WorldWideScience

Sample records for angular overlap model

  1. Crystal Field Theory and the Angular Overlap Model Applied to Hydrides of Main Group Elements.

    Science.gov (United States)

    Moore, E. A.

    1990-01-01

    Described is how crystal field theory and the angular overlap model can be applied to very simple molecules which can then be used to introduce such concepts as bonding orbitals, MO diagrams, and Walsh diagrams. The main-group compounds are used as examples and a switch to the transition metal complexes. (KR)

  2. An Angular Overlap Model for Cu(II) Ion in the AMOEBA Polarizable Force Field

    OpenAIRE

    Xiang, Jin Yu; Ponder, Jay W.

    2013-01-01

    An extensible polarizable force field for transition metal ion was developed based on AMOEBA and the angular overlap model (AOM) with consistent treatment of electrostatics for all atoms. Parameters were obtained by fitting molecular mechanics (MM) energies to various ab initio gas-phase calculations. The results of parameterization were presented for copper (II) ion ligated to water and model fragments of amino acid residues involved in the copper binding sites of type 1 copper proteins. Mol...

  3. An Angular Overlap Model for Cu(II) Ion in the AMOEBA Polarizable Force Field.

    Science.gov (United States)

    Xiang, Jin Yu; Ponder, Jay W

    2014-01-01

    An extensible polarizable force field for transition metal ion was developed based on AMOEBA and the angular overlap model (AOM) with consistent treatment of electrostatics for all atoms. Parameters were obtained by fitting molecular mechanics (MM) energies to various ab initio gas-phase calculations. The results of parameterization were presented for copper (II) ion ligated to water and model fragments of amino acid residues involved in the copper binding sites of type 1 copper proteins. Molecular dynamics (MD) simulations were performed on aqueous copper (II) ion at various temperatures, as well as plastocyanin (1AG6) and azurin (1DYZ). Results demonstrated that the AMOEBA-AOM significantly improves the accuracy of classical MM in a number of test cases when compared to ab initio calculations. The Jahn-Teller distortion for hexa-aqua copper (II) complex was handled automatically without specifically designating axial and in-plane ligands. Analyses of MD trajectories resulted in a 6-coordination first solvation shell for aqueous copper (II) ion and a 1.8ns average residence time of water molecules. The ensemble average geometries of 1AG6 and 1DYZ copper binding sites were in general agreement with X-ray and previous computational studies. PMID:25045338

  4. Schwinger model simulations with dynamical overlap fermions

    OpenAIRE

    Bietenholz, Wolfgang; Shcheredin, Stanislav; Volkholz, Jan

    2007-01-01

    We present simulation results for the 2-flavour Schwinger model with dynamical overlap fermions. In particular we apply the overlap hypercube operator at seven light fermion masses. In each case we collect sizable statistics in the topological sectors 0 and 1. Since the chiral condensate Sigma vanishes in the chiral limit, we observe densities for the microscopic Dirac spectrum, which have not been addressed yet by Random Matrix Theory (RMT). Nevertheless, by confronting the averages of the l...

  5. Schwinger model simulations with dynamical overlap fermions

    Energy Technology Data Exchange (ETDEWEB)

    Bietenholz, W. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Shcheredin, S. [Bielefeld Univ. (Germany). Fakultaet fuer Physik; Volkholz, J. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik

    2007-11-15

    We present simulation results for the 2-flavour Schwinger model with dynamical overlap fermions. In particular we apply the overlap hypercube operator at seven light fermion masses. In each case we collect sizable statistics in the topological sectors 0 and 1. Since the chiral condensate {sigma} vanishes in the chiral limit, we observe densities for the microscopic Dirac spectrum, which have not been addressed yet by Random Matrix Theory (RMT). Nevertheless, by confronting the averages of the lowest eigenvalues in different topological sectors with chiral RMT in unitary ensemble we obtain - for the very light fermion masses - values for {sigma} that follow closely the analytical predictions in the continuum. (orig.)

  6. Schwinger model simulations with dynamical overlap fermions

    International Nuclear Information System (INIS)

    We present simulation results for the 2-flavour Schwinger model with dynamical overlap fermions. In particular we apply the overlap hypercube operator at seven light fermion masses. In each case we collect sizable statistics in the topological sectors 0 and 1. Since the chiral condensate Σ vanishes in the chiral limit, we observe densities for the microscopic Dirac spectrum, which have not been addressed yet by Random Matrix Theory (RMT). Nevertheless, by confronting the averages of the lowest eigenvalues in different topological sectors with chiral RMT in unitary ensemble we obtain - for the very light fermion masses - values for Σ that follow closely the analytical predictions in the continuum. (orig.)

  7. Using Model-based Overlapping Seed Expansion to detect highly overlapping community structure

    CERN Document Server

    McDaid, Aaron F

    2010-01-01

    As research into community finding in social networks progresses, there is a need for algorithms capable of detecting overlapping community structure. Many algorithms have been proposed in recent years that are capable of assigning each node to more than a single community. The performance of these algorithms tends to degrade when the ground-truth contains a more highly overlapping community structure, with nodes assigned to more than two communities. Such highly overlapping structure is likely to exist in many social networks, such as Facebook friendship networks. In this paper we present a scalable algorithm, MOSES, based on a statistical model of community structure, which is capable of detecting highly overlapping community structure, especially when there is variance in the number of communities each node is in. In evaluation on synthetic data MOSES is found to be superior to existing algorithms, especially at high levels of overlap. We demonstrate MOSES on real social network data by analyzing the netwo...

  8. Orbital angular momentum and the parton model

    Energy Technology Data Exchange (ETDEWEB)

    Ratcliffe, P.G.

    1987-06-25

    The role of orbital angular momentum is discussed within the framework of the parton model. It is shown that a consistent interpretation of the Altarelli-Parisi equations governing the Q/sup 2/-evolution of helicity-weighted parton distributions necessitates the assumption that partons carry a large orbital angular momentum, contrary to popular belief. In developing the arguments presented, the Altarelli-Parisi formalism is extended to include orbital angular momentum dependence.

  9. Quark angular momentum in a spectator model

    International Nuclear Information System (INIS)

    We investigate the quark angular momentum in a model with the nucleon being a quark and a spectator. Both scalar and axial-vector spectators are included. We perform the calculations in the light-cone formalism where the parton concept is well defined. We calculate the quark helicity and canonical orbital angular momentum. Then we calculate the gravitational form factors which are often related to the kinetic angular momentums, and find that even in a no gauge field model we cannot identify the canonical angular momentums with half the sum of gravitational form factors. In addition, we examine the model relation between the orbital angular momentum and pretzelosity, and find it is violated in the axial-vector case

  10. Quark angular momentum in a spectator model

    Directory of Open Access Journals (Sweden)

    Tianbo Liu

    2015-02-01

    Full Text Available We investigate the quark angular momentum in a model with the nucleon being a quark and a spectator. Both scalar and axial-vector spectators are included. We perform the calculations in the light-cone formalism where the parton concept is well defined. We calculate the quark helicity and canonical orbital angular momentum. Then we calculate the gravitational form factors which are often related to the kinetic angular momentums, and find that even in a no gauge field model we cannot identify the canonical angular momentums with half the sum of gravitational form factors. In addition, we examine the model relation between the orbital angular momentum and pretzelosity, and find it is violated in the axial-vector case.

  11. Management Model of Resources Equilibrium Distribution among Overlapping-Generations

    Institute of Scientific and Technical Information of China (English)

    Jiang Xuemin; Li Ling

    2004-01-01

    The overlapping generation models the western scholars have designed from various perspectives to address different kinds of issues do not reflect Chinese emerging political and economic problems, and cannot be entirely and blindly applied to Chinese practical situation. In this paper the authors endeavor to incorporate some western scholars' research results into their own research findings to present overlapping generations model theory in a new perspective through establishing an overlapping generations theory on population including articulation of concepts and theorems of biological generation, economic generation and social generation and the overlapping periods in biological generation and two overlapping periods in economic generation among three generations. This management model with equilibrium distribution of resource wealth includes overlapping generations length model (δ),equilibrium transfer model (θ) and a complete model on equilibrium distribution among generations (δ-θ).The model provides quantitative basis for the creation of resource management system, and fills in a theoretical gap in this discipline in China. Besides,it furnishes a new methodology and manipulable tool for Chinese government to establish a comprehensive management information bank for many sectors such as economic trade, population, science and technology, education, human resource, natural resource and environment, agriculture, forestry,industry, mining and energy.

  12. Verification of overlap and fringing capacitance models for MOSFETs

    Science.gov (United States)

    Wakita, Naoki; Shigyo, Naoyuki

    2000-06-01

    Parasitic capacitance and resistance limit the VLSI device performance. Hence, a circuit model is needed to treat these effects correctly. This article focuses on the circuit models for the overlap capacitance ( Cgd,overlap) and the fringing capacitance ( Cgd,fringe) of MOSFETs. Comparisons between the models and the device simulations are carried out for verification of the models. Also, a limitation of Cgd,fringe model for a future device miniaturization is found based on SIA Road Map. We propose a modified Cgd,fringe model. The effectiveness of the modified model is demonstrated using two circuits.

  13. On the vector model of angular momentum

    Science.gov (United States)

    Saari, Peeter

    2016-09-01

    Instead of (or in addition to) the common vector diagram with cones, we propose to visualize the peculiarities of quantum mechanical angular momentum by a completely quantized 3D model. It spotlights the discrete eigenvalues and noncommutativity of components of angular momentum and corresponds to outcomes of measurements—real or computer-simulated. The latter can be easily realized by an interactive worksheet of a suitable program package of algebraic calculations. The proposed complementary method of visualization helps undergraduate students to better understand the counterintuitive properties of this quantum mechanical observable.

  14. A fuzzy approach to the Weighted Overlap Dominance model

    DEFF Research Database (Denmark)

    Franco de los Rios, Camilo Andres; Hougaard, Jens Leth; Nielsen, Kurt

    2013-01-01

    interactive way, where input data can take the form of uniquely-graded or interval-valued information. Here we explore the Weighted Overlap Dominance (WOD) model from a fuzzy perspective and its outranking approach to decision support and multidimensional interval analysis. Firstly, imprecision measures are...

  15. Semiclassical model for attosecond angular streaking.

    Science.gov (United States)

    Smolarski, M; Eckle, P; Keller, U; Dörner, R

    2010-08-16

    Attosecond angular streaking is a new technique to achieve unsurpassed time accuracy of only a few attoseconds. Recently this has been successfully used to set an upper limit on the electron tunneling delay time in strong laser field ionization. The measurement technique can be modeled with either the time-dependent Schrödinger equation (TDSE) or a more simple semiclassical approach that describes the process in two steps in analogy to the three-step model in high harmonic generation (HHG): step one is the tunnel ionization and step two is the classical motion in the strong laser field. Here we describe in detail a semiclassical model which is based on the ADK theory for the tunneling step, with subsequent classical propagation of the electron in the laser field. We take into account different ellipticities of the laser field and a possible wavelength-dependent ellipticity that is typically observed for pulses in the two-optical-cycle regime. This semiclassical model shows excellent agreement with the experimental result. PMID:20721150

  16. Quark Orbital Angular Momentum in the MIT Bag Model

    OpenAIRE

    Burkardt, Matthias; Jarrah, Abdullah

    2010-01-01

    Using the MIT bag model, we study the contribution from the gluon vector potential due to the spectators to the orbital angular momentum of a quark in the bag model. For $\\alpha_s = {\\cal O}(1)$, this spectator contribution to the quark orbital angular momentum in the gauge-covariant Ji decomposition is of the same order as the non gauge-covariant quark orbital angular momentum and its magnitude is larger for $d$ than for $u$ quarks and negative for both.

  17. Resolution of overlapping ambiguity strings based on maximum entropy model

    Institute of Scientific and Technical Information of China (English)

    ZHANG Feng; FAN Xiao-zhong

    2006-01-01

    The resolution of overlapping ambiguity strings (OAS) is studied based on the maximum entropy model.There are two model outputs,where either the first two characters form a word or the last two characters form a word.The features of the model include one word in context of OAS,the current OAS and word probability relation of two kinds of segmentation results.OAS in training text is found by the combination of the FMM and BMM segmentation method.After feature tagging they are used to train the maximum entropy model.The People Daily corpus of January 1998 is used in training and testing.Experimental results show a closed test precision of 98.64% and an open test precision of 95.01%.The open test precision is 3,76% better compared with that of the precision of common word probability method.

  18. Orbital Angular Momentum in the Chiral Quark Model

    OpenAIRE

    Song, Xiaotong

    1998-01-01

    We developed a new and unified scheme for describing both quark spin and orbital angular momenta in symmetry-breaking chiral quark model. The loss of quark spin in the chiral splitting processes is compensated by the gain of the orbital angular momentum carried by quarks and antiquarks. The sum of both spin and orbital angular momenta carried by quarks and antiquarks is 1/2. The analytic and numerical results for the spin and orbital angular momenta carried by quarks and antiquarks in the nuc...

  19. An overlapping generations model of climate-economy interactions

    International Nuclear Information System (INIS)

    A numerically calibrated overlapping generations model of climate change and the world economy is examined in this paper. In the absence of inter-generational transfers, efficient rates of greenhouse gas emissions abatement rise from 16% in the present to 25% in the long run, while mean global temperature increases by 7.4 deg C relative to the pre industrial norm. A utilitarian optimum, which attaches equal weight to each generation's life-cycle utility, yields abatement rates that rise from 48% to 89%, with a long-run temperature increase of 3.4 deg C. A second-best utilitarian path, in which inter-generational transfers are by assumption institutionally infeasible, also supports stringent abatement measures

  20. A Model-Based Framework to Overlap Product Development Activities

    OpenAIRE

    Viswanathan Krishnan; Steven D. Eppinger; Whitney, Daniel E.

    1997-01-01

    Intense competition in many industries forces manufacturing firms to develop new, higher quality products at an increasingly rapid pace. Overlapping product development activities is an important component of concurrent product development that can help firms develop products faster. However, since product development activities may be coupled in complex ways, overlapping interrelated activities can present many difficulties. Without careful management of the overlapped product development pr...

  1. Orbital Angular Momentum in Scalar Diquark Model and QED

    OpenAIRE

    BC, Hikmat; Burkardt, Matthias

    2011-01-01

    We compare the orbital angular momentum of the 'quark' in the scalar diquark model as well as that of the electron in QED (to order {\\alpha}) obtained from the Jaffe-Manohar de- composition to that obtained from the Ji relation. We estimate the importance of the vector potential in the definition of orbital angular momentum.

  2. Orbital Angular Momentum in Scalar Diquark Model and QED

    International Nuclear Information System (INIS)

    We compare the orbital angular momentum of the 'quark' in the scalar diquark model as well as that of the electron in QED (to order α) obtained from the Jaffe-Manohar decomposition to that obtained from the Ji relation. We estimate the importance of the vector potential in the definition of orbital angular momentum. (author)

  3. Modeling Overlapping Laminations in Magnetic Core Materials Using 2-D Finite-Element Analysis

    DEFF Research Database (Denmark)

    Jensen, Bogi Bech; Guest, Emerson David; Mecrow, Barrie C.

    2015-01-01

    This paper describes a technique for modeling overlapping laminations in magnetic core materials using two-dimensional finite-element (2-D FE) analysis. The magnetizing characteristic of the overlapping region is captured using a simple 2-D FE model of the periodic overlapping geometry and a comp...

  4. On Angular Sampling Methods for 3-D Spatial Channel Models

    DEFF Research Database (Denmark)

    Fan, Wei; Jämsä, Tommi; Nielsen, Jesper Ødum; Pedersen, Gert Frølund

    2015-01-01

    This paper discusses generating three dimensional (3D) spatial channel models with emphasis on the angular sampling methods. Three angular sampling methods, i.e. modified uniform power sampling, modified uniform angular sampling, and random pairing methods are proposed and investigated in detail....... The random pairing method, which uses only twenty sinusoids in the ray-based model for generating the channels, presents good results if the spatial channel cluster is with a small elevation angle spread. For spatial clusters with large elevation angle spreads, however, the random pairing method would...

  5. A MODEL FOR OVERLAPPING TRIGRAM TECHNIQUE FOR TELUGU SCRIPT

    Directory of Open Access Journals (Sweden)

    B.Vishnu Vardhan

    2007-09-01

    Full Text Available N-grams are consecutive overlapping N-character sequences formed from an input stream. N-grams are used as alternatives to word-based retrieval in a number of systems. In this paper we propose a model applicable to categorization of Telugu document. Telugu is an official language derived from ancient Brahmi script and also the official language of the state of Andhra Pradesh. Brahmi based script is noted for complex conjunct formations. The canonical structure is described as ((C C CV. The structure evolves any character from a set of basic syllables known as vowels and consonants where consonant, vowel (CV core is the basic unit optionally preceded by one or two consonants. A huge set of characters that resemble the phonetic nature with an equivalent character shape are derived from the canonical structure. Words formed from this set evolved into a large corpus. Stringent grammar rules in word formation are part of this corpus. Certain word combinations result in the formation of single word is to be addressed where the last character of the first word and first character of the successive word are combined. Keeping in view of these complexities we propose a trigram based system that provides a reasonable alternative to a word based system in achieving document categorization for the language Telugu.

  6. Expectation formation in an overlapping generation model with production

    Science.gov (United States)

    Cavalli, Fausto; Naimzada, Ahmad

    2016-03-01

    In this paper, we investigate the dynamic properties of an overlapping generations' model with capital accumulation, in which agents work in both periods of life. We compare three different expectation mechanisms: perfect foresight, myopic foresight, and adaptive expectations, focusing, in particular, on this last one. We show that the steady state is the same under each mechanism, and we prove its global stability for perfectly foresighted agents. After investigating local stability conditions under myopic expectations, we study in detail the case of adaptive expectations. We show that, under both reduced rationality mechanisms, if the share of time devoted to labor in the second period of life is large enough, periodic and complex dynamics can occur. Moreover, deepening the investigation through numerical simulations, we study the global stability behavior under adaptive expectations. Such complex scenarios also include the coexistence between the stable steady state and a periodic or chaotic attractor, giving rise to multistability, which does not arise under myopic expectations. Finally, we provide some considerations about the possibility for the agents to improve their forecasts by observing the forecasting error time series.

  7. Advances in Studies of Cloud Overlap and Its Radiative Transfer in Climate Models

    Institute of Scientific and Technical Information of China (English)

    张华; 荆现文

    2016-01-01

    The latest advances in studies on the treatment of cloud overlap and its radiative transfer in global climate models are summarized. Developments with respect to this internationally challenging problem are described from aspects such as the design of cloud overlap assumptions, the realization of cloud overlap assumptions within climate models, and the data and methods used to obtain consistent observations of cloud overlap structure and radiative transfer in overlapping clouds. To date, there has been an appreciable level of achievement in studies on cloud overlap in climate models, demonstrated by the development of scientific assumptions (e.g., e-folding overlap) to describe cloud overlap, the invention and broad application of the fast radiative transfer method for overlapped clouds (Monte Carlo Independent Column Approximation), and the emergence of continuous 3D cloud satellite observation (e.g., CloudSat/CALIPSO) and cloud-resolving models, which provide numerous data valuable for the exact description of cloud overlap structure in climate models. However, present treatments of cloud overlap and its radiative transfer process are far from complete, and there remain many unsettled problems that need to be explored in the future.

  8. Angular Momentum Generation from Holographic Gravitational Chern-Simons Model

    CERN Document Server

    Wu, Chaolun

    2014-01-01

    We study parity-violating effects, particularly the generation of angular momentum density and its relation to the parity-odd and dissipationless transport coefficient Hall viscosity, in strongly-coupled quantum fluid systems in 2+1 dimensions using holographic method. We employ a (3+1)-dimensional holographic model of Einstein-Maxwell system with a gravitational Chern-Simons term coupled to a dynamical scalar field. The scalar can condensate and this breaks the parity spontaneously. We find that when the scalar condensates, a non-vanishing angular momentum density and an associated edge current are generated by the gravitational Chern-Simons term, together with the emergence of Hall viscosity. Both angular momentum density and Hall viscosity acquire membrane paradigm forms and are only determined by the geometry and condensate near the horizon. We present both general analytic results and numeric results which take back-reactions into account. The ratio between Hall viscosity and angular momentum density is ...

  9. Modeling of the angular dependence of plasma etching

    International Nuclear Information System (INIS)

    An understanding of the angular dependence of etching yield is essential to investigate the origins of sidewall roughness during plasma etching. In this article the angular dependence of polysilicon etching in Cl2 plasma was modeled as a combination of individual angular-dependent etching yields for ion-initiated processes including physical sputtering, ion-induced etching, vacancy generation, and removal. The modeled etching yield exhibited a maximum at ∼60 degree sign off-normal ion angle at low flux ratio, indicative of physical sputtering. It transformed to the angular dependence of ion-induced etching with the increase in the neutral-to-ion flux ratio. Good agreement between the modeling and the experiments was achieved for various flux ratios and ion energies. The variation of etching yield in response to the ion angle was incorporated in the three-dimensional profile simulation and qualitative agreement was obtained. The surface composition was calculated and compared to x-ray photoelectron spectroscopy (XPS) analysis. The modeling indicated a Cl areal density of 3x1015 atoms/cm2 on the surface that is close to the value determined by the XPS analysis. The response of Cl fraction to ion energy and flux ratio was modeled and correlated with the etching yields. The complete mixing-layer kinetics model with the angular dependence effect will be used for quantitative surface roughening analysis using a profile simulator in future work.

  10. Financial Intermediation in an Overlapping Generations Model with Transaction Costs

    OpenAIRE

    Jos van Bommel; Augusto Hasman; Margarita Samartin

    2011-01-01

    We analyze an overlapping generations economy where agents interact to share liquidity risk. We show that a pure exchange economy has excessive trade in equilibrium, and that intergenerational financial intermediaries reduce the number of interactions by catering to clienteles with uncorrelated liquidity needs. In the intermediated economy equilibrium, intermediaries finance redemptions with loan income, and never sell assets. If the economy is subject to transaction costs, the intermediated ...

  11. Angular Distribution of Clustersin Skewed CDM Models

    CERN Document Server

    Borgani, S; Plionis, M

    1994-01-01

    We perform a detailed investigation of the statistical properties of the projected distribution of galaxy clusters obtained in Cold Dark Matter (CDM) models with both Gaussian and skewed primordial density fluctuations. We use N-body simulations to construct a set artificial Lick maps. An objective cluster--finding algorithm is used to identify clusters of different richness. For Gaussian models, the overall number of clusters is too small in the standard CDM case, but a model with higher normalisation fares much better; non--Gaussian models with negative skewness also fit faily well. We apply several statistical tests to compare real and simulated cluster samples, such as the 2-point correlation function, the minimal spanning tree construction, the multifractal analysis and the skewness of cell counts. The emerging picture is that Gaussian models, even with a higher normalization, are in trouble. Skew-positive models are also ruled out, while skew-negative models can reproduce the observed clustering of gala...

  12. Method for Slater-Type Density Fitting for Intermolecular Electrostatic Interactions with Charge Overlap. I. The Model.

    Science.gov (United States)

    Öhrn, Anders; Hermida-Ramon, Jose M; Karlström, Gunnar

    2016-05-10

    The effects of charge overlap, or charge penetration, are neglected in most force fields and interaction terms in QM/MM methods. The effects are however significant at intermolecular distances near the van der Waals minimum. In the present study, we propose a method to evaluate the intermolecular Coloumb interaction using Slater-type functions, thus explicitly modeling the charge overlap. The computational cost of the method is low, which allows it to be used in large systems with most force fields as well as in QM/MM schemes. The charge distribution is modeled as a distributed multipole expansion up to quadrupole and Slater-type functions of angular momentum up to L = 1. The exponents of the Slater-type functions are obtained using a divide-and-conquer method to avoid the curse of dimensionality that otherwise is present for large nonlinear optimizations. A Levenberg-Marquardt algorithm is applied in the fitting process. A set of parameters is obtained for each molecule, and the process is fully automated. Calculations have been performed in the carbon monoxide and the water dimers to illustrate the model. Results show a very good accuracy of the model with relative errors in the electrostatic potential lower than 3% over all reasonable separations. At very short distances where the charge overlaps is the most significant, errors are lower than 8% and lower than 3.5% at distances near the van der Waals minimum. PMID:27015000

  13. Angular Power Spectrum in Modular Invariant Inflation Model

    CERN Document Server

    Hayashi, M J; Takami, T; Okame, Y; Takagi, K; Watanabe, T; Hayashi, Mitsuo J.; Hirai, Shiro; Takami, Tomoyuki; Okame, Yusuke; Takagi, Kenji; Watanabe, Tomoki

    2006-01-01

    We propose a scalar potential of inflation, motivated by the modular invariant supergravity and computed the angular power spectra of the adiabatic density perturbations. The potential consists of three scalar fields S, Y and T with the two free parameters. By fitting the parameters with the cosmological data at the fixed point T=1, we find the potential behaves as that of the single field S, which slowly rolls down along the minimized trajectory in Y and gives rise the sufficient inflation matching with the recent three-year WMAP data, e.g. the spectral index n_s = 0.951. The TT and TE angular power spectra obtained from our model almost completely coincides with the fitting of the LambdaCDM model. We conclude that our model is considered to be an adequate theory of inflation to explain the present data, although more theoritical foundation of the model should be required.

  14. Angular Power Spectrum in Modular Invariant Inflation Model

    International Nuclear Information System (INIS)

    A scalar potential of inflation is proposed and the angular power spectra of the adiabatic density perturbations are computed. The potential consists of three scalar fields, S, Y and T, together with two free parameters. By fitting the parameters to cosmological data at the fixed point T = 1, we find that the potential behaves like the single-field potential of S, which slowly rolls down. We further show that the inflation predictions corresponding to this potential provide a good fit to the recent three-year WMAP data, e.g. the spectral index ns = 0.951.The TT and TE angular power spectra obtained from our model almost completely coincide with the corresponding results obtained from the ΛCDM model. We conclude that our model is considered to be an adequate theory of inflation that explains the present data

  15. Modelling the pension system in an overlapping-generations general equilibrium modelling framework

    OpenAIRE

    Verbic, Miroslav

    2007-01-01

    This article presents a theoretical contribution to the field of overlapping-generations general equilibrium modelling, i.e. an upgrade of this branch of models with a pension system. Within the pension block we model both the first pension pillar, financed on a pay-as-you-go basis, and the fully-funded second pillar of the Slovenian pension system. The modelling of the first pension pillar is based on cash flows of the mandatory pension insurance institution, the relationship between the pen...

  16. Orbital Angular Momentum Parton Distributions in Quark Models

    OpenAIRE

    Scopetta, S.; Vento, V.

    1999-01-01

    At the low energy, {\\sl hadronic}, scale we calculate Orbital Angular Momentum (OAM) twist-two parton distributions for the relativistic MIT bag model and for non-relativistic quark models. We reach the scale of the data by leading order evolution in perturbative QCD. We confirm that the contribution of quarks and gluons OAM to the nucleon spin grows with $Q^2$, and it can be relevant at the experimental scale, even if it is negligible at the hadronic scale, irrespective of the model used. Th...

  17. A Numerical Study of the 2-Flavour Schwinger Model with Dynamical Overlap Hypercube Fermions

    OpenAIRE

    Bietenholz, Wolfgang; Hip, Ivan; Shcheredin, Stanislav; Volkholz, Jan

    2011-01-01

    We present numerical results for the 2-flavour Schwinger model with dynamical chiral lattice fermions. We insert an approximately chiral hypercube Dirac operator into the overlap formula to construct the overlap hypercube operator. This is an exact solution to the Ginsparg-Wilson relation, with an excellent level of locality and scaling. Due to its similarity with the hypercubic kernel, a low polynomial in this kernel provides a numerically efficient Hybrid Monte Carlo force. We measure the m...

  18. A Quark Model Analysis of Orbital Angular Momentum

    OpenAIRE

    Scopetta, Sergio; Vento Torres, Vicente

    1999-01-01

    Orbital Angular Momentum (OAM) twist-two parton distributions are studied. At the low energy, hadronic, scale we calculate them for the relativistic MIT bag model and for non-relativistic potential quark models. We reach the scale of the data by leading order evolution using the OPE and perturbative QCD. We confirm that the contribution of quarks and gluons OAM to the nucleon spin grows with $Q^2$, and it can be relevant at the experimental scale, even if it is negligible at the hadronic scal...

  19. Relational Consumption and Nonlinear Dynamics in an Overlapping Generations Model

    OpenAIRE

    Antoci, Angelo; Sodini, Mauro; Zarri, Luca

    2012-01-01

    In this paper, we show that incorporating the relational dimension into an otherwise standard OLG model and focusing on dynamic leisure externalities leads to dramatically different predictions. Here we show that when the old perceive private and relational consumption as substitutable goods, a series of interesting dynamic outcomes – such as local indeterminacy, non-linear phenomena (including chaotic dynamics) and even multiple equilibria with global indeterminacy – may arise. We also draw ...

  20. Modeling Angular-Momentum History in Dark-Matter Halos

    OpenAIRE

    Maller, Ariyeh H.; Dekel, Avishai; Somerville, Rachel S.

    2001-01-01

    We model the acquisition of spin by dark-matter halos in semi-analytic merger trees. We explore two different algorithms; one in which halo spin is acquired from the orbital angular momentum of merging satellites, and another in which halo spin is gained via tidal torquing on shells of material while still in the linear regime. We find that both scenarios produce the characteristic spin distribution of halos found in N-body simulations, namely, a log-normal distribution with mean ~0.04 and st...

  1. Percolation phase diagrams for multi-phase models built on the overlapping sphere model

    Science.gov (United States)

    Garboczi, E. J.

    2016-01-01

    The overlapping sphere (OS) percolation model gives a two-phase microstructure (matrix plus inclusions) that is useful for testing composite material ideas and other applications, as well as serving as a paradigm of overlapping object percolation and phase transitions. Real materials often have more than two phases, so it is of interest to extend the applicability of the OS model. A flexible variant of the OS model can be constructed by randomly assigning the spheres different phase labels, according to a uniform probability distribution, as they are inserted one by one into the matrix. The resulting three or more phase models can have different amounts of percolating and non-percolating phases, depending on the volume fraction of each phase and the total OS volume fraction. A three-dimensional digital image approach is used to approximately map out the percolation phase diagram of such models, explicitly up to four phases (one matrix plus three spherical inclusion phases) and implicitly for N > 4 phases. For the three phase model, it was found that a single OS sub-phase has a percolation threshold that ranges from about a volume fraction of 0.16, when the matrix volume fraction is about 0.01, to about 0.30, at a matrix volume fraction of about 0.7. The approximate analytical dependence of this sub-phase percolation threshold on the defining model parameters serves to guide the building of the percolation phase diagram for the N-phase model, and is used to determine the maximum value of N(N = 6) at which all N phases can be simultaneously percolated.

  2. Model Selection and Hypothesis Testing for Large-Scale Network Models with Overlapping Groups

    Science.gov (United States)

    Peixoto, Tiago P.

    2015-01-01

    The effort to understand network systems in increasing detail has resulted in a diversity of methods designed to extract their large-scale structure from data. Unfortunately, many of these methods yield diverging descriptions of the same network, making both the comparison and understanding of their results a difficult challenge. A possible solution to this outstanding issue is to shift the focus away from ad hoc methods and move towards more principled approaches based on statistical inference of generative models. As a result, we face instead the more well-defined task of selecting between competing generative processes, which can be done under a unified probabilistic framework. Here, we consider the comparison between a variety of generative models including features such as degree correction, where nodes with arbitrary degrees can belong to the same group, and community overlap, where nodes are allowed to belong to more than one group. Because such model variants possess an increasing number of parameters, they become prone to overfitting. In this work, we present a method of model selection based on the minimum description length criterion and posterior odds ratios that is capable of fully accounting for the increased degrees of freedom of the larger models and selects the best one according to the statistical evidence available in the data. In applying this method to many empirical unweighted networks from different fields, we observe that community overlap is very often not supported by statistical evidence and is selected as a better model only for a minority of them. On the other hand, we find that degree correction tends to be almost universally favored by the available data, implying that intrinsic node proprieties (as opposed to group properties) are often an essential ingredient of network formation.

  3. Symmetry chains for atomic shell model III. Symmetry chains conserving total orbital angular momentum

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, M.S. (Royal Military Coll. of Canada, Kingston, Ontario); Gruber, B. (Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany, F.R.). Inst. fuer Theoretische Physik)

    1982-01-01

    In this article symmetry chains for the atomic shell model are investigated which lead from the group SO(8l+-5) to the subgroup SOsub(L)(3). The tail group SOsub(L)(3) corresponds to total orbital angular momentum. Along these chains total orbital angular momentum L is a good quantum number, but not total spin S. Total orbital angular momentum can be considered as being made up of four quasi angular momenta.

  4. Overlap and activity glass transitions in plaquette spin models with hierarchical dynamics

    OpenAIRE

    Turner, Robert M.; Jack, Robert L.; Garrahan, Juan P.

    2015-01-01

    We consider thermodynamic and dynamic phase transitions in plaquette spin models of glasses. The thermodynamic transitions involve coupled (annealed) replicas of the model. We map these coupled-replica systems to a single replica in a magnetic field, which allows us to analyse the resulting phase transitions in detail. For the triangular plaquette model (TPM), we find for the coupled-replica system a phase transition between high- and low-overlap phases, occuring at a coupling eps*(T), which ...

  5. The impossibility of involuntary unemployment in an overlapping generations model with rational expectation

    DEFF Research Database (Denmark)

    Schultz, Christian

    1992-01-01

    If there is unemployment no matter how low the wage rate becomes, one speaks of involuntary unemployment. This phenomenon has been shown to arise in a variety of temporary or atemporal macro models with imperfect competition in the goods markets. In this paper we investigate whether the phenomeno...... of involuntary unemployment arises in a Hartian overlapping generations model with rational expectations. It does not, neither in the short nor in the long run...

  6. Angular Anisotropy of Fission and the Liquid Drop Model

    International Nuclear Information System (INIS)

    The results of calculations of the moments of inertia of the nucleus at the saddle point are given for the liquid drop model of potential energy, which takes into account the effect of blurring of the edge of the nucleus in the form of a correction to surface tension depending on the curvature of the effective surface (the GN-correction). If the GN-correction is applied when Γ 2/A. Unlike the normal liquid drop model, the value Jeff obtained in this way is in good agreement with the experimental figure found by Huizenga et al. from the angular anisotropy of fission, and at the same values Γ ≈ -0.1 and (Z2/A)crit ≈ 45, which agree best of all with other data. The data on the magnitude of Jeff make it possible to determine direct from the experiment and independently of the model the parameter (Z2/A)crit for the excited nuclear model. (author)

  7. Modeling seismic wave propagation in heterogeneous medium using overlap domain pseudospectral method

    Institute of Scientific and Technical Information of China (English)

    YAN Jiu-peng; WANG Yan-bin

    2008-01-01

    Pseudospectral method is an efficient and high accuracy numerical method for simulating seismic wave propagation in heterogeneous earth medium. Since its derivative operator is global, this method is commonly considered not suitable for parallel computation. In this paper, we introduce the parallel overlap domain decomposition scheme and give a parallel pseudospectral method implemented on distributed memory PC cluster system for modeling seismic wave propagation in heterogeneous medium. In this parallel method, the medium is decomposed into several subdomains and the wave equations are solved in each subdomain simultaneously. The solutions in each subdomain are connected through the transferring at the overlapped region. Using 2D models, we compared the parallel and traditional pseudospectral method, analyzed the accuracy of the parallel method. The results show that the parallel method can efficiently reduce computation time for the same accuracy as the traditional method. This method could be applied to large scale modeling of seismic wave propagation in 3D heterogeneous medium.

  8. Overlap and activity glass transitions in plaquette spin models with hierarchical dynamics

    Science.gov (United States)

    Turner, Robert M.; Jack, Robert L.; Garrahan, Juan P.

    2015-08-01

    We consider thermodynamic and dynamic phase transitions in plaquette spin models of glasses. The thermodynamic transitions involve coupled (annealed) replicas of the model. We map these coupled-replica systems to a single replica in a magnetic field, which allows us to analyze the resulting phase transitions in detail. For the triangular plaquette model (TPM), we find for the coupled-replica system a phase transition between high- and low-overlap phases, occurring at a coupling ɛ*(T ) , which vanishes in the low-temperature limit. Using computational path sampling techniques, we show that a single TPM also displays "space-time" transitions between active and inactive dynamical phases. These first-order dynamical transitions occur at a critical counting field sc(T ) ≳0 that appears to vanish at zero temperature in a manner reminiscent of the thermodynamic overlap transition. In order to extend the ideas to three dimensions, we introduce the square pyramid model, which also displays both overlap and activity transitions. We discuss a possible common origin of these various phase transitions, based on long-lived (metastable) glassy states.

  9. A study of the Gaussian overlap approach in the two-center shell model

    International Nuclear Information System (INIS)

    The Gaussian overlap approach (GOA) to the generator coordinate method (GCM) is carried through up to fourth order in the derivatives. By diagonalizing the norm overlap, a collective Schroedinger equation is obtained. The potential therein contains the usual potential energy surface (PES) plus correction terms, which subtract the zero-point energies (ZPE) is the PES. The formalism is applied to BCS states obtained from a two-center shell model (TCSM). To understand the crucial role of the pairing contributions in the GOA a schematic picture, the multi-level model, is constructed. An explicit numerical study of the convergence of the GOA is given for the TCSM, with the result that the GOA seems to be justified for medium and heavy nuclei but critical for light nuclei. (Auth.)

  10. Effect of the energy spectrum and angular momentum of pre-scission neutrons on the prediction of fission fragment angular anisotropy by the models

    Science.gov (United States)

    Soheyli, Saeed; Khanlari, Marzieh Varasteh

    2016-04-01

    Effects of the various neutron emission energy spectra, as well as the influence of the angular momentum of pre-scission neutrons on theoretical predictions of fission fragment angular anisotropies for several heavy-ion induced fission systems are considered. Although theoretical calculations of angular anisotropy are very sensitive to neutron emission correction, the effects of the different values of kinetic energy of emitted neutrons derived from the various neutron emission energy spectra before reaching to the saddle point on the prediction of fission fragment angular distribution by the model are not significant and can be neglected, since these effects on angular anisotropies of fission fragments for a wide range of fissility parameters and excitation energies of compound nuclei are not more than 10%. Furthermore, the theoretical prediction of fission fragment angular anisotropy is not sensitive to the angular momentum of emitted neutrons.

  11. Air Pollution, Allocation of Property Rights, Environmental Issues and Theoretical Overlapping Generations General Equilibrium Modelling

    OpenAIRE

    Tchouto Eric Jules

    2011-01-01

    This paper presents how the environment - considered as a production factor - and other related assumptions can be introduced step by step in a theoretical Overlapping Generations General Equilibrium Model (OLG - GE). The first part shows the behaviors of agents with pollution in the absence of an environmental policy. The second part emphasizes a Greenhouse Gas abatement policy through the allocation of Pollution Permit ownership, which allows property rights on the environment; here we assu...

  12. Imperfect competition in an overlapping generations model : a case for fiscal policy

    OpenAIRE

    d'Aspremont-Lynden, Claude; Dos Santos Ferreira, Rodolphe

    1995-01-01

    Imperfect competition is a meaningful feature for macroeconomic analysis only to the extent that it leads to properties qualitatively different from those obtained under perfect competition. In particular, we have to wonder how imperfect competition per se may found an effective fiscal policy. For that matter we consider a simple overlapping generations model with firms acting as Cournot oligopolists in the good market. Through fiscal policy, a government, keeping the stock of money constant, re...

  13. Retirement Indexation in a Stochastic Model with Overlapping Generations and Endogenous Labour Supply

    OpenAIRE

    Hagen Jørgensen, Ole

    2008-01-01

    Using a stochastic overlapping generations model with endogenous labour supply, this paper studies the design and performance of a policy rule for the retirement age in response to fertility and mortality shocks. Two main results are derived: First, to oset a change in the labour force the retirement age should adjust more than proportionally to the fertility change and, second, to be socially desirable the retirement age should be indexed less than proportionally to changes in life expectancy.

  14. Indeterminacy, bifurcations and chaos in an overlapping generations model with negative environmental externalities

    International Nuclear Information System (INIS)

    We analyze an overlapping generations model where agent's welfare depends on three goods: leisure, environmental quality and consumption of a private good. We assume that the production process of the private good depletes the natural resource and that the consumption of the private good alleviates the damages due to environmental deterioration. In such context, we show that individuals' reactions to environmental deterioration may lead to complex dynamics, in particular to the rise of periodic orbits and chaos.

  15. Modeling Angular-Momentum History in Dark-Matter Halo

    CERN Document Server

    Maller, A H; Somerville, R S; Maller, Ariyeh H.; Dekel, Avishai; Somerville, Rachel S.

    2002-01-01

    We model the acquisition of spin by dark-matter halos in semi-analytic merger trees. We explore two different algorithms; one in which halo spin is acquired from the orbital angular momentum of merging satellites, and another in which halo spin is gained via tidal torquing on shells of material while still in the linear regime. We find that both scenarios produce the characteristic spin distribution of halos found in N-body simulations, namely, a log-normal distribution with mean ~0.04 and standard deviation ~0.5 in the log. A perfect match requires fine-tuning of two free parameters. Both algorithms also reproduce the general insensitivity of the spin distribution to halo mass, redshift and cosmology seen in N-body simulations. The spin distribution can be made strictly constant by physically motivated scalings of the free parameters. In addition, both schemes predict that halos which have had recent major mergers have systematically larger spin values. These algorithms can be implemented within semi-analyti...

  16. MELTING OF GLASS BATCH - MODEL FOR MULTIPLE OVERLAPPING GAS-EVOLVING REACTIONS

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; PIERCE DA; POKORNY R; HRMA PR

    2012-02-07

    In this study, we present a model for the kinetics of multiple overlapping reactions. Mathematical representation of the kinetics of gas-evolving reactions is crucial for the modeling of the feed-to-glass conversion in a waste-glass melter. The model simulates multiple gas-evolving reactions that occur during heating of a high-alumina high-level waste melter feed. To obtain satisfactory kinetic parameters, we employed Kissinger's method combined with least-squares analysis. The power-law kinetics with variable reaction order sufficed for obtaining excellent agreement with measured thermogravimetric analysis data.

  17. A Numerical Study of the 2-Flavour Schwinger Model with Dynamical Overlap Hypercube Fermions

    CERN Document Server

    Bietenholz, Wolfgang; Shcheredin, Stanislav; Volkholz, Jan

    2011-01-01

    We present numerical results for the 2-flavour Schwinger model with dynamical chiral lattice fermions. We insert an approximately chiral hypercube Dirac operator into the overlap formula to construct the overlap hypercube operator. This is an exact solution to the Ginsparg-Wilson relation, with an excellent level of locality and scaling. Due to its similarity with the hypercubic kernel, a low polynomial in this kernel provides a numerically efficient Hybrid Monte Carlo force. We measure the microscopic Dirac spectrum and discuss the corresponding scale-invariant parameter, which takes a surprising form. This is an interesting case, since Random Matrix Theory is unexplored for this setting, where the chiral condensate {\\Sigma} vanishes in the chiral limit. We also measure {\\Sigma} and the "pion" mass, in distinct topological sectors. In this context we discuss and probe the topological summation of observables by various methods, as well as the evaluation of the topological susceptibility. The feasibility of t...

  18. Macroeconomic Impact of Population Aging in Japan: A Perspective from an Overlapping Generations Model

    OpenAIRE

    Muto, Ichiro; Oda, Takemasa; Sudo, Nao

    2012-01-01

    Due to a sharp decline in the fertility rate and a rapid increase in longevity, Japan's population aging is the furthest advanced in the world. In this study we explore the macroeconomic impact of population aging using a full-fledged overlapping generations model. Our model replicates well the time paths of Japan’s macroeconomic variables from the 1980s to the 2000s and yields future paths for these variables over a long horizon. We find that Japan’s population aging as a whole adversely aff...

  19. A numerical study of the 2-flavour Schwinger model with dynamical overlap hypercube fermions

    Energy Technology Data Exchange (ETDEWEB)

    Bietenholz, Wolfgang [Universidad Nacional Autonoma de Mexico, Instituto de Ciencias Nucleares, A.P. 70-543, Distrito Federal (Mexico); Hip, Ivan [University of Zagreb, Faculty of Geotechnical Engineering, Varazdin (Croatia); Shcheredin, Stanislav [Universitaet Bielefeld, Fakultaet fuer Physik, Bielefeld (Germany); Volkholz, Jan [Potsdam Institute for Climate Impact Research, Potsdam (Germany)

    2012-03-15

    We present numerical results for the 2-flavour Schwinger model with dynamical chiral lattice fermions. We insert an approximately chiral hypercube Dirac operator into the overlap formula to construct the overlap hypercube operator. This is an exact solution to the Ginsparg-Wilson relation, with an excellent level of locality and scaling. Due to its similarity with the hypercubic kernel, a low polynomial in this kernel provides a numerically efficient Hybrid Monte Carlo force. We measure the microscopic Dirac spectrum and discuss the corresponding scale-invariant parameter, which takes a surprising form. This is an interesting case, since Random Matrix Theory is unexplored for this setting, where the chiral condensate {sigma} vanishes in the chiral limit. We also measure {sigma} and the ''pion'' mass, in distinct topological sectors. In this context we discuss and probe the topological summation of observables by various methods, as well as the evaluation of the topological susceptibility. The feasibility of this summation is essential for the prospects of dynamical overlap fermions in QCD. (orig.)

  20. A numerical study of the 2-flavour Schwinger model with dynamical overlap hypercube fermions

    International Nuclear Information System (INIS)

    We present numerical results for the 2-flavour Schwinger model with dynamical chiral lattice fermions. We insert an approximately chiral hypercube Dirac operator into the overlap formula to construct the overlap hypercube operator. This is an exact solution to the Ginsparg-Wilson relation, with an excellent level of locality and scaling. Due to its similarity with the hypercubic kernel, a low polynomial in this kernel provides a numerically efficient Hybrid Monte Carlo force. We measure the microscopic Dirac spectrum and discuss the corresponding scale-invariant parameter, which takes a surprising form. This is an interesting case, since Random Matrix Theory is unexplored for this setting, where the chiral condensate Σ vanishes in the chiral limit. We also measure Σ and the ''pion'' mass, in distinct topological sectors. In this context we discuss and probe the topological summation of observables by various methods, as well as the evaluation of the topological susceptibility. The feasibility of this summation is essential for the prospects of dynamical overlap fermions in QCD. (orig.)

  1. An integrated model for product mix problem and scheduling considering overlapped operations

    Directory of Open Access Journals (Sweden)

    Seyed Amin Badri

    2014-08-01

    Full Text Available Product mix problem is one of the most important decisions made in production systems. Several algorithms have been developed to determine the product mix. Most of the previous works assume that all resources can perform, simultaneously and independently, which may lead to infeasibility of the schedule. In this paper, product mix problem and scheduling are considered, simultaneously. A new mixed-integer programming (MIP model is proposed to formulate this problem. The proposed model differentiates between process batch size and transfer batch size. Therefore, it is possible to have overlapped operations. The numerical example is used to demonstrate the implementation of the proposed model. In addition, the proposed model is examined using some instances previously cited in the literature. The preliminary computational results show that the proposed model can generate higher performance than conventional product mix model.

  2. A novel weighted evolving network model based on clique overlapping growth

    Institute of Scientific and Technical Information of China (English)

    YANG Xu-hua; WANG Bo; SUN Bao

    2010-01-01

    A novel weighted evolving network model based on the clique overlapping growth was proposed.The model shows different network characteristics under two different selection mechanisms that are preferential selection and random selection.On the basis of mean-field theory,this model under the two different selection mechanisms was analyzed.The analytic equations of distributions of the number of cliques that a vertex joins and the vertex strength of the model were given.It is proved that both distributions follow the scale-free power-law distribution in preferential selection mechanism and the exponential distribution in random selection mechanism,respectively.The analytic expressions of exponents of corresponding distributions were obtained.The agreement between the simulations and analytical results indicates the validity of the theoretical analysis.Finally,three real transport bus networks(BTNs)of Beijing,Shanghai and Hangzhou in China were studied.By analyzing their network properties,it is discovered that these real BTNs belong to a kind of weighted evolving network model with clique overlapping growth and random selection mechanism that was proposed in this context.

  3. Angular Motion Estimation Using Dynamic Models in a Gyro-Free Inertial Measurement Unit

    Directory of Open Access Journals (Sweden)

    Otmar Loffeld

    2012-04-01

    Full Text Available In this paper, we summarize the results of using dynamic models borrowed from tracking theory in describing the time evolution of the state vector to have an estimate of the angular motion in a gyro-free inertial measurement unit (GF-IMU. The GF-IMU is a special type inertial measurement unit (IMU that uses only a set of accelerometers in inferring the angular motion. Using distributed accelerometers, we get an angular information vector (AIV composed of angular acceleration and quadratic angular velocity terms. We use a Kalman filter approach to estimate the angular velocity vector since it is not expressed explicitly within the AIV. The bias parameters inherent in the accelerometers measurements’ produce a biased AIV and hence the AIV bias parameters are estimated within an augmented state vector. Using dynamic models, the appended bias parameters of the AIV become observable and hence we can have unbiased angular motion estimate. Moreover, a good model is required to extract the maximum amount of information from the observation. Observability analysis is done to determine the conditions for having an observable state space model. For higher grades of accelerometers and under relatively higher sampling frequency, the error of accelerometer measurements is dominated by the noise error. Consequently, simulations are conducted on two models, one has bias parameters appended in the state space model and the other is a reduced model without bias parameters.

  4. Density-based rough set model for hesitant node clustering in overlapping community detection

    Institute of Scientific and Technical Information of China (English)

    Jun Wang; Jiaxu Peng; Ou Liu

    2014-01-01

    Overlapping community detection in a network is a chal enging issue which attracts lots of attention in recent years. A notion of hesitant node (HN) is proposed. An HN contacts with multiple communities while the communications are not strong or even accidental, thus the HN holds an implicit community structure. However, HNs are not rare in the real world network. It is impor-tant to identify them because they can be efficient hubs which form the overlapping portions of communities or simple attached nodes to some communities. Current approaches have difficul-ties in identifying and clustering HNs. A density-based rough set model (DBRSM) is proposed by combining the virtue of density-based algorithms and rough set models. It incorporates the macro perspective of the community structure of the whole network and the micro perspective of the local information held by HNs, which would facilitate the further“growth”of HNs in community. We offer a theoretical support for this model from the point of strength of the trust path. The experiments on the real-world and synthetic datasets show the practical significance of analyzing and cluste-ring the HNs based on DBRSM. Besides, the clustering based on DBRSM promotes the modularity optimization.

  5. Iwamoto-Harada model of pre-equilibrium cluster emission: Should we care about angular momentum?

    International Nuclear Information System (INIS)

    The Iwamoto-Harada model of pre-equilibrium cluster emission was formulated within spin-independent exciton model. The inclusion of angular momentum into the pre-equilibrium reactions proved to be important and essential for the γ emission. The angular-momentum couplings have not yet been applied to the light cluster emission; however, the connection with deformation suggested by Blann has been shown to have visible effects. Our study is aimed to consider, whether and how the angular-momentum couplings influence the light cluster emission within the Iwamoto-Harada model. (author)

  6. Adaptive Haar wavelets for the angular discretisation of spectral wave models

    Science.gov (United States)

    Adam, Alexandros; Buchan, Andrew G.; Piggott, Matthew D.; Pain, Christopher C.; Hill, Jon; Goffin, Mark A.

    2016-01-01

    A new framework for applying anisotropic angular adaptivity in spectral wave modelling is presented. The angular dimension of the action balance equation is discretised with the use of Haar wavelets, hierarchical piecewise-constant basis functions with compact support, and an adaptive methodology for anisotropically adjusting the resolution of the angular mesh is proposed. This work allows a reduction of computational effort in spectral wave modelling, through a reduction in the degrees of freedom required for a given accuracy, with an automated procedure and minimal cost.

  7. Building disc structure and galaxy properties through angular momentum: The DARK SAGE semi-analytic model

    CERN Document Server

    Stevens, Adam R H; Mutch, Simon J

    2016-01-01

    We present the new semi-analytic model of galaxy evolution, DARK SAGE, a heavily modified version of the publicly available SAGE code. The model is designed for detailed evolution of galactic discs. We evolve discs in a series of annuli with fixed specific angular momentum, which allows us to make predictions for the radial and angular-momentum structure of galaxies. Most physical processes, including all channels of star formation and associated feedback, are performed in these annuli. We present the surface density profiles of our model spiral galaxies, both as a function of radius and specific angular momentum, and find the discs naturally build a pseduobulge-like component. Our main results are focussed on predictions relating to the integrated mass--specific angular momentum relation of stellar discs. The model produces a distinct sequence between these properties in remarkable agreement with recent observational literature. We investigate the impact Toomre disc instabilities have on shaping this sequenc...

  8. A New Open-Loop Fiber Optic Gyro Error Compensation Method Based on Angular Velocity Error Modeling

    OpenAIRE

    Yanshun Zhang; Yajing Guo; Chunyu Li; Yixin Wang; Zhanqing Wang

    2015-01-01

    With the open-loop fiber optic gyro (OFOG) model, output voltage and angular velocity can effectively compensate OFOG errors. However, the model cannot reflect the characteristics of OFOG errors well when it comes to pretty large dynamic angular velocities. This paper puts forward a modeling scheme with OFOG output voltage  and temperature  as the input variables and angular velocity error  as the output variable. Firstly, the angular ve...

  9. A blind separation method of overlapped multi-components based on time varying AR model

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A method utilizing single channel recordings to blindly separate the multicomponents overlapped in time and frequency domains is proposed in this paper. Based on the time varying AR model, the instantaneous frequency and amplitude of each signal component are estimated respectively, thus the signal component separation is achieved. By using prolate spheroidal sequence as basis functions to expand the time varying parameters of the AR model, the method turns the problem of linear time varying parameters estimation to a linear time invariant parameter estimation problem, then the parameters are estimated by a recursive algorithm. The computation of this method is simple, and no prior knowledge of the signals is needed. Simulation results demonstrate validity and excellent performance of this method.

  10. New model for holographic storage by simultaneous angular multiplexing

    Science.gov (United States)

    Ibarra, J. C.; Urzua, D.; Olivares-Peréz, A.; Ortiz-Gutierrez, M.

    2006-05-01

    We describe a technique for holographic storage by simultaneous angular multiplexing to obtain a large-scale holographic memory. We recorded 72 objects at the same time in one point on holographic plate PFG-03M from Slavich Co., using a He-Ne laser (λ = 633 nm). Each object is placed on a circular photographic transparency, separate 0.94 degree each one. The technique allows us simultaneous reconstruction of the 72 images without cross-talk. The diffraction efficiency obtained at order one is 6%. Experimental results are shown.

  11. Building disc structure and galaxy properties through angular momentum: the DARK SAGE semi-analytic model

    Science.gov (United States)

    Stevens, Adam R. H.; Croton, Darren J.; Mutch, Simon J.

    2016-09-01

    We present the new semi-analytic model of galaxy evolution, DARK SAGE, a heavily modified version of the publicly available SAGE code. The model is designed for detailed evolution of galactic discs. We evolve discs in a series of annuli with fixed specific angular momentum, which allows us to make predictions for the radial and angular-momentum structure of galaxies. Most physical processes, including all channels of star formation and associated feedback, are performed in these annuli. We present the surface density profiles of our model spiral galaxies, both as a function of radius and specific angular momentum, and find that the discs naturally build a pseudo-bulge-like component. Our main results are focused on predictions relating to the integrated mass-specific angular momentum relation of stellar discs. The model produces a distinct sequence between these properties in remarkable agreement with recent observational literature. We investigate the impact Toomre disc instabilities have on shaping this sequence and find they are crucial for regulating both the mass and spin of discs. Without instabilities, high-mass discs would be systematically deficient in specific angular momentum by a factor of ˜2.5, with increased scatter. Instabilities also appear to drive the direction in which the mass-spin sequence of spiral galaxy discs evolves. With them, we find galaxies of fixed mass have higher specific angular momentum at later epochs.

  12. Overlap functions

    Czech Academy of Sciences Publication Activity Database

    Bustince, H.; Fernández, J.; Mesiar, Radko; Montero, J.; Orduna, R.

    2010-01-01

    Roč. 72, 3-4 (2010), s. 1488-1499. ISSN 0362-546X R&D Projects: GA ČR GA402/08/0618 Institutional research plan: CEZ:AV0Z10750506 Keywords : t-norm * Migrative property * Homogeneity property * Overlap function Subject RIV: BA - General Mathematics Impact factor: 1.279, year: 2010 http://library.utia.cas.cz/separaty/2009/E/mesiar-overlap functions.pdf

  13. Gate current modeling and optimal design of nanoscale non-overlapped gate to source/drain MOSFET

    Energy Technology Data Exchange (ETDEWEB)

    Rana, Ashwani K.; Kapoor, Vinod [Department of Electronics and Communication, National Institute of Technology, Hamirpur, Hamirpur(H.P)-177005 (India); Chand, Narottam, E-mail: ashwani_paper@gmail.com [Department of Computer Science and Engineering, National Institute of Technology, Hamirpur, Hamirpur(H.P.)-177005 (India)

    2011-07-15

    A novel nanoscale MOSFET with a source/drain-to-gate non-overlapped and high-k spacer structure has been demonstrated to reduce the gate leakage current for the first time. The gate leakage behaviour of the novel MOSFET structure has been investigated with the help of a compact analytical model and Sentaurus simulation. A fringing gate electric field through the dielectric spacer induces an inversion layer in the non-overlap region to act as an extended S/D (source/drain) region. It is found that an optimal source/drain-to-gate non-overlapped and high-k spacer structure has reduced the gate leakage current to a great extent as compared to those of an overlapped structure. Further, the proposed structure had improved off current, subthreshold slope and drain induced barrier lowering (DIBL) characteristics. It is concluded that this structure solves the problem of high leakage current without introducing extra series resistance. (semiconductor devices)

  14. Non-overlapping domain decomposition for near-wall turbulence modeling

    Science.gov (United States)

    Utyuzhnikov, Sergey

    2016-06-01

    Near-wall turbulence modeling is computationally a very expensive problem. The talk considers a novel approach based on non-overlapping domain decomposition. It allows us to avoid calculations of the region with high gradients in the vicinity of the wall while retaining sufficient overall accuracy. The technique is introduced in application to low-Reynolds number RANS models. The domain decomposition is achieved via the transfer of the boundary condition from the wall to an interface boundary. If the governing equations in the inner domain are simplified, then the interface boundary conditions are of Robin type. These boundary conditions can be obtained in an analytical form despite the fact that they are nonlinear. Possible ways to achieve a reasonable trade-off between efficiency and accuracy are discussed. The obtained interface boundary conditions are mesh-independent. They can be used to avoid the computationally expensive resolution of a high-gradient region near the wall. Moreover, once the solution is constructed in the outer region, the near-wall profile can be restored if required. In two extreme cases, if the interface boundary is too close to the wall or too far from it, the so-constructed solution to the problem automatically corresponds to low- and high-Reynolds number RANS models, respectively. Different applications are considered including unsteady problems and complex geometries. The developed approach proved to be quite robust and relatively universal. It does not contain any tuning parameters. The technique might be extended to other multiscale problems.

  15. Message passing theory for percolation models on multiplex networks with link overlap

    OpenAIRE

    Cellai, Davide; Dorogovtsev, Sergey N.; Bianconi, Ginestra

    2016-01-01

    Multiplex networks describe a large variety of complex systems including infrastructures, transportation networks and biological systems. Most of these networks feature a significant link overlap. It is therefore of particular importance to characterize the mutually connected giant component in these networks. Here we provide a message passing theory for characterizing the percolation transition in multiplex networks with link overlap and an arbitrary number of layers $M$. Specifically we pro...

  16. A POD reduced order model for resolving angular direction in neutron/photon transport problems

    Energy Technology Data Exchange (ETDEWEB)

    Buchan, A.G., E-mail: andrew.buchan@imperial.ac.uk [Applied Modelling and Computation Group, Department of Earth Science and Engineering, Imperial College London, SW7 2AZ (United Kingdom); Calloo, A.A.; Goffin, M.G.; Dargaville, S.; Fang, F.; Pain, C.C. [Applied Modelling and Computation Group, Department of Earth Science and Engineering, Imperial College London, SW7 2AZ (United Kingdom); Navon, I.M. [Department of Scientific Computing, Florida State University, Tallahassee, FL 32306-4120 (United States)

    2015-09-01

    This article presents the first Reduced Order Model (ROM) that efficiently resolves the angular dimension of the time independent, mono-energetic Boltzmann Transport Equation (BTE). It is based on Proper Orthogonal Decomposition (POD) and uses the method of snapshots to form optimal basis functions for resolving the direction of particle travel in neutron/photon transport problems. A unique element of this work is that the snapshots are formed from the vector of angular coefficients relating to a high resolution expansion of the BTE's angular dimension. In addition, the individual snapshots are not recorded through time, as in standard POD, but instead they are recorded through space. In essence this work swaps the roles of the dimensions space and time in standard POD methods, with angle and space respectively. It is shown here how the POD model can be formed from the POD basis functions in a highly efficient manner. The model is then applied to two radiation problems; one involving the transport of radiation through a shield and the other through an infinite array of pins. Both problems are selected for their complex angular flux solutions in order to provide an appropriate demonstration of the model's capabilities. It is shown that the POD model can resolve these fluxes efficiently and accurately. In comparison to high resolution models this POD model can reduce the size of a problem by up to two orders of magnitude without compromising accuracy. Solving times are also reduced by similar factors.

  17. A POD reduced order model for resolving angular direction in neutron/photon transport problems

    International Nuclear Information System (INIS)

    This article presents the first Reduced Order Model (ROM) that efficiently resolves the angular dimension of the time independent, mono-energetic Boltzmann Transport Equation (BTE). It is based on Proper Orthogonal Decomposition (POD) and uses the method of snapshots to form optimal basis functions for resolving the direction of particle travel in neutron/photon transport problems. A unique element of this work is that the snapshots are formed from the vector of angular coefficients relating to a high resolution expansion of the BTE's angular dimension. In addition, the individual snapshots are not recorded through time, as in standard POD, but instead they are recorded through space. In essence this work swaps the roles of the dimensions space and time in standard POD methods, with angle and space respectively. It is shown here how the POD model can be formed from the POD basis functions in a highly efficient manner. The model is then applied to two radiation problems; one involving the transport of radiation through a shield and the other through an infinite array of pins. Both problems are selected for their complex angular flux solutions in order to provide an appropriate demonstration of the model's capabilities. It is shown that the POD model can resolve these fluxes efficiently and accurately. In comparison to high resolution models this POD model can reduce the size of a problem by up to two orders of magnitude without compromising accuracy. Solving times are also reduced by similar factors

  18. Angular momentum projection for a Nilsson mean-field plus pairing model

    Science.gov (United States)

    Wang, Yin; Pan, Feng; Launey, Kristina D.; Luo, Yan-An; Draayer, J. P.

    2016-06-01

    The angular momentum projection for the axially deformed Nilsson mean-field plus a modified standard pairing (MSP) or the nearest-level pairing (NLP) model is proposed. Both the exact projection, in which all intrinsic states are taken into consideration, and the approximate projection, in which only intrinsic states with K = 0 are taken in the projection, are considered. The analysis shows that the approximate projection with only K = 0 intrinsic states seems reasonable, of which the configuration subspace considered is greatly reduced. As simple examples for the model application, low-lying spectra and electromagnetic properties of 18O and 18Ne are described by using both the exact and approximate angular momentum projection of the MSP or the NLP, while those of 20Ne and 24Mg are described by using the approximate angular momentum projection of the MSP or NLP.

  19. Spin-fermion model with overlapping hot spots and charge modulation in cuprates

    Science.gov (United States)

    Volkov, Pavel A.; Efetov, Konstantin B.

    2016-02-01

    We study particle-hole instabilities in the framework of the spin-fermion (SF) model. In contrast to previous studies, we assume that adjacent hot spots can overlap due to a shallow dispersion of the electron spectrum in the antinodal region. In addition, we take into account effects of a remnant low energy and momentum Coulomb interaction. We demonstrate that at sufficiently small values |ɛ (π ,0 ) - EF|≲Γ , where EF is the Fermi energy, ɛ (π ,0 ) is the energy in the middle of the Brillouin zone edge, and Γ is a characteristic energy of the fermion-fermion interaction due to the antiferromagnetic fluctuations, the leading particle-hole instability is a d -form factor Fermi surface deformation (the Pomeranchuk instability) rather than the charge modulation along the Brillouin zone diagonals predicted within the standard SF model previously. At lower temperatures, we find that the deformed Fermi surface is further unstable to formation of a d -form factor charge density wave (CDW) with a wave vector along the Cu-O-Cu bonds (axes of the Brillouin zone). We show that the remnant Coulomb interaction enhances the d -form-factor symmetry of the CDW. These findings can explain the robustness of this order in the cuprates. The approximations made in the paper are justified by a small parameter that allows one to implement an Eliashberg-like treatment. Comparison with experiments suggests that in many cuprate compounds the prerequisites for the proposed scenario are indeed fulfilled and the results obtained may explain important features of the charge modulations observed recently.

  20. Message passing theory for percolation models on multiplex networks with link overlap

    CERN Document Server

    Cellai, Davide; Bianconi, Ginestra

    2016-01-01

    Multiplex networks describe a large variety of complex systems including infrastructures, transportation networks and biological systems. Most of these networks feature a significant link overlap. It is therefore of particular importance to characterize the mutually connected giant component in these networks. Here we provide a message passing theory for characterizing the percolation transition in multiplex networks with link overlap and an arbitrary number of layers $M$. Specifically we propose and compare two message passing algorithms, that generalize the algorithm widely used to study the percolation transition in multiplex networks without link overlap. The first algorithm describes a directed percolation transition and admits an epidemic spreading interpretation. The second algorithm describes the emergence of the mutually connected giant component, that is the percolation transition, but does not preserve the epidemic spreading interpretation. We obtain the phase diagrams for the percolation and direc...

  1. Folding of Proteins in Go Models with Angular Interactions

    OpenAIRE

    Cieplak, Marek; Hoang, Trinh Xuan

    2003-01-01

    Molecular dynamics studies of Go models of proteins with the 10-12 contact potential and the bond and dihedral angle terms indicate statistical similarities to other Go models, e.g. with the Lennard-Jones contact potentials. The folding times depend on the protein size as power laws with the exponents depending on the native structural classes. There is no dependence of the folding times on the relative contact order even though the folding scenarios are governed mostly by the contact order.

  2. Sequence Determination from Overlapping Fragments: A Simple Model of Whole-Genome Shotgun Sequencing

    Science.gov (United States)

    Derrida, Bernard; Fink, Thomas M.

    2002-02-01

    Assembling fragments randomly sampled from along a sequence is the basis of whole-genome shotgun sequencing, a technique used to map the DNA of the human and other genomes. We calculate the probability that a random sequence can be recovered from a collection of overlapping fragments. We provide an exact solution for an infinite alphabet and in the case of constant overlaps. For the general problem we apply two assembly strategies and give the probability that the assembly puzzle can be solved in the limit of infinitely many fragments.

  3. Angular momentum, accretion and radial flows in chemodynamical models of spiral galaxies

    CERN Document Server

    Pezzulli, Gabriele

    2016-01-01

    Gas accretion and radial flows are key ingredients of the chemical evolution of spiral galaxies. They are also tightly linked to each other (accretion drives radial flows, due to angular momentum conservation) and should therefore be modelled simultaneously. We summarise an algorithm that can be used to consistently compute accretion profiles, radial flows and abundance gradients under quite general conditions and we describe illustrative applications to the Milky Way. We find that gas-phase abundance gradients strongly depend on the angular momentum of the accreting material and, in the outer regions, they are significantly affected by the choice of boundary conditions.

  4. Modelling of atmospheric effects on the angular distribution of a backscattering peak

    International Nuclear Information System (INIS)

    If off-nadir satellite sensing of vegetative surfaces is considered, understanding the angular distribution of the radiance exiting the atmosphere in all upward directions is of interest. Of particular interest is the discovery of those reflectance features which are invariant to atmospheric perturbations. When mono-directional radiation is incident on a vegetative scene a characteristic angular signature called the hot-spot is produced in the solar retro-direction. The remotely sensed hot-spot is modified by atmospheric extinction of the direct and reflected solar radiation, atmospheric backscattering, and the diffuse sky irradiance incident on the surface. It is demonstrated, however, by radiative transfer calculations through model atmospheres that at least one parameter which characterizes the canopy hot-spot, namely its angular half width, is invariant to atmospheric perturbations. 7 refs., 4 figs., 1 tab

  5. Investigating Students' Mental Models about the Quantization of Light, Energy, and Angular Momentum

    Science.gov (United States)

    Didis, Nilüfer; Eryilmaz, Ali; Erkoç, Sakir

    2014-01-01

    This paper is the first part of a multiphase study examining students' mental models about the quantization of physical observables--light, energy, and angular momentum. Thirty-one second-year physics and physics education college students who were taking a modern physics course participated in the study. The qualitative analysis of data…

  6. Trigonometric identities, angular Schroedinger equations and a new family of solvable models

    International Nuclear Information System (INIS)

    Angular parts of certain solvable models are studied. We find that an extension of this class may be based on suitable trigonometric identities. The new exactly solvable Hamiltonians are shown to describe interesting two- and three-particle systems of the generalized Calogero, Wolfes and Winternitz-Smorodinsky types

  7. Limiting angular velocity of realistic relativistic neutron star models

    Energy Technology Data Exchange (ETDEWEB)

    Weber, F.; Glendenning, N.K. (California Univ., Berkeley (USA). Div. of Nuclear Science)

    1991-05-01

    The Keplerian velocity as well as those frequencies at which instability against gravitational radiation-reaction sets in are calculated for rotating neutron star models of gravitational mass 1.5 M{sub sun}. The investigation is based on four different, realistic neutron star matter equations of state. Our results indicate that the gravitational radiation instability sets in well below (i.e., 63-71% of) the Keplerian frequency, and that young neutron stars are limited to rotational periods greater than about 1 ms. In young and therefore hot (T {approx equal} 10{sup 10} K) neutron stars the m = 5 (+- 1) modes and in old stars after being spun up and reheated by mass accretion, the m = 4 and/or m = 3 modes may set the limit on stable rotation. (orig.).

  8. A New Open-Loop Fiber Optic Gyro Error Compensation Method Based on Angular Velocity Error Modeling

    Directory of Open Access Journals (Sweden)

    Yanshun Zhang

    2015-02-01

    Full Text Available With the open-loop fiber optic gyro (OFOG model, output voltage and angular velocity can effectively compensate OFOG errors. However, the model cannot reflect the characteristics of OFOG errors well when it comes to pretty large dynamic angular velocities. This paper puts forward a modeling scheme with OFOG output voltage  and temperature  as the input variables and angular velocity error  as the output variable. Firstly, the angular velocity error  is extracted from OFOG output signals, and then the output voltage , temperature  and angular velocity error  are used as the learning samples to train a Radial-Basis-Function (RBF neural network model. Then the nonlinear mapping model over T,  and  is established and thus  can be calculated automatically to compensate OFOG errors according to  and . The results of the experiments show that the established model can be used to compensate the nonlinear OFOG errors. The maximum, the minimum and the mean square error of OFOG angular velocity are decreased by ,  and  relative to their initial values, respectively. Compared with the direct modeling of gyro angular velocity, which we researched before, the experimental results of the compensating method proposed in this paper are further reduced by ,  and , respectively, so the performance of this method is better than that of the direct modeling for gyro angular velocity.

  9. Gate current modeling and optimal design of nanoscale non-overlapped gate to source/drain MOSFET

    Institute of Scientific and Technical Information of China (English)

    Ashwani K.Rana; Narottam Chand; Vinod Kapoor

    2011-01-01

    A novel nanoscale MOSFET with a source/drain-to-gate non-overlapped and high-k spacer structure has been demonstrated to reduce the gate leakage current for the first time.The gate leakage behaviour of the novel MOSFET structure has been investigated with the help of a compact analytical model and Sentaurus simulation.A fringing gate electric field through the dielectric spacer induces an inversion layer in the non-overlap region to act as an extended S/D (source/drain) region.It is found that an optimal source/drain-to-gate non-overlapped and high-k spacer structure has reduced the gate leakage current to a great extent as compared to those of an overlapped structure.Further,the proposed structure had improved off current,subthreshold slope and drain induced barrier lowering (DIBL) characteristics.It is concluded that this structure solves the problem of high leakage current without introducing extra series resistance.

  10. Tides and angular momentum redistribution inside low-mass stars hosting planets: a first dynamical model

    CERN Document Server

    Lanza, A F

    2016-01-01

    We introduce a general mathematical framework to model the internal transport of angular momentum in a star hosting a close-in planetary/stellar companion. By assuming that the tidal and rotational distortions are small and that the deposit/extraction of angular momentum induced by stellar winds and tidal torques are redistributed solely by an effective eddy-viscosity that depends on the radial coordinate, we can formulate the model in a completely analytic way. It allows us to compute simultaneously the evolution of the orbit of the companion and of the spin and the radial differential rotation of the star. An illustrative application to the case of an F-type main-sequence star hosting a hot Jupiter is presented. The general relevance of our model to test more sophisticated numerical dynamical models and to study the internal rotation profile of exoplanet hosts, submitted to the combined effects of tides and stellar winds, by means of asteroseismology are discussed.

  11. Limits of the M1 and M2 angular moments models for kinetic plasma physics studies

    International Nuclear Information System (INIS)

    Angular moments closures are widely used in numerical solutions of kinetic equations. While in the strongly collisional limit they provide a good approximation of the full kinetic equation, their validity domain in the weakly collisional limit is unknown. This work is devoted to defining the validity domain of the M1 model and its extensions, the two populations M1 and the M2 angular moments models for the collisionless kinetic physics applications. Three typical kinetic plasma effects are considered, which are the charged particle beams interaction, the Landau damping and the electromagnetic wave absorption in an overdense semi-infinite plasma. For each case, a perturbative analysis is performed and the dispersion relation is established using the moments models. These relations are compared with those computed by considering the Vlasov equation. The validity limits of each model are demonstrated. (paper)

  12. Application of Novel Rotation Angular Model for 3D Mouse System Based on MEMS Accelerometers

    Institute of Scientific and Technical Information of China (English)

    QIAN Li; CHEN Wen-yuan; XU Guo-ping

    2009-01-01

    A new scheme is proposed to model 3D angular motion of a revolving regular object with miniature, low-cost micro electro mechanical systems (MEMS) accelerometers (instead of gyroscope), which is employed in 3D mouse system. To sense 3D angular motion, the static property of MEMS accelerometer, sensitive to gravity acceleration, is exploited. With the three outputs of configured accelerometers, the proposed model is implemented to get the rotary motion of the rigid object. In order to validate the effectiveness of the proposed model, an input device is developed with the configuration of the scheme. Experimental results show that a simulated 3D cube can accurately track the rotation of the input device. The result indicates the feasibility and effectiveness of the proposed model in the 3D mouse system.

  13. Model-based diagnosis of large diesel engines based on angular speed variations of the crankshaft

    Science.gov (United States)

    Desbazeille, M.; Randall, R. B.; Guillet, F.; El Badaoui, M.; Hoisnard, C.

    2010-07-01

    This work aims at monitoring large diesel engines by analyzing the crankshaft angular speed variations. It focuses on a powerful 20-cylinder diesel engine with crankshaft natural frequencies within the operating speed range. First, the angular speed variations are modeled at the crankshaft free end. This includes modeling both the crankshaft dynamical behavior and the excitation torques. As the engine is very large, the first crankshaft torsional modes are in the low frequency range. A model with the assumption of a flexible crankshaft is required. The excitation torques depend on the in-cylinder pressure curve. The latter is modeled with a phenomenological model. Mechanical and combustion parameters of the model are optimized with the help of actual data. Then, an automated diagnosis based on an artificially intelligent system is proposed. Neural networks are used for pattern recognition of the angular speed waveforms in normal and faulty conditions. Reference patterns required in the training phase are computed with the model, calibrated using a small number of actual measurements. Promising results are obtained. An experimental fuel leakage fault is successfully diagnosed, including detection and localization of the faulty cylinder, as well as the approximation of the fault severity.

  14. Quark Wigner Distributions and Orbital Angular Momentum in Light-front Dressed Quark Model

    CERN Document Server

    Mukherjee, Asmita; Ojha, Vikash Kumar

    2014-01-01

    We calculate the Wigner functions for a quark target dressed with a gluon. These give a combined position and momentum space information of the quark distributions and are related to both generalized parton distributions (GPDs) and transverse momentum dependent parton distributions (TMDs). We calculate and compare the different definitions of quark orbital angular momentum in this model. We compare our results with other model calculations.

  15. A Hybrid Model for Biometric Authentication using Finger Back Knuckle Surface based on Angular Geometric Analysis

    OpenAIRE

    Usha, K.; M. Ezhilarasan

    2013-01-01

    Biometric based personal recognition is an efficient method for identifying a person. Recently, hand based biometric has become popular due to its various advantages such as high verification accuracy and high user acceptability. This paper proposes a hybrid model using an emerging hand based biometric trait known as Finger Back Knuckle Surface. This model is based on angular geometric analysis which is implemented on two different samples of Finger Back Knuckle Surface such as Finger Bend Kn...

  16. Mathematical Modelling of Blood Flow through a Tapered Overlapping Stenosed Artery with Variable Viscosity

    OpenAIRE

    Shit, G. C.; Roy, M.; Sinha, A

    2014-01-01

    This paper presents a theoretical study of blood flow through a tapered and overlapping stenosed artery under the action of an externally applied magnetic field. The fluid (blood) medium is assumed to be porous in nature. The variable viscosity of blood depending on hematocrit (percentage volume of erythrocytes) is taken into account in order to improve resemblance to the real situation. The governing equation for laminar, incompressible and Newtonian fluid subject to the boundary conditions ...

  17. Mathematical modelling of blood flow through a tapered overlapping stenosed artery with variable viscosity

    OpenAIRE

    Shit, G. C.; Roy, M.; Sinha, A

    2012-01-01

    This paper presents a theoretical study of blood flow through a tapered and overlapping stenosed artery under the action of an externally applied magnetic field. The fluid (blood) medium is assumed to be porous in nature. The variable viscosity of blood depending on hematocrit (percentage volume of erythrocytes) is taken into account in order to improve resemblance to the real situation. The governing equation for laminar, incompressible and Newtonian fluid subject to the boundary conditions ...

  18. No-core configuration-interaction model for the isospin- and angular-momentum-projected states

    CERN Document Server

    Satula, W; Dobaczewski, J; Konieczka, M

    2016-01-01

    [Background] Single-reference density functional theory is very successful in reproducing bulk nuclear properties like binding energies, radii, or quadrupole moments throughout the entire periodic table. Its extension to the multi-reference level allows for restoring symmetries and, in turn, for calculating transition rates. [Purpose] We propose a new no-core-configuration-interaction (NCCI) model treating properly isospin and rotational symmetries. The model is applicable to any nucleus irrespective of its mass and neutron- and proton-number parity. It properly includes polarization effects caused by an interplay between the long- and short-range forces acting in the atomic nucleus. [Methods] The method is based on solving the Hill-Wheeler-Griffin equation within a model space built of linearly-dependent states having good angular momentum and properly treated isobaric spin. The states are generated by means of the isospin and angular-momentum projection applied to a set of low-lying (multi)particle-(multi)h...

  19. Rotating models of young solar-type stars : Exploring braking laws and angular momentum transport processes

    CERN Document Server

    Amard, Louis; Charbonnel, Corinne; Gallet, Florian; Bouvier, Jérôme

    2016-01-01

    We study the predicted rotational evolution of solar-type stars from the pre-main sequence to the solar age with 1D rotating evolutionary models including physical ingredients. We computed rotating evolution models of solar-type stars including an external stellar wind torque and internal transport of angular momentum following the method of Maeder and Zahn with the code STAREVOL. We explored different formalisms and prescriptions available from the literature. We tested the predictions of the models against recent rotational period data from extensive photometric surveys, lithium abundances of solar-mass stars in young clusters, and the helioseismic rotation profile of the Sun. We find a best-matching combination of prescriptions for both internal transport and surface extraction of angular momentum. This combination provides a very good fit to the observed evolution of rotational periods for solar-type stars from early evolution to the age of the Sun. Additionally, we show that fast rotators experience a st...

  20. B →K*l+l-: Zeros of angular observables as test of standard model

    Science.gov (United States)

    Kumar, Girish; Mahajan, Namit

    2016-03-01

    We calculate the zeros of angular observables P4' and P5' of the angular distribution of 4-body decay B →K*(→K π )l+l- where LHCb, in its analysis of form-factor independent angular observables, has found deviations from the standard model predictions. In the large recoil region, we obtain relations between the zeros of P4' , P5' and the zero (s^0) of forward-backward asymmetry of lepton pair, AF B. These relations are independent of hadronic uncertainties and depend only on the Wilson coefficients. We also construct a new observable, OTL ,R, whose zero in the standard model coincides with s^0, but in the presence of new physics contributions will show different behavior. Moreover, the profile of the new observable, even within the standard model, is very different from AF B. We point out that precise measurements of these zeros in the near future would provide a crucial test of the standard model and would be useful in distinguishing between different possible new physics contributions to the Wilson coefficients.

  1. Uniform flow around a square cylinder using the Self-induced angular Moment Method turbulence model

    DEFF Research Database (Denmark)

    Johansson, Jens; Nielsen, Mogens Peter; Nielsen, Leif Otto

    2012-01-01

    The uniform flow around a square cylinder at Reynolds number 1e5 is simulated in a threedimensional domain by means of the newly developed Self-induced angular Moment Method, SMoM. The model does not utilize Reynolds averaging. No additional transport equations are introduced and no implicit or...... explicit filtering is performed. The model is, in all its simplicity, a modification of the classical constitutive equations of fluids to which a term is added that accounts for the transfer for angular momentum between parts of the fluid.The time-mean and fluctuating force coefficients, pressure...... distributions and velocity fields have been determined along with circumferential surface pressure correlations. All simulated quantities have been compared to experimental findings and state-of-the-art Large Eddy Simulations, LES. No LES simulations could be found in literature, which provided results at the...

  2. Combining spectroscopic and photometric surveys using angular cross-correlations I: Algorithm and modelling

    CERN Document Server

    Eriksen, Martin

    2014-01-01

    Weak lensing (WL) clustering is studied using 2D (angular) coordinates, while redshift space distortions (RSD) and baryon acoustic oscillations (BAO) use 3D coordinates, which requires a model dependent conversion of angles and redshifts into comoving distances. This is the first paper of a series, which explore modelling multi-tracer galaxy clustering (of WL, BAO and RSD), using only angular (2D) cross-correlations in thin redshift bins. This involves evaluating many thousands cross-correlations, each a multidimensional integral, which is computationally demanding. We present a new algorithm that performs these calculations as matrix operations. Nearby narrow redshift bins are intrinsically correlated, which can be used to recover the full (radial) 3D information. We show that the Limber approximation does not work well for this task. In the exact calculation, both the clustering amplitude and the RSD effect increase when decreasing the redshift bin width. For narrow bins, the cross-correlations has a larger...

  3. $B\\rightarrow K^{*}l^+ l^-$: Zeroes of angular observables as test of standard model

    CERN Document Server

    Kumar, Girish

    2014-01-01

    We calculate the zeroes of angular observables $P_4^{'}$ and $P_5^{'}$ of 4 - body angular distribution of $B\\rightarrow K^{*} (\\rightarrow K \\pi) l^+ l^-$ where LHCb, in its analysis of form factor independent angular observables, has found deviations from standard model predictions in one of the $q^2$ bins. In the large recoil region, we obtain relations between the zeroes of $P_4^{'}$, $P_5^{'}$ and the zero of forward-backward asymmetry of lepton pair. These relations, in the considered region, are independent of hadronic uncertainties and depend only on Wilson coefficients. We also construct a new observable, $\\mathcal{O}_T^{L,R}$, whose zero in the standard model coincides with the zero of forward-backward asymmetry but in presence of new physics contributions will show different behavior. Moreover, the profile of the new observable, even within the standard model, is very different from the forward backward asymmetry. We point out that precise measurements of these zeroes in near future would provide c...

  4. Rotating models of young solar-type stars. Exploring braking laws and angular momentum transport processes

    Science.gov (United States)

    Amard, L.; Palacios, A.; Charbonnel, C.; Gallet, F.; Bouvier, J.

    2016-03-01

    Context. Understanding the angular momentum evolution of stars is one of the greatest challenges of modern stellar physics. Aims: We study the predicted rotational evolution of solar-type stars from the pre-main sequence to the solar age with 1D rotating evolutionary models including physical ingredients. Methods: We computed rotating evolution models of solar-type stars including an external stellar wind torque and internal transport of angular momentum following the method of Maeder and Zahn with the code STAREVOL. We explored different formalisms and prescriptions available from the literature. We tested the predictions of the models against recent rotational period data from extensive photometric surveys, lithium abundances of solar-mass stars in young clusters, and the helioseismic rotation profile of the Sun. Results: We find a best-matching combination of prescriptions for both internal transport and surface extraction of angular momentum. This combination provides a very good fit to the observed evolution of rotational periods for solar-type stars from early evolution to the age of the Sun. Additionally, we show that fast rotators experience a stronger coupling between their radiative region and the convective envelope. Regardless of the set of prescriptions, however, we cannot simultaneously reproduce surface angular velocity and the internal profile of the Sun or the evolution of lithium abundance. Conclusions: We confirm the idea that additional transport mechanisms must occur in solar-type stars until they reach the age of the Sun. Whether these processes are the same as those needed to explain recent asteroseismic data in more advanced evolutionary phases is still an open question.

  5. Using overlapping sonobuoy data from the Ross Sea to construct a 2D deep crustal velocity model

    Science.gov (United States)

    Selvans, M. M.; Clayton, R. W.; Stock, J. M.; Granot, R.

    2012-03-01

    Sonobuoys provide an alternative to using long streamers while conducting multi-channel seismic (MCS) studies, in order to provide deeper velocity control. We present analysis and modeling techniques for interpreting the sonobuoy data and illustrate the method with ten overlapping sonobuoys collected in the Ross Sea, offshore from Antarctica. We demonstrate the importance of using the MCS data to correct for ocean currents and changes in ship navigation, which is required before using standard methods for obtaining a 1D velocity profile from each sonobuoy. We verify our 1D velocity models using acoustic finite-difference (FD) modeling and by performing depth migration on the data, and demonstrate the usefulness of FD modeling for tying interval velocities to the shallow crust imaged using MCS data. Finally, we show how overlapping sonobuoys along an MCS line can be used to construct a 2D velocity model of the crust. The velocity model reveals a thin crust (5.5 ± 0.4 km) at the boundary between the Adare and Northern Basins, and implies that the crustal structure of the Northern Basin may be more similar to that of the oceanic crust in the Adare Basin than to the stretched continental crust further south in the Ross Sea.

  6. Recovering slant and angular velocity from a linear velocity field: modeling and psychophysics.

    Science.gov (United States)

    Domini, Fulvio; Caudek, Corrado

    2003-07-01

    The data from two experiments, both using stimuli simulating orthographically rotating surfaces, are presented, with the primary variable of interest being whether the magnitude of the simulated gradient was from expanding vs. contracting motion. One experiment asked observers to report the apparent slant of the rotating surface, using a gauge figure. The other experiment asked observers to report the angular velocity, using a comparison rotating sphere. The results from both experiments clearly show that observers are less sensitive to expanding than to contracting optic-flow fields. These results are well predicted by a probabilistic model which derives the orientation and angular velocity of the projected surface from the properties of the optic flow computed within an extended time window. PMID:12818345

  7. Mathematical modelling of blood flow through a tapered overlapping stenosed artery with variable viscosity

    CERN Document Server

    Shit, G C; Sinha, A

    2012-01-01

    This paper presents a theoretical study of blood flow through a tapered and overlapping stenosed artery under the action of an externally applied magnetic field. The fluid (blood) medium is assumed to be porous in nature. The variable viscosity of blood depending on hematocrit (percentage volume of erythrocytes) is taken into account in order to improve resemblance to the real situation. The governing equation for laminar, incompressible and Newtonian fluid subject to the boundary conditions is solved by using a well known Frobenius method. The analytical expressions for velocity component, volumetric flow rate, wall shear stress and pressure gradient are obtained. The numerical values are extracted from these analytical expressions and are presented graphically. It is observed that the influence of hematocrit, magnetic field and the shape of artery have important impact on the velocity profile, pressure gradient and wall shear stress. Moreover, the effect of primary stenosis on the secondary one has been sig...

  8. Mathematical Modelling of Blood Flow through a Tapered Overlapping Stenosed Artery with Variable Viscosity

    Directory of Open Access Journals (Sweden)

    G. C. Shit

    2014-01-01

    Full Text Available This paper presents a theoretical study of blood flow through a tapered and overlapping stenosed artery under the action of an externally applied magnetic field. The fluid (blood medium is assumed to be porous in nature. The variable viscosity of blood depending on hematocrit (percentage volume of erythrocytes is taken into account in order to improve resemblance to the real situation. The governing equation for laminar, incompressible and Newtonian fluid subject to the boundary conditions is solved by using a well known Frobenius method. The analytical expressions for velocity component, volumetric flow rate, wall shear stress and pressure gradient are obtained. The numerical values are extracted from these analytical expressions and are presented graphically. It is observed that the influence of hematocrit, magnetic field and the shape of artery have important impact on the velocity profile, pressure gradient and wall shear stress. Moreover, the effect of primary stenosis on the secondary one has been significantly observed.

  9. Giant dipole resonance in $^{88}$Mo from phonon damping model's strength functions averaged over temperature and angular momentum distributions

    CERN Document Server

    Dang, N Dinh; Kmiecik, M; Maj, A

    2013-01-01

    The line shapes of giant dipole resonance (GDR) in the decay of the compound nucleus $^{88}$Mo, which is formed after the fusion-evaporation reaction $^{48}$Ti + $^{40}$Ca at various excitation energies $E^{*}$ from 58 to 308 MeV, are generated by averaging the GDR strength functions predicted within the phonon damping model (PDM) using the empirical probabilities for temperature and angular momentum. The average strength functions are compared with the PDM strength functions calculated at the mean temperature and mean angular momentum, which are obtained by averaging the values of temperature and angular momentum using the same temperature and angular-momentum probability distributions, respectively. It is seen that these two ways of generating the GDR linear line shape yield very similar results. It is also shown that the GDR width approaches a saturation at angular momentum $J\\geq$ 50$\\hbar$ at $T=$ 4 MeV and at $J\\geq$ 70$\\hbar$ at any $T$.

  10. Illusion induced overlapped optics.

    Science.gov (United States)

    Zang, XiaoFei; Shi, Cheng; Li, Zhou; Chen, Lin; Cai, Bin; Zhu, YiMing; Zhu, HaiBin

    2014-01-13

    The traditional transformation-based cloak seems like it can only hide objects by bending the incident electromagnetic waves around the hidden region. In this paper, we prove that invisible cloaks can be applied to realize the overlapped optics. No matter how many in-phase point sources are located in the hidden region, all of them can overlap each other (this can be considered as illusion effect), leading to the perfect optical interference effect. In addition, a singular parameter-independent cloak is also designed to obtain quasi-overlapped optics. Even more amazing of overlapped optics is that if N identical separated in-phase point sources covered with the illusion media, the total power outside the transformation region is N2I0 (not NI0) (I0 is the power of just one point source, and N is the number point sources), which seems violating the law of conservation of energy. A theoretical model based on interference effect is proposed to interpret the total power of these two kinds of overlapped optics effects. Our investigation may have wide applications in high power coherent laser beams, and multiple laser diodes, and so on. PMID:24515019

  11. Nonlinear dynamics and global indeterminacy in an overlapping generations model with environmental resources

    Science.gov (United States)

    Antoci, Angelo; Gori, Luca; Sodini, Mauro

    2016-09-01

    We analyse the dynamics of an economy formed of overlapping generations of individuals whose well-being depends on leisure, consumption of a private good and a free access environmental resource. The production activity of the private good deteriorates the environmental resource. Individuals may defend themselves from environmental degradation by increasing consumption of the private good, which may be perceived as a "substitute" for services provided by the environmental resource. However, the resulting increase in production and consumption of the private good generates a further increase in environmental deterioration leading economic agents to increase production and consumption of the private good itself. This substitution mechanism is clearly self-reinforcing and may fuel an undesirable economic growth process according to which an increase in consumption of the private good - and the resulting increase in Gross Domestic Product - is associated with a reduction in individuals' well-being. The article shows the emergence of several global phenomena, and individuals' expectations about the future evolution of the environmental quality can give rise to (local and global) indeterminacy about the growth path the economy will follow starting from a given initial position.

  12. A new open-loop fiber optic gyro error compensation method based on angular velocity error modeling.

    Science.gov (United States)

    Zhang, Yanshun; Guo, Yajing; Li, Chunyu; Wang, Yixin; Wang, Zhanqing

    2015-01-01

    With the open-loop fiber optic gyro (OFOG) model, output voltage and angular velocity can effectively compensate OFOG errors. However, the model cannot reflect the characteristics of OFOG errors well when it comes to pretty large dynamic angular velocities. This paper puts forward a modeling scheme with OFOG output voltage u and temperature T as the input variables and angular velocity error Δω as the output variable. Firstly, the angular velocity error Δω is extracted from OFOG output signals, and then the output voltage u, temperature T and angular velocity error Δω are used as the learning samples to train a Radial-Basis-Function (RBF) neural network model. Then the nonlinear mapping model over T, u and Δω is established and thus Δω can be calculated automatically to compensate OFOG errors according to T and u. The results of the experiments show that the established model can be used to compensate the nonlinear OFOG errors. The maximum, the minimum and the mean square error of OFOG angular velocity are decreased by 97.0%, 97.1% and 96.5% relative to their initial values, respectively. Compared with the direct modeling of gyro angular velocity, which we researched before, the experimental results of the compensating method proposed in this paper are further reduced by 1.6%, 1.4% and 1.42%, respectively, so the performance of this method is better than that of the direct modeling for gyro angular velocity. PMID:25734642

  13. Study of rotational bands of 131La using the angular momentum projected shell model

    International Nuclear Information System (INIS)

    The angular momentum projected shell model (PSM) was applied to the study of nuclide 131La. the results of theoretical calculations about the rotational bands with configurations πd5/2, πg7/2, πh11/2, πh11/2 direct x [νh11/2]2 and πg7/2 direct x [νh11/2]2 were compared with experimental data. The nuclear shape for every rotational band was then specified

  14. Modeling channel interference in an orbital angular momentum-multiplexed laser link

    Science.gov (United States)

    Anguita, Jaime A.; Neifeld, Mark A.; Vasic, Bane V.

    2009-08-01

    We study the effects of optical turbulence on the energy crosstalk among constituent orbital angular momentum (OAM) states in a vortex-based multi-channel laser communication link and determine channel interference in terms of turbulence strength and OAM state separation. We characterize the channel interference as a function of C2n and transmit OAM state, and propose probability models to predict the random fluctuations in the received signals for such architecture. Simulations indicate that turbulence-induced channel interference is mutually correlated across receive channels.

  15. Dynamic angular velocity modeling and error compensation of one-fiber fiber optic gyroscope (OFFOG) in the whole temperature range

    International Nuclear Information System (INIS)

    Dynamic angular velocity modeling and error compensation of VG095M in the whole temperature range, based on a radial basis function (RBF) neural network, is presented in this paper. With gyro output voltage and environmental temperature as the input and angular velocity as the output, an RBF neural network model is established. The model is trained and validated by the experiment data. The fitting error of the model is 4.3818 × 10−6 deg s−1, which shows that the model has high precision. The experiment data except the data used for modeling were processed with this model. The results show that the maximum, minimum and mean square error of the angular velocity were reduced to 4.6%, 4.3% and 4.7% respectively after compensation

  16. No-core configuration-interaction model for the isospin- and angular-momentum-projected states

    Science.gov (United States)

    Satuła, W.; Båczyk, P.; Dobaczewski, J.; Konieczka, M.

    2016-08-01

    Background: Single-reference density functional theory is very successful in reproducing bulk nuclear properties like binding energies, radii, or quadrupole moments throughout the entire periodic table. Its extension to the multireference level allows for restoring symmetries and, in turn, for calculating transition rates. Purpose: We propose a new variant of the no-core-configuration-interaction (NCCI) model treating properly isospin and rotational symmetries. The model is applicable to any nucleus irrespective of its mass and neutron- and proton-number parity. It properly includes polarization effects caused by an interplay between the long- and short-range forces acting in the atomic nucleus. Methods: The method is based on solving the Hill-Wheeler-Griffin equation within a model space built of linearly dependent states having good angular momentum and properly treated isobaric spin. The states are generated by means of the isospin and angular-momentum projection applied to a set of low-lying (multi)particle-(multi)hole deformed Slater determinants calculated using the self-consistent Skyrme-Hartree-Fock approach. Results: The theory is applied to calculate energy spectra in N ≈Z nuclei that are relevant from the point of view of a study of superallowed Fermi β decays. In particular, a new set of the isospin-symmetry-breaking corrections to these decays is given. Conclusions: It is demonstrated that the NCCI model is capable of capturing main features of low-lying energy spectra in light and medium-mass nuclei using relatively small model space and without any local readjustment of its low-energy coupling constants. Its flexibility and a range of applicability makes it an interesting alternative to the conventional nuclear shell model.

  17. An integrated model for product mix problem and scheduling considering overlapped operations

    OpenAIRE

    Seyed Amin Badri; Mehdi Ghazanfari; Ahmad Makui

    2014-01-01

    Product mix problem is one of the most important decisions made in production systems. Several algorithms have been developed to determine the product mix. Most of the previous works assume that all resources can perform, simultaneously and independently, which may lead to infeasibility of the schedule. In this paper, product mix problem and scheduling are considered, simultaneously. A new mixed-integer programming (MIP) model is proposed to formulate this problem. The proposed model differen...

  18. Overlapping Parietal Activity in Memory and Perception: Evidence for the Attention to Memory Model

    OpenAIRE

    Cabeza, Roberto; Mazuz, Yonatan S.; Stokes, Jared; Kragel, James E.; Woldorff, Marty G.; Ciaramelli, Elisa; Olson, Ingrid R.; Moscovitch, Morris

    2011-01-01

    The specific role of different parietal regions to episodic retrieval is a topic of intense debate. According to the Attention to Memory (AtoM) model, dorsal parietal cortex (DPC) mediates top–down attention processes guided by retrieval goals, whereas ventral parietal cortex (VPC) mediates bottom–up attention processes captured by the retrieval output or the retrieval cue. This model also hypothesizes that the attentional functions of DPC and VPC are similar for memory and perception. To inv...

  19. A Hybrid Model for Biometric Authentication using Finger Back Knuckle Surface based on Angular Geometric Analysis

    Directory of Open Access Journals (Sweden)

    K.Usha

    2013-08-01

    Full Text Available Biometric based personal recognition is an efficient method for identifying a person. Recently, hand based biometric has become popular due to its various advantages such as high verification accuracy and high user acceptability. This paper proposes a hybrid model using an emerging hand based biometric trait known as Finger Back Knuckle Surface. This model is based on angular geometric analysis which is implemented on two different samples of Finger Back Knuckle Surface such as Finger Bend Knuckle Surface and Finger Intact Knuckle Surface for the extraction of knuckle feature information. The obtained feature information from both the surfaces is fused using feature information level fusion technique to authenticate the individuals. Experiments were conducted using newly created database for both Bend Knuckle and Intact Knuckle Surface. The results were promising in terms of accuracy, speed and computational complexity.

  20. Improved angular momentum evolution model for solar-like stars II. Exploring the mass dependence

    CERN Document Server

    Gallet, Florian

    2015-01-01

    We developed angular momentum evolution models for 0.5 and 0.8 $M_{\\odot}$ stars. The parametric models include a new wind braking law based on recent numerical simulations of magnetised stellar winds, specific dynamo and mass-loss rate prescriptions, as well as core/envelope decoupling. We compare model predictions to the distributions of rotational periods measured for low mass stars belonging to star forming regions and young open clusters. Furthermore, we explore the mass dependence of model parameters by comparing these new models to the solar-mass models we developed earlier. Rotational evolution models are computed for slow, median, and fast rotators at each stellar mass. The models reproduce reasonably well the rotational behaviour of low-mass stars between 1~Myr and 8-10~Gyr, including pre-main sequence to zero-age main sequence spin up, prompt zero-age main sequence spin down, and early-main sequence convergence of the surface rotation rates. Fast rotators are found to have systematically shorter di...

  1. ESTIMATING THE INTENSITY OF GERM-GRAIN MODELS WITH OVERLAPPING GRAINS

    Directory of Open Access Journals (Sweden)

    Hamid Ghorbani

    2011-05-01

    Full Text Available Formulas are derived for the spherical contact distribution of a planar germ-grain model Z with circular grains where the germs formeither a 'segment cluster' process or a 'line-based' Poisson point process. They are used in order to estimate the intensityl of the germprocess by means of the spherical contact distribution function. As an application the number of dislocations on a silicon wafer is estimated.

  2. Angular sensitivity of modeled scientific silicon charge-coupled devices to initial electron direction

    Science.gov (United States)

    Plimley, Brian; Coffer, Amy; Zhang, Yigong; Vetter, Kai

    2016-08-01

    Previously, scientific silicon charge-coupled devices (CCDs) with 10.5-μm pixel pitch and a thick (650 μm), fully depleted bulk have been used to measure gamma-ray-induced fast electrons and demonstrate electron track Compton imaging. A model of the response of this CCD was also developed and benchmarked to experiment using Monte Carlo electron tracks. We now examine the trade-off in pixel pitch and electronic noise. We extend our CCD response model to different pixel pitch and readout noise per pixel, including pixel pitch of 2.5 μm, 5 μm, 10.5 μm, 20 μm, and 40 μm, and readout noise from 0 eV/pixel to 2 keV/pixel for 10.5 μm pixel pitch. The CCD images generated by this model using simulated electron tracks are processed by our trajectory reconstruction algorithm. The performance of the reconstruction algorithm defines the expected angular sensitivity as a function of electron energy, CCD pixel pitch, and readout noise per pixel. Results show that our existing pixel pitch of 10.5 μm is near optimal for our approach, because smaller pixels add little new information but are subject to greater statistical noise. In addition, we measured the readout noise per pixel for two different device temperatures in order to estimate the effect of temperature on the reconstruction algorithm performance, although the readout is not optimized for higher temperatures. The noise in our device at 240 K increases the FWHM of angular measurement error by no more than a factor of 2, from 26° to 49° FWHM for electrons between 425 keV and 480 keV. Therefore, a CCD could be used for electron-track-based imaging in a Peltier-cooled device.

  3. Rotational Diffusion of Macromolecules and Nanoparticles Modeled as Non-Overlapping Bead Arrays in an Effective Medium

    Directory of Open Access Journals (Sweden)

    Umar Twahir

    2011-05-01

    Full Text Available In this work, the retarding influence of a gel on the rotational motion of a macromolecule is investigated within the framework of the Effective Medium (EM model. This is an extension of an earlier study that considered the effect of a gel on the translational motion of a macromolecule [Allison, S. et al. J. Phys. Chem. B 2008, 112, 5858-5866]. The macromolecule is modeled as an array of non-overlapping spherical beads with no restriction placed on their size or configuration. Specific applications include the rotational motion of right circular cylinders and wormlike chains modeled as strings of identical touching beads. The procedure is then used to examine the electric birefringence decay of a 622 base pair DNA fragment in an agarose gel. At low gel concentration (M £ 0.010 gm/mL, good agreement between theory and experiment is achieved if the persistence length of DNA is taken to be 65 nm and the gel fiber radius of agarose is taken to be 2.5 nm. At higher gel concentrations, the EM model substantially underestimates the rotational relaxation time of DNA and this can be attributed to the onset of direct interactions that become significant when the effective particle size becomes comparable to the mean gel fiber spacing.

  4. A structural constitutive model considering angular dispersion and waviness of collagen fibres of rabbit facial veins

    Directory of Open Access Journals (Sweden)

    Stergiopulos Nikos

    2011-03-01

    Full Text Available Abstract Background Structural constitutive models of vascular wall integrate information on composition and structural arrangements of tissue. In blood vessels, collagen fibres are arranged in coiled and wavy bundles and the individual collagen fibres have a deviation from their mean orientation. A complete structural constitutive model for vascular wall should incorporate both waviness and orientational distribution of fibres. We have previously developed a model, for passive properties of vascular wall, which considers the waviness of collagen fibres. However, to our knowledge there is no structural model of vascular wall which integrates both these features. Methods In this study, we have suggested a structural strain energy function that incorporates not only the waviness but also the angular dispersion of fibres. We studied the effect of parameters related to the orientational distribution on macro-mechanical behaviour of tissue during inflation-extension tests. The model was further applied on experimental data from rabbit facial veins. Results Our parametric study showed that the model is less sensitive to the orientational dispersion when fibres are mainly oriented circumferentially. The macro-mechanical response is less sensitive to changes in the mean orientation when fibres are more dispersed. The model accurately fitted the experimental data of veins, while not improving the quality of the fit compared to the model without dispersion. Our results showed that the orientational dispersion of collagen fibres could be compensated by a less abrupt and shifted to higher strain collagen engagement pattern. This should be considered when the model is fitted to experimental data and model parameters are used to study structural modifications of collagen fibre network in physiology and disease. Conclusions The presented model incorporates structural features related to waviness and orientational distribution of collagen fibres and thus offers

  5. Partonic orbital angular momentum

    Science.gov (United States)

    Arash, Firooz; Taghavi-Shahri, Fatemeh; Shahveh, Abolfazl

    2013-04-01

    Ji's decomposition of nucleon spin is used and the orbital angular momentum of quarks and gluon are calculated. We have utilized the so called valon model description of the nucleon in the next to leading order. It is found that the average orbital angular momentum of quarks is positive, but small, whereas that of gluon is negative and large. Individual quark flavor contributions are also calculated. Some regularities on the total angular momentum of the quarks and gluon are observed.

  6. Overlapping gene expression profiles of model compounds provide opportunities for immunotoxicity screening

    International Nuclear Information System (INIS)

    In order to investigate immunotoxic effects of a set of model compounds in mice, a toxicogenomics approach was combined with information on macroscopical and histopathological effects on spleens and on modulation of immune function. Bis(tri-n-butyltin)oxide (TBTO), cyclosporin A (CsA), and benzo[a]pyrene (B[a]P) were administered to C57BL/6 mice at immunosuppressive dose levels. Acetaminophen (APAP) was included in the study since indications of immunomodulating properties of this compound have appeared in the literature. TBTO exposure caused the most pronounced effect on gene expression and also resulted in the most severe reduction of body weight gain and induction of splenic irregularities. All compounds caused inhibition of cell division in the spleen as shown by microarray analysis as well as by suppression of lymphocyte proliferation after application of a contact sensitizer as demonstrated in an immune function assay that was adapted from the local lymph node assay. The immunotoxicogenomics approach applied in this study thus pointed to immunosuppression through cell cycle arrest as a common mechanism of action of immunotoxicants, including APAP. Genes related to cell division such as Ccna2, Brca1, Birc5, Incenp, and Cdkn1a (p21) were identified as candidate genes to indicate anti-proliferative effects of xenobiotics in immune cells for future screening assays. The results of our experiments also show the value of group wise pathway analysis for detection of more subtle transcriptional effects and the potency of evaluation of effects in the spleen to demonstrate immunotoxicity

  7. Demonstrating the Conservation of Angular Momentum Using Model Cars Moving along a Rotating Rod

    Science.gov (United States)

    Abdul-Razzaq, Wathiq; Golubovic, Leonardo

    2013-01-01

    We have developed an exciting non-traditional experiment for our introductory physics laboratories to help students to understand the principle of conservation of angular momentum. We used electric toy cars moving along a long rotating rod. As the cars move towards the centre of the rod, the angular velocity of this system increases.…

  8. Modeling angular-dependent spectral emissivity of snow and ice in the thermal infrared atmospheric window.

    Science.gov (United States)

    Hori, Masahiro; Aoki, Teruo; Tanikawa, Tomonori; Hachikubo, Akihiro; Sugiura, Konosuke; Kuchiki, Katsuyuki; Niwano, Masashi

    2013-10-20

    A model of angular-dependent emissivity spectra of snow and ice in the 8-14 μm atmospheric window is constructed. Past field research revealed that snow emissivity varies depending on snow grain size and the exitance angle. Thermography images acquired in this study further revealed that not only welded snow particles such as sun crust, but also disaggregated particles such as granular snow and dendrite crystals exhibit high reflectivity on their crystal facets, even when the bulk snow surface exhibits blackbody-like behavior as a whole. The observed thermal emissive behaviors of snow particles suggest that emissivity of the bulk snow surface can be expressed by a weighted sum of two emissivity components: those of the specular and blackbody surfaces. Based on this assumption, a semi-empirical emissivity model was constructed; it is expressed by a linear combination of specular and blackbody surfaces' emissivities with a weighting parameter characterizing the specularity of the bulk surface. Emissivity spectra calculated using the model succeeded in reproducing the past in situ measured directional spectra of various snow types by employing a specific weighting parameter for each snow type. PMID:24216578

  9. Nonlinear dynamic model for skidding behavior of angular contact ball bearings

    Science.gov (United States)

    Han, Qinkai; Chu, Fulei

    2015-10-01

    A three-dimensional nonlinear dynamic model is proposed to predict the skidding behavior of angular contact ball bearings under combined load condition. The centrifugal and gyroscopic effects induced by ball rotation and revolution, Hertz contact between the ball and inner/outer races, discontinuous contact between the ball and cage and elastohydrodynamic lubrication are considered in the model. Through comparisons with the tested results of the reference, the dynamic model is verified. Based upon these, variations of ball slipping speed with time and space are discussed for the bearing under combined load condition. It is shown that radial load leads to the fluctuations in the slipping velocity of the ball contacting with inner/outer races, especially for the ball in load-decreasing regions. Adding the radial load would significantly increase the amplitude and range of slipping velocity, indicating that the skidding becomes more serious. As the ball still withstands contact load in the load-decreasing region, large slipping velocity would increase the temperature of both bearing and lubricant oil, intensify the wear and then might shorten the bearing service life. Therefore, the radial load should be considered carefully in the design and monitoring of rotating machinery.

  10. Survival probability of Baltic larval cod in relation to spatial overlap patterns with their prey obtained from drift model studies

    DEFF Research Database (Denmark)

    Hinrichsen, H.H.; Schmidt, J.O.; Petereit, C.;

    2005-01-01

    Temporal mismatch between the occurrence of larvae and their prey potentially affects the spatial overlap and thus the contact rates between predator and prey. This might have important consequences for growth and survival. We performed a case study investigating the influence of circulation patt....... Finally, we related variations in overlap patterns to the variability of Baltic cod recruitment success. (c) 2005 International Council for the Exploration of the Sea. Published by Elsevier Ltd. All rights reserved...

  11. Multidimensional modeling of the decay of angular momentum and internal energy in a constant volume cylindrical vessel

    International Nuclear Information System (INIS)

    The KIVA code developed at the Los Alamos Scientific Laboratory was used to model the flow and heat transfer in a constant volume bomb. Good agreement was obtained between calculated results and experimental measurements for both the swirl velocity and temperature fields. Correlations are presented which relate the instantaneous Nusselt number and dimensionless decay rate of angular momentum with an instantaneous Reynold's number

  12. Analytical model for CMB temperature angular power spectrum from cosmic (super-)strings

    OpenAIRE

    Yamauchi, Daisuke; Takahashi, Keitaro; Sendouda, Yuuiti; Yoo, Chul-Moon; Sasaki, Misao

    2010-01-01

    We present a new analytical method to calculate the small angle CMB temperature angular power spectrum due to cosmic (super-)string segments. In particular, using our method, we clarify the dependence on the intercommuting probability $P$. We find that the power spectrum is dominated by Poisson-distributed string segments. The power spectrum for a general value of $P$ has a plateau on large angular scales and shows a power-law decrease on small angular scales. The resulting spectrum in the ca...

  13. OVERLAPPING VIRTUAL CADASTRAL DOCUMENTATION

    Directory of Open Access Journals (Sweden)

    Madalina - Cristina Marian

    2013-12-01

    Full Text Available Two cadastrale plans of buildings, can overlap virtual. Overlap is highlighted when digital reception. According to Law no. 7/1996 as amended and supplemented, to solve these problems is by updating the database graphs, the repositioning. This paper addresses the issue of overlapping virtual cadastre in the history of the period 1999-2012.

  14. Orbital angular moment of an electromagnetic Gaussian Schell-model beam with a twist phase.

    Science.gov (United States)

    Liu, Lin; Huang, Yusheng; Chen, Yahong; Guo, Lina; Cai, Yangjian

    2015-11-16

    We derive the analytical formula for the orbital angular momentum (OAM) flux of a stochastic electromagnetic beam carrying twist phase [i.e., twisted electromagnetic Gaussian Schell-model (TEGSM) beam] in the source plane with the help of the Wigner distribution function. Furthermore, we derive the general expression of the OAM flux of a TEGSM beam on propagation with the help of a tensor method. As numerical examples, we explore the evolution properties of the OAM flux of a TEGSM beam propagating through a cylindrical thin lens or a uniaxial crystal. It is found that the OAM flux of a TEGSM beam closely depends on its twist factors and degree of polarization in the source plane, and one can modulate the OAM flux of a TEGSM beam by a cylindrical thin lens or a uniaxial crystal. Our results may be useful in some applications, such as particle manipulation and free-space optical communications, where light beam with OAM is preferred. PMID:26698508

  15. The relativistic consistent angular-momentum projected shell model study of the N=Z nucleus 52Fe

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The relativistic consistent angular-momentum projected shell model(ReCAPS) is used in the study of the structure and electromagnetic transitions of the low-lying states in the N=Z nucleus 52Fe.The model calculations show a reasonably good agreement with the data.The backbending at 12+ is reproduced and the energy level structure suggests that neutron-proton interactions play important roles.

  16. Fast Overlapping Group Lasso

    CERN Document Server

    Liu, Jun

    2010-01-01

    The group Lasso is an extension of the Lasso for feature selection on (predefined) non-overlapping groups of features. The non-overlapping group structure limits its applicability in practice. There have been several recent attempts to study a more general formulation, where groups of features are given, potentially with overlaps between the groups. The resulting optimization is, however, much more challenging to solve due to the group overlaps. In this paper, we consider the efficient optimization of the overlapping group Lasso penalized problem. We reveal several key properties of the proximal operator associated with the overlapping group Lasso, and compute the proximal operator by solving the smooth and convex dual problem, which allows the use of the gradient descent type of algorithms for the optimization. We have performed empirical evaluations using the breast cancer gene expression data set, which consists of 8,141 genes organized into (overlapping) gene sets. Experimental results demonstrate the eff...

  17. Angular Cheilitis

    Science.gov (United States)

    ... A This image displays a frequent location for candida infection (angular cheilitis), the corners of the mouth. Overview ... infection, those affected may also have thrush (oral candidiasis). The areas are generally slightly painful. The condition ...

  18. Creating and controlling overlap in two-layer networks. Application to a mean-field SIS epidemic model with awareness dissemination

    CERN Document Server

    Juher, David

    2015-01-01

    We study the properties of the potential overlap between two networks $A,B$ sharing the same set of $N$ nodes (a two-layer network) whose respective degree distributions $p_A(k), p_B(k)$ are given. Defining the overlap coefficient $\\alpha$ as the Jaccard index, we derive upper bounds for the minimum and maximum overlap coefficient in terms of $p_A(k)$, $p_B(k)$ and $N$. We also present an algorithm based on cross-rewiring of links to obtain a two-layer network with any prescribed $\\alpha$ inside the permitted range. Finally, to illustrate the importance of the overlap for the dynamics of interacting contagious processes, we derive a mean-field model for the spread of an SIS epidemic with awareness against infection over a two-layer network, containing $\\alpha$ as a parameter. A simple analytical relationship between $\\alpha$ and the basic reproduction number follows. Stochastic simulations are presented to assess the accuracy of the upper bounds of $\\alpha$ and the predictions of the mean-field epidemic model...

  19. The Impact of Population Ageing on the Labour Market: Evidence from Overlapping Generations Computable General Equilibrium (OLG-CGE) Model of Scotland

    OpenAIRE

    Lisenkova, Katerina; Mérette, Marcel; Wright, Robert

    2012-01-01

    This paper presents a dynamic Overlapping Generations Computable General Equilibrium (OLG-CGE) model of Scotland. The model is used to examine the impact of population ageing on the labour market. More specifically, it is used to evaluate the effects of labour force decline and labour force ageing on key macro-economic variables. The second effect is assumed to operate through age-specific productivity and labour force participation. In the analysis, particular attention is paid to how popula...

  20. Magnetization reversal via a Stoner–Wohlfarth model with bi-dimensional angular distribution of easy axis

    International Nuclear Information System (INIS)

    A numerical extension of the simple Stoner–Wohlfarth model to the case of bi-dimensional angular distributions of easy axis is provided. The results are particularized in case of step-like, Gaussian-like and user defined distributions. In spite of its simplicity, the model can be applied to magnetically textured thin films and multilayers with in-plane magnetic anisotropy, independently on the texture source. Exemplifications are provided for a simple ferromagnetic textured FeCo film as well as for a FeMn/FeCo/Cu/FeCo spin valve structure. - Highlights: • Magnetic texture effects are included in the Stoner–Wohlfarth problem. • Step-like, Gaussian-like and user defined angular EADs are discussed. • The magnetic texture is obtained from the overall magnetization reversal. • Results beyond the OR method can be provided for complex systems

  1. Magnetization reversal via a Stoner–Wohlfarth model with bi-dimensional angular distribution of easy axis

    Energy Technology Data Exchange (ETDEWEB)

    Kuncser, A. [National Institute of Materials Physics, 105 bis Atomistilor Street, 077125 Bucharest-Magurele (Romania); Faculty of Physics, University of Bucharest, 405 Atomistilor Street, 077125 Bucharest-Magurele (Romania); Kuncser, V., E-mail: kuncser@infim.ro [National Institute of Materials Physics, 105 bis Atomistilor Street, 077125 Bucharest-Magurele (Romania)

    2015-12-01

    A numerical extension of the simple Stoner–Wohlfarth model to the case of bi-dimensional angular distributions of easy axis is provided. The results are particularized in case of step-like, Gaussian-like and user defined distributions. In spite of its simplicity, the model can be applied to magnetically textured thin films and multilayers with in-plane magnetic anisotropy, independently on the texture source. Exemplifications are provided for a simple ferromagnetic textured FeCo film as well as for a FeMn/FeCo/Cu/FeCo spin valve structure. - Highlights: • Magnetic texture effects are included in the Stoner–Wohlfarth problem. • Step-like, Gaussian-like and user defined angular EADs are discussed. • The magnetic texture is obtained from the overall magnetization reversal. • Results beyond the OR method can be provided for complex systems.

  2. Precise Modelling of a Gantry Crane System Including Friction, 3D Angular Swing and Hoisting Cable Flexibility

    OpenAIRE

    Renuka V. S.; Abraham T Mathew

    2013-01-01

    A crane system offers a typical control problem being an under actuated MIMO system. In this paper the precise modelling of a 2D gantry crane system with 3 DOF is considered. First a simple dynamic model of the system is obtained using Lagrange’s equations of motion. Then, friction non-linearities were added to the model, which were found to decrease the output magnitudes from reference values. The model was further improved by considering the possibility of 3D angular swing which showed more...

  3. Segmentation method of overlapped double apples based on Snake model and corner detectors%基于Snake模型与角点检测的双果重叠苹果目标分割方法

    Institute of Scientific and Technical Information of China (English)

    徐越; 李盈慧; 宋怀波; 何东健

    2015-01-01

    To achieve successful segmentation of overlapped apples, a segmentation method by using Snake model and corner detectors was presented. As contour is an important basis for detection and recognition of object, and remarkable characteristic of overlapped apples has some typical angular points, which are also called segmentation points and in the target contour. Since Snake model could better converge to target’s concave places, Snake model was used to extract overlapped apples’ outline. For searching overlapped apples’ corner points, corner detection algorithm based distance was proposed:1) overlapped apples’ contour was coded;2) the distance between contour points and the given‘center point’ was calculated, where‘center point’ was overlapped apples’ centroid point for the simplicity of calculation;3) the distance curve that was get in step 2 is useless as it may engender a lot of spurious corner points. This is caused by small disturbances of small distance, for removing spurious corner points, db1 wavelet was utilized to decomposed original signal at level three, there is a relationship between wavelet transform and digital filter banks. so the wavelet transform can be simply achieved by a tree of digital filter banks. The idea behind filter banks is to divide a signal into two parts:one is the low frequency part and the other is the high frequency part, which could be achieved by a set of filters, the low frequency that is approximate version of the original distance curve in this paper don’t contain detail components of original distance and is beneficial to detect true corner points. But the problem with the use of these filters is that each of the two decomposed signals is subjected to downsampling, which simply means throwing away every second data point. After decomposition with three levels, the length of approximated signal reduced, which may cause the miss of the index of original contour point. As for this reason, the approximated

  4. Next-generation angular distribution models for top-of-atmosphere radiative flux calculation from CERES instruments: methodology

    OpenAIRE

    W. Su; Corbett, J; Z. Eitzen; L. Liang

    2015-01-01

    The top-of-atmosphere (TOA) radiative fluxes are critical components to advancing our understanding of the Earth's radiative energy balance, radiative effects of clouds and aerosols, and climate feedback. The Clouds and the Earth's Radiant Energy System (CERES) instruments provide broadband shortwave and longwave radiance measurements. These radiances are converted to fluxes by using scene-type-dependent angular distribution models (ADMs). This paper describes the next-gener...

  5. Multiple alignment of the orbital angular momentum in the spectrum of 158Er in a phenomenological model

    International Nuclear Information System (INIS)

    Multiple alignment of the orbital angular momentum in the spectrum of the 158Er nucleus is described in a phenomenological model based on the high-spin approximation for the Coriolis mixing of positive-parity states. Anomalous antialigned a bands are introduced as a continuation of aligned s bands to ensure their crossing. In the proposed diagram εIν(ωcurl) alignment in the nuclear spectra manifests itself especially clearly. 15 refs., 2 figs., 2 tabs

  6. Perturbation theory in angular quantization approach and the expectation values of exponential fields in sine-Gordon model

    Energy Technology Data Exchange (ETDEWEB)

    Poghossian, R.H. E-mail: poghos@moon.yerphi.am

    2000-03-20

    In an angular quantization approach a perturbation theory for the Massive Thirring Model (MTM) is developed, which allows us to calculate vacuum expectation values of exponential fields in sine-Gordon theory near the free fermion point in first order of the MTM coupling constant g. The Hankel transforms play an important role when carrying out these calculations. The expression we have found coincides with that of the direct expansion over g of the exact formula conjectured by Lukyanov and Zamolodchikov.

  7. Modelling the turbulent transport of angular momentum in tokamak plasmas - A quasi-linear gyrokinetic approach

    International Nuclear Information System (INIS)

    The magnetic confinement in tokamaks is for now the most advanced way towards energy production by nuclear fusion. Both theoretical and experimental studies showed that rotation generation can increase its performance by reducing the turbulent transport in tokamak plasmas. The rotation influence on the heat and particle fluxes is studied along with the angular momentum transport with the quasi-linear gyro-kinetic eigenvalue code QuaLiKiz. For this purpose, the QuaLiKiz code is modified in order to take the plasma rotation into account and compute the angular momentum flux. It is shown that QuaLiKiz framework is able to correctly predict the angular momentum flux including the E*B shear induced residual stress as well as the influence of rotation on the heat and particle fluxes. The major approximations of QuaLiKiz formalisms are reviewed, in particular the ballooning representation at its lowest order and the eigenfunctions calculated in the hydrodynamic limit. The construction of the quasi-linear fluxes is also reviewed in details and the quasi-linear angular momentum flux is derived. The different contributions to the turbulent momentum flux are studied and successfully compared both against non-linear gyro-kinetic simulations and experimental data. (author)

  8. Orbital angular momentum effects

    International Nuclear Information System (INIS)

    This paper reports that in the context of the parton model description of baryon structure orbital angular momentum effects have long been considered negligible. However, recent results obtained within the framework of QCD and presented in this talk indicate that a substantial fraction of the baryon spin may be carried as orbital angular momentum of its constituents. These results are of particular relevance in the light of new data on the spin structure of the proton recently published by the EMC collaboration

  9. Child Benefits and Welfare for Current and Future Generations: Simulation Analyses in an Overlapping-Generations Model with Endogenous Fertility(in Japanese)

    OpenAIRE

    Oguro, Kazumasa; SHIMASAWA Manabu; TAKAHATA Junichiro

    2010-01-01

    We constructed an overlapping-generations model with endogenous fertility to analyze the effect of child benefits and pensions on welfare for current and future generations. The following results were obtained. First, when financial sustainability is not taken into account, the best policy to improve the welfare of future generations is to increase child benefits, financed by issuing government debt. On the other hand, when financial sustainability is taken into account, the best policy is to...

  10. Precise Modelling of a Gantry Crane System Including Friction, 3D Angular Swing and Hoisting Cable Flexibility

    Directory of Open Access Journals (Sweden)

    Renuka V. S.

    2013-06-01

    Full Text Available A crane system offers a typical control problem being an under actuated MIMO system. In this paper the precise modelling of a 2D gantry crane system with 3 DOF is considered. First a simple dynamic model of the system is obtained using Lagrange’s equations of motion. Then, friction non-linearities were added to the model, which were found to decrease the output magnitudes from reference values. The model was further improved by considering the possibility of 3D angular swing which showed more accurate transient responses. Finally, the dynamics of hoisting cable flexibility was added to the system resulting in a complex model requiring time consuming simulation. But, significant change was seen in the angular swing output which will significantly affect controller performance. The models considering either flexibility or 3D load swing are comparatively less complex than the combined model. The precise model to be considered is a trade-off between safety (minimum swing angle and precise load handling.

  11. Uniform flow around a circular cylinder in the subcritical range - using the Self-induced angular Moment Method turbulence model

    DEFF Research Database (Denmark)

    Johansson, Jens; Nielsen, Mogens Peter

    The uniform flow around a circular cylinder at Reynolds number 1e5 is simulated in a three dimensional domain by means of the newly developed Self-induced angular Moment Method, SMoM, turbulence model. The global force coefficients, Strouhal number, pressure distributions and wall shear stress...... distributions are compared to experimental findings reported in literature. The SMoM turbulence model is found to provide maximum, minimum and time-mean pressure coefficient distributions in very good agreement with experimental findings....

  12. Target/error overlap in jargonaphasia: The case for a one-source model, lexical and non-lexical summation, and the special status of correct responses.

    Science.gov (United States)

    Olson, Andrew; Halloran, Elizabeth; Romani, Cristina

    2015-12-01

    We present three jargonaphasic patients who made phonological errors in naming, repetition and reading. We analyse target/response overlap using statistical models to answer three questions: 1) Is there a single phonological source for errors or two sources, one for target-related errors and a separate source for abstruse errors? 2) Can correct responses be predicted by the same distribution used to predict errors or do they show a completion boost (CB)? 3) Is non-lexical and lexical information summed during reading and repetition? The answers were clear. 1) Abstruse errors did not require a separate distribution created by failure to access word forms. Abstruse and target-related errors were the endpoints of a single overlap distribution. 2) Correct responses required a special factor, e.g., a CB or lexical/phonological feedback, to preserve their integrity. 3) Reading and repetition required separate lexical and non-lexical contributions that were combined at output. PMID:26410740

  13. Overlap in Facebook Profiles Reflects Relationship Closeness.

    Science.gov (United States)

    Castañeda, Araceli M; Wendel, Markie L; Crockett, Erin E

    2015-01-01

    We assessed the association between self-reported Inclusion of Other in the Self (IOS) and Facebook overlap. Ninety-two participants completed online measures of IOS and investment model constructs. Researchers then recorded Facebook data from participants' profile pages. Results from multilevel models revealed that IOS predicted Facebook overlap. Furthermore, Facebook overlap was associated with commitment and investment in ways comparable to self-reported IOS. These findings suggest that overlap in Facebook profiles can be used to measure relationship closeness. PMID:25635533

  14. Two-component Bose-Hubbard model with higher-angular-momentum states

    Science.gov (United States)

    Pietraszewicz, Joanna; Sowiński, Tomasz; Brewczyk, Mirosław; Zakrzewski, Jakub; Lewenstein, Maciej; Gajda, Mariusz

    2012-05-01

    Bose-Hubbard Hamiltonian of cold two-component Bose gas of spinor chromium atoms is studied. Dipolar interactions of magnetic moments while tuned resonantly by an ultralow magnetic field can lead to a transfer of atoms from the ground to excited Wannier states with a nonvanishing angular orbital momentum. Hence we propose the way of creating Px+iPy orbital superfluid. The spin introduces an additional degree of control and leads to a variety of different stable phases of the system. The Mott insulator of atoms in a superposition of the ground and vortex Wannier states as well as a superposition of the Mott insulator with orbital superfluid are predicted.

  15. Numerical study of the overlap Lee–Yang singularities in the three-dimensional Edwards–Anderson model

    International Nuclear Information System (INIS)

    We have characterized numerically, using the Janus computer, the Lee–Yang complex singularities related to the overlap in the 3D Ising spin-glass with binary couplings over a wide range of temperatures (both in the critical and in the spin-glass phase). Studying the behavior of the zeros at the critical point, we have obtained an accurate measurement of the anomalous dimension in very good agreement with the values quoted in the literature. In addition, by studying the density of the zeros we have been able to characterize the phase transition and to investigate the Edwards–Anderson order parameter in the spin-glass phase, finding agreement with the values obtained using more conventional techniques. (paper)

  16. Model QPO power spectra: signatures of angular position and radial velocity of clumps in the boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Alpar, M.A.

    1986-12-01

    Model power spectra are constructed for quasi-periodic oscillations of the type observed in some galactic bulge X-ray sources. It is shown that the angular location of clumping in the boundary layer, as well as the spread in Keplerian velocities within the boundary layer, will effect the form of the power spectrum under certain conditions. The occurrence of such features in observed power spectra would yield information on the possible role of the magnetic field in clumping and on the radial velocity of matter moving through the boundary layer.

  17. An equatorial solar wind model with angular momentum conservation and nonradial magnetic fields and flow velocities at an inner boundary

    Science.gov (United States)

    Tasnim, S.; Cairns, Iver H.

    2016-06-01

    An analytic, self-consistent, theoretical model for the solar wind is developed that generalizes previous models to include all of the following: conservation of angular momentum, frozen-in magnetic fields, both radial (r) and azimuthal (ϕ) components of the magnetic field (Br and Bϕ) and velocity (vr and vϕ) from the inner boundary rs to 1 AU, and the detailed tracing back of observations at 1 AU to the inner boundary and all intervening (r,ϕ). The new model applies near the solar equatorial plane, assumes constant radial wind speed at each heliolongitude, and enforces corotation at the inner boundary. It is shown that the new theoretical model can be reduced to the previous models in the appropriate limits. We apply the model to two solar rotations of Wind spacecraft data, one near solar minimum (1-27 August 2010) and one near solar maximum (1-27 July 2002). The model analytically predicts the Alfvénic critical radius ra from the radial Alfvénic Mach number observed at 1 AU. Typically, the values are less than 15 solar radii, in agreement with some recent observations, and vary with longitude. Values of vϕ(r,ϕ) are predicted from the model, being always in the sense of corotation but varying in magnitude with r and ϕ. Reasonable and self-consistent results are found for Br(r,ϕ), Bϕ(r,ϕ), vϕ(r,ϕ), and n(r,ϕ) from rs to 1 AU. Both the azimuthal and radial magnetic fields at rs vary with time by more than an order of magnitude and usually |Br(rs,ϕs)|≥|Bϕ(rs,ϕs)|. Typically, though not always, magnetic contributions to the total angular momentum are small. Interestingly, however, the azimuthal flow velocities observed at 1 AU are not always in the corotation direction and usually have much larger magnitudes than predicted by the model. Conservation of angular momentum alone cannot explain these azimuthal velocities and the standard interpretation involving stream-stream interactions and dynamical behavior seems reasonable. Issues regarding the

  18. Evidence in Support of the Local Quasar Model from Inner Jet Structure and Angular Motions in Radio Loud AGN

    CERN Document Server

    Bell, M B

    2007-01-01

    Radio loud jetted sources with and without extended inner jet structure show good agreement with the simple ballistic ejection scenario proposed in the decreasing intrinsic redshift (DIR) model, where, because of projection effects, those that show the most obvious extended structure and large angular motions are assumed to have jets that lie close to the plane of the sky, and those with little or no structure and small angular motions are assumed to have jets that are coming almost directly towards us. This simple model also predicts several other relations seen in the raw data that, in some cases, may be less easily explained if the redshifts are cosmological and relativistic ejection is required. In particular, for radio-loud sources the source number density is found to be high for sources that are not Doppler boosted but low for highly boosted sources. This is opposite to what is expected, suggesting that Doppler boosting may not be involved at all, which would be in agreement with the DIR model. If so, ...

  19. Modelling ultrasonic array signals in multilayer anisotropic materials using the angular spectrum decomposition of plane wave responses

    Science.gov (United States)

    Humeida, Yousif; Pinfield, Valerie J.; Challis, Richard E.

    2013-08-01

    Ultrasonic arrays have seen increasing use for the characterisation of composite materials. In this paper, ultrasonic wave propagation in multilayer anisotropic materials has been modelled using plane wave and angular spectrum decomposition techniques. Different matrix techniques, such as the stiffness matrix method and the transfer matrix method, are used to calculate the reflection and transmission coefficients of ultrasonic plane waves in the considered media. Then, an angular decomposition technique is used to derive the bounded beams from finite-width ultrasonic array elements from the plane wave responses calculated earlier. This model is considered to be an analytical exact solution for the problem; hence the diffraction of waves in such composite materials can be calculated for different incident angles for a very wide range of frequencies. This model is validated against experimental measurements using the Full-Matrix Capture (FMC) of array data in both a homogeneous isotropic material, i.e. aluminium, and an inhomogeneous multilayer anisotropic material, i.e. a carbon fibre reinforced composite.

  20. Collective estimation of multiple bivariate density functions with application to angular-sampling-based protein loop modeling

    KAUST Repository

    Maadooliat, Mehdi

    2015-10-21

    This paper develops a method for simultaneous estimation of density functions for a collection of populations of protein backbone angle pairs using a data-driven, shared basis that is constructed by bivariate spline functions defined on a triangulation of the bivariate domain. The circular nature of angular data is taken into account by imposing appropriate smoothness constraints across boundaries of the triangles. Maximum penalized likelihood is used to fit the model and an alternating blockwise Newton-type algorithm is developed for computation. A simulation study shows that the collective estimation approach is statistically more efficient than estimating the densities individually. The proposed method was used to estimate neighbor-dependent distributions of protein backbone dihedral angles (i.e., Ramachandran distributions). The estimated distributions were applied to protein loop modeling, one of the most challenging open problems in protein structure prediction, by feeding them into an angular-sampling-based loop structure prediction framework. Our estimated distributions compared favorably to the Ramachandran distributions estimated by fitting a hierarchical Dirichlet process model; and in particular, our distributions showed significant improvements on the hard cases where existing methods do not work well.

  1. Modelling ultrasonic array signals in multilayer anisotropic materials using the angular spectrum decomposition of plane wave responses

    International Nuclear Information System (INIS)

    Ultrasonic arrays have seen increasing use for the characterisation of composite materials. In this paper, ultrasonic wave propagation in multilayer anisotropic materials has been modelled using plane wave and angular spectrum decomposition techniques. Different matrix techniques, such as the stiffness matrix method and the transfer matrix method, are used to calculate the reflection and transmission coefficients of ultrasonic plane waves in the considered media. Then, an angular decomposition technique is used to derive the bounded beams from finite-width ultrasonic array elements from the plane wave responses calculated earlier. This model is considered to be an analytical exact solution for the problem; hence the diffraction of waves in such composite materials can be calculated for different incident angles for a very wide range of frequencies. This model is validated against experimental measurements using the Full-Matrix Capture (FMC) of array data in both a homogeneous isotropic material, i.e. aluminium, and an inhomogeneous multilayer anisotropic material, i.e. a carbon fibre reinforced composite

  2. Modelling the CMB angular correlation function in the framework of NCG

    CERN Document Server

    Kaviani, Kamran

    2016-01-01

    Following many theories which predict existence of the multiverse and by the conjecture that our space-time may have a generalized geometrical structure at the fundamental level, we are interested in non-commutative geometry (NCG) formalism to study a suggested two layer space contains our 4D universe and re-derive photon propagator. It can be shown that the photon propagator and CMB angular correlation function are comparable and if there be such a multiverse system, distance of two layers can be estimated to be in the order of the observable universe radius. Furthermore it will be shown that this result does not limited to CMB but to all kind of radiations such as X-ray as well.

  3. On the angular dependence and scattering model of polar mesospheric summer echoes at VHF

    Science.gov (United States)

    Sommer, Svenja; Stober, Gunter; Chau, Jorge L.

    2016-01-01

    We present measurements of the angular dependence of polar mesospheric summer echoes (PMSE) with the Middle Atmosphere Alomar Radar System in Northern Norway (69.30° N, 16.04° E). Our results are based on multireceiver and multibeam observations using beam pointing directions with off-zenith angles up to 25° as well as on spatial correlation analysis (SCA) from vertical beam observations. We consider a beam filling effect at the upper and lower boundaries of PMSE in tilted beams, which determines the effective mean angle of arrival. Comparing the average power of the vertical beam to the oblique beams suggests that PMSE are mainly not as aspect sensitive as in contrast to previous studies. However, from SCA, times of enhanced correlation are found, indicating aspect sensitivity or a localized scattering mechanism. Our results suggest that PMSE consist of nonhomogeneous isotropic scattering and previously reported aspect sensitivity values might have been influenced by the inhomogeneous nature of PMSE.

  4. Overlapping Community Detection by Online Cluster Aggregation

    CERN Document Server

    Kozdoba, Mark

    2015-01-01

    We present a new online algorithm for detecting overlapping communities. The main ingredients are a modification of an online k-means algorithm and a new approach to modelling overlap in communities. An evaluation on large benchmark graphs shows that the quality of discovered communities compares favorably to several methods in the recent literature, while the running time is significantly improved.

  5. New diffusion phantoms dedicated to the study and validation of high-angular-resolution diffusion imaging (HARDI) models.

    Science.gov (United States)

    Poupon, Cyril; Rieul, Bernard; Kezele, Irina; Perrin, Muriel; Poupon, Fabrice; Mangin, Jean-François

    2008-12-01

    We present new diffusion phantoms dedicated to the study and validation of high-angular-resolution diffusion imaging (HARDI) models. The phantom design permits the application of imaging parameters that are typically employed in studies of the human brain. The phantoms were made of small-diameter acrylic fibers, chosen for their high hydrophobicity and flexibility that ensured good control of the phantom geometry. The polyurethane medium was filled under vacuum with an aqueous solution that was previously degassed, doped with gadolinium-tetraazacyclododecanetetraacetic acid (Gd-DOTA), and treated by ultrasonic waves. Two versions of such phantoms were manufactured and tested. The phantom's applicability was demonstrated on an analytical Q-ball model. Numerical simulations were performed to assess the accuracy of the phantom. The phantom data will be made accessible to the community with the objective of analyzing various HARDI models. PMID:19030160

  6. Stitching interferometry for cylindrical optics with large angular aperture

    International Nuclear Information System (INIS)

    Stitching interferometry is an attractive method for measuring optics with large apertures. However, existing stitching algorithms are not suitable for measuring cylindrical optics, because the misalignment aberrations in cylindrical interferometry are more complicated than those in plane, spherical and aspherical measurements. This paper presents a stitching algorithm for measuring cylindrical optics with large angular apertures. With it, we use five aberrations (i.e. piston, tilt, tip, defocus and twist) to describe the possible misalignments of the tested cylindrical surface and to build the cylindrical stitching model. Using this model allows us to calculate the relative misalignment aberrations of subapertures from their overlapped areas, so that the full aperture map of a cylindrical surface is obtained by compensating for these misalignment aberrations. In experiment, a cylindrical lens with an angular aperture over 150° is measured, thus demonstrating the feasibility and validity of the proposed method. (paper)

  7. Angular momentum in subbarrier fusion

    International Nuclear Information System (INIS)

    We have measured the ratio of the isomer to ground-state yields of 137Ce produced in the fusion reactions 128Te(12C,3n), 133Cs(7Li,3n), 136Ba(3He,2n), 136Ba(4He,3n), and 137Ba(3He,3n), from energies above the Coulomb barrier to energies typically 20--30% below the barrier by observing the delayed x- and γ-ray emission. We deduce the average angular momentum, , from the measured isomer ratios with a statistical model. In the first three reactions we observe that the values of exhibit the behavior predicted for low energies and the expected variation with the reduced mass of the entrance channel. We analyze these data and the associated cross sections with a barrier penetration model that includes the coupling of inelastic channels. Measurements of average angular momenta and cross sections made on other systems using the γ-multiplicity and fission-fragment angular correlation techniques are then analyzed in a similar way with this model. The discrepancies with theory for the γ-multiplicity data show correlations in cross section and angular momentum that suggest a valid model can be found. The measurements of angular momentum using the fission fragment angular correlation technique, however, do not appear reconcilable with the energy dependence of the cross sections. This systematic overview suggests, in particular, that our current understanding of the relationship of angular momentum and anisotropy in fission fragment angular correlations is incomplete. 26 refs

  8. Motor Protein Accumulation on Antiparallel Microtubule Overlaps.

    Science.gov (United States)

    Kuan, Hui-Shun; Betterton, Meredith D

    2016-05-10

    Biopolymers serve as one-dimensional tracks on which motor proteins move to perform their biological roles. Motor protein phenomena have inspired theoretical models of one-dimensional transport, crowding, and jamming. Experiments studying the motion of Xklp1 motors on reconstituted antiparallel microtubule overlaps demonstrated that motors recruited to the overlap walk toward the plus end of individual microtubules and frequently switch between filaments. We study a model of this system that couples the totally asymmetric simple exclusion process for motor motion with switches between antiparallel filaments and binding kinetics. We determine steady-state motor density profiles for fixed-length overlaps using exact and approximate solutions of the continuum differential equations and compare to kinetic Monte Carlo simulations. Overlap motor density profiles and motor trajectories resemble experimental measurements. The phase diagram of the model is similar to the single-filament case for low switching rate, while for high switching rate we find a new (to our knowledge) low density-high density-low density-high density phase. The overlap center region, far from the overlap ends, has a constant motor density as one would naïvely expect. However, rather than following a simple binding equilibrium, the center motor density depends on total overlap length, motor speed, and motor switching rate. The size of the crowded boundary layer near the overlap ends is also dependent on the overlap length and switching rate in addition to the motor speed and bulk concentration. The antiparallel microtubule overlap geometry may offer a previously unrecognized mechanism for biological regulation of protein concentration and consequent activity. PMID:27166811

  9. Motor Protein Accumulation on Antiparallel Microtubule Overlaps

    Science.gov (United States)

    Kuan, Hui-Shun; Betterton, Meredith D.

    2016-05-01

    Biopolymers serve as one-dimensional tracks on which motor proteins move to perform their biological roles. Motor protein phenomena have inspired theoretical models of one-dimensional transport, crowding, and jamming. Experiments studying the motion of Xklp1 motors on reconstituted antiparallel microtubule overlaps demonstrated that motors recruited to the overlap walk toward the plus end of individual microtubules and frequently switch between filaments. We study a model of this system that couples the totally asymmetric simple exclusion process (TASEP) for motor motion with switches between antiparallel filaments and binding kinetics. We determine steady-state motor density profiles for fixed-length overlaps using exact and approximate solutions of the continuum differential equations and compare to kinetic Monte Carlo simulations. Overlap motor density profiles and motor trajectories resemble experimental measurements. The phase diagram of the model is similar to the single-filament case for low switching rate, while for high switching rate we find a new low density-high density-low density-high density phase. The overlap center region, far from the overlap ends, has a constant motor density as one would naively expect. However, rather than following a simple binding equilibrium, the center motor density depends on total overlap length, motor speed, and motor switching rate. The size of the crowded boundary layer near the overlap ends is also dependent on the overlap length and switching rate in addition to the motor speed and bulk concentration. The antiparallel microtubule overlap geometry may offer a previously unrecognized mechanism for biological regulation of protein concentration and consequent activity.

  10. Q-ball imaging models: comparison between high and low angular resolution diffusion-weighted MRI protocols for investigation of brain white matter integrity

    Energy Technology Data Exchange (ETDEWEB)

    Caiazzo, Giuseppina; Trojsi, Francesca; Cirillo, Mario; Tedeschi, Gioacchino [MRI Research Center SUN-FISM-Neurological Institute for Diagnosis and Care ' ' Hermitage Capodimonte' ' , Naples (Italy); Second University of Naples, Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, Naples (Italy); Esposito, Fabrizio [University of Salerno, Department of Medicine and Surgery, Baronissi (Salerno) (Italy); Maastricht University, Department of Cognitive Neuroscience, Maastricht (Netherlands)

    2016-02-15

    Q-ball imaging (QBI) is one of the typical data models for quantifying white matter (WM) anisotropy in diffusion-weighted MRI (DwMRI) studies. Brain and spinal investigation by high angular resolution DwMRI (high angular resolution imaging (HARDI)) protocols exhibits higher angular resolution in diffusion imaging compared to low angular resolution models, although with longer acquisition times. We aimed to assess the difference between QBI-derived anisotropy values from high and low angular resolution DwMRI protocols and their potential advantages or shortcomings in neuroradiology. Brain DwMRI data sets were acquired in seven healthy volunteers using both HARDI (b = 3000 s/mm{sup 2}, 54 gradient directions) and low angular resolution (b = 1000 s/mm{sup 2}, 32 gradient directions) acquisition schemes. For both sequences, tract of interest tractography and generalized fractional anisotropy (GFA) measures were extracted by using QBI model and were compared between the two data sets. QBI tractography and voxel-wise analyses showed that some WM tracts, such as corpus callosum, inferior longitudinal, and uncinate fasciculi, were reconstructed as one-dominant-direction fiber bundles with both acquisition schemes. In these WM tracts, mean percent different difference in GFA between the two data sets was less than 5 %. Contrariwise, multidirectional fiber bundles, such as corticospinal tract and superior longitudinal fasciculus, were more accurately depicted by HARDI acquisition scheme. Our results suggest that the design of optimal DwMRI acquisition protocols for clinical investigation of WM anisotropy by QBI models should consider the specific brain target regions to be explored, inducing researchers to a trade-off choice between angular resolution and acquisition time. (orig.)

  11. Q-ball imaging models: comparison between high and low angular resolution diffusion-weighted MRI protocols for investigation of brain white matter integrity

    International Nuclear Information System (INIS)

    Q-ball imaging (QBI) is one of the typical data models for quantifying white matter (WM) anisotropy in diffusion-weighted MRI (DwMRI) studies. Brain and spinal investigation by high angular resolution DwMRI (high angular resolution imaging (HARDI)) protocols exhibits higher angular resolution in diffusion imaging compared to low angular resolution models, although with longer acquisition times. We aimed to assess the difference between QBI-derived anisotropy values from high and low angular resolution DwMRI protocols and their potential advantages or shortcomings in neuroradiology. Brain DwMRI data sets were acquired in seven healthy volunteers using both HARDI (b = 3000 s/mm2, 54 gradient directions) and low angular resolution (b = 1000 s/mm2, 32 gradient directions) acquisition schemes. For both sequences, tract of interest tractography and generalized fractional anisotropy (GFA) measures were extracted by using QBI model and were compared between the two data sets. QBI tractography and voxel-wise analyses showed that some WM tracts, such as corpus callosum, inferior longitudinal, and uncinate fasciculi, were reconstructed as one-dominant-direction fiber bundles with both acquisition schemes. In these WM tracts, mean percent different difference in GFA between the two data sets was less than 5 %. Contrariwise, multidirectional fiber bundles, such as corticospinal tract and superior longitudinal fasciculus, were more accurately depicted by HARDI acquisition scheme. Our results suggest that the design of optimal DwMRI acquisition protocols for clinical investigation of WM anisotropy by QBI models should consider the specific brain target regions to be explored, inducing researchers to a trade-off choice between angular resolution and acquisition time. (orig.)

  12. Iwamoto-Harada coalescence/pickup model for cluster emission: state density approach including angular momentum variables

    International Nuclear Information System (INIS)

    For low-energy nuclear reactions well above the resonance region, but still below the pion threshold, statistical pre-equilibrium models (e.g., the exciton and the hybrid ones) are a frequent tool for analysis of energy spectra and the cross sections of cluster emission. For α’s, two essentially distinct approaches are popular, namely the preformed one and the different versions of coalescence approaches, whereas only the latter group of models can be used for other types of cluster ejectiles. The original Iwamoto-Harada model of pre-equilibrium cluster emission was formulated using the overlap of the cluster and its constituent nucleons in momentum space. Transforming it into level or state densities is not a straigthforward task; however, physically the same model was presented at a conference on reaction models five years earlier. At that time, only the densities without spin were used. The introduction of spin variables into the exciton model enabled detailed calculation of the γ emission and its competition with nucleon channels, and - at the same time - it stimulated further developments of the model. However - to the best of our knowledge - no spin formulation has been presented for cluster emission till recently, when the first attempts have been reported, but restricted to the first emission only. We have updated this effort now and we are able to handle (using the same simplifications as in our previous work) pre-equilibrium cluster emission with spin including all nuclei in the reaction chain. (author)

  13. Overlapping Consensus in Malaysia

    OpenAIRE

    Monsen, Mats

    2007-01-01

    An empirical study of how Malaysian pluralism is understood through Islam Hadhari, Article 11 and the Inter-faith Commission against the backdrop of current Malaysian political and social history, coupled with a theoretical analysis through John Rawls' Political Liberalism, with particular emphasis on the idea of Overlapping Consensus. The thesis is an attempt at applying Rawls' theory on the practical case of Malaysia, as a plural society, while at the same time using the practical case of M...

  14. A point-based angular analysis model for identifying attributes of spaces at nodes in street networks

    Science.gov (United States)

    Jeong, Sang Kyu; Ban, Yong Un

    2016-05-01

    The effects of the axial map as the key representation of the original space syntax have been questioned by some researchers because of the map's discontinuity. To address this concern, angular segment analysis (ASA) was introduced. ASA calculates spatial depths by considering the turning angles of path segments in a street network. However, ASA cannot calculate the attributes of nodes connected to path segments in the network because it analyzes spaces by linear representation, as in the original space syntax. Because the attributes of the two ends (nodes) of a given path segment (link) are not equal to each other, and because they can affect pedestrian and vehicle movement and land use in a street network, the identification of the attributes at nodes (points) would be helpful in the detailed analysis of spaces in the network consisting of nodes and the segments connecting them. Accordingly, this study aims to develop an extended analysis model that can calculate the attributes of spaces at the nodes, including terminuses, bends, and junctions, in the network. To achieve this end, in this study we developed algorithms for a point-based angular analysis (PAA) to find the attributes of spaces at nodes (points), in contrast to ASA, which analyzes spaces using linear representations. As a result, this methodology can obtain distinct values for the attributes of two nodes at the ends of a path segment, through the calculation of spatial depths weighted by considering the turning angles and distances (lengths) along consecutive nodes for a route in the network. Through our methodology, it was identified that spatial configurations of street network affect the social and symbolic centralities of nodes in the network. We believe that our methodology can be a useful tool for planning urban streets and for deriving spatial and social relationships in street networks.

  15. Rigorous modelling of light's intensity angular-profile in Abbe refractometers with absorbing homogeneous fluids

    International Nuclear Information System (INIS)

    We derive an optical model for the light intensity distribution around the critical angle in a standard Abbe refractometer when used on absorbing homogenous fluids. The model is developed using rigorous electromagnetic optics. The obtained formula is very simple and can be used suitably in the analysis and design of optical sensors relying on Abbe type refractometry.

  16. Warm dark matter effects in a spherical collapse model with shear and angular momentum

    Science.gov (United States)

    Marciu, Mihai

    2016-03-01

    This paper investigates the nonlinear structure formation in a spherical top-hat collapse model based on the pseudo-Newtonian approximation. The system is composed of warm dark matter and dark energy and the dynamical properties of the collapsing region are analyzed for various parametrizations of the dark matter equation of state which are in agreement with current observations. Concerning dark energy, observational constraints of the Chevallier-Polarski-Linder model and the Jassal-Bagla-Padmanabhan equation of state have been considered. During the collapse, the positive dark matter pressure leads to an increase of growth for dark matter and dark energy perturbations and an accelerated expansion for the spherical region. Hence, in the warm dark matter hypothesis, the structure formation is accelerated and the inconsistencies of the Λ CDM model at the galactic scales could be solved. The results obtained are applicable only to adiabatic warm dark matter physical models which are compatible with the pseudo-Newtonian approach.

  17. Stabilization Control of an Autonomous Bicycle : Modeled as an Acrobot with Angular Limitation

    OpenAIRE

    Nilsen, Jørgen Herje

    2014-01-01

    With an inverted pendulum mounted on the bicycle frame, the system is corresponding to a bicyclist who applies balancing torque from the hip. This thesis present a mathematical system model of the autonomous bicycle, modeled as an inverted double pendulum with actuation at the joint connecting the two system links, better known as an Acrobot. The Acrobot is a well-known underactuated robot manipulator, which implies that only the mounted inverted pendulum can obtain instantaneous acceleration...

  18. Improved reflection models of black hole accretion disks: Treating the angular distribution of X-rays

    International Nuclear Information System (INIS)

    X-ray reflection models are used to constrain the properties of the accretion disk, such as the degree of ionization of the gas and the elemental abundances. In combination with general relativistic ray tracing codes, additional parameters like the spin of the black hole and the inclination to the system can be determined. However, current reflection models used for such studies only provide angle-averaged solutions for the flux reflected at the surface of the disk. Moreover, the emission angle of the photons changes over the disk due to relativistic light bending. To overcome this simplification, we have constructed an angle-dependent reflection model with the XILLVER code and self-consistently connected it with the relativistic blurring code RELLINE. The new model, relxill, calculates the proper emission angle of the radiation at each point on the accretion disk and then takes the corresponding reflection spectrum into account. We show that the reflected spectra from illuminated disks follow a limb-brightening law highly dependent on the ionization of disk and yet different from the commonly assumed form I∝ln (1 + 1/μ). A detailed comparison with the angle-averaged model is carried out in order to determine the bias in the parameters obtained by fitting a typical relativistic reflection spectrum. These simulations reveal that although the spin and inclination are mildly affected, the Fe abundance can be overestimated by up to a factor of two when derived from angle-averaged models. The fit of the new model to the Suzaku observation of the Seyfert galaxy Ark 120 clearly shows a significant improvement in the constraint of the physical parameters, in particular by enhancing the accuracy in the inclination angle and the spin determinations.

  19. Motor protein accumulation on antiparallel microtubule overlaps

    CERN Document Server

    Kuan, Hui-Shun

    2015-01-01

    Biopolymers serve as one-dimensional tracks on which motor proteins move to perform their biological roles. Motor protein phenomena have inspired theoretical models of one-dimensional transport, crowding, and jamming. Experiments studying the motion of Xklp1 motors on reconstituted antiparallel microtubule overlaps demonstrated that motors recruited to the overlap walk toward the plus end of individual microtubules and frequently switch between filaments. We study a model of this system that couples the totally asymmetric simple exclusion process (TASEP) for motor motion with switches between antiparallel filaments and binding kinetics. We determine steady-state motor density profiles for fixed-length overlaps using exact and approximate solutions of the continuum differential equations and compare to kinetic Monte Carlo simulations. The center region, far from the overlap ends, has a constant motor density as one would na\\"ively expect. However, rather than following a simple binding equilibrium, the center ...

  20. Effective angular and wavelength modeling of parallel aligned liquid crystal devices

    Science.gov (United States)

    Martínez, Francisco J.; Márquez, Andrés; Gallego, Sergi; Francés, Jorge; Pascual, Inmaculada; Beléndez, Augusto

    2015-11-01

    Parallel aligned liquid crystal (PA-LC) devices are widely used in many optics and photonics applications to control the amplitude, phase and/or state of polarization (SOP) of light beams. Simplified models yet with a good predictive capability are extremely useful in the optimal application of these devices. In this paper we propose and demonstrate the validity of a novel model enabling to calculate the voltage dependent retardance provided by parallel-aligned liquid crystal (PA-LC) devices for a very wide range of incidence angles and any wavelength in the visible. We derive the theoretical expressions, and both experimental and theoretical retardance results are obtained showing a very good agreement. The proposed model is robust and well adapted to a reverse-engineering approach for the calibration of its parameters, whose values are obtained without ambiguities. The model is based on only three physically related magnitudes: two off-state parameters per wavelength and one global voltage dependent parameter, the tilt angle of the LC molecules. To our knowledge it represents the most simplified model available for PA-LC devices yet showing predictive capability. Not only eases the design of experiments dealing with unconventional polarization states or complex amplitude modulation, but it also serves to analyze the physics and dynamics of PA-LC cells since we have estimation for their voltage dependent tilt angle within the device.

  1. Angular momentum transport modeling: achievements of a gyrokinetic quasi-linear approach

    CERN Document Server

    Cottier, P; Camenen, Y; Gurcan, O D; Casson, F J; Garbet, X; Hennequin, P; Tala, T

    2014-01-01

    QuaLiKiz, a model based on a local gyrokinetic eigenvalue solver is expanded to include momentum flux modeling in addition to heat and particle fluxes. Essential for accurate momentum flux predictions, the parallel asymmetrization of the eigenfunctions is successfully recovered by an analytical fluid model. This is tested against self-consistent gyrokinetic calculations and allows for a correct prediction of the ExB shear impact on the saturated potential amplitude by means of a mixing length rule. Hence, the effect of the ExB shear is recovered on all the transport channels including the induced residual stress. Including these additions, QuaLiKiz remains ~10 000 faster than non-linear gyrokinetic codes allowing for comparisons with experiments without resorting to high performance computing. The example is given of momentum pinch calculations in NBI modulation experiments.

  2. Angular Momentum Decomposition for an Electron

    OpenAIRE

    Burkardt, Matthias; BC, Hikmat

    2008-01-01

    We calculate the orbital angular momentum of the `quark' in the scalar diquark model as well as that of the electron in QED (to order $\\alpha$). We compare the orbital angular momentum obtained from the Jaffe-Manohar decomposition to that obtained from the Ji relation and estimate the importance of the vector potential in the definition of orbital angular momentum.

  3. A Local Model for Angular Momentum Transport in Accretion Disks Driven by the Magnetorotational Instability

    DEFF Research Database (Denmark)

    Pessah, Martin Elias; Chan, Chi-kwan; Psaltis, Dimitrios

    2006-01-01

    We develop a local model for the exponential growth and saturation of the Reynolds and Maxwell stresses in turbulent flows driven by the magnetorotational instability. We first derive equations that describe the effects of the instability on the growth and pumping of the stresses. We highlight th...

  4. One nucleon overlap integrals for light nuclei

    International Nuclear Information System (INIS)

    A microscopic method to calculate one nucleon overlap integrals for light nuclei is presented. This method is based on the solution of the inhomogeneous differential equation with a fully microscopic treatment of a source term. The source term is calculated with effective two-body nucleon-nucleon (NN) forces and many-body nuclear wave functions represented in a translation-invariant shell model basis. Such an approach automatically provides the correct asymptotic behaviour of the overlap integral. Numerical calculations have been performed for the left angle 7Be*n x p vertical stroke 8Bg.s. right angle, left angle 7Lig.s. x n vertical stroke 8Lig.s. right angle and left angle 10Beg.s. x n vertical stroke 11Be*(1/2 -) right angle overlaps. It has been found that the spectroscopic factors, obtained as norms of the calculated overlap integrals, depend on the choice of the NN-potential and may differ strongly from the corresponding shell model values. The shapes of the overlap integrals are not very sensitive to the NN-potentials used in the calculations, and are mainly determined by the oscillator radius. The microscopically calculated overlaps are close to the two-body potential-model wave functions obtained with standard geometric parameters of the Woods-Saxon potential. (orig.)

  5. A semiclassical model for the angular momentum transfer by beam-target interaction

    International Nuclear Information System (INIS)

    It is shown within a semiclassical model that the production of atomic orientation by electron capture can be explained by symmetry breaking. In a beam-foil passage experiment symmetry breaking of the effective projectile-electron Coulomb interaction results from the variation of shielding at the solid-vacuum boundary. In grazing incidence scattering experiments or for ion collisions in gaseous targets the full symmetry is lowered by selection of the impact parameter regime

  6. A predictive model to guide management of the overlap region between target volume and organs at risk in prostate cancer volumetric modulated arc therapy

    Energy Technology Data Exchange (ETDEWEB)

    Mattes, Malcolm D.; Lee, Jennifer C.; Einaiem, Sara; Guirguis, Adel; Ikoro, N. C.; Ashamalla Hani [Dept. of Radiation Oncology, New York Methodist Hospital, Brooklyn (United States)

    2013-12-15

    The goal of this study is to determine whether the magnitude of overlap between planning target volume (PTV) and rectum (Rectum{sub overlap}) or PTV and bladder (Bladder{sub overlap}) in prostate cancer volumetric-modulated arc therapy (VMAT) is predictive of the dose-volume relationships achieved after optimization, and to identify predictive equations and cutoff values using these overlap volumes beyond which the Quantitative Analyses of Normal Tissue Effects in the Clinic (QUANTEC) dose-volume constraints are unlikely to be met. Fifty-seven patients with prostate cancer underwent VMAT planning using identical optimization conditions and normalization. The PTV (for the 50.4 Gy primary plan and 30.6 Gy boost plan) included 5 to 10 mm margins around the prostate and seminal vesicles. Pearson correlations, linear regression analyses, and receiver operating characteristic (ROC) curves were used to correlate the percentage overlap with dose-volume parameters. The percentage Rectum{sub overlap} and Bladder{sub overlap} correlated with sparing of that organ but minimally impacted other dose-volume parameters, predicted the primary plan rectum V{sub 45} and bladder V{sub 50} with R{sup 2} = 0.78 and R{sup 2} = 0.83, respectively, and predicted the boost plan rectum V{sub 30} and bladder V{sub 30} with R{sup 2} = 0.53 and R{sup 2} = 0.81, respectively. The optimal cutoff value of boost Rectumoverlap to predict rectum V75 >15% was 3.5% (sensitivity 100%, specificity 94%, p < 0.01), and the optimal cutoff value of boost Bladder{sub overlap} to predict bladder V{sub 80} >10% was 5.0% (sensitivity 83%, specificity 100%, p < 0.01). The degree of overlap between PTV and bladder or rectum can be used to accurately guide physicians on the use of interventions to limit the extent of the overlap region prior to optimization.

  7. Transformation of Lamellar Structures in Equal Channel Angular Pressing: Geometric Model and Application to Nickel Aluminum Bronze

    Science.gov (United States)

    Barr, Cameron J.; McDonald, Daniel T.; Xia, Kenong

    2015-09-01

    Nickel aluminum bronze (NAB) with a duplex structure was subjected to equal channel angular pressing (ECAP). Samples were pressed for up to four passes at 673 K (400 °C) using routes A, BA, BC, and C, respectively, and the evolution of the microstructures was characterized. A detailed geometric model was developed to enable systematic and quantitative analysis of the transformation of the lamellar structure during ECAP. Depending on their orientations before each ECAP pass, the lamellae were either stretched, leading to fragmentation, or compressed, resulting in buckling and spheroidisation at locations of high curvature. Thanks to the continuous rotation of lamellae into the stretching orientations in route A and the non-plane strain deformation in the two B routes, they are demonstrated to be the most effective in breaking down the lamellar structure. In contrast, partial restoration due to redundant strain in route C makes it least efficient. The model applies generally to materials with a duplex structure, such as NAB and low and medium carbon steels, consisting of a hard and brittle lamellar phase and a softer and ductile matrix phase.

  8. Modelling the angular momentum J of 1s, 1p, 1d, 2s and 1f nucleons

    International Nuclear Information System (INIS)

    By using the liquid drop model of 14 alpha particles representing a nickel 56 nuclide it can be shown that the mean distance of each of the 1d and 2s nucleons is r3 = 2.85 fm from the nuclide centre. It was found that the velocity of all nucleons is the same and is independent of the energy level. This implies that the de Broglie wavelength (w) of all nucleons is w h / m v = 6.3 fm ∼ 2π fm . Therefore for r1 ∼ 1 fm there is one w per orbit; for r2 ∼ 2 fm there are 2 w per orbit and so on. This implies that in the first magic number closed shell of nucleons there are 2 orbits each containing 2 standing wave maxima representing 1 proton and 1 neutron. The second closed shell consists of 3 orbits each containing 2 proton and 2 neutron standing wave maxima. While the third closed shell consists of 4 orbits each containing 3 protons and 3 neutrons the fourth closed shell consists of only 2 orbits each containing 4 protons and 4 neutrons. The Bernal liquid drop alpha particle models of nuclear structure appear to accord quite well with the quantum mechanical prescriptions of nucleon angular momentum and de Broglie wavelength

  9. A Model for an Angular Velocity-Tuned Motion Detector Accounting for Deviations in the Corridor-Centering Response of the Bee

    OpenAIRE

    Alex J Cope; Chelsea Sabo; Kevin Gurney; Eleni Vasilaki; Marshall, James A. R.

    2016-01-01

    We present a novel neurally based model for estimating angular velocity (AV) in the bee brain, capable of quantitatively reproducing experimental observations of visual odometry and corridor-centering in free-flying honeybees, including previously unaccounted for manipulations of behaviour. The model is fitted using electrophysiological data, and tested using behavioural data. Based on our model we suggest that the AV response can be considered as an evolutionary extension to the optomotor re...

  10. Overlap extension PCR cloning.

    Science.gov (United States)

    Bryksin, Anton; Matsumura, Ichiro

    2013-01-01

    Rising demand for recombinant proteins has motivated the development of efficient and reliable cloning methods. Here we show how a beginner can clone virtually any DNA insert into a plasmid of choice without the use of restriction endonucleases or T4 DNA ligase. Chimeric primers encoding plasmid sequence at the 5' ends and insert sequence at the 3' ends are designed and synthesized. Phusion(®) DNA polymerase is utilized to amplify the desired insert by PCR. The double-stranded product is subsequently employed as a pair of mega-primers in a PCR-like reaction with circular plasmids. The original plasmids are then destroyed in restriction digests with Dpn I. The product of the overlap extension PCR is used to transform competent Escherichia coli cells. Phusion(®) DNA polymerase is used for both the amplification and fusion reactions, so both steps can be monitored and optimized in the same way. PMID:23996437

  11. Generalization of the Gaussian electrostatic model: Extension to arbitrary angular momentum, distributed multipoles, and speedup with reciprocal space methods

    Science.gov (United States)

    Cisneros, G. Andrés; Piquemal, Jean-Philip; Darden, Thomas A.

    2006-11-01

    The simulation of biological systems by means of current empirical force fields presents shortcomings due to their lack of accuracy, especially in the description of the nonbonded terms. We have previously introduced a force field based on density fitting termed the Gaussian electrostatic model-0 (GEM-0) J.-P. Piquemal et al. [J. Chem. Phys. 124, 104101 (2006)] that improves the description of the nonbonded interactions. GEM-0 relies on density fitting methodology to reproduce each contribution of the constrained space orbital variation (CSOV) energy decomposition scheme, by expanding the electronic density of the molecule in s-type Gaussian functions centered at specific sites. In the present contribution we extend the Coulomb and exchange components of the force field to auxiliary basis sets of arbitrary angular momentum. Since the basis functions with higher angular momentum have directionality, a reference molecular frame (local frame) formalism is employed for the rotation of the fitted expansion coefficients. In all cases the intermolecular interaction energies are calculated by means of Hermite Gaussian functions using the McMurchie-Davidson [J. Comput. Phys. 26, 218 (1978)] recursion to calculate all the required integrals. Furthermore, the use of Hermite Gaussian functions allows a point multipole decomposition determination at each expansion site. Additionally, the issue of computational speed is investigated by reciprocal space based formalisms which include the particle mesh Ewald (PME) and fast Fourier-Poisson (FFP) methods. Frozen-core (Coulomb and exchange-repulsion) intermolecular interaction results for ten stationary points on the water dimer potential-energy surface, as well as a one-dimensional surface scan for the canonical water dimer, formamide, stacked benzene, and benzene water dimers, are presented. All results show reasonable agreement with the corresponding CSOV calculated reference contributions, around 0.1 and 0.15kcal/mol error for

  12. Next-generation angular distribution models for top-of-atmosphere radiative flux calculation from the CERES instruments: methodology

    Directory of Open Access Journals (Sweden)

    W. Su

    2014-08-01

    Full Text Available The top-of-atmosphere (TOA radiative fluxes are critical components to advancing our understanding of the Earth's radiative energy balance, radiative effects of clouds and aerosols, and climate feedback. The Clouds and Earth's Radiant Energy System (CERES instruments provide broadband shortwave and longwave radiance measurements. These radiances are converted to fluxes by using scene type dependent Angular Distribution Models (ADMs. This paper describes the next-generation ADMs that are developed for Terra and Aqua using all available CERES rotating azimuth plane radiance measurements. Coincident cloud and aerosol retrievals, and radiance measurements from the Moderate Resolution Imaging Spectroradiometer (MODIS, and meteorological parameters from Goddard Earth Observing System (GEOS data assimilation version 5.4.1 are used to define scene type. CERES radiance measurements are stratified by scene type and by other parameters that are important for determining the anisotropy of the given scene type. Anisotropic factors are then defined either for discrete intervals of relevant parameters or as a continuous functions of combined parameters, depending on the scene type. Compared to the existing ADMs, the new ADMs change the monthly mean instantaneous fluxes by up to 5 W m−2 on a regional scale of 1° latitude × 1° longitude, but the flux changes are less than 0.5 W m−2 on a global scale.

  13. The angular distribution of neutron scattering from hydrogen at 27.3 MeV

    International Nuclear Information System (INIS)

    The angular distribution for np scattering at 27.3 MeV has been measured at 7 angles between 170 and 57.90 in the lab system. The neutrons scattered by a small plastic scintillator were detected in another plastic scintillator whose absolute efficiency had been measured between 5 and 25 MeV by use of the associated particle method. It was found to be necessary to investigate the effect on the angular distribution of the 12C(n,n'y) reaction occurring in the target scintillator. The data overlap, and are combined with, existing distribution data at the same energy obtained by detecting recoil protons. The asymmetry about 1/2π of the resulting angular distribution is in better agreement with predictions from phase-shift analyses than with those from meson-theoretical models. (Auth.)

  14. Angular and lateral distributions from small angle multiple scattering including elastic and inelastic energy loss effects based on the Valdes and Arista model

    Energy Technology Data Exchange (ETDEWEB)

    Ikegami, Seiji, E-mail: double1892@gmail.com

    2013-12-01

    The aims of this work are to compare and to include two energy loss effects in multiple scattering caused by elastic and inelastic collisions in angular and lateral distributions based on Valdes and Arista (VA) theory. VA developed small angle multiple scattering theory including energy loss effects based on the Sigmund and Winterbon model for the first time. However, the energy loss effects on lateral distributions have not yet been estimated. In the VA model, target thickness and energy loss are independently treated. In this study, those effects are successfully introduced on the basis of the VA model. We considered the lateral spread and angular distribution separately and included the nuclear and electronic energy loss effects as a function of target thickness. Our results indicate that discrepancies occur between the two distributions, including nuclear and electronic stopping for several target thickness. Moreover, we constructed a multiple scattering model that includes both elastic and inelastic energy losses.

  15. Maximum voluntary joint torque as a function of joint angle and angular velocity: model development and application to the lower limb.

    Science.gov (United States)

    Anderson, Dennis E; Madigan, Michael L; Nussbaum, Maury A

    2007-01-01

    Measurements of human strength can be important during analyses of physical activities. Such measurements have often taken the form of the maximum voluntary torque at a single joint angle and angular velocity. However, the available strength varies substantially with joint position and velocity. When examining dynamic activities, strength measurements should account for these variations. A model is presented of maximum voluntary joint torque as a function of joint angle and angular velocity. The model is based on well-known physiological relationships between muscle force and length and between muscle force and velocity and was tested by fitting it to maximum voluntary joint torque data from six different exertions in the lower limb. Isometric, concentric and eccentric maximum voluntary contractions were collected during hip extension, hip flexion, knee extension, knee flexion, ankle plantar flexion and dorsiflexion. Model parameters are reported for each of these exertion directions by gender and age group. This model provides an efficient method by which strength variations with joint angle and angular velocity may be incorporated into comparisons between joint torques calculated by inverse dynamics and the maximum available joint torques. PMID:17485097

  16. Angular analysis of B -> J/psi K1 : towards a model independent determination of the photon polarization with B-> K1 gamma

    CERN Document Server

    Kou, E; Tayduganov, A

    2016-01-01

    We propose a model independent extraction of the hadronic information needed to determine the photon polarization of the b-> s gamma process by the method utilizing the B -> K1 gamma -> K pi pi gamma angular distribution. We show that exactly the same hadronic information can be obtained by using the B -> J/psi K1 -> J/psi K pi pi channel, which leads to a much higher precision.

  17. A predictive model to guide management of the overlap region between target volume and organs at risk in prostate cancer volumetric modulated arc therapy

    International Nuclear Information System (INIS)

    The goal of this study is to determine whether the magnitude of overlap between planning target volume (PTV) and rectum (Rectumoverlap) or PTV and bladder (Bladderoverlap) in prostate cancer volumetric-modulated arc therapy (VMAT) is predictive of the dose-volume relationships achieved after optimization, and to identify predictive equations and cutoff values using these overlap volumes beyond which the Quantitative Analyses of Normal Tissue Effects in the Clinic (QUANTEC) dose-volume constraints are unlikely to be met. Fifty-seven patients with prostate cancer underwent VMAT planning using identical optimization conditions and normalization. The PTV (for the 50.4 Gy primary plan and 30.6 Gy boost plan) included 5 to 10 mm margins around the prostate and seminal vesicles. Pearson correlations, linear regression analyses, and receiver operating characteristic (ROC) curves were used to correlate the percentage overlap with dose-volume parameters. The percentage Rectumoverlap and Bladderoverlap correlated with sparing of that organ but minimally impacted other dose-volume parameters, predicted the primary plan rectum V45 and bladder V50 with R2 = 0.78 and R2 = 0.83, respectively, and predicted the boost plan rectum V30 and bladder V30 with R2 = 0.53 and R2 = 0.81, respectively. The optimal cutoff value of boost Rectumoverlap to predict rectum V75 >15% was 3.5% (sensitivity 100%, specificity 94%, p overlap to predict bladder V80 >10% was 5.0% (sensitivity 83%, specificity 100%, p < 0.01). The degree of overlap between PTV and bladder or rectum can be used to accurately guide physicians on the use of interventions to limit the extent of the overlap region prior to optimization.

  18. Dielectric properties and study of AC electrical conduction mechanisms by non-overlapping small polaron tunneling model in Bis(4-acetylanilinium) tetrachlorocuprate(II) compound

    Science.gov (United States)

    Abkari, A.; Chaabane, I.; Guidara, K.

    2016-09-01

    In the present work, the synthesis and characterization of the Bis(4-acetylanilinium) tetrachlorocuprate(II) compound are presented. The structure of this compound is analyzed by X-ray diffraction which confirms the formation of single phase and is in good agreement the literature. Indeed, the Thermo gravimetric Analysis (TGA) shows that the decomposition of the compound is observed in the range of 420-520 K. However, the differential thermal analysis (DTA) indicates the presence of a phase transition at T=363 k. Furthermore, the dielectric properties and AC conductivity were studied over a temperature range (338-413 K) and frequency range (200 Hz-5 MHz) using complex impedance spectroscopy. Dielectric measurements confirmed such thermal analyses by exhibiting the presence of an anomaly in the temperature range of 358-373 K. The complex impedance plots are analyzed by an electrical equivalent circuit consisting of resistance, constant phase element (CPE) and capacitance. The activation energy values of two distinct regions are obtained from log σT vs 1000/T plot and are found to be E=1.27 eV (T<363 K) and E=1.09 eV (363 Koverlapping small polaron tunneling (NSPT) model is the most applicable conduction mechanism in the title compound. Complex impedance spectra of [C8H10NO]2CuCl4 at different temperatures.

  19. Next-Generation Angular Distribution Models for Top-of-Atmosphere Radiative Flux Calculation from the CERES Instruments: Methodology

    Science.gov (United States)

    Su, W.; Corbett, J.; Eitzen, Z.; Liang, L.

    2015-01-01

    The top-of-atmosphere (TOA) radiative fluxes are critical components to advancing our understanding of the Earth's radiative energy balance, radiative effects of clouds and aerosols, and climate feedback. The Clouds and the Earth's Radiant Energy System (CERES) instruments provide broadband shortwave and longwave radiance measurements. These radiances are converted to fluxes by using scene-type-dependent angular distribution models (ADMs). This paper describes the next-generation ADMs that are developed for Terra and Aqua using all available CERES rotating azimuth plane radiance measurements. Coincident cloud and aerosol retrievals, and radiance measurements from the Moderate Resolution Imaging Spectroradiometer (MODIS), and meteorological parameters from Goddard Earth Observing System (GEOS) data assimilation version 5.4.1 are used to define scene type. CERES radiance measurements are stratified by scene type and by other parameters that are important for determining the anisotropy of the given scene type. Anisotropic factors are then defined either for discrete intervals of relevant parameters or as a continuous functions of combined parameters, depending on the scene type. Significant differences between the ADMs described in this paper and the existing ADMs are over clear-sky scene types and polar scene types. Over clear ocean, we developed a set of shortwave (SW) ADMs that explicitly account for aerosols. Over clear land, the SW ADMs are developed for every 1 latitude1 longitude region for every calendar month using a kernel-based bidirectional reflectance model. Over clear Antarctic scenes, SW ADMs are developed by accounting the effects of sastrugi on anisotropy. Over sea ice, a sea-ice brightness index is used to classify the scene type. Under cloudy conditions over all surface types, the longwave (LW) and window (WN) ADMs are developed by combining surface and cloud-top temperature, surface and cloud emissivity, cloud fraction, and precipitable water

  20. A modeling and computer simulation approach to determine optimal lower extremity joint angular velocities based on a criterion to maximize individual muscle power.

    Science.gov (United States)

    Hawkins, D

    1994-03-01

    A computer program was developed in conjunction with a musculoskeletal modeling scheme to determine lower extremity joint angular velocity profiles which allow specific muscles, if activated tetanically, to generate their greatest power. As input the program requires subject anthropometric and joint configuration data. Muscle-tendon (MT) attachment location data and a straight line MT model are used to calculate MT lengths for each joint configuration. The shortening velocity which allows an active muscle to generate its greatest power is calculated based on muscle architecture and a relationship between power and shortening velocity. A finite difference technique is used to calculate the time between sequential joint configurations which will produce the optimal muscle shortening velocity. This time is then used to calculate optimal joint angular velocities for each muscle and and for each joint configuration. The utility of this program is demonstrated by calculating optimal joint angular velocities for fifteen muscles and comparing calculated knee extension velocities with experimental results cited in the literature. PMID:8062553

  1. Professional AngularJS

    CERN Document Server

    Karpov, Valeri

    2015-01-01

    A comprehensive guide to AngularJS, Google's open-source client-side framework for app development. Most of the existing guides to AngularJS struggle to provide simple and understandable explanations for more advanced concepts. As a result, some developers who understand all the basic concepts of AngularJS struggle when it comes to building more complex real-world applications. Professional AngularJS provides a thorough understanding of AngularJS, covering everything from basic concepts, such as directives and data binding, to more advanced concepts like transclusion, build systems, and auto

  2. Experimental results and theoretical model to describe angular dependence of light scattering by monolayer of nematic droplets

    Science.gov (United States)

    Loiko, V. A.; Krakhalev, M. N.; Konkolovich, A. V.; Prishchepa, O. O.; Miskevich, A. A.; Zyryanov, V. Ya.

    2016-07-01

    Light scattering by a monolayer of bipolar nematic droplets encapsulated in polymer film is examined both experimentally and theoretically. A method for the simulation of the angular distribution of scattered light is based on the anomalous diffraction and interference approximations taking into account the director configuration within liquid crystal droplets and their bipolar axes orientation. The director configuration in nematic droplets is calculated using the relaxation method of the free energy minimization. The characteristics of the sample, including distribution of droplet sizes and shape anisometry, are measured in details. The experimental results and theoretical data agree closely with each other.

  3. Quark Orbital Angular Momentum

    OpenAIRE

    Burkardt Matthias

    2015-01-01

    Definitions of orbital angular momentum based on Wigner distributions are used as a framework to discuss the connection between the Ji definition of the quark orbital angular momentum and that of Jaffe and Manohar. We find that the difference between these two definitions can be interpreted as the change in the quark orbital angular momentum as it leaves the target in a DIS experiment. The mechanism responsible for that change is similar to the mechanism that causes transverse single-spin asy...

  4. Dirac Green function for angular projection potentials.

    Science.gov (United States)

    Zeller, Rudolf

    2015-11-25

    The aim of this paper is twofold: first, it is shown that the angular dependence of the Dirac Green function can be described analytically for potentials with non-local dependence on the angular variables if they are chosen as projection potentials in angular momentum space. Because the local dependence on the radial variable can be treated to any precision with present computing capabilities, this means that the Green function can be calculated practically exactly. Second, it is shown that a result of this kind not only holds for a single angular projection potential but also more generally, for instance if space is divided into non-overlapping cells and a separate angular projection potential is used in each cell. This opens the way for relativistic density-functional calculations within a different perspective than the conventional one. Instead of trying to obtain the density for a given potential approximately as well as possible, the density is determined exactly for non-local potentials which can approximate arbitrary local potentials as well as desired. PMID:26523824

  5. Dirac Green function for angular projection potentials

    Science.gov (United States)

    Zeller, Rudolf

    2015-11-01

    The aim of this paper is twofold: first, it is shown that the angular dependence of the Dirac Green function can be described analytically for potentials with non-local dependence on the angular variables if they are chosen as projection potentials in angular momentum space. Because the local dependence on the radial variable can be treated to any precision with present computing capabilities, this means that the Green function can be calculated practically exactly. Second, it is shown that a result of this kind not only holds for a single angular projection potential but also more generally, for instance if space is divided into non-overlapping cells and a separate angular projection potential is used in each cell. This opens the way for relativistic density-functional calculations within a different perspective than the conventional one. Instead of trying to obtain the density for a given potential approximately as well as possible, the density is determined exactly for non-local potentials which can approximate arbitrary local potentials as well as desired.

  6. Influence of line isolation overlappings on formation of lightning overvoltages

    Directory of Open Access Journals (Sweden)

    Antropov I. M.

    2015-12-01

    Full Text Available The model of substation protection against lightning waves with considered multiple overlappings of line isolation has been presented. Influence of multiple overlapping of isolation on line support on formation of lightning overvoltages has been shown. Ambiguity of determination of lightning current dangerous parameters at the fixed length of its front has been revealed

  7. Polarimetric and angular light-scattering from dense media: Comparison of a vectorial radiative transfer model with analytical, stochastic and experimental approaches

    International Nuclear Information System (INIS)

    Our work presents computations via a vectorial radiative transfer model of the polarimetric and angular light scattered by a stratified dense medium with small and intermediate optical thickness. We report the validation of this model using analytical results and different computational methods like stochastic algorithms. Moreover, we check the model with experimental data from a specific scatterometer developed at the Onera. The advantages and disadvantages of a radiative approach are discussed. This paper represents a step toward the characterization of particles in dense media involving multiple scattering. -- Highlights: • A vectorial radiative transfer model to simulate the light scattered by stratified layers is developed. • The vectorial radiative transfer equation is solved using an adding–doubling technique. • The results are compared to analytical and stochastic data. • Validation with experimental data from a scatterometer developed at Onera is presented

  8. A generalized theory for non-classical transport with angular-dependent path-length distributions 2: Anisotropic diffusion in model pebble bed reactor cores

    CERN Document Server

    Vasques, Richard

    2013-01-01

    We describe an analysis of neutron transport in the interior of model pebble bed reactor (PBR) cores, considering both crystal and random pebble arrangements. Monte Carlo codes were developed for (i) generating random realizations of the model PBR core, and (ii) performing neutron transport inside the crystal and random heterogeneous cores; numerical results are presented for two different choices of material parameters. These numerical results are used to investigate the anisotropic behavior of neutrons in each case and to assess the accuracy of estimates for the diffusion coefficients obtained with the diffusion approximations of different models: the atomic mix model, the Behrens correction, the Lieberoth correction, the generalized linear Boltzmann equation (GLBE), and the new GLBE with angular-dependent path-length distributions. This new theory utilizes a non-classical form of the Boltzmann equation in which the locations of the scattering centers in the system are correlated and the distance-to-collisi...

  9. Function approximation using adaptive and overlapping intervals

    Energy Technology Data Exchange (ETDEWEB)

    Patil, R.B.

    1995-05-01

    A problem common to many disciplines is to approximate a function given only the values of the function at various points in input variable space. A method is proposed for approximating a function of several to one variable. The model takes the form of weighted averaging of overlapping basis functions defined over intervals. The number of such basis functions and their parameters (widths and centers) are automatically determined using given training data and a learning algorithm. The proposed algorithm can be seen as placing a nonuniform multidimensional grid in the input domain with overlapping cells. The non-uniformity and overlap of the cells is achieved by a learning algorithm to optimize a given objective function. This approach is motivated by the fuzzy modeling approach and a learning algorithms used for clustering and classification in pattern recognition. The basics of why and how the approach works are given. Few examples of nonlinear regression and classification are modeled. The relationship between the proposed technique, radial basis neural networks, kernel regression, probabilistic neural networks, and fuzzy modeling is explained. Finally advantages and disadvantages are discussed.

  10. Seeding for pervasively overlapping communities

    CERN Document Server

    Lee, Conrad; McDaid, Aaron; Hurley, Neil

    2011-01-01

    In some social and biological networks, the majority of nodes belong to multiple communities. It has recently been shown that a number of the algorithms that are designed to detect overlapping communities do not perform well in such highly overlapping settings. Here, we consider one class of these algorithms, those which optimize a local fitness measure, typically by using a greedy heuristic to expand a seed into a community. We perform synthetic benchmarks which indicate that an appropriate seeding strategy becomes increasingly important as the extent of community overlap increases. We find that distinct cliques provide the best seeds. We find further support for this seeding strategy with benchmarks on a Facebook network and the yeast interactome.

  11. Seeding for pervasively overlapping communities

    Science.gov (United States)

    Lee, Conrad; Reid, Fergal; McDaid, Aaron; Hurley, Neil

    2011-06-01

    In some social and biological networks, the majority of nodes belong to multiple communities. It has recently been shown that a number of the algorithms specifically designed to detect overlapping communities do not perform well in such highly overlapping settings. Here, we consider one class of these algorithms, those which optimize a local fitness measure, typically by using a greedy heuristic to expand a seed into a community. We perform synthetic benchmarks which indicate that an appropriate seeding strategy becomes more important as the extent of community overlap increases. We find that distinct cliques provide the best seeds. We find further support for this seeding strategy with benchmarks on a Facebook network and the yeast interactome.

  12. Rotations and angular momentum

    International Nuclear Information System (INIS)

    This paper is devoted to the analysis of rotational invariance and the properties of angular momentum in quantum mechanics. In particular, the problem of addition of angular momenta is treated in detail, and tables of Clebsch-Gordan coefficients are included

  13. Fission at high angular momenta

    International Nuclear Information System (INIS)

    By studies on the system 40Ar+165Ho by means of selected measuring methods which made a differential selection of certain angular momentum ranges and by this a discrimination between ''fast fission'' and compound-nucleus fission possible the validity of fundamental predictions of the model of the ''fast fission'' hitherto experimentally no yet confirmed was studied: 1) At the turning point of the trajectory for ''fast fission'' calculated by Gregoire the corresponding shape of which must be responsible for the angular distribution the centers of the two fragments must be separated by about 11 fm. 2) The widths of the mass distributions after ''fast fission'' and compound-nucleus fission must be different by a factor 2. The measurements of the angular dependence showed that both prediction cannot be simultaneously brought into accordance with the experimental results. The results of coincidence measurements between fission fragments and alpha particles confirmed the assumption mentioned under topic 2. The analysis of the angular dependence then yielded for the shape of the nuclear complex leading to ''fast fission'' a more compact shape than that indicated by Gregoire, namely with a distance of the fragments of about 7 fm. (orig.)

  14. DVL Angular Velocity Recorder

    Science.gov (United States)

    Liebe, Wolfgang

    1944-01-01

    In many studies, especially of nonstationary flight motion, it is necessary to determine the angular velocities at which the airplane rotates about its various axes. The three-component recorder is designed to serve this purpose. If the angular velocity for one flight attitude is known, other important quantities can be derived from its time rate of change, such as the angular acceleration by differentiations, or - by integration - the angles of position of the airplane - that is, the angles formed by the airplane axes with the axis direction presented at the instant of the beginning of the motion that is to be investigated.

  15. Quark Orbital Angular Momentum

    Directory of Open Access Journals (Sweden)

    Burkardt Matthias

    2015-01-01

    Full Text Available Definitions of orbital angular momentum based on Wigner distributions are used as a framework to discuss the connection between the Ji definition of the quark orbital angular momentum and that of Jaffe and Manohar. We find that the difference between these two definitions can be interpreted as the change in the quark orbital angular momentum as it leaves the target in a DIS experiment. The mechanism responsible for that change is similar to the mechanism that causes transverse single-spin asymmetries in semi-inclusive deep-inelastic scattering.

  16. Combining near-field hyperspectral imaging and far-field spectral-angular distribution to develop mid-field white LED optical models with spatial color deviation.

    Science.gov (United States)

    Lee, Tsung-Xian; Lu, Tsung-Lin; Chen, Bo-Song

    2016-07-11

    The integration of spatial distribution of light intensity and color in the midfield is instrumental for LED optical design. On the basis of this rationale, we proposed an accurate and convenient method for developing white LED optical models. Near-field hyperspectral images and far-field spectral-angular distributions were integrated to illustrate changes in spatial light intensity and color distribution in the mid-field, to the exclusion of the absorption, conversion, and scattering of phosphors. The corresponding optical models were developed for three LED samples under different packaging conditions. Their normalized cross-correlation values for spatial light intensity and correlated-color-temperature distribution between simulation and measurement averaged as high as 0.995 and 0.99 respectively, which validated the accuracy and feasibility of the proposed method. PMID:27410897

  17. Optical Angular Momentum

    International Nuclear Information System (INIS)

    For many years the Institute of Physics has published books on hot topics based on a collection of reprints from different journals, including some remarks by the editors of each volume. The book on Optical Angular Momentum, edited by L Allen, S M Barnett and M J Padgett, is a recent addition to the series. It reproduces forty four papers originally published in different journals and in a few cases it provides direct access to works not easily accessible to a web navigator. The collection covers nearly a hundred years of progress in physics, starting from an historic 1909 paper by Poynting, and ending with a 2002 paper by Padgett, Barnett and coworkers on the measurement of the orbital angular momentum of a single photon. The field of optical angular momentum has expanded greatly, creating an interdisciplinary attraction for researchers operating in quantum optics, atomic physics, solid state physics, biophysics and quantum information theory. The development of laser optics, especially the control of single mode sources, has made possible the specific design of optical radiation modes with a high degree of control on the light angular momentum. The editors of this book are important figures in the field of angular momentum, having contributed to key progress in the area. L Allen published an historical paper in 1999, he and M J Padgett (together with M Babiker) produced few years ago a long review article which is today still the most complete basic introduction to the angular momentum of light, while S M Barnett has contributed several high quality papers to the progress of this area of physics. The editors' choice provides an excellent overview to all readers, with papers classified into eight different topics, covering the basic principles of the light and spin and orbital angular momentum, the laboratory tools for creating laser beams carrying orbital angular momentum, the optical forces and torques created by laser beams carrying angular momentum on

  18. ZKDR Distance, Angular Size and Phantom Cosmology

    OpenAIRE

    R.C. Santos; Lima, J. A. S.

    2006-01-01

    The influence of mass inhomogeneities on the angular size-redshift test is investigated for a large class of flat cosmological models driven by dark energy plus a cold dark matter component. The results are presented in two steps. First, the mass inhomogeneities are modeled by a generalized Zeldovich-Kantowski-Dyer-Roeder (ZKDR) distance which is characterized by a smoothness parameter $\\alpha(z)$ and a power index $\\gamma$, and, second, we provide a statistical analysis to angular size data ...

  19. Average Angular Velocity

    OpenAIRE

    Van Essen, H.

    2004-01-01

    This paper addresses the problem of the separation of rotational and internal motion. It introduces the concept of average angular velocity as the moment of inertia weighted average of particle angular velocities. It extends and elucidates the concept of Jellinek and Li (1989) of separation of the energy of overall rotation in an arbitrary (non-linear) $N$-particle system. It generalizes the so called Koenig's theorem on the two parts of the kinetic energy (center of mass plus internal) to th...

  20. Angular velocity discrimination

    Science.gov (United States)

    Kaiser, Mary K.

    1990-01-01

    Three experiments designed to investigate the ability of naive observers to discriminate rotational velocities of two simultaneously viewed objects are described. Rotations are constrained to occur about the x and y axes, resulting in linear two-dimensional image trajectories. The results indicate that observers can discriminate angular velocities with a competence near that for linear velocities. However, perceived angular rate is influenced by structural aspects of the stimuli.

  1. Angular momentum nonconservation and conservation in quasiclassical Positronium

    OpenAIRE

    Lush, David C.

    2010-01-01

    It is shown that due to Thomas precession, angular momentum is not generally a constant of the motion in a quasiclassical model of the Positronium atom consisting of circular-orbiting point charges with intrinsic spin and associated magnetic moment. Despite absence of externally-applied torque, angular momentum is a constant of the motion only if the electron and positron intrinsic angular momentum vector components perpendicular to the orbital angular momentum are antiparallel and of equal m...

  2. PAC (perturbed angular correlation) analysis of defect motion by Blume's stochastic model for I = 5/2 electric quadrupole interactions

    Energy Technology Data Exchange (ETDEWEB)

    Evenson, W.E. (Brigham Young Univ., Provo, UT (USA). Dept. of Physics and Astronomy); Gardner, J.A.; Wang, Ruiping (Oregon State Univ., Corvallis, OR (USA). Dept. of Physics); Su, Han-Tzong (National Cheng Kung Univ., Tainan (Taiwan)); McKale, A.G. (Computer Curriculum Corp., Sunnyvale, CA (USA))

    1990-01-01

    Using Blume's stochastic model and the approach of Winkler and Gerdau, we have computed-time-dependent effects on perturbed angular correlation (PAC) spectra due to defect motion in solids in the case of I = (5/2) electric quadrupole interactions. We report detailed analysis for a family of simple models: XYZ + Z'' models, in which the symmetry axis of an axial efg is allowed to fluctuate among orientations along x, y, and z axes, and a static axial efg oriented along the z axis is added to the fluctuating efgs. When the static efg is zero, this model is termed the XYZ'' model. Approximate forms are given for G{sub 2}(t) in the slow and rapid fluctuation regimes, i.e. suitable for the low and high temperature regions, respectively. Where they adequately reflect the underlying physical processes, these expressions allow one to fit PAC data for a wide range of temperatures and dopant concentrations to a single model, thus increasing the uniqueness of the interpretation of the defect properties. Application of the models are given for zirconia and ceria ceramics. 14 refs.

  3. The Application of Area Overlap Weighted Model(AOWM) in Series-Crime Prediction%连续犯罪预测的区域覆盖加权模型(AOWM)

    Institute of Scientific and Technical Information of China (English)

    薛钟; 乔良; 王峰; 高琦

    2010-01-01

    2010年MCM(美国大学生数学建模竞赛)B题一Criminology要求建立连续犯罪的预测模型用于抓捕案犯.利用统计学、犯罪心理学相关知识,建立了区域覆盖加权模型(Area Overlap Weighted Model,简称AOWM).AOWM操作便利,在分析真实案例时的正确率能达到80%以上,因此具有较好的应用前景.

  4. Clique graphs and overlapping communities

    International Nuclear Information System (INIS)

    It is shown how to construct a clique graph in which properties of cliques of a fixed order in a given graph are represented by vertices in a weighted graph. Various definitions and motivations for these weights are given. The detection of communities or clusters is used to illustrate how a clique graph may be exploited. In particular a benchmark network is shown where clique graphs find the overlapping communities accurately while vertex partition methods fail

  5. Clique graphs and overlapping communities

    Science.gov (United States)

    Evans, T. S.

    2010-12-01

    It is shown how to construct a clique graph in which properties of cliques of a fixed order in a given graph are represented by vertices in a weighted graph. Various definitions and motivations for these weights are given. The detection of communities or clusters is used to illustrate how a clique graph may be exploited. In particular a benchmark network is shown where clique graphs find the overlapping communities accurately while vertex partition methods fail.

  6. Combining Density and Overlap (CoDO): A New Method for Assessing the Significance of Overlap Among Subgraphs

    CERN Document Server

    Magner, Abram; Grama, Ananth

    2016-01-01

    Algorithms for detecting clusters (including overlapping clusters) in graphs have received significant attention in the research community. A closely related important aspect of the problem -- quantification of statistical significance of overlap of clusters, remains relatively unexplored. This paper presents the first theoretical and practical results on quantifying statistically significant interactions between clusters in networks. Such problems commonly arise in diverse applications, ranging from social network analysis to systems biology. The paper addresses the problem of quantifying the statistical significance of the observed overlap of the two clusters in an Erd\\H{o}s-R\\'enyi graph model. The analytical framework presented in the paper assigns a $p$-value to overlapping subgraphs by combining information about both the sizes of the subgraphs and their edge densities in comparison to the corresponding values for their overlapping component. This $p$-value is demonstrated to have excellent discriminati...

  7. Evaluation of multivariate calibration models with different pre-processing and processing algorithms for a novel resolution and quantitation of spectrally overlapped quaternary mixture in syrup

    Science.gov (United States)

    Moustafa, Azza A.; Hegazy, Maha A.; Mohamed, Dalia; Ali, Omnia

    2016-02-01

    A novel approach for the resolution and quantitation of severely overlapped quaternary mixture of carbinoxamine maleate (CAR), pholcodine (PHL), ephedrine hydrochloride (EPH) and sunset yellow (SUN) in syrup was demonstrated utilizing different spectrophotometric assisted multivariate calibration methods. The applied methods have used different processing and pre-processing algorithms. The proposed methods were partial least squares (PLS), concentration residuals augmented classical least squares (CRACLS), and a novel method; continuous wavelet transforms coupled with partial least squares (CWT-PLS). These methods were applied to a training set in the concentration ranges of 40-100 μg/mL, 40-160 μg/mL, 100-500 μg/mL and 8-24 μg/mL for the four components, respectively. The utilized methods have not required any preliminary separation step or chemical pretreatment. The validity of the methods was evaluated by an external validation set. The selectivity of the developed methods was demonstrated by analyzing the drugs in their combined pharmaceutical formulation without any interference from additives. The obtained results were statistically compared with the official and reported methods where no significant difference was observed regarding both accuracy and precision.

  8. Generation of non-overlapping fiber architecture

    DEFF Research Database (Denmark)

    Chapelle, Lucie; Lévesque, M.; Brøndsted, Povl;

    2015-01-01

    Numerical models generating actual fiber architecture by including parameters such as the fiber geometry and arrangement are a powerful tool to explore the relation between the fiber architecture and mechanical properties. The generation of virtual architectures of fibrous materials is the first...... step toward the computation of their physical properties. In this work, a realistic 3D model is developed to describe the architecture of a complex fiber structure. The domain of application of the model could include natural fibers composites, wood fibers materials, papers, mineral and steel wools...... and polymer networks. The model takes into account the complex geometry of the fiber arrangement in which a fiber can be modeled with a certain degree of bending while keeping a main fiber orientation. The model is built in two steps. First, fibers are generated as a chain of overlapping spheres or as a chain...

  9. CFHTLenS and RCSLenS: Testing Photometric Redshift Distributions Using Angular Cross-Correlations with Spectroscopic Galaxy Surveys

    Science.gov (United States)

    Choi, A.; Heymans, C.; Blake, C.; Hildebrandt, H.; Duncan, C. A. J.; Erben, T.; Nakajima, R.; Van Waerbeke, L.; Viola, M.

    2016-09-01

    We determine the accuracy of galaxy redshift distributions as estimated from photometric redshift probability distributions p(z). Our method utilises measurements of the angular cross-correlation between photometric galaxies and an overlapping sample of galaxies with spectroscopic redshifts. We describe the redshift leakage from a galaxy photometric redshift bin j into a spectroscopic redshift bin i using the sum of the p(z) for the galaxies residing in bin j. We can then predict the angular cross-correlation between photometric and spectroscopic galaxies due to intrinsic galaxy clustering when i ≠ j as a function of the measured angular cross-correlation when i = j. We also account for enhanced clustering arising from lensing magnification using a halo model. The comparison of this prediction with the measured signal provides a consistency check on the validity of using the summed p(z) to determine galaxy redshift distributions in cosmological analyses, as advocated by the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS). We present an analysis of the photometric redshifts measured by CFHTLenS, which overlaps the Baryon Oscillation Spectroscopic Survey (BOSS). We also analyse the Red-sequence Cluster Lensing Survey (RCSLenS), which overlaps both BOSS and the WiggleZ Dark Energy Survey. We find that the summed p(z) from both surveys are generally biased with respect to the true underlying distributions. If unaccounted for, this bias would lead to errors in cosmological parameter estimation from CFHTLenS by less than ˜4%. For photometric redshift bins which spatially overlap in 3-D with our spectroscopic sample, we determine redshift bias corrections which can be used in future cosmological analyses that rely on accurate galaxy redshift distributions.

  10. Generation of a two-center overlap integral over Slater orbitals of higher principal quantum numbers

    Science.gov (United States)

    Tai, H.

    1992-01-01

    The expressions for two-center overlap integrals between angular s, p, and d Slater orbitals of arbitrary, higher principal quantum number are explicitly listed. The expressions obtained are extremely compact and independent of the coordinate system. It is further shown that the numerical values of the integrals obtained in this way are free from any numerical instability.

  11. Quantum-mechanical derivation of angular and torsional forces in well-bonded systems

    International Nuclear Information System (INIS)

    A quantum-mechanically based method of deriving real-space interatomic potential functions for covalently bonded systems, without broken bonds, is developed. The method focuses on the one-electron energy, which is modeled via a tight-binding Hamiltonian. The potentials are derived via a general formalism based on perturbation theory, using a starting state in which the electrons reside in bond orbitals. The perturbing terms correspond to overlap and Hamiltonian couplings between the bond orbitals and with other occupied and unoccupied states. The interactions are given in terms of simple trigonometric functions, and the parameters of the quantum-mechanical Hamiltonian. A major contribution to the angular forces comes from the overlap between occupied bonding orbitals. Examples are given for model Hamiltonians relevant to phosphorus, carbon, sulfur, and the ethane molecule. The functional forms of the derived potentials are generally similar in form to those assumed in simulations. However, the actual appearance of the potentials is sometimes quite different from that obtained by an empirical fitting to molecular properties. In addition, it is found that the open-quote open-quote improper close-quote close-quote torsion terms that are often included in polymer simulations can be replaced by angular terms that are much more physically transparent. copyright 1996 The American Physical Society

  12. Fourier relationship between angular position and optical orbital angular momentum

    OpenAIRE

    Yao, E.; Franke-Arnold, S.; Courtial, J.; Barnett, S.; Padgett, M. J.

    2006-01-01

    We demonstrate the Fourier relationship between angular position and angular momentum for a light mode. In particular we measure the distribution of orbital angular momentum states of light that has passed through an aperture and verify that the orbital angular momentum distribution is given by the complex Fourier-transform of the aperture function. We use spatial light modulators, configured as diffractive optical components, to define the initial orbital angular momentum state of the beam, ...

  13. Cold dark matter confronts the cosmic microwave background - Large-angular-scale anisotropies in Omega sub 0 + lambda 1 models

    Science.gov (United States)

    Gorski, Krzysztof M.; Silk, Joseph; Vittorio, Nicola

    1992-01-01

    A new technique is used to compute the correlation function for large-angle cosmic microwave background anisotropies resulting from both the space and time variations in the gravitational potential in flat, vacuum-dominated, cold dark matter cosmological models. Such models with Omega sub 0 of about 0.2, fit the excess power, relative to the standard cold dark matter model, observed in the large-scale galaxy distribution and allow a high value for the Hubble constant. The low order multipoles and quadrupole anisotropy that are potentially observable by COBE and other ongoing experiments should definitively test these models.

  14. Overlapping Clustering of Binary Variables

    Czech Academy of Sciences Publication Activity Database

    Húsek, Dušan; Řezanková, H.; Frolov, A. A.

    Napoli: TILAPIA Edizioni, 2006 - (Vinzi, V.; Lauro, C.; Braverman, A.; Kiers, H.; Schimek, M.), s. 1-7 ISBN 88-89744-01-4. [KNEMO 2006. Anacapri (IT), 04.09.2006-06.09.2006] R&D Projects: GA ČR GA201/05/0079; GA AV ČR 1ET100300414 Institutional research plan: CEZ:AV0Z10300504 Keywords : machine learning * knowledge extraction * overlapping clustering * clustering of variables * fuzzy cluster analysis * factor analysis * neural newtorks Subject RIV: BB - Applied Statistics, Operational Research

  15. Fluctuations in Overlapping Generations Economies

    DEFF Research Database (Denmark)

    Tvede, Mich

    In the present paper stationary pure-exchange overlapping generations economies with l  goods per date and m consumers per generation are considered. It is shown that for an open and dense set of utility functions there exist endowment vectors such that n-cycles exist for n = l +1 and l  = m. The...... approach to existence of endogenous fluctuations is basic in the sense that the prime ingredients are the implicit function theorem and linear algebra. Moreover the approach is applied to show that for an open and dense set of utility functions there exist endowment vectors such that sunspot equilibria...

  16. Shell effects and fission fragments angular anisotropy

    International Nuclear Information System (INIS)

    The impact of the shell corrections attenuation effect with growth of the fissionable nuclei temperature on the angular anisotropy of the fission fragments is considered. The experimental data on the anisotropy of the fission fragments angular distributions of the compound nucleus, formed in the 4He + 238U reactions, are analyzed within the frames of the transition states model in the fission barriers saddle point and statistic theory of nuclear reactions. The obvious kind of the shell corrections attenuation function is obtained

  17. Generalized Uncertainty Principle and Angular Momentum

    CERN Document Server

    Bosso, Pasquale

    2016-01-01

    Various models of quantum gravity suggest a modification of the Heisenberg's Uncertainty Principle, to the so-called Generalized Uncertainty Principle, between position and momentum. In this work we show how this modification influences the theory of angular momentum in Quantum Mechanics. In particular, we compute Planck scale corrections to angular momentum eigenvalues, the Hydrogen atom spectrum, the Stern-Gerlach experiment and the Clebsch-Gordan coefficients. We also examine effects of the Generalized Uncertainty Principle on multi-particle systems.

  18. Orbital angular momentum of partially coherent beams

    OpenAIRE

    Serna Galán, Julio; Movilla Serrano, Jesús María

    2001-01-01

    The definition of the orbital angular momentum established for coherent beams is extended to partially coherent beams, expressed in terms of two elements of the beam matrix. This extension is justified by use of the Mercer expansion of partially coherent fields. General Gauss-Schell-model fields are considered, and the relation between the twist; parameter and the orbital angular momentum is analyzed. © 2001 Optical Society of America.

  19. Pretzelosity TMD and Quark Orbital Angular Momentum

    OpenAIRE

    Lorce, Cédric; Pasquini, B.

    2015-01-01

    We study the connection between the quark orbital angular momentum and the pretzelosity transverse-momentum dependent parton distribution function. We discuss the origin of this relation in quark models, identifying as key ingredient for its validity the assumption of spherical symmetry for the nucleon in its rest frame. Finally we show that the individual quark contributions to the orbital angular momentum obtained from this relation can not be interpreted as the intrinsic contributions, but...

  20. Fluidic angular velocity sensor

    Science.gov (United States)

    Berdahl, C. M. (Inventor)

    1986-01-01

    A fluidic sensor providing a differential pressure signal proportional to the angular velocity of a rotary input is described. In one embodiment the sensor includes a fluid pump having an impeller coupled to a rotary input. A housing forming a constricting fluid flow chamber is connected to the fluid input of the pump. The housing is provided with a fluid flow restrictive input to the flow chamber and a port communicating with the interior of the flow chamber. The differential pressure signal measured across the flow restrictive input is relatively noise free and proportional to the square of the angular velocity of the impeller. In an alternative embodiment, the flow chamber has a generally cylindrical configuration and plates having flow restrictive apertures are disposed within the chamber downstream from the housing port. In this embodiment, the differential pressure signal is found to be approximately linear with the angular velocity of the impeller.

  1. Metamaterial broadband angular selectivity

    Science.gov (United States)

    Shen, Yichen; Ye, Dexin; Wang, Li; Celanovic, Ivan; Ran, Lixin; Joannopoulos, John D.; Soljačić, Marin

    2014-09-01

    We demonstrate how broadband angular selectivity can be achieved with stacks of one-dimensionally periodic photonic crystals, each consisting of alternating isotropic layers and effective anisotropic layers, where each effective anisotropic layer is constructed from a multilayered metamaterial. We show that by simply changing the structure of the metamaterials, the selective angle can be tuned to a broad range of angles; and, by increasing the number of stacks, the angular transmission window can be made as narrow as desired. As a proof of principle, we realize the idea experimentally in the microwave regime. The angular selectivity and tunability we report here can have various applications such as in directional control of electromagnetic emitters and detectors.

  2. Metamaterial Broadband Angular Selectivity

    CERN Document Server

    Shen, Yichen; Wang, Zhiyu; Wang, Li; Celanovic, Ivan; Ran, Lixin; Joannopoulos, John D; Soljacic, Marin

    2014-01-01

    We demonstrate how broadband angular selectivity can be achieved with stacks of one-dimensionally periodic photonic crystals, each consisting of alternating isotropic layers and effective anisotropic layers, where each effective anisotropic layer is constructed from a multilayered metamaterial. We show that by simply changing the structure of the metamaterials, the selective angle can be tuned to a broad range of angles; and, by increasing the number of stacks, the angular transmission window can be made as narrow as desired. As a proof of principle, we realize the idea experimentally in the microwave regime. The angular selectivity and tunability we report here can have various applications such as in directional control of electromagnetic emitters and detectors.

  3. Modelling Angular Dependencies in Land Surface Temperatures From the SEVIRI Instrument onboard the Geostationary Meteosat Second Generation Satellites

    DEFF Research Database (Denmark)

    Rasmussen, Mads Olander; Pinheiro, AC; Proud, Simon Richard;

    2010-01-01

    Satellite-based estimates of land surface temperature (LST) are widely applied as an input to models. A model output is often very sensitive to error in the input data, and high-quality inputs are therefore essential. One of the main sources of errors in LST estimates is the dependence on vegetat...

  4. Overlap distributions for quantum quenches in the anisotropic Heisenberg chain

    Science.gov (United States)

    Mazza, Paolo P.; Stéphan, Jean-Marie; Canovi, Elena; Alba, Vincenzo; Brockmann, Michael; Haque, Masudul

    2016-01-01

    The dynamics after a quantum quench is determined by the weights of the initial state in the eigenspectrum of the final Hamiltonian, i.e. by the distribution of overlaps in the energy spectrum. We present an analysis of such overlap distributions for quenches of the anisotropy parameter in the one-dimensional anisotropic spin-1/2 Heisenberg model (XXZ chain). We provide an overview of the form of the overlap distribution for quenches from various initial anisotropies to various final ones, using numerical exact diagonalization. We show that if the system is prepared in the antiferromagnetic Néel state (infinite anisotropy) and released into a non-interacting setup (zero anisotropy, XX point) only a small fraction of the final eigenstates gives contributions to the post-quench dynamics, and that these eigenstates have identical overlap magnitudes. We derive expressions for the overlaps, and present the selection rules that determine the final eigenstates having nonzero overlap. We use these results to derive concise expressions for time-dependent quantities (Loschmidt echo, longitudinal and transverse correlators) after the quench. We use perturbative analyses to understand the overlap distribution for quenches from infinite to small nonzero anisotropies, and for quenches from large to zero anisotropy.

  5. Average Angular Velocity

    CERN Document Server

    Essén, H

    2003-01-01

    This paper addresses the problem of the separation of rotational and internal motion. It introduces the concept of average angular velocity as the moment of inertia weighted average of particle angular velocities. It extends and elucidates the concept of Jellinek and Li (1989) of separation of the energy of overall rotation in an arbitrary (non-linear) $N$-particle system. It generalizes the so called Koenig's theorem on the two parts of the kinetic energy (center of mass plus internal) to three parts: center of mass, rotational, plus the remaining internal energy relative to an optimally translating and rotating frame.

  6. Angular Scaling In Jets

    Energy Technology Data Exchange (ETDEWEB)

    Jankowiak, Martin; Larkoski, Andrew J.; /SLAC

    2012-02-17

    We introduce a jet shape observable defined for an ensemble of jets in terms of two-particle angular correlations and a resolution parameter R. This quantity is infrared and collinear safe and can be interpreted as a scaling exponent for the angular distribution of mass inside the jet. For small R it is close to the value 2 as a consequence of the approximately scale invariant QCD dynamics. For large R it is sensitive to non-perturbative effects. We describe the use of this correlation function for tests of QCD, for studying underlying event and pile-up effects, and for tuning Monte Carlo event generators.

  7. Topological summation of observables measured with dynamical overlap fermions

    Energy Technology Data Exchange (ETDEWEB)

    Bietenholz, W. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Hip, I. [Zagreb Univ. (Croatia). Faculty of Geothechnical Engineering

    2008-10-15

    HMC histories for light dynamical overlap fermions tend to stay in a fixed topological sector for many trajectories, so that the different sectors are not sampled properly. Therefore the suitable summation of observables, which have been measured in separate sectors, is a major challenge. We explore several techniques for this issue, based on data for the chiral condensate and the (analogue of the) pion mass in the 2-flavour Schwinger model with dynamical overlap-hypercube fermions. (orig.)

  8. Topological Summation of Observables Measured with Dynamical Overlap Fermions

    OpenAIRE

    Bietenholz, Wolfgang; Hip, Ivan

    2008-01-01

    HMC histories for light dynamical overlap fermions tend to stay in a fixed topological sector for many trajectories, so that the different sectors are not sampled properly. Therefore the suitable summation of observables, which have been measured in separate sectors, is a major challenge. We explore several techniques for this issue, based on data for the chiral condensate and the (analogue of the) pion mass in the 2-flavour Schwinger model with dynamical overlap-hypercube fermions.

  9. Topological summation of observables measured with dynamical overlap fermions

    International Nuclear Information System (INIS)

    HMC histories for light dynamical overlap fermions tend to stay in a fixed topological sector for many trajectories, so that the different sectors are not sampled properly. Therefore the suitable summation of observables, which have been measured in separate sectors, is a major challenge. We explore several techniques for this issue, based on data for the chiral condensate and the (analogue of the) pion mass in the 2-flavour Schwinger model with dynamical overlap-hypercube fermions. (orig.)

  10. Airline strategic alliances in overlapping Markets: Should policymakers be concerned?

    OpenAIRE

    Gayle, Philip; Brown, Dave

    2015-01-01

    When there is significant overlap in potential partner airlines' route networks, policymakers have expressed concern that an alliance between such airlines may facilitate collusion on price and/or service levels in the partners' overlapping markets. The contribution of our paper is to put together a structural econometric model that is able to explicitly disentangle the demand and supply effects associated with an alliance between such airlines. The estimates from our structural econometric...

  11. Item Overlap Correlations: Definitions, Interpretations, and Implications.

    Science.gov (United States)

    Hsu, Louis M.

    1994-01-01

    Item overlap coefficient (IOC) formulas are discussed, providing six warnings about their calculation and interpretation and some explanations of why item overlap influences the Minnesota Multiphasic Personality Inventory and the Millon Clinical Multiaxial Inventory factor structures. (SLD)

  12. A Model for an Angular Velocity-Tuned Motion Detector Accounting for Deviations in the Corridor-Centering Response of the Bee

    Science.gov (United States)

    Sabo, Chelsea; Gurney, Kevin; Vasilaki, Eleni; Marshall, James A. R.

    2016-01-01

    We present a novel neurally based model for estimating angular velocity (AV) in the bee brain, capable of quantitatively reproducing experimental observations of visual odometry and corridor-centering in free-flying honeybees, including previously unaccounted for manipulations of behaviour. The model is fitted using electrophysiological data, and tested using behavioural data. Based on our model we suggest that the AV response can be considered as an evolutionary extension to the optomotor response. The detector is tested behaviourally in silico with the corridor-centering paradigm, where bees navigate down a corridor with gratings (square wave or sinusoidal) on the walls. When combined with an existing flight control algorithm the detector reproduces the invariance of the average flight path to the spatial frequency and contrast of the gratings, including deviations from perfect centering behaviour as found in the real bee’s behaviour. In addition, the summed response of the detector to a unit distance movement along the corridor is constant for a large range of grating spatial frequencies, demonstrating that the detector can be used as a visual odometer. PMID:27148968

  13. A Model for an Angular Velocity-Tuned Motion Detector Accounting for Deviations in the Corridor-Centering Response of the Bee.

    Science.gov (United States)

    Cope, Alex J; Sabo, Chelsea; Gurney, Kevin; Vasilaki, Eleni; Marshall, James A R

    2016-05-01

    We present a novel neurally based model for estimating angular velocity (AV) in the bee brain, capable of quantitatively reproducing experimental observations of visual odometry and corridor-centering in free-flying honeybees, including previously unaccounted for manipulations of behaviour. The model is fitted using electrophysiological data, and tested using behavioural data. Based on our model we suggest that the AV response can be considered as an evolutionary extension to the optomotor response. The detector is tested behaviourally in silico with the corridor-centering paradigm, where bees navigate down a corridor with gratings (square wave or sinusoidal) on the walls. When combined with an existing flight control algorithm the detector reproduces the invariance of the average flight path to the spatial frequency and contrast of the gratings, including deviations from perfect centering behaviour as found in the real bee's behaviour. In addition, the summed response of the detector to a unit distance movement along the corridor is constant for a large range of grating spatial frequencies, demonstrating that the detector can be used as a visual odometer. PMID:27148968

  14. A Model for an Angular Velocity-Tuned Motion Detector Accounting for Deviations in the Corridor-Centering Response of the Bee.

    Directory of Open Access Journals (Sweden)

    Alex J Cope

    2016-05-01

    Full Text Available We present a novel neurally based model for estimating angular velocity (AV in the bee brain, capable of quantitatively reproducing experimental observations of visual odometry and corridor-centering in free-flying honeybees, including previously unaccounted for manipulations of behaviour. The model is fitted using electrophysiological data, and tested using behavioural data. Based on our model we suggest that the AV response can be considered as an evolutionary extension to the optomotor response. The detector is tested behaviourally in silico with the corridor-centering paradigm, where bees navigate down a corridor with gratings (square wave or sinusoidal on the walls. When combined with an existing flight control algorithm the detector reproduces the invariance of the average flight path to the spatial frequency and contrast of the gratings, including deviations from perfect centering behaviour as found in the real bee's behaviour. In addition, the summed response of the detector to a unit distance movement along the corridor is constant for a large range of grating spatial frequencies, demonstrating that the detector can be used as a visual odometer.

  15. First-order phase transition in a model of self-propelled particles with variable angular range of interaction

    Science.gov (United States)

    Durve, Mihir; Sayeed, Ahmed

    2016-05-01

    We have carried out a Monte Carlo simulation of a modified version of Vicsek model for the motion of self-propelled particles in two dimensions. In this model the neighborhood of interaction of a particle is a sector of the circle with the particle at the center (rather than the whole circle as in the original Vicsek model). The sector is centered along the direction of the velocity of the particle, and the half-opening angle of this sector is called the "view angle." We vary the view angle over its entire range and study the change in the nature of the collective motion of the particles. We find that ordered collective motion persists down to remarkably small view angles. And at a certain transition view angle the collective motion of the system undergoes a first-order phase transition to a disordered state. We also find that the reduction in the view angle can in fact increase the order in the system significantly. We show that the directionality of the interaction, and not only the radial range of the interaction, plays an important role in the determination of the nature of the above phase transition.

  16. The brain as a system of nested but partially overlapping networks. Heuristic relevance of the model for brain physiology and pathology.

    Science.gov (United States)

    Agnati, L F; Guidolin, D; Fuxe, K

    2007-01-01

    A new model of the brain organization is proposed. The model is based on the assumption that a global molecular network enmeshes the entire central nervous system. Thus, brain extra-cellular and intra-cellular molecular networks are proposed to communicate at the level of special plasma membrane regions (e.g., the lipid rafts) where horizontal molecular networks can represent input/output regions allowing the cell to have informational exchanges with the extracellular environment. Furthermore, some "pervasive signals" such as field potentials, pressure waves and thermal gradients that affect large parts of the brain cellular and molecular networks are discussed. Finally, at least two learning paradigms are analyzed taking into account the possible role of Volume Transmission: the so-called model of "temporal difference learning" and the "Turing B-unorganised machine". The relevance of this new view of brain organization for a deeper understanding of some neurophysiological and neuropathological aspects of its function is briefly discussed. PMID:16906353

  17. Orbital Angular Momentum Parton Distributions in Light-Front Dynamics

    OpenAIRE

    Cano, F.; Faccioli, P.; Scopetta, S.; Traini, M.(Dipartimento di Fisica, Università degli studi di Trento and INFN — TIFPA, Via Sommarive 14, I-38123, Povo (Trento), Italy)

    2000-01-01

    We study the quark angular momentum distribution in the nucleon within a light-front covariant quark model. Special emphasis is put into the orbital angular momentum: a quantity which is very sensitive to the relativistic treatment of the spin in a light-front dynamical approach. Discrepancies with the predictions of the low-energy traditional quark models where relativistic spin effects are neglected, are visible also after perturbative evolution to higher momentum scales. Orbital angular mo...

  18. A solely radiance-based spectral angular distribution model and its application in deriving clear-sky spectral fluxes over tropical oceans

    Science.gov (United States)

    Song, Lei; Wang, Yinan

    2016-02-01

    The radiation budget at the top of the atmosphere plays a critical role in climate research. Compared to the broadband flux, the spectrally resolved outgoing longwave radiation or flux (OLR), with rich atmospheric information in different bands, has obvious advantages in the evaluation of GCMs. Unlike methods that need auxiliary measurements and information, here we take atmospheric infrared sounder (AIRS) observations as an example to build a self-consistent algorithm by an angular distribution model (ADM), based solely on radiance observations, to estimate clear-sky spectrally resolved fluxes over tropical oceans. As the key step for such an ADM, scene type estimations are obtained from radiance and brightness temperature in selected AIRS channels. Then, broadband OLR as well as synthetic spectral fluxes are derived by the spectral ADM and validated using both synthetic spectra and CERES (Clouds and the Earth's Radiant Energy System) observations. In most situations, the mean OLR differences between the spectral ADM products and the CERES observations are within ±2 W m-2, which is less than 1% of the typical mean clear-sky OLR over tropical oceans. The whole algorithm described in this study can be easily extended to other similar hyperspectral radiance measurements.

  19. The electron antineutrino angular correlation coefficient a in free neutron decay. Testing the standard model with the aSPECT-spectrometer

    International Nuclear Information System (INIS)

    The β-decay of free neutrons is a strongly over-determined process in the Standard Model (SM) of Particle Physics and is described by a multitude of observables. Some of those observables are sensitive to physics beyond the SM. For example, the correlation coefficients of the involved particles belong to them. The spectrometer aSPECT was designed to measure precisely the shape of the proton energy spectrum and to extract from it the electron anti-neutrino angular correlation coefficient a. A first test period (2005/2006) showed the ''proof-of-principles''. The limiting influence of uncontrollable background conditions in the spectrometer made it impossible to extract a reliable value for the coefficient a (published in 2008). A second measurement cycle (2007/2008) aimed to under-run the relative accuracy of previous experiments (δa)/(a)=5%. I performed the analysis of the data taken there which is the emphasis of this doctoral thesis. A central point are background studies. The systematic impact of background on a was reduced to (δa(syst.))/(a)=0.61 %. The statistical accuracy of the analyzed measurements is (δa(stat.))/(a)∼1.4 %. Besides, saturation effects of the detector electronics were investigated which were initially observed. These turned out not to be correctable on a sufficient level. An applicable idea how to avoid the saturation effects is discussed in the last chapter. (orig.)

  20. Angular momentum projected semiclassics

    Science.gov (United States)

    Hasse, Rainer W.

    1987-06-01

    By using angular momentum projected plane waves as wave functions, we derive semiclassical expressions for the single-particle propagator, the partition function, the nonlocal density matrix, the single-particle density and the one particle-one hole level density for fixed angular momentum and fixed z-component or summed over the z-components. Other quantities can be deduced from the propagator. In coordinate space ( r, r') the relevant quantities depend on |r-r'| instead of | r- r'| and in Wigner space ( R, P) they become proportional to the angular momentum constraints δ(| R × P|/ h̵-l) and δ( R × P) z/ h̵-m) . As applications we calculate the single-particle and one-particle-one hole level densities for harmonic oscillator and Hill-Wheeler box potentials and the imaginary part of the optical potential and its volume integral with an underlying harmonic oscillator potential and a zero range two-body interaction.

  1. Physics from Angular Projection of Rectangular Grids

    CERN Document Server

    Singh, Ashmeet

    2015-01-01

    In this paper, we present a mathematical model for the angular projection of a rectangular arrangement of points in a grid. This simple, yet interesting problem, has both a scholarly value and applications for data extraction techniques to study the physics of various systems. Our work can interest undergraduate students to understand subtle points in the angular projection of a grid and describes various quantities of interest in the projection with completeness and sufficient rigour. We show that for certain angular ranges, the projection has non-distinctness, and calculate the details of such angles, and correspondingly, the number of distinct points and the total projected length. We focus on interesting trends obtained for the projected length of the grid elements and present a simple application of the model to determine the geometry of an unknown grid whose spatial extensions are known, using measurement of the grid projection at two angles only. Towards the end, our model is shown to have potential ap...

  2. Habitat suitability modelling reveals a strong niche overlap between two poorly known species, the broom hare and the Pyrenean grey partridge, in the north of Spain

    Science.gov (United States)

    Acevedo, Pelayo; Alzaga, Vanesa; Cassinello, Jorge; Gortázar, Christian

    2007-03-01

    In the present work, we derive a habitat suitability model of the broom hare and the Pyrenean grey partridge in the Cantabrian Mountains by using the Ecological Niche Factor Analysis. Both species are endemic to the northern of Iberian mountains, and because of the vulnerability of the hare to endangerment or extinction and because of the great interest in the partridge, this habitat requires specific conservation measures. Literature on these animals' biology and ecology is practically nonexistent. Habitat suitability analyses show that the hare and partridge occupy very similar ecological niches, characterized by a high percentage of broom and heather scrublands, high altitude and slope, and limited human accessibility. We have identified differences in habitat selection between the Pyrenean grey partridge and other subspecies of partridge present in central-northern Europe. Our results indicate a probable metapopulation structure for both the hare and partridge; however, according to our predictive maps, there is a high connectivity between suitable habitats. Current decline of traditional rural activities, such as mountain livestock, are affecting the mosaic landscape. This, in turn, enhances biodiversity in the area and, particularly, the viability of these valuable animal populations.

  3. Angular momentum transfer in deep inelastic scattering

    International Nuclear Information System (INIS)

    The measured γ-ray multiplicities as a function of exit channel kinetic energy and mass asymmetry for the reactions Au, Ho, Ag + 620 MeV Kr are compared with a diffusion calculation based exclusively upon particle transfer and which reproduces the Z distributions as well as the angular distributions as function of Z. The model correctly predicts the energy and Z dependence of the γ-ray multiplicities, thus lending support to the one-body model on one hand and to the angular-momentum fractionation along the mass asymmetry coordinate on the other

  4. Overlapped frequency-time division multiplexing

    Institute of Scientific and Technical Information of China (English)

    JIANG Hui; LI Dao-ben

    2009-01-01

    A technique named overlapped frequency-time division multiplexing (OVFTDM)) is proposed in this article. The technique is derived from Nyquist system and frequency-time division multiplexing system. When the signals are compactly overlapped without the orthogonality in time domain, the technique is named overlapped time division multiplexing (OVTDM), whereas when signals are compactly overlapped without the orthogonality in frequency domain, the technique is called overlapped frequency division multiplexing (OVFDM). To further improve spectral efficiency, the OVFTDM in which signals are overlapped both in frequency domain and in time domain is explored. OVFTDM does not depend on orthogonality whatever in time domain or in frequency domain like Nyquist system or OFDM system, but on the convolutional constraint relationship among signals. Therefore, not only the spectral efficiency but also the reliability is improved. The simulations verify the validity of this theory.

  5. Solving Partial Differential Equations on Overlapping Grids

    Energy Technology Data Exchange (ETDEWEB)

    Henshaw, W D

    2008-09-22

    We discuss the solution of partial differential equations (PDEs) on overlapping grids. This is a powerful technique for efficiently solving problems in complex, possibly moving, geometry. An overlapping grid consists of a set of structured grids that overlap and cover the computational domain. By allowing the grids to overlap, grids for complex geometries can be more easily constructed. The overlapping grid approach can also be used to remove coordinate singularities by, for example, covering a sphere with two or more patches. We describe the application of the overlapping grid approach to a variety of different problems. These include the solution of incompressible fluid flows with moving and deforming geometry, the solution of high-speed compressible reactive flow with rigid bodies using adaptive mesh refinement (AMR), and the solution of the time-domain Maxwell's equations of electromagnetism.

  6. Understanding angular effects in VHR imagery and their significance for urban land-cover model portability: A study of two multi-angle in-track image sequences

    Science.gov (United States)

    Matasci, Giona; Longbotham, Nathan; Pacifici, Fabio; Kanevski, Mikhail; Tuia, Devis

    2015-09-01

    This paper investigates the angular effects causing spectral distortions in multi-angle remote sensing imagery. We study two WorldView-2 multispectral in-track sequences acquired over the cities of Atlanta, USA, and Rio de Janeiro, Brazil, consisting of 13 and 20 co-located images, respectively. The sequences possess off-nadir acquisition angles up to 47.5° and bear markedly different sun-satellite configurations with respect to each other. Both scenes comprise classic urban structures such as buildings of different size, road networks, and parks. First, we quantify the degree of distortion affecting the sequences by means of a non-linear measure of distance between probability distributions, the Maximum Mean Discrepancy. Second, we assess the ability of a classification model trained on an image acquired at a certain view angle to predict the land-cover of all the other images in the sequence. The portability across the sequence is investigated for supervised classifiers of different nature by analyzing the evolution of the classification accuracy with respect to the off-nadir look angle. For both datasets, the effectiveness of physically- and statistically-based normalization methods in obtaining angle-invariant data spaces is compared and synergies are discussed. The empirical results indicate that, after a suitable normalization (histogram matching, atmospheric compensation), the loss in classification accuracy when using a model trained on the near-nadir image to classify the most off-nadir acquisitions can be reduced to as little as 0.06 (Atlanta) or 0.03 (Rio de Janeiro) Kappa points when using a SVM classifier.

  7. Correlated Edge Overlaps in Multiplex Networks

    CERN Document Server

    Baxter, Gareth J; da Costa, Rui A; Dorogovtsev, Sergey N; Mendes, José F F

    2016-01-01

    We develop the theory of sparse multiplex networks with partially overlapping links based on their local tree-likeness. This theory enables us to find the giant mutually connected component in a two-layer multiplex network with arbitrary correlations between connections of different types. We find that correlations between the overlapping and non-overlapping links markedly change the phase diagram of the system, leading to multiple hybrid phase transitions. For assortative correlations we observe recurrent hybrid phase transitions.

  8. LLVM-based overlapped executable code generator

    OpenAIRE

    V. Aranov; A. Terentiev

    2014-01-01

    Overlapped executable code is an attractive artifact of obfuscation technology not yet widely covered and researched. Overlapped code and opaque predicates technologies together allows creation of prominent software obfuscation technologies featuring both obscure executable code and code protected from patching due to hard-to-track relations with other code. The paper provides polynomial algorithm to generate overlapped executable code using LLVM framework and discuss results of the generatio...

  9. BB mode angular power spectrum of CMB from massive gravity

    CERN Document Server

    Malsawmtluangi, N

    2016-01-01

    The primordial massive gravitational waves are placed in the squeezed vacuum state and corresponding $BB$-mode correlation angular power spectrum of the cosmic microwave background is obtained for various slow roll inflation models. The angular power spectrum is compared with the limit of BICEP2/Keck and Planck joint analysis data and the hybrid inflation model is found favorable.

  10. Overlap syndromes among autoimmune liver diseases

    Institute of Scientific and Technical Information of China (English)

    Christian Rust; Ulrich Beuers

    2008-01-01

    The three major immune disorders of the liver are autoimmune hepatitis (AIH),primary biliary cirrhosis (PBC) and primary sclerosing cholangitis (PSC).Variant forms of these diseases are generally called overlap syndromes,although there has been no standardised definition.Patients with overlap syndromes present with both hepatitic and cholestatic serum liver tests and have histological features of AIH and PBC or PSC.The AIH-PBC overlap syndrome is the most common form,affecting almost 10% of adults with AIH or PBC.Single cases of AIH and autoimmune cholangitis (AMA-negative PBC) overlap syndrome have also been reported.The AIH-PSC overlap syndrome is predominantly found in children,adolescents and young adults with AIH or PSC.Interestingly,transitions from one autoimmune to another have also been reported in a minority of patients,especially transitions from PBC to AIH-PBC overlap syndrome.Overlap syndromes show a progressive course towards liver cirrhosis and liver failure without treatment.Therapy for overlap syndromes is empiric,since controlled trials are not available in these rare disorders.Anticholestatic therapy with ursodeoxycholic acid is usually combined with immunosuppressive therapy with corticosteroids and/or azathioprine in both AIH-PBC and AIH-PSC overlap syndromes.In end-stage disease,liver transplantation is the treatment of choice.

  11. Transverse target-spin asymmetry associated with deeply virtual Compton scattering on the proton and a resulting model-dependent constraint on the total angular momentum of quarks in the nucleon

    International Nuclear Information System (INIS)

    In this thesis we report on the rst results on the transverse target-spin asymmetry associated with deeply virtual Compton scattering on the proton. It is shown that this asymmetry can provide one of the rare possibilities to access the Generalized Parton Distribution (GPD) E of the nucleon, and thus, through models for E, also to the total angular momentum of u and d quarks in the nucleon. The measurement was performed using the 27.6 GeV positron beam of the HERA storage ring and the transversely polarized hydrogen target of the HERMES experiment at DESY. The two leading azimuthal amplitudes of the asymmetry are extracted from the HERMES 2002-2004 data, corresponding to an integrated luminosity of 65.3 pb.1. By comparing the results obtained at HERMES and theoretical predictions based on a phenomenological model of GPDs, we obtain a model-dependent constraint on the total angular momentum of quarks in the nucleon. (orig.)

  12. Transverse target-spin asymmetry associated with deeply virtual Compton scattering on the proton and a resulting model-dependent constraint on the total angular momentum of quarks in the nucleon

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Zhenyu

    2007-02-15

    In this thesis we report on the rst results on the transverse target-spin asymmetry associated with deeply virtual Compton scattering on the proton. It is shown that this asymmetry can provide one of the rare possibilities to access the Generalized Parton Distribution (GPD) E of the nucleon, and thus, through models for E, also to the total angular momentum of u and d quarks in the nucleon. The measurement was performed using the 27.6 GeV positron beam of the HERA storage ring and the transversely polarized hydrogen target of the HERMES experiment at DESY. The two leading azimuthal amplitudes of the asymmetry are extracted from the HERMES 2002-2004 data, corresponding to an integrated luminosity of 65.3 pb.1. By comparing the results obtained at HERMES and theoretical predictions based on a phenomenological model of GPDs, we obtain a model-dependent constraint on the total angular momentum of quarks in the nucleon. (orig.)

  13. Orbital angular momentum from marginals of quadrature distributions

    OpenAIRE

    Sanchez-Soto, L. L.; Klimov, A. B.; de la Hoz, P.; Rigas, I.; J. Rehacek; Hradil, Z.; Leuchs, G.

    2013-01-01

    We set forth a method to analyze the orbital angular momentum of a light field. Instead of using the canonical formalism for the conjugate pair angle-angular momentum, we model this latter variable by the superposition of two independent harmonic oscillators along two orthogonal axes. By describing each oscillator by a standard Wigner function, we derive, via a consistent change of variables, a comprehensive picture of the orbital angular momentum. We compare with previous approaches and show...

  14. Quark Orbital Angular Momentum

    Science.gov (United States)

    Burkardt, Matthias

    2016-06-01

    Generalized parton distributions provide information on the distribution of quarks in impact parameter space. For transversely polarized nucleons, these impact parameter distributions are transversely distorted and this deviation from axial symmetry leads on average to a net transverse force from the spectators on the active quark in a DIS experiment. This force when acting along the whole trajectory of the active quark leads to transverse single-spin asymmetries. For a longitudinally polarized nucleon target, the transverse force implies a torque acting on the quark orbital angular momentum (OAM). The resulting change in OAM as the quark leaves the target equals the difference between the Jaffe-Manohar and Ji OAMs.

  15. Quark Orbital Angular Momentum

    Science.gov (United States)

    Burkardt, Matthias

    2016-03-01

    Generalized parton distributions provide information on the distribution of quarks in impact parameter space. For transversely polarized nucleons, these impact parameter distributions are transversely distorted and this deviation from axial symmetry leads on average to a net transverse force from the spectators on the active quark in a DIS experiment. This force when acting along the whole trajectory of the active quark leads to transverse single-spin asymmetries. For a longitudinally polarized nucleon target, the transverse force implies a torque acting on the quark orbital angular momentum (OAM). The resulting change in OAM as the quark leaves the target equals the difference between the Jaffe-Manohar and Ji OAMs.

  16. AngularJS directives

    CERN Document Server

    Vanston, Alex

    2013-01-01

    This book uses a practical, step-by-step approach, starting with how to build directives from the ground up before moving on to creating web applications comprised of multiple modules all working together to provide the best user experience possible.This book is intended for intermediate JavaScript developers who are looking to enhance their understanding of single-page web application development with a focus on AngularJS and the JavaScript MVC frameworks.It is expected that readers will understand basic JavaScript patterns and idioms and can recognize JSON formatted data.

  17. General dynamics in overlapping generations models

    OpenAIRE

    Carrera Calero, Carmen; Morán Cabré, Manuel

    1993-01-01

    Se analiza en este trabajo las dinámicas generadas por las soluciones de equilibrio en un modelo de generaciones sucesivas con producción. El punto de vista adoptado es el inverso. Es decir, se parte de una dinámica dos veces diferenciable cualquiera, y se caracterizan y se construyen las clases de economías que generan esta dinámica. Se prueba que dinámicas arbitrariamente caóticas pueden ser generadas por modelos convencionales. Para conseguir estos resultados, se introduce una técnica basa...

  18. Effects of overlapping strings in pp collisions

    International Nuclear Information System (INIS)

    In models for hadron collisions based on string hadronization, the strings are usually treated as independent, allowing no interaction between the confined colour fields. In studies of nucleus collisions it has been suggested that strings close in space can fuse to form 'colour ropes.' Such ropes are expected to give more strange particles and baryons, which also has been suggested as a signal for plasma formation. Overlapping strings can also be expected in pp collisions, where usually no phase transition is expected. In particular at the high LHC energies the expected density of strings is quite high. To investigate possible effects of rope formation, we present a model in which strings are allowed to combine into higher multiplets, giving rise to increased production of baryons and strangeness, or recombine into singlet structures and vanish. Also a crude model for strings recombining into junction structures is considered, again giving rise to increased baryon production. The models are implemented in the DIPSY MC event generator, using PYTHIA8 for hadronization, and comparison to pp minimum bias data, reveals improvement in the description of identified particle spectra

  19. Overlapping Region Partition Model for Urban Rail Transit Station Passenger Attraction%城市轨道交通车站客流吸引范围重叠区域划分模型

    Institute of Scientific and Technical Information of China (English)

    李俊芳; 杜慎旭; 钱卫力

    2015-01-01

    Most of existing methods for partition of urban rail transit station passenger attraction zones have not taken into account the overlap between neighboring stations, resulting in overestimation of passen-ger flows at stations. To improve the forecasting accuracy, this paper considers intermediate stations, termi-nal stations, and transfer stations, and introduce ridership assignment formulations for different types of neighboring stations. Accordingly, this paper develops overlapping region partition model for passenger at-traction zones within rail transit stations, and then, estimate key parameters with using Tokyo Prefecture da-ta, Japan. Case study of Anting Station and its neighboring Zhaofeng Road Station and Shanghai Interna-tional Automobile City Station along Shanghai Metro Line 11 reveals that the forecasting accuracy of pro-posed model reaches at 78.6%. Moreover, the causes of error, likely, inappropriate parameter estimation due to the differences between Shanghai Municipality and Tokyo Prefecture and the insufficient traffic zones, are also discussed.%现有城市轨道交通车站客流吸引范围划分方法大多未考虑相邻车站间的重叠区域,导致车站客流预测值偏大.为了提高车站客流预测的准确性,考虑中间站、首末站、换乘站,针对不同相邻车站类型提出客流分配量计算公式.基于此构建轨道交通车站客流吸引范围重叠区域划分模型,并采用日本东京都城市轨道交通车站的相关数据标定模型参数.最后,以上海市轨道交通11号线安亭站及相邻的兆丰路站和汽车城站为例进行模型验证,结果显示精确度为78.6%.指出产生误差的原因可能在于上海市与东京都的差异以及交通小区数量过少.

  20. DIMENSIONS OF SELF-AFFINESETS WITH OVERLAPS

    Institute of Scientific and Technical Information of China (English)

    华苏

    2003-01-01

    The authors develop an algorithm to show that a class of self-affine sets with overlaps canbe viewed as sofic affine-invariant sets without overlaps, thus by using the results of [11] and[10], the Hausdorff and Minkowski dimensions are determined.

  1. The Influence of Sex and Season on Conspecific Spatial Overlap in a Large, Actively-Foraging Colubrid Snake.

    Science.gov (United States)

    Bauder, Javan M; Breininger, David R; Bolt, M Rebecca; Legare, Michael L; Jenkins, Christopher L; Rothermel, Betsie B; McGarigal, Kevin

    2016-01-01

    Understanding the factors influencing the degree of spatial overlap among conspecifics is important for understanding multiple ecological processes. Compared to terrestrial carnivores, relatively little is known about the factors influencing conspecific spatial overlap in snakes, although across snake taxa there appears to be substantial variation in conspecific spatial overlap. In this study, we described conspecific spatial overlap of eastern indigo snakes (Drymarchon couperi) in peninsular Florida and examined how conspecific spatial overlap varied by sex and season (breeding season vs. non-breeding season). We calculated multiple indices of spatial overlap using 6- and 3-month utilization distributions (UD) of dyads of simultaneously adjacent telemetered snakes. We also measured conspecific UD density values at each telemetry fix and modeled the distribution of those values as a function of overlap type, sex, and season using generalized Pareto distributions. Home range overlap between males and females was significantly greater than overlap between individuals of the same sex and male home ranges often completely contained female home ranges. Male home ranges overlapped little during both seasons, whereas females had higher levels of overlap during the non-breeding season. The spatial patterns observed in our study are consistent with those seen in many mammalian carnivores, in which low male-male overlap and high inter-sexual overlap provides males with greater access to females. We encourage additional research on the influence of prey availability on conspecific spatial overlap in snakes as well as the behavioral mechanisms responsible for maintaining the low levels of overlap we observed. PMID:27490346

  2. On angular momentum transport in convection-dominated accretion flows

    CERN Document Server

    Igumenshchev, I V

    2002-01-01

    Convection-dominated accretion flow (CDAF) is a promising model to explain underluminous accreting black holes in X-ray binaries and galactic nuclei. I discuss effects of angular momentum transport in viscous hydrodynamical and MHD CDAFs. In hydrodynamical CDAFs, convection transports angular momentum inward, and this together with outward convection transport of thermal energy determine the radial structure of the flow. In MHD CDAFs, convection can transport angular momentum either inward or outward, depending on properties of turbulence in rotating magnetized plasma, which are not fully understood yet. Direction of convection angular momentum transport can affect the law of rotation of MHD CDAFs.

  3. Angular momentum transfer and equilibrium in heavy-ion reactions

    International Nuclear Information System (INIS)

    By concentrating on the microscopic degrees of freedom for two colliding ions, we have derived a probability density for angular momentum transfer assuming that, for equilibrium, this probability is proportional to the density of states taken from a fermi gas model. This density has been used to predict angular momentum transfer, assuming first, initial angular momentum fixed, and then, final energy fixed. The results are quite different. The density (final energy fixed) has been used to predict the results of angular momentum transfer experiments. The excellent agreement supports the validity of an assumption of equilibrium. (author)

  4. Bayesian Overlapping Community Detection in Dynamic Networks

    CERN Document Server

    Ghorbani, Mahsa; Khodadadi, Ali

    2016-01-01

    Detecting community structures in social networks has gained considerable attention in recent years. However, lack of prior knowledge about the number of communities, and their overlapping nature have made community detection a challenging problem. Moreover, many of the existing methods only consider static networks, while most of real world networks are dynamic and evolve over time. Hence, finding consistent overlapping communities in dynamic networks without any prior knowledge about the number of communities is still an interesting open research problem. In this paper, we present an overlapping community detection method for dynamic networks called Dynamic Bayesian Overlapping Community Detector (DBOCD). DBOCD assumes that in every snapshot of network, overlapping parts of communities are dense areas and utilizes link communities instead of common node communities. Using Recurrent Chinese Restaurant Process and community structure of the network in the last snapshot, DBOCD simultaneously extracts the numbe...

  5. Wigner Functions and Quark Orbital Angular Momentum

    OpenAIRE

    Mukherjee Asmita; Nair Sreeraj; Ojha Vikash Kumar

    2014-01-01

    Wigner distributions contain combined position and momentum space information of the quark distributions and are related to both generalized parton distributions (GPDs) and transverse momentum dependent parton distributions (TMDs). We report on a recent model calculation of the Wigner distributions for the quark and their relation to the orbital angular momentum.

  6. Wigner Functions and Quark Orbital Angular Momentum

    Directory of Open Access Journals (Sweden)

    Mukherjee Asmita

    2015-01-01

    Full Text Available Wigner distributions contain combined position and momentum space information of the quark distributions and are related to both generalized parton distributions (GPDs and transverse momentum dependent parton distributions (TMDs. We report on a recent model calculation of the Wigner distributions for the quark and their relation to the orbital angular momentum.

  7. Critical gravitational collapse with angular momentum

    CERN Document Server

    Gundlach, Carsten

    2016-01-01

    We derive a theoretical model of mass and angular momentum scaling in type-II critical collapse with rotation. We focus on the case where the critical solution has precisely one, spherically symmetric, unstable mode. We demonstrate excellent agreement with numerical results for critical collapse of a rotating radiation fluid, which falls into this case.

  8. Interaction of spatially overlapping standing electromagnetic solitons in plasmas

    International Nuclear Information System (INIS)

    Numerical investigations on mutual interactions between two spatially overlapping standing electromagnetic solitons in a cold unmagnetized plasma are reported. It is found that an initial state comprising of two overlapping standing solitons evolves into different end states, depending on the amplitudes of the two solitons and the phase difference between them. For small amplitude solitons with zero phase difference, we observe the formation of an oscillating bound state whose period depends on their initial separation. These results suggest the existence of a bound state made of two solitons in the relativistic cold plasma fluid model.

  9. Climate-induced range overlap among closely related species

    Science.gov (United States)

    Krosby, Meade; Wilsey, Chad B.; McGuire, Jenny L.; Duggan, Jennifer M.; Nogeire, Theresa M.; Heinrichs, Julie A.; Tewksbury, Joshua J.; Lawler, Joshua J.

    2015-09-01

    Contemporary climate change is causing large shifts in biotic distributions, which has the potential to bring previously isolated, closely related species into contact. This has led to concern that hybridization and competition could threaten species persistence. Here, we use bioclimatic models to show that future range overlap by the end of the century is predicted for only 6.4% of isolated, congeneric species pairs of New World birds, mammals and amphibians. Projected rates of climate-induced overlap are higher for birds (11.6%) than for mammals (4.4%) or amphibians (3.6%). As many species will have difficulty tracking shifting climates, actual rates of future overlap are likely to be far lower, suggesting that hybridization and competition impacts may be relatively modest.

  10. Two-fractal overlap time series: Earthquakes and market crashes

    Indian Academy of Sciences (India)

    Bikas K Chakrabarti; Arnab Chatterjee; Pratip Bhattacharyya

    2008-08-01

    We find prominent similarities in the features of the time series for the (model earthquakes or) overlap of two Cantor sets when one set moves with uniform relative velocity over the other and time series of stock prices. An anticipation method for some of the crashes have been proposed here, based on these observations.

  11. Two Fractal Overlap Time Series: Earthquakes and Market Crashes

    OpenAIRE

    Chakrabarti, Bikas K.; Arnab Chatterjee; Pratip Bhattacharyya

    2007-01-01

    We find prominent similarities in the features of the time series for the (model earthquakes or) overlap of two Cantor sets when one set moves with uniform relative velocity over the other and time series of stock prices. An anticipation method for some of the crashes have been proposed here, based on these observations.

  12. Clustering, Angular Size and Dark Energy

    OpenAIRE

    R.C. Santos; Lima, J. A. S.

    2008-01-01

    The influence of dark matter inhomogeneities on the angular size-redshift test is investigated for a large class of flat cosmological models driven by dark energy plus a cold dark matter component (XCDM model). The results are presented in two steps. First, the mass inhomogeneities are modeled by a generalized Zeldovich-Kantowski-Dyer-Roeder (ZKDR) distance which is characterized by a smoothness parameter $\\alpha(z)$ and a power index $\\gamma$, and, second, we provide a statistical analysis t...

  13. Orbital angular momentum microlaser

    Science.gov (United States)

    Miao, Pei; Zhang, Zhifeng; Sun, Jingbo; Walasik, Wiktor; Longhi, Stefano; Litchinitser, Natalia M.; Feng, Liang

    2016-07-01

    Structured light provides an additional degree of freedom for modern optics and practical applications. The effective generation of orbital angular momentum (OAM) lasing, especially at a micro- and nanoscale, could address the growing demand for information capacity. By exploiting the emerging non-Hermitian photonics design at an exceptional point, we demonstrate a microring laser producing a single-mode OAM vortex lasing with the ability to precisely define the topological charge of the OAM mode. The polarization associated with OAM lasing can be further manipulated on demand, creating a radially polarized vortex emission. Our OAM microlaser could find applications in the next generation of integrated optoelectronic devices for optical communications in both quantum and classical regimes.

  14. Orbital angular momentum microlaser.

    Science.gov (United States)

    Miao, Pei; Zhang, Zhifeng; Sun, Jingbo; Walasik, Wiktor; Longhi, Stefano; Litchinitser, Natalia M; Feng, Liang

    2016-07-29

    Structured light provides an additional degree of freedom for modern optics and practical applications. The effective generation of orbital angular momentum (OAM) lasing, especially at a micro- and nanoscale, could address the growing demand for information capacity. By exploiting the emerging non-Hermitian photonics design at an exceptional point, we demonstrate a microring laser producing a single-mode OAM vortex lasing with the ability to precisely define the topological charge of the OAM mode. The polarization associated with OAM lasing can be further manipulated on demand, creating a radially polarized vortex emission. Our OAM microlaser could find applications in the next generation of integrated optoelectronic devices for optical communications in both quantum and classical regimes. PMID:27471299

  15. Anomalous Magnetic Moments and Quark Orbital Angular Momentum

    OpenAIRE

    Burkardt, M.; Schnell, G.(University of the Basque Country UPV/EHU, 48080 Bilbao, Spain)

    2005-01-01

    We derive an inequality for the distribution of quarks with non-zero orbital angular momentum, and thus demonstrate, in a model-independent way, that a non-vanishing anomalous magnetic moment requires both a non-zero size of the target as well as the presence of wave function components with quark orbital angular momentum L_z>0.

  16. On the "initial" Angular Momentum of Galaxies

    CERN Document Server

    Abel, T; Hernquist, L E; Abel, Tom; Croft, Rupert C.; Hernquist, Lars

    2001-01-01

    Spherical density profiles and specific angular momentum profiles of Dark Matter halos found in cosmological N-body simulations have been measured extensively. The distribution of the total angular momentum of dark matter halos is also used routinely in semi-analytic modeling of the formation of disk galaxies. However, it is unclear whether the initial (i.e. at the time the halo is assembled) angular momentum distributions of baryons is related to the dark matter at all. Theoretical models for ellipticities in weak lensing studies often rely on an assumed correlation of the angular momentum vectors of dark matter and gas in galaxies. Both of these assumptions are shown to be in reasonable agreement with high resolution cosmological smoothed particle hydrodynamical simulations that follow the dark matter as long as only adiabatic gas physics are included. However, we argue that in more realistic models of galaxy formation one expects pressure forces to play a significant role at turn--around. Consequently the ...

  17. Phenomenological determination of the orbital angular momentum.

    Energy Technology Data Exchange (ETDEWEB)

    Ramsey, G. P.; High Energy Physics; Loyola Univ.

    2009-01-01

    Measurements involving the gluon spin, {Delta}G(x, t) and the corresponding asymmetry, A(x,t) = {Delta}G(x,t)/G(x,t) play an important role in quantitative understanding of proton structure. We have modeled the asymmetry perturbatively and calculated model corrections to obtain information about non-perturbative spin-orbit effects. These models are consistent with existing COMPASS and HERMES data on the gluon asymmetry. The J{sub z} = 1/2 sum rule is used to generate values of orbital angular momentum at LO and NLO. For models consistent with data, the orbital angular momentum is small. Our studies specify accuracy that future measurements should achieve to constrain theoretical models for nucleon structure.

  18. Optimization of control bank overlap for SMART

    International Nuclear Information System (INIS)

    In the pressurized water reactor, control banks are operated by 40% effective core height overlap to avoid decrease of differential rod worth. This overlap does not effect on the core depletion history because the pressurized water reactor core operated at all rod out condition for the most of the operation time. For the boron free reactor SMART, however, one or more control banks are always inserted in the core to maintain critical condition, and the control bank overlap effects on the core depletion history. Since the cycle length of SMART is limited by three-dimensional core peaking factor at EOC, at which the control bank located at the core center is withdrawn, the cycle length of SMART is affected by the control bank overlap. In this report, the effect of control bank overlap on the core depletion history was evaluated. It is concluded that 60 cm control bank overlap corresponding to 30% effective core height was selected not to increase maximum peaking factor at EOC so that the control bank overlap does not affect the cycle length of the core. (author). 8 refs., 2 tabs., 19 figs

  19. On the relation between angular momentum and angular velocity

    Science.gov (United States)

    Silva, J. P.; Tavares, J. M.

    2007-01-01

    Students of mechanics usually have difficulties when they learn about the rotation of a rigid body. These difficulties are rooted in the relation between angular momentum and angular velocity, because these vectors are not parallel, and we need in general to utilize a rotating frame of reference or a time dependent inertia tensor. We discuss a series of problems that introduce both difficulties.

  20. Bliss: A New Read Overlap Detection Algorithm

    OpenAIRE

    Sayali Davalbhakta

    2014-01-01

    Many assemblers carry out heuristic based overlap detection to avoid string comparisons. But heuristics skips many true overlaps. Also, the order of the number of read pairs compared for overlaps is higher than the order of n. In the raw approach it would be n 2 where every read is compared to every other read. Some assemblers have used a hybrid approach to bring the order down from n 2. Here is an algorithm which works with 100% accuracy. As there is no heuristics involved, it is able to rep...

  1. Angular velocity gradients in the solar convection zone

    Energy Technology Data Exchange (ETDEWEB)

    Gilman, P.A.; Foukal, P.V.

    1979-05-01

    We test the hypothesis that the weak influence of rotation upon solar supergranulation, resulting in fluid particles conserving their angular momentum while moving radially, is responsible for the outward decrease in angular velocity inferred from the difference between photospheric plasma and sunspot rotation rates. This test is performed using numerical integrations of a Boussinesq spherical convection model for a thin shell at small Taylor number (implying weak influence of rotation). We find that the convection does maintain an outward decrease in angular velocity, which approaches the limit implied by angular momentum conservation as the Rayleigh number or driving for convection is increased.By examining the energetics of the motion, we verify that the dominant process maintaining the calculated angular velocity profile against viscous diffusion is the inward transport of angular momentum by the convection. Axisymmetric meridional circulation plays virtually no role in this process. We further find there is no tendency for convection weakly influenced by rotation to form an equatorial acceleration. We argue from these and earlier calculations that the origin of the Sun's latitudinal gradient of angular velocity is deep in the convection zone. At these depths there may be a strong tendency for angular velocity to be constant on cylinders, implying a positive radial gradient of angular velocity. The latitude gradient is transmitted to the photosphere by supergranulation which locally produces the negative radial gradient in the top layers. We suggest from the rotation of various magnetic features that the transition from negative to positive radial angular velocity gradient occurs near the bottom of the supergranule layer. We argue that angular momentum conservation in radially moving fluid particles should produce a similar angular velocity profile in compressible convecting fluid layers.

  2. Overlapping inflow events as catalysts for supermassive black hole growth

    Science.gov (United States)

    Carmona-Loaiza, Juan M.; Colpi, Monica; Dotti, Massimo; Valdarnini, Riccardo

    2014-02-01

    One of the greatest issues in modelling black hole fuelling is our lack of understanding of the processes by which gas loses angular momentum and falls from galactic scales down to the nuclear region where an accretion disc forms, subsequently guiding the inflow of gas down to the black hole horizon. It is feared that gas at larger scales might still retain enough angular momentum and settle into a larger scale disc with very low or no inflow to form or replenish the inner accretion disc (on ˜0.01 pc scales). In this paper we report on hydrodynamical simulations of rotating infalling gas shells impacting at different angles on to a pre-existing, primitive large-scale (˜10 pc) disc around a supermassive black hole. The aim is to explore how the interaction between the shell and the disc redistributes the angular momentum on scales close to the black hole's sphere of influence. Angular momentum redistribution via hydrodynamical shocks leads to inflows of gas across the inner boundary, enhancing the inflow rate by more than 2-3 orders of magnitude. In all cases, the gas inflow rate across the inner parsec is higher than in the absence of the interaction, and the orientation of the angular momentum of the flow in the region changes with time due to gas mixing. Warped discs or nested misaligned rings form depending on the angular momentum content of the infalling shell relative to the disc. In the cases in which the shell falls in near counter-rotation, part of the resulting flows settle into an inner dense disc which becomes more susceptible to mass transfer.

  3. Predictive Overlapping Co-Clustering

    OpenAIRE

    Sarkar, Chandrima; Srivastava, Jaideep

    2014-01-01

    In the past few years co-clustering has emerged as an important data mining tool for two way data analysis. Co-clustering is more advantageous over traditional one dimensional clustering in many ways such as, ability to find highly correlated sub-groups of rows and columns. However, one of the overlooked benefits of co-clustering is that, it can be used to extract meaningful knowledge for various other knowledge extraction purposes. For example, building predictive models with high dimensiona...

  4. Bliss: A New Read Overlap Detection Algorithm

    Directory of Open Access Journals (Sweden)

    Sayali Davalbhakta

    2014-08-01

    Full Text Available Many assemblers carry out heuristic based overlap detection to avoid string comparisons. But heuristics skips many true overlaps. Also, the order of the number of read pairs compared for overlaps is higher than the order of n. In the raw approach it would be n 2 where every read is compared to every other read. Some assemblers have used a hybrid approach to bring the order down from n 2. Here is an algorithm which works with 100% accuracy. As there is no heuristics involved, it is able to report all the overlaps in a given set of reads without actual string comparisons. It achieves this purely by querying the k-mer position data. Moreover, the number of read pairs compared is proportional to the number of reads present i.e. of the order of n.

  5. Angular Diameter Distances in Clumpy Friedmann Universes

    OpenAIRE

    Tomita, Kenji

    1998-01-01

    Solving null-geodesic equations, behavior of angular diameter distances is studied in inhomogeneous cosmological models, which are given by performing N-body simulations with the CDM spectrum. The distances depend on the separation angle of ray pairs, the mass and the radius of particles cosisting of galaxies and dark matter balls, and cosmological model parameters. The calculated distances are compared with the Dyer- Roeder distance, and after many ray-shooting, the average, dispersion and d...

  6. GENOVA: Gene Overlap Analysis of GWAS Results

    OpenAIRE

    Tang Clara S.; Ferreira Manuel A. R.

    2012-01-01

    In many published genome-wide association studies (GWAS), the top few strongly associated variants are often located in or near known genes. This observation raises the more general hypothesis that variants nominally associated with a phenotype are more likely to overlap genes than those not associated with a phenotype. We developed a simple approach – named GENe OVerlap Analysis (GENOVA) – to formally test this hypothesis. This approach includes two steps. First, we define largely independen...

  7. SCLERODERMA OVERLAP SYNDROME: A CASE REPORT

    Directory of Open Access Journals (Sweden)

    Diwakar K

    2014-06-01

    Full Text Available Overlap syndrome is a condition in which the patient presents with features of two or more diseases. These rheumatic conditions can co-exist in various combinations and are not rare, as myopathy or myositis co-exist in scleroderma in up to3 7% of scleroderma patients. 1 Here we present a case of 49 years old patient of overlap syndrome (Scleroderma (LcSS/Myositis (Dermatomyositis.

  8. Correlated edge overlaps in multiplex networks

    Science.gov (United States)

    Baxter, Gareth J.; Bianconi, Ginestra; da Costa, Rui A.; Dorogovtsev, Sergey N.; Mendes, José F. F.

    2016-07-01

    We develop the theory of sparse multiplex networks with partially overlapping links based on their local treelikeness. This theory enables us to find the giant mutually connected component in a two-layer multiplex network with arbitrary correlations between connections of different types. We find that correlations between the overlapping and nonoverlapping links markedly change the phase diagram of the system, leading to multiple hybrid phase transitions. For assortative correlations we observe recurrent hybrid phase transitions.

  9. Quantitative seafloor characterization using angular backscatter data of the multi-beam echo-sounding system - Use of models and model free techniques

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, B.

    For quantitative seafloor roughness characterization and classification using multi-beam processed backscatter data, a good correlation is indicated among the power law parameters (composite roughness model) and hybrid ANN architecture results...

  10. Influence of overlapping tracks on microstructure evolution and corrosion behavior in laser-melt magnesium alloy

    International Nuclear Information System (INIS)

    Highlights: • Overlapping of laser beam tracks has significant influence on laser-melt Mg alloy. • Marangoni convection in molten pool is determined by overlapping tracks of laser. • Enhanced Marangoni convection resulted in homogenous but coarse microstructure. • Small solidification cracks occurred at low overlapping due to high thermal stress. • Microstructure in-homogeneities reduced corrosion resistance of laser-melt surface. - Abstract: Overlapping of laser beam tracks has significant influence on surface quality of laser-treated materials. This paper examines how overlapping tracks affect heat flow, solidification microstructure and electrochemical behavior of laser-melt magnesium alloy. Microstructure evolution of laser-melt surface with different overlapping rates at optimized scanning speed is investigated. Results show that solidification microstructure changes from cellular grains to cellular–dendritic and equiaxed dendritic in the overlapped area when overlapping rate increases. Numerical model suggests that Marangoni convection plays a predominate role in determining the solidification microstructure, and it increases significantly with the overlapping rate. The effect of microstructure in-homogeneities caused by overlapping on electrochemical behavior has also been analyzed

  11. Angular signal radiography.

    Science.gov (United States)

    Li, Panyun; Zhang, Kai; Bao, Yuan; Ren, Yuqi; Ju, Zaiqiang; Wang, Yan; He, Qili; Zhu, Zhongzhu; Huang, Wanxia; Yuan, Qingxi; Zhu, Peiping

    2016-03-21

    Microscopy techniques using visible photons, x-rays, neutrons, and electrons have made remarkable impact in many scientific disciplines. The microscopic data can often be expressed as the convolution of the spatial distribution of certain properties of the specimens and the inherent response function of the imaging system. The x-ray grating interferometer (XGI), which is sensitive to the deviation angle of the incoming x-rays, has attracted significant attention in the past years due to its capability in achieving x-ray phase contrast imaging with low brilliance source. However, the comprehensive and analytical theoretical framework is yet to be presented. Herein, we propose a theoretical framework termed angular signal radiography (ASR) to describe the imaging process of the XGI system in a classical, comprehensive and analytical manner. We demonstrated, by means of theoretical deduction and synchrotron based experiments, that the spatial distribution of specimens' physical properties, including absorption, refraction and scattering, can be extracted by ASR in XGI. Implementation of ASR in XGI offers advantages such as simplified phase retrieval algorithm, reduced overall radiation dose, and improved image acquisition speed. These advantages, as well as the limitations of the proposed method, are systematically investigated in this paper. PMID:27136780

  12. Some Indices of Alphabet Overlap Graph

    Institute of Scientific and Technical Information of China (English)

    Rong Yang; Zhao-Lan Yang; He-Ping Zhang

    2012-01-01

    The undirected de Bruijn graph is often used as the model of communication network for its useful properties,such as short diameter,small maximum vertex degree.In this paper,we consider the alphabet overlap graph G(k,d,s):the vertex set V ={vㄧv =(v1…vk); vi ∈ {1,2,…,d},i =1,2,…,k}; they are distinct and two vertices u =(u1…uk) and v =(v1…vk) are adjacent if and only if us+i =vi or vs+i =ui (i =1,2,…,k-s).In particular,when s =1,G(k,d,s) is just an undirected de Bruijn graph.First,we give a formula to calculate the vertex degree of G(k,d,s).Then,we use the corollary of Menger's theorem to prove that the connectivity of G(k,d,s) is 2ds-2d2s-k for s ≥ k/2.

  13. Overlapping Inflow Events as Catalysts for Supermassive Black Hole Growth

    CERN Document Server

    Carmona-Loaiza, Juan Manuel; Dotti, Massimo; Valdarnini, Riccardo

    2013-01-01

    One of the greatest issues in modelling black hole fuelling is our lack of understanding of the processes by which gas loses angular momentum and falls from galactic scales down to the nuclear region where an accretion disc forms, subsequently guiding the inflow of gas down to the black hole horizon. It is feared that gas at larger scales might still retain enough angular momentum and settle into a larger scale disc with very low or no inflow to form or replenish the inner accretion disc (on ~0.01 pc scales). In this paper we report on hydrodynamical simulations of rotating infalling gas shells impacting at different angles onto a pre-existing, primitive large scale (~10 pc) disc around a super-massive black hole. The aim is to explore how the interaction between the shell and the disc redistributes the angular momentum on scales close to the black hole's sphere of influence. Angular momentum redistribution via hydrodynamical shocks leads to inflows of gas across the inner boundary, enhancing the inflow rate ...

  14. AngularJS testing cookbook

    CERN Document Server

    Bailey, Simon

    2015-01-01

    This book is intended for developers who have an understanding of the basic principles behind both AngularJS and test-driven development. You, as a developer, are interested in eliminating the fear related to either introducing tests to an existing codebase or starting out testing on a fresh AngularJS application. If you're a team leader or part of a QA team with the responsibility of ensuring full test coverage of an application, then this book is ideal for you to comprehend the full testing scope required by your developers. Whether you're new to or are well versed with AngularJS, this book

  15. Model-based seafloor characterization employing multi-beam angular backscatter data - A comparative study with dual-frequency single beam

    Digital Repository Service at National Institute of Oceanography (India)

    Haris, K.; Chakraborty, B.; De, C.; Desai, R.G.P.; Fernandes, W.A.

    , such data recorded by the system is not directly usable for a correct estimation of the backscattering strength angular dependence. Hence, post 4    processing is essential to be carried out for the removal of Lambert’s law, corrections for actual bottom...+TS (1) where SL is the multi-beam echo sounder source level, 2TL is the two-way transmission loss, and TS is the target strength which includes the local backscattering strength, the insonified area and Lambert’s law to normalize the acoustic image...

  16. Application of the Chimera overlapped grid scheme to simulation of Space Shuttle ascent flows

    Science.gov (United States)

    Buning, Pieter G.; Parks, Steven J.; Chan, William M.; Renze, Kevin J.

    1992-01-01

    Several issues relating to the application of Chimera overlapped grids to complex geometries and flowfields are discussed. These include the addition of geometric components with different grid topologies, gridding for intersecting pieces of geometry, and turbulence modeling in grid overlap regions. Sample results are presented for transonic flow about the Space Shuttle launch vehicle. Comparisons with wind tunnel and flight measured pressures are shown.

  17. A neural circuit for angular velocity computation.

    Science.gov (United States)

    Snider, Samuel B; Yuste, Rafael; Packer, Adam M

    2010-01-01

    In one of the most remarkable feats of motor control in the animal world, some Diptera, such as the housefly, can accurately execute corrective flight maneuvers in tens of milliseconds. These reflexive movements are achieved by the halteres, gyroscopic force sensors, in conjunction with rapidly tunable wing steering muscles. Specifically, the mechanosensory campaniform sensilla located at the base of the halteres transduce and transform rotation-induced gyroscopic forces into information about the angular velocity of the fly's body. But how exactly does the fly's neural architecture generate the angular velocity from the lateral strain forces on the left and right halteres? To explore potential algorithms, we built a neuromechanical model of the rotation detection circuit. We propose a neurobiologically plausible method by which the fly could accurately separate and measure the three-dimensional components of an imposed angular velocity. Our model assumes a single sign-inverting synapse and formally resembles some models of directional selectivity by the retina. Using multidimensional error analysis, we demonstrate the robustness of our model under a variety of input conditions. Our analysis reveals the maximum information available to the fly given its physical architecture and the mathematics governing the rotation-induced forces at the haltere's end knob. PMID:21228902

  18. A neural circuit for angular velocity computation

    Directory of Open Access Journals (Sweden)

    Samuel B Snider

    2010-12-01

    Full Text Available In one of the most remarkable feats of motor control in the animal world, some Diptera, such as the housefly, can accurately execute corrective flight maneuvers in tens of milliseconds. These reflexive movements are achieved by the halteres, gyroscopic force sensors, in conjunction with rapidly-tunable wing-steering muscles. Specifically, the mechanosensory campaniform sensilla located at the base of the halteres transduce and transform rotation-induced gyroscopic forces into information about the angular velocity of the fly's body. But how exactly does the fly's neural architecture generate the angular velocity from the lateral strain forces on the left and right halteres? To explore potential algorithms, we built a neuro-mechanical model of the rotation detection circuit. We propose a neurobiologically plausible method by which the fly could accurately separate and measure the three-dimensional components of an imposed angular velocity. Our model assumes a single sign-inverting synapse and formally resembles some models of directional selectivity by the retina. Using multidimensional error analysis, we demonstrate the robustness of our model under a variety of input conditions. Our analysis reveals the maximum information available to the fly given its physical architecture and the mathematics governing the rotation-induced forces at the haltere's end knob.

  19. Robust Mosaicking of Uav Images with Narrow Overlaps

    Science.gov (United States)

    Kim, J.; Kim, T.; Shin, D.; Kim, S. H.

    2016-06-01

    This paper considers fast and robust mosaicking of UAV images under a circumstance that each UAV images have very narrow overlaps in-between. Image transformation for image mosaicking consists of two estimations: relative transformations and global transformations. For estimating relative transformations between adjacent images, projective transformation is widely considered. For estimating global transformations, panoramic constraint is widely used. While perspective transformation is a general transformation model in 2D-2D transformation, this may not be optimal with weak stereo geometry such as images with narrow overlaps. While panoramic constraint works for reliable conversion of global transformation for panoramic image generation, this constraint is not applicable to UAV images in linear motions. For these reasons, a robust approach is investigated to generate a high quality mosaicked image from narrowly overlapped UAV images. For relative transformations, several transformation models were considered to ensure robust estimation of relative transformation relationship. Among them were perspective transformation, affine transformation, coplanar relative orientation, and relative orientation with reduced adjustment parameters. Performance evaluation for each transformation model was carried out. The experiment results showed that affine transformation and adjusted coplanar relative orientation were superior to others in terms of stability and accuracy. For global transformation, we set initial approximation by converting each relative transformation to a common transformation with respect to a reference image. In future work, we will investigate constrained relative orientation for enhancing geometric accuracy of image mosaicking and bundle adjustments of each relative transformation model for optimal global transformation.

  20. The origin of angular momentum in dark matter halos

    CERN Document Server

    Vitvitska, M; Kravtsov, A V; Bullock, J S; Wechsler, R H; Primack, Joel R

    2002-01-01

    We propose a new explanation for the origin of angular momentum in galaxies and their dark halos, in which the halos obtain their spin through the cumulative acquisition of angular momentum from satellite accretion. In our model, the build-up of angular momentum is a random walk process associated with the mass assembly history of the halo's major progenitor. We assume no correlation between the angular momenta of accreted objects. Using the extended Press-Schechter approximation, we calculate the growth of mass, angular momentum, and spin parameter $\\lambda$ for many halos. Our random walk model reproduces the key features of the angular momentum of halos found in N-body simulations: a lognormal distribution in $\\lambda$ with an average of $ \\approx 0.04$, independent of mass and redshift. The evolution of the spin parameter in individual halos in this model is quite different from the steady increase with time of angular momentum in the tidal torque picture. We find both in N-body simulations and in our ran...

  1. FLIC-Overlap Fermions and Topology

    CERN Document Server

    Kamleh, W; Leinweber, D B; Williams, A G; 10.1016/S0920-5632(03)01693-1

    2003-01-01

    APE smearing the links in the irrelevant operators of clover fermions (Fat-Link Irrelevant Clover (FLIC) fermions) provides significant improvement in the condition number of the Hermitian-Dirac operator and gives rise to a factor of two savings in computing the overlap operator. This report investigates the effects of using a highly-improved definition of the lattice field-strength tensor F_mu_nu in the fermion action, made possible through the use of APE-smeared fat links in the construction of the irrelevant operators. Spurious double-zero crossings in the spectral flow of the Hermitian-Wilson Dirac operator associated with lattice artifacts at the scale of the lattice spacing are removed with FLIC fermions composed with an O(a^4)-improved lattice field strength tensor. Hence, FLIC-Overlap fermions provide an additional benefit to the overlap formalism: a correct realization of topology in the fermion sector on the lattice.

  2. Angular quadratures for improved transport computations

    International Nuclear Information System (INIS)

    This paper introduces new octant-range, composite-type Gauss and mid-point rule angular quadrature formulas for neutron and photon transport computations. A generalization to octant-range quadratures is also introduced in order to allow for discontinuities at material interfaces for two- and three-dimensional transport problems which can be modeled with 60-degree triangular or hexagonal mesh subdivisions in the x-y plane

  3. Quark Orbital Angular Momentum in the Baryon

    OpenAIRE

    Song, Xiaotong

    2000-01-01

    Analytical and numerical results, for the orbital and spin content carried by different quark flavors in the baryons, are given in the chiral quark model with symmetry breaking. The reduction of the quark spin, due to the spin dilution in the chiral splitting processes, is transferred into the orbital motion of quarks and antiquarks. The orbital angular momentum for each quark flavor in the proton as a function of the partition factor $\\kappa$ and the chiral splitting probability $a$ is shown...

  4. Wigner distributions and quark orbital angular momentum

    OpenAIRE

    Cedric LorceOrsay, IPN and Orsay, LPT; Barbara Pasquini(Pavia U. and INFN, Pavia)

    2015-01-01

    We discuss the quark phase-space or Wigner distributions of the nucleon which combine in a single picture all the information contained in the generalized parton distributions and the transverse-momentum dependent parton distributions. In particular, we present results for the distribution of unpolarized quarks in a longitudinally polarized nucleon obtained in a light-front constituent quark model. We show how the quark orbital angular momentum can be extracted from the Wigner distributions a...

  5. Angular momentum distributions in subbarrier fusion reactions

    International Nuclear Information System (INIS)

    Interest in subbarrier heavy-ion fusion was stimulated by the realization that subbarrier fusion cross sections were enhanced by many orders of magnitude over what would be expected from quantum mechanical one-dimensional barrier penetration. This review focuses on the angular momentum (spin) distributions in heavy-ion fusion reactions. Experimental probes, theoretical considerations, and a comparison of experimental results with model calculations are given. 86 refs., 10 figs

  6. Angular quadratures for improved transport computations

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Shumays, I.K.

    1999-07-22

    This paper introduces new octant-range, composite-type Gauss and mid-point rule angular quadrature formulas for neutron and photon transport computations. A generalization to octant-range quadratures is also introduced in order to allow for discontinuities at material interfaces for two- and three-dimensional transport problems which can be modeled with 60-degree triangular or hexagonal mesh subdivisions in the x-y plane.

  7. The integration of angular velocity

    OpenAIRE

    Boyle, Michael

    2016-01-01

    A common problem in physics and engineering is determination of the orientation of an object given its angular velocity. When the direction of the angular velocity changes in time, this is a nontrivial problem involving coupled differential equations. Several possible approaches are examined, along with various improvements over previous efforts. These are then evaluated numerically by comparison to a complicated but analytically known rotation that is motivated by the important astrophysical...

  8. Achromatic orbital angular momentum generator

    OpenAIRE

    Bouchard, Frédéric; Mand, Harjaspreet; Mirhosseini, Mohammad; Karimi, Ebrahim; Boyd, Robert W

    2014-01-01

    We describe a novel approach for generating light beams that carry orbital angular momentum (OAM) by means of total internal reflection in an isotropic medium. A continuous space-varying cylindrically symmetric reflector, in the form of \\textit{two glued hollow axicons}, is used to introduce a nonuniform rotation of polarisation into a linearly polarised input beam. This device acts as a full spin-to-orbital angular momentum convertor. It functions by switching the helicity of the incoming be...

  9. MBL Experiment in Angular Momentum

    Science.gov (United States)

    Gluck, Paul

    2002-04-01

    Among the series of beautiful take-home experiments designed by A.P. French and J.G. King for MIT students, the one on angular momentum studies the loss and conservation of angular momentum using a small dc motor as generator. Here we describe a version of the experiment that increases its accuracy, enables students to perform detailed rotational dynamics calculations, and sharpens the ability to isolate the region where the collision occurs.

  10. Going chiral: overlap versus twisted mass fermions

    International Nuclear Information System (INIS)

    We compare the behavior of overlap fermions, which are chirally invariant, and of Wilson twisted mass fermions at full twist in the approach to the chiral limit. Our quenched simulations reveal that with both formulations of lattice fermions pion masses of O (250 MeV) can be reached in practical applications. Our comparison is done at a fixed value of the lattice spacing a ≅ 0.123 fm. A number of quantities are measured such as hadron masses, pseudoscalar decay constants and quark masses obtained from Ward identities. We also determine the axial vector renormalization constants in the case of overlap fermions. (author)

  11. Going chiral: overlap versus twisted mass fermions

    Energy Technology Data Exchange (ETDEWEB)

    Bietenholz, Wolfgang [Institut fuer Physik, Humboldt Universitaet zu Berlin, Newtonstr. 15, D-12489 Berlin (Germany); Capitani, Stefano [Institut fuer Physik/Theoretische Physik, Universitaet Graz, A-8010 Graz (Austria); Chiarappa, Thomas [NIC/DESY Zeuthen, Platanenallee 6, D-15738 Zeuthen (Germany)] [and others

    2004-12-01

    We compare the behavior of overlap fermions, which are chirally invariant, and of Wilson twisted mass fermions at full twist in the approach to the chiral limit. Our quenched simulations reveal that with both formulations of lattice fermions pion masses of O (250 MeV) can be reached in practical applications. Our comparison is done at a fixed value of the lattice spacing a {approx_equal} 0.123 fm. A number of quantities are measured such as hadron masses, pseudoscalar decay constants and quark masses obtained from Ward identities. We also determine the axial vector renormalization constants in the case of overlap fermions. (author)

  12. Dynamics of overlapping structures in modular networks.

    Science.gov (United States)

    Almendral, J A; Leyva, I; Li, D; Sendiña-Nadal, I; Havlin, S; Boccaletti, S

    2010-07-01

    Modularity is a fundamental feature of real networks, being intimately bounded to their functionality, i.e., to their capability of performing parallel tasks in a coordinated way. Although the modular structure of real graphs has been intensively studied, very little is known on the interactions between functional modules of a graph. Here, we present a general method based on synchronization of networking oscillators, that is able to detect overlapping structures in multimodular environments. We furthermore report the full analytical and theoretical description on the relationship between the overlapping dynamics and the underlying network topology. The method is illustrated by means of a series of applications. PMID:20866697

  13. Climate Change, Catastrophic Environmental Effects and Overlapping Generations

    OpenAIRE

    Moretto Michele; Tamborini Roberto

    1999-01-01

    In this paper the climate change effect is an unforeseen earth temperature level above which a negative externality on technology and hence on society's welfare is exerted. We use a dynamic overlapping generations model to develop a positive analysis of the growth path of an economy with the negative temperature spillover leading to a structural breakdown in capital productivity. Two scenarios for the impact of climate change on intergenerational equity are analyzed: the first is consistent w...

  14. Overlapping reliable control for a cable-stayed bridge benchmark

    OpenAIRE

    Bakule, Lubomir; Paulet-Crainiceanu, Fideliu; Rodellar Benedé, José; Rossell Garriga, Josep Maria

    2005-01-01

    The brief presents a reliable 1-out-2 reduced order control design strategy for a cable-stayed bridge benchmark using two overlapping subsystems and the linear quadratic Gaussian (LQG) design. Reliability with regard to controller failures is considered. Local controllers are designed for reduced order subsystems of expanded system. They are implemented and evaluated on the original overall system model. Two different sets of numerical experiments of reliable control design within 1-out-2 con...

  15. Overlapping cusp ion injections: An explanation invoking magnetopause reconnection

    OpenAIRE

    Lockwood, Mike

    1995-01-01

    An explanation of overlapping cusp ion injections is presented using the pulsating cusp model of the effects of magnetopause reconnection. It is shown that two populations of cusp ions, covering separated energy ranges, can be seen simultaneously by low- or mid-altitude satellites because of the combined effect of the acceleration and the straightening of newly-opened field lines as they evolve away from the reconnection site. Observations of such signatures, recently reported in data from th...

  16. Fast ignition: Dependence of the ignition energy on source and target parameters for particle-in-cell-modelled energy and angular distributions of the fast electrons

    Energy Technology Data Exchange (ETDEWEB)

    Bellei, C.; Divol, L.; Kemp, A. J.; Key, M. H.; Larson, D. J.; Strozzi, D. J.; Marinak, M. M.; Tabak, M.; Patel, P. K. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States)

    2013-05-15

    The energy and angular distributions of the fast electrons predicted by particle-in-cell (PIC) simulations differ from those historically assumed in ignition designs of the fast ignition scheme. Using a particular 3D PIC calculation, we show how the ignition energy varies as a function of source-fuel distance, source size, and density of the pre-compressed fuel. The large divergence of the electron beam implies that the ignition energy scales with density more weakly than the ρ{sup −2} scaling for an idealized beam [S. Atzeni, Phys. Plasmas 6, 3316 (1999)], for any realistic source that is at some distance from the dense deuterium-tritium fuel. Due to the strong dependence of ignition energy with source-fuel distance, the use of magnetic or electric fields seems essential for the purpose of decreasing the ignition energy.

  17. Power Divergences in Overlapping Wilson Lines

    OpenAIRE

    Berwein, Matthias

    2014-01-01

    We discuss the divergence structure of Wilson line operators with partially overlapping segments on the basis of the cyclic Wilson loop as an explicit example. The generalized exponentiation theorem is used to show the exponentiation and factorization of power divergences for certain linear combinations of associated loop functions.

  18. Power divergences in overlapping Wilson lines

    Science.gov (United States)

    Berwein, Matthias

    2016-01-01

    We discuss the divergence structure of Wilson line operators with partially overlapping segments on the basis of the cyclic Wilson loop as an explicit example. The generalized exponentiation theorem is used to show the exponentiation and factorization of power divergences for certain linear combinations of associated loop functions.

  19. A Note On Computing Set Overlap Classes

    OpenAIRE

    Charbit, Pierre; Habib, Michel; Limouzy, Vincent; de Montgolfier, Fabien; Raffinot, Mathieu; Rao, Michaël

    2007-01-01

    Let ${\\cal V}$ be a finite set of $n$ elements and ${\\cal F}=\\{X_1,X_2, \\ldots , X_m\\}$ a family of $m$ subsets of ${\\cal V}.$ Two sets $X_i$ and $X_j$ of ${\\cal F}$ overlap if $X_i \\cap X_j \

  20. Overlapping Community Detection based on Network Decomposition

    Science.gov (United States)

    Ding, Zhuanlian; Zhang, Xingyi; Sun, Dengdi; Luo, Bin

    2016-04-01

    Community detection in complex network has become a vital step to understand the structure and dynamics of networks in various fields. However, traditional node clustering and relatively new proposed link clustering methods have inherent drawbacks to discover overlapping communities. Node clustering is inadequate to capture the pervasive overlaps, while link clustering is often criticized due to the high computational cost and ambiguous definition of communities. So, overlapping community detection is still a formidable challenge. In this work, we propose a new overlapping community detection algorithm based on network decomposition, called NDOCD. Specifically, NDOCD iteratively splits the network by removing all links in derived link communities, which are identified by utilizing node clustering technique. The network decomposition contributes to reducing the computation time and noise link elimination conduces to improving the quality of obtained communities. Besides, we employ node clustering technique rather than link similarity measure to discover link communities, thus NDOCD avoids an ambiguous definition of community and becomes less time-consuming. We test our approach on both synthetic and real-world networks. Results demonstrate the superior performance of our approach both in computation time and accuracy compared to state-of-the-art algorithms.

  1. Autism and ADHD: Overlapping and Discriminating Symptoms

    Science.gov (United States)

    Mayes, Susan Dickerson; Calhoun, Susan L.; Mayes, Rebecca D.; Molitoris, Sarah

    2012-01-01

    Children with ADHD and autism have some similar features, complicating a differential diagnosis. The purpose of our study was to determine the degree to which core ADHD and autistic symptoms overlap in and discriminate between children 2-16 years of age with autism and ADHD. Our study demonstrated that 847 children with autism were easily…

  2. QCD thermodynamics with dynamical overlap fermions

    International Nuclear Information System (INIS)

    We study QCD thermodynamics using two flavors of dynamical overlap fermions with quark masses corresponding to a pion mass of 350 MeV. We determine several observables on Nt=6 and 8 lattices. All our runs are performed with fixed global topology. Our results are compared with staggered ones and a nice agreement is found.

  3. Effects of Turbulent Aberrations on Probability Distribution of Orbital Angular Momentum for Optical Communication

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yi-Xin; CANG Ji

    2009-01-01

    Effects of atmospheric turbulence tilt, defocus, astigmatism and coma aberrations on the orbital angular mo-mentum measurement probability of photons propagating in weak turbulent regime are modeled with Rytov approximation. By considering the resulting wave as a superposition of angular momentum eigenstates, the or-bital angular momentum measurement probabilities of the transmitted digit axe presented. Our results show that the effect of turbulent tilt aberration on the orbital angular momentum measurement probabilities of photons is the maximum among these four kinds of aberrations. As the aberration order increases, the effects of turbulence aberrations on the measurement probabilities of orbital angular momentum generally decrease, whereas the effect of turbulence defoens can be ignored. For tilt aberration, as the difference between the measured orbital angular momentum and the original orbital angular momentum increases, the orbital angular momentum measurement probabifity decreases.

  4. Effects of Turbulent Aberrations on Probability Distribution of Orbital Angular Momentum for Optical Communication

    International Nuclear Information System (INIS)

    Effects of atmospheric turbulence tilt, defocus, astigmatism and coma aberrations on the orbital angular momentum measurement probability of photons propagating in weak turbulent regime are modeled with Rytov approximation. By considering the resulting wave as a superposition of angular momentum eigenstates, the orbital angular momentum measurement probabilities of the transmitted digit are presented. Our results show that the effect of turbulent tilt aberration on the orbital angular momentum measurement probabilities of photons is the maximum among these four kinds of aberrations. As the aberration order increases, the effects of turbulence aberrations on the measurement probabilities of orbital angular momentum generally decrease, whereas the effect of turbulence defocus can be ignored. For tilt aberration, as the difference between the measured orbital angular momentum and the original orbital angular momentum increases, the orbital angular momentum measurement probability decreases. (fundamental areas of phenomenology (including applications))

  5. Fission fragment angular distribution in heavy ion induced fission

    Directory of Open Access Journals (Sweden)

    S. Soheyli

    2006-06-01

    Full Text Available   We have calculated the fission fragment angular anisotropy for 16O + 232Th,12C + 236U , 11B + 237 Np , 14 N + 232 Th , 11B + 235U , 12C + 232Th systems with the saddle point statistical model and compared the fission fragment angular anisotropy for these systems. This comparison was done with two methods a without neutron correction and b with neutron correction. Also we studied normal and anomalous behavior of the fission fragment angular anisotropy. Finally, we have predicted the average emitted neutron from compound nuclei considering the best fit for each system.

  6. Fission fragment angular distribution in heavy ion induced fission

    OpenAIRE

    S. Soheyli; I. Ziaeian

    2006-01-01

      We have calculated the fission fragment angular anisotropy for 16O + 232Th,12C + 236U , 11B + 237 Np , 14 N + 232 Th , 11B + 235U , 12C + 232Th systems with the saddle point statistical model and compared the fission fragment angular anisotropy for these systems. This comparison was done with two methods a) without neutron correction and b) with neutron correction. Also we studied normal and anomalous behavior of the fission fragment angular anisotropy. Finally, we have predicted the averag...

  7. The pretzelosity TMD and quark orbital angular momentum

    Energy Technology Data Exchange (ETDEWEB)

    Lorce, C. [IPNO, Universite Paris-Sud, CNRS/IN2P3, 91406 Orsay (France); LPT, Universite Paris-Sud, CNRS, 91406 Orsay (France); Pasquini, B., E-mail: pasquini@pv.infn.it [Dipartimento di Fisica, Universita degli Studi di Pavia, Pavia (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, Pavia (Italy)

    2012-04-12

    We study the connection between the quark orbital angular momentum and the pretzelosity transverse-momentum dependent parton distribution function. We discuss the origin of this relation in quark models, identifying as key ingredient for its validity the assumption of spherical symmetry for the nucleon in its rest frame. Finally we show that the individual quark contributions to the orbital angular momentum obtained from this relation cannot be interpreted as the intrinsic contributions, but include the contribution from the transverse centre of momentum which cancels out only in the total orbital angular momentum.

  8. Femtosecond dynamics of spin and orbital angular momentum in nickel

    Energy Technology Data Exchange (ETDEWEB)

    Stamm, Christian; Pontius, Niko; Holldack, Karsten; Quast, Torsten; Kachel, Torsten; Wietstruk, Marko; Mitzner, Rolf; Duerr, Hermann A. [Elektronenspeicherring BESSY II, Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, 12489 Berlin (Germany)

    2009-07-01

    At the BESSY femtoslicing source we measure X-ray magnetic circular dichroism (XMCD) with 100 fs time resolution. By virtue of the XMCD sum rules, we find that the spin and orbital momenta in a thin nickel film are quenched with a time constant of 150 fs upon excitation with a fs laser pulse. This represents the first unambiguous proof that the total electronic angular momentum is transferred to the lattice on the same ultrafast time scale. The quenching of orbital angular momentum also is a serious constraint for models of angular momentum dissipation.

  9. The pretzelosity TMD and quark orbital angular momentum

    International Nuclear Information System (INIS)

    We study the connection between the quark orbital angular momentum and the pretzelosity transverse-momentum dependent parton distribution function. We discuss the origin of this relation in quark models, identifying as key ingredient for its validity the assumption of spherical symmetry for the nucleon in its rest frame. Finally we show that the individual quark contributions to the orbital angular momentum obtained from this relation cannot be interpreted as the intrinsic contributions, but include the contribution from the transverse centre of momentum which cancels out only in the total orbital angular momentum.

  10. The Cosmology Large Angular Scale Surveyor

    Science.gov (United States)

    Marriage, Tobias; Ali, A.; Amiri, M.; Appel, J. W.; Araujo, D.; Bennett, C. L.; Boone, F.; Chan, M.; Cho, H.; Chuss, D. T.; Colazo, F.; Crowe, E.; Denis, K.; Dünner, R.; Eimer, J.; Essinger-Hileman, T.; Gothe, D.; Halpern, M.; Harrington, K.; Hilton, G.; Hinshaw, G. F.; Huang, C.; Irwin, K.; Jones, G.; Karakla, J.; Kogut, A. J.; Larson, D.; Limon, M.; Lowry, L.; Mehrle, N.; Miller, A. D.; Miller, N.; Moseley, S. H.; Novak, G.; Reintsema, C.; Rostem, K.; Stevenson, T.; Towner, D.; U-Yen, K.; Wagner, E.; Watts, D.; Wollack, E.; Xu, Z.; Zeng, L.

    2014-01-01

    Some of the most compelling inflation models predict a background of primordial gravitational waves (PGW) detectable by their imprint of a curl-like "B-mode" pattern in the polarization of the Cosmic Microwave Background (CMB). The Cosmology Large Angular Scale Surveyor (CLASS) is a novel array of telescopes to measure the B-mode signature of the PGW. By targeting the largest angular scales (>2°) with a multifrequency array, novel polarization modulation and detectors optimized for both control of systematics and sensitivity, CLASS sets itself apart in the field of CMB polarization surveys and opens an exciting new discovery space for the PGW and inflation. This poster presents an overview of the CLASS project.

  11. Direct and indirect effects in the regulation of overlapping promoters.

    Science.gov (United States)

    Bendtsen, Kristian Moss; Erdossy, János; Csiszovszki, Zsolt; Svenningsen, Sine Lo; Sneppen, Kim; Krishna, Sandeep; Semsey, Szabolcs

    2011-09-01

    Optimal response to environmental stimuli often requires activation of certain genes and repression of others. Dual function regulatory proteins play a key role in the differential regulation of gene expression. While repression can be achieved by any DNA binding protein through steric occlusion of RNA polymerase in the promoter region, activation often requires a surface on the regulatory protein to contact RNAP and thus facilitate transcription initiation. RNAP itself is also a DNA binding protein, therefore it can function as a transcriptional repressor. Searching the Escherichia coli promoter database we found that ∼14% of the identified 'forward' promoters overlap with a promoter oriented in the opposite direction. In this article we combine a mathematical model with experimental analysis of synthetic regulatory regions to investigate interference of overlapping promoters. We find that promoter interference depends on the characteristics of overlapping promoters. The model predicts that promoter strength and interference can be regulated separately, which provides unique opportunities for regulation. Our experimental data suggest that in principle any DNA binding protein can be used for both activation and repression of promoter transcription, depending on the context. These findings can be exploited in the construction of synthetic networks. PMID:21609952

  12. Factors influencing perceived angular velocity

    Science.gov (United States)

    Kaiser, Mary K.; Calderone, Jack B.

    1991-01-01

    Angular velocity perception is examined for rotations both in depth and in the image plane and the influence of several object properties on this motion parameter is explored. Two major object properties are considered, namely, texture density which determines the rate of edge transitions for rotations in depth, i.e., the number of texture elements that pass an object's boundary per unit of time, and object size which determines the tangential linear velocities and 2D image velocities of texture elements for a given angular velocity. Results of experiments show that edge-transition rate biased angular velocity estimates only when edges were highly salient. Element velocities had an impact on perceived angular velocity; this bias was associated with 2D image velocity rather than 3D tangential velocity. Despite these biases judgements were most strongly determined by the true angular velocity. Sensitivity to this higher order motion parameter appeared to be good for rotations both in depth (y-axis) and parallel to the line of sight (z-axis).

  13. Improving de novo sequence assembly using machine learning and comparative genomics for overlap correction

    Directory of Open Access Journals (Sweden)

    Bolanos Randall

    2010-01-01

    Full Text Available Abstract Background With the rapid expansion of DNA sequencing databases, it is now feasible to identify relevant information from prior sequencing projects and completed genomes and apply it to de novo sequencing of new organisms. As an example, this paper demonstrates how such extra information can be used to improve de novo assemblies by augmenting the overlapping step. Finding all pairs of overlapping reads is a key task in many genome assemblers, and to this end, highly efficient algorithms have been developed to find alignments in large collections of sequences. It is well known that due to repeated sequences, many aligned pairs of reads nevertheless do not overlap. But no overlapping algorithm to date takes a rigorous approach to separating aligned but non-overlapping read pairs from true overlaps. Results We present an approach that extends the Minimus assembler by a data driven step to classify overlaps as true or false prior to contig construction. We trained several different classification models within the Weka framework using various statistics derived from overlaps of reads available from prior sequencing projects. These statistics included percent mismatch and k-mer frequencies within the overlaps as well as a comparative genomics score derived from mapping reads to multiple reference genomes. We show that in real whole-genome sequencing data from the E. coli and S. aureus genomes, by providing a curated set of overlaps to the contigging phase of the assembler, we nearly doubled the median contig length (N50 without sacrificing coverage of the genome or increasing the number of mis-assemblies. Conclusions Machine learning methods that use comparative and non-comparative features to classify overlaps as true or false can be used to improve the quality of a sequence assembly.

  14. On the acoustics of overlapping laughter in conversational speech

    NARCIS (Netherlands)

    Truong, Khiet P.; Trouvain, Jürgen

    2012-01-01

    The social nature of laughter invites people to laugh together. This joint vocal action often results in overlapping laughter. In this paper, we show that the acoustics of overlapping laughs are different from non-overlapping laughs. We found that overlapping laughs are stronger prosodically marked

  15. Analysis and correction of track overlapping on nuclear track detectors (SSNTD)

    Energy Technology Data Exchange (ETDEWEB)

    Palacios, D.; Sajo B, L.; Barros, H.; Avila, Y. [Universidad Simon Bolivar, P. O. 89000 Caracas (Venezuela, Bolivarian Republic of); Fusella, E. [Instituto de Estudios Avanzados, Apartado 17606, Caracas 1015-A (Venezuela, Bolivarian Republic of)

    2011-02-15

    The problem of nuclear track overlapping is addressed assuming the stochastic character of charged particle registry and the fact that even monoenergetic beam perpendicularly impacting on detector surface will show a distribution for track radius values. Asymmetric distributions of overlapping tracks were obtained for very low or very high simulated track quantities, while for intermediate values the distributions were well described by Gaussian s. A model for the track overlapping process was developed, considering the dependence of the quantity of non overlapping tracks on the number of simulated tracks by a second order homogeneous differential lineal equation. Its solution contains only one free parameter that is related to track geometry and field view area. By successive approximation, the number of total induced tracks (which is proportional to particle fluence) is determined from the knowledge of the amount of non overlapping tracks, dimensions of the field view and average track radius. (Author)

  16. Specific surface area of overlapping spheres in the presence of obstructions

    Science.gov (United States)

    Jenkins, D. R.

    2013-02-01

    This study considers the random placement of uniform sized spheres, which may overlap, in the presence of another set of randomly placed (hard) spheres, which do not overlap. The overlapping spheres do not intersect the hard spheres. It is shown that the specific surface area of the collection of overlapping spheres is affected by the hard spheres, such that there is a minimum in the specific surface area as a function of the relative size of the two sets of spheres. The occurrence of the minimum is explained in terms of the break-up of pore connectivity. The configuration can be considered to be a simple model of the structure of a porous composite material. In particular, the overlapping particles represent voids while the hard particles represent fillers. Example materials are pervious concrete, metallurgical coke, ice cream, and polymer composites. We also show how the material properties of such composites are affected by the void structure.

  17. Asymmetry in the angular distributions of spectator-nucleons

    International Nuclear Information System (INIS)

    The asymmetry in the angular distributions of spectator-nucleons has been studied in dp interactions, and it has been found that the sign of the asymmetry depends on the reaction channel. It is shown that in the momentum interval 0-200 MeV/c of spectators basic features of the angular distributions can be reproduced in the framework of the spectator model taking into account the energy dependence of the NN cross section and the flux-factor

  18. Quark Orbital Angular Momentum and Exclusive Processes at HERMES

    International Nuclear Information System (INIS)

    A first attempt for a model-dependent extraction of the orbital angular momentum of quarks in the nucleon has been made, based on HERMES data on exclusive processes and their description in terms of generalized parton distributions. An overview of the HERMES data on hard exclusive electroproduction of real photons (Deeply-Virtual Compton Scattering) and mesons is given, focusing on the measurements relevant to the extraction of quark orbital angular momentum

  19. Quark Orbital Angular Momentum and Exclusive Processes at HERMES

    Science.gov (United States)

    Ellinghaus, F.

    2006-11-01

    A first attempt for a model-dependent extraction of the orbital angular momentum of quarks in the nucleon has been made, based on HERMES data on exclusive processes and their description in terms of generalized parton distributions. An overview of the HERMES data on hard exclusive electroproduction of real photons (Deeply-Virtual Compton Scattering) and mesons is given, focusing on the measurements relevant to the extraction of quark orbital angular momentum.

  20. Relaxation times for angular momentum in damped nuclear reactions

    International Nuclear Information System (INIS)

    The evolution of the angular momentum distribution in damped nuclear reactions is discussed within the framework of the nucleon exchange transport model. First order equations are derived for the time evolution of the mean values and covariances of the spin variables. Solutions are given for 1400 MeV 165Ho + 165Ho reactions at various values of total angular momentum and total kinetic energy loss. Spin dispersions are well described by the calculations

  1. Achromatic orbital angular momentum generator

    CERN Document Server

    Bouchard, Frédéric; Mirhosseini, Mohammad; Karimi, Ebrahim; Boyd, Robert W

    2014-01-01

    We describe a novel approach for generating light beams that carry orbital angular momentum (OAM) by means of total internal reflection in an isotropic medium. A continuous space-varying cylindrically symmetric reflector, in the form of \\textit{two glued hollow axicons}, is used to introduce a nonuniform rotation of polarisation into a linearly polarised input beam. This device acts as a full spin-to-orbital angular momentum convertor. It functions by switching the helicity of the incoming beam's polarisation, and by conservation of total angular momentum thereby generates a well-defined value of OAM. Our device is broadband, since the phase shift due to total internal reflection is nearly independent of wavelength. We verify the broad-band behaviour by measuring the conversion efficiency of the device for three different wavelengths corresponding to the RGB colours, red, green and blue. An average conversion efficiency of $95\\%$ for these three different wavelengths is observed. %, which confirms its wavelen...

  2. Instant AngularJS starter

    CERN Document Server

    Menard, Dan

    2013-01-01

    Get to grips with a new technology, understand what it is and what it can do for you, and then get to work with the most important features and tasks. This book is written in an easytoread style, with a strong emphasis on realworld, practical examples. Stepbystep explanations are provided for performing important tasks.This book is for web developers familiar with JavascriptIt doesn't cover the history of AngularJS, and it's not a pitch to convince you that AngularJS is the best framework on the entire web. It's a guide to help you learn everything you need to know about AngularJS in as few pa

  3. Angular Diameter Distances in Clumpy Friedmann Universes

    CERN Document Server

    Tomita, K

    1998-01-01

    Solving null-geodesic equations, behavior of angular diameter distances is studied in inhomogeneous cosmological models, which are given by performing N-body simulations with the CDM spectrum. The distances depend on the separation angle of ray pairs, the mass and the radius of particles cosisting of galaxies and dark matter balls, and cosmological model parameters. The calculated distances are compared with the Dyer- Roeder distance, and after many ray-shooting, the average, dispersion and distribution of the clumpiness parameter are derived.

  4. Fission fragment angular distributions

    International Nuclear Information System (INIS)

    Recently a Letter appeared (Phys. Rev. Lett., 522, 414(1984)) claiming that the usual expression for describing the angula distribution of fission fragments from compound nuclear decay is not a necessarily valid limit of a more general expression. In this comment we wish to point out that the two expressions arise from distinctly different models, and that the new expression as used in the cited reference is internally inconsistent

  5. Quark Wigner distributions and orbital angular momentum

    International Nuclear Information System (INIS)

    We study the Wigner functions of the nucleon which provide multidimensional images of the quark distributions in phase space. These functions can be obtained through a Fourier transform in the transverse space of the generalized transverse-momentum dependent parton distributions. They depend on both the transverse position and the three-momentum of the quark relative to the nucleon, and therefore combine in a single picture all the information contained in the generalized parton distributions and the transverse-momentum dependent parton distributions. We focus the discussion on the distributions of unpolarized/longitudinally polarized quark in an unpolarized/longitudinally polarized nucleon. In this way, we can study the role of the orbital angular momentum of the quark in shaping the nucleon and its correlations with the quark and nucleon polarizations. The quark orbital angular momentum is also calculated from its phase-space average weighted with the Wigner distribution of unpolarized quarks in a longitudinally polarized nucleon. The corresponding results obtained within different light-cone quark models are compared with alternative definitions of the quark orbital angular momentum, as given in terms of generalized parton distributions and transverse-momentum dependent parton distributions.

  6. Non-Colinearity of Angular Velocity and Angular Momentum

    Science.gov (United States)

    Burr, A. F.

    1974-01-01

    Discusses the principles, construction, and operation of an apparatus which serves to demonstrate the non-colinearity of the angular velocity and momentum vectors as well as the inertial tensors. Applications of the apparatus to teaching of advanced undergraduate mechanics courses are recommended. (CC)

  7. Quantum theory of angular momentum

    International Nuclear Information System (INIS)

    This monograph pertains to the angular momentum coupling and recoupling coefficients and their relation to generalized hypergeometric functions; their q-generalization; their polynomial zeros; their relation to orthogonal polynomials; and their numerical computation. The book builds on standard textbook material on Angular Momentum Theory and leads the reader to the recent developments in the selected topics. Fortran programs for the computation of the 3-j, 6-j and 9-j coefficients are included for use by atomic, molecular and nuclear physicists/chemists. (orig.)

  8. MOHCS: Towards Mining Overlapping Highly Connected Subgraphs

    CERN Document Server

    Lin, Xiahong; Chen, Kefei; Chiu, David K Y

    2008-01-01

    Many networks in real-life typically contain parts in which some nodes are more highly connected to each other than the other nodes of the network. The collection of such nodes are usually called clusters, communities, cohesive groups or modules. In graph terminology, it is called highly connected graph. In this paper, we first prove some properties related to highly connected graph. Based on these properties, we then redefine the highly connected subgraph which results in an algorithm that determines whether a given graph is highly connected in linear time. Then we present a computationally efficient algorithm, called MOHCS, for mining overlapping highly connected subgraphs. We have evaluated experimentally the performance of MOHCS using real and synthetic data sets from computer-generated graph and yeast protein network. Our results show that MOHCS is effective and reliable in finding overlapping highly connected subgraphs. Keywords-component; Highly connected subgraph, clustering algorithms, minimum cut, m...

  9. EVOG: a database for evolutionary analysis of overlapping genes

    OpenAIRE

    Kim, Dae-Soo; Cho, Chi-Young; Huh, Jae-Won; Kim, Heui-Soo; Cho, Hwan-Gue

    2008-01-01

    Overlapping genes are defined as a pair of genes whose transcripts are overlapped. Recently, many cases of overlapped genes have been investigated in various eukaryotic organisms; however, their origin and transcriptional control mechanism has not yet been clearly determined. In this study, we implemented evolutionary visualizer for overlapping genes (EVOG), a Web-based DB with a novel visualization interface, to investigate the evolutionary relationship between overlapping genes. Using this ...

  10. Segmentation, Inference and Classification of Partially Overlapping Nanoparticles

    KAUST Repository

    Chiwoo Park,

    2013-03-01

    This paper presents a method that enables automated morphology analysis of partially overlapping nanoparticles in electron micrographs. In the undertaking of morphology analysis, three tasks appear necessary: separate individual particles from an agglomerate of overlapping nano-objects; infer the particle\\'s missing contours; and ultimately, classify the particles by shape based on their complete contours. Our specific method adopts a two-stage approach: the first stage executes the task of particle separation, and the second stage conducts simultaneously the tasks of contour inference and shape classification. For the first stage, a modified ultimate erosion process is developed for decomposing a mixture of particles into markers, and then, an edge-to-marker association method is proposed to identify the set of evidences that eventually delineate individual objects. We also provided theoretical justification regarding the separation capability of the first stage. In the second stage, the set of evidences become inputs to a Gaussian mixture model on B-splines, the solution of which leads to the joint learning of the missing contour and the particle shape. Using twelve real electron micrographs of overlapping nanoparticles, we compare the proposed method with seven state-of-the-art methods. The results show the superiority of the proposed method in terms of particle recognition rate.

  11. Registration of partially overlapping laser-radar range images

    Science.gov (United States)

    Lv, Dan; Sun, Jian-Feng; Li, Qi; Wang, Qi

    2015-10-01

    To register partially overlapping three-dimensional point sets from different viewpoints, it is necessary to remove spurious corresponding point pairs that are not located in overlapping regions. Most variants of the iterative closest point (ICP) algorithm require users to manually select the rejection parameters for discarding spurious point pairs between the registering views. This requirement often results in unreliable and inaccurate registration. To overcome this problem, we present an improved ICP algorithm that can automatically determine the rejection percentage to reliably and accurately align partially overlapping laser-radar (ladar) range images. The similarity of k neighboring features of each nonplanar point is employed to determine reasonable point pairs in nonplanar regions, and the distance measurement method is used to find reasonable point pairs in planar regions. The rejection percentage can be obtained from these two sets of reasonable pairs. The performance of our algorithm is compared with that of five other algorithms using various models with low and high curvatures. The experimental results show that our algorithm is more accurate and robust than the other algorithms.

  12. Overlapping generations economy, environmental externalities, and taxation

    OpenAIRE

    Nguyen Thang Dao

    2011-01-01

    I set up in this paper an overlapping generations economy with envi-ronment degrading itself and pollution resulting from both consumption and production to show that there always exists an inter-temporal equi-librium and to determine the competitive steady state. This steady state is compared with the equilibrium steady state in the social benevolent planner's point of view. The paper shows the optimal golden rule allo-cation which maximizes the total utility of all generations, and whenever...

  13. Non-omega-overlapping TRSs are UN

    OpenAIRE

    Smith, Connor; Kahrs, Stefan

    2016-01-01

    This paper solves problem #79 of RTA's list of open problems --- in the positive. If the rules of a TRS do not overlap w.r.t. substitutions of infinite terms then the TRS has unique normal forms. We solve the problem by reducing the problem to one of consistency for ``similar'' constructor term rewriting systems. For this we introduce a new proof technique. We define a relation $\\invariant$ that is consistent by construction, and which --- if transitive --- would coincide wi...

  14. Parkinsonism and Frontotemporal Dementia: The Clinical Overlap

    OpenAIRE

    Espay, Alberto J.; Litvan, Irene

    2011-01-01

    Frontotemporal dementia is commonly associated with parkinsonism in several sporadic (i.e., progressive supranuclear palsy, corticobasal degeneration) and familial neurodegenerative disorders (i.e., frontotemporal dementia associated with parkinsonism and MAPT or progranulin mutations in chromosome 17). The clinical diagnosis of these disorders may be challenging in view of overlapping clinical features, particularly in speech, language, and behavior. The motor and cognitive phenotypes can be...

  15. Decentralized overlapping control for civil structures

    Czech Academy of Sciences Publication Activity Database

    Bakule, Lubomír; Papík, Martin; Rehák, Branislav

    Ponta Delgada: University of the Azores, 2015 - (Araújo, A.; Mota Soreas, C.) ISBN 978-989-96276-7-3. [ECCOMAS Thematic Conference on Smart Structures and Materials (SMART 2015) /7./. Ponta Delgada (PT), 03.06.2015-06.06.2015] R&D Projects: GA ČR GA13-02149S Institutional support: RVO:67985556 Keywords : building benchmark * decentralized control * overlapping decompositions Subject RIV: BC - Control Systems Theory

  16. Depression-Burnout Overlap in Physicians

    OpenAIRE

    Walter Wurm; Katrin Vogel; Anna Holl; Christoph Ebner; Dietmar Bayer; Sabrina Mörkl; Istvan-Szilard Szilagyi; Erich Hotter; Hans-Peter Kapfhammer; Peter Hofmann

    2016-01-01

    Background Whether burnout is a distinct phenomenon rather than a type of depression and whether it is a syndrome, limited to three “core” components (emotional exhaustion, depersonalization and low personal accomplishment) are subjects of current debate. We investigated the depression-burnout overlap, and the pertinence of these three components in a large, representative sample of physicians. Methods In a cross-sectional study, all Austrian physicians were invited to answer a questionnaire ...

  17. Stellar Diameters and Temperatures VI. High angular resolution measurements of the transiting exoplanet host stars HD 189733 and HD 209458 and implications for models of cool dwarfs

    CERN Document Server

    Boyajian, Tabetha; Feiden, Gregory A; Huber, Daniel; Basu, Sarbani; Demarque, Pierre; Fischer, Debra A; Schaefer, Gail; Mann, Andrew W; White, Timothy R; Maestro, Vicente; Brewer, John; Lamell, C Brooke; Spada, Federico; López-Morales, Mercedes; Ireland, Michael; Farrington, Chris; van Belle, Gerard T; Kane, Stephen R; Jones, Jeremy; Brummelaar, Theo A ten; Ciardi, David R; McAlister, Harold A; Ridgway, Stephen; Goldfinger, P J; Turner, Nils H; Sturmann, Laszlo

    2014-01-01

    We present direct radii measurements of the well-known transiting exoplanet host stars HD 189733 and HD 209458 using the CHARA Array interferometer. We find the limb-darkened angular diameters to be theta_LD = 0.3848 +/- 0.0055 and 0.2254 +/- 0.0072 milliarcsec for HD 189733 and HD 209458, respectively. HD 189733 and HD 209458 are currently the only two transiting exoplanet systems where detection of the respective planetary companion's orbital motion from high resolution spectroscopy has revealed absolute masses for both star and planet. We use our new measurements together with the orbital information from radial velocity and photometric time series data, Hipparcos distances, and newly measured bolometric fluxes to determine the stellar effective temperatures (T_eff = 4875 +/- 43, 6093 +/- 103 K), stellar linear radii (R_* = 0.805 +/- 0.016, 1.203 +/- 0.061 R_sun), mean stellar densities (rho_* = 1.62 +/- 0.11, 0.58 +/- 0.14 rho_sun), planetary radii (R_p = 1.216 +/- 0.024, 1.451 +/- 0.074 R_Jup), and mean ...

  18. Burnout-depression overlap: a review.

    Science.gov (United States)

    Bianchi, Renzo; Schonfeld, Irvin Sam; Laurent, Eric

    2015-03-01

    Whether burnout is a form of depression or a distinct phenomenon is an object of controversy. The aim of the present article was to provide an up-to-date review of the literature dedicated to the question of burnout-depression overlap. A systematic literature search was carried out in PubMed, PsycINFO, and IngentaConnect. A total of 92 studies were identified as informing the issue of burnout-depression overlap. The current state of the art suggests that the distinction between burnout and depression is conceptually fragile. It is notably unclear how the state of burnout (i.e., the end stage of the burnout process) is conceived to differ from clinical depression. Empirically, evidence for the distinctiveness of the burnout phenomenon has been inconsistent, with the most recent studies casting doubt on that distinctiveness. The absence of consensual diagnostic criteria for burnout and burnout research's insufficient consideration of the heterogeneity of depressive disorders constitute major obstacles to the resolution of the raised issue. In conclusion, the epistemic status of the seminal, field-dominating definition of burnout is questioned. It is suggested that systematic clinical observation should be given a central place in future research on burnout-depression overlap. PMID:25638755

  19. Differential reflective fiber-optic angular displacement sensor

    Science.gov (United States)

    Shan, Mingguang; Min, Rui; Zhong, Zhi; Wang, Ying; Zhang, Yabin

    2015-05-01

    Using the characteristic that the distance apart between the emitting fiber and receiving fiber only shifts the angular-power curve, a differential reflective fiber-optic sensor for angular displacement measurement is presented through subtraction of two power signals from two receiving fibers placed on both sides of one emitting fiber. A theoretical model is established to characterize the performance of the differential reflective fiber-optic angular displacement sensor. The measurements made indicate that the general behavior of the experimental results agrees with that of the theoretical results, and the sensor can improve sensitivity by about 120%, resulting in the significant improvement of anti-interference capability, which will be more suitable for high accuracy bipolar absolute angular displacement measurement. Design guidelines are also suggested to achieve desired sensor performances.

  20. Imaging the Earth's Interior: the Angular Distribution of Terrestrial Neutrinos

    CERN Document Server

    Fields, Brian D

    2004-01-01

    Decays of radionuclides throughout the Earth's interior produce geothermal heat, but also are a source of antineutrinos. The (angle-integrated) geoneutrino flux places an integral constraint on the terrestrial radionuclide distribution. In this paper, we calculate the angular distribution of geoneutrinos, which opens a window on the differential radionuclide distribution. We develop the general formalism for the neutrino angular distribution, and we present the inverse transformation which recovers the terrestrial radioisotope distribution given a measurement of the neutrino angular distribution. Thus, geoneutrinos not only allow a means to image the Earth's interior, but offering a direct measure of the radioactive Earth, both (1) revealing the Earth's inner structure as probed by radionuclides, and (2) allowing for a complete determination of the radioactive heat generation as a function of radius. We present the geoneutrino angular distribution for the favored Earth model which has been used to calculate g...

  1. Spin and Orbital Angular Momentum Distribution Functions of the Nucleon

    OpenAIRE

    Wakamatsu, M.; Watabe, T

    1999-01-01

    A theoretical prediction is given for the spin and orbital angular momentum distribution functions of the nucleon within the framework of an effective quark model of QCD, i.e. the chiral quark soliton model. An outstanding feature of the model is that it predicts fairly small quark spin fraction of the nucleon $\\Delta \\Sigma \\simeq 0.35$, which in turn dictates that the remaining 65% of the nucleon spin is carried by the orbital angular momentum of quarks and antiquarks at the model energy sc...

  2. Templates for the Sunyaev-Zel'dovich Angular Power Spectrum

    CERN Document Server

    Trac, Hy; Ostriker, Jeremiah P

    2010-01-01

    We present templates for the Sunyaev-Zel'dovich (SZ) angular power spectrum based on four models for the nonlinear gas distribution. The frequency-dependent SZ temperature fluctuations, with thermal (TSZ) and kinetic (KSZ) contributions, are calculated by tracing through a dark matter simulation, processed to include gas in dark matter halos and in the filamentary intergalactic medium. Different halo gas models are compared to study how star formation, energetic feedback, and nonthermal pressure support influence the angular power spectrum. The standard model has been calibrated to reproduce the stellar and gas fractions and X-ray scaling relations measured from low redshift clusters and groups. The other models illustrate the current theoretical and empirical uncertainties relating to properties of the intracluster medium. Relative to the standard model, their angular power spectra differ by approximately 50% (TSZ), 20% (KSZ), and 40% (SZ at 148 GHz) for l=3000, sigma_8=0.8, and homogeneous reionization at z...

  3. Turbodrill rod angular velocity indicator

    Energy Technology Data Exchange (ETDEWEB)

    Rogachev, O.K.; Belozerova, L.P.; Konenkov, A.K.

    1984-01-01

    This paper outlines shortcomings of existing types of telemetry systems which resulted in production of the IChT-1 unit. Unit is intended for control of angular velocity of serially produced turbodrill rods, during drilling of wells up to 5000 m deep, and bottomhole temperatures to 100C. The paper provides a detailed description and diagrams for installing this unit.

  4. REVIEW ARTICLE: Angular selective window coatings: theory and experiments

    Science.gov (United States)

    Mbise, G. W.; LeBellac, D.; Niklasson, G. A.; Granqvist, C. G.

    1997-08-01

    This review is devoted to the angular selectivity that can be obtained in thin films prepared under conditions such that they contain inclined absorbing regions of sizes much smaller than the wavelength of visible light. The films are of considerable interest as window coatings for energy-conscious architecture and, potentially, in the automotive sector. The theoretical basis for modelling the optical properties is presented, comprising rigorous bounds on the dielectric function, effective medium theories pertinent to different microgeometries and equations for treating the optics of anisotropic thin films. Experimental data are reported for films made by oblique-angle evaporation of Cr and for reactive and non-reactive oblique-angle sputtering of Cr, Al, Ti and W. The highest angular selectivity was obtained with evaporated Cr, whereas the highest luminous transmittance, combined with some angular selectivity, was found with reactively sputtered Al. Films made from Ti showed angular selectivity mainly in the infrared, whereas films made from W could display angular selective electrochromism. Samples of several types were subjected to elaborate theoretical analysis using effective-medium theories and it was seen that theory and experiment could be reconciled using plausible parameters to specify the microstructures of the films. Thus it appears that the angular, spectral and polarization dependences of obliquely deposited films can be understood, at least approximately, in terms of conceptually simple theoretical models.

  5. Inverse cascades of angular momentum

    International Nuclear Information System (INIS)

    Most theoretical and computational studies of turbulence in Navier-Stokes fluids and/or guiding-centre plasmas have been carried out in the presence of spatially periodic boundary conditions. In view of the frequently reproduced result that two-dimensional and/or MHD decaying turbulence leads to structures comparable in length scae to a box dimension, it is natural to ask if periodic boundary conditions are an adequate representation of any physical situation. Here, we study, computationally, the decay of two-dimensional turbulence in a Navier-Stokes fluid or guiding-centre plasma in the presence of circular no-slip rigid walls. The method is wholly spectral, and relies on a Galerkin approximation by a set of functions that obey two boundary conditions at the wall radius (analogues of the Chandrasekhar-Reid functions). It is possible to explore Reynolds numbers up to the order of 1250, based on an RMS velocity and a box radius. It is found that decaying turbulence is altered significantly by the no-slip boundaries. First, strong boundary layers serve as sources of vorticity and enstrophy and enhance the early-time energy decay rate, for a given Reynolds number, well above the periodic boundary condition values. More importantly, angular momentum turns out to be an even more slowly decaying ideal invariant than energy, and to a considerable extent governs the dynamics of the decay. Angular momentum must be taken into account, for example, in order to achieve quantitative agreement with the prediction of maximum entropy, or 'most probable', states. These are predictions of conditions that are established after several eddy turnover times but before the energy has decayed away. Angular momentum will cascade to lower azimuthal mode numbers, even if absent there initially, and the angular momentum modal spectrum is eventually dominated by the lowest mode available. When no initial angular momentum is present, no behaviour that suggests the likelihood of inverse cascades

  6. Estimating the angular power spectrum of z > 2 BOSS QSOs using the MASTER method

    Science.gov (United States)

    Maldonado, Felipe; Huffenberger, Kevin; Rotti, Aditya

    2016-01-01

    We implement the MASTER method for angular power spectrum estimation and apply it to z > 2 quasars selected by the SDSS-III BOSS survey. Quasars are filtered for completeness and bad spectra, and include ~100,000 QSOs in the CORE sample and ~75,000 in the non-uniform BONUS sample. We estimate the angular power spectrum in redshift shells to constrain the matter power spectrum and quasar properties. In the future, we will jointly analyze overlapping Cosmic Microwave Background lensing maps from the Atacama Cosmology Telescope to place further constraints.

  7. Influence of slice overlap on positron emission tomography image quality

    Science.gov (United States)

    McKeown, Clare; Gillen, Gerry; Dempsey, Mary Frances; Findlay, Caroline

    2016-02-01

    PET scans use overlapping acquisition beds to correct for reduced sensitivity at bed edges. The optimum overlap size for the General Electric (GE) Discovery 690 has not been established. This study assesses how image quality is affected by slice overlap. Efficacy of 23% overlaps (recommended by GE) and 49% overlaps (maximum possible overlap) were specifically assessed. European Association of Nuclear Medicine (EANM) guidelines for calculating minimum injected activities based on overlap size were also reviewed. A uniform flood phantom was used to assess noise (coefficient of variation, (COV)) and voxel accuracy (activity concentrations, Bq ml-1). A NEMA (National Electrical Manufacturers Association) body phantom with hot/cold spheres in a background activity was used to assess contrast recovery coefficients (CRCs) and signal to noise ratios (SNR). Different overlap sizes and sphere-to-background ratios were assessed. COVs for 49% and 23% overlaps were 9% and 13% respectively. This increased noise was difficult to visualise on the 23% overlap images. Mean voxel activity concentrations were not affected by overlap size. No clinically significant differences in CRCs were observed. However, visibility and SNR of small, low contrast spheres (⩽13 mm diameter, 2:1 sphere to background ratio) may be affected by overlap size in low count studies if they are located in the overlap area. There was minimal detectable influence on image quality in terms of noise, mean activity concentrations or mean CRCs when comparing 23% overlap with 49% overlap. Detectability of small, low contrast lesions may be affected in low count studies—however, this is a worst-case scenario. The marginal benefits of increasing overlap from 23% to 49% are likely to be offset by increased patient scan times. A 23% overlap is therefore appropriate for clinical use. An amendment to EANM guidelines for calculating injected activities is also proposed which better reflects the effect overlap size has

  8. 路径转弯对语篇空间情境模型建构的影响%The Effect of Route-angularity on Spatial Situation Model Constructing in Text

    Institute of Scientific and Technical Information of China (English)

    陈洁彬; 鲁忠义

    2015-01-01

    采用回指解决方法,通过3个实验探讨了路径转弯对空间情境模型建构的影响机制。实验1和实验2的结果表明,读者在建构含有路径转弯的语篇时,在一定范围内出现了路径转弯效应。总体趋势为当语篇的空间描述简单(转弯次数2)时,不仅不再出现路径转弯效应,反而出现了该效应的反转现象。实验3借助眼动仪监测,运用语篇与主人公行走路线同步动态呈现模式,让被试实时追随主人公行走路线,控制转弯次数和路径距离,以当前位置与回指地点间的直线距离为自变量,探究读者在空间描述复杂时建构空间情境模型的心理机制。实验结果表明当阅读空间描述简单的语篇时,读者建构的空间情境模型是路线型的,通过逆向搜索的方式进行回指解决;当语篇的空间描述较为复杂时,读者倾向于建构地图型空间情境模型,以俯视的视角通过空间搭桥寻找空间最短直线距离进行回指解决。%Research on text comprehension is an important part of cognitive psychology, Situation model is considered as the higher level of text representation, so it attracts the focuses of many researchers. The spatial dimension of situation model has been explored most often. Layout-learning & Anaphora resolution is an important way to explore the representation of spatial distance in text comprehension. Our paper explored the rules of distance representation in three experiments and advanced some hypotheses. In Experiment 1, we used the method of layout-learning& Anaphora resolution while controlling the path distance (including category distance and measure distance) and linear distance, with the number of turns as the independent variables, to examine whether the route-angularity effect occur. During the Experiment1, those who are experimented first should study the layout diagram of the company, and memorize the location of each room and the

  9. The Effect of Route-angularity on Spatial Situation Model Constructing in Text%路径转弯对语篇空间情境模型建构的影响

    Institute of Scientific and Technical Information of China (English)

    陈洁彬; 鲁忠义

    2015-01-01

    采用回指解决方法,通过3个实验探讨了路径转弯对空间情境模型建构的影响机制。实验1和实验2的结果表明,读者在建构含有路径转弯的语篇时,在一定范围内出现了路径转弯效应。总体趋势为当语篇的空间描述简单(转弯次数2)时,不仅不再出现路径转弯效应,反而出现了该效应的反转现象。实验3借助眼动仪监测,运用语篇与主人公行走路线同步动态呈现模式,让被试实时追随主人公行走路线,控制转弯次数和路径距离,以当前位置与回指地点间的直线距离为自变量,探究读者在空间描述复杂时建构空间情境模型的心理机制。实验结果表明当阅读空间描述简单的语篇时,读者建构的空间情境模型是路线型的,通过逆向搜索的方式进行回指解决;当语篇的空间描述较为复杂时,读者倾向于建构地图型空间情境模型,以俯视的视角通过空间搭桥寻找空间最短直线距离进行回指解决。%Research on text comprehension is an important part of cognitive psychology, Situation model is considered as the higher level of text representation, so it attracts the focuses of many researchers. The spatial dimension of situation model has been explored most often. Layout-learning & Anaphora resolution is an important way to explore the representation of spatial distance in text comprehension. Our paper explored the rules of distance representation in three experiments and advanced some hypotheses. In Experiment 1, we used the method of layout-learning& Anaphora resolution while controlling the path distance (including category distance and measure distance) and linear distance, with the number of turns as the independent variables, to examine whether the route-angularity effect occur. During the Experiment1, those who are experimented first should study the layout diagram of the company, and memorize the location of each room and the

  10. Plate tectonics conserves angular momentum

    Directory of Open Access Journals (Sweden)

    C. Bowin

    2009-03-01

    Full Text Available A new combined understanding of plate tectonics, Earth internal structure, and the role of impulse in deformation of the Earth's crust is presented. Plate accelerations and decelerations have been revealed by iterative filtering of the quaternion history for the Euler poles that define absolute plate motion history for the past 68 million years, and provide an unprecedented precision for plate angular rotation variations with time at 2-million year intervals. Stage poles represent the angular rotation of a plate's motion between adjacent Euler poles, and from which the maximum velocity vector for a plate can be determined. The consistent maximum velocity variations, in turn, yield consistent estimates of plate accelerations and decelerations. The fact that the Pacific plate was shown to accelerate and decelerate, implied that conservation of plate tectonic angular momentum must be globally conserved, and that is confirmed by the results shown here (total angular momentum ~1.4 E+27 kgm2s−1. Accordingly, if a plate decelerates, other plates must increase their angular momentums to compensate. In addition, the azimuth of the maximum velocity vectors yields clues as to why the "bend" in the Emperor-Hawaiian seamount trend occurred near 46 Myr. This report summarizes processing results for 12 of the 14 major tectonic plates of the Earth (except for the Juan de Fuca and Philippine plates. Plate accelerations support the contention that plate tectonics is a product of torques that most likely are sustained by the sinking of positive density anomalies due to phase changes in subducted gabbroic lithosphere at depth in the upper lower mantle (above 1200 km depth. The tectonic plates are pulled along by the sinking of these positive mass anomalies, rather than moving at near constant velocity on the crests of convection cells driven by rising heat. These results imply that spreading centers are primarily passive reactive

  11. Technology initiatives with government/business overlap

    Science.gov (United States)

    Knapp, Robert H., Jr.

    2015-03-01

    Three important present-day technology development settings involve significant overlap between government and private sectors. The Advanced Research Project Agency for Energy (ARPA-E) supports a wide range of "high risk, high return" projects carried out in academic, non-profit or private business settings. The Materials Genome Initiative (MGI), based in the White House, aims at radical acceleration of the development process for advanced materials. California public utilities such as Pacific Gas & Electric operate under a structure of financial returns and political program mandates that make them arms of public policy as much as independent businesses.

  12. Fluctuations in overlapping generations economies

    DEFF Research Database (Denmark)

    Tvede, Mich

    2009-01-01

    In the present paper stationary pure-exchange overlapping generations economies with L goods per date and M consumers per generation are considered. It is shown that for an open and dense set of utility functions there exist endowment vectors such that N-cycles exist for N less than or equal to L+1...... and L less than or equal to M. The approach to existence of endogenous fluctuations is basic in the sense that the prime ingredients are the implicit function theorem and linear algebra. Moreover it is sketched how the approach can be applied to show that for an open and dense set of utility functions...

  13. Reliable overlapping control for civil structures

    Czech Academy of Sciences Publication Activity Database

    Bakule, Lubomír; Papík, Martin; Rehák, Branislav

    Les Ulis Cedex A: EDP Sciences, 2015 - (Feltrin, G.), 06001-1-06001-6. (MATEC Web of Conferences. 24). E-ISSN 2261-236X. [International Conference on Experimental Vibration Analysis for Civil Engineering Structures EVACES’15, /6./. Dübendorf (CH), 19.10.2015-21.10.2015] R&D Projects: GA ČR GA13-02149S Institutional support: RVO:67985556 Keywords : reliable control * overlapping control * civil structures Subject RIV: BC - Control Systems Theory http://library.utia.cas.cz/separaty/2015/AS/bakule-0449128.pdf

  14. Overlap Quark Propagator in Coulomb Gauge QCD

    CERN Document Server

    Mercado, Ydalia Delgado; Schröck, Mario

    2014-01-01

    The chirally symmetric Overlap quark propagator is explored in Coulomb gauge. This gauge is well suited for studying the relation between confinement and chiral symmetry breaking, since confinement can be attributed to the infrared divergent Lorentz-vector dressing function. Using quenched gauge field configurations on a $20^4$ lattice, the quark propagator dressing functions are evaluated, the dynamical quark mass is extracted and the chiral limit of these quantities is discussed. By removing the low-lying modes of the Dirac operator, chiral symmetry is artificially restored. Its effect on the dressing functions is discussed.

  15. Quark Spin and Orbital Angular Momentum in the Baryon

    OpenAIRE

    Song, X.

    1999-01-01

    The spin and orbital angular momentum carried by different quark flavors in the nucleon are calculated in the SU(3) chiral quark model with symmetry-breaking. The model is extended to all octet and decuplet baryons. In this model, the reduction of the quark spin, due to the spin dilution in the chiral splitting processes, is transferred into the orbital motion of quarks and antiquarks. The orbital angular momentum for each quark flavor in the proton as function of the partition factor $\\kappa...

  16. Research on Some Bus Transport Networks with Random Overlapping Clique Structure

    Institute of Scientific and Technical Information of China (English)

    YANG Xu-Hua; WANG Bo; WANG Wan-Liang; SUN You-Xian

    2008-01-01

    On the basis of investigating the statistical data of bus transport networks of three big cities in China, we propose that each bus route is a clique (maximal complete subgraph) and a bus transport network (BTN) consists of a lot of cliques, which intensively connect and overlap with each other. We study the network properties, which include the degree distribution, multiple edges' overlapping time distribution, distribution of the overlap size between any two overlapping cliques, distribution of the number of cliques that a node belongs to. Naturally, the cliques also constitute a network, with the overlapping nodes being their multiple links. We' also research its network properties such as degree distribution, clustering, average path length, and so on. We propose that a BTN has the properties of random clique increment and random overlapping clique, at the same time, a BTN is a small-world network with highly clique-clustered and highly clique-overlapped. Finally, we introduce a BTN evolution model, whose simulation results agree well with the statistical laws that emerge in real BTNs.

  17. Orbital angular momentum in phase space

    OpenAIRE

    Rigas, I.; Sanchez-Soto, L. L.; Klimov, A. B.; Rehacek, J.; Hradil, Z.

    2010-01-01

    A comprehensive theory of the Weyl-Wigner formalism for the canonical pair angle-angular momentum is presented. Special attention is paid to the problems linked to rotational periodicity and angular-momentum discreteness.

  18. AngularJS test-driven development

    CERN Document Server

    Chaplin, Tim

    2015-01-01

    This book is for developers who want to learn about AngularJS development by applying testing techniques. You are assumed to have a basic knowledge and understanding of HTML, JavaScript, and AngularJS.

  19. Phonons with orbital angular momentum

    Energy Technology Data Exchange (ETDEWEB)

    Ayub, M. K. [Theoretical Plasma Physics Division, PINSTECH, P. O. Nilore, Islamabad (Pakistan); National Centre for Physics, Shahdra Valley Road, Quaid-i-Azam University Campus, Islamabad 44000 (Pakistan); Ali, S. [National Centre for Physics, Shahdra Valley Road, Quaid-i-Azam University Campus, Islamabad 44000 (Pakistan); Mendonca, J. T. [IPFN, Instituto Superior Tecnico, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal)

    2011-10-15

    Ion accoustic waves or phonon modes are studied with orbital angular momentum (OAM) in an unmagnetized collissionless uniform plasma, whose constituents are the Boltzmann electrons and inertial ions. For this purpose, we have employed the fluid equations to obtain a paraxial equation in terms of ion density perturbations and discussed its Gaussian beam and Laguerre-Gauss (LG) beam solutions. Furthermore, an approximate solution for the electrostatic potential problem is presented, allowing to express the components of the electric field in terms of LG potential perturbations. The energy flux due to phonons is also calculated and the corresponding OAM is derived. Numerically, it is shown that the parameters such as azimuthal angle, radial and angular mode numbers, and beam waist, strongly modify the profiles of the phonon LG potential. The present results should be helpful in understanding the phonon mode excitations produced by Brillouin backscattering of laser beams in a uniform plasma.

  20. Phonons with orbital angular momentum

    International Nuclear Information System (INIS)

    Ion accoustic waves or phonon modes are studied with orbital angular momentum (OAM) in an unmagnetized collissionless uniform plasma, whose constituents are the Boltzmann electrons and inertial ions. For this purpose, we have employed the fluid equations to obtain a paraxial equation in terms of ion density perturbations and discussed its Gaussian beam and Laguerre-Gauss (LG) beam solutions. Furthermore, an approximate solution for the electrostatic potential problem is presented, allowing to express the components of the electric field in terms of LG potential perturbations. The energy flux due to phonons is also calculated and the corresponding OAM is derived. Numerically, it is shown that the parameters such as azimuthal angle, radial and angular mode numbers, and beam waist, strongly modify the profiles of the phonon LG potential. The present results should be helpful in understanding the phonon mode excitations produced by Brillouin backscattering of laser beams in a uniform plasma.

  1. Angular momentum in QGP holography

    Directory of Open Access Journals (Sweden)

    Brett McInnes

    2014-10-01

    Full Text Available The quark chemical potential is one of the fundamental parameters describing the quark–gluon plasma produced by sufficiently energetic heavy-ion collisions. It is not large at the extremely high temperatures probed by the LHC, but it plays a key role in discussions of the beam energy scan programmes at the RHIC and other facilities. On the other hand, collisions at such energies typically (that is, in peripheral collisions give rise to very high values of the angular momentum density. Here we explain that holographic estimates of the quark chemical potential of a rotating sample of plasma can be very considerably improved by taking the angular momentum into account.

  2. Angular distribution of coherent bremsstrahlung

    International Nuclear Information System (INIS)

    The angular distribution of the linearly polarised photon beam produced by coherent bremsstrahlung from an aligned diamond radiator has been measured at the MAMI A2 tagged photon facility. The measurements were made with a prototype position sensitive photon detector which utilises the pair production process and a double sided silicon strip detector. This polarised photon beam is used for nuclear and hadronic experiments and in their analysis the polarisation is obtained from a calculation, which matches the experimental intensity spectrum. As the polarisation is related to the photon beam angular distribution, the present measurements can be used to test this calculation. The overall agreement is found to be good although there are some regions where significant discrepancies exist.

  3. The integration of angular velocity

    CERN Document Server

    Boyle, Michael

    2016-01-01

    A common problem in physics and engineering is determination of the orientation of an object given its angular velocity. When the direction of the angular velocity changes in time, this is a nontrivial problem involving coupled differential equations. Several possible approaches are examined, along with various improvements over previous efforts. These are then evaluated numerically by comparison to a complicated but analytically known rotation that is motivated by the important astrophysical problem of precessing black-hole binaries. It is shown that a straightforward solution directly using quaternions is most efficient and accurate, and that the norm of the quaternion is irrelevant. Integration of the generator of the rotation can also be made roughly as efficient as integration of the rotation. Both methods will typically be twice as efficient naive vector- or matrix-based methods. Implementation by means of standard general-purpose numerical integrators is stable and efficient, so that such problems can ...

  4. On Dunkl angular momenta algebra

    Science.gov (United States)

    Feigin, Misha; Hakobyan, Tigran

    2015-11-01

    We consider the quantum angular momentum generators, deformed by means of the Dunkl operators. Together with the reflection operators they generate a subalgebra in the rational Cherednik algebra associated with a finite real reflection group. We find all the defining relations of the algebra, which appear to be quadratic, and we show that the algebra is of Poincaré-Birkhoff-Witt (PBW) type. We show that this algebra contains the angular part of the Calogero-Moser Hamiltonian and that together with constants it generates the centre of the algebra. We also consider the gl( N ) version of the subalge-bra of the rational Cherednik algebra and show that it is a non-homogeneous quadratic algebra of PBW type as well. In this case the central generator can be identified with the usual Calogero-Moser Hamiltonian associated with the Coxeter group in the harmonic confinement.

  5. Crystallization kinetics of overlapping phases in Se70Te15Sb15 using isoconversional methods

    OpenAIRE

    M.A. Abdel-Rahim; M.M. Hafiz; A.Z. Mahmoud

    2015-01-01

    The crystallization kinetics of Se70Te15Sb15 chalcogenide glass was studied by Differential Scanning Calorimetry (DSC) under non-isothermal conditions. This glass was found to have a double glass transition and double overlapped crystalline phases. The overlapped crystalline phases were successfully separated using the Gaussian fit model. The activation energy, Ec, and Avrami index, n, were determined by analyzing the data using the Matausita et. al. method. A strong heating rate depending on...

  6. Dynamical overlap fermion simulations with a preconditioned Hybrid Monte Carlo force

    OpenAIRE

    Volkholz, Jan; Bietenholz, Wolfgang; Shcheredin, Stanislav

    2006-01-01

    We present simulation results for the 2-flavour Schwinger model with dynamical Ginsparg-Wilson fermions. Our Dirac operator is constructed by inserting an approximately chiral hypercube operator into the overlap formula, which yields the overlap hypercube operator. Due to the similarity with the hypercubic kernel, a low polynomial of this kernel can be used as a numerically cheap way to evaluate the fermionic part of the Hybrid Monte Carlo force. We verify algorithmic requirements like area c...

  7. Integrating rotation from angular velocity

    OpenAIRE

    Zupan, Eva; Saje, Miran

    2011-01-01

    Abstract The integration of the rotation from a given angular velocity is often required in practice. The present paper explores how the choice of the parametrization of rotation, when employed in conjuction with different numerical time-integration schemes, effects the accuracy and the computational efficiency. Three rotation parametrizations – the rotational vector, the Argyris tangential vector and the rotational quaternion – are combined with three different numerical time-integration ...

  8. Activation of words with phonological overlap

    Directory of Open Access Journals (Sweden)

    Claudia K. Friedrich

    2013-08-01

    Full Text Available Multiple lexical representations overlapping with the input (cohort neighbors are temporarily activated in the listener’s mental lexicon when speech unfolds in time. Activation for cohort neighbors appears to rapidly decline as soon as there is mismatch with the input. However, it is a matter of debate whether or not they are completely excluded from further processing. We recorded behavioral data and event-related brain potentials (ERPs in auditory-visual word onset priming during a lexical decision task. As primes we used the first two syllables of spoken German words. In a carrier word condition, the primes were extracted from spoken versions of the target words (ano-ANORAK 'anorak'. In a cohort neighbor condition, the primes were taken from words that overlap with the target word up to the second nucleus (ana- taken from ANANAS 'pineapple'. Relative to a control condition, where primes and targets were unrelated, lexical decision responses for cohort neighbors were delayed. This reveals that cohort neighbors are disfavored by the decision processes at the behavioral front end. In contrast, left-anterior ERPs reflected long-lasting facilitated processing of cohort neighbors. We interpret these results as evidence for extended parallel processing of cohort neighbors. That is, in parallel to the preparation and elicitation of delayed lexical decision responses to cohort neighbors, aspects of the processing system appear to keep track of those less efficient candidates.

  9. Non-perturbative renormalisation for overlap fermions

    International Nuclear Information System (INIS)

    Using non-perturbative techniques we have found the renormalisation factor, Z, in the RI-MOM scheme for quark bilinear operators in quenched QCD. We worked with overlap fermions using the Luescher-Weisz gauge action. Our calculation was performed at β = 8.45 at a lattice spacing of 1/a=2.1 GeV using a value of ρ = 1.4. Our results show good agreement between the vector and the axial vector in the zero mass limit. This shows that overlap fermions have good chiral properties. To attempt to improve the discretisation errors in our results we subtracted the O(a2) terms in one-loop lattice perturbation theory from the Monte Carlo Green functions. In particular we paid attention to the operators for the observable left angle x right angle. We found a value for the renormalisation constants ZMSv2b and ZMSv2a just less than 1.9 at μ = 1/a = 2.1 GeV. (orig.)

  10. Symptom overlap in anxiety and multiple sclerosis.

    LENUS (Irish Health Repository)

    O Donnchadha, Seán

    2013-02-14

    BACKGROUND: The validity of self-rated anxiety inventories in people with multiple sclerosis (pwMS) is unclear. However, the appropriateness of self-reported depression scales has been widely examined. Given somatic symptom overlap between depression and MS, research emphasises caution when using such scales. OBJECTIVE: This study evaluates symptom overlap between anxiety and MS in a group of 33 individuals with MS, using the Beck Anxiety Inventory (BAI). METHODS: Participants underwent a neurological examination and completed the BAI. RESULTS: A novel procedure using hierarchical cluster analysis revealed three distinct symptom clusters. Cluster one (\\'wobbliness\\' and \\'unsteady\\') grouped separately from all other BAI items. These symptoms are well-recognised MS-related symptoms and we question whether their endorsement in pwMS can be considered to reflect anxiety. A modified 19-item BAI (mBAI) was created which excludes cluster one items. This removal reduced the number of MS participants considered \\'anxious\\' by 21.21% (low threshold) and altered the level of anxiety severity for a further 27.27%. CONCLUSION: Based on these data, it is suggested that, as with depression measures, researchers and clinicians should exercise caution when using brief screening measures for anxiety in pwMS.

  11. Visualizing fuzzy overlapping communities in networks.

    Science.gov (United States)

    Vehlow, Corinna; Reinhardt, Thomas; Weiskopf, Daniel

    2013-12-01

    An important feature of networks for many application domains is their community structure. This is because objects within the same community usually have at least one property in common. The investigation of community structure can therefore support the understanding of object attributes from the network topology alone. In real-world systems, objects may belong to several communities at the same time, i.e., communities can overlap. Analyzing fuzzy community memberships is essential to understand to what extent objects contribute to different communities and whether some communities are highly interconnected. We developed a visualization approach that is based on node-link diagrams and supports the investigation of fuzzy communities in weighted undirected graphs at different levels of detail. Starting with the network of communities, the user can continuously drill down to the network of individual nodes and finally analyze the membership distribution of nodes of interest. Our approach uses layout strategies and further visual mappings to graphically encode the fuzzy community memberships. The usefulness of our approach is illustrated by two case studies analyzing networks of different domains: social networking and biological interactions. The case studies showed that our layout and visualization approach helps investigate fuzzy overlapping communities. Fuzzy vertices as well as the different communities to which they belong can be easily identified based on node color and position. PMID:24051815

  12. Epidemics in partially overlapped multiplex networks

    CERN Document Server

    Buono, C; Macri, P A; Braunstein, L A

    2013-01-01

    Many real networks show a layered structure where links on each layer exhibit the function of nodes on different environments. These multiple types of links are usually represented by multiplex networks which allow to consider a different topology for each layer. However, in real networks not all the nodes are present on every single layer. In this work, we generalize the concept of multiplex networks considering that only a fraction of the nodes are shared by the layers enabling to generate a more realistic scenario. We develop a theoretical framework for a branching process describing an epidemic spreading on these partially overlapped multiplex networks. We find that, for two layers which share a fraction $q$ of nodes, the epidemic threshold of the system is dominated by the layer with the smaller isolated threshold. Surprisingly, this effect is preserved even in the limit of very small overlapping fraction $q \\to 0$. This means that if an isolated network starts sharing a few nodes with another network th...

  13. Radial migration in galactic disks caused by resonance overlap of multiple patterns: Self-consistent simulations

    CERN Document Server

    Minchev, I; Combes, F; Di Matteo, P; Mouhcine, M; Wozniak, H

    2010-01-01

    We have recently identified a new radial migration mechanism resulting from the overlap of spiral and bar resonances in galactic disks. Here we confirm the efficiency of this mechanism in fully self-consistent, Tree-SPH simulations, as well as high-resolution pure N-body simulations. In all barred cases we clearly identify the effect of spiral-bar resonance overlap by a bimodality in the changes of angular momentum in the disk, dL, with maxima near the bar's corotation and outer Lindblad resonance. This is contrasted to the smooth distribution of dL for a simulation with no stable bar present, where strong radial migration is induced by multiple spirals. The presence of a disk gaseous component appears to increase the rate of angular momentum exchange by about 20%. The efficiency of this mechanism is such that galactic stellar disks can extend to over 10 scale-lengths within 1-3 Gyr in both Milky Way size and low-mass galaxies (circular velocity ~100 km/s). We also show that metallicity gradients can flatten ...

  14. Orbital angular momentum is dependent on polarization

    OpenAIRE

    Li, Chun-Fang

    2009-01-01

    It is shown that the momentum density of free electromagnetic field splits into two parts. One has no contribution to the net momentum due to the transversality condition. The other yields all the momentum. The angular momentum that originates from the former part is spin, and the angular momentum that originates from the latter part is orbital angular momentum. Expressions for the spin and orbital angular momentum are given in terms of the electric vector in reciprocal space. The spin and or...

  15. Achromatic orbital angular momentum generator

    International Nuclear Information System (INIS)

    We describe a novel approach for generating light beams that carry orbital angular momentum (OAM) by means of total internal reflection in an isotropic medium. A continuous space-varying cylindrically symmetric reflector, in the form of two glued hollow axicons, is used to introduce a nonuniform rotation of polarization into a linearly polarized input beam. This device acts as a full spin-to-orbital angular momentum convertor. It functions by switching the helicity of the incoming beam's polarization, and by conservation of total angular momentum thereby generates a well-defined value of OAM. Our device is broadband, since the phase shift due to total internal reflection is nearly independent of wavelength. We verify the broad-band behaviour by measuring the conversion efficiency of the device for three different wavelengths corresponding to the RGB colours, red, green and blue. An average conversion efficiency of 95% for these three different wavelengths is observed. This device may find applications in imaging from micro- to astronomical systems where a white vortex beam is needed. (paper)

  16. Spin Angular Momentum Imparted by Gravitational Waves

    OpenAIRE

    Sharif, M.

    2007-01-01

    Following the demonstration that gravitational waves impart linear momentum, it is argued that if they are polarized they should impart angular momentum to appropriately placed 'test rods' in their path. A general formula for this angular momentum is obtained and used to provide expressions for the angular momentum imparted by plane and cylindrical gravitational waves.

  17. AngularJS web application development

    CERN Document Server

    Darwin, Peter Bacon

    2013-01-01

    The book will be a step-by-step guide showing the readers how to build a complete web app with AngularJSJavaScript developers who want to learn AngularJS for developing web apps. Knowledge of JavaScript and HTML is expected. No knowledge of AngularJS is required.

  18. Axial Anomaly and Index of the Overlap Hypercube Operator

    OpenAIRE

    Adams, David H.; Bietenholz, Wolfgang

    2003-01-01

    The overlap hypercube fermion is constructed by inserting a lattice fermion with hypercubic couplings into the overlap formula. One obtains an exact Ginsparg-Wilson fermion, which is more complicated than the standard overlap fermion, but which has improved practical properties and is of current interest for use in numerical simulations. Here we deal with conceptual aspects of the overlap hypercube Dirac operator. Specifically, we evaluate the axial anomaly and the index, demonstrating that t...

  19. Angular Momentum and Galaxy Formation Revisited

    Science.gov (United States)

    Romanowsky, Aaron J.; Fall, S. Michael

    2012-12-01

    -M sstarf scaling relations. This provides a physical motivation for characterizing galaxies most basically with two parameters: mass and bulge-to-disk ratio. Next, in an approach complementary to numerical simulations, we construct idealized models of angular momentum content in a cosmological context, using estimates of dark matter halo spin and mass from theoretical and empirical studies. We find that the width of the halo spin distribution cannot account for the differences between spiral and elliptical j sstarf, but that the observations are reproduced well if these galaxies simply retained different fractions of their initial j complement (~60% and ~10%, respectively). We consider various physical mechanisms for the simultaneous evolution of j sstarf and M sstarf (including outflows, stripping, collapse bias, and merging), emphasizing that the vector sum of all such processes must produce the observed j sstarf-M sstarf relations. We suggest that a combination of early collapse and multiple mergers (major or minor) may account naturally for the trend for ellipticals. More generally, the observed variations in angular momentum represent simple but fundamental constraints for any model of galaxy formation.

  20. Angular-momentum projection of cranked symmetry-unrestricted Slater determinants

    International Nuclear Information System (INIS)

    We report on development of a new feature of the code HFODD, allowing for the angular-momentum projection of cranked symmetry-unrestricted Slater determinants. After a brief overview of the main theoretical building blocks and formalism, we present several preliminary applications. In particular, we discuss the case of a well-deformed rotational band in 156Gd, and we show the emergence of uncompensated poles in the overlap kernels calculated in an odd-A nucleus 155Eu. (author)

  1. Changing law of launching pitching angular velocity of rotating missile

    OpenAIRE

    Liu Guang; Xu Bin; Jiao Xiaojuan; Zhen Tiesheng

    2014-01-01

    In order to provide accurate launching pitching angular velocity (LPAV) for the exterior trajectory optimization design, multi-flexible body dynamics (MFBD) technology is presented to study the changing law of LPAV of the rotating missile based on spiral guideway. An MFBD virtual prototype model of the rotating missile launching system is built using multi-body dynamics modeling technology based on the built flexible body models of key components and the special force model. The built model i...

  2. The role of orbital angular momentum in the proton spin

    OpenAIRE

    Wakamatsu, M.

    2009-01-01

    The orbital angular momenta $L^u$ and $L^d$ of up and down quarks in the proton are estimated as functions of the energy scale as model-independently as possible, on the basis of Ji's angular momentum sum rule. This analysis indicates that $L^u - L^d$ is large and negative even at low energy scale of nonperturbative QCD, in contrast to Thomas' similar analysis based on the refined cloudy bag model. We pursuit the origin of this apparent discrepancy and suggest that it may have a connection wi...

  3. A Review of Journal Coverage Overlap with an Extension to the Definition of Overlap.

    Science.gov (United States)

    Gluck, Myke

    1990-01-01

    Examines the definition of journal coverage overlap in abstracting and indexing services during the past 30 years of research and expands the definition using a matrix of dissimilarity values. Multidimensional scaling analysis is applied to graphically demonstrate this definition and a naive secondary tool selection algorithm is presented. (43…

  4. Measurement of the Orbital Angular Momentum Spectrum of Partially Coherent Fields using Double Angular Slit Interference

    CERN Document Server

    Malik, Mehul; Leach, Jonathan; Boyd, Robert W

    2012-01-01

    We implement an interferometric method using two angular slits to measure the orbital angular momentum (OAM) mode spectrum of a partially coherent field. As the angular separation of the slits changes, an interference pattern for a particular OAM mode is obtained. The visibility of this interference pattern as a function of angular separation is equivalent to the angular correlation function of the field. By Fourier transforming the angular correlation function obtained from the double angular slit interference, we are able to calculate the OAM spectrum of the partially coherent field. This method has potential application for characterizing the OAM spectrum in high-dimensional quantum information protocols.

  5. Pulse propagation in a two-pass optical amplifier with arbitrary laser beams overlap

    Directory of Open Access Journals (Sweden)

    AH Farahbod

    2011-09-01

    Full Text Available An analytical model for two-pass optical amplifier with arbitrary beams overlap has been developed which generalized the classical theory of Frantz-Nodvik for single pass amplifier. The effect of counterpropagating beams on gain and output energy fluence included in the model. Moreover, the appropriate limiting relations for two special cases of weak input signal and saturation state of the amplifier gain have been derived. The results indicate that for complete beams overlap, the gain and output energy have the least values. The model predictions are consistent with experimental observations and exact analytical model for two-pass amplifier when beam propagation paths are coincided.

  6. An empirical assessment of the overlap between sexual victimization and sex offending.

    Science.gov (United States)

    Jennings, Wesley G; Zgoba, Kristen M; Maschi, Tina; Reingle, Jennifer M

    2014-12-01

    There has been a recent proliferation in the number of studies that are investigating the phenomenon that has been coined the victim-offender overlap. There has been noticeably less attention toward examining the sexual victimization and sex offending overlap. Acknowledging this gap in the literature, the present study provides an assessment of this overlap among a large sample of male prisoners with a focus on the cycle of violence hypothesis. Bivariate results reveal a considerable degree of overlap between sexual victimization and sex offending, and multivariate results estimated from a series of bivariate probit models simultaneously assessing both outcomes suggest that experiencing emotional abuse early on in the life-course is a robust risk factor for experiencing sexual victimization and demonstrating sex offending behavior. Furthermore, being physically neglected and witnessing family violence also emerged as significant risk factors for sexual victimization. Study limitations and policy implications are also discussed. PMID:23864522

  7. Low Self-Control and the Victim-Offender Overlap: A Gendered Analysis.

    Science.gov (United States)

    Flexon, Jamie L; Meldrum, Ryan C; Piquero, Alex R

    2016-07-01

    The overlap between victimization and offending is well documented. Yet, there have been fewer investigations of the reasons underlying this relationship. One possible, but understudied, explanation lies with Gottfredson and Hirschi's arguments regarding self-control. The current study adds to this line of inquiry by assessing whether low self-control accounts for the victim-offender overlap in a sample of young adults and whether self-control accounts for the observed overlap similarly across gender. Results from a series of bivariate probit regression models indicate that low self-control is positively related to both victimization and offending. However, only among males does low self-control account for a substantive portion of the victim-offender overlap. Limitations of the study and implications and directions for future research are discussed. PMID:25711616

  8. FEM SIMULATION OF RESIDUAL STRESSES INDUCED BY LASER SHOCK WITH OVERLAPPING LASER SPOTS

    Institute of Scientific and Technical Information of China (English)

    Y.X. Hu; Z.Q. Yao

    2008-01-01

    The finite element method is presented to attain the numerical simulation of the residual stresses field in the material treated by laser shock processing. The distribution of residual stresses generated by a single laser shock with square and round laser spot is predicted and validated by experimental results. With the Finite Element Method (FEM) model, effects of different overlapping rates and impact sequences on the distribution of residual stresses are simulated. The results indicate that: (1) Overlapping laser shock can increase the compressive residual stresses. However, it is not effective on the growth of plastically affected depth; (2) Overlapping rate should be optimized and selected carefully for the large area treatment. Appropriate overlapping rate is beneficial to obtain a homogeneous residual stress field; (3) The impact sequence has a great effect on the residual stress field. It can greatly attenuate the phenomenon of the "residual stress hole" to obtain a homogeneous residual stress field.

  9. Dependency injection with AngularJS

    CERN Document Server

    Knol, Alex

    2013-01-01

    This book is a practical, hands-on approach to using dependency injection and implementing test-driven development using AngularJS. Dependency Injection with AngularJS is aimed at developers who are aware of AngularJS but need to get started with using it in real life applications. Also, developers who want to get into test-driven development with AngularJS can use this book as practical guide. Even if you know about dependency injection, it can serve as a good reference on how it is used within AngularJS. Readers are expected to have some experience with JavaScript.

  10. Grid adaptation using chimera composite overlapping meshes

    Science.gov (United States)

    Kao, Kai-Hsiung; Liou, Meng-Sing; Chow, Chuen-Yen

    1994-01-01

    The objective of this paper is to perform grid adaptation using composite overlapping meshes in regions of large gradient to accurately capture the salient features during computation. The chimera grid scheme, a multiple overset mesh technique, is used in combination with a Navier-Stokes solver. The numerical solution is first converged to a steady state based on an initial coarse mesh. Solution-adaptive enhancement is then performed by using a secondary fine grid system which oversets on top of the base grid in the high-gradient region, but without requiring the mesh boundaries to join in any special way. Communications through boundary interfaces between those separated grids are carried out using trilinear interpolation. Application to the Euler equations for shock reflections and to shock wave/boundary layer interaction problem are tested. With the present method, the salient features are well-resolved.

  11. Grid adaption using Chimera composite overlapping meshes

    Science.gov (United States)

    Kao, Kai-Hsiung; Liou, Meng-Sing; Chow, Chuen-Yen

    1993-01-01

    The objective of this paper is to perform grid adaptation using composite over-lapping meshes in regions of large gradient to capture the salient features accurately during computation. The Chimera grid scheme, a multiple overset mesh technique, is used in combination with a Navier-Stokes solver. The numerical solution is first converged to a steady state based on an initial coarse mesh. Solution-adaptive enhancement is then performed by using a secondary fine grid system which oversets on top of the base grid in the high-gradient region, but without requiring the mesh boundaries to join in any special way. Communications through boundary interfaces between those separated grids are carried out using tri-linear interpolation. Applications to the Euler equations for shock reflections and to a shock wave/boundary layer interaction problem are tested. With the present method, the salient features are well resolved.

  12. Competitive STDP Learning of Overlapping Spatial Patterns.

    Science.gov (United States)

    Krunglevicius, Dalius

    2015-08-01

    Spike-timing-dependent plasticity (STDP) is a set of Hebbian learning rules firmly based on biological evidence. It has been demonstrated that one of the STDP learning rules is suited for learning spatiotemporal patterns. When multiple neurons are organized in a simple competitive spiking neural network, this network is capable of learning multiple distinct patterns. If patterns overlap significantly (i.e., patterns are mutually inclusive), however, competition would not preclude trained neuron's responding to a new pattern and adjusting synaptic weights accordingly. This letter presents a simple neural network that combines vertical inhibition and Euclidean distance-dependent synaptic strength factor. This approach helps to solve the problem of pattern size-dependent parameter optimality and significantly reduces the probability of a neuron's forgetting an already learned pattern. For demonstration purposes, the network was trained for the first ten letters of the Braille alphabet. PMID:26079753

  13. Practical derivation of Moliere angular distribution with ionization

    International Nuclear Information System (INIS)

    Approximation methods for practical and efficient derivations of Moliere angular distribution are attempted. The scale factor ν characterizing the ionization process, solved in numerical integrals, is well approximated by a series expansion of the solution with rest-mass up to the second order. Moliere screening model is found well approximated by a simpler Born-type model for wide variety of substances, so that the characteristic constants B and θM of angular distribution for mixed or compound substances are derived far simply and enough accurately from the Kamata-Nishimura constants for mixture without taking as many integrations as the number of mixed substances for stochastic means. These confirmations will be valuable for rapid derivations of Moliere angular distribution, especially in tracing tracks of charged particle in Monte Carlo simulations. (author)

  14. Geometrical constraint experimental determination of Raman lidar overlap profile.

    Science.gov (United States)

    Li, Jian; Li, Chengcai; Zhao, Yiming; Li, Jing; Chu, Yiqi

    2016-06-20

    A simple experimental method to determine the overlap profile of Raman lidar is presented in this paper. Based on Mie and Raman backscattering signals and a geometrically constrained condition, the overlap profile of a Raman lidar system can be determined. Our approach simultaneously retrieves the lidar ratio of aerosols, which is one of the most important sources of uncertainty in the overlap profile determination. The results indicate that the overlap factor is significantly influenced by the lidar ratio in experimental methods. A representative case study indicates that the correction of the overlap profile obtained by this method is practical and feasible. PMID:27409119

  15. Numerical Solution of the Evolution Equation for Orbital Angular Momentum of Partons in the Nucleon

    OpenAIRE

    Martin, O.; Hagler, P.; Schafer, A.

    1998-01-01

    The evolution of orbital angular momentum distributions within the radiative parton model is studied. We use different scenarios for the helicity weighted parton distributions and consider a broad range of input distributions for orbital angular momentum. In all cases we are lead to the conclusion that the absolute value of the average angular momentum per parton peaks at relatively large $x\\approx 0.1$ for perturbatively accessible scales. Furthermore, in all scenarios considered here the av...

  16. Observing and modeling the dynamic atmosphere of the low mass-loss C-star R Sculptoris at high angular resolution

    CERN Document Server

    Sacuto, Stéphane; Hron, Josef; Nowotny, Walter; Paladini, Claudia; Verhoelst, Tijl; Höfner, Susanne

    2010-01-01

    We study the circumstellar environment of the carbon-rich star R Scl using the near- and mid-infrared high spatial resolution observations from the ESO-VLTI instruments VINCI and MIDI. These observations aim at increasing our knowledge of the dynamic processes in play within the very close circumstellar environment where the mass loss of AGB stars is initiated. Data are interpreted using a self-consistent dynamic model. Interferometric observations do not show any significant variability effect at the 16 m baseline between phases 0.17 and 0.23 in the K band, and for both the 15 m baseline between phases 0.66 and 0.97 and the 31 m baseline between phases 0.90 and 0.97 in the N band. We find fairly good agreement between the dynamic model and the spectrophotometric data from 0.4 to 25 $\\mu$m. The model agrees well with the time-dependent flux data at 8.5 $\\mu$m, whereas it is too faint at 11.3 and 12.5 $\\mu$m. The VINCI visibilities are reproduced well, meaning that the extension of the model is suitable in the...

  17. Matter waves with angular momentum

    CERN Document Server

    Bracher, C; Kleber, M; Bracher, Christian; Kramer, Tobias; Kleber, Manfred

    2003-01-01

    An alternative description of quantum scattering processes rests on inhomogeneous terms amended to the Schr\\"odinger equation. We detail the structure of sources that give rise to multipole scattering waves of definite angular momentum, and introduce pointlike multipole sources as their limiting case. Partial wave theory is recovered for freely propagating particles. We obtain novel results for ballistic scattering in an external uniform force field, where we provide analytical solutions for both the scattering waves and the integrated particle flux. As an illustration of the theory, we predict some properties of vortex-bearing atom laser beams outcoupled from a rotating Bose--Einstein condensate under the influence of gravity.

  18. Two-axis angular effector

    International Nuclear Information System (INIS)

    A new class of coplanar two-axis angular effectors is described. These effectors combine a two-axis rotational joint analogous to a Cardan joint with linear actuators in a manner to produce a wider range of rotational motion about both axes defined by the joint. This new class of effectors also allows design of robotic manipulators having very high strength and efficiency. These effectors are particularly suited for remote operation in unknown surroundings, because of their extraordinary versatility. An immediate application is to the problems which arise in nuclear waste remediation. 11 figs

  19. Angular Size-Redshift: Experiment and Calculation

    CERN Document Server

    Amirkhanyan, V R

    2015-01-01

    In this paper the next attempt is made to clarify the nature of the Euclidean behavior of the boundary in the angular size-redshift cosmological test. It is shown experimentally that this can be explained by the selection determined by anisotropic morphology and anisotropic radiation of extended radio sources. A catalogue of extended radio sources with minimal flux densities of about 0.01 Jy at 1.4 GHz was compiled for conducting the test. Without the assumption of their size evolution, the agreement between the experiment and calculation was obtained both in the Lambda CDM model (Omega_m=0.27 , Omega_v=0.73.) and the Friedman model (Omega = 0.1 ).

  20. Understanding GRETINA using angular correlation method

    Science.gov (United States)

    Austin, Madeline

    2015-10-01

    The ability to trace the path of gamma rays through germanium is not only necessary for taking full advantage of GRETINA but also a promising possibility for homeland security defense against nuclear threats. This research tested the current tracking algorithm using the angular correlation method by comparing results from raw and tracked data to the theoretical model for Co-60. It was found that the current tracking method is unsuccessful in reproducing angular correlation. Variations to the tracking algorithm were made in the FM value, tracking angle, number of angles of separation observed, and window of coincidence in attempt to improve correlation results. From these variations it was observed that having a larger FM improved results, reducing the number of observational angles worsened correlation, and that overall larger tracking angles improved with larger windows of coincidence and vice-verse. Future research would be to refine the angle of measurement for raw data and to explore the possibility of an energy dependence by testing other elements. This work is supported by the United States Department of Energy, Office of Science, under Contract Number DE-AC02-06CH11357

  1. Smoothed dissipative particle dynamics with angular momentum conservation

    Energy Technology Data Exchange (ETDEWEB)

    Müller, Kathrin, E-mail: k.mueller@fz-juelich.de; Fedosov, Dmitry A., E-mail: d.fedosov@fz-juelich.de; Gompper, Gerhard, E-mail: g.gompper@fz-juelich.de

    2015-01-15

    Smoothed dissipative particle dynamics (SDPD) combines two popular mesoscopic techniques, the smoothed particle hydrodynamics and dissipative particle dynamics (DPD) methods, and can be considered as an improved dissipative particle dynamics approach. Despite several advantages of the SDPD method over the conventional DPD model, the original formulation of SDPD by Español and Revenga (2003) [9], lacks angular momentum conservation, leading to unphysical results for problems where the conservation of angular momentum is essential. To overcome this limitation, we extend the SDPD method by introducing a particle spin variable such that local and global angular momentum conservation is restored. The new SDPD formulation (SDPD+a) is directly derived from the Navier–Stokes equation for fluids with spin, while thermal fluctuations are incorporated similarly to the DPD method. We test the new SDPD method and demonstrate that it properly reproduces fluid transport coefficients. Also, SDPD with angular momentum conservation is validated using two problems: (i) the Taylor–Couette flow with two immiscible fluids and (ii) a tank-treading vesicle in shear flow with a viscosity contrast between inner and outer fluids. For both problems, the new SDPD method leads to simulation predictions in agreement with the corresponding analytical theories, while the original SDPD method fails to capture properly physical characteristics of the systems due to violation of angular momentum conservation. In conclusion, the extended SDPD method with angular momentum conservation provides a new approach to tackle fluid problems such as multiphase flows and vesicle/cell suspensions, where the conservation of angular momentum is essential.

  2. On the overlap prescription for lattice regularization of chiral fermions

    International Nuclear Information System (INIS)

    Feynman rules for the vacuum amplitude of fermions coupled to external gauge and Higgs fields in a domain wall lattice model are derived using time-dependent perturbation theory. They have a clear and simple structure corresponding to 1-loop vacuum graphs. Their continuum approximations are extracted by isolating the infrared singularities and it is shown that, in each order, they reduce to vacuum contributions for chiral fermions. In this sense the lattice model is seen to constitute a valid regularization of the continuum theory of chiral fermions coupled to weak and slowly varying gauge and Higgs fields. The overlap amplitude, while not gauge invariant, exhibits a well defined (module phase conventions) response to gauge transformations of the background fields. This response reduces in the continuum limit to the expected chiral anomaly, independently of the phase convention. (author). 20 refs

  3. An edge density definition of overlapping and weighted graph communities

    CERN Document Server

    Ronhovde, Richard K Darst David R Reichman Peter

    2013-01-01

    Community detection in networks refers to the process of seeking strongly internally connected groups of nodes which are weakly externally connected. In this work, we introduce and study a community definition based on internal edge density. Beginning with the simple concept that edge density equals number of edges divided by maximal number of edges, we apply this definition to a variety of node and community arrangements to show that our definition yields sensible results. Our community definition is equivalent to that of the Absolute Potts Model community detection method (Phys. Rev. E 81, 046114 (2010)), and the performance of that method validates the usefulness of our definition across a wide variety of network types. We discuss how this definition can be extended to weighted, and multigraphs, and how the definition is capable of handling overlapping communities and local algorithms. We further validate our definition against the recently proposed Affiliation Graph Model (arXiv:1205.6228 [cs.SI]) and sho...

  4. Spike sorting in the frequency domain with overlap detection

    CERN Document Server

    Rinberg, D; Davidowitz, H; Tishby, N; Rinberg, Dima; Bialek, William; Davidowitz, Hanan; Tishby, Naftali

    2003-01-01

    This paper deals with the problem of extracting the activity of individual neurons from multi-electrode recordings. Important aspects of this work are: 1) the sorting is done in two stages - a statistical model of the spikes from different cells is built and only then are occurrences of these spikes in the data detected by scanning through the original data, 2) the spike sorting is done in the frequency domain, 3) strict statistical tests are applied to determine if and how a spike should be classiffed, 4) the statistical model for detecting overlaping spike events is proposed, 5) slow dynamics of spike shapes are tracked during long experiments. Results from the application of these techniques to data collected from the escape response system of the American cockroach, Periplaneta americana, are presented.

  5. On the overlap prescription for lattice regularization of chiral fermions

    International Nuclear Information System (INIS)

    Feynman rules for the vacuum amplitude of fermions coupled to external gauge and Higgs fields in a domain wall lattice model are derived using time-dependent perturbation theory. They have a clear and simple structure corresponding to 1-loop vacuum graphs. Their continuum approximations are extracted by isolating the infrared singularities and it is shown that, in each order, they reduce to vacuum contributions for chiral fermions. In this sense the lattice model is seen to constitute a valid regularization of the continuum theory of chiral fermions coupled to weak and slowly varying gauge and Higgs fields. The overlap amplitude, while not gauge invariant, exhibits a well defined (modulo phase conventions) response to gauge transformations of the background fields. This response reduces in the continuum limit to the expected chiral anomaly, independently of the phase conventions. (orig.)

  6. Symmetric coupling of angular momenta, quadratic algebras and discrete polynomials

    International Nuclear Information System (INIS)

    Eigenvalues and eigenfunctions of the volume operator, associated with the symmetric coupling of three SU(2) angular momentum operators, can be analyzed on the basis of a discrete Schrödinger–like equation which provides a semiclassical Hamiltonian picture of the evolution of a 'quantum of space', as shown by the authors in [1]. Emphasis is given here to the formalization in terms of a quadratic symmetry algebra and its automorphism group. This view is related to the Askey scheme, the hierarchical structure which includes all hypergeometric polynomials of one (discrete or continuous) variable. Key tool for this comparative analysis is the duality operation defined on the generators of the quadratic algebra and suitably extended to the various families of overlap functions (generalized recoupling coefficients). These families, recognized as lying at the top level of the Askey scheme, are classified and a few limiting cases are addressed

  7. Detecting overlapping instances in microscopy images using extremal region trees.

    Science.gov (United States)

    Arteta, Carlos; Lempitsky, Victor; Noble, J Alison; Zisserman, Andrew

    2016-01-01

    In many microscopy applications the images may contain both regions of low and high cell densities corresponding to different tissues or colonies at different stages of growth. This poses a challenge to most previously developed automated cell detection and counting methods, which are designed to handle either the low-density scenario (through cell detection) or the high-density scenario (through density estimation or texture analysis). The objective of this work is to detect all the instances of an object of interest in microscopy images. The instances may be partially overlapping and clustered. To this end we introduce a tree-structured discrete graphical model that is used to select and label a set of non-overlapping regions in the image by a global optimization of a classification score. Each region is labeled with the number of instances it contains - for example regions can be selected that contain two or three object instances, by defining separate classes for tuples of objects in the detection process. We show that this formulation can be learned within the structured output SVM framework and that the inference in such a model can be accomplished using dynamic programming on a tree structured region graph. Furthermore, the learning only requires weak annotations - a dot on each instance. The candidate regions for the selection are obtained as extremal region of a surface computed from the microscopy image, and we show that the performance of the model can be improved by considering a proxy problem for learning the surface that allows better selection of the extremal regions. Furthermore, we consider a number of variations for the loss function used in the structured output learning. The model is applied and evaluated over six quite disparate data sets of images covering: fluorescence microscopy, weak-fluorescence molecular images, phase contrast microscopy and histopathology images, and is shown to exceed the state of the art in performance. PMID:25980675

  8. Controlling neutron orbital angular momentum.

    Science.gov (United States)

    Clark, Charles W; Barankov, Roman; Huber, Michael G; Arif, Muhammad; Cory, David G; Pushin, Dmitry A

    2015-09-24

    The quantized orbital angular momentum (OAM) of photons offers an additional degree of freedom and topological protection from noise. Photonic OAM states have therefore been exploited in various applications ranging from studies of quantum entanglement and quantum information science to imaging. The OAM states of electron beams have been shown to be similarly useful, for example in rotating nanoparticles and determining the chirality of crystals. However, although neutrons--as massive, penetrating and neutral particles--are important in materials characterization, quantum information and studies of the foundations of quantum mechanics, OAM control of neutrons has yet to be achieved. Here, we demonstrate OAM control of neutrons using macroscopic spiral phase plates that apply a 'twist' to an input neutron beam. The twisted neutron beams are analysed with neutron interferometry. Our techniques, applied to spatially incoherent beams, demonstrate both the addition of quantum angular momenta along the direction of propagation, effected by multiple spiral phase plates, and the conservation of topological charge with respect to uniform phase fluctuations. Neutron-based studies of quantum information science, the foundations of quantum mechanics, and scattering and imaging of magnetic, superconducting and chiral materials have until now been limited to three degrees of freedom: spin, path and energy. The optimization of OAM control, leading to well defined values of OAM, would provide an additional quantized degree of freedom for such studies. PMID:26399831

  9. Depression-Burnout Overlap in Physicians

    Science.gov (United States)

    Wurm, Walter; Vogel, Katrin; Holl, Anna; Ebner, Christoph; Bayer, Dietmar; Mörkl, Sabrina; Szilagyi, Istvan-Szilard; Hotter, Erich; Kapfhammer, Hans-Peter; Hofmann, Peter

    2016-01-01

    Background Whether burnout is a distinct phenomenon rather than a type of depression and whether it is a syndrome, limited to three “core” components (emotional exhaustion, depersonalization and low personal accomplishment) are subjects of current debate. We investigated the depression-burnout overlap, and the pertinence of these three components in a large, representative sample of physicians. Methods In a cross-sectional study, all Austrian physicians were invited to answer a questionnaire that included the Major Depression Inventory (MDI), the Hamburg Burnout Inventory (HBI), as well as demographic and job-related parameters. Of the 40093 physicians who received an invitation, a total of 6351 (15.8%) participated. The data of 5897 participants were suitable for analysis. Results Of the participants, 10.3% were affected by major depression. Our study results suggest that potentially 50.7% of the participants were affected by symptoms of burnout. Compared to physicians unaffected by burnout, the odds ratio of suffering from major depression was 2.99 (95% CI 2.21–4.06) for physicians with mild, 10.14 (95% CI 7.58–13.59) for physicians with moderate, 46.84 (95% CI 35.25–62.24) for physicians with severe burnout and 92.78 (95% CI 62.96–136.74) for the 3% of participants with the highest HBI_sum (sum score of all ten HBI components). The HBI components Emotional Exhaustion, Personal Accomplishment and Detachment (representing depersonalization) tend to correlate more highly with the main symptoms of major depression (sadness, lack of interest and lack of energy) than with each other. A combination of the HBI components Emotional Exhaustion, Helplessness, Inner Void and Tedium (adj.R2 = 0.92) explained more HBI_sum variance than the three “core” components (adj.R2 = 0.85) of burnout combined. Cronbach’s alpha for Emotional Exhaustion, Helplessness, Inner Void and Tedium combined was 0.90 compared to α = 0.54 for the combination of the three

  10. Depression-Burnout Overlap in Physicians.

    Directory of Open Access Journals (Sweden)

    Walter Wurm

    Full Text Available Whether burnout is a distinct phenomenon rather than a type of depression and whether it is a syndrome, limited to three "core" components (emotional exhaustion, depersonalization and low personal accomplishment are subjects of current debate. We investigated the depression-burnout overlap, and the pertinence of these three components in a large, representative sample of physicians.In a cross-sectional study, all Austrian physicians were invited to answer a questionnaire that included the Major Depression Inventory (MDI, the Hamburg Burnout Inventory (HBI, as well as demographic and job-related parameters. Of the 40093 physicians who received an invitation, a total of 6351 (15.8% participated. The data of 5897 participants were suitable for analysis.Of the participants, 10.3% were affected by major depression. Our study results suggest that potentially 50.7% of the participants were affected by symptoms of burnout. Compared to physicians unaffected by burnout, the odds ratio of suffering from major depression was 2.99 (95% CI 2.21-4.06 for physicians with mild, 10.14 (95% CI 7.58-13.59 for physicians with moderate, 46.84 (95% CI 35.25-62.24 for physicians with severe burnout and 92.78 (95% CI 62.96-136.74 for the 3% of participants with the highest HBI_sum (sum score of all ten HBI components. The HBI components Emotional Exhaustion, Personal Accomplishment and Detachment (representing depersonalization tend to correlate more highly with the main symptoms of major depression (sadness, lack of interest and lack of energy than with each other. A combination of the HBI components Emotional Exhaustion, Helplessness, Inner Void and Tedium (adj.R2 = 0.92 explained more HBI_sum variance than the three "core" components (adj.R2 = 0.85 of burnout combined. Cronbach's alpha for Emotional Exhaustion, Helplessness, Inner Void and Tedium combined was 0.90 compared to α = 0.54 for the combination of the three "core" components.This study demonstrates the

  11. Model-based seafloor characterization employing multi-beam angular backscatter data--a comparative study with dual-frequency single beam.

    Science.gov (United States)

    Haris, K; Chakraborty, Bishwajit; De, Chanchal; Prabhudesai, R G; Fernandes, William

    2011-12-01

    Sediment geoacoustic inversion results are estimated employing a multi-beam (MB) echo-sounding system operable at 95 kHz. To characterize the western continental shelf of India (off Goa) seafloor, MB backscatter signals were acquired along with grab sediment samples. The substrate type and roughness of the site were estimated using the composite roughness scattering model with the measured backscatter values. The seafloor parameters, namely mean grain size (M(φ)); roughness spectrum strength (w(2)) and exponent (γ(2)); and sediment volume parameter (σ(2)), for coarse and fine grain sediments are estimated by employing the MB system. These parameters have also been estimated at two other frequencies (33 and 210 kHz) and are compared to the ground truth data to provide sufficient support in validating the model results and increasing the understanding of the shelf seafloor processes. Distinct interclass separations between the sediment provinces are evident from the estimated mean grain size M(φ) and water-sediment interface roughness w(2). The seafloor parameters for coarse and fine grain sediments derived from the 95 kHz MB data are consistent with the sediment sample data as well as with the inversion results obtained using backscatter data at 33 and 210 kHz from the same locations. PMID:22225019

  12. EVOG: a database for evolutionary analysis of overlapping genes.

    Science.gov (United States)

    Kim, Dae-Soo; Cho, Chi-Young; Huh, Jae-Won; Kim, Heui-Soo; Cho, Hwan-Gue

    2009-01-01

    Overlapping genes are defined as a pair of genes whose transcripts are overlapped. Recently, many cases of overlapped genes have been investigated in various eukaryotic organisms; however, their origin and transcriptional control mechanism has not yet been clearly determined. In this study, we implemented evolutionary visualizer for overlapping genes (EVOG), a Web-based DB with a novel visualization interface, to investigate the evolutionary relationship between overlapping genes. Using this technique, we collected and analyzed all overlapping genes in human, chimpanzee, orangutan, marmoset, rhesus, cow, dog, mouse, rat, chicken, Xenopus, zebrafish and Drosophila. This integrated database provides a manually curated database that displays the evolutionary features of overlapping genes. The EVOG DB components included a number of overlapping genes (10074 in human, 10,009 in chimpanzee, 67,039 in orangutan, 51,001 in marmoset, 219 in rhesus, 3627 in cow, 209 in dog, 10,700 in mouse, 7987 in rat, 1439 in chicken, 597 in Xenopus, 2457 in zebrafish and 4115 in Drosophila). The EVOG database is very effective and easy to use for the analysis of the evolutionary process of overlapping genes when comparing different species. Therefore, EVOG could potentially be used as the main tool to investigate the evolution of the human genome in relation to disease by comparing the expression profiles of overlapping genes. EVOG is available at http://neobio.cs.pusan.ac.kr/evog/. PMID:18986995

  13. Enzymatic assembly of overlapping DNA fragments.

    Science.gov (United States)

    Gibson, Daniel G

    2011-01-01

    Three methods for assembling multiple, overlapping DNA molecules are described. Each method shares the same basic approach: (i) an exonuclease removes nucleotides from the ends of double-stranded (ds) DNA molecules, exposing complementary single-stranded (ss) DNA overhangs that are specifically annealed; (ii) the ssDNA gaps of the joined molecules are filled in by DNA polymerase, and the nicks are covalently sealed by DNA ligase. The first method employs the 3'-exonuclease activity of T4 DNA polymerase (T4 pol), Taq DNA polymerase (Taq pol), and Taq DNA ligase (Taq lig) in a two-step thermocycled reaction. The second method uses 3'-exonuclease III (ExoIII), antibody-bound Taq pol, and Taq lig in a one-step thermocycled reaction. The third method employs 5'-T5 exonuclease, Phusion® DNA polymerase, and Taq lig in a one-step isothermal reaction and can be used to assemble both ssDNA and dsDNA. These assembly methods can be used to seamlessly construct synthetic and natural genes, genetic pathways, and entire genomes and could be very useful for molecular engineering tools. PMID:21601685

  14. [Autoimmune hepatitis and overlap syndrome: therapy].

    Science.gov (United States)

    Löhr, H F

    2002-08-21

    Autoimmune Hepatitis (AIH), primary biliary cirrhosis (PBC) and primary sclerosing cholangitis (PSC) represent acute and chronic inflammatory liver diseases in which immune reactions against host antigens are found to be the major pathological mechanism. Only for AIH there is evidence of an autoimmune etiology and humoral and cellular immune reactions are found directed against various liver cell antigens. By diverse autoantibodies several subgroups of autoimmune hepatitis can be distinguished. A very important disease promoting factor seems to be the genetically determined background for autoimmunity characterized by the HLA haplotype A1, B8 and DR3, respectively DR4. Although the histopathology of AIH shows no pathognomonic features distinguishing this type of hepatitis from virus induced chronic hepatitis there are some distinct characteristic morphological lesions. If untreated the prognosis of AIH is unfavourable but the benefit from immunosuppressive therapy with prednisolone and azathioprin is well established. In the last years there was increasing evidence for an overlap syndrome between AIH and PBC and rarely AIH and PSC. These patients are characterized by PBC characteristic bileduct lesions and oftenly antimitochondrial antibodies (AMA). They also show AIH typical inflammatory hepatic lesions in the periportal areas and portal tracts and oftenly the typical genetical background, the HLA haplotype A1, B8, DR3 or DR4. Most of these patients respond probably to a combination therapy containing prednisolon, azathioprine and ursodesoxycholic acid that leads to the reduction of the inflammatory activity. PMID:12233265

  15. Overlapping Zone Partitioning Localisation Technique for RFID

    Directory of Open Access Journals (Sweden)

    Kavi K. Khedo

    2010-04-01

    Full Text Available Basically used for contactless identification, Radio Frequency Identification (RFID technology was originallythought as a complement for the drawbacks of the Barcode. Due to its capabilities and on-going drop in cost,researchers have started to look into other areas where RFID can be employed. One such area of research isReal-Time Location Tracking (RTLT, especially for indoor environments. While technologies such as Ultra-Sound, Infrared, WiFi, Bluetooth and GSM have been considered for indoor localisation, their requirements forline of sight and/or prohibitive cost have hindered their successful adoption. We are therefore presenting a lowcostsolution using RFID technology which we refer to as the ‘Overlapping Zone Partitioning’ (OZP techniquethat can be implemented using basic off-the-shelf RFID Readers and which has been derived from the zonebasedlocalisation technique. We have successfully implemented OZP and evaluated its performance. It hasbeen found that its accuracy is enhanced by nearly 40% in comparison to a normal zone-based localisationsystem. Its performance in terms of correct zone classification is within the range of 80-90%.

  16. Generation of Orbital Angular Momentum Carrying Beams in Semiconductor Microcavities

    International Nuclear Information System (INIS)

    Full text: It is notable that all techniques for the creation of beams with orbital angular momentum, to the best of our knowledge, require an optically inhomogeneous and/or anisotropic material or strong focusing. In this work, we demonstrate that the spin-to-orbital angular momentum (SOAM) conversion can also be achieved in a planar semiconductor microcavity. Despite being an isotropic system, microcavities exhibit a polarization splitting between transverse electric - transverse magnetic (TE-TM) modes, which induces the appearance of an L = +2 orbital angular momentum in one of the circular polarizations, under excitation in the cross-circular polarization [1]. The vertical entities resulting from this conversion process can be regarded as the optical equivalent of a pair of half-quantum vortices. We provide a theoretical model which rigorously derives the principle of the SOAM conversion and quantitatively reproduces the experimental observations. (author)

  17. Demonstrating the Direction of Angular Velocity in Circular Motion

    Science.gov (United States)

    Demircioglu, Salih; Yurumezoglu, Kemal; Isik, Hakan

    2015-01-01

    Rotational motion is ubiquitous in nature, from astronomical systems to household devices in everyday life to elementary models of atoms. Unlike the tangential velocity vector that represents the instantaneous linear velocity (magnitude and direction), an angular velocity vector is conceptually more challenging for students to grasp. In physics…

  18. Multi-segment and multi-ply overlapping process of multi coupled activities based on valid information evolution

    Science.gov (United States)

    Wang, Zhiliang; Wang, Yunxia; Qiu, Shenghai

    2013-01-01

    Complex product development will inevitably face the design planning of the multi-coupled activities, and overlapping these activities could potentially reduce product development time, but there is a risk of the additional cost. Although the downstream task information dependence to the upstream task is already considered in the current researches, but the design process overall iteration caused by the information interdependence between activities is hardly discussed; especially the impact on the design process' overall iteration from the valid information accumulation process. Secondly, most studies only focus on the single overlapping process of two activities, rarely take multi-segment and multi-ply overlapping process of multi coupled activities into account; especially the inherent link between product development time and cost which originates from the overlapping process of multi coupled activities. For the purpose of solving the above problems, as to the insufficiency of the accumulated valid information in overlapping process, the function of the valid information evolution (VIE) degree is constructed. Stochastic process theory is used to describe the design information exchange and the valid information accumulation in the overlapping segment, and then the planning models of the single overlapping segment are built. On these bases, by analyzing overlapping processes and overlapping features of multi-coupling activities, multi-segment and multi-ply overlapping planning models are built; by sorting overlapping processes and analyzing the construction of these planning models, two conclusions are obtained: (1) As to multi-segment and multi-ply overlapping of multi coupled activities, the total decrement of the task set development time is the sum of the time decrement caused by basic overlapping segments, and minus the sum of the time increment caused by multiple overlapping segments; (2) the total increment of development cost is the sum of the cost

  19. A Three-Dimensional Angular Scattering Response Including Path Powers

    OpenAIRE

    Mammasis, Kostantinos; Santi, Paolo; Goulianos, Angelos

    2011-01-01

    In this paper the angular power spectrum exhibited under a three-dimensional (3-D) Gaussian scatter distribution at fixed observation points in space is investigated. Typically, these correspond to the mobile and base units respectively. Unlike other spatial channel models, the derived model accounts for the distance to each scatterer from the observation point and transforms distances into power values under the assumption of free-space propagation. The proposed 3-D spatial channel model fol...

  20. The difficulty of measuring orbital angular momentum

    OpenAIRE

    Preece, D; Nieminen, T. A.; Asavei, T.; Heckenberg, N. R.; Rubinsztein-Dunlop, H.

    2011-01-01

    Light can carry angular momentum as well as energy and momentum; the transfer of this angular momentum to an object results in an optical torque. The development of a rotational analogue to the force measurement capability of optical tweezers is hampered by the difficulty of optical measurement of orbital angular momentum. We present an experiment with encouraging results, but emphasise the difficulty of the task.

  1. The difficulty of measuring orbital angular momentum

    Directory of Open Access Journals (Sweden)

    D. Preece

    2011-09-01

    Full Text Available Light can carry angular momentum as well as energy and momentum; the transfer of this angular momentum to an object results in an optical torque. The development of a rotational analogue to the force measurement capability of optical tweezers is hampered by the difficulty of optical measurement of orbital angular momentum. We present an experiment with encouraging results, but emphasise the difficulty of the task.

  2. Photoionization with Orbital Angular Momentum Beams

    OpenAIRE

    Picón, A.; Mompart, J.; de Aldana, J. R. Vázquez; Plaja, L.; Calvo, G. F.; Roso, L.

    2010-01-01

    Intense laser ionization expands Einstein's photoelectric effect rules giving a wealth of phenomena widely studied over the last decades. In all cases, so far, photons were assumed to carry one unit of angular momentum. However it is now clear that photons can possess extra angular momentum, the orbital angular momentum (OAM), related to their spatial profile. We show a complete description of photoionization by OAM photons, including new selection rules involving more than one unit of angula...

  3. Quantum formulation of fractional orbital angular momentum

    OpenAIRE

    Götte, Jörg B; Franke-Arnold, Sonja; Zambrini, Roberta; Barnett, Stephen M.

    2007-01-01

    The quantum theory of rotation angles (S. M. Barnett and D. T. Pegg, Phys. Rev. A, 41, 3427-3425 (1990)) is generalised to non-integer values of the orbital angular momentum. This requires the introduction of an additional parameter, the orientation of a phase discontinuity associated with fractional values of the orbital angular momentum. We apply our formalism to the propagation of light modes with fractional orbital angular momentum in the paraxial and non-paraxial regime.

  4. Orbital angular momentum induced beam shifts

    OpenAIRE

    Hermosa N.; Merano M.; Aiello A.; Woerdman J.P.

    2011-01-01

    We present experiments on Orbital Angular Momentum (OAM) induced beam shifts in optical reflection. Specifically, we observe the spatial Goos-H\\"anchen shift in which the beam is displaced parallel to the plane of incidence and the angular Imbert-Fedorov shift which is a transverse angular deviation from the geometric optics prediction. Experimental results agree well with our theoretical predictions. Both beam shifts increase with the OAM of the beam; we have measured these for OAM indices u...

  5. Orbital angular momentum in phase space

    International Nuclear Information System (INIS)

    Research highlights: → We propose a comprehensive Weyl-Wigner formalism for the canonical pair angle-angular momentum. → We present a simple and useful toolkit for the practitioner. → We derive simple evolution equations in terms of a star product in the semiclassical limit. - Abstract: A comprehensive theory of the Weyl-Wigner formalism for the canonical pair angle-angular momentum is presented. Special attention is paid to the problems linked to rotational periodicity and angular-momentum discreteness.

  6. Useful angular selectivity in oblique columnar aluminum

    Science.gov (United States)

    Ditchburn, R. J.; Smith, G. B.

    1991-03-01

    A useful magnitude of angular selective transmittance of incident unpolarized light is demonstrated in obliquely deposited aluminum. Required deposition procedures and anisotropic optical properties are discussed. Angular selectivity is very strong at visible wavelengths but both experiment and theory indicate that a single oblique layer with well defined columns gives high transmittance at near-infrared wavelengths compared with normal films. There are ways of reducing this to enhance the energy control capability. Both solar and luminous angular selectivity are reported.

  7. Axial anomaly and index of the overlap hypercube operator

    International Nuclear Information System (INIS)

    The overlap hypercube fermion is constructed by inserting a lattice fermion with hypercubic couplings into the overlap formula. One obtains an exact Ginsparg-Wilson fermion, which is more complicated than the standard overlap fermion, but which has improved practical properties and is of current interest for use in numerical simulations. Here we deal with conceptual aspects of the overlap hypercube Dirac operator. Specifically, we evaluate the axial anomaly and the index, demonstrating that the correct classical continuum limit is recovered. Our derivation is non-perturbative and therefore valid in all topological sectors. At the non-perturbative level this result had previously only been shown for the standard overlap Dirac operator with Wilson kernel. The new techniques which we develop to accomplish this also for hypercubic kernels are of a general nature and have the potential to be extended to overlap Dirac operators with even more general kernels. (orig.)

  8. Relação entre mercado de terras, crescimento econômico e insegurança fundiária explicada por um modelo a "geração imbricada" Relationship between the land market, economic growth and land insecurity explained by an overlapping model

    Directory of Open Access Journals (Sweden)

    Claudio Araujo

    2006-12-01

    Full Text Available In this paper, we analyze the relationship between the land market failures and the economic growth in Brazil, starting from an overlapping model including two sectors: agricultural and industrial. The land is both a specific factor for agriculture and an asset that can be substituted to the capital used in industry. The trade-off between land and capital holding depends, among other factors, on the transaction costs on the land market. These costs result from land insecurity and generate a decrease in the land price that favors capital accumulation. Two assumptions follow from our model: one the one hand, land insecurity has a negative effect on the land price; one the other hand it has a positive effect on economic growth. These two hypotheses are tested on panel data for Brazilian Federation. The econometric results do not reject our hypothesis.

  9. Direct and indirect effects in the regulation of overlapping promoters

    DEFF Research Database (Denmark)

    Bendtsen, Kristian Moss; Erdossy, Janos; Csiszovski, Zsolt;

    2011-01-01

    Optimal response to environmental stimuli often requires activation of certain genes and repression of others. Dual function regulatory proteins play a key role in the differential regulation of gene expression. While repression can be achieved by any DNA binding protein through steric occlusion of...... RNA polymerase in the promoter region, activation often requires a surface on the regulatory protein to contact RNAP and thus facilitate transcription initiation. RNAP itself is also a DNA binding protein, therefore it can function as a transcriptional repressor. Searching the Escherichia coli...... that promoter interference depends on the characteristics of overlapping promoters. The model predicts that promoter strength and interference can be regulated separately, which provides unique opportunities for regulation. Our experimental data suggest that in principle any DNA binding protein can be...

  10. Stochastic Maximum Likelihood (SML parametric estimation of overlapped Doppler echoes

    Directory of Open Access Journals (Sweden)

    E. Boyer

    2004-11-01

    Full Text Available This paper investigates the area of overlapped echo data processing. In such cases, classical methods, such as Fourier-like techniques or pulse pair methods, fail to estimate the first three spectral moments of the echoes because of their lack of resolution. A promising method, based on a modelization of the covariance matrix of the time series and on a Stochastic Maximum Likelihood (SML estimation of the parameters of interest, has been recently introduced in literature. This method has been tested on simulations and on few spectra from actual data but no exhaustive investigation of the SML algorithm has been conducted on actual data: this paper fills this gap. The radar data came from the thunderstorm campaign that took place at the National Astronomy and Ionospheric Center (NAIC in Arecibo, Puerto Rico, in 1998.

  11. Stochastic Maximum Likelihood (SML) parametric estimation of overlapped Doppler echoes

    Science.gov (United States)

    Boyer, E.; Petitdidier, M.; Larzabal, P.

    2004-11-01

    This paper investigates the area of overlapped echo data processing. In such cases, classical methods, such as Fourier-like techniques or pulse pair methods, fail to estimate the first three spectral moments of the echoes because of their lack of resolution. A promising method, based on a modelization of the covariance matrix of the time series and on a Stochastic Maximum Likelihood (SML) estimation of the parameters of interest, has been recently introduced in literature. This method has been tested on simulations and on few spectra from actual data but no exhaustive investigation of the SML algorithm has been conducted on actual data: this paper fills this gap. The radar data came from the thunderstorm campaign that took place at the National Astronomy and Ionospheric Center (NAIC) in Arecibo, Puerto Rico, in 1998.

  12. The Angular Momentum of the Solar System

    Science.gov (United States)

    Cang, Rongquin; Guo, Jianpo; Hu, Juanxiu; He, Chaoquiong

    2016-05-01

    The angular momentum of the Solar System is a very important physical quantity to the formation and evolution of the Solar System. Previously, the spin angular momentum of the Sun and the orbital angular momentum of the Eight Giant Planets were only taken into consideration, when researchers calculated the angular momentum of the Solar System. Nowadays, it seems narrow and conservative. Using Eggleton's code, we calculate the rotational inertia of the Sun. Furthermore, we obtain that the spin angular momentum of the Sun is 1.8838 x 10^41 kg m^2 s^-1. Besides the spin angular momentum of the Sun and the orbital angular momentum of the Eight Giant Planets, we also account for the orbital angular momentum of the Asteroid Belt, the Kuiper Belt, the Oort Cloud, the Ninth Giant Planet and the Solar Companion. We obtain that the angular momentum of the whole Solar System is 3.3212 x 10^45 kg m^2 s^-1.

  13. Injury Differences Between Small and Large Overlap Frontal Crashes

    OpenAIRE

    Hallman, Jason J.; Yoganandan, Narayan; Pintar, Frank A.; Maiman, Dennis J.

    2011-01-01

    Because small overlap impacts have recently emerged as a crash mode posing great injury risk to occupants, a detailed analysis of US crash data was conducted using the NASS/CDS and CIREN databases. Frontal crashes were subcategorized into small overlap impact (SOI) and large overlap impact (LOI) using crash and crush characteristics from the datasets. Injuries to head, spine, chest, hip and pelvis, and lower extremities were parsed and compared between crash types. MAIS 3+ occupants in NASS/C...

  14. Evolution of angular momenta and energy of the Earth-Moon system

    OpenAIRE

    Arbab, Arbab I.

    2003-01-01

    We have developed a model for the evolution of the Earth-Moon angular momenta, energy dissipation and tidal torque valid for the entire history of the Earth-Moon system. The model is supported by present observational data.

  15. Angular distributions of target black fragments in nucleus–nucleus collisions at high energy

    International Nuclear Information System (INIS)

    The experimental results of space, azimuthal, and projected angular distributions of target black fragments produced in silicon-emulsion collisions at 4.5A GeV/c (the Dubna energy) are reported. A multi-source ideal gas model is suggested to describe the experimental angular distributions. The Monte Carlo calculated results are in agreement with the experimental data. (author)

  16. Axial Anomaly and Index of the Overlap Hypercube Operator

    CERN Document Server

    Adams, D H; Adams, David H.; Bietenholz, Wolfgang

    2003-01-01

    The overlap hypercube fermion is constructed by inserting a lattice fermion with hypercubic couplings into the overlap formula. One obtains a Ginsparg-Wilson fermion, which is more complicated than the standard overlap fermion, but which has improved practical properties. Here we deal with conceptual aspects of the overlap hypercube Dirac operator. In particular we evaluate the axial anomaly and the index, demonstrating that the correct classical continuum limit is recovered. Unlike previous studies of general Ginsparg-Wilson operators, our considerations are non-perturbative and therefore valid in all topological sectors.

  17. Do Neutrino Wave Functions Overlap and Does it Matter?

    CERN Document Server

    Li, Cheng-Hsien

    2016-01-01

    Studies of neutrinos commonly ignore anti-symmetrization of their wave functions. This implicitly assumes that either spatial wave functions for neutrinos with approximately the same momentum do not overlap or their overlapping has no measurable consequences. We examine these assumptions by considering the evolution of three-dimensional neutrino wave packets (WPs). We find that it is perfectly adequate to treat accelerator and reactor neutrinos as separate WPs for typical experimental setup. While solar and supernova neutrinos correspond to overlapping WPs, they can be treated effectively as non-overlapping for analyses of their detection.

  18. Solving Fluid Flow Problems on Moving and Adaptive Overlapping Grids

    Energy Technology Data Exchange (ETDEWEB)

    Henshaw, W

    2005-07-28

    Solution of fluid dynamics problems on overlapping grids will be discussed. An overlapping grid consists of a set of structured component grids that cover a domain and overlap where they meet. Overlapping grids provide an effective approach for developing efficient and accurate approximations for complex, possibly moving geometry. Topics to be addressed include the reactive Euler equations, the incompressible Navier-Stokes equations and elliptic equations solved with a multigrid algorithm. Recent developments coupling moving grids and adaptive mesh refinement and preliminary parallel results will also be presented.

  19. Transverse and longitudinal angular momenta of light

    International Nuclear Information System (INIS)

    We review basic physics and novel types of optical angular momentum. We start with a theoretical overview of momentum and angular momentum properties of generic optical fields, and discuss methods for their experimental measurements. In particular, we describe the well-known longitudinal (i.e., aligned with the mean momentum) spin and orbital angular momenta in polarized vortex beams. Then, we focus on the transverse (i.e., orthogonal to the mean momentum) spin and orbital angular momenta, which were recently actively discussed in theory and observed in experiments. First, the recently-discovered transverse spin  angular momenta appear in various structured fields: evanescent waves, interference fields, and focused beams. We show that there are several kinds of transverse spin angular momentum, which differ strongly in their origins and physical properties. We describe extraordinary features of the transverse optical spins and overview recent experiments. In particular, the helicity-independent transverse spin inherent in edge evanescent waves offers robust spin–direction coupling at optical interfaces (the quantum spin Hall effect of light). Second, we overview the transverse orbital angular momenta of light, which can be both extrinsic and intrinsic. These two types of the transverse orbital angular momentum are produced by spatial shifts of the optical beams (e.g., in the spin Hall effect of light) and their Lorentz boosts, respectively. Our review is underpinned by a unified theory of the angular momentum of light based on the canonical momentum and spin densities, which avoids complications associated with the separation of spin and orbital angular momenta in the Poynting picture. It allows us to construct a comprehensive classification of all known optical angular momenta based on their key parameters and main physical properties

  20. Transverse and longitudinal angular momenta of light

    Energy Technology Data Exchange (ETDEWEB)

    Bliokh, Konstantin Y., E-mail: k.bliokh@gmail.com [Center for Emergent Matter Science, RIKEN, Wako-shi, Saitama 351-0198 (Japan); Nonlinear Physics Centre, RSPhysE, The Australian National University, Canberra, ACT 0200 (Australia); Nori, Franco [Center for Emergent Matter Science, RIKEN, Wako-shi, Saitama 351-0198 (Japan); Physics Department, University of Michigan, Ann Arbor, MI 48109-1040 (United States)

    2015-08-26

    We review basic physics and novel types of optical angular momentum. We start with a theoretical overview of momentum and angular momentum properties of generic optical fields, and discuss methods for their experimental measurements. In particular, we describe the well-known longitudinal (i.e., aligned with the mean momentum) spin and orbital angular momenta in polarized vortex beams. Then, we focus on the transverse (i.e., orthogonal to the mean momentum) spin and orbital angular momenta, which were recently actively discussed in theory and observed in experiments. First, the recently-discovered transverse spin  angular momenta appear in various structured fields: evanescent waves, interference fields, and focused beams. We show that there are several kinds of transverse spin angular momentum, which differ strongly in their origins and physical properties. We describe extraordinary features of the transverse optical spins and overview recent experiments. In particular, the helicity-independent transverse spin inherent in edge evanescent waves offers robust spin–direction coupling at optical interfaces (the quantum spin Hall effect of light). Second, we overview the transverse orbital angular momenta of light, which can be both extrinsic and intrinsic. These two types of the transverse orbital angular momentum are produced by spatial shifts of the optical beams (e.g., in the spin Hall effect of light) and their Lorentz boosts, respectively. Our review is underpinned by a unified theory of the angular momentum of light based on the canonical momentum and spin densities, which avoids complications associated with the separation of spin and orbital angular momenta in the Poynting picture. It allows us to construct a comprehensive classification of all known optical angular momenta based on their key parameters and main physical properties.

  1. Angular momentum of non-paraxial light beam: Dependence of orbital angular momentum on polarization

    OpenAIRE

    Li, Chun-Fang

    2009-01-01

    It is shown that the momentum density of free electromagnetic field splits into two parts. One has no contribution to the net momentum due to the transversality condition. The other yields all the momentum. The angular momentum that is associated with the former part is spin, and the angular momentum that is associated with the latter part is orbital angular momentum. Expressions for the spin and orbital angular momentum are given in terms of the electric vector in reciprocal space. The spin ...

  2. Alignment of gold nanorods by angular photothermal depletion

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Adam B.; Chow, Timothy T. Y.; Chon, James W. M., E-mail: jchon@swin.edu.au [Centre for Micro-Photonics, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, P.O. Box 218, Hawthorn, 3122 VIC (Australia)

    2014-02-24

    In this paper, we demonstrate that a high degree of alignment can be imposed upon randomly oriented gold nanorod films by angular photothermal depletion with linearly polarized laser irradiation. The photothermal reshaping of gold nanorods is observed to follow quadratic melting model rather than the threshold melting model, which distorts the angular and spectral hole created on 2D distribution map of nanorods to be an open crater shape. We have accounted these observations to the alignment procedures and demonstrated good agreement between experiment and simulations. The use of multiple laser depletion wavelengths allowed alignment criteria over a large range of aspect ratios, achieving 80% of the rods in the target angular range. We extend the technique to demonstrate post-alignment in a multilayer of randomly oriented gold nanorod films, with arbitrary control of alignment shown across the layers. Photothermal angular depletion alignment of gold nanorods is a simple, promising post-alignment method for creating future 3D or multilayer plasmonic nanorod based devices and structures.

  3. On the radiative properties of soot aggregates part 1: Necking and overlapping

    International Nuclear Information System (INIS)

    There is a strong interest in accurately modelling the radiative properties of soot aggregates (also known as black carbon particles) emitted from combustion systems and fires to gain improved understanding of the role of black carbon to global warming. This study conducted a systematic investigation of the effects of overlapping and necking between neighbouring primary particles on the radiative properties of soot aggregates using the discrete dipole approximation. The degrees of overlapping and necking are quantified by the overlapping and necking parameters. Realistic soot aggregates were generated numerically by constructing overlapping and necking to fractal aggregates formed by point-touch primary particles simulated using a diffusion-limited cluster aggregation algorithm. Radiative properties (differential scattering, absorption, total scattering, specific extinction, asymmetry factor and single scattering albedo) were calculated using the experimentally measured soot refractive index over the spectral range of 266–1064 nm for 9 combinations of the overlapping and necking parameters. Overlapping and necking affect significantly the absorption and scattering properties of soot aggregates, especially in the near UV spectrum due to the enhanced multiple scattering effects within an aggregate. By using correctly modified aggregate properties (fractal dimension, prefactor, primary particle radius, and the number of primary particle) and by accounting for the effects of multiple scattering, the simple Rayleigh–Debye–Gans theory for fractal aggregates can reproduce reasonably accurate radiative properties of realistic soot aggregates. - Highlights: • We determine the radiative properties of realistic virtual soot aggregates. • We consider the primary sphere polydispersity, their necking and overlapping. • Scattering and absorption are decreased by considering these effects in the UV. • The single scattering albedo and asymmetry factor are also deeply

  4. Experimental determination of high angular momentum states

    International Nuclear Information System (INIS)

    The current knowledge of the atomic nucleus structure is summarized. A short abstract of the nuclear properties at high angular momentum and a more detailed description of the experimental methods used in the study of high angular momenta is made. (L.C.)

  5. Orbital Angular Momentum in the Nucleon

    OpenAIRE

    Garvey, Gerald T.

    2010-01-01

    Analysis of the measured value of the integrated \\bar{d}-\\bar{u} asymmetry (Ifas = 0.147+-0.027) in the nucleon show it to arise from nucleon fluctuations into baryon plus pion. Requiring angular momentum conservation in these fluctuations shows the associated orbital angular momentum is equal to the value of the flavor asymmetry.

  6. Detecting orbital angular momentum in radio signals

    OpenAIRE

    Then, H.; Thidé, B.; Mendonça, J T; Carozzi, T.D.; Bergman, J.; Baan, W. A.; Mohammadi, S. (Siawoosh); Eliasson, B.

    2008-01-01

    Electromagnetic waves with an azimuthal phase shift are known to have a well defined orbital angular momentum. Different methods that allow for the detection of the angular momentum are proposed. For some, we discuss the required experimental setup and explore the range of applicability.

  7. The Orbital Angular Momentum Sum Rule

    Science.gov (United States)

    Aslan, Fatma; Burkardt, Matthias

    2015-10-01

    As an alternative to the Ji sum rule for the quark angular momentum, a sum rule for the quark orbital angular momentum, based on a twist-3 generalized parton distribution, has been suggested. We study the validity of this sum rule in the context of scalar Yukawa interactions as well as in QED for an electron.

  8. Responsive web design with AngularJS

    CERN Document Server

    Patel, Sandeep Kumar

    2014-01-01

    If you are an AngularJS developer who wants to learn about responsive web application development, this book is ideal for you. Responsive Web Design with AngularJS is intended for web developers or designers with a basic knowledge of HTML, CSS, and JavaScript.

  9. Exposing Library Services with AngularJS

    OpenAIRE

    Jakob Voß; Moritz Horn

    2014-01-01

    This article provides an introduction to the JavaScript framework AngularJS and specific AngularJS modules for accessing library services. It shows how information such as search suggestions, additional links, and availability can be embedded in any website. The ease of reuse may encourage more libraries to expose their services via standard APIs to allow usage in different contexts.

  10. Angular-Rate Estimation Using Quaternion Measurements

    Science.gov (United States)

    Azor, Ruth; Bar-Itzhack, Y.; Deutschmann, Julie K.; Harman, Richard R.

    1998-01-01

    In most spacecraft (SC) there is a need to know the SC angular rate. Precise angular rate is required for attitude determination, and a coarse rate is needed for attitude control damping. Classically, angular rate information is obtained from gyro measurements. These days, there is a tendency to build smaller, lighter and cheaper SC, therefore the inclination now is to do away with gyros and use other means and methods to determine the angular rate. The latter is also needed even in gyro equipped satellites when performing high rate maneuvers whose angular-rate is out of range of the on board gyros or in case of gyro failure. There are several ways to obtain the angular rate in a gyro-less SC. When the attitude is known, one can differentiate the attitude in whatever parameters it is given and use the kinematics equation that connects the derivative of the attitude with the satellite angular-rate and compute the latter. Since SC usually utilize vector measurements for attitude determination, the differentiation of the attitude introduces a considerable noise component in the computed angular-rate vector.

  11. Angular momentum decomposition of Richardson's pairs

    International Nuclear Information System (INIS)

    The angular momentum decomposition of pairs obtained using Richardson's exact solution of the pairing Hamiltonian for the deformed 174Yb nucleus are displayed. The probabilities for low angular momenta of the collective pairs are strikingly different from the ones obtained in the BCS ground state

  12. Does high harmonic generation conserve angular momentum?

    CERN Document Server

    Fleischer, Avner; Diskin, Tzvi; Sidorenko, Pavel; Cohen, Oren

    2013-01-01

    High harmonic generation (HHG) is a unique and useful process in which infrared or visible radiation is frequency up converted into the extreme ultraviolet and x ray spectral regions. As a parametric process, high harmonic generation should conserve the radiation energy, momentum and angular momentum. Indeed, conservation of energy and momentum have been demonstrated. Angular momentum of optical beams can be divided into two components: orbital and spin (polarization). Orbital angular momentum is assumed to be conserved and recently observed deviations were attributed to propagation effects. On the other hand, conservation of spin angular momentum has thus far never been studied, neither experimentally nor theoretically. Here, we present the first study on the role of spin angular momentum in extreme nonlinear optics by experimentally generating high harmonics of bi chromatic elliptically polarized pump beams that interact with isotropic media. While observing that the selection rules qualitatively correspond...

  13. Physical Angular Momentum Separation for QED

    CERN Document Server

    Sun, Weimin

    2016-01-01

    We study the non-uniqueness problem of the gauge-invariant angular momentum separation for the case of QED, which stems from the recent controversy concerning the proper definitions of the orbital angular momentum and spin operator of the individual parts of a gauge field system. For the free quantum electrodynamics without matter, we show that the basic requirement of Euclidean symmetry selects a unique physical angular momentum separation scheme from the multitude of the possible angular momentum separation schemes constructed using the various Gauge Invariant Extentions. Based on these results, we propose a set of natural angular momentum separation schemes for the case of interacting QED by invoking the formalism of asymptotic fields. Some perspectives on such a problem for the case of QCD are briefly discussed.

  14. Shake for Sigma, Pray for Pi: Classroom Orbital Overlap Analogies

    Science.gov (United States)

    Dicks, Andrew P.

    2011-01-01

    An introductory organic classroom demonstration is discussed where analogies are made between common societal hand contact and covalent bond formation. A handshake signifies creation of a [sigma] bond ("head-on" orbital overlap), whereas the action of praying illustrates "sideways" overlap and generation of a [pi] bond. The nature of orbital and…

  15. Nested Genetic Algorithm for Resolving Overlapped Spectral Bands

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A nested genetic algorithm, including genetic parameter level and genetic implemented level for peak parameters, was proposed and applied for resolving overlapped spectral bands. By the genetic parameter level, parameters of genetic algorithm were optimized; moreover, the number of overlapped peaks was determined simultaneously. Then parameters of individual peaks were computed with the genetic implemented level.

  16. Overlaps of Partial Neel States and Bethe States

    CERN Document Server

    Foda, O

    2015-01-01

    Partial Neel states are generalizations of the ordinary Neel (classical anti-ferromagnet) state that can have arbitrary integer spin. We study overlaps of these states with Bethe states. We first identify this overlap with a partial version of reflecting-boundary domain-wall partition function, and then derive various determinant representations for off-shell and on-shell Bethe states.

  17. CFHTLenS and RCSLenS: Testing Photometric Redshift Distributions Using Angular Cross-Correlations with Spectroscopic Galaxy Surveys

    CERN Document Server

    Choi, Ami; Blake, Chris; Hildebrandt, Hendrik; Duncan, Christopher A J; Erben, Thomas; Nakajima, Reiko; Van Waerbeke, Ludovic; Viola, Massimo

    2015-01-01

    We determine the accuracy of galaxy redshift distributions as estimated from photometric redshift probability distributions $p(z)$. Our method utilises measurements of the angular cross-correlation between photometric galaxies and an overlapping sample of galaxies with spectroscopic redshifts. We describe the redshift leakage from a galaxy photometric redshift bin $j$ into a spectroscopic redshift bin $i$ using the sum of the $p(z)$ for the galaxies residing in bin $j$. We can then predict the angular cross-correlation between photometric and spectroscopic galaxies due to intrinsic galaxy clustering when $i \

  18. Perturbed angular correlations and distributions

    International Nuclear Information System (INIS)

    The present index comprises original works and review papers on the perturbed angular correlations (PAC) and distributions (PAD). The articles published in the Soviet and foreign journals as well as the materials of conferences, monographs and collections published in the USSR and abroad, the preprints produced by various institutes and abstracts of disertations are included from 1948 up to 1973. The whole material compiled in this index is divided into three parts. Part one is a bibliographic index. All papers in this part are divided into three sections. Section one comprises the papers devoted to the theoretical works on PAC, review papers, monographs, materials of conferences. Section two deals with the works of methodical character where correlation spectrometers as well as the treatment of experimental data are described. In section three experimental works with concrete nuclei are compiled. Part two gives the characteristic of works performed with concrete nuclei. This part is presented in the form of the table in which the works are systematized according to the chemical elements and isotopes. The table shows the characteristics of the nuclear levels used in the investigations by PAC as well as brief characteristics of experiments and results obtained. Part three - appendix contains alphabetic index of the authors, the list of the used editions with the abbreviations of the titles of these editions. The lists indicating the dynamic of the quantity of works on PAC and the distribution according to the literature sources are also given

  19. Overlapping Multi-hop Clustering for Wireless Sensor Networks

    CERN Document Server

    Youssef, Moustafa; Younis, Mohamed

    2009-01-01

    Clustering is a standard approach for achieving efficient and scalable performance in wireless sensor networks. Traditionally, clustering algorithms aim at generating a number of disjoint clusters that satisfy some criteria. In this paper, we formulate a novel clustering problem that aims at generating overlapping multi-hop clusters. Overlapping clusters are useful in many sensor network applications, including inter-cluster routing, node localization, and time synchronization protocols. We also propose a randomized, distributed multi-hop clustering algorithm (KOCA) for solving the overlapping clustering problem. KOCA aims at generating connected overlapping clusters that cover the entire sensor network with a specific average overlapping degree. Through analysis and simulation experiments we show how to select the different values of the parameters to achieve the clustering process objectives. Moreover, the results show that KOCA produces approximately equal-sized clusters, which allows distributing the load...

  20. Geometric Quality Assessment of LIDAR Data Based on Swath Overlap

    Science.gov (United States)

    Sampath, A.; Heidemann, H. K.; Stensaas, G. L.

    2016-06-01

    This paper provides guidelines on quantifying the relative horizontal and vertical errors observed between conjugate features in the overlapping regions of lidar data. The quantification of these errors is important because their presence quantifies the geometric quality of the data. A data set can be said to have good geometric quality if measurements of identical features, regardless of their position or orientation, yield identical results. Good geometric quality indicates that the data are produced using sensor models that are working as they are mathematically designed, and data acquisition processes are not introducing any unforeseen distortion in the data. High geometric quality also leads to high geolocation accuracy of the data when the data acquisition process includes coupling the sensor with geopositioning systems. Current specifications (e.g. Heidemann 2014) do not provide adequate means to quantitatively measure these errors, even though they are required to be reported. Current accuracy measurement and reporting practices followed in the industry and as recommended by data specification documents also potentially underestimate the inter-swath errors, including the presence of systematic errors in lidar data. Hence they pose a risk to the user in terms of data acceptance (i.e. a higher potential for Type II error indicating risk of accepting potentially unsuitable data). For example, if the overlap area is too small or if the sampled locations are close to the center of overlap, or if the errors are sampled in flat regions when there are residual pitch errors in the data, the resultant Root Mean Square Differences (RMSD) can still be small. To avoid this, the following are suggested to be used as criteria for defining the inter-swath quality of data: a) Median Discrepancy Angle b) Mean and RMSD of Horizontal Errors using DQM measured on sloping surfaces c) RMSD for sampled locations from flat areas (defined as areas with less than 5 degrees of slope