antifungal treatments are available. The overall prognosis of oral candidiasis is good, and rarely is the condition life threatening with invasive or recalcitrant disease.
Management of angular cheilitis for children
Directory of Open Access Journals (Sweden)
Fajriani Fajriani
2016-06-01
Full Text Available Angular cheilitis is one type of oral soft tissue disease that can occur in both children and adults, the condition is characterized by cracks and inflammation in both corners of the mouth. Although this disease does not cause severe disruption but quite disturbing activity and also one's physical appearance. Angular cheilitis light will disappear on their own over time.Severe conditions that can cause pain and bleading. aims to give feedback on peers about managment angular cheilitis in children.
Naturally enhanced ion-line spectra around the equatorial 150-km region
Directory of Open Access Journals (Sweden)
J. L. Chau
2009-03-01
Full Text Available For many years strong radar echoes coming from 140–170 km altitudes at low latitudes have been associated to the existence of field-aligned irregularities (FAIs (the so called 150-km echoes. In this work, we present frequency spectra as well as angular distribution of 150-km echoes. When the 150-km region is observed with beams perpendicular to the magnetic field (B the observed radar spectra are very narrow with spectral widths between 3–12 m/s. On the other hand, when few-degrees off-perpendicular beams are used, the radar spectra are wide with spectral widths comparable to those expected from ion-acoustic waves at these altitudes (>1000 m/s. Moreover the off-perpendicular spectral width increases with increasing altitude. The strength of the received echoes is one to two orders of magnitude stronger than the expected level of waves in thermal equilibrium at these altitudes. Such enhancement is not due to an increase in electron density. Except for the enhancement in power, the spectra characteristics of off-perpendicular and perpendicular echoes are in reasonable agreement with expected incoherent scatter spectra at these angles and altitudes. 150-km echoes are usually observed in narrow layers (2 to 5. Bistatic common volume observations as well as observations made few kilometers apart show that, for most of the layers, there is very high correlation on power fluctuations without a noticeable time separation between simultaneous echoes observed with Off-perpendicular and Perpendicular beams. However, in one of the central layers, the echoes are the strongest in the perpendicular beam and absent or very weak in the off-perpendicular beams, suggesting that they are generated by a plasma instability. Our results indicate that most echoes around 150-km region are not as aspect sensitive as originally thought, and they come from waves that have been enhanced above waves in thermal equilibrium.
Transverse and longitudinal angular momenta of light
Energy Technology Data Exchange (ETDEWEB)
Bliokh, Konstantin Y., E-mail: k.bliokh@gmail.com [Center for Emergent Matter Science, RIKEN, Wako-shi, Saitama 351-0198 (Japan); Nonlinear Physics Centre, RSPhysE, The Australian National University, Canberra, ACT 0200 (Australia); Nori, Franco [Center for Emergent Matter Science, RIKEN, Wako-shi, Saitama 351-0198 (Japan); Physics Department, University of Michigan, Ann Arbor, MI 48109-1040 (United States)
2015-08-26
We review basic physics and novel types of optical angular momentum. We start with a theoretical overview of momentum and angular momentum properties of generic optical fields, and discuss methods for their experimental measurements. In particular, we describe the well-known longitudinal (i.e., aligned with the mean momentum) spin and orbital angular momenta in polarized vortex beams. Then, we focus on the transverse (i.e., orthogonal to the mean momentum) spin and orbital angular momenta, which were recently actively discussed in theory and observed in experiments. First, the recently-discovered transverse spin angular momenta appear in various structured fields: evanescent waves, interference fields, and focused beams. We show that there are several kinds of transverse spin angular momentum, which differ strongly in their origins and physical properties. We describe extraordinary features of the transverse optical spins and overview recent experiments. In particular, the helicity-independent transverse spin inherent in edge evanescent waves offers robust spin–direction coupling at optical interfaces (the quantum spin Hall effect of light). Second, we overview the transverse orbital angular momenta of light, which can be both extrinsic and intrinsic. These two types of the transverse orbital angular momentum are produced by spatial shifts of the optical beams (e.g., in the spin Hall effect of light) and their Lorentz boosts, respectively. Our review is underpinned by a unified theory of the angular momentum of light based on the canonical momentum and spin densities, which avoids complications associated with the separation of spin and orbital angular momenta in the Poynting picture. It allows us to construct a comprehensive classification of all known optical angular momenta based on their key parameters and main physical properties.
DEFF Research Database (Denmark)
Elmholdt, Claus Westergård; Fogsgaard, Morten
2016-01-01
In this chapter, we will explore the dynamics of power in processes of creativity, and show its paradoxical nature as both a bridge and a barrier to creativity in organisations. Recent social psychological experimental research (Slighte, de Dreu & Nijstad, 2011) on the relation between power...... and floating source for empowering people in the organisation. We will explore and discuss here the potentials, challenges and pitfalls of power in relation to creativity in the life of organisations today. The aim is to demonstrate that power struggles may be utilised as constructive sources of creativity...
Angular momentum transfer in incomplete fusion
Indian Academy of Sciences (India)
fusion reactions. The angular momentum of the intermediate nucleus formed in incomplete fusion was deduced from the isomeric cross-section ratio by considering the statistical de- excitation of the incompletely fused composite nucleus. The data show that incomplete fusion is associated with angular momenta slightly ...
Responsive web design with AngularJS
Patel, Sandeep Kumar
2014-01-01
If you are an AngularJS developer who wants to learn about responsive web application development, this book is ideal for you. Responsive Web Design with AngularJS is intended for web developers or designers with a basic knowledge of HTML, CSS, and JavaScript.
Angular momentum transfer in incomplete fusion
Indian Academy of Sciences (India)
The angular momentum of the intermediate nucleus formed in incomplete fusion was deduced from the isomeric cross-section ratio by considering the statistical de-excitation of the incompletely fused composite nucleus. The data show that incomplete fusion is associated with angular momenta slightly smaller than critical ...
Accelerated rotation with orbital angular momentum modes
CSIR Research Space (South Africa)
Schulze, C
2015-04-01
Full Text Available A 91, 043821 (2015) Accelerated rotation with orbital angular momentum modes Christian Schulze, Filippus S. Roux, Angela Dudley, Ronald Rop, Michael Duparr´e, and Andrew Forbes Abstract: We introduce a class of light field that angularly...
Dijet angular distributions at D0
International Nuclear Information System (INIS)
Fatyga, M.K.
1996-09-01
Measurements of the dijet angular distributions are relatively insensitive to parton distribution functions and thus offer an excellent method of testing the LO and NLO predictions of perturbative QCD. The authors present measurements of the dijet angular distributions for |η| < 3.0 in p anti p collisions at √s = 1.8 TeV
Experimental determination of high angular momentum states
International Nuclear Information System (INIS)
Barreto, J.L.V.
1985-01-01
The current knowledge of the atomic nucleus structure is summarized. A short abstract of the nuclear properties at high angular momentum and a more detailed description of the experimental methods used in the study of high angular momenta is made. (L.C.) [pt
Concepts of radial and angular kinetic energies
DEFF Research Database (Denmark)
Dahl, Jens Peder; Schleich, W.P.
2002-01-01
We consider a general central-field system in D dimensions and show that the division of the kinetic energy into radial and angular parts proceeds differently in the wave-function picture and the Weyl-Wigner phase-space picture, Thus, the radial and angular kinetic energies are different quantities...
Perturbed angular correlations and distributions
International Nuclear Information System (INIS)
Makaryunas, K.
1976-01-01
The present index comprises original works and review papers on the perturbed angular correlations (PAC) and distributions (PAD). The articles published in the Soviet and foreign journals as well as the materials of conferences, monographs and collections published in the USSR and abroad, the preprints produced by various institutes and abstracts of disertations are included from 1948 up to 1973. The whole material compiled in this index is divided into three parts. Part one is a bibliographic index. All papers in this part are divided into three sections. Section one comprises the papers devoted to the theoretical works on PAC, review papers, monographs, materials of conferences. Section two deals with the works of methodical character where correlation spectrometers as well as the treatment of experimental data are described. In section three experimental works with concrete nuclei are compiled. Part two gives the characteristic of works performed with concrete nuclei. This part is presented in the form of the table in which the works are systematized according to the chemical elements and isotopes. The table shows the characteristics of the nuclear levels used in the investigations by PAC as well as brief characteristics of experiments and results obtained. Part three - appendix contains alphabetic index of the authors, the list of the used editions with the abbreviations of the titles of these editions. The lists indicating the dynamic of the quantity of works on PAC and the distribution according to the literature sources are also given
CLASS: The Cosmology Large Angular Scale Surveyor
Essinger-Hileman, Thomas; Ali, Aamir; Amiri, Mandana; Appel, John W.; Araujo, Derek; Bennett, Charles L.; Boone, Fletcher; Chan, Manwei; Cho, Hsiao-Mei; Chuss, David T.;
2014-01-01
The Cosmology Large Angular Scale Surveyor (CLASS) is an experiment to measure the signature of a gravitational wave background from inflation in the polarization of the cosmic microwave background (CMB). CLASS is a multi-frequency array of four telescopes operating from a high-altitude site in the Atacama Desert in Chile. CLASS will survey 70% of the sky in four frequency bands centered at 38, 93, 148, and 217 GHz, which are chosen to straddle the Galactic-foreground minimum while avoiding strong atmospheric emission lines. This broad frequency coverage ensures that CLASS can distinguish Galactic emission from the CMB. The sky fraction of the CLASS survey will allow the full shape of the primordial B-mode power spectrum to be characterized, including the signal from reionization at low-length. Its unique combination of large sky coverage, control of systematic errors, and high sensitivity will allow CLASS to measure or place upper limits on the tensor-to-scalar ratio at a level of r = 0:01 and make a cosmic-variance-limited measurement of the optical depth to the surface of last scattering, tau. (c) (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Unusual features of proton and α-spectra from low-energy heavy-ion ...
Indian Academy of Sciences (India)
citation energy and angular momentum dependence of nuclear level density. In the γ- multiplicity gated spectra, an unusual feature of a broad structure at high particle energies is observed in all the cases. In the case of proton spectra, the structures have compound nuclear origin and point towards an excitation energy and ...
Béthermin, Matthieu; Wu, Hao-Yi; Lagache, Guilaine; Davidzon, Iary; Ponthieu, Nicolas; Cousin, Morgane; Wang, Lingyu; Doré, Olivier; Daddi, Emanuele; Lapi, Andrea
2017-11-01
Follow-up observations at high-angular resolution of bright submillimeter galaxies selected from deep extragalactic surveys have shown that the single-dish sources are comprised of a blend of several galaxies. Consequently, number counts derived from low- and high-angular-resolution observations are in tension. This demonstrates the importance of resolution effects at these wavelengths and the need for realistic simulations to explore them. We built a new 2 deg2 simulation of the extragalactic sky from the far-infrared to the submillimeter. It is based on an updated version of the 2SFM (two star-formation modes) galaxy evolution model. Using global galaxy properties generated by this model, we used an abundance-matching technique to populate a dark-matter lightcone and thus simulate the clustering. We produced maps from this simulation and extracted the sources, and we show that the limited angular resolution of single-dish instruments has a strong impact on (sub)millimeter continuum observations. Taking into account these resolution effects, we are reproducing a large set of observables, as number counts and their evolution with redshift and cosmic infrared background power spectra. Our simulation consistently describes the number counts from single-dish telescopes and interferometers. In particular, at 350 and 500 μm, we find that the number counts measured by Herschel between 5 and 50 mJy are biased towards high values by a factor 2, and that the redshift distributions are biased towards low redshifts. We also show that the clustering has an important impact on the Herschel pixel histogram used to derive number counts from P(D) analysis. We find that the brightest galaxy in the beam of a 500 μm Herschel source contributes on average to only 60% of the Herschel flux density, but that this number will rise to 95% for future millimeter surveys on 30 m-class telescopes (e.g., NIKA2 at IRAM). Finally, we show that the large number density of red Herschel sources
Relativistic correction to the deuteron magnetic moment and angular condition
International Nuclear Information System (INIS)
Kondratyuk, L.A.; Strikman, M.I.
1983-01-01
The relativistic correction (RC) to the deuteron magnetic moment μsub(d) is investigated using the light-cone dynamics. The restrictions imposed by the angular condition on the electromagnetic current operator of deuteron are discussed in detail. It is shown that the additive model for the current operator of interacting consistuencies is consistent with the angular condition only for the two first terms of expansion of the ''good'' electromagnetic current component jsub(+) in powers of the momentum transfer q. The RC into μsub(d) is calculated using the mattix element of the ''good'' component. The account of RC decreases essentially the discrepancy between the theoretical and experimental values. The value of Δsub(μ) is determined for the Hamada-Johnston potential hard core potential (0.93x10 -2 ) for the Reid soft core potential (0.71x10 -2 ) and for the Paris potential (0.63x10 -2 )
The spectra and dynamics of diatomic molecules
Lefebvre-Brion, Helene
2004-01-01
This book is written for graduate students just beginning research, for theorists curious about what experimentalists actually can and do measure, and for experimentalists bewildered by theory. It is a guide for potential users of spectroscopic data, and uses language and concepts that bridge the frequency-and time-domain spectroscopic communities. Key topics, concepts, and techniques include: the assignment of simple spectra, basic experimental techniques, definition of Born-Oppenheimer and angular momentum basis sets and the associated spectroscopic energy level patterns (Hund's ca
Realistic neutron spectra for radiation protection and other applications at AERI, Budapest
Pálfalvi, J; Sajo-Bohus, L
2002-01-01
The reconstruction of the Budapest Research Reactor (BRR) gave a good possibility to develop mixed neutron-gamma radiation fields for different applications like: simulation of operational spectra at power reactors, dosimeter development, neutron radiography, biological experiments. Recently, there are 3 horizontal channels available. In addition, isotopic neutron sources are in use in a separate laboratory. In a rotatable holder 4 different sources can be stored and automatically moved into irradiation position. There are changeable collimators and absorbers to modify the spectrum. In the large hall there are possibilities to study the room scatter, angular dependence of detectors, phantom albedo effect etc. Recently available sources are different Pu-Be (from 10 sup 5 -10 sup 7 n/s yield), Ra-Be and Cf. 76.
Graphics of diffraction spectra for PC
International Nuclear Information System (INIS)
Macias B, L.R.
1991-09-01
The materials can be studied by means of diffraction if these are crystalline; of the type of study will depend the technique to apply, the first step is the obtaining of a digital register that allows to build the corresponding spectra. The digital register should have well-known the initial and final angular data. The main objective of this work, is starting of a digital register of data or an arrangement CPSi type (counts per second measured by the detection system) generated by means of the diffractometer, to create the graph of the corresponding spectra in visual form in the screen of a microcomputer and if is required, to obtain the graph in printed form by means of the same computer program for microcomputer. (Author)
Radiofrequency encoded angular-resolved light scattering
DEFF Research Database (Denmark)
Buckley, Brandon W.; Akbari, Najva; Diebold, Eric D.
2015-01-01
The sensitive, specific, and label-free classification of microscopic cells and organisms is one of the outstanding problems in biology. Today, instruments such as the flow cytometer use a combination of light scatter measurements at two distinct angles to infer the size and internal complexity...... of cells at rates of more than 10,000 per second. However, by examining the entire angular light scattering spectrum it is possible to classify cells with higher resolution and specificity. Current approaches to performing these angular spectrum measurements all have significant throughput limitations...... Encoded Angular-resolved Light Scattering (REALS), this technique multiplexes angular light scattering in the radiofrequency domain, such that a single photodetector captures the entire scattering spectrum from a particle over approximately 100 discrete incident angles on a single shot basis. As a proof...
Optical communication beyond orbital angular momentum
CSIR Research Space (South Africa)
Trichili, A
2016-06-01
Full Text Available Mode division multiplexing (MDM) is mooted as a technology to address future bandwidth issues, and has been successfully demonstrated in free space using spatial modes with orbital angular momentum (OAM). To further increase the data transmission...
Dynamical Model of Fission Fragment Angular Distribution
Drozdov, V. A.; Eremenko, D. O.; Fotina, O. V.; Platonov, S. Yu.; Yuminov, O. A.; Giardina, G.; Taccone, A.
2002-01-01
A dynamical model of fission fragment angular distributions is suggested. The model allows one to calculate fission fragment angular distributions, prescission light particle multyplicities, evaporation residue cross sections etc. for the cases of decay of hot and rotating heavy nuclei. The experimental data on angular anisotropies of fission fragments and prescission neutron multiplicities are analyzed for the 16O + 208Pb, 232Th, 248Cm and 238U reactions at the energies of the incident 16O ions ranging from 90 to 160 MeV. This analysis allows us to extract both the nuclear friction coefficient value and the relaxation time for the tilting mode. It is also demonstrated that the angular distributions are sensitive to the deformation dependence of the nuclear friction.
Amplitude damping channel for orbital angular momentum
CSIR Research Space (South Africa)
Dudley, Angela L
2010-03-01
Full Text Available Since the pioneering work on the entanglement of the orbital angular momentum (OAM) states of light, much attention has been devoted to the subject, with particular attention into the quantum aspects of information processing using OAM. Furthermore...
Energy transfer, orbital angular momentum, and discrete current in a double-ring fiber array
International Nuclear Information System (INIS)
Alexeyev, C. N.; Volyar, A. V.; Yavorsky, M. A.
2011-01-01
We study energy transfer and orbital angular momentum of supermodes in a double-ring array of evanescently coupled monomode optical fibers. The structure of supermodes and the spectra of their propagation constants are obtained. The geometrical parameters of the array, at which the energy is mostly confined within the layers, are determined. The developed method for finding the supermodes of concentric arrays is generalized for the case of multiring arrays. The orbital angular momentum carried by a supermode of a double-ring array is calculated. The discrete lattice current is introduced. It is shown that the sum of discrete currents over the array is a conserved quantity. The connection of the total discrete current with orbital angular momentum of discrete optical vortices is made.
Energy transfer, orbital angular momentum, and discrete current in a double-ring fiber array
Energy Technology Data Exchange (ETDEWEB)
Alexeyev, C. N.; Volyar, A. V. [Taurida National V.I. Vernadsky University, Vernadsky Prospekt, 4, Simferopol, 95007, Crimea (Ukraine); Yavorsky, M. A. [Taurida National V.I. Vernadsky University, Vernadsky Prospekt, 4, Simferopol, 95007, Crimea (Ukraine); Universite Bordeaux and CNRS, LOMA, UMR 5798, FR-33400 Talence (France)
2011-12-15
We study energy transfer and orbital angular momentum of supermodes in a double-ring array of evanescently coupled monomode optical fibers. The structure of supermodes and the spectra of their propagation constants are obtained. The geometrical parameters of the array, at which the energy is mostly confined within the layers, are determined. The developed method for finding the supermodes of concentric arrays is generalized for the case of multiring arrays. The orbital angular momentum carried by a supermode of a double-ring array is calculated. The discrete lattice current is introduced. It is shown that the sum of discrete currents over the array is a conserved quantity. The connection of the total discrete current with orbital angular momentum of discrete optical vortices is made.
Plasmonic angular tunability of gold nanoparticles generated by fs laser ablation
Energy Technology Data Exchange (ETDEWEB)
Pace, M.L.; Guarnaccio, A.; Ranù, F. [CNR, ISM UOS Tito Scalo, Zona Industriale, Tito Scalo (PZ) 85050 (Italy); Trucchi, D. [CNR, ISM UOS Montelibretti, Via Salaria km 29.300, Monterotondo Scalo, (RM) 00015 (Italy); Orlando, S., E-mail: stefano.orlando@ism.cnr.it [CNR, ISM UOS Tito Scalo, Zona Industriale, Tito Scalo (PZ) 85050 (Italy); Mollica, D.; Parisi, G.P. [CNR, ISM UOS Tito Scalo, Zona Industriale, Tito Scalo (PZ) 85050 (Italy); Medici, L.; Lettino, A. [CNR, IMAA, Area della Ricerca di Potenza -Zona Industriale, Tito Scalo, (PZ) 85050 (Italy); De Bonis, A.; Teghil, R. [Dipart. di Scienze,Università della Basilicata, Viale dell’Ateneo Lucano 10, Potenza, 85100 (Italy); Santagata, A. [CNR, ISM UOS Tito Scalo, Zona Industriale, Tito Scalo (PZ) 85050 (Italy)
2016-06-30
Highlights: • fs pulsed laser ablation as a technique to produce nanoparticles. • Nanoparticle distribution as an evidence for plasmonic tunable resonances. • Correlation between angular distribution of deposited nanoparticles and specific plasmonic resonances. - Abstract: With the aim to study the influence of deposition parameters on the plasmonic properties of gold (Au) nanoparticles (NPs) deposited by ultra-short ablation, we have focused our attention in evaluating how their size distribution can be varied. In this work, the role played by the NPs’ angular distribution, agglomeration and growth is related to the resulting optical properties. UV–vis-NIR absorption spectra together with Scanning Electron Microscopy, Transmission Electron Microscopy and X-ray microdiffraction observations are presented in order to show how the angular distribution of fs laser ablation and deposition of Au NPs provides different plasmonic properties which can be beneficial for several aims, from optoelectronic to biosensor applications.
General Notes on Processes and Their Spectra
Directory of Open Access Journals (Sweden)
Gustav Cepciansky
2012-01-01
Full Text Available The frequency spectrum performs one of the main characteristics of a process. The aim of the paper is to show the coherence between the process and its own spectrum and how the behaviour and properties of a process itself can be deduced from its spectrum. Processes are categorized and general principles of their spectra calculation and recognition are given. The main stress is put on power spectra of electric and optic signals, as they also perform a kind of processes. These spectra can be directly measured, observed and examined by means of spectral analyzers and they are very important characteristics which can not be omitted at transmission techniques in telecommunication technologies. Further, the paper also deals with non electric processes, mainly with processes and spectra at mass servicing and how these spectra can be utilised in praxis.
Mastering AngularJD for .NET developers
Majid, Mohammad Wadood
2015-01-01
This book is envisioned for traditional developers and programmers who want to develop client-side applications using the AngularJS framework and ASP.NET Web API 2 with Visual Studio. .NET developers who have already built web applications or web services and who have a fundamental knowledge of HTML, JavaScript, and CSS and want to explore single-page applications will also find this guide useful. Basic knowledge of AngularJS would be helpful.
The Effects of Accretion Disk Geometry on AGN Reflection Spectra
Taylor, Corbin James; Reynolds, Christopher S.
2017-08-01
Despite being the gravitational engines that power galactic-scale winds and mega parsec-scale jets in active galaxies, black holes are remarkably simple objects, typically being fully described by their angular momenta (spin) and masses. The modelling of AGN X-ray reflection spectra has proven fruitful in estimating the spin of AGN, as well as giving insight into their accretion histories and the properties of plasmas in the strong gravity regime. However, current models make simplifying assumptions about the geometry of the reflecting material in the accretion disk and the irradiating X-ray corona, approximating the disk as an optically thick, infinitely thin disk of material in the orbital plane. We present results from the new relativistic raytracing suite, Fenrir, that explore the effects that disk thickness may have on the reflection spectrum and the accompanying reverberation signatures. Approximating the accretion disk as an optically thick, geometrically thin, radiation pressure dominated disk (Shakura & Sunyaev 1973), one finds that the disk geometry is non-negligible in many cases, with significant changes in the broad Fe K line profile. Finally, we explore the systematic errors inherent in approximating the disk as being infinitely thin when modeling reflection spectrum, potentially biasing determinations of black hole and corona properties.
Partial angular coherence and the angular Schmidt spectrum of entangled two-photon fields
Energy Technology Data Exchange (ETDEWEB)
Jha, Anand Kumar; Boyd, Robert W. [Institute of Optics, University of Rochester, Rochester, New York 14627 (United States); Agarwal, Girish S. [Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078 (United States)
2011-12-15
We study partially coherent fields that have a coherent-mode representation in the orbital-angular-momentum-mode basis. For such fields, we introduce the concepts of the angular coherence function and the coherence angle. Such fields are naturally produced by the process of parametric down-conversion--a second-order nonlinear optical process in which a pump photon breaks up into two entangled photons, known as the signal and idler photons. We show that the angular coherence functions of the signal and idler fields are directly related to the angular Schmidt (spiral) spectrum of the down-converted two-photon field and thus that the angular Schmidt spectrum can be measured directly by measuring the angular coherence function of either the signal or the idler field, without requiring coincidence detection.
Preequilibrium GDR excitation and entrance channel angular momentum effects
International Nuclear Information System (INIS)
Sandoli, M.; Campajola, L.; De Rosa, A.; D'Onofrio, A.; La Commara, M.; Ordine, A.; Pierroutsakou, D.; Roca, V.; Romano, M.; Romoli, M.; Terrasi, F.; Trotta, M.; Cardella, G.; Papa, M.; Pappalardo, G.; Rizzo, F.; Alamanos, N.; Auger, F.; Gillibert, A.
1997-01-01
The energy spectra of the γ-rays emitted in the 35 Cl+ 92 Mo reaction at incident energy E=260 MeV were measured in coincidence with the ejectiles produced in dissipative reaction events. The cumulative energy spectrum of the γ-rays coming from the decay of the ejectiles was calculated within the statistical model and its comparison to the experimental spectrum evidences an excess in the data for E γ =8 to 12 MeV. Such an excess, fitted with a Lorentz curve, is attributed to the preequilibrium GDR γ-decay of the intermediate dinuclear system. The centroid energy of the Lorentz curve corresponds to a dipole oscillation along the symmetry axis of the system and its width is found to be comparable to that of the ground state GDR low energy component of the deformed dinucleus. The small quantal dispersion Δl=(10.3±0.1)ℎ of the entrance channel angular momentum, determined by analysing the dissipative fragment angular distribution in the framework of the Strutinsky model, is suggested to limit the broadening of the preequilibrium GDR width. (orig.)
Trigonometric Polynomials For Estimation Of Spectra
Greenhall, Charles A.
1990-01-01
Orthogonal sets of trigonometric polynomials used as suboptimal substitutes for discrete prolate-spheroidal "windows" of Thomson method of estimation of spectra. As used here, "windows" denotes weighting functions used in sampling time series to obtain their power spectra within specified frequency bands. Simplified windows designed to require less computation than do discrete prolate-spheroidal windows, albeit at price of some loss of accuracy.
Variation of level density parameter with angular momentum in 119Sb
International Nuclear Information System (INIS)
Aggarwal, Mamta; Kailas, S.
2015-01-01
Nuclear level density (NLD), a basic ingredient of Statistical Model has been a subject of interest for various decades as it plays an important role in the understanding of a wide variety of Nuclear reactions. There have been various efforts towards the precise determination of NLD and study its dependence on excitation energy and angular momentum as it is crucial in the determination of cross-sections. Here we report our results of theoretical calculations in a microscopic framework to understand the experimental results on inverse level density parameter (k) extracted for different angular momentum regions for 119 Sb corresponding to different γ-ray multiplicities by comparing the experimental neutron energy spectra with statistical model predictions where an increase in the level density with the increasing angular momentum is predicted. NLD and neutron emission spectra dependence on temperature and spin has been studied in our earlier works where the influence of structural transitions due to angular momentum and temperature on level density of states and neutron emission probability was shown
Characterization of the bell-shaped vibratory angular rate gyro.
Liu, Ning; Su, Zhong; Li, Qing; Fu, MengYin; Liu, Hong; Fan, JunFang
2013-08-07
The bell-shaped vibratory angular rate gyro (abbreviated as BVG) is a novel shell vibratory gyroscope, which is inspired by the Chinese traditional bell. It sensitizes angular velocity through the standing wave precession effect. The bell-shaped resonator is a core component of the BVG and looks like the millimeter-grade Chinese traditional bell, such as QianLong Bell and Yongle Bell. It is made of Ni43CrTi, which is a constant modulus alloy. The exciting element, control element and detection element are uniformly distributed and attached to the resonator, respectively. This work presents the design, analysis and experimentation on the BVG. It is most important to analyze the vibratory character of the bell-shaped resonator. The strain equation, internal force and the resonator's equilibrium differential equation are derived in the orthogonal curvilinear coordinate system. When the input angular velocity is existent on the sensitive axis, an analysis of the vibratory character is performed using the theory of thin shells. On this basis, the mode shape function and the simplified second order normal vibration mode dynamical equation are obtained. The coriolis coupling relationship about the primary mode and secondary mode is established. The methods of the signal processing and control loop are presented. Analyzing the impact resistance property of the bell-shaped resonator, which is compared with other shell resonators using the Finite Element Method, demonstrates that BVG has the advantage of a better impact resistance property. A reasonable means of installation and a prototypal gyro are designed. The gyroscopic effect of the BVG is characterized through experiments. Experimental results show that the BVG has not only the advantages of low cost, low power, long work life, high sensitivity, and so on, but, also, of a simple structure and a better impact resistance property for low and medium angular velocity measurements.
Characterization of the Bell-Shaped Vibratory Angular Rate Gyro
Directory of Open Access Journals (Sweden)
Junfang Fan
2013-08-01
Full Text Available The bell-shaped vibratory angular rate gyro (abbreviated as BVG is a novel shell vibratory gyroscope, which is inspired by the Chinese traditional bell. It sensitizes angular velocity through the standing wave precession effect. The bell-shaped resonator is a core component of the BVG and looks like the millimeter-grade Chinese traditional bell, such as QianLong Bell and Yongle Bell. It is made of Ni43CrTi, which is a constant modulus alloy. The exciting element, control element and detection element are uniformly distributed and attached to the resonator, respectively. This work presents the design, analysis and experimentation on the BVG. It is most important to analyze the vibratory character of the bell-shaped resonator. The strain equation, internal force and the resonator's equilibrium differential equation are derived in the orthogonal curvilinear coordinate system. When the input angular velocity is existent on the sensitive axis, an analysis of the vibratory character is performed using the theory of thin shells. On this basis, the mode shape function and the simplified second order normal vibration mode dynamical equation are obtained. The coriolis coupling relationship about the primary mode and secondary mode is established. The methods of the signal processing and control loop are presented. Analyzing the impact resistance property of the bell-shaped resonator, which is compared with other shell resonators using the Finite Element Method, demonstrates that BVG has the advantage of a better impact resistance property. A reasonable means of installation and a prototypal gyro are designed. The gyroscopic effect of the BVG is characterized through experiments. Experimental results show that the BVG has not only the advantages of low cost, low power, long work life, high sensitivity, and so on, but, also, of a simple structure and a better impact resistance property for low and medium angular velocity measurements.
Brouwer, A.E.; Haemers, W.H.
2012-01-01
This book gives an elementary treatment of the basic material about graph spectra, both for ordinary, and Laplace and Seidel spectra. The text progresses systematically, by covering standard topics before presenting some new material on trees, strongly regular graphs, two-graphs, association
International Nuclear Information System (INIS)
Santoso, Budi; Arumbinang, Haryono.
1981-01-01
Emission spectra of alkali atoms has been determined by using spectrometer at the ultraviolet to infra red waves range. The spectra emission can be obtained by absorption spectrophotometric analysis. Comparative evaluations between experimental data and data handbook obtained by spark method were also presented. (author tr.)
Resolution enhancement in second-derivative spectra.
Czarnecki, Mirosław A
2015-01-01
Derivative spectroscopy is a powerful tool for the resolution enhancement in infrared, near-infrared, Raman, ultraviolet-visible, nuclear magnetic resonance, electron paramagnetic resonance, and fluorescence spectroscopy. Despite its great significance in analytical chemistry, not all aspects of the applications of this method have been explored as yet. This is the first systematic study of the parameters that influence the resolution enhancement in the second derivative spectra. The derivative spectra were calculated with the Savitzky-Golay method with different window size (5, 15, 25) and polynomial order (2, 4). The results obtained in this work show that the resolution enhancement in the second derivative spectra strongly depends on the data spacing in the original spectra, window size, polynomial order, and peak profile. As shown, the resolution enhancement is related to variations in the width of the peaks upon the differentiation. The present study reveals that in order to maximize the separation of the peaks in the second derivative spectra, the original spectra should be recorded at high resolution and differentiated using a small window size and high polynomial order. However, working with the real spectra one has to compromise between the noise reduction and optimization of the resolution enhancement in the second derivative spectra.
Hernando, Alberto; Beswick, J Alberto; Halberstadt, Nadine
2013-12-14
The theory of photofragments angular momentum polarization is applied to the photodetachment of an electronically excited alkali atom from a helium nanocluster (N = 200). The alignment of the electronic angular momentum of the bare excited alkali atoms produced is calculated quantum mechanically by solving the excited states coupled equations with potentials determined by density functional theory (DFT). Pronounced oscillations as a function of excitation energy are predicted for the case of Na@(He)200, in marked contrast with the absorption cross-section and angular distribution of the ejected atoms which are smooth functions of the energy. These oscillations are due to quantum interference between different coherently excited photodetachment pathways. Experimentally, these oscillations should be reflected in the fluorescence polarization and polarization-resolved photoelectron yield of the ejected atoms, which are proportional to the electronic angular momentum alignment. In addition, this result is much more general than the test case of NaHe200 studied here. It should be observable for larger droplets, for higher excited electronic states, and for other alkali as well as for alkali-earth atoms. Detection of these oscillations would show that the widely used pseudo-diatomic model can be valid beyond the prediction of absorption spectra and could help in interpreting parts of the dynamics, as already hinted by some experimental results on angular anisotropy of bare alkali fragments.
Transverse angular momentum in topological photonic crystals
Deng, Wei-Min; Chen, Xiao-Dong; Zhao, Fu-Li; Dong, Jian-Wen
2018-01-01
Engineering local angular momentum of structured light fields in real space enables applications in many fields, in particular, the realization of unidirectional robust transport in topological photonic crystals with a non-trivial Berry vortex in momentum space. Here, we show transverse angular momentum modes in silicon topological photonic crystals when considering transverse electric polarization. Excited by a chiral external source with either transverse spin angular momentum or transverse phase vortex, robust light flow propagating along opposite directions is observed in several kinds of sharp-turn interfaces between two topologically-distinct silicon photonic crystals. A transverse orbital angular momentum mode with alternating phase vortex exists at the boundary of two such photonic crystals. In addition, unidirectional transport is robust to the working frequency even when the ring size or location of the pseudo-spin source varies in a certain range, leading to the superiority of the broadband photonic device. These findings enable one to make use of transverse angular momentum, a kind of degree of freedom, to achieve unidirectional robust transport in the telecom region and other potential applications in integrated photonic circuits, such as on-chip robust delay lines.
Angular distribution of oriented nucleus fission neutrons
International Nuclear Information System (INIS)
Barabanov, A.L.; Grechukhin, D.P.
1982-01-01
Calculations of anisotropy of angular distribution of oriented 235 U nuclei thermal fission neutrons have been carried out. the neutrons were assumed to evaporate isotropically by completely accelerated fragements in the fragment system with only its small part, i. e. fission-producing neutrons, emitted at the moment of neck break. It has been found out that at low energies of neutrons Esub(n)=1-2 MeV the sensitivity of the angular distribution anisotropy to variations of spectrum of neutron evaporation from fragments and the magnitude of a share of fission-producing neutrons reaches approximately 100%, which at high energies, Esub(n) > 5 MeV it does not exceed approximately 20%. Therefore the angular distribution of fast neutrons to a greater degree of confidence may be used for restoring the angular distribution anisotropy of fragments while the angular distribution of low energy neutrons may be used for deriving information on the fission process, but only in case 6f the experiment accuracy is better than approximately 3%
Mathematical treatment of digitalized spectra of the neutron diffractometer for microcomputer
International Nuclear Information System (INIS)
Macias B, L.R.
1991-06-01
For the study of materials by means of diffraction, it is required in the first place that the sample is a crystalline material so that the diffraction is possible and the digitized spectra of corresponding diffraction can be generated. This spectra, for any type of study consists of a great number of readings (counting or counts per second Cps) that of some way are related to a determined angle to be able to reproduce a diagram that will be evaluated to conclude the study according to it is. Since the evaluation will depend on the angular readings that are carried out in the mentioned spectra, it is required of a good definition of the curves for its angular reading. Well-known the problem of the no enough definition of the spectra to be able to carry out the angular reading, it was proceeds to outline a possible solution which consists on making a mathematical treatment to the spectra with the purpose of being able to define the angular positions of interest and to correct some operation factors that appear in the spectra. (Author)
Statistical properties of Fermi GBM GRBs' spectra
Rácz, István I.; Balázs, Lajos G.; Horvath, Istvan; Tóth, L. Viktor; Bagoly, Zsolt
2018-03-01
Statistical studies of gamma-ray burst (GRB) spectra may result in important information on the physics of GRBs. The Fermi GBM catalogue contains GRB parameters (peak energy, spectral indices, and intensity) estimated fitting the gamma-ray spectral energy distribution of the total emission (fluence, flnc), and during the time of the peak flux (pflx). Using contingency tables, we studied the relationship of the models best-fitting pflx and flnc time intervals. Our analysis revealed an ordering of the spectra into a power law - Comptonized - smoothly broken power law - Band series. This result was further supported by a correspondence analysis of the pflx and flnc spectra categorical variables. We performed a linear discriminant analysis (LDA) to find a relationship between categorical (spectral) and model independent physical data. LDA resulted in highly significant physical differences among the spectral types, that is more pronounced in the case of the pflx spectra, than for the flnc spectra. We interpreted this difference as caused by the temporal variation of the spectrum during the outburst. This spectral variability is confirmed by the differences in the low-energy spectral index and peak energy, between the pflx and flnc spectra. We found that the synchrotron radiation is significant in GBM spectra. The mean low-energy spectral index is close to the canonical value of α = -2/3 during the peak flux. However, α is ˜ -0.9 for the spectra of the fluences. We interpret this difference as showing that the effect of cooling is important only for the fluence spectra.
Nonlinear FMR spectra in yttrium iron garnet
Directory of Open Access Journals (Sweden)
Yu.M. Bunkov, P.M. Vetoshko, I.G. Motygullin, T.R. Safin, M.S. Tagirov, N.A. Tukmakova
2015-12-01
Full Text Available Results of demagnetizing effect studies in yttrium iron garnet Y3Fe5O12 thin films are reported. Experiments were performed on X-Band of electron paramagnetic resonance spectrometer at room temperature. The ferromagnetic resonance (FMR spectra were obtained for one-layer single crystal YIG films for different values of the applied microwave power. Nonlinear FMR spectra transformation by the microwave power increasing in various directions of magnetic field sweep was observed. It is explained by the influence of the demagnetization action of nonequilibrium magnons.
Angular Spectral Analysis and Lowpass Filtering of Aeromagnetic ...
African Journals Online (AJOL)
Total-field aeromagnetic data over the western half of the Bornu basin and its surrounding areas were analyzed using angular spectral analysis, upward continuation and lowpass filtering techniques. Results revealed several angular spectral peaks at various angular orientations. The angular orientations correlated with the ...
Data-oriented development with AngularJS
Waikar, Manoj
2015-01-01
This book helps beginner-level AngularJS developers organize AngularJS applications by discussing important AngularJS concepts and best practices. If you are an experienced AngularJS developer but haven't written directives or haven't created custom HTML controls before, then this book is ideal for you.
Simulated models of inhomogeneous broadening in perturbed angular correlation spectroscopy
Hodges, Jeffery A.; Park, Tyler; Stufflebeam, Michael; Evenson, W.; Matheson, P.; Zacate, M. O.
2008-10-01
All real crystals have defects such as impurities and vacancies which affect their properties. In perturbed angular correlation (PAC), these defects produce damping of the correlation signal in time and broadening of the frequency spectrum. This broadening is termed ``inhomogeneous broadening'' since it is due to the inhomogeneities (i.e. defects) in the crystal. We have simulated PAC spectra for various concentrations (0.1% to 15%) of randomly distributed defects with a near-neighbor vacancy in simple cubic and face-centered cubic crystal structures. For every particular set of defects, the randomly distributed defects and the near-neighbor vacancy together produce a net electric field gradient (EFG), from which we obtain the PAC spectrum. We then average PAC spectra to study the effects of defect concentration and crystal structure on inhomogeneous broadening as an aid to analyzing experimental data. This work will be applied initially to broadened PAC data from β-Mn, Al-doped β-Mn, and Sr2RuO4.
Angular correlations and high energy evolution
International Nuclear Information System (INIS)
Kovner, Alex; Lublinsky, Michael
2011-01-01
We address the question of to what extent JIMWLK evolution is capable of taking into account angular correlations in a high energy hadronic wave function. Our conclusion is that angular (and indeed other) correlations in the wave function cannot be reliably calculated without taking into account Pomeron loops in the evolution. As an example we study numerically the energy evolution of angular correlations between dipole scattering amplitudes in the framework of the large N c approximation to JIMWLK evolution (the 'projectile dipole model'). Target correlations are introduced via averaging over an (isotropic) ensemble of anisotropic initial conditions. We find that correlations disappear very quickly with rapidity even inside the saturation radius. This is in accordance with our physical picture of JIMWLK evolution. The actual correlations inside the saturation radius in the target QCD wave function, on the other hand, should remain sizable at any rapidity.
National Aeronautics and Space Administration — This data set contains 94 optical asteroid spectra obtained by Scott Sawyer as part of his Ph.D. dissertation at the University of Texas at Austin. Observational...
Prospects of Measuring the Angular Power Spectrum of the Diffuse ...
Indian Academy of Sciences (India)
Methods: statistical, data analysis; techniques: interferometric; cosmology: diffuse radiation. ... (2) it avoids a positive noise bias which normally arises from the system noise inherent to the visibility data, and (3) it allows us to taper the sky response and thereby suppresses the contribution from unsubtracted point sources in ...
Prospects of Measuring the Angular Power Spectrum of the Diffuse ...
Indian Academy of Sciences (India)
The Diffuse Galactic Syncrotron Emission (DGSE) is the most important diffuse foreground component for future cosmological 21-cm observations. The DGSE is also an important probe of the cosmic ray electron and magnetic field distributions in the turbulent interstellar medium (ISM) of our galaxy. In this paper we briefly ...
Tecza, Matthias; Thatte, Niranjan; Clarke, Fraser; Freeman, David; Kosmalski, Johan
2012-09-01
HARMONI, the High Angular Resolution Monolithic Optical & Near-infrared Integral field spectrograph is one of two first-light instruments for the European Extremely Large Telescope. Over a 256x128 pixel field-of-view HARMONI will simultaneously measure approximately 32,000 spectra. Each spectrum is about 4000 spectral pixels long, and covers a selectable part of the 0.47-2.45 μm wavelength range at resolving powers of either R≍4000, 10000, or 20000. All 32,000 spectra are imaged onto eight HAWAII4RG detectors using a multiplexing scheme that divides the input field into four sub-fields, each imaged onto one image slicer that in turn re-arranges a single sub-field into two long exit slits feeding one spectrograph each. In total we require eight spectrographs, each with one HAWAII4RG detector. A system of articulated and exchangeable fold-mirrors and VPH gratings allows one to select different spectral resolving powers and wavelength ranges of interest while keeping a fixed geometry between the spectrograph collimator and camera avoiding the need for an articulated grating and camera. In this paper we describe both the field splitting and image slicing optics as well as the optics that will be used to select both spectral resolving power and wavelength range.
Simulation and experimental studies of a double-fiber angular displacement sensor
Zhu, Ruixue; Jing, Ruiping; Cheng, Yongjin
2017-03-01
A novel optical fiber angular displacement sensor is reported in this study. It gets the rotating angle of an object by means of the intensity modulation of a reflected light. The sensor probe, which is composed of an emitting fiber and a receiving fiber that are aligned along the vertical direction closely, is fixed directly on the rotating object. The measurements for axial displacement and angular displacement were operated separately. In particular, measurements for angular displacement were performed when the reflector is placed at different distances from the sensor probe separately. There is an excellent linearity between the angular displacement and the sensor output power. The results indicate that the larger the distance between the sensor probe and the reflector, the higher sensitivity the angular displacement sensor has. A theoretical model of the sensor is also developed and the simulate computation demonstrates that the theoretical results are in accordance with the experimental ones. The linear sensing range is ±7.2°, and the maximum sensitivity is 13.71%/deg. Furthermore, the hysteresis and the reproducibility of the measurement of the sensor are investigated. The designed sensor provides a kind of simple and effective method for measuring the angular displacement of a shaft system in practice due to its small size, light weight, good linearity and reproducibility.
[Experimental study on spectra of compressed air microwave plasma].
Liu, Yong-Xi; Zhang, Gui-Xin; Wang, Qiang; Hou, Ling-Yun
2013-03-01
Using a microwave plasma generator, compressed air microwave plasma was excited under 1 - 5 atm pressures. Under different pressures and different incident microwave power, the emission spectra of compressed air microwave plasma were studied with a spectra measuring system. The results show that continuum is significant at atmospheric pressure and the characteristic will be weakened as the pressure increases. The band spectra intensity will be reduced with the falling of the incident microwave power and the band spectra were still significant. The experimental results are valuable to studying the characteristics of compressed air microwave plasma and the generating conditions of NO active groups.
Angular and linear momentum of excited ferromagnets
Yan, P.; Kamra, A.; Cao, Y.; Bauer, G.E.W.
2013-01-01
The angular momentum vector of a Heisenberg ferromagnet with isotropic exchange interaction is conserved, while under uniaxial crystalline anisotropy the projection of the total spin along the easy axis is a constant of motion. Using Noether's theorem, we prove that these conservation laws persist
Angular distribution in ternary cold fission
International Nuclear Information System (INIS)
Delion, D.S.; J.W. Goethe Univ., Frankfurt; Sandulescu, A.; J.W. Goethe Univ., Frankfurt; Greiner, W.
2003-01-01
We describe the spontaneous ternary cold fission of 252 Cf, accompanied by 4 He, 10 Be and 14 C. The light cluster decays from the first resonant eigenstate in the Coulomb potential plus a harmonic oscillator potential. We have shown that the angular distribution of the emitted light particle is strongly connected with its deformation and the equatorial distance. (author)
Heteromodal conceptual processing in the angular gyrus.
Bonner, Michael F; Peelle, Jonathan E; Cook, Philip A; Grossman, Murray
2013-05-01
Concepts bind together the features commonly associated with objects and events to form networks in long-term semantic memory. These conceptual networks are the basis of human knowledge and underlie perception, imagination, and the ability to communicate about experiences and the contents of the environment. Although it is often assumed that this distributed semantic information is integrated in higher-level heteromodal association cortices, open questions remain about the role and anatomic basis of heteromodal representations in semantic memory. Here we used combined neuroimaging evidence from functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) to characterize the cortical networks underlying concept representation. Using a lexical decision task, we examined the processing of concepts in four semantic categories that varied on their sensory-motor feature associations (sight, sound, manipulation, and abstract). We found that the angular gyrus was activated across all categories regardless of their modality-specific feature associations, consistent with a heteromodal account for the angular gyrus. Exploratory analyses suggested that categories with weighted sensory-motor features additionally recruited modality-specific association cortices. Furthermore, DTI tractography identified white matter tracts connecting these regions of modality-specific functional activation with the angular gyrus. These findings are consistent with a distributed semantic network that includes a heteromodal, integrative component in the angular gyrus in combination with sensory-motor feature representations in modality-specific association cortices. Copyright © 2013 Elsevier Inc. All rights reserved.
INVESTIGATION OF ANGULAR BALL BEARING WEAR
Directory of Open Access Journals (Sweden)
A. L. Savchenko
2006-01-01
Full Text Available Wearing process of balls in an angular ball bearing has been investigated in the paper. Force affecting a separator from the side of balls is determined theoretically. Wear rate may be calculated with a formula for abrasive wear while substituting numerical parameter values of the investigated ball bearing for formula symbols.
Canonical three-body angular basis
International Nuclear Information System (INIS)
Matveenko, A.V.
2001-01-01
Three-body problems are basic for the quantum mechanics of molecular, atomic, or nuclear systems. We demonstrate that their variational solution for rotational states can be greatly simplified. A special choice of coordinates (hyperspherical) and of the kinematics (body-fixed coordinate frame) allows one to choose basis functions in a form that makes the angular coupling trivial. (author)
Temperature and angular momentum dependence of the ...
Indian Academy of Sciences (India)
Temperature and angular momentum dependence of the quadrupole deformation is studied in the middle of the sd-shell for 28Si and 27Si isotopes using the spherical shell model approach. The shell model calculations have been performed using the standard universal sd-shell (USD) interaction and the canonical ...
Angular momentum gated neutron evaporation studies
International Nuclear Information System (INIS)
Banerjee, K.; Kundu, S.; Rana, T.K.; Bhattacharya, C.; Mukherjee, G.; Gohil, M.; Meena, J.K.; Pandey, R.; Pai, H.; Dey, A.; Biswas, M.; Mukhopadhyay, S.; Pandit, D.; Pal, S.; Banerjee, S.R.; Bhattacharya, S.; Bandhopadhyay, T.
2010-01-01
The inverse level density parameter k (k = A/a, where A is the mass number of the compound nucleus)is investigated as a function of angular momentum by measuring γ-ray fold gated neutron evaporation spectrum in 4 He + 115 In fusion reaction using 35 MeV 4 He ion beam from VECC K130 cyclotron
Angular-momentum-bearing modes in fission
International Nuclear Information System (INIS)
Moretto, L.G.; Peaslee, G.F.; Wozniak, G.J.
1989-03-01
The angular-momentum-bearing degrees of freedom involved in the fission process are identified and their influence on experimental observables is discussed. The excitation of these modes is treated in the ''thermal'' limit, and the resulting distributions of observables are calculated. Experiments demonstrating the role of these modes are presented and discussed. 61 refs., 12 figs
Angular Intermittency and Analytical QCD Predictions
Chekanov, S.V.
1997-01-01
We present a comparison of local multiplicity fluctuations in angular phase-space intervals with first-order QCD predictions. The data are based on 810k hadronic events at 91.2 GeV collected with the L3 detector at LEP during 1994.
Angular momentum transfer in incomplete fusion
Indian Academy of Sciences (India)
Keywords. Heavy-ion reactions; incomplete fusion; isomeric cross-section ratio; 12C, 16O beams; 93Nb; 89Y targets; angular momentum. ... R Tripathi1 A Goswami1. Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India; School of Studies in Physics, Vikram University, Ujjain 456 010, India ...
Temperature and angular momentum dependence of the ...
Indian Academy of Sciences (India)
Abstract. Temperature and angular momentum dependence of the quadrupole deformation is studied in the middle of the sd-shell for 28Si and 27Si isotopes using the spherical shell model ... Department of Physics, University of Kashmir, Srinagar 190 006, India; Inter-University Accelerator Centre, New Delhi 110 067, India ...
On the angular momentum in star formation
International Nuclear Information System (INIS)
Horedt, G.P.
1978-01-01
The author discusses the rotation of interstellar clouds which are in a stage immediately before star formation. Cloud collisions seem to be the principal cause of the observed rotation of interstellar clouds. The rotational motion of the clouds is strongly influenced by turbulence. Theories dealing with the resolution of the angular momentum problem in star formation are classified into five major groups. The old idea that the angular momentum of an interstellar cloud passes during star formation into the angular momentum of double star systems and/or circumstellar clouds, is developed. It is suggested that a rotating gas cloud contracts into a ring-like structure which fragments into self-gravitating subcondensations. By collisions and gas accretion these subcondensations accrete into binary systems surrounded by circumstellar clouds. Using some rough approximations the authors find analytical expressions for the semi-major axis of the binary system and for the density of the circumstellar clouds as a function of the initial density and of the initial angular velocity of an interstellar cloud. The obtained values are well within the observational limits. (Auth.)
A Novel Permanent Magnetic Angular Acceleration Sensor
Directory of Open Access Journals (Sweden)
Hao Zhao
2015-07-01
Full Text Available Angular acceleration is an important parameter for status monitoring and fault diagnosis of rotary machinery. Therefore, we developed a novel permanent magnetic angular acceleration sensor, which is without rotation angle limitations and could directly measure the instantaneous angular acceleration of the rotating system. The sensor rotor only needs to be coaxially connected with the rotating system, which enables convenient sensor installation. For the cup structure of the sensor rotor, it has a relatively small rotational inertia. Due to the unique mechanical structure of the sensor, the output signal of the sensor can be directed without a slip ring, which avoids signal weakening effect. In this paper, the operating principle of the sensor is described, and simulated using finite element method. The sensitivity of the sensor is calibrated by torsional pendulum and angle sensor, yielding an experimental result of about 0.88 mV/(rad·s−2. Finally, the angular acceleration of the actual rotating system has been tested, using both a single-phase asynchronous motor and a step motor. Experimental result confirms the operating principle of the sensor and indicates that the sensor has good practicability.
Variation in angular velocity and angular acceleration of a particle in rectilinear motion
International Nuclear Information System (INIS)
Mashood, K K; Singh, V A
2012-01-01
We discuss the angular velocity and angular acceleration associated with a particle in rectilinear motion with constant acceleration. The discussion was motivated by an observation that students and even teachers have difficulty in ascribing rotational motion concepts to a particle when the trajectory is a straight line. We present some details of our observations. A formal derivation of ω and α is presented which reveals ‘surprising’ and non-intuitive aspects, namely non-monotonic behaviour with an associated extremum. The special case of constant velocity is studied and we find that angular acceleration associated with it also has an extremum. We discuss a plausible source of difficulty. (paper)
Conceptual design of an angular multiplexed 50 kJ KrF amplifier for ICF
International Nuclear Information System (INIS)
Lowenthal, D.D.; Ewing, J.J.; Center, R.E.; Mumola, P.; Olson, T.
1981-01-01
The results of a conceptual design for an angular multiplexed 50 kJ KrF amplifier for ICF are presented. Optical designs, amplifier scaling with a KrF kinetics code and limitations imposed by pulsed power technology are described
RAMAN-SPECTRA OF HUMAN DENTAL CALCULUS
TSUDA, H; ARENDS, J
1993-01-01
Raman spectra of human dental calculus have been observed for the first time by use of micro-Raman spectroscopy. The spectral features of calculus were influenced easily by heating caused by laser irradiation. Therefore, the measurements were carried out at relatively low power (5 mW, 1-mu m spot
Electron with orbital angular momentum in a strong laser wave
Karlovets, Dmitry V.
2012-12-01
Electrons carrying orbital angular momentum (OAM) have recently been discovered theoretically and obtained experimentally, which opens up possibilities for using them in high-energy physics. We consider such a twisted electron moving in the external field of a plane electromagnetic wave and study how this field influences the electron's OAM. Being motivated by the development of high-power lasers, we focus our attention on a classically strong-field regime for which -e2A2¯/(me2c4)≳1. It is shown that, along with the well-known “plane-wave” Volkov solution, the Dirac equation also has the “non-plane-wave” solutions, which possess OAM and spin-orbit coupling and generalize the free-electron's Bessel states. Motion of an electron with OAM in a circularly polarized laser wave reveals a twofold character: the wave-packet center moves along a classical helical trajectory with some quantum transverse broadening (due to OAM) existing even for a free electron. Using the twisted states, we calculate the electron's total angular momentum and predict its shift in the strong-field regime, which is analogous to the well-known shifts of the electron's momentum and mass (and to a less-known shift of its spin) in intense fields. Since the electron's effective angular momentum is conserved in a plane wave, as well as in some more general field configurations, we discuss several possibilities for accelerating nonrelativistic twisted electrons by using focused and combined electromagnetic fields.
National Research Council Canada - National Science Library
Eason, Michael
1998-01-01
.... The knowledge base developed in this project provides the physics backbone for the rest of the tutoring system by generating the necessary equations and solution graphs to solve selected angular motion...
Functional Data Analysis of Multi-Angular Hyperspectral Data on Vegetation
Directory of Open Access Journals (Sweden)
Sugianto
2012-04-01
Full Text Available The surface reflectance anisotropy can be estimated by directional reflectance analysis through the collection of multi-angular spectral data. Proper characterization of the surface anisotropy is animportant element in the successful interpretation of remotely sensed signals. A signal received by a sensor from a vegetation canopy is affected by several factors. One of them is the sensor zenith angle.Functional data analysis can be used to assess the distribution and variation of spectral reflectance due to sensor zenith angle. This paper examines the effect of sensor zenith angles on the spectral reflectance of vegetation, example on cotton leaves. The spectra were acquired in a green house trial in order to address the question ‘how much information can be obtained from multi-angular hyperspectral remote sensing of vegetation?’ The goals of the functional data analysis applied in this paper is to examine the FunctionalData Analysis approach was applied to analysis multi-angular hyperspectral data on cotton, highlighting various characteristics of cotton spectra due to sensor view angles, and to infer directional variation in an outcome or dependent variable with different zenith angles
DEFF Research Database (Denmark)
Christensen, Bo Toftmann; Schou, Jørgen
2013-01-01
Laser impact on metals in the UV regime results in a significant number of ablated plume ions even at moderate fluence (0.7–2.4 J/cm2). The ablated particles are largely neutrals at the lowest fluence, but the fraction of ions increases strongly with fluence. The ion flow in different directions...... from a silver target irradiated by a laser beam at a wavelength of 355 nm in vacuum was measured with a hemispherical array of Langmuir probes. The time-of-flight spectra in all directions, as well as the total angular yield were determined. The angular distribution peaks strongly in forward direction...
Instability in the dense supernova neutrino gas with flavor-dependent angular distributions.
Mirizzi, Alessandro; Serpico, Pasquale Dario
2012-06-08
The usual description of self-induced flavor conversions for neutrinos (ν's) in supernovae is based on the simplified assumption that all the ν's of the different species are emitted "half-isotropically" by a common neutrinosphere, in analogy to a blackbody emission. However, realistic supernova simulations show that ν angular distributions at decoupling are far from being half-isotropic and, above all, are flavor dependent. We show that flavor-dependent angular distributions may lead to crossing points in the angular spectra of different ν species (where F(ν(e))=F(ν(x)) and F(ν(e))=F(ν(x))) around which a new multiangle instability can develop. To characterize this effect, we carry out a linearized flavor stability analysis for different supernova neutrino angular distributions. We find that this instability can shift the onset of the flavor conversions toward low radii and produce a smearing of the splitting features found with trivial ν emission models. As a result the spectral differences among ν's of different flavors could be strongly reduced.
Resonant structure of the 3d electron's angular distribution in a free Mn+Ion
International Nuclear Information System (INIS)
Amusia, M.Y.; Dolmatov, V.K.
1995-01-01
The 3d-electron angular anisotropy parameter of the free Mn + ion is calculated using the open-quotes spin-polarizedclose quotes random-phase approximation with exchange. Strong resonance structure is discovered, which is due to interference with the powerful 3p → 3d discrete excitation. The effect of the 3p → 4s transition is also noticeable. The ordering of these respective resonances with phonon energy increase proved to be opposite in angular anisotropy parameter to that in 3d-photoionization cross section. A paper describing these results was published
Parameterization of rotational spectra
International Nuclear Information System (INIS)
Zhou Chunmei; Liu Tong
1992-01-01
The rotational spectra of the strongly deformed nuclei with low rotational frequencies and weak band mixture are analyzed. The strongly deformed nuclei are commonly encountered in the rare-earth region (e. g., 150 220). A lot of rotational band knowledge are presented
SRD 78 NIST Atomic Spectra Database (ASD) (Web, free access) This database provides access and search capability for NIST critically evaluated data on atomic energy levels, wavelengths, and transition probabilities that are reasonably up-to-date. The NIST Atomic Spectroscopy Data Center has carried out these critical compilations.
Coherent Control of Photoelectron Wavepacket Angular Interferograms
Hockett, Paul; Wollenhaupt, Matthias; Baumert, Thomas
2015-01-01
Coherent control over photoelectron wavepackets, via the use of polarization-shaped laser pulses, can be understood as a time and polarization-multiplexed process. In this work, we investigate this multiplexing via computation of the observable photoelectron angular interferograms resulting from multi-photon atomic ionization with polarization-shaped laser pulses. We consider the polarization sensitivity of both the instantaneous and cumulative continuum wavefunction; the nature of the cohere...
Angular distribution of laser ablation plasma
International Nuclear Information System (INIS)
Kondo, K.; Kanesue, T.; Dabrowski, R.; Okamura, M.
2010-01-01
An expansion of a laser induced plasma is fundamental and important phenomena in a laser ion source. To understand the expanding direction, an array of Langmuir probes were employed. The chosen ion for the experiment was Ag 1+ which was created by a second harmonics of a Nd-YAG laser. The obtained angular distribution was about ±10 degree. This result also indicates a proper positioning of a solenoid magnet which enhances ion beam current.
Continuum angular distributions in the transition regions
International Nuclear Information System (INIS)
Kalbach, C.
1993-01-01
One of the open questions from the 1988 published systematics of continuum angular distributions in light particle reactions is addressed. Evidence for a smooth transition in the systematics at incident energies of ∼125 MeV is summarized, and appropriate revisions to the global parameterization are proposed. Applying similar changes to the second-order term helps to remove problems noted in the literature with low-energy (N,α) reactions
Coincident-inclusive electrofission angular correlations
International Nuclear Information System (INIS)
Arruda Neto, J.D.T.
1983-08-01
A method for the joint analysis of coincident and inclusive electrofission data, in order to minimize effects of the model dependence of data interpretation, is developed. Explicit calculations of the (e,e'f) angular correlations are presented. The potentialities of the method to the study of sub- and near-barrier properties of the fission process, and to the study of the giant resonances fission mode, are discussed. (Author) [pt
Spatial angular compounding of photoacoustic images
Kang, Hyun Jae; Bell, Muyinatu A Lediju; Guo, Xiaoyu; Boctor, Emad M.
2016-01-01
Photoacoustic (PA) images utilize pulsed lasers and ultrasound transducers to visualize targets with higher optical absorption than the surrounding medium. However, they are susceptible to acoustic clutter and background noise artifacts that obfuscate biomedical structures of interest. We investigated three spatial-angular compounding methods to improve PA image quality for biomedical applications, implemented by combining multiple images acquired as an ultrasound probe was rotated about the ...
Orbital angular momentum light in microscopy.
Ritsch-Marte, Monika
2017-02-28
Light with a helical phase has had an impact on optical imaging, pushing the limits of resolution or sensitivity. Here, special emphasis will be given to classical light microscopy of phase samples and to Fourier filtering techniques with a helical phase profile, such as the spiral phase contrast technique in its many variants and areas of application.This article is part of the themed issue 'Optical orbital angular momentum'. © 2017 The Author(s).
Verification of angular dependence in MOSFET detector
International Nuclear Information System (INIS)
Souza, Clayton H.; Shorto, Julian M.B.; Siqueira, Paulo T.D.; Nunes, Maíra G.; Silva Junior, Iremar A.; Yoriyaz, Hélio
2017-01-01
In vivo dosimetry is an essential tool for quality assurance programs, being a procedure commonly performed with thermoluminescent dosimeters (TLDs) or diodes. However, a type of dosimeter that has increasing popularity in recent years is the metal-oxide-semiconductor field effect transistor (MOSFET) detector. MOSFET dosimeters fulfill all the necessary characteristics to realize in vivo dosimetry since it has a small size, good precision and feasibility of measurement, as well as easy handling. Nevertheless, its true differential is to allow reading of the dose in real time, enabling immediate intervention in the correction of physical parameters deviations and anticipation of small anatomical changes in a patient during treatment. In order for MOSFET dosimeter to be better accepted in clinical routine, information reporting performance should be available frequently. For this reason, this work proposes to verify reproducibility and angular dependence of a standard sensitivity MOSFET dosimeter (TN-502RD-H) for Cs-137 and Co-60 sources. Experimental data were satisfactory and MOSFET dosimeter presented a reproducibility of 3.3% and 2.7% (1 SD) for Cs-137 and Co-60 sources, respectively. In addition, an angular dependence of up to 6.1% and 16.3% for both radioactive sources, respectively. It is conclusive that MOSFET dosimeter TN-502RD-H has satisfactory reproducibility and a considerable angular dependence, mainly for the Co-60 source. This means that although precise measurements, special attention must be taken for applications in certain anatomical regions in a patient. (author)
Angular craniometry in craniocervical junction malformation.
Botelho, Ricardo Vieira; Ferreira, Edson Dener Zandonadi
2013-10-01
The craniometric linear dimensions of the posterior fossa have been relatively well studied, but angular craniometry has been poorly studied and may reveal differences in the several types of craniocervical junction malformation. The objectives of this study were to evaluate craniometric angles compared with normal subjects and elucidate the main angular differences among the types of craniocervical junction malformation and the correlation between craniocervical and cervical angles. Angular craniometries were studied using primary cranial angles (basal and Boogard's) and secondary craniocervical angles (clivus canal and cervical spine lordosis). Patients with basilar invagination had significantly wider basal angles, sharper clivus canal angles, larger Boogard's angles, and greater cervical lordosis than the Chiari malformation and control groups. The Chiari malformation group does not show significant differences when compared with normal controls. Platybasia occurred only in basilar invagination and is suggested to be more prevalent in type II than in type I. Platybasic patients have a more acute clivus canal angle and show greater cervical lordosis than non-platybasics. The Chiari group does not show significant differences when compared with the control, but the basilar invagination groups had craniometric variables significantly different from normal controls. Hyperlordosis observed in the basilar inavagination group was associated with craniocervical kyphosis conditioned by acute clivus canal angles.
Verification of angular dependence in MOSFET detector
Energy Technology Data Exchange (ETDEWEB)
Souza, Clayton H.; Shorto, Julian M.B.; Siqueira, Paulo T.D.; Nunes, Maíra G.; Silva Junior, Iremar A.; Yoriyaz, Hélio, E-mail: chsouza@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)
2017-07-01
In vivo dosimetry is an essential tool for quality assurance programs, being a procedure commonly performed with thermoluminescent dosimeters (TLDs) or diodes. However, a type of dosimeter that has increasing popularity in recent years is the metal-oxide-semiconductor field effect transistor (MOSFET) detector. MOSFET dosimeters fulfill all the necessary characteristics to realize in vivo dosimetry since it has a small size, good precision and feasibility of measurement, as well as easy handling. Nevertheless, its true differential is to allow reading of the dose in real time, enabling immediate intervention in the correction of physical parameters deviations and anticipation of small anatomical changes in a patient during treatment. In order for MOSFET dosimeter to be better accepted in clinical routine, information reporting performance should be available frequently. For this reason, this work proposes to verify reproducibility and angular dependence of a standard sensitivity MOSFET dosimeter (TN-502RD-H) for Cs-137 and Co-60 sources. Experimental data were satisfactory and MOSFET dosimeter presented a reproducibility of 3.3% and 2.7% (1 SD) for Cs-137 and Co-60 sources, respectively. In addition, an angular dependence of up to 6.1% and 16.3% for both radioactive sources, respectively. It is conclusive that MOSFET dosimeter TN-502RD-H has satisfactory reproducibility and a considerable angular dependence, mainly for the Co-60 source. This means that although precise measurements, special attention must be taken for applications in certain anatomical regions in a patient. (author)
Algorithms for classification of astronomical object spectra
Wasiewicz, P.; Szuppe, J.; Hryniewicz, K.
2015-09-01
Obtaining interesting celestial objects from tens of thousands or even millions of recorded optical-ultraviolet spectra depends not only on the data quality but also on the accuracy of spectra decomposition. Additionally rapidly growing data volumes demands higher computing power and/or more efficient algorithms implementations. In this paper we speed up the process of substracting iron transitions and fitting Gaussian functions to emission peaks utilising C++ and OpenCL methods together with the NOSQL database. In this paper we implemented typical astronomical methods of detecting peaks in comparison to our previous hybrid methods implemented with CUDA.
X-ray absorption spectra and emission spectra of plasmas
International Nuclear Information System (INIS)
Peng Yonglun; Yang Li; Wang Minsheng; Li Jiaming
2002-01-01
The author reports a theoretical method to calculate the resolved absorption spectra and emission spectra (optically thin) of hot dense plasmas. Due to its fully relativistic treatment incorporated with the quantum defect theory, it calculates the absorption spectra and emission spectra for single element or multi-element plasmas with little computational efforts. The calculated absorption spectra of LTE gold plasmas agree well with the experimental ones. It also calculates the optical thin emission spectra of LTE gold plasmas, which is helpful to diagnose the plasmas of relevant ICF plasmas. It can also provide the relevant parameters such as population density of various ionic stages, precise radiative properties for ICF studies
Thermoluminescence spectra of amethyst
Energy Technology Data Exchange (ETDEWEB)
Zhang, Q. [Suzhou Railway Teachers College (China). Dept. of Physics; Yang, B. [Beijing Normal University (China). Dept. of Physics; Wood, R.A.; White, D.R.R.; Townsend, P.D.; Luff, B.J. [Sussex Univ., Brighton (United Kingdom). School of Mathematical and Physical Sciences
1994-04-01
Thermoluminescence and cathodoluminescence data from natural and synthetic amethyst and synthetic quartz samples are compared. The spectra include features from the quartz host lattice and from impurity-generated recombination sites. Emission features exist throughout the wavelength range studied, 250-800 nm. The near infrared emission at 740-750 nm appears to be characteristic of the amethyst and is proposed to be due to Fe ion impurity. (Author).
Pattern recognition in spectra
Gebran, M.; Paletou, F.
2017-06-01
We present a new automated procedure that simultaneously derives the effective temperature Teff, surface gravity log g, metallicity [Fe/H], and equatorial projected rotational velocity ve sin i for stars. The procedure is inspired by the well-known PCA-based inversion of spectropolarimetric full-Stokes solar data, which was used both for Zeeman and Hanle effects. The efficiency and accuracy of this procedure have been proven for FGK, A, and late type dwarf stars of K and M spectral types. Learning databases are generated from the Elodie stellar spectra library using observed spectra for which fundamental parameters were already evaluated or with synthetic data. The synthetic spectra are calculated using ATLAS9 model atmospheres. This technique helped us to detect many peculiar stars such as Am, Ap, HgMn, SiEuCr and binaries. This fast and efficient technique could be used every time a pattern recognition is needed. One important application is the understanding of the physical properties of planetary surfaces by comparing aboard instrument data to synthetic ones.
Estimating Spectra from Photometry
Kalmbach, J. Bryce; Connolly, Andrew J.
2017-12-01
Measuring the physical properties of galaxies such as redshift frequently requires the use of spectral energy distributions (SEDs). SED template sets are, however, often small in number and cover limited portions of photometric color space. Here we present a new method to estimate SEDs as a function of color from a small training set of template SEDs. We first cover the mathematical background behind the technique before demonstrating our ability to reconstruct spectra based upon colors and then compare our results to other common interpolation and extrapolation methods. When the photometric filters and spectra overlap, we show that the error in the estimated spectra is reduced by more than 65% compared to the more commonly used techniques. We also show an expansion of the method to wavelengths beyond the range of the photometric filters. Finally, we demonstrate the usefulness of our technique by generating 50 additional SED templates from an original set of 10 and by applying the new set to photometric redshift estimation. We are able to reduce the photometric redshifts standard deviation by at least 22.0% and the outlier rejected bias by over 86.2% compared to original set for z ≤ 3.
Pattern recognition in spectra
International Nuclear Information System (INIS)
Gebran, M; Paletou, F
2017-01-01
We present a new automated procedure that simultaneously derives the effective temperature T eff , surface gravity log g , metallicity [ Fe/H ], and equatorial projected rotational velocity v e sin i for stars. The procedure is inspired by the well-known PCA-based inversion of spectropolarimetric full-Stokes solar data, which was used both for Zeeman and Hanle effects. The efficiency and accuracy of this procedure have been proven for FGK, A, and late type dwarf stars of K and M spectral types. Learning databases are generated from the Elodie stellar spectra library using observed spectra for which fundamental parameters were already evaluated or with synthetic data. The synthetic spectra are calculated using ATLAS9 model atmospheres. This technique helped us to detect many peculiar stars such as Am, Ap, HgMn, SiEuCr and binaries. This fast and efficient technique could be used every time a pattern recognition is needed. One important application is the understanding of the physical properties of planetary surfaces by comparing aboard instrument data to synthetic ones. (paper)
Unusual features of proton and α-spectra from low-energy heavy-ion ...
Indian Academy of Sciences (India)
Home; Journals; Pramana – Journal of Physics; Volume 75; Issue 1. Unusual ... In the case of proton spectra, the structures have compound nuclear origin and point towards an excitation energy and angular momentum-dependent enhancement which is beyond the conventional level density prescription. The broad ...
Confining the angular distribution of terrestrial gamma ray flash emission
Gjesteland, T.; Østgaard, N.; Collier, A. B.; Carlson, B. E.; Cohen, M. B.; Lehtinen, N. G.
2011-11-01
Terrestrial gamma ray flashes (TGFs) are bremsstrahlung emissions from relativistic electrons accelerated in electric fields associated with thunder storms, with photon energies up to at least 40 MeV, which sets the lowest estimate of the total potential of 40 MV. The electric field that produces TGFs will be reflected by the initial angular distribution of the TGF emission. Here we present the first constraints on the TGF emission cone based on accurately geolocated TGFs. The source lightning discharges associated with TGFs detected by RHESSI are determined from the Atmospheric Weather Electromagnetic System for Observation, Modeling, and Education (AWESOME) network and the World Wide Lightning Location Network (WWLLN). The distribution of the observation angles for 106 TGFs are compared to Monte Carlo simulations. We find that TGF emissions within a half angle >30° are consistent with the distributions of observation angle derived from the networks. In addition, 36 events occurring before 2006 are used for spectral analysis. The energy spectra are binned according to observation angle. The result is a significant softening of the TGF energy spectrum for large (>40°) observation angles, which is consistent with a TGF emission half angle (<40°). The softening is due to Compton scattering which reduces the photon energies.
Angular-Momentum Evolution in Laser-Plasma Accelerators
Thaury, Cédric; Corde, Sébastien; Lehe, Rémi; Le Bouteiller, Madeleine; Ta Phuoc, Kim; Davoine, Xavier; Rax, J. M.; Rousse, Antoine; Malka, Victor
2013-01-01
The transverse properties of an electron beam are characterized by two quantities, the emittance which indicates the electron beam extent in the phase space and the angular momentum which allows for non-planar electron trajectories. Whereas the emittance of electron beams produced in laserplasma accelerator has been measured in several experiments, their angular momentum has been scarcely studied. It was demonstrated that electrons in laser-plasma accelerator carry some angular momentum, but its origin was not established. Here we identify one source of angular momentum growth and we present experimental results showing that the angular momentum content evolves during the acceleration.
ANGULAR MOMENTUM AND GALAXY FORMATION REVISITED
International Nuclear Information System (INIS)
Romanowsky, Aaron J.; Fall, S. Michael
2012-01-01
Motivated by a new wave of kinematical tracers in the outer regions of early-type galaxies (ellipticals and lenticulars), we re-examine the role of angular momentum in galaxies of all types. We present new methods for quantifying the specific angular momentum j, focusing mainly on the more challenging case of early-type galaxies, in order to derive firm empirical relations between stellar j * and mass M * (thus extending earlier work by Fall). We carry out detailed analyses of eight galaxies with kinematical data extending as far out as 10 effective radii, and find that data at two effective radii are generally sufficient to estimate total j * reliably. Our results contravene suggestions that ellipticals could harbor large reservoirs of hidden j * in their outer regions owing to angular momentum transport in major mergers. We then carry out a comprehensive analysis of extended kinematic data from the literature for a sample of ∼100 nearby bright galaxies of all types, placing them on a diagram of j * versus M * . The ellipticals and spirals form two parallel j * -M * tracks, with log-slopes of ∼0.6, which for the spirals are closely related to the Tully-Fisher relation, but for the ellipticals derives from a remarkable conspiracy between masses, sizes, and rotation velocities. The ellipticals contain less angular momentum on average than spirals of equal mass, with the quantitative disparity depending on the adopted K-band stellar mass-to-light ratios of the galaxies: it is a factor of ∼3-4 if mass-to-light ratio variations are neglected for simplicity, and ∼7 if they are included. We decompose the spirals into disks and bulges and find that these subcomponents follow j * -M * trends similar to the overall ones for spirals and ellipticals. The lenticulars have an intermediate trend, and we propose that the morphological types of galaxies reflect disk and bulge subcomponents that follow separate, fundamental j * -M * scaling relations. This provides a
ANGULAR MOMENTUM AND GALAXY FORMATION REVISITED
Energy Technology Data Exchange (ETDEWEB)
Romanowsky, Aaron J. [University of California Observatories, 1156 High Street, Santa Cruz, CA 95064 (United States); Fall, S. Michael [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)
2012-12-15
Motivated by a new wave of kinematical tracers in the outer regions of early-type galaxies (ellipticals and lenticulars), we re-examine the role of angular momentum in galaxies of all types. We present new methods for quantifying the specific angular momentum j, focusing mainly on the more challenging case of early-type galaxies, in order to derive firm empirical relations between stellar j{sub *} and mass M{sub *} (thus extending earlier work by Fall). We carry out detailed analyses of eight galaxies with kinematical data extending as far out as 10 effective radii, and find that data at two effective radii are generally sufficient to estimate total j{sub *} reliably. Our results contravene suggestions that ellipticals could harbor large reservoirs of hidden j{sub *} in their outer regions owing to angular momentum transport in major mergers. We then carry out a comprehensive analysis of extended kinematic data from the literature for a sample of {approx}100 nearby bright galaxies of all types, placing them on a diagram of j{sub *} versus M{sub *}. The ellipticals and spirals form two parallel j{sub *}-M{sub *} tracks, with log-slopes of {approx}0.6, which for the spirals are closely related to the Tully-Fisher relation, but for the ellipticals derives from a remarkable conspiracy between masses, sizes, and rotation velocities. The ellipticals contain less angular momentum on average than spirals of equal mass, with the quantitative disparity depending on the adopted K-band stellar mass-to-light ratios of the galaxies: it is a factor of {approx}3-4 if mass-to-light ratio variations are neglected for simplicity, and {approx}7 if they are included. We decompose the spirals into disks and bulges and find that these subcomponents follow j{sub *}-M{sub *} trends similar to the overall ones for spirals and ellipticals. The lenticulars have an intermediate trend, and we propose that the morphological types of galaxies reflect disk and bulge subcomponents that follow
Research on static angular stiffness measurement of flexible joint
Directory of Open Access Journals (Sweden)
Yongchao HUANG
2016-10-01
Full Text Available Measurement accuracy of the angular stiffness of flexible joint is directly related to the control accuracy and sensitivity of gyro, but the traditional measurement methods have many problems. According to the principle of angular stiffness measurement of flexible joint, two static measurement methods of angular stiffness are proposed based on different loading ways, namely mechanical loading angular stiffness measurement and piezoelectric loading angular stiffness measurement. The mechanical loading angular stiffness measurement system is built by using a motor driven indexing feeding tilting table, the measure experiment if the angular stiffness of flexible joint is conducted, and the angular stiffness of flexible joint is measured. For the excessive fluctuation problem of the measure result in mechanical load test, a piezoelectric loading structure is designed and a measurement method employing piezoelectric actuator is proposed for angular stiffness measurement of flexible joint. Based on ANSYS Workbench, the displacement output of the piezoelectric loading structure is analyzed by simulations. The simulation results illustrate that the displacement output meets the requirement of static loading angular stiffness measurement of flexible joint, and the theoretical feasibility of piezoelectric loading angular stiffness measurement method is validated.
Angular Rate Estimation Using a Distributed Set of Accelerometers
Directory of Open Access Journals (Sweden)
Sung Kyung Hong
2011-11-01
Full Text Available A distributed set of accelerometers based on the minimum number of 12 accelerometers allows for computation of the magnitude of angular rate without using the integration operation. However, it is not easy to extract the magnitude of angular rate in the presence of the accelerometer noises, and even worse, it is difficult to determine the direction of a rotation because the angular rate is present in its quadratic form within the inertial measurement system equations. In this paper, an extended Kalman filter scheme to correctly estimate both the direction and magnitude of the angular rate through fusion of the angular acceleration and quadratic form of the angular rate is proposed. We also provide observability analysis for the general distributed accelerometers-based inertial measurement unit, and show that the angular rate can be correctly estimated by general nonlinear state estimators such as an extended Kalman filter, except under certain extreme conditions.
Time-resolved angular distributions of plume ions from silver at low and medium laser fluence
DEFF Research Database (Denmark)
Christensen, Bo Toftmann; Schou, Jørgen
Even at moderate fluence (0.6 -2.4 J/cm2) laser impact on metals in the UV regime results in a significant number of ions emitted from the surface. The ablated particles are largely neutrals at the lowest fluence, but the fraction of ions increases strongly with fluence. We have irradiated silver...... in a vacuum chamber (~ 10-7 mbar) with a Nd:YAG laser at a wavelength of 355 nm and made detailed measurements of the time-resolved angular distribution. The ion flow in different directions has been measured with a hemispherical array of Langmuir probes, by which the time-of-flight spectra, as well...
Angular Position Tracking Control of a Quadcopter
T. V. Glazkov; A. E. Golubev
2017-01-01
The paper dwells on tracking the quad-copter angular position with desired quality parameters of transient processes. The aerial vehicle is considered as a rigid body with six degrees of freedom. A full rigid body quad-copter mathematical model is considered without the assumption of smallness of the Euler angles.Among the most well known methods of non-linear stabilization are feedback linearization and backstepping. The backstepping approach allows us to have an effective solution of the s...
Angular Momentum Sensitive Two-Center Interference
Ilchen, M.; Glaser, L.; Scholz, F.; Walter, P.; Deinert, S.; Rothkirch, A.; Seltmann, J.; Viefhaus, J.; Decleva, P.; Langer, B.; Knie, A.; Ehresmann, A.; Al-Dossary, O. M.; Braune, M.; Hartmann, G.; Meissner, A.; Tribedi, L. C.; AlKhaldi, M.; Becker, U.
2014-01-01
In quantum mechanics the Young-type double-slit experiment can be performed with electrons either traveling through a double slit or being coherently emitted from two inversion symmetric molecular sites. In the latter one the valence photoionization cross sections of homonuclear diatomic molecules were predicted to oscillate over kinetic energy almost 50 years ago. Beyond the direct proof of the oscillatory behavior of these photoionization cross sections σ, we show that the angular distribution of the emitted electrons reveals hitherto unexplored information on the relative phase shift between the corresponding partial waves through two-center interference patterns.
Projection of angular momentum via linear algebra
Johnson, Calvin W.; O'Mara, Kevin D.
2017-12-01
Projection of many-body states with good angular momentum from an initial state is usually accomplished by a three-dimensional integral. We show how projection can instead be done by solving a straightforward system of linear equations. We demonstrate the method and give sample applications to 48Cr and 60Fe in the p f shell. This new projection scheme, which is competitive against the standard numerical quadrature, should also be applicable to other quantum numbers such as isospin and particle number.
The angular momentum of isolated white dwarfs
Directory of Open Access Journals (Sweden)
Brassard P.
2013-03-01
Full Text Available This is a very brief report on an ongoing program aimed at mapping the internal rotation profiles of stars through asteroseismology. Three years ago, we developed and applied successfully a new technique to the pulsating GW Vir white dwarf PG 1159−035, and were able to infer that it rotates very slowly and rigidly over some 99% of its mass. We applied the same approach to the three other GW Vir pulsators with available rotational splitting data, and found similar results. We discuss the implications of these findings on the question of the angular momentum of white dwarfs resulting from single star evolution.
Models and theory for precompound angular distributions
Energy Technology Data Exchange (ETDEWEB)
Blann, M.; Pohl, B.A.; Remington, B.A. (Lawrence Livermore National Lab., CA (USA)); Scobel, W.; Trabandt, M. (Hamburg Univ. (Germany, F.R.). 1. Inst. fuer Experimentalphysik); Byrd, R.C. (Los Alamos National Lab., NM (USA)); Foster, C.C. (Indiana Univ. Cyclotron Facility, Bloomington, IN (USA)); Bonetti, R.; Chiesa, C. (Milan Univ. (Italy). Ist. di Fisica Generale Applicata); Grimes, S.M. (Ohio Univ
1990-06-06
We compare angular distributions calculated by folding nucleon- nucleon scattering kernels, using the theory of Feshbach, Kerman and Koonin, and the systematics of Kalbach, with a wide range of data. The data range from (n,xn) at 14 MeV incident energy to (p,xn) at 160 MeV incident energy. The FKK theory works well with one adjustable parameter, the depth of the nucleon-nucleon interaction potential. The systematics work well when normalized to the hybrid model single differential cross section prediction. The nucleon- nucleon scattering approach seems inadequate. 9 refs., 10 figs.
Deconvolution of Positrons' Lifetime spectra
International Nuclear Information System (INIS)
Calderin Hidalgo, L.; Ortega Villafuerte, Y.
1996-01-01
In this paper, we explain the iterative method previously develop for the deconvolution of Doppler broadening spectra using the mathematical optimization theory. Also, we start the adaptation and application of this method to the deconvolution of positrons' lifetime annihilation spectra
Leader, Elliot
2018-04-01
The expression for the total angular momentum carried by a laser optical vortex beam, splits, in the paraxial approximation, into two terms which seem to represent orbital and spin angular momentum respectively. There are, however, two very different competing versions of the formula for the spin angular momentum, one based on the use of the Poynting vector, as in classical electrodynamics, the other related to the canonical expression for the angular momentum which occurs in Quantum Electrodynamics. I analyze the possibility that a sufficiently sensitive optical measurement could decide which of these corresponds to the actual physical angular momentum carried by the beam.
Nuclear Spectra from Skyrmions
International Nuclear Information System (INIS)
Manton, N.
2009-01-01
For some time now, the Skyrme model has been studied as an effective nonlinear field theory in nuclear physics. Its classical, stable soliton solutions, called Skyrmions, have a conserved topological charge which is identified with baryon number. A quantized Skyrmion models a nucleus. Skyrmions with baryon number a multiple of four are structurally similar to the cluster structures well-known in the a-particle model. The most convenient quantization scheme treats a Skyrmion as a rigid body in space and isospin space, and quantizes just the collective rotational motion. Some selected vibrational modes of Skyrmions may be included too. This approach has been applied previously to Skyrmions up to baryon number about 6, by Braaten and Carson, Kopeliovich, Walhout, and others. Recently, Battye, Manton, Sutcliffe and Wood have calculated the moment of inertia tensors in space and isospace for Skyrmions up to baryon number 12. The allowed spin and isospin states have been found, and the energy spectra calculated. These spectra agree quite well with experimental spectra of several light nuclei, including 6 L i, 8 B e, 1 2C , and their various isotopes. However, for this to work, the length scale needs to be set rather larger than the traditional value determined by Adkins and Nappi using the nucleon and delta resonance masses. The most interesting theoretical feature of these calculations is that isospin and spin excitations are treated in a uniform way. There are quite subtle constraints on the possible spin and isospin values, because of the classical symmetries of each Skyrmion. Manton and his students, and Battye and Sutcliffe, have published a number of papers on classical and quantized Skyrmions in journals and on the arXiv. They are also jointly contributing an invited chapter on Skyrmions and Nuclei to the book The Multifaceted Skyrmion, currently being edited by G. Brown and M. Rho.(author)
Remarks about the displaced spectra techniques
International Nuclear Information System (INIS)
Behringer, K.; Pineyro, J.
1989-01-01
In a recent paper a new method, called displaced spectra techniques, was presented for distinguishing between sinusoidal components and narrowband random noise contributions in otherwise random noise data. It is based on Fourier transform techniques, and uses the power spectral density (PSD) and a newly-introduced second-order displaced power spectra density (SDPSD) function. In order to distinguish between the two peak types, a validation criterion has been established. In this note, three topics are covered: a) improved numerical data for the validation criterion are given by using the refined estimation procedure of the PSD and SDPSD functions by the Welch method; b) the validation criterion requires the subtraction of the background below the peaks. A semiautomatic procedure is described; c) it was observed that peaks in the real part of the SDPSD function can be accompanied by fine structure phenomena which are unresolved in the PSD function. A few remarks are made about this problem. (author)
Practical scaling law for photoelectron angular distributions
International Nuclear Information System (INIS)
Guo Dongsheng; Zhang Jingtao; Xu Zhizhan; Li Xiaofeng; Fu Panming; Freeman, R.R.
2003-01-01
A practical scaling law that predicts photoelectron angular distributions (PADs) is derived using angular distribution formulas which explicitly contain spontaneous emission. The scaling law is used to analyze recent PAD measurements in above-threshold ionization, and to predict results of future experiments. Our theoretical and numerical studies show that, in the non-relativistic regime and long-wavelength approximation, the shapes of PADs are determined by only three dimensionless numbers: (1) u p ≡U p /(ℎ/2π)ω, the ponderomotive number (ponderomotive energy in units of laser photon energy); (2) ε b ≡E b /(ℎ/2π)ω, the binding number (atomic binding energy in units of the laser photon energy); (3) j, the absorbed-photon number. The scaling law is shown to be useful in predictions of results from strong-field Kapitza-Dirac effect measurements; specifically, the application of this scaling law to recently reported Kapitza-Dirac diffraction is discussed. Possible experimental tests to verify the scaling law are suggested
Orbital angular momentum of general astigmatic modes
International Nuclear Information System (INIS)
Visser, Jorrit; Nienhuis, Gerard
2004-01-01
We present an operator method to obtain complete sets of astigmatic Gaussian solutions of the paraxial wave equation. In case of general astigmatism, the astigmatic intensity and phase distribution of the fundamental mode differ in orientation. As a consequence, the fundamental mode has a nonzero orbital angular momentum, which is not due to phase singularities. Analogous to the operator method for the quantum harmonic oscillator, the corresponding astigmatic higher-order modes are obtained by repeated application of raising operators on the fundamental mode. The nature of the higher-order modes is characterized by a point on a sphere, in analogy with the representation of polarization on the Poincare sphere. The north and south poles represent astigmatic Laguerre-Gaussian modes, similar to circular polarization on the Poincare sphere, while astigmatic Hermite-Gaussian modes are associated with points on the equator, analogous to linear polarization. We discuss the propagation properties of the modes and their orbital angular momentum, which depends on the degree of astigmatism and on the location of the point on the sphere
[Sensitivity of four representative angular cephalometric measures].
Xü, T; Ahn, J; Baumrind, S
2000-05-01
Examined the sensitivity of four representative cephalometric angles to the detection of different vectors of craniofacial growth. Landmark coordinate data from a stratified random sample of 48 adolescent subjects were used to calculate conventional values for changes between the pretreatment and end-of-treatment lateral cephalograms. By modifying the end-of-treatment coordinate values appropriately, the angular changes could be recalculated reflecting three hypothetical situations: Case 1. What if there were no downward landmark displacement between timepoints? Case 2. What if there were no forward landmark displacement between timepoints? Case 3. What if there were no Nasion change? These questions were asked for four representative cephalometric angles: SNA, ANB, NAPg and UI-SN. For Case 1, the associations (r) between the baseline and the modified measure for the three angles were very highly significant (P < 0.001) with r2 values no lower than 0.94! For Case 2, however, the associations were much weaker and no r value reached significance. These angular measurements are less sensitive for measuring downward landmark displacement than they are for measuring forward landmark displacement.
Directory of Open Access Journals (Sweden)
Igor Leššo
2005-12-01
Full Text Available A computation of 1D and 3D seismic motion parameters was made and the influence of input parameters on these parameters were analysed. A modelling was realised on the examples of sedimentary structures geotechnical models. This comparison provides different spectral and frequencial values and spectral accelerations. The differences in seismic response spectra are influenced not only by properties of geological structures but also by the methodics of the soil structure interaction modeling and input time history spectral composition. However, the influence of geotechnical properties of geological structures on the output results are apparent. The modelling results of different input time history spectral composition, the Ricker impuls and the Gabor function were compared. In the area of cement factory in Rohožník, the new rotary kiln furnance is planned to be build. In the sense of STN 73 0036 the expert seismic judgment has been claimed. The standard and local seismic response spectra is computed for the place where the rotary kiln will be situated. The application of the local spectral acceleration in seismic load computations enables to save costs in comparing with the standard acceleration.
Critique of the angular momentum sum rules and a new angular momentum sum rule
Bakker, B.L.G.; Leader, E.; Trueman, T. L.
2004-01-01
We present a study of the tensorial structure of the hadronic matrix elements of the angular momentum operators J. Well known results in the literature are shown to be incorrect, and we have taken pains to derive the correct expressions in three different ways, two involving explicit physical wave
Belyaev, Mikhail A.; Quataert, Eliot
2018-04-01
We present unstratified 3D MHD simulations of an accretion disk with a boundary layer (BL) that have a duration ˜1000 orbital periods at the inner radius of the accretion disk. We find the surprising result that angular momentum piles up in the boundary layer, which results in a rapidly rotating belt of accreted material at the surface of the star. The angular momentum stored in this belt increases monotonically in time, which implies that angular momentum transport mechanisms in the BL are inefficient and do not couple the accretion disk to the star. This is in spite of the fact that magnetic fields are advected into the BL from the disk and supersonic shear instabilities in the BL excite acoustic waves. In our simulations, these waves only carry a small fraction (˜10%) of the angular momentum required for steady state accretion. Using analytical theory and 2D viscous simulations in the R - ϕ plane, we derive an analytical criterion for belt formation to occur in the BL in terms of the ratio of the viscosity in the accretion disk to the viscosity in the BL. Our MHD simulations have a dimensionless viscosity (α) in the BL that is at least a factor of ˜100 smaller than that in the disk. We discuss the implications of these results for BL dynamics and emission.
Simulated models of inhomogeneous broadening in perturbed angular correlation spectroscopy (PAC)
Stufflebeam, Michael A.; Hodges, Jeffery A.; Evenson, William E.; Matheson, P.; Zacate, M. O.
2007-10-01
All real crystals have defects: missing atoms (vacancies), impurities, atoms out of place, etc. In perturbed angular correlation (PAC), these defects produce damping of the correlation signal in time and broadening of the frequency spectrum. This broadening is termed ``inhomogeneous broadening'' since it is due to the inhomogeneities (i.e. defects) in the crystal. We have simulated PAC spectra for various concentrations (0.1% to 5%) of distant randomly distributed defects plus a near-neighbor vacancy in simple cubic and face-centered cubic crystal structures. For every particular set of defects, the randomly distributed defects and the near-neighbor vacancy together produce a net electric field gradient (EFG), from which we obtain the PAC spectrum. We fit average PAC spectra to study the effects of defect concentration and crystal structure on inhomogeneous broadening as an aid to analyzing experimental data.
An EM Induction Hi-Speed Rotation Angular Rate Sensor.
Li, Kai; Li, Yuan; Han, Yan
2017-03-17
A hi-speed rotation angular rate sensor based on an electromagnetic induction signal is proposed to provide a possibility of wide range measurement of high angular rates. An angular rate sensor is designed that works on the principle of electromagnetism (EM) induction. In addition to a zero-phase detection technique, this sensor uses the feedback principle of magnetic induction coils in response to a rotating magnetic field. It solves the challenge of designing an angular rate sensor that is suitable for both low and high rotating rates. The sensor was examined for angular rate measurement accuracy in simulation tests using a rotary table. The results show that it is capable of measuring angular rates ranging from 1 rps to 100 rps, with an error within 1.8‰ of the full scale (FS). The proposed sensor is suitable to measurement applications where the rotation angular rate is widely varied, and it contributes to design technology advancements of real-time sensors measuring angular acceleration, angular rate, and angular displacement of hi-speed rotary objects.
An EM Induction Hi-Speed Rotation Angular Rate Sensor
Directory of Open Access Journals (Sweden)
Kai Li
2017-03-01
Full Text Available A hi-speed rotation angular rate sensor based on an electromagnetic induction signal is proposed to provide a possibility of wide range measurement of high angular rates. An angular rate sensor is designed that works on the principle of electromagnetism (EM induction. In addition to a zero-phase detection technique, this sensor uses the feedback principle of magnetic induction coils in response to a rotating magnetic field. It solves the challenge of designing an angular rate sensor that is suitable for both low and high rotating rates. The sensor was examined for angular rate measurement accuracy in simulation tests using a rotary table. The results show that it is capable of measuring angular rates ranging from 1 rps to 100 rps, with an error within 1.8‰ of the full scale (FS. The proposed sensor is suitable to measurement applications where the rotation angular rate is widely varied, and it contributes to design technology advancements of real-time sensors measuring angular acceleration, angular rate, and angular displacement of hi-speed rotary objects.
Continuum Fitting HST QSO Spectra
Tytler, David; Oliversen, Ronald J. (Technical Monitor)
2002-01-01
The Principal Component Analysis (PCA) method which we are using to fit and describe QSO spectra relies upon the fact that QSO continuum are generally very smooth and simple except for emission and absorption lines. To see this we need high signal-to-noise (S/N) spectra of QSOs at low redshift which have relatively few absorption lines in the Lyman-a forest. We need a large number of such spectra to use as the basis set for the PCA analysis which will find the set of principal component spectra which describe the QSO family as a whole. We have found that too few HST spectra have the required S/N and hence we need to supplement them with ground based spectra of QSOs at higher redshift. We have many such spectra and we have been working to make them suitable for this analysis. We have concentrated on this topic since 12/15/01.
Molecular Electronic Angular Motion Transducer Broad Band Self-Noise
Zaitsev, Dmitry; Agafonov, Vadim; Egorov, Egor; Antonov, Alexander; Shabalina, Anna
2015-01-01
Modern molecular electronic transfer (MET) angular motion sensors combine high technical characteristics with low cost. Self-noise is one of the key characteristics which determine applications for MET sensors. However, until the present there has not been a model describing the sensor noise in the complete operating frequency range. The present work reports the results of an experimental study of the self-noise level of such sensors in the frequency range of 0.01–200 Hz. Based on the experimental data, a theoretical model is developed. According to the model, self-noise is conditioned by thermal hydrodynamic fluctuations of the operating fluid flow in the frequency range of 0.01–2 Hz. At the frequency range of 2–100 Hz, the noise power spectral density has a specific inversely proportional dependence of the power spectral density on the frequency that could be attributed to convective processes. In the high frequency range of 100–200 Hz, the noise is conditioned by the voltage noise of the electronics module input stage operational amplifiers and is heavily reliant to the sensor electrical impedance. The presented results allow a deeper understanding of the molecular electronic sensor noise nature to suggest the ways to reduce it. PMID:26610502
International Nuclear Information System (INIS)
Hajivassiliou, C.A.; Duffett-Smith, P.J.
1990-01-01
Interplanetary scintillation has been widely used at metre wavelengths for estimating the angular sizes of radio sources in the range 0.1-2.0 arcsec. The estimates are based on observations of either the width of the temporal power spectrum or the shape of the scintillation index-elongation curve. We present a mathematical model of the latter procedure which reveals the biases introduced into an IPS survey as a result of the estimation process. (author)
Inhomogeneous Broadening in Perturbed Angular Correlation Spectroscopy
Bunker, Austin; Adams, Mike; Hodges, Jeffery; Park, Tyler; Stufflebeam, Michael; Evenson, William; Matheson, Phil; Zacate, Matthew
2009-10-01
Our research concerns the effect of a static distribution of defects on the net electric field gradient (EFG) within crystal structures. Defects and vacancies perturb the distribution of gamma rays emitted from radioactive probe nuclei within the crystal. These defects and vacancies produce a net EFG at the site of the probe which causes the magnetic quadrupole moment of the nucleus of the probe to precess about the EFG. The net EFG, which is strongly dependent upon the defect concentration, perturbs the angular correlation (PAC) of the gamma rays, and is seen in the damping of the perturbation function, G2(t), in time and broadening of the spectral peaks in the Fourier transform. We have used computer simulations to study the probability distribution of EFG tensor components in order to uncover the concentration dependence of G2(t). This in turn can be used to analyze experimental PAC data and quantitatively describe properties of the crystal.
Coherent control of photoelectron wavepacket angular interferograms
International Nuclear Information System (INIS)
Hockett, P; Wollenhaupt, M; Baumert, T
2015-01-01
Coherent control over photoelectron wavepackets, via the use of polarization-shaped laser pulses, can be understood as a time and polarization-multiplexed process, where the final (time-integrated) observable coherently samples all instantaneous states of the light–matter interaction. In this work, we investigate this multiplexing via computation of the observable photoelectron angular interferograms resulting from multi-photon atomic ionization with polarization-shaped laser pulses. We consider the polarization sensitivity of both the instantaneous and cumulative continuum wavefunction; the nature of the coherent control over the resultant photoelectron interferogram is thus explored in detail. Based on this understanding, the use of coherent control with polarization-shaped pulses as a methodology for a highly multiplexed coherent quantum metrology is also investigated, and defined in terms of the information content of the observable. (paper)
Coherent control of photoelectron wavepacket angular interferograms
Hockett, P.; Wollenhaupt, M.; Baumert, T.
2015-11-01
Coherent control over photoelectron wavepackets, via the use of polarization-shaped laser pulses, can be understood as a time and polarization-multiplexed process, where the final (time-integrated) observable coherently samples all instantaneous states of the light-matter interaction. In this work, we investigate this multiplexing via computation of the observable photoelectron angular interferograms resulting from multi-photon atomic ionization with polarization-shaped laser pulses. We consider the polarization sensitivity of both the instantaneous and cumulative continuum wavefunction; the nature of the coherent control over the resultant photoelectron interferogram is thus explored in detail. Based on this understanding, the use of coherent control with polarization-shaped pulses as a methodology for a highly multiplexed coherent quantum metrology is also investigated, and defined in terms of the information content of the observable.
Angular filter refractometry analysis using simulated annealing.
Angland, P; Haberberger, D; Ivancic, S T; Froula, D H
2017-10-01
Angular filter refractometry (AFR) is a novel technique used to characterize the density profiles of laser-produced, long-scale-length plasmas [Haberberger et al., Phys. Plasmas 21, 056304 (2014)]. A new method of analysis for AFR images was developed using an annealing algorithm to iteratively converge upon a solution. A synthetic AFR image is constructed by a user-defined density profile described by eight parameters, and the algorithm systematically alters the parameters until the comparison is optimized. The optimization and statistical uncertainty calculation is based on the minimization of the χ 2 test statistic. The algorithm was successfully applied to experimental data of plasma expanding from a flat, laser-irradiated target, resulting in an average uncertainty in the density profile of 5%-20% in the region of interest.
Nuclear scissors modes and hidden angular momenta
Energy Technology Data Exchange (ETDEWEB)
Balbutsev, E. B., E-mail: balbuts@theor.jinr.ru; Molodtsova, I. V. [Joint Institute for Nuclear Research (Russian Federation); Schuck, P. [Université Paris-Sud, Institut de Physique Nucléaire, IN2P3–CNRS (France)
2017-01-15
The coupled dynamics of low-lying modes and various giant resonances are studied with the help of the Wigner Function Moments method generalized to take into account spin degrees of freedom and pair correlations simultaneously. The method is based on Time-Dependent Hartree–Fock–Bogoliubov equations. The model of the harmonic oscillator including spin–orbit potential plus quadrupole–quadrupole and spin–spin interactions is considered. New low-lying spin-dependent modes are analyzed. Special attention is paid to the scissors modes. A new source of nuclear magnetism, connected with counter-rotation of spins up and down around the symmetry axis (hidden angular momenta), is discovered. Its inclusion into the theory allows one to improve substantially the agreement with experimental data in the description of energies and transition probabilities of scissors modes.
Angular reduction in multiparticle matrix elements
International Nuclear Information System (INIS)
Lehman, D.R.; Parke, W.C.
1989-01-01
A general method for reduction of coupled spherical harmonic products is presented. When the total angular coupling is zero, the reduction leads to an explicitly real expression in the scalar products of the unit vector arguments of the spherical harmonics. For nonscalar couplings, the reduction gives Cartesian tensor forms for the spherical harmonic products; tensors built from the physical vectors in the original expression. The reduction for arbitrary couplings is given in closed form, making it amenable to symbolic manipulation on a computer. The final expressions do not depend on a special choice of coordinate axes, nor do they contain azimuthal quantum number summations, or do they have complex tensor terms for couplings to a scalar; consequently, they are easily interpretable from the properties of the physical vectors they contain
Chiral symmetries associated with angular momentum
International Nuclear Information System (INIS)
Bhattacharya, M; Kleinert, M
2014-01-01
In quantum mechanics courses, symmetries of a physical system are usually introduced as operators which commute with the Hamiltonian. In this paper we will consider chiral symmetries which anticommute with the Hamiltonian. Typically, introductory courses at the (under)graduate level do not discuss these simple, useful and beautiful symmetries at all. The first time a student encounters them is when the Dirac equation is discussed in a course on relativistic quantum mechanics, or when particle–hole symmetry is studied in the context of superconductivity. In this paper, we will show how chiral symmetries can be simply elucidated using the theory of angular momentum, which is taught in virtually all introductory quantum mechanics courses. (paper)
Cierre angular primario: opciones quirúrgicas
Directory of Open Access Journals (Sweden)
Henry Pérez-González
2014-10-01
Full Text Available Se realizó una revisión bibliográfica con el objetivo de exponer las principales opciones quirúrgicas en el tratamiento del cierre angular primario efectuando una búsqueda de los principales artículos científicos de los últimos años, así como de la literatura impresa que incluye el tema, siendo seleccionados los contenidos más relevantes para la confección del informe final. Las opciones de tratamiento incluyen la cirugía láser (iridotomía, iridoplastia y la cirugía incisional (filtrante, extracción del cristalino, dependiendo de los factores fisiopatológicos involucrados y la forma clínica en el momento del diagnóstico.
Untangling Galaxy Components - The Angular Momentum Parameter
Tabor, Martha; Merrifield, Michael; Aragon-Salamanca, Alfonso
2017-06-01
We have developed a new technique to decompose Integral Field spectral data cubes into separate bulge and disk components, allowing us to study the kinematic and stellar population properties of the individual components and how they vary with position. We present here the application of this method to a sample of fast rotator early type galaxies from the MaNGA integral field survey, and demonstrate how it can be used to explore key properties of the individual components. By extracting ages, metallicities and the angular momentum parameter lambda of the bulges and disks, we show how this method can give us new insights into the underlying structure of the galaxies and discuss what this can tell us about their evolution history.
Angular biasing in implicit Monte-Carlo
International Nuclear Information System (INIS)
Zimmerman, G.B.
1994-01-01
Calculations of indirect drive Inertial Confinement Fusion target experiments require an integrated approach in which laser irradiation and radiation transport in the hohlraum are solved simultaneously with the symmetry, implosion and burn of the fuel capsule. The Implicit Monte Carlo method has proved to be a valuable tool for the two dimensional radiation transport within the hohlraum, but the impact of statistical noise on the symmetric implosion of the small fuel capsule is difficult to overcome. We present an angular biasing technique in which an increased number of low weight photons are directed at the imploding capsule. For typical parameters this reduces the required computer time for an integrated calculation by a factor of 10. An additional factor of 5 can also be achieved by directing even smaller weight photons at the polar regions of the capsule where small mass zones are most sensitive to statistical noise
Angular Position Tracking Control of a Quadcopter
Directory of Open Access Journals (Sweden)
T. V. Glazkov
2017-01-01
Full Text Available The paper dwells on tracking the quad-copter angular position with desired quality parameters of transient processes. The aerial vehicle is considered as a rigid body with six degrees of freedom. A full rigid body quad-copter mathematical model is considered without the assumption of smallness of the Euler angles.Among the most well known methods of non-linear stabilization are feedback linearization and backstepping. The backstepping approach allows us to have an effective solution of the stabilization problems with uncertainties available in the system. However, in synthesis of the feedback through backstepping, there is still an urgent issue: how to ensure desirable quality of transients in the closed-loop system. The paper presents a solution of this problem using as an example the tracking a given (programmed change of the angular position of a quad-copter.The control algorithms obtained in this paper are implemented using the Rolling Spider MATLAB Toolbox (ROSMAT tool package on the Parrot Rolling Spider quad-copter. A numerical simulation and experiments have shown the efficiency of obtained control laws, with the transient processes taking into account the desired quality indicators. However, the experiments showed that lack of terms in the mathematical model to describe the aerodynamic effects, resulted in the instability of the quad-copter flight near the obstacle (the effect of the reflected airflow.Further research can be aimed at solving the control problem in question using a mathematical model of the quad-copter motion that takes into account various aerodynamic effects.One of the potential application areas for the theoretical results, obtained in the paper, is to solve the problems of automatic control of unmanned aerial vehicles.
PAC - Perturbed Angular Correlation spectrometer with six BaF2 detectors
International Nuclear Information System (INIS)
Domienikan, Claudio; Lapolli, Andre L.; Carbonari, Artur W.; Saxena, Rajendra N.; Schoueri, Roberto M.
2009-01-01
A Perturbed Angular Correlation (PAC) spectrometer with six conical BaF 2 detectors was built. The increased number of detectors in relation with the current configuration of the spectrometer (with four detectors), extends the number of delayed γ- γ coincidence spectra from 12 to 30 obtained simultaneously, reducing the time of PAC measurements. The standard multichannel analyzer (MCA) commonly used in these types of spectrometers was replaced with an ultra fast analog to digital converter (8715 ADC - CANBERRA R ) and a high speed digital input-output (I/O) board (6534 Acquisition system - NATIONAL INSTRUMENTS R ). The experimental data consisting of relevant information about the delayed γ-γ coincidence events generated from different combinations of detectors (for example: the timing information, start and stop detector identification, coincidence validation etc.) are stored in a file-mode in the hard disk of a computer. This information can be processed at a later stage by background data processing to generate and periodically refresh individual PAC spectra without interruption of the data collection process. The coincidence spectra are generated in real time by using LabVIEW software. The increased number of simultaneous spectra generated in this spectrometer improves the hyperfine parameters deduced from the TDPAC measurements. More important, the new spectrometer would be used for application of some interesting radioactive nuclei that can be used as probes in several hyperfine interaction studies. (author)
Angular momentum distribution during the collapse of primordial star-forming clouds
Dutta, Jayanta
2016-01-01
It is generally believed that angular momentum is distributed during the gravitational collapse of the primordial star forming cloud. However, so far there has been little understanding of the exact details of the distribution. We use the modified version of the Gadget-2 code, a three-dimensional smoothed-particle hydrodynamics simulation, to follow the evolution of the collapsing gas in both idealized as well as more realistic minihalos. We find that, despite the lack of any initial turbulence and magnetic fields in the clouds the angular momentum profile follows the same characteristic power-law that has been reported in studies that employed fully self-consistent cosmological initial conditions. The fit of the power-law appears to be roughly constant regardless of the initial rotation of the cloud. We conclude that the specific angular momentum of the self-gravitating rotating gas in the primordial minihalos maintains a scaling relation with the gas mass as L ∝ M^{1.125}. We also discuss the plausible mechanisms for the power-law distribution.
Angular dispersion and energy loss of H+ and He+ in metals
International Nuclear Information System (INIS)
Cantero, Esteban
2006-01-01
In this master thesis the effects produced when a light ion beam traverses a thin metallic film were studied.In particular, the interactions of low energy (E ≤ 10 keV) light ions (H + ,H 2 + , D + , He + ) with monocrystalline and also polycrystalline gold samples were investigated.In first place, the dependence of the stopping power with projectiles' velocity was studied, analyzing the threshold effect in the excitation of the 5d electrons in the channelling regime for energies between 0,4 and 9 keV.Next, the angular dispersion of ions in polycrystalline and monocrystalline films was measured and analyzed.Comparisons for different energies and projectiles were done, studying molecular and isotopic effects.Using Lindhard's channeling theory, a scale law for the angular dispersion of angles greater than the critical angle was found.Additionally, the angular dependence of the energy loss and the energy loss straggling of protons transmitted through monocrystals were measured.To explain the angular variations of these magnitudes a theoretical model based on the electronic density fluctuations inside the channel was developed [es
Design energy spectra for Turkey
López Almansa, Francisco; Yazgan, Ahmet Utku; Benavent Climent, Amadeo
2012-01-01
This work proposes design energy spectra in terms of velocity, derived through linear dynamic analyses on Turkish registers and intended for regions with design peak acceleration 0.3 g or higher. In the long and mid period ranges the analyses are linear, taking profit of the rather insensitivity of the spectra to the structural parameters other than the fundamental period; in the short period range, the spectra are more sensitive to the structural parameters and nonlinear analyses would be re...
Hall, G. E.; Sivakumar, N.; Chawla, D.; Houston, P. L.; Burak, I.
1988-03-01
A technique has been developed for determining the angular correlation between a photofragment's angular momentum vector J, its recoil velocity vector v, and the transition dipole moment of the parent molecule μp . Doppler profile spectroscopy used in conjunction with laser-induced fluorescence probing by polarized light can be used to determine the correlations. The pairwise correlations between these vectors as well as their triple correlation are discussed for limiting cases using a classical approach as well as for the general case using a quantum approach based on density matrices. The current formulations differ in two ways from the recent approach of Dixon, who used a bipolar expansion of the correlated velocity and angular momentum distributions. The physical basis for the influence of the vector correlations on the Doppler profile is somewhat more transparent in the current formulations, and the direct connection between the measured correlations and the t-matrix elements occurring in the theory of Balint-Kurti and Shapiro for the photodissociation of a triatomic molecule is also demonstrated.
International Nuclear Information System (INIS)
1968-01-01
Proceedings of a Symposium organized by the IAEA and held at Ann Arbor, Michigan, USA, 17 - 21 July 1967. The meeting was attended by 143 participants from 24 Member States and one international organization. Contents: (Vol.I) Theory of neutron thermalization (15 papers); Scattering law (20 papers); Angular, space, temperature and time dependence of neutron spectra (9 papers). (Vol.II) Measurement of thermal neutron spectra and spectral indices, and comparison with theory (17 papers); Time-dependent problems in neutron thermalization (12 papers). Each paper is in its original language (61 English, 1 French and 11 Russian) and is preceded by an abstract in English with one in the original language if this is not English. Discussions are in English. (author)
International Nuclear Information System (INIS)
1968-01-01
Proceedings of a Symposium organized by the IAEA and held at Ann Arbor, Michigan, USA, 17 - 21 July 1967. The meeting was attended by 143 participants from 24 Member States and one international organization. Contents: (Vol.I) Theory of neutron thermalization (15 papers); Scattering law (20 papers); Angular, space, temperature and time dependence of neutron spectra (9 papers). (Vol.II) Measurement of thermal neutron spectra and spectral indices, and comparison with theory (17 papers); Time-dependent problems in neutron thermalization (12 papers). Each paper is in its original language (61 English, 1 French and 11 Russian) and is preceded by an abstract in English with one in the original language if this is not English. Discussions are in English.
Energy Technology Data Exchange (ETDEWEB)
Gukov, Sergei [Walter Burke Institute for Theoretical Physics, California Institute of Technology,1200 E California Blvd, Pasadena, CA 91125 (United States); Max-Planck-Institut für Mathematik,Vivatsgasse 7, D-53111 Bonn (Germany); Nawata, Satoshi [Walter Burke Institute for Theoretical Physics, California Institute of Technology,1200 E California Blvd, Pasadena, CA 91125 (United States); Centre for Quantum Geometry of Moduli Spaces, University of Aarhus,Nordre Ringgade 1, DK-8000 (Denmark); Saberi, Ingmar [Walter Burke Institute for Theoretical Physics, California Institute of Technology,1200 E California Blvd, Pasadena, CA 91125 (United States); Stošić, Marko [CAMGSD, Departamento de Matemática, Instituto Superior Técnico,Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Mathematical Institute SANU,Knez Mihajlova 36, 11000 Belgrade (Serbia); Sułkowski, Piotr [Walter Burke Institute for Theoretical Physics, California Institute of Technology,1200 E California Blvd, Pasadena, CA 91125 (United States); Faculty of Physics, University of Warsaw,ul. Pasteura 5, 02-093 Warsaw (Poland)
2016-03-02
This paper provides both a detailed study of color-dependence of link homologies, as realized in physics as certain spaces of BPS states, and a broad study of the behavior of BPS states in general. We consider how the spectrum of BPS states varies as continuous parameters of a theory are perturbed. This question can be posed in a wide variety of physical contexts, and we answer it by proposing that the relationship between unperturbed and perturbed BPS spectra is described by a spectral sequence. These general considerations unify previous applications of spectral sequence techniques to physics, and explain from a physical standpoint the appearance of many spectral sequences relating various link homology theories to one another. We also study structural properties of colored HOMFLY homology for links and evaluate Poincaré polynomials in numerous examples. Among these structural properties is a novel “sliding” property, which can be explained by using (refined) modular S-matrix. This leads to the identification of modular transformations in Chern-Simons theory and 3d N=2 theory via the 3d/3d correspondence. Lastly, we introduce the notion of associated varieties as classical limits of recursion relations of colored superpolynomials of links, and study their properties.
Power-Law Template for IR Point Source Clustering
Addison, Graeme E.; Dunkley, Joanna; Hajian, Amir; Viero, Marco; Bond, J. Richard; Das, Sudeep; Devlin, Mark; Halpern, Mark; Hincks, Adam; Hlozek, Renee;
2011-01-01
We perform a combined fit to angular power spectra of unresolved infrared (IR) point sources from the Planck satellite (at 217,353,545 and 857 GHz, over angular scales 100 law of the form C_l\\propto I(sup -n) with n = 1.25 +/- 0.06. While the IR sources are understood to lie at a range of redshifts, with a variety of dust properties, we find that the frequency dependence of the clustering power can be described by the square of a modified blackbody, nu(sup beta) B(nu,T_eff), with a single emissivity index beta = 2.20 +/- 0.07 and effective temperature T_eff= 9.7 K. Our predictions for the clustering amplitude are consistent with existing ACT and South Pole Telescope results at around 150 and 220 GHz, as is our prediction for the effective dust spectral index, which we find to be alpha_150-220 = 3.68 +/- 0.07 between 150 and 220 GHz. Our constraints on the clustering shape and frequency dependence can be used to model the IR clustering as a contaminant in Cosmic Microwave Background anisotropy measurements. The combined Planck and BLAST data also rule out a linear bias clustering model.
Power-Law Template for Infrared Point-Source Clustering
Addison, Graeme E; Dunkley, Joanna; Hajian, Amir; Viero, Marco; Bond, J. Richard; Das, Sudeep; Devlin, Mark J.; Halpern, Mark; Hincks, Adam D; Hlozek, Renee;
2012-01-01
We perform a combined fit to angular power spectra of unresolved infrared (IR) point sources from the Planck satellite (at 217, 353, 545, and 857 GHz, over angular scales 100 approx law of the form C(sup clust)(sub l) varies as l (sub -n) with n = 1.25 +/- 0.06. While the IR sources are understood to lie at a range of redshifts, with a variety of dust properties, we find that the frequency dependence of the clustering power can be described by the square of a modified blackbody, ?(sup Beta)B(?, T(sub eff) ), with a single emissivity index Beta = 2.20 +/- 0.07 and effective temperature T(sub eff) = 9.7 K. Our predictions for the clustering amplitude are consistent with existing ACT and South Pole Telescope results at around 150 and 220 GHz, as is our prediction for the effective dust spectral index, which we find to be alpha(sub 150-220) = 3.68 +/- 0.07 between 150 and 220 GHz. Our constraints on the clustering shape and frequency dependence can be used to model the IR clustering as a contaminant in cosmic microwave background anisotropy measurements. The combined Planck and BLAST data also rule out a linear bias clustering model.
Inheritance of resistance to angular leaf spot in yellow beans ...
African Journals Online (AJOL)
Angular leaf spot (Phaeoisariopsis griseola (Sacc) is an important disease of common bean (Phaseolus vulgaris L.) in most parts of Africa, causing yield losses of 40-80%. This study was carried out to determine the inheritance of resistance to angular leaf spot in yellow beans. Biparental crosses were done between ...
Measuring Average Angular Velocity with a Smartphone Magnetic Field Sensor
Pili, Unofre; Violanda, Renante
2018-01-01
The angular velocity of a spinning object is, by standard, measured using a device called a tachometer. However, by directly using it in a classroom setting, the activity is likely to appear as less instructive and less engaging. Indeed, some alternative classroom-suitable methods for measuring angular velocity have been presented. In this paper,…
A kinematic model for calculating the magnitude of angular ...
African Journals Online (AJOL)
Keplerian velocity laws imply the existence of velocity shear and shear viscosity within an accretion disk. Due to this viscosity, angular momentum is transferred from the faster moving inner regions to the slower-moving outer regions of the disk. Here we have formulated a model for calculating the magnitude of angular ...
Learning web development with Bootstrap and AngularJS
Radford, Stephen
2015-01-01
Whether you know a little about Bootstrap or AngularJS, or you're a complete beginner, this book will enhance your capabilities in both frameworks and you'll build a fully functional web app. A working knowledge of HTML, CSS, and JavaScript is required to fully get to grips with Bootstrap and AngularJS.
3D printed bio-inspired angular acceleration sensor
van Tiem, Joël; Groenesteijn, Jarno; Sanders, Remco G.P.; Krijnen, Gijsbertus J.M.
2015-01-01
Abstract—We present a biomimetic angular acceleration sensor inspired by the vestibular system, as found e.g. in mammals and fish. The sensor consist of a fluid filled circular channel. When exposed to angular accelerations the fluid flows relative to the channel. Read-out is based on
inheritance of resistance to angular leaf spot in yellow beans ...
African Journals Online (AJOL)
Prof. Adipala Ekwamu
Susceptible. II -indeterminate erect; III -indeterminate semi-prostate; ALS = Angular leaf spot. Isolation of Phaeoisariopsis griseola and plant inoculation. Isolation of angular leaf spot was made from lesions of naturally infected bean leaves showing fungal sporulation. In the case of non-sporulating lesions, the fungus was.
Angular sensitivity of blowfly photoreceptors : broadening by artificial electrical coupling
Smakman, J.G.J.; Stavenga, D.G.
1987-01-01
1. Electrical coupling between R1-6 photoreceptors was investigated by measuring angular sensitivities and quantum bumps. 2. Recordings were made from two extreme types of cells: Type a: cells with a diffraction-like angular sensitivity profile. Only large bumps could be obtained from these cells.
Epidemiology Of Angular Deformities Of The Knee In Children In ...
African Journals Online (AJOL)
Background: Bony problems such as angular deformities and metabolic bone disease are of high frequency in Nigeria. Objective: The aim of this study was to define the pattern of presentation in children with angular deformities of the knee. Methodology: It was an 18-month prospective study involving children aged ...
Fundamental methods to measure the orbital angular momentum of light
Berkhout, Gregorius Cornelis Gerardus (Joris)
2011-01-01
Light is a ubiquitous carrier of information. This information can be encoded in the intensity, direction, frequency and polarisation of the light and, which was described more recently, in its orbital angular momentum. Although creating light beams with orbital angular momentum is relatively easy,
Optical communications beyond orbital angular momentum
Rosales-Guzmán, Carmelo; Trichili, Abderrahmen; Dudley, Angela; Ndagano, Bienvenu; Ben Salem, Amine; Zghal, Mourad; Forbes, Andrew
2016-09-01
Current optical communication technologies are predicted to face a bandwidth capacity limit in the near future. The nature of the limitation is fundamental rather than technological and is set by nonlinearities in optical fibers. One solution, suggested over 30 years ago, comprises the use of spatial modes of light as information carriers. Along this direction, light beams endowed with orbital angular momentum (OAM) have been demonstrated as potential information carriers in both, free space and fibres. However, recent studies suggest that purely OAM modes does not increase the bandwidth of optical communication systems. In fact, in all work to date, only the azimuthal component of transverse spatial modes has been used. Crucially, all transverse spatial modes require two degrees of freedom to be described; in the context of Laguerre-Gaussian (LGp`) beams these are azimuthal (l) and radial (p), the former responsible for OAM. Here, we demonstrate a technique where both degrees of freedom of LG modes are used as information carrier over free space. We transfer images encoded using 100 spatial modes in three wavelengths as our basis, and employ a spatial demultiplexing scheme that detects all 100 modes simultaneously. Our scheme is a hybrid of MIMO and SMM, and serves as a proof-of-principle demonstration. The cross-talk between the modes is small and independent of whether OAM modes are used or not.
Program for the surface muon spectra calculation
International Nuclear Information System (INIS)
Arkatov, Yu.M.; Voloshchuk, V.I.; Zolenko, V.A.; Prokhorets, I.M.; Soldatov, S.A.
1987-01-01
Program for the ''surface'' muon spectrum calculation is described. The algorithm is based on simulation of coordinates of π-meson birth point and direction of its escape from meson-forming target (MFT) according to angular distribution with the use of Monte Carlo method. Ionization losses of π-(μ)-mesons in the target are taken into account in the program. Calculation of ''surface'' muon spectrum is performed in the range of electron energies from 150 MeV up to 1000 MeV. Spectra of π-mesons are calculated with account of ionization losses in the target and without it. Distributions over lengths of π-meson paths in MFT and contribution of separate sections of the target to pion flux at the outlet of meson channel are calculated as well. Meson-forming target for calculation can be made of any material. The program provides for the use of the MFT itself in the form of photon converter or photon converter is located in front of the target. The program is composed of 13 subprograms; 2 of them represent generators of pseudorandom numbers, distributed uniformly in the range from 0 up to 1, and numbers with Gauss distribution. Example of calculation for copper target of 3 cm length, electron beam current-1 μA, energy-300 MeV is presented
Angular distributions of sputtered particles from NiTi alloy
International Nuclear Information System (INIS)
Neshev, I.; Hamishkeev, V.; Chernysh, V.S.; Postnikov, S.; Mamaev, B.
1993-01-01
The angular distributions of sputtered Ni and Ti from a polycrystalline NiTi (50-50%) alloy are investigated by Auger electron spectroscopy and Rutherford backscattering spectroscopy. A difference in the angular distributions is observed with Ni being sputtered preferentially near the surface normal. A computer program for the calculation of the angular distributions of constituents sputtered from binary targets is created and used. The mechanisms responsible for the observed differences in the angular distributions are discussed. It is found that the collisional cascade theory is not directly applicable to the results of the constituents' angular distributions obtained in the presence of oxygen. The fitted coefficients of bombardment-induced segregation are found to be greater than the experimentally obtained ones. (author)
Investigation of IR absorption spectra of oral cavity bacteria
Belikov, Andrei V.; Altshuler, Gregory B.; Moroz, Boris T.; Pavlovskaya, Irina V.
1996-12-01
The results of comparative investigation for IR and visual absorption spectra of oral cavity bacteria are represented by this paper. There are also shown the main differences in absorption spectra of such pure bacteria cultures as : E- coli, Candida, Staph, Epidermidis, and absorption spectra of bacteria colonies cultured in tooth root canals suspected to harbour several endodontical problems. The results of experimental research targeted to investigate an effect of such combined YAG:Nd and YAG:Cr; Tm; Ho laser parameters like: wavelength, energy density, average power and etc., to oral cavity bacteria deactivation are given finally.
Galaxy spin as a formation probe: the stellar-to-halo specific angular momentum relation
Posti, Lorenzo; Pezzulli, Gabriele; Fraternali, Filippo; Di Teodoro, Enrico M.
2018-03-01
We derive the stellar-to-halo specific angular momentum relation (SHSAMR) of galaxies at z = 0 by combining (i) the standard Λcold dark matter tidal torque theory, (ii) the observed relation between stellar mass and specific angular momentum (the Fall relation), and (iii) various determinations of the stellar-to-halo mass relation (SHMR). We find that the ratio fj = j*/jh of the specific angular momentum of stars to that of the dark matter (i) varies with mass as a double power law, (ii) always has a peak in the mass range explored and iii) is three to five times larger for spirals than for ellipticals. The results have some dependence on the adopted SHMR and we provide fitting formulae in each case. For any choice of the SHMR, the peak of fj occurs at the same mass where the stellar-to-halo mass ratio f* = M*/Mh has a maximum. This is mostly driven by the straightness and tightness of the Fall relation, which requires fj and f* to be correlated with each other roughly as f_j∝ f_\\ast ^{2/3}, as expected if the outer and more angular momentum rich parts of a halo failed to accrete on to the central galaxy and form stars (biased collapse). We also confirm that the difference in the angular momentum of spirals and ellipticals at a given mass is too large to be ascribed only to different spins of the parent dark-matter haloes (spin bias).
Baryon acoustic oscillations in 2D: Modeling redshift-space power spectrum from perturbation theory
Taruya, Atsushi; Nishimichi, Takahiro; Saito, Shun
2010-09-01
We present an improved prescription for the matter power spectrum in redshift space taking proper account of both nonlinear gravitational clustering and redshift distortion, which are of particular importance for accurately modeling baryon acoustic oscillations (BAOs). Contrary to the models of redshift distortion phenomenologically introduced but frequently used in the literature, the new model includes the corrections arising from the nonlinear coupling between the density and velocity fields associated with two competitive effects of redshift distortion, i.e., Kaiser and Finger-of-God effects. Based on the improved treatment of perturbation theory for gravitational clustering, we compare our model predictions with the monopole and quadrupole power spectra of N-body simulations, and an excellent agreement is achieved over the scales of BAOs. Potential impacts on constraining dark energy and modified gravity from the redshift-space power spectrum are also investigated based on the Fisher-matrix formalism, particularly focusing on the measurements of the Hubble parameter, angular diameter distance, and growth rate for structure formation. We find that the existing phenomenological models of redshift distortion produce a systematic error on measurements of the angular diameter distance and Hubble parameter by 1%-2% , and the growth-rate parameter by ˜5%, which would become non-negligible for future galaxy surveys. Correctly modeling redshift distortion is thus essential, and the new prescription for the redshift-space power spectrum including the nonlinear corrections can be used as an accurate theoretical template for anisotropic BAOs.
Fluorescence Spectra of Blowfly Metaxanthopsins
Kruizinga, B.; Stavenga, D.G.
The main visual pigment of blowflies (xanthopsin) photoconverts into two thermostable metaxanthopsin states M and M’. The fluorescence spectra of the two photoproducts were studied by microspectrofluorometry in vivo. The emission spectra of M and M’ are very similar and peak at 660 nm. The
Fluorescence Spectra of Highlighter Inks
Birriel, Jennifer J.; King, Damon
2018-01-01
Fluorescence spectra excited by laser pointers have been the subject of several papers in TPT. These papers all describe a fluorescence phenomenon in which the reflected laser light undergoes a change in color: this color change results from the combination of some partially reflected laser light and additional colors generated by fluorescent emission. Here we examine the fluorescence spectra of highlighter inks using green and violet laser pointers. We use an RSpec Explorer spectrometer to obtain spectra and compare the emission spectra of blue, green, yellow, orange, pink, and purple highlighters. The website Compound Interest details the chemical composition of highlighter inks; in addition, the site discusses how some base dye colors can be combined to produce the variety commercially available colors. Spectra obtained in this study were qualitatively consistent with the Compound Interest site. We discuss similarities and differences between various highlighter colors and conclude with the relevance of such studies to physics students.
Dooley, Katherine L; Barsotti, Lisa; Adhikari, Rana X; Evans, Matthew; Fricke, Tobin T; Fritschel, Peter; Frolov, Valera; Kawabe, Keita; Smith-Lefebvre, Nicolás
2013-12-01
We describe the angular sensing and control (ASC) of 4 km detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO). Enhanced LIGO, the culmination of the first generation LIGO detectors, operated between 2009 and 2010 with about 40 kW of laser power in the arm cavities. In this regime, radiation-pressure effects are significant and induce instabilities in the angular opto-mechanical transfer functions. Here we present and motivate the ASC design in this extreme case and present the results of its implementation in Enhanced LIGO. Highlights of the ASC performance are successful control of opto-mechanical torsional modes, relative mirror motions of ≤ 1×10(-7) rad rms, and limited impact on in-band strain sensitivity.
Bio-Inspired Micro-Fluidic Angular-Rate Sensor for Vestibular Prostheses
Directory of Open Access Journals (Sweden)
Charalambos M. Andreou
2014-07-01
Full Text Available This paper presents an alternative approach for angular-rate sensing based on the way that the natural vestibular semicircular canals operate, whereby the inertial mass of a fluid is used to deform a sensing structure upon rotation. The presented gyro has been fabricated in a commercially available MEMS process, which allows for microfluidic channels to be implemented in etched glass layers, which sandwich a bulk-micromachined silicon substrate, containing the sensing structures. Measured results obtained from a proof-of-concept device indicate an angular rate sensitivity of less than 1 °/s, which is similar to that of the natural vestibular system. By avoiding the use of a continually-excited vibrating mass, as is practiced in today’s state-of-the-art gyroscopes, an ultra-low power consumption of 300 μW is obtained, thus making it suitable for implantation.
Bio-inspired micro-fluidic angular-rate sensor for vestibular prostheses.
Andreou, Charalambos M; Pahitas, Yiannis; Georgiou, Julius
2014-07-22
This paper presents an alternative approach for angular-rate sensing based on the way that the natural vestibular semicircular canals operate, whereby the inertial mass of a fluid is used to deform a sensing structure upon rotation. The presented gyro has been fabricated in a commercially available MEMS process, which allows for microfluidic channels to be implemented in etched glass layers, which sandwich a bulk-micromachined silicon substrate, containing the sensing structures. Measured results obtained from a proof-of-concept device indicate an angular rate sensitivity of less than 1 °/s, which is similar to that of the natural vestibular system. By avoiding the use of a continually-excited vibrating mass, as is practiced in today's state-of-the-art gyroscopes, an ultra-low power consumption of 300 μW is obtained, thus making it suitable for implantation.
Incorporating Spectra Into Periodic Timing
Connors, Alanna; Hong, J.; Protopapas, P.; Kashyap, V.
2011-09-01
The Chandra surveys have resulted in a wealth of data on low-luminosity X-ray sources (Lx 1030-34 erg/s) of Galactic scales beyond the local solar neighborhood. Many of these are compact binaries, in particular, cataclysmic variables, often identified by their periodic X-ray variability and spectra. Hong et al. (2009, 2011) have used energy quantiles (Hong, Schlegel & Grindlay, 2004) as a fast, robust indicator of spectral hardness and absorption of the X-ray sources. Energy quantiles also enable a simple but effective illustration of spectral changes with phase in these periodic systems: e.g. absorption by the accreting material is understood to drive the periodic light-curves. An interesting question is how to best make use of the information encapsulated in the periodic change in energy spectrum, along with the periodic change in intensity, especially for cases of ambiguous period determination? And, how to do it computationally efficiently? A first approach is to do the period search in intensity, as is standard; and then use a criterion of spectral variation to verify possible periods. Huijse, Zegers & Protopapas (2011) recently demonstrated a powerful period estimation technique using information potential and correntropy embedded in the light curve. Similar quantities based on energies (or energy quantiles) of X-ray photons can serve as criteria of spectral variation. A different approach treats the spectrum variations and intensity variations completely independently, searching through period-space in each, and then combining the results. A more general method would include both at the same time, looking for statistically significant variations above what is expected for a constant (in intensity and spectrum).
International Nuclear Information System (INIS)
Boerzsoenyi, A.; Meroe, M.
2010-01-01
Complete text of publication follows. There is an increasing demand for active and precise dispersion control of ultrashort laser pulses. In chirped pulse amplification (CPA) laser systems, the dispersion of the optical elements of the laser has to be compensated at least to the fourth order to obtain high temporal contrast compressed pulses. Nowadays the most convenient device for active and programmable control of spectral phase and amplitude of broadband laser pulses is the acousto-optic programmable dispersive filter (AOPDF), claimed to be able to adjust the spectral phase up to the fourth order. Although it has been widely used, surprisingly enough there has been only a single, low resolution measurement reported on the accuracy of the induced spectral phase shift of the device. In our paper we report on the first systematic experiment aiming at the precise characterization of an AOPDF device. In the experiment the spectral phase shift of the AOPDF device was measured by spectrally and spatially resolved interferometry, which is especially powerful tool to determine small dispersion values with high accuracy. Besides the spectral phase dispersion, we measured both the propagation direction angular dispersion (PDAD) and the phase front angular dispersion (PhFAD). Although the two quantities are equal for plane waves, there may be noticeable difference for Gaussian pulses. PDAD was determined simply by focusing the beam on the slit of an imaging spectrograph, while PhFAD was measured by the use of an inverted Mach-Zehnder interferometer and an imaging spectrograph. In the measurements, the spectral phase shift and both types of angular dispersion have been recorded upon the systematic change of all the accessible functions of the acousto-optic programmable dispersive filter. The measured values of group delay dispersion (GDD) and third order dispersion (TOD) have been found to agree with the preset values within the error of the measurement (1 fs 2 and 10 fs 3
Energy Technology Data Exchange (ETDEWEB)
Rees, M. [Aerodyn Energiesysteme gmbH, Rendsburg (Germany)
1996-09-01
The Germanische Lloyd guideline allows calculations of load spectra in two fundamentally different ways. In the case of the so-called `simplified load spectra` the maximum amplitude of fluctuation of a load component is formed as {+-}75% of the average value of the purely aerodynamic loads of this component at rated wind conditions, together with an overlay of mass-related loads. The second method allowed in the GL guideline is the calculation of load spectra from simulation results in the time domain. For a number of average wind speeds the time-dependent characteristics of the load components are calculated taking account of the natural spatial turbulence of the wind. These are converted into load spectra using the rainflow method. In a parametric study the load spectra are calculated according to both methods and compared. The calculations are performed for turbines with rated powers of 100 kW to 2000 kW, with two and three blades, and also for stall-controlled and pitch-controlled turbines. The calculated load spectra are compared with each by means of 1 P fatigue equivalent load spectra. The influence of individual parameters is presented, as is the validity of the simplified load spectra. (au)
The future of high angular resolution x-ray optics for astronomy (Conference Presentation)
Gorenstein, Paul
2017-05-01
Beginning with the Einstein Observatory in 1978, continuing with ROSAT in the 1990's and currently the Chandra X-Ray Observatory, high angular resolution focusing telescopes have been the premier X-ray astronomy instruments of their time. However, as they have acquired larger area and improved angular resolution they have become increasingly massive and expensive. The successor to Chandra planned for the late 2020's currently named "Lynx" will rely on active optics to allow the use of much lower mass segmented mirrors with the goal of gaining an order of magnitude larger area than Chandra with a lower ratio of mass to effective area and perhaps slightly better angular resolution than Chandra's 0.5 arc second half power diameter and/or over a somewhat larger field. The goals for Lynx are probably at the limit of what is possible with grazing incidence X-ray optics. Success in the development of higher angular resolution, lower mass telescopes will come at the expense of effective area. A diffractive-refractive pair consisting of a Fresnel zone plate and a diffractive lens that transmits rather than reflects X-rays is capable in theory of achieving mili arc second resolution with a much lower ratio of mass to effective area than the grazing incidence reflective Wolter optics. However, the focal lengths of this system are thousands of kilometers necessitating formation flying between one spacecraft hosting the optics and another hosting the detectors, most likely in a Sun-Earth L2 orbit. The trajectory of one of the two spacecraft can be in a true orbit but the other must be powered by an ion engine to maintain the alignment. The growing interest in deep space astronaut operations may allow the ion engines to be replaced when depleted.
Boundary layer heights derived from velocity spectra
Energy Technology Data Exchange (ETDEWEB)
Hoejstrup, J.; Barthelmie, R.J. [Risoe National Lab., Roskilde (Denmark); Kaellstrand, B. [Univ. of Uppsala, Uppsala (Sweden)
1997-10-01
It is a well-known fact that the height of the mixed layer determines the size of the largest and most energetic eddies that can be observed in the unstable boundary layer, and consequently a peak can be observed in the power spectra of the along-wind velocity component at scales comparable to the mixed layer depth. We will now show how the mixed layer depth can be derived from the u-specta and the results will be compared with direct measurements using pibal and tethersonde measurements. (au)
Energy Technology Data Exchange (ETDEWEB)
Macias B, L.R
1991-06-15
For the study of materials by means of diffraction, it is required in the first place that the sample is a crystalline material so that the diffraction is possible and the digitized spectra of corresponding diffraction can be generated. This spectra, for any type of study consists of a great number of readings (counting or counts per second Cps) that of some way are related to a determined angle to be able to reproduce a diagram that will be evaluated to conclude the study according to it is. Since the evaluation will depend on the angular readings that are carried out in the mentioned spectra, it is required of a good definition of the curves for its angular reading. Well-known the problem of the no enough definition of the spectra to be able to carry out the angular reading, it was proceeds to outline a possible solution which consists on making a mathematical treatment to the spectra with the purpose of being able to define the angular positions of interest and to correct some operation factors that appear in the spectra. (Author)
Kang, N.; Liu, H.; Lin, Z.; Lei, A.; Zhou, S.; Fang, Z.; An, H.; Li, K.; Fan, W.
2017-10-01
Spectra of three-halves harmonic emissions (3{ω }0/2) from laser-produced plasmas were measured at different angles, including both forward and backward sides, from the direction of incident laser beams. The 3{ω }0/2 emitted from carbon-hydrogen (CH) targets was observed to be larger than that from aluminum (Al) targets with the same incident laser intensity, which supports the argument that the two-plasmon decay (TPD) instability could be inhibited by using medium-Z ablator instead of CH ablator in direct-drive inertial confinement fusion. Besides, the measured 3{ω }0/2-incident intensity curves for both materials suggest relatively lower threshold of TPD than the calculated values. In experiments with thin Al targets, the angular distribution of the blue- and red-shifted peaks of 3{ω }0/2 spectra were obtained, which shows that the most intense blue- and red-shifted peaks may not be produced in paired plasmons, but the spectra produced by their ‘twin’ plasmons were not observed. Because 3{ω }0/2 may have been influenced by other physical processes during their propagation from their birth places to the detectors, the mismatches on emission angle, wavelength shift, and threshold may be qualitatively explained through the assumption that small-scale light filaments widely existed in the corona of laser-produced plasmas.
Spin Rate of a Racquetball Due To Angular Impact
Directory of Open Access Journals (Sweden)
Dolev Illouz
2014-12-01
Full Text Available The relationship between the impact angle of a racquetball and the resulting angular velocity of the ball was investigated. Impact angles ranging from 0° to 80° were tested. The ball was dropped at constant speed on a plywood board that could be angled and the impact was filmed at 600 fps. The video was then analyzed to determine the angular velocity of the ball after the bounce. It was found that there is a proportional relationship between the incoming impact angle (θ and angular velocity (ω of the racquetball, for angles up to 50°, indicating that the ball did not slip during impact at these angles.
Control of Angular Intervals for Angle-Multiplexed Holographic Memory
Kinoshita, Nobuhiro; Muroi, Tetsuhiko; Ishii, Norihiko; Kamijo, Koji; Shimidzu, Naoki
2009-03-01
In angle-multiplexed holographic memory, the full width at half maximum of the Bragg selectivity curves is dependent on the angle formed between the medium and incident laser beams. This indicates the possibility of high density and high multiplexing number by varying the angular intervals between adjacent holograms. We propose an angular interval scheduling for closely stacking holograms into medium even when the angle range is limited. We obtained bit error rates of the order of 10-4 under the following conditions: medium thickness of 1 mm, laser beam wavelength of 532 nm, and angular multiplexing number of 300.
Fission fragment angular distribution in heavy ion induced fission
Directory of Open Access Journals (Sweden)
S. Soheyli
2006-06-01
Full Text Available We have calculated the fission fragment angular anisotropy for 16O + 232Th,12C + 236U , 11B + 237 Np , 14 N + 232 Th , 11B + 235U , 12C + 232Th systems with the saddle point statistical model and compared the fission fragment angular anisotropy for these systems. This comparison was done with two methods a without neutron correction and b with neutron correction. Also we studied normal and anomalous behavior of the fission fragment angular anisotropy. Finally, we have predicted the average emitted neutron from compound nuclei considering the best fit for each system.
Fission fragment angular distribution in heavy ion induced fission
S. Soheyli; I. Ziaeian
2006-01-01
We have calculated the fission fragment angular anisotropy for 16O + 232Th,12C + 236U , 11B + 237 Np , 14 N + 232 Th , 11B + 235U , 12C + 232Th systems with the saddle point statistical model and compared the fission fragment angular anisotropy for these systems. This comparison was done with two methods a) without neutron correction and b) with neutron correction. Also we studied normal and anomalous behavior of the fission fragment angular anisotropy. Finally, we have predicted the averag...
Angular absorption of iridium - ICW12 needles: practical considerations
International Nuclear Information System (INIS)
Szymczyk, W.; Lesiak, J.
1984-01-01
An analysis was made of two potential sources of error in Ir 192 dosimetry: the effect of angular absorption and the differences in the ionization constants found in literature. Corrections for selfabsorption in the ICW12 iridium source were determined from measurements and calculations. It was found that the decrease in the dose caused by the angular absorption in the central therapeutic area of a typical implantation can exceed 5 percent. The need for employing the concept of ''constant exposure rate'' is stressed as well as that for using angular absorption in the form of absorption. 13 refs., 6 figs., 1 tab. (author)
Host material induced hyperfine structure of F{sup +} centres EPR spectra in CaS
Energy Technology Data Exchange (ETDEWEB)
Seeman, Viktor, E-mail: viktor.seeman@ut.ee; Dolgov, Sergei; Maaroos, Aarne
2017-05-15
The hyperfine structure (HFS) of F{sup +} centres in CaS single crystals due to the interaction with {sup 33}S and {sup 43}Ca nuclei was observed in EPR spectra for the first time. Angular variations of the HFS were measured for rotation of magnetic field in {100} and {110} crystallographic planes. Using measured orientation-dependent EPR spectra and the EPR NMR program, the parameters of the spin Hamiltonian were determined. In case of {sup 33}S nucleus there is a strong dependence of the F{sup +} centre EPR spectrum on the quadrupole term whereas for {sup 43}Ca nucleus this dependence is insignificant.
In-flight neutron spectra as an ICF diagnostic for implosion asymmetries
Cerjan, C.; Sayre, D. B.; Sepke, S. M.
2018-02-01
The yield and spectral shape of the neutrons produced during in-flight reactions provide stringent constraints upon the symmetry of the fully compressed fuel conditions in Inertial Confinement Fusion implosions. Neutron production from a specific deuterium gas-filled implosion is simulated in detail and compared with the experimental neutron spectra along two lines-of-sight. An approximate reactivity formulation is applied to obtain further insight into the underlying fuel configuration. This analysis suggests that the differences observed in the observed spectra correspond to angularly dependent triton velocity distributions created by an asymmetric plasma configuration.
Proton and pion spectra at large angles in relativistic heavy-ion collisions
International Nuclear Information System (INIS)
Nagamiya, S.; Tanihata, I.; Schnetzer, S.; Anderson, L.; Brueckner, W.; Chamberlain, O.; Shapiro, G.; Steiner, H.
1977-08-01
In collisions of 800 MeV/N C on C and Pb, and of 800 MeV/N Ne on NaF, Cu, and Pb, energy and angular distributions of light charged fragments were measured at angles from 15 to 145 0 by a magnetic spectrometer for fragment energies up to a few GeV. The inclusive spectra are presented as well as some results and discussion of future possibilities for two or more particle coincidence experiments
Introduction to the theory of X-ray and electronic spectra of free atoms
Karazija, Romas
1996-01-01
Covering both theory and applications, this important work provides a comprehensive introduction to the modern theory of X-ray and electronic spectra of free atoms Romas Karazija discusses methods of angular momenta, irreducible tensorial operators, and coefficients of fractional parentage and their use in determining cross sections and probabilities of elementary processes In addition, Karazija addresses the structure of electronic shells with inner vacancies and many-body effects
Infrared spectra of mineral species
Chukanov, Nikita V
2014-01-01
This book details more than 3,000 IR spectra of more than 2,000 mineral species collected during last 30 years. It features full descriptions and analytical data of each sample for which IR spectrum was obtained.
Calculation of gas Bremsstrahlung power from straight sections of storage ring at SSRF
International Nuclear Information System (INIS)
Hua Zhengdong; Xu Xunjiang; Fang Keming; Xu Jiaqiang
2008-01-01
The Shanghai Synchrotron Radiation Facility (SSRF) is a third-generation synchrotron radiation light source with 3.5 GeV in energy, which is composed of the linear accelerator, the booster and the storage ring. The storage ring provides 16 standard straight sections of 6.5 m and 4 long straight sections of 12 meters. Gas Bremsstrahlung (GB) produced by the interaction of the stored beam with the residual gas molecules in straight section, which is so intense and has a very small angular that the GB spectra, the GB power and the GB power distribution should be known. The characters of GB are studied by means of Fluka Monte Carlo code. Our result shows agreement with those obtained by the experiential formulae. (authors)
Sequential Analysis of Gamma Spectra
International Nuclear Information System (INIS)
Fayez-Hassan, M.; Hella, Kh.M.
2009-01-01
This work shows how easy one can deal with a huge number of gamma spectra. The method can be used for radiation monitoring. It is based on the macro feature of the windows XP connected to QBASIC software. The routine was used usefully in generating accurate results free from human errors. One hundred measured gamma spectra were fully analyzed in 10 minutes using our fast and automated method controlling the Genie 2000 gamma acquisition analysis software.
Electronic Raman spectra in iron-based superconductors with two-orbital model
International Nuclear Information System (INIS)
Lu Hongyan; Wang Da; Chen San; Wang Wei; Gong Pifeng
2011-01-01
Electronic Raman spectra were calculated in orbital space in a microscopic theory. Both Raman spectra and spectra weight were presented. Raman spectra for the gap symmetries are different from each other. The results can help decide the gap symmetry by comparing with experiments. Electronic Raman spectra in iron-based superconductors with two-orbital model is discussed. In the orbital space, some possible pairing symmetries of the gap are selected. To further discriminate them, electronic Raman spectra and spectra weight at Fermi surface (FS) which helps understand the Raman spectra are calculated in each case. From the low energy threshold, the number of Raman peaks, and the low frequency power law behavior, we can judge whether it is full gap or nodal gap, and even one gap or multi-gaps. The results provide useful predictions for comparison with experiments.
Correlating features in the primordial spectra
Achúcarro, Ana; Palma, Gonzalo A; Patil, Subodh P
2013-01-01
Heavy fields coupled to the inflaton reduce the speed of sound in the effective theory of the adiabatic mode each time the background inflationary trajectory deviates from a geodesic. This can result in features in the primordial spectra. We compute the corresponding bispectrum and show that if a varying speed of sound induces features in the power spectrum, the change in the bispectrum is given by a simple formula involving the change in the power spectrum and its derivatives. In this manner, we provide a uniquely discriminable signature of a varying sound speed for the adiabatic mode during inflation that indicates the influence of heavy fields. We find that features in the bispectrum peak in the equilateral limit and, in particular, in the squeezed limit we find considerable enhancement entirely consistent with the single field consistency relation. From the perspective of the underlying effective theory, our results generalize to a wide variety of inflationary models where features are sourced by the time...
Helicons in uniform fields. II. Poynting vector and angular momenta
Stenzel, R. L.; Urrutia, J. M.
2018-03-01
The orbital and spin angular momenta of helicon modes have been determined quantitatively from laboratory experiments. The current density is obtained unambiguously from three dimensional magnetic field measurements. The only approximation made is to obtain the electric field from Hall Ohm's law which is usually the case for low frequency whistler modes. This allows the evaluation of the Poynting vector from which the angular momentum is obtained. Comparing two helicon modes (m = 0 and m = 1), one can separate the contribution of angular momentum of a rotating and non-rotating wave field. The orbital angular momentum is important to assess the wave-particle interaction by the transverse Doppler shift of rotating waves which has not been considered so far.
Angular Momentum Transport in Quasi-Keplerian Accretion Disks ...
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
Keplerian accretion disk yield results that are inconsistent with the generally accepted model. If correct, the ideas proposed by Hayashi &. Matsuda would radically alter our understanding of the nature of the angular momentum transport in the disk, ...
Dissipation of angular momentum in light heavy ion collision
International Nuclear Information System (INIS)
Bhattacharya, C.; Bhattacharya, S.; Bhattacharjee, T.; Dey, A.; Kundu, S.; Krishan, K.; Banerjee, S.R.; Das, P.; Basu, S.K.
2003-01-01
The fragment emission has been studied and is reported how angular momentum dissipation can be estimated in a model independent manner using additional information from the fusion-fission component of the fragment emission data
The search for and registration of superweak angular ground motions
International Nuclear Information System (INIS)
Budagov, J.; Lyablin, M.; Shirkov, G.
2013-01-01
The Earth's surface angular oscillations of the seismic, industrial and terrestrial origins have been registered with the high-resolution inclinometer of a new design concept. The microseismic peak was first recognized in the ground microradian motion
Large-uncertainty intelligent states for angular momentum and angle
International Nuclear Information System (INIS)
Goette, Joerg B; Zambrini, Roberta; Franke-Arnold, Sonja; Barnett, Stephen M
2005-01-01
The equality in the uncertainty principle for linear momentum and position is obtained for states which also minimize the uncertainty product. However, in the uncertainty relation for angular momentum and angular position both sides of the inequality are state dependent and therefore the intelligent states, which satisfy the equality, do not necessarily give a minimum for the uncertainty product. In this paper, we highlight the difference between intelligent states and minimum uncertainty states by investigating a class of intelligent states which obey the equality in the angular uncertainty relation while having an arbitrarily large uncertainty product. To develop an understanding for the uncertainties of angle and angular momentum for the large-uncertainty intelligent states we compare exact solutions with analytical approximations in two limiting cases
The decay of orbital angular momentum entanglement in atmospheric turbulence
CSIR Research Space (South Africa)
Roux, FS
2013-07-01
Full Text Available Salam International Centre for Theoretical Physics, Trieste, Italy, 8-12 July 2013 The decay of orbital angular momentum entanglement in atmospheric turbulence Roux FS CSIR, National Laser Centre, Pretoria, 0001 Corresponding email: FSroux...
Pluto Moons exhibit Orbital Angular Momentum Quantization per Mass
Directory of Open Access Journals (Sweden)
Potter F.
2012-10-01
Full Text Available The Pluto satellite system of the planet plus five moons is shown to obey the quan- tum celestial mechanics (QCM angular momentum per mass quantization condition predicted for any gravitationally bound system.
Design and Implementation of a Digital Angular Rate Sensor
Directory of Open Access Journals (Sweden)
Zhen Peng
2010-10-01
Full Text Available With the aim of detecting the attitude of a rotating carrier, the paper presents a novel, digital angular rate sensor. The sensor consists of micro-sensing elements (gyroscope and accelerometer, signal processing circuit and micro-processor (DSP2812. The sensor has the feature of detecting three angular rates of a rotating carrier at the same time. The key techniques of the sensor, including sensing construction, sensing principles, and signal processing circuit design are presented. The test results show that the sensor can sense rolling, pitch and yaw angular rate at the same time and the measurement error of yaw (or pitch angular rate and rolling rate of the rotating carrier is less than 0.5%.
Directory of Open Access Journals (Sweden)
Tuğba Kocahan
2017-09-01
Conclusion: It was shown that angular velocity is important in isokinetic training, and that training at high angular velocities provides strength increases at lower angular velocities, but would not increase strength at angular velocities above the training level. For this reason, it is thought that in the preparation of an isokinetic strength training protocol, angular velocities need to be taken into account. For any athlete, the force at the angular velocity required in her/his sports branch needs to be considered.
Spacecraft Angular Velocity Estimation Algorithm Based on Orientation Quaternion Measurements
Directory of Open Access Journals (Sweden)
M. V. Li
2016-01-01
Full Text Available The spacecraft (SC mission involves providing the appropriate orientation and stabilization of the associated axes in space. One of the main sources of information for the attitude control system is the angular rate sensor blocks. One way to improve a reliability of the system is to provide a back up of the control algorithms in case of failure of these blocks. To solve the problem of estimation of SP angular velocity vector in the inertial system of coordinates with a lack of information from the angular rate sensors is supposed the use of orientation data from the star sensors; in this case at each clock of the onboard digital computer. The equations in quaternions are used to describe the kinematics of rotary motion. Their approximate solution is used to estimate the angular velocity vector. Methods of modal control and multi-dimensional decomposition of a control object are used to solve the problem of observation and identification of the angular rates. These methods enabled us to synthesize the SP angular velocity vector estimation algorithm and obtain the equations, which relate the error quaternion with the calculated estimate of the angular velocity. Mathematical modeling was carried out to test the algorithm. Cases of different initial conditions were simulated. Time between orientation quaternion measurements and angular velocity of the model was varied. The algorithm was compared with a more accurate algorithm, built on more complete equations. Graphs of difference in angular velocity estimation depending on the number of iterations are presented. The difference in angular velocity estimation is calculated from results of the synthesized algorithm and the algorithm for more accurate equations. Graphs of error distribution for angular velocity estimation with initial conditions being changed are also presented, and standard deviations of estimation errors are calculated. The synthesized algorithm is inferior in accuracy assessment to
Automated detection of satellite contamination in incoherent scatter radar spectra
Directory of Open Access Journals (Sweden)
J. Porteous
Full Text Available Anomalous ion line spectra have been identified in many experiments. Such spectra are defined as deviations from the standard symmetric "double-humped" spectra derived from incoherent scatter radar echoes from the upper atmosphere. Some anomalous spectra – where there are sharp enhancements of power over restricted height ranges – have been attributed to satellite contamination in the beam path. Here we outline a method for detecting such contamination, and review in detail a few cases where the method enables the identification of anomalous spectra as satellite echoes, subsequently ascribed to specific orbital objects. The methods used here to identify such satellites provide a useful way of distinguishing anomalous spectra due to satellites from those of geophysical origin. Analysis of EISCAT Svalbard Radar data reveals that an average of 8 satellites per hour are found to cross the beam. Based on a relatively small sample of the data set, it appears that at least half of the occurrences of anomalous spectra are caused by satellite contamination rather than being of geophysical origin.
Key words. Ionosphere (auroral ionosphere, instruments and techniques – Radio Science (signal processing
Automated detection of satellite contamination in incoherent scatter radar spectra
Directory of Open Access Journals (Sweden)
J. Porteous
2003-05-01
Full Text Available Anomalous ion line spectra have been identified in many experiments. Such spectra are defined as deviations from the standard symmetric "double-humped" spectra derived from incoherent scatter radar echoes from the upper atmosphere. Some anomalous spectra – where there are sharp enhancements of power over restricted height ranges – have been attributed to satellite contamination in the beam path. Here we outline a method for detecting such contamination, and review in detail a few cases where the method enables the identification of anomalous spectra as satellite echoes, subsequently ascribed to specific orbital objects. The methods used here to identify such satellites provide a useful way of distinguishing anomalous spectra due to satellites from those of geophysical origin. Analysis of EISCAT Svalbard Radar data reveals that an average of 8 satellites per hour are found to cross the beam. Based on a relatively small sample of the data set, it appears that at least half of the occurrences of anomalous spectra are caused by satellite contamination rather than being of geophysical origin.Key words. Ionosphere (auroral ionosphere, instruments and techniques – Radio Science (signal processing
A Very Fast and Angular Momentum Conserving Tree Code
Energy Technology Data Exchange (ETDEWEB)
Marcello, Dominic C., E-mail: dmarce504@gmail.com [Department of Physics and Astronomy, and Center for Computation and Technology Louisiana State University, Baton Rouge, LA 70803 (United States)
2017-09-01
There are many methods used to compute the classical gravitational field in astrophysical simulation codes. With the exception of the typically impractical method of direct computation, none ensure conservation of angular momentum to machine precision. Under uniform time-stepping, the Cartesian fast multipole method of Dehnen (also known as the very fast tree code) conserves linear momentum to machine precision. We show that it is possible to modify this method in a way that conserves both angular and linear momenta.
Single crystal analyser accepting the narrowest neutron angular profile
International Nuclear Information System (INIS)
Abbas, Sohrab; Wagh, Apoorva G.; Strobl, Markus; Treimer, Wolfgang
2007-01-01
We have designed, fabricated and tested a novel silicon single crystal analyser. It accepts a 0.21 arcsec (FWHM) wide angular profile of a monochromatic 5.24 A neutron beam, in agreement with its design. This is the narrowest and sharpest acceptance angular profile attained to date in the world with a neutron analyser. This analyser will facilitate SUSANS experiments probing wave vector transfers Q ∼ 10 -6 A -1 . (author)
Gamma-gamma angular correlation measurement in the 100 Ru
International Nuclear Information System (INIS)
Kenchian, G.
1990-01-01
An angular correlation automatic spectrometer with two Ge(Li) detectors has been developed. The spectrometer moves automatically, controlled by a microcomputer. The gamma-gamma directional angular correlations of coincidence transitions have been measured in 100 Ru nuclide, following the β + and electron capture of 100 Rh. The 100 Rh source has been produced with 100 Ru(p,n) 100 Rh reaction, using the proton beam of the Cyclotron Accelerator insiding in 100 Ru isotope. (author)
A Very Fast and Angular Momentum Conserving Tree Code
International Nuclear Information System (INIS)
Marcello, Dominic C.
2017-01-01
There are many methods used to compute the classical gravitational field in astrophysical simulation codes. With the exception of the typically impractical method of direct computation, none ensure conservation of angular momentum to machine precision. Under uniform time-stepping, the Cartesian fast multipole method of Dehnen (also known as the very fast tree code) conserves linear momentum to machine precision. We show that it is possible to modify this method in a way that conserves both angular and linear momenta.
Astronomy at high angular resolution a compendium of techniques in the visible and near-infrared
Hussain, Gaitee; Berger, Jean-Philippe; Schmidtobreick, Linda
2016-01-01
This book offers an essential compendium of astronomical high-resolution techniques. Recent years have seen considerable developments in such techniques, which are critical to advances in many areas of astronomy. As reflected in the book, these techniques can be divided into direct methods, interferometry, and reconstruction methods, and can be applied to a huge variety of astrophysical systems, ranging from planets, single stars and binaries to active galactic nuclei, providing angular resolution in the micro- to tens of milliarcsecond scales. Written by experts in their fields, the chapters cover adaptive optics, aperture masking imaging, spectra disentangling, interferometry, lucky imaging, Roche tomography, imaging with interferometry, interferometry of AGN, AGN reverberation mapping, Doppler- and magnetic imaging of stellar surfaces, Doppler tomography, eclipse mapping, Stokes imaging, and stellar tomography. This book is intended to enable a next generation of astronomers to apply high-resolution techni...
Angular dependence of secondary ion emission from silicon bombarded with inert gas ions
International Nuclear Information System (INIS)
Wittmaack, K.
1984-01-01
The emission of positive and negative, atomic and molecular secondary ions sputtered from silicon has been studied under ultrahigh vacuum conditions. The sample was bombarded with 2-12 keV Ar + and Xe + ions at angles of incidence between 0 0 and 60 0 to the surface normal. The angular dependence of the secondary ion intensity as well as the energy spectra of Si + and Si - were found to differ significantly. The effect is attributed mostly do differences in the rate of neutralization. The stability of molecular ions appears to be independent of the charge state. Supporting evidence is provided for the idea that multiply charged secondary ions are due to Auger de-excitation of sputtered atoms in vacuum. (orig.)
Charmed meson production by e/sup +/e- annihilation. [Branching ratios, angular distributions
Energy Technology Data Exchange (ETDEWEB)
Wiss, J.E.
1977-08-01
Compelling evidence is presented for the production of the lying (D/sup 0/, D/sup +/) isodoublet of charmed mesons by e/sup +/e/sup -/ annihilation. A study of the recoil mass spectra against these mesons reveals the presence of more massive charmed states, the D*/sup 0/ and D*/sup +/, produced in association with the D isodoublet. Mass values and upper limits on the width of the D and D* are established, and the branching fractions for several D* decay modes are obtained. An analysis of the production and decay angular distributions shows that the D is probably a pseudoscalar state and the D* is probably a vector. Finally, upper limits are obtained for D/sup 0/-antiD/sup 0/ mixing.
Angular Distribution of Damping Coefficient of Ablated Particle in Pure He, Ne, and Ar Gases
Directory of Open Access Journals (Sweden)
Yinglong Wang
2011-01-01
Full Text Available To investigate the angular distribution of damping coefficient of ablated particle under various ambient gases, nanocrystalline silicon films are systemically deposited on a circular substrate by pulse laser ablation in pure He, Ne, and Ar gases, respectively. Scanning electron microscopy images and Raman and X-ray diffraction spectra indicate that the average size of Si nanoparticles decreases with the increase of the departure angle between the film and the plume, and Ne gas induces the smallest and most uniform Si nanoparticles in size among all the three gases. Further theoretical simulation demonstrates the bigger the departure angle, the smaller the damping coefficient of ablated particle, and the damping coefficient in Ne gas is largest for the same angle, implying the most effective energy transfer between Si and ambient atoms.
Angular Momentum Evolution of Solar-type Stars and Implications for Gyrochronology
Terndrup, Donald M.; Somers, Garrett; Tayar, Jamie; Pinsonneault, Marc H.
2016-01-01
A detailed understanding of the assembly history and rate of chemical enrichment in the Milky Way requires accurate ages for vast numbers of stars. Standard age-dating techniques have significant degeneracies and other limitations, and in any case are mostly limited to the tiny minority of stars in bound clusters.Data from the Kepler and K2 surveys, along with ground-based studies, show that stellar rotation rates could potentially be exploited to determine ages of field stars since rotation declines with age; this method is called gyrochronology. Several groups have advocated a purely empirical gyrochronology, essentially fitting simple mathematical expressions to rotation/age data, but here we argue that the power of rotation studies lies in their use for calibrating (or rejecting) proposed physical mechanisms for internal angular momentum transport and angular momentum loss through magnetized winds.We will review the available data and discuss several important selection biases, and will present the results of a detailed Bayesian modeling exercise to show how well a gyrochronology might work in the most favorable cases. We will also discuss whether evidence for saturation of wind loss or of internal angular momentum transfer is properly justified in a statistical sense.
Critical gravitational collapse with angular momentum. II. Soft equations of state
Gundlach, Carsten; Baumgarte, Thomas W.
2018-03-01
We study critical phenomena in the collapse of rotating ultrarelativistic perfect fluids, in which the pressure P is related to the total energy density ρ by P =κ ρ , where κ is a constant. We generalize earlier results for radiation fluids with κ =1 /3 to other values of κ , focusing on κ density. For κ changes the nature of the black-hole threshold completely: at sufficiently large initial rotation rates Ω and sufficient fine-tuning of the initial data to the black-hole threshold we expect to observe nontrivial universal scaling functions (familiar from critical phase transitions in thermodynamics) governing the black-hole mass and angular momentum, and, with further fine-tuning, eventually a finite black-hole mass almost everywhere on the threshold. In practice, however, the second unstable mode grows so slowly that we do not observe this breakdown of scaling at the level of fine-tuning we can achieve, nor systematic deviations from the leading-order power-law scalings of the black-hole mass. We do see systematic effects in the black-hole angular momentum, but it is not clear yet if these are due to the predicted nontrivial scaling functions, or to nonlinear effects at sufficiently large initial angular momentum (which we do not account for in our theoretical model).
Application of gamma-quanta angular correlation method to study strain-stressed hollow fibers
International Nuclear Information System (INIS)
Zelenev, Yu.V.; Zaslavskij, B.I.; Budnitskij, G.A.; Kostrov, Yu.A.; Andreev, V.G.
1984-01-01
Parallel studies of polypropylene (PP) deformed samples, using the method of angular correlation of γ-quanta and acoustic method, have been carried out to evaluate possibilities of positron method and to compare the results obtained with the gas permeability of the samples tested. Heat treated hollow fibers of isotactic PP have been studied using a device with parattet-siot geometry in the range of angles theta=-15 to +15 mrad with the pitch 0.5 mrad. The fiber permeability under tension is determined by volumetric method. Results of helium permeability changes in the process of sample tension are presented. It is established that fiber permeability increases under tension, which testifies to the formation in the fiber walls of the system of communicating pores. Spectra are presented of angular correlation of γ-quanta of PP-fibers under tension normalized for the similar area. Dependences of the intensity and half-width of the narrow component on deformation, as well as dependences of ultrasound propagation rate on deformation at the rates 3 and 40%/min are considered
Blind extraction of exoplanetary spectra
Morello, Giuseppe; Waldmann, Ingo; Damiano, Mario; Tinetti, Giovanna
2016-10-01
In the last decade, remote sensing spectroscopy enabled characterization of the atmospheres of extrasolar planets. Transmission and emission spectra of tens of transiting exoplanets have been measured with multiple instruments aboard Spitzer and Hubble Space Telescopes as well as ground-based facilities, revealing the presence of chemical species in their atmospheres, and constraining their temperature and pressure profiles.Early analyses were somehow heuristic, leading to some controversies in the literature.A photometric precision of 0.01% is necessary to detect the atmospheric spectral modulations. Current observatories, except Kepler, were not designed to achieve this precision. Data reduction is necessary to minimize the effect of instrument systematics in order to achieve the target precision. In the past, parametric models have extensively been used by most teams to remove correlated noise with the aid of auxiliary information of the instrument, the so-called optical state vectors (OSVs). Such OSVs can include inter- and intra-pixel position of the star or its spectrum, instrument temperatures and inclinations, and/or other parameters. In some cases, different parameterizations led to discrepant results.We recommend the use of blind non-parametric data detrending techniques to overcome those issues. In particular, we adopt Independent Component Analysis (ICA), i.e. a powerful blind source separation (BSS) technique to disentangle the multiple instrument systematics and astrophysical signals in transit/eclipse light curves. ICA does not require a model for the systematics, thence it can be applied to any instrument with little changes, if any. ICA-based algorithms have been applied to Spitzer/IRAC and synthetic observations in photometry (Morello et al. 2014, 2015, 2016; Morello 2015) and to Hubble/WFC3, Hubble/NICMOS and Spitzer/IRS and Hubble/WFC3 in spectroscopy (Damiano, Morello et al., in prep., Waldmann 2012, 2014, Waldmann et al. 2013) with excellent
Energy Technology Data Exchange (ETDEWEB)
Volodin, V. A., E-mail: volodin@isp.nsc.ru [Russian Academy of Sciences, Rzhanov Institute of Semiconductor Physics, Siberian Branch (Russian Federation); Sachkov, V. A. [Russian Academy of Sciences, Omsk Scientific Center, Siberian Branch (Russian Federation); Sinyukov, M. P. [Russian Academy of Sciences, Rzhanov Institute of Semiconductor Physics, Siberian Branch (Russian Federation)
2016-07-15
The angular dependence of Raman scattering selection rules for optical phonons in short-period (001) GaAs/AlAs superlattices is calculated and experimentally studied. Experiments are performed using a micro-Raman setup, in the scattering geometry with the wavevectors of the incident and scattered light lying in the plane of superlattices (so-called in-plane geometry). Phonon frequencies are calculated using the Born model taking the Coulomb interaction into account in the rigid-ion approximation. Raman scattering spectra are calculated in the framework of the deformation potential and electro-optical mechanisms. Calculations show an angular dependence of the selection rules for optical phonons with different directions of the wavevectors. Drastic differences in the selection rules are found for experimental and calculated spectra. Presumably, these differences are due to the Fröhlich mechanism in Raman scattering for short-period superlattices.
International Nuclear Information System (INIS)
Wu Xiao-Rui; Shen Li; Zhang Kai; Dai Chang-Jian; Yang Yu-Na
2016-01-01
The branching ratios of ions and the angular distributions of electrons ejected from the Eu 4f 7 6p 1/2 n d auto-ionizing states are investigated with the velocity-map-imaging technique. To populate the above auto-ionizing states, the relevant bound Rydberg states have to be detected first. Two new bound Rydberg states are identified in the region between 41150 cm −1 and 44580 cm −1 , from which auto-ionization spectra of the Eu 4f 7 6p 1/2 n d states are observed with isolated core excitation method. With all preparations above, the branching ratios from the above auto-ionizing states to different final ionic states and the angular distributions of electrons ejected from these processes are measured systematically. Energy dependence of branching ratios and anisotropy parameters within the auto-ionization spectra are carefully analyzed, followed by a qualitative interpretation. (paper)
Energy Technology Data Exchange (ETDEWEB)
Chatterjee, S; Tribedi, L C [Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005 (India); Stia, C R; Fojon, O A; Rivarola, R D, E-mail: lokesh@tifr.res.i [Instituto de Fisica Rosario (CONICET-UNR) and Facultad de Ciencias Exactas, IngenierIa y Agrimensura, Universidad Nacional de Rosario, Av. Pellegrini 250, 2000 Rosario (Argentina)
2009-11-15
The energy and angular distributions of electron double differential cross sections (DDCS) of H{sub 2} and He are measured for fast electron collision.The measured data are compared with recently developed theoretical calculations. The observed distributions of H{sub 2} are explained in terms of interference effect by comparing with single center He and atomic hydrogen. We show experimentally by comparing with He, that partial constructive interference exists in soft and binary collision regions of H{sub 2} spectra.
Accelerated rotation with orbital angular momentum modes
CSIR Research Space (South Africa)
Schulze, C
2015-01-01
Full Text Available ] and generalized recently in the context of radial self-acceleration [23]. Such beams have been experimentally investigated in great detail [24–32]. The intensity maxima of these fields gyrate around the optical axis, forming a solenoidal shape, which has been used...(z�)]2 . (13) III. EXPERIMENT In our experiment a linearly polarized, single wavelength (λ = 632.8 nm) helium-neon laser (Melles Griot) with a power of 10 mW was expanded and collimated by a telescope (fL1 = 15 mm and fL2 = 125 mm) to approximate a plane...
Zhang, Wenkun; Zhang, Hanming; Li, Lei; Wang, Linyuan; Cai, Ailong; Li, Zhongguo; Yan, Bin
2016-08-01
X-ray computed tomography (CT) is a powerful and common inspection technique used for the industrial non-destructive testing. However, large-sized and heavily absorbing objects cause the formation of artifacts because of either the lack of specimen penetration in specific directions or the acquisition of data from only a limited angular range of views. Although the sparse optimization-based methods, such as the total variation (TV) minimization method, can suppress artifacts to some extent, reconstructing the images such that they converge to accurate values remains difficult because of the deficiency in continuous angular data and inconsistency in the projections. To address this problem, we use the idea of regional enhancement of the true values and suppression of the illusory artifacts outside the region to develop an efficient iterative algorithm. This algorithm is based on the combination of regional enhancement of the true values and TV minimization for the limited angular reconstruction. In this algorithm, the segmentation approach is introduced to distinguish the regions of different image knowledge and generate the support mask of the image. A new regularization term, which contains the support knowledge to enhance the true values of the image, is incorporated into the objective function. Then, the proposed optimization model is solved by variable splitting and the alternating direction method efficiently. A compensation approach is also designed to extract useful information from the initial projections and thus reduce false segmentation result and correct the segmentation support and the segmented image. The results obtained from comparing both simulation studies and real CT data set reconstructions indicate that the proposed algorithm generates a more accurate image than do the other reconstruction methods. The experimental results show that this algorithm can produce high-quality reconstructed images for the limited angular reconstruction and suppress
The Angular Momentum of Baryons and Dark Matter Halos Revisited
Kimm, Taysun; Devriendt, Julien; Slyz, Adrianne; Pichon, Christophe; Kassin, Susan A.; Dubois, Yohan
2011-01-01
Recent theoretical studies have shown that galaxies at high redshift are fed by cold, dense gas filaments, suggesting angular momentum transport by gas differs from that by dark matter. Revisiting this issue using high-resolution cosmological hydrodynamics simulations with adaptive-mesh refinement (AMR), we find that at the time of accretion, gas and dark matter do carry a similar amount of specific angular momentum, but that it is systematically higher than that of the dark matter halo as a whole. At high redshift, freshly accreted gas rapidly streams into the central region of the halo, directly depositing this large amount of angular momentum within a sphere of radius r = 0.1R(sub vir). In contrast, dark matter particles pass through the central region unscathed, and a fraction of them ends up populating the outer regions of the halo (r/R(sub vir) > 0.1), redistributing angular momentum in the process. As a result, large-scale motions of the cosmic web have to be considered as the origin of gas angular momentum rather than its virialised dark matter halo host. This generic result holds for halos of all masses at all redshifts, as radiative cooling ensures that a significant fraction of baryons remain trapped at the centre of the halos. Despite this injection of angular momentum enriched gas, we predict an amount for stellar discs which is in fair agreement with observations at z=0. This arises because the total specific angular momentum of the baryons (gas and stars) remains close to that of dark matter halos. Indeed, our simulations indicate that any differential loss of angular momentum amplitude between the two components is minor even though dark matter halos continuously lose between half and two-thirds of their specific angular momentum modulus as they evolve. In light of our results, a substantial revision of the standard theory of disc formation seems to be required. We propose a new scenario where gas efficiently carries the angular momentum generated
International Nuclear Information System (INIS)
Jakas, M.M.; Biersack, J.P.
1984-01-01
A simple formula is derived for calculating the angular width of multiple scattering distributions for atomic particles traversing thin foils. The universal result is obtained by applying the variational method on standard multiple scattering theory. This procedure can be carried through in a straight-forward way, thus saving lengthy series expansions and Fourier transforms. In the case of power cross sections exact analytical expressions can be obtained. A remarkably good agreement is found between our calculation and previous theories, as well as with results from our computer simulations. (orig.)
Tunable orbital angular momentum mode filter based on optical geometric transformation.
Huang, Hao; Ren, Yongxiong; Xie, Guodong; Yan, Yan; Yue, Yang; Ahmed, Nisar; Lavery, Martin P J; Padgett, Miles J; Dolinar, Sam; Tur, Moshe; Willner, Alan E
2014-03-15
We present a tunable mode filter for spatially multiplexed laser beams carrying orbital angular momentum (OAM). The filter comprises an optical geometric transformation-based OAM mode sorter and a spatial light modulator (SLM). The programmable SLM can selectively control the passing/blocking of each input OAM beam. We experimentally demonstrate tunable filtering of one or multiple OAM modes from four multiplexed input OAM modes with vortex charge of ℓ=-9, -4, +4, and +9. The measured output power suppression ratio of the propagated modes to the blocked modes exceeds 14.5 dB.
Smoothed dissipative particle dynamics with angular momentum conservation
International Nuclear Information System (INIS)
Müller, Kathrin; Fedosov, Dmitry A.; Gompper, Gerhard
2015-01-01
Smoothed dissipative particle dynamics (SDPD) combines two popular mesoscopic techniques, the smoothed particle hydrodynamics and dissipative particle dynamics (DPD) methods, and can be considered as an improved dissipative particle dynamics approach. Despite several advantages of the SDPD method over the conventional DPD model, the original formulation of SDPD by Español and Revenga (2003) [9], lacks angular momentum conservation, leading to unphysical results for problems where the conservation of angular momentum is essential. To overcome this limitation, we extend the SDPD method by introducing a particle spin variable such that local and global angular momentum conservation is restored. The new SDPD formulation (SDPD+a) is directly derived from the Navier–Stokes equation for fluids with spin, while thermal fluctuations are incorporated similarly to the DPD method. We test the new SDPD method and demonstrate that it properly reproduces fluid transport coefficients. Also, SDPD with angular momentum conservation is validated using two problems: (i) the Taylor–Couette flow with two immiscible fluids and (ii) a tank-treading vesicle in shear flow with a viscosity contrast between inner and outer fluids. For both problems, the new SDPD method leads to simulation predictions in agreement with the corresponding analytical theories, while the original SDPD method fails to capture properly physical characteristics of the systems due to violation of angular momentum conservation. In conclusion, the extended SDPD method with angular momentum conservation provides a new approach to tackle fluid problems such as multiphase flows and vesicle/cell suspensions, where the conservation of angular momentum is essential
Initial angular momentum and flow in high energy nuclear collisions
Fries, Rainer J.; Chen, Guangyao; Somanathan, Sidharth
2018-03-01
We study the transfer of angular momentum in high energy nuclear collisions from the colliding nuclei to the region around midrapidity, using the classical approximation of the color glass condensate (CGC) picture. We find that the angular momentum shortly after the collision (up to times ˜1 /Qs , where Qs is the saturation scale) is carried by the "β -type" flow of the initial classical gluon field, introduced by some of us earlier. βi˜μ1∇iμ2-μ2∇iμ1 (i =1 ,2 ) describes the rapidity-odd transverse energy flow and emerges from Gauss's law for gluon fields. Here μ1 and μ2 are the averaged color charge fluctuation densities in the two nuclei, respectively. Interestingly, strong coupling calculations using anti-de Sitter/conformal field theory (AdS/CFT) techniques also find an energy flow term featuring this particular combination of nuclear densities. In classical CGC the order of magnitude of the initial angular momentum per rapidity in the reaction plane, at a time 1 /Qs , is |d L2/d η |≈ RAQs-3ɛ¯0/2 at midrapidity, where RA is the nuclear radius, and ɛ¯0 is the average initial energy density. This result emerges as a cancellation between a vortex of energy flow in the reaction plane aligned with the total angular momentum, and energy shear flow opposed to it. We discuss in detail the process of matching classical Yang-Mills results to fluid dynamics. We will argue that dissipative corrections should not be discarded to ensure that macroscopic conservation laws, e.g., for angular momentum, hold. Viscous fluid dynamics tends to dissipate the shear flow contribution that carries angular momentum in boost-invariant fluid systems. This leads to small residual angular momentum around midrapidity at late times for collisions at high energies.
Smoothed dissipative particle dynamics with angular momentum conservation
Energy Technology Data Exchange (ETDEWEB)
Müller, Kathrin, E-mail: k.mueller@fz-juelich.de; Fedosov, Dmitry A., E-mail: d.fedosov@fz-juelich.de; Gompper, Gerhard, E-mail: g.gompper@fz-juelich.de
2015-01-15
Smoothed dissipative particle dynamics (SDPD) combines two popular mesoscopic techniques, the smoothed particle hydrodynamics and dissipative particle dynamics (DPD) methods, and can be considered as an improved dissipative particle dynamics approach. Despite several advantages of the SDPD method over the conventional DPD model, the original formulation of SDPD by Español and Revenga (2003) [9], lacks angular momentum conservation, leading to unphysical results for problems where the conservation of angular momentum is essential. To overcome this limitation, we extend the SDPD method by introducing a particle spin variable such that local and global angular momentum conservation is restored. The new SDPD formulation (SDPD+a) is directly derived from the Navier–Stokes equation for fluids with spin, while thermal fluctuations are incorporated similarly to the DPD method. We test the new SDPD method and demonstrate that it properly reproduces fluid transport coefficients. Also, SDPD with angular momentum conservation is validated using two problems: (i) the Taylor–Couette flow with two immiscible fluids and (ii) a tank-treading vesicle in shear flow with a viscosity contrast between inner and outer fluids. For both problems, the new SDPD method leads to simulation predictions in agreement with the corresponding analytical theories, while the original SDPD method fails to capture properly physical characteristics of the systems due to violation of angular momentum conservation. In conclusion, the extended SDPD method with angular momentum conservation provides a new approach to tackle fluid problems such as multiphase flows and vesicle/cell suspensions, where the conservation of angular momentum is essential.
Double photoionisation spectra of molecules
Eland, John
2017-01-01
This book contains spectra of the doubly charged positive ions (dications) of some 75 molecules, including the major constituents of terrestrial and planetary atmospheres and prototypes of major chemical groups. It is intended to be a new resource for research in all areas of molecular spectroscopy involving high energy environments, both terrestrial and extra-terrestrial. All the spectra have been produced by photoionisation using laboratory lamps or synchrotron radiation and have been measured using the magnetic bottle time-of-flight technique by coincidence detection of correlated electron pairs. Full references to published work on the same species are given, though for several molecules these are the first published spectra. Double ionisation energies are listed and discussed in relation to the molecular electronic structure of the molecules. A full introduction to the field of molecular double ionisation is included and the mechanisms by which double photoionisation can occur are examined in detail. A p...
Anisotropic power spectrum and the observed low-l power in PLANCK CMB data
Chang, Zhe; Rath, Pranati K.; Sang, Yu; Zhao, Dong
2018-03-01
In this work, we study a direction dependent power spectrum in anisotropic Finsler space-time. We use this direction dependent power spectrum to address the low-l power observed in WMAP and PLANCK data. The angular power spectrum of the temperature fluctuations has a lower amplitude in comparison to the ΛCDM model in the multipole range l = 2 ‑ 40. Our theoretical model gives a correction to the isotropic angular power spectrum {C}lTT due to the breaking of rotational invariance of the primordial power spectrum. We estimate best-fit model parameters along with the six ΛCDM cosmological parameters using the PLANCK likelihood code in CosmoMC software. We find that this modified angular power spectrum fits the CMB temperature data in the multipole range l = 2 ‑ 10 to a good extent but fails for the whole multipole range l = 2 ‑ 40.
Automatic identification of mass spectra
International Nuclear Information System (INIS)
Drabloes, F.
1992-01-01
Several approaches to preprocessing and comparison of low resolution mass spectra have been evaluated by various test methods related to library search. It is shown that there is a clear correlation between the nature of any contamination of a spectrum, the basic principle of the transformation or distance measure, and the performance of the identification system. The identification of functionality from low resolution spectra has also been evaluated using several classification methods. It is shown that there is an upper limit to the success of this approach, but also that this can be improved significantly by using a very limited amount of additional information. 10 refs
Orbital-angular-momentum entanglement in turbulence
CSIR Research Space (South Africa)
Hamadou Ibrahim, A
2013-06-01
Full Text Available that the whole atmospheric medium can be replaced with a single phase screen. FIG. 1. (Color online) A method for measuring the phase dif- ferences between two coherent beams propagating in a turbulent atmosphere. The phase difference is measured...) to calculate the ensemble average and evaluating one of the three-dimensional Fourier integrals we arrive at Bθ (X1 − X2) = k20 ∫∫∫ ∞ −∞ �n(k1) ∫∫ �z 0 exp(−ik1 · x1) × exp(ik1 · x2) dz1 dz2 d 3k1 (2π )3 , (14) where we used the symmetry of the power spectral...
Chatterjee, S.; Kelkar, A. H.; Stia, C. R.; Fojón, O. A.; Rivarola, R. D.; Tribedi, L. C.
2009-11-01
We have studied Young-type interference in the energy and angular distributions of double differential cross sections (DDCS) of electrons emitted in single-ionization of H2, induced by 8 keV electron impact. The first-order interference is derived from the energy distribution of DDCS and the resulting ratio-spectra (H2-to-2H) exhibit oscillating behaviour. The signature of first-order interference is also demonstrated in the DDCS-spectra as a function of emission angle. We have shown that the constructive interference prevails in soft- and binary-collision regions. The single differential cross sections obtained by integrating the DDCSs over energy and solid angle also preserve the information on interference.
Interference effects in Moessbauer spectra of M1-transitions
International Nuclear Information System (INIS)
Peregudov, V.N.
1980-01-01
The purpose of the study is the calculation of interference effects in Moessbauer spectra of the (γ, e) reaction. Two channels of the inelastic (γ, e) reaction are considered: resonance gamma radiation absorption by nucleus accompanied by internal conversion and photo absorption by atomic electrons. The case of M1 nuclear transition multipolarity is considered. The expression for angular dependence coefficients of interference member is obtained. General expression for (γ, e) reaction cross section is obtained in a long-wave approximation for the case when the specimen is placed in longitudinal magnetic field involving superfine nuclear level splitting. The results of disperse amplitudes calculation for 93 Kr, 119 Sn, 129 I, 149 Sm, 151 Eu, 169 Tm, 183 W, 193 Ir, 197 Au nuclei are verified. The calculations show that maximum interference effect in the (γ, e) reaction should be expected for 169 Tm isotope [ru
Directory of Open Access Journals (Sweden)
Isham
2005-01-01
Full Text Available When the Earth's ionosphere is irradiated by a radiofrequency (RF electromagnetic wave of sufficiently high power density and tuned to match a natural E- or F-region plasma frequency, ionospheric magnetoionic wave modes may be excited and may generate RF electromagnetic sideband waves via nonlinear interactions. These secondary emissions, which may then escape from the ionosphere, have been termed stimulated electromagnetic emission or SEE. The frequency spectra of this radiation has been studied extensively, and a number of characteristic spectral features have been identified and in some cases related to particular plasma processes. The separation in frequency between the RF pump and the harmonics of the local electron gyrofrequency is critical in determining the amount of anomalous absorption suffered by the pump wave and the spectral properties of the stimulated sidebands. The pump can excite electrostatic waves which do not propagate away but can in some cases be observed via radio-wave scattering from the electron density fluctuations associated with them. These enhanced density fluctuations are created by processes commonly referred to as upper-hybrid and Langmuir turbulence. Langmuir turbulence has been the subject of 930-MHz scattering observations with antenna scanning through several pre-selected angles between the geographic and geomagnetic zenith directions, and a preference for pointing angles between the Spitze angle and geomagnetic field-aligned was identified. Other phenomena, such as the generation of enhanced electron temperatures and artificial aurora, have more recently been shown to have special behavior at similar angles, near but apparently not quite at field-aligned. In view of this evidence for angular structure in several pump-induced effects, in light of the rich variety of SEE phenomena strongly dependent on the geomagnetic field via the frequency interval between the pump and the gyrofrequency harmonics, and in
LSD-based analysis of high-resolution stellar spectra
Tsymbal, V.; Tkachenko, A.; Van, Reeth T.
2014-11-01
We present a generalization of the method of least-squares deconvolution (LSD), a powerful tool for extracting high S/N average line profiles from stellar spectra. The generalization of the method is effected by extending it towards the multiprofile LSD and by introducing the possibility to correct the line strengths from the initial mask. We illustrate the new approach by two examples: (a) the detection of astroseismic signatures from low S/N spectra of single stars, and (b) disentangling spectra of multiple stellar objects. The analysis is applied to spectra obtained with 2-m class telescopes in the course of spectroscopic ground-based support for space missions such as CoRoT and Kepler. Usually, rather high S/N is required, so smaller telescopes can only compete successfully with more advanced ones when one can apply a technique that enables a remarkable increase in the S/N of the spectra which they observe. Since the LSD profiles have a potential for reconstruction what is common in all the spectral profiles, it should have a particular practical application to faint stars observed with 2-m class telescopes and whose spectra show remarkable LPVs.
Fluorescence Spectra of Highlighter Inks
Birriel, Jennifer J.; King, Damon
2018-01-01
Fluorescence spectra excited by laser pointers have been the subject of several papers in "TPT". These papers all describe a fluorescence phenomenon in which the reflected laser light undergoes a change in color: this color change results from the combination of some partially reflected laser light and additional colors generated by…
Classical Trajectories and Quantum Spectra
Mielnik, Bogdan; Reyes, Marco A.
1996-01-01
A classical model of the Schrodinger's wave packet is considered. The problem of finding the energy levels corresponds to a classical manipulation game. It leads to an approximate but non-perturbative method of finding the eigenvalues, exploring the bifurcations of classical trajectories. The role of squeezing turns out decisive in the generation of the discrete spectra.
Explanation of earthquake response spectra
Douglas, John
2017-01-01
This is a set of five slides explaining how earthquake response spectra are derived from strong-motion records and simple models of structures and their purpose within seismic design and assessment. It dates from about 2002 and I have used it in various introductory lectures on engineering seismology.
Characterizing Sky Spectra Using SDSS BOSS Data
Florez, Lina Maria; Strauss, Michael A.
2018-01-01
In the optical/near-infrared spectra gathered by a ground-based telescope observing very faint sources, the strengths of the emission lines due to the Earth’s atmosphere can be many times larger than the fluxes of the sources we are interested in. Thus the limiting factor in faint-object spectroscopy is the degree to which systematics in the sky subtraction can be minimized. Longwards of 6000 Angstroms, the night-sky spectrum is dominated by multiple vibrational/rotational transitions of the OH radical from our upper atmosphere. While the wavelengths of these lines are the same in each sky spectrum, their relative strengths vary considerably as a function of time and position on the sky. The better we can model their strengths, the better we can hope to subtract them off. We expect that the strength of lines from common upper energy levels will be correlated with one another. We used flux-calibrated sky spectra from the Sloan Digital Sky Survey Baryon Oscillation Spectroscopic Survey (SDSS BOSS) to explore these correlations. Our aim is to use these correlations for creating improved sky subtraction algorithms for the Prime Focus Spectrograph (PFS) on the 8.2-meter Subaru Telescope. When PFS starts gathering data in 2019, it will be the most powerful multi-object spectrograph in the world. Since PFS will be gathering data on sources as faint as 24th magnitude and fainter, it's of upmost importance to be able to accurately measure and subtract sky spectra from the data that we receive.
Characteristic evolutions in numerical relativity using six angular patches
International Nuclear Information System (INIS)
Reisswig, Christian; Bishop, Nigel T; Lai, Chi Wai; Thornburg, Jonathan; Szilagyi, Bela
2007-01-01
The characteristic approach to numerical relativity is a useful tool in evolving gravitational systems. In the past this has been implemented using two patches of stereographic angular coordinates. In other applications, a six-patch angular coordinate system has proved effective. Here we investigate the use of a six-patch system in characteristic numerical relativity, by comparing an existing two-patch implementation (using second-order finite differencing throughout) with a new six-patch implementation (using either second- or fourth-order finite differencing for the angular derivatives). We compare these different codes by monitoring the Einstein constraint equations, numerically evaluated independently from the evolution. We find that, compared to the (second-order) two-patch code at equivalent resolutions, the errors of the second-order six-patch code are smaller by a factor of about 2, and the errors of the fourth-order six-patch code are smaller by a factor of nearly 50
Nuclear level density variation with angular momentum induced shape transition
International Nuclear Information System (INIS)
Aggarwal, Mamta
2016-01-01
Variation of Nuclear level density (NLD) with the excitation energy and angular momentum in particular has been a topic of interest in the recent past and there have been continuous efforts in this direction on the theoretical and experimental fronts but a conclusive trend in the variation of nuclear level density parameter with angular momentum has not been achieved so far. A comprehensive investigation of N=68 isotones around the compound nucleus 119 Sb from neutron rich 112 Ru (Z=44) to neutron deficient 127 Pr (Z= 59) nuclei is presented to understand the angular momentum induced variations in inverse level density parameter and the possible influence of deformation and structural transitions on the variations on NLd
Angular trapping of anisometric nano-objects in a fluid.
Celebrano, Michele; Rosman, Christina; Sönnichsen, Carsten; Krishnan, Madhavi
2012-11-14
We demonstrate the ability to trap, levitate, and orient single anisometric nanoscale objects with high angular precision in a fluid. An electrostatic fluidic trap confines a spherical object at a spatial location defined by the minimum of the electrostatic system free energy. For an anisometric object and a potential well lacking angular symmetry, the system free energy can further strongly depend on the object's orientation in the trap. Engineering the morphology of the trap thus enables precise spatial and angular confinement of a single levitating nano-object, and the process can be massively parallelized. Since the physics of the trap depends strongly on the surface charge of the object, the method is insensitive to the object's dielectric function. Furthermore, levitation of the assembled objects renders them amenable to individual manipulation using externally applied optical, electrical, or hydrodynamic fields, raising prospects for reconfigurable chip-based nano-object assemblies.
ANGULAR LIGHT-SCATTERING STUDIES ON ISOLATED MITOCHONDRIA
Gotterer, Gerald S.; Thompson, Thomas E.; Lehninger, Albert L.
1961-01-01
Angular light-scattering studies have been carried out on suspensions of isolated rat liver mitochondria. The angular scatter pattern has a large forward component, typical of large particles. Changes in dissymmetry and in the intensity of light scattered at 90° have been correlated with changes in optical density during the course of mitochondrial swelling and contraction. Such changes can be measured at mitochondrial concentrations much below those required for optical density measurements. Changes in mitochondrial geometry caused by factors "leaking" from mitochondria, not detectable by optical density measurements, have been demonstrated by measuring changes in dissymmetry. Angular light-scattering measurements therefore offer the advantages of increased sensitivity and of added indices of changes in mitochondrial conformation. PMID:19866589
Angular Magnetoresistance of Nanowires with Alternating Cobalt and Nickel Segments
Mohammed, Hanan
2017-06-22
Magnetization reversal in segmented Co/Ni nanowires with varying number of segments was studied using angular Magnetoresistance (MR) measurements on isolated nanowires. The MR measurements offer an insight into the pinning of domain walls within the nanowires. Angular MR measurements were performed on nanowires with two and multiple segments by varying the angle between the applied magnetic field and nanowire (−90° ≤θ≤90°). The angular MR measurements reveal that at lower values of θ the switching fields are nearly identical for the multisegmented and two-segmented nanowires, whereas at higher values of θ, a decrease in the switching field is observed in the case of two segmented nanowires. The two segmented nanowires generally exhibit a single domain wall pinning event, whereas an increased number of pinning events are characteristic of the multisegmented nanowires at higher values of θ. In-situ magnetic force microscopy substantiates reversal by domain wall nucleation and propagation in multisegmented nanowires.
Spin and orbital angular momentum distribution functions of the nucleon
Wakamatsu, M.; Watabe, T.
2000-09-01
A theoretical prediction is given for the spin and orbital angular momentum distribution functions of the nucleon within the framework of an effective quark model of QCD, i.e., the chiral quark soliton model. An outstanding feature of the model is that it predicts a fairly small quark spin fraction of the nucleon ΔΣ~=0.35, which in turn dictates that the remaining 65% of the nucleon spin is carried by the orbital angular momentum of quarks and antiquarks at the model energy scale of Q2~=0.3 GeV2. This large orbital angular momentum necessarily affects the scenario of scale dependence of the nucleon spin contents in a drastic way.
Angular Momentum Transport in Turbulent Flow between Independently Rotating Cylinders
International Nuclear Information System (INIS)
Paoletti, M. S.; Lathrop, D. P.
2011-01-01
We present measurements of the angular momentum flux (torque) in Taylor-Couette flow of water between independently rotating cylinders for all regions of the (Ω 1 , Ω 2 ) parameter space at high Reynolds numbers, where Ω 1 (Ω 2 ) is the inner (outer) cylinder angular velocity. We find that the Rossby number Ro=(Ω 1 -Ω 2 )/Ω 2 fully determines the state and torque G as compared to G(Ro=∞)≡G ∞ . The ratio G/G ∞ is a linear function of Ro -1 in four sections of the parameter space. For flows with radially increasing angular momentum, our measured torques greatly exceed those of previous experiments [Ji et al., Nature (London), 444, 343 (2006)], but agree with the analysis of Richard and Zahn [Astron. Astrophys. 347, 734 (1999)].
Microbeam High Angular Resolution Diffraction Applied to Optoelectronic Devices
International Nuclear Information System (INIS)
Kazimirov, A.; Bilderback, D. H.; Sirenko, A. A.; Cai, Z.-H.; Lai, B.
2007-01-01
Collimating perfect crystal optics in a combination with the X-ray focusing optics has been applied to perform high angular resolution microbeam diffraction and scattering experiments on micron-size optoelectronic devices produced by modern semiconductor technology. At CHESS, we used capillary optics and perfect Si/Ge crystal(s) arrangement to perform X-ray standing waves, high angular-resolution diffraction and high resolution reciprocal space mapping analysis. At the APS, 2ID-D microscope beamline, we employed a phase zone plate producing a beam with the size of 240 nm in the horizontal plane and 350 nm in the vertical (diffraction) plane and a perfect Si (004) analyzer crystal to perform diffraction analysis of selectively grown InGaAsP and InGaAlAs-based waveguides with arc sec angular resolution
Blind Source Separation For Ion Mobility Spectra
International Nuclear Information System (INIS)
Marco, S.; Pomareda, V.; Pardo, A.; Kessler, M.; Goebel, J.; Mueller, G.
2009-01-01
Miniaturization is a powerful trend for smart chemical instrumentation in a diversity of applications. It is know that miniaturization in IMS leads to a degradation of the system characteristics. For the present work, we are interested in signal processing solutions to mitigate limitations introduced by limited drift tube length that basically involve a loss of chemical selectivity. While blind source separation techniques (BSS) are popular in other domains, their application for smart chemical instrumentation is limited. However, in some conditions, basically linearity, BSS may fully recover the concentration time evolution and the pure spectra with few underlying hypothesis. This is extremely helpful in conditions where non-expected chemical interferents may appear, or unwanted perturbations may pollute the spectra. SIMPLISMA has been advocated by Harrington et al. in several papers. However, more modern methods of BSS for bilinear decomposition with the restriction of positiveness have appeared in the last decade. In order to explore and compare the performances of those methods a series of experiments were performed.
Spectra of clinical CT scanners using a portable Compton spectrometer
International Nuclear Information System (INIS)
Duisterwinkel, H. A.; Abbema, J. K. van; Kawachimaru, R.; Paganini, L.; Graaf, E. R. van der; Brandenburg, S.; Goethem, M. J. van
2015-01-01
Purpose: Spectral information of the output of x-ray tubes in (dual source) computer tomography (CT) scanners can be used to improve the conversion of CT numbers to proton stopping power and can be used to advantage in CT scanner quality assurance. The purpose of this study is to design, validate, and apply a compact portable Compton spectrometer that was constructed to accurately measure x-ray spectra of CT scanners. Methods: In the design of the Compton spectrometer, the shielding materials were carefully chosen and positioned to reduce background by x-ray fluorescence from the materials used. The spectrum of Compton scattered x-rays alters from the original source spectrum due to various physical processes. Reconstruction of the original x-ray spectrum from the Compton scattered spectrum is based on Monte Carlo simulations of the processes involved. This reconstruction is validated by comparing directly and indirectly measured spectra of a mobile x-ray tube. The Compton spectrometer is assessed in a clinical setting by measuring x-ray spectra at various tube voltages of three different medical CT scanner x-ray tubes. Results: The directly and indirectly measured spectra are in good agreement (their ratio being 0.99) thereby validating the reconstruction method. The measured spectra of the medical CT scanners are consistent with theoretical spectra and spectra obtained from the x-ray tube manufacturer. Conclusions: A Compton spectrometer has been successfully designed, constructed, validated, and applied in the measurement of x-ray spectra of CT scanners. These measurements show that our compact Compton spectrometer can be rapidly set-up using the alignment lasers of the CT scanner, thereby enabling its use in commissioning, troubleshooting, and, e.g., annual performance check-ups of CT scanners
Spectra of clinical CT scanners using a portable Compton spectrometer.
Duisterwinkel, H A; van Abbema, J K; van Goethem, M J; Kawachimaru, R; Paganini, L; van der Graaf, E R; Brandenburg, S
2015-04-01
Spectral information of the output of x-ray tubes in (dual source) computer tomography (CT) scanners can be used to improve the conversion of CT numbers to proton stopping power and can be used to advantage in CT scanner quality assurance. The purpose of this study is to design, validate, and apply a compact portable Compton spectrometer that was constructed to accurately measure x-ray spectra of CT scanners. In the design of the Compton spectrometer, the shielding materials were carefully chosen and positioned to reduce background by x-ray fluorescence from the materials used. The spectrum of Compton scattered x-rays alters from the original source spectrum due to various physical processes. Reconstruction of the original x-ray spectrum from the Compton scattered spectrum is based on Monte Carlo simulations of the processes involved. This reconstruction is validated by comparing directly and indirectly measured spectra of a mobile x-ray tube. The Compton spectrometer is assessed in a clinical setting by measuring x-ray spectra at various tube voltages of three different medical CT scanner x-ray tubes. The directly and indirectly measured spectra are in good agreement (their ratio being 0.99) thereby validating the reconstruction method. The measured spectra of the medical CT scanners are consistent with theoretical spectra and spectra obtained from the x-ray tube manufacturer. A Compton spectrometer has been successfully designed, constructed, validated, and applied in the measurement of x-ray spectra of CT scanners. These measurements show that our compact Compton spectrometer can be rapidly set-up using the alignment lasers of the CT scanner, thereby enabling its use in commissioning, troubleshooting, and, e.g., annual performance check-ups of CT scanners.
Angular momentum non-conserving symmetries in bosonic models
Energy Technology Data Exchange (ETDEWEB)
Fortunato, L [ECT, Strada delle Tabarelle 286, I-38123 Villazzano (Trento) (Italy); De Graaf, W A, E-mail: fortunat@pd.infn.it [Dip. Matematica, Universita di Trento, via Sommarive 24, I-38123 Povo, Trento (Italy)
2011-04-08
The Levi-Malcev decomposition is applied to bosonic models of quantum mechanics based on unitary Lie algebras u(2), u(2)+u(2), u(3) and u(4) to clearly disentangle semisimple subalgebras. The theory of weighted Dynkin diagrams is then applied to identify conjugacy classes of relevant A{sub 1} subalgebras allowing us to introduce a complete classification of new angular momentum non conserving (AMNC) dynamical symmetries. The tensor analysis of the whole algebra based on the new 'angular momentum' operators reveals unexpected spinors to occur in purely bosonic models. The new chains of subalgebra can be invoked to set up ANMC bases for diagonalization.
Angular momentum non-conserving symmetries in bosonic models
Fortunato, L.; de Graaf, W. A.
2011-04-01
The Levi-Malcev decomposition is applied to bosonic models of quantum mechanics based on unitary Lie algebras u(2), u(2)⊕u(2), u(3) and u(4) to clearly disentangle semisimple subalgebras. The theory of weighted Dynkin diagrams is then applied to identify conjugacy classes of relevant A1 subalgebras allowing us to introduce a complete classification of new angular momentum non conserving (AMNC) dynamical symmetries. The tensor analysis of the whole algebra based on the new 'angular momentum' operators reveals unexpected spinors to occur in purely bosonic models. The new chains of subalgebra can be invoked to set up ANMC bases for diagonalization.
Spatial distribution of angular momentum inside the nucleon
Lorcé, Cédric; Mantovani, Luca; Pasquini, Barbara
2018-01-01
We discuss in detail the spatial distribution of angular momentum inside the nucleon. We show that the discrepancies between different definitions originate from terms that integrate to zero. Even though these terms can safely be dropped at the integrated level, they have to be taken into account when discussing distributions. Using the scalar diquark model, we illustrate our results and, for the first time, check explicitly that the equivalence between kinetic and canonical orbital angular momentum persists at the level of distributions, as expected in a system without gauge degrees of freedom.
Alignment of angular velocity sensors for a vestibular prosthesis
Directory of Open Access Journals (Sweden)
DiGiovanna Jack
2012-02-01
Full Text Available Abstract Vestibular prosthetics transmit angular velocities to the nervous system via electrical stimulation. Head-fixed gyroscopes measure angular motion, but the gyroscope coordinate system will not be coincident with the sensory organs the prosthetic replaces. Here we show a simple calibration method to align gyroscope measurements with the anatomical coordinate system. We benchmarked the method with simulated movements and obtain proof-of-concept with one healthy subject. The method was robust to misalignment, required little data, and minimal processing.
On angular distribution of nucleus fission fragments by fast neutrons
International Nuclear Information System (INIS)
Barabanov, A.L.; Grechukhin, D.P.
1987-01-01
Evaluation of amplitudes of quadrupole and hexadecapole components of angular distribution of nucleus fission fragments by neutrons with the energies E n < or approx. 6 MeV is conducted. Stability of this amplitude to permeability optical coefficient variations for neutrons is revealed. It is shown, that the ratio of these amplitudes as well as the character of their dependence on the target nucleus orientation degree are sensitive to the type of fission probability distribution along K projection if fissile nucleus J spin to the fragment scattering axis. This sensitivity may be used for fragment angular distribution anisotropy formation statistical model verification
Four Cases of Angular Cheilitis in Orthodontic Patients
Directory of Open Access Journals (Sweden)
P Kafaie
2006-07-01
Full Text Available Contact dermatitis is an inflammatory reaction of the skin and mucosa to either external or internal factors. It can be divided to two forms of irritant contact dermatitis and allergic contact dermatitis. Nickel is one of the most common materials that causes allergic contact dermatitis and is widely used in orthodontic appliances. The inflammatory reaction to this metal in orthodontics is usually stomatitis and angular cheilitis is very rare. We report 4 cases of angular cheilitis in orthodontic patients and discuss about their causes and treatments.
Miller, N. J.; Chuss, D. T.; Marriage, T. A.; Wollack, E. J.; Appel, J. W.; Bennett, C. L.; Eimer, J.; Essinger-Hileman, T.; Fixsen, D. J.; Harrington, K.;
2016-01-01
Variable-delay Polarization Modulators (VPMs) are currently being implemented in experiments designed to measure the polarization of the cosmic microwave background on large angular scales because of their capability for providing rapid, front-end polarization modulation and control over systematic errors. Despite the advantages provided by the VPM, it is important to identify and mitigate any time-varying effects that leak into the synchronously modulated component of the signal. In this paper, the effect of emission from a 300 K VPM on the system performance is considered and addressed. Though instrument design can greatly reduce the influence of modulated VPM emission, some residual modulated signal is expected. VPM emission is treated in the presence of rotational misalignments and temperature variation. Simulations of time-ordered data are used to evaluate the effect of these residual errors on the power spectrum. The analysis and modeling in this paper guides experimentalists on the critical aspects of observations using VPMs as front-end modulators. By implementing the characterizations and controls as described, front-end VPM modulation can be very powerful for mitigating 1/ f noise in large angular scale polarimetric surveys. None of the systematic errors studied fundamentally limit the detection and characterization of B-modes on large scales for a tensor-to-scalar ratio of r= 0.01. Indeed, r less than 0.01 is achievable with commensurately improved characterizations and controls.
RECOVERY OF LARGE ANGULAR SCALE CMB POLARIZATION FOR INSTRUMENTS EMPLOYING VARIABLE-DELAY POLARIZATION MODULATORS
Energy Technology Data Exchange (ETDEWEB)
Miller, N. J.; Marriage, T. A.; Appel, J. W.; Bennett, C. L.; Eimer, J.; Essinger-Hileman, T.; Harrington, K.; Rostem, K.; Watts, D. J. [Department of Physics and Astronomy, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218 (United States); Chuss, D. T. [Department of Physics, Villanova University, 800 E Lancaster, Villanova, PA 19085 (United States); Wollack, E. J.; Fixsen, D. J.; Moseley, S. H.; Switzer, E. R., E-mail: Nathan.J.Miller@nasa.gov [Observational Cosmology Laboratory, Code 665, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)
2016-02-20
Variable-delay Polarization Modulators (VPMs) are currently being implemented in experiments designed to measure the polarization of the cosmic microwave background on large angular scales because of their capability for providing rapid, front-end polarization modulation and control over systematic errors. Despite the advantages provided by the VPM, it is important to identify and mitigate any time-varying effects that leak into the synchronously modulated component of the signal. In this paper, the effect of emission from a 300 K VPM on the system performance is considered and addressed. Though instrument design can greatly reduce the influence of modulated VPM emission, some residual modulated signal is expected. VPM emission is treated in the presence of rotational misalignments and temperature variation. Simulations of time-ordered data are used to evaluate the effect of these residual errors on the power spectrum. The analysis and modeling in this paper guides experimentalists on the critical aspects of observations using VPMs as front-end modulators. By implementing the characterizations and controls as described, front-end VPM modulation can be very powerful for mitigating 1/f noise in large angular scale polarimetric surveys. None of the systematic errors studied fundamentally limit the detection and characterization of B-modes on large scales for a tensor-to-scalar ratio of r = 0.01. Indeed, r < 0.01 is achievable with commensurately improved characterizations and controls.
Analysis of Diablo Canyon site response spectra
International Nuclear Information System (INIS)
Bernreuter, D.L.; Wight, L.H.
1977-01-01
The Diablo Canyon Nuclear Power Plant, located on the central California coast, is nearing completion. Recent geologic and seismological investigations have indicated that the nearby Hosgri fault may be part of a major fault system. If so, the original Design Basis Earthquake (DBE) may be inadequate for Diablo Canyon. Therefore, several factors that could significantly affect the design response spectra for the site were examined. It was found that, because of the area's geology, significant site effects could occur that would reduce ground motion; possible soil-structure interaction would also reduce the seismic motion at the basemat of the main structure as compared to the free-field motion. Studies of wave-passage effects have shown that they are complicated and cannot be easily predicted. It is concluded that an increased-magnitude DBE should have little effect on the reactor design if the increase is caused by increased stress drop rather than greater fault rupture length