Schwinger model simulations with dynamical overlap fermions
Bietenholz, W; Volkholz, J
2007-01-01
We present simulation results for the 2-flavour Schwinger model with dynamical overlap fermions. In particular we apply the overlap hypercube operator at seven light fermion masses. In each case we collect sizable statistics in the topological sectors 0 and 1. Since the chiral condensate Sigma vanishes in the chiral limit, we observe densities for the microscopic Dirac spectrum, which have not been addressed yet by Random Matrix Theory (RMT). Nevertheless, by confronting the averages of the lowest eigenvalues in different topological sectors with chiral RMT in unitary ensemble we obtain -- for the very light fermion masses -- values for $\\Sigma$ that follow closely the analytical predictions in the continuum.
Schwinger model simulations with dynamical overlap fermions
Energy Technology Data Exchange (ETDEWEB)
Bietenholz, W. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Shcheredin, S. [Bielefeld Univ. (Germany). Fakultaet fuer Physik; Volkholz, J. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik
2007-11-15
We present simulation results for the 2-flavour Schwinger model with dynamical overlap fermions. In particular we apply the overlap hypercube operator at seven light fermion masses. In each case we collect sizable statistics in the topological sectors 0 and 1. Since the chiral condensate {sigma} vanishes in the chiral limit, we observe densities for the microscopic Dirac spectrum, which have not been addressed yet by Random Matrix Theory (RMT). Nevertheless, by confronting the averages of the lowest eigenvalues in different topological sectors with chiral RMT in unitary ensemble we obtain - for the very light fermion masses - values for {sigma} that follow closely the analytical predictions in the continuum. (orig.)
Guseinov, I I
2010-01-01
The new combined formulas have been established for the complex and real rotation-angular functions arising in the evaluation of two-center overlap integrals over arbitrary atomic orbitals in molecular coordinate system. These formulas can be useful in the study of different quantum mechanical problems in both the theory and practice of calculations dealing with atoms, molecules, nuclei and solids when the integer and noninteger n complex and real atomic orbitals basis sets are emploed. This work presented the development of our previous paper (I.I. Guseinov, Phys. Rev. A, 32 (1985) 1864).
Using Model-based Overlapping Seed Expansion to detect highly overlapping community structure
McDaid, Aaron F
2010-01-01
As research into community finding in social networks progresses, there is a need for algorithms capable of detecting overlapping community structure. Many algorithms have been proposed in recent years that are capable of assigning each node to more than a single community. The performance of these algorithms tends to degrade when the ground-truth contains a more highly overlapping community structure, with nodes assigned to more than two communities. Such highly overlapping structure is likely to exist in many social networks, such as Facebook friendship networks. In this paper we present a scalable algorithm, MOSES, based on a statistical model of community structure, which is capable of detecting highly overlapping community structure, especially when there is variance in the number of communities each node is in. In evaluation on synthetic data MOSES is found to be superior to existing algorithms, especially at high levels of overlap. We demonstrate MOSES on real social network data by analyzing the netwo...
On the vector model of angular momentum
Saari, Peeter
2016-09-01
Instead of (or in addition to) the common vector diagram with cones, we propose to visualize the peculiarities of quantum mechanical angular momentum by a completely quantized 3D model. It spotlights the discrete eigenvalues and noncommutativity of components of angular momentum and corresponds to outcomes of measurements—real or computer-simulated. The latter can be easily realized by an interactive worksheet of a suitable program package of algebraic calculations. The proposed complementary method of visualization helps undergraduate students to better understand the counterintuitive properties of this quantum mechanical observable.
Angular momentum of a brane-world model
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
In this paper we discuss the properties of the general covariant angular momentum of a fivedimensional brane-world model. Through calculating the total angular momentum of this model, we are able to analyze the properties of the total angular momentum in the inflationary RS model. We show that the space-like components of the total angular momentum of the inflationary RS model are all zero while the others are non-zero, which agrees with the results from ordinary RS model.
Angular momentum in cluster Spherical Collapse Model
Cupani, Guido; Mardirossian, Fabio
2011-01-01
Our new formulation of the Spherical Collapse Model (SCM-L) takes into account the presence of angular momentum associated with the motion of galaxy groups infalling towards the centre of galaxy clusters. The angular momentum is responsible for an additional term in the dynamical equation which is useful to describe the evolution of the clusters in the non-equilibrium region which is investigated in the present paper. Our SCM-L can be used to predict the profiles of several strategic dynamical quantities as the radial and tangential velocities of member galaxies, and the total cluster mass. A good understanding of the non-equilibrium region is important since it is the natural scenario where to study the infall in galaxy clusters and the accretion phenomena present in these objects. Our results corroborate previous estimates and are in very good agreement with the analysis of recent observations and of simulated clusters.
An Exposition of Fischer's Model of Overlapping Contracts.
Fields, T. Windsor; Hart, William R.
1992-01-01
Suggests how the classic model of overlapping contracts can be incorporated into the contract wage model of aggregate supply. Illustrates dynamics of macroeconomic adjustment following a shock to aggregate demand. Concludes that overlapping contracts do not prolong the adjustment process; rather, the longest remaining contract determines the time…
Angular Momentum of a Brane-world Model
Jia, Bei; Zhang, Peng-Ming
2008-01-01
In this paper we discuss the properties of the general covariant angular momentum of a five-dimensional brane-world model. Through calculating the total angular momentum of this model, we are able to analyze the properties of the total angular momentum in the inflationary RS model. We show that the space-like components of the total angular momentum of are all zero while the others are non-zero, which agrees with the results from ordinary RS model.
Management Model of Resources Equilibrium Distribution among Overlapping-Generations
Institute of Scientific and Technical Information of China (English)
Jiang Xuemin; Li Ling
2004-01-01
The overlapping generation models the western scholars have designed from various perspectives to address different kinds of issues do not reflect Chinese emerging political and economic problems, and cannot be entirely and blindly applied to Chinese practical situation. In this paper the authors endeavor to incorporate some western scholars' research results into their own research findings to present overlapping generations model theory in a new perspective through establishing an overlapping generations theory on population including articulation of concepts and theorems of biological generation, economic generation and social generation and the overlapping periods in biological generation and two overlapping periods in economic generation among three generations. This management model with equilibrium distribution of resource wealth includes overlapping generations length model (δ),equilibrium transfer model (θ) and a complete model on equilibrium distribution among generations (δ-θ).The model provides quantitative basis for the creation of resource management system, and fills in a theoretical gap in this discipline in China. Besides,it furnishes a new methodology and manipulable tool for Chinese government to establish a comprehensive management information bank for many sectors such as economic trade, population, science and technology, education, human resource, natural resource and environment, agriculture, forestry,industry, mining and energy.
On Angular Sampling Methods for 3-D Spatial Channel Models
DEFF Research Database (Denmark)
Fan, Wei; Jämsä, Tommi; Nielsen, Jesper Ødum
2015-01-01
This paper discusses generating three dimensional (3D) spatial channel models with emphasis on the angular sampling methods. Three angular sampling methods, i.e. modified uniform power sampling, modified uniform angular sampling, and random pairing methods are proposed and investigated in detail....... The random pairing method, which uses only twenty sinusoids in the ray-based model for generating the channels, presents good results if the spatial channel cluster is with a small elevation angle spread. For spatial clusters with large elevation angle spreads, however, the random pairing method would fail...... and the other two methods should be considered....
A stochastic model for detecting overlapping and hierarchical community structure.
Directory of Open Access Journals (Sweden)
Xiaochun Cao
Full Text Available Community detection is a fundamental problem in the analysis of complex networks. Recently, many researchers have concentrated on the detection of overlapping communities, where a vertex may belong to more than one community. However, most current methods require the number (or the size of the communities as a priori information, which is usually unavailable in real-world networks. Thus, a practical algorithm should not only find the overlapping community structure, but also automatically determine the number of communities. Furthermore, it is preferable if this method is able to reveal the hierarchical structure of networks as well. In this work, we firstly propose a generative model that employs a nonnegative matrix factorization (NMF formulization with a l(2,1 norm regularization term, balanced by a resolution parameter. The NMF has the nature that provides overlapping community structure by assigning soft membership variables to each vertex; the l(2,1 regularization term is a technique of group sparsity which can automatically determine the number of communities by penalizing too many nonempty communities; and hence the resolution parameter enables us to explore the hierarchical structure of networks. Thereafter, we derive the multiplicative update rule to learn the model parameters, and offer the proof of its correctness. Finally, we test our approach on a variety of synthetic and real-world networks, and compare it with some state-of-the-art algorithms. The results validate the superior performance of our new method.
Spatial-angular modeling of ground-based biaxial lidar
Agishev, Ravil R.
1997-10-01
Results of spatial-angular LIDAR modeling based on an efficiency criterion introduced are represented. Their analysis shows that a low spatial-angular efficiency of traditional VIS and NIR systems is a main cause of a low S/BR ratio at the photodetector input. It determines the considerable measurements errors and the following low accuracy of atmospheric optical parameters retrieval. As we have shown, the most effective protection against intensive sky background radiation for ground-based biaxial LIDAR's consist in forming of their angular field according to spatial-angular efficiency criterion G. Some effective approaches to high G-parameter value achievement to achieve the receiving system optimization are discussed.
Resolution of overlapping ambiguity strings based on maximum entropy model
Institute of Scientific and Technical Information of China (English)
ZHANG Feng; FAN Xiao-zhong
2006-01-01
The resolution of overlapping ambiguity strings (OAS) is studied based on the maximum entropy model.There are two model outputs,where either the first two characters form a word or the last two characters form a word.The features of the model include one word in context of OAS,the current OAS and word probability relation of two kinds of segmentation results.OAS in training text is found by the combination of the FMM and BMM segmentation method.After feature tagging they are used to train the maximum entropy model.The People Daily corpus of January 1998 is used in training and testing.Experimental results show a closed test precision of 98.64% and an open test precision of 95.01%.The open test precision is 3,76% better compared with that of the precision of common word probability method.
Hybrid nonlinear model of the angular vestibulo-ocular reflex.
Ranjbaran, Mina; Galiana, Henrietta L
2013-01-01
A hybrid nonlinear bilateral model for the horizontal angular vestibulo-ocular reflex (AVOR) is presented in this paper. The model relies on known interconnections between saccadic burst circuits in the brainstem and ocular premotor areas in the vestibular nuclei during slow and fast phase intervals. A viable switching strategy for the timing of nystagmus events is proposed. Simulations show that this hybrid model replicates AVOR nystagmus patterns that are observed in experimentally recorded data.
A fuzzy approach to the Weighted Overlap Dominance model
DEFF Research Database (Denmark)
Franco de los Rios, Camilo Andres; Hougaard, Jens Leth; Nielsen, Kurt
2013-01-01
Decision support models are required to handle the various aspects of multi-criteria decision problems in order to help the individual understand its possible solutions. In this sense, such models have to be capable of aggregating and exploiting different types of measurements and evaluations in ...... is presented for ordering and identifying the best alternatives under an interactive procedure that takes into account the natural imprecision and relevance of information....... in an interactive way, where input data can take the form of uniquely-graded or interval-valued information. Here we explore the Weighted Overlap Dominance (WOD) model from a fuzzy perspective and its outranking approach to decision support and multidimensional interval analysis. Firstly, imprecision measures...... are introduced for characterizing the type of uncertainty being expressed by intervals, examining at the same time how the WOD model handles both non-interval as well as interval data, and secondly, relevance degrees are proposed for obtaining a ranking over the alternatives. Hence, a complete methodology...
Quark Orbital Angular Momentum in the MIT Bag Model
Courtoy, A
2016-01-01
We present the results for the Generalized Transverse Momentum Distribution related to quark Orbital Angular Momentum, {\\it i.e.} $F_{14}$, in the MIT bag model. This model has been modified to include the Peierls--Yoccoz projection to restore translational invariance. Such a modification allows to fulfill more satisfactorily basic sum rules, that would otherwise be less elegantly carried out with the original version. Using the same model, we have calculated the twist-$3$ GPD that corresponds to Orbital Angular Momentum \\`a la Ji, through the Penttinen--Polyakov--Shuvaev--Strikman sum rule. Recently, a new relation between the two definitions of the quark Orbital Angular Momentum at the density level has been proposed, which we illustrate here within the model. The sum rule is fulfilled. Still within the framework of the MIT bag model, we analyze the Wandzura--Wilczek expression for the GPD of interest. The genuine quark-gluon contribution is evaluated directly thanks to the equation of motion of the bag, wh...
A MODEL FOR OVERLAPPING TRIGRAM TECHNIQUE FOR TELUGU SCRIPT
Directory of Open Access Journals (Sweden)
B.Vishnu Vardhan
2007-09-01
Full Text Available N-grams are consecutive overlapping N-character sequences formed from an input stream. N-grams are used as alternatives to word-based retrieval in a number of systems. In this paper we propose a model applicable to categorization of Telugu document. Telugu is an official language derived from ancient Brahmi script and also the official language of the state of Andhra Pradesh. Brahmi based script is noted for complex conjunct formations. The canonical structure is described as ((C C CV. The structure evolves any character from a set of basic syllables known as vowels and consonants where consonant, vowel (CV core is the basic unit optionally preceded by one or two consonants. A huge set of characters that resemble the phonetic nature with an equivalent character shape are derived from the canonical structure. Words formed from this set evolved into a large corpus. Stringent grammar rules in word formation are part of this corpus. Certain word combinations result in the formation of single word is to be addressed where the last character of the first word and first character of the successive word are combined. Keeping in view of these complexities we propose a trigram based system that provides a reasonable alternative to a word based system in achieving document categorization for the language Telugu.
Advances in Studies of Cloud Overlap and Its Radiative Transfer in Climate Models
Institute of Scientific and Technical Information of China (English)
张华; 荆现文
2016-01-01
The latest advances in studies on the treatment of cloud overlap and its radiative transfer in global climate models are summarized. Developments with respect to this internationally challenging problem are described from aspects such as the design of cloud overlap assumptions, the realization of cloud overlap assumptions within climate models, and the data and methods used to obtain consistent observations of cloud overlap structure and radiative transfer in overlapping clouds. To date, there has been an appreciable level of achievement in studies on cloud overlap in climate models, demonstrated by the development of scientific assumptions (e.g., e-folding overlap) to describe cloud overlap, the invention and broad application of the fast radiative transfer method for overlapped clouds (Monte Carlo Independent Column Approximation), and the emergence of continuous 3D cloud satellite observation (e.g., CloudSat/CALIPSO) and cloud-resolving models, which provide numerous data valuable for the exact description of cloud overlap structure in climate models. However, present treatments of cloud overlap and its radiative transfer process are far from complete, and there remain many unsettled problems that need to be explored in the future.
1989-07-15
National de la Academin Mexicana de Quimica Inorganica Reproduction in whole or in part is permitted for any purpose of the United States Government...FTALOCINANINAS DE LANTANIDOS Juan Padilla,* (1) y William E. Hatfield (2). (1) Departamento de Quimica , Universidad Aut6noma Metropolitana, Iztapalapa...Departamento de Quimica , Universidad Autonoma Metropolitana Iztapalapa, A.P. 55-534, Mexico, D.F. 09340. (2) Department of Chemistry, University of North
Öhrn, Anders; Hermida-Ramon, Jose M; Karlström, Gunnar
2016-05-10
The effects of charge overlap, or charge penetration, are neglected in most force fields and interaction terms in QM/MM methods. The effects are however significant at intermolecular distances near the van der Waals minimum. In the present study, we propose a method to evaluate the intermolecular Coloumb interaction using Slater-type functions, thus explicitly modeling the charge overlap. The computational cost of the method is low, which allows it to be used in large systems with most force fields as well as in QM/MM schemes. The charge distribution is modeled as a distributed multipole expansion up to quadrupole and Slater-type functions of angular momentum up to L = 1. The exponents of the Slater-type functions are obtained using a divide-and-conquer method to avoid the curse of dimensionality that otherwise is present for large nonlinear optimizations. A Levenberg-Marquardt algorithm is applied in the fitting process. A set of parameters is obtained for each molecule, and the process is fully automated. Calculations have been performed in the carbon monoxide and the water dimers to illustrate the model. Results show a very good accuracy of the model with relative errors in the electrostatic potential lower than 3% over all reasonable separations. At very short distances where the charge overlaps is the most significant, errors are lower than 8% and lower than 3.5% at distances near the van der Waals minimum.
Angular dependence models for radiance to flux conversion
Green, Richard N.; Suttles, John T.; Wielicki, Bruce A.
1990-01-01
Angular dependence models (ADM) used for converting the measured radiance to flux at the top of the atmosphere are reviewed, and emphasis is placed on the measure of their effectiveness and the implications of requiring the ADMs to satisfy reciprocity. The overall significance of the ADMs is figured out by analyzing the same satellite data with a single Lambertian model, single mean model, and the 12 Earth Radiation Budget Experiment (ERBE) ADMs. It is shown that the Lambertian ADM is inadequate, while the mean ADM results in nearly unbiased fluxes but creates substantial differences for individual pixel fluxes. The standard ERBE ADM works well except for a 10-pct to 15-pct albedo growth across the scan; a modified ADM based on the standard ERBE ADM but forced to satisfy the principle of reciprocity increases the limb brightening and reduces the albedo growth but does not improve the scanner and nonscanner intercomparison.
Modeling Angular-Momentum History in Dark-Matter Halo
Maller, A H; Somerville, R S; Maller, Ariyeh H.; Dekel, Avishai; Somerville, Rachel S.
2002-01-01
We model the acquisition of spin by dark-matter halos in semi-analytic merger trees. We explore two different algorithms; one in which halo spin is acquired from the orbital angular momentum of merging satellites, and another in which halo spin is gained via tidal torquing on shells of material while still in the linear regime. We find that both scenarios produce the characteristic spin distribution of halos found in N-body simulations, namely, a log-normal distribution with mean ~0.04 and standard deviation ~0.5 in the log. A perfect match requires fine-tuning of two free parameters. Both algorithms also reproduce the general insensitivity of the spin distribution to halo mass, redshift and cosmology seen in N-body simulations. The spin distribution can be made strictly constant by physically motivated scalings of the free parameters. In addition, both schemes predict that halos which have had recent major mergers have systematically larger spin values. These algorithms can be implemented within semi-analyti...
The dynamic macroeconomic effects of tax policy in an overlapping generations model
Heijdra, BJ; Ligthart, JE
2000-01-01
The paper studies the dynamic allocation effects of tax policy within the context of an overlapping-generations model of the Blanchard-Yaari type. The model is extended to allow for endogenous labour supply and three tax instruments, viz. a capital tax, labour income tax, and consumption tax. Both a
Finding Non-overlapping Clusters for Generalized Inference Over Graphical Models
Vats, Divyanshu
2011-01-01
Graphical models compactly capture stochastic dependencies amongst a collection of random variables using a graph. Inference over graphical models corresponds to finding marginal probability distributions given joint probability distributions. Several inference algorithms rely on iterative message passing between nodes. Although these algorithms can be generalized so that the message passing occurs between clusters of nodes, there are limited frameworks for finding such clusters. Moreover, current frameworks rely on finding clusters that are overlapping. This increases the computational complexity of finding clusters since the edges over a graph with overlapping clusters must be chosen carefully to avoid inconsistencies in the marginal distribution computations. In this paper, we propose a framework for finding clusters in a graph for generalized inference so that the clusters are \\emph{non-overlapping}. Given an undirected graph, we first derive a linear time algorithm for constructing a block-tree, a tree-s...
Angular Motion Estimation Using Dynamic Models in a Gyro-Free Inertial Measurement Unit
Directory of Open Access Journals (Sweden)
Otmar Loffeld
2012-04-01
Full Text Available In this paper, we summarize the results of using dynamic models borrowed from tracking theory in describing the time evolution of the state vector to have an estimate of the angular motion in a gyro-free inertial measurement unit (GF-IMU. The GF-IMU is a special type inertial measurement unit (IMU that uses only a set of accelerometers in inferring the angular motion. Using distributed accelerometers, we get an angular information vector (AIV composed of angular acceleration and quadratic angular velocity terms. We use a Kalman filter approach to estimate the angular velocity vector since it is not expressed explicitly within the AIV. The bias parameters inherent in the accelerometers measurements’ produce a biased AIV and hence the AIV bias parameters are estimated within an augmented state vector. Using dynamic models, the appended bias parameters of the AIV become observable and hence we can have unbiased angular motion estimate. Moreover, a good model is required to extract the maximum amount of information from the observation. Observability analysis is done to determine the conditions for having an observable state space model. For higher grades of accelerometers and under relatively higher sampling frequency, the error of accelerometer measurements is dominated by the noise error. Consequently, simulations are conducted on two models, one has bias parameters appended in the state space model and the other is a reduced model without bias parameters.
Labor supply and retirement policy in an overlapping generations model with stochastic fertility
DEFF Research Database (Denmark)
Hagen Jørgensen, Ole; Hougaard Jensen, Svend E.
Using a stochastic general equilibrium model with overlapping generations, this paper studies a policy rule for the retirement age aiming at offsetting the effects on the supply of labor following fertility changes. The authors find that the retirement age should increase more than proportionally...
Modeling Overlapping Laminations in Magnetic Core Materials Using 2-D Finite-Element Analysis
DEFF Research Database (Denmark)
Jensen, Bogi Bech; Guest, Emerson David; Mecrow, Barrie C.
2015-01-01
and a composite material is created, which has the same magnetization characteristic. The benefit of this technique is that it allows a designer to perform design and optimization of magnetic cores with overlapped laminations using a 2-D FE model rather than a 3-D FE model, which saves modeling and simulation...... time. The modeling technique is verified experimentally by creating a composite material of a lap joint with a 3-mm overlapping region and using it in a 2-D FE model of a ring sample made up of a stack of 20 laminations. The B-H curve of the simulated ring sample is compared with the B-H curve obtained...
Stevens, Adam R H; Mutch, Simon J
2016-01-01
We present the new semi-analytic model of galaxy evolution, DARK SAGE, a heavily modified version of the publicly available SAGE code. The model is designed for detailed evolution of galactic discs. We evolve discs in a series of annuli with fixed specific angular momentum, which allows us to make predictions for the radial and angular-momentum structure of galaxies. Most physical processes, including all channels of star formation and associated feedback, are performed in these annuli. We present the surface density profiles of our model spiral galaxies, both as a function of radius and specific angular momentum, and find the discs naturally build a pseduobulge-like component. Our main results are focussed on predictions relating to the integrated mass--specific angular momentum relation of stellar discs. The model produces a distinct sequence between these properties in remarkable agreement with recent observational literature. We investigate the impact Toomre disc instabilities have on shaping this sequenc...
New model for holographic storage by simultaneous angular multiplexing
Ibarra, J. C.; Urzua, D.; Olivares-Peréz, A.; Ortiz-Gutierrez, M.
2006-05-01
We describe a technique for holographic storage by simultaneous angular multiplexing to obtain a large-scale holographic memory. We recorded 72 objects at the same time in one point on holographic plate PFG-03M from Slavich Co., using a He-Ne laser (λ = 633 nm). Each object is placed on a circular photographic transparency, separate 0.94 degree each one. The technique allows us simultaneous reconstruction of the 72 images without cross-talk. The diffraction efficiency obtained at order one is 6%. Experimental results are shown.
DEFF Research Database (Denmark)
Schultz, Christian
1992-01-01
If there is unemployment no matter how low the wage rate becomes, one speaks of involuntary unemployment. This phenomenon has been shown to arise in a variety of temporary or atemporal macro models with imperfect competition in the goods markets. In this paper we investigate whether the phenomeno...... of involuntary unemployment arises in a Hartian overlapping generations model with rational expectations. It does not, neither in the short nor in the long run...
Modeling seismic wave propagation in heterogeneous medium using overlap domain pseudospectral method
Institute of Scientific and Technical Information of China (English)
YAN Jiu-peng; WANG Yan-bin
2008-01-01
Pseudospectral method is an efficient and high accuracy numerical method for simulating seismic wave propagation in heterogeneous earth medium. Since its derivative operator is global, this method is commonly considered not suitable for parallel computation. In this paper, we introduce the parallel overlap domain decomposition scheme and give a parallel pseudospectral method implemented on distributed memory PC cluster system for modeling seismic wave propagation in heterogeneous medium. In this parallel method, the medium is decomposed into several subdomains and the wave equations are solved in each subdomain simultaneously. The solutions in each subdomain are connected through the transferring at the overlapped region. Using 2D models, we compared the parallel and traditional pseudospectral method, analyzed the accuracy of the parallel method. The results show that the parallel method can efficiently reduce computation time for the same accuracy as the traditional method. This method could be applied to large scale modeling of seismic wave propagation in 3D heterogeneous medium.
Stevens, Adam R. H.; Croton, Darren J.; Mutch, Simon J.
2016-09-01
We present the new semi-analytic model of galaxy evolution, DARK SAGE, a heavily modified version of the publicly available SAGE code. The model is designed for detailed evolution of galactic discs. We evolve discs in a series of annuli with fixed specific angular momentum, which allows us to make predictions for the radial and angular-momentum structure of galaxies. Most physical processes, including all channels of star formation and associated feedback, are performed in these annuli. We present the surface density profiles of our model spiral galaxies, both as a function of radius and specific angular momentum, and find that the discs naturally build a pseudo-bulge-like component. Our main results are focused on predictions relating to the integrated mass-specific angular momentum relation of stellar discs. The model produces a distinct sequence between these properties in remarkable agreement with recent observational literature. We investigate the impact Toomre disc instabilities have on shaping this sequence and find they are crucial for regulating both the mass and spin of discs. Without instabilities, high-mass discs would be systematically deficient in specific angular momentum by a factor of ˜2.5, with increased scatter. Instabilities also appear to drive the direction in which the mass-spin sequence of spiral galaxy discs evolves. With them, we find galaxies of fixed mass have higher specific angular momentum at later epochs.
Two-dimension tissue growth model based on circular granular cells for cells with small overlap
Viridi, Sparisoma; Aprianti, Devi; Haris, Luman; Haryanto, Freddy
2014-01-01
Tissue growth can be modeled in two dimension by only using circular granular cells, which can grow and produce child. Linear spring-dashpot model is used to bind the cells with a cut-off interaction range of 1.1 times sum of radii of interacted cells. Simulation steps must be divided into explicit and implicit ones due to cell growing stage and cell position rearrangement. This division is aimed to avoid simulation problem. Only in the explicit steps time changes is performed. Large cells overlap is chosen as termination condition of tissue growth. Only some cells configuration can growth to infinite time without encountering the large cells overlap. These configurations, and the other also, are presented in this work.
Low angular momentum flow model II for Sgr A*
Okuda, Toru
2014-01-01
We examine 1D two-temperature accretion flows around a supermassive black hole, adopting the specific angular momentum \\lambda, the total specific energy \\epsilon and the input accretion rate \\dot M_{input} = 4.0x10^{-6} solar mass/yr estimated in the recent analysis of stellar wind of nearby stars around Sgr A*. The two-temperature flow is almost adiabatic even if we take account of the heating of electrons by ions, the bremsstrahlung cooling and the synchrotron cooling, as long as the ratio \\beta of the magnetic energy density to the thermal energy density is taken to be as \\beta < 1. The different temperatures of ions and electrons are caused by the different adiabatic indices of ions and electrons which depend on their temperature states under the relativistic regime. The total luminosity increases with increasing \\beta and results in - 10^{35} - 10^{36} erg/s for \\beta=10^{-3} - 1. Furthermore, from 2D time-dependent hydrodynamical calculations of the above flow, we find that the irregularly oscillati...
Davis, D. R.; Greenberg, R.; Hebert, F.
1985-01-01
Models of lunar origin in which the Moon accretes in orbit about the Earth from material approaching the Earth from heliocentric orbits must overcome a fundamental problem: the approach orbits of such material would be, in the simplest approximation, equally likely to be prograde or retrograde about the Earth, with the result that accretion of such material adds mass but not angular momentum to circumterrestrial satellites. Satellite orbits would then decay due to the resulting drag, ultimately impacting onto the Earth. One possibility for adding both material and angular momentum to Earth orbit is investigated: imbalance in the delivered angular momentum between pro and retrograde Earth passing orbits which arises from the three body dynamics of planetesimals approaching the Earth from heliocentric space. In order to study angular momentum delivery to circumterrestrial satellites, the near Earth velocities were numerically computed as a function of distance from the Earth for a large array of orbits systematically spanning heliocentric phase space.
A method of evaluating quantitative magnetospheric field models by an angular parameter alpha
Sugiura, M.; Poros, D. J.
1979-01-01
The paper introduces an angular parameter, termed alpha, which represents the angular difference between the observed, or model, field and the internal model field. The study discusses why this parameter is chosen and demonstrates its usefulness by applying it to both observations and models. In certain areas alpha is more sensitive than delta-B (the difference between the magnitude of the observed magnetic field and that of the earth's internal field calculated from a spherical harmonic expansion) in expressing magnetospheric field distortions. It is recommended to use both alpha and delta-B in comparing models with observations.
New optical and radio frequency angular tropospheric refraction models for deep space applications
Berman, A. L.; Rockwell, S. T.
1976-01-01
The development of angular tropospheric refraction models for optical and radio frequency usage is presented. The models are compact analytic functions, finite over the entire domain of elevation angle, and accurate over large ranges of pressure, temperature, and relative humidity. Additionally, FORTRAN subroutines for each of the models are included.
Vestibular coriolis effect differences modeled with three-dimensional linear-angular interactions.
Holly, Jan E
2004-01-01
The vestibular coriolis (or "cross-coupling") effect is traditionally explained by cross-coupled angular vectors, which, however, do not explain the differences in perceptual disturbance under different acceleration conditions. For example, during head roll tilt in a rotating chair, the magnitude of perceptual disturbance is affected by a number of factors, including acceleration or deceleration of the chair rotation or a zero-g environment. Therefore, it has been suggested that linear-angular interactions play a role. The present research investigated whether these perceptual differences and others involving linear coriolis accelerations could be explained under one common framework: the laws of motion in three dimensions, which include all linear-angular interactions among all six components of motion (three angular and three linear). The results show that the three-dimensional laws of motion predict the differences in perceptual disturbance. No special properties of the vestibular system or nervous system are required. In addition, simulations were performed with angular, linear, and tilt time constants inserted into the model, giving the same predictions. Three-dimensional graphics were used to highlight the manner in which linear-angular interaction causes perceptual disturbance, and a crucial component is the Stretch Factor, which measures the "unexpected" linear component.
A novel weighted evolving network model based on clique overlapping growth
Institute of Scientific and Technical Information of China (English)
YANG Xu-hua; WANG Bo; SUN Bao
2010-01-01
A novel weighted evolving network model based on the clique overlapping growth was proposed.The model shows different network characteristics under two different selection mechanisms that are preferential selection and random selection.On the basis of mean-field theory,this model under the two different selection mechanisms was analyzed.The analytic equations of distributions of the number of cliques that a vertex joins and the vertex strength of the model were given.It is proved that both distributions follow the scale-free power-law distribution in preferential selection mechanism and the exponential distribution in random selection mechanism,respectively.The analytic expressions of exponents of corresponding distributions were obtained.The agreement between the simulations and analytical results indicates the validity of the theoretical analysis.Finally,three real transport bus networks(BTNs)of Beijing,Shanghai and Hangzhou in China were studied.By analyzing their network properties,it is discovered that these real BTNs belong to a kind of weighted evolving network model with clique overlapping growth and random selection mechanism that was proposed in this context.
Modelling the maximum voluntary joint torque/angular velocity relationship in human movement.
Yeadon, Maurice R; King, Mark A; Wilson, Cassie
2006-01-01
The force exerted by a muscle is a function of the activation level and the maximum (tetanic) muscle force. In "maximum" voluntary knee extensions muscle activation is lower for eccentric muscle velocities than for concentric velocities. The aim of this study was to model this "differential activation" in order to calculate the maximum voluntary knee extensor torque as a function of knee angular velocity. Torque data were collected on two subjects during maximal eccentric-concentric knee extensions using an isovelocity dynamometer with crank angular velocities ranging from 50 to 450 degrees s(-1). The theoretical tetanic torque/angular velocity relationship was modelled using a four parameter function comprising two rectangular hyperbolas while the activation/angular velocity relationship was modelled using a three parameter function that rose from submaximal activation for eccentric velocities to full activation for high concentric velocities. The product of these two functions gave a seven parameter function which was fitted to the joint torque/angular velocity data, giving unbiased root mean square differences of 1.9% and 3.3% of the maximum torques achieved. Differential activation accounts for the non-hyperbolic behaviour of the torque/angular velocity data for low concentric velocities. The maximum voluntary knee extensor torque that can be exerted may be modelled accurately as the product of functions defining the maximum torque and the maximum voluntary activation level. Failure to include differential activation considerations when modelling maximal movements will lead to errors in the estimation of joint torque in the eccentric phase and low velocity concentric phase.
Angular momentum projection for a Nilsson mean-field plus pairing model
Wang, Yin; Pan, Feng; Launey, Kristina D.; Luo, Yan-An; Draayer, J. P.
2016-06-01
The angular momentum projection for the axially deformed Nilsson mean-field plus a modified standard pairing (MSP) or the nearest-level pairing (NLP) model is proposed. Both the exact projection, in which all intrinsic states are taken into consideration, and the approximate projection, in which only intrinsic states with K = 0 are taken in the projection, are considered. The analysis shows that the approximate projection with only K = 0 intrinsic states seems reasonable, of which the configuration subspace considered is greatly reduced. As simple examples for the model application, low-lying spectra and electromagnetic properties of 18O and 18Ne are described by using both the exact and approximate angular momentum projection of the MSP or the NLP, while those of 20Ne and 24Mg are described by using the approximate angular momentum projection of the MSP or NLP.
Density-based rough set model for hesitant node clustering in overlapping community detection
Institute of Scientific and Technical Information of China (English)
Jun Wang; Jiaxu Peng; Ou Liu
2014-01-01
Overlapping community detection in a network is a chal enging issue which attracts lots of attention in recent years. A notion of hesitant node (HN) is proposed. An HN contacts with multiple communities while the communications are not strong or even accidental, thus the HN holds an implicit community structure. However, HNs are not rare in the real world network. It is impor-tant to identify them because they can be efficient hubs which form the overlapping portions of communities or simple attached nodes to some communities. Current approaches have difficul-ties in identifying and clustering HNs. A density-based rough set model (DBRSM) is proposed by combining the virtue of density-based algorithms and rough set models. It incorporates the macro perspective of the community structure of the whole network and the micro perspective of the local information held by HNs, which would facilitate the further“growth”of HNs in community. We offer a theoretical support for this model from the point of strength of the trust path. The experiments on the real-world and synthetic datasets show the practical significance of analyzing and cluste-ring the HNs based on DBRSM. Besides, the clustering based on DBRSM promotes the modularity optimization.
Collisional broadening of angular correlations in a multiphase transport model
Edmonds, Terrence; Wang, Fuqiang
2016-01-01
Systematic comparisons of jetlike correlation data to radiative and collisional energy loss model calculations are essential to extract transport properties of the quark-gluon medium created in relativistic heavy ion collisions. This paper presents a transport study of collisional broadening of jetlike correlations, by following parton-parton collision history in a multiphase transport (AMPT) model. The correlation shape is studied as a function of the number of parton-parton collisions suffered by a high transverse momentum probe parton ($N_{\\rm coll}$) and the azimuth of the probe relative to the reaction plane ($\\phi_{\\rm fin.}^{\\rm probe}$). Correlation is found to broaden with increasing $N_{\\rm coll}$ and $\\phi_{\\rm fin.}^{\\rm probe}$ from in- to out-of-plane direction. This study provides a transport model benchmark for future jet-medium interaction studies.
Angular momentum, accretion and radial flows in chemodynamical models of spiral galaxies
Pezzulli, Gabriele
2016-01-01
Gas accretion and radial flows are key ingredients of the chemical evolution of spiral galaxies. They are also tightly linked to each other (accretion drives radial flows, due to angular momentum conservation) and should therefore be modelled simultaneously. We summarise an algorithm that can be used to consistently compute accretion profiles, radial flows and abundance gradients under quite general conditions and we describe illustrative applications to the Milky Way. We find that gas-phase abundance gradients strongly depend on the angular momentum of the accreting material and, in the outer regions, they are significantly affected by the choice of boundary conditions.
Directory of Open Access Journals (Sweden)
George Kastellakis
2016-11-01
Full Text Available Memories are believed to be stored in distributed neuronal assemblies through activity-induced changes in synaptic and intrinsic properties. However, the specific mechanisms by which different memories become associated or linked remain a mystery. Here, we develop a simplified, biophysically inspired network model that incorporates multiple plasticity processes and explains linking of information at three different levels: (1 learning of a single associative memory, (2 rescuing of a weak memory when paired with a strong one, and (3 linking of multiple memories across time. By dissecting synaptic from intrinsic plasticity and neuron-wide from dendritically restricted protein capture, the model reveals a simple, unifying principle: linked memories share synaptic clusters within the dendrites of overlapping populations of neurons. The model generates numerous experimentally testable predictions regarding the cellular and sub-cellular properties of memory engrams as well as their spatiotemporal interactions.
Zhang, Hao; Niu, Yanxiong; Lu, Jiazhen; Zhang, He
2016-11-20
Angular velocity information is a requisite for a spacecraft guidance, navigation, and control system. In this paper, an approach for angular velocity estimation based merely on star vector measurement with an improved current statistical model Kalman filter is proposed. High-precision angular velocity estimation can be achieved under dynamic conditions. The amount of calculation is also reduced compared to a Kalman filter. Different trajectories are simulated to test this approach, and experiments with real starry sky observation are implemented for further confirmation. The estimation accuracy is proved to be better than 10-4 rad/s under various conditions. Both the simulation and the experiment demonstrate that the described approach is effective and shows an excellent performance under both static and dynamic conditions.
Uniform flow around a square cylinder using the Self-induced angular Moment Method turbulence model
DEFF Research Database (Denmark)
Johansson, Jens; Nielsen, Mogens Peter; Nielsen, Leif Otto
2012-01-01
or explicit filtering is performed. The model is, in all its simplicity, a modification of the classical constitutive equations of fluids to which a term is added that accounts for the transfer for angular momentum between parts of the fluid.The time-mean and fluctuating force coefficients, pressure...
Investigating Students' Mental Models about the Quantization of Light, Energy, and Angular Momentum
Didis, Nilüfer; Eryilmaz, Ali; Erkoç, Sakir
2014-01-01
This paper is the first part of a multiphase study examining students' mental models about the quantization of physical observables--light, energy, and angular momentum. Thirty-one second-year physics and physics education college students who were taking a modern physics course participated in the study. The qualitative analysis of data…
Relativistic Consistent Angular-Momentum Projected Shell-Model:Relativistic Mean Field
Institute of Scientific and Technical Information of China (English)
LI Yan-Song; LONG Gui-Lu
2004-01-01
We develop a relativistic nuclear structure model, relativistic consistent angular-momentum projected shellmodel (RECAPS), which combines the relativistic mean-field theory with the angular-momentum projection method.In this new model, nuclear ground-state properties are first calculated consistently using relativistic mean-field (RMF)theory. Then angular momentum projection method is used to project out states with good angular momentum from a few important configurations. By diagonalizing the hamiltonian, the energy levels and wave functions are obtained.This model is a new attempt for the understanding of nuclear structure of normal nuclei and for the prediction of nuclear properties of nuclei far from stability. In this paper, we will describe the treatment of the relativistic mean field. A computer code, RECAPS-RMF, is developed. It solves the relativistic mean field with axial-symmetric deformation in the spherical harmonic oscillator basis. Comparisons between our calculations and existing relativistic mean-field calculations are made to test the model. These include the ground-state properties of spherical nuclei 16O and 208Pb,the deformed nucleus 20Ne. Good agreement is obtained.
A blind separation method of overlapped multi-components based on time varying AR model
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
A method utilizing single channel recordings to blindly separate the multicomponents overlapped in time and frequency domains is proposed in this paper. Based on the time varying AR model, the instantaneous frequency and amplitude of each signal component are estimated respectively, thus the signal component separation is achieved. By using prolate spheroidal sequence as basis functions to expand the time varying parameters of the AR model, the method turns the problem of linear time varying parameters estimation to a linear time invariant parameter estimation problem, then the parameters are estimated by a recursive algorithm. The computation of this method is simple, and no prior knowledge of the signals is needed. Simulation results demonstrate validity and excellent performance of this method.
Application of Novel Rotation Angular Model for 3D Mouse System Based on MEMS Accelerometers
Institute of Scientific and Technical Information of China (English)
QIAN Li; CHEN Wen-yuan; XU Guo-ping
2009-01-01
A new scheme is proposed to model 3D angular motion of a revolving regular object with miniature, low-cost micro electro mechanical systems (MEMS) accelerometers (instead of gyroscope), which is employed in 3D mouse system. To sense 3D angular motion, the static property of MEMS accelerometer, sensitive to gravity acceleration, is exploited. With the three outputs of configured accelerometers, the proposed model is implemented to get the rotary motion of the rigid object. In order to validate the effectiveness of the proposed model, an input device is developed with the configuration of the scheme. Experimental results show that a simulated 3D cube can accurately track the rotation of the input device. The result indicates the feasibility and effectiveness of the proposed model in the 3D mouse system.
Lanza, A F
2016-01-01
We introduce a general mathematical framework to model the internal transport of angular momentum in a star hosting a close-in planetary/stellar companion. By assuming that the tidal and rotational distortions are small and that the deposit/extraction of angular momentum induced by stellar winds and tidal torques are redistributed solely by an effective eddy-viscosity that depends on the radial coordinate, we can formulate the model in a completely analytic way. It allows us to compute simultaneously the evolution of the orbit of the companion and of the spin and the radial differential rotation of the star. An illustrative application to the case of an F-type main-sequence star hosting a hot Jupiter is presented. The general relevance of our model to test more sophisticated numerical dynamical models and to study the internal rotation profile of exoplanet hosts, submitted to the combined effects of tides and stellar winds, by means of asteroseismology are discussed.
Lanza, A. F.; Mathis, S.
2016-11-01
We introduce a general mathematical framework to model the internal transport of angular momentum in a star hosting a close-in planetary/stellar companion. By assuming that the tidal and rotational distortions are small and that the deposit/extraction of angular momentum induced by stellar winds and tidal torques are redistributed solely by an effective eddy-viscosity that depends on the radial coordinate, we can formulate the model in a completely analytic way. It allows us to compute simultaneously the evolution of the orbit of the companion and of the spin and the radial differential rotation of the star. An illustrative application to the case of an F-type main-sequence star hosting a hot Jupiter is presented. The general relevance of our model to test more sophisticated numerical dynamical models and to study the internal rotation profile of exoplanet hosts, submitted to the combined effects of tides and stellar winds, by means of asteroseismology are discussed.
Production of black holes and their angular momentum distribution in models with split fermions
Dai, D C; Stojkovic, D; Dai, De-Chang; Starkman, Glenn D.; Stojkovic, Dejan
2006-01-01
In models with TeV-scale gravity it is expected that mini black holes will be produced in near-future accelerators. On the other hand, TeV-scale gravity is plagued with many problems like fast proton decay, unacceptably large neutron-antineutron oscillations, flavor changing neutral currents, large mixing between leptons, etc. Most of these problems can be solved if different fermions are localized at different points in the extra dimensions. We study the cross-section for the production of black holes and their angular momentum distribution in these models with "split" fermions. We find that, for a fixed value of the fundamental mass scale, the total production cross section is reduced compared with models where all the fermions are localized at the same point in the extra dimensions. Fermion splitting also implies that the bulk component of the black hole angular momentum must be taken into account in studies of the black hole decay via Hawking radiation.
Amard, Louis; Charbonnel, Corinne; Gallet, Florian; Bouvier, Jérôme
2016-01-01
We study the predicted rotational evolution of solar-type stars from the pre-main sequence to the solar age with 1D rotating evolutionary models including physical ingredients. We computed rotating evolution models of solar-type stars including an external stellar wind torque and internal transport of angular momentum following the method of Maeder and Zahn with the code STAREVOL. We explored different formalisms and prescriptions available from the literature. We tested the predictions of the models against recent rotational period data from extensive photometric surveys, lithium abundances of solar-mass stars in young clusters, and the helioseismic rotation profile of the Sun. We find a best-matching combination of prescriptions for both internal transport and surface extraction of angular momentum. This combination provides a very good fit to the observed evolution of rotational periods for solar-type stars from early evolution to the age of the Sun. Additionally, we show that fast rotators experience a st...
No-core configuration-interaction model for the isospin- and angular-momentum-projected states
Satula, W; Dobaczewski, J; Konieczka, M
2016-01-01
[Background] Single-reference density functional theory is very successful in reproducing bulk nuclear properties like binding energies, radii, or quadrupole moments throughout the entire periodic table. Its extension to the multi-reference level allows for restoring symmetries and, in turn, for calculating transition rates. [Purpose] We propose a new no-core-configuration-interaction (NCCI) model treating properly isospin and rotational symmetries. The model is applicable to any nucleus irrespective of its mass and neutron- and proton-number parity. It properly includes polarization effects caused by an interplay between the long- and short-range forces acting in the atomic nucleus. [Methods] The method is based on solving the Hill-Wheeler-Griffin equation within a model space built of linearly-dependent states having good angular momentum and properly treated isobaric spin. The states are generated by means of the isospin and angular-momentum projection applied to a set of low-lying (multi)particle-(multi)h...
Lavenda, B H
2011-01-01
The MIT bag model is shown to be wrong because the bag pressure cannot be held constant, and the volume can be fixed in terms of it. The bag derivation of Regge's trajectories is invalidated by an integration of the energy and angular momentum over all values of the radius up to $r_0=c/\\omega$. This gives the absurd result that "total" angular momentum decreases as the frequency increases. The correct expression for the angular momentum is obtained from hyperbolic geometry of constant negative curvature $r_0$. When the square of the relativistic mass is introduced, it gives a negative intercept which is the Euclidean value of the angular momentum. Regge trajectories are simply statements of the conservation of angular momentum in hyperbolic space. The frequencies and values of the angular momentum are in remarkable agreement with experiment.
Gunzler, Douglas D; Morris, Nathan
2015-10-30
Structural equation modeling (SEM) is a very general approach to analyzing data in the presence of measurement error and complex causal relationships. In this tutorial, we describe SEM, with special attention to exploratory factor analysis, confirmatory factor analysis, and multiple indicator multiple cause modeling. The tutorial is motivated by a problem of symptom overlap routinely faced by clinicians and researchers, in which symptoms or test results are common to two or more co-occurring conditions. As a result of such overlap, diagnoses, treatment decisions, and inferences about the effectiveness of treatments for these conditions can be biased. This problem is further complicated by increasing reliance on patient-reported outcomes, which introduces systematic error based on an individual's interpretation of a test questionnaire. SEM provides flexibility in handling this type of differential item functioning and disentangling the overlap. Scales and scoring approaches can be revised to be free of this overlap, leading to better care. This tutorial uses an example of depression screening in multiple sclerosis patients in which depressive symptoms overlap with other symptoms, such as fatigue, cognitive impairment, and functional impairment. Details of how MPlus (Muthén & Muthén, Los Angeles, CA, USA) software can be used to address the symptom overlap problem, including data requirements, code and output are described in this tutorial.
Uniform flow around a square cylinder using the Self-induced angular Moment Method turbulence model
DEFF Research Database (Denmark)
Johansson, Jens; Nielsen, Mogens Peter; Nielsen, Leif Otto
2012-01-01
The uniform flow around a square cylinder at Reynolds number 1e5 is simulated in a threedimensional domain by means of the newly developed Self-induced angular Moment Method, SMoM. The model does not utilize Reynolds averaging. No additional transport equations are introduced and no implicit...... or explicit filtering is performed. The model is, in all its simplicity, a modification of the classical constitutive equations of fluids to which a term is added that accounts for the transfer for angular momentum between parts of the fluid.The time-mean and fluctuating force coefficients, pressure...... distributions and velocity fields have been determined along with circumferential surface pressure correlations. All simulated quantities have been compared to experimental findings and state-of-the-art Large Eddy Simulations, LES. No LES simulations could be found in literature, which provided results...
Classical XY model with conserved angular momentum is an archetypal non-Newtonian fluid.
Evans, R M L; Hall, Craig A; Simha, R Aditi; Welsh, Tom S
2015-04-03
We find that the classical one-dimensional XY model, with angular-momentum-conserving Langevin dynamics, mimics the non-Newtonian flow regimes characteristic of soft matter when subjected to counterrotating boundaries. An elaborate steady-state phase diagram has continuous and first-order transitions between states of uniform flow, shear-banding, solid-fluid coexistence and slip planes. Results of numerical studies and a concise mean-field constitutive relation offer a paradigm for diverse nonequilibrium complex fluids.
Noise Reduction of MEMS Gyroscope Based on Direct Modeling for an Angular Rate Signal
Liang Xue; Chengyu Jiang; Lixin Wang; Jieyu Liu; Weizheng Yuan
2015-01-01
In this paper, a novel approach for processing the outputs signal of the microelectromechanical systems (MEMS) gyroscopes was presented to reduce the bias drift and noise. The principle for the noise reduction was presented, and an optimal Kalman filter (KF) was designed by a steady-state filter gain obtained from the analysis of KF observability. In particular, the true angular rate signal was directly modeled to obtain an optimal estimate and make a self-compensation for the gyroscope witho...
Maerten, F.; Maerten, L.; Pollard, D. D.
2014-11-01
Most analytical solutions to engineering or geological problems are limited to simple geometries. For example, analytical solutions have been found to solve for stresses around a circular hole in a plate. To solve more complex problems, mathematicians and engineers have developed powerful computer-aided numerical methods, which can be categorized into two main types: differential methods and integral methods. The finite element method (FEM) is a differential method that was developed in the 1950s and is one of the most commonly used numerical methods today. Since its development, other differential methods, including the boundary element method (BEM), have been developed to solve different types of problems. The purpose of this paper is to describe iBem3D, formally called Poly3D, a C++ and modular 3D boundary element computer program based on the theory of angular dislocations for modeling three-dimensional (3D) discontinuities in an elastic, heterogeneous, isotropic whole- or half-space. After 20 years and more than 150 scientific publications, we present in detail the formulation behind this method, its enhancements over the years as well as some important applications in several domains of the geosciences. The main advantage of using this formulation, for describing geological objects such as faults, resides in the possibility of modeling complex geometries without gaps and overlaps between adjacent triangular dislocation elements, which is a significant shortcoming for models using rectangular dislocation elements. Reliability, speed, simplicity, and accuracy are enhanced in the latest version of the computer code. Industrial applications include subseismic fault modeling, fractured reservoir modeling, interpretation and validation of fault connectivity and reservoir compartmentalization, depleted area and fault reactivation, and pressurized wellbore stability. Academic applications include earthquake and volcano monitoring, hazard mitigation, and slope
Raut, L K
1991-01-01
A study is conducted in attempts to increase the understanding of the links between macroeconomic effects and causes of population growth in formulating policy. An overlapping generations general equilibrium model is employed aggregating household decisions about fertility, savings, and investment in the human capital of children with the objective of studying intertemporal relationships among population growth, income distribution, inter-generation social mobility, skill composition of the labor force, and household income. As a result of endogenous fertility, the equilibrium path attains steady state from the second generation. Income tax transfer, child taxation, and social security taxation policies are also examined in the paper. A structural explanation is given for the inverse household income-child quantity and negative child quality-quantity relationships seen in developing countries. In a Cobb-Douglas economy, these relationships hold in the short-run, potentially working over the long-run in other economies. Overall, the model shows that group interests may hinder emergence of perfect capital markets with private initiatives. Where developing countries are concerned, these results have strong implications for population policy. A policy mix of building good quality schools, or subsidizing rural education, introducing a formal social security program, and providing high-yield, risk-free investments, banking, and insurance services to the poor is recommended.
Bayesian latent feature modeling for modeling bipartite networks with overlapping groups
DEFF Research Database (Denmark)
Jørgensen, Philip H.; Mørup, Morten; Schmidt, Mikkel Nørgaard;
2016-01-01
Bi-partite networks are commonly modelled using latent class or latent feature models. Whereas the existing latent class models admit marginalization of parameters specifying the strength of interaction between groups, existing latent feature models do not admit analytical marginalization...... of the parameters accounting for the interaction strength within the feature representation. We propose a new binary latent feature model that admits analytical marginalization of interaction strengths such that model inference reduces to assigning nodes to latent features. We propose a constraint inspired...... to the infinite relational model and the infinite Bernoulli mixture model. We find that the model provides a new latent feature representation of structure while in link-prediction performing close to existing models. Our current extension of the notion of communities and collapsed inference to binary latent...
Casal, J.; Gómez-Ramos, M.; Moro, A. M.
2017-04-01
Recent data on the differential angular distribution for the transfer reaction 11Li(p , d)10Li at E / A = 5.7 MeV in inverse kinematics are analyzed within the DWBA reaction framework, using the overlap functions calculated within a three-body model of 11Li. The weight of the different 10Li configurations in the system's ground state is obtained from the structure calculations unambiguously. The effect of the 9Li spin in the calculated observables is also investigated. We find that, although all the considered models succeed in reproducing the shape of the data, the magnitude is very sensitive to the content of p1/2 wave in the 11Li ground-state wave function. Among the considered models, the best agreement with the data is obtained when the 11Li ground state contains a ∼31% of p1/2 wave in the n-9Li subsystem. Although this model takes into account explicitly the splitting of the 1+ and 2+ resonances due to the coupling of the p1/2 wave to the 3 /2- spin of the core, a similar degree of agreement can be achieved with a model in which the 9Li spin is ignored, provided that it contains a similar p-wave content.
Dinh Dang, N.; Ciemala, M.; Kmiecik, M.; Maj, A.
2013-05-01
The line shapes of giant dipole resonance (GDR) in the decay of the compound nucleus 88Mo, which is formed after the fusion-evaporation reaction 48Ti + 40Ca at various excitation energies E* from 58 to 308 MeV, are generated by averaging the GDR strength functions predicted within the phonon damping model (PDM) using the empirical probabilities for temperature and angular momentum. The average strength functions are compared with the PDM strength functions calculated at the mean temperature and mean angular momentum, which are obtained by averaging the values of temperature and angular momentum using the same temperature and angular momentum probability distributions, respectively. It is seen that these two ways of generating the GDR linear line shape yield very similar results. It is also shown that the GDR width approaches a saturation at angular momentum J≥ 50 ℏ at T=4 MeV and at J≥ 70 ℏ at any T.
Dang, N Dinh; Kmiecik, M; Maj, A
2013-01-01
The line shapes of giant dipole resonance (GDR) in the decay of the compound nucleus $^{88}$Mo, which is formed after the fusion-evaporation reaction $^{48}$Ti + $^{40}$Ca at various excitation energies $E^{*}$ from 58 to 308 MeV, are generated by averaging the GDR strength functions predicted within the phonon damping model (PDM) using the empirical probabilities for temperature and angular momentum. The average strength functions are compared with the PDM strength functions calculated at the mean temperature and mean angular momentum, which are obtained by averaging the values of temperature and angular momentum using the same temperature and angular-momentum probability distributions, respectively. It is seen that these two ways of generating the GDR linear line shape yield very similar results. It is also shown that the GDR width approaches a saturation at angular momentum $J\\geq$ 50$\\hbar$ at $T=$ 4 MeV and at $J\\geq$ 70$\\hbar$ at any $T$.
Laffan, Shawn W; Wang, Zhaoyuan; Ward, Michael P
2011-12-01
The definition of the spatial relatedness between infectious and susceptible animal groups is a fundamental component of spatio-temporal modelling of disease outbreaks. A common neighbourhood definition for disease spread in wild and feral animal populations is the distance between the centroids of neighbouring group home ranges. This distance can be used to define neighbourhood interactions, and also to describe the probability of successful disease transmission. Key limitations of this approach are (1) that a susceptible neighbour of an infectious group with an overlapping home range - but whose centroid lies outside the home range of an infectious group - will not be considered for disease transmission, and (2) the degree of overlap between the home ranges is not taken into account for those groups with centroids inside the infectious home range. We assessed the impact of both distance-based and range overlap methods of disease transmission on model-predicted disease spread. Range overlap was calculated using home ranges modelled as circles. We used the Sirca geographic automata model, with the population data from a nine-county study area in Texas that we have previously described. For each method we applied 100 model repetitions, each of 100 time steps, to 30 index locations. The results show that the rate of disease spread for the range-overlap method is clearly less than the distance-based method, with median outbreaks modelled using the latter being 1.4-1.45 times larger. However, the two methods show similar overall trends in the area infected, and the range-overlap median (48 and 120 for cattle and pigs, respectively) falls within the 5th-95th percentile range of the distance-based method (0-96 and 0-252 for cattle and pigs, respectively). These differences can be attributed to the calculation of the interaction probabilities in the two methods, with overlap weights generally resulting in lower interaction probabilities. The definition of spatial
Casal, J; Moro, A M
2016-01-01
Recent data on the differential angular distribution for the transfer reaction $^{11}$Li(p,d)$^{10}$Li at $E/A=5.7$~MeV in inverse kinematics are analysed within the DWBA reaction framework, using the overlap functions calculated within a three-body model of $^{11}$Li. The weight of the different $^{10}$Li configurations in the system's ground state is obtained from the structure calculations unambiguously. The effect of the $^{9}$Li spin in the calculated observables is also investigated. We find that, although all the considered models succeed in reproducing the shape of the data, the magnitude is very sensitive to the content of $p_{1/2}$ wave in the $^{11}$Li ground-state wave function. Among the considered models, the best agreement with the data is obtained when the $^{11}$Li ground state contains a $\\sim$31\\% of $p_{1/2}$ wave in the $n$-$^9$Li subsystem. Although this model takes into account explicitly the splitting of the $1^+$ and $2^+$ resonances due to the coupling of the $p_{1/2}$ wave to the $3...
Raudenbush, Stephen W.; Chan, Wing-Shing
1993-01-01
Used data on attitudes toward deviance during adolescence to illustrate assessment of psychometric properties of instrument for studying change, compare adequacy of linear and curvilinear growth models, control for time invariant and time-varying covariates, and link overlapping data cohorts. Findings suggest that prodeviant attitudes increased…
Message passing theory for percolation models on multiplex networks with link overlap
Cellai, Davide; Bianconi, Ginestra
2016-01-01
Multiplex networks describe a large variety of complex systems including infrastructures, transportation networks and biological systems. Most of these networks feature a significant link overlap. It is therefore of particular importance to characterize the mutually connected giant component in these networks. Here we provide a message passing theory for characterizing the percolation transition in multiplex networks with link overlap and an arbitrary number of layers $M$. Specifically we propose and compare two message passing algorithms, that generalize the algorithm widely used to study the percolation transition in multiplex networks without link overlap. The first algorithm describes a directed percolation transition and admits an epidemic spreading interpretation. The second algorithm describes the emergence of the mutually connected giant component, that is the percolation transition, but does not preserve the epidemic spreading interpretation. We obtain the phase diagrams for the percolation and direc...
[Economic benefits of overlapping induction: investigation using a computer simulation model].
Hunziker, S; Baumgart, A; Denz, C; Schüpfer, G
2009-06-01
The aim of this study was to investigate the potential economic benefit of overlapping anaesthesia induction given that all patient diagnosis-related groups (AP DRG) are used as the model for hospital reimbursement. A computer simulation model was used for this purpose. Due to the resource-intensive production process, the operating room (OR) environment is the most expensive part of the supply chain for surgical disciplines. The economical benefit of a parallel production process (additional personnel, adaptation of the process) as compared to a conventional serial layout was assessed. A computer-based simulation method was used with commercially available simulation software. Assumptions for revenues were made by reimbursement based on AP DRG. Based on a system analysis a model for the computer simulation was designed on a step-by-step abstraction process. In the model two operating rooms were used for parallel processing and two operating rooms for a serial production process. Six different types of surgical procedures based on historical case durations were investigated. The contribution margin was calculated based on the increased revenues minus the cost for the additional anaesthesia personnel. Over a period of 5 weeks 41 additional surgical cases were operated under the assumption of duration of surgery of 89+/-4 min (mean+/-SD). The additional contribution margin was CHF 104,588. In the case of longer surgical procedures with 103+/-25 min duration (mean+/-SD), an increase of 36 cases was possible in the same time period and the contribution margin was increased by CHF 384,836. When surgical cases with a mean procedural time of 243+/-55 min were simulated, 15 additional cases were possible. Therefore, the additional contribution margin was CHF 321,278. Although costs increased in this simulation when a serial production process was changed to a parallel system layout due to more personnel, an increase of the contribution margin was possible, especially with
Low-temperature behavior of the statistics of the overlap distribution in Ising spin-glass models
Wittmann, Matthew; Yucesoy, B.; Katzgraber, Helmut G.; Machta, J.; Young, A. P.
2014-10-01
Using Monte Carlo simulations, we study in detail the overlap distribution for individual samples for several spin-glass models including the infinite-range Sherrington-Kirkpatrick model, short-range Edwards-Anderson models in three and four space dimensions, and one-dimensional long-range models with diluted power-law interactions. We study three long-range models with different powers as follows: The first is approximately equivalent to a short-range model in three dimensions, the second to a short-range model in four dimensions, and the third to a short-range model in the mean-field regime. We study an observable proposed earlier by some of us which aims to distinguish the "replica symmetry breaking" picture of the spin-glass phase from the "droplet picture," finding that larger system sizes would be needed to unambiguously determine which of these pictures describes the low-temperature state of spin glasses best, except for the Sherrington-Kirkpatrick model, which is unambiguously described by replica symmetry breaking. Finally, we also study the median integrated overlap probability distribution and a typical overlap distribution, finding that these observables are not particularly helpful in distinguishing the replica symmetry breaking and the droplet pictures.
Modeling channel interference in an orbital angular momentum-multiplexed laser link
Anguita, Jaime A.; Neifeld, Mark A.; Vasic, Bane V.
2009-08-01
We study the effects of optical turbulence on the energy crosstalk among constituent orbital angular momentum (OAM) states in a vortex-based multi-channel laser communication link and determine channel interference in terms of turbulence strength and OAM state separation. We characterize the channel interference as a function of C2n and transmit OAM state, and propose probability models to predict the random fluctuations in the received signals for such architecture. Simulations indicate that turbulence-induced channel interference is mutually correlated across receive channels.
Angular Structure of Jet Quenching Within a Hybrid Strong/Weak Coupling Model
Casalderrey-Solana, Jorge; Milhano, Guilherme; Pablos, Daniel; Rajagopal, Krishna
2016-01-01
Within the context of a hybrid strong/weak coupling model of jet quenching, we study the modification of the angular distribution of the energy within jets in heavy ion collisions, as partons within jet showers lose energy and get kicked as they traverse the strongly coupled plasma produced in the collision. To describe the dynamics transverse to the jet axis, we add the effects of transverse momentum broadening into our hybrid construction, introducing a parameter $K\\equiv \\hat q/T^3$ that governs its magnitude. We show that, because of the quenching of the energy of partons within a jet, even when $K\
Institute of Scientific and Technical Information of China (English)
徐永昌; 沈平
1994-01-01
Based on the geochemical studies of natural gases in the past ten years in China, the authors have proposed a new model for their genesis--multi-source overlap, multi-stage continuity, main source-controlling type and nomenclature by the main stage.Multi-source refers to a diversity of material sources involved in the formation of natural gases, including abiogenic and biogenic material sources. In regard to biogenic sources, either oil-generating or coal-generating organic matter would produce gaseous hydrocarbon reservoirs of commercial importance. Generally, natural gases originating from these sources can overlap to form gas reservoirs. Under specific circumstances mantle-source abiogenic gases could overlap biogenic gases to form gas reservoirs. In nature, natural gases predominated by gaseous hydrocarbons may be formed from a single end-member source. However, multi-source overlap is more typical of the genesis of natural gases.
Evaluation of angular scattering models for electron-neutral collisions in Monte Carlo simulations
Janssen, J. F. J.; Pitchford, L. C.; Hagelaar, G. J. M.; van Dijk, J.
2016-10-01
In Monte Carlo simulations of electron transport through a neutral background gas, simplifying assumptions related to the shape of the angular distribution of electron-neutral scattering cross sections are usually made. This is mainly because full sets of differential scattering cross sections are rarely available. In this work simple models for angular scattering are compared to results from the recent quantum calculations of Zatsarinny and Bartschat for differential scattering cross sections (DCS’s) from zero to 200 eV in argon. These simple models represent in various ways an approach to forward scattering with increasing electron energy. The simple models are then used in Monte Carlo simulations of range, straggling, and backscatter of electrons emitted from a surface into a volume filled with a neutral gas. It is shown that the assumptions of isotropic elastic scattering and of forward scattering for the inelastic collision process yield results within a few percent of those calculated using the DCS’s of Zatsarinny and Bartschat. The quantities which were held constant in these comparisons are the elastic momentum transfer and total inelastic cross sections.
Noise Reduction of MEMS Gyroscope Based on Direct Modeling for an Angular Rate Signal
Directory of Open Access Journals (Sweden)
Liang Xue
2015-02-01
Full Text Available In this paper, a novel approach for processing the outputs signal of the microelectromechanical systems (MEMS gyroscopes was presented to reduce the bias drift and noise. The principle for the noise reduction was presented, and an optimal Kalman filter (KF was designed by a steady-state filter gain obtained from the analysis of KF observability. In particular, the true angular rate signal was directly modeled to obtain an optimal estimate and make a self-compensation for the gyroscope without needing other sensor’s information, whether in static or dynamic condition. A linear fit equation that describes the relationship between the KF bandwidth and modeling parameter of true angular rate was derived from the analysis of KF frequency response. The test results indicated that the MEMS gyroscope having an ARW noise of 4.87°/h0.5 and a bias instability of 44.41°/h were reduced to 0.4°/h0.5 and 4.13°/h by the KF under a given bandwidth (10 Hz, respectively. The 1σ estimated error was reduced from 1.9°/s to 0.14°/s and 1.7°/s to 0.5°/s in the constant rate test and swing rate test, respectively. It also showed that the filtered angular rate signal could well reflect the dynamic characteristic of the input rate signal in dynamic conditions. The presented algorithm is proved to be effective at improving the measurement precision of the MEMS gyroscope.
Thickness and waviness of surface coatings formed by overlap : Modelling and experiment
Ocelík, V.; Nenadl, O.; Hemmati, I.; De Hosson, J.T.M.
2013-01-01
Several surface engineering techniques are known that form a hard facing coating on an inexpensive substrate by a successive overlap of individual cladding tracks. Typical examples include laser cladding and laser additive manufacturing. Realistic predicting the final thickness and waviness of the c
Amundsen, David S.; Tremblin, Pascal; Manners, James; Baraffe, Isabelle; Mayne, Nathan J.
2017-02-01
The correlated-k method is frequently used to speed up radiation calculations in both one-dimensional and three-dimensional atmosphere models. An inherent difficulty with this method is how to treat overlapping absorption, i.e. absorption by more than one gas in a given spectral region. We have evaluated the applicability of three different methods in hot Jupiter and brown dwarf atmosphere models, all of which have been previously applied within models in the literature: (i) random overlap, both with and without resorting and rebinning, (ii) equivalent extinction and (iii) pre-mixing of opacities, where (i) and (ii) combine k-coefficients for different gases to obtain k-coefficients for a mixture of gases, while (iii) calculates k-coefficients for a given mixture from the corresponding mixed line-by-line opacities. We find that the random overlap method is the most accurate and flexible of these treatments, and is fast enough to be used in one-dimensional models with resorting and rebinning. In three-dimensional models such as global circulation models (GCMs) it is too slow, however, and equivalent extinction can provide a speed-up of at least a factor of three with only a minor loss of accuracy while at the same time retaining the flexibility gained by combining k-coefficients computed for each gas individually. Pre-mixed opacities are significantly less flexible, and we also find that particular care must be taken when using this method in order to to adequately resolve steep variations in composition at important chemical equilibrium boundaries. We use the random overlap method with resorting and rebinning in our one-dimensional atmosphere model and equivalent extinction in our GCM, which allows us to e.g. consistently treat the feedback of non-equilibrium chemistry on the total opacity and therefore the calculated P-T profiles in our models.
Modeling the angular correlation function and its full covariance in Photometric Galaxy Surveys
Crocce, Martin; Gaztañaga, Enrique
2010-01-01
Near future cosmology will see the advent of wide area photometric galaxy surveys, like the Dark Energy Survey (DES), that extent to high redshifts (z ~ 1 - 2) but with poor radial distance resolution. In such cases splitting the data into redshift bins and using the angular correlation function $w(\\theta)$, or the $C_{\\ell}$ power spectrum, will become the standard approach to extract cosmological information or to study the nature of dark energy through the Baryon Acoustic Oscillations (BAO) probe. In this work we present a detailed model for $w(\\theta)$ at large scales as a function of redshift and bin width, including all relevant effects, namely nonlinear gravitational clustering, bias, redshift space distortions and photo-z uncertainties. We also present a model for the full covariance matrix characterizing the angular correlation measurements, that takes into account the same effects as for $w(\\theta)$ and also the possibility of a shot-noise component and partial sky coverage. Provided with a large vo...
No-core configuration-interaction model for the isospin- and angular-momentum-projected states
Satuła, W.; Båczyk, P.; Dobaczewski, J.; Konieczka, M.
2016-08-01
Background: Single-reference density functional theory is very successful in reproducing bulk nuclear properties like binding energies, radii, or quadrupole moments throughout the entire periodic table. Its extension to the multireference level allows for restoring symmetries and, in turn, for calculating transition rates. Purpose: We propose a new variant of the no-core-configuration-interaction (NCCI) model treating properly isospin and rotational symmetries. The model is applicable to any nucleus irrespective of its mass and neutron- and proton-number parity. It properly includes polarization effects caused by an interplay between the long- and short-range forces acting in the atomic nucleus. Methods: The method is based on solving the Hill-Wheeler-Griffin equation within a model space built of linearly dependent states having good angular momentum and properly treated isobaric spin. The states are generated by means of the isospin and angular-momentum projection applied to a set of low-lying (multi)particle-(multi)hole deformed Slater determinants calculated using the self-consistent Skyrme-Hartree-Fock approach. Results: The theory is applied to calculate energy spectra in N ≈Z nuclei that are relevant from the point of view of a study of superallowed Fermi β decays. In particular, a new set of the isospin-symmetry-breaking corrections to these decays is given. Conclusions: It is demonstrated that the NCCI model is capable of capturing main features of low-lying energy spectra in light and medium-mass nuclei using relatively small model space and without any local readjustment of its low-energy coupling constants. Its flexibility and a range of applicability makes it an interesting alternative to the conventional nuclear shell model.
Gate current modeling and optimal design of nanoscale non-overlapped gate to source/drain MOSFET
Institute of Scientific and Technical Information of China (English)
Ashwani K.Rana; Narottam Chand; Vinod Kapoor
2011-01-01
A novel nanoscale MOSFET with a source/drain-to-gate non-overlapped and high-k spacer structure has been demonstrated to reduce the gate leakage current for the first time.The gate leakage behaviour of the novel MOSFET structure has been investigated with the help of a compact analytical model and Sentaurus simulation.A fringing gate electric field through the dielectric spacer induces an inversion layer in the non-overlap region to act as an extended S/D (source/drain) region.It is found that an optimal source/drain-to-gate non-overlapped and high-k spacer structure has reduced the gate leakage current to a great extent as compared to those of an overlapped structure.Further,the proposed structure had improved off current,subthreshold slope and drain induced barrier lowering (DIBL) characteristics.It is concluded that this structure solves the problem of high leakage current without introducing extra series resistance.
Amundsen, David S; Manners, James; Baraffe, Isabelle; Mayne, Nathan J
2016-01-01
The correlated-k method is frequently used to speed up radiation calculations in both one-dimensional and three-dimensional atmosphere models. An inherent difficulty with this method is how to treat overlapping absorption, i.e. absorption by more than one gas in a given spectral region. We have evaluated the applicability of three different methods in hot Jupiter and brown dwarf atmosphere models, all of which have been previously applied within models in the literature: (i) Random overlap, both with and without resorting and rebinning, (ii) equivalent extinction and (iii) pre-mixing of opacities, where (i) and (ii) combine k-coefficients for different gases to obtain k-coefficients for a mixture of gases, while (iii) calculates k-coefficients for a given mixture from the corresponding mixed line-by-line opacities. We find that the random overlap method is the most accurate and flexible of these treatments, and is fast enough to be used in one-dimensional models with resorting and rebinning. In three-dimensio...
Improved angular momentum evolution model for solar-like stars II. Exploring the mass dependence
Gallet, Florian
2015-01-01
We developed angular momentum evolution models for 0.5 and 0.8 $M_{\\odot}$ stars. The parametric models include a new wind braking law based on recent numerical simulations of magnetised stellar winds, specific dynamo and mass-loss rate prescriptions, as well as core/envelope decoupling. We compare model predictions to the distributions of rotational periods measured for low mass stars belonging to star forming regions and young open clusters. Furthermore, we explore the mass dependence of model parameters by comparing these new models to the solar-mass models we developed earlier. Rotational evolution models are computed for slow, median, and fast rotators at each stellar mass. The models reproduce reasonably well the rotational behaviour of low-mass stars between 1~Myr and 8-10~Gyr, including pre-main sequence to zero-age main sequence spin up, prompt zero-age main sequence spin down, and early-main sequence convergence of the surface rotation rates. Fast rotators are found to have systematically shorter di...
Energy Technology Data Exchange (ETDEWEB)
Plimley, Brian, E-mail: brian.plimley@gmail.com [Nuclear Engineering Department, University of California, Berkeley, CA (United States); Coffer, Amy; Zhang, Yigong [Nuclear Engineering Department, University of California, Berkeley, CA (United States); Vetter, Kai [Nuclear Engineering Department, University of California, Berkeley, CA (United States); Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States)
2016-08-11
Previously, scientific silicon charge-coupled devices (CCDs) with 10.5-μm pixel pitch and a thick (650 μm), fully depleted bulk have been used to measure gamma-ray-induced fast electrons and demonstrate electron track Compton imaging. A model of the response of this CCD was also developed and benchmarked to experiment using Monte Carlo electron tracks. We now examine the trade-off in pixel pitch and electronic noise. We extend our CCD response model to different pixel pitch and readout noise per pixel, including pixel pitch of 2.5 μm, 5 μm, 10.5 μm, 20 μm, and 40 μm, and readout noise from 0 eV/pixel to 2 keV/pixel for 10.5 μm pixel pitch. The CCD images generated by this model using simulated electron tracks are processed by our trajectory reconstruction algorithm. The performance of the reconstruction algorithm defines the expected angular sensitivity as a function of electron energy, CCD pixel pitch, and readout noise per pixel. Results show that our existing pixel pitch of 10.5 μm is near optimal for our approach, because smaller pixels add little new information but are subject to greater statistical noise. In addition, we measured the readout noise per pixel for two different device temperatures in order to estimate the effect of temperature on the reconstruction algorithm performance, although the readout is not optimized for higher temperatures. The noise in our device at 240 K increases the FWHM of angular measurement error by no more than a factor of 2, from 26° to 49° FWHM for electrons between 425 keV and 480 keV. Therefore, a CCD could be used for electron-track-based imaging in a Peltier-cooled device.
Plimley, Brian; Coffer, Amy; Zhang, Yigong; Vetter, Kai
2016-08-01
Previously, scientific silicon charge-coupled devices (CCDs) with 10.5-μm pixel pitch and a thick (650 μm), fully depleted bulk have been used to measure gamma-ray-induced fast electrons and demonstrate electron track Compton imaging. A model of the response of this CCD was also developed and benchmarked to experiment using Monte Carlo electron tracks. We now examine the trade-off in pixel pitch and electronic noise. We extend our CCD response model to different pixel pitch and readout noise per pixel, including pixel pitch of 2.5 μm, 5 μm, 10.5 μm, 20 μm, and 40 μm, and readout noise from 0 eV/pixel to 2 keV/pixel for 10.5 μm pixel pitch. The CCD images generated by this model using simulated electron tracks are processed by our trajectory reconstruction algorithm. The performance of the reconstruction algorithm defines the expected angular sensitivity as a function of electron energy, CCD pixel pitch, and readout noise per pixel. Results show that our existing pixel pitch of 10.5 μm is near optimal for our approach, because smaller pixels add little new information but are subject to greater statistical noise. In addition, we measured the readout noise per pixel for two different device temperatures in order to estimate the effect of temperature on the reconstruction algorithm performance, although the readout is not optimized for higher temperatures. The noise in our device at 240 K increases the FWHM of angular measurement error by no more than a factor of 2, from 26° to 49° FWHM for electrons between 425 keV and 480 keV. Therefore, a CCD could be used for electron-track-based imaging in a Peltier-cooled device.
Ali, Sahirzeeshan; Madabhushi, Anant
2011-03-01
Active contours and active shape models (ASM) have been widely employed in image segmentation. A major limitation of active contours, however, is in their (a) inability to resolve boundaries of intersecting objects and to (b) handle occlusion. Multiple overlapping objects are typically segmented out as a single object. On the other hand, ASMs are limited by point correspondence issues since object landmarks need to be identified across multiple objects for initial object alignment. ASMs are also are constrained in that they can usually only segment a single object in an image. In this paper, we present a novel synergistic boundary and region-based active contour model that incorporates shape priors in a level set formulation. We demonstrate an application of these synergistic active contour models using multiple level sets to segment nuclear and glandular structures on digitized histopathology images of breast and prostate biopsy specimens. Unlike previous related approaches, our model is able to resolve object overlap and separate occluded boundaries of multiple objects simultaneously. The energy functional of the active contour is comprised of three terms. The first term comprises the prior shape term, modeled on the object of interest, thereby constraining the deformation achievable by the active contour. The second term, a boundary based term detects object boundaries from image gradients. The third term drives the shape prior and the contour towards the object boundary based on region statistics. The results of qualitative and quantitative evaluation on 100 prostate and 14 breast cancer histology images for the task of detecting and segmenting nuclei, lymphocytes, and glands reveals that the model easily outperforms two state of the art segmentation schemes (Geodesic Active Contour (GAC) and Roussons shape based model) and resolves up to 92% of overlapping/occluded lymphocytes and nuclei on prostate and breast cancer histology images.
Hsu, Chi-Pin; Lin, Shang-Chih; Shih, Kao-Shang; Huang, Chang-Hung; Lee, Chian-Her
2014-12-01
After total knee replacement, the model-based Roentgen stereophotogrammetric analysis (RSA) technique has been used to monitor the status of prosthetic wear, misalignment, and even failure. However, the overlap of the prosthetic outlines inevitably increases errors in the estimation of prosthetic poses due to the limited amount of available outlines. In the literature, quite a few studies have investigated the problems induced by the overlapped outlines, and manual adjustment is still the mainstream. This study proposes two methods to automate the image processing of overlapped outlines prior to the pose registration of prosthetic models. The outline-separated method defines the intersected points and segments the overlapped outlines. The feature-recognized method uses the point and line features of the remaining outlines to initiate registration. Overlap percentage is defined as the ratio of overlapped to non-overlapped outlines. The simulated images with five overlapping percentages are used to evaluate the robustness and accuracy of the proposed methods. Compared with non-overlapped images, overlapped images reduce the number of outlines available for model-based RSA calculation. The maximum and root mean square errors for a prosthetic outline are 0.35 and 0.04 mm, respectively. The mean translation and rotation errors are 0.11 mm and 0.18°, respectively. The errors of the model-based RSA results are increased when the overlap percentage is beyond about 9%. In conclusion, both outline-separated and feature-recognized methods can be seamlessly integrated to automate the calculation of rough registration. This can significantly increase the clinical practicability of the model-based RSA technique.
Nonlinear dynamic modeling of rotor system supported by angular contact ball bearings
Wang, Hong; Han, Qinkai; Zhou, Daning
2017-02-01
In current bearing dynamic models, the displacement coordinate relations are usually utilized to approximately obtain the contact deformations between the rolling element and raceways, and then the nonlinear restoring forces of the rolling bearing could be calculated accordingly. Although the calculation efficiency is relatively higher, the accuracy is lower as the contact deformations should be solved through iterative analysis. Thus, an improved nonlinear dynamic model is presented in this paper. Considering the preload condition, surface waviness, Hertz contact and elastohydrodynamic lubrication, load distribution analysis is solved iteratively to more accurately obtain the contact deformations and angles between the rolling balls and raceways. The bearing restoring forces are then obtained through iteratively solving the load distribution equations at every time step. Dynamic tests upon a typical rotor system supported by two angular contact ball bearings are conducted to verify the model. Through comparisons, the differences between the nonlinear dynamic model and current models are also pointed out. The effects of axial preload, rotor eccentricity and inner/outer waviness amplitudes on the dynamic response are discussed in detail.
Kasahara, Akira
2003-04-01
Roles of the horizontal component of the earth's rotation, which is neglected traditionally in atmospheric and oceanographic models, are studied through the normal mode analysis of a compressible and stratified model on a tangent plane in the domain that is periodic in the zonal and meridional directions but bounded at the top and bottom. As expected, there exist two distinct kinds of acoustic and buoyancy oscillations that are modified by the earth's rotation. When the cos(latitude) Coriolis terms are included, there exists another kind of wave oscillation whose frequencies are very close to the inertial frequency, 2 sin(latitude), where is the earth's angular velocity.The objective of this article is to clarify the circumstance in which a distinct kind of wave oscillation emerges whose frequencies are very close to the inertial frequency. Because this particular kind of normal mode appears only due to the presence of boundary conditions in the vertical, it may be appropriate to call these waves boundary-induced inertial (BII) modes as demonstrated through the normal mode analyses of a homogeneous and incompressible model and a Boussinesq model with thermal stratification. Thus, it can be understood that the BII modes can coexist with the acoustic and inertio-gravity modes when the effect of compressibility is added to the effects of buoyancy and complete Coriolis force in the compressible, stratified, and rotating model.
Demonstrating the Conservation of Angular Momentum Using Model Cars Moving along a Rotating Rod
Abdul-Razzaq, Wathiq; Golubovic, Leonardo
2013-01-01
We have developed an exciting non-traditional experiment for our introductory physics laboratories to help students to understand the principle of conservation of angular momentum. We used electric toy cars moving along a long rotating rod. As the cars move towards the centre of the rod, the angular velocity of this system increases.…
Shit, G C; Sinha, A
2012-01-01
This paper presents a theoretical study of blood flow through a tapered and overlapping stenosed artery under the action of an externally applied magnetic field. The fluid (blood) medium is assumed to be porous in nature. The variable viscosity of blood depending on hematocrit (percentage volume of erythrocytes) is taken into account in order to improve resemblance to the real situation. The governing equation for laminar, incompressible and Newtonian fluid subject to the boundary conditions is solved by using a well known Frobenius method. The analytical expressions for velocity component, volumetric flow rate, wall shear stress and pressure gradient are obtained. The numerical values are extracted from these analytical expressions and are presented graphically. It is observed that the influence of hematocrit, magnetic field and the shape of artery have important impact on the velocity profile, pressure gradient and wall shear stress. Moreover, the effect of primary stenosis on the secondary one has been sig...
A New Iris Segmentation Method Based on Improved Snake Model and Angular Integral Projection
Directory of Open Access Journals (Sweden)
Ann A. Jarjes
2011-06-01
Full Text Available Segmenting iris region is fundamental for iris-based biometric systems. The overall performance of an iris recognition system is highly dependent on accurate iris segmentation. In this paper, a new algorithm for iris segmentation is proposed towards more accurate and efficient segmentation, it detects the precise pupil contour and localizes the limbic boundary. An improved snake model is presented, wherein a new external energy function is designed. This external energy is computed based on the Angular Integral Projection Function (AIPF. First, the AIPF is combined with the improved snake to detect the pupil boundary. For that, pupil boundary points are detected by using the AIPF, and circle fitting is followed to localize the circular pupil boundary giving the initial snake contour. Then, the precise pupil contour is detected by deploying the improved snake. Second, as another contribution of this work, the limbic boundary is localized by combining the AIPF with a technique to extract outlier boundary points based on Mahalanobis distance. Experimental results on CASIA V3.0 iris image database show that the improved snake model is comparable with conventional snake model, and the whole segmentation performance of the proposed algorithm outperforms those of other wellknown existing methods in both terms of accuracy and processing time.
NOTE: Implementation of angular response function modeling in SPECT simulations with GATE
Descourt, P.; Carlier, T.; Du, Y.; Song, X.; Buvat, I.; Frey, E. C.; Bardies, M.; Tsui, B. M. W.; Visvikis, D.
2010-05-01
Among Monte Carlo simulation codes in medical imaging, the GATE simulation platform is widely used today given its flexibility and accuracy, despite long run times, which in SPECT simulations are mostly spent in tracking photons through the collimators. In this work, a tabulated model of the collimator/detector response was implemented within the GATE framework to significantly reduce the simulation times in SPECT. This implementation uses the angular response function (ARF) model. The performance of the implemented ARF approach has been compared to standard SPECT GATE simulations in terms of the ARF tables' accuracy, overall SPECT system performance and run times. Considering the simulation of the Siemens Symbia T SPECT system using high-energy collimators, differences of less than 1% were measured between the ARF-based and the standard GATE-based simulations, while considering the same noise level in the projections, acceleration factors of up to 180 were obtained when simulating a planar 364 keV source seen with the same SPECT system. The ARF-based and the standard GATE simulation results also agreed very well when considering a four-head SPECT simulation of a realistic Jaszczak phantom filled with iodine-131, with a resulting acceleration factor of 100. In conclusion, the implementation of an ARF-based model of collimator/detector response for SPECT simulations within GATE significantly reduces the simulation run times without compromising accuracy.
Hori, Masahiro; Aoki, Teruo; Tanikawa, Tomonori; Hachikubo, Akihiro; Sugiura, Konosuke; Kuchiki, Katsuyuki; Niwano, Masashi
2013-10-20
A model of angular-dependent emissivity spectra of snow and ice in the 8-14 μm atmospheric window is constructed. Past field research revealed that snow emissivity varies depending on snow grain size and the exitance angle. Thermography images acquired in this study further revealed that not only welded snow particles such as sun crust, but also disaggregated particles such as granular snow and dendrite crystals exhibit high reflectivity on their crystal facets, even when the bulk snow surface exhibits blackbody-like behavior as a whole. The observed thermal emissive behaviors of snow particles suggest that emissivity of the bulk snow surface can be expressed by a weighted sum of two emissivity components: those of the specular and blackbody surfaces. Based on this assumption, a semi-empirical emissivity model was constructed; it is expressed by a linear combination of specular and blackbody surfaces' emissivities with a weighting parameter characterizing the specularity of the bulk surface. Emissivity spectra calculated using the model succeeded in reproducing the past in situ measured directional spectra of various snow types by employing a specific weighting parameter for each snow type.
Implementation of angular response function modeling in SPECT simulations with GATE
Energy Technology Data Exchange (ETDEWEB)
Descourt, P; Visvikis, D [INSERM, U650, LaTIM, IFR SclnBioS, Universite de Brest, CHU Brest, Brest, F-29200 (France); Carlier, T; Bardies, M [CRCNA INSERM U892, Nantes (France); Du, Y; Song, X; Frey, E C; Tsui, B M W [Department of Radiology, J Hopkins University, Baltimore, MD (United States); Buvat, I, E-mail: dimitris@univ-brest.f [IMNC-UMR 8165 CNRS Universites Paris 7 et Paris 11, Orsay (France)
2010-05-07
Among Monte Carlo simulation codes in medical imaging, the GATE simulation platform is widely used today given its flexibility and accuracy, despite long run times, which in SPECT simulations are mostly spent in tracking photons through the collimators. In this work, a tabulated model of the collimator/detector response was implemented within the GATE framework to significantly reduce the simulation times in SPECT. This implementation uses the angular response function (ARF) model. The performance of the implemented ARF approach has been compared to standard SPECT GATE simulations in terms of the ARF tables' accuracy, overall SPECT system performance and run times. Considering the simulation of the Siemens Symbia T SPECT system using high-energy collimators, differences of less than 1% were measured between the ARF-based and the standard GATE-based simulations, while considering the same noise level in the projections, acceleration factors of up to 180 were obtained when simulating a planar 364 keV source seen with the same SPECT system. The ARF-based and the standard GATE simulation results also agreed very well when considering a four-head SPECT simulation of a realistic Jaszczak phantom filled with iodine-131, with a resulting acceleration factor of 100. In conclusion, the implementation of an ARF-based model of collimator/detector response for SPECT simulations within GATE significantly reduces the simulation run times without compromising accuracy. (note)
Illusion induced overlapped optics.
Zang, XiaoFei; Shi, Cheng; Li, Zhou; Chen, Lin; Cai, Bin; Zhu, YiMing; Zhu, HaiBin
2014-01-13
The traditional transformation-based cloak seems like it can only hide objects by bending the incident electromagnetic waves around the hidden region. In this paper, we prove that invisible cloaks can be applied to realize the overlapped optics. No matter how many in-phase point sources are located in the hidden region, all of them can overlap each other (this can be considered as illusion effect), leading to the perfect optical interference effect. In addition, a singular parameter-independent cloak is also designed to obtain quasi-overlapped optics. Even more amazing of overlapped optics is that if N identical separated in-phase point sources covered with the illusion media, the total power outside the transformation region is N2I0 (not NI0) (I0 is the power of just one point source, and N is the number point sources), which seems violating the law of conservation of energy. A theoretical model based on interference effect is proposed to interpret the total power of these two kinds of overlapped optics effects. Our investigation may have wide applications in high power coherent laser beams, and multiple laser diodes, and so on.
DEFF Research Database (Denmark)
Johansson, Jens; Nielsen, Mogens Peter
The uniform flow around a circular cylinder at Reynolds number 1e5 is simulated in a three dimensional domain by means of the newly developed Self-induced angular Moment Method, SMoM, turbulence model. The global force coefficients, Strouhal number, pressure distributions and wall shear stress...
Antoci, Angelo; Gori, Luca; Sodini, Mauro
2016-09-01
We analyse the dynamics of an economy formed of overlapping generations of individuals whose well-being depends on leisure, consumption of a private good and a free access environmental resource. The production activity of the private good deteriorates the environmental resource. Individuals may defend themselves from environmental degradation by increasing consumption of the private good, which may be perceived as a "substitute" for services provided by the environmental resource. However, the resulting increase in production and consumption of the private good generates a further increase in environmental deterioration leading economic agents to increase production and consumption of the private good itself. This substitution mechanism is clearly self-reinforcing and may fuel an undesirable economic growth process according to which an increase in consumption of the private good - and the resulting increase in Gross Domestic Product - is associated with a reduction in individuals' well-being. The article shows the emergence of several global phenomena, and individuals' expectations about the future evolution of the environmental quality can give rise to (local and global) indeterminacy about the growth path the economy will follow starting from a given initial position.
Institute of Scientific and Technical Information of China (English)
王殿元; 夏上达; 尹民
2003-01-01
Based on the experimental data of KY3F10∶Tm3+ reported by Diaf, Kushida′s spectral overlap model (SOM) of energy transfer between J-multiplets was studied. Firstly, with the help of the Inokuti-Hirayama and Yokota-Tanimoto models, the luminescence decay curve of 3H4 of Tm3+ ion was fitted, and the fitted values of corresponding interaction parameters CDA of energy transfer and CDD of energy migration were obtained. Secondly, by compared with Kushida′s SOM in which the relevant Judd-Ofelt approximative transition rates are known, the average overlap integrals of SDD and SDA were obtained. For SDD, how to treat the contribution of the electronic-dipole (ED) crystal field transition forbidden by C4v site symmetry in the calculation of SDD was discussed. For SDA we suggested that, by including the contribution of the phonon sidebands in the analysis of oscillator strength of transition, Kushida′s SOM of ED-ED resonant energy transfer rate can be extended to non-resonant phonon-assisted D-A energy transfer. The strengths and widths of phonon sidebands in this example were discussed, and the results were reasonably good.
Franke, R.
2016-11-01
In many networks discovered in biology, medicine, neuroscience and other disciplines special properties like a certain degree distribution and hierarchical cluster structure (also called communities) can be observed as general organizing principles. Detecting the cluster structure of an unknown network promises to identify functional subdivisions, hierarchy and interactions on a mesoscale. It is not trivial choosing an appropriate detection algorithm because there are multiple network, cluster and algorithmic properties to be considered. Edges can be weighted and/or directed, clusters overlap or build a hierarchy in several ways. Algorithms differ not only in runtime, memory requirements but also in allowed network and cluster properties. They are based on a specific definition of what a cluster is, too. On the one hand, a comprehensive network creation model is needed to build a large variety of benchmark networks with different reasonable structures to compare algorithms. On the other hand, if a cluster structure is already known, it is desirable to separate effects of this structure from other network properties. This can be done with null model networks that mimic an observed cluster structure to improve statistics on other network features. A third important application is the general study of properties in networks with different cluster structures, possibly evolving over time. Currently there are good benchmark and creation models available. But what is left is a precise sandbox model to build hierarchical, overlapping and directed clusters for undirected or directed, binary or weighted complex random networks on basis of a sophisticated blueprint. This gap shall be closed by the model CHIMERA (Cluster Hierarchy Interconnection Model for Evaluation, Research and Analysis) which will be introduced and described here for the first time.
An experimental study on expectations and learning in overlapping generations models
Heemeijer, P.; Hommes, C.H.; Sonnemans, J.; Tuinstra, J.
2012-01-01
A plethora of models of learning has been developed and studied in macro-economic models in recent years. In this paper we will try to discriminate between these learning models by running laboratory experiments with incentivized human subjects. Participants predict inflation rates for 50 successive
The relativistic consistent angular-momentum projected shell model study of the N=Z nucleus 52Fe
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
The relativistic consistent angular-momentum projected shell model(ReCAPS) is used in the study of the structure and electromagnetic transitions of the low-lying states in the N=Z nucleus 52Fe.The model calculations show a reasonably good agreement with the data.The backbending at 12+ is reproduced and the energy level structure suggests that neutron-proton interactions play important roles.
The relativistic consistent angular-momentum projected shell model study of the N=Z nucleus 52Fe
Institute of Scientific and Technical Information of China (English)
LI YanSong; LONG GuiLu
2009-01-01
The relativistic consistent angular-momentum projected shell model (RECAPS) is used in the study of the structure and electromagnetic transitions of the low-lying states in the N=Z nucleus 52Fe.The model calculations show a reasonably good agreement with the data.The backbending at 12+ is reproduced and the energy level structure suggests that neutron-proton interactions play important roles.
DEFF Research Database (Denmark)
Eilbeck, J. C; Lomdahl, P.S.; Olsen, O.H.;
1985-01-01
for the critical current leads in this limit to the critical current obtained from the one-dimensional model. Comparisons between stationary fluxon velocities obtained from the two models by means of numerical computations show that the difference is negligible. This supports the experimental observation...
On the overlap of the pre-equilibrium and direct reaction models
Energy Technology Data Exchange (ETDEWEB)
Avrigeanu, M.; Bucurescu, D.; Ivascu, M.; Semenescu, G.; Avrigeanu, V. (Institute for Physics and Nuclear Engineering, Bucharest (Romania))
1989-11-01
An analysis of neutron inelastic scattering on {sup 56}Fe proves that the phenomenological pre-equilibrium emission geometry-dependent hybrid model is able to describe direct inelastic scattering in the continuum. A method is given for incorporating consistently the distorted-wave Born approximation method to characterise this process on discrete excited nuclear states and the generalised version of the GDH model for the higher excitation energies. (author).
Angular Emission Function of a City and Skyglow Modeling: A Critical Perspective
Kocifaj, Miroslav; Solano Lamphar, Héctor Antonio
2016-12-01
The radiative transfer equation (RTE) is a common approach to solving the transfer of electromagnetic energy in heterogeneous disperse media, such as atmospheric environment. One-dimensional RTE is a linear boundary value problem that is well suited to plane-parallel atmosphere with no diffuse intensity entering the top of the atmosphere. In nighttime regime, the ground-based light sources illuminate the atmosphere at its bottom interface. However, the light-pollution models conventionally use radiant intensity function rather than radiance. This might potentially result in a number of misconceptions. We focused on similarities and fundamental differences between both functions and clarified distinct consequences for the modeling of skyglow from finite-sized and semi-infinite light-emitting flat surfaces. Minimum requirements to be fulfilled by a City Emission Function (CEF) are formulated to ensure a successful solution of standard and inverse problems. It has been shown that the horizon radiance of a flat surface emitting in accordance with Garstang’s function (GEF) would exceed any limit, meaning that the GEF is not an appropriate tool to model skyglow from distant sources. We developed two alternative CEFs to remedy this problem through correction of direct upward emissions; the most important strengths of the modified CEFs are detailed in this paper. Numerical experiments on sky luminance under well-posed and ill-posed boundary conditions were made for two extreme uplight fractions (F) and for three discrete distances from the city edge. The errors induced by replacing radiance with radiant intensity function in the RTE are generally low (15%-30%) if F is as large as 0.15, but alteration of the luminance may range over 1-3 orders of magnitude if F approaches zero. In the latter case, the error margin can increase by a factor of 10-100 or even 1000, even if the angular structure of luminance patterns suffers only weak changes. This is why such a shift in
Overlapping Parietal Activity in Memory and Perception: Evidence for the Attention to Memory Model
Cabeza, Roberto; Mazuz, Yonatan S.; Stokes, Jared; Kragel, James E.; Woldorff, Marty G.; Ciaramelli, Elisa; Olson, Ingrid R.; Moscovitch, Morris
2011-01-01
The specific role of different parietal regions to episodic retrieval is a topic of intense debate. According to the Attention to Memory (AtoM) model, dorsal parietal cortex (DPC) mediates top-down attention processes guided by retrieval goals, whereas ventral parietal cortex (VPC) mediates bottom-up attention processes captured by the retrieval…
Schmerer, Hans-Jörg; Capuano, Stella; Egger, Hartmut; Koch, Michael
2015-01-01
We set up a model of offshoring with heterogeneous producers that captures two empirical regularities on offshoring firms: larger, more productive firms are more likely to make use of the offshoring opportunity; the fraction of firms that engages in offshoring is positive and smaller than one in any size or revenue category. These patterns generate an overlap of offshoring and non-offshoring firms, which is non-monotonic in the costs of offshoring. In an empirical exercise, we employ firm-lev...
Shakur, Asif; Sinatra, Taylor
2013-01-01
The gyroscope in a smartphone was employed in a physics laboratory setting to verify the conservation of angular momentum and the nonconservation of rotational kinetic energy. As is well-known, smartphones are ubiquitous on college campuses. These devices have a panoply of built-in sensors. This creates a unique opportunity for a new paradigm in…
Energy Technology Data Exchange (ETDEWEB)
Sagaidak, R.N., E-mail: sagaidak@nrmail.jinr.ru [Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, Dubna 141980, Moscow Region (Russian Federation); Utyonkov, V.K., E-mail: utyonkov@sungns.jinr.ru [Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, Dubna 141980, Moscow Region (Russian Federation); Scarlassara, F., E-mail: scarlassara@pd.infn.it [INFN Sezione di Padova and Universitá di Padova, Dipartimento di Fisica “Galileo Galilei”, 35131 Padova (Italy)
2013-02-01
A Monte Carlo approach has been developed for simulations of the angular and energy distributions for heavy evaporation residues (ER) produced in heavy ion fusion-evaporation reactions. The approach uses statistical model approximations of the HIVAP code for the calculations of initial angular and energy distributions inside a target, which are determined by neutron evaporation from an excited compound nucleus. Further step in the simulation of transmission of ER heavy atoms through a target layer is performed with the TRIM code that gives final angle and energy distributions at the exit from the target. Both the simulations (neutron evaporation and transmission through solid media) have been separately considered and good agreement has been obtained between the results of simulations and available experimental data. Some applications of the approach have been also considered.
Acciarri, M; Aguilar-Benítez, M; Ahlen, S P; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Ambrosi, G; Anderhub, H; Andreev, V P; Angelescu, T; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Baksay, L; Ball, R C; Banerjee, S; Banerjee, Sw; Banicz, K; Barczyk, A; Barillère, R; Barone, L; Bartalini, P; Baschirotto, A; Basile, M; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Bhattacharya, S; Biasini, M; Biland, A; Bilei, G M; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böck, R K; Böhm, A; Boldizsar, L; Borgia, B; Bourilkov, D; Bourquin, Maurice; Boutigny, D; Braccini, S; Branson, J G; Brigljevic, V; Brock, I C; Buffini, A; Buijs, A; Burger, J D; Burger, W J; Busenitz, J K; Cai, X D; Campanelli, M; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Castellini, G; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada-Canales, M; Cesaroni, F; Chamizo-Llatas, M; Chang, Y H; Chaturvedi, U K; Chekanov, S V; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chen, M; Chiefari, G; Chien, C Y; Cifarelli, Luisa; Cindolo, F; Civinini, C; Clare, I; Clare, R; Cohn, H O; Coignet, G; Colijn, A P; Colino, N; Costantini, S; Cotorobai, F; de la Cruz, B; Csilling, Akos; Dai, T S; D'Alessandro, R; De Asmundis, R; Degré, A; Deiters, K; Denes, P; De Notaristefani, F; DiBitonto, Daryl; Diemoz, M; Van Dierendonck, D N; Di Lodovico, F; Dionisi, C; Dittmar, Michael; Dominguez, A; Doria, A; Dova, M T; Drago, E; Duchesneau, D; Duinker, P; Durán, I; Dutta, S; Easo, S; Efremenko, Yu V; El-Mamouni, H; Engler, A; Eppling, F J; Erné, F C; Ernenwein, J P; Extermann, Pierre; Fabre, M; Faccini, R; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, Marta; Fenyi, B; Ferguson, T; Ferroni, F; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Fisk, I; Forconi, G; Fredj, L; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gau, S S; Gentile, S; Gerald, J; Gheordanescu, N; Giagu, S; Goldfarb, S; Goldstein, J; Gong, Z F; Gougas, Andreas; Gratta, Giorgio; Grünewald, M W; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hartmann, B; Hasan, A; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hirschfelder, J; Van Hoek, W C; Hofer, H; Hoorani, H; Hou, S R; Hu, G; Innocente, Vincenzo; Jenkes, K; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Kasser, A; Khan, R A; Kamrad, D; Kamyshkov, Yu A; Kapustinsky, J S; Karyotakis, Yu; Kaur, M; Kienzle-Focacci, M N; Kim, D; Kim, D H; Kim, J K; Kim, S C; Kinnison, W W; Kirkby, A; Kirkby, D; Kirkby, Jasper; Kiss, D; Kittel, E W; Klimentov, A; König, A C; Kopp, A; Korolko, I; Koutsenko, V F; Krämer, R W; Krenz, W; Kunin, A; Lacentre, P E; Ladrón de Guevara, P; Landi, G; Lapoint, C; Lassila-Perini, K M; Laurikainen, P; Lavorato, A; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Lee, H J; Leggett, C; Le Goff, J M; Leiste, R; Leonardi, E; Levchenko, P M; Li Chuan; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lu, W; Lü, Y S; Lübelsmeyer, K; Luci, C; Luckey, D; Luminari, L; Lustermann, W; Ma Wen Gan; Maity, M; Majumder, G; Malgeri, L; Malinin, A; Maña, C; Mangeol, D J J; Mangla, S; Marchesini, P A; Marin, A; Martin, J P; Marzano, F; Massaro, G G G; McNally, D; Mele, S; Merola, L; Meschini, M; Metzger, W J; Von der Mey, M; Mi, Y; Migani, D; Mihul, A; Van Mil, A J W; Milcent, H; Mirabelli, G; Mnich, J; Molnár, P; Monteleoni, B; Moore, R; Moulik, T; Mount, R; Muheim, F; Muijs, A J M; Nahn, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Niessen, T; Nippe, A; Nisati, A; Nowak, H; Oh, Yu D; Opitz, H; Organtini, G; Ostonen, R; Palit, S; Palomares, C; Pandoulas, D; Paoletti, S; Paolucci, P; Park, H K; Park, I H; Pascale, G; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Peach, D; Pei, Y J; Pensotti, S; Perret-Gallix, D; Petersen, B; Petrak, S; Pevsner, A; Piccolo, D; Pieri, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Postema, H; Produit, N; Prokofev, D; Prokofiev, D O; Quartieri, J; Rahal-Callot, G; Raja, N; Rancoita, P G; Rattaggi, M; Raven, G; Razis, P A; Read, K; Ren, D; Rescigno, M; Reucroft, S; Van Rhee, T; Riemann, S; Riles, K; Rind, O; Robohm, A; Rodin, J; Roe, B P; Romero, L; Rosier-Lees, S; Rosselet, P; Van Rossum, W; Roth, S; Rubio, Juan Antonio; Ruschmeier, D; Rykaczewski, H; Salicio, J; Sánchez, E; Sanders, M P; Sarakinos, M E; Sarkar, S; Sauvage, G; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Schneegans, M; Scholz, N; Schopper, Herwig Franz; Schotanus, D J; Schwenke, J; Schwering, G; Sciacca, C; Sciarrino, D; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shukla, J; Shumilov, E; Shvorob, A V; Siedenburg, T; Son, D; Soulimov, V; Smith, B; Spillantini, P; Steuer, M; Stickland, D P; Stone, H; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Susinno, G F; Suter, H; Swain, J D; Tang, X W; Tauscher, Ludwig; Taylor, L; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tuchscherer, H; Tung, K L; Uchida, Y; Ulbricht, J; Uwer, U; Valente, E; Vesztergombi, G; Vetlitskii, I; Viertel, Gert M; Vivargent, M; Vlachos, S; Völkert, R; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Vorvolakos, A; Wadhwa, M; Wallraff, W; Wang, J C; Wang, X L; Wang, Z M; Weber, A; Wu, S X; Wynhoff, S; Xu, J; Xu, Z Z; Yang, B Z; Yang, C G; Yao, X Y; Ye, J B; Yeh, S C; You, J M; Zalite, A; Zalite, Yu; Zemp, P; Zeng, Y; Zhang, Z; Zhang, Z P; Zhou, B; Zhou, Y; Zhu, G Y; Zhu, R Y; Zichichi, Antonino; Ziegler, F
1998-01-01
Local multiplicity fluctuations in angular phase space intervals are studied using factorial moments measured in hadronic events at $\\sqrt{s}\\simeq 91.2\\GeV$, which were collected by the L3 detector at LEP in 1994. Parton shower Monte Carlo programs agree well with the data. On the other hand, first-order QCD calculations in the Double Leading Log Approximation and the Modified Leading Log Approximation are found to deviate significantly from the data.
[Angular gyrus connectivity model for language: a functional neuroimaging meta-analysis].
Rosselli, Mónica; Ardila, Alfredo; Bernal, Byron
2015-06-01
Introduccion. Las tecnicas modernas de neuroimagen funcional permiten analizar la activacion simultanea de diversas areas cerebrales y sugerir modelos de conectividad para funciones cognitivas especificas. Objetivo. Realizar un metaanalisis de las redes funcionales de la region angular (area de Brodmann 39) con relacion al lenguaje. Materiales y metodos. Partiendo de la base de datos BrainMap, se analizaron las coordenadas de activacion en estudios de resonancia magnetica funcional que mostraban una activacion del area de Brodmann 39 durante la realizacion de tareas linguisticas. Se seleccionaron ocho articulos con 13 experimentos, que incluian un total de 155 sujetos, y 265 localizaciones. Resultados. Los resultados mostraron 16 conglomerados de activacion significativos que conformaban una red de coactivacion, la cual incluia las dos regiones angulares, el lobulo parietal superior y la circunvolucion supramarginal derechos, el lobulo temporal izquierdo (cara lateral medial y cara medial inferior) y el lobulo frontal (premotor bilateral y prefrontal izquierdo). Conclusiones. Estos resultados coinciden con los hallazgos obtenidos con tecnicas de conectividad estructural y apoyan el papel integrador de la region angular en funciones linguisticas.
Khuseynov, Dmitry; Blackstone, Christopher C; Culberson, Lori M; Sanov, Andrei
2014-09-28
We present a model for laboratory-frame photoelectron angular distributions in direct photodetachment from (in principle) any molecular orbital using linearly polarized light. A transparent mathematical approach is used to generalize the Cooper-Zare central-potential model to anionic states of any mixed character. In the limit of atomic-anion photodetachment, the model reproduces the Cooper-Zare formula. In the case of an initial orbital described as a superposition of s and p-type functions, the model yields the previously obtained s-p mixing formula. The formalism is further advanced using the Hanstorp approximation, whereas the relative scaling of the partial-wave cross-sections is assumed to follow the Wigner threshold law. The resulting model describes the energy dependence of photoelectron anisotropy for any atomic, molecular, or cluster anions, usually without requiring a direct calculation of the transition dipole matrix elements. As a benchmark case, we apply the p-d variant of the model to the experimental results for NO(-) photodetachment and show that the observed anisotropy trend is described well using physically meaningful values of the model parameters. Overall, the presented formalism delivers insight into the photodetachment process and affords a new quantitative strategy for analyzing the photoelectron angular distributions and characterizing mixed-character molecular orbitals using photoelectron imaging spectroscopy of negative ions.
Staker, Joshua T
2013-01-01
We make numerical comparison of spectra from angular-momentum projection on Hartree-Fock states with spectra from configuration-interaction nuclear shell-model calculations, all carried out in the same model spaces (in this case the sd, lower pf, and p-sd_5/2 shells) and using the same input Hamiltonians. We find, unsurprisingly, that the low-lying excitation spectra for rotational nuclides are well reproduced, but the spectra for vibrational nuclides, and more generally the complex specta for odd-A and odd-odd nuclides are less well reproduced in detail.
Overlap in Facebook Profiles Reflects Relationship Closeness.
Castañeda, Araceli M; Wendel, Markie L; Crockett, Erin E
2015-01-01
We assessed the association between self-reported Inclusion of Other in the Self (IOS) and Facebook overlap. Ninety-two participants completed online measures of IOS and investment model constructs. Researchers then recorded Facebook data from participants' profile pages. Results from multilevel models revealed that IOS predicted Facebook overlap. Furthermore, Facebook overlap was associated with commitment and investment in ways comparable to self-reported IOS. These findings suggest that overlap in Facebook profiles can be used to measure relationship closeness.
Addison, Audrey; Powell, James A; Bentz, Barbara J; Six, Diana L
2015-03-07
The fates of individual species are often tied to synchronization of phenology, however, few methods have been developed for integrating phenological models involving linked species. In this paper, we focus on mountain pine beetle (MPB, Dendroctonus ponderosae) and its two obligate mutualistic fungi, Grosmannia clavigera and Ophiostoma montium. Growth rates of all three partners are driven by temperature, and their idiosyncratic responses affect interactions at important life stage junctures. One critical phase for MPB-fungus symbiosis occurs just before dispersal of teneral (new) adult beetles, when fungi are acquired and transported in specialized structures (mycangia). Before dispersal, fungi must capture sufficient spatial resources within the tree to ensure contact with teneral adults and get packed into mycangia. Mycangial packing occurs at an unknown time during teneral feeding. We adapt thermal models predicting fungal growth and beetle development to predict overlap between the competing fungi and MPB teneral adult feeding windows and emergence. We consider a spectrum of mycangial packing strategies and describe them in terms of explicit functions with unknown parameters. Rates of growth are fixed by laboratory data, the unknown parameters describing various packing strategies, as well as the degree to which mycangial growth is slowed in woody tissues as compared to agar, are determined by maximum likelihood and two years of field observations. At the field location used, the most likely fungus acquisition strategy for MPB was packing mycangia just prior to emergence. Estimated model parameters suggested large differences in the relative growth rates of the two fungi in trees at the study site, with the most likely model estimating that G. clavigera grew approximately twenty-five times faster than O. montium under the bark, which is completely unexpected in comparison with observed fungal growth on agar.
Laboratory modeling of standing shocks and radiatively cooled jets with angular momentum
Ampleford, D J; Ciardi, A; Bland, S N; Bott, S C; Hall, G N; Naz, N; Jennings, C A; Sherlock, M; Chittenden, J P; Palmer, J B A; Frank, A; Blackman, E
2007-01-01
The first laboratory astrophysics experiments to produce a radiatively cooled plasma jet with dynamically significant angular momentum are discussed. A new configuration of wire array z-pinch, the twisted conical wire array, is used to produce convergent plasma flows each rotating about the central axis. Collision of the flows produces a standing shock and jet that each have supersonic azimuthal velocities. By varying the twist angle of the array, the rotation velocity of the system can be controlled, with jet rotation velocities ~18% of the propagation velocity directly measured.
DEFF Research Database (Denmark)
Hinrichsen, H.H.; Schmidt, J.O.; Petereit, C.;
2005-01-01
Temporal mismatch between the occurrence of larvae and their prey potentially affects the spatial overlap and thus the contact rates between predator and prey. This might have important consequences for growth and survival. We performed a case study investigating the influence of circulation patt....... Finally, we related variations in overlap patterns to the variability of Baltic cod recruitment success. (c) 2005 International Council for the Exploration of the Sea. Published by Elsevier Ltd. All rights reserved...
DEFF Research Database (Denmark)
Rasmussen, Mads Olander; Pinheiro, AC; Proud, Simon Richard
2010-01-01
Satellite-based estimates of land surface temperature (LST) are widely applied as an input to models. A model output is often very sensitive to error in the input data, and high-quality inputs are therefore essential. One of the main sources of errors in LST estimates is the dependence on vegetat......Satellite-based estimates of land surface temperature (LST) are widely applied as an input to models. A model output is often very sensitive to error in the input data, and high-quality inputs are therefore essential. One of the main sources of errors in LST estimates is the dependence...... on vegetation structure and viewing and illumination geometry. Despite this, these effects are not considered in current operational LST products from neither polar-orbiting nor geostationary satellites. In this paper, we simulate the angular dependence that can be expected when estimating LST with the viewing...... by different land covers. The results show that the sun-target-sensor geometry plays a significant role in the estimated temperature, with variations strictly due to the angular configuration of more than ±3°C in some cases. On the continental scale, the average error is small except in hot-spot conditions...
Maadooliat, Mehdi
2015-10-21
This paper develops a method for simultaneous estimation of density functions for a collection of populations of protein backbone angle pairs using a data-driven, shared basis that is constructed by bivariate spline functions defined on a triangulation of the bivariate domain. The circular nature of angular data is taken into account by imposing appropriate smoothness constraints across boundaries of the triangles. Maximum penalized likelihood is used to fit the model and an alternating blockwise Newton-type algorithm is developed for computation. A simulation study shows that the collective estimation approach is statistically more efficient than estimating the densities individually. The proposed method was used to estimate neighbor-dependent distributions of protein backbone dihedral angles (i.e., Ramachandran distributions). The estimated distributions were applied to protein loop modeling, one of the most challenging open problems in protein structure prediction, by feeding them into an angular-sampling-based loop structure prediction framework. Our estimated distributions compared favorably to the Ramachandran distributions estimated by fitting a hierarchical Dirichlet process model; and in particular, our distributions showed significant improvements on the hard cases where existing methods do not work well.
OVERLAPPING VIRTUAL CADASTRAL DOCUMENTATION
Directory of Open Access Journals (Sweden)
Madalina - Cristina Marian
2013-12-01
Full Text Available Two cadastrale plans of buildings, can overlap virtual. Overlap is highlighted when digital reception. According to Law no. 7/1996 as amended and supplemented, to solve these problems is by updating the database graphs, the repositioning. This paper addresses the issue of overlapping virtual cadastre in the history of the period 1999-2012.
On the angular dependence and scattering model of polar mesospheric summer echoes at VHF
Sommer, Svenja; Stober, Gunter; Chau, Jorge L.
2016-01-01
We present measurements of the angular dependence of polar mesospheric summer echoes (PMSE) with the Middle Atmosphere Alomar Radar System in Northern Norway (69.30° N, 16.04° E). Our results are based on multireceiver and multibeam observations using beam pointing directions with off-zenith angles up to 25° as well as on spatial correlation analysis (SCA) from vertical beam observations. We consider a beam filling effect at the upper and lower boundaries of PMSE in tilted beams, which determines the effective mean angle of arrival. Comparing the average power of the vertical beam to the oblique beams suggests that PMSE are mainly not as aspect sensitive as in contrast to previous studies. However, from SCA, times of enhanced correlation are found, indicating aspect sensitivity or a localized scattering mechanism. Our results suggest that PMSE consist of nonhomogeneous isotropic scattering and previously reported aspect sensitivity values might have been influenced by the inhomogeneous nature of PMSE.
Modelling the CMB angular correlation function in the framework of NCG
Kaviani, Kamran
2016-01-01
Following many theories which predict existence of the multiverse and by the conjecture that our space-time may have a generalized geometrical structure at the fundamental level, we are interested in non-commutative geometry (NCG) formalism to study a suggested two layer space contains our 4D universe and re-derive photon propagator. It can be shown that the photon propagator and CMB angular correlation function are comparable and if there be such a multiverse system, distance of two layers can be estimated to be in the order of the observable universe radius. Furthermore it will be shown that this result does not limited to CMB but to all kind of radiations such as X-ray as well.
Liu, Jun
2010-01-01
The group Lasso is an extension of the Lasso for feature selection on (predefined) non-overlapping groups of features. The non-overlapping group structure limits its applicability in practice. There have been several recent attempts to study a more general formulation, where groups of features are given, potentially with overlaps between the groups. The resulting optimization is, however, much more challenging to solve due to the group overlaps. In this paper, we consider the efficient optimization of the overlapping group Lasso penalized problem. We reveal several key properties of the proximal operator associated with the overlapping group Lasso, and compute the proximal operator by solving the smooth and convex dual problem, which allows the use of the gradient descent type of algorithms for the optimization. We have performed empirical evaluations using the breast cancer gene expression data set, which consists of 8,141 genes organized into (overlapping) gene sets. Experimental results demonstrate the eff...
DEFF Research Database (Denmark)
Kempf, Alexander; Dingsør, Gjert Endre; Huse, Geir
2010-01-01
of time-invariant and year- and quarter-specific overlap estimates on the historical (1991–2007) and predicted trophic interactions, as well as the development of predator and prey stocks, was investigated. The focus was set on a general comparison between single-species and multispecies forecasts...
Energy Technology Data Exchange (ETDEWEB)
Caiazzo, Giuseppina; Trojsi, Francesca; Cirillo, Mario; Tedeschi, Gioacchino [MRI Research Center SUN-FISM-Neurological Institute for Diagnosis and Care ' ' Hermitage Capodimonte' ' , Naples (Italy); Second University of Naples, Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, Naples (Italy); Esposito, Fabrizio [University of Salerno, Department of Medicine and Surgery, Baronissi (Salerno) (Italy); Maastricht University, Department of Cognitive Neuroscience, Maastricht (Netherlands)
2016-02-15
Q-ball imaging (QBI) is one of the typical data models for quantifying white matter (WM) anisotropy in diffusion-weighted MRI (DwMRI) studies. Brain and spinal investigation by high angular resolution DwMRI (high angular resolution imaging (HARDI)) protocols exhibits higher angular resolution in diffusion imaging compared to low angular resolution models, although with longer acquisition times. We aimed to assess the difference between QBI-derived anisotropy values from high and low angular resolution DwMRI protocols and their potential advantages or shortcomings in neuroradiology. Brain DwMRI data sets were acquired in seven healthy volunteers using both HARDI (b = 3000 s/mm{sup 2}, 54 gradient directions) and low angular resolution (b = 1000 s/mm{sup 2}, 32 gradient directions) acquisition schemes. For both sequences, tract of interest tractography and generalized fractional anisotropy (GFA) measures were extracted by using QBI model and were compared between the two data sets. QBI tractography and voxel-wise analyses showed that some WM tracts, such as corpus callosum, inferior longitudinal, and uncinate fasciculi, were reconstructed as one-dominant-direction fiber bundles with both acquisition schemes. In these WM tracts, mean percent different difference in GFA between the two data sets was less than 5 %. Contrariwise, multidirectional fiber bundles, such as corticospinal tract and superior longitudinal fasciculus, were more accurately depicted by HARDI acquisition scheme. Our results suggest that the design of optimal DwMRI acquisition protocols for clinical investigation of WM anisotropy by QBI models should consider the specific brain target regions to be explored, inducing researchers to a trade-off choice between angular resolution and acquisition time. (orig.)
Jeong, Sang Kyu; Ban, Yong Un
2016-05-01
The effects of the axial map as the key representation of the original space syntax have been questioned by some researchers because of the map's discontinuity. To address this concern, angular segment analysis (ASA) was introduced. ASA calculates spatial depths by considering the turning angles of path segments in a street network. However, ASA cannot calculate the attributes of nodes connected to path segments in the network because it analyzes spaces by linear representation, as in the original space syntax. Because the attributes of the two ends (nodes) of a given path segment (link) are not equal to each other, and because they can affect pedestrian and vehicle movement and land use in a street network, the identification of the attributes at nodes (points) would be helpful in the detailed analysis of spaces in the network consisting of nodes and the segments connecting them. Accordingly, this study aims to develop an extended analysis model that can calculate the attributes of spaces at the nodes, including terminuses, bends, and junctions, in the network. To achieve this end, in this study we developed algorithms for a point-based angular analysis (PAA) to find the attributes of spaces at nodes (points), in contrast to ASA, which analyzes spaces using linear representations. As a result, this methodology can obtain distinct values for the attributes of two nodes at the ends of a path segment, through the calculation of spatial depths weighted by considering the turning angles and distances (lengths) along consecutive nodes for a route in the network. Through our methodology, it was identified that spatial configurations of street network affect the social and symbolic centralities of nodes in the network. We believe that our methodology can be a useful tool for planning urban streets and for deriving spatial and social relationships in street networks.
Directory of Open Access Journals (Sweden)
Fariba Rezaeetalab
2016-12-01
Full Text Available Overlap syndrome, which is known as the coexistence of chronic obstructive pulmonary disease (COPD and obstructive sleep apnea (OSA, was first defined by Flenley. Although it can refer to concomitant occurrence of any of the pulmonary diseases and OSA, overlap syndrome is commonly considered as the coexistence of OSA and COPD. This disease has unique adverse health consequences distinct from either condition alone. Given the high prevalence of each solitary disease, overlap syndrome is also likely to be common and clinically relevant. Despite the fact that overlap syndrome has been described in the literature for nearly 30 years, paucity of evaluations and studies limited the discussion on diagnosis, prevalence, pathophysiology, treatment, and outcomes of this disease. This review article addresses these issues by reviewing several recent studies conducted in Iran or other countries. This review suggests that overlap syndrome has worse outcomes than either disease alone. Our findings accentuated the urgent need for further studies on overlap syndrome and all overlaps between OSA and chronic pulmonary disease to provide a deeper insight into diagnosis and non-invasive treatments of this disease.
Mo, Kingtse C.; Dickey, Jean O.; Marcus, Steven L.
1997-01-01
An earlier study established the existence of globally coherent interannual fluctuations in atmospheric angular momentum (AAM), associated with the El Nino-Southern Oscillation (ENSO) cycle. In this paper, we pursue the origin and the structure of these fluctuations using an ensemble of experiments generated by the National Centers for Environmental Prediction, medium range forecast model version 9. In the control experiments, where the observed sea surface temperatures (SSTs) were used as the lower boundary conditions, the model captures the characteristic V-like structure in time-latitude plots of zonally averaged AAM, while experiments with climatological SSTs and those with either perpetual warm or cold ENSO conditions superimposed on the climatological SSTs failed to reproduce this structure. The numerical results indicate that these AAM structures are related to SST variations associated with transitions between different phases of the ENSO cycle and have both propagating and standing components. The largest zonal wind contribution from the levels studied (850, 500, and 200 hPa) is at 200 hPa, where the tropical convective outflow is the strongest. Composites of zonal wind and geopotential height show a clear relationship between the stages of the global AAM oscillation and the ENSO cycle. The strong similarity between the simulated and observed AAM series attests to the model's ability to realistically simulate the interannual response of the atmosphere to ENSO SST anomalies.
Angular momentum transport modeling: achievements of a gyrokinetic quasi-linear approach
Cottier, P; Camenen, Y; Gurcan, O D; Casson, F J; Garbet, X; Hennequin, P; Tala, T
2014-01-01
QuaLiKiz, a model based on a local gyrokinetic eigenvalue solver is expanded to include momentum flux modeling in addition to heat and particle fluxes. Essential for accurate momentum flux predictions, the parallel asymmetrization of the eigenfunctions is successfully recovered by an analytical fluid model. This is tested against self-consistent gyrokinetic calculations and allows for a correct prediction of the ExB shear impact on the saturated potential amplitude by means of a mixing length rule. Hence, the effect of the ExB shear is recovered on all the transport channels including the induced residual stress. Including these additions, QuaLiKiz remains ~10 000 faster than non-linear gyrokinetic codes allowing for comparisons with experiments without resorting to high performance computing. The example is given of momentum pinch calculations in NBI modulation experiments.
DEFF Research Database (Denmark)
Pessah, Martin Elias; Chan, Chi-kwan; Psaltis, Dimitrios
2006-01-01
We develop a local model for the exponential growth and saturation of the Reynolds and Maxwell stresses in turbulent flows driven by the magnetorotational instability. We first derive equations that describe the effects of the instability on the growth and pumping of the stresses. We highlight...
Pessah, M E; Psaltis, D; Pessah, Martin E.; Chan, Chi-kwan; Psaltis, Dimitrios
2006-01-01
We develop a local model for the exponential growth and saturation of the Reynolds and Maxwell stresses in turbulent flows driven by the magnetorotational instability. We first derive equations that describe the effects of the instability on the growth and pumping of the stresses. We highlight the relevance of a new type of correlations that couples the dynamical evolution of the Reynolds and Maxwell stresses and plays a key role in developing and sustaining the magnetorotational turbulence. We then supplement these equations with a phenomenological description of the triple correlations that lead to a saturated turbulent state. We show that the steady-state limit of the model describes successfully the correlations among stresses found in numerical simulations of shearing boxes.
Anliker, M.; Vanbuskirk, W.
1973-01-01
A new model for the response of the semicircular canals to angular motion is postulated. This model is based on evidence that the bony canal is not compartmentalized and assumes that the ampulla wall is highly flexible. It is shown that the perilymph induces a cupula displacement far greater than that produced by the endolymph alone. The predicted dynamic behavior of the canals on the basis of this model is found to be consistent with experimental observations.
Overlapping Community Detection by Online Cluster Aggregation
Kozdoba, Mark
2015-01-01
We present a new online algorithm for detecting overlapping communities. The main ingredients are a modification of an online k-means algorithm and a new approach to modelling overlap in communities. An evaluation on large benchmark graphs shows that the quality of discovered communities compares favorably to several methods in the recent literature, while the running time is significantly improved.
Pätsi, Jukka; Maliniemi, Pilvi; Pakanen, Salla; Hinttala, Reetta; Uusimaa, Johanna; Majamaa, Kari; Nyström, Thomas; Kervinen, Marko; Hassinen, Ilmo E
2012-02-01
Defects in complex I due to mutations in mitochondrial DNA are associated with clinical features ranging from single organ manifestation like Leber hereditary optic neuropathy (LHON) to multiorgan disorders like mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) syndrome. Specific mutations cause overlap syndromes combining several phenotypes, but the mechanisms of their biochemical effects are largely unknown. The m.3376G>A transition leading to p.E24K substitution in ND1 with LHON/MELAS phenotype was modeled here in a homologous position (NuoH-E36K) in the Escherichia coli enzyme and it almost totally abolished complex I activity. The more conservative mutation NuoH-E36Q resulted in higher apparent K(m) for ubiquinone and diminished inhibitor sensitivity. A NuoH homolog of the m.3865A>G transition, which has been found concomitantly in the overlap syndrome patient with the m.3376G>A, had only a minor effect. Consequences of a primary LHON-mutation m.3460G>A affecting the same extramembrane loop as the m.3376G>A substitution were also studied in the E. coli model and were found to be mild. The results indicate that the overlap syndrome-associated m.3376G>A transition in MTND1 is the pathogenic mutation and m.3865A>G transition has minor, if any, effect on presentation of the disease. The kinetic effects of the NuoH-E36Q mutation suggest its proximity to the putative ubiquinone binding domain in 49kD/PSST subunits. In all, m.3376G>A perturbs ubiquinone binding, a phenomenon found in LHON, and decreases the activity of fully assembled complex I as in MELAS.
Loeb, N. G.; Parol, F.; Buriez, J.-C.; Vanbauce, C.
2000-01-01
The next generation of Earth radiation budget satellite instruments will routinely merge estimates of global top-of-atmosphere radiative fluxes with cloud properties. This information will offer many new opportunities for validating radiative transfer models and cloud parameterizations in climate models. In this study, five months of POLarization and Directionality of the Earth's Reflectances (POLDER) 670 nm radiance measurements are considered in order to examine how satellite cloud property retrievals can be used to define empirical Angular Distribution Models (ADMs) for estimating top-of-atmosphere (TOA) albedo. ADMs are defined for 19 scene types defined by satellite retrievals of cloud fraction and cloud optical depth. Two approaches are used to define the ADM scene types: The first assumes there are no biases in the retrieved cloud properties and defines ADMs for fixed discrete intervals of cloud fraction and cloud optical depth (fixed-tau approach). The second approach involves the same cloud fraction intervals, but uses percentile intervals of cloud optical depth instead (percentile-tau approach). Albedos generated using these methods are compared with albedos inferred directly from the mean observed reflectance field. Albedos based on ADMs that assume cloud properties are unbiased (fixed-tau approach) show a strong systematic dependence on viewing geometry. This dependence becomes more pronounced with increasing solar zenith angle, reaching approximately equals 12% (relative) between near-nadir and oblique viewing zenith angles for solar zenith angles between 60 deg and 70 deg. The cause for this bias is shown to be due to biases in the cloud optical depth retrievals. In contrast, albedos based on ADMs built using percentile intervals of cloud optical depth (percentile-tau approach) show very little viewing zenith angle dependence and are in good agreement with albedos obtained by direct integration of the mean observed reflectance field (less than 1
Overlap among Environmental Databases.
Miller, Betty
1981-01-01
Describes the methodology and results of a study comparing the overlap of Enviroline, Pollution, and the Environmental Periodicals Bibliography files through searches on acid rain, asbestos and water, diesel, glass recycling, Lake Erie, Concorde, reverse osmosis wastewater treatment cost, and Calspan. Nine tables are provided. (RBF)
Karpov, Valeri
2015-01-01
A comprehensive guide to AngularJS, Google's open-source client-side framework for app development. Most of the existing guides to AngularJS struggle to provide simple and understandable explanations for more advanced concepts. As a result, some developers who understand all the basic concepts of AngularJS struggle when it comes to building more complex real-world applications. Professional AngularJS provides a thorough understanding of AngularJS, covering everything from basic concepts, such as directives and data binding, to more advanced concepts like transclusion, build systems, and auto
Generation of stable overlaps between antiparallel filaments
Johann, D; Kruse, K
2015-01-01
During cell division, sister chromatids are segregated by the mitotic spindle, a bipolar assembly of interdigitating antiparallel polar filaments called microtubules. Establishing a stable overlap region is essential for maintenance of bipolarity, but the underlying mechanisms are poorly understood. Using a particle-based stochastic model, we find that the interplay of motors and passive cross linkers can robustly generate partial overlaps between antiparallel filaments. Our analysis shows that motors reduce the overlap in a length-dependent manner, whereas passive cross linkers increase it independently of the length. In addition to maintaining structural integrity, passive cross linkers can thus also have a dynamic role for size regulation.
Schwinger, J.
1952-01-26
The commutation relations of an arbitrary angular momentum vector can be reduced to those of the harmonic oscillator. This provides a powerful method for constructing and developing the properties of angular momentum eigenvectors. In this paper many known theorems are derived in this way, and some new results obtained. Among the topics treated are the properties of the rotation matrices; the addition of two, three, and four angular momenta; and the theory of tensor operators.
Packing ellipsoids with overlap
Uhler, Caroline
2012-01-01
The problem of packing ellipsoids of different sizes and shapes into an ellipsoidal container so as to minimize a measure of overlap between ellipsoids is considered. A bilevel optimization formulation is given, together with an algorithm for the general case and a simpler algorithm for the special case in which all ellipsoids are in fact spheres. Convergence results are proved and computational experience is described and illustrated. The motivating application - chromosome organization in the human cell nucleus - is discussed briefly, and some illustrative results are presented.
Motor protein accumulation on antiparallel microtubule overlaps
Kuan, Hui-Shun
2015-01-01
Biopolymers serve as one-dimensional tracks on which motor proteins move to perform their biological roles. Motor protein phenomena have inspired theoretical models of one-dimensional transport, crowding, and jamming. Experiments studying the motion of Xklp1 motors on reconstituted antiparallel microtubule overlaps demonstrated that motors recruited to the overlap walk toward the plus end of individual microtubules and frequently switch between filaments. We study a model of this system that couples the totally asymmetric simple exclusion process (TASEP) for motor motion with switches between antiparallel filaments and binding kinetics. We determine steady-state motor density profiles for fixed-length overlaps using exact and approximate solutions of the continuum differential equations and compare to kinetic Monte Carlo simulations. The center region, far from the overlap ends, has a constant motor density as one would na\\"ively expect. However, rather than following a simple binding equilibrium, the center ...
Energy Technology Data Exchange (ETDEWEB)
Mattes, Malcolm D.; Lee, Jennifer C.; Einaiem, Sara; Guirguis, Adel; Ikoro, N. C.; Ashamalla Hani [Dept. of Radiation Oncology, New York Methodist Hospital, Brooklyn (United States)
2013-12-15
The goal of this study is to determine whether the magnitude of overlap between planning target volume (PTV) and rectum (Rectum{sub overlap}) or PTV and bladder (Bladder{sub overlap}) in prostate cancer volumetric-modulated arc therapy (VMAT) is predictive of the dose-volume relationships achieved after optimization, and to identify predictive equations and cutoff values using these overlap volumes beyond which the Quantitative Analyses of Normal Tissue Effects in the Clinic (QUANTEC) dose-volume constraints are unlikely to be met. Fifty-seven patients with prostate cancer underwent VMAT planning using identical optimization conditions and normalization. The PTV (for the 50.4 Gy primary plan and 30.6 Gy boost plan) included 5 to 10 mm margins around the prostate and seminal vesicles. Pearson correlations, linear regression analyses, and receiver operating characteristic (ROC) curves were used to correlate the percentage overlap with dose-volume parameters. The percentage Rectum{sub overlap} and Bladder{sub overlap} correlated with sparing of that organ but minimally impacted other dose-volume parameters, predicted the primary plan rectum V{sub 45} and bladder V{sub 50} with R{sup 2} = 0.78 and R{sup 2} = 0.83, respectively, and predicted the boost plan rectum V{sub 30} and bladder V{sub 30} with R{sup 2} = 0.53 and R{sup 2} = 0.81, respectively. The optimal cutoff value of boost Rectumoverlap to predict rectum V75 >15% was 3.5% (sensitivity 100%, specificity 94%, p < 0.01), and the optimal cutoff value of boost Bladder{sub overlap} to predict bladder V{sub 80} >10% was 5.0% (sensitivity 83%, specificity 100%, p < 0.01). The degree of overlap between PTV and bladder or rectum can be used to accurately guide physicians on the use of interventions to limit the extent of the overlap region prior to optimization.
Gros, Daniel F; McCabe, Randi E; Antony, Martin M
2013-11-30
New hybrid models of psychopathology have been proposed that combine the current categorical approach with symptom dimensions that are common across various disorders. The present study investigated the new hybrid model of social anxiety in a large sample of participants with anxiety disorders and unipolar mood disorders to improve understanding of the comorbidity and symptom overlap between social phobia (SOC) and the other anxiety disorders and unipolar mood disorders. Six hundred and eighty two participants from a specialized outpatient clinic for anxiety treatment completed a semi-structured diagnostic interview and the Multidimensional Assessment of Social Anxiety (MASA). A hybrid model symptom profile was identified for SOC and compared with each of the other principal diagnoses. Significant group differences were identified on each of the MASA scales. Differences also were identified when common sets of comorbidities were compared within participants diagnosed with SOC. The findings demonstrated the influence of both the principal diagnosis of SOC and other anxiety disorders and unipolar mood disorders as well as the influence of comorbid diagnoses with SOC on the six symptom dimensions. These findings highlight the need to shift to transdiagnostic assessment and treatment practices that go beyond the disorder-specific focus of the current categorical diagnostic systems.
Angular Momentum Distribution in the Transverse Plane
Adhikari, Lekha
2016-01-01
Several possibilities to relate the $t$-dependence of Generalized Parton Distributions (GPDs) to the distribution of angular momentum in the transverse plane are discussed. Using a simple spectator model we demonstrate that non of them correctly describes the orbital angular momentum distribution that for a longitudinally polarized nucleon obtained directly from light-front wavefunctions.
Angular momentum in human walking.
Herr, Hugh; Popovic, Marko
2008-02-01
Angular momentum is a conserved physical quantity for isolated systems where no external moments act about a body's center of mass (CM). However, in the case of legged locomotion, where the body interacts with the environment (ground reaction forces), there is no a priori reason for this relationship to hold. A key hypothesis in this paper is that angular momentum is highly regulated throughout the walking cycle about all three spatial directions [|Lt| approximately 0], and therefore horizontal ground reaction forces and the center of pressure trajectory can be explained predominantly through an analysis that assumes zero net moment about the body's CM. Using a 16-segment human model and gait data for 10 study participants, we found that calculated zero-moment forces closely match experimental values (Rx2=0.91; Ry2=0.90). Additionally, the centroidal moment pivot (point where a line parallel to the ground reaction force, passing through the CM, intersects the ground) never leaves the ground support base, highlighting how closely the body regulates angular momentum. Principal component analysis was used to examine segmental contributions to whole-body angular momentum. We found that whole-body angular momentum is small, despite substantial segmental momenta, indicating large segment-to-segment cancellations ( approximately 95% medio-lateral, approximately 70% anterior-posterior and approximately 80% vertical). Specifically, we show that adjacent leg-segment momenta are balanced in the medio-lateral direction (left foot momentum cancels right foot momentum, etc.). Further, pelvis and abdomen momenta are balanced by leg, chest and head momenta in the anterior-posterior direction, and leg momentum is balanced by upper-body momentum in the vertical direction. Finally, we discuss the determinants of gait in the context of these segment-to-segment cancellations of angular momentum.
Quark Orbital Angular Momentum
Directory of Open Access Journals (Sweden)
Burkardt Matthias
2015-01-01
Full Text Available Definitions of orbital angular momentum based on Wigner distributions are used as a framework to discuss the connection between the Ji definition of the quark orbital angular momentum and that of Jaffe and Manohar. We find that the difference between these two definitions can be interpreted as the change in the quark orbital angular momentum as it leaves the target in a DIS experiment. The mechanism responsible for that change is similar to the mechanism that causes transverse single-spin asymmetries in semi-inclusive deep-inelastic scattering.
Recurrence of angular cheilitis.
Ohman, S C; Jontell, M; Dahlen, G
1988-08-01
The incidence of recurrence of angular cheilitis following a successful antimicrobial treatment was studied in 48 patients. Clinical assessments including a microbial examination were carried out 8 months and 5 yr after termination of treatment. Eighty percent of the patients reported recurrence of their angular cheilitis on one or more occasions during the observation period. Patients with cutaneous disorders associated with dry skin or intraoral leukoplakia had an increased incidence of recrudescence. Neither the presence of denture stomatitis nor the type of microorganisms isolated from the original lesions of angular cheilitis, i.e. Candida albicans and/or Staphylococcus aureus, were associated with the number of recurrences. The present observations indicate that treatment of the majority of patients with angular cheilitis should be considered in a longer perspective than previously supposed, due to the short lasting therapeutic effects of the antimicrobial therapy.
[Malignant angular cheilitis].
Seoane, J; Vázquez, J; Cazenave, A; de la Cruz Mera, A; Argila, F; Aguado, A
1996-01-01
A case of chronic angular cheilitis is reported. Candida albicans was isolated repeatedly and the process developed into epitheliomatous carcinoma. The etiopathogenic role of Candida albicans and possible mechanism of action are discussed.
The FLIC Overlap Quark Propagator
Kamleh, W; Leinweber, D B; Williams, A G; Zhang, J; Kamleh, Waseem; Bowman, Patrick O.; Leinweber, Derek B.; Williams, Anthony G.; Zhang, Jianbo
2004-01-01
FLIC overlap fermions are a variant of the standard (Wilson) overlap action, with the FLIC (Fat Link Irrelevant Clover) action as the overlap kernel rather than the Wilson action. The structure of the FLIC overlap fermion propagator in momentum space is studied, and a comparison against previous studies of the Wilson overlap propagator in quenched QCD is performed. To explore the scaling properties of the propagator for the two actions, numerical calculations are performed in Landau Gauge across three lattices with different lattice spacing $a$ and similar physical volumes. We find that at light quark masses the acti ons agree in both the infrared and the ultraviolet, but at heavier masses some disagreement in the ultraviolet appears. This is attributed to the two action s having different discretisation errors with the FLIC overlap providing superior performance in this regime. Both actions scale reasonably, but some scaling violations are observed.
Modelling and testing of lunar dust overlapping solar cell%太阳电池月尘遮蔽模型分析及试验研究
Institute of Scientific and Technical Information of China (English)
马子良; 丁义刚; 王志浩; 白羽; 姜海富; 向树红; 杨继运; 田东波; 沈自才; 刘业楠
2016-01-01
扬起的月尘颗粒沉积在月球探测器的太阳电池表面，可导致其性能下降。文章基于层叠遮挡理论，建立了一种月尘遮蔽光线透射的理论模型，利用该模型开展了模拟月尘颗粒形状与粒径对遮蔽效果影响的分析和计算，并与NASA 的同类模型进行了对比分析。分析结果显示：2种模型给出的相对透过率随沉积月尘面密度的变化趋势相同，均呈指数型衰减关系；在随月尘形状、粒径、透过率的变化方面，2种模型存在差异。利用月尘沉积与吸附试验装置实施了模拟月尘沉积试验，验证了所建立模型的正确性，其预测准确度优于NASA模型。%On the moon surface, the floating lunar dust will drop on the lunar rover under the influence of gravity, causing the degradation of the solar cells. Based on the layer overlapping theory, this paper establishes a model of the lunar dust attenuating the transmittance of light, in which the effects of the shape and the size of the particle are also analyzed. A comparative analysis shows that with this model and the NASA’s model, we obtain the same variation tendency of the relative transmittance against the surface density of the lunar dust, as in an exponential function. On the other hand, with these two models, we see differences in the response of the relative transmittance value against the different lunar dust shapes, the characteristic sizes and the transmittance. The verification tests of scattering the simulated lunar dust on the solar cell are carried out in Beijing Institute of Spacecraft Environment Engineering using the facility for the lunar dust aggragations and absorption, and the results validate the model and show that it enjoys a better accuracy compared with the NASA’s model.
Gema Nazriyanti
2008-01-01
Angular cheilitis adalah inflamasi akut atau kronis pada sudut mulut yang ditandai dengan adanya flsur-fisur, retak-retak pada sudut bibir, berwarna kemerahan, mengalami ulserasi disertai rasa terbakar, nyeri dan rasa kering pada sudut mulut. Dapat mengenai orang tua, dewasa dan anak-anak. Banyak pendapat yang mengemukakan tentang etiologi dari angular cheilitis, antara lain defisiensi vitamin B kompleks, denture soremouth, defisiensi besi, kebiasaan bernafas melalui mulut, membasahi bib...
Angular Goos-Hänchen effect in curved dielectric microstructures.
Tran, N H; Dutriaux, L; Balcou, P; Floch, A L; Bretenaker, F
1995-06-01
A macroscopic angular Goos-Hänchen effect at total reflection on curved interfaces is studied experimentally. The results are compared with the complex-angular-momentum model of quasi-critical scattering. An extremum in angular deflection, which has not yet been predicted by any theory other than exact Mie scattering computations, is identified at low size parameters.
Abkari, A.; Chaabane, I.; Guidara, K.
2016-09-01
In the present work, the synthesis and characterization of the Bis(4-acetylanilinium) tetrachlorocuprate(II) compound are presented. The structure of this compound is analyzed by X-ray diffraction which confirms the formation of single phase and is in good agreement the literature. Indeed, the Thermo gravimetric Analysis (TGA) shows that the decomposition of the compound is observed in the range of 420-520 K. However, the differential thermal analysis (DTA) indicates the presence of a phase transition at T=363 k. Furthermore, the dielectric properties and AC conductivity were studied over a temperature range (338-413 K) and frequency range (200 Hz-5 MHz) using complex impedance spectroscopy. Dielectric measurements confirmed such thermal analyses by exhibiting the presence of an anomaly in the temperature range of 358-373 K. The complex impedance plots are analyzed by an electrical equivalent circuit consisting of resistance, constant phase element (CPE) and capacitance. The activation energy values of two distinct regions are obtained from log σT vs 1000/T plot and are found to be E=1.27 eV (Tdependence of ac conductivity, σac, has been analyzed by Jonscher's universal power law σ(ω)=σdc+Aωs. The value of s is to be temperature-dependent, which has a tendency to increase with temperature and the non-overlapping small polaron tunneling (NSPT) model is the most applicable conduction mechanism in the title compound. Complex impedance spectra of [C8H10NO]2CuCl4 at different temperatures.
Topological susceptibility from overlap fermion
Institute of Scientific and Technical Information of China (English)
应和平; 张剑波
2003-01-01
We numerically calculate the topological charge of the gauge configurations on a finite lattice by the fermionic method with overlap fermions. By using the lattice index theorem, we identify the index of the massless overlap fermion operator to the topological charge of the background gauge configuration. The resulting topological susceptibility X is in good agreement with the anticipation made by Witten and Veneziano.
Optical orbital angular momentum
Barnett, Stephen M.; Babiker, Mohamed; Padgett, Miles J.
2017-01-01
We present a brief introduction to the orbital angular momentum of light, the subject of our theme issue and, in particular, to the developments in the 13 years following the founding paper by Allen et al. (Allen et al. 1992 Phys. Rev. A 45, 8185 (doi:10.1103/PhysRevA.45.8185)). The papers by our invited authors serve to bring the field up to date and suggest where developments may take us next. This article is part of the themed issue ‘Optical orbital angular momentum’. PMID:28069775
Optical orbital angular momentum
Barnett, Stephen M.; Babiker, Mohamed; Padgett, Miles J.
2017-02-01
We present a brief introduction to the orbital angular momentum of light, the subject of our theme issue and, in particular, to the developments in the 13 years following the founding paper by Allen et al. (Allen et al. 1992 Phys. Rev. A 45, 8185 (doi:10.1103/PhysRevA.45.8185)). The papers by our invited authors serve to bring the field up to date and suggest where developments may take us next. This article is part of the themed issue 'Optical orbital angular momentum'.
Energy Technology Data Exchange (ETDEWEB)
Ovchinnikov, Mikhail [Pacific Northwest National Laboratory, Richland Washington USA; Lim, Kyo-Sun Sunny [Pacific Northwest National Laboratory, Richland Washington USA; Korea Atomic Energy Research Institute, Daejeon Republic of Korea; Larson, Vincent E. [Department of Mathematical Sciences, University of Wisconsin-Milwaukee, Milwaukee Wisconsin USA; Wong, May [Pacific Northwest National Laboratory, Richland Washington USA; National Center for Atmospheric Research, Boulder Colorado USA; Thayer-Calder, Katherine [National Center for Atmospheric Research, Boulder Colorado USA; Ghan, Steven J. [Pacific Northwest National Laboratory, Richland Washington USA
2016-11-05
Coarse-resolution climate models increasingly rely on probability density functions (PDFs) to represent subgrid-scale variability of prognostic variables. While PDFs characterize the horizontal variability, a separate treatment is needed to account for the vertical structure of clouds and precipitation. When sub-columns are drawn from these PDFs for microphysics or radiation parameterizations, appropriate vertical correlations must be enforced via PDF overlap specifications. This study evaluates the representation of PDF overlap in the Subgrid Importance Latin Hypercube Sampler (SILHS) employed in the assumed PDF turbulence and cloud scheme called the Cloud Layers Unified By Binormals (CLUBB). PDF overlap in CLUBB-SILHS simulations of continental and tropical oceanic deep convection is compared with overlap of PDF of various microphysics variables in cloud-resolving model (CRM) simulations of the same cases that explicitly predict the 3D structure of cloud and precipitation fields. CRM results show that PDF overlap varies significantly between different hydrometeor types, as well as between PDFs of mass and number mixing ratios for each species, - a distinction that the current SILHS implementation does not make. In CRM simulations that explicitly resolve cloud and precipitation structures, faster falling species, such as rain and graupel, exhibit significantly higher coherence in their vertical distributions than slow falling cloud liquid and ice. These results suggest that to improve the overlap treatment in the sub-column generator, the PDF correlations need to depend on hydrometeor properties, such as fall speeds, in addition to the currently implemented dependency on the turbulent convective length scale.
Generalized Uncertainty Principle and Angular Momentum
Bosso, Pasquale
2016-01-01
Various models of quantum gravity suggest a modification of the Heisenberg's Uncertainty Principle, to the so-called Generalized Uncertainty Principle, between position and momentum. In this work we show how this modification influences the theory of angular momentum in Quantum Mechanics. In particular, we compute Planck scale corrections to angular momentum eigenvalues, the Hydrogen atom spectrum, the Stern-Gerlach experiment and the Clebsch-Gordan coefficients. We also examine effects of the Generalized Uncertainty Principle on multi-particle systems.
Parker, G. W.
1978-01-01
Discusses, classically and quantum mechanically, the angular momentum induced in the bound motion of an electron by an external magnetic field. Calculates the current density and its magnetic moment, and then uses two methods to solve the first-order perturbation theory equation for the required eigenfunction. (Author/GA)
"Angular" plasma cell cheilitis.
da Cunha Filho, Roberto Rheingantz; Tochetto, Lucas Baldissera; Tochetto, Bruno Baldissera; de Almeida, Hiram Larangeira; Lorencette, Nádia Aparecida; Netto, José Fillus
2014-03-17
Plasma cell cheilitis is an extremely rare disease, characterized by erythematous-violaceous, ulcerated and asymptomatic plaques, which evolve slowly. The histological characteristics include dermal infiltrate composed of mature plasmocytes. We report a case of Plasma cell angular cheilitis in a 58-year-old male, localized in the lateral oral commissure.
"Angular" plasma cell cheilitis
da Cunha Filho, Roberto Rheingantz; Tochetto, Lucas Baldissera; Tochetto, Bruno Baldissera; de Almeida Jr, Hiram Larangeira; Lorencette, Nadia Aparecida; Netto, Jose Fillus
2014-01-01
Plasma cell cheilitis is an extremely rare disease, characterized by erythematous-violaceous, ulcerated and asymptomatic plaques, which evolve slowly. The histological characteristics include dermal infiltrate composed of mature plasmocytes. We report a case of Plasma cell angular cheilitis in a 58-year-old male, localized in the lateral oral commissure.
Laurent, V.C.E.; Verhoef, W.; Clevers, J.G.P.W.; Schaepman, M.E.
2011-01-01
Since the launch of sensors with angular observation capabilities, such as CHRIS and MISR, the additional potential of multi-angular observations for vegetation structural and biochemical variables has been widely recognised. Various methods have been successfully implemented to estimate forest bioc
Institute of Scientific and Technical Information of China (English)
陈家清; 刘次华
2006-01-01
In the framework of an overlapping generations model, forward-looking monetary policy rules and backward-looking monetary policy rules were investigated. It is shown that the monetary steady state is more likely to be indeterminate under an active forwardlooking rule than under the corresponding backward-looking rule. It is also shown that backward-looking rules can render the monetary steady state unstable.
Keszthelyi, Z.; Puls, J.; Wade, G. A.
2017-01-01
Context. Stellar evolution models of massive stars are very sensitive to the adopted mass-loss scheme. The magnitude and evolution of mass-loss rates significantly affect the main sequence evolution, and the properties of post-main sequence objects, including their rotational velocities. Aims: Driven by potential discrepancies between theoretically predicted and observationally derived mass-loss rates in the OB star range, we aim in particular to investigate the response to mass-loss rates that are lower than currently adopted, in parallel with the mass-loss behavior at the "first" bi-stability jump. Methods: We performed 1D hydrodynamical model calculations of single 20-60 M⊙ Galactic (Z = 0.014) stars where the effects of stellar winds are already significant in the main sequence phase. We have developed an experimental wind routine to examine the behavior and response of the models under the influence of different mass-loss rates. This observationally guided, simple and flexible wind routine is not a new mass-loss description but a useful tool based on the wind-momentum luminosity relation and other scaling relations, and provides a meaningful base for various tests and comparisons. Results: The main result of this study indicates a dichotomy between solutions of currently debated problems regarding mass-loss rates of hot massive stars. In a fully diffusive approach, and for commonly adopted initial rotational velocities, lower mass-loss rates than theoretically predicted require to invoke an additional source of angular momentum loss (either due to bi-stability braking, or yet unidentified) to brake down surface rotational velocities. On the other hand, a large jump in the mass-loss rates due to the bi-stability mechanism (a factor of 5-7 predicted by Vink et al. (2000, A&A, 362, 295), but a factor of 10-20 in modern models of massive stars) is challenged by observational results, and might be avoided if the early mass-loss rates agreed with the theoretically
Angular cheilitis after tonsillectomy.
England, R J; Lau, M; Ell, S R
1999-08-01
The operation of tonsillectomy requires the oral cavity to be held open mechanically in an unconscious patient, and intra-oral instrumentation to occur. Angular cheilitis may arise as a result of this after operation. This can cause morbidity and delay the re-establishment of a normal diet. The aim of this study was to identify what factors increase the likelihood of developing this problem postoperatively. Sixty patients were randomly selected in a prospective manner. Preoperative, intraoperative and postoperative variables were recorded. The frequency of development of postoperative angular cheilitis was recorded. The prevalence of the condition was related to the prerecorded variables. Parametric analysis showed that the chance of developing angular cheilitis was directly related to the use of diathermy haemostasis (P = 0.05). Logistic regression analysis showed that the odds ratio of developing this complication if diathermy was used is 3.5 (95% confidence intervals 0.99, 12.4) and operation difficulty may also be a relevant variable. No other recorded variables were found to be significant.
Quantum Heuristics of Angular Momentum
Levy-Leblond, Jean-Marc
1976-01-01
Discusses the quantization of angular momentum components, Heisenberg-type inequalities for their spectral dispersions, and the quantization of the angular momentum modulus, without using operators or commutation relations. (MLH)
Influence of line isolation overlappings on formation of lightning overvoltages
Directory of Open Access Journals (Sweden)
Antropov I. M.
2015-12-01
Full Text Available The model of substation protection against lightning waves with considered multiple overlappings of line isolation has been presented. Influence of multiple overlapping of isolation on line support on formation of lightning overvoltages has been shown. Ambiguity of determination of lightning current dangerous parameters at the fixed length of its front has been revealed
Direct and indirect effects in the regulation of overlapping promoters
DEFF Research Database (Denmark)
Bendtsen, Kristian Moss; Erdossy, Janos; Csiszovski, Zsolt;
2011-01-01
promoter database we found that ~14% of the identified 'forward' promoters overlap with a promoter oriented in the opposite direction. In this article we combine a mathematical model with experimental analysis of synthetic regulatory regions to investigate interference of overlapping promoters. We find...
Function approximation using adaptive and overlapping intervals
Energy Technology Data Exchange (ETDEWEB)
Patil, R.B.
1995-05-01
A problem common to many disciplines is to approximate a function given only the values of the function at various points in input variable space. A method is proposed for approximating a function of several to one variable. The model takes the form of weighted averaging of overlapping basis functions defined over intervals. The number of such basis functions and their parameters (widths and centers) are automatically determined using given training data and a learning algorithm. The proposed algorithm can be seen as placing a nonuniform multidimensional grid in the input domain with overlapping cells. The non-uniformity and overlap of the cells is achieved by a learning algorithm to optimize a given objective function. This approach is motivated by the fuzzy modeling approach and a learning algorithms used for clustering and classification in pattern recognition. The basics of why and how the approach works are given. Few examples of nonlinear regression and classification are modeled. The relationship between the proposed technique, radial basis neural networks, kernel regression, probabilistic neural networks, and fuzzy modeling is explained. Finally advantages and disadvantages are discussed.
Seeding for pervasively overlapping communities
Lee, Conrad; McDaid, Aaron; Hurley, Neil
2011-01-01
In some social and biological networks, the majority of nodes belong to multiple communities. It has recently been shown that a number of the algorithms that are designed to detect overlapping communities do not perform well in such highly overlapping settings. Here, we consider one class of these algorithms, those which optimize a local fitness measure, typically by using a greedy heuristic to expand a seed into a community. We perform synthetic benchmarks which indicate that an appropriate seeding strategy becomes increasingly important as the extent of community overlap increases. We find that distinct cliques provide the best seeds. We find further support for this seeding strategy with benchmarks on a Facebook network and the yeast interactome.
Topological susceptibility from the overlap
Del Debbio, L; Debbio, Luigi Del; Pica, Claudio
2004-01-01
The chiral symmetry at finite lattice spacing of Ginsparg-Wilson fermionic actions constrains the renormalization of the lattice operators; in particular, the topological susceptibility does not require any renormalization, when using a fermionic estimator to define the topological charge. Therefore, the overlap formalism appears as an appealing candidate to study the continuum limit of the topological susceptibility while keeping the systematic errors under theoretical control. We present results for the SU(3) pure gauge theory using the index of the overlap Dirac operator to study the topology of the gauge configurations. The topological charge is obtained from the zero modes of the overlap and using a new algorithm for the spectral flow analysis. A detailed comparison with cooling techniques is presented. Particular care is taken in assessing the systematic errors. Relatively high statistics (500 to 1000 independent configurations) yield an extrapolated continuum limit with errors that are comparable with ...
Digital Repository Service at National Institute of Oceanography (India)
Chakraborty, B.
, are reported to be 91%, 97%. for manganese nodule bearing areas Of ClOB. In LVQ2 is also proposed as a modification of the LVQI algorithm to observe enhanced performance, and is also implemented in this work. In LVQ2, a 'window' is introduced... in exploration (geological sampling) employing real time classification. LVQI performs a supervised fine-tuning on the SOFM results to improve the efficiencies. LVQ2 does superior job in this respect to minimize misclassification in overlapping cluster boundaries...
Whole-body angular momentum during stair ascent and descent.
Silverman, Anne K; Neptune, Richard R; Sinitski, Emily H; Wilken, Jason M
2014-04-01
The generation of whole-body angular momentum is essential in many locomotor tasks and must be regulated in order to maintain dynamic balance. However, angular momentum has not been investigated during stair walking, which is an activity that presents a biomechanical challenge for balance-impaired populations. We investigated three-dimensional whole-body angular momentum during stair ascent and descent and compared it to level walking. Three-dimensional body-segment kinematic and ground reaction force (GRF) data were collected from 30 healthy subjects. Angular momentum was calculated using a 13-segment whole-body model. GRFs, external moment arms and net joint moments were used to interpret the angular momentum results. The range of frontal plane angular momentum was greater for stair ascent relative to level walking. In the transverse and sagittal planes, the range of angular momentum was smaller in stair ascent and descent relative to level walking. Significant differences were also found in the ground reaction forces, external moment arms and net joint moments. The sagittal plane angular momentum results suggest that individuals alter angular momentum to effectively counteract potential trips during stair ascent, and reduce the range of angular momentum to avoid falling forward during stair descent. Further, significant differences in joint moments suggest potential neuromuscular mechanisms that account for the differences in angular momentum between walking conditions. These results provide a baseline for comparison to impaired populations that have difficulty maintaining dynamic balance, particularly during stair ascent and descent.
Physics from Angular Projection of Rectangular Grids
Singh, Ashmeet
2015-01-01
In this paper, we present a mathematical model for the angular projection of a rectangular arrangement of points in a grid. This simple, yet interesting problem, has both a scholarly value and applications for data extraction techniques to study the physics of various systems. Our work can interest undergraduate students to understand subtle points in the angular projection of a grid and describes various quantities of interest in the projection with completeness and sufficient rigour. We show that for certain angular ranges, the projection has non-distinctness, and calculate the details of such angles, and correspondingly, the number of distinct points and the total projected length. We focus on interesting trends obtained for the projected length of the grid elements and present a simple application of the model to determine the geometry of an unknown grid whose spatial extensions are known, using measurement of the grid projection at two angles only. Towards the end, our model is shown to have potential ap...
Vanston, Alex
2013-01-01
This book uses a practical, step-by-step approach, starting with how to build directives from the ground up before moving on to creating web applications comprised of multiple modules all working together to provide the best user experience possible.This book is intended for intermediate JavaScript developers who are looking to enhance their understanding of single-page web application development with a focus on AngularJS and the JavaScript MVC frameworks.It is expected that readers will understand basic JavaScript patterns and idioms and can recognize JSON formatted data.
Institute of Scientific and Technical Information of China (English)
薛钟; 乔良; 王峰; 高琦
2010-01-01
2010年MCM(美国大学生数学建模竞赛)B题一Criminology要求建立连续犯罪的预测模型用于抓捕案犯.利用统计学、犯罪心理学相关知识,建立了区域覆盖加权模型(Area Overlap Weighted Model,简称AOWM).AOWM操作便利,在分析真实案例时的正确率能达到80%以上,因此具有较好的应用前景.
Energy Technology Data Exchange (ETDEWEB)
Ye, Zhenyu
2007-02-15
In this thesis we report on the rst results on the transverse target-spin asymmetry associated with deeply virtual Compton scattering on the proton. It is shown that this asymmetry can provide one of the rare possibilities to access the Generalized Parton Distribution (GPD) E of the nucleon, and thus, through models for E, also to the total angular momentum of u and d quarks in the nucleon. The measurement was performed using the 27.6 GeV positron beam of the HERA storage ring and the transversely polarized hydrogen target of the HERMES experiment at DESY. The two leading azimuthal amplitudes of the asymmetry are extracted from the HERMES 2002-2004 data, corresponding to an integrated luminosity of 65.3 pb.1. By comparing the results obtained at HERMES and theoretical predictions based on a phenomenological model of GPDs, we obtain a model-dependent constraint on the total angular momentum of quarks in the nucleon. (orig.)
Clique graphs and overlapping communities
Evans, T. S.
2010-12-01
It is shown how to construct a clique graph in which properties of cliques of a fixed order in a given graph are represented by vertices in a weighted graph. Various definitions and motivations for these weights are given. The detection of communities or clusters is used to illustrate how a clique graph may be exploited. In particular a benchmark network is shown where clique graphs find the overlapping communities accurately while vertex partition methods fail.
Orbital angular momentum microlaser
Miao, Pei; Zhang, Zhifeng; Sun, Jingbo; Walasik, Wiktor; Longhi, Stefano; Litchinitser, Natalia M.; Feng, Liang
2016-07-01
Structured light provides an additional degree of freedom for modern optics and practical applications. The effective generation of orbital angular momentum (OAM) lasing, especially at a micro- and nanoscale, could address the growing demand for information capacity. By exploiting the emerging non-Hermitian photonics design at an exceptional point, we demonstrate a microring laser producing a single-mode OAM vortex lasing with the ability to precisely define the topological charge of the OAM mode. The polarization associated with OAM lasing can be further manipulated on demand, creating a radially polarized vortex emission. Our OAM microlaser could find applications in the next generation of integrated optoelectronic devices for optical communications in both quantum and classical regimes.
Magner, Abram; Grama, Ananth
2016-01-01
Algorithms for detecting clusters (including overlapping clusters) in graphs have received significant attention in the research community. A closely related important aspect of the problem -- quantification of statistical significance of overlap of clusters, remains relatively unexplored. This paper presents the first theoretical and practical results on quantifying statistically significant interactions between clusters in networks. Such problems commonly arise in diverse applications, ranging from social network analysis to systems biology. The paper addresses the problem of quantifying the statistical significance of the observed overlap of the two clusters in an Erd\\H{o}s-R\\'enyi graph model. The analytical framework presented in the paper assigns a $p$-value to overlapping subgraphs by combining information about both the sizes of the subgraphs and their edge densities in comparison to the corresponding values for their overlapping component. This $p$-value is demonstrated to have excellent discriminati...
Angular momentum transport in protostellar discs
Salmeron, Roberto Aureliano; Wardle, M; Salmeron, Raquel; Konigl, Arieh; Wardle, Mark
2006-01-01
Angular momentum transport in protostellar discs can take place either radially, through turbulence induced by the magnetorotational instability (MRI), or vertically, through the torque exerted by a large-scale magnetic field that threads the disc. Using semi-analytic and numerical results, we construct a model of steady-state discs that includes vertical transport by a centrifugally driven wind as well as MRI-induced turbulence. We present approximate criteria for the occurrence of either one of these mechanisms in an ambipolar diffusion-dominated disc. We derive ``strong field'' solutions in which the angular momentum transport is purely vertical and ``weak field'' solutions that are the stratified-disc analogues of the previously studied MRI channel modes; the latter are transformed into accretion solutions with predominantly radial angular-momentum transport when we implement a turbulent-stress prescription based on published results of numerical simulations. We also analyze ``intermediate field strength'...
Critical gravitational collapse with angular momentum
Gundlach, Carsten
2016-01-01
We derive a theoretical model of mass and angular momentum scaling in type-II critical collapse with rotation. We focus on the case where the critical solution has precisely one, spherically symmetric, unstable mode. We demonstrate excellent agreement with numerical results for critical collapse of a rotating radiation fluid, which falls into this case.
Wigner Functions and Quark Orbital Angular Momentum
Directory of Open Access Journals (Sweden)
Mukherjee Asmita
2015-01-01
Full Text Available Wigner distributions contain combined position and momentum space information of the quark distributions and are related to both generalized parton distributions (GPDs and transverse momentum dependent parton distributions (TMDs. We report on a recent model calculation of the Wigner distributions for the quark and their relation to the orbital angular momentum.
On the quantisation of the angular momentum
Ho, V B
1994-01-01
When a hydrogen-like atom is treated as a two dimensional system whose configuration space is multiply connected, then in order to obtain the same energy spectrum as in the Bohr model the angular momentum must be half-integral.
Generation of non-overlapping fiber architecture
DEFF Research Database (Denmark)
Chapelle, Lucie; Lévesque, M.; Brøndsted, Povl;
2015-01-01
Numerical models generating actual fiber architecture by including parameters such as the fiber geometry and arrangement are a powerful tool to explore the relation between the fiber architecture and mechanical properties. The generation of virtual architectures of fibrous materials is the first...... step toward the computation of their physical properties. In this work, a realistic 3D model is developed to describe the architecture of a complex fiber structure. The domain of application of the model could include natural fibers composites, wood fibers materials, papers, mineral and steel wools...... and polymer networks. The model takes into account the complex geometry of the fiber arrangement in which a fiber can be modeled with a certain degree of bending while keeping a main fiber orientation. The model is built in two steps. First, fibers are generated as a chain of overlapping spheres or as a chain...
Schmutzer, E
2005-01-01
In a previous paper we treated within the framework of our Projective Unified Field Theory (Schmutzer 2004, Schmutzer 2005a) the 2-body system (e.g. earth-moon system) with a rotating central body in a rather abstract manner. Here a concrete model of the transfer of angular momentum from the rotating central body to the orbital motion of the whole 2-body system is presented, where particularly the transfer is caused by the inhomogeneous gravitational force of the moon acting on the oceanic waters of the earth, being modeled by a spherical shell around the solid earth. The theory is numerically tested. Key words: transfer of angular momentum from earth to moon, action of the gravitational force of the moon on the waters of the earth.
品牌重叠测度理论模型及实证研究%Empirical Study on the Theoretical Model of Brand Overlap Measurement
Institute of Scientific and Technical Information of China (English)
胡锋; 赵红; 王焱; 赵宇彤
2012-01-01
本文在系统梳理现有品牌重叠相关理论的基础上,重新给出了品牌重叠的定义、界定了四种品牌重叠类型。在此基础上以品牌无形特征中的品牌个性构造品牌重叠维度,基于感知品牌定位视角,以中国手机市场为例,对无形感知品牌重叠进行了实证分析。定量分析中本文创新性地引入由最小误判率构造的两两品牌之间的相似矩阵,以此为基础进行MDS分析并用直观的二维图给出了7个手机品牌在品牌个性维度上的相似程度。进一步经过模糊C聚类得到4个手机品牌类别：高功能类、高情感类、中情感低功能类和低情感低功能类。本文最后给出相应的研究结论和未来研究方向。%The definition and types of brand overlap are given based on the theoretic summary. Then di- mensions are built based on brand personality, and an empirical research on perceived-intangible brand o- verlap in the Chinese mobile phone market is conducted from the perspective of perceived brand positio- ning. In the quantitative analysis, the similarity matrix based on error identification rate is introduced to improve the MDS analysis, after that a graph of the similarities on the dimensions among the seven mobile phone brands is given. On the basis of this graph, four categories are attained by fuzzy C-means cluste- ring, which are high functional class, high emotional class, middle emotional and low functional class, low emotional and low functional class respectively. At last, conclusions and future research directions are given.
Angular integrals in d dimensions
Energy Technology Data Exchange (ETDEWEB)
Somogyi, Gabor
2011-01-15
We discuss the evaluation of certain d dimensional angular integrals which arise in perturbative field theory calculations. We find that the angular integral with n denominators can be computed in terms of a certain special function, the so-called H-function of several variables. We also present several illustrative examples of the general result and briefly consider some applications. (orig.)
Intrinsic Angular Momentum of Light.
Santarelli, Vincent
1979-01-01
Derives a familiar torque-angular momentum theorem for the electromagnetic field, and includes the intrinsic torques exerted by the fields on the polarized medium. This inclusion leads to the expressions for the intrinsic angular momentum carried by the radiation traveling through a charge-free medium. (Author/MA)
Angular momentum of sound pulses.
Lekner, John
2006-07-05
Three-dimensionally localized acoustic pulses in an isotropic fluid medium necessarily have transverse components of momentum density. Those with an azimuthal component of momentum density can carry angular momentum. The component of total pulse angular momentum along the direction of the total momentum is an invariant (constant in time and independent of choice of origin). The pulse energy, momentum and angular momentum are evaluated analytically for a family of localized solutions of the wave equation. In the limit where the pulses have many oscillations within their spatial extent ([Formula: see text], where k is the wavenumber and a determines the size of a pulse), the energy, momentum and angular momentum are consistent with a multiphonon representation of the pulse, each phonon having energy [Formula: see text], momentum [Formula: see text] and angular momentum [Formula: see text] (with integer m).
Egorov, Yu. G.; Kulkov, V. M.; Terentyev, V. V.; Firsyuk, S. O.; Shemyakov, A. O.
2016-11-01
The problem of controlling the angular momentum of spacecraft using magnetic attitude control systems interacting with the Earth's magnetic field is considered. A mathematical model for the angular motion dynamics of a spacecraft has been constructed. An approach to determining the parameters of the control law for a spacecraft attitude control and stabilization system that ensures angular momentum dissipation is proposed.
Topological summation of observables measured with dynamical overlap fermions
Energy Technology Data Exchange (ETDEWEB)
Bietenholz, W. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Hip, I. [Zagreb Univ. (Croatia). Faculty of Geothechnical Engineering
2008-10-15
HMC histories for light dynamical overlap fermions tend to stay in a fixed topological sector for many trajectories, so that the different sectors are not sampled properly. Therefore the suitable summation of observables, which have been measured in separate sectors, is a major challenge. We explore several techniques for this issue, based on data for the chiral condensate and the (analogue of the) pion mass in the 2-flavour Schwinger model with dynamical overlap-hypercube fermions. (orig.)
Topological Summation of Observables Measured with Dynamical Overlap Fermions
2008-01-01
HMC histories for light dynamical overlap fermions tend to stay in a fixed topological sector for many trajectories, so that the different sectors are not sampled properly. Therefore the suitable summation of observables, which have been measured in separate sectors, is a major challenge. We explore several techniques for this issue, based on data for the chiral condensate and the (analogue of the) pion mass in the 2-flavour Schwinger model with dynamical overlap-hypercube fermions.
Bailey, Simon
2015-01-01
This book is intended for developers who have an understanding of the basic principles behind both AngularJS and test-driven development. You, as a developer, are interested in eliminating the fear related to either introducing tests to an existing codebase or starting out testing on a fresh AngularJS application. If you're a team leader or part of a QA team with the responsibility of ensuring full test coverage of an application, then this book is ideal for you to comprehend the full testing scope required by your developers. Whether you're new to or are well versed with AngularJS, this book
On Multigrid for Overlapping Grids
Energy Technology Data Exchange (ETDEWEB)
Henshaw, W
2004-01-13
The solution of elliptic partial differential equations on composite overlapping grids using multigrid is discussed. An approach is described that provides a fast and memory efficient scheme for the solution of boundary value problems in complex geometries. The key aspects of the new scheme are an automatic coarse grid generation algorithm, an adaptive smoothing technique for adjusting residuals on different component grids, and the use of local smoothing near interpolation boundaries. Other important features include optimizations for Cartesian component grids, the use of over-relaxed Red-Black smoothers and the generation of coarse grid operators through Galerkin averaging. Numerical results in two and three dimensions show that very good multigrid convergence rates can be obtained for both Dirichlet and Neumann/mixed boundary conditions. A comparison to Krylov based solvers shows that the multigrid solver can be much faster and require significantly less memory.
Overlapping Structures in Sensory-Motor Mappings
Earland, Kevin; Lee, Mark; Shaw, Patricia; Law, James
2014-01-01
This paper examines a biologically-inspired representation technique designed for the support of sensory-motor learning in developmental robotics. An interesting feature of the many topographic neural sheets in the brain is that closely packed receptive fields must overlap in order to fully cover a spatial region. This raises interesting scientific questions with engineering implications: e.g. is overlap detrimental? does it have any benefits? This paper examines the effects and properties of overlap between elements arranged in arrays or maps. In particular we investigate how overlap affects the representation and transmission of spatial location information on and between topographic maps. Through a series of experiments we determine the conditions under which overlap offers advantages and identify useful ranges of overlap for building mappings in cognitive robotic systems. Our motivation is to understand the phenomena of overlap in order to provide guidance for application in sensory-motor learning robots. PMID:24392118
Towards optical intensity interferometry for high angular resolution stellar astrophysics
Nunez, Paul D
2012-01-01
Most neighboring stars are still detected as point sources and are beyond the angular resolution reach of current observatories. Methods to improve our understanding of stars at high angular resolution are investigated. Air Cherenkov telescopes (ACTs), primarily used for Gamma-ray astronomy, enable us to increase our understanding of the circumstellar environment of a particular system. When used as optical intensity interferometers, future ACT arrays will allow us to detect stars as extended objects and image their surfaces at high angular resolution. Optical stellar intensity interferometry (SII) with ACT arrays, composed of nearly 100 telescopes, will provide means to measure fundamental stellar parameters and also open the possibility of model-independent imaging. A data analysis algorithm is developed and permits the reconstruction of high angular resolution images from simulated SII data. The capabilities and limitations of future ACT arrays used for high angular resolution imaging are investigated via ...
A neural circuit for angular velocity computation
Directory of Open Access Journals (Sweden)
Samuel B Snider
2010-12-01
Full Text Available In one of the most remarkable feats of motor control in the animal world, some Diptera, such as the housefly, can accurately execute corrective flight maneuvers in tens of milliseconds. These reflexive movements are achieved by the halteres, gyroscopic force sensors, in conjunction with rapidly-tunable wing-steering muscles. Specifically, the mechanosensory campaniform sensilla located at the base of the halteres transduce and transform rotation-induced gyroscopic forces into information about the angular velocity of the fly's body. But how exactly does the fly's neural architecture generate the angular velocity from the lateral strain forces on the left and right halteres? To explore potential algorithms, we built a neuro-mechanical model of the rotation detection circuit. We propose a neurobiologically plausible method by which the fly could accurately separate and measure the three-dimensional components of an imposed angular velocity. Our model assumes a single sign-inverting synapse and formally resembles some models of directional selectivity by the retina. Using multidimensional error analysis, we demonstrate the robustness of our model under a variety of input conditions. Our analysis reveals the maximum information available to the fly given its physical architecture and the mathematics governing the rotation-induced forces at the haltere's end knob.
CMB Anisotropies Total Angular Momentum Method
Hu, W; Hu, Wayne; White, Martin
1997-01-01
A total angular momentum representation simplifies the radiation transport problem for temperature and polarization anisotropy in the CMB. Scattering terms couple only the quadrupole moments of the distributions and each moment corresponds directly to the observable angular pattern on the sky. We develop and employ these techniques to study the general properties of anisotropy generation from scalar, vector and tensor perturbations to the metric and the matter, both in the cosmological fluids and from any seed perturbations (e.g.~defects) that may be present. The simpler, more transparent form and derivation of the Boltzmann equations brings out the geometric and model-independent aspects of temperature and polarization anisotropy formation. Large angle scalar polarization provides a robust means to distinguish between isocurvature and adiabatic models for structure formation in principle. Vector modes have the unique property that the CMB polarization is dominated by magnetic type parity at small angles and ...
The origin of angular momentum in dark matter halos
Vitvitska, M; Kravtsov, A V; Bullock, J S; Wechsler, R H; Primack, Joel R
2002-01-01
We propose a new explanation for the origin of angular momentum in galaxies and their dark halos, in which the halos obtain their spin through the cumulative acquisition of angular momentum from satellite accretion. In our model, the build-up of angular momentum is a random walk process associated with the mass assembly history of the halo's major progenitor. We assume no correlation between the angular momenta of accreted objects. Using the extended Press-Schechter approximation, we calculate the growth of mass, angular momentum, and spin parameter $\\lambda$ for many halos. Our random walk model reproduces the key features of the angular momentum of halos found in N-body simulations: a lognormal distribution in $\\lambda$ with an average of $ \\approx 0.04$, independent of mass and redshift. The evolution of the spin parameter in individual halos in this model is quite different from the steady increase with time of angular momentum in the tidal torque picture. We find both in N-body simulations and in our ran...
Overlapping community detection in weighted networks via a Bayesian approach
Chen, Yi; Wang, Xiaolong; Xiang, Xin; Tang, Buzhou; Chen, Qingcai; Fan, Shixi; Bu, Junzhao
2017-02-01
Complex networks as a powerful way to represent complex systems have been widely studied during the past several years. One of the most important tasks of complex network analysis is to detect communities embedded in networks. In the real world, weighted networks are very common and may contain overlapping communities where a node is allowed to belong to multiple communities. In this paper, we propose a novel Bayesian approach, called the Bayesian mixture network (BMN) model, to detect overlapping communities in weighted networks. The advantages of our method are (i) providing soft-partition solutions in weighted networks; (ii) providing soft memberships, which quantify 'how strongly' a node belongs to a community. Experiments on a large number of real and synthetic networks show that our model has the ability in detecting overlapping communities in weighted networks and is competitive with other state-of-the-art models at shedding light on community partition.
Solving Partial Differential Equations on Overlapping Grids
Energy Technology Data Exchange (ETDEWEB)
Henshaw, W D
2008-09-22
We discuss the solution of partial differential equations (PDEs) on overlapping grids. This is a powerful technique for efficiently solving problems in complex, possibly moving, geometry. An overlapping grid consists of a set of structured grids that overlap and cover the computational domain. By allowing the grids to overlap, grids for complex geometries can be more easily constructed. The overlapping grid approach can also be used to remove coordinate singularities by, for example, covering a sphere with two or more patches. We describe the application of the overlapping grid approach to a variety of different problems. These include the solution of incompressible fluid flows with moving and deforming geometry, the solution of high-speed compressible reactive flow with rigid bodies using adaptive mesh refinement (AMR), and the solution of the time-domain Maxwell's equations of electromagnetism.
Overlapped frequency-time division multiplexing
Institute of Scientific and Technical Information of China (English)
JIANG Hui; LI Dao-ben
2009-01-01
A technique named overlapped frequency-time division multiplexing (OVFTDM)) is proposed in this article. The technique is derived from Nyquist system and frequency-time division multiplexing system. When the signals are compactly overlapped without the orthogonality in time domain, the technique is named overlapped time division multiplexing (OVTDM), whereas when signals are compactly overlapped without the orthogonality in frequency domain, the technique is called overlapped frequency division multiplexing (OVFDM). To further improve spectral efficiency, the OVFTDM in which signals are overlapped both in frequency domain and in time domain is explored. OVFTDM does not depend on orthogonality whatever in time domain or in frequency domain like Nyquist system or OFDM system, but on the convolutional constraint relationship among signals. Therefore, not only the spectral efficiency but also the reliability is improved. The simulations verify the validity of this theory.
Social externalities, overlap and the poverty trap.
Kim, Young-Chul; Loury, Glenn C
2014-12-01
Previous studies find that some social groups are stuck in poverty traps because of network effects. However, these studies do not carefully analyze how these groups overcome low human capital investment activities. Unlike previous studies, the model in this paper includes network externalities in both the human capital investment stage and the subsequent career stages. This implies that not only the current network quality, but also the expectations about future network quality affect the current investment decision. Consequently, the coordinated expectation among the group members can play a crucial role in the determination of the final state. We define "overlap" for some initial skill ranges, whereby the economic performance of a group can be improved simply by increasing expectations of a brighter future. We also define "poverty trap" for some ranges, wherein a disadvantaged group is constrained by its history, and we explore the egalitarian policies to mobilize the group out of the trap.
Correlated Edge Overlaps in Multiplex Networks
Baxter, Gareth J; da Costa, Rui A; Dorogovtsev, Sergey N; Mendes, José F F
2016-01-01
We develop the theory of sparse multiplex networks with partially overlapping links based on their local tree-likeness. This theory enables us to find the giant mutually connected component in a two-layer multiplex network with arbitrary correlations between connections of different types. We find that correlations between the overlapping and non-overlapping links markedly change the phase diagram of the system, leading to multiple hybrid phase transitions. For assortative correlations we observe recurrent hybrid phase transitions.
The Cosmology Large Angular Scale Surveyor
Marriage, Tobias; Ali, A.; Amiri, M.; Appel, J. W.; Araujo, D.; Bennett, C. L.; Boone, F.; Chan, M.; Cho, H.; Chuss, D. T.; Colazo, F.; Crowe, E.; Denis, K.; Dünner, R.; Eimer, J.; Essinger-Hileman, T.; Gothe, D.; Halpern, M.; Harrington, K.; Hilton, G.; Hinshaw, G. F.; Huang, C.; Irwin, K.; Jones, G.; Karakla, J.; Kogut, A. J.; Larson, D.; Limon, M.; Lowry, L.; Mehrle, N.; Miller, A. D.; Miller, N.; Moseley, S. H.; Novak, G.; Reintsema, C.; Rostem, K.; Stevenson, T.; Towner, D.; U-Yen, K.; Wagner, E.; Watts, D.; Wollack, E.; Xu, Z.; Zeng, L.
2014-01-01
Some of the most compelling inflation models predict a background of primordial gravitational waves (PGW) detectable by their imprint of a curl-like "B-mode" pattern in the polarization of the Cosmic Microwave Background (CMB). The Cosmology Large Angular Scale Surveyor (CLASS) is a novel array of telescopes to measure the B-mode signature of the PGW. By targeting the largest angular scales (>2°) with a multifrequency array, novel polarization modulation and detectors optimized for both control of systematics and sensitivity, CLASS sets itself apart in the field of CMB polarization surveys and opens an exciting new discovery space for the PGW and inflation. This poster presents an overview of the CLASS project.
Overlap syndromes among autoimmune liver diseases
Institute of Scientific and Technical Information of China (English)
Christian Rust; Ulrich Beuers
2008-01-01
The three major immune disorders of the liver are autoimmune hepatitis (AIH),primary biliary cirrhosis (PBC) and primary sclerosing cholangitis (PSC).Variant forms of these diseases are generally called overlap syndromes,although there has been no standardised definition.Patients with overlap syndromes present with both hepatitic and cholestatic serum liver tests and have histological features of AIH and PBC or PSC.The AIH-PBC overlap syndrome is the most common form,affecting almost 10% of adults with AIH or PBC.Single cases of AIH and autoimmune cholangitis (AMA-negative PBC) overlap syndrome have also been reported.The AIH-PSC overlap syndrome is predominantly found in children,adolescents and young adults with AIH or PSC.Interestingly,transitions from one autoimmune to another have also been reported in a minority of patients,especially transitions from PBC to AIH-PBC overlap syndrome.Overlap syndromes show a progressive course towards liver cirrhosis and liver failure without treatment.Therapy for overlap syndromes is empiric,since controlled trials are not available in these rare disorders.Anticholestatic therapy with ursodeoxycholic acid is usually combined with immunosuppressive therapy with corticosteroids and/or azathioprine in both AIH-PBC and AIH-PSC overlap syndromes.In end-stage disease,liver transplantation is the treatment of choice.
Finding overlapping communities using seed set
Yang, Jin-Xuan; Zhang, Xiao-Dong
2017-02-01
The local optimization algorithm using seed set to find overlapping communities has become more and more a significant method, but it is a great challenge how to choose a good seed set. In this paper, a new method is proposed to achieve the choice of candidate seed sets, and yields a new algorithm to find overlapping communities in complex networks. By testing in real world networks and synthetic networks, this method can successfully detect overlapping communities and outperform other state-of-the-art overlapping community detection methods.
Institute of Scientific and Technical Information of China (English)
ZHANG Yi-Xin; CANG Ji
2009-01-01
Effects of atmospheric turbulence tilt, defocus, astigmatism and coma aberrations on the orbital angular mo-mentum measurement probability of photons propagating in weak turbulent regime are modeled with Rytov approximation. By considering the resulting wave as a superposition of angular momentum eigenstates, the or-bital angular momentum measurement probabilities of the transmitted digit axe presented. Our results show that the effect of turbulent tilt aberration on the orbital angular momentum measurement probabilities of photons is the maximum among these four kinds of aberrations. As the aberration order increases, the effects of turbulence aberrations on the measurement probabilities of orbital angular momentum generally decrease, whereas the effect of turbulence defoens can be ignored. For tilt aberration, as the difference between the measured orbital angular momentum and the original orbital angular momentum increases, the orbital angular momentum measurement probabifity decreases.
Menard, Dan
2013-01-01
Get to grips with a new technology, understand what it is and what it can do for you, and then get to work with the most important features and tasks. This book is written in an easytoread style, with a strong emphasis on realworld, practical examples. Stepbystep explanations are provided for performing important tasks.This book is for web developers familiar with JavascriptIt doesn't cover the history of AngularJS, and it's not a pitch to convince you that AngularJS is the best framework on the entire web. It's a guide to help you learn everything you need to know about AngularJS in as few pa
Raulot, Victorien; Gérard, Philippe; Serio, Bruno; Flury, Manuel; Kress, Bernard; Meyrueis, Patrick
2010-08-16
A new rigorous vector-based design and analysis approach of diffractive lenses is presented. It combines the use of two methods: the Finite-Difference Time-Domain for the study in the near field, and the Radiation Spectrum Method for the propagation in the far field. This approach is proposed to design and optimize effective medium cylindrical diffractive lenses for high efficiency structured light illumination systems. These lenses are realised with binary subwavelength features that cannot be designed using the standard scalar theory. Furthermore, because of their finite and high frequencies characteristics, such devices prevent the use of coupled wave theory. The proposed approach is presented to determine the angular tolerance in the cases of binary subwavelength cylindrical lenses by calculating the diffraction efficiency as a function of the incidence angle.
Non-Colinearity of Angular Velocity and Angular Momentum
Burr, A. F.
1974-01-01
Discusses the principles, construction, and operation of an apparatus which serves to demonstrate the non-colinearity of the angular velocity and momentum vectors as well as the inertial tensors. Applications of the apparatus to teaching of advanced undergraduate mechanics courses are recommended. (CC)
Long and narrow Josephson tunnel junctions of mixed overlap and inline character
DEFF Research Database (Denmark)
Olsen, O.H.; Samuelsen, Mogens Rugholm
1983-01-01
A model describing long Josephson junctions of mixed overlap and inline geometry is presented. The shape of the first zero field step is calculated for this model using a perturbation approach. The question of influence of external magnetic field on the maximum supercurrent is investigated for ov...... for overlap, inline, and mixed overlap-inline geometries. A linear dependence is found for the inline model and for mixed overlap-inline junctions in agreement with experiments. Journal of Applied Physics is copyrighted by The American Institute of Physics....
DIMENSIONS OF SELF-AFFINESETS WITH OVERLAPS
Institute of Scientific and Technical Information of China (English)
华苏
2003-01-01
The authors develop an algorithm to show that a class of self-affine sets with overlaps canbe viewed as sofic affine-invariant sets without overlaps, thus by using the results of [11] and[10], the Hausdorff and Minkowski dimensions are determined.
Statistical Angular Resolution Limit for Ultrawideband MIMO Noise Radar
2015-01-01
The two-dimensional angular resolution limit (ARL) of elevation and azimuth for MIMO radar with ultrawideband (UWB) noise waveforms is investigated using statistical resolution theory. First, the signal model of monostatic UWB MIMO noise radar is established in a 3D reference frame. Then, the statistical angular resolution limits (SARLs) of two closely spaced targets are derived using the detection-theoretic and estimation-theoretic approaches, respectively. The detection-theoretic approach i...
Bauder, Javan M.; Breininger, David R.; Bolt, M. Rebecca; Legare, Michael L.; Jenkins, Christopher L.; Rothermel, Betsie B.; McGarigal, Kevin
2016-01-01
Understanding the factors influencing the degree of spatial overlap among conspecifics is important for understanding multiple ecological processes. Compared to terrestrial carnivores, relatively little is known about the factors influencing conspecific spatial overlap in snakes, although across snake taxa there appears to be substantial variation in conspecific spatial overlap. In this study, we described conspecific spatial overlap of eastern indigo snakes (Drymarchon couperi) in peninsular Florida and examined how conspecific spatial overlap varied by sex and season (breeding season vs. non-breeding season). We calculated multiple indices of spatial overlap using 6- and 3-month utilization distributions (UD) of dyads of simultaneously adjacent telemetered snakes. We also measured conspecific UD density values at each telemetry fix and modeled the distribution of those values as a function of overlap type, sex, and season using generalized Pareto distributions. Home range overlap between males and females was significantly greater than overlap between individuals of the same sex and male home ranges often completely contained female home ranges. Male home ranges overlapped little during both seasons, whereas females had higher levels of overlap during the non-breeding season. The spatial patterns observed in our study are consistent with those seen in many mammalian carnivores, in which low male-male overlap and high inter-sexual overlap provides males with greater access to females. We encourage additional research on the influence of prey availability on conspecific spatial overlap in snakes as well as the behavioral mechanisms responsible for maintaining the low levels of overlap we observed. PMID:27490346
Bayesian Overlapping Community Detection in Dynamic Networks
Ghorbani, Mahsa; Khodadadi, Ali
2016-01-01
Detecting community structures in social networks has gained considerable attention in recent years. However, lack of prior knowledge about the number of communities, and their overlapping nature have made community detection a challenging problem. Moreover, many of the existing methods only consider static networks, while most of real world networks are dynamic and evolve over time. Hence, finding consistent overlapping communities in dynamic networks without any prior knowledge about the number of communities is still an interesting open research problem. In this paper, we present an overlapping community detection method for dynamic networks called Dynamic Bayesian Overlapping Community Detector (DBOCD). DBOCD assumes that in every snapshot of network, overlapping parts of communities are dense areas and utilizes link communities instead of common node communities. Using Recurrent Chinese Restaurant Process and community structure of the network in the last snapshot, DBOCD simultaneously extracts the numbe...
Neural overlap in processing music and speech.
Peretz, Isabelle; Vuvan, Dominique; Lagrois, Marie-Élaine; Armony, Jorge L
2015-03-19
Neural overlap in processing music and speech, as measured by the co-activation of brain regions in neuroimaging studies, may suggest that parts of the neural circuitries established for language may have been recycled during evolution for musicality, or vice versa that musicality served as a springboard for language emergence. Such a perspective has important implications for several topics of general interest besides evolutionary origins. For instance, neural overlap is an important premise for the possibility of music training to influence language acquisition and literacy. However, neural overlap in processing music and speech does not entail sharing neural circuitries. Neural separability between music and speech may occur in overlapping brain regions. In this paper, we review the evidence and outline the issues faced in interpreting such neural data, and argue that converging evidence from several methodologies is needed before neural overlap is taken as evidence of sharing.
Olympic Wrestling and Angular Momentum.
Carle, Mark
1988-01-01
Reported is the use of a wrestling photograph in a noncalculus introductory physics course. The photograph presents a maneuver that could serve as an example for a discussion on equilibrium, forces, torque, and angular motion. Provided are some qualitative thoughts as well as quantitative calculations. (YP)
Market positioning: the shifting effects of niche overlap
Bruggeman, J.; Grunow, D.; Leenders, M.A.A.M.; Vermeulen, I.; Kuilman, J.G.
2012-01-01
Organizational ecology models of market dynamics emphasize the competition-inducing role of inter-organizational niche overlap—targeting similar market niches increases competitive pressure and thus reduces organizations’ fitness. Recent studies, however, have suggested that moderate niche overlap m
On the geometry of coating layers formed by overlap
Ocelik, V.; Nenadl, O.; Palavra, A.; De Hosson, J. Th. M.
2014-01-01
A recursive model is presented for the prediction of the profile of a coating layer formed by single track overlap. A known shape of single track is assumed and on the base of simple physical assumptions the recursive sequence is deduced to construct an entire profile of such coatings. Calculations
Two-fractal overlap time series: Earthquakes and market crashes
Indian Academy of Sciences (India)
Bikas K Chakrabarti; Arnab Chatterjee; Pratip Bhattacharyya
2008-08-01
We find prominent similarities in the features of the time series for the (model earthquakes or) overlap of two Cantor sets when one set moves with uniform relative velocity over the other and time series of stock prices. An anticipation method for some of the crashes have been proposed here, based on these observations.
Climate-induced range overlap among closely related species
Krosby, Meade; Wilsey, Chad B.; McGuire, Jenny L.; Duggan, Jennifer M.; Nogeire, Theresa M.; Heinrichs, Julie A.; Tewksbury, Joshua J.; Lawler, Joshua J.
2015-09-01
Contemporary climate change is causing large shifts in biotic distributions, which has the potential to bring previously isolated, closely related species into contact. This has led to concern that hybridization and competition could threaten species persistence. Here, we use bioclimatic models to show that future range overlap by the end of the century is predicted for only 6.4% of isolated, congeneric species pairs of New World birds, mammals and amphibians. Projected rates of climate-induced overlap are higher for birds (11.6%) than for mammals (4.4%) or amphibians (3.6%). As many species will have difficulty tracking shifting climates, actual rates of future overlap are likely to be far lower, suggesting that hybridization and competition impacts may be relatively modest.
Jamil, Arifa; Afsar, M. F.; Sher, F.; Rafiq, M. A.
2017-03-01
We report detailed ac electrical and structural characterization of manganese cobalt ferrite nanoparticles, prepared by coprecipitation technique. X-ray diffraction (XRD) confirmed single-phase cubic spinel structure of the nanoparticles. Tetrahedral (A) and octahedral (B) group complexes were present in the spinel lattice as determined by Fourier Transform Infrared Spectroscopy (FTIR). Scanning Electron Microscope (SEM) images revealed presence of spherical shape nanoparticles having an average diameter 50-80 nm. Composition, temperature and frequency dependent ac electrical study of prepared nanoparticles interpreted the role of cationic distribution between A and B sites. Overlapping large polaron tunnelling (OLPT) conduction mechanism was observed from 290 to 200 K. Frequency exponent s was fitted theoretically using OLPT model. High values of Density of States (DOS) of the order of 1022-1024 eV-1 cm-3 were extracted from ac conductivity for different compositions. We found that DOS was dependent on distribution of cations in the tunnel-type cavities along the a and b axis.
Boyajian, Tabetha; Feiden, Gregory A; Huber, Daniel; Basu, Sarbani; Demarque, Pierre; Fischer, Debra A; Schaefer, Gail; Mann, Andrew W; White, Timothy R; Maestro, Vicente; Brewer, John; Lamell, C Brooke; Spada, Federico; López-Morales, Mercedes; Ireland, Michael; Farrington, Chris; van Belle, Gerard T; Kane, Stephen R; Jones, Jeremy; Brummelaar, Theo A ten; Ciardi, David R; McAlister, Harold A; Ridgway, Stephen; Goldfinger, P J; Turner, Nils H; Sturmann, Laszlo
2014-01-01
We present direct radii measurements of the well-known transiting exoplanet host stars HD 189733 and HD 209458 using the CHARA Array interferometer. We find the limb-darkened angular diameters to be theta_LD = 0.3848 +/- 0.0055 and 0.2254 +/- 0.0072 milliarcsec for HD 189733 and HD 209458, respectively. HD 189733 and HD 209458 are currently the only two transiting exoplanet systems where detection of the respective planetary companion's orbital motion from high resolution spectroscopy has revealed absolute masses for both star and planet. We use our new measurements together with the orbital information from radial velocity and photometric time series data, Hipparcos distances, and newly measured bolometric fluxes to determine the stellar effective temperatures (T_eff = 4875 +/- 43, 6093 +/- 103 K), stellar linear radii (R_* = 0.805 +/- 0.016, 1.203 +/- 0.061 R_sun), mean stellar densities (rho_* = 1.62 +/- 0.11, 0.58 +/- 0.14 rho_sun), planetary radii (R_p = 1.216 +/- 0.024, 1.451 +/- 0.074 R_Jup), and mean ...
Imaging the Earth's Interior: the Angular Distribution of Terrestrial Neutrinos
Fields, Brian D
2004-01-01
Decays of radionuclides throughout the Earth's interior produce geothermal heat, but also are a source of antineutrinos. The (angle-integrated) geoneutrino flux places an integral constraint on the terrestrial radionuclide distribution. In this paper, we calculate the angular distribution of geoneutrinos, which opens a window on the differential radionuclide distribution. We develop the general formalism for the neutrino angular distribution, and we present the inverse transformation which recovers the terrestrial radioisotope distribution given a measurement of the neutrino angular distribution. Thus, geoneutrinos not only allow a means to image the Earth's interior, but offering a direct measure of the radioactive Earth, both (1) revealing the Earth's inner structure as probed by radionuclides, and (2) allowing for a complete determination of the radioactive heat generation as a function of radius. We present the geoneutrino angular distribution for the favored Earth model which has been used to calculate g...
Plate tectonics conserves angular momentum
Directory of Open Access Journals (Sweden)
C. Bowin
2009-03-01
Full Text Available A new combined understanding of plate tectonics, Earth internal structure, and the role of impulse in deformation of the Earth's crust is presented. Plate accelerations and decelerations have been revealed by iterative filtering of the quaternion history for the Euler poles that define absolute plate motion history for the past 68 million years, and provide an unprecedented precision for plate angular rotation variations with time at 2-million year intervals. Stage poles represent the angular rotation of a plate's motion between adjacent Euler poles, and from which the maximum velocity vector for a plate can be determined. The consistent maximum velocity variations, in turn, yield consistent estimates of plate accelerations and decelerations. The fact that the Pacific plate was shown to accelerate and decelerate, implied that conservation of plate tectonic angular momentum must be globally conserved, and that is confirmed by the results shown here (total angular momentum ~1.4 E+27 kgm^{2}s^{−1}. Accordingly, if a plate decelerates, other plates must increase their angular momentums to compensate. In addition, the azimuth of the maximum velocity vectors yields clues as to why the "bend" in the Emperor-Hawaiian seamount trend occurred near 46 Myr. This report summarizes processing results for 12 of the 14 major tectonic plates of the Earth (except for the Juan de Fuca and Philippine plates. Plate accelerations support the contention that plate tectonics is a product of torques that most likely are sustained by the sinking of positive density anomalies due to phase changes in subducted gabbroic lithosphere at depth in the upper lower mantle (above 1200 km depth. The tectonic plates are pulled along by the sinking of these positive mass anomalies, rather than moving at near constant velocity on the crests of convection cells driven by rising heat. These results imply that spreading centers are primarily passive reactive
Overlap maximum matching ratio (OMMR)：a new measure to evaluate overlaps of essential modules
Institute of Scientific and Technical Information of China (English)
Xiao-xia ZHANG; Qiang-hua XIAO; Bin LI; Sai HU; Hui-jun XIONG; Bi-hai ZHAO
2015-01-01
Protein complexes are the basic units of macro-molecular organizations and help us to understand the cell’s mechanism. The development of the yeast two-hybrid, tandem affinity purification, and mass spectrometry high-throughput proteomic techniques supplies a large amount of protein-protein interaction data, which make it possible to predict overlapping complexes through computational methods. Research shows that overlapping complexes can contribute to identifying essential proteins, which are necessary for the organism to survive and reproduce, and for life’s activities. Scholars pay more attention to the evaluation of protein complexes. However, few of them focus on predicted overlaps. In this paper, an evaluation criterion called overlap maximum matching ratio (OMMR) is proposed to analyze the similarity between the identified overlaps and the benchmark overlap modules. Comparison of essential proteins and gene ontology (GO) analysis are also used to assess the quality of overlaps. We perform a comprehensive comparison of serveral overlapping complexes prediction approaches, using three yeast protein-protein interaction (PPI) networks. We focus on the analysis of overlaps identified by these algorithms. Experimental results indicate the important of overlaps and reveal the relationship between overlaps and identification of essential proteins.
Overlapping Inflow Events as Catalysts for Supermassive Black Hole Growth
Carmona-Loaiza, Juan Manuel; Dotti, Massimo; Valdarnini, Riccardo
2013-01-01
One of the greatest issues in modelling black hole fuelling is our lack of understanding of the processes by which gas loses angular momentum and falls from galactic scales down to the nuclear region where an accretion disc forms, subsequently guiding the inflow of gas down to the black hole horizon. It is feared that gas at larger scales might still retain enough angular momentum and settle into a larger scale disc with very low or no inflow to form or replenish the inner accretion disc (on ~0.01 pc scales). In this paper we report on hydrodynamical simulations of rotating infalling gas shells impacting at different angles onto a pre-existing, primitive large scale (~10 pc) disc around a super-massive black hole. The aim is to explore how the interaction between the shell and the disc redistributes the angular momentum on scales close to the black hole's sphere of influence. Angular momentum redistribution via hydrodynamical shocks leads to inflows of gas across the inner boundary, enhancing the inflow rate ...
Angular Distributions of Discrete Mesoscale Mapping Functions
Directory of Open Access Journals (Sweden)
Kroszczyński Krzysztof
2015-08-01
Full Text Available The paper presents the results of analyses of numerical experiments concerning GPS signal propagation delays in the atmosphere and the discrete mapping functions defined on their basis. The delays were determined using data from the mesoscale non-hydrostatic weather model operated in the Centre of Applied Geomatics, Military University of Technology. A special attention was paid to investigating angular characteristics of GPS slant delays for low angles of elevation. The investigation proved that the temporal and spatial variability of the slant delays depends to a large extent on current weather conditions
Lunar influence on equatorial atmospheric angular momentum
Bizouard, C.; Zotov, L.; Sidorenkov, N.
2015-08-01
This study investigates the relationship between the equatorial atmospheric angular momentum oscillation in the non-rotating frame and lunar tidal potential. Between 2 and 30 days, the corresponding equatorial component is mostly constituted of prograde circular motions, especially of a harmonic at 13.6 days, and of a weekly broad band variation. A simple equilibrium tide model explains the 13.6-day pressure term as result of the O1 lunar tide; the tidal lunar origin of the whole band from 2 to 30 days is attested by specific features, not occurring for seasonal band dominated by the solar thermal effect.
Phonons with orbital angular momentum
Energy Technology Data Exchange (ETDEWEB)
Ayub, M. K. [Theoretical Plasma Physics Division, PINSTECH, P. O. Nilore, Islamabad (Pakistan); National Centre for Physics, Shahdra Valley Road, Quaid-i-Azam University Campus, Islamabad 44000 (Pakistan); Ali, S. [National Centre for Physics, Shahdra Valley Road, Quaid-i-Azam University Campus, Islamabad 44000 (Pakistan); Mendonca, J. T. [IPFN, Instituto Superior Tecnico, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal)
2011-10-15
Ion accoustic waves or phonon modes are studied with orbital angular momentum (OAM) in an unmagnetized collissionless uniform plasma, whose constituents are the Boltzmann electrons and inertial ions. For this purpose, we have employed the fluid equations to obtain a paraxial equation in terms of ion density perturbations and discussed its Gaussian beam and Laguerre-Gauss (LG) beam solutions. Furthermore, an approximate solution for the electrostatic potential problem is presented, allowing to express the components of the electric field in terms of LG potential perturbations. The energy flux due to phonons is also calculated and the corresponding OAM is derived. Numerically, it is shown that the parameters such as azimuthal angle, radial and angular mode numbers, and beam waist, strongly modify the profiles of the phonon LG potential. The present results should be helpful in understanding the phonon mode excitations produced by Brillouin backscattering of laser beams in a uniform plasma.
Angular momentum in QGP holography
Directory of Open Access Journals (Sweden)
Brett McInnes
2014-10-01
Full Text Available The quark chemical potential is one of the fundamental parameters describing the quark–gluon plasma produced by sufficiently energetic heavy-ion collisions. It is not large at the extremely high temperatures probed by the LHC, but it plays a key role in discussions of the beam energy scan programmes at the RHIC and other facilities. On the other hand, collisions at such energies typically (that is, in peripheral collisions give rise to very high values of the angular momentum density. Here we explain that holographic estimates of the quark chemical potential of a rotating sample of plasma can be very considerably improved by taking the angular momentum into account.
The integration of angular velocity
Boyle, Michael
2016-01-01
A common problem in physics and engineering is determination of the orientation of an object given its angular velocity. When the direction of the angular velocity changes in time, this is a nontrivial problem involving coupled differential equations. Several possible approaches are examined, along with various improvements over previous efforts. These are then evaluated numerically by comparison to a complicated but analytically known rotation that is motivated by the important astrophysical problem of precessing black-hole binaries. It is shown that a straightforward solution directly using quaternions is most efficient and accurate, and that the norm of the quaternion is irrelevant. Integration of the generator of the rotation can also be made roughly as efficient as integration of the rotation. Both methods will typically be twice as efficient naive vector- or matrix-based methods. Implementation by means of standard general-purpose numerical integrators is stable and efficient, so that such problems can ...
CMB anisotropies: Total angular momentum method
Hu, Wayne; White, Martin
1997-07-01
A total angular momentum representation simplifies the radiation transport problem for temperature and polarization anisotropy in the cosmic microwave background (CMB). Scattering terms couple only the quadrupole moments of the distributions and each moment corresponds directly to the observable angular pattern on the sky. We develop and employ these techniques to study the general properties of anisotropy generation from scalar, vector, and tensor perturbations to the metric and the matter, both in the cosmological fluids and from any seed perturbations (e.g., defects) that may be present. The simpler, more transparent form and derivation of the Boltzmann equations brings out the geometric and model-independent aspects of temperature and polarization anisotropy formation. Large angle scalar polarization provides a robust means to distinguish between isocurvature and adiabatic models for structure formation in principle. Vector modes have the unique property that the CMB polarization is dominated by magnetic-type parity at small angles (a factor of 6 in power compared with 0 for the scalars and 8/13 for the tensors) and hence potentially distinguishable independent of the model for the seed. The tensor modes produce a different sign from the scalars and vectors for the temperature-polarization correlations at large angles. We explore conditions under which one perturbation type may dominate over the others including a detailed treatment of the photon-baryon fluid before recombination.
Electron energy and angular distributions in radiotherapy
Energy Technology Data Exchange (ETDEWEB)
Deasy, J.O.
1992-01-01
Electron energy and angular distributions and associated effects for radiotherapy accelerators and beta-ray ophthalmic applicators have been measured and modeled. Ophthalmic applicator extrapolation chamber calibration geometries were studied using Monte Carlo calculations and analytic methods. A large interface effect increases the surface dose by a factor of about 1.5 and makes very small gap width measurements necessary (0.1--0.2 mm). Dose deposition in tissue near the surface was simulated using the Monte Carlo technique. Charge collection in the extrapolation chamber was analytically modeled on the basis of ionized free electrons back-diffusing into the cathode, while taking into account attachment to O[sub 2] ions. Two small, portable, magnetic spectrometers for the measurement of clinical radiotherapy electron beams were constructed. One employs film as a spectrograph and is suitable for routine measurements; the second is a 90[degree] single-focusing spectrometer and uses fast pulse counting electrons and pulse-height analysis. Spectra were measured for the University of Louisville's Theratronics T20 and Philips SL25 linear accelerators. The T20 spectra were all Gaussian with energy widths of about 5%. The SL25 energy spectra were of varied shapes, with energy widths of 10--20%. Evidence of 3--7% shifts in the average energy of the SL25 beams was observed. Angular measurements were made which showed the Gaussian angular spread of the incident beam. The Monte Carlo code CYLTRAN and measured spectra were used to reconstruct depth dose curves. The peak energy structure only marginally affects the shape of the depth-dose curve, and some features of the depth-dose curves must be affected by incident straggled or widely-scattered electrons. In the absence of lower energy straggled electrons, the range parameters and the maximum dose gradient depend on the mean energy of the peak electrons.
Detecting overlapping coding sequences in virus genomes
Directory of Open Access Journals (Sweden)
Brown Chris M
2006-02-01
Full Text Available Abstract Background Detecting new coding sequences (CDSs in viral genomes can be difficult for several reasons. The typically compact genomes often contain a number of overlapping coding and non-coding functional elements, which can result in unusual patterns of codon usage; conservation between related sequences can be difficult to interpret – especially within overlapping genes; and viruses often employ non-canonical translational mechanisms – e.g. frameshifting, stop codon read-through, leaky-scanning and internal ribosome entry sites – which can conceal potentially coding open reading frames (ORFs. Results In a previous paper we introduced a new statistic – MLOGD (Maximum Likelihood Overlapping Gene Detector – for detecting and analysing overlapping CDSs. Here we present (a an improved MLOGD statistic, (b a greatly extended suite of software using MLOGD, (c a database of results for 640 virus sequence alignments, and (d a web-interface to the software and database. Tests show that, from an alignment with just 20 mutations, MLOGD can discriminate non-overlapping CDSs from non-coding ORFs with a typical accuracy of up to 98%, and can detect CDSs overlapping known CDSs with a typical accuracy of 90%. In addition, the software produces a variety of statistics and graphics, useful for analysing an input multiple sequence alignment. Conclusion MLOGD is an easy-to-use tool for virus genome annotation, detecting new CDSs – in particular overlapping or short CDSs – and for analysing overlapping CDSs following frameshift sites. The software, web-server, database and supplementary material are available at http://guinevere.otago.ac.nz/mlogd.html.
AngularJS test-driven development
Chaplin, Tim
2015-01-01
This book is for developers who want to learn about AngularJS development by applying testing techniques. You are assumed to have a basic knowledge and understanding of HTML, JavaScript, and AngularJS.
Optical angular momentum in dispersive media
Philbin, T G
2012-01-01
The angular momentum density and flux of light in a dispersive, rotationally symmetric medium are derived from Noether's theorem. Optical angular momentum in a dispersive medium has no simple relation to optical linear momentum, even if the medium is homogeneous. A circularly polarized monochromatic beam in a homogeneous, dispersive medium carries a spin angular momentum per unit energy of $\\pm\\omega^{-1}$, as in vacuum. This result demonstrates the non-trivial interplay of dispersive contributions to optical angular momentum and energy.
AngularJS web application development
Darwin, Peter Bacon
2013-01-01
The book will be a step-by-step guide showing the readers how to build a complete web app with AngularJSJavaScript developers who want to learn AngularJS for developing web apps. Knowledge of JavaScript and HTML is expected. No knowledge of AngularJS is required.
The Effect of Route-angularity on Spatial Situation Model Constructing in Text%路径转弯对语篇空间情境模型建构的影响
Institute of Scientific and Technical Information of China (English)
陈洁彬; 鲁忠义
2015-01-01
采用回指解决方法，通过3个实验探讨了路径转弯对空间情境模型建构的影响机制。实验1和实验2的结果表明，读者在建构含有路径转弯的语篇时，在一定范围内出现了路径转弯效应。总体趋势为当语篇的空间描述简单(转弯次数2)时，不仅不再出现路径转弯效应，反而出现了该效应的反转现象。实验3借助眼动仪监测，运用语篇与主人公行走路线同步动态呈现模式，让被试实时追随主人公行走路线，控制转弯次数和路径距离，以当前位置与回指地点间的直线距离为自变量，探究读者在空间描述复杂时建构空间情境模型的心理机制。实验结果表明当阅读空间描述简单的语篇时，读者建构的空间情境模型是路线型的，通过逆向搜索的方式进行回指解决；当语篇的空间描述较为复杂时，读者倾向于建构地图型空间情境模型，以俯视的视角通过空间搭桥寻找空间最短直线距离进行回指解决。%Research on text comprehension is an important part of cognitive psychology, Situation model is considered as the higher level of text representation, so it attracts the focuses of many researchers. The spatial dimension of situation model has been explored most often. Layout-learning & Anaphora resolution is an important way to explore the representation of spatial distance in text comprehension. Our paper explored the rules of distance representation in three experiments and advanced some hypotheses. In Experiment 1, we used the method of layout-learning& Anaphora resolution while controlling the path distance (including category distance and measure distance) and linear distance, with the number of turns as the independent variables, to examine whether the route-angularity effect occur. During the Experiment1, those who are experimented first should study the layout diagram of the company, and memorize the location of each room and the
New relativistic Hamiltonian: the angular magnetoelectric coupling
Paillard, Charles; Mondal, Ritwik; Berritta, Marco; Dkhil, Brahim; Singh, Surendra; Oppeneer, Peter M.; Bellaiche, Laurent
2016-10-01
Spin-Orbit Coupling (SOC) is a ubiquitous phenomenon in the spintronics area, as it plays a major role in allowing for enhancing many well-known phenomena, such as the Dzyaloshinskii-Moriya interaction, magnetocrystalline anisotropy, the Rashba effect, etc. However, the usual expression of the SOC interaction ħ/4m2c2 [E×p] • σ (1) where p is the momentum operator, E the electric field, σ the vector of Pauli matrices, breaks the gauge invariance required by the electronic Hamiltonian. On the other hand, very recently, a new phenomenological interaction, coupling the angular momentum of light and magnetic moments, has been proposed based on symmetry arguments: ξ/2 [r × (E × B)] M, (2) with M the magnetization, r the position, and ξ the interaction strength constant. This interaction has been demonstrated to contribute and/or give rise, in a straightforward way, to various magnetoelectric phenomena,such as the anomalous Hall effect (AHE), the anisotropic magnetoresistance (AMR), the planar Hall effect and Rashba-like effects, or the spin-current model in multiferroics. This last model is known to be the origin of the cycloidal spin arrangement in bismuth ferrite for instance. However, the coupling of the angular momentum of light with magnetic moments lacked a fundamental theoretical basis. Starting from the Dirac equation, we derive a relativistic interaction Hamiltonian which linearly couples the angular momentum density of the electromagnetic (EM) field and the electrons spin. We name this coupling the Angular MagnetoElectric (AME) coupling. We show that in the limit of uniform magnetic field, the AME coupling yields an interaction exactly of the form of Eq. (2), thereby giving a firm theoretical basis to earlier works. The AME coupling can be expressed as: ξ [E × A] • σ (3) with A being the vector potential. Interestingly, the AME coupling was shown to be complementary to the traditional SOC, and together they restore the gauge invariance of the
Wavelet fractal character of overlapping signal
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
A new method based on the combining of the wavelet theory with the fractal theory and named wavelet fractal peak position method (WFPPM) is introduced to extract the number of the components and the relevant peak positions from overlapping signals in chemistry. The overlapping signal is first transformed into continuous wavelet transform value of time domain in certain dilation range via continuous wavelet transform (CWT), and then changed into capacity dimensions (Dc). The number of the components and the relevant positions of overlapping peaks can be identified easily according to the change of Dc. An investigation concerning the influence of different dilation ranges on the peak positions extracted by WFPPM is also provided. Studies show that WFPPM is and efficient tool for extracting the peak positions and identifying the number of peaks from unresolved signals, even wht\\en this kind of overlapping is significantly serious. Relative errors of less than 1.0% in peak are found when WFPPM is used in the processing of the cadmium(Ⅱ)-indium(Ⅲ) mixture system. The analytical results demonstrate that the desired peak positions can be extracted conveniently, accurately and rapidly from and unresolved signal via WFPPM. Tremendous developing and applications based on currently reported WFPPM in extracting overlapping signals would be expected in the near futrue.
Energy Technology Data Exchange (ETDEWEB)
Vaughn, Mark R. (Albuquerque, NM); Robinett, III, Rush D. (Tijeras, NM); Phelan, John R. (Albuquerque, NM); Van Zuiden, Don M. (Albuquerque, NM)
1997-01-21
A new class of coplanar two-axis angular effectors. These effectors combine a two-axis rotational joint analogous to a Cardan joint with linear actuators in a manner to produce a wider range of rotational motion about both axes defined by the joint. This new class of effectors also allows design of robotic manipulators having very high strength and efficiency. These effectors are particularly suited for remote operation in unknown surroundings, because of their extraordinary versatility. An immediate application is to the problems which arise in nuclear waste remediation.
Energy Technology Data Exchange (ETDEWEB)
Vaughn, M.R.; Robinett, R.D. III; Phelan, J.R.; Zuiden, D.M. Van
1997-01-21
A new class of coplanar two-axis angular effectors is described. These effectors combine a two-axis rotational joint analogous to a Cardan joint with linear actuators in a manner to produce a wider range of rotational motion about both axes defined by the joint. This new class of effectors also allows design of robotic manipulators having very high strength and efficiency. These effectors are particularly suited for remote operation in unknown surroundings, because of their extraordinary versatility. An immediate application is to the problems which arise in nuclear waste remediation. 11 figs.
Verhoef, W.; Bach, H.
2007-01-01
Coupling radiative transfer models for the soil background and vegetation canopy layers is facilitated by means of the four-stream flux interaction concept and use of the adding method. Also the coupling to a state-of-the-art atmospheric radiative transfer model like MODTRAN4 can be established in t
Overlapping community detection using weighted consensus clustering
Indian Academy of Sciences (India)
LINTAO YANG; ZETAI YU; JING QIAN; SHOUYIN LIU
2016-10-01
Many overlapping community detection algorithms have been proposed. Most of them are unstable and behave non-deterministically. In this paper, we use weighted consensus clustering for combining multiple base covers obtained by classic non-deterministic algorithms to improve the quality of the results. We first evaluate a reliability measure for each community in all base covers and assign a proportional weight to each one. Then we redefine the consensus matrix that takes into account not only the common membership of nodes, but also the reliability of the communities. Experimental results on both artificial and real-world networks show that our algorithm can find overlapping communities accurately.
Smoothed dissipative particle dynamics with angular momentum conservation
Energy Technology Data Exchange (ETDEWEB)
Müller, Kathrin, E-mail: k.mueller@fz-juelich.de; Fedosov, Dmitry A., E-mail: d.fedosov@fz-juelich.de; Gompper, Gerhard, E-mail: g.gompper@fz-juelich.de
2015-01-15
Smoothed dissipative particle dynamics (SDPD) combines two popular mesoscopic techniques, the smoothed particle hydrodynamics and dissipative particle dynamics (DPD) methods, and can be considered as an improved dissipative particle dynamics approach. Despite several advantages of the SDPD method over the conventional DPD model, the original formulation of SDPD by Español and Revenga (2003) [9], lacks angular momentum conservation, leading to unphysical results for problems where the conservation of angular momentum is essential. To overcome this limitation, we extend the SDPD method by introducing a particle spin variable such that local and global angular momentum conservation is restored. The new SDPD formulation (SDPD+a) is directly derived from the Navier–Stokes equation for fluids with spin, while thermal fluctuations are incorporated similarly to the DPD method. We test the new SDPD method and demonstrate that it properly reproduces fluid transport coefficients. Also, SDPD with angular momentum conservation is validated using two problems: (i) the Taylor–Couette flow with two immiscible fluids and (ii) a tank-treading vesicle in shear flow with a viscosity contrast between inner and outer fluids. For both problems, the new SDPD method leads to simulation predictions in agreement with the corresponding analytical theories, while the original SDPD method fails to capture properly physical characteristics of the systems due to violation of angular momentum conservation. In conclusion, the extended SDPD method with angular momentum conservation provides a new approach to tackle fluid problems such as multiphase flows and vesicle/cell suspensions, where the conservation of angular momentum is essential.
Electron Energy and Angular Distributions in Radiotherapy.
Deasy, Joseph Owen
1992-01-01
Electron energy and angular distributions and associated effects for radiotherapy accelerators and beta -ray ophthalmic applicators have been measured and modeled. Ophthalmic applicator extrapolation chamber calibration geometries were studied using Monte Carlo calculations and analytic methods. A large interface effect increases the surface dose by a factor of about 1.5 and makes very small gap width measurements necessary (0.1-0.2 mm). Dose deposition in tissue near the surface was simulated using the Monte Carlo technique. Charge collection in the extrapolation chamber was analytically modeled on the basis of ionized free electrons back-diffusing into the cathode, while taking into account attachment to O_2 ions. Previous models underpredict the charge loss, mainly because they assume that all the charge carriers are ions. Two small, portable, magnetic spectrometers for the measurement of clinical radiotherapy electron beams were constructed. One employs film as a spectrograph and is suitable for routine measurements; the second is a 90^circ single-focusing spectrometer and uses fast pulse counting electronics and pulse-height analysis. Tests with monoenergetic electron beams at the National Research Council of Canada's electron linear accelerator showed that the system is free from spectral distortion and verified the spectrometers' energy calibrations. Spectra were measured for the University of Louisville's Theratronics T20 and Philips SL25 linear accelerators. The T20 spectra were all nearly Gaussian in shape with energy widths of about 5%. The SL25 energy spectra were of varied shapes, with energy widths of 10-20%. Evidence of 3-7% shifts in the average energy of the SL25 beams was observed. Angular measurements were made which showed the Gaussian angular spread of the incident beam. The Monte Carlo code CYLTRAN and measured spectra were used to reconstruct depth dose curves. Comparisons with measured depth dose curves show that the peak energy structure
Sacuto, Stéphane; Hron, Josef; Nowotny, Walter; Paladini, Claudia; Verhoelst, Tijl; Höfner, Susanne
2010-01-01
We study the circumstellar environment of the carbon-rich star R Scl using the near- and mid-infrared high spatial resolution observations from the ESO-VLTI instruments VINCI and MIDI. These observations aim at increasing our knowledge of the dynamic processes in play within the very close circumstellar environment where the mass loss of AGB stars is initiated. Data are interpreted using a self-consistent dynamic model. Interferometric observations do not show any significant variability effect at the 16 m baseline between phases 0.17 and 0.23 in the K band, and for both the 15 m baseline between phases 0.66 and 0.97 and the 31 m baseline between phases 0.90 and 0.97 in the N band. We find fairly good agreement between the dynamic model and the spectrophotometric data from 0.4 to 25 $\\mu$m. The model agrees well with the time-dependent flux data at 8.5 $\\mu$m, whereas it is too faint at 11.3 and 12.5 $\\mu$m. The VINCI visibilities are reproduced well, meaning that the extension of the model is suitable in the...
Using character overlap to improve language transformation
Wubben, S.; Krahmer, E.; Bosch, A.P.J. van den
2013-01-01
Language transformation can be deﬁned as translating between diachronically distinct language variants. We investigate the transformation of Middle Dutch into Modern Dutch by means of machine translation. We demonstrate that by using character overlap the performance of the machine translation proce
Parallelizing SLPA for Scalable Overlapping Community Detection
Directory of Open Access Journals (Sweden)
Konstantin Kuzmin
2015-01-01
Full Text Available Communities in networks are groups of nodes whose connections to the nodes in a community are stronger than with the nodes in the rest of the network. Quite often nodes participate in multiple communities; that is, communities can overlap. In this paper, we first analyze what other researchers have done to utilize high performance computing to perform efficient community detection in social, biological, and other networks. We note that detection of overlapping communities is more computationally intensive than disjoint community detection, and the former presents new challenges that algorithm designers have to face. Moreover, the efficiency of many existing algorithms grows superlinearly with the network size making them unsuitable to process large datasets. We use the Speaker-Listener Label Propagation Algorithm (SLPA as the basis for our parallel overlapping community detection implementation. SLPA provides near linear time overlapping community detection and is well suited for parallelization. We explore the benefits of a multithreaded programming paradigm and show that it yields a significant performance gain over sequential execution while preserving the high quality of community detection. The algorithm was tested on four real-world datasets with up to 5.5 million nodes and 170 million edges. In order to assess the quality of community detection, at least 4 different metrics were used for each of the datasets.
Current status of Dynamical Overlap project
Cundy, N
2006-01-01
We discuss the adaptation of the Hybrid Monte Carlo algorithm to overlap fermions. We derive a method which can be used to account for the delta function in the fermionic force caused by the differential of the sign function. We discuss the algoritmic difficulties that have been overcome, and mention those that still need to be solved.
Chromosome Segregation: Organizing Overlap at the Midzone
Janson, M.E.; Tran, P.T.
2008-01-01
Sets of overlapping microtubules support the segregation of chromosomes by linking the poles of mitotic spindles. Recent work examines the effect of putting these linkages under pressure by the activation of dicentric chromosomes and sheds new light on the structural role of several well-known spind
Overlapping Community Detection based on Network Decomposition
Ding, Zhuanlian; Zhang, Xingyi; Sun, Dengdi; Luo, Bin
2016-04-01
Community detection in complex network has become a vital step to understand the structure and dynamics of networks in various fields. However, traditional node clustering and relatively new proposed link clustering methods have inherent drawbacks to discover overlapping communities. Node clustering is inadequate to capture the pervasive overlaps, while link clustering is often criticized due to the high computational cost and ambiguous definition of communities. So, overlapping community detection is still a formidable challenge. In this work, we propose a new overlapping community detection algorithm based on network decomposition, called NDOCD. Specifically, NDOCD iteratively splits the network by removing all links in derived link communities, which are identified by utilizing node clustering technique. The network decomposition contributes to reducing the computation time and noise link elimination conduces to improving the quality of obtained communities. Besides, we employ node clustering technique rather than link similarity measure to discover link communities, thus NDOCD avoids an ambiguous definition of community and becomes less time-consuming. We test our approach on both synthetic and real-world networks. Results demonstrate the superior performance of our approach both in computation time and accuracy compared to state-of-the-art algorithms.
Autism and ADHD: Overlapping and Discriminating Symptoms
Mayes, Susan Dickerson; Calhoun, Susan L.; Mayes, Rebecca D.; Molitoris, Sarah
2012-01-01
Children with ADHD and autism have some similar features, complicating a differential diagnosis. The purpose of our study was to determine the degree to which core ADHD and autistic symptoms overlap in and discriminate between children 2-16 years of age with autism and ADHD. Our study demonstrated that 847 children with autism were easily…
Transverse and longitudinal angular momenta of light
Bliokh, Konstantin Y
2015-01-01
We review basic physics and novel types of optical angular momentum. We start with a theoretical overview of momentum and angular momentum properties of generic optical fields, and discuss methods for their experimental measurements. In particular, we describe the well-known longitudinal (i.e., aligned with the mean momentum) spin and orbital angular momenta in polarized vortex beams. Then, we focus on the transverse (i.e., orthogonal to the mean momentum) spin and orbital angular momenta, which were recently actively discussed in theory and observed in experiments. First, the recently-discovered transverse spin angular momenta appear in various structured fields: evanescent waves, interference fields, and focused beams. We show that there are several kinds of transverse spin angular momentum, which differ strongly in their origins and physical properties. We describe extraordinary features of the transverse optical spins and overview recent experiments. In particular, the helicity-independent transverse spin...
Oral candidiasis and angular cheilitis.
Sharon, Victoria; Fazel, Nasim
2010-01-01
Candidiasis, an often encountered oral disease, has been increasing in frequency. Most commonly caused by the overgrowth of Candida albicans, oral candidiasis can be divided into several categories including acute and chronic forms, and angular cheilitis. Risk factors for the development of oral candidiasis include immunosuppression, wearing of dentures, pharmacotherapeutics, smoking, infancy and old age, endocrine dysfunction, and decreased salivation. Oral candidiasis may be asymptomatic. More frequently, however, it is physically uncomfortable, and the patient may complain of burning mouth, dysgeusia, dysphagia, anorexia, and weight loss, leading to nutritional deficiency and impaired quality of life. A plethora of antifungal treatments are available. The overall prognosis of oral candidiasis is good, and rarely is the condition life threatening with invasive or recalcitrant disease.
Angular Distributions as Lifetime Probes
Dror, Jeff Asaf
2013-01-01
If new TeV scale particles are discovered, it will be important to determine their width. There is, however, a problematic region, where the width is too small to be determined directly, and too large to generate a secondary vertex. For a collection of colored, spin polarized particles, hadronization depolarizes the particles prior to their decay. The amount of depolarization can be used to probe the lifetime in the problematic region. In this paper we apply this method to a realistic scenario of a top-like particle that can be produced at the LHC. We study how depolarization affects the angular distributions of the decay products and derive an equation for the distributions that is sensitive to the lifetime.
A Differential Reflective Intensity Optical Fiber Angular Displacement Sensor.
Jia, Binghui; He, Lei; Yan, Guodong; Feng, Yong
2016-09-16
In this paper, a novel differential reflective intensity optical fiber angular displacement sensor was proposed. This sensor can directly measure the angular and axial linear displacement of a flat surface. The structure of the sensor probe is simple and its basic principle was first analyzed according to the intensity modulation mechanisms. Secondly, in order to trim the dark output voltage to zero, the photoelectric conversion circuit was developed to adjust the signals. Then, the sensor model including the photoelectric conversion circuit has been established, and the influence of design parameters on the sensor output characteristic has been simulated. Finally, the design parameters of the sensor structure were obtained based on the simulation results; and an experimental test system was built for the sensor calibration. Experimental results show that the linear angular range and the sensitivity of the sensor were 74.4 and 0.051 V/°, respectively. Its change rules confirm the operating principle of the sensor well.
A Differential Reflective Intensity Optical Fiber Angular Displacement Sensor
Jia, Binghui; He, Lei; Yan, Guodong; Feng, Yong
2016-01-01
In this paper, a novel differential reflective intensity optical fiber angular displacement sensor was proposed. This sensor can directly measure the angular and axial linear displacement of a flat surface. The structure of the sensor probe is simple and its basic principle was first analyzed according to the intensity modulation mechanisms. Secondly, in order to trim the dark output voltage to zero, the photoelectric conversion circuit was developed to adjust the signals. Then, the sensor model including the photoelectric conversion circuit has been established, and the influence of design parameters on the sensor output characteristic has been simulated. Finally, the design parameters of the sensor structure were obtained based on the simulation results; and an experimental test system was built for the sensor calibration. Experimental results show that the linear angular range and the sensitivity of the sensor were 74.4 and 0.051 V/°, respectively. Its change rules confirm the operating principle of the sensor well. PMID:27649199
Angular anisotropy of the fusion-fission and quasifission fragments
Nasirov, A K; Utamuratov, R K; Fazio, G; Giardina, G; Hanappe, F; Mandaglio, G; Manganaro, M; Scheid, W
2007-01-01
The anisotropy in the angular distribution of the fusion-fission and quasifission fragments for the $^{16}$O+$^{238}$U, $^{19}$F+$^{208}$Pb and $^{32}$S+$^{208}$Pb reactions is studied by analyzing the angular momentum distributions of the dinuclear system and compound nucleus which are formed after capture and complete fusion, respectively. The orientation angles of axial symmetry axes of colliding nuclei to the beam direction are taken into account for the calculation of the variance of the projection of the total spin onto the fission axis. It is shown that the deviation of the experimental angular anisotropy from the statistical model picture is connected with the contribution of the quasifission fragments which is dominant in the $^{32}$S+$^{208}$Pb reaction. Enhancement of anisotropy at low energies in the $^{16}$O+$^{238}$U reaction is connected with quasifission of the dinuclear system having low temperature and effective moment of inertia.
Overlapping coalition formation games in wireless communication networks
Wang, Tianyu; Saad, Walid; Han, Zhu
2017-01-01
This brief introduces overlapping coalition formation games (OCF games), a novel mathematical framework from cooperative game theory that can be used to model, design and analyze cooperative scenarios in future wireless communication networks. The concepts of OCF games are explained, and several algorithmic aspects are studied. In addition, several major application scenarios are discussed. These applications are drawn from a variety of fields that include radio resource allocation in dense wireless networks, cooperative spectrum sensing for cognitive radio networks, and resource management for crowd sourcing. For each application, the use of OCF games is discussed in detail in order to show how this framework can be used to solve relevant wireless networking problems. Overlapping Coalition Formation Games in Wireless Communication Networks provides researchers, students and practitioners with a concise overview of existing works in this emerging area, exploring the relevant fundamental theories, key techniqu...
Chirality and the angular momentum of light
Cameron, Robert P.; Götte, Jörg B.; Barnett, Stephen M.; Yao, Alison M.
2017-02-01
Chirality is exhibited by objects that cannot be rotated into their mirror images. It is far from obvious that this has anything to do with the angular momentum of light, which owes its existence to rotational symmetries. There is nevertheless a subtle connection between chirality and the angular momentum of light. We demonstrate this connection and, in particular, its significance in the context of chiral light-matter interactions. This article is part of the themed issue 'Optical orbital angular momentum'.
A Novel Permanent Magnetic Angular Acceleration Sensor
Hao Zhao; Hao Feng
2015-01-01
Angular acceleration is an important parameter for status monitoring and fault diagnosis of rotary machinery. Therefore, we developed a novel permanent magnetic angular acceleration sensor, which is without rotation angle limitations and could directly measure the instantaneous angular acceleration of the rotating system. The sensor rotor only needs to be coaxially connected with the rotating system, which enables convenient sensor installation. For the cup structure of the sensor rotor, it h...
Numerical Solution of the Evolution Equation for Orbital Angular Momentum of Partons in the Nucleon
Martin, O; Schäfer, A
1999-01-01
The evolution of orbital angular momentum distributions within the radiative parton model is studied. We use different scenarios for the helicity weighted parton distributions and consider a broad range of input distributions for orbital angular momentum. In all cases we are lead to the conclusion that the absolute value of the average angular momentum per parton peaks at relatively large $x\\approx 0.1$ for perturbatively accessible scales. Furthermore, in all scenarios considered here the average orbital angular momentum per parton is several times larger for gluons than for quarks which favours gluon initiated reactions to measure orbital angular momentum. The large gluon polarization typically obtained in NLO-fits to DIS data is primarily canceled by the gluon orbital angular momentum.
Demonstrating the Direction of Angular Velocity in Circular Motion
Demircioglu, Salih; Yurumezoglu, Kemal; Isik, Hakan
2015-01-01
Rotational motion is ubiquitous in nature, from astronomical systems to household devices in everyday life to elementary models of atoms. Unlike the tangential velocity vector that represents the instantaneous linear velocity (magnitude and direction), an angular velocity vector is conceptually more challenging for students to grasp. In physics…
Estimating Discrete Power Angular Spectra in Multiprobe OTA Setups
DEFF Research Database (Denmark)
Fan, Wei; Nielsen, Jesper Ødum; Pedersen, Gert Frølund
2014-01-01
The letter discusses over-the-air (OTA) testing for multiple-input–multiple-output (MIMO) capable terminals with emphasis on estimating discrete power angular spectrum modeled at the receiver (Rx) side in the test zone. Two techniques based on a uniform circular array (UCA) are proposed to obtain...
Nuclear scissors modes and hidden angular momenta
Balbutsev, E B; Schuck, P
2016-01-01
The coupled dynamics of low lying modes and various giant resonances are studied with the help of the Wigner Function Moments method generalized to take into account spin degrees of freedom and pair correlations simultaneously. The method is based on Time Dependent Hartree-Fock-Bogoliubov equations. The model of the harmonic oscillator including spin-orbit potential plus quadrupole-quadrupole and spin-spin interactions is considered. New low lying spin dependent modes are analyzed. Special attention is paid to the scissors modes. A new source of nuclear magnetism, connected with counter-rotation of spins up and down around the symmetry axis (hidden angular momenta), is discovered. Its inclusion into the theory allows one to improve substantially the agreement with experimental data in the description of energies and transition probabilities of scissors modes.
Specific Angular Momentum Distribution of Disc Galaxies Formed in Preheated Intergalactic Media
Institute of Scientific and Technical Information of China (English)
LUO Zhi-Jian; FU Li-Ping; SHU Cheng-Gang
2004-01-01
Assuming that baryons within a galactic halo have the same specific angular momentum as the dark matter where they locate initially and a disc forms due to the gas cooling and condensation with the conservation of angular momentum, we investigate the angular momentum distribution in a resulting galactic disc under the new preheated galaxy formation model suggested by Mo and Mao (Mon. Not. R. Astron. Soc. 333 (2002) 768).Compared with the observational results, it can be concluded that the preheated galaxy formation model can match current observations. This model can be a good approach to solve the problems of both the angular momentum catastrophe and the mismatch of angular-momentum profiles in current disc galaxy formation models.
Magnetic Modulation of Stellar Angular Momentum Loss
Garraffo, Cecilia; Cohen, Ofer
2014-01-01
Angular Momentum Loss is important for understanding astrophysical phenomena such as stellar rotation, magnetic activity, close binaries, and cataclysmic variables. Magnetic breaking is the dominant mechanism in the spin down of young late-type stars. We have studied angular momentum loss as a function of stellar magnetic activity. We argue that the complexity of the field and its latitudinal distribution are crucial for angular momentum loss rates. In this work we discuss how angular momentum is modulated by magnetic cycles, and how stellar spin down is not just a simple function of large scale magnetic field strength.
Billoire, A; Marinari, E
2003-01-01
We investigate the large deviation behaviour of the overlap probability density in the Sherrington-Kirkpatrick (SK) model using the coupled replica scheme, and we compare with the results of a large-scale numerical simulation. In the spin glass phase we show that, generically, for any model with continuous replica symmetry breaking (RSB), 1/N log P sub N (q)approx -A(|q| - q sub E sub A) sup 3 , and we compute the first correction to the expansion of A in powers of T sub c - T for the SK model. We also study the paramagnetic phase, where results are obtained in the replica symmetric scheme that do not involve an expansion in powers of q - q sub E sub A or T sub c - T. Finally we give precise semi-analytical estimates of P(|q| = 1). The overall agreement between the various points of view is very satisfactory.
Institute of Scientific and Technical Information of China (English)
夏慧; 陈庆伟; 王冠林; 朱纪洪
2012-01-01
针对小型无人直升机耦合建模问题提出了一种频域解耦辨识建模方法,该方法通过处理针对耦合辨识的实验数据得到指定频域范围内被辨识耦合的频域特性,对频域特性进行拟合从而获得耦合模型.提出了适用于多输入输出(MIMO)系统的频域特性计算方法,定义了一种复合相干函数并证明其能够用于表达在耦合通道辨识中输入输出的相关性.基于该方法,对一种小型无人直升机在悬停状态的纵横角动态耦合模型进行了辨识,并将耦合模型加入到直升机仿真模型中考察其对模型预测精度的影响.模型预测输出与实际输出的比较表明,相较于普通模型,考虑了耦合动态的仿真模型能够更为精确地预测实际输出.%A decoupled identification modeling method in frequency domain is presented to identify the coupled model for a small-scale unmanned rotorcraft. The frequency characteristic in the specified frequency range of the identified coupled dynamic model is obtained by calculating the experimental data, and the coupled dynamic model is obtained by fitting the frequency characteristic. The frequency characteristic calculation method is proposed for the MIMO (multiple-input multiple-output) system, and a multiple coherence function is defined and it is proved that it can be used to express the correlation between inputs and outputs in coupled-channel identification. The longitudinal and lateral angular dynamics coupled model of a small-scale hovering unmanned rotorcraft is identified based on this method, and its influence on rotorcraft simulation model's precision is investigated by adding the coupled model to the rotorcraft simulation model. The comparison between the model prediction output and the actual output shows that the simulation model considering the coupled dynamics can predict the outputs with higher precision than the general model.
On the acoustics of overlapping laughter in conversational speech
Truong, Khiet P.; Trouvain, Jürgen
2012-01-01
The social nature of laughter invites people to laugh together. This joint vocal action often results in overlapping laughter. In this paper, we show that the acoustics of overlapping laughs are different from non-overlapping laughs. We found that overlapping laughs are stronger prosodically marked
Transverse and longitudinal angular momenta of light
Energy Technology Data Exchange (ETDEWEB)
Bliokh, Konstantin Y., E-mail: k.bliokh@gmail.com [Center for Emergent Matter Science, RIKEN, Wako-shi, Saitama 351-0198 (Japan); Nonlinear Physics Centre, RSPhysE, The Australian National University, Canberra, ACT 0200 (Australia); Nori, Franco [Center for Emergent Matter Science, RIKEN, Wako-shi, Saitama 351-0198 (Japan); Physics Department, University of Michigan, Ann Arbor, MI 48109-1040 (United States)
2015-08-26
We review basic physics and novel types of optical angular momentum. We start with a theoretical overview of momentum and angular momentum properties of generic optical fields, and discuss methods for their experimental measurements. In particular, we describe the well-known longitudinal (i.e., aligned with the mean momentum) spin and orbital angular momenta in polarized vortex beams. Then, we focus on the transverse (i.e., orthogonal to the mean momentum) spin and orbital angular momenta, which were recently actively discussed in theory and observed in experiments. First, the recently-discovered transverse spin angular momenta appear in various structured fields: evanescent waves, interference fields, and focused beams. We show that there are several kinds of transverse spin angular momentum, which differ strongly in their origins and physical properties. We describe extraordinary features of the transverse optical spins and overview recent experiments. In particular, the helicity-independent transverse spin inherent in edge evanescent waves offers robust spin–direction coupling at optical interfaces (the quantum spin Hall effect of light). Second, we overview the transverse orbital angular momenta of light, which can be both extrinsic and intrinsic. These two types of the transverse orbital angular momentum are produced by spatial shifts of the optical beams (e.g., in the spin Hall effect of light) and their Lorentz boosts, respectively. Our review is underpinned by a unified theory of the angular momentum of light based on the canonical momentum and spin densities, which avoids complications associated with the separation of spin and orbital angular momenta in the Poynting picture. It allows us to construct a comprehensive classification of all known optical angular momenta based on their key parameters and main physical properties.
Cumulative overlap distribution function in realistic spin glasses
Billoire, A.; Maiorano, A.; Marinari, E.; Martin-Mayor, V.; Yllanes, D.
2014-09-01
We use a sample-dependent analysis, based on medians and quantiles, to analyze the behavior of the overlap probability distribution of the Sherrington-Kirkpatrick and 3D Edwards-Anderson models of Ising spin glasses. We find that this approach is an effective tool to distinguish between replica symmetry breaking-like and droplet-like behavior of the spin-glass phase. Our results are in agreement with a replica symmetry breaking-like behavior for the 3D Edwards-Anderson model.
MOHCS: Towards Mining Overlapping Highly Connected Subgraphs
Lin, Xiahong; Chen, Kefei; Chiu, David K Y
2008-01-01
Many networks in real-life typically contain parts in which some nodes are more highly connected to each other than the other nodes of the network. The collection of such nodes are usually called clusters, communities, cohesive groups or modules. In graph terminology, it is called highly connected graph. In this paper, we first prove some properties related to highly connected graph. Based on these properties, we then redefine the highly connected subgraph which results in an algorithm that determines whether a given graph is highly connected in linear time. Then we present a computationally efficient algorithm, called MOHCS, for mining overlapping highly connected subgraphs. We have evaluated experimentally the performance of MOHCS using real and synthetic data sets from computer-generated graph and yeast protein network. Our results show that MOHCS is effective and reliable in finding overlapping highly connected subgraphs. Keywords-component; Highly connected subgraph, clustering algorithms, minimum cut, m...
Short-range spin glasses and Random Overlap Structures
Arguin, Louis-Pierre
2010-01-01
Properties of Random Overlap Structures (ROSt)'s constructed from the Edwards-Anderson (EA) Spin Glass model on $\\Z^d$ with periodic boundary conditions are studied. ROSt's are $\\N\\times\\N$ random matrices whose entries are the overlaps of spin configurations sampled from the Gibbs measure. Since the ROSt construction is the same for mean-field models (like the Sherrington-Kirkpatrick model) as for short-range ones (like the EA model), the setup is a good common ground to study the effect of dimensionality on the properties of the Gibbs measure. In this spirit, it is shown, using translation invariance, that the ROSt of the EA model possesses a local stability that is stronger than stochastic stability, a property known to hold at almost all temperatures in many spin glass models with Gaussian couplings. This fact is used to prove stochastic stability for the EA spin glass at all temperatures and for a wide range of coupling distributions. On the way, a theorem of Newman and Stein about the pure state decompo...
Strong genetic overlap between executive functions and intelligence.
Engelhardt, Laura E; Mann, Frank D; Briley, Daniel A; Church, Jessica A; Harden, K Paige; Tucker-Drob, Elliot M
2016-09-01
Executive functions (EFs) are cognitive processes that control, monitor, and coordinate more basic cognitive processes. EFs play instrumental roles in models of complex reasoning, learning, and decision making, and individual differences in EFs have been consistently linked with individual differences in intelligence. By middle childhood, genetic factors account for a moderate proportion of the variance in intelligence, and these effects increase in magnitude through adolescence. Genetic influences on EFs are very high, even in middle childhood, but the extent to which these genetic influences overlap with those on intelligence is unclear. We examined genetic and environmental overlap between EFs and intelligence in a racially and socioeconomically diverse sample of 811 twins ages 7 to 15 years (M = 10.91, SD = 1.74) from the Texas Twin Project. A general EF factor representing variance common to inhibition, switching, working memory, and updating domains accounted for substantial proportions of variance in intelligence, primarily via a genetic pathway. General EF continued to have a strong, genetically mediated association with intelligence even after controlling for processing speed. Residual variation in general intelligence was influenced only by shared and nonshared environmental factors, and there remained no genetic variance in general intelligence that was unique of EF. Genetic variance independent of EF did remain, however, in a more specific perceptual reasoning ability. These results provide evidence that genetic influences on general intelligence are highly overlapping with those on EF. (PsycINFO Database Record
Securely measuring the overlap between private datasets with cryptosets.
Swamidass, S Joshua; Matlock, Matthew; Rozenblit, Leon
2015-01-01
Many scientific questions are best approached by sharing data--collected by different groups or across large collaborative networks--into a combined analysis. Unfortunately, some of the most interesting and powerful datasets--like health records, genetic data, and drug discovery data--cannot be freely shared because they contain sensitive information. In many situations, knowing if private datasets overlap determines if it is worthwhile to navigate the institutional, ethical, and legal barriers that govern access to sensitive, private data. We report the first method of publicly measuring the overlap between private datasets that is secure under a malicious model without relying on private protocols or message passing. This method uses a publicly shareable summary of a dataset's contents, its cryptoset, to estimate its overlap with other datasets. Cryptosets approach "information-theoretic" security, the strongest type of security possible in cryptography, which is not even crackable with infinite computing power. We empirically and theoretically assess both the accuracy of these estimates and the security of the approach, demonstrating that cryptosets are informative, with a stable accuracy, and secure.
Segmentation, Inference and Classification of Partially Overlapping Nanoparticles
Chiwoo Park,
2013-03-01
This paper presents a method that enables automated morphology analysis of partially overlapping nanoparticles in electron micrographs. In the undertaking of morphology analysis, three tasks appear necessary: separate individual particles from an agglomerate of overlapping nano-objects; infer the particle\\'s missing contours; and ultimately, classify the particles by shape based on their complete contours. Our specific method adopts a two-stage approach: the first stage executes the task of particle separation, and the second stage conducts simultaneously the tasks of contour inference and shape classification. For the first stage, a modified ultimate erosion process is developed for decomposing a mixture of particles into markers, and then, an edge-to-marker association method is proposed to identify the set of evidences that eventually delineate individual objects. We also provided theoretical justification regarding the separation capability of the first stage. In the second stage, the set of evidences become inputs to a Gaussian mixture model on B-splines, the solution of which leads to the joint learning of the missing contour and the particle shape. Using twelve real electron micrographs of overlapping nanoparticles, we compare the proposed method with seven state-of-the-art methods. The results show the superiority of the proposed method in terms of particle recognition rate.
Overlap Removal Methods for Data Projection Algorithms
Spicker, Marc
2011-01-01
Projection algorithms map high dimensional data points to lower dimensions. However, when adding arbitrary shaped objects as representatives for these data points, they may intersect. The positions of these representatives have to be modi ed in order to remove existing overlaps. There are multiple algorithms designed to deal with this layout adjustment problem, which lead to very di erent results. These adjustment strategies are evaluated according to di erent measures for comparison: euclide...
Burnout-depression overlap: a review.
Bianchi, Renzo; Schonfeld, Irvin Sam; Laurent, Eric
2015-03-01
Whether burnout is a form of depression or a distinct phenomenon is an object of controversy. The aim of the present article was to provide an up-to-date review of the literature dedicated to the question of burnout-depression overlap. A systematic literature search was carried out in PubMed, PsycINFO, and IngentaConnect. A total of 92 studies were identified as informing the issue of burnout-depression overlap. The current state of the art suggests that the distinction between burnout and depression is conceptually fragile. It is notably unclear how the state of burnout (i.e., the end stage of the burnout process) is conceived to differ from clinical depression. Empirically, evidence for the distinctiveness of the burnout phenomenon has been inconsistent, with the most recent studies casting doubt on that distinctiveness. The absence of consensual diagnostic criteria for burnout and burnout research's insufficient consideration of the heterogeneity of depressive disorders constitute major obstacles to the resolution of the raised issue. In conclusion, the epistemic status of the seminal, field-dominating definition of burnout is questioned. It is suggested that systematic clinical observation should be given a central place in future research on burnout-depression overlap.
Separating cyclostationary signals from spectrally overlapping interference
Institute of Scientific and Technical Information of China (English)
GUO Jie; LIU Yun; YE Zhi-hui; SONG Tie-cheng; SHEN Lian-feng
2006-01-01
This paper studies an algorithm about separating spectmlly overlapping signals using the cyclostationary properties of signals.On the basis of direct sequence spread system (DSSS),frequency shift filter is added into the receiver of the communication system.Although the structure of frequency shift filter is more complicated than the time-domain filter,it uses both time correlations and frequency spectrum correlations so it can achieve better performances on separating the overlapping signals.After the analysis of cyclostationary characteristic and frequency spectrum correlation,the structure of the frequency shift filter can be gained.Then,a self-adaptive algorithm is utilized for the purpose of achieving optimum multidimensional tap weights of frequency shift components.The simulation results indicate that this method can efficiently separate overlapping signals,and its error rate is lower than the time-domain filter or DSSS system by two orders of magnitude on the condition that high-power interference is added into the system.
Quantum Correlation Coefficients for Angular Coherent States
Institute of Scientific and Technical Information of China (English)
CHEN Wei; HE Yan; GUO Hao
2009-01-01
Quantum covariance and correlation coefficients of angular or SU(2) coherent states are directly calculated for all irreducible unitary representations.These results explicitly verify that the angular coherent states minimize the Robertson-Schrodinger uncertainty relation for all spins, which means that they are the so-called intelligent states.The same results can be obtained by the Schwinger representation approach.
Angular Momentum Eigenstates for Equivalent Electrons.
Tuttle, E. R.; Calvert, J. B.
1981-01-01
Simple and efficient methods for adding angular momenta and for finding angular momentum eigenstates for systems of equivalent electrons are developed. Several different common representations are used in specific examples. The material is suitable for a graduate course in quantum mechanics. (SK)
Responsive web design with AngularJS
Patel, Sandeep Kumar
2014-01-01
If you are an AngularJS developer who wants to learn about responsive web application development, this book is ideal for you. Responsive Web Design with AngularJS is intended for web developers or designers with a basic knowledge of HTML, CSS, and JavaScript.
Eriksen, Martin
2015-01-01
In the first paper of this series, we studied the effect of baryon acoustic oscillations (BAO), redshift space distortions (RSD) and weak lensing (WL) on measurements of angular cross-correlations in narrow redshift bins. Paper-II presented a multitracer forecast as Figures of Merit (FoM), combining a photometric and spectroscopic stage-IV survey. The uncertainties from galaxy bias, the way light traces mass, is an important ingredient in the forecast. Fixing the bias would increase our FoM equivalent to 3.3 times larger area for the combined constraints. This paper focus on how the modelling of bias affect these results. In the combined forecast, lensing both help and benefit from the improved bias measurements in overlapping surveys after marginalizing over the cosmological parameters. Adding a second lens population in counts-shear does not have a large impact on bias error, but removing all counts-shear information increases the bias error in a significant way. We also discuss the relative impact of WL, m...
Physical Angular Momentum Separation for QED
Sun, Weimin
2016-01-01
We study the non-uniqueness problem of the gauge-invariant angular momentum separation for the case of QED, which stems from the recent controversy concerning the proper definitions of the orbital angular momentum and spin operator of the individual parts of a gauge field system. For the free quantum electrodynamics without matter, we show that the basic requirement of Euclidean symmetry selects a unique physical angular momentum separation scheme from the multitude of the possible angular momentum separation schemes constructed using the various Gauge Invariant Extentions. Based on these results, we propose a set of natural angular momentum separation schemes for the case of interacting QED by invoking the formalism of asymptotic fields. Some perspectives on such a problem for the case of QCD are briefly discussed.
Spatio-angularly multiplexed (SAM) holographic storage in photorefractive crystals
Tao, Shiquan
In this thesis a novel multiplexing scheme for dense holographic storage in photorefractive crystals, Spatio-Angular Multiplexing (or SAM), is described in detail. In SAM Fourier transform holograms are formed in spatially overlapping regions of a crystal and are distinguished from one another by using variously angled reference beams. SAM takes advantage of both the high storage density possible using angularly multiplexed volume holograms and also the low crosstalk possible using spatially multiplexed Fourier transform holograms. Compared to pure spatial multiplexing, SAM increases the storage capacity by fully utilising the volume of the storage medium. On the other hand, SAM reduces the number of holograms overlapping any one hologram in a given volume, and so increases the diffraction efficiency achievable as compared to pure angular multiplexing. SAM offers the possibility of incorporating the recorded crystal into a content addressable memory (CAM) system for parallel access of all stored patterns. In order to obtain the maximum diffraction efficiency and signal to noise ratio, the hologram must be replayed by a readout beam incident at the correct angle of readout beam. The optimum angle may be shifted away from the angle used in recording by a ''Bragg-shift", caused (under certain conditions) by phase coupling between the two writing beams during recording. Although this Bragg shift is small, a large diffraction efficiency enhancement is obtained when the grating is read out at the optimum angle. We have calculated the Bragg shift, using a numerical calculation based on an earlier theory, and have obtained good agreement with experiment. Using the novel SAM scheme, we have succeeded in storing 756 high resolution binary patterns in an Fe:LiNbO3 crystal of volume 1cm3, with an average diffraction efficiency of 0.5%. This large database is designed for practical use in a novel associative memory system, called a high order feedback neural network (HOFNET
Alignment of gold nanorods by angular photothermal depletion
Energy Technology Data Exchange (ETDEWEB)
Taylor, Adam B.; Chow, Timothy T. Y.; Chon, James W. M., E-mail: jchon@swin.edu.au [Centre for Micro-Photonics, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, P.O. Box 218, Hawthorn, 3122 VIC (Australia)
2014-02-24
In this paper, we demonstrate that a high degree of alignment can be imposed upon randomly oriented gold nanorod films by angular photothermal depletion with linearly polarized laser irradiation. The photothermal reshaping of gold nanorods is observed to follow quadratic melting model rather than the threshold melting model, which distorts the angular and spectral hole created on 2D distribution map of nanorods to be an open crater shape. We have accounted these observations to the alignment procedures and demonstrated good agreement between experiment and simulations. The use of multiple laser depletion wavelengths allowed alignment criteria over a large range of aspect ratios, achieving 80% of the rods in the target angular range. We extend the technique to demonstrate post-alignment in a multilayer of randomly oriented gold nanorod films, with arbitrary control of alignment shown across the layers. Photothermal angular depletion alignment of gold nanorods is a simple, promising post-alignment method for creating future 3D or multilayer plasmonic nanorod based devices and structures.
Growing networks of overlapping communities with internal structure
Young, Jean-Gabriel; Hébert-Dufresne, Laurent; Allard, Antoine; Dubé, Louis J.
2016-08-01
We introduce an intuitive model that describes both the emergence of community structure and the evolution of the internal structure of communities in growing social networks. The model comprises two complementary mechanisms: One mechanism accounts for the evolution of the internal link structure of a single community, and the second mechanism coordinates the growth of multiple overlapping communities. The first mechanism is based on the assumption that each node establishes links with its neighbors and introduces new nodes to the community at different rates. We demonstrate that this simple mechanism gives rise to an effective maximal degree within communities. This observation is related to the anthropological theory known as Dunbar's number, i.e., the empirical observation of a maximal number of ties which an average individual can sustain within its social groups. The second mechanism is based on a recently proposed generalization of preferential attachment to community structure, appropriately called structural preferential attachment (SPA). The combination of these two mechanisms into a single model (SPA+) allows us to reproduce a number of the global statistics of real networks: The distribution of community sizes, of node memberships, and of degrees. The SPA+ model also predicts (a) three qualitative regimes for the degree distribution within overlapping communities and (b) strong correlations between the number of communities to which a node belongs and its number of connections within each community. We present empirical evidence that support our findings in real complex networks.
Diquark correlations in baryons on the lattice with overlap quarks
Energy Technology Data Exchange (ETDEWEB)
Babich, R.; Howard, J.; Rebbi, C. [Boston Univ., MA (United States). Dept. of Physics; Garron, N. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Hoelbling, C. [Wuppertal Univ. (Gesamthochschule) (Germany). Fachbereich Physik; Lellouch, L. [CNRS Luminy, Marseille (France). Centre de Physique Theorique]|[Wuppertal Univ. (Gesamthochschule) (Germany). Fachbereich Physik
2007-01-15
We evaluate baryon wave functions in both the Coulomb and Landau gauge in lattice QCD. These are constructed from quark propagators calculated with the overlap Dirac operator on quenched gauge configurations at {beta}=6. By comparing baryon states that differ in their diquark content, we find evidence for enhanced correlation in the scalar diquark channel, as favored by quark models. We also summarize earlier results for diquark masses in the Landau gauge, casting them in a form more easily compared with subsequent studies. (orig.)
Overlap Quark Propagator in Coulomb Gauge QCD
Mercado, Ydalia Delgado; Schröck, Mario
2014-01-01
The chirally symmetric Overlap quark propagator is explored in Coulomb gauge. This gauge is well suited for studying the relation between confinement and chiral symmetry breaking, since confinement can be attributed to the infrared divergent Lorentz-vector dressing function. Using quenched gauge field configurations on a $20^4$ lattice, the quark propagator dressing functions are evaluated, the dynamical quark mass is extracted and the chiral limit of these quantities is discussed. By removing the low-lying modes of the Dirac operator, chiral symmetry is artificially restored. Its effect on the dressing functions is discussed.
Overlapping constraint for variational surface reconstruction
DEFF Research Database (Denmark)
Aanæs, Henrik; Solem, J.E.
2005-01-01
In this paper a counter example, illustrating a shortcoming in most variational formulations for 3D surface estimation, is presented. The nature of this shortcoming is a lack of an overlapping constraint. A remedy for this shortcoming is presented in the form of a penalty function with an analysis...... of the effects of this function on surface motion. For practical purposes, this will only have minor influence on current methods. However, the insight provided in the analysis is likely to influence future developments in the field of variational surface reconstruction....
Technology initiatives with government/business overlap
Knapp, Robert H., Jr.
2015-03-01
Three important present-day technology development settings involve significant overlap between government and private sectors. The Advanced Research Project Agency for Energy (ARPA-E) supports a wide range of "high risk, high return" projects carried out in academic, non-profit or private business settings. The Materials Genome Initiative (MGI), based in the White House, aims at radical acceleration of the development process for advanced materials. California public utilities such as Pacific Gas & Electric operate under a structure of financial returns and political program mandates that make them arms of public policy as much as independent businesses.
THE PHASE-OFFSET OVERLAPPED WAVE TECHNIQUE
Institute of Scientific and Technical Information of China (English)
Liang Dequn; Liang Weihua; Sun Changnian
2003-01-01
A new digital communication technology based on the Phase-Offset Overlapped Waves (POOW) has been introduced in this letter. The waves can be considered as a special multicarrier different from traditional ones. The sub-waves in a coded word's period of the POOW are sine waves and have the same frequencies, but different starting phases. The most important characteristic is that these sub-waves are the piecewise functions and not orthogonal in a code word period. The decoding can be implemented by solving a linear equation group.This code has very high efficiency and thus the data transmission rate is increased greatly.
Time and "angular" dependent backgrounds from stationary axisymmetric solutions
Obregón, O; Ryan, M P; Obregon, Octavio; Quevedo, Hernando; Ryan, Michael P.
2004-01-01
Backgrounds depending on time and on "angular" variable, namely polarized and unpolarized $S^1 \\times S^2$ Gowdy models, are generated as the sector inside the horizons of the manifold corresponding to axisymmetric solutions. As is known, an analytical continuation of ordinary $D$-branes, $iD$-branes allows one to find $S$-brane solutions. Simple models have been constructed by means of analytic continuation of the Schwarzchild and the Kerr metrics. The possibility of studying the $i$-Gowdy models obtained here is outlined with an eye toward seeing if they could represent some kind of generalized $S$-branes depending not only on time but also on an ``angular'' variable.
Novel Detection of Optical Orbital Angular Momentum
2014-11-16
Spreeuw, J. P . Woerdman, “ Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A, 45(11), 8185-8189...AFRL-RD-PS- AFRL-RD-PS TR-2014-0045 TR-2014-0045 Novel Detection of Optical Orbital Angular Momentum David Voelz Klipsch... Orbital Angular Momentum FA9451-13-1-0261 GR0004113 David Voelz Klipsch School of ECE New Mexico State University MSC 3-O, PO Box 30001 Las Cruces, NM
Research on Some Bus Transport Networks with Random Overlapping Clique Structure
Institute of Scientific and Technical Information of China (English)
YANG Xu-Hua; WANG Bo; WANG Wan-Liang; SUN You-Xian
2008-01-01
On the basis of investigating the statistical data of bus transport networks of three big cities in China, we propose that each bus route is a clique (maximal complete subgraph) and a bus transport network (BTN) consists of a lot of cliques, which intensively connect and overlap with each other. We study the network properties, which include the degree distribution, multiple edges' overlapping time distribution, distribution of the overlap size between any two overlapping cliques, distribution of the number of cliques that a node belongs to. Naturally, the cliques also constitute a network, with the overlapping nodes being their multiple links. We' also research its network properties such as degree distribution, clustering, average path length, and so on. We propose that a BTN has the properties of random clique increment and random overlapping clique, at the same time, a BTN is a small-world network with highly clique-clustered and highly clique-overlapped. Finally, we introduce a BTN evolution model, whose simulation results agree well with the statistical laws that emerge in real BTNs.
Cagnoli, Bruno; Piersanti, Antonio
2017-02-01
We have carried out new three-dimensional numerical simulations by using a discrete element method (DEM) to study the mobility of dry granular flows of angular rock fragments. These simulations are relevant for geophysical flows such as rock avalanches and pyroclastic flows. The model is validated by previous laboratory experiments. We confirm that (1) the finer the grain size, the larger the mobility of the center of mass of granular flows; (2) the smaller the flow volume, the larger the mobility of the center of mass of granular flows and (3) the wider the channel, the larger the mobility of the center of mass of granular flows. The grain size effect is due to the fact that finer grain size flows dissipate intrinsically less energy. This volume effect is the opposite of that experienced by the flow fronts. The original contribution of this paper consists of providing a comparison of the mobility of granular flows in six channels with a different cross section each. This results in a new scaling parameter χ that has the product of grain size and the cubic root of flow volume as the numerator and the product of channel width and flow length as the denominator. The linear correlation between the reciprocal of mobility and parameter χ is statistically highly significant. Parameter χ confirms that the mobility of the center of mass of granular flows is an increasing function of the ratio of the number of fragments per unit of flow mass to the total number of fragments in the flow. These are two characteristic numbers of particles whose effect on mobility is scale invariant.
Symptom overlap in anxiety and multiple sclerosis.
LENUS (Irish Health Repository)
O Donnchadha, Seán
2013-02-14
BACKGROUND: The validity of self-rated anxiety inventories in people with multiple sclerosis (pwMS) is unclear. However, the appropriateness of self-reported depression scales has been widely examined. Given somatic symptom overlap between depression and MS, research emphasises caution when using such scales. OBJECTIVE: This study evaluates symptom overlap between anxiety and MS in a group of 33 individuals with MS, using the Beck Anxiety Inventory (BAI). METHODS: Participants underwent a neurological examination and completed the BAI. RESULTS: A novel procedure using hierarchical cluster analysis revealed three distinct symptom clusters. Cluster one (\\'wobbliness\\' and \\'unsteady\\') grouped separately from all other BAI items. These symptoms are well-recognised MS-related symptoms and we question whether their endorsement in pwMS can be considered to reflect anxiety. A modified 19-item BAI (mBAI) was created which excludes cluster one items. This removal reduced the number of MS participants considered \\'anxious\\' by 21.21% (low threshold) and altered the level of anxiety severity for a further 27.27%. CONCLUSION: Based on these data, it is suggested that, as with depression measures, researchers and clinicians should exercise caution when using brief screening measures for anxiety in pwMS.
Diffuse interstitial lung disease: overlaps and uncertainties
Energy Technology Data Exchange (ETDEWEB)
Walsh, Simon L.F.; Hansell, David M. [Royal Brompton Hospital, Department of Radiology, London (United Kingdom)
2010-08-15
Histopathological analysis of lung biopsy material allows the diagnosis of idiopathic interstitial pneumonias; however, the strength of this diagnosis is sometimes subverted by interobserver variation and sampling. The American Thoracic Society and European Respiratory Society recommendations of 2002 provide a framework for the diagnosis of interstitial lung disease (ILD) and proposed an integrated clinical, radiological and histopathological approach. These recommendations represent a break with tradition by replacing the 'gold standard' of histopathology with the combined 'silver standards' of clinical, imaging and histopathological information. One of the pitfalls of a rigid classification system for the diagnosis of interstitial lung disease is its failure to accommodate the phenomenon of overlapping disease patterns. This article reviews the various ways that interstitial lung disease may be classified and discusses their applicability. In addition the issue of overlap disease patterns is considered in the context of histopathological interobserver variation and sampling error and how a pigeonhole approach to disease classification may overlook these hybrid entities. (orig.)
Heterogeneity of asthma–COPD overlap syndrome
Joo, Hyonsoo; Han, Deokjae; Lee, Jae Ha; Rhee, Chin Kook
2017-01-01
Many patients suffering from asthma or COPD have overlapping features of both diseases. However, a phenotypical approach for evaluating asthma–COPD overlap syndrome (ACOS) has not been established. In this report, we examined the phenotypes in patients with ACOS. Patients diagnosed with ACOS between 2011 and 2015 were identified and classified into four phenotype groups. Group A was composed of patients who smoked <10 pack years and had blood eosinophil counts ≥300. Group B was composed of patients who smoked <10 pack years and had blood eosinophil counts <300. Group C was composed of patients who smoked ≥10 pack years and had blood eosinophil counts ≥300. Group D was composed of patients who smoked <10 pack years and had blood eosinophil counts <300. Clinical characteristics were analyzed and compared among groups. Comparisons were made among 103 ACOS patients. Patients in group D were oldest, while patients in group A were youngest. There were relatively more female patients in groups A and B; the majority of patients in groups C and D were male. The degree of airflow obstruction was most severe in group C. The rate of being free of severe exacerbation was significantly lower in group C than in the other groups. In this study, each ACOS phenotype showed different characteristics. The proportion of patients free of severe exacerbation differed significantly among groups. At this time, further studies on the phenotypes of ACOS are required.
Adaptive overlapped sub-blocks contrast enhancement
Chen, Anqiu; Yuan, Fei; Liu, Jing; Liu, Siqi; Li, An; Zheng, Zhenrong
2016-09-01
In this paper, an overlapped sub-block gray-level average method for contrast enhancement is presented. The digital image correction of uneven illumination under microscope transmittance is a problem in image processing, also sometimes the image in the dark place need to correct the uneven problem. A new correction method was proposed based on the mask method and sub-blocks gray-level average method because Traditional mask method and background fitting method are restricted due to application scenarios, and the corrected image brightness is low by using background fitting method, so it has some limitations of the application. In this paper, we introduce a new method called AOSCE for image contrast enhancement. The image is divided into many sub-blocks which are overlapped, calculate the average gray-level of the whole image as M and the calculate the average gray-level of each one as mi, next for each block it can get d = mi - m, each block minus d to get a new image, and then get the minimum gray-level of each block into a matrix DD to get the background, and use bilinearity to get the same scale of the image. over fitting the image in matlab in order to get smoother image, then minus the background to get the contrast enhancement image.
Activation of words with phonological overlap
Directory of Open Access Journals (Sweden)
Claudia K. Friedrich
2013-08-01
Full Text Available Multiple lexical representations overlapping with the input (cohort neighbors are temporarily activated in the listener’s mental lexicon when speech unfolds in time. Activation for cohort neighbors appears to rapidly decline as soon as there is mismatch with the input. However, it is a matter of debate whether or not they are completely excluded from further processing. We recorded behavioral data and event-related brain potentials (ERPs in auditory-visual word onset priming during a lexical decision task. As primes we used the first two syllables of spoken German words. In a carrier word condition, the primes were extracted from spoken versions of the target words (ano-ANORAK 'anorak'. In a cohort neighbor condition, the primes were taken from words that overlap with the target word up to the second nucleus (ana- taken from ANANAS 'pineapple'. Relative to a control condition, where primes and targets were unrelated, lexical decision responses for cohort neighbors were delayed. This reveals that cohort neighbors are disfavored by the decision processes at the behavioral front end. In contrast, left-anterior ERPs reflected long-lasting facilitated processing of cohort neighbors. We interpret these results as evidence for extended parallel processing of cohort neighbors. That is, in parallel to the preparation and elicitation of delayed lexical decision responses to cohort neighbors, aspects of the processing system appear to keep track of those less efficient candidates.
Fission fragment angular distribution in heavy-ion-induced fission with anomalous behavior
Soheyli, S.; Feizi, B.
2014-08-01
Fission fragment angular distribution in heavy-ion-induced fission reactions is of particular importance. Transition state theory is provided to determine the angular distribution of fission fragments which includes standard saddle-point statistical and standard scission-point statistical models. The standard saddle-point statistical model was not able to reproduce the experimental fission fragment angular anisotropies for several heavy-ion-induced fission systems. In contrast to the standard saddle-point model, the standard scission-point statistical model was fairly successful in the prediction of angular anisotropy in heavy-ion-induced fission reaction systems with an anomalous behavior in angular anisotropy of fission fragments, but this model is not widely used as the standard saddle-point statistical model. In this research, a generalized model is introduced for the prediction of fission fragments angular anisotropy in the heavy-ion-induced fission reaction systems having an anomalous behavior. For this purpose, we study the N14,O16,F19+Th232;O16,F19+U238;Mg24,Si28,S32+Pb208;S32+Au197; and O16+Cm248 reaction systems. Finally, it is shown that the presented model is much more successful than previous models.
Radiofrequency encoded angular-resolved light scattering
DEFF Research Database (Denmark)
Buckley, Brandon W.; Akbari, Najva; Diebold, Eric D.
2015-01-01
The sensitive, specific, and label-free classification of microscopic cells and organisms is one of the outstanding problems in biology. Today, instruments such as the flow cytometer use a combination of light scatter measurements at two distinct angles to infer the size and internal complexity...... of cells at rates of more than 10,000 per second. However, by examining the entire angular light scattering spectrum it is possible to classify cells with higher resolution and specificity. Current approaches to performing these angular spectrum measurements all have significant throughput limitations...... Encoded Angular-resolved Light Scattering (REALS), this technique multiplexes angular light scattering in the radiofrequency domain, such that a single photodetector captures the entire scattering spectrum from a particle over approximately 100 discrete incident angles on a single shot basis. As a proof...
Cruzalebes, P; Sacuto, S; Bonneau, D; 10.1051/0004-6361/200913686
2010-01-01
Context. Accurate long-baseline interferometric measurements require careful calibration with reference stars. Small calibrators with high angular diameter accuracy ensure the true visibility uncertainty to be dominated by the measurement errors. Aims. We review some indirect methods for estimating angular diameter, using various types of input data. Each diameter estimate, obtained for the test-case calibrator star lambda Gru, is compared with the value 2.71 mas found in the Bord\\'e calibrator catalogue published in 2002. Methods. Angular size estimations from spectral type, spectral index, in-band magnitude, broadband photometry, and spectrophotometry give close estimates of the angular diameter, with slightly variable uncertainties. Fits on photometry and spectrophotometry need physical atmosphere models with "plausible" stellar parameters. Angular diameter uncertainties were estimated by means of residual bootstrapping confidence intervals. All numerical results and graphical outputs presented in this pap...
Angular momentum transport in accretion disk boundary layers around weakly magnetized stars
DEFF Research Database (Denmark)
Pessah, M.E.; Chan, C.-K.
2013-01-01
The standard model for turbulent shear viscosity in accretion disks is based on the assumption that angular momentum transport is opposite to the radial angular frequency gradient of the disk. This implies that the turbulent stress must be negative and thus transport angular momentum inwards......, in the boundary layer where the accretion disk meets the surface of a weakly magnetized star. However, this behavior is not supported by numerical simulations of turbulent magnetohydrodynamic (MHD) accretion disks, which show that angular momentum transport driven by the magnetorotational instability (MRI......) is inefficient in disk regions where, as expected in boundary layers, the angular frequency increases with radius. Motivated by the need of a deeper understanding of the behavior of an MHD fluid in a differentially rotating background that deviates from a Keplerian profile, we study the dynamics of MHD waves...
Spin and orbital angular momentum and their conversion in cylindrical vector vortices.
Zhu, Jiangbo; Chen, Yujie; Zhang, Yanfeng; Cai, Xinlun; Yu, Siyuan
2014-08-01
The generation of light beams carrying orbital angular momentum (OAM) has been greatly advanced with the emergence of the recently reported integrated optical vortex emitters. Generally, optical vortices emitted by these devices possess cylindrically symmetric states of polarization and spiral phase fronts, and they can be defined as cylindrical vector vortices (CVVs). Using the radiation of angularly arranged dipoles to model the CVVs, these beams as hybrid modes of two circularly polarized scalar vortices are theoretically demonstrated to own well-defined total angular momentum. Moreover, the effect of spin-orbit interactions of angular momentum is identified in the CVVs when the size of the emitting structure varies. This effect results in the diminishing spin component of angular momentum and purer OAM states at large structure radii.
Angular distribution in complex oscillation theory
Institute of Scientific and Technical Information of China (English)
WU Shengjian
2005-01-01
Let f1 and f2 be two linearly independent solutions of the differential equation f" + Af =0,where A is an entire function.Set E-f1f2.In this paper,we shall study the angular distribution of E and establish a relation between zero accumulation rays and Borel directions of E.Consequently we can obtain some results in the complex differential equation by using known results in angular distribution theory of meromorphic functions.
Mastering AngularJD for .NET developers
Majid, Mohammad Wadood
2015-01-01
This book is envisioned for traditional developers and programmers who want to develop client-side applications using the AngularJS framework and ASP.NET Web API 2 with Visual Studio. .NET developers who have already built web applications or web services and who have a fundamental knowledge of HTML, JavaScript, and CSS and want to explore single-page applications will also find this guide useful. Basic knowledge of AngularJS would be helpful.
Investigating pointing tasks across angularly coupled display areas
DEFF Research Database (Denmark)
Hennecke, Fabian; De Luca, Alexander; Nguyen, Ngo Dieu Huong;
2013-01-01
Pointing tasks are a crucial part of today’s graphical user interfaces. They are well understood for flat displays and most prominently are modeled through Fitts’ Law. For novel displays (e.g., curved displays with multi-purpose areas), however, it remains unclear whether such models for predicting...... that the target position affects overall pointing speed and offset in both conditions. However, we also found that Fitts’ Law can in fact still be used to predict performance as on flat displays. Our results help designers to optimize user interfaces on angularly coupled displays when pointing tasks are involved....... user performance still hold – in particular when pointing is performed across differently oriented areas. To answer this question, we conducted an experiment on an angularly coupled display – the Curve – with two input conditions: direct touch and indirect mouse pointer. Our findings show...
Geometric absorption of electromagnetic angular momentum
Konz, C.; Benford, Gregory
2003-10-01
Circularly polarized electromagnetic fields carry both energy and angular momentum. We investigate the conditions under which a circularly polarized wave field transfers angular momentum to a perfectly conducting macroscopic object, using exact electromagnetic wave theory in a steady-state calculation. We find that axisymmetric perfect conductors cannot absorb or radiate angular momentum when illuminated. However, any asymmetry allows absorption. A rigorous, steady-state solution of the boundary value problem for the reflection from a perfectly conducting infinite wedge shows that waves convey angular momentum at the edges of asymmetries. Conductors can also radiate angular momentum, so their geometric absorption coefficient for angular momentum can be negative. Such absorption or radiation depends solely on the specific geometry of the conductor. The geometric absorption coefficient can be as high as 0.8, and the coefficient for radiation can be -0.4, larger than typical material absorption coefficients. We apply the results to recent experiments which spun roof-shaped aluminum sheets with polarized microwave beams. Applications of geometric, instead of material, absorption can be quite varied. Though experiments testing these ideas will be simpler at microwavelengths, the ideas work for optical ones as well.
Angular characteristics of a multimode fiber surface plasmon resonance sensor
Tan, Zhixin; Li, Xuejin; Chen, Yuzhi; Hong, Xueming; Fan, Ping
2015-01-01
In this paper the angular characteristics of a multimode fiber SPR sensor are investigated theoretically. By separating the contributions of beams incident at different angles, a compact model is presented to predict the shift of the resonance wavelength with respect to the angle and the environmental refractive index. The result suggests that the performance of conventional fiber SPR sensors can be substantially improved by optimizing the incident angle.
Tracing the Angular Dependence of the CGM
Nattinger, Michael; Christensen, Charlotte
2017-01-01
The circumgalactic media (CGM) is enriched with metals through a process called the baryon cycle, which may play a significant role in the regulation of star formation. While the relationship between the CGM’s baryonic makeup and impact parameter is well documented, the relationship between the baryonic distribution of the CGM and the azimuthal angle out of the plane of the galaxy remains an open question. We investigated the angular distribution of baryons in the CGM by creating mock-absorption line spectra for a high-resolution simulation of a Milky Way-like galaxy at redshift zero. By comparison with data from the Cosmic Origins Spectrograph-Halos survey, we determined that our equivalent widths of HI, MgII, CIII, SiII, and SiIII are consistent with observations. Using our data, we found that low ionization state material is more prevalent at low azimuthal angles and that high ionization state material is more prevalent at high angles within the virial radius. We attributed this increased ionization to higher temperatures at high angles. We also found that the highest metallicity levels appear at high and low azimuthal angles, with lower metallicities at middle angles. This evidence supports the recycled accretion model of CGM baryon flow.
Pulse propagation in a two-pass optical amplifier with arbitrary laser beams overlap
Directory of Open Access Journals (Sweden)
AH Farahbod
2011-09-01
Full Text Available An analytical model for two-pass optical amplifier with arbitrary beams overlap has been developed which generalized the classical theory of Frantz-Nodvik for single pass amplifier. The effect of counterpropagating beams on gain and output energy fluence included in the model. Moreover, the appropriate limiting relations for two special cases of weak input signal and saturation state of the amplifier gain have been derived. The results indicate that for complete beams overlap, the gain and output energy have the least values. The model predictions are consistent with experimental observations and exact analytical model for two-pass amplifier when beam propagation paths are coincided.
Low Self-Control and the Victim-Offender Overlap: A Gendered Analysis.
Flexon, Jamie L; Meldrum, Ryan C; Piquero, Alex R
2016-07-01
The overlap between victimization and offending is well documented. Yet, there have been fewer investigations of the reasons underlying this relationship. One possible, but understudied, explanation lies with Gottfredson and Hirschi's arguments regarding self-control. The current study adds to this line of inquiry by assessing whether low self-control accounts for the victim-offender overlap in a sample of young adults and whether self-control accounts for the observed overlap similarly across gender. Results from a series of bivariate probit regression models indicate that low self-control is positively related to both victimization and offending. However, only among males does low self-control account for a substantive portion of the victim-offender overlap. Limitations of the study and implications and directions for future research are discussed.
FEM SIMULATION OF RESIDUAL STRESSES INDUCED BY LASER SHOCK WITH OVERLAPPING LASER SPOTS
Institute of Scientific and Technical Information of China (English)
Y.X. Hu; Z.Q. Yao
2008-01-01
The finite element method is presented to attain the numerical simulation of the residual stresses field in the material treated by laser shock processing. The distribution of residual stresses generated by a single laser shock with square and round laser spot is predicted and validated by experimental results. With the Finite Element Method (FEM) model, effects of different overlapping rates and impact sequences on the distribution of residual stresses are simulated. The results indicate that: (1) Overlapping laser shock can increase the compressive residual stresses. However, it is not effective on the growth of plastically affected depth; (2) Overlapping rate should be optimized and selected carefully for the large area treatment. Appropriate overlapping rate is beneficial to obtain a homogeneous residual stress field; (3) The impact sequence has a great effect on the residual stress field. It can greatly attenuate the phenomenon of the "residual stress hole" to obtain a homogeneous residual stress field.
[Syndrome overlap: autoimmune hepatitis and autoimmune cholangitis].
Guerra Montero, Luis; Ortega Alvarez, Félix; Marquez Teves, Maguin; Asato Higa, Carmen; Sumire Umeres, Julia
2016-01-01
Autoimmune hepatitis, primary biliary cirrhosis, primary sclerosing cholangitis and autoimmune cholangitis are chronic autoimmune liver disease, usually present separate, the cases where characteristics of two of the above is observed liver disease is commonly referred to as Overlap Syndromes (OS). Although there is no consensus on specific criteria for the diagnosis of OS identification of this association is important for initiating appropriate treatment and prevent its progression to cirrhosis or at least the complications of cirrhosis and death. We report the case of awoman aged 22 cirrhotic which debuted are edematous ascites, severe asthenia and jaundice compliant diagnostics SS criteria and initially present any response to treatment with ursodeoxycholic acid and oral corticosteroids, but ultimately finished performing a transplant orthotopic liver.
Recombining overlapping BACs into single large BACs.
Kotzamanis, George; Kotsinas, Athanassios
2015-01-01
BAC clones containing the entire genomic region of a gene including the long-range regulatory elements are very useful for gene functional analysis. However, large genes often span more than the insert of a BAC clone, and single BACs covering the entire region of interest are not available. Here, we describe a general system for linking two or more overlapping BACs into a single clone. Two rounds of homologous recombination are used. In the first, the BAC inserts are subcloned into the pBACLink vectors. In the second, the two BACs are combined together. Multiple BACs in a contig can be combined by alternating use of the pBACLInk vectors, resulting in several BAC clones containing as much of the genomic region of a gene as required. Such BACs can then be used in gene expression studies and/or gene therapy applications.
Stiffness and Angular Deflection analysis of Revolute Manipulator
Directory of Open Access Journals (Sweden)
Pundru Srinivasa Rao
2014-03-01
Full Text Available This paper proposed to determine the Cartesian stiffness matrix and angular deflection analysis of revolute manipulator. The selected manipulator has rigid fixed link, two movable links and two rotary joints with joint stiffness coefficients are taken into account. The kinematic model of revolute joint manipulator has considered as a planar kinematic chain, which is composed by rigid fixed link and two revolute joints with clearance and deformable elements. The calculation of stiffness matrix depends on Jacobian matrix and change of configuration. The rotational joints are modeled as torsion springs with the same stiffness constant. The relative angular deflections are proportional to the actuated torques taken into account. The subject of this paper has to describe a method for stiffness analysis of serial manipulator. In the present work is to derive the stiffness matrix and angular deflection equations in the Robotic manipulator under the consideration of two-link optimum geometry model for rotary joint manipulator. The stiffness values are measured by displacements of its revolute links loaded by force.
Timing vocal behaviour: experimental evidence for song overlap avoidance in Eurasian wrens.
Yang, Xiao-Jing; Ma, Xiang-Ru; Slabbekoorn, Hans
2014-03-01
Timing during vocal interactions can play a significant role in terms of audibility as signal overlap may lead to masking of acoustic details for both of the interacting animals as well as for third-party eavesdroppers. Here we investigated timing aspects experimentally in Eurasian wrens (Troglodytes troglodytes) using non-interactive playback. We applied a randomized overlay method incorporating the temporal pattern of singing by the focal bird to establish a null model and to test observed patterns of overlap against this null model. We used different stimulus song rates but temporal response patterns always resulted in significantly lower levels of overlap than expected by chance. The male wrens avoided overlapping by timing their song starts predominately right after the end of stimulus songs, but they did not avoid being overlapped by the stimulus songs. The territorial males typically raised their song rates during and after playback with a tendency to shorten between-song intervals while keeping song durations unchanged. Higher song rates of the playback stimuli increased the extent to which responders were being overlapped by the stimulus songs. Our data provide experimental evidence for a timing ability in Eurasian wrens by which they reduce mutual interference during vocal interactions.
Geometrical constraint experimental determination of Raman lidar overlap profile.
Li, Jian; Li, Chengcai; Zhao, Yiming; Li, Jing; Chu, Yiqi
2016-06-20
A simple experimental method to determine the overlap profile of Raman lidar is presented in this paper. Based on Mie and Raman backscattering signals and a geometrically constrained condition, the overlap profile of a Raman lidar system can be determined. Our approach simultaneously retrieves the lidar ratio of aerosols, which is one of the most important sources of uncertainty in the overlap profile determination. The results indicate that the overlap factor is significantly influenced by the lidar ratio in experimental methods. A representative case study indicates that the correction of the overlap profile obtained by this method is practical and feasible.
Misakian, M.; Mumma, M. J.; Faris, J. F.
1975-01-01
Dissociative excitation of CO2 by electron impact was studied using the methods of translational spectroscopy and angular distribution analysis. Earlier time of flight studies revealed two overlapping spectra, the slower of which was attributed to metastable CO(a3 pi) fragments. The fast peak is the focus of this study. Threshold energy, angular distribution, and improve time of flight measurements indicate that the fast peak actually consists of five overlapping features. The slowest of the five features is found to consist of metastable 0(5S) produced by predissociation of a sigma u + state of CO2 into 0(5S) + CO(a3 pi). Oxygen Rydberg fragments originating directly from a different sigma u + state are believed to make up the next fastest feature. Mechanisms for producing the three remaining features are discussed.
Fission fragment angular distributions in pre-actinide nuclei
Banerjee, Tathagata; Nath, S.; Jhingan, A.; Kaur, Gurpreet; Dubey, R.; Yadav, Abhishek; Laveen, P. V.; Shamlath, A.; Shareef, M.; Gehlot, J.; Saneesh, N.; Prasad, E.; Sugathan, P.; Pal, Santanu
2016-10-01
Background: Complete fusion of two nuclei leading to formation of a heavy compound nucleus (CN) is known to be hindered by various fission-like processes, in which the composite system reseparates after capture of the target and the projectile inside the potential barrier. As a consequence of these non-CN fission (NCNF) processes, fusion probability (PCN) starts deviating from unity. Despite substantial progress in understanding, the onset and the experimental signatures of NCNF and the degree of its influence on fusion have not yet been unambiguously identified. Purpose: This work aims to investigate the presence of NCNF, if any, in pre-actinide nuclei by systematic study of fission angular anisotropies and fission cross sections (σfis) in a number of nuclear reactions carried out at and above the Coulomb barrier (VB) . Method: Fission fragment angular distributions were measured for six 28Si-induced reactions involving isotopically enriched targets of 169Tm,176Yb,175Lu,180Hf,181Ta, and 182W leading to probable formation of CN in the pre-actinide region, at a laboratory energy (Elab) range of 129-146 MeV. Measurements were performed with large angular coverage (θlab=41∘ -170∘) in which fission fragments (FFs) were detected by nine hybrid telescope (E -Δ E ) detectors. Extracted fission angular anisotropies and σfis were compared with statistical model (SM) predictions. Results: Barring two reactions involving targets with large non-zero ground state spin (J ) , viz., 175Lu(7/2+) and 181Ta(7/2+) , experimental fission angular anisotropies were found to be higher in comparison with predictions of the statistical saddle point model (SSPM), at Ec .m . near VB. Comparison of present results with those from neighboring systems revealed that experimental anisotropies increasingly deviated from SSPM predictions as one moved from pre-actinide to actinide nuclei. For reactions involving targets with large nonzero J , this deviation was subdued. Comparison between
Burzotta, Francesco; Siviglia, Massimo; Altamura, Luca; Trani, Carlo; Leone, Antonio Maria; Romagnoli, Enrico; Mazzari, Mario Attilio; Mongiardo, Rocco; Niccoli, Giampaolo; Brancati, Marta; Biondi-Zoccai, Giuseppe; Rebuzzi, Antonio Giuseppe; Schiavoni, Giovanni; Crea, Filippo
2007-02-01
Overlapping homogenous drug-eluting stents (DESs) may be used instead of overlapping bare metal stents (BMSs) to treat coronary lesions longer than available stents. Yet, no data are available on patients treated with overlapping heterogenous DESs or DESs and BMSs. We prospectively assessed 9-month clinical outcome and 6-month angiographic late loss (evaluated at 5 different lesion segments) in a consecutive series of 40 patients who received overlapping homogenous DESs (sirolimus-eluting stent [SES] or paclitaxel-eluting stent [PES]), heterogenous DESs (SES + PES), or overlapping DESs and BMSs. In 8 patients (7 with angiographic follow-up) with overlapping heterogenous DESs, no angiographic or clinical adverse event was observed. Moreover, in-segment late loss was similar to that of patients who received homogenous DESs. In 8 patients (7 with angiographic follow-up) with overlapping DESs and BMSs, there was a higher incidence of major adverse events (3 repeat percutaneous coronary interventions and 1 death, 50% adverse event rate) and worse in-segment binary restenosis rate compared with patients treated with homogenous or heterogenous DESs (p = 0.02 and 0.012, respectively). Late lumen loss at the site of stent overlap showed significant differences according to type of overlapped stent (1.00 +/- 0.76 mm in DES-BMS overlap, 0.32 +/- 0.55 mm in PES-PES overlap, 0.13 +/- 0.11 in SES-PES overlap, and 0.08 +/- 0.10 mm in SES-SES overlap, p = 0.005). In conclusion, the present study suggests that overlap of DESs and BMSs should be avoided because the antirestenotic effect of DESs is skewed by contiguous BMS implantation. Overlap between SESs and PESs in this very preliminary report was associated with no specific adverse event.
An edge density definition of overlapping and weighted graph communities
Ronhovde, Richard K Darst David R Reichman Peter
2013-01-01
Community detection in networks refers to the process of seeking strongly internally connected groups of nodes which are weakly externally connected. In this work, we introduce and study a community definition based on internal edge density. Beginning with the simple concept that edge density equals number of edges divided by maximal number of edges, we apply this definition to a variety of node and community arrangements to show that our definition yields sensible results. Our community definition is equivalent to that of the Absolute Potts Model community detection method (Phys. Rev. E 81, 046114 (2010)), and the performance of that method validates the usefulness of our definition across a wide variety of network types. We discuss how this definition can be extended to weighted, and multigraphs, and how the definition is capable of handling overlapping communities and local algorithms. We further validate our definition against the recently proposed Affiliation Graph Model (arXiv:1205.6228 [cs.SI]) and sho...
Random Overlap Structures: Properties and Applications to Spin Glasses
Arguin, Louis-Pierre
2010-01-01
Random Overlap Structures (ROSt's) are random elements on the space of probability measures on the unit ball of a Hilbert space, where two measures are identified if they differ by an isometry. In spin glasses, they arise as natural limits of Gibbs measures under the appropriate algebra of functions. We prove that the so called `cavity mapping' on the space of ROSt's is continuous, leading to a proof of the stochastic stability conjecture for the limiting Gibbs measures of a large class of spin glass models. Similar arguments yield the proofs of a number of other properties of ROSt's that may be useful in future attempts at proving the ultrametricity conjecture. Lastly, assuming that the ultrametricity conjecture holds, the setup yields a constructive proof of the Parisi formula for the free energy of the Sherrington-Kirkpatrick model by making rigorous a heuristic of Aizenman, Sims and Starr.
Syntactic priming without lexical overlap in reading comprehension.
Kim, Christina S; Carbary, Kathleen M; Tanenhaus, Michael K
2014-06-01
Syntactic priming without lexical overlap is well-documented in language production. In contrast, reading-time comprehension studies, which typically use locally ambiguous sentences, generally find syntactic priming only with lexical overlap. This asymmetry has led some researchers to propose that distinct mechanisms underlie the comprehension and production of syntactic structure. Instead, we propose that methodological differences in how priming is assessed are largely responsible for the asymmetry: in comprehension, lexical biases in a locally ambiguous target sentence may overwhelm the influence of syntactic priming effects on a reader's interpretation. We addressed these issues in a self-paced reading study by (1) using target sentences containing global attachment ambiguities, (2) examining a syntactic structure which does not involve an argument of the verb, and (3) factoring out the unavoidable lexical biases associated with the target sentences in a mixed-effects regression model. Under these conditions, syntactic priming affected how ambiguous sentences were parsed, and facilitated reading times when target sentences were parsed using the primed structure. This resolves discrepancies among previous findings, and suggests that the same mechanism underlies syntactic priming in comprehension and production.
Content patterns in topic-based overlapping communities.
Ríos, Sebastián A; Muñoz, Ricardo
2014-01-01
Understanding the underlying community structure is an important challenge in social network analysis. Most state-of-the-art algorithms only consider structural properties to detect disjoint subcommunities and do not include the fact that people can belong to more than one community and also ignore the information contained in posts that users have made. To tackle this problem, we developed a novel methodology to detect overlapping subcommunities in online social networks and a method to analyze the content patterns for each subcommunities using topic models. This paper presents our main contribution, a hybrid algorithm which combines two different overlapping sub-community detection approaches: the first one considers the graph structure of the network (topology-based subcommunities detection approach) and the second one takes the textual information of the network nodes into consideration (topic-based subcommunities detection approach). Additionally we provide a method to analyze and compare the content generated. Tests on real-world virtual communities show that our algorithm outperforms other methods.
Full angular analysis of polarized τ → 3 μ decays
Energy Technology Data Exchange (ETDEWEB)
Brueser, Robin; Faller, Sven; Feldmann, Thorsten; Lange, Bjoern O.; Mannel, Thomas [Theoretische Elementarteilchenphysik, Naturwissenschaftlich-technische Fakultaet, Universitaet Siegen, 57068 Siegen (Germany); Turczyk, Sascha [PRISMA Cluster of Excellence and Mainz Institut for Theoretical Physics, Johannes Gutenberg University, 55099 Mainz (Germany)
2015-07-01
The lepton number violating decay τ → 3 μ is extremely suppressed in the Standard Model and its observation would be direct evidence of New Physics. We investigate the decay of polarized τ leptons in a bottom-up approach using dim 6 operators which respect the symmetries of the Standard Model. We show that useful information can be gained from a polarized initial τ, where the external polarization vector allows for a full angular decomposition of the phase space. Partial rates are then analysed to distinguish models with different helicity structures.
Detecting overlapping instances in microscopy images using extremal region trees.
Arteta, Carlos; Lempitsky, Victor; Noble, J Alison; Zisserman, Andrew
2016-01-01
In many microscopy applications the images may contain both regions of low and high cell densities corresponding to different tissues or colonies at different stages of growth. This poses a challenge to most previously developed automated cell detection and counting methods, which are designed to handle either the low-density scenario (through cell detection) or the high-density scenario (through density estimation or texture analysis). The objective of this work is to detect all the instances of an object of interest in microscopy images. The instances may be partially overlapping and clustered. To this end we introduce a tree-structured discrete graphical model that is used to select and label a set of non-overlapping regions in the image by a global optimization of a classification score. Each region is labeled with the number of instances it contains - for example regions can be selected that contain two or three object instances, by defining separate classes for tuples of objects in the detection process. We show that this formulation can be learned within the structured output SVM framework and that the inference in such a model can be accomplished using dynamic programming on a tree structured region graph. Furthermore, the learning only requires weak annotations - a dot on each instance. The candidate regions for the selection are obtained as extremal region of a surface computed from the microscopy image, and we show that the performance of the model can be improved by considering a proxy problem for learning the surface that allows better selection of the extremal regions. Furthermore, we consider a number of variations for the loss function used in the structured output learning. The model is applied and evaluated over six quite disparate data sets of images covering: fluorescence microscopy, weak-fluorescence molecular images, phase contrast microscopy and histopathology images, and is shown to exceed the state of the art in performance.
Angular Momentum Transport in Quasi-Keplerian Accretion Disks
Indian Academy of Sciences (India)
Prasad Subramanian; B. S. Pujari; Peter A. Becker
2004-03-01
We reexamine arguments advanced by Hayashi & Matsuda (2001), who claim that several simple, physically motivated derivations based on mean free path theory for calculating the viscous torque in a quasi-Keplerian accretion disk yield results that are inconsistent with the generally accepted model. If correct, the ideas proposed by Hayashi & Matsuda would radically alter our understanding of the nature of the angular momentum transport in the disk, which is a central feature of accretion disk theory. However, in this paper we point out several fallacies in their arguments and show that there indeed exists a simple derivation based on mean free path theory that yields an expression for the viscous torque that is proportional to the radial derivative of the angular velocity in the accretion disk, as expected. The derivation is based on the analysis of the epicyclic motion of gas parcels in adjacent eddies in the disk.
Nanoparticles at liquid interfaces: Rotational dynamics and angular locking
Energy Technology Data Exchange (ETDEWEB)
Razavi, Sepideh; Kretzschmar, Ilona [Department of Chemical Engineering, City College of City University of New York, New York, New York 10031 (United States); Koplik, Joel [Department of Physics and The Benjamin Levich Institute for Physico-chemical Hydrodynamics, City College of City University of New York, New York, New York 10031 (United States); Colosqui, Carlos E., E-mail: carlos.colosqui@stonybrook.edu [Department of Mechanical Engineering, Stony Brook University, Stony Brook, New York 11794 (United States)
2014-01-07
Nanoparticles with different surface morphologies that straddle the interface between two immiscible liquids are studied via molecular dynamics simulations. The methodology employed allows us to compute the interfacial free energy at different angular orientations of the nanoparticle. Due to their atomistic nature, the studied nanoparticles present both microscale and macroscale geometrical features and cannot be accurately modeled as a perfectly smooth body (e.g., spheres and cylinders). Under certain physical conditions, microscale features can produce free energy barriers that are much larger than the thermal energy of the surrounding media. The presence of these energy barriers can effectively “lock” the particle at specific angular orientations with respect to the liquid-liquid interface. This work provides new insights on the rotational dynamics of Brownian particles at liquid interfaces and suggests possible strategies to exploit the effects of microscale features with given geometric characteristics.
Angular distribution and atomic effects in condensed phase photoelectron spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Davis, R.F.
1981-11-01
A general concept of condensed phase photoelectron spectroscopy is that angular distribution and atomic effects in the photoemission intensity are determined by different mechanisms, the former being determined largely by ordering phenomena such as crystal momentum conservation and photoelectron diffraction while the latter are manifested in the total (angle-integrated) cross section. In this work, the physics of the photoemission process is investigated in several very different experiments to elucidate the mechanisms of, and correlation between, atomic and angular distribution effects. Theoretical models are discussed and the connection betweeen the two effects is clearly established. The remainder of this thesis, which describes experiments utilizing both angle-resolved and angle-integrated photoemission in conjunction with synchrotron radiation in the energy range 6 eV less than or equal to h ..nu.. less than or equal to 360 eV and laboratory sources, is divided into three parts.
MRI-driven angular momentum transport in protoplanetary disks
Fromang, Sebastien
2013-01-01
Angular momentum transport in accretion disk has been the focus of intense research in theoretical astrophysics for many decades. In the past twenty years, MHD turbulence driven by the magnetorotational instability has emerged as an efficient mechanism to achieve that goal. Yet, many questions and uncertainties remain, among which the saturation level of the turbulence. The consequences of the magnetorotational instability for planet formation models are still being investigated. This lecture, given in September 2012 at the school "Role and mechanisms of angular momentum transport in the formation and early evolution of stars" in Aussois (France), aims at introducing the historical developments, current status and outstanding questions related to the magnetorotational instability that are currently at the forefront of academic research.
MRI-driven angular momentum transport in protoplanetary disks
Fromang, S.
2013-09-01
Angular momentum transport in accretion disk has been the focus of intense research in theoretical astrophysics for many decades. In the past twenty years, MHD turbulence driven by the magnetorotational instability has emerged as an efficient mechanism to achieve that goal. Yet, many questions and uncertainties remain, among which the saturation level of the turbulence. The consequences of the magnetorotational instability for planet formation models are still being investigated. This lecture, given in September 2012 at the school "Role and mechanisms of angular momentum transport in the formation and early evolution of stars" in Aussois (France), aims at introducing the historical developments, current status and outstanding questions related to the magnetorotational instability that are currently at the forefront of academic research.
An orbital angular momentum spectrometer for electrons
Harvey, Tyler; Grillo, Vincenzo; McMorran, Benjamin
2016-05-01
With the advent of techniques for preparation of free-electron and neutron orbital angular momentum (OAM) states, a basic follow-up question emerges: how do we measure the orbital angular momentum state distribution in matter waves? Control of both the energy and helicity of light has produced a range of spectroscopic applications, including molecular fingerprinting and magnetization mapping. Realization of an analogous dual energy-OAM spectroscopy with matter waves demands control of both initial and final energy and orbital angular momentum states: unlike for photons, final state post-selection is necessary for particles that cannot be annihilated. We propose a magnetic field-based mechanism for quantum non-demolition measurement of electron OAM. We show that OAM-dependent lensing is produced by an operator of form U =exp iLzρ2/ℏb2 where ρ =√{x2 +y2 } is the radial position operator, Lz is the orbital angular momentum operator along z, and b is the OAM dispersion length. We can physically realize this operator as a term in the time evolution of an electron in magnetic round lens. We discuss prospects and practical challenges for implementation of a lensing orbital angular momentum measurement. This work was supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), under the Early Career Research Program Award # DE-SC0010466.
Ultrafast angular momentum transfer in multisublattice ferrimagnets.
Bergeard, N; López-Flores, V; Halté, V; Hehn, M; Stamm, C; Pontius, N; Beaurepaire, E; Boeglin, C
2014-03-11
Femtosecond laser pulses can be used to induce ultrafast changes of the magnetization in magnetic materials. However, one of the unsolved questions is that of conservation of the total angular momentum during the ultrafast demagnetization. Here we report the ultrafast transfer of angular momentum during the first hundred femtoseconds in ferrimagnetic Co0.8Gd0.2 and Co0.74Tb0.26 films. Using time-resolved X-ray magnetic circular dichroism allowed for time-resolved determination of spin and orbital momenta for each element. We report an ultrafast quenching of the magnetocrystalline anisotropy and show that at early times the demagnetization in ferrimagnetic alloys is driven by the local transfer of angular momenta between the two exchange-coupled sublattices while the total angular momentum stays constant. In Co0.74Tb0.26 we have observed a transfer of the total angular momentum to an external bath, which is delayed by ~150 fs.
Depression-Burnout Overlap in Physicians.
Directory of Open Access Journals (Sweden)
Walter Wurm
Full Text Available Whether burnout is a distinct phenomenon rather than a type of depression and whether it is a syndrome, limited to three "core" components (emotional exhaustion, depersonalization and low personal accomplishment are subjects of current debate. We investigated the depression-burnout overlap, and the pertinence of these three components in a large, representative sample of physicians.In a cross-sectional study, all Austrian physicians were invited to answer a questionnaire that included the Major Depression Inventory (MDI, the Hamburg Burnout Inventory (HBI, as well as demographic and job-related parameters. Of the 40093 physicians who received an invitation, a total of 6351 (15.8% participated. The data of 5897 participants were suitable for analysis.Of the participants, 10.3% were affected by major depression. Our study results suggest that potentially 50.7% of the participants were affected by symptoms of burnout. Compared to physicians unaffected by burnout, the odds ratio of suffering from major depression was 2.99 (95% CI 2.21-4.06 for physicians with mild, 10.14 (95% CI 7.58-13.59 for physicians with moderate, 46.84 (95% CI 35.25-62.24 for physicians with severe burnout and 92.78 (95% CI 62.96-136.74 for the 3% of participants with the highest HBI_sum (sum score of all ten HBI components. The HBI components Emotional Exhaustion, Personal Accomplishment and Detachment (representing depersonalization tend to correlate more highly with the main symptoms of major depression (sadness, lack of interest and lack of energy than with each other. A combination of the HBI components Emotional Exhaustion, Helplessness, Inner Void and Tedium (adj.R2 = 0.92 explained more HBI_sum variance than the three "core" components (adj.R2 = 0.85 of burnout combined. Cronbach's alpha for Emotional Exhaustion, Helplessness, Inner Void and Tedium combined was 0.90 compared to α = 0.54 for the combination of the three "core" components.This study demonstrates the
Depression-Burnout Overlap in Physicians
Wurm, Walter; Vogel, Katrin; Holl, Anna; Ebner, Christoph; Bayer, Dietmar; Mörkl, Sabrina; Szilagyi, Istvan-Szilard; Hotter, Erich; Kapfhammer, Hans-Peter; Hofmann, Peter
2016-01-01
Background Whether burnout is a distinct phenomenon rather than a type of depression and whether it is a syndrome, limited to three “core” components (emotional exhaustion, depersonalization and low personal accomplishment) are subjects of current debate. We investigated the depression-burnout overlap, and the pertinence of these three components in a large, representative sample of physicians. Methods In a cross-sectional study, all Austrian physicians were invited to answer a questionnaire that included the Major Depression Inventory (MDI), the Hamburg Burnout Inventory (HBI), as well as demographic and job-related parameters. Of the 40093 physicians who received an invitation, a total of 6351 (15.8%) participated. The data of 5897 participants were suitable for analysis. Results Of the participants, 10.3% were affected by major depression. Our study results suggest that potentially 50.7% of the participants were affected by symptoms of burnout. Compared to physicians unaffected by burnout, the odds ratio of suffering from major depression was 2.99 (95% CI 2.21–4.06) for physicians with mild, 10.14 (95% CI 7.58–13.59) for physicians with moderate, 46.84 (95% CI 35.25–62.24) for physicians with severe burnout and 92.78 (95% CI 62.96–136.74) for the 3% of participants with the highest HBI_sum (sum score of all ten HBI components). The HBI components Emotional Exhaustion, Personal Accomplishment and Detachment (representing depersonalization) tend to correlate more highly with the main symptoms of major depression (sadness, lack of interest and lack of energy) than with each other. A combination of the HBI components Emotional Exhaustion, Helplessness, Inner Void and Tedium (adj.R2 = 0.92) explained more HBI_sum variance than the three “core” components (adj.R2 = 0.85) of burnout combined. Cronbach’s alpha for Emotional Exhaustion, Helplessness, Inner Void and Tedium combined was 0.90 compared to α = 0.54 for the combination of the three
ϑ-SHAKE: An extension to SHAKE for the explicit treatment of angular constraints
Gonnet, Pedro; Walther, Jens H.; Koumoutsakos, Petros
2009-03-01
This paper presents ϑ-SHAKE, an extension to SHAKE, an algorithm for the resolution of holonomic constraints in molecular dynamics simulations, which allows for the explicit treatment of angular constraints. We show that this treatment is more efficient than the use of fictitious bonds, significantly reducing the overlap between the individual constraints and thus accelerating convergence. The new algorithm is compared with SHAKE, M-SHAKE, the matrix-based approach described by Ciccotti and Ryckaert and P-SHAKE for rigid water and octane.
Data-oriented development with AngularJS
Waikar, Manoj
2015-01-01
This book helps beginner-level AngularJS developers organize AngularJS applications by discussing important AngularJS concepts and best practices. If you are an experienced AngularJS developer but haven't written directives or haven't created custom HTML controls before, then this book is ideal for you.
Localizing the Angular Momentum of Linear Gravity
Butcher, Luke M; Hobson, Michael; 10.1103/PhysRevD.86.084012
2012-01-01
In a previous article [Phys. Rev. D 82 104040 (2010)], we derived an energy-momentum tensor for linear gravity that exhibited positive energy density and causal energy flux. Here we extend this framework by localizing the angular momentum of the linearized gravitational field, deriving a gravitational spin tensor which possesses similarly desirable properties. By examining the local exchange of angular momentum (between matter and gravity) we find that gravitational intrinsic spin is localized, separately from orbital angular momentum, in terms of a gravitational spin tensor. This spin tensor is then uniquely determined by requiring that it obey two simple physically motivated algebraic conditions. Firstly, the spin of an arbitrary (harmonic-gauge) gravitational plane wave is required to flow in the direction of propagation of the wave. Secondly, the spin tensor of any transverse-traceless gravitational field is required to be traceless. (The second condition ensures that local field redefinitions suffice to ...
Surface angular momentum of light beams.
Ornigotti, Marco; Aiello, Andrea
2014-03-24
Traditionally, the angular momentum of light is calculated for "bullet-like" electromagnetic wave packets, although in actual optical experiments "pencil-like" beams of light are more commonly used. The fact that a wave packet is bounded transversely and longitudinally while a beam has, in principle, an infinite extent along the direction of propagation, renders incomplete the textbook calculation of the spin/orbital separation of the angular momentum of a light beam. In this work we demonstrate that a novel, extra surface part must be added in order to preserve the gauge invariance of the optical angular momentum per unit length. The impact of this extra term is quantified by means of two examples: a Laguerre-Gaussian and a Bessel beam, both circularly polarized.
Angular momentum transfer in incomplete fusion
Indian Academy of Sciences (India)
B S Tomar; K Surendra Babu; K Sudarshan; R Tripathi; A Goswami
2005-02-01
Isomeric cross-section ratios of evaporation residues formed in 12C+93Nb and 16O + 89Y reactions were measured by recoil catcher technique followed by off-line -ray spectrometry in the beam energy range of 55.7-77.5 MeV for 12C and 68-81 MeV for 16O. The isomeric cross-section ratios were resolved into that for complete and incomplete fusion reactions. The angular momentum of the intermediate nucleus formed in incomplete fusion was deduced from the isomeric cross-section ratio by considering the statistical de-excitation of the incompletely fused composite nucleus. The data show that incomplete fusion is associated with angular momenta slightly smaller than critical angular momentum for complete fusion, indicating the deeper interpenetration of projectile and target nuclei than that in peripheral collisions.
Sempere, Jean-Christophe; MacDonald, Ken C.
1986-02-01
Overlapping spreading centers (OSC's) are a fundamental aspect of accretionary processes at intermediate and fast-spreading centers and typically occur at deep points along the axial depth profile. They have a characteristic geometry consisting of two en echelon overlapping, curving ridges separated by an elongated depression. The length to width ratio of this overlap basin is typically 3∶1. We have been successful in reproducing the overlapping spreading center geometry by modelling the growth of two initially parallel elastic cracks of given length and offset in a tensile stress field at infinity. A boundary element displacement discontinuity method was used to solve this problem. Our calculated results are compared with seafloor observations in terms of the size and shape of the overlap region. For small OSC's, there is a very good agreement between calculations and observations but, for large ones, the overlap basin tends to be longer than our predicted results indicate. This suggests that the assumptions made in the model (i.e., perfectly elastic, isotropic and homogeneous medium) are perhaps valid for the brittle lid above the magma chamber that underlies OSC's with small offsets (OSC's with large offsets. Our modelling shows that the initial interaction of closely spaced surface ruptures along spreading centers is to deflect away from one another as they approach. The deflection will be the greatest for small misalignments of the fracture systems, thus even minor misalignments of the spreading centers may result in the development of OSC's. Where the misalignment is less than the width of the cracking front, the fracture systems may meet head-on creating a saddle point along the axial depth profile. Our results support the hypothesis suggested by Macdonald et al. [1984] in which overlapping spreading centers develop where two magmatic pulses migrate toward each other along the strike of the spreading center following fracture systems and magmatic conduits
Strange quark momentum fraction from overlap fermion
Sun, Mingyang; Liu, Keh-Fei; Gong, Ming
2015-01-01
We present a calculation of $\\langle x \\rangle_s$ for the strange quark in the nucleon. We also report the ratio of the strange $\\langle x \\rangle$ to that of $u/d$ in the disconnected insertion which will be useful in constraining the global fit of parton distribution functions at small $x$. We adopt overlap fermion action on $2 + 1$ flavor domain-wall fermion configurations on the $24^3 \\times 64$ lattice with a light sea quark mass which corresponds to $m_{\\pi}=330$ MeV. Smeared grid $Z_3$ sources are deployed to calculate the nucleon propagator with low-mode substitution. Even-odd grid sources and time-dilution technique with stochastic noises are used to calculate the high mode contribution to the quark loop. Low mode averaging (LMA) for the quark loop is applied to reduce the statistical error of the disconnected insertion calculation. We find the ratio $\\langle x \\rangle_s/\\langle x \\rangle_{u/d}^{\\mathrm{DI}}= 0.78(3)$ in this study.
Ghost Imaging Using Orbital Angular Momentum
Institute of Scientific and Technical Information of China (English)
赵生妹; 丁建; 董小亮; 郑宝玉
2011-01-01
We present a novel encoding scheme in a ghost-imaging system using orbital angular momentum. In the signal arm, object spatial information is encoded as a phase matrix. For an N-grey-scale object, different phase matrices, varying from 0 to K with increment n/N, are used for different greyscales, and then they are modulated to a signal beam by a spatial light modulator. According to the conservation of the orbital angular momentum in the ghost imaging system, these changes will give different coincidence rates in measurement, and hence the object information can be extracted in the idler arm. By simulations and experiments, the results show that our scheme can improve the resolution of the image effectively. Compared with another encoding method using orbital angular momentum, our scheme has a better performance for both characters and the image object.%We present a novel encoding scheme in a ghost-imaging system using orbital angular momentum.In the signal arm,object spatial information is encoded as a phase matrix.For an N-grey-scale object,different phase matrices,varying from 0 to π with increment π/N,are used for different greyscales,and then they are modulated to a signal beam by a spatial light modulator.According to the conservation of the orbital angular momentum in the ghost imaging system,these changes will give different coincidence rates in measurement,and hence the object information can be extracted in the idler arm.By simulations and experiments,the results show that our scheme can improve the resolution of the image effectively.Compared with another encoding method using orbital angular momentum,our scheme has a better performance for both characters and the image object.
Wang, Zhiliang; Wang, Yunxia; Qiu, Shenghai
2013-01-01
Complex product development will inevitably face the design planning of the multi-coupled activities, and overlapping these activities could potentially reduce product development time, but there is a risk of the additional cost. Although the downstream task information dependence to the upstream task is already considered in the current researches, but the design process overall iteration caused by the information interdependence between activities is hardly discussed; especially the impact on the design process' overall iteration from the valid information accumulation process. Secondly, most studies only focus on the single overlapping process of two activities, rarely take multi-segment and multi-ply overlapping process of multi coupled activities into account; especially the inherent link between product development time and cost which originates from the overlapping process of multi coupled activities. For the purpose of solving the above problems, as to the insufficiency of the accumulated valid information in overlapping process, the function of the valid information evolution (VIE) degree is constructed. Stochastic process theory is used to describe the design information exchange and the valid information accumulation in the overlapping segment, and then the planning models of the single overlapping segment are built. On these bases, by analyzing overlapping processes and overlapping features of multi-coupling activities, multi-segment and multi-ply overlapping planning models are built; by sorting overlapping processes and analyzing the construction of these planning models, two conclusions are obtained: (1) As to multi-segment and multi-ply overlapping of multi coupled activities, the total decrement of the task set development time is the sum of the time decrement caused by basic overlapping segments, and minus the sum of the time increment caused by multiple overlapping segments; (2) the total increment of development cost is the sum of the cost
Concepts of radial and angular kinetic energies
DEFF Research Database (Denmark)
Dahl, Jens Peder; Schleich, W.P.
2002-01-01
We consider a general central-field system in D dimensions and show that the division of the kinetic energy into radial and angular parts proceeds differently in the wave-function picture and the Weyl-Wigner phase-space picture, Thus, the radial and angular kinetic energies are different quantiti...... in the two pictures, containing different physical information, but the relation between them is well defined. We discuss this relation and illustrate its nature by examples referring to a free particle and to a ground-state hydrogen atom....
Angular momentum and the electromagnetic top
Indian Academy of Sciences (India)
GIANFRANCO SPAVIERI; GEORGE T GILLIES
2016-08-01
The electric charge–magnetic dipole interaction is considered. If $\\Gamma_{\\rm em}$ is the electromagnetic and $\\Gamma_{\\rm mech}$ the mechanical angular momentum, the conservation law for the total angular momentum $\\Gamma_{\\rm tot}$ holds: $\\Gamma_{\\rm tot}$ =$\\Gamma_{\\rm em}$ + $\\Gamma_{\\rm mech}$ = ${\\rm const.}$, but when the dipole moment varies with time, $\\Gamma_{\\rm mech}$ is not conserved. We show that the non-conserved $\\Gamma_{\\rm mech}$ of such a macroscopic isolated system might be experimentally observable. With advanced technology, the strength of the interaction hints to the possibility of novel applications for gyroscopes, such as the electromagnetic top.
Orbital angular momentum in the nucleons
Lorcé, Cédric
2014-01-01
In the last decade, it has been realized that the orbital angular momentum of partons inside the nucleon plays a major role. It contributes significantly to nucleon properties and is at the origin of many asymmetries observed in spin physics. It is therefore of paramount importance to determine this quantity if we want to understand the nucleon internal structure and experimental observables. This triggered numerous discussions and controversies about the proper definition of orbital angular momentum and its extraction from experimental data. We summarize the present situation and discuss recent developments in this field.
Angular gyrus syndrome mimicking depressive pseudodementia.
Nagaratnam, Nages; Phan, Tai Anh; Barnett, Claire; Ibrahim, Neamat
2002-09-01
A 67-year-old left-handed woman with a diagnosis of pseudodementia was being treated for depression with little benefit. Neuropsychological evaluations revealed features of angular gyrus syndrome, namely, agraphia, alexia, Gerstmann's syndrome and behavioural manifestations such as depression, poor memory, frustration and irritability. A computed tomographic scan showed a right occipito-temporal infarction, which had occurred 18 months earlier. The patient demonstrated aspects of language dysfunction associated with the syndrome and showed reversed lateralization of cerebral functions. Recognizing and distinguishing between angular gyrus syndrome and depression is important because the appropriate therapies differ. The use of the term pseudodementia can be misleading.
Sanov, Andrei
2014-04-01
This article provides an overview of some recent advances in the modeling of photoelectron angular distributions in negative-ion photodetachment. Building on the past developments in threshold photodetachment spectroscopy that first tackled the scaling of the partial cross sections with energy, depending on the angular momentum quantum number ℓ, it examines the corresponding formulation of the central potential model and extends it to the more general case of hybrid molecular orbitals. Several conceptual approaches to understanding photoelectron angular distributions are discussed. In one approach, the angular distributions are examined based on the contributions of the symmetry-allowed s and p partial waves of the photodetached electron. In another related approach, the parent molecular orbitals are described based on their dominant s and p characters, whereas the continuum electron is described in terms of interference of the corresponding ℓ = ±1 photodetachment channels.
Some remarks on the angular momenta of galaxies, their clusters and superclusters
Godlowski, W; Flin, P; Godlowski, Wlodzimierz; Szydlowski, Marek; Flin, Piotr
2005-01-01
We discuss the relation between angular momenta and masses of galaxy structures base on the Li model of the universe with global rotation. In our previous paper (God{\\l}owski et al 2002) it was shown that the model predicts the presence of a minimum in this relation. In the present paper we discuss observational evidence allowing us to verify this relation. We find null angular momentum J=0 for the masses corresponding to mass of galaxy grups and non-vanishing angular momenta for other galactic structures. We check these theoretical predictions analysing Tully's galaxy grups. The existing data comparing alignment in different galactic structure are consistent with obtained theoretical relation $J(M)$ if we interpret the groving alignment as the galactic increasing angular momenta in the galactic structure.
Angular momentum transport efficiency in post-main sequence low-mass stars
Spada, F; Arlt, R; Deheuvels, S
2016-01-01
Context. Using asteroseismic techniques, it has recently become possible to probe the internal rotation profile of low-mass (~1.1-1.5 Msun) subgiant and red giant stars. Under the assumption of local angular momentum conservation, the core contraction and envelope expansion occurring at the end of the main sequence would result in a much larger internal differential rotation than observed. This suggests that angular momentum redistribution must be taking place in the interior of these stars. Aims. We investigate the physical nature of the angular momentum redistribution mechanisms operating in stellar interiors by constraining the efficiency of post-main sequence rotational coupling. Methods. We model the rotational evolution of a 1.25 Msun star using the Yale Rotational stellar Evolution Code. Our models take into account the magnetic wind braking occurring at the surface of the star and the angular momentum transport in the interior, with an efficiency dependent on the degree of internal differential rotati...
Molina-Borboa, J.L.; Martínez-Jaramillo, S.; López-Gallo, F.; van der Leij, M.
2015-01-01
This paper analyzes the persistence and overlap of relationships between banks in a multiplex decomposition of the exposures network. Our analysis may be useful for researchers designing stress tests or models in which the behavior of banks is modeled explicitly. This has not been looked at previous
Directory of Open Access Journals (Sweden)
Claudio Araujo
2006-12-01
Full Text Available In this paper, we analyze the relationship between the land market failures and the economic growth in Brazil, starting from an overlapping model including two sectors: agricultural and industrial. The land is both a specific factor for agriculture and an asset that can be substituted to the capital used in industry. The trade-off between land and capital holding depends, among other factors, on the transaction costs on the land market. These costs result from land insecurity and generate a decrease in the land price that favors capital accumulation. Two assumptions follow from our model: one the one hand, land insecurity has a negative effect on the land price; one the other hand it has a positive effect on economic growth. These two hypotheses are tested on panel data for Brazilian Federation. The econometric results do not reject our hypothesis.
Angular dependence of spin-orbit spin-transfer torques
Lee, Ki-Seung
2015-04-06
In ferromagnet/heavy-metal bilayers, an in-plane current gives rise to spin-orbit spin-transfer torque, which is usually decomposed into fieldlike and dampinglike torques. For two-dimensional free-electron and tight-binding models with Rashba spin-orbit coupling, the fieldlike torque acquires nontrivial dependence on the magnetization direction when the Rashba spin-orbit coupling becomes comparable to the exchange interaction. This nontrivial angular dependence of the fieldlike torque is related to the Fermi surface distortion, determined by the ratio of the Rashba spin-orbit coupling to the exchange interaction. On the other hand, the dampinglike torque acquires nontrivial angular dependence when the Rashba spin-orbit coupling is comparable to or stronger than the exchange interaction. It is related to the combined effects of the Fermi surface distortion and the Fermi sea contribution. The angular dependence is consistent with experimental observations and can be important to understand magnetization dynamics induced by spin-orbit spin-transfer torques.
Angular Momentum in the Formation of Disk Galaxies
Institute of Scientific and Technical Information of China (English)
LUO Zhi-Jian; SHU Cheng-Gang
2004-01-01
@@ Within the current framework of disk galaxy formation, we discuss the resulted surface-density profiles according to the theoretical angular momentum distributions (AMDs) presented by Bullock et al. [Astrophys. J.555 (2001) 240(B01)] for the ACDM cosmology in both spherical and cylindric coordinates. It is found that the derived surface density distribution of a disk in the outer region is in general similar to an exponential disk for both the theoretical AMDs. In the central region, the results from both the theoretical AMDs are inconsistent with observations whatever the disk bar-instability is taken into account or not. The cylindric form of the theoretical AMD leads to the bar-instability more easily for a give galaxy than that for spherical AMD, which could result in a more massive bulge. After comparing the model predictions with our Milky Way galaxy, we find that the theoretical AMDs predict larger mass fractions of baryons with low angular momentum than the observed ones, which would lead to the disk sizes to be smaller. Two possible processes which could solve the angular momentum problem are discussed.
Angular dependence of primordial trispectra and CMB spectral distortions
Shiraishi, Maresuke; Bartolo, Nicola; Liguori, Michele
2016-10-01
Under the presence of anisotropic sources in the inflationary era, the trispectrum of the primordial curvature perturbation has a very specific angular dependence between each wavevector that is distinguishable from the one encountered when only scalar fields are present, characterized by an angular dependence described by Legendre polynomials. We examine the imprints left by curvature trispectra on the TTμ bispectrum, generated by the correlation between temperature anisotropies (T) and chemical potential spectral distortions (μ) of the Cosmic Microwave Background (CMB). Due to the angular dependence of the primordial signal, the corresponding TTμ bispectrum strongly differs in shape from TTμ sourced by the usual gNL or τNL local trispectra, enabling us to obtain an unbiased estimation. From a Fisher matrix analysis, we find that, in a cosmic-variance-limited (CVL) survey of TTμ, a minimum detectable value of the quadrupolar Legendre coefficient is d2 ~ 0.01, which is 4 orders of magnitude better than the best value attainable from the TTTT CMB trispectrum. In the case of an anisotropic inflationary model with a f(phi)F2 interaction (coupling the inflaton field phi with a vector kinetic term F2), the size of the curvature trispectrum is related to that of quadrupolar power spectrum asymmetry, g*. In this case, a CVL measurement of TTμ makes it possible to measure g* down to 10‑3.
Statistical mechanics of collisionless orbits. IV. Distribution of angular momentum
Williams, Liliya L R; Wojtak, Radoslaw
2014-01-01
It has been shown in previous work that DARKexp, which is a theoretically derived, maximum entropy, one shape parameter model for isotropic collisionless systems, provides very good fits to simulated and observed dark-matter halos. Specifically, it fits the energy distribution, N(E), and the density profiles, including the central cusp. Here, we extend DARKexp N(E) to include the distribution in angular momentum, L^2, for spherically symmetric systems. First, we argue, based on theoretical, semi-analytical, and simulation results, that while dark-matter halos are relaxed in energy, they are not nearly as relaxed in angular momentum, which precludes using maximum entropy to uniquely derive N(E,L^2). Instead, we require that when integrating N(E,L^2) over squared angular momenta one retrieves the DARKexp N(E). Starting with a general expression for N(E,L^2) we show how the distribution of particles in L^2 is related to the shape of the velocity distribution function, VDF, and velocity anisotropy profile, \\beta(...
A universal angular momentum profile for dark matter haloes
Liao, Shihong; Chu, M -C
2016-01-01
The angular momentum distribution in dark matter haloes and galaxies is a key ingredient in understanding their formation. Especially, the internal distribution of angular momenta is closely related to the formation of disk galaxies. In this article, we use haloes identified from a high-resolution simulation, the Bolshoi simulation, to study the spatial distribution of specific angular momenta, $j(r,\\theta)$. We show that by stacking haloes with similar masses to increase the signal-to-noise ratio, the profile can be fitted as a simple function, $j(r,\\theta)=j_s \\sin^2(\\theta/\\theta_s) (r/r_s)^2/(1+r/r_s)^4 $, with three free parameters, $j_s, r_s$, and $\\theta_s$. Specifically, $j_s$ correlates with the halo mass $M_\\mathrm{vir}$ as $j_s\\propto M_\\mathrm{vir}^{2/3}$, $r_s$ has a weak dependence on the halo mass as $r_s \\propto M_\\mathrm{vir}^{0.040}$, and $\\theta_s$ is independent of $M_\\mathrm{vir}$. This profile agrees with that from a rigid shell model, though its origin is unclear. Our universal specific...
Revisiting the WMAP - NVSS angular cross correlation. A skeptic view
Hernandez-Monteagudo, Carlos
2009-01-01
In the context of the study of the ISW, we revisit the angular cross correlation of WMAP CMB data with the NVSS radio survey. We compute 2-point cross functions between the two surveys in real and in Fourier space, paying particular attention on the dependence of results on the flux of NVSS radio sources, the angular scales where correlations arise and the comparison with theoretical expectations. We reproduce previous results that claim an excess of correlation in the angular correlation function (ACF), and we also find some (low significance) similarity between the CMB and radio galaxy data in the multipole range $\\el \\in $ [10, 25]. However, the S/N in the ACFs increases with higher flux thresholds for NVSS sources, but drops a $\\sim$ 30 - 50% in separations of the order of a pixel size, suggesting some residual point source contribution. When restricting our analyses to multipoles $\\el \\gt $60, we fail to find any evidence for cross correlation in the range $\\el \\in [2,10]$, where according to the model p...
Time-delay Cosmography: Increased Leverage with Angular Diameter Distances
Jee, Inh; Suyu, Sherry H; Huterer, Dragan
2015-01-01
Strong lensing time-delay systems constrain cosmological parameters via the so-called time-delay distance and the angular diameter distance to the lens. In previous studies, only the former information was used. In this paper, we show that the cosmological constraints improve significantly when the latter information is also included. Specifically, the angular diameter distance plays a crucial role in breaking the degeneracy between the curvature of the Universe and the time-varying equation of state of dark energy. Using a mock sample of 55 bright quadruple lens systems based on expectations for ongoing/future imaging surveys, we find that adding the angular diameter distance information to the time-delay distance information and the cosmic microwave background data of Planck improves the constraint on the constant equation of state by 30%, on the time variation in the equation of state by a factor of two, and on the Hubble constant in the flat $\\Lambda$CDM model by a factor of two. Therefore, previous forec...
Time-delay cosmography: increased leverage with angular diameter distances
Jee, I.; Komatsu, E.; Suyu, S. H.; Huterer, D.
2016-04-01
Strong lensing time-delay systems constrain cosmological parameters via the so-called time-delay distance and the angular diameter distance to the lens. In previous studies, only the former information was used in forecasting cosmographic constraints. In this paper, we show that the cosmological constraints improve significantly when the latter information is also included. Specifically, the angular diameter distance plays a crucial role in breaking the degeneracy between the curvature of the Universe and the time-varying equation of state of dark energy. Using a mock sample of 55 bright quadruple lens systems based on expectations for ongoing/future imaging surveys, we find that adding the angular diameter distance information to the time-delay distance information and the Planck's measurements of the cosmic microwave background anisotropies improves the constraint on the constant equation of state by 30%, on the time variation in the equation of state by a factor of two, and on the Hubble constant in the flat ΛCDM model by a factor of two. Therefore, previous forecasts for the statistical power of time-delay systems were overly pessimistic, i.e., time-delay systems are more powerful than previously appreciated.
Institute of Scientific and Technical Information of China (English)
江召兵; 陈徐均; 邵鲁中; 杜乃娟
2015-01-01
A physical experiment was carried out to estimate the effect of the pendulum with large angular motion on the dynamical response of the floating-base.A mathematical model was established and calculat-ed by employing the homogeneous matrix method to validate the model and the simulation results.The non-contact measurement instrument with six-degree-of-freedom motion was used to track the trajectories of the multibody system and the data collected and analyzed through the data acquisition and analysis sys-tem.The homogeneous matrix method was employed to simulate the dynamical response of the multibody system.The experimental data and the simulation results fit each other well,which it shows that the hom-ogeneous matrix method is effective,convenient and efficient.The results also illustrate that the coupled motion exists among the multibodies because the floating-base generates motion excited by the motion of upper part and vice verse.The motion of the flow field will be excited by that of the floating-base,i.e.,the coupled motion exists between the floating-base and the water.%为进一步研究大翻转摆杆运动对浮基运动的影响，并检验齐次矩阵建模方法和数值模拟结果的正确性，在试验水池中进行了模型试验，用非接触六自由度运动测量仪和数据采集分析系统对浮基系统的运动响应进行了记录和分析。针对此浮基多体系统，用多体系统动力学的齐次矩阵方法建立相关数学模型并进行求解。试验数据和数值模拟结果吻合较好，说明齐次矩阵方法可有效、方便、快捷地模拟浮基多体系统的运动响应。结果表明，在上部结构运动的激励下，浮基也将产生运动，即多体之间存在耦合运动；漂浮在水面上的浮基运动，将激起浮基附近流场的变化，即浮基与水之间也存在耦合运动。
Non-overlapping domain decomposition methods in structural mechanics
Gosselet, Pierre; 10.1007/BF02905857
2012-01-01
The modern design of industrial structures leads to very complex simulations characterized by nonlinearities, high heterogeneities, tortuous geometries... Whatever the modelization may be, such an analysis leads to the solution to a family of large ill-conditioned linear systems. In this paper we study strategies to efficiently solve to linear system based on non-overlapping domain decomposition methods. We present a review of most employed approaches and their strong connections. We outline their mechanical interpretations as well as the practical issues when willing to implement and use them. Numerical properties are illustrated by various assessments from academic to industrial problems. An hybrid approach, mainly designed for multifield problems, is also introduced as it provides a general framework of such approaches.
Direct and indirect effects in the regulation of overlapping promoters
DEFF Research Database (Denmark)
Bendtsen, Kristian Moss; Erdossy, Janos; Csiszovski, Zsolt
2011-01-01
Optimal response to environmental stimuli often requires activation of certain genes and repression of others. Dual function regulatory proteins play a key role in the differential regulation of gene expression. While repression can be achieved by any DNA binding protein through steric occlusion...... of RNA polymerase in the promoter region, activation often requires a surface on the regulatory protein to contact RNAP and thus facilitate transcription initiation. RNAP itself is also a DNA binding protein, therefore it can function as a transcriptional repressor. Searching the Escherichia coli...... that promoter interference depends on the characteristics of overlapping promoters. The model predicts that promoter strength and interference can be regulated separately, which provides unique opportunities for regulation. Our experimental data suggest that in principle any DNA binding protein can be used...
On the interpretation of wave function overlaps in quantum dots
DEFF Research Database (Denmark)
Stobbe, Søren; Hvam, Jørn Märcher; Lodahl, Peter
2011-01-01
that the electron and the hole are located at the same point or region in space, i.e., they must coincide spatially to recombine. Here, we show that this interpretation is not correct even loosely speaking. By general mathematical considerations we compare the envelope wave function overlap, the exchange overlap......The spontaneous emission rate of excitons strongly confined in quantum dots (QDs) is proportional to the overlap integral of electron and hole envelope wave functions. A common and intuitive interpretation of this result is that the spontaneous emission rate is proportional to the probability...... compare our qualitative predictions with recent measurements of the wave function overlap and find good agreement....
Do Neutrino Wave Functions Overlap and Does it Matter?
Li, Cheng-Hsien
2016-01-01
Studies of neutrinos commonly ignore anti-symmetrization of their wave functions. This implicitly assumes that either spatial wave functions for neutrinos with approximately the same momentum do not overlap or their overlapping has no measurable consequences. We examine these assumptions by considering the evolution of three-dimensional neutrino wave packets (WPs). We find that it is perfectly adequate to treat accelerator and reactor neutrinos as separate WPs for typical experimental setup. While solar and supernova neutrinos correspond to overlapping WPs, they can be treated effectively as non-overlapping for analyses of their detection.
Angular and linear momentum of excited ferromagnets
Yan, P.; Kamra, A.; Cao, Y.; Bauer, G.E.W.
2013-01-01
The angular momentum vector of a Heisenberg ferromagnet with isotropic exchange interaction is conserved, while under uniaxial crystalline anisotropy the projection of the total spin along the easy axis is a constant of motion. Using Noether's theorem, we prove that these conservation laws persist i
A Novel Permanent Magnetic Angular Acceleration Sensor
Directory of Open Access Journals (Sweden)
Hao Zhao
2015-07-01
Full Text Available Angular acceleration is an important parameter for status monitoring and fault diagnosis of rotary machinery. Therefore, we developed a novel permanent magnetic angular acceleration sensor, which is without rotation angle limitations and could directly measure the instantaneous angular acceleration of the rotating system. The sensor rotor only needs to be coaxially connected with the rotating system, which enables convenient sensor installation. For the cup structure of the sensor rotor, it has a relatively small rotational inertia. Due to the unique mechanical structure of the sensor, the output signal of the sensor can be directed without a slip ring, which avoids signal weakening effect. In this paper, the operating principle of the sensor is described, and simulated using finite element method. The sensitivity of the sensor is calibrated by torsional pendulum and angle sensor, yielding an experimental result of about 0.88 mV/(rad·s−2. Finally, the angular acceleration of the actual rotating system has been tested, using both a single-phase asynchronous motor and a step motor. Experimental result confirms the operating principle of the sensor and indicates that the sensor has good practicability.
A Novel Permanent Magnetic Angular Acceleration Sensor.
Zhao, Hao; Feng, Hao
2015-07-03
Angular acceleration is an important parameter for status monitoring and fault diagnosis of rotary machinery. Therefore, we developed a novel permanent magnetic angular acceleration sensor, which is without rotation angle limitations and could directly measure the instantaneous angular acceleration of the rotating system. The sensor rotor only needs to be coaxially connected with the rotating system, which enables convenient sensor installation. For the cup structure of the sensor rotor, it has a relatively small rotational inertia. Due to the unique mechanical structure of the sensor, the output signal of the sensor can be directed without a slip ring, which avoids signal weakening effect. In this paper, the operating principle of the sensor is described, and simulated using finite element method. The sensitivity of the sensor is calibrated by torsional pendulum and angle sensor, yielding an experimental result of about 0.88 mV/(rad·s(-2)). Finally, the angular acceleration of the actual rotating system has been tested, using both a single-phase asynchronous motor and a step motor. Experimental result confirms the operating principle of the sensor and indicates that the sensor has good practicability.
Angular Momentum Transport in Accretion Disks
DEFF Research Database (Denmark)
E. Pessah, Martin; Chan, Chi-kwan; Psaltis, Dimitrios;
2007-01-01
if the resolution were set equal to the natural dissipation scale in astrophysical disks. We conclude that, in order for MRI-driven turbulent angular momentum transport to be able to account for the large value of the effective alpha viscosity inferred observationally, the disk must be threaded by a significant...
ANGULAR MOMENTUM ACQUISITION IN GALAXY HALOS
Energy Technology Data Exchange (ETDEWEB)
Stewart, Kyle R. [Department of Natural and Mathematical Sciences, California Baptist University, 8432 Magnolia Ave., Riverside, CA 92504 (United States); Brooks, Alyson M. [Department of Astronomy, University of Wisconsin-Madison, 475 N. Charter St., Madison, WI 53706 (United States); Bullock, James S. [Center for Cosmology, Department of Physics and Astronomy, University of California at Irvine, Irvine, CA 92697 (United States); Maller, Ariyeh H. [Department of Physics, New York City College of Technology, 300 Jay St., Brooklyn, NY 11201 (United States); Diemand, Juerg [Institute for Theoretical Physics, University of Zurich, 8057, Zurich (Switzerland); Wadsley, James [Department of Physics and Astronomy, McMaster University, Main Street West, Hamilton L85 4M1 (Canada); Moustakas, Leonidas A. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)
2013-05-20
We use high-resolution cosmological hydrodynamic simulations to study the angular momentum acquisition of gaseous halos around Milky-Way-sized galaxies. We find that cold mode accreted gas enters a galaxy halo with {approx}70% more specific angular momentum than dark matter averaged over cosmic time (though with a very large dispersion). In fact, we find that all matter has a higher spin parameter when measured at accretion than when averaged over the entire halo lifetime, and is well characterized by {lambda} {approx} 0.1, at accretion. Combined with the fact that cold flow gas spends a relatively short time (1-2 dynamical times) in the halo before sinking to the center, this naturally explains why cold flow halo gas has a specific angular momentum much higher than that of the halo and often forms ''cold flow disks.'' We demonstrate that the higher angular momentum of cold flow gas is related to the fact that it tends to be accreted along filaments.
A new method for angular displacement measurement
Institute of Scientific and Technical Information of China (English)
Caini Zhang(张彩妮); Xiangzhao Wang(王向朝)
2003-01-01
We describe a new method for angular displacement measurements that is based on a Fabry-Perot inter-ferometer. A measurement accuracy of 10-s rad is obtained by use of the sinusoidal phase modulatinginterferometry. Another Fabry-Perot interferometer is used to obtain the key initial angle of incidence.
Optical angular momentum conversion in a nanoslit
Chimento, P.F.; Alkemade, P.F.A.; T Hooft, G.W.; Eliel, E.R.
2012-01-01
We demonstrate partial conversion of circularly polarized light into orbital angular momentum-carrying vortex light with opposite-handed circular polarization. This conversion is accomplished in a novel manner using the birefringent properties of a circular subwavelength slit in a thin metal film. O
γ - γ Angular Correlation Measurements With GRIFFIN
Maclean, Andrew; Griffin Collaboration
2015-10-01
When an excited nuclear state emits successive γ-rays causing a γ - γ cascade an anisotropy is found in the spatial distribution of γ2 with respect to γ1. Defining the direction of γ1 as the z-axis, the intermediate level, in general will have an uneven distribution of m-states. This causes an anisotropy in the angular correlation of the second γ-ray with respect to the first. These angular correlations are expressed by the W (θ) that depends on numerical coefficients described by the sequence of spin-parity values for the nuclear states involved, the multipolarities and mixing ratios. Angular correlations can be used for the assignment of spins and parities for the nuclear states, and thus provide a powerful means to elucidate the structure of nuclei far from stability through β - γ - γ coincidence measurements. In order to explore the sensitivity of the new 16 clover-detector GRIFFIN γ-ray spectrometer at TRIUMF-ISAC to such γ - γ angular correlations, and to optimize its performance for these measurements we have studied a well known γ - γ cascade from 60Co decay through both experimental measurements and Geant4 simulation. Results will be shown in this talk. Work supported by the Canada Foundation for Innovation, the Natural Sciences and Engineering Research Council of Canada and the National Research Council of Canada.
Oral medicine in practice: angular cheilitis.
Lamey, P J; Lewis, M A
1989-07-08
In a series of twelve articles the authors aim to cover the more common oral medicine problems likely to be encountered in dental practice. Whenever possible, clinical photographs have been used to illustrate important points, and the text is deliberately succinct and without references. In the first article, the pathogenesis, investigation and management of angular cheilitis is reviewed.
Cosmological Tests Using the Angular Size of Galaxy Clusters
Wei, Jun-Jie; Melia, Fulvio
2014-01-01
We use measurements of the galaxy-cluster angular size versus redshift to test and compare the standard model (LCDM) and the R_h=ct Universe. We show that the latter fits the data with a reduced chi^2_dof=0.786 for a Hubble constant H_0= 72.6 (-3.4+3.8) km/s/Mpc, and H_0 is the sole parameter in this model. By comparison, the optimal flat LCDM model, with two free parameters (including Omega_m=0.50 and H_0=73.9 (-9.5+10.6) km/s/Mpc), fits the angular-size data with a reduced chi^2_dof=0.806. On the basis of their chi^2_dof values alone, both models appear to account for the data very well in spite of the fact that the R_h=ct Universe expands at a constant rate, while LCDM does not. However, because of the different number of free parameters in these models, selection tools, such as the Bayes Information Criterion, favour R_h=ct over LCDM with a likelihood of ~86% versus ~14%. These results impact the question of galaxy growth at large redshifts. Previous work suggested an inconsistency with the underlying cos...
Angular vibration measurement using grating and laser interferometer
Zhang, Li; Peng, Jun
2006-06-01
Primary angular acceleration calibration standard is developed by CIMM to generate standard rotational angle, angular velocity and angular acceleration, which are traceable to the International System of Units (SI). It can be used to calibrate angular transducers, i.e. angular accelerometer, angular velocity transducer, and rotational angle transducer to obtain amplitude sensitivity and phase shift by sinusoidal vibration. The measurement systems based on grating and laser interferometers are introduced in this paper. The measurement system based on PXI bus instrument is used to control the angular exciter, measure the output signal of the laser interferometers and the transducer to be calibrated synchronously. The methods for calculating the amplitude and phase of sinusoidal angular movement are investigated and high performance has been achieved. It shows the standard can be used in angular movement calibration in the frequency range from 0.1Hz to 200Hz.
Typical versus averaged overlap distribution in spin glasses: Evidence for droplet scaling theory
Monthus, Cécile; Garel, Thomas
2013-10-01
We consider the statistical properties over disordered samples (J) of the overlap distribution PJ(q) which plays the role of an order parameter in spin glasses. We show that near zero temperature (i) the typical overlap distribution is exponentially small in the central region of -1models in which the notion of length does not exist); (ii) the rescaled variable v=-[lnPJ(q)]/Nθ remains an O(1) random positive variable describing sample-to-sample fluctuations; (iii) the averaged distribution PJ(q)¯ is nontypical and dominated by rare anomalous samples. Similar statements hold for the cumulative overlap distribution IJ(q0)≡∫0q0dqPJ(q). These results are derived explicitly for the spherical mean-field model with θ=1/3, ϕ(q)=1-q2, and the random variable v corresponds to the rescaled difference between the two largest eigenvalues of Gaussian orthogonal ensemble random matrices. Then we compare numerically the typical and averaged overlap distributions for the long-ranged one-dimensional Ising spin glass with random couplings decaying as J(r)∝r-σ for various values of the exponent σ, corresponding to various droplet exponents θ(σ), and for the mean-field Sherrington-Kirkpatrick model (corresponding formally to the σ=0 limit of the previous model). Our conclusion is that future studies on spin glasses should measure the typical values of the overlap distribution Ptyp(q) or of the cumulative overlap distribution Ityp(q0)=elnIJ(q0)¯ to obtain clearer conclusions on the nature of the spin-glass phase.
Advanced UXO discrimination: resolving multiple targets and overlapping EMI signals
Shubitidze, Fridon; Barrowes, Benjamin E.; Shamatava, Irma; Fernandez, Juan Pablo; Bijamov, Alex; O'Neill, Kevin
2011-06-01
In this paper we employ advanced electromagnetic induction models to resolve multiple targets with overlapping EMI signals-i.e. to discriminate objects of interest, such as unexploded ordnance (UXO), from innocuous items. The models include a) a joint diagonalization (JD) technique that takes data from next-generation EMI sensors and uses the eigenvalues of the multistatic response matrix to estimate the number of potential targets, and b) the orthonormalized volume magnetic source (ONVMS) model, a physically complete, fast, and accurate forward model whose representation of a target's intrinsic EMI response is used to extract classification parameters. In the given approach the overall EMI inversion and classification problem proceeds as follows: first, the JD is applied to the data and the number of targets is estimated; once this is known, the ONVMS is combined with an optimization technique to yield the location and orientation of each buried object, as well as the amplitude of its ONVMS. Finally, a total ONVMS is calculated for each object and used as a discriminant to distinguish between UXO and non-UXO items and between different kinds of UXO. We illustrate the applicability of our multi-target analysis technique by using it on several teststand and live-site datasets collected with the TEMTADS sensor array. We end by demonstrating the superior performance of the ONVMS by applying it to multi-target blind-test data compiled at the Aberdeen Proving Ground test-stand facility.
Zhang, Chuan-Xin; Yuan, Yuan; Zhang, Hao-Wei; Shuai, Yong; Tan, He-Ping
2016-09-01
Considering features of stellar spectral radiation and sky surveys, we established a computational model for stellar effective temperatures, detected angular parameters and gray rates. Using known stellar flux data in some bands, we estimated stellar effective temperatures and detected angular parameters using stochastic particle swarm optimization (SPSO). We first verified the reliability of SPSO, and then determined reasonable parameters that produced highly accurate estimates under certain gray deviation levels. Finally, we calculated 177 860 stellar effective temperatures and detected angular parameters using data from the Midcourse Space Experiment (MSX) catalog. These derived stellar effective temperatures were accurate when we compared them to known values from literatures. This research makes full use of catalog data and presents an original technique for studying stellar characteristics. It proposes a novel method for calculating stellar effective temperatures and detecting angular parameters, and provides theoretical and practical data for finding information about radiation in any band.
Zhang, Chuan-Xin; Zhang, Hao-Wei; Shuai, Yong; Tan, He-Ping
2016-01-01
Considering features of stellar spectral radiation and survey explorers, we established a computational model for stellar effective temperatures, detected angular parameters, and gray rates. Using known stellar flux data in some band, we estimated stellar effective temperatures and detected angular parameters using stochastic particle swarm optimization (SPSO). We first verified the reliability of SPSO, and then determined reasonable parameters that produced highly accurate estimates under certain gray deviation levels. Finally, we calculated 177,860 stellar effective temperatures and detected angular parameters using the Midcourse Space Experiment (MSX) catalog data. These derived stellar effective temperatures were accurate when we compared them to known values from literatures. This research made full use of catalog data and presented an original technique for studying stellar characteristics. It proposed a novel method for calculating stellar effective temperatures and detected angular parameters, and pro...
Cruzalèbes, P.; Jorissen, A.; Sacuto, S.; Bonneau, D.
2010-06-01
Context. Accurate long-baseline interferometric measurements require careful calibration with reference stars. Small calibrators with high angular diameter accuracy ensure the true visibility uncertainty to be dominated by the measurement errors. Aims: We review some indirect methods for estimating angular diameter, using various types of input data. Each diameter estimate, obtained for the test-case calibrator star λ Gru, is compared with the value 2.71 mas found in the Bordé calibrator catalogue published in 2002. Methods: Angular size estimations from spectral type, spectral index, in-band magnitude, broadband photometry, and spectrophotometry give close estimates of the angular diameter, with slightly variable uncertainties. Fits on photometry and spectrophotometry need physical atmosphere models with “plausible” stellar parameters. Angular diameter uncertainties were estimated by means of residual bootstrapping confidence intervals. All numerical results and graphical outputs presented in this paper were obtained using the routines developed under PV-WAVE®, which compose the modular software suite SPIDAST, created to calibrate and interprete spectroscopic and interferometric measurements, particularly those obtained with VLTI-AMBER. Results: The final angular diameter estimate 2.70 mas of λ Gru, with 68% confidence interval 2.65-2.81 mas, is obtained by fit of the MARCS model on the ISO-SWS 2.38-27.5 μm spectrum, with the stellar parameters Te = 4250 K, log g = 2.0, z = 0.0 dex, M = 1.0 M⊙, and ξ_t = 2.0 km s-1.
Overlaps of Partial Neel States and Bethe States
Foda, O
2015-01-01
Partial Neel states are generalizations of the ordinary Neel (classical anti-ferromagnet) state that can have arbitrary integer spin. We study overlaps of these states with Bethe states. We first identify this overlap with a partial version of reflecting-boundary domain-wall partition function, and then derive various determinant representations for off-shell and on-shell Bethe states.
Nested Genetic Algorithm for Resolving Overlapped Spectral Bands
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
A nested genetic algorithm, including genetic parameter level and genetic implemented level for peak parameters, was proposed and applied for resolving overlapped spectral bands. By the genetic parameter level, parameters of genetic algorithm were optimized; moreover, the number of overlapped peaks was determined simultaneously. Then parameters of individual peaks were computed with the genetic implemented level.
Shake for Sigma, Pray for Pi: Classroom Orbital Overlap Analogies
Dicks, Andrew P.
2011-01-01
An introductory organic classroom demonstration is discussed where analogies are made between common societal hand contact and covalent bond formation. A handshake signifies creation of a [sigma] bond ("head-on" orbital overlap), whereas the action of praying illustrates "sideways" overlap and generation of a [pi] bond. The nature of orbital and…
Distribution and content of dust in overlapping galaxy systems
White, R E; Conselice, C J; White, Raymond E; Keel, William C; Conselice, Christopher J
1996-01-01
Partially overlapping galaxies are used to directly determine the effective absorption in spiral galaxy disks. The non-overlapping parts of the galaxies and symmetry considerations are used to reconstruct, via differential photometry, how much background galaxy light is lost in passing through the foreground disks.
Tripathi, Ashish; McNulty, Ian; Shpyrko, Oleg G
2014-01-27
Ptychographic coherent x-ray diffractive imaging is a form of scanning microscopy that does not require optics to image a sample. A series of scanned coherent diffraction patterns recorded from multiple overlapping illuminated regions on the sample are inverted numerically to retrieve its image. The technique recovers the phase lost by detecting the diffraction patterns by using experimentally known constraints, in this case the measured diffraction intensities and the assumed scan positions on the sample. The spatial resolution of the recovered image of the sample is limited by the angular extent over which the diffraction patterns are recorded and how well these constraints are known. Here, we explore how reconstruction quality degrades with uncertainties in the scan positions. We show experimentally that large errors in the assumed scan positions on the sample can be numerically determined and corrected using conjugate gradient descent methods. We also explore in simulations the limits, based on the signal to noise of the diffraction patterns and amount of overlap between adjacent scan positions, of just how large these errors can be and still be rendered tractable by this method.
Compression of flow can reveal overlapping modular organization in networks
Esquivel, Alcides Viamontes
2011-01-01
To better understand the overlapping modular organization of large networks with respect to flow, here we introduce the map equation for overlapping modules. In this information-theoretic framework, we use the correspondence between compression and regularity detection. The generalized map equation measures how well we can compress a description of flow in the network when we partition it into modules with possible overlaps. When we minimize the generalized map equation over overlapping network partitions, we detect modules that capture flow and determine which nodes at the boundaries between modules should be classified in multiple modules and to what degree. With a novel greedy search algorithm, we find that some networks, for example, the neural network of C. Elegans, are best described by modules dominated by hard boundaries, but that others, for example, the sparse road network of California, have a highly overlapping modular organization. To compare our approach with other clustering algorithms, we sugg...
Compressed Sensing Inspired Image Reconstruction from Overlapped Projections
Directory of Open Access Journals (Sweden)
Lin Yang
2010-01-01
Full Text Available The key idea discussed in this paper is to reconstruct an image from overlapped projections so that the data acquisition process can be shortened while the image quality remains essentially uncompromised. To perform image reconstruction from overlapped projections, the conventional reconstruction approach (e.g., filtered backprojection (FBP algorithms cannot be directly used because of two problems. First, overlapped projections represent an imaging system in terms of summed exponentials, which cannot be transformed into a linear form. Second, the overlapped measurement carries less information than the traditional line integrals. To meet these challenges, we propose a compressive sensing-(CS- based iterative algorithm for reconstruction from overlapped data. This algorithm starts with a good initial guess, relies on adaptive linearization, and minimizes the total variation (TV. Then, we demonstrated the feasibility of this algorithm in numerical tests.
Segmentation of Overlapping Shapes using Test Ray Intersections
DEFF Research Database (Denmark)
Rasmusson, Allan
be a major task, but in bioimaging and tissue quantification it is often complicated further by the need for segmenting images of overlapping particles, for instance neurons. One approach to segmenting overlapping particles is to oversegment the image into many small regions which are then combined...... into the correct shapes in a postprocessing step. The postprocessing step is unfortunately often both difficult and computationally expensive. Another approach is to incorporate descriptions of the overlapping shapes into a segmentation algorithm which normally only segments the union of all particle profiles....... This may, however, quickly lead to the implementation of complex descriptions of any possible configuration the overlapping shapes may appear in. Presented here is a new approach to segment overlapping shapes which utilizes information gained from probing the image with test rays. Test rays intersections...
Effect of higher orbital angular momenta in the baryon spectrum
Garcilazo, H; Fernández, F
2001-01-01
We have performed a Faddeev calculation of the baryon spectrum for the chiral constituent quark model including higher orbital angular momentum states. We have found that the effect of these states is important, although a description of the baryon spectrum of the same quality as the one given by including only the lowest-order configurations can be obtained. We have studied the effect of the pseudoscalar quark-quark interaction on the relative position of the positive- and negative-parity excitations of the nucleon as well as the effect of varying the strength of the color-magnetic interaction.
GEOMETRIC QUALITY ASSESSMENT OF LIDAR DATA BASED ON SWATH OVERLAP
Directory of Open Access Journals (Sweden)
A. Sampath
2016-06-01
Full Text Available This paper provides guidelines on quantifying the relative horizontal and vertical errors observed between conjugate features in the overlapping regions of lidar data. The quantification of these errors is important because their presence quantifies the geometric quality of the data. A data set can be said to have good geometric quality if measurements of identical features, regardless of their position or orientation, yield identical results. Good geometric quality indicates that the data are produced using sensor models that are working as they are mathematically designed, and data acquisition processes are not introducing any unforeseen distortion in the data. High geometric quality also leads to high geolocation accuracy of the data when the data acquisition process includes coupling the sensor with geopositioning systems. Current specifications (e.g. Heidemann 2014 do not provide adequate means to quantitatively measure these errors, even though they are required to be reported. Current accuracy measurement and reporting practices followed in the industry and as recommended by data specification documents also potentially underestimate the inter-swath errors, including the presence of systematic errors in lidar data. Hence they pose a risk to the user in terms of data acceptance (i.e. a higher potential for Type II error indicating risk of accepting potentially unsuitable data. For example, if the overlap area is too small or if the sampled locations are close to the center of overlap, or if the errors are sampled in flat regions when there are residual pitch errors in the data, the resultant Root Mean Square Differences (RMSD can still be small. To avoid this, the following are suggested to be used as criteria for defining the inter-swath quality of data: a Median Discrepancy Angle b Mean and RMSD of Horizontal Errors using DQM measured on sloping surfaces c RMSD for sampled locations from flat areas (defined as areas with less than 5
Geometric Quality Assessment of LIDAR Data Based on Swath Overlap
Sampath, A.; Heidemann, H. K.; Stensaas, G. L.
2016-06-01
This paper provides guidelines on quantifying the relative horizontal and vertical errors observed between conjugate features in the overlapping regions of lidar data. The quantification of these errors is important because their presence quantifies the geometric quality of the data. A data set can be said to have good geometric quality if measurements of identical features, regardless of their position or orientation, yield identical results. Good geometric quality indicates that the data are produced using sensor models that are working as they are mathematically designed, and data acquisition processes are not introducing any unforeseen distortion in the data. High geometric quality also leads to high geolocation accuracy of the data when the data acquisition process includes coupling the sensor with geopositioning systems. Current specifications (e.g. Heidemann 2014) do not provide adequate means to quantitatively measure these errors, even though they are required to be reported. Current accuracy measurement and reporting practices followed in the industry and as recommended by data specification documents also potentially underestimate the inter-swath errors, including the presence of systematic errors in lidar data. Hence they pose a risk to the user in terms of data acceptance (i.e. a higher potential for Type II error indicating risk of accepting potentially unsuitable data). For example, if the overlap area is too small or if the sampled locations are close to the center of overlap, or if the errors are sampled in flat regions when there are residual pitch errors in the data, the resultant Root Mean Square Differences (RMSD) can still be small. To avoid this, the following are suggested to be used as criteria for defining the inter-swath quality of data: a) Median Discrepancy Angle b) Mean and RMSD of Horizontal Errors using DQM measured on sloping surfaces c) RMSD for sampled locations from flat areas (defined as areas with less than 5 degrees of slope
Zhang, Zijing; Qiao, Tianyuan; Ma, Kun; Cen, Longzhu; Zhang, Jiandong; Wang, Feng; Zhao, Yuan
2016-08-15
Photon orbital angular momentum has led to many novel insights and applications in quantum measurement. Photon orbital angular momentum can increase the resolution and sensitivity of angular rotation measurement. However, quantum measurement strategy can further surpass this limit and improve the resolution of angular rotation measurement. This Letter proposes and demonstrates a parity measurement method in angular rotation measurement scheme for the first time. Parity measurement can make the resolution superior to the limit of the existing method. The sensitivity can be improved with higher orbital angular momentum photons. Moreover, this Letter gives a detailed discussion of the change of resolution and sensitivity in the presence of photon loss.
Inflation expectations and stability in an overlapping generations experiment with money creation
Heemeijer, P.; Hommes, C.; Sonnemans, J.; Tuinstra, J.
2009-01-01
We investigate how non-specialists form inflation expectations by running an experiment using a basic Overlapping Generations (OLG) model. The participants of the experiment are students of the University of Amsterdam, who predict inflation during 50 successive periods and are rewarded based on thei
Communication: Unambiguous comparison of many-electron wavefunctions through their overlaps
Plasser, Felix; González, Leticia
2016-07-01
A simple and powerful method for comparing many-electron wavefunctions constructed at different levels of theory is presented. By using wavefunction overlaps, it is possible to analyze the effects of varying wavefunction models, molecular orbitals, and one-electron basis sets. The computation of wavefunction overlaps eliminates the inherent ambiguity connected to more rudimentary wavefunction analysis protocols, such as visualization of orbitals or comparing selected physical observables. Instead, wavefunction overlaps allow processing the many-electron wavefunctions in their full inherent complexity. The presented method is particularly effective for excited state calculations as it allows for automatic monitoring of changes in the ordering of the excited states. A numerical demonstration based on multireference computations of two test systems, the selenoacrolein molecule and an iridium complex, is presented.
3D Image Reconstruction from X-Ray Measurements with Overlap
Klodt, Maria
2016-01-01
3D image reconstruction from a set of X-ray projections is an important image reconstruction problem, with applications in medical imaging, industrial inspection and airport security. The innovation of X-ray emitter arrays allows for a novel type of X-ray scanners with multiple simultaneously emitting sources. However, two or more sources emitting at the same time can yield measurements from overlapping rays, imposing a new type of image reconstruction problem based on nonlinear constraints. Using traditional linear reconstruction methods, respective scanner geometries have to be implemented such that no rays overlap, which severely restricts the scanner design. We derive a new type of 3D image reconstruction model with nonlinear constraints, based on measurements with overlapping X-rays. Further, we show that the arising optimization problem is partially convex, and present an algorithm to solve it. Experiments show highly improved image reconstruction results from both simulated and real-world measurements.
Analytical Approximation of the Deconvolution of Strongly Overlapping Broad Fluorescence Bands
Dubrovkin, J. M.; Tomin, V. I.; Ushakou, D. V.
2016-09-01
A method for deconvoluting strongly overlapping spectral bands into separate components that enables the uniqueness of the deconvolution procedure to be monitored was proposed. An asymmetric polynomial-modified function subjected to Fourier filtering (PMGFS) that allowed more accurate and physically reasonable band shapes to be obtained and also improved significantly the deconvolution convergence was used as the band model. The method was applied to the analysis of complexation in solutions of the molecular probe 4'-(diethylamino)-3-hydroxyflavone with added LiCl. Two-band fluorescence of the probe in such solutions was the result of proton transfer in an excited singlet state and overlapped strongly with stronger spontaneous emission of complexes with the ions. Physically correct deconvolutions of overlapping bands could not always be obtained using available software.
Mass and Angular Momentum in General Relativity
Jaramillo, J L
2010-01-01
We present an introduction to mass and angular momentum in General Relativity. After briefly reviewing energy-momentum for matter fields, first in the flat Minkowski case (Special Relativity) and then in curved spacetimes with or without symmetries, we focus on the discussion of energy-momentum for the gravitational field. We illustrate the difficulties rooted in the Equivalence Principle for defining a local energy-momentum density for the gravitational field. This leads to the understanding of gravitational energy-momentum and angular momentum as non-local observables that make sense, at best, for extended domains of spacetime. After introducing Komar quantities associated with spacetime symmetries, it is shown how total energy-momentum can be unambiguously defined for isolated systems, providing fundamental tests for the internal consistency of General Relativity as well as setting the conceptual basis for the understanding of energy loss by gravitational radiation. Finally, several attempts to formulate q...
Angular MET sensor for precise azimuth determination
Zaitsev, Dmitry; Antonov, Alexander; Krishtop, Vladimir
2016-12-01
This paper describes using a MET-based low-noise angular motion sensor to precisely determine azimuth direction in a dynamic-scheme method of measuring Earth's rotation velocity vector. The scheme includes installing a sensor on a rotating platform so that it could scan a space and seek for the position of highest Earth's rotation vector projection on its axis. This method is very efficient provided a low-noise sensor is used. We take a low-cost angular sensor based on MET (molecular electronic transduction) technology. Sensors of this kind were originally developed for the seismic activity monitoring and are well-known for very good noise performance and high sensitivity. This approach, combined with use of special signal processing algorithms, allowed for reaching the accuracy of 0.07° for a measurement time of 200 seconds.
Quantum Entanglement of Very High Angular Momenta
Fickler, Robert; Plick, William N; Krenn, Mario; Schaeff, Christoph; Ramelow, Sven; Zeilinger, Anton
2012-01-01
Single photons with helical phase structure may carry a quantized amount of orbital angular momentum (OAM) and are of great interest in quantum information science and fundamental tests of quantum theory. Since there is no theoretical upper limit on how many quanta of OAM a single photon can carry, those systems offer the possibility to create superpositions for one particle and entanglement between two particles with an arbitrary high difference in the quantum number. By transferring polarization entanglement to the OAM degree-of-freedom with an interferometric scheme, we created and observed entanglement up to $600\\bar{h}$ difference in the orbital angular momentum. To our knowledge, we have thus demonstrated entanglement of the highest quantum number in any experiment so far. The only restrictive factor towards even higher numbers arises due to current technical limitations. Furthermore, we show experimentally that the entanglement of very high OAM can be used to improve applications, like the sensitivity ...
Bell inequalities with continuous angular variables
Borges, Carolina V S; Keller, Arne
2011-01-01
We consider bipartite quantum systems characterized by a continuous angular variable \\theta \\in [-\\pi, \\pi[, representing, for instance, the position of a particle on a circle. We show how to reveal non-locality on this type of system using inequalities similar to CHSH ones, originally derived for bipartite spin 1/2 like systems. Such inequalities involve correlated measurement of continuous angular functions and are equivalent to the continuous superposition of CHSH inequalities acting on bidimensional subspaces of the infinite dimensional Hilbert space. As an example, we discuss in detail one application of our results, and we derive inequalities based on orientation correlation measurements. The introduced Bell-type inequalities open the perspective of new and simpler experiments to test non locality on a variety of quantum systems described by continuous variables.
Coherent Control of Photoelectron Wavepacket Angular Interferograms
Hockett, Paul; Wollenhaupt, Matthias; Baumert, Thomas
2015-01-01
Coherent control over photoelectron wavepackets, via the use of polarization-shaped laser pulses, can be understood as a time and polarization-multiplexed process. In this work, we investigate this multiplexing via computation of the observable photoelectron angular interferograms resulting from multi-photon atomic ionization with polarization-shaped laser pulses. We consider the polarization sensitivity of both the instantaneous and cumulative continuum wavefunction; the nature of the cohere...
Angular resolution of stacked resistive plate chambers
Samuel, Deepak; Murgod, Lakshmi P
2016-01-01
We present here detailed derivations of mathematical expressions for the angular resolution of a set of stacked resistive plate chambers (RPCs). The expressions are validated against experimental results using data collected from the prototype detectors (without magnet) of the upcoming India-based Neutrino Observatory (INO). In principle, these expressions can be used for any other detector with an architecture similar to that of RPCs.
Angular Momentum Sharing in Dissipative Collisions
Casini, G.; Poggi, G.; Bini, M.; Calamai, S.; Maurenzig, P. R.; Olmi, A.; Pasquali, G.; Stefanini, A. A.; Taccetti, N.; Steckmeyer, J. C.; Laforest, R.; Saint-Laurent, F.
1999-09-01
Light charged particles emitted by the projectilelike fragment were measured in the direct and reverse collision of 93Nb and 116Sn at 25A MeV. The experimental multiplicities of hydrogen and helium particles as a function of the primary mass of the emitting fragment show evidence for a correlation with net mass transfer. The ratio of hydrogen and helium multiplicities points to a dependence of the angular momentum sharing on the net mass transfer.
Angular momentum sharing in dissipative collisions
Casini, G; Bini, M; Calamai, S; Maurenzig, P R; Olmi, A; Pasquali, G; Stefanini, A A; Taccetti, N; Steckmeyer, J C; Laforest, R; Saint-Laurent, F
1999-01-01
Light charged particles emitted by the projectile-like fragment were measured in the direct and reverse collision of $^{93}$Nb and $^{116}$Sn at 25 AMeV. The experimental multiplicities of Hydrogen and Helium particles as a function of the primary mass of the emitting fragment show evidence for a correlation with net mass transfer. The ratio of Hydrogen and Helium multiplicities points to a dependence of the angular momentum sharing on the net mass transfer.
Angular cheilitis, part 1: local etiologies.
Park, Kelly K; Brodell, Robert T; Helms, Stephen E
2011-06-01
Angular cheilitis (AC) is a common condition characterized by erythema, moist maceration, ulceration, and crusting at the corners of the mouth. This article focuses on the common local factors that act alone and in combination to produce AC. These factors are categorized as irritant, allergic, and infectious causes. Identifying the underlying etiology of AC is a critical step in developing an effective treatment plan for this condition.
Solving the angular momentum problem in the cold feedback mechanism of cooling flows
Pizzolato, Fabio
2010-01-01
We show that cold clumps in the intra--cluster medium (ICM) efficiently lose their angular momentum as they fall in, such that they can rapidly feed the central AGN and maintain a heating feedback process. Such cold clumps are predicted by the cold feedback model, a model for maintaining the ICM in cooling flows hot by a feedback process. The clumps very effectively lose their angular momentum in two channels: the drag force exerted by the ICM and the random collisions between clumps when they are close to the central black hole. We conclude that the angular momentum cannot prevent the accretion of the cold clumps, and the cold feedback mechanism is a viable model for a feedback mechanism in cooling flows. Cold feedback does not suffer from the severe problems of models that are based on the Bondi accretion.
An extension to artifact-free projection overlaps
Energy Technology Data Exchange (ETDEWEB)
Lin, Jianyu, E-mail: jianyulin@hotmail.com [Department of Electrical and Computer Engineering, Curtin University, GPO Box U1987, Perth, Western Australia 6845 (Australia)
2015-05-15
Purpose: In multipinhole single photon emission computed tomography, the overlapping of projections has been used to increase sensitivity. Avoiding artifacts in the reconstructed image associated with projection overlaps (multiplexing) is a critical issue. In our previous report, two types of artifact-free projection overlaps, i.e., projection overlaps that do not lead to artifacts in the reconstructed image, were formally defined and proved, and were validated via simulations. In this work, a new proposition is introduced to extend the previously defined type-II artifact-free projection overlaps so that a broader range of artifact-free overlaps is accommodated. One practical purpose of the new extension is to design a baffle window multipinhole system with artifact-free projection overlaps. Methods: First, the extended type-II artifact-free overlap was theoretically defined and proved. The new proposition accommodates the situation where the extended type-II artifact-free projection overlaps can be produced with incorrectly reconstructed portions in the reconstructed image. Next, to validate the theory, the extended-type-II artifact-free overlaps were employed in designing the multiplexing multipinhole spiral orbit imaging systems with a baffle window. Numerical validations were performed via simulations, where the corresponding 1-pinhole nonmultiplexing reconstruction results were used as the benchmark for artifact-free reconstructions. The mean square error (MSE) was the metric used for comparisons of noise-free reconstructed images. Noisy reconstructions were also performed as part of the validations. Results: Simulation results show that for noise-free reconstructions, the MSEs of the reconstructed images of the artifact-free multiplexing systems are very similar to those of the corresponding 1-pinhole systems. No artifacts were observed in the reconstructed images. Therefore, the testing results for artifact-free multiplexing systems designed using the
Strong Clustering of Faint Galaxies at Small Angular Scales
Infante, L; Menanteau, F
1996-01-01
The 2-point angular correlation function of galaxies, \\wt, has been computed on equatorial fields observed with the CTIO 4m prime focus, within a total area of 2.31 deg$^2$. In the magnitude range $19\\le m_R \\le 21.5$, corresponding to $\\approx 0.35$, we find an excess of power in \\wt at scales $2''\\le\\theta larger $\\theta$. The significance of this excess is $\\approx 5\\sigma$. At larger scales, $6''< \\theta \\le 24''$, the amplitude of \\wt is 1.6 times smaller than the standard no evolutionary model. At these scales there is remarkable agreement between the present data and Infante \\& Pritchet (1995). At large angular scales ($6''< \\theta \\le 24''$) the data is best described by a model where clustering evolution in $\\xi(r,z)$ has taken place. Strong luminosity evolution cannot be ruled out with the present data. At smaller scales, $2''\\le \\theta \\le 6''$, our data are formally fit by models where $(Ømega=0.2, \\epsilon=0)$. If the mean redshift of our sample is 0.35 then our data show a clear detec...
The Cosmology Large Angular Scale Surveyor
Harrington, Kathleen; Ali, Aamir; Appel, John W; Bennett, Charles L; Boone, Fletcher; Brewer, Michael; Chan, Manwei; Chuss, David T; Colazo, Felipe; Dahal, Sumit; Denis, Kevin; Dünner, Rolando; Eimer, Joseph; Essinger-Hileman, Thomas; Fluxa, Pedro; Halpern, Mark; Hilton, Gene; Hinshaw, Gary F; Hubmayr, Johannes; Iuliano, Jeffery; Karakla, John; McMahon, Jeff; Miller, Nathan T; Moseley, Samuel H; Palma, Gonzalo; Parker, Lucas; Petroff, Matthew; Pradenas, Bastián; Rostem, Karwan; Sagliocca, Marco; Valle, Deniz; Watts, Duncan; Wollack, Edward; Xu, Zhilei; Zeng, Lingzhen
2016-01-01
The Cosmology Large Angular Scale Surveyor (CLASS) is a four telescope array designed to characterize relic primordial gravitational waves from inflation and the optical depth to reionization through a measurement of the polarized cosmic microwave background (CMB) on the largest angular scales. The frequencies of the four CLASS telescopes, one at 38 GHz, two at 93 GHz, and one dichroic system at 145/217 GHz, are chosen to avoid spectral regions of high atmospheric emission and span the minimum of the polarized Galactic foregrounds: synchrotron emission at lower frequencies and dust emission at higher frequencies. Low-noise transition edge sensor detectors and a rapid front-end polarization modulator provide a unique combination of high sensitivity, stability, and control of systematics. The CLASS site, at 5200 m in the Chilean Atacama desert, allows for daily mapping of up to 70\\% of the sky and enables the characterization of CMB polarization at the largest angular scales. Using this combination of a broad f...
The Cosmology Large Angular Scale Surveyor (CLASS)
Harrington, Kathleen; Marriange, Tobias; Aamir, Ali; Appel, John W.; Bennett, Charles L.; Boone, Fletcher; Brewer, Michael; Chan, Manwei; Chuss, David T.; Colazo, Felipe; Denis, Kevin; Moseley, Samuel H.; Rostem, Karwan; Wollack, Edward
2016-01-01
The Cosmology Large Angular Scale Surveyor (CLASS) is a four telescope array designed to characterize relic primordial gravitational waves from in ation and the optical depth to reionization through a measurement of the polarized cosmic microwave background (CMB) on the largest angular scales. The frequencies of the four CLASS telescopes, one at 38 GHz, two at 93 GHz, and one dichroic system at 145/217 GHz, are chosen to avoid spectral regions of high atmospheric emission and span the minimum of the polarized Galactic foregrounds: synchrotron emission at lower frequencies and dust emission at higher frequencies. Low-noise transition edge sensor detectors and a rapid front-end polarization modulator provide a unique combination of high sensitivity, stability, and control of systematics. The CLASS site, at 5200 m in the Chilean Atacama desert, allows for daily mapping of up to 70% of the sky and enables the characterization of CMB polarization at the largest angular scales. Using this combination of a broad frequency range, large sky coverage, control over systematics, and high sensitivity, CLASS will observe the reionization and recombination peaks of the CMB E- and B-mode power spectra. CLASS will make a cosmic variance limited measurement of the optical depth to reionization and will measure or place upper limits on the tensor-to-scalar ratio, r, down to a level of 0.01 (95% C.L.).
Angular cheilitis: a clinical and microbial study.
Ohman, S C; Dahlén, G; Möller, A; Ohman, A
1986-04-01
The purpose of this prospective study was to re-examine the relative importance of various factors in the pathogenesis of angular cheilitis. Sixty-four patients with cheilitis were examined clinically and microbiologically. In addition, a subsample of 23 patients was examined for serum iron and transferrin. The clinical appearance of the lip lesions fell into 4 categories. A ground rhagad at the corner of the mouth involving adjacent skin, was the most frequent type among dentate patients, whereas among denture wearers a deep lesion following the labial marginal sulcus was frequently observed. Dentate patients and denture wearers with cheilitis often had atopic constitution or cutaneous diseases. Pathogenic microorganisms were cultured from the lesions in all 64 patients; Staphylococcus aureus in 40 patients and Candida albicans in 45. The results of this study indicate a correlation between angular cheilitis and pathogenic microorganisms. Furthermore, among dentate patients, a correlation exists between cutaneous discomfort and angular cheilitis. Other etiological factors suggested for this disorder were found to be of subordinate importance.
Vyas, Urvi; Christensen, Douglas A
2011-11-01
The angular spectrum method is an accurate and computationally efficient method for modeling acoustic wave propagation. The use of the typical 2D fast Fourier transform algorithm makes this a fast technique but it requires that the source pressure (or velocity) be specified on a plane. Here the angular spectrum method is extended to calculate pressure from a spherical transducer-as used extensively in applications such as magnetic resonance-guided focused ultrasound surgery-to a plane. The approach, called the Ring-Bessel technique, decomposes the curved source into circular rings of increasing radii, each ring a different distance from the intermediate plane, and calculates the angular spectrum of each ring using a Fourier series. Each angular spectrum is then propagated to the intermediate plane where all the propagated angular spectra are summed to obtain the pressure on the plane; subsequent plane-to-plane propagation can be achieved using the traditional angular spectrum method. Since the Ring-Bessel calculations are carried out in the frequency domain, it reduces calculation times by a factor of approximately 24 compared to the Rayleigh-Sommerfeld method and about 82 compared to the Field II technique, while maintaining accuracies of better than 96% as judged by those methods for cases of both solid and phased-array transducers.
Simulation and experimental studies of a double-fiber angular displacement sensor
Zhu, Ruixue; Jing, Ruiping; Cheng, Yongjin
2017-03-01
A novel optical fiber angular displacement sensor is reported in this study. It gets the rotating angle of an object by means of the intensity modulation of a reflected light. The sensor probe, which is composed of an emitting fiber and a receiving fiber that are aligned along the vertical direction closely, is fixed directly on the rotating object. The measurements for axial displacement and angular displacement were operated separately. In particular, measurements for angular displacement were performed when the reflector is placed at different distances from the sensor probe separately. There is an excellent linearity between the angular displacement and the sensor output power. The results indicate that the larger the distance between the sensor probe and the reflector, the higher sensitivity the angular displacement sensor has. A theoretical model of the sensor is also developed and the simulate computation demonstrates that the theoretical results are in accordance with the experimental ones. The linear sensing range is ±7.2°, and the maximum sensitivity is 13.71%/deg. Furthermore, the hysteresis and the reproducibility of the measurement of the sensor are investigated. The designed sensor provides a kind of simple and effective method for measuring the angular displacement of a shaft system in practice due to its small size, light weight, good linearity and reproducibility.
Institute of Scientific and Technical Information of China (English)
WANG Buhong; WANG Yongliang; CHEN Hui; GUO Ying
2004-01-01
Array calibration with angularly dependent gain and phase uncertainties has long been a difficult problem. Although many array calibration methods have been reported extensively in the literature, they almost all assumed an angularly independent model for array uncertainties. Few calibration methods have been developed for the angularly dependent array uncertainties. A novel and efficient auto-calibration method for angularly dependent gain and phase uncertainties is proposed in this paper, which is called ISM (Instrumental Sensors Method). With the help of a few well-calibrated instrumental sensors, the ISM is able to achieve favorable and unambiguous direction-of-arrivals (DOAs) estimate and the corresponding angularly dependent gain and phase estimate simultaneously, even in the case of multiple non-disjoint sources. Since the mutual coupling and sensor position errors can all be described as angularly dependent gain/phase uncertainties, the ISM proposed still works in the presence of a combination of all these array perturbations. The ISM can be applied to arbitrary array geometries including linear arrays. The ISM is computationally efficient and requires only one-dimensional search, with no high-dimensional nonlinear search and convergence burden involved. Besides, no small error assumption is made, which is always an essential prerequisite for many existing array calibration techniques. The estimation performance of the ISM is analyzed theoretically and simulation results are provided to demonstrate the effectiveness and behavior of the proposed ISM.
Localization of angular momentum in optical waves propagating through turbulence.
Sanchez, Darryl J; Oesch, Denis W
2011-12-01
This is the first in a series of papers demonstrating that photons with orbital angular momentum can be created in optical waves propagating through distributed turbulence. The scope of this first paper is much narrower. Here, we demonstrate that atmospheric turbulence can impart non-trivial angular momentum to beams and that this non-trivial angular momentum is highly localized. Furthermore, creation of this angular momentum is a normal part of propagation through atmospheric turbulence.
Study of the Angular Distribution of Scintillation Photons
Fornaro, Giulia Alice; Ghezzi, Alessio; Knapitsch, Arno; Modrzynski, Pawel; Pizzichemi, Marco; Lecoq, Paul; Auffray, Etiennette
2014-01-01
This paper presents a characterization method to experimentally determine the angular distribution of scintillation light. By exciting LYSO crystals with a radioactive source, we measured the light angular profiles obtained with samples of different geometries in different conditions of wrapping. We also measured the angular distribution of light emitting in glue and compared it with the one emitting in air. Angular distribution of light output of photonic crystals is also provided. Consistency of the measurements is verified with conventional light output measurements.
The Cosmology Large Angular Scale Surveyor
Ali, Aamir; Appel, John W.; Bennett, Charles L.; Boone, Fletcher; Brewer, Michael; Chan, Manwei; Chuss, David T.; Colazo, Felipe; Dahal, Sumit; Denis, Kevin; Dünner, Rolando; Eimer, Joseph; Essinger-Hileman, Thomas; Fluxa, Pedro; Halpern, Mark; Hilton, Gene; Hinshaw, Gary F.; Hubmayr, Johannes; Iuliano, Jeffrey; Karakla, John; Marriage, Tobias; McMahon, Jeff; Miller, Nathan; Moseley, Samuel H.; Palma, Gonzalo; Parker, Lucas; Petroff, Matthew; Pradenas, Bastián; Rostem, Karwan; Sagliocca, Marco; Valle, Deniz; Watts, Duncan; Wollack, Edward; Xu, Zhilei; Zeng, Lingzhen
2017-01-01
The Cosmology Large Angular Scale Surveryor (CLASS) is a ground based telescope array designed to measure the large-angular scale polarization signal of the Cosmic Microwave Background (CMB). The large-angular scale CMB polarization measurement is essential for a precise determination of the optical depth to reionization (from the E-mode polarization) and a characterization of inflation from the predicted polarization pattern imprinted on the CMB by gravitational waves in the early universe (from the B-mode polarization). CLASS will characterize the primordial tensor-to-scalar ratio, r, to 0.01 (95% CL).CLASS is uniquely designed to be sensitive to the primordial B-mode signal across the entire range of angular scales where it could possibly dominate over the lensing signal that converts E-modes to B-modes while also making multi-frequency observations both high and low of the frequency where the CMB-to-foreground signal ratio is at its maximum. The design enables CLASS to make a definitive cosmic-variance-limited measurement of the optical depth to scattering from reionization.CLASS is an array of 4 telescopes operating at approximately 40, 90, 150, and 220 GHz. CLASS is located high in the Andes mountains in the Atacama Desert of northern Chile. The location of the CLASS site at high altitude near the equator minimizes atmospheric emission while allowing for daily mapping of ~70% of the sky.A rapid front end Variable-delay Polarization Modulator (VPM) and low noise Transition Edge Sensor (TES) detectors allow for a high sensitivity and low systematic error mapping of the CMB polarization at large angular scales. The VPM, detectors and their coupling structures were all uniquely designed and built for CLASS.We present here an overview of the CLASS scientific strategy, instrument design, and current progress. Particular attention is given to the development and status of the Q-band receiver currently surveying the sky from the Atacama Desert and the development of
Notes on the Polynomial Identities in Random Overlap Structures
Sollich, Peter; Barra, Adriano
2012-04-01
In these notes we review first in some detail the concept of random overlap structure (ROSt) applied to fully connected and diluted spin glasses. We then sketch how to write down the general term of the expansion of the energy part from the Boltzmann ROSt (for the Sherrington-Kirkpatrick model) and the corresponding term from the RaMOSt, which is the diluted extension suitable for the Viana-Bray model. From the ROSt energy term, a set of polynomial identities (often known as Aizenman-Contucci or AC relations) is shown to hold rigorously at every order because of a recursive structure of these polynomials that we prove. We show also, however, that this set is smaller than the full set of AC identities that is already known. Furthermore, when investigating the RaMOSt energy for the diluted counterpart, at higher orders, combinations of such AC identities appear, ultimately suggesting a crucial role for the entropy in generating these constraints in spin glasses.
Computation of overlap integrals over STOs with mathematica
Yükçü, S. A.; Yükçü, N.
2017-02-01
Overlap integrals which encountered in molecular structure calculations are the most basic of molecular integrals. Also, other molecular integrals can be expressed in terms of these integrals. Overlap integrals can be calculated by using Slater Type Orbitals (STOs). In this work, we develop algorithms for two-center overlap integrals which are calculated over the STOs in ellipsoidal coordinates and some auxiliary functions by S. M. Mekelleche's group. During the computation of this paper, Mathematica programming language has been used to produce algorithms. Numerical results for some quantum numbers are presented in the tables. Finally, our numerical results and others are compared, then some details of evaluation method are discussed.
A Guide to Using STITCHER for Overlapping Assembly PCR Applications.
O'Halloran, Damien M
2017-01-01
Overlapping PCR is commonly used in many molecular applications that include stitching PCR fragments together, generating fluorescent transcriptional and translational fusions, inserting mutations, making deletions, and PCR cloning. Overlapping PCR is also used for genotyping and in detection experiments using techniques such as loop-mediated isothermal amplification (LAMP). STITCHER is a web tool providing a central resource for researchers conducting all types of overlapping assembly PCR experiments with an intuitive interface for automated primer design that's fast, easy to use, and freely available online.
Energy Technology Data Exchange (ETDEWEB)
Habasaki, Junko, E-mail: habasaki.j.aa@m.titech.ac.jp [Department of Innovative and Engineered Materials, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Nagatsuta 4259, Yokohama 226-8502 (Japan); Ngai, K. L. [CNR-IPCF Dipartimento di Fisica, Università di Pisa, Largo Bruno Pontecorvo 3, I-56127 Pisa (Italy)
2015-04-28
The typical ionic liquid, 1-ethyl-3-methyl imidazolium nitrate (EMIM-NO{sub 3}), was examined by molecular dynamics simulations of an all-atomistic model to show the characteristics of networks of cages and/or bonds in the course of vitrification of this fragile glass-former. The system shows changes of dynamics at two characteristic temperatures, T{sub B} (or T{sub c}) and the glass transition temperature T{sub g}, found in other fragile glass forming liquids [K. L. Ngai and J. Habasaki, J. Chem. Phys. 141, 114502 (2014)]. On decreasing temperature, the number of neighboring cation-anion pairs, N{sub B}, within the first minimum of the pair correlation function, g(r){sub min}, increases. On crossing T{sub B} (>T{sub g}), the system volume and diffusion coefficient both show changes in temperature dependence, and as usual at T{sub g}. The glass transition temperature, T{sub g}, is characterized by the saturation of the total number of “bonds,” N{sub B} and the corresponding decrease in degree of freedom, F = [(3N − 6) − N{sub B}], of the system consisting of N particles. Similar behavior holds for the other ion-ion pairs. Therefore, as an alternative, the dynamics of glass transition can be interpreted conceptually by rigidity percolation. Before saturation occurring at T{sub g}, the number of bonds shows a remarkable change at around T{sub B}. This temperature is associated with the disappearance of the loosely packed coordination polyhedra of anions around cation (or vice versa), related to the loss of geometrical freedom of the polyhedra, f{sub g}, of each coordination polyhedron, which can be defined by f{sub g} = [(3N{sub V} − 6) − N{sub b}]. Here, 3N{sub v} is the degree of freedom of N{sub V} vertices of the polyhedron, and N{sub b} is number of fictive bonds. The packing of polyhedra is characterized by the soft percolation of cages, which allows further changes with decreasing temperature. The power spectrum of displacement of the central ion
A critique of the angular momentum sum rules and a new angular momentum sum rule
Bakker, B L G; Trueman, T L
2004-01-01
We show that the expressions in the literature for the tensorial structure of the hadronic matrix elements of the angular momentum operators J are incorrect. Given this disagreement with the published results, we have taken pains to derive the correct expressions in three different ways, two involving explicit physical wave packets and the third, totally independent, based upon the rotational properties of the state vectors. Surprisingly it turns out that the results are very sensitive to the type of relativistic spin state used to describe the motion of the particle i.e. whether a canonical (i.e. boost) state or a helicity state is utilized. We present results for the matrix elements of the angular momentum operators, valid in an arbitrary Lorentz frame, both for helicity states and canonical states. These results are relevant for the construction of angular momentum sum rules, relating the angular momentum of a nucleon to the spin and orbital angular momentum of its constituents. Moreover, we show that it i...
Impacts of cloud overlap assumptions on radiative budgets and heating fields in convective regions
Wang, XiaoCong; Liu, YiMin; Bao, Qing
2016-01-01
Impacts of cloud overlap assumptions on radiative budgets and heating fields are explored with the aid of a cloud-resolving model (CRM), which provided cloud geometry as well as cloud micro and macro properties. Large-scale forcing data to drive the CRM are from TRMM Kwajalein Experiment and the Global Atmospheric Research Program's Atlantic Tropical Experiment field campaigns during which abundant convective systems were observed. The investigated overlap assumptions include those that were traditional and widely used in the past and the one that was recently addressed by Hogan and Illingworth (2000), in which the vertically projected cloud fraction is expressed by a linear combination of maximum and random overlap, with the weighting coefficient depending on the so-called decorrelation length Lcf. Results show that both shortwave and longwave cloud radiative forcings (SWCF/LWCF) are significantly underestimated under maximum (MO) and maximum-random (MRO) overlap assumptions, whereas remarkably overestimated under the random overlap (RO) assumption in comparison with that using CRM inherent cloud geometry. These biases can reach as high as 100 Wm- 2 for SWCF and 60 Wm- 2 for LWCF. By its very nature, the general overlap (GenO) assumption exhibits an encouraging performance on both SWCF and LWCF simulations, with the biases almost reduced by 3-fold compared with traditional overlap assumptions. The superiority of GenO assumption is also manifested in the simulation of shortwave and longwave radiative heating fields, which are either significantly overestimated or underestimated under traditional overlap assumptions. The study also pointed out the deficiency of constant assumption on Lcf in GenO assumption. Further examinations indicate that the CRM diagnostic Lcf varies among different cloud types and tends to be stratified in the vertical. The new parameterization that takes into account variation of Lcf in the vertical well reproduces such a relationship and
Creating an Isotopically Similar Earth-Moon System with Correct Angular Momentum from a Giant Impact
Wyatt, Bryant M; Sumpter, William J; Turner, Ty R; Smith, Edward L; Fain, Baylor G; Hutyra, Taylor J; Cook, Scott A; Hibbs, Michael F; Goderya, Shaukat N
2016-01-01
The giant impact hypothesis is the dominant theory explaining the formation of our Moon. However, its inability to produce an isotopically similar Earth-Moon system with correct angular momentum has cast a shadow on its validity. Computer-generated impacts have been successful in producing virtual systems that possess many of the physical properties we observe. Yet, addressing the isotopic similarities between the Earth and Moon coupled with correct angular momentum has proven to be challenging. Equilibration and evection resonance have been put forth as a means of reconciling the models. However, both were rejected in a meeting at The Royal Society in London. The main concern was that models were multi-staged and too complex. Here, we present initial impact conditions that produce an Earth-Moon system whose angular momentum and isotopic properties are correct. The model is straightforward and the results are a natural consequence of the impact.
Three-dimensional angular domain optical projection tomography
Ng, Eldon; Vasefi, Fartash; Roumeliotis, Michael; Kaminska, Bozena; Carson, Jeffrey J. L.
2011-03-01
Angular Domain Imaging (ADI) has been previously demonstrated to generate projection images of attenuating targets embedded within a turbid medium. The imaging system employs a silicon micro-tunnel array positioned between the sample and the detection system to reject scattered photons that have deviated from the initial propagation direction and to select for ballistic and quasi-ballistic photons that have retained their forward trajectory. Two dimensional tomographic images can be reconstructed from ADI projections collected at a multitude of angles. The objective of this work was to extend the system to three dimensions by collecting several tomographic images and stacking the reconstructed slices to generate a three dimensional volume representative of the imaging target. A diode laser (808nm, CW) with a beam expander was used to illuminate the sample cuvette. An Angular Filter Array (AFA) of 80 μm × 80 μm square-shaped tunnels 2 cm in length was used to select for image forming quasi-ballistic photons. Images were detected with a linear CCD. Our approach was to use a SCARA robot to rotate and translate the sample to collect sufficient projections to reconstruct a three dimensional volume. A custom designed 3D target consisting of 4 truncated cones was imaged and reconstructed with filtered backprojection and iterative methods. A 0.5 mm graphite rod was used to collect the forward model, while a truncated pseudoinverse was used to approximate the backward model for the iterative algorithm.
Institute of Scientific and Technical Information of China (English)
何立华; 王祖山
2015-01-01
In China, college entrance examination is one of the most important institutional arrangements of education which attracts the most attention of families who care about the offspring education. By constructing an OLG model, this study discussed the impact of the college entrance examination on micro dynamic mechanism, such as human capital formation, economic development and income distribution. Because capital market is imperfect and family’s education investment is conducive to the improvement of child's test scores, under unified college admission scores, part of the gifted children from low-income families were replaced by less gifted children from high-income families, so that they lose the opportunity to receive higher education. As a result, unified college admission scores will not only impede the low income family's upward mobility and the current human capital accumulation, but also reduce the long- term economic growth rate. In order to make the children from different families enjoy the equal opportunity to receive education, it is necessary to implement differentiated college admission scores. The Differentiated college admission scores brings not only the higher speed of economic growth, but alsothe welfare improvement of the most families.%在中国，高考几乎是每个关心子女教育的家庭最为关注的事情。通过构建一个 OLG 理论模型，本研究探讨了高考制度影响人力资本形成、经济增长和收入分配等的微观动态机制。由于家庭教育投资有助于提高高考成绩，在信贷市场不完善的条件下，统一的高考录取分数线将使得部分低收入家庭天资聪慧的子女被高收入家庭天资稍低的子女所替代。其结果是，统一录取分数的高考一方面阻碍了低收入家庭向上的代际流动和当期的人力资本积累，另一方面则是降低了长期经济增长速度。为了使不同家庭的子女享有公平的教育机会，差异化的高考
Hansen, Kirk; Dau, Nathan; Feist, Florian; Deck, Caroline; Willinger, Rémy; Madey, Steven M; Bottlang, Michael
2013-10-01
Angular acceleration of the head is a known cause of traumatic brain injury (TBI), but contemporary bicycle helmets lack dedicated mechanisms to mitigate angular acceleration. A novel Angular Impact Mitigation (AIM) system for bicycle helmets has been developed that employs an elastically suspended aluminum honeycomb liner to absorb linear acceleration in normal impacts as well as angular acceleration in oblique impacts. This study tested bicycle helmets with and without AIM technology to comparatively assess impact mitigation. Normal impact tests were performed to measure linear head acceleration. Oblique impact tests were performed to measure angular head acceleration and neck loading. Furthermore, acceleration histories of oblique impacts were analyzed in a computational head model to predict the resulting risk of TBI in the form of concussion and diffuse axonal injury (DAI). Compared to standard helmets, AIM helmets resulted in a 14% reduction in peak linear acceleration (pbicycle helmet, and may enhance prevention of bicycle-related TBI. Further research is required.
Texture in equal-channel angular pressed aluminum and nickel
Energy Technology Data Exchange (ETDEWEB)
Vogel, S.C.; Beyerlein, I.J.; Bourke, M.A.M.; Tome, C.N.; Rangaswamy, P. [Los Alamos National Lab., Los Alamos, NM (United States); Xu, C.; Langdon, T.G. [Univ. of Southern California, Los Angeles, CA (United States)
2002-07-01
Nano-structured metals with advantageous mechanical properties can be produced using severe plastic deformation techniques such as equal channel angular pressing (ECAP). Metals and alloys processed by ECAP have much higher yield strengths than the equivalent unprocessed material while retaining high ductilities, an extremely attractive combination of properties. Implicit in the process are the introduction of repetitive shear strains of 100% which introduce texture, the modeling of which is challenging. In this work, we present results from a neutron diffraction study on aluminum and nickel samples processed by ECAP. The results are compared to predictions from a visco-plastic self-consistent (VPSC) model. By taking into account grain-grain interactions in the model the agreement between the predicted and measured orientation distributions is improved. The results show also that the initial texture affects the texture evolution, at least up to strains of the order of {proportional_to}1, i.e. one ECAP pass. (orig.)
Angular momenta, dynamical masses, and mergers of brightest cluster galaxies
Energy Technology Data Exchange (ETDEWEB)
Jimmy; Tran, Kim-Vy [George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Brough, Sarah [Australian Astronomical Observatory, P.O. Box 915, North Ryde, NSW 1670 (Australia); Gebhardt, Karl [Department of Astronomy, University of Texas at Austin, 1 University Station C1400, Austin, TX 78712 (United States); Von der Linden, Anja [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 452 Lomita Mall, Stanford, CA 94305-4085 (United States); Couch, Warrick J. [Centre for Astrophysics and Supercomputing, Swinburne University, P.O. Box 218, Hawthorn, VIC 3122 (Australia); Sharp, Rob [Research School of Astronomy and Astrophysics, Australian National University, Cotter Road, Weston Creek, ACT 2611 (Australia)
2013-12-01
Using the VIMOS integral field unit (IFU) spectrograph on the Very Large Telescope, we have spatially mapped the kinematic properties of 10 nearby brightest cluster galaxies (BCGs) and 4 BCG companion galaxies located within a redshift of z = 0.1. In the hierarchical formation model, these massive galaxies (10{sup 10.5} M {sub ☉} < M {sub dyn} < 10{sup 11.9} M {sub ☉}) are expected to undergo more mergers than lower mass galaxies, and simulations show that dry minor mergers can remove angular momentum. We test whether BCGs have low angular momenta by using the λ {sub Re} parameter developed by the SAURON and ATLAS{sup 3D} teams and combine our kinematics with Sloan Digital Sky Survey photometry to analyze the BCGs' merger status. We find that 30% (3/10) of the BCGs and 100% of the companion galaxies (4/4) are fast rotators as defined by the ATLAS{sup 3D} criteria. Our fastest rotating BCG has a λ {sub Re} = 0.35 ± 0.05. We increase the number of BCGs analyzed from 1 in the combined SAURON and ATLAS{sup 3D} surveys to 11 BCGs total and find that above M {sub dyn} ∼ 11.5 M {sub ☉}, virtually all galaxies, regardless of environment, are slow rotators. To search for signs of recent merging, we analyze the photometry of each system and use the G – M {sub 20} selection criteria to identify mergers. We find that 40% ± 20% of our BCGs are currently undergoing or have recently undergone a merger (within 0.2 Gyr). Surprisingly, we find no correlation between galaxies with high angular momentum and morphological signatures of merging.
Slow-roll inflation and BB-mode angular power spectrum of CMB
Energy Technology Data Exchange (ETDEWEB)
Malsawmtluangi, N.; Suresh, P.K. [University of Hyderabad, School of Physics, Hyderabad (India)
2016-05-15
The BB-mode correlation angular power spectrum of CMB is obtained by considering the primordial gravitational waves in the squeezed vacuum state for various inflationary models and results are compared with the joint analysis of the BICEP2/Keck Array and Planck 353 GHz data. The present results may constrain several models of inflation. (orig.)
Overlapping Communities Detection Based on Link Partition in Directed Networks
Directory of Open Access Journals (Sweden)
Qingyu Zou
2013-09-01
Full Text Available Many complex systems can be described as networks to comprehend both the structure and the function. Community structure is one of the most important properties of complex networks. Detecting overlapping communities in networks have been more attention in recent years, but the most of approaches to this problem have been applied to the undirected networks. This paper presents a novel approach based on link partition to detect overlapping communities structure in directed networks. In contrast to previous researches focused on grouping nodes, our algorithm defines communities as groups of directed links rather than nodes with the purpose of nodes naturally belong to more than one community. This approach can identify a suitable number of overlapping communities without any prior knowledge about the community in directed networks. We evaluate our algorithm on a simple artificial network and several real-networks. Experimental results demonstrate that the algorithm proposed is efficient for detecting overlapping communities in directed networks.
Overlap Dirac Operator, Eigenvalues and Random Matrix Theory
Edwards, Robert G.; Heller, Urs M.; Kiskis, Joe; Narayanan, Rajamani
1999-01-01
The properties of the spectrum of the overlap Dirac operator and their relation to random matrix theory are studied. In particular, the predictions from chiral random matrix theory in topologically non-trivial gauge field sectors are tested.
Genetic overlap among intelligence and other candidate endophenotypes for schizophrenia
Aukes, Maartje F; Alizadeh, Behrooz Z; Sitskoorn, Margriet M; Kemner, Chantal; Ophoff, Roel A; Kahn, René S
2009-01-01
BACKGROUND: A strategy to improve genetic studies of schizophrenia involves the use of endophenotypes. Information on overlapping genetic contributions among endophenotypes may provide additional power, reveal biological pathways, and have practical implications for genetic research. Several cogniti
Angular Dispersion and Deflection Function for Heavy Ion Elastic Scattering
Institute of Scientific and Technical Information of China (English)
BAI Zhen; MAO Rui-Shi; YUAN Xiao-Hua; Xu Zhi-Guo; ZHANG Hong-Bin; XU Hua-Gen; QI Hui-Rong; WANG Yue; JIA Fei; WU Li-Jie; DING Xian-Li; WANG Qi; GAO Qi; GAO Hui; LI Song-Lin; LI Jun-Qing; ZHANG Ya-Peng; XIAO Guo-Qing; JIN Gen-Ming; REN Zhong-Zhou; ZHOU Shan-Gui; XU Wang; HAN Jian-Long; Fan Gong-Tao; ZHANG Shuang-Quan; PANG Dan-Yang; SERGEY Yu-Kun; XIAO Zhi-Gang; XU Hu-Shan; SUN Zhi-Yu; HU Zheng-Guo; ZHANG Xue-Ying; WANG Hong-Wei
2007-01-01
The differential cross sections for elastic scattering products of17 F on 208 Pb have been measured.The angular dispersion plots of In(dσ/dθ)versus θ2 are obtained from the angular distribution of the elastic scattering differential cross sections.Systematical analysis on the angular dispersion for the available experimental data indicates that there is an angular dispersion turning angle at forward angular range within the grazing angle.This turning angle can be clarified as nuclear rainbow in classical deflection function.The exotic behaviour of the nuclear rainbow angle offers a new probe to investigate the halo and skin phenomena.
Angular momentum evolution in laser-plasma accelerators
Thaury, C; Corde, S; Lehe, R; Bouteiller, M Le; Phuoc, K Ta; Davoine, X; Rax, J -M; Rousse, A; Malka, V
2013-01-01
The transverse properties of an electron beam are characterized by two quantities, the emittance which indicates the electron beam extend in the phase space and the angular momentum which allows for non-planar electron trajectories. Whereas the emittance of electron beams produced in laser- plasma accelerator has been measured in several experiments, their angular momentum has been scarcely studied. It was demonstrated that electrons in laser-plasma accelerator carry some angular momentum, but its origin was not established. Here we identify one source of angular momentum growth and we present experimental results showing that the angular momentum content evolves during the acceleration.
Angular-momentum evolution in laser-plasma accelerators.
Thaury, C; Guillaume, E; Corde, S; Lehe, R; Le Bouteiller, M; Ta Phuoc, K; Davoine, X; Rax, J M; Rousse, A; Malka, V
2013-09-27
The transverse properties of an electron beam are characterized by two quantities, the emittance which indicates the electron beam extent in the phase space and the angular momentum which allows for nonplanar electron trajectories. Whereas the emittance of electron beams produced in a laser-plasma accelerator has been measured in several experiments, their angular momentum has been scarcely studied. It was demonstrated that electrons in a laser-plasma accelerator carry some angular momentum, but its origin was not established. Here we identify one source of angular-momentum growth and we present experimental results showing that the angular-momentum content evolves during the acceleration.
Angular-Momentum Evolution in Laser-Plasma Accelerators
Thaury, C; Corde, S; Lehe, R; Le Bouteiller, M; Ta Phuoc, K; Davoine, X; Rax, J M; Rousse, A; Malka, V; 10.1103/PhysRevLett.111.135002
2013-01-01
The transverse properties of an electron beam are characterized by two quantities, the emittance which indicates the electron beam extent in the phase space and the angular momentum which allows for nonplanar electron trajectories. Whereas the emittance of electron beams produced in a laser-plasma accelerator has been measured in several experiments, their angular momentum has been scarcely studied. It was demonstrated that electrons in a laser-plasma accelerator carry some angular momentum, but its origin was not established. Here we identify one source of angular-momentum growth and we present experimental results showing that the angular-momentum content evolves during the acceleration.
Parametric analysis and design equation of ultimate capacity for unstiffened overlapped CHS K-joints
Institute of Scientific and Technical Information of China (English)
2008-01-01
A finite element model simulating an experiment on unstiffened,overlapped circular hollow structure (CHS)K-joints was generated and validated by comparing the ultimate capacities,deformation processes and failure modes of the experimental results.Using this model,the stress distribution,propagation of plasticity and the failure modes of overlapped joints with through-brace-in-compression and welded hidden seams were analyzed.The effect of geometric parameters,with or without hidden welds,and the loading hierarchy reversal of braces on the ultimate capacity of the joints were also studied.The results of finite element parametric analysis indicate that the brace-tochord thickness ratio has relatively large effects on the failure mechanism and ultimate capacity of overlapped joints.It was also found that the absence of hidden welds has less significance on the ultimate capacity of through-brace-incompression joints than through-brace-in tension joints.Finally,based on the design equation of gap joints,a formula predicting the ultimate capacity of overlapped CHS K-joints was derived by applying multivariate regression analysis.Results from the proposed design equation are consistent with experimental results.
Gene network interconnectedness and the generalized topological overlap measure
Directory of Open Access Journals (Sweden)
Horvath Steve
2007-01-01
Full Text Available Abstract Background Network methods are increasingly used to represent the interactions of genes and/or proteins. Genes or proteins that are directly linked may have a similar biological function or may be part of the same biological pathway. Since the information on the connection (adjacency between 2 nodes may be noisy or incomplete, it can be desirable to consider alternative measures of pairwise interconnectedness. Here we study a class of measures that are proportional to the number of neighbors that a pair of nodes share in common. For example, the topological overlap measure by Ravasz et al. 1 can be interpreted as a measure of agreement between the m = 1 step neighborhoods of 2 nodes. Several studies have shown that two proteins having a higher topological overlap are more likely to belong to the same functional class than proteins having a lower topological overlap. Here we address the question whether a measure of topological overlap based on higher-order neighborhoods could give rise to a more robust and sensitive measure of interconnectedness. Results We generalize the topological overlap measure from m = 1 step neighborhoods to m ≥ 2 step neighborhoods. This allows us to define the m-th order generalized topological overlap measure (GTOM by (i counting the number of m-step neighbors that a pair of nodes share and (ii normalizing it to take a value between 0 and 1. Using theoretical arguments, a yeast co-expression network application, and a fly protein network application, we illustrate the usefulness of the proposed measure for module detection and gene neighborhood analysis. Conclusion Topological overlap can serve as an important filter to counter the effects of spurious or missing connections between network nodes. The m-th order topological overlap measure allows one to trade-off sensitivity versus specificity when it comes to defining pairwise interconnectedness and network modules.
A novel symbol overlapping FFH-OCDMA system
Institute of Scientific and Technical Information of China (English)
Chengbin Shen(沈成彬); Chen Wu(吴琛); Jinhui Yu(于金辉); Ge Fan(范戈)
2004-01-01
@@ A novel symbol overlapping optical fast frequency-hop code-division multiple access(FFH-OCDMA)sys-tem is proposed,and its bit error rate(BER)performance is investigated under consideration of avalanchephotonic diode(APD)noise auid thermal noise.An experimental symbol overlapping(SO)FFH-OCDMAtestbed is developed and some experimental results axe given.The theoretical and experimental resultsshow that the system is apt to implement and has larger throughput.
Directory of Open Access Journals (Sweden)
Rozaimi Che Hasan
Full Text Available Multibeam echosounders (MBES are increasingly becoming the tool of choice for marine habitat mapping applications. In turn, the rapid expansion of habitat mapping studies has resulted in a need for automated classification techniques to efficiently map benthic habitats, assess confidence in model outputs, and evaluate the importance of variables driving the patterns observed. The benthic habitat characterisation process often involves the analysis of MBES bathymetry, backscatter mosaic or angular response with observation data providing ground truth. However, studies that make use of the full range of MBES outputs within a single classification process are limited. We present an approach that integrates backscatter angular response with MBES bathymetry, backscatter mosaic and their derivatives in a classification process using a Random Forests (RF machine-learning algorithm to predict the distribution of benthic biological habitats. This approach includes a method of deriving statistical features from backscatter angular response curves created from MBES data collated within homogeneous regions of a backscatter mosaic. Using the RF algorithm we assess the relative importance of each variable in order to optimise the classification process and simplify models applied. The results showed that the inclusion of the angular response features in the classification process improved the accuracy of the final habitat maps from 88.5% to 93.6%. The RF algorithm identified bathymetry and the angular response mean as the two most important predictors. However, the highest classification rates were only obtained after incorporating additional features derived from bathymetry and the backscatter mosaic. The angular response features were found to be more important to the classification process compared to the backscatter mosaic features. This analysis indicates that integrating angular response information with bathymetry and the backscatter mosaic, along with
Che Hasan, Rozaimi; Ierodiaconou, Daniel; Laurenson, Laurie; Schimel, Alexandre
2014-01-01
Multibeam echosounders (MBES) are increasingly becoming the tool of choice for marine habitat mapping applications. In turn, the rapid expansion of habitat mapping studies has resulted in a need for automated classification techniques to efficiently map benthic habitats, assess confidence in model outputs, and evaluate the importance of variables driving the patterns observed. The benthic habitat characterisation process often involves the analysis of MBES bathymetry, backscatter mosaic or angular response with observation data providing ground truth. However, studies that make use of the full range of MBES outputs within a single classification process are limited. We present an approach that integrates backscatter angular response with MBES bathymetry, backscatter mosaic and their derivatives in a classification process using a Random Forests (RF) machine-learning algorithm to predict the distribution of benthic biological habitats. This approach includes a method of deriving statistical features from backscatter angular response curves created from MBES data collated within homogeneous regions of a backscatter mosaic. Using the RF algorithm we assess the relative importance of each variable in order to optimise the classification process and simplify models applied. The results showed that the inclusion of the angular response features in the classification process improved the accuracy of the final habitat maps from 88.5% to 93.6%. The RF algorithm identified bathymetry and the angular response mean as the two most important predictors. However, the highest classification rates were only obtained after incorporating additional features derived from bathymetry and the backscatter mosaic. The angular response features were found to be more important to the classification process compared to the backscatter mosaic features. This analysis indicates that integrating angular response information with bathymetry and the backscatter mosaic, along with their derivatives
Temperature and angular momentum dependence of the quadrupole deformation in sd-shell
Indian Academy of Sciences (India)
P A Ganai; J A Sheikh; I Maqbool; R P Singh
2009-11-01
Temperature and angular momentum dependence of the quadrupole deformation is studied in the middle of the sd-shell for 28Si and 27Si isotopes using the spherical shell model approach. The shell model calculations have been performed using the standard universal sd-shell (USD) interaction and the canonical partition function constructed from the calculated eigensolutions. It is shown that the extracted average quadrupole moments show a transitional behaviour as a function of temperature and the infered transitional temperature is shown to vary with angular momentum. The quadrupole deformation of the individual eigenstate is also analysed.
Characterizing Computation-Communication Overlap in Message-Passing Systems
Energy Technology Data Exchange (ETDEWEB)
David E. Bernholdt; Jarek Nieplocha; P. Sadayappan; Aniruddha G. Shet; Vinod Tipparaju
2008-01-31
Effective overlap of computation and communication is a well understood technique for latency hiding and can yield significant performance gains for applications on high-end computers. In this report, we describe an instrumentation framework developed for messagepassing systems to characterize the degree of overlap of communication with computation in the execution of parallel applications. The inability to obtain precise time-stamps for pertinent communication events is a significant problem, and is addressed by generation of minimum and maximum bounds on achieved overlap. The overlap measures can aid application developers and system designers in investigating scalability issues. The approach has been used to instrument two MPI implementations as well as the ARMCI system. The implementation resides entirely within the communication library and thus integrates well with existing approaches that operate outside the library. The utility of the framework is demonstrated by analyzing communication-computation overlap for micro-benchmarks and the NAS benchmarks, and the insights obtained are used to modify the NAS SP benchmark, resulting in improved overlap.
Characterizing Computation-Communication Overlap in Message-Passing Systems
Energy Technology Data Exchange (ETDEWEB)
David E. Bernholdt; Jarek Nieplocha; P. Sadayappan; Aniruddha G. Shet; Vinod Tipparaju
2008-01-31
Effective overlap of computation and communication is a well understood technique for latency hiding and can yield significant performance gains for applications on high-end computers. In this report, we describe an instrumentation framework developed for message-passing systems to characterize the degree of overlap of communication with computation in the execution of parallel applications. The inability to obtain precise time-stamps for pertinent communication events is a significant problem, and is addressed by generation of minimum and maximum bounds on achieved overlap. The overlap measures can aid application developers and system designers in investigating scalability issues. The approach has been used to instrument two MPI implementations as well as the ARMCI system. The implementation resides entirely within the communication library and thus integrates well with existing approaches that operate outside the library. The utility of the framework is demonstrated by analyzing communication-computation overlap for micro-benchmarks and the NAS benchmarks, and the insights obtained are used to modify the NAS SP benchmark, resulting in improved overlap.
A Bayesian variable selection procedure to rank overlapping gene sets
Directory of Open Access Journals (Sweden)
Skarman Axel
2012-05-01
Full Text Available Abstract Background Genome-wide expression profiling using microarrays or sequence-based technologies allows us to identify genes and genetic pathways whose expression patterns influence complex traits. Different methods to prioritize gene sets, such as the genes in a given molecular pathway, have been described. In many cases, these methods test one gene set at a time, and therefore do not consider overlaps among the pathways. Here, we present a Bayesian variable selection method to prioritize gene sets that overcomes this limitation by considering all gene sets simultaneously. We applied Bayesian variable selection to differential expression to prioritize the molecular and genetic pathways involved in the responses to Escherichia coli infection in Danish Holstein cows. Results We used a Bayesian variable selection method to prioritize Kyoto Encyclopedia of Genes and Genomes pathways. We used our data to study how the variable selection method was affected by overlaps among the pathways. In addition, we compared our approach to another that ignores the overlaps, and studied the differences in the prioritization. The variable selection method was robust to a change in prior probability and stable given a limited number of observations. Conclusions Bayesian variable selection is a useful way to prioritize gene sets while considering their overlaps. Ignoring the overlaps gives different and possibly misleading results. Additional procedures may be needed in cases of highly overlapping pathways that are hard to prioritize.
Angular Momentum of Dark Matter Black Holes
Frampton, Paul H
2016-01-01
The putative black holes which may constitute all the dark matter are described by a Kerr metric with only two parameters, mass M and angular momentum J. There has been little discussion of J since it plays no role in the upcoming attempt at detection by microlensing. Nevertheless J does play a central role in understanding the previous lack of detection, especially of CMB distortion. We explain why bounds previously derived from lack of CMB distortion are too strong for primordial black holes with J non-vanishing. Almost none of the dark matter black holes can be from stellar collapse, and nearly all are primordial, to avoid excessive CMB distortion.
Angular momentum evolution of galaxies in EAGLE
Lagos, Claudia del P; Stevens, Adam R H; Cortese, Luca; Padilla, Nelson D; Davis, Timothy A; Contreras, Sergio; Croton, Darren
2016-01-01
We use EAGLE to study the specific angular momentum of galaxies, j, at z1.2, and then increase as lstars~a. Galaxy mergers reduce lstars by a factor of 2-3. These tracks are driven by both the evolution of the total jstars but also its radial distribution. Regardless of the aperture used to measure j, two distinct channels leading to low jstars in galaxies at z=0 are identified: (i) galaxy mergers, and (ii) early formation of most of the stars.
Angular momentum sensitive two-center interference.
Ilchen, M; Glaser, L; Scholz, F; Walter, P; Deinert, S; Rothkirch, A; Seltmann, J; Viefhaus, J; Decleva, P; Langer, B; Knie, A; Ehresmann, A; Al-Dossary, O M; Braune, M; Hartmann, G; Meissner, A; Tribedi, L C; AlKhaldi, M; Becker, U
2014-01-17
In quantum mechanics the Young-type double-slit experiment can be performed with electrons either traveling through a double slit or being coherently emitted from two inversion symmetric molecular sites. In the latter one the valence photoionization cross sections of homonuclear diatomic molecules were predicted to oscillate over kinetic energy almost 50 years ago. Beyond the direct proof of the oscillatory behavior of these photoionization cross sections σ, we show that the angular distribution of the emitted electrons reveals hitherto unexplored information on the relative phase shift between the corresponding partial waves through two-center interference patterns.
The Cosmology Large Angular Scale Surveyor (CLASS)
Eimer, Joseph; Ali, A.; Amiri, M.; Appel, J. W.; Araujo, D.; Bennett, C. L.; Boone, F.; Chan, M.; Cho, H.; Chuss, D. T.; Colazo, F.; Crowe, E.; Denis, K.; Dünner, R.; Essinger-Hileman, T.; Gothe, D.; Halpern, M.; Harrington, K.; Hilton, G.; Hinshaw, G. F.; Huang, C.; Irwin, K.; Jones, G.; Karakla, J.; Kogut, A. J.; Larson, D.; Limon, M.; Lowry, L.; Marriage, T.; Mehrle, N.; Miller, A. D.; Miller, N.; Moseley, S. H.; Novak, G.; Reintsema, C.; Rostem, K.; Stevenson, T.; Towner, D.; U-Yen, K.; Wagner, E.; Watts, D.; Wollack, E.; Xu, Z.; Zeng, L.
2014-01-01
The Cosmology Large Angular Scale Surveyor (CLASS) is an array of telescopes designed to search for the signature of inflation in the polarization of the Cosmic Microwave Background (CMB). By combining the strategy of targeting large scales (>2 deg) with novel front-end polarization modulation and novel detectors at multiple frequencies, CLASS will pioneer a new frontier in ground-based CMB polarization surveys. In this talk, I give an overview of the CLASS instrument, survey, and outlook on setting important new limits on the energy scale of inflation.
Angular Momentum Sensitive Two-Center Interference
Ilchen, M.; Glaser, L.; Scholz, F.; Walter, P.; Deinert, S.; Rothkirch, A.; Seltmann, J.; Viefhaus, J.; Decleva, P.; Langer, B.; Knie, A.; Ehresmann, A.; Al-Dossary, O. M.; Braune, M.; Hartmann, G.; Meissner, A.; Tribedi, L. C.; AlKhaldi, M.; Becker, U.
2014-01-01
In quantum mechanics the Young-type double-slit experiment can be performed with electrons either traveling through a double slit or being coherently emitted from two inversion symmetric molecular sites. In the latter one the valence photoionization cross sections of homonuclear diatomic molecules were predicted to oscillate over kinetic energy almost 50 years ago. Beyond the direct proof of the oscillatory behavior of these photoionization cross sections σ, we show that the angular distribution of the emitted electrons reveals hitherto unexplored information on the relative phase shift between the corresponding partial waves through two-center interference patterns.
Angular processes related to Cauchy random walks
Cammarota, Valemtina
2011-01-01
We study the angular process related to random walks in the Euclidean and in the non-Euclidean space where steps are Cauchy distributed. This leads to different types of non-linear transformations of Cauchy random variables which preserve the Cauchy density. We give the explicit form of these distributions for all combinations of the scale and the location parameters. Continued fractions involving Cauchy random variables are analyzed. It is shown that the $n$-stage random variables are still Cauchy distributed with parameters related to Fibonacci numbers. This permits us to show the convergence in distribution of the sequence to the golden ratio.
Disentangling the Overlap Between Employee Engagement and Passion
Directory of Open Access Journals (Sweden)
Gaja Zager Kocjan
2015-07-01
Full Text Available With the emergence of positive psychology and the subsequent positive organizational behavior movement, focusing on the employee experience and factors of positive psychological states in employees has come to the forefront. In recent years, several studies have emphasized the practical value of employee engagement and passion (the dualistic model of passion; Vallerand et al., 2003 in predicting various positive individual and organizational outcomes (e.g., performance, well-being. Although engagement and passion seem relatively easy to spot at first glance, they are rather difficult to define and distinguish one from another. Therefore, the aim of the present article is to provide a comprehensive discussion on the shared aspects and conceptual differences between these two constructs within the work environment. The most noticeable overlap is proposed to exist between engagement and harmonious passion. It concerns the common underlying development mechanism, a very strong motivational force to engage in one's work, strong identification with work, and similar relationships with various antecedents and consequences. It is suggested that broader scope theories (such as the self-determination theory should be taken into consideration in order to unify common findings from both theoretical backgrounds and overcome redundancy and the risk of multiplication of concepts in positive psychology.
Socially responsible investment in an environmental overlapping generations model
Dam, L.
2011-01-01
One of the problems associated with the conservation of the environment is that short-lived individuals fail to account for the long-term effects of pollution, which implies that future generations bear the costs imposed by the current generation. Such intergenerational externalities are usually tac
Angular momentum fluctuations in the convective helium shell of massive stars
Gilkis, Avishai
2015-01-01
We find significant fluctuations of angular momentum within the convective helium shell of a pre-collapse massive star - a core-collapse supernova progenitor - which may facilitate the formation of accretion disks and jets that can explode the star. The convective flow in our model of an evolved M_ZAMS=15Msun star, computed with the sub-sonic hydrodynamic solver MAESTRO, contains entire shells with net angular momentum in different directions. Such a distribution of angular momentum may give rise to several episodes of accretion disks with varying axes around the newly formed neutron star or black hole. The accretion disks in turn might launch jets that can explode the star in the frame of the jittering-jets model.
A Revised Prescription for the Tayler-Spruit Dynamo: Magnetic Angular Momentum Transport in Stars
Denissenkov, P A; Denissenkov, Pavel A.; Pinsonneault, Marc
2006-01-01
Angular momentum transport by internal magnetic fields is an important ingredient for stellar interior models. In this paper we critically examine the basic heuristic assumptions in the model of the Tayler-Spruit dynamo, which describes how a pinch-type instability of a toroidal magnetic field in differentially rotating stellar radiative zones may result in large-scale fluid motion. Our derivation accounts for Coriolis effects in both the growth and damping rates, unlike earlier studies. We present transport coefficients for chemical mixing and angular momentum redistribution by magnetic torques that are significantly different from previous published values. The new magnetic viscosity is reduced by 2 to 3 orders of magnitude compared to the old one, and we find that magnetic angular momentum transport by this mechanism is very sensitive to gradients in the mean molecular weight. The revised coefficients are more compatible with empirical constraints on the timescale of core-envelope coupling in young stars t...
Nonmonotonous variation of DNA angular separation during asymmetric pulsed field electrophoresis.
Nazemifard, Neda; Bhattacharjee, Subir; Masliyah, Jacob H; Harrison, D Jed
2013-09-01
Asymmetric pulsed field electrophoresis within crystalline arrays is used to generate angular separation of DNA molecules. Four regimes of the frequency response are observed, a low frequency rise in angular separation, a plateau, a subsequent decline, and a second plateau at higher frequencies. It is shown that the frequency response for different sized DNA is governed by the relation between pulse time and the reorientation time of DNA molecules. The decline in angular separation at higher frequencies has not previously been analyzed. Real-time videos of single DNA molecules migrating under high frequency-pulsed electric field show the molecules no longer follow the head to tail switching, ratchet mechanism seen at lower frequencies. Once the pulse period is shorter than the reorientation time, the migration mechanism changes significantly. The molecule reptates along the average direction of the two electric fields, which reduces the angular separation. A freely jointed chain model of DNA is developed where the porous structure is represented with a hexagonal array of obstacles. The model qualitatively predicts the variation of DNA angular separation with respect to frequency.
Statistical Angular Resolution Limit for Ultrawideband MIMO Noise Radar
Directory of Open Access Journals (Sweden)
Xiaoli Zhou
2015-01-01
Full Text Available The two-dimensional angular resolution limit (ARL of elevation and azimuth for MIMO radar with ultrawideband (UWB noise waveforms is investigated using statistical resolution theory. First, the signal model of monostatic UWB MIMO noise radar is established in a 3D reference frame. Then, the statistical angular resolution limits (SARLs of two closely spaced targets are derived using the detection-theoretic and estimation-theoretic approaches, respectively. The detection-theoretic approach is based on the generalized likelihood ratio test (GLRT with given probabilities of false alarm and detection, while the estimation-theoretic approach is based on Smith’s criterion which involves the Cramér-Rao lower bound (CRLB. Furthermore, the relationship between the two approaches is presented, and the factors affecting the SARL, that is, detection parameters, transmit waveforms, array geometry, signal-to-noise ratio (SNR, and parameters of target (i.e., radar cross section (RCS and direction, are analyzed. Compared with the conventional radar resolution theory defined by the ambiguity function, the SARL reflects the practical resolution ability of radar and can provide an optimization criterion for radar system design.
Angular momentum of disc galaxies with a lognormal density distribution
Marr, John Herbert
2015-01-01
Whilst most galaxy properties scale with galaxy mass, similar scaling relations for angular momentum are harder to demonstrate. A lognormal (LN) density distribution for disc mass provides a good overall fit to the observational data for disc rotation curves for a wide variety of galaxy types and luminosities. In this paper, the total angular momentum J and energy $\\vert{}$E$\\vert{}$ were computed for 38 disc galaxies from the published rotation curves and plotted against the derived disc masses, with best fit slopes of 1.683$\\pm{}$0.018 and 1.643$\\pm{}$0.038 respectively, using a theoretical model with a LN density profile. The derived mean disc spin parameter was $\\lambda{}$=0.423$\\pm{}$0.014. Using the rotation curve parameters V$_{max}$ and R$_{max}$ as surrogates for the virial velocity and radius, the virial mass estimator $M_{disc}\\propto{}R_{max}V_{max}^2$ was also generated, with a log-log slope of 1.024$\\pm{}$0.014 for the 38 galaxies, and a proportionality constant ${\\lambda{}}^*=1.47\\pm{}0.20\\time...
Wave mediated angular momentum transport in astrophysical boundary layers
Hertfelder, Marius
2015-01-01
Context. Disk accretion onto weakly magnetized stars leads to the formation of a boundary layer (BL) where the gas loses its excess kinetic energy and settles onto the star. There are still many open questions concerning the BL, for instance the transport of angular momentum (AM) or the vertical structure. Aims. It is the aim of this work to investigate the AM transport in the BL where the magneto-rotational instability (MRI) is not operating owing to the increasing angular velocity $\\Omega(r)$ with radius. We will therefore search for an appropriate mechanism and examine its efficiency and implications. Methods. We perform 2D numerical hydrodynamical simulations in a cylindrical coordinate system $(r, \\varphi)$ for a thin, vertically inte- grated accretion disk around a young star. We employ a realistic equation of state and include both cooling from the disk surfaces and radiation transport in radial and azimuthal direction. The viscosity in the disk is treated by the {\\alpha}-model; in the BL there is no v...
Neutron angular distribution in plutonium-240 spontaneous fission
Marcath, Matthew J.; Shin, Tony H.; Clarke, Shaun D.; Peerani, Paolo; Pozzi, Sara A.
2016-09-01
Nuclear safeguards applications require accurate fission models that exhibit prompt neutron anisotropy. In the laboratory reference frame, an anisotropic neutron angular distribution is observed because prompt fission neutrons carry momentum from fully accelerated fission fragments. A liquid organic scintillation detector array was used with pulse shape discrimination techniques to produce neutron-neutron cross-correlation time distributions and angular distributions from spontaneous fission in a 252Cf, a 0.84 g 240Pueff metal, and a 1.63 g 240Pueff metal sample. The effect of cross-talk, estimated with MCNPX-PoliMi simulations, is removed from neutron-neutron coincidences as a function of the angle between detector pairs. Fewer coincidences were observed at detector angles near 90°, relative to higher and lower detector angles. As light output threshold increases, the observed anisotropy increases due to spectral effects arising from fission fragment momentum transfer to emitted neutrons. Stronger anisotropy was observed in Cf-252 spontaneous fission prompt neutrons than in Pu-240 neutrons.
Measuring angular diameter distances of strong gravitational lenses
Jee, Inh; Suyu, Sherry H
2014-01-01
The distance-redshift relation plays a fundamental role in constraining cosmological models. In this paper, we show that measurements of positions and time delays of strongly lensed images of a background galaxy, as well as those of the velocity dispersion and mass profile of a lens galaxy, can be combined to extract the angular diameter distance of the lens galaxy. Physically, as the velocity dispersion and the time delay give a gravitational potential ($GM/r$) and a mass ($GM$) of the lens, respectively, dividing them gives a physical size ($r$) of the lens. Comparing the physical size with the image positions of a lensed galaxy gives the angular diameter distance to the lens. A mismatch between the exact locations at which these measurements are made can be corrected by measuring a local slope of the mass profile. We expand on the original idea put forward by Paraficz and Hjorth, who analyzed singular isothermal lenses, by allowing for an arbitrary slope of a power-law spherical mass density profile, an ex...
Exploring the orbital angular momentum of betatron radiation
Martins, Joana; Hehmann, Guenda; Fonseca, Ricardo; Silva, Luis; Vieira, Jorge
2016-10-01
Betatron radiation from laser-wakefield accelerators (LWFA) can be used as a broadband X-ray source. Betatron x-rays have attracted great interest and have applications in biological imaging which have been demonstrated experimentally (see for instance). Endowing betatron radiation with well defined states of orbital angular momentum (OAM), a fundamental property of light by which its wave fronts become twisted, could further enhance the imaging spatial resolution. However, the conditions for the generation of betatron x-rays with OAM, and the fundamental mechanisms underlying the transfer of OAM from electron trajectories to the radiation they emit, remain outstanding open questions. To explore these exciting open challenges, we investigate the OAM spectral content of betatron x-rays in LWFA. We explore the conditions and laser driver characteristics (with/without orbital and spin angular momentum) that can enable the emission of OAM x-rays. We support our studies by 3D numerical modelling, using the particle-in-cell code Osiris and using the post processing radiation code jRad. also at DCTI/ISCTE Instituto Universitario de Lisboa, Lisboa, Portugal.
Neutron angular distribution in plutonium-240 spontaneous fission
Energy Technology Data Exchange (ETDEWEB)
Marcath, Matthew J., E-mail: mmarcath@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Boulevard, Ann Arbor, MI 48109 (United States); Shin, Tony H.; Clarke, Shaun D. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Boulevard, Ann Arbor, MI 48109 (United States); Peerani, Paolo [European Commission at the Joint Research Centre, Ispra (Italy); Pozzi, Sara A. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Boulevard, Ann Arbor, MI 48109 (United States)
2016-09-11
Nuclear safeguards applications require accurate fission models that exhibit prompt neutron anisotropy. In the laboratory reference frame, an anisotropic neutron angular distribution is observed because prompt fission neutrons carry momentum from fully accelerated fission fragments. A liquid organic scintillation detector array was used with pulse shape discrimination techniques to produce neutron-neutron cross-correlation time distributions and angular distributions from spontaneous fission in a {sup 252}Cf, a 0.84 g {sup 240}Pu{sub eff} metal, and a 1.63 g {sup 240}Pu{sub eff} metal sample. The effect of cross-talk, estimated with MCNPX-PoliMi simulations, is removed from neutron-neutron coincidences as a function of the angle between detector pairs. Fewer coincidences were observed at detector angles near 90°, relative to higher and lower detector angles. As light output threshold increases, the observed anisotropy increases due to spectral effects arising from fission fragment momentum transfer to emitted neutrons. Stronger anisotropy was observed in Cf-252 spontaneous fission prompt neutrons than in Pu-240 neutrons. - Highlights: • Pu-240 prompt fission fast-neutron anisotropy was quantified for the first time. • MCNPX-PoliMi and MPPost codes were used to remove cross-talk neutron detections from experiment results. • Cf-252 spontaneous fission neutrons were found to be more anisotropic than Pu-240 neutrons.
Orbit classification of low and high angular momentum stars
Zotos, Euaggelos E
2014-01-01
We determine the character of orbits of stars moving in the meridional plane $(R,z)$ of an axially symmetric time-independent disk galaxy model with a spherical central nucleus. In particular, we try to reveal the influence of the value of the angular momentum on the different families of orbits of stars, by monitoring how the percentage of chaotic orbits, as well as the percentages of orbits of the main regular resonant families evolve when angular momentum varies. The smaller alignment index (SALI) was computed by numerically integrating the equations of motion as well as the variational equations to extensive samples of orbits in order to distinguish safely between ordered and chaotic motion. In addition, a method based on the concept of spectral dynamics that utilizes the Fourier transform of the time series of each coordinate is used to identify the various families of regular orbits and also to recognize the secondary resonances that bifurcate from them. Our investigation takes place both in the physica...
Development of an optical fiber sensor for angular displacement measurements.
Jung, Gu-In; Kim, Ji-Sun; Lee, Tae-Hee; Choi, Ju-Hyeon; Oh, Han-Byeol; Kim, A-Hee; Eom, Gwang-Moon; Lee, Jeong-Hwan; Chung, Soon-Cheol; Park, Jong-Rak; Lee, Young-Jae; Park, Hee-Jung; Jun, Jae-Hoon
2014-01-01
For diagnostic and therapeutic purposes, the joint angle measurement of a patient after an accident or a surgical operation is significant for monitoring and evaluating the recovering process. This paper proposed an optical fiber sensor for the measurement of angular displacement. The effect of beveled fiber angle on the detected light signal was investigated to find an appropriate mathematical model. Beveled fiber tips redirected the light over a range of angles away from the fiber axis. Inverse polynomial models were applied to directly obtain and display the joint angle change in real time with the Lab-VIEW program. The actual joint angle correlated well with the calculated LabVIEW output angle over the test range. The proposed optical sensor is simple, cost effective, small in size, and can evaluate the joint angle in real time. This method is expected to be useful in the field of rehabilitation and sport science.
Supramolecular architectures constructed using angular bipyridyl ligands
Barnett, S A
2003-01-01
This work details the synthesis and characterization of a series of coordination frameworks that are formed using bidentate angular N-donor ligands. Pyrimidine was reacted with metal(ll) nitrate salts. Reactions using Cd(NO sub 3) sub 2 receive particular focus and the analogous reactions using the linear ligand, pyrazine, were studied for comparison. In all cases, two-dimensional coordination networks were prepared. Structural diversity is observed for the Cd(ll) centres including metal-nitrate bridging. In contrast, first row transition metal nitrates form isostructural one-dimensional chains with only the bridging N-donor ligands generating polymeric propagation. The angular ligand, 2,4-bis(4-pyridyl)-1,3,5-triazine (dpt), was reacted with Cd(NO sub 3) sub 2 and Zn(NO sub 3) sub 2. Whereas Zn(NO sub 3) sub 2 compounds exhibit solvent mediated polymorphism, a range of structures were obtained for the reactions with Cd(NO sub 3) sub 2 , including the first example of a doubly parallel interpenetrated 4.8 sup...
Detection and recognition of angular frequency patterns.
Wilson, Hugh R; Propp, Roni
2015-05-01
Previous research has extensively explored visual encoding of smoothly curved, closed contours described by sinusoidal variation of pattern radius as a function of polar angle (RF patterns). Although the contours of many biologically significant objects are curved, we also confront shapes with a more jagged and angular appearance. To study these, we introduce here a novel class of visual stimuli that deform smoothly from a circle to an equilateral polygon with N sides (AF patterns). Threshold measurements reveal that both AF and RF patterns can be discriminated from circles at the same deformation amplitude, approximately 18.0arcsec, which is in the hyperacuity range. Thresholds were slightly higher for patterns with 3.0 cycles than for those with 5.0 cycles. Discrimination between AF and RF patterns was 75% correct at an amplitude that was approximately 3.0 times the threshold amplitude, which implies that AF and RF patterns activate different neural populations. Experiments with jittered patterns in which the contour was broken into several pieces and shifted inward or outward had much less effect on AF patterns than on RF patterns. Similarly, thresholds for single angles of AF patterns showed no significant difference from thresholds for the entire AF pattern. Taken together, these results imply that the visual system incorporates angles explicitly in the representation of closed object contours, but it suggests that angular contours are represented more locally than are curved contours.
The angular momentum of a relative equilibrium
Chenciner, Alain
2011-01-01
There are two main reasons why relative equilibria of N point masses under the influence of Newton attraction are mathematically more interesting to study when space dimension is at least 4: On the one hand, in a higher dimensional space, a relative equilibrium is determined not only by the initial configuration but also by the choice of a complex structure on the space where the motion takes place; in particular, its angular momentum depends on this choice; On the other hand, relative equilibria are not necessarily periodic: if the configuration is "balanced" but not central, the motion is in general quasi-periodic. In this exploratory paper we address the following question, which touches both aspects: what are the possible frequencies of the angular momentum of a given central (or balanced) configuration and at what values of these frequencies bifurcations from periodic to quasi-periodic relative equilibria do occur ? We give a full answer for relative equilibrium motions in dimension 4 and conjecture that...
Exchangeable Random Measures for Sparse and Modular Graphs with Overlapping Communities
Todeschini, Adrien
2016-01-01
We propose a novel statistical model for sparse networks with overlapping community structure. The model is based on representing the graph as an exchangeable point process, and naturally generalizes existing probabilistic models with overlapping block-structure to the sparse regime. Our construction builds on vectors of completely random measures, and has interpretable parameters, each node being assigned a vector representing its level of affiliation to some latent communities. We develop methods for simulating this class of random graphs, as well as to perform posterior inference. We show that the proposed approach can recover interpretable structure from two real-world networks and can handle graphs with thousands of nodes and tens of thousands of edges.
How multiple supernovae overlap to form superbubbles
Yadav, Naveen; Mukherjee, Dipanjan; Sharma, Prateek; Nath, Biman B.
2017-02-01
We explore the formation of superbubbles through energy deposition by multiple supernovae (SNe) in a uniform medium. We use the total energy conserving, 3D hydrodynamic simulations to study how SNe correlated in space and time create superbubbles. While isolated SNe fizzle out completely by ∼1 Myr due to radiative losses, for a realistic cluster size it is likely that subsequent SNe go off within the hot/dilute bubble and sustain the shock till the cluster lifetime. For realistic cluster sizes, we find that the bubble remains overpressured only if, for a given ng0, NOB is sufficiently large. While most of the input energy is still lost radiatively, superbubbles can retain up to ∼5-10 per cent of the input energy in the form of kinetic+thermal energy till 10 Myr for interstellar medium density ng0 ≈ 1 cm-3. We find that the mechanical efficiency decreases for higher densities (η _mech ∝ n_{g0}^{-2/3}). We compare the radii and velocities of simulated supershells with observations and the classical adiabatic model. Our simulations show that the superbubbles retain only ≲ 10 per cent of the injected energy, thereby explaining the observed smaller size and slower expansion of supershells. We also confirm that a sufficiently large (≳ 104) number of SNe are required to go off in order to create a steady wind with a stable termination shock within the superbubble. We show that the mechanical efficiency increases with increasing resolution, and that explicit diffusion is required to obtain converged results.
Presentation of dynamically overlapping auditory messages in user interfaces
Energy Technology Data Exchange (ETDEWEB)
Papp, III, Albert Louis [Univ. of California, Davis, CA (United States)
1997-09-01
This dissertation describes a methodology and example implementation for the dynamic regulation of temporally overlapping auditory messages in computer-user interfaces. The regulation mechanism exists to schedule numerous overlapping auditory messages in such a way that each individual message remains perceptually distinct from all others. The method is based on the research conducted in the area of auditory scene analysis. While numerous applications have been engineered to present the user with temporally overlapped auditory output, they have generally been designed without any structured method of controlling the perceptual aspects of the sound. The method of scheduling temporally overlapping sounds has been extended to function in an environment where numerous applications can present sound independently of each other. The Centralized Audio Presentation System is a global regulation mechanism that controls all audio output requests made from all currently running applications. The notion of multimodal objects is explored in this system as well. Each audio request that represents a particular message can include numerous auditory representations, such as musical motives and voice. The Presentation System scheduling algorithm selects the best representation according to the current global auditory system state, and presents it to the user within the request constraints of priority and maximum acceptable latency. The perceptual conflicts between temporally overlapping audio messages are examined in depth through the Computational Auditory Scene Synthesizer. At the heart of this system is a heuristic-based auditory scene synthesis scheduling method. Different schedules of overlapped sounds are evaluated and assigned penalty scores. High scores represent presentations that include perceptual conflicts between over-lapping sounds. Low scores indicate fewer and less serious conflicts. A user study was conducted to validate that the perceptual difficulties predicted by
Eckstein, Martin; Yang, Chung-Hsin; Sansone, Giuseppe; Vrakking, Marc J J; Ivanov, Misha; Kornilov, Oleg
2016-01-01
An autoionizing resonance in molecular N$_2$ is excited by an ultrashort XUV pulse and probed by a subsequent weak IR pulse, which ionizes the contributing Rydberg states. Time- and angular-resolved photoelectron spectra recorded with a velocity map imaging spectrometer reveal two electronic contributions with different angular distributions. One of them has an exponential decay rate of $20\\pm5$ fs, while the other one is shorter than 10 fs. This observation is interpreted as a manifestation of interference stabilization involving the two overlapping discrete Rydberg states. A formalism of interference stabilization for molecular ionization is developed and applied to describe the autoionizing resonance. The results of calculations reveal, that the effect of the interference stabilization is facilitated by rotationally-induced couplings of electronic states with different symmetry.
Local-global overlap in diversity informs mechanisms of bacterial biogeography.
Livermore, Joshua A; Jones, Stuart E
2015-11-01
Spatial variation in environmental conditions and barriers to organism movement are thought to be important factors for generating endemic species, thus enhancing global diversity. Recent microbial ecology research suggested that the entire diversity of bacteria in the global oceans could be recovered at a single site, thus inferring a lack of bacterial endemism. We argue this is not the case in the global ocean, but might be in other bacterial ecosystems with higher dispersal rates and lower global diversity, like the human gut. We quantified the degree to which local and global bacterial diversity overlap in a diverse set of ecosystems. Upon comparison of observed local-global diversity overlap with predictions from a neutral biogeography model, human-associated microbiomes (gut, skin, mouth) behaved much closer to neutral expectations whereas soil, lake and marine communities deviated strongly from the neutral expectations. This is likely a result of differences in dispersal rate among 'patches', global diversity of these systems, and local densities of bacterial cells. It appears that overlap of local and global bacterial diversity is surprisingly large (but likely not one-hundred percent), and most importantly this overlap appears to be predictable based upon traditional biogeographic parameters like community size, global diversity, inter-patch environmental heterogeneity and patch connectivity.
An EM Induction Hi-Speed Rotation Angular Rate Sensor.
Li, Kai; Li, Yuan; Han, Yan
2017-03-17
A hi-speed rotation angular rate sensor based on an electromagnetic induction signal is proposed to provide a possibility of wide range measurement of high angular rates. An angular rate sensor is designed that works on the principle of electromagnetism (EM) induction. In addition to a zero-phase detection technique, this sensor uses the feedback principle of magnetic induction coils in response to a rotating magnetic field. It solves the challenge of designing an angular rate sensor that is suitable for both low and high rotating rates. The sensor was examined for angular rate measurement accuracy in simulation tests using a rotary table. The results show that it is capable of measuring angular rates ranging from 1 rps to 100 rps, with an error within 1.8‰ of the full scale (FS). The proposed sensor is suitable to measurement applications where the rotation angular rate is widely varied, and it contributes to design technology advancements of real-time sensors measuring angular acceleration, angular rate, and angular displacement of hi-speed rotary objects.
Directory of Open Access Journals (Sweden)
Junichi Sugishita
2015-07-01
Full Text Available Incidental fisheries bycatch is recognised as a major threat to albatross populations worldwide. However, fishery discards and offal produced in large quantities might benefit some scavenging seabirds. Here, we demonstrate an integrated approach to better understand the ecological ramifications of fine-scale overlap between seabirds and fisheries. As a case study, we examined whether foraging in association with a fishing vessel is advantageous for chick provisioning in terms of quantity of food delivered to chicks, in northern royal albatross (Diomedea sanfordi at Taiaroa Head, New Zealand. Fine-scale overlap between albatrosses and vessels was quantified by integrating GPS tracking and Vessel Monitoring Systems (VMS. Meal size delivered to chicks was measured using custom-designed nest balances, and monitoring of attendance of adults fitted with radio transmitters was used in conjunction with time-lapse photography at the nest allowed us to allocate each feeding event to a specific parent. The combination of these techniques enabled comparison of meal sizes delivered to chicks with parental foraging trip durations with or without fishing vessels association. A total of 45 foraging trips and associated chick feeding events were monitored during the chick-rearing period in 2012. Differences in the meal size and foraging trip duration relative to foraging overlap with fisheries were examined using a linear mixed-effect model, adjusted for chick age. Our results, based on three birds, suggest that foraging in association with vessels does not confer an advantage for chick feeding for this population that demonstrated low rates of overlap while foraging. The integrated research design presented can be applied to other seabird species that are susceptible to bycatch, and offers a valuable approach to evaluate habitat quality by linking habitat use and foraging success in terms of total amount of food delivered to offspring.
Hierarchical Overlapping Clustering of Network Data Using Cut Metrics
Gama, Fernando; Ribeiro, Alejandro
2016-01-01
A novel method to obtain hierarchical and overlapping clusters from network data -i.e., a set of nodes endowed with pairwise dissimilarities- is presented. The introduced method is hierarchical in the sense that it outputs a nested collection of groupings of the node set depending on the resolution or degree of similarity desired, and it is overlapping since it allows nodes to belong to more than one group. Our construction is rooted on the facts that a hierarchical (non-overlapping) clustering of a network can be equivalently represented by a finite ultrametric space and that a convex combination of ultrametrics results in a cut metric. By applying a hierarchical (non-overlapping) clustering method to multiple dithered versions of a given network and then convexly combining the resulting ultrametrics, we obtain a cut metric associated to the network of interest. We then show how to extract a hierarchical overlapping clustering structure from the aforementioned cut metric. Furthermore, the so-called overlappi...
Hernando, Alberto; Beswick, J Alberto; Halberstadt, Nadine
2013-12-14
The theory of photofragments angular momentum polarization is applied to the photodetachment of an electronically excited alkali atom from a helium nanocluster (N = 200). The alignment of the electronic angular momentum of the bare excited alkali atoms produced is calculated quantum mechanically by solving the excited states coupled equations with potentials determined by density functional theory (DFT). Pronounced oscillations as a function of excitation energy are predicted for the case of Na@(He)200, in marked contrast with the absorption cross-section and angular distribution of the ejected atoms which are smooth functions of the energy. These oscillations are due to quantum interference between different coherently excited photodetachment pathways. Experimentally, these oscillations should be reflected in the fluorescence polarization and polarization-resolved photoelectron yield of the ejected atoms, which are proportional to the electronic angular momentum alignment. In addition, this result is much more general than the test case of NaHe200 studied here. It should be observable for larger droplets, for higher excited electronic states, and for other alkali as well as for alkali-earth atoms. Detection of these oscillations would show that the widely used pseudo-diatomic model can be valid beyond the prediction of absorption spectra and could help in interpreting parts of the dynamics, as already hinted by some experimental results on angular anisotropy of bare alkali fragments.
Zhang, H.; Yang, D.; Song, P.; Zou, S.; Zhao, Y.; Li, S.; Li, Z.; Guo, L.; Wang, F.; Zheng, W.; Gu, P.; Pei, W.; Zhu, S.; Jiang, S.; Ding, Y.
2016-08-01
The symmetric radiation drive is essential to the capsule implosion in the indirect drive fusion but is hard to achieve due to the non-uniform radiation distribution inside the hohlraum. In this work, the non-uniform radiation properties of both vacuum and gas-filled hohlraums are studied by investigating the angular distribution of the radiation temperature experimentally and numerically. It is found that the non-uniform radiation distribution inside the hohlraum induces the variation of the radiation temperature between different view angles. The simulations show that both the angular distribution of the radiation temperature and the hohlraum radiation distribution can be affected by the electron heat flux. The measured angular distribution of the radiation temperature is more consistent with the simulations when the electron heat flux limiter f e = 0.1 . Comparisons between the experiments and simulations further indicate that the x-ray emission of the blow-off plasma is overestimated in the simulations when it stagnates around the hohlraum axis. The axial position of the laser spot can also be estimated by the angular distribution of the radiation temperature due to their sensitive dependence. The inferred laser spot moves closer to the laser entrance hole in the gas-filled hohlraum than that in the vacuum hohlraum, consisting with the x-ray images taken from the framing camera. The angular distribution of the radiation temperature provides an effective way to investigate the hohlraum radiation properties and introduces more constraint to the numerical modeling of the hohlraum experiments.
Zavala, J; Frenk, Carlos S
2007-01-01
We investigate the evolution of angular momentum in simulations of galaxy formation in a cold dark matter universe. We analyse two model galaxies produced in the N-body/hydrodynamic simulations of Okamoto et al. Starting from identical initial conditions, but using different assumptions for the baryonic physics, one of the simulations produced a bulge-dominated galaxy and the other one a disk-dominated galaxy. The main difference is the treatment of star formation and feedback, both of which were designed to be more efficient in the disk-dominated object. We find that the specific angular momentum of the disk-dominated galaxy tracks the evolution of the angular momentum of the dark matter halo very closely: the angular momentum grows as predicted by linear theory until the epoch of maximum expansion and remains constant thereafter. By contrast, the evolution of the angular momentum of the bulge-dominated galaxy resembles that of the central, most bound halo material: it also grows at first according to linear...
Energy Technology Data Exchange (ETDEWEB)
Hernando, Alberto; Beswick, J. Alberto; Halberstadt, Nadine [LCAR-IRSAMC, Université Toulouse 3 - Paul Sabatier and CNRS, 31062 Toulouse (France)
2013-12-14
The theory of photofragments angular momentum polarization is applied to the photodetachment of an electronically excited alkali atom from a helium nanocluster (N = 200). The alignment of the electronic angular momentum of the bare excited alkali atoms produced is calculated quantum mechanically by solving the excited states coupled equations with potentials determined by density functional theory (DFT). Pronounced oscillations as a function of excitation energy are predicted for the case of Na@(He){sub 200}, in marked contrast with the absorption cross-section and angular distribution of the ejected atoms which are smooth functions of the energy. These oscillations are due to quantum interference between different coherently excited photodetachment pathways. Experimentally, these oscillations should be reflected in the fluorescence polarization and polarization-resolved photoelectron yield of the ejected atoms, which are proportional to the electronic angular momentum alignment. In addition, this result is much more general than the test case of NaHe{sub 200} studied here. It should be observable for larger droplets, for higher excited electronic states, and for other alkali as well as for alkali-earth atoms. Detection of these oscillations would show that the widely used pseudo-diatomic model can be valid beyond the prediction of absorption spectra and could help in interpreting parts of the dynamics, as already hinted by some experimental results on angular anisotropy of bare alkali fragments.
Converging evidence for the neuroanatomic basis of combinatorial semantics in the angular gyrus.
Price, Amy R; Bonner, Michael F; Peelle, Jonathan E; Grossman, Murray
2015-02-18
Human thought and language rely on the brain's ability to combine conceptual information. This fundamental process supports the construction of complex concepts from basic constituents. For example, both "jacket" and "plaid" can be represented as individual concepts, but they can also be integrated to form the more complex representation "plaid jacket." Although this process is central to the expression and comprehension of language, little is known about its neural basis. Here we present evidence for a neuroanatomic model of conceptual combination from three experiments. We predicted that the highly integrative region of heteromodal association cortex in the angular gyrus would be critical for conceptual combination, given its anatomic connectivity and its strong association with semantic memory in functional neuroimaging studies. Consistent with this hypothesis, we found that the process of combining concepts to form meaningful representations specifically modulates neural activity in the angular gyrus of healthy adults, independent of the modality of the semantic content integrated. We also found that individual differences in the structure of the angular gyrus in healthy adults are related to variability in behavioral performance on the conceptual combination task. Finally, in a group of patients with neurodegenerative disease, we found that the degree of atrophy in the angular gyrus is specifically related to impaired performance on combinatorial processing. These converging anatomic findings are consistent with a critical role for the angular gyrus in conceptual combination.
Quantum correlations in optical angle-orbital angular momentum variables.
Leach, Jonathan; Jack, Barry; Romero, Jacqui; Jha, Anand K; Yao, Alison M; Franke-Arnold, Sonja; Ireland, David G; Boyd, Robert W; Barnett, Stephen M; Padgett, Miles J
2010-08-06
Entanglement of the properties of two separated particles constitutes a fundamental signature of quantum mechanics and is a key resource for quantum information science. We demonstrate strong Einstein, Podolsky, and Rosen correlations between the angular position and orbital angular momentum of two photons created by the nonlinear optical process of spontaneous parametric down-conversion. The discrete nature of orbital angular momentum and the continuous but periodic nature of angular position give rise to a special sort of entanglement between these two variables. The resulting correlations are found to be an order of magnitude stronger than those allowed by the uncertainty principle for independent (nonentangled) particles. Our results suggest that angular position and orbital angular momentum may find important applications in quantum information science.
Creating high-harmonic beams with controlled orbital angular momentum.
Gariepy, Genevieve; Leach, Jonathan; Kim, Kyung Taec; Hammond, T J; Frumker, E; Boyd, Robert W; Corkum, P B
2014-10-10
A beam with an angular-dependant phase Φ = ℓϕ about the beam axis carries an orbital angular momentum of ℓℏ per photon. Such beams are exploited to provide superresolution in microscopy. Creating extreme ultraviolet or soft-x-ray beams with controllable orbital angular momentum is a critical step towards extending superresolution to much higher spatial resolution. We show that orbital angular momentum is conserved during high-harmonic generation. Experimentally, we use a fundamental beam with |ℓ| = 1 and interferometrically determine that the harmonics each have orbital angular momentum equal to their harmonic number. Theoretically, we show how any small value of orbital angular momentum can be coupled to any harmonic in a controlled manner. Our results open a route to microscopy on the molecular, or even submolecular, scale.
The SKA as a Doorway to Angular Momentum
Obreschkow, D; Popping, A; Power, C; Quinn, P; Staveley-Smith, L
2015-01-01
Angular momentum is one of the most fundamental physical quantities governing galactic evolution. Differences in the colours, morphologies, star formation rates and gas fractions amongst galaxies of equal stellar/baryon mass M are potentially widely explained by variations in their specific stellar/baryon angular momentum j. The enormous potential of angular momentum science is only just being realised, thanks to the emergence of the first simulations of galaxies with converged spins, paralleled by a dramatic increase in kinematic observations. Such observations are still challenged by the fact that most of the stellar/baryon angular momentum resides at large radii. In fact, the radius that maximally contributes to the angular momentum of an exponential disk (3Re-4Re) is twice as large as the radius that maximally contributes to the disk mass; thus converged measurements of angular momentum require either extremely deep IFS data or, alternatively, kinematic measurements of neutral atomic hydrogen (HI), which ...
Orbital angular momentum photonic quantum interface
Institute of Scientific and Technical Information of China (English)
Zhi-Yuan Zhou; Yan Li; Dong-Sheng Ding; Wei Zhang; Shuai Shi; Bao-Sen Shi; Guang-Can Guo
2016-01-01
Light-carrying orbital angular momentum (OAM) has great potential in enhancing the information channel capacity in both classical and quantum optical communications.Long distance optical communication requires the wavelengths of light are situated in the low-loss communication windows,but most quantum memories currently being developed for use in a quantum repeater work at different wavelengths,so a quantum interface to bridge the wavelength gap is necessary.So far,such an interface for OAM-carried light has not been realized yet.Here,we report the first experimental realization of a quantum interface for a heralded single photon carrying OAM using a nonlinear crystal in an optical cavity.The spatial structures of input and output photons exhibit strong similarity.More importantly,single-photon coherence is preserved during up-conversion as demonstrated.