Prior, C R [Cambridge Univ. (UK). Dept. of Applied Mathematics and Theoretical Physics
1977-06-27
Angular momentum in axisymmetric space-times is investigated. The conclusions lead to a general definition suitable for all asymptotically-flat spaces which is valid both at infinity and on the event horizon of a black hole. This first paper restricts attention to considerations at infinity. Working in terms of the spin coefficient formalism, the field equations are solved asymptotically at large distances and the definition is evaluated. A conservation law is derived and finally the effect on the angular momentum of a supertranslation of the coordinates is discussed.
Shakur, Asif; Sinatra, Taylor
2013-01-01
The gyroscope in a smartphone was employed in a physics laboratory setting to verify the conservation of angular momentum and the nonconservation of rotational kinetic energy. As is well-known, smartphones are ubiquitous on college campuses. These devices have a panoply of built-in sensors. This creates a unique opportunity for a new paradigm in…
Quark Orbital Angular Momentum
Burkardt Matthias
2015-01-01
Full Text Available Definitions of orbital angular momentum based on Wigner distributions are used as a framework to discuss the connection between the Ji definition of the quark orbital angular momentum and that of Jaffe and Manohar. We find that the difference between these two definitions can be interpreted as the change in the quark orbital angular momentum as it leaves the target in a DIS experiment. The mechanism responsible for that change is similar to the mechanism that causes transverse single-spin asymmetries in semi-inclusive deep-inelastic scattering.
Arimondo, Ennio
2004-01-01
For many years the Institute of Physics has published books on hot topics based on a collection of reprints from different journals, including some remarks by the editors of each volume. The book on Optical Angular Momentum, edited by L Allen, S M Barnett and M J Padgett, is a recent addition to the series. It reproduces forty four papers originally published in different journals and in a few cases it provides direct access to works not easily accessible to a web navigator. The collection covers nearly a hundred years of progress in physics, starting from an historic 1909 paper by Poynting, and ending with a 2002 paper by Padgett, Barnett and coworkers on the measurement of the orbital angular momentum of a single photon. The field of optical angular momentum has expanded greatly, creating an interdisciplinary attraction for researchers operating in quantum optics, atomic physics, solid state physics, biophysics and quantum information theory. The development of laser optics, especially the control of single mode sources, has made possible the specific design of optical radiation modes with a high degree of control on the light angular momentum. The editors of this book are important figures in the field of angular momentum, having contributed to key progress in the area. L Allen published an historical paper in 1999, he and M J Padgett (together with M Babiker) produced few years ago a long review article which is today still the most complete basic introduction to the angular momentum of light, while S M Barnett has contributed several high quality papers to the progress of this area of physics. The editors' choice provides an excellent overview to all readers, with papers classified into eight different topics, covering the basic principles of the light and spin and orbital angular momentum, the laboratory tools for creating laser beams carrying orbital angular momentum, the optical forces and torques created by laser beams carrying angular momentum on
Rotations and angular momentum
Nyborg, P.; Froyland, J.
1979-01-01
This paper is devoted to the analysis of rotational invariance and the properties of angular momentum in quantum mechanics. In particular, the problem of addition of angular momenta is treated in detail, and tables of Clebsch-Gordan coefficients are included
Angular momentum in general relativity
Prior, C.R.
1977-01-01
The definition of angular momentum proposed in part I of this series (Prior. Proc. R. Soc. Lond.; A354:379 (1977)) is investigated when applied to rotating black holes. It is shown how to use the formula to evaluate the angular momentum of a stationary black hole. This acts as a description of a background space on which the effect of first matter and then gravitational perturbations is considered. The latter are of most interest and the rate of change of angular momentum, dJ/dt, is found as an expression in the shear induced in the event horizon by the perturbation and in its time integral. Teukolsky's solutions (Astrophys. J.; 185:635 (1973)) for the perturbed component of the Weyl tensor are then used to find this shear and hence to give an exact answer for dJ/dt. One of the implications of the result is a direct verification of Bekenstein's formula (Phys. Rev.; 7D:949 (1973)) relating in a simple way the rate of change of angular momentum to the rate of change of mass caused by a plane wave. A more general expression is also given for dM/dt. Considering only stationary perturbations, it is shown how to generalize the definition of angular momentum so as to include information about its direction as well. Three problems are particularly discussed - a single moon, two or more moons and a ring of matter causing the perturbation - since they provide illustrations of all the main features of the black hole's behaviour. In every case it is found that the black hole realigns its axis of rotation so that the final configuration is axisymmetric if possible; otherwise is slows down completely to reach a static state. (author)
Fission fragment angular momentum
Frenne, D. De
1991-01-01
Most of the energy released in fission is converted into translational kinetic energy of the fragments. The remaining excitation energy will be distributed among neutrons and gammas. An important parameter characterizing the scission configuration is the primary angular momentum of the nascent fragments. Neutron emission is not expected to decrease the spin of the fragments by more than one unit of angular momentum and is as such of less importance in the determination of the initial fragment spins. Gamma emission is a suitable tool in studying initial fragment spins because the emission time, number, energy, and multipolarity of the gammas strongly depend on the value of the primary angular momentum. The main conclusions of experiments on gamma emission were that the initial angular momentum of the fragments is large compared to the ground state spin and oriented perpendicular to the fission axis. Most of the recent information concerning initial fragment spin distributions comes from the measurement of isomeric ratios for isomeric pairs produced in fission. Although in nearly every mass chain isomers are known, only a small number are suitable for initial fission fragment spin studies. Yield and half-life considerations strongly limit the number of candidates. This has the advantage that the behavior of a specific isomeric pair can be investigated for a number of fissioning systems at different excitation energies of the fragments and fissioning nuclei. Because most of the recent information on primary angular momenta comes from measurements of isomeric ratios, the global deexcitation process of the fragments and the calculation of the initial fragment spin distribution from measured isomeric ratios are discussed here. The most important results on primary angular momentum determinations are reviewed and some theoretical approaches are given. 45 refs., 7 figs., 2 tabs
Angular momentum projected semiclassics
Hasse, R.W.
1986-10-01
By using angular momentum projected plane waves as wave functions, we derive semiclassical expressions for the single-particle propagator, the partition function, the nonlocal density matrix, the single-particle density and the one particle- one hole level density for fixed angular momentum and fixed z-component or summed over the z-components. Other quantities can be deduced from the propagator. In coordinate space (r, r') the relevant quantities depend on vertical stroker - r 3 vertical stroke instead of vertical stroker - r'vertical stroke and in Wigner space (R, P) they become proportional to the angular momentum constraints δ(vertical strokeRxPvertical stroke/ℎ - l) and δ((RxP) z /ℎ - m). As applications we calculate the single-particle and one particle- one hole level densities for harmonic oscillator and Hill-Wheeler box potentials and the imaginary part of the optical potential and its volume integral with an underlying harmonic oscillator potential and a zero range two-body interaction. (orig.)
Optical angular momentum and atoms.
Franke-Arnold, Sonja
2017-02-28
Any coherent interaction of light and atoms needs to conserve energy, linear momentum and angular momentum. What happens to an atom's angular momentum if it encounters light that carries orbital angular momentum (OAM)? This is a particularly intriguing question as the angular momentum of atoms is quantized, incorporating the intrinsic spin angular momentum of the individual electrons as well as the OAM associated with their spatial distribution. In addition, a mechanical angular momentum can arise from the rotation of the entire atom, which for very cold atoms is also quantized. Atoms therefore allow us to probe and access the quantum properties of light's OAM, aiding our fundamental understanding of light-matter interactions, and moreover, allowing us to construct OAM-based applications, including quantum memories, frequency converters for shaped light and OAM-based sensors.This article is part of the themed issue 'Optical orbital angular momentum'. © 2017 The Author(s).
Angular momentum in general relativity
Cresswell, A.; Zimmerman, R.L.; Oregon Univ., Eugene
1986-01-01
It is argued that the correct expressions for the angular momentum flux carried by gravitational radiation should follow directly from the momentum currents. Following this approach, the authors compute the angular momentum associated with several different choices of energy-momentum prescriptions. (author)
Optical angular momentum and atoms
2017-01-01
Any coherent interaction of light and atoms needs to conserve energy, linear momentum and angular momentum. What happens to an atom’s angular momentum if it encounters light that carries orbital angular momentum (OAM)? This is a particularly intriguing question as the angular momentum of atoms is quantized, incorporating the intrinsic spin angular momentum of the individual electrons as well as the OAM associated with their spatial distribution. In addition, a mechanical angular momentum can arise from the rotation of the entire atom, which for very cold atoms is also quantized. Atoms therefore allow us to probe and access the quantum properties of light’s OAM, aiding our fundamental understanding of light–matter interactions, and moreover, allowing us to construct OAM-based applications, including quantum memories, frequency converters for shaped light and OAM-based sensors. This article is part of the themed issue ‘Optical orbital angular momentum’. PMID:28069766
Thompson, L.A.
1974-01-01
In order to test the theories which purport to explain the origin of galaxy angular momentum, this study presents new data for about 1000 individual galaxies in eight rich clusters. The clusters which are studied include Virgo, A 119, A 400, A 1656 (Coma), A 2147, A 2151 (Hercules), A 2197, and A 2199. Selected samples of these data are used to investigate systematic alignment effects in clusters of galaxies and to investigate the intrinsic ellipticities of E, SO, and spiral galaxies. The following new results are reported: Galaxies in the cluster A 2197 show a significant alignment effect (chi 2 probability less than 0.0002), and the preferential direction of alignment corresponds approximately to the major axis of the overall cluster elongation. None of the other seven clusters show any significant alignment trends. The spiral galaxy samples in four clusters (Virgo, A 1656, A 2151, and A 2197) were large enough to analyze the number distributions of forward and reverse winding spirals. Large and small spiral galaxies have identical ellipticity distributions. Large E and SO galaxies tend to be more spherical, and small E and SO galaxies more flattened. The intrinsic ellipticities of E, SO, and spiral galaxies are the same for galaxies in the ''field'' and for galaxies in rich clusters. Six models of galaxy formation are reviewed, and the major []mphasis is placed on how each model explains the origin of galaxy angular momentum. (Diss. Abstr. Int., B)
Angular Momentum in Dwarf Galaxies
Del Popolo A.
2014-06-01
Full Text Available We study the “angular momentum catastrophe” in the framework of interaction among baryons and dark matter through dynamical friction. By means of Del Popolo (2009 model we simulate 14 galaxies similar to those investigated by van den Bosch, Burkert and Swaters (2001, and calculate the distribution of their spin parameters and the angular momenta. Our model gives the angular momentum distribution which is in agreement with the van den Bosch et al. observations. Our result shows that the “angular momentum catastrophe” can be naturally solved in a model that takes into account the baryonic physics and the exchange of energy and angular momentum between the baryonic clumps and dark matter through dynamical friction.
Angular momentum of dwarf galaxies
Kurapati, Sushma; Chengalur, Jayaram N.; Pustilnik, Simon; Kamphuis, Peter
2018-05-01
Mass and specific angular momentum are two fundamental physical parameters of galaxies. We present measurements of the baryonic mass and specific angular momentum of 11 void dwarf galaxies derived from neutral hydrogen (HI) synthesis data. Rotation curves were measured using 3D and 2D tilted ring fitting routines, and the derived curves generally overlap within the error bars, except in the central regions where, as expected, the 3D routines give steeper curves. The specific angular momentum of void dwarfs is found to be high compared to an extrapolation of the trends seen for higher mass bulge-less spirals, but comparable to that of other dwarf irregular galaxies that lie outside of voids. As such, our data show no evidence for a dependence of the specific angular momentum on the large scale environment. Combining our data with the data from the literature, we find a baryonic threshold of ˜109.1 M⊙ for this increase in specific angular momentum. Interestingly, this threshold is very similar to the mass threshold below which the galaxy discs start to become systematically thicker. This provides qualitative support to the suggestion that the thickening of the discs, as well as the increase in specific angular momentum, are both results of a common physical mechanism, such as feedback from star formation. Quantitatively, however, the amount of star formation observed in our dwarfs appears insufficient to produce the observed increase in specific angular momentum. It is hence likely that other processes, such as cold accretion of high angular momentum gas, also play a role in increasing the specific angular momentum.
Angular momentum from tidal torques
Barnes, J.; Efstathiou, G.; Cambridge Univ., England)
1987-01-01
The origin of the angular momentum of bound objects in large N-body simulations is studied using three sets of models. One model with white-noise initial conditions is analyzed as well as two in which the initial conditions have more power on large scales, as predicted in models with cold dark matter. The growth and distribution of angular momentum in individual objects is studied and it is found that the specific angular momentum distribution of bound clumps increases in a near linear fashion with radius while the orientation of the angular momentum in the inner high-density regions is often poorly correlated with that of the outer parts. It is also found that the dimensionless spin parameter is insensitive to the initial perturbation spectrum and has a median value of about 0.05. 61 references
Lidar Orbital Angular Momentum Sensor
National Aeronautics and Space Administration — The recognition in recent decades that electromagnetic fields have angular momentum (AM) in the form of not only polarization (or spin AM) but also orbital (OAM) has...
Existence of black holes due to concentration of angular momentum
Khuri, Marcus A. [Department of Mathematics, Stony Brook University,Stony Brook, NY 11794 (United States)
2015-06-29
We present a general sufficient condition for the formation of black holes due to concentration of angular momentum. This is expressed in the form of a universal inequality, relating the size and angular momentum of bodies, and is proven in the context of axisymmetric initial data sets for the Einstein equations which satisfy an appropriate energy condition. A brief comparison is also made with more traditional black hole existence criteria based on concentration of mass.
Automated Angular Momentum Recoupling Algebra
Williams, H. T.; Silbar, Richard R.
1992-04-01
We present a set of heuristic rules for algebraic solution of angular momentum recoupling problems. The general problem reduces to that of finding an optimal path from one binary tree (representing the angular momentum coupling scheme for the reduced matrix element) to another (representing the sub-integrals and spin sums to be done). The method lends itself to implementation on a microcomputer, and we have developed such an implementation using a dialect of LISP. We describe both how our code, called RACAH, works and how it appears to the user. We illustrate the use of RACAH for several transition and scattering amplitude matrix elements occurring in atomic, nuclear, and particle physics.
Angular momentum projection with Pfaffian
Oi, M.
2011-01-01
Recent developments to rewrite the Onishi formula for an evaluation of the so-called norm overlap kernel necessary in angular momentum projection are to be discussed. The essential ingredients in the development, that is, the Fermion coherent states, the Grassmann numbers, and the Pfaffian, are explained. (author)
Angular momentum in QGP holography
Brett McInnes
2014-10-01
Full Text Available The quark chemical potential is one of the fundamental parameters describing the quark–gluon plasma produced by sufficiently energetic heavy-ion collisions. It is not large at the extremely high temperatures probed by the LHC, but it plays a key role in discussions of the beam energy scan programmes at the RHIC and other facilities. On the other hand, collisions at such energies typically (that is, in peripheral collisions give rise to very high values of the angular momentum density. Here we explain that holographic estimates of the quark chemical potential of a rotating sample of plasma can be very considerably improved by taking the angular momentum into account.
Angular momentum content of galaxies
Shaya, E.J.; Tully, R.B.
1984-01-01
A schema of galaxy formation is developed in which the environmental influence of large-scale structure plays a dominant role. This schema was motivated by the observation that the fraction of E and S0 galaxies is much higher in clusters than in low-density regions and by an inference that those spirals that are found in clusters probably have fallen in relatively recently from the low-density regions. It is proposed that the tidal field of the Local Supercluster acts to determine the morphology of galaxies through two complementary mechanisms. In the first place, the supercluster can apply torques to protogalaxies. Galaxies which collapsed while expanding away from the central cluster decoupled from the external tidal field and conserved the angular momentum that they acquired before collapse. Galaxies which formed in the cluster while the cluster collapsed continued to feel the tidal field. In the latter case, the spin of outer collapsing layers can be halted and reversed, and tends to cancel the spin of inner layers. The result is a reduction of the total angular momentum content of the galaxy. In addition, the supercluster tidal field can regulate accretion of fresh material onto the galaxies since the field creates a Roche limit about galaxies and material beyond this limit is lost. Any material that has not collapsed onto a galaxy by the time the galaxy falls into a cluster will be tidally stripped. The angular momentum content of that part of the protogalactic cloud which has not yet collapsed . continues to grow linearly with time due to the continued torquing by the supercluster and neighbors. Galaxies at large distances from the cluster core can continue to accrete this high angular momentum material until the present, but galaxies that enter the cluster are cut off from replenishing material
Angular-momentum transport in nuclear collisions
Wolschin, G.; Ayik, S.; Noerenberg, W.
1978-01-01
Among the various relaxation processes that can be observed in heavy-ion collisions, the dissipation of relative angular momentum into intrinsic angular momentum of the fragments attracts increasing attention. Here we present a transport theoretical description of angular-momentum and mass transport that allows for a transparent interpretation of the data. (orig.) [de
Orbital angular momentum in phase space
Rigas, I.; Sanchez-Soto, L.L.; Klimov, A.B.; Rehacek, J.; Hradil, Z.
2011-01-01
Research highlights: → We propose a comprehensive Weyl-Wigner formalism for the canonical pair angle-angular momentum. → We present a simple and useful toolkit for the practitioner. → We derive simple evolution equations in terms of a star product in the semiclassical limit. - Abstract: A comprehensive theory of the Weyl-Wigner formalism for the canonical pair angle-angular momentum is presented. Special attention is paid to the problems linked to rotational periodicity and angular-momentum discreteness.
Viscous damping of toroidal angular momentum in tokamaks
Stacey, W. M. [Georgia Tech Fusion Research Center, Atlanta, Georgia 30332 (United States)
2014-09-15
The Braginskii viscous stress tensor formalism was generalized to accommodate non-axisymmetric 3D magnetic fields in general toroidal flux surface geometry in order to provide a representation for the viscous damping of toroidal rotation in tokamaks arising from various “neoclassical toroidal viscosity” mechanisms. In the process, it was verified that the parallel viscosity contribution to damping toroidal angular momentum still vanishes even in the presence of toroidal asymmetries, unless there are 3D radial magnetic fields.
Angular momentum projected wave-functions
Bengtsson, R.; Haakansson, H.B.
1978-01-01
Angular momentum projection has become a vital link between intrinsic model-wavefunctions and the physical states one intends to describe. We discuss in general terms some aspects of angular momentum projection and present results from projection on e.g. cranking wavefunctions. Mass densities and spectroscopic factors are also presented for some cases. (author)
Angular momentum transport by tidal acoustic wave
Sakurai, T.
1976-01-01
An analytical expression of the braking torque on a Jacobian ellipsoid rotating steadily in an enviromental gas is given, based on the assumption that the ellipsoid rotates around its shortest principal axis with an angular momentum slightly larger than that at the bifurcation point of the Maclaurin spheroid. This braking torque is effected by the gravitational interaction between the ellipsoid matter and a spiral density configuration in the environmental gas. This spiral configuration which is called a tidal acoustic wave, is caused by the zone of silence effect in a supersonic flow. With respect to a coordinates system rotating with the ellipsoid, a supersonic region appears outside a certain radius. In this supersonic region, the effect of the non-axisymmetric fluctuation in the ellipsoid potential propagates along the downstream branches of the Mach waves. This one-sided response of the supersonic part causes the tidal acoustic wave. The discussion is restricted to the equatorial plane, and an acoustic approximation of the basic equations is used under the assumption that the self-gravity effect of the environmental gas is negligable in comparison to the main gravity of the ellipsoid. The results are applied to the pre- and post-Main sequence phases of a rotating star, and relating astrophysical problems are discussed. (Auth.)
Angular momentum transport by tidal acoustic wave
Sakurai, T [Kyoto Univ. (Japan). Faculty of Engineering
1976-05-01
An analytical expression of the braking torque on a Jacobian ellipsoid rotating steadily in an enviromental gas is given, based on the assumption that the ellipsoid rotates around its shortest principal axis with an angular momentum slightly larger than that at the bifurcation point of the Maclaurin spheroid. This braking torque is effected by the gravitational interaction between the ellipsoid matter and a spiral density configuration in the environmental gas. This spiral configuration which is called a tidal acoustic wave, is caused by the zone of silence effect in a supersonic flow. With respect to a coordinates system rotating with the ellipsoid, a supersonic region appears outside a certain radius. In this supersonic region, the effect of the non-axisymmetric fluctuation in the ellipsoid potential propagates along the downstream branches of the Mach waves. This one-sided response of the supersonic part causes the tidal acoustic wave. The discussion is restricted to the equatorial plane, and an acoustic approximation of the basic equations is used under the assumption that the self-gravity effect of the environmental gas is negligable in comparison to the main gravity of the ellipsoid. The results are applied to the pre- and post-Main sequence phases of a rotating star, and relating astrophysical problems are discussed.
Wigner Functions and Quark Orbital Angular Momentum
Mukherjee Asmita
2015-01-01
Full Text Available Wigner distributions contain combined position and momentum space information of the quark distributions and are related to both generalized parton distributions (GPDs and transverse momentum dependent parton distributions (TMDs. We report on a recent model calculation of the Wigner distributions for the quark and their relation to the orbital angular momentum.
Wigner Functions and Quark Orbital Angular Momentum
Mukherjee, Asmita; Nair, Sreeraj; Ojha, Vikash Kumar
2014-01-01
Wigner distributions contain combined position and momentum space information of the quark distributions and are related to both generalized parton distributions (GPDs) and transverse momentum dependent parton distributions (TMDs). We report on a recent model calculation of the Wigner distributions for the quark and their relation to the orbital angular momentum.
Angular momentum conservation for uniformly expanding flows
Hayward, Sean A
2007-01-01
Angular momentum has recently been defined as a surface integral involving an axial vector and a twist 1-form, which measures the twisting around the spacetime due to a rotating mass. The axial vector is chosen to be a transverse, divergence-free, coordinate vector, which is compatible with any initial choice of axis and integral curves. Then a conservation equation expresses the rate of the change of angular momentum along a uniformly expanding flow as a surface integral of angular momentum densities, with the same form as the standard equation for an axial Killing vector, apart from the inclusion of an effective energy tensor for gravitational radiation
Amplitude damping channel for orbital angular momentum
Dudley, Angela L
2010-03-01
Full Text Available Since the pioneering work on the entanglement of the orbital angular momentum (OAM) states of light, much attention has been devoted to the subject, with particular attention into the quantum aspects of information processing using OAM. Furthermore...
Orbital-angular-momentum entanglement in turbulence
Hamadou Ibrahim, A
2013-06-01
Full Text Available The turbulence-induced decay of orbital-angular-momentum (OAM) entanglement between two photons is investigated numerically and experimentally. To compare our resultswith previouswork,we simulate the turbulent atmosphere with a single phase screen...
On the Angular Momentum Loss of Tropical Cyclones: An f-Plane Approximation
Kang, Hyun-Gyu; Cheong, Hyeong-Bin; Kim, Won-Ho
2018-02-01
The angular momentum for ideal axisymmetric tropical cyclones on the f-plane is investigated with a focus on the total-volume integrated quantity. Budget analysis of the momentum equation at cylindrical coordinates shows that a tropical cyclone loses angular momentum during its development and mature stages due to the dynamical difference between the viscous inward-flow near the surface and the angular momentum conserving outward-flow aloft. The total relative angular momentum of a tropical cyclone, as a result, can be negative (i.e., implying anticyclonic rotation as a whole) despite intense cyclonic wind in the tropospheric layers. This anticyclonic rotation was measured in terms of the super-rotation ratio, the ratio of total relative angular momentum to the planetary angular momentum. Simulations with the numerical model of Weather Research and Forecasting (WRF) version 3.4.1 was found to be in favor of the theoretical angular-momentum budget analysis. It was revealed in the numerical simulations that the super-rotation ratio was negative, indicating a sub-rotation, as was predicted by analysis. The sub-rotation ratio was found to be less than one percent for typical tropical cyclones. To show the angular momentum decrease even in the decaying stage, numerical simulations where the thermal forcing by sea surface temperature switched off in the mature stage were carried out. In support of the angular momentum budget analysis, the results indicated that the angular momentum also decreases for a while soon after the forcing was eliminated.
Experimental determination of high angular momentum states
Barreto, J.L.V.
1985-01-01
The current knowledge of the atomic nucleus structure is summarized. A short abstract of the nuclear properties at high angular momentum and a more detailed description of the experimental methods used in the study of high angular momenta is made. (L.C.) [pt
Transverse angular momentum in topological photonic crystals
Deng, Wei-Min; Chen, Xiao-Dong; Zhao, Fu-Li; Dong, Jian-Wen
2018-01-01
Engineering local angular momentum of structured light fields in real space enables applications in many fields, in particular, the realization of unidirectional robust transport in topological photonic crystals with a non-trivial Berry vortex in momentum space. Here, we show transverse angular momentum modes in silicon topological photonic crystals when considering transverse electric polarization. Excited by a chiral external source with either transverse spin angular momentum or transverse phase vortex, robust light flow propagating along opposite directions is observed in several kinds of sharp-turn interfaces between two topologically-distinct silicon photonic crystals. A transverse orbital angular momentum mode with alternating phase vortex exists at the boundary of two such photonic crystals. In addition, unidirectional transport is robust to the working frequency even when the ring size or location of the pseudo-spin source varies in a certain range, leading to the superiority of the broadband photonic device. These findings enable one to make use of transverse angular momentum, a kind of degree of freedom, to achieve unidirectional robust transport in the telecom region and other potential applications in integrated photonic circuits, such as on-chip robust delay lines.
Staggering of angular momentum distribution in fission
Tamagno, Pierre; Litaize, Olivier
2018-03-01
We review here the role of angular momentum distributions in the fission process. To do so the algorithm implemented in the FIFRELIN code [?] is detailed with special emphasis on the place of fission fragment angular momenta. The usual Rayleigh distribution used for angular momentum distribution is presented and the related model derivation is recalled. Arguments are given to justify why this distribution should not hold for low excitation energy of the fission fragments. An alternative ad hoc expression taking into account low-lying collectiveness is presented as has been implemented in the FIFRELIN code. Yet on observables currently provided by the code, no dramatic impact has been found. To quantify the magnitude of the impact of the low-lying staggering in the angular momentum distribution, a textbook case is considered for the decay of the 144Ba nucleus with low excitation energy.
Staggering of angular momentum distribution in fission
Tamagno Pierre
2018-01-01
Full Text Available We review here the role of angular momentum distributions in the fission process. To do so the algorithm implemented in the FIFRELIN code [?] is detailed with special emphasis on the place of fission fragment angular momenta. The usual Rayleigh distribution used for angular momentum distribution is presented and the related model derivation is recalled. Arguments are given to justify why this distribution should not hold for low excitation energy of the fission fragments. An alternative ad hoc expression taking into account low-lying collectiveness is presented as has been implemented in the FIFRELIN code. Yet on observables currently provided by the code, no dramatic impact has been found. To quantify the magnitude of the impact of the low-lying staggering in the angular momentum distribution, a textbook case is considered for the decay of the 144Ba nucleus with low excitation energy.
Ghost Imaging Using Orbital Angular Momentum
赵生妹; 丁建; 董小亮; 郑宝玉
2011-01-01
We present a novel encoding scheme in a ghost-imaging system using orbital angular momentum. In the signal arm, object spatial information is encoded as a phase matrix. For an N-grey-scale object, different phase matrices, varying from 0 to K with increment n/N, are used for different greyscales, and then they are modulated to a signal beam by a spatial light modulator. According to the conservation of the orbital angular momentum in the ghost imaging system, these changes will give different coincidence rates in measurement, and hence the object information can be extracted in the idler arm. By simulations and experiments, the results show that our scheme can improve the resolution of the image effectively. Compared with another encoding method using orbital angular momentum, our scheme has a better performance for both characters and the image object.%We present a novel encoding scheme in a ghost-imaging system using orbital angular momentum.In the signal arm,object spatial information is encoded as a phase matrix.For an N-grey-scale object,different phase matrices,varying from 0 to π with increment π/N,are used for different greyscales,and then they are modulated to a signal beam by a spatial light modulator.According to the conservation of the orbital angular momentum in the ghost imaging system,these changes will give different coincidence rates in measurement,and hence the object information can be extracted in the idler arm.By simulations and experiments,the results show that our scheme can improve the resolution of the image effectively.Compared with another encoding method using orbital angular momentum,our scheme has a better performance for both characters and the image object.
Total angular momentum from Dirac eigenspinors
Szabados, Laszlo B
2008-01-01
The eigenvalue problem for Dirac operators, constructed from two connections on the spinor bundle over closed spacelike 2-surfaces, is investigated. A class of divergence-free vector fields, built from the eigenspinors, are found, which, for the lowest eigenvalue, reproduce the rotation Killing vectors of metric spheres, and provide rotation BMS vector fields at future null infinity. This makes it possible to introduce a well-defined, gauge invariant spatial angular momentum at null infinity, which reduces to the standard expression in stationary spacetimes. The general formula for the angular momentum flux carried away by the gravitational radiation is also derived
Uncertainty principle for angular position and angular momentum
Franke-Arnold, Sonja; Barnett, Stephen M; Yao, Eric; Leach, Jonathan; Courtial, Johannes; Padgett, Miles
2004-01-01
The uncertainty principle places fundamental limits on the accuracy with which we are able to measure the values of different physical quantities (Heisenberg 1949 The Physical Principles of the Quantum Theory (New York: Dover); Robertson 1929 Phys. Rev. 34 127). This has profound effects not only on the microscopic but also on the macroscopic level of physical systems. The most familiar form of the uncertainty principle relates the uncertainties in position and linear momentum. Other manifestations include those relating uncertainty in energy to uncertainty in time duration, phase of an electromagnetic field to photon number and angular position to angular momentum (Vaccaro and Pegg 1990 J. Mod. Opt. 37 17; Barnett and Pegg 1990 Phys. Rev. A 41 3427). In this paper, we report the first observation of the last of these uncertainty relations and derive the associated states that satisfy the equality in the uncertainty relation. We confirm the form of these states by detailed measurement of the angular momentum of a light beam after passage through an appropriate angular aperture. The angular uncertainty principle applies to all physical systems and is particularly important for systems with cylindrical symmetry
Dual electromagnetism: helicity, spin, momentum and angular momentum
Bliokh, Konstantin Y; Nori, Franco; Bekshaev, Aleksandr Y
2013-01-01
The dual symmetry between electric and magnetic fields is an important intrinsic property of Maxwell equations in free space. This symmetry underlies the conservation of optical helicity and, as we show here, is closely related to the separation of spin and orbital degrees of freedom of light (the helicity flux coincides with the spin angular momentum). However, in the standard field-theory formulation of electromagnetism, the field Lagrangian is not dual symmetric. This leads to problematic dual-asymmetric forms of the canonical energy–momentum, spin and orbital angular-momentum tensors. Moreover, we show that the components of these tensors conflict with the helicity and energy conservation laws. To resolve this discrepancy between the symmetries of the Lagrangian and Maxwell equations, we put forward a dual-symmetric Lagrangian formulation of classical electromagnetism. This dual electromagnetism preserves the form of Maxwell equations, yields meaningful canonical energy–momentum and angular-momentum tensors, and ensures a self-consistent separation of the spin and orbital degrees of freedom. This provides a rigorous derivation of the results suggested in other recent approaches. We make the Noether analysis of the dual symmetry and all the Poincaré symmetries, examine both local and integral conserved quantities and show that only the dual electromagnetism naturally produces a complete self-consistent set of conservation laws. We also discuss the observability of physical quantities distinguishing the standard and dual theories, as well as relations to quantum weak measurements and various optical experiments. (paper)
Angular-momentum-bearing modes in fission
Moretto, L.G.; Peaslee, G.F.; Wozniak, G.J.
1989-03-01
The angular-momentum-bearing degrees of freedom involved in the fission process are identified and their influence on experimental observables is discussed. The excitation of these modes is treated in the ''thermal'' limit, and the resulting distributions of observables are calculated. Experiments demonstrating the role of these modes are presented and discussed. 61 refs., 12 figs
Angular and linear momentum of excited ferromagnets
Yan, P.; Kamra, A.; Cao, Y.; Bauer, G.E.W.
2013-01-01
The angular momentum vector of a Heisenberg ferromagnet with isotropic exchange interaction is conserved, while under uniaxial crystalline anisotropy the projection of the total spin along the easy axis is a constant of motion. Using Noether's theorem, we prove that these conservation laws persist
ANGULAR MOMENTUM ACQUISITION IN GALAXY HALOS
Stewart, Kyle R.; Brooks, Alyson M.; Bullock, James S.; Maller, Ariyeh H.; Diemand, Jürg; Wadsley, James; Moustakas, Leonidas A.
2013-01-01
We use high-resolution cosmological hydrodynamic simulations to study the angular momentum acquisition of gaseous halos around Milky-Way-sized galaxies. We find that cold mode accreted gas enters a galaxy halo with ∼70% more specific angular momentum than dark matter averaged over cosmic time (though with a very large dispersion). In fact, we find that all matter has a higher spin parameter when measured at accretion than when averaged over the entire halo lifetime, and is well characterized by λ ∼ 0.1, at accretion. Combined with the fact that cold flow gas spends a relatively short time (1-2 dynamical times) in the halo before sinking to the center, this naturally explains why cold flow halo gas has a specific angular momentum much higher than that of the halo and often forms ''cold flow disks.'' We demonstrate that the higher angular momentum of cold flow gas is related to the fact that it tends to be accreted along filaments.
W UMa stars and angular momentum loss
Vilhu, O.; Rahunen, T.
1980-01-01
The structure and evolution of W UMa stars is still unsolved although considerable progress has been achieved in recent years. The authors aim is to find out whether it is possible to obtain more extreme mass ratios, what is the angular momentum needed and what is the time scale. (Auth.)
Angular momentum alignment in molecular beam scattering
Treffers, M.A.
1985-01-01
It is shown how the angular momentum alignment in a molecular beam can be determined using laser-induced fluorescence in combination with precession of the angular momenta in a magnetic field. After a general analysis of the method, some results are presented to illustrate the possibilities of the method. Experimental data are presented on the alignment production for Na 2 molecules that made a collision induced angular momentum transition. Magnitude as well as direction of the alignment have been determined for scattering with several scattering partners and for a large number of scattering angles and transitions. The last chapter deals with the total alignment production in a final J-state, i.e. without state selection of the initial rotational state. (orig.)
On the angular momentum in star formation
Horedt, G.P.
1978-01-01
The author discusses the rotation of interstellar clouds which are in a stage immediately before star formation. Cloud collisions seem to be the principal cause of the observed rotation of interstellar clouds. The rotational motion of the clouds is strongly influenced by turbulence. Theories dealing with the resolution of the angular momentum problem in star formation are classified into five major groups. The old idea that the angular momentum of an interstellar cloud passes during star formation into the angular momentum of double star systems and/or circumstellar clouds, is developed. It is suggested that a rotating gas cloud contracts into a ring-like structure which fragments into self-gravitating subcondensations. By collisions and gas accretion these subcondensations accrete into binary systems surrounded by circumstellar clouds. Using some rough approximations the authors find analytical expressions for the semi-major axis of the binary system and for the density of the circumstellar clouds as a function of the initial density and of the initial angular velocity of an interstellar cloud. The obtained values are well within the observational limits. (Auth.)
Behavior of nuclei at high angular momentum
Stephens, F.S.
1982-07-01
The present report begins with a brief overview of nuclear shapes and level structures at high-spin values. The new spectroscopy associated with angular-momentum alignments is described, and some of the exciting possibilities of this spectroscopy are explored. Nuclear moments of inertia are discussed and a somewhat different one is defined, together with a method for measuring it and some early results. Finally a few comments on the future prospects for high-spin physics are offered
High Angular Momentum Rydberg Wave Packets
Wyker, Brendan
2011-12-01
High angular momentum Rydberg wave packets are studied. Application of carefully tailored electric fields to low angular momentum, high- n (n ˜ 300) Rydberg atoms creates coherent superpositions of Stark states with near extreme values of angular momentum, ℓ. Wave packet components orbit the parent nucleus at rates that depend on their energy, leading to periods of localization and delocalization as the components come into and go out of phase with each other. Monitoring survival probability signals in the presence of position dependent probing leads to observation of characteristic oscillations based on the composition of the wave packet. The discrete nature of electron energy levels is observed through the measurement of quantum revivals in the wave packet localization signal. Time-domain spectroscopy of these signals allows determination of both the population and phase of individual superposition components. Precise manipulation of wave packets is achieved through further application of pulsed electric fields. Decoherence effects due to background gas collisions and electrical noise are also detailed. Quantized classical trajectory Monte-Carlo simulations are introduced and agree remarkably well with experimental results.
Sorting and quantifying orbital angular momentum of laser beams
Schulze, C
2013-10-01
Full Text Available We present a novel tool for sorting the orbital angular momentum and to determine the orbital angular momentum density of laser beams, which is based on the use of correlation filters....
Chirality and angular momentum in optical radiation
Coles, Matt M.; Andrews, David L.
2012-06-01
This paper develops, in precise quantum electrodynamic terms, photonic attributes of the “optical chirality density,” one of several measures long known to be conserved quantities for a vacuum electromagnetic field. The analysis lends insights into some recent interpretations of chiroptical experiments, in which this measure, and an associated chirality flux, have been treated as representing physically distinctive “superchiral” phenomena. In the fully quantized formalism the chirality density is promoted to operator status, whose exploration with reference to an arbitrary polarization basis reveals relationships to optical angular momentum and helicity operators. Analyzing multimode beams with complex wave-front structures, notably Laguerre-Gaussian modes, affords a deeper understanding of the interplay between optical chirality and optical angular momentum. By developing theory with due cognizance of the photonic character of light, it emerges that only the spin-angular momentum of light is engaged in such observations. Furthermore, it is shown that these prominent measures of the helicity of chiral electromagnetic radiation have a common basis in differences between the populations of optical modes associated with angular momenta of opposite sign. Using a calculation of the rate of circular dichroism as an example, with coherent states to model the electromagnetic field, it is discovered that two terms contribute to the differential effect. The primary contribution relates to the difference in left- and right-handed photon populations; the only other contribution, which displays a sinusoidal distance dependence corresponding to the claim of nodal enhancements, is connected with the quantum photon number-phase uncertainty relation. From the full analysis, it appears that the term “superchiral” can be considered redundant.
Energy, momentum and angular momentum conservations in de Sitter gravity
Lu, Jia-An
2016-01-01
In de Sitter (dS) gravity, where gravity is a gauge field introduced to realize the local dS invariance of the matter field, two kinds of conservation laws are derived. The first kind is a differential equation for a dS-covariant current, which unites the canonical energy-momentum (EM) and angular momentum (AM) tensors. The second kind presents a dS-invariant current which is conserved in the sense that its torsion-free divergence vanishes. The dS-invariant current unites the total (matter plus gravity) EM and AM currents. It is well known that the AM current contains an inherent part, called the spin current. Here it is shown that the EM tensor also contains an inherent part, which might be observed by its contribution to the deviation of the dust particle’s world line from a geodesic. All the results are compared to the ordinary Lorentz gravity. (paper)
Angular Momentum and Galaxy Formation Revisited
Romanowsky, Aaron J.; Fall, S. Michael
2012-12-01
Motivated by a new wave of kinematical tracers in the outer regions of early-type galaxies (ellipticals and lenticulars), we re-examine the role of angular momentum in galaxies of all types. We present new methods for quantifying the specific angular momentum j, focusing mainly on the more challenging case of early-type galaxies, in order to derive firm empirical relations between stellar j sstarf and mass M sstarf (thus extending earlier work by Fall). We carry out detailed analyses of eight galaxies with kinematical data extending as far out as 10 effective radii, and find that data at two effective radii are generally sufficient to estimate total j sstarf reliably. Our results contravene suggestions that ellipticals could harbor large reservoirs of hidden j sstarf in their outer regions owing to angular momentum transport in major mergers. We then carry out a comprehensive analysis of extended kinematic data from the literature for a sample of ~100 nearby bright galaxies of all types, placing them on a diagram of j sstarf versus M sstarf. The ellipticals and spirals form two parallel j sstarf-M sstarf tracks, with log-slopes of ~0.6, which for the spirals are closely related to the Tully-Fisher relation, but for the ellipticals derives from a remarkable conspiracy between masses, sizes, and rotation velocities. The ellipticals contain less angular momentum on average than spirals of equal mass, with the quantitative disparity depending on the adopted K-band stellar mass-to-light ratios of the galaxies: it is a factor of ~3-4 if mass-to-light ratio variations are neglected for simplicity, and ~7 if they are included. We decompose the spirals into disks and bulges and find that these subcomponents follow j sstarf-M sstarf trends similar to the overall ones for spirals and ellipticals. The lenticulars have an intermediate trend, and we propose that the morphological types of galaxies reflect disk and bulge subcomponents that follow separate, fundamental j sstarf
The angular momentum of isolated white dwarfs
Brassard P.
2013-03-01
Full Text Available This is a very brief report on an ongoing program aimed at mapping the internal rotation profiles of stars through asteroseismology. Three years ago, we developed and applied successfully a new technique to the pulsating GW Vir white dwarf PG 1159−035, and were able to infer that it rotates very slowly and rigidly over some 99% of its mass. We applied the same approach to the three other GW Vir pulsators with available rotational splitting data, and found similar results. We discuss the implications of these findings on the question of the angular momentum of white dwarfs resulting from single star evolution.
Projection of angular momentum via linear algebra
Johnson, Calvin W.; O'Mara, Kevin D.
2017-12-01
Projection of many-body states with good angular momentum from an initial state is usually accomplished by a three-dimensional integral. We show how projection can instead be done by solving a straightforward system of linear equations. We demonstrate the method and give sample applications to 48Cr and 60Fe in the p f shell. This new projection scheme, which is competitive against the standard numerical quadrature, should also be applicable to other quantum numbers such as isospin and particle number.
Optical communication beyond orbital angular momentum
Trichili, A
2016-06-01
Full Text Available :27674 | DOI: 10.1038/srep27674 www.nature.com/scientificreports Optical communication beyond orbital angular momentum Abderrahmen Trichili1, Carmelo Rosales-Guzmán2, Angela Dudley2,3, Bienvenu Ndagano2, Amine Ben Salem1, Mourad Zghal1,4 & Andrew Forbes2 Mode....rosalesguzman@wits.ac.za) received: 29 March 2016 Accepted: 24 May 2016 Published: 10 June 2016 OPEN www.nature.com/scientificreports/ 2Scientific RepoRts | 6:27674 | DOI: 10.1038/srep27674 Results Consider a LG mode in cylindrical coordinates, at its waist plane (z = 0), described...
Angular momentum effects in subbarrier fusion
Halbert, M.L.; Beene, J.R.; Hensley, D.C.; Honkanen, K.; Semkow, T.M.; Abenante, V.; Sarantites, D.G.; Li, Z.
1987-01-01
The authors discuss angular-momentum distributions σ l for the compound nucleus 164 Yb deduced from measurements of γ-ray multiplicity for all significant evaporation residues from fusion of 64 Ni and 100 Mo and 16 O + 148 Sm. At the lowest bombarding energies the σ l extend to higher l values than do predictions that include coupling of the principal inelastic channels, even if the coupling strengths are increased to match the experimental excitation function. Likewise, σ l from an energy-dependent real potential fitted to the excitation function fails to reproduce the experimental σ l distribution. No effects attributed to superdeformation were observed
Leader, Elliot
2018-04-01
The expression for the total angular momentum carried by a laser optical vortex beam, splits, in the paraxial approximation, into two terms which seem to represent orbital and spin angular momentum respectively. There are, however, two very different competing versions of the formula for the spin angular momentum, one based on the use of the Poynting vector, as in classical electrodynamics, the other related to the canonical expression for the angular momentum which occurs in Quantum Electrodynamics. I analyze the possibility that a sufficiently sensitive optical measurement could decide which of these corresponds to the actual physical angular momentum carried by the beam.
Orbital angular momentum of general astigmatic modes
Visser, Jorrit; Nienhuis, Gerard
2004-01-01
We present an operator method to obtain complete sets of astigmatic Gaussian solutions of the paraxial wave equation. In case of general astigmatism, the astigmatic intensity and phase distribution of the fundamental mode differ in orientation. As a consequence, the fundamental mode has a nonzero orbital angular momentum, which is not due to phase singularities. Analogous to the operator method for the quantum harmonic oscillator, the corresponding astigmatic higher-order modes are obtained by repeated application of raising operators on the fundamental mode. The nature of the higher-order modes is characterized by a point on a sphere, in analogy with the representation of polarization on the Poincare sphere. The north and south poles represent astigmatic Laguerre-Gaussian modes, similar to circular polarization on the Poincare sphere, while astigmatic Hermite-Gaussian modes are associated with points on the equator, analogous to linear polarization. We discuss the propagation properties of the modes and their orbital angular momentum, which depends on the degree of astigmatism and on the location of the point on the sphere
Belyaev, Mikhail A.; Quataert, Eliot
2018-04-01
We present unstratified 3D MHD simulations of an accretion disk with a boundary layer (BL) that have a duration ˜1000 orbital periods at the inner radius of the accretion disk. We find the surprising result that angular momentum piles up in the boundary layer, which results in a rapidly rotating belt of accreted material at the surface of the star. The angular momentum stored in this belt increases monotonically in time, which implies that angular momentum transport mechanisms in the BL are inefficient and do not couple the accretion disk to the star. This is in spite of the fact that magnetic fields are advected into the BL from the disk and supersonic shear instabilities in the BL excite acoustic waves. In our simulations, these waves only carry a small fraction (˜10%) of the angular momentum required for steady state accretion. Using analytical theory and 2D viscous simulations in the R - ϕ plane, we derive an analytical criterion for belt formation to occur in the BL in terms of the ratio of the viscosity in the accretion disk to the viscosity in the BL. Our MHD simulations have a dimensionless viscosity (α) in the BL that is at least a factor of ˜100 smaller than that in the disk. We discuss the implications of these results for BL dynamics and emission.
Untangling Galaxy Components - The Angular Momentum Parameter
Tabor, Martha; Merrifield, Michael; Aragon-Salamanca, Alfonso
2017-06-01
We have developed a new technique to decompose Integral Field spectral data cubes into separate bulge and disk components, allowing us to study the kinematic and stellar population properties of the individual components and how they vary with position. We present here the application of this method to a sample of fast rotator early type galaxies from the MaNGA integral field survey, and demonstrate how it can be used to explore key properties of the individual components. By extracting ages, metallicities and the angular momentum parameter lambda of the bulges and disks, we show how this method can give us new insights into the underlying structure of the galaxies and discuss what this can tell us about their evolution history.
Intrinsic Orbital Angular Momentum States of Neutrons
Cappelletti, Ronald L.; Jach, Terrence; Vinson, John
2018-03-01
It has been shown that single-particle wave functions, of both photons and electrons, can be created with a phase vortex, i.e., an intrinsic orbital angular momentum (OAM). A recent experiment has claimed similar success using neutrons [C. W. Clark et al., Nature, 525, 504 (2015), 10.1038/nature15265]. We show that their results are insufficient to unambiguously demonstrate OAM, and they can be fully explained as phase contrast interference patterns. Furthermore, given the small transverse coherence length of the neutrons in the original experiment, the probability that any neutron was placed in an OAM state is vanishingly small. We highlight the importance of the relative size of the coherence length, which presents a unique challenge for neutron experiments compared to electron or photon work, and we suggest improvements for the creation of neutron OAM states.
Angular momentum of dark matter black holes
Frampton, Paul H., E-mail: paul.h.frampton@gmail.com
2017-04-10
We provide strongly suggestive evidence that the halo constituents of dark matter are Primordial Intermediate-Mass Black Holes (PIMBHs). PIMBHs are described by a Kerr metric with two parameters, mass M and angular momentum J. There has been little discussion of J since it plays no role in the upcoming attempt at PIMBH detection by microlensing. Nevertheless J does play a central role in understanding their previous lack of detection, especially by CMB distortion. We explain why bounds previously derived from lack of CMB distortion are too strong for PIMBHs with J non-vanishing and that, provided almost no dark matter black holes originate from stellar collapse, excessive CMB distortion is avoided.
Topological photonic orbital-angular-momentum switch
Luo, Xi-Wang; Zhang, Chuanwei; Guo, Guang-Can; Zhou, Zheng-Wei
2018-04-01
The large number of available orbital-angular-momentum (OAM) states of photons provides a unique resource for many important applications in quantum information and optical communications. However, conventional OAM switching devices usually rely on precise parameter control and are limited by slow switching rate and low efficiency. Here we propose a robust, fast, and efficient photonic OAM switch device based on a topological process, where photons are adiabatically pumped to a target OAM state on demand. Such topological OAM pumping can be realized through manipulating photons in a few degenerate main cavities and involves only a limited number of optical elements. A large change of OAM at ˜10q can be realized with only q degenerate main cavities and at most 5 q pumping cycles. The topological photonic OAM switch may become a powerful device for broad applications in many different fields and motivate a topological design of conventional optical devices.
Angular momentum of circularly polarized light in dielectric media
Mansuripur, Masud
2014-01-01
A circularly polarized plane-wave is known to have no angular momentum when examined through Maxwell's equations. This, however, contradicts the experimentally observed facts, where finite segments of plane waves are known to be capable of imparting angular momentum to birefringent platelets. Using a superposition of four plane-waves propagating at slightly different angles to a common direction, we derive an expression for the angular momentum density of a single plane-wave in the limit when...
Elliot Leader
2018-04-01
Full Text Available The expression for the total angular momentum carried by a laser optical vortex beam, splits, in the paraxial approximation, into two terms which seem to represent orbital and spin angular momentum respectively. There are, however, two very different competing versions of the formula for the spin angular momentum, one based on the use of the Poynting vector, as in classical electrodynamics, the other related to the canonical expression for the angular momentum which occurs in Quantum Electrodynamics. I analyze the possibility that a sufficiently sensitive optical measurement could decide which of these corresponds to the actual physical angular momentum carried by the beam. Keywords: Photon, Angular momentum, Laser optics, Particle physics
Whole-body angular momentum during stair ascent and descent.
Silverman, Anne K; Neptune, Richard R; Sinitski, Emily H; Wilken, Jason M
2014-04-01
The generation of whole-body angular momentum is essential in many locomotor tasks and must be regulated in order to maintain dynamic balance. However, angular momentum has not been investigated during stair walking, which is an activity that presents a biomechanical challenge for balance-impaired populations. We investigated three-dimensional whole-body angular momentum during stair ascent and descent and compared it to level walking. Three-dimensional body-segment kinematic and ground reaction force (GRF) data were collected from 30 healthy subjects. Angular momentum was calculated using a 13-segment whole-body model. GRFs, external moment arms and net joint moments were used to interpret the angular momentum results. The range of frontal plane angular momentum was greater for stair ascent relative to level walking. In the transverse and sagittal planes, the range of angular momentum was smaller in stair ascent and descent relative to level walking. Significant differences were also found in the ground reaction forces, external moment arms and net joint moments. The sagittal plane angular momentum results suggest that individuals alter angular momentum to effectively counteract potential trips during stair ascent, and reduce the range of angular momentum to avoid falling forward during stair descent. Further, significant differences in joint moments suggest potential neuromuscular mechanisms that account for the differences in angular momentum between walking conditions. These results provide a baseline for comparison to impaired populations that have difficulty maintaining dynamic balance, particularly during stair ascent and descent. Copyright © 2014 Elsevier B.V. All rights reserved.
Angular momentum dependence of the distribution of shell model eigenenergies
Yen, M.K.
1974-01-01
In the conventional shell model calculation the many-particle energy matrices are constructed and diagonalized for definite angular momentum and parity. However the resulting set of eigenvalues possess a near normal behavior and hence a simple statistical description is possible. Usually one needs only about four parameters to capture the average level densities if the size of the set is not too small. The parameters are essentially moments of the distribution. But the difficulty lies in the yet unsolved problem of calculating moments in the fixed angular momentum subspace. We have derived a formula to approximate the angular momentum projection dependence of any operator averaged in a shell model basis. This approximate formula which is a truncated series in Hermite polynomials has been proved very good numerically and justified analytically for large systems. Applying this formula to seven physical cases we have found that the fixed angular momentum projection energy centroid, width and higher central moments can be obtained accurately provided for even-even nuclei the even and odd angular momentum projections are treated separately. Using this information one can construct the energy distribution for fixed angular momentum projection assuming normal behavior. Then the fixed angular momentum level densities are deduced and spectra are extracted. Results are in reasonably good agreement with the exact values although not as good as those obtained using exact fixed angular momentum moments. (Diss. Abstr. Int., B)
Nuclear structure at high angular momentum
Stephens, F.S.
1976-08-01
There is considerable interest in high angular-momentum states of nuclei, and some recent progress in three areas is discussed. Part I considers transitional nuclei, where two types of rotational bands--decoupled and strongly coupled--are found to occur very frequently. These can be described by several collective models, but the required potential-energy surfaces seem to differ somewhat from those calculated microscopically. In Part II the processes that might cause backbending (irregularities in the rotational levels of certain nuclei) are discussed, and alignment of individual nucleons now seems to be the cause in most cases. The mixing of the ground band with this aligned band can be studied in some detail using Coulomb excitation with very heavy ions. Part III deals with the very high-spin states where effective moments of inertia have been obtained for spins up to 50h. Also structure has been seen in the spectra around these spin values which can be tentatively related to calculated shell effects. 74 references, 61 figures
Angular-momentum effects in subbarrier fusion
Halbert, M.L.; Beene, J.R.
1993-01-01
It has been known since about 1980 that fusion of heavy ions is greatly enhanced below the Coulomb barrier compared with normal barrier-penetration expectations. The excitation function for fusion of 64 Ni + 100 Mo measured in collaboration with a group at Washington University shows the effect clearly. The barrier energy is about 142 MeV; the lowest point is at about 90% of the barrier energy. The dotted curve is the prediction of a one-dimensional-barrier-penetration calculation of a type that reproduces the fusion of light projectiles very well. Several theoretical approaches have been successful in explaining the enhancement seen in much of the excitation-function data, but it cannot be said that a full understanding of the physics is in hand even after more than a decade of hard work. In fact, the reasonable success of several rather different models shows that the underlying phenomena are not well understood. Other types of data might be helpful in distinguishing among the many different theoretical approaches. An important kind of information not measured in most of the experiments is the dependence on ell, the angular momentum of the fusing system. We obtained such information on the cross sections, σ ell, as a function of ell for the fusion of 64 Ni and 100 Mo using the Spin Spectrometer. This paper will first review the experimental method and data and then present results from a more sophisticated analysis of the same data
Cyclic transformation of orbital angular momentum modes
Schlederer, Florian; Krenn, Mario; Fickler, Robert; Malik, Mehul; Zeilinger, Anton
2016-01-01
The spatial modes of photons are one realization of a QuDit, a quantum system that is described in a D-dimensional Hilbert space. In order to perform quantum information tasks with QuDits, a general class of D-dimensional unitary transformations is needed. Among these, cyclic transformations are an important special case required in many high-dimensional quantum communication protocols. In this paper, we experimentally demonstrate a cyclic transformation in the high-dimensional space of photonic orbital angular momentum (OAM). Using simple linear optical components, we show a successful four-fold cyclic transformation of OAM modes. Interestingly, our experimental setup was found by a computer algorithm. In addition to the four-cyclic transformation, the algorithm also found extensions to higher-dimensional cycles in a hybrid space of OAM and polarization. Besides being useful for quantum cryptography with QuDits, cyclic transformations are key for the experimental production of high-dimensional maximally entangled Bell-states. (paper)
Accelerated rotation with orbital angular momentum modes
Schulze, C
2015-04-01
Full Text Available . As the angular acceleration takes place in a bounded space, the azimuthal degree of freedom, such fields accelerate periodically as they propagate. Notably, the amount of angular acceleration is not limited by paraxial considerations, may be tailored for large...
The angular momentum dependence of complex fragment emission
Sobtka, L.G.; Sarantites, D.G.; Li, Z.
1987-01-01
Large fragment (A > 4) production at high angular momentum is studied via the reaction, 200 MeV 45 Sc + 65 Cu. Comparisons of the fragment yields from this reaction (high angular momentum) to those from 93 Nb + Be (low angular momentum) are used to verify the strong angular momentum dependence of large fragment production predicted by equilibrium models. Details of the coincident γ-ray distributions not only confirm a rigidly rotating intermediate but also indicate that the widths of the primary L-wave distributions decrease with increasing symmetry in the decay channel. These data are used to test the asymmetry and L-wave dependence of emission barriers calculated from a rotating, finite range corrected, liquid drop model. 21 refs., 10 figs
Electronic orbital angular momentum and magnetism of graphene
Luo, Ji, E-mail: ji.luo@upr.edu
2014-10-01
Orbital angular momentum (OAM) of graphene electrons in a perpendicular magnetic field is calculated and corresponding magnetic moment is used to investigate the magnetism of perfect graphene. Variation in magnetization demonstrates its decrease with carrier-doping, plateaus in a large field, and de Haas–van Alphen oscillation. Regulation of graphene's magnetism by a parallel electric field is presented. The OAM originates from atomic-scale electronic motion in graphene lattice, and vector hopping interaction between carbon atomic orbitals is the building element. A comparison between OAM of graphene electrons, OAM of Dirac fermions, and total angular momentum of the latter demonstrates their different roles in graphene's magnetism. Applicability and relation to experiments of the results are discussed. - Highlights: • Orbital angular momentum of graphene electrons is calculated. • Orbital magnetic moment of graphene electrons is obtained. • Variation in magnetization of graphene is calculated. • Roles of different kinds of angular momentum are investigated.
Phase-space distributions and orbital angular momentum
Pasquini B.
2014-06-01
Full Text Available We review the concept of Wigner distributions to describe the phase-space distributions of quarks in the nucleon, emphasizing the information encoded in these functions about the quark orbital angular momentum.
Angular Momentum Transport in Quasi-Keplerian Accretion Disks ...
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
Keplerian accretion disk yield results that are inconsistent with the generally accepted model. If correct, the ideas proposed by Hayashi &. Matsuda would radically alter our understanding of the nature of the angular momentum transport in the disk, ...
The mass and angular momentum of reconstructed metric perturbations
van de Meent, Maarten
2017-06-01
We prove a key result regarding the mass and angular momentum content of linear vacuum perturbations of the Kerr metric obtained through the formalism developed by Chrzarnowski, Cohen, and Kegeles (CCK). More precisely, we prove that the Abbott-Deser mass and angular momentum integrals of any such perturbation vanish when that perturbation was obtained from a regular Fourier mode of the Hertz potential. As a corollary we obtain a generalization of previous results on the completion of the ‘no string’ radiation gauge metric perturbation generated by a point particle. We find that for any bound orbit around a Kerr black hole, the mass and angular momentum perturbations completing the CCK metric are simply the energy and angular momentum of the particle ‘outside’ the orbit and vanish ‘inside’ the orbit.
A Very Fast and Angular Momentum Conserving Tree Code
Marcello, Dominic C.
2017-01-01
There are many methods used to compute the classical gravitational field in astrophysical simulation codes. With the exception of the typically impractical method of direct computation, none ensure conservation of angular momentum to machine precision. Under uniform time-stepping, the Cartesian fast multipole method of Dehnen (also known as the very fast tree code) conserves linear momentum to machine precision. We show that it is possible to modify this method in a way that conserves both angular and linear momenta.
A Very Fast and Angular Momentum Conserving Tree Code
Marcello, Dominic C., E-mail: dmarce504@gmail.com [Department of Physics and Astronomy, and Center for Computation and Technology Louisiana State University, Baton Rouge, LA 70803 (United States)
2017-09-01
There are many methods used to compute the classical gravitational field in astrophysical simulation codes. With the exception of the typically impractical method of direct computation, none ensure conservation of angular momentum to machine precision. Under uniform time-stepping, the Cartesian fast multipole method of Dehnen (also known as the very fast tree code) conserves linear momentum to machine precision. We show that it is possible to modify this method in a way that conserves both angular and linear momenta.
Shape coexistence in 72Kr at finite angular momentum
Almehed, Daniel; Walet, Niels R.
2004-01-01
We investigate shape coexistence in a rotating nucleus. We concentrate on the case of 72 Kr which exhibits an interesting interplay between prolate and oblate shaped states as a function of angular momentum. The calculation uses the local harmonic version of the method of self-consistent adiabatic large-amplitude collective motion. We analyse how the collective behaviour of the system changes with angular momentum and we focus on the role of non-axial shapes
Spin and intrinsic angular momentum; application to the electromagnetic field
Paillere, P.
1993-05-01
Within the framework of the field theory governed by a Lagrangian, function of the tensor quantities and their covariant first derivatives, and starting with the third order intrinsic angular momentum tensor obtained from a variational principle, the intrinsic angular momentum vector of the electromagnetic field in vacuum is determined. This expression leads to spin matrices for the electromagnetic field, with unity as eigenvalue, thus allowing to bridge the gap between continuous physics and quantum physics. 6 refs
Angular momentum of circularly polarized light in dielectric media
Mansuripur, Masud
2005-07-01
A circularly polarized plane-wave is known to have no angular momentum when examined through Maxwell’s equations. This, however, contradicts the experimentally observed facts, where finite segments of plane waves are known to be capable of imparting angular momentum to birefringent platelets. Using a superposition of four plane-waves propagating at slightly different angles to a common direction, we derive an expression for the angular momentum density of a single plane-wave in the limit when the propagation directions of the four beams come into alignment. We proceed to use this four-beam technique to analyze the conservation of angular momentum when a plane-wave enters a dielectric slab from the free space. The angular momentum of the beam is shown to decrease upon entering the dielectric medium, by virtue of the fact that the incident beam exerts a torque on the slab surface at the point of entry. When the beam leaves the slab, it imparts an equal but opposite torque to the exit facet, thus recovering its initial angular momentum upon re-emerging into the free-space. Along the way, we derive an expression for the outward-directed force of a normally incident, finite-diameter beam on a dielectric surface; the possible relationship between this force and the experimentally observed bulging of a liquid surface under intense illumination is explored.
A systematic construction of microstate geometries with low angular momentum
Bena, Iosif; Heidmann, Pierre; Ramírez, Pedro F.
2017-10-01
We outline a systematic procedure to obtain horizonless microstate geometries that have the same charges as three-charge five-dimensional black holes with a macroscopically-large horizon area and an arbitrarily-small angular momentum. There are two routes through which such solutions can be constructed: using multi-center Gibbons-Hawking (GH) spaces or using superstratum technology. So far the only solutions corre-sponding to microstate geometries for black holes with no angular momentum have been obtained via superstrata [1], and multi-center Gibbons-Hawking spaces have been believed to give rise only to microstate geometries of BMPV black holes with a large angular mo-mentum [2]. We perform a thorough search throughout the parameter space of smooth horizonless solutions with four GH centers and find that these have an angular momentum that is generally larger than 80% of the cosmic censorship bound. However, we find that solutions with three GH centers and one supertube (which are smooth in six-dimensional supergravity) can have an arbitrarily-low angular momentum. Our construction thus gives a recipe to build large classes of microstate geometries for zero-angular-momentum black holes without resorting to superstratum technology.
Angular momentum transfer in steady disk accretion
Gorbatskij, V.G.
1977-01-01
The conditions of steady disk accretion have been investigated. The disk axisymmetric model is considered. It is shown that the gas is let at the outer boundary of the disk with the azimuthal velocity which is slightly less than the Kepler circular one. Gas possesses the motion quality moment which is transferred from the outer layers of the disk to the surface of the star. The steady state of the disk preserved until the inflow of the moment to the star increases its rotation velocity up to magnitudes close to the critical one
A new uncertainty relation for angular momentum and angle
Kranold, H.U.
1984-01-01
An uncertainty relation of the form ΔL 2 ΔSo >=sup(h/2π)/sub(2) is derived for angular momentum and angle. The non-linear operator So measures angles and has a simple interpretation. Subject to very general conditions of rotational invariance the above relation is unique. Radial momentum is not quantized
The Angular Momentum of Baryons and Dark Matter Halos Revisited
Kimm, Taysun; Devriendt, Julien; Slyz, Adrianne; Pichon, Christophe; Kassin, Susan A.; Dubois, Yohan
2011-01-01
Recent theoretical studies have shown that galaxies at high redshift are fed by cold, dense gas filaments, suggesting angular momentum transport by gas differs from that by dark matter. Revisiting this issue using high-resolution cosmological hydrodynamics simulations with adaptive-mesh refinement (AMR), we find that at the time of accretion, gas and dark matter do carry a similar amount of specific angular momentum, but that it is systematically higher than that of the dark matter halo as a whole. At high redshift, freshly accreted gas rapidly streams into the central region of the halo, directly depositing this large amount of angular momentum within a sphere of radius r = 0.1R(sub vir). In contrast, dark matter particles pass through the central region unscathed, and a fraction of them ends up populating the outer regions of the halo (r/R(sub vir) > 0.1), redistributing angular momentum in the process. As a result, large-scale motions of the cosmic web have to be considered as the origin of gas angular momentum rather than its virialised dark matter halo host. This generic result holds for halos of all masses at all redshifts, as radiative cooling ensures that a significant fraction of baryons remain trapped at the centre of the halos. Despite this injection of angular momentum enriched gas, we predict an amount for stellar discs which is in fair agreement with observations at z=0. This arises because the total specific angular momentum of the baryons (gas and stars) remains close to that of dark matter halos. Indeed, our simulations indicate that any differential loss of angular momentum amplitude between the two components is minor even though dark matter halos continuously lose between half and two-thirds of their specific angular momentum modulus as they evolve. In light of our results, a substantial revision of the standard theory of disc formation seems to be required. We propose a new scenario where gas efficiently carries the angular momentum generated
Notes on the quantum theory of angular momentum
Feenberg, Eugene
1999-01-01
This classic, concise text has served a generation of physicists as an exceptionally useful guide to the mysteries of angular momenta and Clebsch-Gordon Coefficients. Derived from notes originally prepared to assist graduate students in reading research papers on atomic, molecular, and nuclear structure, the text first reviews the basic elements of quantum theory. It then examines the development of the fundamental commutation relations for angular momentum components and vector operators, and the ways in which matrix elements and eigenvalues of the angular momentum operators are worked out f
Large-uncertainty intelligent states for angular momentum and angle
Goette, Joerg B; Zambrini, Roberta; Franke-Arnold, Sonja; Barnett, Stephen M
2005-01-01
The equality in the uncertainty principle for linear momentum and position is obtained for states which also minimize the uncertainty product. However, in the uncertainty relation for angular momentum and angular position both sides of the inequality are state dependent and therefore the intelligent states, which satisfy the equality, do not necessarily give a minimum for the uncertainty product. In this paper, we highlight the difference between intelligent states and minimum uncertainty states by investigating a class of intelligent states which obey the equality in the angular uncertainty relation while having an arbitrarily large uncertainty product. To develop an understanding for the uncertainties of angle and angular momentum for the large-uncertainty intelligent states we compare exact solutions with analytical approximations in two limiting cases
Initial angular momentum and flow in high energy nuclear collisions
Fries, Rainer J.; Chen, Guangyao; Somanathan, Sidharth
2018-03-01
We study the transfer of angular momentum in high energy nuclear collisions from the colliding nuclei to the region around midrapidity, using the classical approximation of the color glass condensate (CGC) picture. We find that the angular momentum shortly after the collision (up to times ˜1 /Qs , where Qs is the saturation scale) is carried by the "β -type" flow of the initial classical gluon field, introduced by some of us earlier. βi˜μ1∇iμ2-μ2∇iμ1 (i =1 ,2 ) describes the rapidity-odd transverse energy flow and emerges from Gauss's law for gluon fields. Here μ1 and μ2 are the averaged color charge fluctuation densities in the two nuclei, respectively. Interestingly, strong coupling calculations using anti-de Sitter/conformal field theory (AdS/CFT) techniques also find an energy flow term featuring this particular combination of nuclear densities. In classical CGC the order of magnitude of the initial angular momentum per rapidity in the reaction plane, at a time 1 /Qs , is |d L2/d η |≈ RAQs-3ɛ¯0/2 at midrapidity, where RA is the nuclear radius, and ɛ¯0 is the average initial energy density. This result emerges as a cancellation between a vortex of energy flow in the reaction plane aligned with the total angular momentum, and energy shear flow opposed to it. We discuss in detail the process of matching classical Yang-Mills results to fluid dynamics. We will argue that dissipative corrections should not be discarded to ensure that macroscopic conservation laws, e.g., for angular momentum, hold. Viscous fluid dynamics tends to dissipate the shear flow contribution that carries angular momentum in boost-invariant fluid systems. This leads to small residual angular momentum around midrapidity at late times for collisions at high energies.
Smoothed dissipative particle dynamics with angular momentum conservation
Müller, Kathrin, E-mail: k.mueller@fz-juelich.de; Fedosov, Dmitry A., E-mail: d.fedosov@fz-juelich.de; Gompper, Gerhard, E-mail: g.gompper@fz-juelich.de
2015-01-15
Smoothed dissipative particle dynamics (SDPD) combines two popular mesoscopic techniques, the smoothed particle hydrodynamics and dissipative particle dynamics (DPD) methods, and can be considered as an improved dissipative particle dynamics approach. Despite several advantages of the SDPD method over the conventional DPD model, the original formulation of SDPD by Español and Revenga (2003) [9], lacks angular momentum conservation, leading to unphysical results for problems where the conservation of angular momentum is essential. To overcome this limitation, we extend the SDPD method by introducing a particle spin variable such that local and global angular momentum conservation is restored. The new SDPD formulation (SDPD+a) is directly derived from the Navier–Stokes equation for fluids with spin, while thermal fluctuations are incorporated similarly to the DPD method. We test the new SDPD method and demonstrate that it properly reproduces fluid transport coefficients. Also, SDPD with angular momentum conservation is validated using two problems: (i) the Taylor–Couette flow with two immiscible fluids and (ii) a tank-treading vesicle in shear flow with a viscosity contrast between inner and outer fluids. For both problems, the new SDPD method leads to simulation predictions in agreement with the corresponding analytical theories, while the original SDPD method fails to capture properly physical characteristics of the systems due to violation of angular momentum conservation. In conclusion, the extended SDPD method with angular momentum conservation provides a new approach to tackle fluid problems such as multiphase flows and vesicle/cell suspensions, where the conservation of angular momentum is essential.
Orbital angular momentum exchange in post-collision interaction
van der Burgt, P.J.M.; van Eck, J.; Heideman, H.G.M.
1985-01-01
The authors study the exchange of orbital angular mementum between the scattered and the ejected electron. The angular distribution of electrons ejected by the He (2s 2 ) 2 S autoionizing state after its excitation via the He (2s2p 2 ) 2 D resonance is measured. Taking into accout interference with electrons from the direct ionization of helium, the authors are able to show that the measured anisotropic angular distribution is the result of an orbital angular momentum exchange during the post-collision interaction
Angular momentum in general relativity. II. Perturbations of a rotating black hole
Prior, C R [Cambridge Univ. (UK). Dept. of Applied Mathematics and Theoretical Physics
1977-06-30
The definition of angular momentum proposed in part I of this series (Prior. Proc. R. Soc. Lond.; A354:379 (1977)) is investigated when applied to rotating black holes. It is shown how to use the formula to evaluate the angular momentum of a stationary black hole. This acts as a description of a background space on which the effect of first matter and then gravitational perturbations is considered. The latter are of most interest and the rate of change of angular momentum, dJ/dt, is found as an expression in the shear induced in the event horizon by the perturbation and in its time integral. Teukolsky's solutions (Astrophys. J.; 185:635 (1973)) for the perturbed component of the Weyl tensor are then used to find this shear and hence to give an exact answer for dJ/dt. One of the implications of the result is a direct verification of Bekenstein's formula (Phys. Rev.; 7D:949 (1973)) relating in a simple way the rate of change of angular momentum to the rate of change of mass caused by a plane wave. A more general expression is also given for dM/dt. Considering only stationary perturbations, it is shown how to generalize the definition of angular momentum so as to include information about its direction as well. Three problems are particularly discussed - a single moon, two or more moons and a ring of matter causing the perturbation - since they provide illustrations of all the main features of the black hole's behaviour. In every case it is found that the black hole realigns its axis of rotation so that the final configuration is axisymmetric if possible; otherwise is slows down completely to reach a static state.
Angular momentum in multi-step photoionization
Yoshida, Tadashi; Adachi, Hajime; Kuwako, Akira; Nittoh, Koichi; Araki, Yoshio; Watanabe, Takashi; Yoguchi, Itaru.
1995-01-01
The effect of the angular momenta on the multi-step laser-ionization efficiency was investigated numerically for cases with and without the hyperfine interactions. For either cases the ionization efficiency proved to depend appreciably on the values of J in the excitation ladder. In this respect, we elaborated a simple and efficient method of determining J, which was based on the laser polarization dependence of the excitation rate. Application of this method to a couple of real excitation ladders proved its usefulness and reliability. (author)
Nuclear level density variation with angular momentum induced shape transition
Aggarwal, Mamta
2016-01-01
Variation of Nuclear level density (NLD) with the excitation energy and angular momentum in particular has been a topic of interest in the recent past and there have been continuous efforts in this direction on the theoretical and experimental fronts but a conclusive trend in the variation of nuclear level density parameter with angular momentum has not been achieved so far. A comprehensive investigation of N=68 isotones around the compound nucleus 119 Sb from neutron rich 112 Ru (Z=44) to neutron deficient 127 Pr (Z= 59) nuclei is presented to understand the angular momentum induced variations in inverse level density parameter and the possible influence of deformation and structural transitions on the variations on NLd
Orbital Angular Momentum Multiplexing over Visible Light Communication Systems
Tripathi, Hardik Rameshchandra
This thesis proposes and explores the possibility of using Orbital Angular Momentum multiplexing in Visible Light Communication system. Orbital Angular Momentum is mainly applied for laser and optical fiber transmissions, while Visible Light Communication is a technology using the light as a carrier for wireless communication. In this research, the study of the state of art and experiments showing some results on multiplexing based on Orbital Angular Momentum over Visible Light Communication system were done. After completion of the initial stage; research work and simulations were performed on spatial multiplexing over Li-Fi channel modeling. Simulation scenarios which allowed to evaluate the Signal-to-Noise Ratio, Received Power Distribution, Intensity and Illuminance were defined and developed.
Manifest rotation symmetric expressions for angular momentum eigenfunctions
Eeg, J.O.; Wroldsen, J.
1983-01-01
Manifest rotation symmetric expressions for eigenfunctions for spin s, orbital angular momentum l and total angular momentum j = l+s, .... , /l-s/ in terms of (2j+1) x (2s+1) multipole transition matrices (MTM) is given. These matrices, which are irreducible tensor matrices, have an algebra together with ordinary spin matrices for spin s and spin j. Explicit expressions for MTM's and their algebra are given for angular momenta <-3. By means of some examples it is shown that within this formalism angular integrations in central field problems will be simplified considerably. Thus the formalism turns out to be very useful for instance for calculations within the MIT-bag and also within spin-spin interactions in atomic physics. (Auth.)
The role of angular momentum conservation law in statistical mechanics
I.M. Dubrovskii
2008-12-01
Full Text Available Within the limits of Khinchin ideas [A.Y. Khinchin, Mathematical Foundation of Statistical Mechanics. NY, Ed. Dover, 1949] the importance of momentum and angular momentum conservation laws was analyzed for two cases: for uniform magnetic field and when magnetic field is absent. The law of momentum conservation does not change the density of probability distribution in both cases, just as it is assumed in the conventional theory. It is shown that in systems where the kinetic energy depends only on particle momenta canonically conjugated with Cartesian coordinates being their diagonal quadric form,the angular momentum conservation law changes the density of distribution of the system only in case the full angular momentum of a system is not equal to zero. In the gas of charged particles in a uniform magnetic field the density of distribution also varies if the angular momentum is zero [see Dubrovskii I.M., Condensed Matter Physics, 2206, 9, 23]. Two-dimensional gas of charged particles located within a section of an endless strip filled with gas in magnetic field is considered. Under such conditions the angular momentum is not conserved. Directional particle flows take place close to the strip boundaries, and, as a consequence, the phase trajectory of the considered set of particles does not remain within the limited volume of the phase space. In order to apply a statistical thermodynamics method, it was suggested to consider near-boundary trajectories relative to a reference system that moves uniformly. It was shown that if the diameter of an orbit having average thermal energy is much smaller than a strip width, the corrections to thermodynamic functions are small depending on magnetic field. Only the average velocity of near-boundary particles that form near-boundary electric currents creating the paramagnetic moment turn out to be essential.
On the observability of the quark orbital angular momentum distribution
Courtoy, Aurore, E-mail: aurore.courtoy@ulg.be [IFPA, AGO Department, Université de Liège, Bât. B5, Sart Tilman, B-4000 Liège (Belgium); Laboratori Nazionali di Frascati, INFN, Frascati (Italy); Goldstein, Gary R., E-mail: gary.goldstein@tufts.edu [Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States); Osvaldo Gonzalez Hernandez, J., E-mail: jog4m@virginia.edu [Istituto Nazionale di Fisica Nucleare (INFN) – Sezione di Torino, via P. Giuria, 1, 10125 Torino (Italy); Liuti, Simonetta, E-mail: sl4y@virginia.edu [University of Virginia – Physics Department, 382 McCormick Rd., Charlottesville, VA 22904 (United States); Laboratori Nazionali di Frascati, INFN, Frascati (Italy); Rajan, Abha, E-mail: ar5xc@virginia.edu [University of Virginia – Physics Department, 382 McCormick Rd., Charlottesville, VA 22904 (United States)
2014-04-04
We argue that due to parity constraints, the helicity combination of the purely momentum space counterparts of the Wigner distributions – the generalized transverse momentum distributions – that describes the configuration of an unpolarized quark in a longitudinally polarized nucleon can enter the deeply virtual Compton scattering amplitude only through matrix elements involving a final state interaction. The relevant matrix elements in turn involve light-cone operators projections in the transverse direction, or they appear in the deeply virtual Compton scattering amplitude at twist three. Orbital angular momentum or the spin structure of the nucleon was a major reason for these various distributions and amplitudes to have been introduced. We show that the twist three contributions associated with orbital angular momentum are related to the target-spin asymmetry in deeply virtual Compton scattering, already measured at HERMES.
On the complex angular momentum theory of scattering
Thylwe, K.-E.
1983-01-01
A contribution to the theory of complex angular momentum techniques in the field of atomic and molecular collisions is given. A new, flexible representation of the scattering amplitude on the basis of realistic assumptions for the behaviour of the S matrix in the complex angular momentum plane is derived. The representation has the form of a sum of steepest-descent integrals, S-matrix residue terms and a symmetry-type background integral. The flexibility is due to the presence of two integer parameters which may be chosen conveniently so as to make the residue sums sufficiently convergent and to minimise the total number of important terms. (author)
Problems of angular momentum projection in nuclear physics
Sorensen, R A [Carnegie-Mellon Univ., Pittsburgh, Pa. (USA)
1977-05-09
In nuclear models approximate wave functions are often used which do not have sharp angular momentum as required of the exact wave functions. It seems obvious that model wave functions of this type should be improved by projection onto states of good angular momentum. It is not the purpose of this paper to discuss the technical difficulties of projection (which can be formidable for many particle systems), but rather to present in an elementary way certain fundamental ambiguities in the use of projection. An application to high spin states near the yrast line is suggested.
Angular momentum fuctuation energy in the cranking model
Goodman, A.L.
1979-01-01
Angular momentum is approximately projected from Hartree-Fock-Bogoliubov cranked (HFBC) wave functions. At each J the projected energy is Esub(proj)approximately Esub(HFBC). The spin-dependent fluctuation ΔJ includes contributions from Jsub(y) and Jsub(z) as well as Jsub(x). There are no correlations in the three angular momentum components. Projected energies are calculated for 168 170 Yb and 174 Hf. When compared to experimental energies, the projected spectra are less compressed than the HFBC spectra. At low spins the projected and experimental energies are in good agreement. (Aut.)
Problems of angular momentum projection in nuclear physics
Sorensen, R.A.
1977-01-01
In nuclear models approximate wave functions are often used which do not have sharp angular momentum as required of the exact wave functions. It seems obvious that model wave functions of this type should be improved by projection onto states of good angular momentum. It is not the purpose of this paper to discuss the technical difficulties of projection (which can be formidable for many particle systems), but rather to present in an elementary way certain fundamental ambiguities in the use of projection. An application to high spin states near the yrast line is suggested. (Auth.)
Quantitatively measuring the orbital angular momentum density of light : Presentation
Dudley, Angela L
2013-08-01
Full Text Available the orbital angular momentum density of light Angela Dudleya, Christian Schulzeb, Igor Litvina, Michael Duparréb and Andrew Forbes*a,c,d a CSIR National Laser Centre, PO Box 395, Pretoria 0001, South Africa; b Institute of Applied Optics, Friedrich...., “Generation of high-order Bessel beams by use of an axicon,” Opt. Commun. 177(1-6), 297–301 (2000). [3] Sztul, H. I. and Alfano, R. R., “The Poynting vector and angular momentum of Airy beams,” Opt. Express 16(13), 9411–9416 (2008). [4] Allen, L...
Earth Rotation and Coupling to Changes in Atmospheric Angular Momentum
Rosen, Richard D.; Frey, H. (Technical Monitor)
2000-01-01
The research supported under the contract dealt primarily with: (a) the mechanisms responsible for the exchange of angular momentum between the solid Earth and atmosphere; (b) the quality of the data sets used to estimate atmospheric angular momentum; and (c) the ability of these data and of global climate models to detect low-frequency signals in the momentum and, hence, circulation of the atmosphere. Three scientific papers reporting on the results of this research were produced during the course of the contract. These papers identified the particular torques responsible for the peak in atmospheric angular momentum and length-of-day during the 1982-93 El Nino event, and, more generally, the relative roles of torques over land and ocean in explaining the broad spectrum of variability in the length-of-day. In addition, a tendency for interannual variability in atmospheric angular momentum to increase during the last several decades of the 20th century was found in both observations and a global climate model experiment.
Analytical scheme calculations of angular momentum coupling and recoupling coefficients
Deveikis, A.; Kuznecovas, A.
2007-03-01
We investigate the Scheme programming language opportunities to analytically calculate the Clebsch-Gordan coefficients, Wigner 6j and 9j symbols, and general recoupling coefficients that are used in the quantum theory of angular momentum. The considered coefficients are calculated by a direct evaluation of the sum formulas. The calculation results for large values of quantum angular momenta were compared with analogous calculations with FORTRAN and Java programming languages.
Analytical scheme calculations of angular momentum coupling and recoupling coefficients
Deveikis, A.; Kuznecovas, A.
2007-01-01
We investigate the Scheme programming language opportunities to analytically calculate the Clebsch-Gordan coefficients, Wigner 6j and 9j symbols, and general recoupling coefficients that are used in the quantum theory of angular momentum. The considered coefficients are calculated by a direct evaluation of the sum formulas. The calculation results for large values of quantum angular momenta were compared with analogous calculations with FORTRAN and Java programming languages
Wang Fan; Sun Weimin; Chen Xiangsong; Lu Xiaofu; Goldman, T.
2009-01-01
It is unavoidable to deal with the quark and gluon momentum and angular momentum contributions to the nucleon momentum and spin in the study of nucleon internal structure. However we never have the quark and gluon momentum, orbital angular momentum and gluon spin operators which satisfy both the gauge invariance and the canonical momentum and angular momentum commutation relation. The conflicts between the gauge invariance and canonical quantization requirement of these operators are discussed. A new set of quark and gluon momentum, orbital angular momentum and spin operators, which satisfy both the gauge invariance and canonical momentum and angular momentum commutation relation, are proposed. The key point to achieve such a proper decomposition is to separate the gauge field into the pure gauge and the gauge covariant parts. The same conflicts also exist in QED and quantum mechanics and have been solved in the same manner. The impacts of this new decomposition to the nucleon internal structure are discussed. (authors)
Gravitational Field of Ultrarelativistic Objects with Angular Momentum
Fursaev, Dmitri V
2006-01-01
A brief review of recently found gyraton metrics which describe the gravitational field of objects having an angular momentum and moving with the velocity of light is given. The gyraton metrics belong to a class of exact plane wave solutions of four and higher dimensional Einstein equations in vacuum or in the presence of a negative cosmological constant
Obtaining the Electron Angular Momentum Coupling Spectroscopic Terms, jj
Orofino, Hugo; Faria, Roberto B.
2010-01-01
A systematic procedure is developed to obtain the electron angular momentum coupling (jj) spectroscopic terms, which is based on building microstates in which each individual electron is placed in a different m[subscript j] "orbital". This approach is similar to that used to obtain the spectroscopic terms under the Russell-Saunders (LS) coupling…
Angular momentum projection of tilted axis rotating states
Oi, M; Onishi, N; Tajima, N [Tokyo Univ. (Japan); Horibata, T
1998-03-01
We applied an exact angular momentum projection to three dimensional cranked HFB (3d-CHFB) states. Tilted axis rotating states (TAR) and principal axis rotating states (PAR) are compared. It is shown that TAR is more adequate than PAR for description of the back bending phenomena driven by tilted rotation or wobbling motion. (author)
Exact angular momentum projection based on cranked HFB solution
Enami, Kenichi; Tanabe, Kosai; Yosinaga, Naotaka [Saitama Univ., Urawa (Japan). Dept. of Physics
1998-03-01
Exact angular momentum projection of cranked HFB solutions is carried out. It is reconfirmed from this calculation that cranked HFB solutions reproduce the intrinsic structure of deformed nucleus. The result also indicates that the energy correction from projection is important for further investigation of nuclear structure. (author)
Continuous Variable Entanglement and Squeezing of Orbital Angular Momentum States
Lassen, Mikael Østergaard; Leuchs, Gerd; Andersen, Ulrik Lund
2009-01-01
We report the first experimental characterization of the first-order continuous variable orbital angular momentum states. Using a spatially nondegenerate optical parametric oscillator (OPO) we produce quadrature entanglement between the two first-order Laguerre-Gauss modes. The family of orbital...
Angular momentum transport and evolution of lopsided galaxies
Saha, Kanak; Jog, Chanda J.
2014-10-01
The surface brightness distribution in the majority of stellar galactic discs falls off exponentially. Often what lies beyond such a stellar disc is the neutral hydrogen gas whose distribution also follows a nearly exponential profile at least for a number of nearby disc galaxies. Both the stars and gas are commonly known to host lopsided asymmetry especially in the outer parts of a galaxy. The role of such asymmetry in the dynamical evolution of a galaxy has not been explored so far. Following Lindblad's original idea of kinematic density waves, we show that the outer part of an exponential disc is ideally suitable for hosting lopsided asymmetry. Further, we compute the transport of angular momentum in the combined stars and gas disc embedded in a dark matter halo. We show that in a pure star and gas disc, there is a transition point where the free precession frequency of a lopsided mode, Ω - κ, changes from retrograde to prograde and this in turn reverses the direction of angular momentum flow in the disc leading to an unphysical behaviour. We show that this problem is overcome in the presence of a dark matter halo, which sets the angular momentum flow outwards as required for disc evolution, provided the lopsidedness is leading in nature. This, plus the well-known angular momentum transport in the inner parts due to spiral arms, can facilitate an inflow of gas from outside perhaps through the cosmic filaments.
Gravitational Field of Ultrarelativistic Objects with Angular Momentum
Fursaev, Dmitri V [Dubna International University and Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141 980, Dubna, Moscow Region (Russian Federation)
2006-03-01
A brief review of recently found gyraton metrics which describe the gravitational field of objects having an angular momentum and moving with the velocity of light is given. The gyraton metrics belong to a class of exact plane wave solutions of four and higher dimensional Einstein equations in vacuum or in the presence of a negative cosmological constant.
Angular Momentum Transport in Turbulent Flow between Independently Rotating Cylinders
Paoletti, M. S.; Lathrop, D. P.
2011-01-01
We present measurements of the angular momentum flux (torque) in Taylor-Couette flow of water between independently rotating cylinders for all regions of the (Ω 1 , Ω 2 ) parameter space at high Reynolds numbers, where Ω 1 (Ω 2 ) is the inner (outer) cylinder angular velocity. We find that the Rossby number Ro=(Ω 1 -Ω 2 )/Ω 2 fully determines the state and torque G as compared to G(Ro=∞)≡G ∞ . The ratio G/G ∞ is a linear function of Ro -1 in four sections of the parameter space. For flows with radially increasing angular momentum, our measured torques greatly exceed those of previous experiments [Ji et al., Nature (London), 444, 343 (2006)], but agree with the analysis of Richard and Zahn [Astron. Astrophys. 347, 734 (1999)].
Analogies between optical and quantum mechanical angular momentum.
Nienhuis, Gerard
2017-02-28
The insight that a beam of light can carry orbital angular momentum (AM) in its propagation direction came up in 1992 as a surprise. Nevertheless, the existence of momentum and AM of an electromagnetic field has been well known since the days of Maxwell. We compare the expressions for densities of AM in general three-dimensional modes and in paraxial modes. Despite their classical nature, these expressions have a suggestive quantum mechanical appearance, in terms of linear operators acting on mode functions. In addition, paraxial wave optics has several analogies with real quantum mechanics, both with the wave function of a free quantum particle and with a quantum harmonic oscillator. We discuss how these analogies can be applied.This article is part of the themed issue 'Optical orbital angular momentum'. © 2017 The Author(s).
Angular momentum transport with twisted exciton wave packets
Zang, Xiaoning; Lusk, Mark T.
2017-10-01
A chain of cofacial molecules with CN or CN h symmetry supports excitonic states with a screwlike structure. These can be quantified with the combination of an axial wave number and an azimuthal winding number. Combinations of these states can be used to construct excitonic wave packets that spiral down the chain with well-determined linear and angular momenta. These twisted exciton wave packets can be created and annihilated using laser pulses, and their angular momentum can be optically modified during transit. This allows for the creation of optoexcitonic circuits in which information, encoded in the angular momentum of light, is converted into excitonic wave packets that can be manipulated, transported, and then reemitted. A tight-binding paradigm is used to demonstrate the key ideas. The approach is then extended to quantify the evolution of twisted exciton wave packets in a many-body, multilevel time-domain density functional theory setting. In both settings, numerical methods are developed that allow the site-to-site transfer of angular momentum to be quantified.
Photofragment angular momentum distribution beyond the axial recoil approximation: Predissociation
Kuznetsov, Vladislav V.; Vasyutinskii, Oleg S.
2007-01-01
We present the quantum mechanical expressions for the angular momentum distribution of the photofragments produced in slow predissociation. The paper is based on our recent theoretical treatment [J. Chem. Phys. 123, 034307 (2005)] of the recoil angle dependence of the photofragment multipole moments which explicitly treat the role of molecular axis rotation on the electronic angular momentum polarization of the fragments. The electronic wave function of the molecule was used in the adiabatic body frame representation. The rigorous expressions for the fragment state multipoles which have been explicitly derived from the scattering wave function formalism have been used for the case of slow predissociation where a molecule lives in the excited quasibound state much longer than a rotation period. Possible radial nonadiabatic interactions were taken into consideration. The optical excitation of a single rotational branch and the broadband incoherent excitation of all possible rotational branches have been analyzed in detail. The angular momentum polarization of the photofragments has been treated in the high-J limit. The polarization of the photofragment angular momenta predicted by the theory depends on photodissociation mechanism and can in many cases be significant
Helicon modes in uniform plasmas. III. Angular momentum
Stenzel, R. L.; Urrutia, J. M.
2015-01-01
Helicons are electromagnetic waves with helical phase fronts propagating in the whistler mode in magnetized plasmas and solids. They have similar properties to electromagnetic waves with angular momentum in free space. Helicons are circularly polarized waves carrying spin angular momentum and orbital angular momentum due to their propagation around the ambient magnetic field B 0 . These properties have not been considered in the community of researchers working on helicon plasma sources, but are the topic of the present work. The present work focuses on the field topology of helicons in unbounded plasmas, not on helicon source physics. Helicons are excited in a large uniform laboratory plasma with a magnetic loop antenna whose dipole axis is aligned along or across B 0 . The wave fields are measured in orthogonal planes and extended to three dimensions (3D) by interpolation. Since density and B 0 are uniform, small amplitude waves from loops at different locations can be superimposed to generate complex antenna patterns. With a circular array of phase shifted loops, whistler modes with angular and axial wave propagation, i.e., helicons, are generated. Without boundaries radial propagation also arises. The azimuthal mode number m can be positive or negative while the field polarization remains right-hand circular. The conservation of energy and momentum implies that these field quantities are transferred to matter which causes damping or reflection. Wave-particle interactions with fast electrons are possible by Doppler shifted resonances. The transverse Doppler shift is demonstrated. Wave-wave interactions are also shown by showing collisions between different helicons. Whistler turbulence does not always have to be created by nonlinear wave-interactions but can also be a linear superposition of waves from random sources. In helicon collisions, the linear and/or orbital angular momenta can be canceled, which results in a great variety of field topologies. The work
Snider, R.F.
1982-01-01
It is shown that the position and momentum directional representations of angular momentum states must satisfy Σ/sub lambdas/ = Σ/sub lambdas/(i)/sup lambda/Y/sub lambdas/(r)Y/sub lambdas/ (p)*. This imposes phase constraints on the relation between , , Y/sub lambdas/ (r), and Y/sub lambdas/(p). In the accompanying paper, it is shown that this resolves a problem in the centrifugal sudden approximation of molecular collision theory
Angular momentum projection of cranked PNC wave function
Han Yong
2000-01-01
In studying the properties of nuclear higher-spin states, not only the K-mixture needed to be taken into account, but also the Coriolis interaction (the cranking term) should be introduced. The cranking term breaks the time reversal symmetry, and the projection of the single-particle angular momentum on the intrinsic symmetric axis is no longer a good quantum number. This makes the theoretical calculation somewhat complicated. However, considering some intrinsic symmetry in a nucleus, it is not very difficult to apply the angular momentum projection technique to the PNC wave functions including the cranking components (the cranked PNC wave functions). The fundamental expressions for calculating the nuclear energy spectra and the electromagnetic properties are deduced and evaluated in theory, consequently the feasibility of actualizing the present scheme is made clear
Angular-momentum nonclassicality by breaking classical bounds on statistics
Luis, Alfredo [Departamento de Optica, Facultad de Ciencias Fisicas, Universidad Complutense, E-28040 Madrid (Spain); Rivas, Angel [Departamento de Fisica Teorica I, Facultad de Ciencias Fisicas, Universidad Complutense, E-28040 Madrid (Spain)
2011-10-15
We derive simple practical procedures revealing the quantum behavior of angular momentum variables by the violation of classical upper bounds on the statistics. Data analysis is minimum and definite conclusions are obtained without evaluation of moments, or any other more sophisticated procedures. These nonclassical tests are very general and independent of other typical quantum signatures of nonclassical behavior such as sub-Poissonian statistics, squeezing, or oscillatory statistics, being insensitive to the nonclassical behavior displayed by other variables.
Tunnelling of orbital angular momentum in parallel optical waveguides
Alexeyev, C N; Fadeyeva, T A; Yavorsky, M A; Boklag, N A
2011-01-01
We study the evolution of circularly polarized optical vortices (OVs) in the system of two coupled few-mode optical fibres. We demonstrate that upon propagation OVs tunnel into the adjacent fibre as a complex superposition of OVs that comprise also OVs of opposite polarization and topological charge. The initial OV may tunnel into the other fibre as the same vortex state of lesser energy. The evolution of the orbital angular momentum in coupled fibres is studied
Angular momentum coupling in atom-atom collisions
Grosser, J.
1986-01-01
The coupling between the electronic angular momentum and the rotating atom-atom axis in the initial or the final phase of an atom-atom collision is discussed, making use of the concepts of radial and rotational (Coriolis) coupling between different molecular states. The description is based on a limited number of well-understood approximations, and it allows an illustrative geometric representation of the transition from the body fixed to the space fixed motion of the electrons. (orig.)
Black hole mass and angular momentum in topologically massive gravity
Bouchareb, Adel; Clement, Gerard
2007-01-01
We extend the Abbott-Deser-Tekin approach to the computation of the Killing charge for a solution of topologically massive gravity (TMG) linearized around an arbitrary background. This is then applied to evaluate the mass and angular momentum of black hole solutions of TMG with non-constant curvature asymptotics. The resulting values, together with the appropriate black hole entropy, fit nicely into the first law of black hole thermodynamics
Black hole mass and angular momentum in topologically massive gravity
Bouchareb, Adel; Clement, Gerard [Laboratoire de Physique Theorique LAPTH (CNRS), BP 110, F-74941 Annecy-le-Vieux cedex (France)
2007-11-21
We extend the Abbott-Deser-Tekin approach to the computation of the Killing charge for a solution of topologically massive gravity (TMG) linearized around an arbitrary background. This is then applied to evaluate the mass and angular momentum of black hole solutions of TMG with non-constant curvature asymptotics. The resulting values, together with the appropriate black hole entropy, fit nicely into the first law of black hole thermodynamics.
Nuclear level density parameter 's dependence on angular momentum
Aggarwal, Mamta; Kailas, S.
2009-01-01
Nuclear level densities represent a very important ingredient in the statistical Model calculations of nuclear reaction cross sections and help to understand the microscopic features of the excited nuclei. Most of the earlier experimental nuclear level density measurements are confined to low excitation energy and low spin region. A recent experimental investigation of nuclear level densities in high excitation energy and angular momentum domain with some interesting results on inverse level density parameter's dependence on angular momentum in the region around Z=50 has motivated us to study and analyse these experimental results in a microscopic theoretical framework. In the experiment, heavy ion fusion reactions are used to populate the excited and rotating nuclei and measured the α particle evaporation spectra in coincidence with ray multiplicity. Residual nuclei are in the range of Z R 48-55 with excitation energy range 30 to 40 MeV and angular momentum in 10 to 25. The inverse level density parameter K is found to be in the range of 9.0 - 10.5 with some exceptions
Turbulent transport of toroidal angular momentum in low flow gyrokinetics
Parra, Felix I; Catto, Peter J
2010-01-01
We derive a self-consistent equation for the turbulent transport of toroidal angular momentum in tokamaks in the low flow ordering that only requires solving gyrokinetic Fokker-Planck and quasineutrality equations correct to second order in an expansion on the gyroradius over scale length. We also show that according to our orderings the long wavelength toroidal rotation and the long wavelength radial electric field satisfy the neoclassical relation that gives the toroidal rotation as a function of the radial electric field and the radial gradients of pressure and temperature. Thus, the radial electric field can be solved for once the toroidal rotation is calculated from the transport of toroidal angular momentum. Unfortunately, even though this methodology only requires a gyrokinetic model correct to second order in gyroradius over scale length, current gyrokinetic simulations are only valid to first order. To overcome this difficulty, we exploit the smallish ratio B p /B, where B is the total magnetic field and B p is its poloidal component. When B p /B is small, the usual first order gyrokinetic equation provides solutions that are accurate enough to employ for our expression for the transport of toroidal angular momentum. We show that current δf and full f simulations only need small corrections to achieve this accuracy. Full f simulations, however, are still unable to determine the long wavelength, radial electric field from the quasineutrality equation.
Shocks in the relativistic transonic accretion with low angular momentum
Suková, P.; Charzyński, S.; Janiuk, A.
2017-12-01
We perform 1D/2D/3D relativistic hydrodynamical simulations of accretion flows with low angular momentum, filling the gap between spherically symmetric Bondi accretion and disc-like accretion flows. Scenarios with different directional distributions of angular momentum of falling matter and varying values of key parameters such as spin of central black hole, energy and angular momentum of matter are considered. In some of the scenarios the shock front is formed. We identify ranges of parameters for which the shock after formation moves towards or outwards the central black hole or the long-lasting oscillating shock is observed. The frequencies of oscillations of shock positions which can cause flaring in mass accretion rate are extracted. The results are scalable with mass of central black hole and can be compared to the quasi-periodic oscillations of selected microquasars (such as GRS 1915+105, XTE J1550-564 or IGR J17091-3624), as well as to the supermassive black holes in the centres of weakly active galaxies, such as Sgr A*.
Angular momentum in non-relativistic QED and photon contribution to spin of hydrogen atom
Chen Panying; Ji Xiangdong; Xu Yang; Zhang Yue
2010-01-01
We study angular momentum in non-relativistic quantum electrodynamics (NRQED). We construct the effective total angular momentum operator by applying Noether's theorem to the NRQED lagrangian. We calculate the NRQED matching for the individual components of the QED angular momentum up to one loop. We illustrate an application of our results by the first calculation of the angular momentum of the ground state hydrogen atom carried in radiative photons, α em 3 /18π, which might be measurable in future atomic experiments.
New energy levels of praseodymium with large angular momentum
Khan, Shamim; Siddiqui, Imran; Gamper, Bettina; Syed, Tanweer Iqbal; Guthoehrlein, Guenter H.; Windholz, Laurentius [Inst. f. Experimentalphysik, Techn. Univ. Graz, Petersgasse 16, A-8010 Graz (Austria)
2011-07-01
The electronic ground state configuration of praseodymium {sup 59}Pr{sub 141} is [Xe] 4f{sup 3}6s{sup 2}, with ground state level {sup 4}I{sub 9/2}. Our research is mainly devoted to find previously unknown energy levels by the investigation of spectral lines and their hyperfine structures. In a hollow cathode discharge lamp praseodymium atoms and ions in ground and excited states are excited to high lying states by laser light. The excitation source is a tunable ring-dye laser system, operated with R6G, Kiton Red, DCM and LD700. A high resolution Fourier transform spectrum is used for selecting promising excitation wavelengths. Then the laser wavelength is tuned to a strong hyperfine component of the spectral line to be investigated, and a search for fluorescence from excited levels is performed. From the observed hyperfine structure we determine J-values and hyperfine constants A of the combining levels. This information, together with excitation and fluorescence wavelengths, allows us to find the energies of involved new levels. Up to now we have discovered large number of previously unknown energy levels with various angular momentum values. We present here the data (energies, parities, angular momenta J, magnetic hyperfine constants A) of ca. 40 new, until now unknown energy levels with high angular momentum values: 15/2, 17/2, 19/2, 21/2.
Locking of intrinsic angular momentum in collision complexes
Berengolts, Alexander.
1995-04-01
A concept of locking of the intrinsic angular momentum of a fragment of a collision complex to a body-fixed axis is widely used in the description of heavy-particle dynamics. The aim of this work is to provide a semiclassical description of the locking phenomenon which occur in diatomic and three atomic collision complexes. The first part of this work is devoted to the semiclassical study of the locking of the electronic angular momentum that occurs in slow collisions of two atoms, one in the spherically symmetric state and the other in state with j= 1. Here we calculate explicitly the complete locking matrix for different types of interatomic interactions. The elements of this matrix directly enter into the semiclassical expression for the different cross sections of polarized atoms. Limitations to the notion of the the locking radius and slipping probability are discussed in connection with the steepness of the interaction. Numerical calculations confirm analytical result: the optimal criterion for determination of the locking radius is a condition for the accumulated phase difference between two molecular states. Analytical expressions are suggested for the locking angle and the slipping probability. Implication of the locking approximation for calculation of the quasiclassical scattering matrix is discussed. The second part considers the locking of the rotational angular momentum of a diatom in the decomposition of a triatomic complexes. We discuss here cases J = 1,2,3 and 4, but restrict ourselves to calculation of the so-called dynamic orientation of the diatomic fragment. The letter represents one of the characteristics of the locking matrix which in principle can be measured experimentally. The orientation is created as a result of the interplay between the adiabatic interaction in the atom- diatom exit channel and the rotationally non adiabatic coupling in the perturbed rotor region
Angular momentum and torque described with the complex octonion
Weng, Zi-Hua
2014-01-01
The paper aims to adopt the complex octonion to formulate the angular momentum, torque, and force etc in the electromagnetic and gravitational fields. Applying the octonionic representation enables one single definition of angular momentum (or torque, force) to combine some physics contents, which were considered to be independent of each other in the past. J. C. Maxwell used simultaneously two methods, the vector terminology and quaternion analysis, to depict the electromagnetic theory. It motivates the paper to introduce the quaternion space into the field theory, describing the physical feature of electromagnetic and gravitational fields. The spaces of electromagnetic field and of gravitational field can be chosen as the quaternion spaces, while the coordinate component of quaternion space is able to be the complex number. The quaternion space of electromagnetic field is independent of that of gravitational field. These two quaternion spaces may compose one octonion space. Contrarily, one octonion space can be separated into two subspaces, the quaternion space and S-quaternion space. In the quaternion space, it is able to infer the field potential, field strength, field source, angular momentum, torque, and force etc in the gravitational field. In the S-quaternion space, it is capable of deducing the field potential, field strength, field source, current continuity equation, and electric (or magnetic) dipolar moment etc in the electromagnetic field. The results reveal that the quaternion space is appropriate to describe the gravitational features, including the torque, force, and mass continuity equation etc. The S-quaternion space is proper to depict the electromagnetic features, including the dipolar moment and current continuity equation etc. In case the field strength is weak enough, the force and the continuity equation etc can be respectively reduced to that in the classical field theory
Accessing the quark orbital angular momentum with Wigner distributions
Lorce, Cedric [IPNO, Universite Paris-Sud, CNRS/IN2P3, 91406 Orsay, France and LPT, Universite Paris-Sud, CNRS, 91406 Orsay (France); Pasquini, Barbara [Dipartimento di Fisica, Universita degli Studi di Pavia, Pavia, Italy and Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, Pavia (Italy)
2013-04-15
The quark orbital angular momentum (OAM) has been recognized as an important piece of the proton spin puzzle. A lot of effort has been invested in trying to extract it quantitatively from the generalized parton distributions (GPDs) and the transverse-momentum dependent parton distributions (TMDs), which are accessed in high-energy processes and provide three-dimensional pictures of the nucleon. Recently, we have shown that it is more natural to access the quark OAM from the phase-space or Wigner distributions. We discuss the concept of Wigner distributions in the context of quantum field theory and show how they are related to the GPDs and the TMDs. We summarize the different definitions discussed in the literature for the quark OAM and show how they can in principle be extracted from the Wigner distributions.
Accessing the quark orbital angular momentum with Wigner distributions
Lorcé, Cédric; Pasquini, Barbara
2013-01-01
The quark orbital angular momentum (OAM) has been recognized as an important piece of the proton spin puzzle. A lot of effort has been invested in trying to extract it quantitatively from the generalized parton distributions (GPDs) and the transverse-momentum dependent parton distributions (TMDs), which are accessed in high-energy processes and provide three-dimensional pictures of the nucleon. Recently, we have shown that it is more natural to access the quark OAM from the phase-space or Wigner distributions. We discuss the concept of Wigner distributions in the context of quantum field theory and show how they are related to the GPDs and the TMDs. We summarize the different definitions discussed in the literature for the quark OAM and show how they can in principle be extracted from the Wigner distributions.
Angular momentum dependence of the nuclear level density parameter
Aggarwal, Mamta; Kailas, S.
2010-01-01
Dependence of nuclear level density parameter on the angular momentum and temperature is investigated in a theoretical framework using the statistical theory of hot rotating nuclei. The structural effects are incorporated by including shell correction, shape, and deformation. The nuclei around Z≅50 with an excitation energy range of 30 to 40 MeV are considered. The calculations are in good agreement with the experimentally deduced inverse level density parameter values especially for 109 In, 113 Sb, 122 Te, 123 I, and 127 Cs nuclei.
Stellar Angular Momentum Distributions and Preferential Radial Migration
Wyse, Rosemary; Daniel, Kathryne J.
2018-04-01
I will present some results from our recent investigations into the efficiency of radial migration in stellar disks of differing angular momentum distributions, within a given adopted 2D spiral disk potential. We apply to our models an analytic criterion that determines whether or not individual stars are in orbits that could lead to radial migration around the corotation resonance. We couch our results in terms of the local stellar velocity dispersion and find that the fraction of stars that could migrate radially decreases as the velocity dispersion increases. I will discuss implications and comparisons with the results of other approaches.
Geometric transformations of optical orbital angular momentum spatial modes
He, Rui; An, Xin
2018-02-01
With the aid of the bosonic mode conversions in two different coordinate frames, we show that (1) the coordinate eigenstate is exactly the EPR entangled state representation, and (2) the Laguerre-Gaussian (LG) mode is exactly the wave function of the common eigenvector of the orbital angular momentum and the total photon number operator. Moreover, by using the conversion of the bosonic modes, theWigner representation of the LG mode can be obtained directly. It provides an alternative to the method of Simon and Agarwal.
Radio Pumping of Ionospheric Plasma with Orbital Angular Momentum
Leyser, T. B.; Norin, L.; McCarrick, M.; Pedersen, T. R.; Gustavsson, B.
2009-01-01
Experimental results are presented of pumping ionospheric plasma with a radio wave carrying orbital angular momentum (OAM), using the High Frequency Active Auroral Research Program (HAARP) facility in Alaska. Optical emissions from the pumped plasma turbulence exhibit the characteristic ring-shaped morphology when the pump beam carries OAM. Features of stimulated electromagnetic emissions (SEE) that are attributed to cascading Langmuir turbulence are well developed for a regular beam but are significantly weaker for a ring-shaped OAM beam in which case upper hybrid turbulence dominates the SEE
On the six components of optical angular momentum
Barnett, Stephen M
2011-01-01
In special relativity the angular momentum is a rank-two antisymmetric tensor with six independent components. Three of these are the familiar generators of spatial rotation, which for light have been studied at length. The remaining three, which are responsible for the Lorentz boosts, have largely been neglected. We introduce the latter and compare their properties with those of the more familiar generators of rotations. The seemingly natural separation of the generators of Lorentz boosts into spin and orbital parts fails, however, as the spin part is identically zero
Approximate angular momentum projection from cranked intrinsic states
Goodman, A.L.
1979-01-01
High-spin spectra are determined by approximately projecting states of good angular momentum from cranked Hartree-Fock-Bogoliubov (CHFB) wave functions. For each J the projected energy is E/sub PROJ/ approx. = E/sub CHFB/ - (ΔJ) 2 /2 J/sub CHFB/, where the moment of inertia J and the fluctuation ΔJ are spin dependent. For /sup 168,170/Yb and 174 Hf the projected J is less than the CHFB value for all J. Consequently approximate projection increases all yrast excitation energies for these nuclei
Angular momentum effects in electron scattering from atoms
Williams, J F; Cvejanovie, D; Samarin, S; Pravica, L; Napier, S; Sergeant, A
2007-01-01
This paper concerns angular momentum-dependent phenomena in excited gas-phase atoms using incident photons or electrons in scattering experiments. A brief overview indicates the main capabilities of experimental techniques and the information which can be deduced about atomic structure and dynamics from conservation of momenta with measurement of polarization and detection of the number of emerging electrons, photons and ions. Maximum information may be obtained when the incident particles and the targets are state-selected both before and after scattering. The fundamental scattering amplitudes and their relative phases, and consequently derived quantities such as the parameters describing the electron charge cloud of the atomic target, have enabled significant advances of understanding of collision mechanisms. The angular momentum-dependent scattering probabilities change when, for example, the spin-orbit interaction for the target electrons becomes large compared with the Coulomb electron-electron interactions and also when electron exchange and the relative orientation of the electron spins change. Several examples are discussed to indicate significant principles and recent advances. Major contributions to this field from the technology associated with electron spin production and detection time, as well as time-coincidence detection, are discussed. New results from the authors' laboratory are presented
Momentum and Angular Momentum Transfer in Oblique Impacts: Implications for Asteroid Rotations
Yanagisawa, Masahisa; Hasegawa, Sunao; Shirogane, Nobutoshi
1996-09-01
We conducted a series of high velocity oblique impact experiments (0.66-6.7 km/s) using polycarbonate (plastic) projectiles and targets made of mortar, aluminum alloy, and mild steel. We then calculated the efficiencies of momentum transfer for small cratering impacts. They are η = (M‧Vn‧)/(mvn) and ζ = (M‧Vt‧)/(mvt), wheremandvare the mass and velocity of a projectile, andM‧ andV‧ represent those of a postimpact target. Subscripts “n” and “t” denote the components normal and tangential to the target surface at the impact point, respectively. The main findings are: (1) η increases with increasing impact velocity; (2) η is larger for mortar than for ductile metallic targets; (3) ζ for mortar targets seems to increase with the impact velocity in the velocity range less than about 2 km/s and decrease with it in the higher velocity range; (4) ζ for the aluminum alloy targets correlates negatively with incident zenith angle of the projectile. In addition to these findings on the momentum transfer, we show theoretically that “ζL” can be expressed by η and ζ for small cratering impact. Here, ζLis the spin angular momentum that the target acquires at impact divided by the collisional angular momentum due to the projectile. This is an important parameter to study the collisional evolution of asteroid rotation. For a spherical target, ζLis shown to be well approximated by ζ.
Twisted molecular excitons as mediators for changing the angular momentum of light
Zang, Xiaoning; Lusk, Mark T.
2017-07-01
Molecules with CN or CN h symmetry can absorb quanta of optical angular momentum to generate twisted excitons with well-defined quasiangular momenta of their own. Angular momentum is conserved in such interactions at the level of a paraxial approximation for the light beam. A sequence of absorption events can thus be used to create a range of excitonic angular momenta. Subsequent decay can produce radiation with a single angular momentum equal to that accumulated. Such molecules can thus be viewed as mediators for changing the angular momentum of light. This sidesteps the need to exploit nonlinear light-matter interactions based on higher-order susceptibilities. A tight-binding paradigm is used to verify angular momentum conservation and demonstrate how it can be exploited to change the angular momentum of light. The approach is then extended to a time-dependent density functional theory setting where the key results are shown to hold in a many-body, multilevel setting.
Nashed, Gamal G. L.
2010-01-01
The energy–momentum tensor, which is coordinate-independent, is used to calculate energy, momentum and angular momentum of two different tetrad fields. Although, the two tetrad fields reproduce the same space-time their energies are different. Therefore, a regularized expression of the gravitational energy–momentum tensor of the teleparallel equivalent of general relativity (TEGR), is used to make the energies of the two tetrad fields equal. The definition of the gravitational energy–momentum is used to investigate the energy within the external event horizon. The components of angular momentum associated with these space–times are calculated. In spite of using a static space–time, we get a non-zero component of angular momentum! Therefore, we derive the Killing vectors associated with these space–times using the definition of the Lie derivative of a second rank tensor in the framework of the TEGR to make the picture more clear. (general)
DeHart, Russell
2017-01-01
This study determines the feasibility of creating a tool that can accurately predict Lunar Reconnaissance Orbiter (LRO) reaction wheel assembly (RWA) angular momentum, weeks or even months into the future. LRO is a three-axis stabilized spacecraft that was launched on June 18, 2009. While typically nadir-pointing, LRO conducts many types of slews to enable novel science collection. Momentum unloads have historically been performed approximately once every two weeks with the goal of maintaining system total angular momentum below 70 Nms; however flight experience shows the models developed before launch are overly conservative, with many momentum unloads being performed before system angular momentum surpasses 50 Nms. A more accurate model of RWA angular momentum growth would improve momentum unload scheduling and decrease the frequency of these unloads. Since some LRO instruments must be deactivated during momentum unloads and in the case of one instrument, decontaminated for 24 hours there after a decrease in the frequency of unloads increases science collection. This study develops a new model to predict LRO RWA angular momentum. Regression analysis of data from October 2014 to October 2015 was used to develop relationships between solar beta angle, slew specifications, and RWA angular momentum growth. The resulting model predicts RWA angular momentum using input solar beta angle and mission schedule data. This model was used to predict RWA angular momentum from October 2013 to October 2014. Predictions agree well with telemetry; of the 23 momentum unloads performed from October 2013 to October 2014, the mean and median magnitude of the RWA total angular momentum prediction error at the time of the momentum unloads were 3.7 and 2.7 Nms, respectively. The magnitude of the largest RWA total angular momentum prediction error was 10.6 Nms. Development of a tool that uses the models presented herein is currently underway.
Multiple orbital angular momentum generated by dielectric hybrid phase element
Wang, Xuewen; Kuchmizhak, Aleksandr; Hu, Dejiao; Li, Xiangping
2017-09-01
Vortex beam carrying multiple orbital angular momentum provides a new degree of freedom to manipulate light leading to the various exciting applications as trapping, quantum optics, information multiplexing, etc. Helical wavefront can be generated either via the geometric or the dynamic phase arising from a space-variant birefringence (q-plate) or from phase accumulation through propagation (spiral-phase-plate), respectively. Using fast direct laser writing technique we fabricate and characterize novel hybrid q-plate generating vortex beam simultaneously carrying two different high-order topological charges, which arise from the spin-orbital conversion and the azimuthal height variation of the recorded structures. We approve the versatile concept to generate multiple-OAM vortex beams combining the spin-orbital interaction and the phase accumulation in a single micro-scale device, a hybrid dielectric phase plate.
Orbital angular momentum parton distributions in quark models
Scopetta, S.; Vento, V.
2000-01-01
At the low energy, hadronic, scale we calculate Orbital Angular Momentum (OAM) twist-two parton distributions for the relativistic MIT bag model and for nonrelativistic quark models. We reach the scale of the data by leading order evolution in perturbative QCD. We confirm that the contribution of quarks and gluons OAM to the nucleon spin grows with Q 2 , and it can be relevant at the experimental scale, even if it is negligible at the hadronic scale, irrespective of the model used. The sign and shape of the quark OAM distribution at high Q 2 may depend strongly on the relative size of the OAM and spin distributions at the hadronic scale. Sizeable quark OAM distributions at the hadronic scale, as proposed by several authors, can produce the dominant contribution to the nucleon spin at high Q 2 . (author)
THE EFFECTS OF ANGULAR MOMENTUM ON HALO PROFILES
Lentz, Erik W; Rosenberg, Leslie J [Physics Department, University of Washington, Seattle, WA 98195-1580 (United States); Quinn, Thomas R, E-mail: lentze@phys.washington.edu, E-mail: ljrosenberg@phys.washington.edu, E-mail: trq@astro.washington.edu [Astronomy Department, University of Washington, Seattle, WA 98195-1580 (United States)
2016-05-10
The near universality of DM halo density profiles provided by N -body simulations proved to be robust against changes in total mass density, power spectrum, and some forms of initial velocity dispersion. Here we study the effects of coherently spinning up an isolated DM-only progenitor on halo structure. Halos with spins within several standard deviations of the simulated mean ( λ ≲ 0.20) produce profiles with negligible deviations from the universal form. Only when the spin becomes quite large ( λ ≳ 0.20) do departures become evident. The angular momentum distribution also exhibits a near universal form, which is also independent of halo spin up to λ ≲ 0.20. A correlation between these epidemic profiles and the presence of a strong bar in the virialized halo is also observed. These bar structures bear resemblance to the radial orbit instability in the rotationless limit.
Nucleon form factors, generalized parton distributions and quark angular momentum
Diehl, Markus [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kroll, Peter [Bergische Univ., Wuppertal (Germany). Fachbereich Physik; Regensburg Univ. (Germany). Institut fuer Theoretische Physik
2013-02-15
We extract the individual contributions from u and d quarks to the Dirac and Pauli form factors of the proton, after a critical examination of the available measurements of electromagnetic nucleon form factors. From this data we determine generalized parton distributions for valence quarks, assuming a particular form for their functional dependence. The result allows us to study various aspects of nucleon structure in the valence region. In particular, we evaluate Ji's sum rule and estimate the total angular momentum carried by valence quarks at the scale {mu}=2 GeV to be J{sup u}{sub v}=0.230{sup +0.009}{sub -0.024} and J{sup d}{sub v}=-0.004{sup +0.010}{sub -0.016}.
Compact and high-resolution optical orbital angular momentum sorter
Chenhao Wan
2017-03-01
Full Text Available A compact and high-resolution optical orbital angular momentum (OAM sorter is proposed and demonstrated. The sorter comprises a quadratic fan-out mapper and a dual-phase corrector positioned in the pupil plane and the Fourier plane, respectively. The optical system is greatly simplified compared to previous demonstrations of OAM sorting, and the performance in resolution and efficiency is maintained. A folded configuration is set up using a single reflective spatial light modulator (SLM to demonstrate the validity of the scheme. The two phase elements are implemented on the left and right halves of the SLM and connected by a right-angle prism. Experimental results demonstrate the high resolution of the compact OAM sorter, and the current limit in efficiency can be overcome by replacing with transmissive SLMs and removing the beam splitters. This novel scheme paves the way for the miniaturization and integration of high-resolution OAM sorters.
Multichannel singular spectrum analysis of the axial atmospheric angular momentum
Leonid Zotov
2017-11-01
Full Text Available Earth's variable rotation is mainly produced by the variability of the AAM (atmospheric angular momentum. In particular, the axial AAM component χ3, which undergoes especially strong variations, induces changes in the Earth's rotation rate. In this study we analysed maps of regional input into the effective axial AAM from 1948 through 2011 from NCEP/NCAR reanalysis. Global zonal circulation patterns related to the LOD (length of day were described. We applied MSSA (Multichannel Singular Spectrum Analysis jointly to the mass and motion components of AAM, which allowed us to extract annual, semiannual, 4-month, quasi-biennial, 5-year, and low-frequency oscillations. PCs (Principal components strongly related to ENSO (El Nino southern oscillation were released. They can be used to study ENSO-induced changes in pressure and wind fields and their coupling to LOD. The PCs describing the trends have captured slow atmospheric circulation changes possibly related to climate variability.
Low-crosstalk orbital angular momentum fiber coupler design.
Zhang, Zhishen; Gan, Jiulin; Heng, Xiaobo; Li, Muqiao; Li, Jiong; Xu, Shanhui; Yang, Zhongmin
2017-05-15
A fiber coupler for low-crosstalk orbital angular momentum mode beam splitter is proposed with the structure of two separate and parallel microfibers. By properly setting the center-to-center distance between microfibers, the crosstalk is less than -20 dB, which means that the purity of the needed OAM mode in output port is higher than 99%. For a fixed overlapping length, high coupling efficiency (>97%) is achieved in 1545-1560 nm. The operating wavelength is tuned to the whole C-band by using the thermosensitive liquid. So the designed coupler can achieve the tunable coupling ratio over the whole C-band, which is a prospective component for the further OAM fiber system.
Detecting Lateral Motion using Light’s Orbital Angular Momentum
Cvijetic, Neda; Milione, Giovanni; Ip, Ezra; Wang, Ting
2015-01-01
Interrogating an object with a light beam and analyzing the scattered light can reveal kinematic information about the object, which is vital for applications ranging from autonomous vehicles to gesture recognition and virtual reality. We show that by analyzing the change in the orbital angular momentum (OAM) of a tilted light beam eclipsed by a moving object, lateral motion of the object can be detected in an arbitrary direction using a single light beam and without object image reconstruction. We observe OAM spectral asymmetry that corresponds to the lateral motion direction along an arbitrary axis perpendicular to the plane containing the light beam and OAM measurement axes. These findings extend OAM-based remote sensing to detection of non-rotational qualities of objects and may also have extensions to other electromagnetic wave regimes, including radio and sound. PMID:26493681
Detecting Lateral Motion using Light's Orbital Angular Momentum.
Cvijetic, Neda; Milione, Giovanni; Ip, Ezra; Wang, Ting
2015-10-23
Interrogating an object with a light beam and analyzing the scattered light can reveal kinematic information about the object, which is vital for applications ranging from autonomous vehicles to gesture recognition and virtual reality. We show that by analyzing the change in the orbital angular momentum (OAM) of a tilted light beam eclipsed by a moving object, lateral motion of the object can be detected in an arbitrary direction using a single light beam and without object image reconstruction. We observe OAM spectral asymmetry that corresponds to the lateral motion direction along an arbitrary axis perpendicular to the plane containing the light beam and OAM measurement axes. These findings extend OAM-based remote sensing to detection of non-rotational qualities of objects and may also have extensions to other electromagnetic wave regimes, including radio and sound.
Nucleon form factors, generalized parton distributions and quark angular momentum
Diehl, Markus; Kroll, Peter; Regensburg Univ.
2013-02-01
We extract the individual contributions from u and d quarks to the Dirac and Pauli form factors of the proton, after a critical examination of the available measurements of electromagnetic nucleon form factors. From this data we determine generalized parton distributions for valence quarks, assuming a particular form for their functional dependence. The result allows us to study various aspects of nucleon structure in the valence region. In particular, we evaluate Ji's sum rule and estimate the total angular momentum carried by valence quarks at the scale μ=2 GeV to be J u v =0.230 +0.009 -0.024 and J d v =-0.004 +0.010 -0.016 .
Catenary optics for achromatic generation of perfect optical angular momentum
Pu, Mingbo; Li, Xiong; Ma, Xiaoliang; Wang, Yanqin; Zhao, Zeyu; Wang, Changtao; Hu, Chenggang; Gao, Ping; Huang, Cheng; Ren, Haoran; Li, Xiangping; Qin, Fei; Yang, Jing; Gu, Min; Hong, Minghui; Luo, Xiangang
2015-01-01
The catenary is the curve that a free-hanging chain assumes under its own weight, and thought to be a “true mathematical and mechanical form” in architecture by Robert Hooke in the 1670s, with nevertheless no significant phenomena observed in optics. We show that the optical catenary can serve as a unique building block of metasurfaces to produce continuous and linear phase shift covering [0, 2π], a mission that is extremely difficult if not impossible for state-of-the-art technology. Via catenary arrays, planar optical devices are designed and experimentally characterized to generate various kinds of beams carrying orbital angular momentum (OAM). These devices can operate in an ultra-broadband spectrum because the anisotropic modes associated with the spin-orbit interaction are almost independent of the incident light frequency. By combining the optical and topological characteristics, our approach would allow the complete control of photons within a single nanometric layer. PMID:26601283
Preequilibrium GDR excitation and entrance channel angular momentum effects
Sandoli, M.; Campajola, L.; De Rosa, A.; D'Onofrio, A.; La Commara, M.; Ordine, A.; Pierroutsakou, D.; Roca, V.; Romano, M.; Romoli, M.; Terrasi, F.; Trotta, M.; Cardella, G.; Papa, M.; Pappalardo, G.; Rizzo, F.; Alamanos, N.; Auger, F.; Gillibert, A.
1997-01-01
The energy spectra of the γ-rays emitted in the 35 Cl+ 92 Mo reaction at incident energy E=260 MeV were measured in coincidence with the ejectiles produced in dissipative reaction events. The cumulative energy spectrum of the γ-rays coming from the decay of the ejectiles was calculated within the statistical model and its comparison to the experimental spectrum evidences an excess in the data for E γ =8 to 12 MeV. Such an excess, fitted with a Lorentz curve, is attributed to the preequilibrium GDR γ-decay of the intermediate dinuclear system. The centroid energy of the Lorentz curve corresponds to a dipole oscillation along the symmetry axis of the system and its width is found to be comparable to that of the ground state GDR low energy component of the deformed dinucleus. The small quantal dispersion Δl=(10.3±0.1)ℎ of the entrance channel angular momentum, determined by analysing the dissipative fragment angular distribution in the framework of the Strutinsky model, is suggested to limit the broadening of the preequilibrium GDR width. (orig.)
Linear momentum, angular momentum and energy in the linear collision between two balls
Hanisch, C.; Hofmann, F.; Ziese, M.
2018-01-01
In an experiment of the basic physics laboratory, kinematical motion processes were analysed. The motion was recorded with a standard video camera having frame rates from 30 to 240 fps the videos were processed using video analysis software. Video detection was used to analyse the symmetric one-dimensional collision between two balls. Conservation of linear and angular momentum lead to a crossover from rolling to sliding directly after the collision. By variation of the rolling radius the system could be tuned from a regime in which the balls move away from each other after the collision to a situation in which they re-collide.
Doessing, T.; Randrup, J.
1984-01-01
An important goal in the theory of nuclear dynamics is to understand the observed transport phenomena in terms of the basic microscopic processes in the system. For this purpose a model was developed in which the dissipative mechanism responsible for the transport process is the transfer of nucleons between the two reacting nuclides. Until now, most efforts to confront that theory with data have concentrated on the evolution of the charge and mass distribution with energy loss, and overall good agreement has been obtained for a variety of features. While this success lends strong support to the theory, it is important to broaden the contact with experiment by considering also other aspects of the data. Therefore the authors have undertaken a comprehensive study of the angular momentum variables which represent six additional observables (three for each fragment spin) and thus provide a rich testing ground for the theory
Momentum and angular momentum in the H-space of asymptotically flat, Einstein-Maxwell space-time
Hallidy, W.; Ludvigsen, M.
1979-01-01
New definitions are proposed for the momentum and angular momentum of Einstein-Maxwell fields that overcome the deficiencies of earlier definitions of these terms and are appropriate to the new H-space formulations of space-time. Definitions are made in terms of the Winicour-Tamburino linkages applied to the good cuts of Cj + . The transformations between good cuts then correspond to the translations and Lorentz transformations at points in H-space. For the special case of Robinson-Trautman type II space-times, it is shown that the definitions of momentum and angular momentum yield previously published results. (author)
ANGULAR MOMENTUM IN GIANT MOLECULAR CLOUDS. II. M33
Imara, Nia; Bigiel, Frank; Blitz, Leo
2011-01-01
We present an analysis comparing the properties of 45 giant molecular clouds (GMCs) in M33 and the atomic hydrogen (H I) with which they are associated. High-resolution Very Large Array observations are used to measure the properties of H I in the vicinity of GMCs and in regions where GMCs have not been detected. The majority of molecular clouds coincide with a local peak in the surface density of atomic gas, though 7% of GMCs in the sample are not associated with high surface density atomic gas. The mean H I surface density in the vicinity of GMCs is 10 M sun pc -2 and tends to increase with GMC mass as Σ HI ∝ M 0.27 GMC . Thirty-nine of the 45 H I regions surrounding GMCs have linear velocity gradients of ∼0.05 km s -1 pc -1 . If the linear gradients previously observed in the GMCs result from rotation, 53% are counterrotating with respect to the local H I. And if the linear gradients in these local H I regions are also from rotation, 62% are counterrotating with respect to the galaxy. If magnetic braking reduced the angular momentum of GMCs early in their evolution, the angular velocity of GMCs would be roughly one order of magnitude lower than what is observed. Based on our observations, we consider the possibility that GMCs may not be rotating. Atomic gas not associated with GMCs has gradients closer to 0.03 km s -1 pc -1 , suggesting that events occur during the course of GMC evolution that may increase the shear in the atomic gas.
Distribution of the angular momentum in the Galaxy and M31
Einasto, J.; Traat, P.
1977-01-01
The angular momentum distribution of the Galaxy and of the Andromeda galaxy M31 has been calculated separately for the disk and halo population. The disk was approximated with a ring. The distribution of the angular momentum in the disk and the halo is different
RCS Diversity of Electromagnetic Wave Carrying Orbital Angular Momentum.
Zhang, Chao; Chen, Dong; Jiang, Xuefeng
2017-11-13
An electromagnetic (EM) wave with orbital angular momentum (OAM) has a helical wave front, which is different from that of the plane wave. The phase gradient can be found perpendicular to the direction of propagation and proportional to the number of OAM modes. Herein, we study the backscattering property of the EM wave with different OAM modes, i.e., the radar cross section (RCS) of the target is measured and evaluated with different OAM waves. As indicated by the experimental results, different OAM waves have the same RCS fluctuation for the simple target, e.g., a small metal ball as the target. However, for complicated targets, e.g., two transverse-deployed small metal balls, different RCSs can be identified from the same incident angle. This valuable fact helps to obtain RCS diversity, e.g., equal gain or selective combining of different OAM wave scattering. The majority of the targets are complicated targets or expanded targets; the RCS diversity can be utilized to detect a weak target traditionally measured by the plane wave, which is very helpful for anti-stealth radar to detect the traditional stealth target by increasing the RCS with OAM waves.
Microwave imaging of spinning object using orbital angular momentum
Liu, Kang; Li, Xiang; Gao, Yue; Wang, Hongqiang; Cheng, Yongqiang
2017-09-01
The linear Doppler shift used for the detection of a spinning object becomes significantly weakened when the line of sight (LOS) is perpendicular to the object, which will result in the failure of detection. In this paper, a new detection and imaging technique for spinning objects is developed. The rotational Doppler phenomenon is observed by using the microwave carrying orbital angular momentum (OAM). To converge the radiation energy on the area where objects might exist, the generation method of OAM beams is proposed based on the frequency diversity principle, and the imaging model is derived accordingly. The detection method of the rotational Doppler shift and the imaging approach of the azimuthal profiles are proposed, which are verified by proof-of-concept experiments. Simulation and experimental results demonstrate that OAM beams can still be used to obtain the azimuthal profiles of spinning objects even when the LOS is perpendicular to the object. This work remedies the insufficiency in existing microwave sensing technology and offers a new solution to the object identification problem.
A complex angular momentum theory of modified Coulomb scattering
Thylwe, K.E.; Connor, J.N.L.
1985-01-01
The paper develops an exact complex angular momentum (CAM) theory of elastic scattering for a complex optical potential with a Coulombic tail. The present CAM theory avoids complications due to the long range nature of the Coulombic potential in a straightforward way. The Sommerfeld-Watson transformation together with a travelling wave (near-side far-side) decomposition, is used to obtain an exact representation for the scattering amplitude f(theta) in terms of a background integral fsub(B)(theta) and a series of subamplitudes fsup((+-))sub(n)(theta). New exact representations are derived for fsub(B)(theta) when the scattering matrix element S(lambda) possesses local symmetries of the type S(-lambda)=S(lambda)exp(+-2iπlambda) and S(-lambda)=S(lambda). The exact results obtained in this paper unify the CAM theory of scattering for Coulombic and short range potentials and are especially suitable for the introduction of semiclassical approximations. (author)
ANGULAR MOMENTUM IN GIANT MOLECULAR CLOUDS. I. THE MILKY WAY
Imara, Nia; Blitz, Leo
2011-01-01
We present a detailed analysis comparing the velocity fields in molecular clouds and the atomic gas that surrounds them in order to address the origin of the gradients. To that end, we present first-moment intensity-weighted velocity maps of the molecular clouds and surrounding atomic gas. The maps are made from high-resolution 13 CO observations and 21 cm observations from the Leiden/Argentine/Bonn Galactic H I Survey. We find that (1) the atomic gas associated with each molecular cloud has a substantial velocity gradient-ranging from 0.02 to 0.07 km s -1 pc -1 -whether or not the molecular cloud itself has a substantial linear gradient. (2) If the gradients in the molecular and atomic gas were due to rotation, this would imply that the molecular clouds have less specific angular momentum than the surrounding H I by a factor of 1-6. (3) Most importantly, the velocity gradient position angles in the molecular and atomic gas are generally widely separated-by as much as 130 deg. in the case of the Rosette molecular cloud. This result argues against the hypothesis that molecular clouds formed by simple top-down collapse from atomic gas.
Diffraction and angular momentum effects in semiclassical atomic scattering theory
Russek, A.
1979-01-01
The semiclassical scattering theory of Mott and Massey and Ford and Wheeler is here extended to multichannel scattering as occurs at a crossing or pseudocrossing of the transient molecule formed by the colliding atoms. The generalized theory incorporates both interference and diffraction phenomena, but the emphasis in this work is on diffraction. For small-angle scattering, diffraction effects become broader, not narrower, as the collision energy increases: ΔbΔtau > or = h[E/sub inc//(2m)]/sup 1/2/ relates the uncertainties in impact parameter b and reduced scattering angle tau = E/sub inc/theta, and determines the range in b required to resolve a structure in the deflection function of height Δtau. In the kilovolt range of collision energies, the effects of local maxima and minima in the deflection function are washed out, and the Airy-function approximation of Ford and Wheeler is inappropriate to describe the differential cross section. More generally, it is shown that at keV collision energies the stationary-phase approximation, heretofore essential in the reduction to the semiclassical limit, breaks down in the vicinity of a level crossing. An approximate theorem is proposed which remains valid in this region and elsewhere reduces to the standard stationary-phase approximation. Several illustrative examples are considered. A separate development treats the effect on the differential scattering cross section of a change in electronic angular momentum when electronic excitation occurs
A January angular momentum balance in the OSU two-level atmospheric general circulation model
Kim, J.-W.; Grady, W.
1982-01-01
The present investigation is concerned with an analysis of the atmospheric angular momentum balance, based on the simulation data of the Oregon State University two-level atmospheric general circulation model (AGCM). An attempt is also made to gain an understanding of the involved processes. Preliminary results on the angular momentum and mass balance in the AGCM are shown. The basic equations are examined, and questions of turbulent momentum transfer are investigated. The methods of analysis are discussed, taking into account time-averaged balance equations, time and longitude-averaged balance equations, mean meridional circulation, the mean meridional balance of relative angular momentum, and standing and transient components of motion.
Generation of angular-momentum-dominated electron beams from a photoinjector
Sun, Yin-E.; Piot, Philippe; Kim, Kwang-Je; Barov, Nikolas; Lidia, Steven; Santucci, James; Tikhoplav, Rodion; Wennerberg, Jason
2004-01-01
Various projects under study require an angular-momentum-dominated electron beam generated by a photoinjector. Some of the proposals directly use the angular-momentum-dominated beams (e.g. electron cooling of heavy ions), while others require the beam to be transformed into a flat beam (e.g. possible electron injectors for light sources and linear colliders). In this paper, we report our experimental study of an angular-momentum-dominated beam produced in a photoinjector, addressing the dependencies of angular momentum on initial conditions. We also briefly discuss the removal of angular momentum. The results of the experiment, carried out at the Fermilab/NICADD Photoinjector Laboratory, are found to be in good agreement with theoretical and numerical models
Massive star formation by accretion. II. Rotation: how to circumvent the angular momentum barrier?
Haemmerlé, L.; Eggenberger, P.; Meynet, G.; Maeder, A.; Charbonnel, C.; Klessen, R. S.
2017-06-01
Context. Rotation plays a key role in the star-formation process, from pre-stellar cores to pre-main-sequence (PMS) objects. Understanding the formation of massive stars requires taking into account the accretion of angular momentum during their PMS phase. Aims: We study the PMS evolution of objects destined to become massive stars by accretion, focusing on the links between the physical conditions of the environment and the rotational properties of young stars. In particular, we look at the physical conditions that allow the production of massive stars by accretion. Methods: We present PMS models computed with a new version of the Geneva Stellar Evolution code self-consistently including accretion and rotation according to various accretion scenarios for mass and angular momentum. We describe the internal distribution of angular momentum in PMS stars accreting at high rates and we show how the various physical conditions impact their internal structures, evolutionary tracks, and rotation velocities during the PMS and the early main sequence. Results: We find that the smooth angular momentum accretion considered in previous studies leads to an angular momentum barrier and does not allow the formation of massive stars by accretion. A braking mechanism is needed in order to circumvent this angular momentum barrier. This mechanism has to be efficient enough to remove more than two thirds of the angular momentum from the inner accretion disc. Due to the weak efficiency of angular momentum transport by shear instability and meridional circulation during the accretion phase, the internal rotation profiles of accreting stars reflect essentially the angular momentum accretion history. As a consequence, careful choice of the angular momentum accretion history allows circumvention of any limitation in mass and velocity, and production of stars of any mass and velocity compatible with structure equations.
Shaw, W.T.
1983-01-01
Penrose's 'quasi-local mass and angular momentum' is investigated for 2-surfaces near spatial infinity in both linearized theory on Minkowski space and full general relativity. It is shown that for space-times that are radially smooth of order one in the sense of Beig and Schmidt with asymptotically electric Weyl curvature, there exists a global concept of a twistor space at spatial infinity. Global conservation laws for the energy-momentum and angular momentum are obtained, and the ten conserved quantities are shown to be invariant under asymptotic coordinate transformations. The relation to other definitions is discussed briefly. (author)
Effects of Wall-Normal and Angular Momentum Injections in Airfoil Separation Control
Munday, Phillip M.; Taira, Kunihiko
2018-05-01
The objective of this computational study is to quantify the influence of wall-normal and angular momentum injections in suppressing laminar flow separation over a canonical airfoil. Open-loop control of fully separated, incompressible flow over a NACA 0012 airfoil at $\\alpha = 9^\\circ$ and $Re = 23,000$ is examined with large-eddy simulations. This study independently introduces wall-normal momentum and angular momentum into the separated flow using swirling jets through model boundary conditions. The response of the flow field and the surface vorticity fluxes to various combinations of actuation inputs are examined in detail. It is observed that the addition of angular momentum input to wall-normal momentum injection enhances the suppression of flow separation. Lift enhancement and suppression of separation with the wall-normal and angular momentum inputs are characterized by modifying the standard definition of the coefficient of momentum. The effect of angular momentum is incorporated into the modified coefficient of momentum by introducing a characteristic swirling jet velocity based on the non-dimensional swirl number. With this single modified coefficient of momentum, we are able to categorize each controlled flow into separated, transitional, and attached flows.
Angular momentum conservation law in light-front quantum field theory
Chiu, Kelly Yu-Ju; Brodsky, Stanley J.; /SLAC /Stanford U.
2017-03-01
We prove the Lorentz invariance of the angular momentum conservation law and the helicity sum rule for relativistic composite systems in the light-front formulation. We explicitly show that j 3 , the z -component of the angular momentum remains unchanged under Lorentz transformations generated by the light-front kinematical boost operators. The invariance of j 3 under Lorentz transformations is a feature unique to the front form. Applying the Lorentz invariance of the angular quantum number in the front form, we obtain a selection rule for the orbital angular momentum which can be used to eliminate certain interaction vertices in QED and QCD. We also generalize the selection rule to any renormalizable theory and show that there exists an upper bound on the change of orbital angular momentum in scattering processes at any fixed order in perturbation theory.
Grinter, Roger; Jones, Garth A
2018-02-01
The transfer of angular momentum between a quadrupole emitter and a dipole acceptor is investigated theoretically. Vector spherical harmonics are used to describe the angular part of the field of the mediating photon. Analytical results are presented for predicting angular momentum transfer between the emitter and absorber within a quantum electrodynamical framework. We interpret the allowability of such a process, which appears to violate conservation of angular momentum, in terms of the breakdown of the isotropy of space at the point of photon absorption (detection). That is, collapse of the wavefunction results in loss of all angular momentum information. This is consistent with Noether's Theorem and demystifies some common misconceptions about the nature of the photon. The results have implications for interpreting the detection of photons from multipole sources and offers insight into limits on information that can be extracted from quantum measurements in photonic systems.
Two-dimensional angular momentum in the presence of long-range magnetic flux
Jackiw, R.; Redlich, A.N.
1983-01-01
It is shown that eigenvalues of two-dimensional angular momentum remain integer valued in the magnetic field of a solenoid, contrary to published assertions that they are modified by the flux. For a vortex, flux does contribute, and the angular momentum can fractionize, as asserted in the literature, provided phases of wave functions are chosen consistently with the solenoid problem. Long-range effects of flux, the distinction between orbital and canonical angular momentum, and interactions with Cooper pairs are essential to this argument
Recursive generation of Cartesian angular momentum coupling trees for SO(3)
Sherborne, B.S.; Stedman, G.E.
1990-01-01
Two computer algorithms are evaluated for the reduction of angular momentum coupling trees with vector (j=1) terminals with a Cartesian choice of basis as used in nonlinear optics. Rather than employ advanced tensor algebra, both methods essentially iterate in distinct ways the basic techniques of angular momentum coupling. Turbo Pascal programs implementing these algorithms are presented and compared. The accompanying analysis integrates the Cartesian tensor approach and the diagrammatic approach to the solution of problems in nonlinear optics. The programs generate TeX files for the relevant angular momentum diagrams. (orig.)
Simple method for evaluating Goldstone diagrams in an angular momentum coupled representation
Kuo, T.T.S.; Shurpin, J.; Tam, K.C.; Osnes, E.; Ellis, P.J.
1981-01-01
A simple and convenient method is derived for evaluating linked Goldstone diagrams in an angular momentum coupled representation. Our method is general, and can be used to evaluate any effective interaction and/or effective operator diagrams for both closed-shell nuclei (vacuum to vacuum linked diagrams) and open-shell nuclei (valence linked diagrams). The techniques of decomposing diagrams into ladder diagrams, cutting open internal lines and cutting off one-body insertions are introduced. These enable us to determine angular momentum factors associated with diagrams in the coupled representation directly, without the need for carrying out complicated angular momentum algebra. A summary of diagram rules is given
Orbital angular momentum of a high-order Bessel light beam
Volke-Sepulveda, K; Garces-Chavez, V; Chavez-Cerda, S; Arlt, J; Dholakia, K
2002-01-01
The orbital angular momentum density of Bessel beams is calculated explicitly within a rigorous vectorial treatment. This allows us to investigate some aspects that have not been analysed previously, such as the angular momentum content of azimuthally and radially polarized beams. Furthermore, we demonstrate experimentally the mechanical transfer of orbital angular momentum to trapped particles in optical tweezers using a high-order Bessel beam. We set transparent particles of known dimensions into rotation, where the sense of rotation can be reversed by changing the sign of the singularity. Quantitative results are obtained for rotation rates. This paper's animations are available from the Multimedia Enhancements page
Kun, S.Yu.; Noerenberg, W.; Technische Hochschule Darmstadt
1992-02-01
We study the effect from dissipation of relative angular momentum on fluctuations of exitations functions in dissipative heavy-ion collisions. Dissipation and fluctuation of relative angular momentum modify and smooth the time-angle localization of the roating dinuclear system. The secondary maxima in the energy correlation function of the cross-section are shifted to smaller values of the energy difference, the shift depending on the relaxation time and the diffusion coefficient for the angular-momentum dissipation. The results are illustrated for the collision 28 Si(E lab =130MeV)+ 48 Ti. (orig.)
Angular momentum transfer in deep inelastic heavy ion collisions. Part 2
Barbosa, V.C.; Soares, P.C.; Oliveira, Edgar C. de; Gomes, Luiz Carlos
1985-01-01
The Fokker-Planck equation which describes the angular momentum transfer in deep inelastic heavy ion collisions is solved by a stochastic simulation procedure. The fusion cross section calculation is discussed. The calculations show that the critical orbital angular momentum does not play such a special role as in the deterministic case. The results of all the angular momentum transfer and their fluctuations are calculated and compared with experimental results for the reactions 86 Kr+ 154 Sm at 610 MeV, 165 Ho+ 148 Sm, and 165 Ho+ 176 Yb at 1400 MeV. (Author) [pt
Study at high angular momentum of the reflection asymmetry in the 218 Ra transition nuclei
Aiche, M.
1990-07-01
The investigations concerning the 218 Ra nuclei at high angular momentum are discussed. The aim of the study is to enlarge the knowledge on the octupolar phenomena and to analyse its evolution as a funcion of the angular momentum. The 218 Ra nuclei is obtained from the ( 14 C, 4n) reaction. The gamma angular distribution and the gamma-gamma coincidence were measured by means of the Chateau de Cristal multicounter. The reflection asymmetric mean field theory and the bosons interaction model were applied to analyze the data and obtain the structure at high angular moments. The results show the existence of dipole-octupole correlations in the nuclei [fr
CONSTRAINING THE ANGULAR MOMENTUM EVOLUTION OF V455 ANDROMEDAE
Mukadam, Anjum S.; Szkody, Paula [Department of Astronomy, University of Washington, Seattle, WA 98195-1580 (United States); Pyrzas, Stylianos [Qatar Environment and Energy Research Institute (QEERI), HBKU, Qatar Foundation, P.O. Box 5825, Doha (Qatar); Townsley, D. M. [Department of Physics and Astronomy, The University of Alabama, Tuscaloosa, AL 35487 (United States); Gänsicke, B. T. [Department of Physics, University of Warwick, Coventry, CV4 7AL (United Kingdom); Hermes, J. J. [Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599-3255 (United States); Kemp, Jonathan [Department of Physics, Middlebury College, Middlebury, VT 05753 (United States); Patterson, J.; Ding, Claire; Wolf, Katie; Gemma, Marina; Karamehmetoglu, Emir [Department of Astronomy, Columbia University, 550 West 120th Street, New York, NY 10027 (United States); Rock, John [CBA-Wilts, 2 Spa Close, Highworth, Swindon, Wilts SN6 7PJ (United Kingdom)
2016-04-10
Time-series photometry on the cataclysmic variable V455 Andromedae (hereafter V455 And, HS 2331+3905) reveals a rotation period shorter than the orbital period, implying the presence of a magnetic field. We expect that this magnetic field channels the accreted matter from the disk toward the white dwarf poles, classifying it as an Intermediate Polar. The two polar spinning emission areas are visible in the lightcurves at the rotation period of 67.61970396 ± 0.00000072 s, and its harmonic. Using photometric observations of V455 And obtained from 2007 October to 2015, we derive 3σ upper limits to the rate of change of the spin harmonic (SH) with time to be dP{sub SH}/dt ≤ −7.5 × 10{sup −15} s s{sup −1} employing the O–C method, and −5.4 × 10{sup −15} s s{sup −1} with a direct nonlinear least squares fit. There is no significant detection of a changing spin period for the duration of 2007 October–2015. The 3σ upper limit for the rate of change of spin period with time is dP{sub spin}/dt ≤ −10.8 × 10{sup −15} s s{sup −1} or −0.34 μs yr{sup −1}. V455 And underwent a large-amplitude dwarf nova outburst in 2007 September. The pre-outburst data reflect a period 4.8 ± 2.2 μs longer than the best-fit post-outburst spin period. The angular momentum gained by the white dwarf from matter accreted during outburst and its slight subsequent shrinking should both cause the star to spin slightly faster after the outburst. We estimate that the change in spin period due to the outburst should be 5 μs, consistent with the empirical determination of 4.8 ± 2.2 μs (3σ upper limit of 11.4 μs)
Analysis of angular momentum properties of photons emitted in fundamental atomic processes
Zaytsev, V. A.; Surzhykov, A. S.; Shabaev, V. M.; Stöhlker, Th.
2018-04-01
Many atomic processes result in the emission of photons. Analysis of the properties of emitted photons, such as energy and angular distribution as well as polarization, is regarded as a powerful tool for gaining more insight into the physics of corresponding processes. Another characteristic of light is the projection of its angular momentum upon propagation direction. This property has attracted a special attention over the past decades due to studies of twisted (or vortex) light beams. Measurements being sensitive to this projection may provide valuable information about the role of angular momentum in the fundamental atomic processes. Here we describe a simple theoretical method for determination of the angular momentum properties of the photons emitted in various atomic processes. This method is based on the evaluation of expectation value of the total angular momentum projection operator. To illustrate the method, we apply it to the textbook examples of plane-wave, spherical-wave, and Bessel light. Moreover, we investigate the projection of angular momentum for the photons emitted in the process of the radiative recombination with ionic targets. It is found that the recombination photons do carry a nonzero projection of the orbital angular momentum.
Leader, Elliot, E-mail: e.leader@imperial.ac.uk
2016-05-10
The claim some years ago, contrary to all textbooks, that the angular momentum of a photon (and gluon) can be split in a gauge-invariant way into an orbital and spin term, sparked a major controversy in the Particle Physics community, exacerbated by the realization that many different forms of the angular momentum operators are, in principle, possible. A further cause of upset was the realization that the gluon polarization in a nucleon, a supposedly physically meaningful quantity, corresponds only to the gauge-variant gluon spin derived from Noether's theorem, evaluated in a particular gauge. On the contrary, Laser Physicists have, for decades, been happily measuring physical quantities which correspond to photon orbital and spin angular momentum evaluated in a particular gauge. This paper reconciles the two points of view, and shows that it is the gauge invariant version of the canonical angular momentum which agrees with the results of a host of laser optics experiments.
Mafu, M
2013-09-01
Full Text Available We present an experimental study of higher-dimensional quantum key distribution protocols based on mutually unbiased bases, implemented by means of photons carrying orbital angular momentum. We perform (d + 1) mutually unbiased measurements in a...
Quality of the restricted variation after projection method with angular momentum projection
Rodriguez, Tomas R.; Egido, J.L.; Robledo, L.M.; Rodriguez-Guzman, R.
2005-01-01
Recently, the restricted angular momentum variation after projection method, using the quadrupole degree of freedom as a variational coordinate in conjunction with effective interactions of the Skyrme or Gogny type, has been used very successfully to study a variety of phenomena concerning the quadrupole degree of freedom. In this paper, we study the quality of such an approach by considering additional degrees of freedom as variational coordinates: the hexadecapole moment and the fluctuations on the quadrupole moment, particle number, and angular momentum operators. The study has been performed with the Gogny interaction (D1S parametrization) for the nuclei 32 Mg and 34 Mg. The results of the angular momentum projection and the subsequent generator coordinate calculations show that the extra degrees of freedom considered are irrelevant for the description of the lowest lying states for each angular momentum
Roux, FS
2011-01-01
Full Text Available Orbital angular momentum (OAM) entangled bi-photons are a resource for the higher dimensional implementation of quantum cryptography, which allows secure communication over various channels. In the case where free-space is used as communication...
Irreducible mass, unincreasable angular momentum and isoareal transformations for black hole physics
Calvani, M [Padua Univ. (Italy). Ist. di Astronomia; Francaviglia, M [Turin Univ. (Italy)
1978-01-01
The concept of unincreasable angular momentum for a Kerr black hole is introduced and related to the isoareal transformations of the horizons. A thermodynamical interpretation is proposed for the new parameter.
Goodman, A L [Tulane Univ., New Orleans, LA (United States)
1992-08-01
Statistical orientation fluctuations are calculated with two alternative assumptions: the rotational frequency remains constant as the shape orientation fluctuates; and, the average angular momentum remains constant as the shape orientation fluctuates. (author). 2 refs., 3 figs.
Modal decomposition for measuring the orbital angular momentum density of light
Schulze, C
2013-02-01
Full Text Available We present a novel technique to measure the orbital angular momentum (OAM) density of light. The technique is based on modal decomposition, enabling the complete reconstruction of optical fields, including the reconstruction of the beams Poynting...
Irreducible mass, unincreasable angular momentum and isoareal transformations for black hole physics
Calvani, M.
1978-01-01
The concept of unincreasable angular momentum for a Kerr black hole is introduced and related to the isoareal transformations of the horizons. A thermodynamical interpretation is proposed for the new parameter. (author)
Randrup, J.
1979-07-01
This lecture discusses a theory for the transport of mass, charge, linear, and angular momentum and energy in damped nuclear collisions, as induced by multiple transfer of individual nucleons. 11 references.
Song, Xinbing; Sun, Yifan; Li, Pengyun; Qin, Hongwei; Zhang, Xiangdong
2015-01-01
We perform Bell’s measurement for the non-separable correlation between polarization and orbital angular momentum from the same classical vortex beam. The violation of Bell’s inequality for such a non-separable classical correlation has been demonstrated experimentally. Based on the classical vortex beam and non-quantum entanglement between the polarization and the orbital angular momentum, the Hadamard gates and conditional phase gates have been designed. Furthermore, a quantum Fourier transform has been implemented experimentally. PMID:26369424
A plasma solenoid driven by an Orbital Angular Momentum laser beam
Nuter, R.; Korneev, Ph.; Thiele, I.; Tikhonchuk, V.
2018-01-01
A tens of Tesla quasi-static axial magnetic field can be produced in the interaction of a short intense laser beam carrying an Orbital Angular Momentum with an underdense plasma. Three-dimensional "Particle In Cell" simulations and analytical model demonstrate that orbital angular momentum is transfered from a tightly focused radially polarized laser beam to electrons without any dissipative effect. A theoretical model describing the balistic interaction of electrons with laser shows that par...
Whole-body angular momentum during stair walking using passive and powered lower-limb prostheses.
Pickle, Nathaniel T; Wilken, Jason M; Aldridge, Jennifer M; Neptune, Richard R; Silverman, Anne K
2014-10-17
Individuals with a unilateral transtibial amputation have a greater risk of falling compared to able-bodied individuals, and falling on stairs can lead to serious injuries. Individuals with transtibial amputations have lost ankle plantarflexor muscle function, which is critical for regulating whole-body angular momentum to maintain dynamic balance. Recently, powered prostheses have been designed to provide active ankle power generation with the goal of restoring biological ankle function. However, the effects of using a powered prosthesis on the regulation of whole-body angular momentum are unknown. The purpose of this study was to use angular momentum to evaluate dynamic balance in individuals with a transtibial amputation using powered and passive prostheses relative to able-bodied individuals during stair ascent and descent. Ground reaction forces, external moment arms, and joint powers were also investigated to interpret the angular momentum results. A key result was that individuals with an amputation had a larger range of sagittal-plane angular momentum during prosthetic limb stance compared to able-bodied individuals during stair ascent. There were no significant differences in the frontal, transverse, or sagittal-plane ranges of angular momentum or maximum magnitude of the angular momentum vector between the passive and powered prostheses during stair ascent or descent. These results indicate that individuals with an amputation have altered angular momentum trajectories during stair walking compared to able-bodied individuals, which may contribute to an increased fall risk. The results also suggest that a powered prosthesis provides no distinct advantage over a passive prosthesis in maintaining dynamic balance during stair walking. Copyright © 2014 Elsevier Ltd. All rights reserved.
Balint-Kurti, Gabriel G; Vasyutinskii, Oleg S
2009-12-31
A general reactive collision of the type A + B --> C + D is considered where both the collision partners (A and B) or the products (C and D) may possess internal, i.e., spin, orbital or rotational, angular momenta. Compact expressions are derived using a rigorous quantum mechanical analysis for the angular momentum anisotropy of either of the products (C or D) arising from an initially polarized distribution of the reactant angular momentum. The angular momentum distribution of the product is expressed in terms of canonical spherical tensors multiplied by anisotropy-transforming coefficients c(K(i)q(k))(K)(K(r),L). These coefficients act as transformation coefficients between the angular momentum anisotropy of the reactants and that of the product. They are independent of scattering angle but depend on the details of the scattering dynamics. The relationship between the coefficients c(K(i)q(k))(K)(K(r),L) and the body-fixed scattering S matrix is given and the methodology for the quantum mechanical calculation of the anisotropy-transforming coefficients is clearly laid out. The anisotropy-transforming coefficients are amenable to direct experimental measurement in a similar manner to vector correlation and alignment parameters in photodissociation processes. A key aspect of the theory is the use of projections of both reactant and product angular momenta onto the product recoil vector direction. An important new conservation rule is revealed through the analysis, namely that if the state multipole for reactant angular momentum distribution has a projection q(k) onto the product recoil vector the state multipoles for the product angular momentum distribution all have this same projection. Expressions are also presented for the distribution of the product angular momentum when its components are evaluated relative to the space-fixed Z-axis. Notes with detailed derivations of all the formulas are available as Supporting Information.
Takakuwa, Shigehisa; Ho, Paul T. P. [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 10617, Taiwan (China); Saito, Masao [Joint ALMA Observatory, Ave. Alonso de Cordova 3107, Vitacura, Santiago (Chile); Saigo, Kazuya [ALMA Project Office, National Astronomical Observatory of Japan, Osawa 2-21-1, Mitaka, Tokyo 181-8588 (Japan); Matsumoto, Tomoaki [Faculty of Humanity and Environment, Hosei University, Chiyoda-ku, Tokyo 102-8160 (Japan); Lim, Jeremy [Department of Physics, University of Hong Kong, Pokfulam Road (Hong Kong); Hanawa, Tomoyuki, E-mail: takakuwa@asiaa.sinica.edu.tw [Center for Frontier Science, Chiba University, Inage-ku, Chiba 263-8522 (Japan)
2014-11-20
We report an ALMA observation of the Class I binary protostellar system L1551 NE in the 0.9 mm continuum, C{sup 18}O (3-2), and {sup 13}CO (3-2) lines at a ∼1.6 times higher resolution and a ∼6 times higher sensitivity than those of our previous SubMillimeter Array (SMA) observations, which revealed a r ∼ 300 AU scale circumbinary disk in Keplerian rotation. The 0.9 mm continuum shows two opposing U-shaped brightenings in the circumbinary disk and exhibits a depression between the circumbinary disk and the circumstellar disk of the primary protostar. The molecular lines trace non-axisymmetric deviations from Keplerian rotation in the circumbinary disk at higher velocities relative to the systemic velocity, where our previous SMA observations could not detect the lines. In addition, we detect inward motion along the minor axis of the circumbinary disk. To explain the newly observed features, we performed a numerical simulation of gas orbits in a Roche potential tailored to the inferred properties of L1551 NE. The observed U-shaped dust features coincide with locations where gravitational torques from the central binary system are predicted to impart angular momentum to the circumbinary disk, producing shocks and hence density enhancements seen as a pair of spiral arms. The observed inward gas motion coincides with locations where angular momentum is predicted to be lowered by the gravitational torques. The good agreement between our observation and model indicates that gravitational torques from the binary stars constitute the primary driver for exchanging angular momentum so as to permit infall through the circumbinary disk of L1551 NE.
There are many ways to spin a photon: Half-quantization of a total optical angular momentum.
Ballantine, Kyle E; Donegan, John F; Eastham, Paul R
2016-04-01
The angular momentum of light plays an important role in many areas, from optical trapping to quantum information. In the usual three-dimensional setting, the angular momentum quantum numbers of the photon are integers, in units of the Planck constant ħ . We show that, in reduced dimensions, photons can have a half-integer total angular momentum. We identify a new form of total angular momentum, carried by beams of light, comprising an unequal mixture of spin and orbital contributions. We demonstrate the half-integer quantization of this total angular momentum using noise measurements. We conclude that for light, as is known for electrons, reduced dimensionality allows new forms of quantization.
Low-dimensional organization of angular momentum during walking on a narrow beam.
Chiovetto, Enrico; Huber, Meghan E; Sternad, Dagmar; Giese, Martin A
2018-01-08
Walking on a beam is a challenging motor skill that requires the regulation of upright balance and stability. The difficulty in beam walking results from the reduced base of support compared to that afforded by flat ground. One strategy to maintain stability and hence avoid falling off the beam is to rotate the limb segments to control the body's angular momentum. The aim of this study was to examine the coordination of the angular momentum variations during beam walking. We recorded movement kinematics of participants walking on a narrow beam and computed the angular momentum contributions of the body segments with respect to three different axes. Results showed that, despite considerable variability in the movement kinematics, the angular momentum was characterized by a low-dimensional organization based on a small number of segmental coordination patterns. When the angular momentum was computed with respect to the beam axis, the largest fraction of its variation was accounted for by the trunk segment. This simple organization was robust and invariant across all participants. These findings support the hypothesis that control strategies for complex balancing tasks might be easier to understand by investigating angular momentum instead of the segmental kinematics.
Excited Landau levels, orbital angular momentum and axial anomaly
Teryaev, O.V.
1993-01-01
The IR cutoff via the exclusion of the high orbital momentum components for the excited Landau levels leads to the physical interpretation of the cancellation between the explicity and anomalous chiral symmetry breaking. 21 refs
Demonstrating the Conservation of Angular Momentum Using Model Cars Moving along a Rotating Rod
Abdul-Razzaq, Wathiq; Golubovic, Leonardo
2013-01-01
We have developed an exciting non-traditional experiment for our introductory physics laboratories to help students to understand the principle of conservation of angular momentum. We used electric toy cars moving along a long rotating rod. As the cars move towards the centre of the rod, the angular velocity of this system increases.…
Microscopic analysis of angular momentum projected HFB-states in terms of interacting bosons
Ring, P.; Pannert, W.
1984-12-01
Angular momentum- and number-projected Hartree-Fock-Bogoliubov (HFB) wavefunctions for transitional and deformed Rare Earth nuclei are analyzed in terms of Fermion pairs coupled to angular momenta L = 0(S), 2(D), 4(G), ... The Fermion space is truncated to contain only S-D or S-D-G pairs. The variation is carried out before and after angular momentum projection and with different truncations. The influence of the truncation on physical quantities such as moments of inertia, quadrupole moments or pair transfer matrix elements is discussed. 21 references
Time variations of the angular momentum of the sun
Schatten, K.H.
1977-01-01
Time variations of density models of the Sun are investigated. This is an attempt to estimate the changing moment of inertia of the Sun in order to calculate the internal solar angular velocity based upon Newton's equation of motion. Previous estimates of dI/dt disagree with those based upon central densities in a homologously contracting model. It is shown that the homologously contracting model leads to large errors in dI/dt. Based upon an integration of Sears's solar model, dI/dt=-5.5 x 10 34 gm cm 2 s -1 . This suggests a core angular velocity of /sub thetar-italic/ = (0.15 +- 0.03) x 10 -3 s -1 , corresponding to a period of 0.5 +- 0.1 days, assuming a constant angular velocity with time. The brackets indicate a weighting which is discussed
Revolution evolution: tracing angular momentum during star and planetary system formation
Davies, Claire Louise
2015-04-01
Stars form via the gravitational collapse of molecular clouds during which time the protostellar object contracts by over seven orders of magnitude. If all the angular momentum present in the natal cloud was conserved during collapse, stars would approach rotational velocities rapid enough to tear themselves apart within just a few Myr. In contrast to this, observations of pre-main sequence rotation rates are relatively slow (∼ 1 - 15 days) indicating that significant quantities of angular momentum must be removed from the star. I use observations of fully convective pre-main sequence stars in two well-studied, nearby regions of star formation (namely the Orion Nebula Cluster and Taurus-Auriga) to determine the removal rate of stellar angular momentum. I find the accretion disc-hosting stars to be rotating at a slower rate and contain less specific angular momentum than the disc-less stars. I interpret this as indicating a period of accretion disc-regulated angular momentum evolution followed by near-constant rotational evolution following disc dispersal. Furthermore, assuming that the age spread inferred from the Hertzsprung-Russell diagram constructed for the star forming region is real, I find that the removal rate of angular momentum during the accretion-disc hosting phase to be more rapid than that expected from simple disc-locking theory whereby contraction occurs at a fixed rotation period. This indicates a more efficient process of angular momentum removal must operate, most likely in the form of an accretion-driven stellar wind or outflow emanating from the star-disc interaction. The initial circumstellar envelope that surrounds a protostellar object during the earliest stages of star formation is rotationally flattened into a disc as the star contracts. An effective viscosity, present within the disc, enables the disc to evolve: mass accretes inwards through the disc and onto the star while momentum migrates outwards, forcing the outer regions of the
Angular momentum and incident-energy dependence of nucleus-nucleus interaction
Yamaguchi, S.
1991-01-01
The purpose of this paper is to understand intuitively the origin of the angular momentum and incident-energy dependence of the nucleus-nucleus interaction on the basis of the totally- antisymmetrized many-body theory. With the aim of understanding the structure of the nucleus-nucleus interaction, we show first that the nucleus-nucleus interaction can be written by the use of the density-distribution function and the phase-space distribution function instead of using the many-body wave function itself. And we show that the structure change of the density-distribution function with the increase of the angular momentum causes the angular momentum dependence of the nucleus-nucleus interaction and that the incident-energy dependence of the nucleus-nucleus interaction originates from the structure change of the phase-space distribution function
Energy transfer, orbital angular momentum, and discrete current in a double-ring fiber array
Alexeyev, C. N.; Volyar, A. V.; Yavorsky, M. A.
2011-01-01
We study energy transfer and orbital angular momentum of supermodes in a double-ring array of evanescently coupled monomode optical fibers. The structure of supermodes and the spectra of their propagation constants are obtained. The geometrical parameters of the array, at which the energy is mostly confined within the layers, are determined. The developed method for finding the supermodes of concentric arrays is generalized for the case of multiring arrays. The orbital angular momentum carried by a supermode of a double-ring array is calculated. The discrete lattice current is introduced. It is shown that the sum of discrete currents over the array is a conserved quantity. The connection of the total discrete current with orbital angular momentum of discrete optical vortices is made.
Energy transfer, orbital angular momentum, and discrete current in a double-ring fiber array
Alexeyev, C. N.; Volyar, A. V. [Taurida National V.I. Vernadsky University, Vernadsky Prospekt, 4, Simferopol, 95007, Crimea (Ukraine); Yavorsky, M. A. [Taurida National V.I. Vernadsky University, Vernadsky Prospekt, 4, Simferopol, 95007, Crimea (Ukraine); Universite Bordeaux and CNRS, LOMA, UMR 5798, FR-33400 Talence (France)
2011-12-15
We study energy transfer and orbital angular momentum of supermodes in a double-ring array of evanescently coupled monomode optical fibers. The structure of supermodes and the spectra of their propagation constants are obtained. The geometrical parameters of the array, at which the energy is mostly confined within the layers, are determined. The developed method for finding the supermodes of concentric arrays is generalized for the case of multiring arrays. The orbital angular momentum carried by a supermode of a double-ring array is calculated. The discrete lattice current is introduced. It is shown that the sum of discrete currents over the array is a conserved quantity. The connection of the total discrete current with orbital angular momentum of discrete optical vortices is made.
Geometrical Optics of Beams with Vortices: Berry Phase and Orbital Angular Momentum Hall Effect
Bliokh, Konstantin Yu.
2006-01-01
We consider propagation of a paraxial beam carrying the spin angular momentum (polarization) and intrinsic orbital angular momentum (IOAM) in a smoothly inhomogeneous isotropic medium. It is shown that the presence of IOAM can dramatically enhance and rearrange the topological phenomena that previously were considered solely in connection to the polarization of transverse waves. In particular, the appearance of a new type of Berry phase that describes the parallel transport of the beam structure along a curved ray is predicted. We derive the ray equations demonstrating the splitting of beams with different values of IOAM. This is the orbital angular momentum Hall effect, which resembles the Magnus effect for optical vortices. Unlike the spin Hall effect of photons, it can be much larger in magnitude and is inherent to waves of any nature. Experimental means to detect the phenomena are discussed
Geometrical optics of beams with vortices: Berry phase and orbital angular momentum Hall effect.
Bliokh, Konstantin Yu
2006-07-28
We consider propagation of a paraxial beam carrying the spin angular momentum (polarization) and intrinsic orbital angular momentum (IOAM) in a smoothly inhomogeneous isotropic medium. It is shown that the presence of IOAM can dramatically enhance and rearrange the topological phenomena that previously were considered solely in connection to the polarization of transverse waves. In particular, the appearance of a new type of Berry phase that describes the parallel transport of the beam structure along a curved ray is predicted. We derive the ray equations demonstrating the splitting of beams with different values of IOAM. This is the orbital angular momentum Hall effect, which resembles the Magnus effect for optical vortices. Unlike the spin Hall effect of photons, it can be much larger in magnitude and is inherent to waves of any nature. Experimental means to detect the phenomena are discussed.
Angular momentum of phonons and its application to single-spin relaxation
Nakane, Jotaro J.; Kohno, Hiroshi
2018-05-01
We reexamine the relaxation process of a single spin embedded in an elastic medium, a problem studied recently by Garanin and Chudnovsky (GC) [Phys. Rev. B 92, 024421 (2015), 10.1103/PhysRevB.92.024421] from the viewpoint of angular-momentum transfer. Using Noether's theorem, we identify two distinct angular momenta of the medium, one Newtonian discussed by GC and the other field-theoretical, both of which consist of an orbital part and a spin part. For both angular momenta, we found that the orbital part is as essential as the spin part in the relaxation process. In particular, the angular-momentum transfer from the (real) spin to the Newtonian orbital part may be considered as an incipient rotation that leads to the Einstein-de Haas effect.
Theory of generation of angular momentum of phonons by heat current and its conversion to spins
Hamada, Masato; Murakami, Shuichi
Spin-rotation coupling in crystals will enable us to convert between spin current and mechanical rotations, as has been studied in surface acoustic waves, in liquid metals, and in carbon nanotubes. In this presentation we focus on angular momentum of phonons. In nonmagnetic crystals without inversion symmetry, we theoretically demonstrate that phonon modes generally have angular momenta depending on their wave vectors. In equilibrium the sum of the angular momenta is zero. On the other hand, if a heat current flows in the crystal, nonequilibrium phonon distribution leads to nonzero total angular momentum of phonons. It can be observed as a rotation of crystal itself, and as a spin current induced by these phonons via the spin-rotation coupling.
角动量的理论研究%Theoretical Studies on Angular Momentum
尹芬芬
2015-01-01
研究一些物理问题时,我们会遇到质点或质点系相对于参考点或绕轴转动的情况,此时用速度、动量都不能解决,因此物理学中引入了新的物理量—角动量.角动量能准确地描述物体的转动状况,在量子领域中也能反映表征状态,并且在现代技术中有着广泛的应用.本文从角动量的定义出发,对质点对参考点、质点绕定轴、质点系绕定轴等不同情况下的角动量定理及守恒定律进行了研究,并对动量守恒和角动量守恒的区别与联系以及角动量的知识应用等进行了探讨.%In physics, mass points or mass point systems may revolve relative to the reference point or around the axis. In this case, neither velocity nor momentum can solve it, but angular momentum, a new physical concept of physics, is introduced, which precisely describes the revolution of an object, reflects its representational state in the quantum realm, and is therefore widely used in modern technologies. Based on the definition of angular momentum, this article studies the angular momentum theorems and the conservation laws governing in different circumstances such as the mass point relative to the reference point, the mass point around the fixed axis, the mass point system around the fixed axis, etc, and further probes the differences and commonality between momentum conservation and angular momentum conservation, and the application of angular momentum.
Distribution of electron orbits having a definite angular momentum in a static magnetic field
Olszewski, S.
1996-01-01
Electron orbits having a definite angular momentum in a static magnetic field are calculated with the aid of the Bohr-Sommerfeld quantization rules. The quantization gives that orbits are arranged along a straight line but the distance between the centers of two neighboring orbits decreases with increase of the absolute value of the angular momentum. With the energy correction equal to the zero-point energy of the harmonic oscillator, the distribution of orbits becomes identical to that obtained recently with the aid of a mixed semiclassical and quantum mechanical theory. 16 refs., 1 fig
Low-dimensional organization of angular momentum during walking on a narrow beam
Chiovetto, Enrico; Huber, Meghan E.; Sternad, Dagmar; Giese, Martin A.
2018-01-01
Walking on a beam is a challenging motor skill that requires the regulation of upright balance and stability. The difficulty in beam walking results from the reduced base of support compared to that afforded by flat ground. One strategy to maintain stability and hence avoid falling off the beam is to rotate the limb segments to control the body’s angular momentum. The aim of this study was to examine the coordination of the angular momentum variations during beam walking. We recorded movement...
Critical gravitational collapse with angular momentum. II. Soft equations of state
Gundlach, Carsten; Baumgarte, Thomas W.
2018-03-01
We study critical phenomena in the collapse of rotating ultrarelativistic perfect fluids, in which the pressure P is related to the total energy density ρ by P =κ ρ , where κ is a constant. We generalize earlier results for radiation fluids with κ =1 /3 to other values of κ , focusing on κ power-law scalings of the black-hole mass. We do see systematic effects in the black-hole angular momentum, but it is not clear yet if these are due to the predicted nontrivial scaling functions, or to nonlinear effects at sufficiently large initial angular momentum (which we do not account for in our theoretical model).
Up-down symmetry of the turbulent transport of toroidal angular momentum in tokamaks
Parra, Felix I.; Barnes, Michael; Peeters, Arthur G.
2011-01-01
Two symmetries of the local nonlinear δf gyrokinetic system of equations in tokamaks in the high flow regime are presented. The turbulent transport of toroidal angular momentum changes sign under an up-down reflection of the tokamak and a sign change of both the rotation and the rotation shear. Thus, the turbulent transport of toroidal angular momentum must vanish for up-down symmetric tokamaks in the absence of both rotation and rotation shear. This has important implications for the modeling of spontaneous rotation.
Transfer of orbital angular momentum to an optically trapped low-index particle
Garces-Chavez, V.; Sibbett, W.; Dholakia, K.; Volke-Sepulveda, K.; Chavez-Cerda, S.
2002-01-01
We demonstrate the transfer of orbital angular momentum from a light beam to a trapped low-index particle. The particle is trapped in a dark annular region of a high-order Bessel beam and rotates around the beam axis due to scattering from the helical wave fronts of the light beam. A general theoretical geometrical optics model is developed that, applied to our specific situation, corroborates tweezing and transfer of orbital angular momentum to the low-index particle. Good quantitative agreement between theory and experiment for particle rotation rates is observed
Shvets, G
2002-01-01
The interaction between circularly polarized (CP) radiation and charged particles can lead to generation of magnetic field through an inverse Faraday effect. The spin of the circularly polarized electromagnetic wave can be converted into the angular momentum of the charged particles so long as there is dissipation. We demonstrate this by considering two mechanisms of angular momentum absorption relevant for laser-plasma interactions: electron-ion collisions and ionization. The precise dissipative mechanism, however, plays a role in determining the efficiency of the magnetic field generation.
SU(3) techniques for angular momentum projected matrix elements in multi-cluster problems
Hecht, K.T.; Zahn, W.
1978-01-01
In the theory of integral transforms for the evaluation of the resonating group kernels needed for cluster model calculations, the evaluation of matrix elements in an angular momentum coupled basis has proved to be difficult for cluster problems involving more than two fragments. For multi-cluster wave functions SU(3) coupling and recoupling techniques can furnish a tool for the practical evaluation matrix elements in an angular momentum coupled basis if the several relative motion harmonic oscillator functions in Bargmann space have simple SU(3) coupling properties. The method is illustrated by a three-cluster problem, such as 12 C = α + α + α, involving three 1 S clusters. 2 references
G. Shvets; N.J. Fisch; J.-M. Rax
2002-01-01
The interaction between circularly polarized (CP) radiation and charged particles can lead to generation of magnetic field through an inverse Faraday effect. The spin of the circularly polarized electromagnetic wave can be converted into the angular momentum of the charged particles so long as there is dissipation. We demonstrate this by considering two mechanisms of angular momentum absorption relevant for laser-plasma interactions: electron-ion collisions and ionization. The precise dissipative mechanism, however, plays a role in determining the efficiency of the magnetic field generation
Angular momentum of an electric charge and magnetically charged black hole
Garfinkle, D. (California Univ., Santa Barbara (USA). Dept. of Physics); Rey, S.J. (California Univ., Santa Barbara (USA). Dept. of Physics Florida Univ., Gainesville, FL (USA). Inst. for Fundamental Theory)
1991-03-21
We find the angular momentum L of a point particle with electric charge e held at a fixed position in the presence of a black hole with magnetic charge g. (For a point charge in the presence of an ordinary magnetic monopole, it is known that L=eg.) The angular momentum does depend on the separation distance between the particle and the black hole; however, L->eg for a large separation. Implications for the cosmic censorship hypothesis, the quantum hairs and other physical situations are discussed. (orig.).
Angular momentum of an electric charge and magnetically charged black hole
Garfinkle, D.; Rey, Soo-Jong
1990-01-01
We find the angular momentum L of a point particle with electric charge e held at a fixed position in the presence of a black hole with magnetic charge g. (For a point charge in the presence of an of ordinary magnetic monopole, it is known that L = eg). The angular momentum does depend on the separation distance between the particle and the black hole; however, L → eg for a large separation. Implications for the cosmic censorship hypothesis, the quantum hairs and other physical situations are discussed
Acoustic Virtual Vortices with Tunable Orbital Angular Momentum for Trapping of Mie Particles
Marzo, Asier; Caleap, Mihai; Drinkwater, Bruce W.
2018-01-01
Acoustic vortices can transfer angular momentum and trap particles. Here, we show that particles trapped in airborne acoustic vortices orbit at high speeds, leading to dynamic instability and ejection. We demonstrate stable trapping inside acoustic vortices by generating sequences of short-pulsed vortices of equal helicity but opposite chirality. This produces a "virtual vortex" with an orbital angular momentum that can be tuned independently of the trapping force. We use this method to adjust the rotational speed of particles inside a vortex beam and, for the first time, create three-dimensional acoustics traps for particles of wavelength order (i.e., Mie particles).
Integral equations for four identical particles in angular momentum representation
Kharchenko, V.F.; Shadchin, S.A.
1975-01-01
In integral equations of motion for a system of four identical spinless particles with central pair interactions, transition is realized from the representation of relative Jacobi momenta to the representation of their moduli and relative angular moments. As a result, the variables associated with the rotation of the system as a whole are separated in the equations. The integral equations of motion for four particles are reduced to the form of an infinite system of three-demensional integral equations. The four-particle kinematic factors contained in integral kernels are expressed in terms of three-particle type kinematic factors. In the case of separable two-particle interaction, the equations of motion for four particles have the form of an infinite system of two-dimensional integral equations
Mechanical evidence of the orbital angular momentum to energy ratio of vortex beams.
Demore, Christine E M; Yang, Zhengyi; Volovick, Alexander; Cochran, Sandy; MacDonald, Michael P; Spalding, Gabriel C
2012-05-11
We measure, in a single experiment, both the radiation pressure and the torque due to a wide variety of propagating acoustic vortex beams. The results validate, for the first time directly, the theoretically predicted ratio of the orbital angular momentum to linear momentum in a propagating beam. We experimentally determine this ratio using simultaneous measurements of both the levitation force and the torque on an acoustic absorber exerted by a broad range of helical ultrasonic beams produced by a 1000-element matrix transducer array. In general, beams with helical phase fronts have been shown to contain orbital angular momentum as the result of the azimuthal component of the Poynting vector around the propagation axis. Theory predicts that for both optical and acoustic helical beams the ratio of the angular momentum current of the beam to the power should be given by the ratio of the beam's topological charge to its angular frequency. This direct experimental observation that the ratio of the torque to power does convincingly match the expected value (given by the topological charge to angular frequency ratio of the beam) is a fundamental result.
Orbital angular momentum of photons, plasmons and neutrinos in a plasma
Mendonca, J. T.; Thidé, Bo; Then, H.; Ali, S.
2009-11-01
We study the exchange of angular momentum between electromagnetic and electrostatic waves in a plasma, due to the stimulated Raman and Brillouin backscatering processes [1]. Angular momentum states for plasmon and phonon fields are introduced for the first time. We demonstrate that these states can be excited by nonlinear wave mixing, associated with the scattering processes. This could be relevant for plasma diagnostics, both in laboratory and in space. Nonlinearly coupled paraxial equations and instability growth rates are derived. The characteristic features of the plasmon modes with finite angular momentum are also discussed. The potential problem is solved and the angular momentum is explicitly calculated [2]. Finally, it is shown that an electron-neutrino beam, propagating in a background plasma, can be decomposed into orbital momentum states, similar to that of photon states. Coupling between different neutrino states, in the presence of a plasma vortex, is considered. We show that plasma vorticity can be transfered to the neutrino beam, which is relevant to the understanding of the neutrino sources in astrophysics. [1] J.T. Mendonca et al., PRL 102, 185005 (2009). [2] S. Ali and J.T. Mendonca, PoP (2009) submitted. [3] J.T. Mendonca and B. Thide, Europhys. Lett. 84, 41001 (2008).
Cottier, Pierre
2013-01-01
The magnetic confinement in tokamaks is for now the most advanced way towards energy production by nuclear fusion. Both theoretical and experimental studies showed that rotation generation can increase its performance by reducing the turbulent transport in tokamak plasmas. The rotation influence on the heat and particle fluxes is studied along with the angular momentum transport with the quasi-linear gyro-kinetic eigenvalue code QuaLiKiz. For this purpose, the QuaLiKiz code is modified in order to take the plasma rotation into account and compute the angular momentum flux. It is shown that QuaLiKiz framework is able to correctly predict the angular momentum flux including the E*B shear induced residual stress as well as the influence of rotation on the heat and particle fluxes. The major approximations of QuaLiKiz formalisms are reviewed, in particular the ballooning representation at its lowest order and the eigenfunctions calculated in the hydrodynamic limit. The construction of the quasi-linear fluxes is also reviewed in details and the quasi-linear angular momentum flux is derived. The different contributions to the turbulent momentum flux are studied and successfully compared both against non-linear gyro-kinetic simulations and experimental data. (author) [fr
Electromagnetic angular momentum in quasi-static conditions
Jiménez, J. L.; Campos, I.; E Roa-Neri, J. A.
2017-07-01
The correct definition of electromagnetic momentum in matter, either Abraham’s g A = (1/4πc) (E × H), or Minkowski’s g M = (1/4πc) (D × B) has been a theme of controversy for a century. Therefore, we can find those who favor one or the other of these proposals. We present here an alternative view, considering that both of the aforementioned equations are equivalent since they pertain to different balance equations derived from the macroscopic Maxwell equations. This is done through their application to a device proposed by Lai in 1980, and recovering his results. Advanced undergraduate and graduate students can find in this work an introduction to a controversial issue and an alternative point of view about it.
Macroscopic angular-momentum stages of Bose-Einstein condensates in toroidal traps
Benakli, M.; Raghavan, S.; Smerzi, A.; Fantoni, S.; Shenoy, S.R.
2001-03-01
We study the stability of a rotating repulsive-atom Bose-Einstein condensate in a toroidal trap. The resulting macroscopic angular-momentum states with integer vorticity l spread radially, lowering rotational energies. These states are robust against vorticity-lowering decays, with estimated metastability barriers capable of sustaining large angular momenta (1 < or ∼ 10) for typical parameters. We identify the centrifugally squashed l-dependent density profile as a possible signature of condensate rotation and superfluidity. (author)
Semiclassical analysis of the Wigner 12j symbol with one small angular momentum
Yu Liang
2011-01-01
We derive an asymptotic formula for the Wigner 12j symbol, in the limit of one small and 11 large angular momenta. There are two kinds of asymptotic formulas for the 12j symbol with one small angular momentum. We present the first kind of formula in this paper. Our derivation relies on the techniques developed in the semiclassical analysis of the Wigner 9j symbol [L. Yu and R. G. Littlejohn, Phys. Rev. A 83, 052114 (2011)], where we used a gauge-invariant form of the multicomponent WKB wave functions to derive asymptotic formulas for the 9j symbol with small and large angular momenta. When applying the same technique to the 12j symbol in this paper, we find that the spinor is diagonalized in the direction of an intermediate angular momentum. In addition, we find that the geometry of the derived asymptotic formula for the 12j symbol is expressed in terms of the vector diagram for a 9j symbol. This illustrates a general geometric connection between asymptotic limits of the various 3nj symbols. This work contributes an asymptotic formula for the 12j symbol to the quantum theory of angular momentum, and serves as a basis for finding asymptotic formulas for the Wigner 15j symbol with two small angular momenta.
Newton, J.O.
1980-06-01
In recent years there has been great interest in nuclear properties at very high angular momentum. The heavy-ion (HI),xnγ reaction and to a lesser extent the (HI,xn,ypγ) reactions, have so far offered the most powerful experimental technique for their study. Measurements on the resolved discrete γ-rays from the decay of yrast or near-yrast states has lead to considerable understanding of states with angular momenta up to a little over 20h and in a few special cases as high as 37 h. To investigate nuclei at still higher angular angular momenta one can study the so called 'continuum γ-rays', which cannot be resolved by present techniques because so many pathways are involved. The author considers the factors which determine the upper limits of the angular momenta for which continuum γ-ray studies can be usefully employed and how one may gain information beyond these limits
Kim, Jemin; Wilson, Margaret A; Singhal, Kunal; Gamblin, Sarah; Suh, Cha-Young; Kwon, Young-Hoo
2014-09-01
The purpose of this study was to investigate the vertical angular momentum generation strategies used by skilled ballet dancers in pirouette en dehors. Select kinematic parameters of the pirouette preparation (stance depth, vertical center-of-mass motion range, initial shoulder line position, shoulder line angular displacement, and maximum trunk twist angle) along with vertical angular momentum parameters during the turn (maximum momentums of the whole body and body parts, and duration and rate of generation) were obtained from nine skilled collegiate ballet dancers through a three-dimensional motion analysis and compared among three turn conditions (single, double, and triple). A one-way ('turn') multivariate analysis of variance of the kinematic parameters and angular momentum parameters of the whole body and a two-way analysis of variance ('turn' × 'body') of the maximum angular momentums of the body parts were conducted. Significant 'turn' effects were observed in the kinematic/angular momentum parameters (both the preparation and the turn) (p < 0.05). As the number of turns increased, skilled dancers generated larger vertical angular momentums by predominantly increasing the rate of momentum generation using rotation of the upper trunk and arms. The trail (closing) arm showed the largest contribution to whole-body angular momentum followed by the lead arm.
Improving Student Understanding of Addition of Angular Momentum in Quantum Mechanics
Zhu, Guangtian; Singh, Chandralekha
2013-01-01
We describe the difficulties advanced undergraduate and graduate students have with concepts related to addition of angular momentum in quantum mechanics. We also describe the development and implementation of a research-based learning tool, Quantum Interactive Learning Tutorial (QuILT), to reduce these difficulties. The preliminary evaluation…
The effect of scattering on single photon transmission of optical angular momentum
Andrews, D L
2011-01-01
Schemes for the communication and registration of optical angular momentum depend on the fidelity of transmission between optical system components. It is known that electron spin can be faithfully relayed between exciton states in quantum dots; it has also been shown by several theoretical and experimental studies that the use of beams conveying orbital angular momentum can significantly extend the density and efficiency of such information transfer. However, it remains unclear to what extent the operation of such a concept at the single photon level is practicable—especially where this involves optical propagation through a material system, in which forward scattering events can intervene. The possibility of transmitting and decoding angular momentum over nanoscale distances itself raises other important issues associated with near-field interrogation. This paper provides a framework to address these and related issues. A quantum electrodynamical representation is constructed and used to pursue the consequences of individual photons, from a Laguerre–Gaussian beam, undergoing single and multiple scattering events in the course of propagation. In this context, issues concerning orbital angular momentum conservation, and its possible compromise, are tackled by identifying the relevant components of the electromagnetic scattering and coupling tensors, using an irreducible Cartesian basis. The physical interpretation broadly supports the fidelity of quantum information transmission, but it also identifies potential limitations of principle
The effect of scattering on single photon transmission of optical angular momentum
Andrews, D. L.
2011-06-01
Schemes for the communication and registration of optical angular momentum depend on the fidelity of transmission between optical system components. It is known that electron spin can be faithfully relayed between exciton states in quantum dots; it has also been shown by several theoretical and experimental studies that the use of beams conveying orbital angular momentum can significantly extend the density and efficiency of such information transfer. However, it remains unclear to what extent the operation of such a concept at the single photon level is practicable—especially where this involves optical propagation through a material system, in which forward scattering events can intervene. The possibility of transmitting and decoding angular momentum over nanoscale distances itself raises other important issues associated with near-field interrogation. This paper provides a framework to address these and related issues. A quantum electrodynamical representation is constructed and used to pursue the consequences of individual photons, from a Laguerre-Gaussian beam, undergoing single and multiple scattering events in the course of propagation. In this context, issues concerning orbital angular momentum conservation, and its possible compromise, are tackled by identifying the relevant components of the electromagnetic scattering and coupling tensors, using an irreducible Cartesian basis. The physical interpretation broadly supports the fidelity of quantum information transmission, but it also identifies potential limitations of principle.
Variation of level density parameter with angular momentum in 119Sb
Aggarwal, Mamta; Kailas, S.
2015-01-01
Nuclear level density (NLD), a basic ingredient of Statistical Model has been a subject of interest for various decades as it plays an important role in the understanding of a wide variety of Nuclear reactions. There have been various efforts towards the precise determination of NLD and study its dependence on excitation energy and angular momentum as it is crucial in the determination of cross-sections. Here we report our results of theoretical calculations in a microscopic framework to understand the experimental results on inverse level density parameter (k) extracted for different angular momentum regions for 119 Sb corresponding to different γ-ray multiplicities by comparing the experimental neutron energy spectra with statistical model predictions where an increase in the level density with the increasing angular momentum is predicted. NLD and neutron emission spectra dependence on temperature and spin has been studied in our earlier works where the influence of structural transitions due to angular momentum and temperature on level density of states and neutron emission probability was shown
Measurement of total angular momentum values of high-lying even ...
Spectrally resolved laser-induced fluorescence technique was used to uniquely assign total angular momentum () values to high-lying even-parity energy levels of atomic samarium. Unique value assignment was done for seven energy levels in the energy region 34,800–36,200 cm-1 , recently observed and reported in ...
Angular momentum transport by heat-driven g-modes in slowly pulsating B stars
Townsend, R. H. D.; Goldstein, J.; Zweibel, E. G.
2018-03-01
Motivated by recent interest in the phenomenon of waves transport in massive stars, we examine whether the heat-driven gravity (g) modes excited in slowly pulsating B (SPB) stars can significantly modify the stars' internal rotation. We develop a formalism for the differential torque exerted by g modes, and implement this formalism using the GYRE oscillation code and the MESASTAR stellar evolution code. Focusing first on a 4.21M⊙ model, we simulate 1 000 yr of stellar evolution under the combined effects of the torque due to a single unstable prograde g mode (with an amplitude chosen on the basis of observational constraints), and diffusive angular momentum transport due to convection, overshooting, and rotational instabilities. We find that the g mode rapidly extracts angular momentum from the surface layers, depositing it deeper in the stellar interior. The angular momentum transport is so efficient that by the end of the simulation, the initially non-rotating surface layers are spun in the retrograde direction to ≈ 30 per cent of the critical rate. However, the additional inclusion of magnetic stresses in our simulations almost completely inhibits this spin-up. Expanding our simulations to cover the whole instability strip, we show that the same general behaviour is seen in all SPB stars. After providing some caveats to contextualize our results, we hypothesize that the observed slower surface rotation of SPB stars (as compared to other B-type stars) may be the direct consequence of the angular momentum transport that our simulations demonstrate.
MEMS-based wavelength and orbital angular momentum demultiplexer for on-chip applications
Lyubopytov, Vladimir; Porfirev, Alexey P.; Gurbatov, Stanislav O.
2017-01-01
Summary form only given. We demonstrate a new tunable MEMS-based WDM&OAM Fabry-Pérot filter for simultaneous wavelength (WDM) and Orbital Angular Momentum (OAM) (de)multiplexing. The WDM&OAM filter is suitable for dense on-chip integration and dedicated for the next generation of optical...
Giovannini, D
2013-06-01
Full Text Available : QELS_Fundamental Science, San Jose, California United States, 9-14 June 2013 Reconstruction of High-Dimensional States Entangled in Orbital Angular Momentum Using Mutually Unbiased Measurements D. Giovannini1, ⇤, J. Romero1, 2, J. Leach3, A...
Energy and angular-momentum non-conservation in four-dimensional gauge theories
Manohar, A.
1985-01-01
We study energy and angular-momentum non-conservation on four-dimensional chiral gauge theories using Landau levels. These effects are physical manifestations of the usual gauge anomaly, and enable us to understand in a semi-classical approximation why anomaly cancellation is required for a consistent field theory. (orig.)
Encoding mutually unbiased bases in orbital angular momentum for quantum key distribution
Dudley, Angela L
2013-07-01
Full Text Available We encode mutually unbiased bases (MUBs) using the higher-dimensional orbital angular momentum (OAM) degree of freedom associated with optical fields. We illustrate how these states are encoded with the use of a spatial light modulator (SLM). We...
Investigating Students' Mental Models about the Quantization of Light, Energy, and Angular Momentum
Didis, Nilüfer; Eryilmaz, Ali; Erkoç, Sakir
2014-01-01
This paper is the first part of a multiphase study examining students' mental models about the quantization of physical observables--light, energy, and angular momentum. Thirty-one second-year physics and physics education college students who were taking a modern physics course participated in the study. The qualitative analysis of data revealed…
Propagation of orbital angular momentum carrying beams through a perturbing medium
Chaibi, A
2013-09-01
Full Text Available The orbital angular momentum of light has been suggested as a means of information transfer over free-space, yet the detected optical vortex is known to be sensitive to perturbation. Such effects have been studied theoretically, in particular...
Measuring the orbital angular momentum density for a superposition of Bessel beams
Dudley, Angela L
2012-01-01
Full Text Available and amplitude gratings,? Opt. Commun. 284(1), 48?51 (2011). [8] Mair, A., Vaziri, A., Weihs, G., and Zeilinger, A., ?Entanglement of the orbital angular momentum states of photons,? Nature 412(6844), 313?316 (2001). [9] Gibson, G., Courtial, J., Padgett, M...
High Angular Momentum Halo Gas: A Feedback and Code-independent Prediction of LCDM
Stewart, Kyle R.; Maller, Ariyeh H.; Oñorbe, Jose; Bullock, James S.; Joung, M. Ryan; Devriendt, Julien; Ceverino, Daniel; Kereš, Dušan; Hopkins, Philip F.; Faucher-Giguère, Claude-André
2017-07-01
We investigate angular momentum acquisition in Milky Way-sized galaxies by comparing five high resolution zoom-in simulations, each implementing identical cosmological initial conditions but utilizing different hydrodynamic codes: Enzo, Art, Ramses, Arepo, and Gizmo-PSPH. Each code implements a distinct set of feedback and star formation prescriptions. We find that while many galaxy and halo properties vary between the different codes (and feedback prescriptions), there is qualitative agreement on the process of angular momentum acquisition in the galaxy’s halo. In all simulations, cold filamentary gas accretion to the halo results in ˜4 times more specific angular momentum in cold halo gas (λ cold ≳ 0.1) than in the dark matter halo. At z > 1, this inflow takes the form of inspiraling cold streams that are co-directional in the halo of the galaxy and are fueled, aligned, and kinematically connected to filamentary gas infall along the cosmic web. Due to the qualitative agreement among disparate simulations, we conclude that the buildup of high angular momentum halo gas and the presence of these inspiraling cold streams are robust predictions of Lambda Cold Dark Matter galaxy formation, though the detailed morphology of these streams is significantly less certain. A growing body of observational evidence suggests that this process is borne out in the real universe.
Operator theory of angular momentum nad orientational auto-correlation functions
Evans, M.W.
1982-01-01
The rigorous relation between the orientational auto-correlation function and the angular momentum autocorrelation function is described in two cases of interest. First when description of the complete zero THz- spectrum is required from the Mori continued fraction expansion for the angular momentum autocorrelation function and second when rotation/translation effects are important. The Mori-Evans theory of 1976, relying on the simple Shimizu relation is found to be essentially unaffected by the higher order corrections recently worked out by Ford and co-workers in the Markov limit. The mutual interaction of rotation and translation is important in determining the details of both the orientational and angular momentum auto-correlation function's (a.c.f.'s) in the presence of sample anisotropy or a symmetry breaking field. In this case it is essential to regard the angular momentum a.c.f. as non-Markovian and methods are developed to relate this to the orientational a.c.f. in the presence of rotation/translation coupling. (author)
The gyrotron - a natural source of high-power orbital angular momentum millimeter-wave beams
Thumm, M.; Sawant, A.; Choe, M. S.; Choi, E. M.
2017-08-01
Orbital angular momentum (OAM) of electromagnetic-wave beams provides further diversity to multiplexing in wireless communication. The present report shows that higher-order mode gyrotrons are natural sources of high-power OAM millimeter (mm) wave beams. The well-defined OAM of their rotating cavity modes operating at near cutoff frequency has been derived by photonic and electromagnetic wave approaches.
Statistical windows in angular momentum space: the basis of heavy-ion compound cross section
Hussein, M.S.; Toledo, A.S. de.
1981-04-01
The concept of statistical windows in angular momentum space is introduced and utilized to develop a practical model for the heavy-ion compound cross section. Closed expressions for the average differential cross-section are derived and compared with Hauser-Feshbach calculations. The effects of the statistical windows are isolated and discussed. (Author) [pt
Three-body Coulomb systems using generalized angular-momentum S states
Whitten, R. C.; Sims, J. S.
1974-01-01
An expansion of the three-body Coulomb potential in generalized angular-momentum eigenfunctions developed earlier by one of the authors is used to compute energy eigenvalues and eigenfunctions of bound S states of three-body Coulomb systems. The results for He, H(-), e(-)e(+)e(-), and pmu(-)p are compared with the results of other computational approaches.
Shape invariant higher-order Bessel-like beams carrying orbital angular momentum
Ismail, Y
2012-09-01
Full Text Available -1 Journal of Optics September 2012/ Vol. 14 Shape invariant higher-order Bessel-like beams carrying orbital angular momentum Y Ismail1,2, N Khilo3, V Belyi3 and A Forbes1,2 1 School of Physics, University of KwaZulu-Natal, Private Bag X54001...
Orbital angular momentum correlations with a phase-flipped Gaussian mode pump beam
Romero, J
2012-08-01
Full Text Available -1 Journal of Optics August 2012/ Vol. 14. No 8 Orbital angular momentum correlations with a phase- flipped Gaussian mode pump beam J Romero1,2, D Giovannini1, M G McLaren3,4, E J Galvez5, A Forbes3,4 and M J Padgett1 1 School of Physics...
Proposal for the generation of photon pairs with nonzero orbital angular momentum in a ring fiber
Javůrek, D.; Svozilík, J.; Peřina ml., Jan
2014-01-01
Roč. 22, č. 19 (2014), s. 23743-23748 ISSN 1094-4087 R&D Projects: GA ČR GAP205/12/0382 Institutional support: RVO:68378271 Keywords : photon pairs * orbital-angular-momentum states * spontaneous parametric down-conversion Subject RIV: BH - Optics , Masers, Lasers Impact factor: 3.488, year: 2014
High Angular Momentum Halo Gas: A Feedback and Code-independent Prediction of LCDM
Stewart, Kyle R. [Department of Mathematical Sciences, California Baptist University, 8432 Magnolia Ave., Riverside, CA 92504 (United States); Maller, Ariyeh H. [Department of Physics, New York City College of Technology, 300 Jay St., Brooklyn, NY 11201 (United States); Oñorbe, Jose [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Bullock, James S. [Center for Cosmology, Department of Physics and Astronomy, The University of California at Irvine, Irvine, CA 92697 (United States); Joung, M. Ryan [Department of Astronomy, Columbia University, New York, NY 10027 (United States); Devriendt, Julien [Department of Physics, University of Oxford, The Denys Wilkinson Building, Keble Rd., Oxford OX1 3RH (United Kingdom); Ceverino, Daniel [Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany); Kereš, Dušan [Department of Physics, Center for Astrophysics and Space Sciences, University of California at San Diego, 9500 Gilman Dr., La Jolla, CA 92093 (United States); Hopkins, Philip F. [California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Faucher-Giguère, Claude-André [Department of Physics and Astronomy and CIERA, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208 (United States)
2017-07-01
We investigate angular momentum acquisition in Milky Way-sized galaxies by comparing five high resolution zoom-in simulations, each implementing identical cosmological initial conditions but utilizing different hydrodynamic codes: Enzo, Art, Ramses, Arepo, and Gizmo-PSPH. Each code implements a distinct set of feedback and star formation prescriptions. We find that while many galaxy and halo properties vary between the different codes (and feedback prescriptions), there is qualitative agreement on the process of angular momentum acquisition in the galaxy’s halo. In all simulations, cold filamentary gas accretion to the halo results in ∼4 times more specific angular momentum in cold halo gas ( λ {sub cold} ≳ 0.1) than in the dark matter halo. At z > 1, this inflow takes the form of inspiraling cold streams that are co-directional in the halo of the galaxy and are fueled, aligned, and kinematically connected to filamentary gas infall along the cosmic web. Due to the qualitative agreement among disparate simulations, we conclude that the buildup of high angular momentum halo gas and the presence of these inspiraling cold streams are robust predictions of Lambda Cold Dark Matter galaxy formation, though the detailed morphology of these streams is significantly less certain. A growing body of observational evidence suggests that this process is borne out in the real universe.
Quantum X waves with orbital angular momentum in nonlinear dispersive media
Ornigotti, Marco; Conti, Claudio; Szameit, Alexander
2018-06-01
We present a complete and consistent quantum theory of generalised X waves with orbital angular momentum in dispersive media. We show that the resulting quantised light pulses are affected by neither dispersion nor diffraction and are therefore resilient against external perturbations. The nonlinear interaction of quantised X waves in quadratic and Kerr nonlinear media is also presented and studied in detail.
Endal, A.S.; Sofia, S.
1979-01-01
Predicted surface rotation velocities are presented for Population I stars at 10, 7, 5, 3, and 1.5M/sub sun/. The surface velocities have been computed for three different cases of angular momentum redistribution: no radial redistribution (rotation on decoupled shells), complete redistribution (rigid-body rotation), and partial redistribution as predicted by detailed consideration of circulation currents in rotation stars. The velocities for these cases are compared to each other and to observed stellar rotation rates (upsilon sin i).Near the main sequence, rotational effects can substantially reduce the moment of inertia of a star, so nonrotating models consistently underestimate the expected velocities for evolving stars. The magnitude of these effects is sufficient to explain the large numbers of Be stars and, perhaps, to explain the bimodal distribution of velocities observed for the O stars.On the red giant branch, angular momentum redistribution reduces the surface velocity by a factor of 2 or more, relative to the velocity expected for no radial redistribution. This removes the discrepancy between predicted and observed rotation rates for the K giants and makes it unlikely that these stars lose significant amounts of angular momentum by stellar winds. Our calculations indicate that improved observations (by the Fourier-transform technique) of the red giants in the Hyades cluster can be used to determine how angular momentum is redistributed by convection
Angular-momentum-dominated electron beams and flat-beam generation
Sun, Yin-e [Univ. of Chicago, IL (United States)
2005-06-01
In the absence of external forces, if the dynamics within an electron beam is dominated by its angular momentum rather than other effects such as random thermal motion or self Coulomb-repulsive force (i.e., space-charge force), the beam is said to be angular-momentum-dominated. Such a beam can be directly applied to the field of electron-cooling of heavy ions; or it can be manipulated into an electron beam with large transverse emittance ratio, i.e., a flat beam. A flat beam is of interest for high-energy electron-positron colliders or accelerator-based light sources. An angular-momentum-dominated beam is generated at the Fermilab/NICADD photoinjector Laboratory (FNPL) and is accelerated to an energy of 16 MeV. The properties of such a beam is investigated systematically in experiment. The experimental results are in very good agreement with analytical expectations and simulation results. This lays a good foundation for the transformation of an angular-momentum-dominated beam into a flat beam. The round-to-flat beam transformer is composed of three skew quadrupoles. Based on a good knowledge of the angular-momentum-dominated beam, the quadrupoles are set to the proper strengths in order to apply a total torque which removes the angular momentum, resulting in a flat beam. For bunch charge around 0.5 nC, an emittance ratio of 100 ± 5 was measured, with the smaller normalized root-mean-square emittance around 0.4 mm-mrad. Effects limiting the flat-beam emittance ratio are investigated, such as the chromatic effects in the round-to-flat beam transformer, asymmetry in the initial angular-momentum-dominated beam, and space-charge effects. The most important limiting factor turns out to be the uncorrelated emittance growth caused by space charge when the beam energy is low, for example, in the rf gun area. As a result of such emittance growth prior to the round-to-flat beam transformer, the emittance ratio achievable in simulation decreases from orders of thousands to
Angular-momentum-dominated electron beams and flat-beam generation
Sun, Yin-e
2005-01-01
In the absence of external forces, if the dynamics within an electron beam is dominated by its angular momentum rather than other effects such as random thermal motion or self Coulomb-repulsive force (i.e., space-charge force), the beam is said to be angular-momentum-dominated. Such a beam can be directly applied to the field of electron-cooling of heavy ions; or it can be manipulated into an electron beam with large transverse emittance ratio, i.e., a flat beam. A flat beam is of interest for high-energy electron-positron colliders or accelerator-based light sources. An angular-momentum-dominated beam is generated at the Fermilab/NICADD photoinjector Laboratory (FNPL) and is accelerated to an energy of 16 MeV. The properties of such a beam is investigated systematically in experiment. The experimental results are in very good agreement with analytical expectations and simulation results. This lays a good foundation for the transformation of an angular-momentum-dominated beam into a flat beam. The round-to-flat beam transformer is composed of three skew quadrupoles. Based on a good knowledge of the angular-momentum-dominated beam, the quadrupoles are set to the proper strengths in order to apply a total torque which removes the angular momentum, resulting in a flat beam. For bunch charge around 0.5 nC, an emittance ratio of 100 ± 5 was measured, with the smaller normalized root-mean-square emittance around 0.4 mm-mrad. Effects limiting the flat-beam emittance ratio are investigated, such as the chromatic effects in the round-to-flat beam transformer, asymmetry in the initial angular-momentum-dominated beam, and space-charge effects. The most important limiting factor turns out to be the uncorrelated emittance growth caused by space charge when the beam energy is low, for example, in the rf gun area. As a result of such emittance growth prior to the round-to-flat beam transformer, the emittance ratio achievable in simulation decreases from orders of thousands to
Gravitational form factors and angular momentum densities in light-front quark-diquark model
Kumar, Narinder [Indian Institute of Technology Kanpur, Department of Physics, Kanpur (India); Mondal, Chandan [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China); Sharma, Neetika [I K Gujral Punjab Technical University, Department of Physical Sciences, Jalandhar, Punjab (India); Panjab University, Department of Physics, Chandigarh (India)
2017-12-15
We investigate the gravitational form factors (GFFs) and the longitudinal momentum densities (p{sup +} densities) for proton in a light-front quark-diquark model. The light-front wave functions are constructed from the soft-wall AdS/QCD prediction. The contributions from both the scalar and the axial vector diquarks are considered here. The results are compared with the consequences of a parametrization of nucleon generalized parton distributions (GPDs) in the light of recent MRST measurements of parton distribution functions (PDFs) and a soft-wall AdS/QCD model. The spatial distribution of angular momentum for up and down quarks inside the nucleon has been presented. At the density level, we illustrate different definitions of angular momentum explicitly for an up and down quark in the light-front quark-diquark model inspired by AdS/QCD. (orig.)
Energy and angular momentum balance in wall-bounded quantum turbulence at very low temperatures.
Hosio, J J; Eltsov, V B; Heikkinen, P J; Hänninen, R; Krusius, M; L'vov, V S
2013-01-01
A superfluid in the absence of a viscous normal component should be the best realization of an ideal inviscid Euler fluid. As expressed by d'Alembert's famous paradox, an ideal fluid does not drag on bodies past which it flows, or in other words it does not exchange momentum with them. In addition, the flow of an ideal fluid does not dissipate kinetic energy. Here we study experimentally whether these properties apply to the flow of superfluid (3)He-B in a rotating cylinder at low temperatures. It is found that ideal behaviour is broken by quantum turbulence, which leads to substantial energy dissipation, as was also observed earlier. Remarkably, the angular momentum exchange between the superfluid and its container approaches nearly ideal behaviour, as the drag almost disappears in the zero-temperature limit. Here the mismatch between energy and angular momentum transfer results in a new physical situation, with severe implications on the flow dynamics.
Galaxy spin as a formation probe: the stellar-to-halo specific angular momentum relation
Posti, Lorenzo; Pezzulli, Gabriele; Fraternali, Filippo; Di Teodoro, Enrico M.
2018-03-01
We derive the stellar-to-halo specific angular momentum relation (SHSAMR) of galaxies at z = 0 by combining (i) the standard Λcold dark matter tidal torque theory, (ii) the observed relation between stellar mass and specific angular momentum (the Fall relation), and (iii) various determinations of the stellar-to-halo mass relation (SHMR). We find that the ratio fj = j*/jh of the specific angular momentum of stars to that of the dark matter (i) varies with mass as a double power law, (ii) always has a peak in the mass range explored and iii) is three to five times larger for spirals than for ellipticals. The results have some dependence on the adopted SHMR and we provide fitting formulae in each case. For any choice of the SHMR, the peak of fj occurs at the same mass where the stellar-to-halo mass ratio f* = M*/Mh has a maximum. This is mostly driven by the straightness and tightness of the Fall relation, which requires fj and f* to be correlated with each other roughly as f_j∝ f_\\ast ^{2/3}, as expected if the outer and more angular momentum rich parts of a halo failed to accrete on to the central galaxy and form stars (biased collapse). We also confirm that the difference in the angular momentum of spirals and ellipticals at a given mass is too large to be ascribed only to different spins of the parent dark-matter haloes (spin bias).
Bouchard, Frédéric; De Leon, Israel; Schulz, Sebastian A.; Upham, Jeremy; Karimi, Ebrahim, E-mail: ekarimi@uottawa.ca [Department of Physics, University of Ottawa, 25 Templeton, Ottawa, Ontario K1N 6N5 Canada (Canada); Boyd, Robert W. [Department of Physics, University of Ottawa, 25 Templeton, Ottawa, Ontario K1N 6N5 Canada (Canada); Institute of Optics, University of Rochester, Rochester, New York 14627 (United States)
2014-09-08
Orbital angular momentum associated with the helical phase-front of optical beams provides an unbounded “space” for both classical and quantum communications. Among the different approaches to generate and manipulate orbital angular momentum states of light, coupling between spin and orbital angular momentum allows a faster manipulation of orbital angular momentum states because it depends on manipulating the polarisation state of light, which is simpler and generally faster than manipulating conventional orbital angular momentum generators. In this work, we design and fabricate an ultra-thin spin-to-orbital angular momentum converter, based on plasmonic nano-antennas and operating in the visible wavelength range that is capable of converting spin to an arbitrary value of orbital angular momentum ℓ. The nano-antennas are arranged in an array with a well-defined geometry in the transverse plane of the beam, possessing a specific integer or half-integer topological charge q. When a circularly polarised light beam traverses this metasurface, the output beam polarisation switches handedness and the orbital angular momentum changes in value by ℓ=±2qℏ per photon. We experimentally demonstrate ℓ values ranging from ±1 to ±25 with conversion efficiencies of 8.6% ± 0.4%. Our ultra-thin devices are integratable and thus suitable for applications in quantum communications, quantum computations, and nano-scale sensing.
Bouchard, Frédéric; De Leon, Israel; Schulz, Sebastian A.; Upham, Jeremy; Karimi, Ebrahim; Boyd, Robert W.
2014-01-01
Orbital angular momentum associated with the helical phase-front of optical beams provides an unbounded “space” for both classical and quantum communications. Among the different approaches to generate and manipulate orbital angular momentum states of light, coupling between spin and orbital angular momentum allows a faster manipulation of orbital angular momentum states because it depends on manipulating the polarisation state of light, which is simpler and generally faster than manipulating conventional orbital angular momentum generators. In this work, we design and fabricate an ultra-thin spin-to-orbital angular momentum converter, based on plasmonic nano-antennas and operating in the visible wavelength range that is capable of converting spin to an arbitrary value of orbital angular momentum ℓ. The nano-antennas are arranged in an array with a well-defined geometry in the transverse plane of the beam, possessing a specific integer or half-integer topological charge q. When a circularly polarised light beam traverses this metasurface, the output beam polarisation switches handedness and the orbital angular momentum changes in value by ℓ=±2qℏ per photon. We experimentally demonstrate ℓ values ranging from ±1 to ±25 with conversion efficiencies of 8.6% ± 0.4%. Our ultra-thin devices are integratable and thus suitable for applications in quantum communications, quantum computations, and nano-scale sensing.
Hehl, F.W.; McCrea, J.D.
1986-01-01
Automatic conservation of energy-momentum and angular momentum is guaranteed in a gravitational theory if, via the field equations, the conservation laws for the material currents are reduced to the contracted Bianchi identities. We first execute an irreducible decomposition of the Bianchi identities in a Riemann-Cartan space-time. Then, starting from a Riemannian space-time with or without torsion, we determine those gravitational theories which have automatic conservation: general relativity and the Einstein-Cartan-Sciama-Kibble theory, both with cosmological constant, and the nonviable pseudoscalar model. The Poincare gauge theory of gravity, like gauge theories of internal groups, has no automatic conservation in the sense defined above. This does not lead to any difficulties in principle. Analogies to 3-dimensional continuum mechanics are stressed throughout the article
Hehl, Friedrich W.; McCrea, J. Dermott
1986-03-01
Automatic conservation of energy-momentum and angular momentum is guaranteed in a gravitational theory if, via the field equations, the conservation laws for the material currents are reduced to the contracted Bianchi identities. We first execute an irreducible decomposition of the Bianchi identities in a Riemann-Cartan space-time. Then, starting from a Riemannian space-time with or without torsion, we determine those gravitational theories which have automatic conservation: general relativity and the Einstein-Cartan-Sciama-Kibble theory, both with cosmological constant, and the nonviable pseudoscalar model. The Poincaré gauge theory of gravity, like gauge theories of internal groups, has no automatic conservation in the sense defined above. This does not lead to any difficulties in principle. Analogies to 3-dimensional continuum mechanics are stressed throughout the article.
Creating high-purity angular-momentum-state Rydberg atoms by a pair of unipolar laser pulses
Xin, PeiPei; Cheng, Hong; Zhang, ShanShan; Wang, HanMu; Xu, ZiShan; Liu, HongPing
2018-04-01
We propose a method of producing high-purity angular-momentum-state Rydberg atoms by a pair of unipolar laser pulses. The first positive-polarity optical half-cycle pulse is used to prepare an excited-state wave packet while the second one is less intense, but with opposite polarity and time delayed, and is employed to drag back the escaping free electron and clip the shape of the bound Rydberg wave packet, selectively increasing or decreasing a fraction of the angular-momentum components. An intelligent choice of laser parameters such as phase and amplitude helps us to control the orbital-angular-momentum composition of an electron wave packet with more facility; thus, a specified angular-momentum state with high purity can be achieved. This scheme of producing high-purity angular-momentum-state Rydberg atoms has significant application in quantum-information processing.
Dib, Sami; Csengeri, Timea; Audit, Edouard; Hennebelle, Patrick; Pineda, Jaime E.; Goodman, Alyssa A.; Bontemps, Sylvain
2010-01-01
In this work, we present a detailed study of the rotational properties of magnetized and self-gravitating dense molecular cloud (MC) cores formed in a set of two very high resolution three-dimensional (3D) MC simulations with decaying turbulence. The simulations have been performed using the adaptative mesh refinement code RAMSES with an effective resolution of 4096 3 grid cells. One simulation represents a mildly magnetically supercritical cloud and the other a strongly magnetically supercritical cloud. We identify dense cores at a number of selected epochs in the simulations at two density thresholds which roughly mimic the excitation densities of the NH 3 (J - K) = (1,1) transition and the N 2 H + (1-0) emission line. A noticeable global difference between the two simulations is the core formation efficiency (CFE) of the high-density cores. In the strongly supercritical simulations, the CFE is 33% per unit free-fall time of the cloud (t ff,cl ), whereas in the mildly supercritical simulations this value goes down to ∼6 per unit t ff,cl . A comparison of the intrinsic specific angular momentum (j 3D ) distributions of the cores with the specific angular momentum derived using synthetic two-dimensional (2D) velocity maps of the cores (j 2D ) shows that the synthetic observations tend to overestimate the true value of the specific angular momentum by a factor of ∼8-10. We find that the distribution of the ratio j 3D /j 2D of the cores peaks at around ∼0.1. The origin of this discrepancy lies in the fact that contrary to the intrinsic determination of j which sums up the individual gas parcels' contributions to the angular momentum, the determination of the specific angular momentum using the standard observational procedure which is based on a measurement on the global velocity gradient under the hypothesis of uniform rotation smoothes out the complex fluctuations present in the 3D velocity field. Our results may well provide a natural explanation for the
Wealth of information derivable from Evaporation Residue (ER) angular momentum distributions
Madhavan, N.
2016-01-01
Understanding fusion-fission dynamics is possible by studying the fission process, or, alternatively, by studying the complementary fusion-evaporation process. Though the latter method is difficult to implement, requiring sophisticated recoil separators/spectrometers for selecting the ERs in the direction of the primary beam, it provides more clarity with better accuracy and is indispensible for probing the pre-saddle region in heavy nuclei. Super Heavy Element (SHE) search crucially depends on understanding the fusion-fission process, the choice of entrance channel and excitation energy of the Compound Nucleus (CN), ER cross-section and, more importantly, the angular momenta populated in ERs which survive fission. The measurement of ER angular momentum distributions, through coincidence technique involving large gamma multiplicity detector array and recoil separator, throws up a wealth of information such as, nuclear viscosity effects, limits of stability of ERs, shape changes at high spins, snapshot of frozen set of barriers using a single-shot experiment and indirect information about onset of quasi-fission processes. There is a paucity of experimental data with regard to angular momentum distributions in heavy nuclei due to experimental constraints. In this talk, the variety of information which could be derived through experimental ER angular momentum distributions will be elaborated with examples from work carried out at IUAC using advanced experimental facilities. (author)
The azimuthal component of Poynting's vector and the angular momentum of light
Cameron, Robert P.; Speirits, Fiona C.; Gilson, Claire R.; Allen, L.; Barnett, Stephen M.
2015-12-01
The usual description in basic electromagnetic theory of the linear and angular momenta of light is centred upon the identification of Poynting's vector as the linear momentum density and its cross product with position, or azimuthal component, as the angular momentum density. This seemingly reasonable approach brings with it peculiarities, however, in particular with regards to the separation of angular momentum into orbital and spin contributions, which has sometimes been regarded as contrived. In the present paper, we observe that densities are not unique, which leads us to ask whether the usual description is, in fact, the most natural choice. To answer this, we adopt a fundamental rather than heuristic approach by first identifying appropriate symmetries of Maxwell's equations and subsequently applying Noether's theorem to obtain associated conservation laws. We do not arrive at the usual description. Rather, an equally acceptable one in which the relationship between linear and angular momenta is nevertheless more subtle and in which orbital and spin contributions emerge separately and with transparent forms.
The azimuthal component of Poynting's vector and the angular momentum of light
Cameron, Robert P; Speirits, Fiona C; Barnett, Stephen M; Gilson, Claire R; Allen, L
2015-01-01
The usual description in basic electromagnetic theory of the linear and angular momenta of light is centred upon the identification of Poynting's vector as the linear momentum density and its cross product with position, or azimuthal component, as the angular momentum density. This seemingly reasonable approach brings with it peculiarities, however, in particular with regards to the separation of angular momentum into orbital and spin contributions, which has sometimes been regarded as contrived. In the present paper, we observe that densities are not unique, which leads us to ask whether the usual description is, in fact, the most natural choice. To answer this, we adopt a fundamental rather than heuristic approach by first identifying appropriate symmetries of Maxwell's equations and subsequently applying Noether's theorem to obtain associated conservation laws. We do not arrive at the usual description. Rather, an equally acceptable one in which the relationship between linear and angular momenta is nevertheless more subtle and in which orbital and spin contributions emerge separately and with transparent forms. (paper)
Gilman, P. A.; Morrow, C. A.; Deluca, E. E.
1989-01-01
The implications of a newly proposed picture of the sun's internal rotation (Brown et al., 1989; Morrow, 1988) for the distribution and transport of angular momentum and for the solar dynamo are considered. The new results, derived from an analysis of solar acoustic oscillations, affect understanding of how momentum is cycled in the sun and provide clues as to how and where the solar dynamo is driven. The data imply that the only significant radial gradient of angular velocity exists in a transitional region between the bottom of the convection zone, which is rotating like the solar surface, and the top of the deep interior, which is rotating rigidly at a rate intermediate between the equatorial and polar rates at the surface. Thus the radial gradient must change sign at the latitude where the angular velocity of the surface matches that of the interior. These inferences suggest that the cycle of angular momentum that produces the observed latitudinal differential rotation in the convection zone may be coupled to layers of the interior beneath the convection zone. 35 refs
Angular momentum-large-scale structure alignments in ΛCDM models and the SDSS
Paz, Dante J.; Stasyszyn, Federico; Padilla, Nelson D.
2008-09-01
We study the alignments between the angular momentum of individual objects and the large-scale structure in cosmological numerical simulations and real data from the Sloan Digital Sky Survey, Data Release 6 (SDSS-DR6). To this end, we measure anisotropies in the two point cross-correlation function around simulated haloes and observed galaxies, studying separately the one- and two-halo regimes. The alignment of the angular momentum of dark-matter haloes in Λ cold dark matter (ΛCDM) simulations is found to be dependent on scale and halo mass. At large distances (two-halo regime), the spins of high-mass haloes are preferentially oriented in the direction perpendicular to the distribution of matter; lower mass systems show a weaker trend that may even reverse to show an angular momentum in the plane of the matter distribution. In the one-halo term regime, the angular momentum is aligned in the direction perpendicular to the matter distribution; the effect is stronger than for the one-halo term and increases for higher mass systems. On the observational side, we focus our study on galaxies in the SDSS-DR6 with elongated apparent shapes, and study alignments with respect to the major semi-axis. We study five samples of edge-on galaxies; the full SDSS-DR6 edge-on sample, bright galaxies, faint galaxies, red galaxies and blue galaxies (the latter two consisting mainly of ellipticals and spirals, respectively). Using the two-halo term of the projected correlation function, we find an excess of structure in the direction of the major semi-axis for all samples; the red sample shows the highest alignment (2.7 +/- 0.8per cent) and indicates that the angular momentum of flattened spheroidals tends to be perpendicular to the large-scale structure. These results are in qualitative agreement with the numerical simulation results indicating that the angular momentum of galaxies could be built up as in the Tidal Torque scenario. The one-halo term only shows a significant alignment
Song, H. F.; Meynet, G.; Maeder, A.; Ekström, S.; Eggenberger, P.; Georgy, C.; Qin, Y.; Fragos, T.; Soerensen, M.; Barblan, F.; Wade, G. A.
2018-01-01
Context. Massive stars with solar metallicity lose important amounts of rotational angular momentum through their winds. When a magnetic field is present at the surface of a star, efficient angular momentum losses can still be achieved even when the mass-loss rate is very modest, at lower metallicities, or for lower-initial-mass stars. In a close binary system, the effect of wind magnetic braking also interacts with the influence of tides, resulting in a complex evolution of rotation. Aims: We study the interactions between the process of wind magnetic braking and tides in close binary systems. Methods: We discuss the evolution of a 10 M⊙ star in a close binary system with a 7 M⊙ companion using the Geneva stellar evolution code. The initial orbital period is 1.2 days. The 10 M⊙ star has a surface magnetic field of 1 kG. Various initial rotations are considered. We use two different approaches for the internal angular momentum transport. In one of them, angular momentum is transported by shear and meridional currents. In the other, a strong internal magnetic field imposes nearly perfect solid-body rotation. The evolution of the primary is computed until the first mass-transfer episode occurs. The cases of different values for the magnetic fields and for various orbital periods and mass ratios are briefly discussed. Results: We show that, independently of the initial rotation rate of the primary and the efficiency of the internal angular momentum transport, the surface rotation of the primary will converge, in a time that is short with respect to the main-sequence lifetime, towards a slowly evolving velocity that is different from the synchronization velocity. This "equilibrium angular velocity" is always inferior to the angular orbital velocity. In a given close binary system at this equilibrium stage, the difference between the spin and the orbital angular velocities becomes larger when the mass losses and/or the surface magnetic field increase. The
Kastrup, H.A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group
2017-10-17
The framework of Wigner functions for the canonical pair angle and orbital angular momentum, derived and analyzed in 2 recent papers [H. A. Kastrup, Phys. Rev. A 94, 062113(2016) and Phys. Rev. A 95, 052111(2017)], is applied to elementary concepts of quantum information like qubits and 2-qubits, e.g., entangled EPR/Bell states etc. Properties of the associated Wigner functions are discussed and illustrated. The results may be useful for quantum information experiments with orbital angular momenta of light beams or electron beams.
Kastrup, H.A.
2017-01-01
The framework of Wigner functions for the canonical pair angle and orbital angular momentum, derived and analyzed in 2 recent papers [H. A. Kastrup, Phys. Rev. A 94, 062113(2016) and Phys. Rev. A 95, 052111(2017)], is applied to elementary concepts of quantum information like qubits and 2-qubits, e.g., entangled EPR/Bell states etc. Properties of the associated Wigner functions are discussed and illustrated. The results may be useful for quantum information experiments with orbital angular momenta of light beams or electron beams.
He, Xi; Wu, Fengtie; Chen, Ziyang; Pu, Jixiong; Chavez-Cerda, Sabino
2016-01-01
The transverse focusing properties at the ‘pseudo-focal’ plane of coherent Bessel beams with angular momentum are analyzed in detail. The transverse magnification of the central dark region of Bessel beams at this pseudo-focal plane is derived for the first time by calculating the ratio of the magnitude of the transverse components of the corresponding wave vectors before and after the focusing lens. We test our results experimentally with coherent laser Bessel beams and excellent agreement is observed. Then, an LED light source is used to generate Bessel beams. By modifying the coherence of the LED light source, we observe that by reducing coherence a smaller and shallower central dark region of Bessel beams with angular momentum is produced at the pseudo-focal plane. This technique can be used as a method to characterize the degree of coherence of vortex beams. (paper)
Topologically robust sound propagation in an angular-momentum-biased graphene-like resonator lattice
Khanikaev, Alexander B.; Fleury, Romain; Mousavi, S. Hossein; Alù, Andrea
2015-10-01
Topological insulators do not allow conduction in the bulk, yet they support edge modes that travel along the boundary only in one direction, determined by the carried electron spin, with inherent robustness to defects and disorder. Topological insulators have inspired analogues in photonics and optics, in which one-way edge propagation in topologically protected two-dimensional materials is achieved breaking time-reversal symmetry with a magnetic bias. Here, we introduce the concept of topological order in classical acoustics, realizing robust topological protection and one-way edge propagation of sound in a suitably designed resonator lattice biased with angular momentum, forming the acoustic analogue of a magnetically biased graphene layer. Extending the concept of an acoustic nonreciprocal circulator based on angular-momentum bias, time-reversal symmetry is broken here using moderate rotational motion of air within each element of the lattice, which takes the role of the electron spin in determining the direction of modal edge propagation.
Wang, Lian; Zhou, Yuan-yuan; Zhou, Xue-jun; Chen, Xiao
2018-03-01
Based on the orbital angular momentum and pulse position modulation, we present a novel passive measurement-device-independent quantum key distribution (MDI-QKD) scheme with the two-mode source. Combining with the tight bounds of the yield and error rate of single-photon pairs given in our paper, we conduct performance analysis on the scheme with heralded single-photon source. The numerical simulations show that the performance of our scheme is significantly superior to the traditional MDI-QKD in the error rate, key generation rate and secure transmission distance, since the application of orbital angular momentum and pulse position modulation can exclude the basis-dependent flaw and increase the information content for each single photon. Moreover, the performance is improved with the rise of the frame length. Therefore, our scheme, without intensity modulation, avoids the source side channels and enhances the key generation rate. It has greatly utility value in the MDI-QKD setups.
The Gauge-Invariant Angular Momentum Sum-Rule for the Proton
Shore, G.M.
2000-01-01
We give a gauge-invariant treatment of the angular momentum sum-rule for the proton in terms of matrix elements of three gauge-invariant, local composite operators. These matrix elements are decomposed into three independent form factors, one of which is the flavour singlet axial charge. We further show that the axial charge cancels out of the sum-rule, so that it is unaffacted by the axial anomaly. The three form factors are then related to the four proton spin components in the parton model, namely quark and gluon intrinsic spin and orbital angular momentum. The renormalisation of the three operators is determined to one loop from which the scale dependence and mixing of the spin components is derived under the constraint that the quark spin be scale-independent. We also show how the three form factors can be measured in experiments.
Angular momentum redistribution by spiral waves in computer models of disc galaxies
Sellwood, J.A.; James, R.A.
1979-01-01
It is shown that the spiral patterns which develop spontaneously in computer models of galaxies are generated through angular momentum transfer. By adjusting the distribution of mass in the rigid halo components of the models it is possible to alter radically the rotation curve of the disc component. Either trailing or leading spiral arms develop in the models, dependent only on the sense of the differential shear; no spirals are seen in models where the disc rotates uniformly. It is found that the distribution of angular momentum in the disc is altered by the spiral evolution. Although some spiral structure can be seen for a long period, the life of each pattern is very short. It is shown that resonances are of major importance even for these transient patterns. All spiral wave patterns which have been seen possess both an inner Lindblad resonance and a co-rotation resonance. (author)
Li, Nan; Chu, Xiuxiang; Zhang, Pengfei; Feng, Xiaoxing; Fan, ChengYu; Qiao, Chunhong
2018-01-01
A method which can be used to compensate for a distorted orbital angular momentum and wavefront of a beam in atmospheric turbulence, simultaneously, has been proposed. To confirm the validity of the method, an experimental setup for up-link propagation of a vortex beam in a turbulent atmosphere has been simulated. Simulation results show that both of the distorted orbital angular momentum and the distorted wavefront of a beam due to turbulence can be compensated by an adaptive optics system with the help of a cooperative beacon at satellite. However, when the number of the lenslet of wavefront sensor (WFS) and the actuators of the deform mirror (DM) is small, satisfactory results cannot be obtained.
Dark halos formed via dissipationless collapse. I - Shapes and alignment of angular momentum
Warren, Michael S.; Quinn, Peter J.; Salmon, John K.; Zurek, Wojciech H.
1992-11-01
We use N-body simulations on highly parallel supercomputers to study the structure of Galactic dark matter halos. The systems form by gravitational collapse from scale-free and more general Gaussian initial density perturbations in an expanding 400 Mpc-cubed spherical slice of an Einstein-deSitter universe. We analyze the structure and kinematics of about 100 of the largest relaxed halos in each of 10 separate simulations. A typical halo is a triaxial spheroid which tends to be more often prolate than oblate. These shapes are maintained by anisotropic velocity dispersion rather than by angular momentum. Nevertheless, there is a significant tendency for the total angular momentum vector to be aligned with the minor axis of the density distribution.
Fickler, Robert; Lapkiewicz, Radek; Huber, Marcus; Lavery, Martin P J; Padgett, Miles J; Zeilinger, Anton
2014-07-30
Photonics has become a mature field of quantum information science, where integrated optical circuits offer a way to scale the complexity of the set-up as well as the dimensionality of the quantum state. On photonic chips, paths are the natural way to encode information. To distribute those high-dimensional quantum states over large distances, transverse spatial modes, like orbital angular momentum possessing Laguerre Gauss modes, are favourable as flying information carriers. Here we demonstrate a quantum interface between these two vibrant photonic fields. We create three-dimensional path entanglement between two photons in a nonlinear crystal and use a mode sorter as the quantum interface to transfer the entanglement to the orbital angular momentum degree of freedom. Thus our results show a flexible way to create high-dimensional spatial mode entanglement. Moreover, they pave the way to implement broad complex quantum networks where high-dimensionally entangled states could be distributed over distant photonic chips.
Tian-Jing Guo
2014-07-01
Full Text Available Optical eigenstates in a concentrically symmetric resonator are photonic angular momentum states (PAMSs with quantized optical orbital angular momentums (OAMs. Nonreciprocal optical phenomena can be obtained if we lift the degeneracy of PAMSs. In this article, we provide a comprehensive study of nonreciprocal optical diffraction of various orders from a magneto-optical cylinder array. We show that nonreciprocal diffraction can be obtained only for these nonzero orders. Role of PAMSs, the excitation of which is sensitive to the directions of incidence, applied magnetic field, and arrangement of the cylinders, are studied. Some interesting phenomena such as a dispersionless quasi-omnidirectional nonreciprocal diffraction and spikes associated with high-OAM PAMSs are present and discussed.
Angular Momentum of a Bose-Einstein Condensate in a Synthetic Rotational Field
Qu, Chunlei; Stringari, Sandro
2018-05-01
By applying a position-dependent detuning to a spin-orbit-coupled Hamiltonian with equal Rashba and Dresselhaus coupling, we exploit the behavior of the angular momentum of a harmonically trapped Bose-Einstein condensed atomic gas and discuss the distinctive role of its canonical and spin components. By developing the formalism of spinor hydrodynamics, we predict the precession of the dipole oscillation caused by the synthetic rotational field, in analogy with the precession of the Foucault pendulum, the excitation of the scissors mode, following the sudden switching off of the detuning, and the occurrence of Hall-like effects. When the detuning exceeds a critical value, we observe a transition from a vortex free, rigidly rotating quantum gas to a gas containing vortices with negative circulation which results in a significant reduction of the total angular momentum.
Coding/decoding two-dimensional images with orbital angular momentum of light.
Chu, Jiaqi; Li, Xuefeng; Smithwick, Quinn; Chu, Daping
2016-04-01
We investigate encoding and decoding of two-dimensional information using the orbital angular momentum (OAM) of light. Spiral phase plates and phase-only spatial light modulators are used in encoding and decoding of OAM states, respectively. We show that off-axis points and spatial variables encoded with a given OAM state can be recovered through decoding with the corresponding complimentary OAM state.
Comparison of length of day with oceanic and atmospheric angular momentum series
Kouba, J.; Vondrák, Jan
2005-01-01
Roč. 79, 4-5 (2005), s.256-268 ISSN 0949-7714 R&D Projects: GA AV ČR IAA3003205; GA MŠk LC506 Institutional research plan: CEZ:AV0Z10030501 Keywords : Earth rotation * length of day * atmospheric angular momentum Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.205, year: 2005
Angular momentum branching ratios for electron-induced ionization: Atomic and model calculations
Mehl, M.J.; Einstein, T.L.
1987-01-01
We present calculations of the matrix elements for electron-induced ionization of core electrons of atoms. We use both self-consistent atomic potentials for accuracy and model potentials to gain physical insight. We pay particular attention to the angular momentum distribution of the two final-state electrons, especially when one of them lies near what would be the Fermi energy in a solid (i.e., as in an absorption fine-structure experiment). For nodeless core wave functions, in the dominant channel both final-state electrons have angular momentum one greater than that of the initial core state. For sufficiently deeply bound states, this first approximate selection rule holds until the incident electron energy exceeds the ionization threshold by at least 500 eV, i.e., over the experimentally relevant range. It is also possible to determine the angular momentum distribution of the final-state electron. The EXAFS-like electron tends to have angular momentum one greater than that of the initial core state, even in some cases where the first approximate selection rule does not hold. (EXAFS is extended x-ray-absorption fine structure.) The strongest trend is that the dipole component in a partial-wave expansion of the Coulomb interaction dominates the matrix element. In these studies, careful treatment of not just the core state but also the unbound states is crucial; we show that the conventional orthogonalized plane-wave approximation is inadequate, giving incorrect ordering of the channels. For model potentials with an adjustable screening length, low-lying bound resonances are found to play an important role
Mass flows and angular momentum density for px + ipy paired fermions in a harmonic trap
Stone, Michael; Anduaga, Inaki
2008-01-01
We present a simple two-dimensional model of a p x + ip y superfluid in which the mass flow that gives rise to the intrinsic angular momentum is easily calculated by numerical diagonalization of the Bogoliubov-de Gennes operator. We find that, at zero temperature and for constant director l, the mass flow closely follows the Ishikawa-Mermin-Muzikar formula j mass =1/2 curl/(ρhl/2)
Gridneva, S.A.; Rus'kin, V.I.
1980-01-01
Basic features of the statistical model of multiple hadron production based on microcanonical distribution and taking into account the laws of conservation of total angular momentum, isotopic spin, p-, G-, C-eveness and Bose-Einstein statistics requirements are given. The model predictions are compared with experimental data on anti NN annihilation at rest and e + e - annihilation in hadrons at annihilation total energy from 2 to 3 GeV [ru
Universal quantum computation with the orbital angular momentum of a single photon
García-Escartín, Juan Carlos; Chamorro-Posada, Pedro
2011-01-01
We prove that a single photon with quantum data encoded in its orbital angular momentum can be manipulated with simple optical elements to provide any desired quantum computation. We will show how to build any quantum unitary operator using beamsplitters, phase shifters, holograms and an extraction gate based on quantum interrogation. The advantages and challenges of these approach are then discussed, in particular the problem of the readout of the results
Fast vortex oscillations in a ferrimagnetic disk near the angular momentum compensation point
Kim, Se Kwon; Tserkovnyak, Yaroslav
2017-07-01
We theoretically study the oscillatory dynamics of a vortex core in a ferrimagnetic disk near its angular momentum compensation point, where the spin density vanishes but the magnetization is finite. Due to the finite magnetostatic energy, a ferrimagnetic disk of suitable geometry can support a vortex as a ground state similar to a ferromagnetic disk. In the vicinity of the angular momentum compensation point, the dynamics of the vortex resemble those of an antiferromagnetic vortex, which is described by equations of motion analogous to Newton's second law for the motion of particles. Owing to the antiferromagnetic nature of the dynamics, the vortex oscillation frequency can be an order of magnitude larger than the frequency of a ferromagnetic vortex, amounting to tens of GHz in common transition-metal based alloys. We show that the frequency can be controlled either by applying an external field or by changing the temperature. In particular, the latter property allows us to detect the angular momentum compensation temperature, at which the lowest eigenfrequency attains its maximum, by performing ferromagnetic resonance measurements on the vortex disk. Our work proposes a ferrimagnetic vortex disk as a tunable source of fast magnetic oscillations and a useful platform to study the properties of ferrimagnets.
Daniel, Kathryne J.; Wyse, Rosemary F. G.
2018-05-01
The orbital angular momentum of individual stars in galactic discs can be permanently changed through torques from transient spiral patterns. Interactions at the corotation resonance dominate these changes and have the further property of conserving orbital circularity. We derived in an earlier paper an analytic criterion that an unperturbed stellar orbit must satisfy in order for such an interaction to occur, i.e. for it to be in a trapped orbit around corotation. We here use this criterion in an investigation of how the efficiency of induced radial migration for a population of disc stars varies with the angular momentum distribution of that population. We frame our results in terms of the velocity dispersion of the population, this being an easier observable than is the angular momentum distribution. Specifically, we investigate how the fraction of stars in trapped orbits at corotation varies with the velocity dispersion of the population, for a system with an assumed flat rotation curve. Our analytic results agree with the finding from simulations that radial migration is less effective in populations with `hotter' kinematics. We further quantify the dependence of this trapped fraction on the strength of the spiral pattern, finding a higher trapped fraction for higher amplitude perturbations.
Creating an isotopically similar Earth-Moon system with correct angular momentum from a giant impact
Wyatt, Bryant M.; Petz, Jonathan M.; Sumpter, William J.; Turner, Ty R.; Smith, Edward L.; Fain, Baylor G.; Hutyra, Taylor J.; Cook, Scott A.; Gresham, John H.; Hibbs, Michael F.; Goderya, Shaukat N.
2018-04-01
The giant impact hypothesis is the dominant theory explaining the formation of our Moon. However, the inability to produce an isotopically similar Earth-Moon system with correct angular momentum has cast a shadow on its validity. Computer-generated impacts have been successful in producing virtual systems that possess many of the observed physical properties. However, addressing the isotopic similarities between the Earth and Moon coupled with correct angular momentum has proven to be challenging. Equilibration and evection resonance have been proposed as means of reconciling the models. In the summer of 2013, the Royal Society called a meeting solely to discuss the formation of the Moon. In this meeting, evection resonance and equilibration were both questioned as viable means of removing the deficiencies from giant impact models. The main concerns were that models were multi-staged and too complex. We present here initial impact conditions that produce an isotopically similar Earth-Moon system with correct angular momentum. This is done in a single-staged simulation. The initial parameters are straightforward and the results evolve solely from the impact. This was accomplished by colliding two roughly half-Earth-sized impactors, rotating in approximately the same plane in a high-energy, off-centered impact, where both impactors spin into the collision.
New approach to multishell calculations in multiple angular momentum coupling schemes
Chen, J.; Novoselsky, A.; Vallieres, M.; Gilmore, R.
1989-01-01
The procedure developed recently to calculate single-shell wave functions and matrix elements for multiple angular momentum shell-model calculations is extended to the multishell case. This was based on a factorization procedure introduced by Jahn. As a consequence of the factorization, coefficients of fractional parentage between states of arbitrary symmetry must be constructed to build up single-shell N-particle states from single-shell N-1-particle states. Multishell N-particle states are built up recursively from multishell N-1-particle states by using outer-product isoscalar factors. Symmetrized multishell states in one angular momentum subspace are combined with states of conjugate symmetry in a second angular momentum subspace to construct fermion wave functions. This is done using inner-product isoscalar factors. The coefficients of fractional parentage, outer-product isoscalar factors, and inner-product isoscalar factors are computed recursively using a matrix diagonalization algorithm. Shell-model matrix elements are constructed from these factors by using a new sum over path overlaps method. This computational procedure involving factorization is substantially more efficient than computational procedures which do not exploit factorization
Wind-driven angular momentum loss in binary systems. I - Ballistic case
Brookshaw, Leigh; Tavani, Marco
1993-01-01
We study numerically the average loss of specific angular momentum from binary systems due to mass outflow from one of the two stars for a variety of initial injection geometries and wind velocities. We present results of ballistic calculations in three dimensions for initial mass ratios q of the mass-losing star to primary star in the range q between 10 exp -5 and 10. We consider injection surfaces close to the Roche lobe equipotential surface of the mass-losing star, and also cases with the mass-losing star underfilling its Roche lobe. We obtain that the orbital period is expected to have a negative time derivative for wind-driven secular evolution of binaries with q greater than about 3 and with the mass-losing star near filling its Roche lobe. We also study the effect of the presence of an absorbing surface approximating an accretion disk on the average final value of the specific angular momentum loss. We find that the effect of an accretion disk is to increase the wind-driven angular momentum loss. Our results are relevant for evolutionary models of high-mass binaries and low-mass X-ray binaries.
Role of angular momentum and cosmic censorship in (2+1)-dimensional rotating shell collapse
Mann, Robert B.; Oh, John J.; Park, Mu-In
2009-01-01
We study the gravitational collapse problem of rotating shells in three-dimensional Einstein gravity with and without a cosmological constant. Taking the exterior and interior metrics to be those of stationary metrics with asymptotically constant curvature, we solve the equations of motion for the shells from the Darmois-Israel junction conditions in the corotating frame. We study various collapse scenarios with arbitrary angular momentum for a variety of geometric configurations, including anti-de Sitter, de Sitter, and flat spaces. We find that the collapsing shells can form a BTZ black hole, a three-dimensional Kerr-dS spacetime, and an horizonless geometry of point masses under certain initial conditions. For pressureless dust shells, the curvature singularity is not formed due to the angular momentum barrier near the origin. However when the shell pressure is nonvanishing, we find that for all types of shells with polytropic-type equations of state (including the perfect fluid and the generalized Chaplygin gas), collapse to a naked singularity is possible under generic initial conditions. We conclude that in three dimensions angular momentum does not in general guard against violation of cosmic censorship.
Control of Rotational Energy and Angular Momentum Orientation with an Optical Centrifuge
Ogden, Hannah M.; Murray, Matthew J.; Mullin, Amy S.
2017-04-01
We use an optical centrifuge to trap and spin molecules to an angular frequency of 30 THz with oriented angular momenta and extremely high rotational energy and then investigate their subsequent collision dynamics with transient high resolution IR spectroscopy. The optical centrifuge is formed by combining oppositely-chirped pulses of 800 nm light, and overlapping them spatially and temporally. Polarization-sensitive Doppler-broadened line profiles characterize the anisotropic kinetic energy release of the super rotor molecules, showing that they behave like molecular gyroscopes. Studies are reported for collisions of CO2 super rotors with CO2, He and Ar. These studies reveal how mass, velocity and rotational adiabaticity impact the angular momentum relaxation and reorientation. Quantum scattering calculations provide insight into the J-specific collision cross sections that control the relaxation. NSF-CHE 105 8721.
Gamma-ray multiplicity measurements and angular momentum transfer in deeply inelastic collisions
Perrin, N.; Peter, J.
1977-01-01
In DIC, the part of the initial orbital angular momentum l which is transferred into internal angular momenta Δl of the fragments depends on the degree of cohesion of the composite system. The (few) measured gamma-rays multiplicities are compared to those observed for similar compound nuclei and for fission fragments. Δl increases with the kinetic energy relaxation. For medium-mass systems, the cohesion varies continuously from the rolling to the sticking situation when the decay time of the composite system increases. The rigid body situation is obtained for a small part of the relaxed events. For heavy systems, rigid rotation seems to be much more common, which will allow to extract information on the deflection function. The time needed to reach the rigid situation is intermediate between those of kinetic energy relaxation and mass asymmetry relaxation. An additional angular momentum can be added in the fragments, due to a bending mode at the scission-point, like in fission. That can explain the observed low anisotropy of the gamma-rays angular distribution
Satpathy, L.; Schmid, K.W.; Krewald, S.; Faessler, A.
1974-01-01
Multi-Configuration-Hartree-Fock (MCHF) calculations with angular momentum projection before the variation of the internal degree of freedom have been performed for the nuclei Ne 20 and Ne 22 . This procedure yields different correlated intrinsic states for the different members of a rotational band. Thus, the angular momentum dependence of correlations has been studied. Experimentally, the ground state spectra of Ne 20 and Ne 22 show properties similar to the phase transitions observed in some rare earth nuclei which have been well reproduced through the present calculations. The calculated spectra show a significant improvement compared to the ones obtained by variation before the angular momentum projection is effected. (author)
Bunce, G.; Fields, D.; Vogelsang, W.
2006-01-01
The joint UNM/RBRC 'Workshop on Parton Orbital Angular Momentum' was held on February 24th through 26th at the University of New Mexico Department of Physics and Astronomy in Albuquerque, New Mexico, and was sponsored by The University of New Mexico (Physics Department, New Mexico Center for Particle Physics, Dean of Arts and Sciences, and Office of the Vice Provost for Research and Economic Development) and the NUN-BNL Research Center. The workshop was motivated by recent and upcoming experimental data based on methods which have been proposed to access partonic angular momenta, including Deeply Virtual Compton Scattering, measuring the Sivers functions, and measuring helicity dependent k t in jets. Our desire was to clarify the state of the art in the theoretical understanding in this area, and to help define what might be learned about partonic orbital angular momenta Erom present and upcoming high precision data, particularly at RHIC, Jlab, COMPASS and HERMES. The workshop filled two rather full days of talks fiom both theorists and experimentalists, with a good deal of discussion during, and in between talks focusing on the relationship between the intrinsic transverse momentum, orbital angular momentum, and observables such as the Sivers Function. These talks and discussions were particularly illuminating and the organizers wish to express their sincere thanks to everyone for contributing to this workshop. Each workshop speaker is encouraged to select a few of the most important transparencies from his or her presentation, accompanied by a page of explanation. This material is collected at the end of the workshop by the organizer to form proceedings, which can therefore be available within a short time. To date there are eighty proceeding volumes available
Fragile black holes and an angular momentum cutoff in peripheral heavy ion collisions
McInnes, Brett, E-mail: matmcinn@nus.edu.sg [Centro de Estudios Cientificos (CECs), Valdivia (Chile); National University of Singapore (Singapore)
2012-08-11
In collisions of heavy ions at extremely high energies, it is possible for a significant quantity of angular momentum to be deposited into the Quark-Gluon Plasma which is thought to be produced. We develop a simple geometric model of such a system, and show that it is dual, in the AdS/CFT sense, to a rotating AdS black hole with a topologically planar event horizon. However, when this black hole is embedded in string theory, it proves to be unstable, for all non-zero angular momenta, to a certain non-perturbative effect: the familiar planar black hole, as used in most AdS/CFT analyses of QGP physics, is 'fragile'. The upshot is that the AdS/CFT duality apparently predicts that the QGP should always become unstable when it is produced in peripheral collisions. However, we argue that holography indicates that relatively low angular momenta delay the development of the instability, so that in practice it may be observable only for peripheral collisions involving favorable impact parameters, generating extremely large angular momenta. In principle, the result may be holographic prediction of a cutoff for the observable angular momenta of the QGP, or perhaps of an analogous phenomenon in condensed matter physics.
Kinetic energy and angular momentum of free particles in the gyratonic pp-waves space-times
Maluf, J. W.; da Rocha-Neto, J. F.; Ulhoa, S. C.; Carneiro, F. L.
2018-06-01
Gyratonic pp-waves are exact solutions of Einstein’s equations that represent non-linear gravitational waves endowed with angular momentum. We consider gyratonic pp-waves that travel in the z direction and whose time dependence on the variable is given by Gaussians, so that the waves represent short bursts of gravitational radiation propagating in the z direction. We evaluate numerically the geodesics and velocities of free particles in the space-time of these waves, and find that after the passage of the waves both the kinetic energy and the angular momentum per unit mass of the particles are changed. Therefore there is a transfer of energy and angular momentum between the gravitational field and the free particles, so that the final values of the energy and angular momentum of the free particles may be smaller or larger in magnitude than the initial values.
Barada, Daisuke [Graduate School of Engineering, Utsunomiya University, Utsunomiya 321-8585 (Japan); Center for Optical Research and Education (CORE), Utsunomiya University, Utsunomiya 321-8585 (Japan); Juman, Guzhaliayi; Yoshida, Itsuki [Graduate School of Advanced Integration Science, Chiba University, Chiba 263-8522 (Japan); Miyamoto, Katsuhiko; Omatsu, Takashige, E-mail: omatsu@faculty.chiba-u.jp [Graduate School of Advanced Integration Science, Chiba University, Chiba 263-8522 (Japan); Molecular Chirality Research Center, Chiba University, Chiba 263-8522 (Japan); Kawata, Shigeo [Graduate School of Engineering, Utsunomiya University, Utsunomiya 321-8585 (Japan); Ohno, Seigo [Graduate School of Science, Tohoku University, Sendai 980-8578 (Japan)
2016-02-01
It was discovered that optical vortices twist isotropic and homogenous materials, e.g., azo-polymer films to form spiral structures on a nano- or micro-scale. However, the formation mechanism has not yet been established theoretically. To understand the mechanism of the spiral surface relief formation in the azo-polymer film, we theoretically investigate the optical radiation force induced in an isotropic and homogeneous material under irradiation using a continuous-wave optical vortex with arbitrary topological charge and polarization. It is revealed that the spiral surface relief formation in azo-polymer films requires the irradiation of optical vortices with a positive (negative) spin angular momentum and a positive (negative) orbital angular momentum (constructive spin-orbital angular momentum coupling), i.e., the degeneracy among the optical vortices with the same total angular momentum is resolved.
Angular Momentum Transfer and Fractional Moment of Inertia in Pulsar Glitches
Eya, I. O.; Urama, J. O.; Chukwude, A. E.
2017-01-01
We use the Jodrell Bank Observatory glitch database containing 472 glitches from 165 pulsars to investigate the angular momentum transfer during rotational glitches in pulsars. Our emphasis is on pulsars with at least five glitches, of which there are 26 that exhibit 261 glitches in total. This paper identifies four pulsars in which the angular momentum transfer, after many glitches, is almost linear with time. The Lilliefore test on the cumulative distribution of glitch spin-up sizes in these glitching pulsars shows that glitch sizes in 12 pulsars are normally distributed, suggesting that their glitches originate from the same momentum reservoir. In addition, the distribution of the fractional moment of inertia (i.e., the ratio of the moment of inertia of neutron star components that are involved in the glitch process) have a single mode, unlike the distribution of fractional glitch size (Δ ν / ν ), which is usually bimodal. The mean fractional moment of inertia in the glitching pulsars we sampled has a very weak correlation with the pulsar spin properties, thereby supporting a neutron star interior mechanism for the glitch phenomenon.
Angular Momentum Transfer and Fractional Moment of Inertia in Pulsar Glitches
Eya, I. O.; Urama, J. O.; Chukwude, A. E., E-mail: innocent.eya@unn.edu.ng, E-mail: innocent.eya@gmail.com [Department of Physics and Astronomy, University of Nigeria, Nsukka, Enugu State (Nigeria)
2017-05-01
We use the Jodrell Bank Observatory glitch database containing 472 glitches from 165 pulsars to investigate the angular momentum transfer during rotational glitches in pulsars. Our emphasis is on pulsars with at least five glitches, of which there are 26 that exhibit 261 glitches in total. This paper identifies four pulsars in which the angular momentum transfer, after many glitches, is almost linear with time. The Lilliefore test on the cumulative distribution of glitch spin-up sizes in these glitching pulsars shows that glitch sizes in 12 pulsars are normally distributed, suggesting that their glitches originate from the same momentum reservoir. In addition, the distribution of the fractional moment of inertia (i.e., the ratio of the moment of inertia of neutron star components that are involved in the glitch process) have a single mode, unlike the distribution of fractional glitch size (Δ ν / ν ), which is usually bimodal. The mean fractional moment of inertia in the glitching pulsars we sampled has a very weak correlation with the pulsar spin properties, thereby supporting a neutron star interior mechanism for the glitch phenomenon.
Zhang Zhongcan; Hu Chenguo; Fang Zhenyun
1998-01-01
The authors study the method which directly adopts the azimuthal angles and the rotation angle of the axis to describe the evolving process of the angular momentum eigenstates under the space rotation transformation. The authors obtain the angular momentum rotation and multi-rotation matrix elements' path integral which evolves with the parameter λ(0→θ,θ the rotation angle), and establish the general method of treating the functional (path) integral as a normal multi-integrals
Sugimura, Kazuyuki; Hosokawa, Takashi; Yajima, Hidenobu; Inayoshi, Kohei; Omukai, Kazuyuki
2018-05-01
Accretion on to seed black holes (BHs) is believed to play a crucial role in formation of supermassive BHs observed at high-redshift (z > 6). Here, we investigate the combined effect of gas angular momentum and radiation feedback on the accretion flow, by performing 2D axially symmetric radiation hydrodynamics simulations that solve the flow structure across the Bondi radius and the outer part of the accretion disc simultaneously. The accreting gas with finite angular momentum forms a rotationally-supported disc inside the Bondi radius, where the accretion proceeds by the angular momentum transport due to assumed α-type viscosity. We find that the interplay of radiation and angular momentum significantly suppresses accretion even if the radiative feedback is weakened in an equatorial shadowing region. The accretion rate is O(α) ˜ O(0.01 - 0.1) times the Bondi value, where α is the viscosity parameter. By developing an analytical model, we show that such a great reduction of the accretion rate persists unless the angular momentum is so small that the corresponding centrifugal radius is ≲ 0.04 times the Bondi radius. We argue that BHs are hard to grow quickly via rapid mass accretion considering the angular momentum barrier presented in this paper.
Singhal, Kunal; Kim, Jemin; Casebolt, Jeffrey; Lee, Sangwoo; Han, Ki-Hoon; Kwon, Young-Hoo
2015-06-01
Angular momentum of the body is a highly controlled quantity signifying stability, therefore, it is essential to understand its regulation during stair descent. The purpose of this study was to investigate how older adults use gravity and ground reaction force to regulate the angular momentum of the body during stair descent. A total of 28 participants (12 male and 16 female; 68.5 years and 69.0 years of mean age respectively) performed stair descent from a level walk in a step-over-step manner at a self-selected speed over a custom made three-step staircase with embedded force plates. Kinematic and force data were used to calculate angular momentum, gravitational moment, and ground reaction force moment about the stance foot center of pressure. Women show a significantly greater change in normalized angular momentum (0.92Nms/Kgm; p=.004) as compared to men (0.45Nms/Kgm). Women produce higher normalized GRF (p=.031) during the double support phase. The angular momentum changes show largest backward regulation for Step 0 and forward regulation for Step 2. This greater difference in overall change in the angular momentum in women may explain their increased risk of fall over the stairs. Copyright © 2015 Elsevier B.V. All rights reserved.
Angular Momentum in Disk Wind Revealed in the Young Star MWC 349A
Zhang, Qizhou; Claus, Brian; Watson, Linda; Moran, James, E-mail: qzhang@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge MA 02138 (United States)
2017-03-01
Disk winds are thought to play a critical role in star birth. As winds extract excess angular momentum from accretion disks, matter in the disk can be transported inward to the star to fuel mass growth. However, observational evidence of wind carrying angular momentum has been very limited. We present Submillimeter Array (SMA) observations of the young star MWC 349A in the H26 α and H30 α recombination lines. The high signal-to-noise ratios made possible by the maser emission process allow us to constrain the relative astrometry of the maser spots to milli-arcsecond precision. Previous observations of the H30 α line with the SMA and the Plateau de Bure interferometer (PdBI) showed that masers are distributed in the disk and wind. Our new high-resolution observations of the H26 α line reveal differences in spatial distribution from that of the H30 α line. H26 α line masers in the disk are excited in a thin annulus with a radius of about 25 au, while the H30 α line masers are formed in a slightly larger annulus with a radius of 30 au. This is consistent with expectations for maser excitation in the presence of an electron density variation of approximately R {sup −4}. In addition, the H30 α and H26 α line masers arise from different parts in the wind. This difference is also expected from maser theory. The wind component of both masers exhibits line-of-sight velocities that closely follow a Keplerian law. This result provides strong evidence that the disk wind extracts significant angular momentum, thereby facilitating mass accretion in the young star.
Angular momentum, g-value, and magnetic flux of gyration states
Arunasalam, V.
1991-10-01
Two of the world's leading (Nobel laureate) physicists disagree on the definition of the orbital angular momentum L of the Landau gyration states of a spinless charged particle in a uniform external magnetic field B = B i Z . According to Richard P. Feynman (and also Frank Wilczek) L = (rxμv) = rx(p - qA/c), while Felix Bloch (and also Kerson Huang) defines it as L = rxp. We show here that Bloch's definition is the correct one since it satisfies the necessary and sufficient condition LxL = iℎ L, while Feynman's definition does not. However, as a consequence of the quantized Aharonov-Bohm magnetic flux, this canonical orbital angular momentum (surprisingly enough) takes half-odd-integral values with a zero-point gyration states of L Z = ℎ/2. Further, since the diamagnetic and the paramagnetic contributions to the magnetic moment are interdependent, the g-value of these gyration states is two and not one, again a surprising result for a spinless case. The differences between the gauge invariance in classical and quantum mechanics, Onsager's suggestion that the flux quantization might be an intrinsic property of the electromagnetic field-charged particle interaction, the possibility that the experimentally measured fundamental unit of the flux quantum need not necessarily imply the existence of ''electron pairing'' of the Bardeen-Cooper-Schrieffer superconductivity theory, and the relationship to the Dirac's angular momentum quantization condition for the magnetic monopole-charged particle composites (i.e. Schwinger's dyons), are also briefly examined from a pedestrian viewpoint
The microcanonical ensemble of the ideal relativistic quantum gas with angular momentum conservation
Becattini, F.; Ferroni, L.
2007-01-01
We derive the microcanonical partition function of the ideal relativistic quantum gas with fixed intrinsic angular momentum as an expansion over fixed multiplicities. We developed a group theoretical approach by generalizing known projection techniques to the Poincare group. Our calculation is carried out in a quantum field framework and applies to particles with any spin. It extends known results in the literature in that it does not introduce any large volume approximation, and it takes particle spin fully into account. We provide expressions of the microcanonical partition function at fixed multiplicities in the limiting classical case of large volumes and large angular momenta and in the grand-canonical ensemble. We also derive the microcanonical partition function of the ideal relativistic quantum gas with fixed parity. (orig.)
Full-sky formulae for weak lensing power spectra from total angular momentum method
Yamauchi, Daisuke; Taruya, Atsushi; Namikawa, Toshiya
2013-01-01
We systematically derive full-sky formulae for the weak lensing power spectra generated by scalar, vector and tensor perturbations from the total angular momentum (TAM) method. Based on both the geodesic and geodesic deviation equations, we first give the gauge-invariant expressions for the deflection angle and Jacobi map as observables of the CMB lensing and cosmic shear experiments. We then apply the TAM method, originally developed in the theoretical studies of CMB, to a systematic derivation of the angular power spectra. The TAM representation, which characterizes the total angular dependence of the spatial modes projected along a line-of-sight, can carry all the information of the lensing modes generated by scalar, vector, and tensor metric perturbations. This greatly simplifies the calculation, and we present a complete set of the full-sky formulae for angular power spectra in both the E-/B-mode cosmic shear and gradient-/curl-mode lensing potential of deflection angle. Based on the formulae, we give illustrative examples of non-vanishing B-mode cosmic shear and curl-mode of deflection angle in the presence of the vector and tensor perturbations, and explicitly compute the power spectra
Poynting vector and orbital angular momentum density of superpositions of Bessel beams
Litvin, IA
2011-08-01
Full Text Available ?bal, and M. L. Calvo, ?Microparticle movements in optical funnels and pods,? Opt. Express 19(6), 5232?5243 (2011). 36. S. H. Tao, X. C. Yuan, J. Lin, and R. E. Burge, ?Residue orbital angular momentum in interferenced double vortex beams with unequal... ???? ?? ??? ? ??? ? ???? ? ??? ? + +??? ? ??? ? + ? ??? ? ??? ? +??? ? ??? ? + ? +?? ? ? ? ?? ? ? ? + = ? (13) where we assume both fields are modulated by the same Gaussian beam of width w0, resulting in a Gaussian Rayleigh range of zr, and for brevity we have collapsed the phase terms related to the piston and Gouy phase shifts into the function ?(z...
Zeng, Qiang; Li, Tao; Song, Xinbing; Zhang, Xiangdong
2016-04-18
We propose and experimentally demonstrate an optimized setup to implement quantum controlled-NOT operation using polarization and orbital angular momentum qubits. This device is more adaptive to inputs with various polarizations, and can work both in classical and quantum single-photon regime. The logic operations performed by such a setup not only possess high stability and polarization-free character, they can also be easily extended to deal with multi-qubit input states. As an example, the experimental implementation of generalized three-qubit Toffoli gate has been presented.
Modeling channel interference in an orbital angular momentum-multiplexed laser link
Anguita, Jaime A.; Neifeld, Mark A.; Vasic, Bane V.
2009-08-01
We study the effects of optical turbulence on the energy crosstalk among constituent orbital angular momentum (OAM) states in a vortex-based multi-channel laser communication link and determine channel interference in terms of turbulence strength and OAM state separation. We characterize the channel interference as a function of C2n and transmit OAM state, and propose probability models to predict the random fluctuations in the received signals for such architecture. Simulations indicate that turbulence-induced channel interference is mutually correlated across receive channels.
Tunable orbital angular momentum mode filter based on optical geometric transformation.
Huang, Hao; Ren, Yongxiong; Xie, Guodong; Yan, Yan; Yue, Yang; Ahmed, Nisar; Lavery, Martin P J; Padgett, Miles J; Dolinar, Sam; Tur, Moshe; Willner, Alan E
2014-03-15
We present a tunable mode filter for spatially multiplexed laser beams carrying orbital angular momentum (OAM). The filter comprises an optical geometric transformation-based OAM mode sorter and a spatial light modulator (SLM). The programmable SLM can selectively control the passing/blocking of each input OAM beam. We experimentally demonstrate tunable filtering of one or multiple OAM modes from four multiplexed input OAM modes with vortex charge of ℓ=-9, -4, +4, and +9. The measured output power suppression ratio of the propagated modes to the blocked modes exceeds 14.5 dB.
Orbital-angular-momentum photons for optical communication in non-Kolmogorov atmospheric turbulence
Wei, Mei-Song; Wang, Jicheng; Zhang, Yixin; Hu, Zheng-Da
2018-06-01
We investigate the effects of non-Kolmogorov atmospheric turbulence on the transmission of orbital-angular-momentum single photons for different turbulence aberrations in optical communication, via the channel capacity. For non-Kolmogorov model, the characteristics of atmosphere turbulence may be determined by different cases, including the increasing altitude, the mutative index-of-refraction structure constant and the power-law exponent of non-Kolmogorov spectrum. It is found that the influences of low-order aberrations, including Z-tilt, defocus, astigmatism, and coma aberrations, are different and the turbulence Z-tilt aberration plays a more important role in the decay of the signal.
Production of autoionizing di-excited states of barium with high angular momentum
Roussel, F.; Breger, P.; Gounand, F.; Spiess, G.
1988-01-01
Autoionizing di-excited states Ba(6p 1/2 27l) with 7 ≤l≤26, have been experimentally detected. They have been produced by a method combining excitation by two lasers and l-mixing collisions between barium and xenon. Results show that a long delay between the two laser excitation steps is favourable to the production of these states. The method has proved to be very efficient (measured cross-section: σ = 3.1 . 10 -13 cm 2 ) for populating high-angular-momentum autoionizing states of barium
Proof of the positive energy theorem including the angular momentum contribution
Zhang Jingfei; Chee, G.Y.; Guo Yongxin
2005-01-01
A proof of the positive energy theorem of general relativity is given. In this proof the gravitational Lagrangian is identified with that of Lau and is equivalent to the teleparallel Lagrangian modulo, a boundary term. The approach adopted in this proof uses the two-spinor method and the extended Witten identities and then combines the Brown-York and the Nester-Witten approaches. At the same time the proof is extended to the case involving the contribution of angular momentum by choosing a special shift vector
The (3He,α) reaction mechanism. A study of the angular momentum transfer
Guttormsen, M.; Bergholt, L.; Ingebretsen, F.; Loevhoeiden, G.; Messelt, S.; Rekstad, J.; Tveter, T.S.; Helstrup, H.; Thorsteinsen, T.F.
1994-01-01
The γ-rays emitted after the 163 Dy( 3 He,αxn) reactions at E( 3 He) = 45 MeV have been measured. The transferred angular momentum in the reaction is deduced from the side-feeding γ-intensities of the ground bands in the residual 162-x Dy isotopes. With decreasing α-energy the average spin transfer increases from similar 5h to similar 11h. The ( 3 He,α) reaction at these energies is dominated by direct processes. Even at the highest spin transfer the contribution from the compound reaction channel is negligible. ((orig.))
Measurement of the orbital angular momentum density of light by modal decomposition
Schulze, C
2013-07-01
Full Text Available indices for light fields possessing orbital angular momentum Appl. Phys. Lett. 100 231115 [17] Hickmann J M, Fonseca E J S, Soares W C and Cha´vez-Cerda S 2010 Unveiling a truncated optical lattice associated with a triangular aperture using light’s... fields J. Opt. Soc. Am. A 24 3500–7 [39] Lee W-H 1979 Binary computer-generated holograms Appl. Opt. 18 3661–9 [40] Born M and Wolf E 1991 Principles of Optics (Cambridge: Cambridge University Press) [41] Berry H G, Gabrielse G and Livingston A E 1977...
Orbital angular momentum modes by twisting of a hollow core antiresonant fiber
Stefani, Alessio; Kuhlmey, Boris T.; Fleming, Simon
2017-01-01
Generation and use of orbital angular momentum (OAM) of light is finding more and more interest in a wide variety of fields of photonics: communications, optical trapping, quantum optics, and many more [1]. In the investigation of such behavior, twisting of photonic crystal fibers shows interesting......, allowing a simple and tunable way to generate OAM modes. We take advantage of THz time domain spectroscopy to obtain information on both intensity and field components, and to be able to investigate how they change both in time and with frequency....
The measurement of magnetic moments of nuclear states of high angular momentum
Goldring, G.
1978-01-01
Two problems related to the measurement of the g-factor of relevant nuclear levels and their circumvention are discussed: a) the very high magnetic fields required for the measurements, available only as a hyperfine field of electrons or other charged particles moving very close to the nucleus; b) the large angular momentum of those nuclear states. The nuclei considered are those recoiling from a nuclear reaction at high speeds in either vacuum or gas. The environment of these nuclei are the isolated ions with which they are associated. The hyperfine interaction with such ions is primarily magnetic. (B.G.)
Generation of Sources of Light with Well Defined Orbital Angular Momentum
Cruz y Cruz, S; Escamilla, N; Velazquez, V
2016-01-01
In this work, a technique to produce spatial electromagnetic modes with definite orbital angular momentum is presented. The method is based in the construction of binary diffractive gratings generated by computer. In the classical regime the gratings produce the well known Laguerre-Gaussian modes distributions when illuminated by a plane wave. In the quantum regime the grating is placed in the signal path of a spontaneous parametric down conversion layout and the diffraction pattern, observed in the coincidence count rate, shows that the single photons are projected onto spatial states consistent with a Laguerre-Gaussian modes distribution. (paper)
A phenomenological approach to angular momentum transfer in deep inelastic heavy ion collisions
Barbosa, V.C.; Soares, P.C.; Oliveira, Edgar C. de; Gomes, Luiz Carlos
1985-01-01
The total angular momentum transfer measured in the reactions 165 Ho on 176 Yb, 154 Sm and sup(Nat)Ag at 1400 MeV and 86 Kr + 152 Sm 610 MeV were analised on the basis of a classical model with friction forces including, besides the relative motion of the ions, their rotations and quadrupole vibrations. The ratios of tangential or pivotal to radial friction were fixed by the analysis and found to be 1/20. No strong evidences of the sticking mechanisms were found. (Author) [pt
Optical vortex symmetry breakdown and decomposition of the orbital angular momentum of light beams.
Bekshaev, A Ya; Soskin, M S; Vasnetsov, M V
2003-08-01
Two forms of the transverse energy circulation within plane-polarized paraxial light beams are specified: one inherent in wave-front singularities (optical vortices) and the other peculiar to astigmatism and asymmetry of beams with a smooth wave front. As quantitative measures of these energy flow components, the concepts of vortex and asymmetry parts of a beam's orbital angular momentum are introduced and their definitions are proposed on the basis of beam intensity moments. The properties and physical meaning of these concepts are analyzed, and their use for the study of transformations of optical vortices is demonstrated.
Liu, Changming; Wei, Xuli; Niu, Liting; Wang, Kejia; Yang, Zhengang; Liu, Jinsong
2016-06-13
We present an efficient method to discriminate orbital angular momentum (OAM) of the terahertz (THz) vortex beam using a diffractive mode transformer. The mode transformer performs a log-polar coordinate transformation of the input THz vortex beam, which consists of two 3D-printed diffractive elements. A following lens separates each transformed OAM mode to a different lateral position in its focal plane. This method enables a simultaneous measurement over multiple OAM modes of the THz vortex beam. We experimentally demonstrate the measurement of seven individual OAM modes and two multiplexed OAM modes, which is in good agreement with simulations.
Jack, B.; Leach, J.; Franke-Arnold, S.; Ireland, D. G.; Padgett, M. J.; Yao, A. M.; Barnett, S. M.; Romero, J.
2010-01-01
We use spatial light modulators (SLMs) to measure correlations between arbitrary superpositions of orbital angular momentum (OAM) states generated by spontaneous parametric down-conversion. Our technique allows us to fully access a two-dimensional OAM subspace described by a Bloch sphere, within the higher-dimensional OAM Hilbert space. We quantify the entanglement through violations of a Bell-type inequality for pairs of modal superpositions that lie on equatorial, polar, and arbitrary great circles of the Bloch sphere. Our work shows that SLMs can be used to measure arbitrary spatial states with a fidelity sufficient for appropriate quantum information processing systems.
Linear and nonlinear waves with orbital angular momentum in magnetized plasma
Ali, Shahid; Kant Shukla, Padma; Tito Mendonca, José.
2009-11-01
Here we discuss the concept of orbital angular momentum (OAM) for electromagnetic waves in a magnetized plasma. Nonlinear effects of photons with spin and OAM will be considered. In particular, we examine the case of parametric interactions between circularly polarized electromagnetic waves and Langmuir and ion acoustic waves, including the ponderomotive force of light with OAM in magnetized plasma (Shukla & Stenflo, PRA). This will be a generalization of recent results published in PRL by J.T. Mendonca and B. Thide. We also examine the influence of OAM on the magnetic field generation by the inverse Faraday effect.
Hang Liu
2016-08-01
Full Text Available In this paper, we investigate the angular momentum independence of the entropy sum and product for AdS rotating black holes based on the first law of thermodynamics and a mathematical lemma related to Vandermonde determinant. The advantage of this method is that the explicit forms of the spacetime metric, black hole mass and charge are not needed but the Hawking temperature and entropy formula on the horizons are necessary for static black holes, while our calculations require the expressions of metric and angular velocity formula. We find that the entropy sum is always independent of angular momentum for all dimensions and the angular momentum-independence of entropy product only holds for the dimensions d>4 with at least one rotation parameter ai=0, while the mass-free of entropy sum and entropy product for rotating black holes only stand for higher dimensions (d>4 and for all dimensions, respectively. On the other hand, we find that the introduction of a negative cosmological constant does not affect the angular momentum-free of entropy sum and product but the criterion for angular momentum-independence of entropy product will be affected.
Mainland, G.B.
1988-01-01
Zero four-momentum, helicity eigenstates of the Bethe--Salpeter equation are found for a composite system consisting of a charged, spin-0 constituent and a charged, spin- 1/2 constituent bound by minimal electrodynamics. The form of the Bethe--Salpeter equation used to describe the bound state includes the contributions from both single photon exchange (ladder approximation) and the ''seagull'' diagram. Attention is restricted to zero orbital angular momentum states since these appear to be the most interesting physically
Quantum information with even and odd states of orbital angular momentum of light
Perumangatt, Chithrabhanu, E-mail: chithrabhanu@prl.res.in [Physical Research laboratory, Navarangpura, Ahmedabad, 380009 (India); Lal, Nijil [Physical Research laboratory, Navarangpura, Ahmedabad, 380009 (India); IIT Gandhinagar, Palaj, Ahmedabad, 382355 (India); Anwar, Ali [Physical Research laboratory, Navarangpura, Ahmedabad, 380009 (India); Gangi Reddy, Salla [University of Electro-communications, Chofu, Tokyo, 1828585 (Japan); Singh, R.P. [Physical Research laboratory, Navarangpura, Ahmedabad, 380009 (India)
2017-06-15
We address the possibility of using even/odd states of orbital angular momentum (OAM) of photons for the quantum information tasks. Single photon qubit states and two photon entangled states in even/odd basis of OAM are considered. We present a method for the tomography and general projective measurement in even/odd basis. With the general projective measurement, we show the Bell violation and quantum cryptography with Bell's inequality. We also describe hyper and hybrid entanglement of even/odd OAM states along with polarization, which can be applied in the implementation of quantum protocols like super dense coding. - Highlights: • We propose to use even and odd states of orbital angular momentum (OAM) of light for quantum information tasks. • We describe the OAM qubits and entangled states in even/odd basis and the corresponding projective operators. • We present a method for the tomography and the Bell's inequality violation for photons entangled in even/odd OAM states. • We also describe hyper and hybrid entanglement of even/odd OAM states along with polarization and their applications.
Relativistic low angular momentum accretion: long time evolution of hydrodynamical inviscid flows
Mach, Patryk; Piróg, Michał; Font, José A.
2018-05-01
We investigate relativistic low angular momentum accretion of inviscid perfect fluid onto a Schwarzschild black hole. The simulations are performed with a general-relativistic, high-resolution (second-order), shock-capturing, hydrodynamical numerical code. We use horizon-penetrating Eddington–Finkelstein coordinates to remove inaccuracies in regions of strong gravity near the black hole horizon and show the expected convergence of the code with the Michel solution and stationary Fishbone–Moncrief toroids. We recover, in the framework of relativistic hydrodynamics, the qualitative behavior known from previous Newtonian studies that used a Bondi background flow in a pseudo-relativistic gravitational potential with a latitude-dependent angular momentum at the outer boundary. Our models exhibit characteristic ‘turbulent’ behavior and the attained accretion rates are lower than those of the Bondi–Michel radial flow. For sufficiently low values of the asymptotic sound speed, geometrically thick tori form in the equatorial plane surrounding the black hole horizon while accretion takes place mainly through the poles.
S0 galaxies are faded spirals: clues from their angular momentum content
Rizzo, Francesca; Fraternali, Filippo; Iorio, Giuliano
2018-05-01
The distribution of galaxies in the stellar specific angular momentum versus stellar mass plane (j⋆ - M⋆) provides key insights into their formation mechanisms. In this paper, we determine the location in this plane of a sample of 10 field/group unbarred lenticular (S0) galaxies from the Calar Alto Legacy Integral Field Area survey. We performed a bulge-disc decomposition both photometrically and kinematically to study the stellar specific angular momentum of the disc components alone and understand the evolutionary links between S0s and other Hubble types. We found that eight of our S0 discs have a distribution in the j⋆ - M⋆ plane that is fully compatible with that of spiral discs, while only two have values of j⋆ lower than the spirals. These two outliers show signs of recent merging. Our results suggest that merger and interaction processes are not the dominant mechanisms in S0 formation in low-density environments. Instead, S0s appear to be the result of secular processes and the fading of spiral galaxies after the shutdown of star formation.
Rotational broadening and conservation of angular momentum in post-extreme horizontal branch stars
Fontaine, G.; Latour, M.
2018-06-01
We show that the recent realization that isolated post-extreme horizontal branch (post-EHB) stars are generally characterized by rotational broadening with values of V rot sini between 25 and 30 km s-1 can be explained as a natural consequence of the conservation of angular momentum from the previous He-core burning phase on the EHB. The progenitors of these evolved objects, the EHB stars, are known to be slow rotators with an average value of V rot sini of 7.7 km s-1. This implies significant spin-up between the EHB and post-EHB phases. Using representative evolutionary models of hot subdwarf stars, we demonstrate that angular momentum conservation in uniformly rotating structures (rigid-body rotation) boosts that value of the projected equatorial rotation speed by a factor 3.6 by the time the model has reached the region of the surface gravity-effective temperature plane where the newly-studied post-EHB objects are found. This is exactly what is needed to account for their observed atmospheric broadening. We note that the decrease of the moment of inertia causing the spin-up is mostly due to the redistribution of matter that produces more centrally-condensed structures in the post-EHB phase of evolution, not to the decrease of the radius per se.
Chen, Rui-Pin; Chen, Zhaozhong; Chew, Khian-Hooi; Li, Pei-Gang; Yu, Zhongliang; Ding, Jianping; He, Sailing
2015-05-29
A caustic vector vortex optical field is experimentally generated and demonstrated by a caustic-based approach. The desired caustic with arbitrary acceleration trajectories, as well as the structured states of polarization (SoP) and vortex orders located in different positions in the field cross-section, is generated by imposing the corresponding spatial phase function in a vector vortex optical field. Our study reveals that different spin and orbital angular momentum flux distributions (including opposite directions) in different positions in the cross-section of a caustic vector vortex optical field can be dynamically managed during propagation by intentionally choosing the initial polarization and vortex topological charges, as a result of the modulation of the caustic phase. We find that the SoP in the field cross-section rotates during propagation due to the existence of the vortex. The unique structured feature of the caustic vector vortex optical field opens the possibility of multi-manipulation of optical angular momentum fluxes and SoP, leading to more complex manipulation of the optical field scenarios. Thus this approach further expands the functionality of an optical system.
Symmetry broken and restored coupled-cluster theory: I. Rotational symmetry and angular momentum
Duguet, T
2015-01-01
We extend coupled-cluster (CC) theory performed on top of a Slater determinant breaking rotational symmetry to allow for the exact restoration of the angular momentum at any truncation order. The main objective relates to the description of near-degenerate finite quantum systems with an open-shell character. As such, the newly developed many-body formalism offers a wealth of potential applications and further extensions dedicated to the ab initio description of, e.g., doubly open-shell atomic nuclei and molecule dissociation. The formalism, which encompasses both single-reference CC theory and projected Hartree–Fock theory as particular cases, permits the computation of usual sets of connected diagrams while consistently incorporating static correlations through the highly non-perturbative restoration of rotational symmetry. Interestingly, the yrast spectroscopy of the system, i.e. the lowest energy associated with each angular momentum, is accessed within a single calculation. A key difficulty presently overcome relates to the necessity to handle generalized energy and norm kernels for which naturally terminating CC expansions could be eventually obtained. The present work focuses on SU(2) but can be extended to any (locally) compact Lie group and to discrete groups, such as most point groups. In particular, the formalism will be soon generalized to U(1) symmetry associated with particle number conservation. This is relevant to Bogoliubov CC theory that was recently applied to singly open-shell nuclei. (paper)
Exploring dissipative processes at high angular momentum in 58Ni+60Ni reactions
Williams E.
2016-01-01
Full Text Available Current coupled channels (CC models treat fusion as a coherent quantum-mechanical process, in which coupling between the collective states of the colliding nuclei influences the probability of fusion in near-barrier reactions. While CC models have been used to successfully describe many experimental fusion barrier distribution (BD measurements, the CC approach has failed in the notable case of 16O+208Pb. The reason for this is poorly understood; however, it has been postulated that dissipative processes may play a role. Traditional BD experiments can only probe the physics of fusion for collisions at the top of the Coulomb barrier (L = 0ħ. In this work, we will present results using a novel method of probing dissipative processes inside the Coulomb barrier. The method exploits the predicted sharp onset of fission at L ~ 60ħ for reactions forming compound nuclei with A < 160. Using the ANU’s 14UD tandem accelerator and CUBE spectrometer, reaction outcomes have been measured for the 58Ni+60Ni reaction at a range of energies, in order to explore dissipative processes at high angular momentum. In this reaction, deep inelastic processes have been found to set in before the onset fission at high angular momentum following fusion. The results will be discussed in relation to the need for a dynamical model of fusion.
Real-time imaging of spin-to-orbital angular momentum hybrid remote state preparation
Erhard, Manuel; Qassim, Hammam; Mand, Harjaspreet; Karimi, Ebrahim; Boyd, Robert W.
2015-08-01
There exists two prominent methods to transfer information between two spatially separated parties, namely Alice (A) and Bob (B): quantum teleportation and remote state preparation. However, the difference between these methods is, in the teleportation scheme, the state to be transferred is completely unknown, whereas in state preparation it should be known to the sender. In addition, photonic state teleportation is probabilistic due to the impossibility of performing a two-particle complete Bell-state analysis with linear optics, while remote state preparation can be performed deterministically. Here we report the first realization of photonic hybrid remote state preparation from spin to orbital angular momentum degrees of freedom. In our scheme, the polarization state of photon A is transferred to orbital angular momentum of photon B. The prepared states are visualized in real time by means of an intensified CCD camera. The quality of the prepared states is verified by performing quantum state tomography, which confirms an average fidelity higher than 99.4%. We believe that this experiment paves the way towards a novel means of quantum communication in which encryption and decryption are carried out in naturally different Hilbert spaces, and therefore may provide a means for enhancing security.
Angular momentum transfer in primordial discs and the rotation of the first stars
Hirano, Shingo; Bromm, Volker
2018-05-01
We investigate the rotation velocity of the first stars by modelling the angular momentum transfer in the primordial accretion disc. Assessing the impact of magnetic braking, we consider the transition in angular momentum transport mode at the Alfvén radius, from the dynamically dominated free-fall accretion to the magnetically dominated solid-body one. The accreting protostar at the centre of the primordial star-forming cloud rotates with close to breakup speed in the case without magnetic fields. Considering a physically motivated model for small-scale turbulent dynamo amplification, we find that stellar rotation speed quickly declines if a large fraction of the initial turbulent energy is converted to magnetic energy (≳ 0.14). Alternatively, if the dynamo process were inefficient, for amplification due to flux freezing, stars would become slow rotators if the pre-galactic magnetic field strength is above a critical value, ≃10-8.2 G, evaluated at a scale of nH = 1 cm-3, which is significantly higher than plausible cosmological seed values (˜10-15 G). Because of the rapid decline of the stellar rotational speed over a narrow range in model parameters, the first stars encounter a bimodal fate: rapid rotation at almost the breakup level, or the near absence of any rotation.
Angular-momentum-projected cranked HFB approach to the study of nuclear rotations
Wuest, E.; Ansari, A.; Mosel, U.
1985-01-01
Employing a pairing-plus-quadrupole interaction hamiltonian and projecting out good angular momentum states from the cranked Hartree-Fock-Bogoliubov (CHFB) intrinsic wave functions the yrast spectra of 158 Dy and 168 Yb are calculated up to moderately high spins (Isub(max)=16) as to include the backbending region. Then the variation of pairing correlation, g-factor and rotational alignment of neutron spin as a function of total angular momentum is studied. The effect of particle number projection on the spin-projected CHFB wave functions is also investigated and is found to be unimportant for the calculation of g-factors. On the other hand, corrections of the excitation energies for number fluctuations in the CHFB wave functions are essential. Furthermore, looking at the distribution of the total projection quantum number K in various cranking wave functions we are able to throw some light on the Knot=0 nature of the aligned s-band. A variation-after-spin projection calculation strictly for the axial shape, without cranking, is also carried out for both the nuclei considered here. In the low-spin region this numerically 'cheaper' scheme produces energy spectra similar to that of the CHFB method, and may thus be used to readjust the interaction parameters. (orig.)
Ryabov, E.G.; Karpov, A.V.; Adeev, G.D.
2006-01-01
Dependence of fission fragments mass distribution on the angular momentum within Langevin dynamics is studied. The calculations are performed in the framework of the rotating temperature-dependent finite-range liquid drop model. The calculations are done for the five nuclei, representing heavy fissioning nuclei, medium fissioning nuclei and light fissioning one with the angular momentum varied in the wide range from l=0 to l=70-bar . The dependence coefficients dσ M 2 /dl 2 for the investigated nuclei are extracted. The comparison of the extracted values with the experimental data reveals a good agreement for all the cases (the heavy, medium, and light fissioning nuclei). It is found out that the obtained dependence of σ M 2 on l can be explained with the help of temperature at scission as a function of l. The latter dependence is determined by dependence of the mean prescission neutron multiplicity on l. The analysis of this dependence is done as a competition between fission process and neutron evaporation. 'Remembering of the former large fluctuations of mass asymmetry coordinate during descent from the saddle to scission' is considered. It is shown that the 'remembering effect' takes place, but does not play a crucial role for the investigated dependence of σ M 2 on l
The angular momentum-mass relation: a fundamental law from dwarf irregulars to massive spirals
Posti, Lorenzo; Fraternali, Filippo; Di Teodoro, Enrico M.; Pezzulli, Gabriele
2018-05-01
In a Λ CDM Universe, the specific stellar angular momentum (j*) and stellar mass (M*) of a galaxy are correlated as a consequence of the scaling existing for dark matter haloes (jh ∝2/3). The shape of this law is crucial to test galaxy formation models, which are currently discrepant especially at the lowest masses, allowing to constrain fundamental parameters, such as, for example, the retained fraction of angular momentum. In this study, we accurately determine the empirical j*-M* relation (Fall relation) for 92 nearby spiral galaxies (from S0 to Irr) selected from the Spitzer Photometry and Accurate Rotation Curves (SPARC) sample in the unprecedented mass range 7 ≲ log M*/M⊙≲ 11.5. We significantly improve all previous estimates of the Fall relation by determining j* profiles homogeneously for all galaxies, using extended HI rotation curves, and selecting only galaxies for which a robust j* could be measured (converged j*(http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/612/L6
Restrictions placed on constitutive relations by angular momentum balance and Galilean invariance
Rajagopal, K. R.; Srinivasa, A. R.
2013-04-01
In this note, we will show that for describing the response of a wide class of bodies, it is sufficient to invoke only the balance of angular momentum to obtain the restrictions on the constitutive functions that one obtains by appealing to frame indifference. While this result is known for hyperelastic materials (although it is not found in any standard text on the subject), we extend this result to classes of elasto-plastic and viscoelastic materials as well as for a class of implicit constitutive equations for viscous fluids. In particular, we show that for a class of bodies capable of instantaneous elastic response that is dictated by a stored energy function, the symmetry of the Cauchy stress alone is enough to obtain all the necessary restrictions. The result is related to Noether's theorem; if we know that there is a conserved quantity (i.e., angular momentum), we can then show that the energy function must be invariant under a group of transformations. For a class of generalized Newtonian fluids (including the Navier Stokes fluid and the Bingham fluid), the symmetry of the stress and Galilean invariance of the response functions are all that are required to obtain restrictions that are usually obtained by enforcing frame indifference.
Riley, M. A.; Simpson, J.; Paul, E. S.
2016-12-01
In 1974 Aage Bohr and Ben Mottelson predicted the different ‘phases’ that may be expected in deformed nuclei as a function of increasing angular momentum and excitation energy all the way up to the fission limit. While admitting their picture was highly conjectural they confidently stated ‘...with the ingenious experimental approaches that are being developed, we may look forward with excitement to the detailed spectroscopic studies that will illuminate the behaviour of the spinning quantised nucleus’. High resolution gamma-ray spectroscopy has indeed been a major tool in studying the structure of atomic nuclei and has witnessed numerous significant advances over the last four decades. This article will select highlights from investigations at the Niels Bohr Institute, Denmark, and Daresbury Laboratory, UK, in the late 1970s and early 1980s, some of which have continued at other national laboratories in Europe and the USA to the present day. These studies illustrate the remarkable diversity of phenomena and symmetries exhibited by nuclei in the angular momentum-excitation energy plane that continue to surprise and fascinate scientists.
Angular-momentum-assisted dissociation of CO in strong optical fields
Mullin, Amy; Ogden, Hannah; Murray, Matthew; Liu, Qingnan; Toro, Carlos
2017-04-01
Filaments are produced in CO gas by intense, chirped laser pulses. Visible emission from C2 is observed as a result of chemical reactions of highly excited CO. At laser intensities greater than 1014 W cm-2, the C2 emission shows a strong dependence on laser polarization. Oppositely chirped pulses of light with ω0 = 800 nm are recombined spatially and temporally to generate angularly accelerating electric fields (up to 30 THz) that either have an instantaneous linear polarization or act as a dynamic polarization grating that oscillates among linear and circular polarizations. The angularly accelerating linear polarization corresponds to an optical centrifuge that concurrently drives molecules into high rotational states (with J 50) and induces strong-field dissociation. Higher order excitation is observed for the time-varying laser polarization configuration that does not induce rotational excitation. The results indicate that the presence of rotational angular momentum lowers the threshold for CO dissociation in strong optical fields by coupling nuclear and electronic degrees of freedom. Support from NSF CHE-1058721 and the University of Maryland.
Transverse momentum dependence of the angular distribution of the Drell-Yan process
Berger, Edmond L.; Qiu Jianwei; Rodriguez-Pedraza, Ricardo A.
2007-01-01
We calculate the transverse momentum Q perpendicular dependence of the helicity structure functions for the hadroproduction of a massive pair of leptons with pair invariant mass Q. These structure functions determine the angular distribution of the leptons in the pair rest frame. Unphysical behavior in the region Q perpendicular →0 is seen in the results of calculations done at fixed order in QCD perturbation theory. We use current conservation to demonstrate that the unphysical inverse-power and ln(Q/Q perpendicular ) logarithmic divergences in three of the four independent helicity structure functions share the same origin as the divergent terms in fixed-order calculations of the angular-integrated cross section. We show that the resummation of these divergences to all orders in the strong coupling strength α s can be reduced to the solved problem of the resummation of the divergences in the angular-integrated cross section, resulting in well-behaved predictions in the small Q perpendicular region. Among other results, we show the resummed part of the helicity structure functions preserves the Lam-Tung relation between the longitudinal and double spin-flip structure functions as a function of Q perpendicular to all orders in α s
Longuski, J. M.
1982-01-01
During a spin-up or spin-down maneuver of a spinning spacecraft, it is usual to have not only a constant body-fixed torque about the desired spin axis, but also small undesired constant torques about the transverse axes. This causes the orientation of the angular momentum vector to change in inertial space. Since an analytic solution is available for the angular momentum vector as a function of time, this behavior can be studied for large variations of the dynamic parameters, such as the initial spin rate, the inertial properties and the torques. As an example, the spin-up and spin-down maneuvers of the Galileo spacecraft was studied and as a result, very simple heuristic solutions were discovered which provide very good approximations to the parametric behavior of the angular momentum vector orientation.
On-chip spin-controlled orbital angular momentum directional coupling
Xie, Zhenwei; Lei, Ting; Si, Guangyuan; Du, Luping; Lin, Jiao; Min, Changjun; Yuan, Xiaocong
2018-01-01
Optical vortex beams have many potential applications in the particle trapping, quantum encoding, optical orbital angular momentum (OAM) communications and interconnects. However, the on-chip compact OAM detection is still a big challenge. Based on a holographic configuration and a spin-dependent structure design, we propose and demonstrate an on-chip spin-controlled OAM-mode directional coupler, which can couple the OAM signal to different directions due to its topological charge. While the directional coupling function can be switched on/off by altering the spin of incident beam. Both simulation and experimental measurements verify the validity of the proposed approach. This work would benefit the on-chip OAM devices for optical communications and high dimensional quantum coding/decoding in the future.
Orbital angular momentum mode of Gaussian beam induced by atmospheric turbulence
Cheng, Mingjian; Guo, Lixin; Li, Jiangting; Yan, Xu; Dong, Kangjun
2018-02-01
Superposition theory of the spiral harmonics is employed to numerical study the transmission property of the orbital angular momentum (OAM) mode of Gaussian beam induced by atmospheric turbulence. Results show that Gauss beam does not carry OAM at the source, but various OAM modes appear after affected by atmospheric turbulence. With the increase of atmospheric turbulence strength, the smaller order OAM modes appear firstly, followed by larger order OAM modes. The beam spreading of Gauss beams in the atmosphere enhance with the increasing topological charge of the OAM modes caused by atmospheric turbulence. The mode probability density of the OAM generated by atmospheric turbulence decreases, and peak position gradually deviate from the Gauss beam spot center with the increase of the topological charge. Our results may be useful for improving the performance of long distance laser digital spiral imaging system.
Quantum Key Distribution with High Order Fibonacci-like Orbital Angular Momentum States
Pan, Ziwen; Cai, Jiarui; Wang, Chuan
2017-08-01
The coding space in quantum communication could be expanded to high-dimensional space by using orbital angular momentum (OAM) states of photons, as both the capacity of the channel and security are enhanced. Here we present a novel approach to realize high-capacity quantum key distribution (QKD) by exploiting OAM states. The innovation of the proposed approach relies on a unique type of entangled-photon source which produces entangled photons with OAM randomly distributed among high order Fiboncci-like numbers and a new physical mechanism for efficiently sharing keys. This combination of entanglement with mathematical properties of high order Fibonacci sequences provides the QKD protocol immunity to photon-number-splitting attacks and allows secure generation of long keys from few photons. Unlike other protocols, reference frame alignment and active modulation of production and detection bases are unnecessary.
Optical fiber design with orbital angular momentum light purity higher than 99.9.
Zhang, Zhishen; Gan, Jiulin; Heng, Xiaobo; Wu, Yuqing; Li, Qingyu; Qian, Qi; Chen, Dongdan; Yang, Zhongmin
2015-11-16
The purity of the synthesized orbital-angular-momentum (OAM) light in the fiber is inversely proportional to channel crosstalk level in the OAM optical fiber communication system. Here the relationship between the fiber structure and the purity is firstly demonstrated in theory. The graded-index optical fiber is proposed and designed for the OAM light propagation with the purity higher than 99.9%. 16 fiber modes (10 OAM modes) have been supported by a specific designed graded-index optical fiber with dispersion less than 35 ps/(km∙nm). Such fiber design has suppressed the intrinsic crosstalk to be lower than -30 dB, and can be potentially used for the long distance OAM optical communication system.
Mini-conference on Angular Momentum Transport in Laboratory and Nature
Ji, Hantao; Kronberg, Philipp; Prager, Stewart C.; Uzdensky, Dmitri A.
2008-01-01
This paper provides a concise summary of the current status of the research and future perspectives discussed in the Mini-Conference on Angular Momentum Transport in Laboratory and Nature. This Mini-conference, sponsored by the Topical Group on Plasma Astrophysics, was held as part of the American Physical Society's Division of Plasma Physics 2007 Annual Meeting (November 12-16, 2007). This Mini-conference covers a wide range of phenomena happening in fluids and plasmas, either in laboratory or in nature. The purpose of this paper is not to comprehensively review these phenomena, but to provide a starting point for interested readers to refer to related research in areas other than their own
Yu, Shixing; Li, Long, E-mail: lilong@mail.xidian.edu.cn, E-mail: gmshi@xidian.edu.cn; Shi, Guangming, E-mail: lilong@mail.xidian.edu.cn, E-mail: gmshi@xidian.edu.cn; Zhu, Cheng; Shi, Yan [National Key Laboratory of Antennas and Microwave Technology, School of Electronic Engineering, Collaborative Innovation Center of Information Sensing and Understanding, Xidian University, Xi' an 710071 (China)
2016-06-13
In this paper, an electromagnetic metasurface is designed, fabricated, and experimentally demonstrated to generate multiple orbital angular momentum (OAM) vortex beams in radio frequency domain. Theoretical formula of compensated phase-shift distribution is deduced and used to design the metasurface to produce multiple vortex radio waves in different directions with different OAM modes. The prototype of a practical configuration of square-patch metasurface is designed, fabricated, and measured to validate the theoretical analysis at 5.8 GHz. The simulated and experimental results verify that multiple OAM vortex waves can be simultaneously generated by using a single electromagnetic metasurface. The proposed method paves an effective way to generate multiple OAM vortex waves in radio and microwave wireless communication applications.
On the exchange of orbital angular momentum between twisted photons and atomic electrons
Davis, Basil S; Kaplan, L; McGuire, J H
2013-01-01
We obtain an expression for the matrix element for scattering of a twisted (Laguerre–Gaussian profile) photon from a hydrogen atom. We consider photons incoming with an orbital angular momentum (OAM) of ℓħ, carried by a factor of e iℓϕ not present in a plane-wave or pure Gaussian profile beam. The nature of the transfer of +2ℓ units of OAM from the photon to the azimuthal atomic quantum number of the atom is investigated. We obtain simple formulas for these OAM flip transitions for elastic forward scattering of twisted photons when the photon wavelength λ is large compared with the atomic target size a, and small compared with the Rayleigh range z R , which characterizes the collimation length of the twisted photon beam. (paper)
Wigner functions for angle and orbital angular momentum. Operators and dynamics
Kastrup, Hans A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Gruppe Theorie
2017-02-15
Recently a paper on the construction of consistent Wigner functions for cylindrical phase spaces S{sup 1} x R, i.e. for the canonical pair angle and orbital angular momentum, was presented, main properties of those functions derived, discussed and their usefulness illustrated by examples. The present paper is a continuation which compares properties of the new Wigner functions for cylindrical phase spaces with those of the well-known Wigner functions on planar ones in more detail. Furthermore, the mutual (Weyl) correspondence between HIlbert space operators and their phase space functions is discussed. The * product formalism is shown to be completely implementable. In addition basic dynamical laws for Wigner and Moyal functions are derived as generalized Liouville and energy equations. They are very similar to those of the planar case, but also show characteristic differences.
Wigner functions for angle and orbital angular momentum. Operators and dynamics
Kastrup, Hans A.
2017-02-01
Recently a paper on the construction of consistent Wigner functions for cylindrical phase spaces S"1 x R, i.e. for the canonical pair angle and orbital angular momentum, was presented, main properties of those functions derived, discussed and their usefulness illustrated by examples. The present paper is a continuation which compares properties of the new Wigner functions for cylindrical phase spaces with those of the well-known Wigner functions on planar ones in more detail. Furthermore, the mutual (Weyl) correspondence between HIlbert space operators and their phase space functions is discussed. The * product formalism is shown to be completely implementable. In addition basic dynamical laws for Wigner and Moyal functions are derived as generalized Liouville and energy equations. They are very similar to those of the planar case, but also show characteristic differences.
Behaviour of 144Gd at very high angular momentum. Study of the continuum
Nourreddine, A.
1984-01-01
The specific physical concepts that dictated the choice of 144 Gd for the present high spin study are presented in the first part of this work. The second part describes the various formalisms and techniques used to extract the multiplicities, multipolarities and moments of inertia from continuous γ ray spectra. The third part relates the results of the quasi-continuum γ ray of 144 Gd formed in the fusion-evaporation reaction 120 Sn( 28 Si, 4nγ) with four bombarding energies. A detailed balance of energy and angular momentum of the compound nucleus desexcitation has been given. Finally the evolution of the nuclear shape as a function of spin has been determined from the experimental data and interpreted by a combined micro and macroscopic theoretical calculations using a Woods-Saxon potential [fr
Macroscopic angular momentum states of Bose-Einstein condensates in toroidal traps
Benakli, M.; Raghavan, S.; Fantoni, S.; Shenoy, S.R.; Smerzi, A.
1997-11-01
We consider a Bose-Einstein condensate (BEC) of N atoms of repulsive interaction ∼ U 0 , in an elliptical trap, axially pierced by a Gaussian-intensity laser beam, forming an effective (quasi-2D) toroidal trap with minimum at radial distance ρ = ρ p . The macroscopic angular momentum states Ψ l (ρ,θ) ∼ √NΦ l (ρ)e ilθ for integer l spread up to ρ max ∼ (NU 0 ) 1/4 >> ρ p . The spreading lowers rotational energies, so estimated low metastability barriers can support large l max ∼ (NU 0 ) 1/4 , l (ρ) 2 -Φ 0 (ρ) 2 is a signature of BEC rotation. Results are insensitive to off-axis laser displacements ρ 0 , for ρ 0 ρ max << 1. (author)
Zhang, Wuhong; Su, Ming; Wu, Ziwen; Lu, Meng; Huang, Bingwei; Chen, Lixiang
2013-01-01
Twisted photons enable the definition of a Hilbert space beyond two dimensions by orbital angular momentum (OAM) eigenstates. Here we propose a feasible entanglement concentration experiment, to enhance the quality of high-dimensional entanglement shared by twisted photon pairs. Our approach is started from the full characterization of entangled spiral bandwidth, and is then based on the careful selection of the Laguerre–Gaussian (LG) modes with specific radial and azimuthal indices p and ℓ. In particular, we demonstrate the possibility of high-dimensional entanglement concentration residing in the OAM subspace of up to 21 dimensions. By means of LabVIEW simulations with spatial light modulators, we show that the Shannon dimensionality could be employed to quantify the quality of the present concentration. Our scheme holds promise in quantum information applications defined in high-dimensional Hilbert space. (letter)
LDPC-coded orbital angular momentum (OAM) modulation for free-space optical communication.
Djordjevic, Ivan B; Arabaci, Murat
2010-11-22
An orbital angular momentum (OAM) based LDPC-coded modulation scheme suitable for use in FSO communication is proposed. We demonstrate that the proposed scheme can operate under strong atmospheric turbulence regime and enable 100 Gb/s optical transmission while employing 10 Gb/s components. Both binary and nonbinary LDPC-coded OAM modulations are studied. In addition to providing better BER performance, the nonbinary LDPC-coded modulation reduces overall decoder complexity and latency. The nonbinary LDPC-coded OAM modulation provides a net coding gain of 9.3 dB at the BER of 10(-8). The maximum-ratio combining scheme outperforms the corresponding equal-gain combining scheme by almost 2.5 dB.
Superposition of two optical vortices with opposite integer or non-integer orbital angular momentum
Carlos Fernando Díaz Meza
2016-01-01
Full Text Available This work develops a brief proposal to achieve the superposition of two opposite vortex beams, both with integer or non-integer mean value of the orbital angular momentum. The first part is about the generation of this kind of spatial light distributions through a modified Brown and Lohmann’s hologram. The inclusion of a simple mathematical expression into the pixelated grid’s transmittance function, based in Fourier domain properties, shifts the diffraction orders counterclockwise and clockwise to the same point and allows the addition of different modes. The strategy is theoretically and experimentally validated for the case of two opposite rotation helical wavefronts.
850-nm hybrid fiber/free-space optical communications using orbital angular momentum modes
Jurado-Navas, Antonio; Tatarczak, Anna; Lu, Xiaofeng
2015-01-01
Light beams can carry orbital angular momentum (OAM) associated to the helicity of their phasefronts. These OAM modes can be employed to encode information onto a laser beam for transmitting not only in a fiber link but also in a free-space optical (FSO) one. Regarding this latter scenario, FSO...... communications are considered as an alternative and promising mean complementing the traditional optical communications in many applications where the use of fiber cable is not justified. This next generation FSO communication systems have attracted much interest recently, and the inclusion of beams carrying OAM...... modes can be seen as an efficient solution to increase the capacity and the security in the link. In this paper, we discuss an experimental demonstration of a proposal for next generation FSO communication system where a light beam carrying different OAM modes and affected by M turbulence is coupled...
Anderson, Roger W.; Aquilanti, Vincenzo; Silva Ferreira, Cristiane da
2008-01-01
Spin networks, namely, the 3nj symbols of quantum angular momentum theory and their generalizations to groups other than SU(2) and to quantum groups, permeate many areas of pure and applied science. The issues of their computation and characterization for large values of their entries are a challenge for diverse fields, such as spectroscopy and quantum chemistry, molecular and condensed matter physics, quantum computing, and the geometry of space time. Here we record progress both in their efficient calculation and in the study of the large j asymptotics. For the 9j symbol, a prototypical entangled network, we present and extensively check numerically formulas that illustrate the passage to the semiclassical limit, manifesting both the occurrence of disentangling and the discrete-continuum transition.
Bai, Zhengyang; Xu, Datang; Huang, Guoxiang
2017-01-23
We propose a scheme to realize the storage and retrieval of high-dimensional electromagnetic waves with orbital angular momentum (OAM) via plasmon-induced transparency (PIT) in a metamaterial, which consists of an array of meta-atoms constructed by a metallic structure loaded with two varactors. We show that due to PIT effect the system allows the existence of shape-preserving dark-mode plasmonic polaritons, which are mixture of electromagnetic-wave modes and dark oscillatory modes of the meta-atoms and may carry various OAMs. We demonstrate that the slowdown, storage and retrieval of multi-mode electromagnetic waves with OAMs can be achieved through the active manipulation of a control field. Our work raises the possibility for realizing PIT-based spatial multi-mode memory of electromagnetic waves and is promising for practical application of information processing with large capacity by using room-temperature metamaterials.
Wang, Andong; Zhu, Long; Liu, Jun; Du, Cheng; Mo, Qi; Wang, Jian
2015-11-16
Mode-division multiplexing passive optical network (MDM-PON) is a promising scheme for next-generation access networks to further increase fiber transmission capacity. In this paper, we demonstrate the proof-of-concept experiment of hybrid mode-division multiplexing (MDM) and time-division multiplexing (TDM) PON architecture by exploiting orbital angular momentum (OAM) modes. Bidirectional transmissions with 2.5-Gbaud 4-level pulse amplitude modulation (PAM-4) downstream and 2-Gbaud on-off keying (OOK) upstream are demonstrated in the experiment. The observed optical signal-to-noise ratio (OSNR) penalties for downstream and upstream transmissions at a bit-error rate (BER) of 2 × 10(-3) are less than 2.0 dB and 3.0 dB, respectively.
Inclusive breakup calculations in angular momentum basis: Application to 7Li+58Ni
Lei, Jin
2018-03-01
The angular momentum basis method is introduced to solve the inclusive breakup problem within the model proposed by Ichimura, Austern, and Vincent [Phys. Rev. C 32, 431 (1985), 10.1103/PhysRevC.32.431]. This method is based on the geometric transformation between different Jacobi coordinates, in which the particle spins can be included in a natural and efficient way. To test the validity of this partial wave expansion method, a benchmark calculation is done comparing with the one given by Lei and Moro [Phys. Rev. C 92, 044616 (2015), 10.1103/PhysRevC.92.044616]. In addition, using the distorted-wave Born approximation version of the IAV model, applications to 7Li+58Ni reactions at energies around Coulomb barrier are presented and compared with available data.
Angular momentum projection on a mesh of cranked Hartree-Fock wave functions
Baye, D.; Heenen, P.
1984-01-01
A method for projecting on angular momentum wave functions discretized on a three-dimensional Cartesian mesh is presented. The method is based on a matrix representation of the rotation operator. It is applied to cranked Hartree-Fock wave functions calculated for 24 Mg with a simple interaction. In this case, the accuracy of the projected matrix elements is estimated to be of the order of 0.1%. An extensive comparison of the projected and cranking energies is made. The validity of the cranking method as an approximation to a variation-after-projection calculation seems to be wider than usually expected. The study of the fission barrier of 24 Mg for the channel 4 He- 16 O- 4 He shows that the cranking predictions for these very deformed states are quite reliable
The Chiral and Angular Momentum Content of the ρ-Meson
Glozman, L. Ya.; Lang, C. B.; Limmer, M.
2010-01-01
It is possible to define and calculate in a gauge-invariant manner the chiral as well as the partial wave content of the quark-antiquark Fock component of a meson in the infrared, where mass is generated. Using the variational method and a set of interpolators that span a complete chiral basis we extract in a lattice QCD Monte Carlo simulation with n f = 2 dynamical light quarks the orbital angular momentum and spin content of the ρ-meson. We obtain in the infrared a simple 3 S 1 component as a leading component of the ρ-meson with a small admixture of the 3 D 1 partial wave, in agreement with the SU(6) flavor-spin symmetry.
Excitation energy and angular momentum dependence of the nuclear level densities
Razavi, R.; Kakavand, T.; Behkami, A. N.
2007-01-01
We have investigated the excitation energy (E) dependence of nuclear level density for Bethe formula and constant temperature model. The level density parameter aa nd the back shifted energy from the Bethe formula are obtained by fitting the complete level schemes. Also the level density parameters from the constant temperature model have been determined for several nuclei. we have shown that the microscopic theory provides more precise information on the nuclear level densities. On the other hand, the spin cut-off parameter and effective moment of inertia are determined by studying of the angular momentum (J) dependence of the nuclear level density, and effective moment of inertia is compared with rigid body value.
The detection of objects in a turbid underwater medium using orbital angular momentum (OAM)
Cochenour, Brandon; Rodgers, Lila; Laux, Alan; Mullen, Linda; Morgan, Kaitlyn; Miller, Jerome K.; Johnson, Eric G.
2017-05-01
We present an investigation of the optical property of orbital angular momentum (OAM) for use in the detection of objects obscured by a turbid underwater channel. In our experiment, a target is illuminated by a Gaussian beam. An optical vortex is formed by passing the object-reflected and backscattered light through a diffractive spiral phase plate at the receiver, which allows for the spatial separation of coherent and non-coherent light. This provides a method for discriminating target from environment. Initial laboratory results show that the ballistic target return can be detected 2-3 orders of magnitude below the backscatter clutter level. Furthermore, the detection of this coherent component is accomplished with the use of a complicated optical heterodyning scheme. The results suggest new optical sensing techniques for underwater imaging or LIDAR.
Isospin and angular momentum effects in the peripheral heavy ion reactions
Jouault, B.; De La Mota, V.; Sebille, F.; Royer, G.; Lecolley, J. F.
1997-01-01
The semi-classical Landau Vlasov model has been used to investigate the decay modes of peripheral Pb + Au reactions at 29 MeV/n. Statics and dynamics of these very massive nuclei are analyzed especially through the isospin dependence of the effective nuclear force. The degree of dissipation of the collisions is studied for different bins of impact parameter pointing out the influence of the nucleon-nucleon cross section. The appearance of intermediate mass fragments from neck-like structures is evidenced and the effects of angular momentum transfers are shown to play a fundamental role in this phenomenon. The theoretical results are compared with experimental data, showing the importance of the dynamical and out of equilibrium effects on the observables. (authors)
Kuzminski, J.
1980-01-01
The collective processes in collision of heavy-ions with atomic nuclei are discussed. Measured data on the S+Ti collision at Esub(LAB)=105, 130 and 144 MeV have been analysed in terms of a ''fission-like'' processes which seem to be a special case of deep inelastic collisions whose total available kinetic energy is completely dissipated. Applying transport theory it was possible to introduce a ''clock'' for measuring the time scale of nuclear processes in collision of heavy-ions by measuring the FWHM of mass distribution of emitted reaction products. Experimental data on continuum gamma spectra from Cu+Au collision at Esub(LAB)=400 MeV are presented and the angular momentum dissipation in this reaction is discussed. (author)
Angular momentum effects in the fusion of "2"8Si+"2"8Si system
Choudhary, Atul; Verma, Dalip Singh
2016-01-01
In the heavy ion fusion reactions the interaction potential plays an important role as it provides the characteristics like barrier height, barrier position and barrier width in the calculations of fusion cross section. This means different types of interaction potential gives different fusion cross sections or potential parameters are predicted w.r.t the experimental data. In the literature, number of formalism for the calculation of fusion cross sections assumes that the potential barrier position and width is independent of angular momentum (ℓ). However, all the three potential characteristics are ℓ-dependent and are used in the calculation the fusion cross section for a positive Q-value system, "2"8Si+"2"8Si (Q = 10.9 MeV) and is compared with the recently measured fusion cross section
Lyubopytov, Vladimir; Porfirev, Alexey P.; Gurbatov, Stanislav O.
2017-01-01
In this paper, we experimentally demonstrate simultaneous wavelength and orbital angular momentum (OAM) multiplexing/demultiplexing of 10 Gbit/s data streams using a new on-chip micro-component-tunable MEMS-based Fabry-Perot filter integrated with a spiral phase plate. In the experiment, two......, maximum power penalties at the HD-FEC BER threshold relative to the 0.8 nm wavelength spacing read 0.83, 0.84 and 1.15 dB when multiplexing a Gaussian beam and OAM beams of 1st, 2nd and 3rd orders respectively. The novelty and impact of the proposed filter design is in providing practical, integrable...
Mimicking Faraday rotation to sort the orbital angular momentum of light.
Zhang, Wuhong; Qi, Qianqian; Zhou, Jie; Chen, Lixiang
2014-04-18
The efficient separation of the orbital angular momentum (OAM) is essential to both the classical and quantum applications with twisted photons. Here we devise and demonstrate experimentally an efficient method of mimicking the Faraday rotation to sort the OAM based on the OAM-to-polarization coupling effect induced by a modified Mach-Zehnder interferometer. Our device is capable of sorting the OAM of positive and negative numbers, as well as their mixtures. Furthermore, we report the first experimental demonstration to sort optical vortices of noninteger charges. The possibility of working at the photon-count level is also shown using an electron-multiplying CCD camera. Our scheme holds promise for quantum information applications with single-photon entanglement and for high-capacity communication systems with polarization and OAM multiplexing.
An experimental approach to angular momentum transfer in heavy ion reactions
Babinet, R.
1980-01-01
The current experimental status on angular momentum transfer status in heavy ion reactions is reviewed. After a short presentation of the basic theoretical concepts that are underlying all the research works in this field, the experimental techniques that have been commonly used are presented. Results obtained by the γ-multiplicity method are discussed first. Then come, for the very heavy systems, the sequential fission data, followed by the results of a recent experiment on light charged particles. The simple theoretical concepts that are introduced first are continuously used as guidelines to discuss the following results. The respective advantages but also the basic limitations of the above three experimental techniques are exposed. Although they are expected to work best in different regions of the mass table, it is shown, that they give complementary informations which have been most useful in improving our understanding of the tangential friction mechanism
The angular momentum controversy: What’s it all about and does it matter?
Leader, Elliot, E-mail: e.leader@imperial.ac.uk [Imperial College London, Prince Consort Road, London SW7 2AZ (United Kingdom); Lorcé, Cédric, E-mail: lorce@ipno.in2p3.fr [IPNO, Université Paris-Sud, CNRS/IN2P3, 91406 Orsay (France); IFPA, AGO Department, Université de Liège, Sart-Tilman, 4000 Liège (Belgium)
2014-08-20
The general question, crucial to an understanding of the internal structure of the nucleon, of how to split the total angular momentum of a photon or gluon into spin and orbital contributions is one of the most important and interesting challenges faced by gauge theories like Quantum Electrodynamics and Quantum Chromodynamics. This is particularly challenging since all QED textbooks state that such a splitting cannot be done for a photon (and a fortiori for a gluon) in a gauge-invariant way, yet experimentalists around the world are engaged in measuring what they believe is the gluon spin! This question has been a subject of intense debate and controversy, ever since, in 2008, it was claimed that such a gauge-invariant split was, in fact, possible. We explain in what sense this claim is true and how it turns out that one of the main problems is that such a decomposition is not unique and therefore raises the question of what is the most natural or physical choice. The essential requirement of measurability does not solve the ambiguities and leads us to the conclusion that the choice of a particular decomposition is essentially a matter of taste and convenience. In this review, we provide a pedagogical introduction to the question of angular momentum decomposition in a gauge theory, present the main relevant decompositions and discuss in detail several aspects of the controversies regarding the question of gauge invariance, frame dependence, uniqueness and measurability. We stress the physical implications of the recent developments and collect into a separate section all the sum rules and relations which we think experimentally relevant. We hope that such a review will make the matter amenable to a broader community and will help to clarify the present situation.
Twisting null geodesic congruences, scri, H-space and spin-angular momentum
Kozameh, Carlos; Newman, E T; Silva-Ortigoza, Gilberto
2005-01-01
The purpose of this work is to return, with a new observation and rather unconventional point of view, to the study of asymptotically flat solutions of Einstein equations. The essential observation is that from a given asymptotically flat spacetime with a given Bondi shear, one can find (by integrating a partial differential equation) a class of asymptotically shear-free (but, in general, twisting) null geodesic congruences. The class is uniquely given up to the arbitrary choice of a complex analytic world line in a four-parameter complex space. Surprisingly, this parameter space turns out to be the H-space that is associated with the real physical spacetime under consideration. The main development in this work is the demonstration of how this complex world line can be made both unique and also given a physical meaning. More specifically, by forcing or requiring a certain term in the asymptotic Weyl tensor to vanish, the world line is uniquely determined and becomes (by several arguments) identified as the 'complex centre of mass'. Roughly, its imaginary part becomes identified with the intrinsic spin-angular momentum while the real part yields the orbital angular momentum. One should think of this work as developing a generalization of the properties of the algebraically special spacetimes in the sense that the term that is forced here to vanish is automatically vanishing (among many other terms) for all the algebraically special metrics. This is demonstrated in the several given examples. It was, in fact, an understanding of the algebraically special metrics and their associated shear-free null congruence that led us to this construction of the asymptotically shear-free congruences and the unique complex world line. The Robinson-Trautman metrics and the Kerr and charged Kerr metrics with their properties are explicit examples of the construction given here
Quantifying the impact of mergers on the angular momentum of simulated galaxies
Lagos, Claudia del P.; Stevens, Adam R. H.; Bower, Richard G.; Davis, Timothy A.; Contreras, Sergio; Padilla, Nelson D.; Obreschkow, Danail; Croton, Darren; Trayford, James W.; Welker, Charlotte; Theuns, Tom
2018-02-01
We use EAGLE to quantify the effect galaxy mergers have on the stellar specific angular momentum of galaxies, jstars. We split mergers into dry (gas-poor)/wet (gas-rich), major/minor and different spin alignments and orbital parameters. Wet (dry) mergers have an average neutral gas-to-stellar mass ratio of 1.1 (0.02), while major (minor) mergers are those with stellar mass ratios ≥0.3 (0.1-0.3). We correlate the positions of galaxies in the jstars-stellar mass plane at z = 0 with their merger history, and find that galaxies of low spins suffered dry mergers, while galaxies of normal/high spins suffered predominantly wet mergers, if any. The radial jstars profiles of galaxies that went through dry mergers are deficient by ≈0.3 dex at r ≲ 10 r50 (with r50 being the half-stellar mass radius), compared to galaxies that went through wet mergers. Studying the merger remnants reveals that dry mergers reduce jstars by ≈30 per cent, while wet mergers increase it by ≈10 per cent, on average. The latter is connected to the build-up of the bulge by newly formed stars of high rotational speed. Moving from minor to major mergers accentuates these effects. When the spin vectors of the galaxies prior to the dry merger are misaligned, jstars decreases by a greater magnitude, while in wet mergers corotation and high orbital angular momentum efficiently spun-up galaxies. We predict what would be the observational signatures in the jstars profiles driven by dry mergers: (i) shallow radial profiles and (ii) profiles that rise beyond ≈10 r50, both of which are significantly different from spiral galaxies.
The angular momentum controversy: What’s it all about and does it matter?
Leader, Elliot; Lorcé, Cédric
2014-01-01
The general question, crucial to an understanding of the internal structure of the nucleon, of how to split the total angular momentum of a photon or gluon into spin and orbital contributions is one of the most important and interesting challenges faced by gauge theories like Quantum Electrodynamics and Quantum Chromodynamics. This is particularly challenging since all QED textbooks state that such a splitting cannot be done for a photon (and a fortiori for a gluon) in a gauge-invariant way, yet experimentalists around the world are engaged in measuring what they believe is the gluon spin! This question has been a subject of intense debate and controversy, ever since, in 2008, it was claimed that such a gauge-invariant split was, in fact, possible. We explain in what sense this claim is true and how it turns out that one of the main problems is that such a decomposition is not unique and therefore raises the question of what is the most natural or physical choice. The essential requirement of measurability does not solve the ambiguities and leads us to the conclusion that the choice of a particular decomposition is essentially a matter of taste and convenience. In this review, we provide a pedagogical introduction to the question of angular momentum decomposition in a gauge theory, present the main relevant decompositions and discuss in detail several aspects of the controversies regarding the question of gauge invariance, frame dependence, uniqueness and measurability. We stress the physical implications of the recent developments and collect into a separate section all the sum rules and relations which we think experimentally relevant. We hope that such a review will make the matter amenable to a broader community and will help to clarify the present situation
Valluri, S.R.; Romo, W.J.
1989-01-01
The dependence of the phase shift δ l (k) on the angular momentum l is investigated. An analytic expression for the derivative of the phase shift with respect to angular momentum is derived for a class of potentials that includes complex and real potentials. The potentials behave like the finite range potential for small r and like a Coulomb potential for large r. Specific examples like the square well, the pure point charge Coulomb and a combination of a square well and the Coulomb potential are analytically treated. Possible applications are briefly indicated. (orig.)
Riley, M A; Simpson, J; Paul, E S
2016-01-01
In 1974 Aage Bohr and Ben Mottelson predicted the different ‘phases’ that may be expected in deformed nuclei as a function of increasing angular momentum and excitation energy all the way up to the fission limit. While admitting their picture was highly conjectural they confidently stated ‘...with the ingenious experimental approaches that are being developed, we may look forward with excitement to the detailed spectroscopic studies that will illuminate the behaviour of the spinning quantised nucleus’ . High resolution gamma-ray spectroscopy has indeed been a major tool in studying the structure of atomic nuclei and has witnessed numerous significant advances over the last four decades. This article will select highlights from investigations at the Niels Bohr Institute, Denmark, and Daresbury Laboratory, UK, in the late 1970s and early 1980s, some of which have continued at other national laboratories in Europe and the USA to the present day. These studies illustrate the remarkable diversity of phenomena and symmetries exhibited by nuclei in the angular momentum–excitation energy plane that continue to surprise and fascinate scientists. (invited comment)
Quantum storage of orbital angular momentum entanglement in cold atomic ensembles
Shi, Bao-Sen; Ding, Dong-Sheng; Zhang, Wei
2018-02-01
Electromagnetic waves have both spin momentum and orbital angular momentum (OAM). Light carrying OAM has broad applications in micro-particle manipulation, high-precision optical metrology, and potential high-capacity optical communications. In the concept of quantum information, a photon encoded with information in its OAM degree of freedom enables quantum networks to carry much more information and increase their channel capacity greatly compared with those of current technology because of the inherent infinite dimensions for OAM. Quantum memories are indispensable to construct quantum networks. Storing OAM states has attracted considerable attention recently, and many important advances in this direction have been achieved during the past few years. Here we review recent experimental realizations of quantum memories using OAM states, including OAM qubits and qutrits at true single photon level, OAM states entangled in a two-dimensional or a high-dimensional space, hyperentanglement and hybrid entanglement consisting of OAM and other degree of freedom in a physical system. We believe that all achievements described here are very helpful to study quantum information encoded in a high-dimensional space.
Stimulated scattering of electromagnetic waves carrying orbital angular momentum in quantum plasmas.
Shukla, P K; Eliasson, B; Stenflo, L
2012-07-01
We investigate stimulated scattering instabilities of coherent circularly polarized electromagnetic (CPEM) waves carrying orbital angular momentum (OAM) in dense quantum plasmas with degenerate electrons and nondegenerate ions. For this purpose, we employ the coupled equations for the CPEM wave vector potential and the driven (by the ponderomotive force of the CPEM waves) equations for the electron and ion plasma oscillations. The electrons are significantly affected by the quantum forces (viz., the quantum statistical pressure, the quantum Bohm potential, as well as the electron exchange and electron correlations due to electron spin), which are included in the framework of the quantum hydrodynamical description of the electrons. Furthermore, our investigation of the stimulated Brillouin instability of coherent CPEM waves uses the generalized ion momentum equation that includes strong ion coupling effects. The nonlinear equations for the coupled CPEM and quantum plasma waves are then analyzed to obtain nonlinear dispersion relations which exhibit stimulated Raman, stimulated Brillouin, and modulational instabilities of CPEM waves carrying OAM. The present results are useful for understanding the origin of scattered light off low-frequency density fluctuations in high-energy density plasmas where quantum effects are eminent.
EVIDENCE FOR INFALLING GAS OF LOW ANGULAR MOMENTUM TOWARD THE L1551 NE KEPLERIAN CIRCUMBINARY DISK
Takakuwa, Shigehisa [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 10617, Taiwan (China); Saito, Masao [Joint ALMA Observatory, Ave. Alonso de Cordova 3107, Vitacura, Santiago (Chile); Lim, Jeremy [Department of Physics, University of Hong Kong, Pokfulam Road (Hong Kong); Saigo, Kazuya, E-mail: takakuwa@asiaa.sinica.edu.tw [ALMA Project Office, National Astronomical Observatory of Japan, Osawa 2-21-1, Mitaka, Tokyo 181-8588 (Japan)
2013-10-10
We report follow-up C{sup 18}O(3-2) line observations of the Class I binary protostellar system L1551 NE with the Submillimeter Array in its compact and subcompact configurations. Our previous observations at a higher angular resolution in the extended configuration revealed a circumbinary disk exhibiting Keplerian motion. The combined data, with more extensive spatial coverage (∼140-2000 AU), verify the presence of a Keplerian circumbinary disk and reveal for the first time a distinct low-velocity (∼< ± 0.5 km s{sup –1} from the systemic velocity) component that displays a velocity gradient along the minor axis of the circumbinary disk. Our simple model that reproduces the main features seen in the position-velocity diagrams comprises a circumbinary disk exhibiting Keplerian motion out to a radius of ∼300 AU, beyond which the gas exhibits pure infall at a constant velocity of ∼0.6 km s{sup –1}. This velocity is significantly smaller than the expected free-fall velocity of ∼2.2 km s{sup –1} onto the L1551 NE protostellar mass of ∼0.8 M{sub ☉} at ∼300 AU, suggesting that the infalling gas is decelerated as it moves into regions of high gas pressure in the circumbinary disk. The discontinuity in angular momenta between the outer infalling gas and the inner Keplerian circumbinary disk implies an abrupt transition in the effectiveness at which magnetic braking is able to transfer angular momentum outward, a result perhaps of the different plasma β values and the ionization fractions between the outer and inner regions of the circumbinary disk.
On the reversibility of the Meissner effect and the angular momentum puzzle
Hirsch, J.E.
2016-01-01
suppress Foucault currents, charge has to flow in direction perpendicular to the phase boundary. • The charge carriers have to be holes. • This solves also the angular momentum puzzle associated with the Meissner effect.
On the reversibility of the Meissner effect and the angular momentum puzzle
Hirsch, J.E., E-mail: jhirsch@ucsd.edu
2016-10-15
suppress Foucault currents, charge has to flow in direction perpendicular to the phase boundary. • The charge carriers have to be holes. • This solves also the angular momentum puzzle associated with the Meissner effect.
Frins, E [Universidad de la Republica, Montevideo (Uruguay); Dultz, W [J.W.v.Goethe Universitaet Frankfurt/Main (Germany); Schmitzer, H, E-mail: requalivahanus@t-online.de [Xavier University, Cincinnati (United States)
2011-01-01
Rotating small birefringent particles with the spin angular momentum of light is a key experiment of quantum optics. We derive the equation of motion of small retarders in viscose liquids, demonstrate their some times irregular rotation in polarized light, and discuss possible technical applications.
Javůrek, D.; Svozilík, J.; Peřina ml., Jan
2014-01-01
Roč. 90, č. 4 (2014), "043844-1"-"043844-12" ISSN 1050-2947 R&D Projects: GA ČR GAP205/12/0382 Institutional support: RVO:68378271 Keywords : photon pairs * orbital-angular-momentum-entangled * nonlinear ring fiber * spontaneous parametric down-conversion Subject RIV: BH - Optics , Masers, Lasers Impact factor: 2.808, year: 2014
Oudih, M.R.; Benhamouda, N.; Fellah, M.; Allal, N.H.
2000-01-01
A method of simultaneous particle-number and angular-momentum projection of the BCS wave-function is presented. The particle number projection method is of FBCS type. In the frame work of the adiabatic approximation, the rotational energies of the axially symmetric even-even nuclei are established and numerically calculated for the rare-earth region. (author)
Kostas Nanos
2017-06-01
Full Text Available In this paper, the control of free-floating space manipulator systems with non-zero angular momentum (NZAM, for both motions in the joint and Cartesian space, is studied. Considering NZAM, dynamic models in the joint and Cartesian space are derived. It is shown that the NZAM has a similar result to the effect of gravity in terrestrial fixed base manipulators. Based on these similarities, the application of controllers similar to the ones used for the compensation of gravity in terrestrial fixed base manipulators is proposed here to compensate the effect of angular momentum. To confirm the asymptotic stability of the closed-loop systems, some structural properties of the dynamic models must be satisfied. It is shown that despite the presence of angular momentum, these structural properties still apply. Thus, the proposed controllers can drive the system in the desired position despite the presence of angular momentum. However, the NZAM imposes constraints on the system workspace, where the end-effector can be driven in the Cartesian space. Limitations are discussed and the application of the proposed controllers is illustrated by examples.
Mohamed Akbar, A.; Veeraraghavan, S.; Arunachalam, N.
1998-01-01
The role of cranking frequency in hot rotating deformed nuclei has been studied with reference to the extraction of several nuclear parameters. In this work, the angular momentum degree of freedom is included in the isospin formalism using statistical theory of hot deformed nuclei
Schulze, C
2014-09-01
Full Text Available We present the measurement of the orbital angular momentum (OAM) density of Bessel beams and superpositions thereof by projection into a Laguerre–Gaussian basis. This projection is performed by an all-optical inner product measurement performed...
Quantum numbers of the $X(3872)$ state and orbital angular momentum in its $\\rho^0 J/\\psi$ decays
Aaij, Roel; Adinolfi, Marco; Affolder, Anthony; Ajaltouni, Ziad; Akar, Simon; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio Augusto; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Anderson, Jonathan; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Aquines Gutierrez, Osvaldo; Archilli, Flavio; d'Argent, Philippe; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Bachmann, Sebastian; Back, John; Badalov, Alexey; Baesso, Clarissa; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Batozskaya, Varvara; Battista, Vincenzo; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Bel, Lennaert; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bertolin, Alessandro; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bien, Alexander; Bifani, Simone; Bird, Thomas; Birnkraut, Alex; Bizzeti, Andrea; Blake, Thomas; Blanc, Frédéric; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borghi, Silvia; Borsato, Martino; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Braun, Svende; Brett, David; Britsch, Markward; Britton, Thomas; Brodzicka, Jolanta; Brook, Nicholas; Bursche, Albert; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Calvi, Marta; Calvo Gomez, Miriam; Campana, Pierluigi; Campora Perez, Daniel; Capriotti, Lorenzo; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carniti, Paolo; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casanova Mohr, Raimon; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cavallero, Giovanni; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Chefdeville, Maximilien; Chen, Shanzhen; Cheung, Shu-Faye; Chiapolini, Nicola; Chrzaszcz, Marcin; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coco, Victor; Cogan, Julien; Cogneras, Eric; Cogoni, Violetta; Cojocariu, Lucian; Collazuol, Gianmaria; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombes, Matthew; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Crocombe, Andrew; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Dalseno, Jeremy; David, Pieter; Davis, Adam; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Silva, Weeraddana; De Simone, Patrizia; Dean, Cameron Thomas; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Déléage, Nicolas; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Dey, Biplab; Di Canto, Angelo; Di Ruscio, Francesco; Dijkstra, Hans; Donleavy, Stephanie; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Dossett, David; Dovbnya, Anatoliy; Dreimanis, Karlis; Dufour, Laurent; Dujany, Giulio; Dupertuis, Frederic; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; El Rifai, Ibrahim; Elsasser, Christian; Ely, Scott; Esen, Sevda; Evans, Hannah Mary; Evans, Timothy; Falabella, Antonio; Färber, Christian; Farinelli, Chiara; Farley, Nathanael; Farry, Stephen; Fay, Robert; Ferguson, Dianne; Fernandez Albor, Victor; Ferrari, Fabio; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fiore, Marco; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fol, Philip; Fontana, Marianna; Fontanelli, Flavio; Forty, Roger; Francisco, Oscar; Frank, Markus; Frei, Christoph; Frosini, Maddalena; Fu, Jinlin; Furfaro, Emiliano; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; García Pardiñas, Julián; Garofoli, Justin; Garra Tico, Jordi; Garrido, Lluis; Gascon, David; Gaspar, Clara; Gastaldi, Ugo; Gauld, Rhorry; Gavardi, Laura; Gazzoni, Giulio; Geraci, Angelo; Gerick, David; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianelle, Alessio; Gianì, Sebastiana; Gibson, Valerie; Giubega, Lavinia-Helena; Gligorov, V.V.; Göbel, Carla; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gotti, Claudio; Grabalosa Gándara, Marc; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graverini, Elena; Graziani, Giacomo; Grecu, Alexandru; Greening, Edward; Gregson, Sam; Griffith, Peter; Grillo, Lucia; Grünberg, Oliver; Gui, Bin; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Haines, Susan; Hall, Samuel; Hamilton, Brian; Hampson, Thomas; Han, Xiaoxue; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Harrison, Jonathan; He, Jibo; Head, Timothy; Heijne, Veerle; Hennessy, Karol; Henrard, Pierre; Henry, Louis; Hernando Morata, Jose Angel; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hill, Donal; Hoballah, Mostafa; Hombach, Christoph; Hulsbergen, Wouter; Humair, Thibaud; Hussain, Nazim; Hutchcroft, David; Hynds, Daniel; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jaeger, Andreas; Jalocha, Pawel; Jans, Eddy; Jawahery, Abolhassan; Jing, Fanfan; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kandybei, Sergii; Kanso, Walaa; Karacson, Matthias; Karbach, Moritz; Karodia, Sarah; Kelsey, Matthew; Kenyon, Ian; Kenzie, Matthew; Ketel, Tjeerd; Khanji, Basem; Khurewathanakul, Chitsanu; Klaver, Suzanne; Klimaszewski, Konrad; Kochebina, Olga; Kolpin, Michael; Komarov, Ilya; Koopman, Rose; Koppenburg, Patrick; Korolev, Mikhail; Kravchuk, Leonid; Kreplin, Katharina; Kreps, Michal; Krocker, Georg; Krokovny, Pavel; Kruse, Florian; Kucewicz, Wojciech; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kurek, Krzysztof; Kvaratskheliya, Tengiz; La Thi, Viet Nga; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lambert, Dean; Lambert, Robert W; Lanfranchi, Gaia; Langenbruch, Christoph; Langhans, Benedikt; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; van Leerdam, Jeroen; Lees, Jean-Pierre; Lefèvre, Regis; Leflat, Alexander; Lefrançois, Jacques; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Yiming; Likhomanenko, Tatiana; Liles, Myfanwy; Lindner, Rolf; Linn, Christian; Lionetto, Federica; Liu, Bo; Lohn, Stefan; Longstaff, Iain; Lopes, Jose; Lowdon, Peter; Lucchesi, Donatella; Luo, Haofei; Lupato, Anna; Luppi, Eleonora; Lupton, Oliver; Machefert, Frederic; Maciuc, Florin; Maev, Oleg; Maguire, Kevin; Malde, Sneha; Malinin, Alexander; Manca, Giulia; Mancinelli, Giampiero; Manning, Peter Michael; Mapelli, Alessandro; Maratas, Jan; Marchand, Jean François; Marconi, Umberto; Marin Benito, Carla; Marino, Pietro; Märki, Raphael; Marks, Jörg; Martellotti, Giuseppe; Martinelli, Maurizio; Martinez Santos, Diego; Martinez Vidal, Fernando; Martins Tostes, Danielle; Massafferri, André; Matev, Rosen; Mathad, Abhijit; Mathe, Zoltan; Matteuzzi, Clara; Mauri, Andrea; Maurin, Brice; Mazurov, Alexander; McCann, Michael; McCarthy, James; McNab, Andrew; McNulty, Ronan; Meadows, Brian; Meier, Frank; Meissner, Marco; Merk, Marcel; Milanes, Diego Alejandro; Minard, Marie-Noelle; Mitzel, Dominik Stefan; Molina Rodriguez, Josue; Monteil, Stephane; Morandin, Mauro; Morawski, Piotr; Mordà, Alessandro; Morello, Michael Joseph; Moron, Jakub; Morris, Adam Benjamin; Mountain, Raymond; Muheim, Franz; Müller, Janine; Müller, Katharina; Müller, Vanessa; Mussini, Manuel; Muster, Bastien; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nasteva, Irina; Needham, Matthew; Neri, Nicola; Neubert, Sebastian; Neufeld, Niko; Neuner, Max; Nguyen, Anh Duc; Nguyen, Thi-Dung; Nguyen-Mau, Chung; Niess, Valentin; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Ninci, Daniele; Novoselov, Alexey; O'Hanlon, Daniel Patrick; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Ogilvy, Stephen; Okhrimenko, Oleksandr; Oldeman, Rudolf; Onderwater, Gerco; Osorio Rodrigues, Bruno; Otalora Goicochea, Juan Martin; Otto, Adam; Owen, Patrick; Oyanguren, Maria Aranzazu; Palano, Antimo; Palombo, Fernando; Palutan, Matteo; Panman, Jacob; Papanestis, Antonios; Pappagallo, Marco; Pappalardo, Luciano; Parkes, Christopher; Passaleva, Giovanni; Patel, Girish; Patel, Mitesh; Patrignani, Claudia; Pearce, Alex; Pellegrino, Antonio; Penso, Gianni; Pepe Altarelli, Monica; Perazzini, Stefano; Perret, Pascal; Pescatore, Luca; Petridis, Konstantinos; Petrolini, Alessandro; Petruzzo, Marco; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pilař, Tomas; Pinci, Davide; Pistone, Alessandro; Playfer, Stephen; Plo Casasus, Maximo; Poikela, Tuomas; Polci, Francesco; Poluektov, Anton; Polyakov, Ivan; Polycarpo, Erica; Popov, Alexander; Popov, Dmitry; Popovici, Bogdan; Potterat, Cédric; Price, Eugenia; Price, Joseph David; Prisciandaro, Jessica; Pritchard, Adrian; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Punzi, Giovanni; Qian, Wenbin; Quagliani, Renato; Rachwal, Bartolomiej; Rademacker, Jonas; Rakotomiaramanana, Barinjaka; Rama, Matteo; Rangel, Murilo; Raniuk, Iurii; Rauschmayr, Nathalie; Raven, Gerhard; Redi, Federico; Reichert, Stefanie; Reid, Matthew; dos Reis, Alberto; Ricciardi, Stefania; Richards, Sophie; Rihl, Mariana; Rinnert, Kurt; Rives Molina, Vincente; Robbe, Patrick; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Lopez, Jairo Alexis; Rodriguez Perez, Pablo; Roiser, Stefan; Romanovsky, Vladimir; Romero Vidal, Antonio; Rotondo, Marcello; Rouvinet, Julien; Ruf, Thomas; Ruiz, Hugo; Ruiz Valls, Pablo; Saborido Silva, Juan Jose; Sagidova, Naylya; Sail, Paul; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanchez Mayordomo, Carlos; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santimaria, Marco; Santovetti, Emanuele; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Saunders, Daniel Martin; Savrina, Darya; Schiller, Manuel; Schindler, Heinrich; Schlupp, Maximilian; Schmelling, Michael; Schmelzer, Timon; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Semennikov, Alexander; Sepp, Indrek; Serra, Nicola; Serrano, Justine; Sestini, Lorenzo; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Vladimir; Shires, Alexander; Silva Coutinho, Rafael; Simi, Gabriele; Sirendi, Marek; Skidmore, Nicola; Skillicorn, Ian; Skwarnicki, Tomasz; Smith, Edmund; Smith, Eluned; Smith, Jackson; Smith, Mark; Snoek, Hella; Sokoloff, Michael; Soler, Paul; Soomro, Fatima; Souza, Daniel; Souza De Paula, Bruno; Spaan, Bernhard; Spradlin, Patrick; Sridharan, Srikanth; Stagni, Federico; Stahl, Marian; Stahl, Sascha; Steinkamp, Olaf; Stenyakin, Oleg; Sterpka, Christopher Francis; Stevenson, Scott; Stoica, Sabin; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Straticiuc, Mihai; Straumann, Ulrich; Stroili, Roberto; Sun, Liang; Sutcliffe, William; Swientek, Krzysztof; Swientek, Stefan; Syropoulos, Vasileios; Szczekowski, Marek; Szczypka, Paul; Szumlak, Tomasz; T'Jampens, Stephane; Tekampe, Tobias; Teklishyn, Maksym; Tellarini, Giulia; Teubert, Frederic; Thomas, Christopher; Thomas, Eric; van Tilburg, Jeroen; Tisserand, Vincent; Tobin, Mark; Todd, Jacob; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Topp-Joergensen, Stig; Torr, Nicholas; Tournefier, Edwige; Tourneur, Stephane; Trabelsi, Karim; Tran, Minh Tâm; Tresch, Marco; Trisovic, Ana; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tuning, Niels; Ukleja, Artur; Ustyuzhanin, Andrey; Uwer, Ulrich; Vacca, Claudia; Vagnoni, Vincenzo; Valenti, Giovanni; Vallier, Alexis; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vázquez Sierra, Carlos; Vecchi, Stefania; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Vesterinen, Mika; Viaud, Benoit; Vieira, Daniel; Vieites Diaz, Maria; Vilasis-Cardona, Xavier; Vollhardt, Achim; Volyanskyy, Dmytro; Voong, David; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; de Vries, Jacco; Waldi, Roland; Wallace, Charlotte; Wallace, Ronan; Walsh, John; Wandernoth, Sebastian; Wang, Jianchun; Ward, David; Watson, Nigel; Websdale, David; Weiden, Andreas; Whitehead, Mark; Wiedner, Dirk; Wilkinson, Guy; Wilkinson, Michael; Williams, Mark Richard James; Williams, Matthew; Williams, Mike; Wilson, Fergus; Wimberley, Jack; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wright, Simon; Wyllie, Kenneth; Xie, Yuehong; Xu, Zhirui; Yang, Zhenwei; Yuan, Xuhao; Yushchenko, Oleg; Zangoli, Maria; Zavertyaev, Mikhail; Zhang, Liming; Zhang, Yanxi; Zhelezov, Alexey; Zhokhov, Anatoly; Zhong, Liang
2015-07-30
Angular correlations in $B^+\\to X(3872) K^+$ decays, with $X(3872)\\to \\rho^0 J/\\psi$, $\\rho^0\\to\\pi^+\\pi^-$ and $J/\\psi \\to\\mu^+\\mu^-$, are used to measure orbital angular momentum contributions and to determine the $J^{PC}$ value of the $X(3872)$ meson. The data correspond to an integrated luminosity of 3.0 fb$^{-1}$ of proton-proton collisions collected with the LHCb detector. This determination, for the first time performed without assuming a value for the orbital angular momentum, confirms the quantum numbers to be $J^{PC}=1^{++}$. The $X(3872)$ is found to decay predominantly through S wave and an upper limit of $4\\%$ at $95\\%$ C.L. is set on the fraction of D wave.
Angular momentum partitioning and the subshell multipole moments in impulsively excited argon ions
Al-Khateeb, H.M.; Birdsey, B.G.; Gay, T.J.
2005-01-01
We have investigated collisions between transversely polarized electrons and Ar, in which the Ar is simultaneously ionized and excited to the Ar +* [3p 4 ( 1 D)4p] states. The Stokes parameters of the fluorescence emitted in the following transitions was measured: ( 1 D)4s 2 D 5/2 -( 1 D)4p 2 F 7/2 (461.0 nm), ( 1 D)4s 2 D 5/2 -( 1 D)4p 2 F 5/2 (463.7 nm) ( 1 P)3d 2 D 5/2 -( 1 D)4p 2 D 5/2 (448.2 nm), and ( 1 D)4s 2 D 3/2 -( 1 D)4p 2 P 3/2 (423.7 nm). We develop the angular momentum algebra necessary to extract from these data, starting from the overall atomic J multipoles, the partitioning of orbital angular momentum into the 1 D core electric quadrupole and hexadecapole moments, and the outer 4p electric quadrupole moment. The magnetic dipole of the outer electron is also determined. This procedure requires the assumption of good LS coupling for these states, which is justified. We recouple these individual core- and outer-electron moments to calculate the initial electric quadrupoles, hexadecapoles, and hexacontatetrapoles of the initial excited-state manifold. The detailed time structure of the electron-atom collision is considered, as well as the time evolution of the excited ionic state. The Rubin-Bederson hypothesis is thus shown to hold for the initial ionic L and S terms. The consequences of the breakdown of LS coupling are considered. From the circular polarization data, estimates of the relative importance of direct and exchange excitation cross section are made. We discuss experimental issues related to background contributions, Hanle depolarization of the fluorescence signal, and cascade contributions. Nonlinearity of the equations relating the Stokes parameters to the subshell multipole moments complicates the data analysis. Details of the Monte Carlo terrain-search algorithm used to extract multipole data is discussed, and the implications of correlation between the various subshell multipole moments is analyzed. The physical significance of the
Precise Measurements of DVCS at JLab and Quark Orbital Angular Momentum
Pisano, Silvia
2016-01-01
Deeply-virtual Compton scattering provides the cleanest access to the 3D imaging of the nucleon structure encoded in the generalized parton distributions, that correlate the fraction of the total nucleon momentum carried by a constituent to its position in the transverse plane. Besides the information on the spatial imaging of the nucleon, GPDs provide an access, through the Ji relation, to the contribution of the angular momentum of quarks to proton spin. An accurate estimate of such a contribution will lead to a better understanding of the origin of the proton spin. Jefferson Lab has been an ideal environment for the study of exclusive processes, thanks to the combination of the high-intensity and high-polarization electron beam provided by the CEBAF, with the complementary equipments of the three experimental halls. This has allowed high-precision measurements of the DVCS observables in a wide kinematic region, with focus on those observable s that provide access to the GPDs entering the Ji relation. These studies will be further widened by the projected data from the 12-GeV era, which will improve the existing measurements both in terms of precision and phase-space coverage. The important results on the proton DVCS obtained during the 6-GeV era will be discussed, together with the upcoming experiments approved for the 12-GeV upgrade, that foresees measurements with both proton and quasi-free neutron targets and that, when combined, will lead to the extraction of the Compton Form Factors for separate quark flavors. (author)
Strange, P.
2012-01-01
In this paper we demonstrate a surprising aspect of quantum mechanics that is accessible to an undergraduate student. We discuss probability backflow for an electron in a constant magnetic field. It is shown that even for a wavepacket composed entirely of states with negative angular momentum the effective angular momentum can take on positive…
High-dimensional free-space optical communications based on orbital angular momentum coding
Zou, Li; Gu, Xiaofan; Wang, Le
2018-03-01
In this paper, we propose a high-dimensional free-space optical communication scheme using orbital angular momentum (OAM) coding. In the scheme, the transmitter encodes N-bits information by using a spatial light modulator to convert a Gaussian beam to a superposition mode of N OAM modes and a Gaussian mode; The receiver decodes the information through an OAM mode analyser which consists of a MZ interferometer with a rotating Dove prism, a photoelectric detector and a computer carrying out the fast Fourier transform. The scheme could realize a high-dimensional free-space optical communication, and decodes the information much fast and accurately. We have verified the feasibility of the scheme by exploiting 8 (4) OAM modes and a Gaussian mode to implement a 256-ary (16-ary) coding free-space optical communication to transmit a 256-gray-scale (16-gray-scale) picture. The results show that a zero bit error rate performance has been achieved.
The phenomenon of nucleon emission at high angular momentum states of fused compound systems
Rajasekaran, T R; Santhosh-Kumar, S
2003-01-01
Nucleon emission from high spin fused compound systems is analyzed in the framework of the statistical theory of hot rotating (STHR) nuclei. This is an elaborate version of our earlier work and we present our results for sup 1 sup 5 sup 6 Er, sup 1 sup 6 sup 6 Er, sup 1 sup 6 sup 8 Yb and sup 1 sup 8 sup 8 Hg. We predict an increase in neutron emission for sup 1 sup 6 sup 6 Er due to the abrupt decrease in neutron separation energy around I approx 55h. Since the drop in the separation energy is closely associated with the structural changes in the rotating nuclei, relative increase in neutron emission probability around certain values of angular momentum may be construed as evidence for the shape transition. A similar effect is predicted for sup 1 sup 6 sup 8 Yb around I approx 55h. We also extend the microscopic cranked Nilsson method (CNM) to hot nuclear systems and compare the results with that of the STHR method. The two methods yield different results for triaxially deformed nuclei although for biaxial d...
Impact of GFZ's Effective Angular Momentum Forecasts on Polar Motion Prediction
Dill, Robert; Dobslaw, Henryk
2017-04-01
The Earth System Modelling group at GeoForschungsZentrum (GFZ) Potsdam offers now 6-day forecasts of Earth rotation excitation due to atmospheric, oceanic, and hydrologic angular momentum changes that are consistent with its 40 years-long EAM series. Those EAM forecasts are characterized by an improved long-term consistency due to the introduction of a time-invariant high-resolution reference topography into the AAM processing that accounts for occasional NWP model changes. In addition, all tidal signals from both atmosphere and ocean have been separated, and the temporal resolution of both AAM and OAM has been increased to 3 hours. Analysis of an extended set of EAM short-term hindcasts revealed positive prediction skills for up to 6 days into the future when compared to a persistent forecast. Whereas UT1 predictions in particular rely on an accurate AAM forecast, skillfull polar motion prediction requires high-quality OAM forecasts as well. We will present in this contribution the results from a multi-year hindcast experiment, demonstrating that the polar motion prediction as currently available from Bulletin A can be improved in particular for lead-times between 2 and 5 days by incorporating OAM forecasts. We will also report about early results obtained at Observatoire de Paris to predict polar motion from the integration of GFZ's 6-day EAM forecasts into the Liouville equation in a routine setting, that fully takes into account the operational latencies of all required input products.
Ren, Yongxiong; Li, Long; Wang, Zhe; Kamali, Seyedeh Mahsa; Arbabi, Ehsan; Arbabi, Amir; Zhao, Zhe; Xie, Guodong; Cao, Yinwen; Ahmed, Nisar; Yan, Yan; Liu, Cong; Willner, Asher J.; Ashrafi, Solyman; Tur, Moshe; Faraon, Andrei; Willner, Alan E.
2016-09-01
To increase system capacity of underwater optical communications, we employ the spatial domain to simultaneously transmit multiple orthogonal spatial beams, each carrying an independent data channel. In this paper, we show up to a 40-Gbit/s link by multiplexing and transmitting four green orbital angular momentum (OAM) beams through a single aperture. Moreover, we investigate the degrading effects of scattering/turbidity, water current, and thermal gradient-induced turbulence, and we find that thermal gradients cause the most distortions and turbidity causes the most loss. We show systems results using two different data generation techniques, one at 1064 nm for 10-Gbit/s/beam and one at 520 nm for 1-Gbit/s/beam; we use both techniques since present data-modulation technologies are faster for infrared (IR) than for green. For the 40-Gbit/s link, data is modulated in the IR, and OAM imprinting is performed in the green using a specially-designed metasurface phase mask. For the 4-Gbit/s link, a green laser diode is directly modulated. Finally, we show that inter-channel crosstalk induced by thermal gradients can be mitigated using multi-channel equalisation processing.
Zou, Li; Wang, Le; Zhao, Shengmei
2017-10-01
Atmospheric turbulence (AT) induced crosstalk can significantly impair the performance of free-space optical (FSO) communication link using orbital angular momentum (OAM) multiplexing. In this paper, we propose a spatial diversity (SD) turbulence mitigation scheme in an OAM-multiplexed FSO communication link. First, we present a SD mitigation model for the OAM-multiplexed FSO communication link under AT. Then we present a SD combining technique based on equal gain to enhance AT tolerance of the OAM-multiplexed FSO communication link. The numerical results show that performance of the OAM-multiplexed communication link has greatly improved by the proposed scheme. When the turbulence strength Cn2 is 5 × 10-15m - 2 / 3, the transmission distance is 1000 m and the channel signal-to-noise ratio (SNR) is 20 dB, the bit-error-rate (BER) performance of four spatial multiplexed OAM modes lm = + 1 , + 2 , + 3 , + 4 are 3 fold increase in comparison with those results without the proposed scheme. The proposed scheme is a promising direction for compensating the interference caused by AT in the OAM-multiplexed FSO communication link.
Blue-light digital communication in underwater environments utilizing orbital angular momentum
Baghdady, Joshua; Miller, Keith; Osler, Sean; Morgan, Kaitlyn; Li, Wenzhe; Johnson, Eric; Cochenour, Brandon
2016-05-01
Underwater optical communication has recently become the topic of much investigation as the demands for underwater data transmission have rapidly grown in recent years. The need for reliable, high-speed, secure underwater communication has turned increasingly to blue-light optical solutions. The blue-green visible wavelength window provides an attractive solution to the problem of underwater data transmission thanks to its low attenuation, where traditional RF solutions used in free-space communications collapse. Beginning with GaN laser diodes as the optical source, this work explores the encoding and transmission of digital data across underwater environments of varying turbidities. Given the challenges present in an underwater environment, such as the mechanical and optical turbulences that make proper alignment difficult to maintain, it is desirable to achieve extremely high data rates in order to allow the time window of alignment between the transmitter and receiver to be as small as possible. In this paper, work is done to increase underwater data rates through the use of orbital angular momentum. Results are shown for a range of data rates across a variety of channel types ranging in turbidity from that of a clear ocean to a dirty harbor.
Deep-space and near-Earth optical communications by coded orbital angular momentum (OAM) modulation.
Djordjevic, Ivan B
2011-07-18
In order to achieve multi-gigabit transmission (projected for 2020) for the use in interplanetary communications, the usage of large number of time slots in pulse-position modulation (PPM), typically used in deep-space applications, is needed, which imposes stringent requirements on system design and implementation. As an alternative satisfying high-bandwidth demands of future interplanetary communications, while keeping the system cost and power consumption reasonably low, in this paper, we describe the use of orbital angular momentum (OAM) as an additional degree of freedom. The OAM is associated with azimuthal phase of the complex electric field. Because OAM eigenstates are orthogonal the can be used as basis functions for N-dimensional signaling. The OAM modulation and multiplexing can, therefore, be used, in combination with other degrees of freedom, to solve the high-bandwidth requirements of future deep-space and near-Earth optical communications. The main challenge for OAM deep-space communication represents the link between a spacecraft probe and the Earth station because in the presence of atmospheric turbulence the orthogonality between OAM states is no longer preserved. We will show that in combination with LDPC codes, the OAM-based modulation schemes can operate even under strong atmospheric turbulence regime. In addition, the spectral efficiency of proposed scheme is N2/log2N times better than that of PPM.
The Orbital Angular Momentum Modes Supporting Fibers Based on the Photonic Crystal Fiber Structure
Hu Zhang
2017-10-01
Full Text Available The orbital angular momentum (OAM of light can be another physical dimension that we exploit to make multiplexing in the spatial domain. The design of the OAM mode supporting fiber attracts many attentions in the field of the space division multiplexing (SDM system. This paper reviews the recent progresses in photonic crystal fiber (PCF supporting OAM modes, and summarizes why a PCF structure can be used to support stable OAM transmission modes. The emphasis is on the circular PCFs, which possess many excellent features of transmission performance, such as good-quality OAM modes, enough separation of the effective indices, low confinement loss, flat dispersion, a large effective area, and a low nonlinear coefficient. We also compare the transmission properties between the circular PCF and the ring core fiber, as well as the properties between the OAM EDFA based on circular PCF and the OAM EDFA based on the ring core fiber. At last, the challenges and prospects of OAM fibers based on the PCF structure are also discussed.
Larocque, Hugo; Gagnon-Bischoff, Jérémie; Mortimer, Dominic; Zhang, Yingwen; Bouchard, Frédéric; Upham, Jeremy; Grillo, Vincenzo; Boyd, Robert W; Karimi, Ebrahim
2017-08-21
The orbital angular momentum (OAM) carried by optical beams is a useful quantity for encoding information. This form of encoding has been incorporated into various works ranging from telecommunications to quantum cryptography, most of which require methods that can rapidly process the OAM content of a beam. Among current state-of-the-art schemes that can readily acquire this information are so-called OAM sorters, which consist of devices that spatially separate the OAM components of a beam. Such devices have found numerous applications in optical communications, a field that is in constant demand for additional degrees of freedom, such as polarization and wavelength, into which information can also be encoded. Here, we report the implementation of a device capable of sorting a beam based on its OAM and polarization content, which could be of use in works employing both of these degrees of freedom as information channels. After characterizing our fabricated device, we demonstrate how it can be used for quantum communications via a quantum key distribution protocol.
Angular momentum from CMIP5 climate change simulations, as related to Earth rotation excitation
Salstein, D.; Quinn, K.
2012-04-01
Atmospheric angular momentum parameters are calculated from revised scenarios of greenhouse gas concentration in use in the Coupled Model Intercomparison Project, phase 5, which investigates expected climate change. This phase includes new estimates for the so-called Representative Concentration Pathways (RCP), designed to simulate more realistically the future path of emissions of carbon dioxide and other greenhouse gases throughout the 21st century. From time series of atmosphere-ocean models that adopt these parameters, we calculate the impact on the excitations for length of day and polar motion through the course of the current century, and hence portions of the expected changes in the ERP's due to the atmosphere. We diagnose the most important geographic areas as regional sources of such variations; earlier such models revealed the particular importance of resulting relevant wind changes in the upper atmosphere of the middle latitudes and the southern hemisphere high latitudes. The spread among the RCP scenarios and among a number of different models gives us an understanding of possible uncertainties in the estimates. Earlier calculations were for the 20th and 21st centuries with less sophisticated greenhouse gas concentration scenarios. We can compare the Earth rotation excitations from the retrospective portions of the model-based estimates with atmospheric reanalyses that are in archives at the IERS Special Bureau for the Atmosphere.
Specific fission J-window and angular momentum dependence of the fission barrier
Baba, Hiroshi; Saito, Tadashi; Takahashi, Naruto; Yokoyama, Akihiko [Osaka Univ., Suita (Japan); Shinohara, Atsushi
1997-04-01
A method to determine a unique J-window in the fission process was devised and the fissioning nuclide associated with thus extracted J-window was identified for each of the heavy-ion reaction systems. Obtained fission barriers at the resulting J-window were compared with the calculated values by the rotating finite range model (RFRM). The deduced barriers for individual nuclides were compared with the RFRM barriers to reproduce more or less the angular momentum dependence the RFRM prediction. The deduced systematic behavior of the fission barrier indicates no even-odd and shell corrections are necessary. The nuclear dissipation effect based on Kramer`s model revealed substantial reduction of the statistically deduced barrier heights and brought a fairly large scattering from the RFRM J-dependence. However, introduction of the temperature-dependent friction coefficient ({gamma} = 2 for T {>=} 1.0 MeV and 0.5 for T < 1.0 MeV) was found to bring about satisfactory agreement with both RFRM fission barriers and the pre-fission neutron multiplicity systematics. (author). 81 refs.
Rovibrational bound states of SO2 isotopologues. I: Total angular momentum J = 0-10
Kumar, Praveen; Ellis, Joseph; Poirier, Bill
2015-04-01
Isotopic variation of the rovibrational bound states of SO2 for the four stable sulfur isotopes 32-34,36S is investigated in comprehensive detail. In a two-part series, we compute the low-lying energy levels for all values of total angular momentum in the range J = 0-20. All rovibrational levels are computed, to an extremely high level of numerical convergence. The calculations have been carried out using the ScalIT suite of parallel codes. The present study (Paper I) examines the J = 0-10 rovibrational levels, providing unambiguous symmetry and rovibrational label assignments for each computed state. The calculated vibrational energy levels exhibit very good agreement with previously reported experimental and theoretical data. Rovibrational energy levels, calculated without any Coriolis approximations, are reported here for the first time. Among other potential ramifications, this data will facilitate understanding of the origin of mass-independent fractionation of sulfur isotopes in the Archean rock record-of great relevance for understanding the "oxygen revolution".
Rovibrational bound states of SO2 isotopologues. II: Total angular momentum J = 11-20
Kumar, Praveen; Poirier, Bill
2015-11-01
In a two-part series, the rovibrational bound states of SO2 are investigated in comprehensive detail, for all four stable sulfur isotopes 32-34,36S. All low-lying rovibrational energy levels-both permutation-symmetry-allowed and not allowed-are computed, for all values of total angular momentum in the range J = 0-20. The calculations have carried out using the ScalIT suite of parallel codes. The present study (Paper II) examines the J = 11-20 rovibrational levels, providing symmetry and rovibrational labels for every computed state, relying on a new lambda-doublet splitting technique to make completely unambiguous assignments. Isotope shifts are analyzed, as is the validity of ;J-shifting; as a predictor of rotational fine structure. Among other ramifications, this work will facilitate understanding of mass-independent fractionation of sulfur isotopes (S-MIF) observed in the Archean rock record-particularly as this may have arisen from self shielding. S-MIF, in turn is highly relevant in the broader context of understanding the ;oxygen revolution;.
Liu, Baiyang; Lin, Guoying; Cui, Yuehui; Li, RongLin
2017-08-29
For purpose of utilizing orbital angular momentum (OAM) mode diversity, multiple OAM beams should be generated preferably by a single antenna. In this paper, an OAM mode reconfigurable antenna is proposed. Different from the existed OAM antennas with multiple ports for multiple OAM modes transmitting, the proposed antenna with only a single port, but it can be used to transmit mode 1 or mode -1 OAM beams arbitrary by controlling the PIN diodes on the feeding network through a programmable microcontroller which control by a remote controller. Simulation and measurement results such as return loss, near-field and far-field radiation patterns of two operating states for mode 1 and mode -1, and OAM mode orthogonality are given. The proposed antenna can serve as a candidate for utilizing OAM diversity, namely phase diversity to increase channel capacity at 2.4 GHz. Moreover, an OAM-mode based encoding method is experimentally carried out by the proposed OAM mode reconfigurable antenna, the digital data are encoded and decoded by different OAM modes. At the transmitter, the proposed OAM mode reconfigurable antenna is used to encode the digital data, data symbol 0 and 1 are mapped to OAM mode 1 and mode -1, respectively. At the receiver, the data symbols are decoded by phase gradient method.
Bliokh, Konstantin Y.; Bekshaev, Aleksandr Y.; Nori, Franco
2017-12-01
We examine the momentum and angular momentum (AM) properties of monochromatic optical fields in dispersive and inhomogeneous isotropic media, using the Abraham- and Minkowski-type approaches, as well as the kinetic (Poynting-like) and canonical (with separate spin and orbital degrees of freedom) pictures. While the kinetic Abraham–Poynting momentum describes the energy flux and the group velocity of the wave, the Minkowski-type quantities, with proper dispersion corrections, describe the actual momentum and AM carried by the wave. The kinetic Minkowski-type momentum and AM densities agree with phenomenological results derived by Philbin. Using the canonical spin–orbital decomposition, previously used for free-space fields, we find the corresponding canonical momentum, spin and orbital AM of light in a dispersive inhomogeneous medium. These acquire a very natural form analogous to the Brillouin energy density and are valid for arbitrary structured fields. The general theory is applied to a non-trivial example of a surface plasmon-polariton (SPP) wave at a metal-vacuum interface. We show that the integral momentum of the SPP per particle corresponds to the SPP wave vector, and hence exceeds the momentum of a photon in the vacuum. We also provide the first accurate calculation of the transverse spin and orbital AM of the SPP. While the intrinsic orbital AM vanishes, the transverse spin can change its sign depending on the SPP frequency. Importantly, we present both macroscopic and microscopic calculations, thereby proving the validity of the general phenomenological results. The microscopic theory also predicts a transverse magnetization in the metal (i.e. a magnetic moment for the SPP) as well as the corresponding direct magnetization current, which provides the difference between the Abraham and Minkowski momenta.
Y Bliokh, Konstantin; Y Bekshaev, Aleksandr; Nori, Franco
2017-12-01
We examine the momentum and angular momentum (AM) properties of monochromatic optical fields in dispersive and inhomogeneous isotropic media, using the Abraham- and Minkowski-type approaches, as well as the kinetic (Poynting-like) and canonical (with separate spin and orbital degrees of freedom) pictures. While the kinetic Abraham-Poynting momentum describes the energy flux and the group velocity of the wave, the Minkowski-type quantities, with proper dispersion corrections, describe the actual momentum and AM carried by the wave. The kinetic Minkowski-type momentum and AM densities agree with phenomenological results derived by Philbin. Using the canonical spin-orbital decomposition, previously used for free-space fields, we find the corresponding canonical momentum, spin and orbital AM of light in a dispersive inhomogeneous medium. These acquire a very natural form analogous to the Brillouin energy density and are valid for arbitrary structured fields. The general theory is applied to a non-trivial example of a surface plasmon-polariton (SPP) wave at a metal-vacuum interface. We show that the integral momentum of the SPP per particle corresponds to the SPP wave vector, and hence exceeds the momentum of a photon in the vacuum. We also provide the first accurate calculation of the transverse spin and orbital AM of the SPP. While the intrinsic orbital AM vanishes, the transverse spin can change its sign depending on the SPP frequency. Importantly, we present both macroscopic and microscopic calculations, thereby proving the validity of the general phenomenological results. The microscopic theory also predicts a transverse magnetization in the metal (i.e. a magnetic moment for the SPP) as well as the corresponding direct magnetization current, which provides the difference between the Abraham and Minkowski momenta.
Lin, Huey-Wen; Liu, Keh-Fei
2012-03-01
It is argued by the author that the canonical form of the quark energy-momentum tensor with a partial derivative instead of the covariant derivative is the correct definition for the quark momentum and angular momentum fraction of the nucleon in covariant quantization. Although it is not manifestly gauge-invariant, its matrix elements in the nucleon will be nonvanishing and are gauge-invariant. We test this idea in the path-integral quantization by calculating correlation functions on the lattice with a gauge-invariant nucleon interpolation field and replacing the gauge link in the quark lattice momentum operator with unity, which corresponds to the partial derivative in the continuum. We find that the ratios of three-point to two-point functions are zero within errors for both the u and d quarks, contrary to the case without setting the gauge links to unity.
Rivet, M.F.; Bimbot, R.; Gardes, D.; Fleury, A.; Hubert, F.; Llabador, Y.
1978-01-01
The excitation functions for deep inelastic reactions in which two to six charges are transferred from 40 Ar and 63 Cu ions to rare earth targets have been measured using activation techniques, the observed radionuclides being 150 Dy, 151 Dy and 149 gTb. From the comparison of the curves relative to 149 gTb and those relative to 150 Dy, 151 Dy, it was deduced that the low spin isomer 149 gTb was produced with significant probability for low incident energies. Using data from (heavy ions, xn) reactions, it was possible to attribute this production to the deexcitation of Tb fragments formed in deep inelastic transfers with angular momenta lower than 9n. This result is in good agreement with the angular momentum calculations performed under the hypothesis that the initial angular momentum window leading to deep inelastic reactions is situated between the critical angular momentum for fusion and that corresponding to grazing collisions. As far as Cu induced reactions are concerned, both hypothesis of rolling and sticking are consistent with the experimental data. For Ar induced reactions, the results indicate that the stage of sticking is not reached when the incident energy is lower than 200 MeV
The angle-angular momentum and entropic uncertainty relations for quantum scattering
Ion, D.B.; Ion, M.L.
1999-01-01
Recently the entropic uncertainty relations are obtained in a more general form by using Tsallis-like entropies for the quantum scattering. Hence, using Riesz theorem, the state-independent entropic angle-angular momentum uncertainty relations are proved for the Tsallis-like scattering entropies of spinless particles. The generalized entropic inequalities for the Tsallis-like entropies are presented. The two upper bounds are optimal bounds and can be obtained via Lagrange multipliers by extremizing the Tsallis-like entropies subject to the normalization constraints, respectively. The proof of the lower bound is provided by considering the condition that the angular distribution of probability, P(x) has, everywhere, a finite magnitude. Next, by using the Riesz Theorem a general result was obtained, appearing as inequalities valid for the case of hadron-hadron scattering. An important entropic uncertainty relation for the scattering of spinless particle was thus obtained. For σ el and dσ/dΩ, fixed from experiment, we proved that the optimal scattering entropies are the maximum possible entropies in the scattering process. In as previous paper it was shown that the experimental values of the entropies for the pion--nucleus scatterings are systematically described by the optimal entropies, at all available pion kinetic energies. In this sense the obtained results can also be considered as new experimental signatures for the validity of the principle of minimum distance in space of scattering states. The extension of the optimal state analysis to the generalized non-extensive statistics case, as well as, a test of the entropic inequalities, can be obtained in similar way by using non-extensive optimal entropies. Since this kind of analysis is more involved the numerical examples will be given in a following more extended paper. Finally, we believe that the results obtained here are encouraging for further investigations of the entropic uncertainty relations as well
ANGULAR MOMENTUM TRANSFER AND LACK OF FRAGMENTATION IN SELF-GRAVITATING ACCRETION FLOWS
Begelman, Mitchell C.; Shlosman, Isaac
2009-01-01
Rapid inflows associated with early galaxy formation lead to the accumulation of self-gravitating gas in the centers of proto-galaxies. Such gas accumulations are prone to nonaxisymmetric instabilities, as in the well known Maclaurin sequence of rotating ellipsoids, which are accompanied by a catastrophic loss of angular momentum (J). Self-gravitating gas is also intuitively associated with star formation. However, recent simulations of the infall process display highly turbulent continuous flows. We propose that J-transfer, which enables the inflow, also suppresses fragmentation. Inefficient J loss by the gas leads to decay of turbulence, triggering global instabilities and renewed turbulence driving. Flow regulated in this way is stable against fragmentation, while staying close to the instability threshold for bar formation-thick self-gravitating disks are prone to global instabilities before they become unstable locally. On smaller scales, the fraction of gravitationally unstable matter swept up by shocks in such a flow is a small and decreasing function of the Mach number. We conclude counterintuitively that gas able to cool down to a small fraction of its virial temperature will not fragment as it collapses. This provides a venue for supermassive black holes to form via direct infall, without the intermediary stage of forming a star cluster. Some black holes could have formed or grown in massive halos at low redshifts. Thus the fragmentation is intimately related to J redistribution within the system: it is less dependent on the molecular/metal cooling but is conditioned by the ability of the flow to develop virial, supersonic turbulence.
Ocean angular momentum signals in a climate model and implications for Earth rotation
Ponte, R. M.; Rajamony, J.; Gregory, J. M.
2002-03-01
Estimates of ocean angular momentum (OAM) provide an integrated measure of variability in ocean circulation and mass fields and can be directly related to observed changes in Earth rotation. We use output from a climate model to calculate 240 years of 3-monthly OAM values (two equatorial terms L1 and L2, related to polar motion or wobble, and axial term L3, related to length of day variations) representing the period 1860-2100. Control and forced runs permit the study of the effects of natural and anthropogenically forced climate variability on OAM. All OAM components exhibit a clear annual cycle, with large decadal modulations in amplitude, and also longer period fluctuations, all associated with natural climate variability in the model. Anthropogenically induced signals, inferred from the differences between forced and control runs, include an upward trend in L3, related to inhomogeneous ocean warming and increases in the transport of the Antarctic Circumpolar Current, and a significantly weaker seasonal cycle in L2 in the second half of the record, related primarily to changes in seasonal bottom pressure variability in the Southern Ocean and North Pacific. Variability in mass fields is in general more important to OAM signals than changes in circulation at the seasonal and longer periods analyzed. Relation of OAM signals to changes in surface atmospheric forcing are discussed. The important role of the oceans as an excitation source for the annual, Chandler and Markowitz wobbles, is confirmed. Natural climate variability in OAM and related excitation is likely to measurably affect the Earth rotation, but anthropogenically induced effects are comparatively weak.
Li, Long; Zhou, Xiaoxiao
2018-03-23
In this paper, a mechanically reconfigurable circular array with single-arm spiral antennas (SASAs) is designed, fabricated, and experimentally demonstrated to generate broadband circularly polarized orbital angular momentum (OAM) vortex waves in radio frequency domain. With the symmetrical and broadband properties of single-arm spiral antennas, the vortex waves with different OAM modes can be mechanically reconfigurable generated in a wide band from 3.4 GHz to 4.7 GHz. The prototype of the circular array is proposed, conducted, and fabricated to validate the theoretical analysis. The simulated and experimental results verify that different OAM modes can be effectively generated by rotating the spiral arms of single-arm spiral antennas with corresponding degrees, which greatly simplify the feeding network. The proposed method paves a reconfigurable way to generate multiple OAM vortex waves with spin angular momentum (SAM) in radio and microwave satellite communication applications.
Romain, P.
1990-03-01
The effect of the mass asymmetry of the input channel on the compound nuclei spin distribution. The 16 O + 144 Nd and 80 Se + 80 Se reactions produce the same 160 Er compound nucleus in the 38 to 68 MeV energy range. In certain cases, the incident energies required to form the compound nucleus, at the same excitation energies, are very close to the Coulomb barrier. In the experimental device, the 'Chateau de Cristal' multidetector and additional sensors are used. The angular momentum distribution of the different evaporation products are measured by gamma spectrometry techniques. The fusion cross sections are measured by the time-of-flight technique. Theoretical predictions and experimental results concerning the distribution of the compound nucleus angular momentum are compared [fr
Valor, A.; Heenen, P.-H.; Bonche, P.
2000-01-01
We present in this paper the general framework of a method which permits to restore the rotational and particle number symmetries of wave functions obtained in Skyrme HF + BCS calculations. This restoration is nothing but a projection of mean-field intrinsic wave functions onto good particle number and good angular momentum. The method allows us also to mix projected wave functions. Such a configuration mixing is discussed for sets of HF + BCS intrinsic states generated in constrained calculations with suitable collective variables. This procedure gives collective states which are eigenstates of the particle number and the angular momentum operators and between which transition probabilities are calculated. An application to 24 Mg is presented, with mean-field wave functions generated by axial quadrupole constraints. Theoretical spectra and transition probabilities are compared to the experiment
Loussert , Charles; Delabre , Ulysse; Brasselet , Etienne
2013-01-01
International audience; We report on the experimental manipulation of the orbital angular momentum of light by exploiting a kind of topological defects that spontaneously appear in nematics--disclinations--as microscopic optical spin-orbit interfaces whose operating wavelength can be controlled electrically. Using six different kinds of disclinations, we demonstrate the efficient generation of both scalar and vectorial singular light beams with a broad topological diversity from a fundamental...
Compound nuclei at high angular momentum. High-spin γ-ray spectroscopy: past successes, future hopes
Diamond, R.M.
1984-01-01
The addition of angular momentum to a nucleus presents a whole new dimension, a new coordinate axis, along which to study changes in nuclear behavior and structure. Nuclei can carry angular momentum in two principal ways: by the collective rotation of a deformed nucleus as a whole and by the alignment along the rotation axis of individual high-j nucleons. For spherical (or near-spherical) nuclei, the latter mode is the only one possible. The levels of 212 Rn illustrate a scheme of particle alignment; it is quite irregular with transitions of a variety of electromagnetic types and with little pattern to the level spacing. On the left, the yrast band of 238 U is shown, a predominantly rotational scheme with only strongly enhanced electric quadrupole transitions and a level spacing that approximates that of a rigid rotor, E = I(I + 1)h 2 /2 J and E/sub γ/ = (4I - 2)h 2 /2 J, where J is the moment of inertia. Most nuclei, however, combine both types of motion, and it is this interplay between collective and single-particle motion that makes the behavior of nuclei along the angular momentum coordinate so fascinating and so rich in variety. Data are shown for Yb isotopes, and Er isotopes are discussed
Hilger, T.; Krassnigg, A. [University of Graz, NAWI Graz, Institute of Physics, Graz (Austria); Gomez-Rocha, M. [ECT*, Villazzano, Trento (Italy)
2017-09-15
We investigate the light-quarkonium spectrum using a covariant Dyson-Schwinger-Bethe-Salpeter-equation approach to QCD. We discuss splittings among as well as orbital angular momentum properties of various states in detail and analyze common features of mass splittings with regard to properties of the effective interaction. In particular, we predict the mass of anti ss exotic 1{sup -+} states, and identify orbital angular momentum content in the excitations of the ρ meson. Comparing our covariant model results, the ρ and its second excitation being predominantly S-wave, the first excitation being predominantly D-wave, to corresponding conflicting lattice-QCD studies, we investigate the pion-mass dependence of the orbital-angular-momentum assignment and find a crossing at a scale of m{sub π} ∝ 1.4 GeV. If this crossing turns out to be a feature of the spectrum generated by lattice-QCD studies as well, it may reconcile the different results, since they have been obtained at different values of m{sub π}. (orig.)
Heckman, P.; Thoennessen, M.
2003-01-01
In a recent paper, the giant dipole resonance width was studied as a function of angular momentum in the nucleus 86 Mo. The width of the resonance was found to be constant over a spin range of (0-40)(ℎ/2π). It was concluded that the angular momentum dependence for 86 Mo differs from that of Sn isotopes. We compared both datasets with a phenomenological formula based on the thermal fluctuation theory. The 86 Mo data are inconsistent with the formula in contrast to the previously analyzed Sn data, which seems to indicate that the angular momentum dependence of the phenomenological model is not universally applicable
Koglin, Johnathon
8:0MeV and one bin from 4:5MeV to 5:5MeV. Across energy bins the fission probability increases approximately linearly with increasing alpha' scattering angle. At 90° the fission probability increases from 0:069(6) in the lowest energy bin to 0:59(2) in the highest. Likewise, within a single energy bin the fission probability increases with alpha' scattering angle. Within the 6:5MeV and 7:0MeV energy bin, the fission probability increased from 0:41(1) at 60° to 0:81(10) at 140°. Fission fragment angular distributions were also measured integrated over each energy bin. These distributions were fit to theoretical distributions based on combinations of transitional nuclear vibrational and rotational excitations at the saddle point. Contributions from specific K vibrational states were extracted and combined with fission probability measurements to determine the relative fission probability of each state as a function of nuclear excitation energy. Within a given excitation energy bin, it is found that contributions from K states greater than the minimum K = 0 state tend to increase with the increasing alpha' scattering angle. This is attributed to an increase in the transferred angular momentum associated with larger scattering angles. The 90° alpha' scattering angle produced the highest quality results. The relative contributions of K states do not show a discernible trend across the energy spectrum. The energy-binned results confirm existing measurements that place a K = 2 state in the first energy bin with the opening of K = 1 and K = 4 states at energies above 5:5MeV. This experiment represents the first of its kind in which fission probabilities and angular distributions are simultaneously measured at a large number of scattering angles. The acquired fission probability, angular distribution, and K state contribution provide a diverse dataset against which microscopic fission models can be constrained and further the understanding of the properties of the 240Pu
Harmonic oscillator states with integer and non-integer orbital angular momentum
Land, Martin
2011-01-01
We study the quantum mechanical harmonic oscillator in two and three dimensions, with particular attention to the solutions as basis states for representing their respective symmetry groups — O(2), O(1,1), O(3), and O(2,1). The goal of this study is to establish a correspondence between Hilbert space descriptions found by solving the Schrodinger equation in polar coordinates, and Fock space descriptions constructed by expressing the symmetry operators in terms of creation/annihilation operators. We obtain wavefunctions characterized by a principal quantum number, the group Casimir eigenvalue, and one group generator whose eigenvalue is m + s, for integer m and real constant parameter s. For the three groups that contain O(2), the solutions split into two inequivalent representations, one associated with s = 0, from which we recover the familiar description of the oscillator as a product of one-dimensional solutions, and the other with s > 0 (in three dimensions, solutions are found for s = 0 and s = 1/2) whose solutions are non-separable in Cartesian coordinates, and are hence overlooked by the standard Fock space approach. The O(1,1) solutions are singlet states, restricted to zero eigenvalue of the symmetry operator, which represents the boost, not angular momentum. For O(2), a single set of creation and annihilation operators forms a ladder representation for the allowed oscillator states for any s, and the degeneracy of energy states is always finite. However, in three dimensions, the integer and half-integer eigenstates are qualitatively different: the former can be expressed as finite dimensional irreducible tensors under O(3) or O(2,1) while the latter exhibit infinite degeneracy. Creation operators that produce the allowed integer states by acting on the non-degenerate ground state are constructed as irreducible tensor products of the fundamental vector representation. However, the half-integer eigenstates are infinite-dimensional, as expected for the non
Pessah, Martin Elias
2010-01-01
The magnetorotational instability (MRI) is considered a key process for driving efficient angular momentum transport in astrophysical disks. Understanding its nonlinear saturation constitutes a fundamental problem in modern accretion disk theory. The large dynamical range in physical conditions...
Sokołowska, Aleksandra; Capelo, Pedro R.; Fall, S. Michael; Mayer, Lucio; Shen, Sijing; Bonoli, Silvia
2017-02-01
We investigate the angular momentum evolution of four disk galaxies residing in Milky-Way-sized halos formed in cosmological zoom-in simulations with various sub-grid physics and merging histories. We decompose these galaxies, kinematically and photometrically, into their disk and bulge components. The simulated galaxies and their components lie on the observed sequences in the j *-M * diagram, relating the specific angular momentum and mass of the stellar component. We find that galaxies in low-density environments follow the relation {j}* \\propto {M}* α past major mergers, with α ˜ 0.6 in the case of strong feedback, when bulge-to-disk ratios are relatively constant, and α ˜ 1.4 in the other cases, when secular processes operate on shorter timescales. We compute the retention factors (I.e., the ratio of the specific angular momenta of stars and dark matter) for both disks and bulges and show that they vary relatively slowly after averaging over numerous but brief fluctuations. For disks, the retention factors are usually close to unity, while for bulges, they are a few times smaller. Our simulations therefore indicate that galaxies and their halos grow in a quasi-homologous way.
Oudih, M.R.; Fellah, M.; Allal, N.H.; Benhamouda, N.
1999-01-01
It is well established that the BCS wave-functions are neither eigen-functions of the particle-number operator nor of the angular momentum operator. In a previous paper, we have developed a particle-number projection before variation method (of FBCS type). This discrete projection method is based on the SBCS wave-function. The aim of the present contribution is to perform a subsequent angular momentum projection by means of the Peierls-Yoccoz method. The general expression of the system energy, after the double projection, is established in the case of axial symmetry. For practical calculations, an approximation method is introduced. It leads to a semi-classical form of the rotational energy. The rotational spectra have been evaluated numerically for some even-even rare-earth nuclei. The single-particle energies and eigen-states are those of a deformed Woods-Saxon mean field. The obtained results are compared on one hand, to the experimental data, and on the other hand, to the theoretical spectra evaluated by a particle-number projection after variation method (of PBCS type). For all studied nuclei, the spectra determined by the FBCS method reproduce the experimental data better than those of the PBCS method. However, even if the present method is satisfying for low angular momenta, the agreement with the experimental data is lesser for I ≥ 8, particularly for the lighter studied nuclei. (authors)
Integrable motion of a vortex dipole in an axisymmetric flow
Sutyrin, G.G.; Perrot, X.; Carton, X.
2008-01-01
The evolution of a self-propelling vortex dipole, embedded in an external nondivergent flow with constant potential vorticity, is studied in an equivalent-barotropic model commonly used in geophysical, astrophysical and plasma studies. In addition to the conservation of the Hamiltonian for an arbitrary point vortex dipole, it is found that the angular momentum is also conserved when the external flow is axisymmetric. This reduces the original four degrees of freedom to only two, so that the solution is expressed in quadratures. In particular, the scattering of antisymmetric dipoles approaching from the infinity is analyzed in the presence of an axisymmetric oceanic flow typical for the vicinity of isolated seamounts
Amjad, Jafar Mostafavi; Khalesifard, Hamid Reza; Slussarenko, Sergei; Karimi, Ebrahim; Santamato, Enrico; Marrucci, Lorenzo
2011-01-01
Samples of Ag + /Na + ion-exchanged glass that have been subject to intense laser irradiation may develop novel optical properties, as a consequence of the formation of patterns of silver nanoparticles and other structures. Here, we report the observation of a laser-induced permanent transverse birefringence, with the optical axis forming a radial pattern, as revealed by the spin-to-orbital angular momentum conversion occurring in a probe light beam. The birefringence pattern can be modeled well as resulting from thermally-induced stresses arising in the silver-doped glass during laser exposure, although the actual mechanism leading to the permanent anisotropy is probably more complex.
Montgomery, T. W. A.; Scott, R. G.; Lesanovsky, I.; Fromhold, T. M.
2010-01-01
We investigate the dynamics of two tunnel-coupled two-dimensional degenerate Bose gases. The reduced dimensionality of the clouds enables us to excite specific angular momentum modes by tuning the coupling strength, thereby creating striking patterns in the atom density profile. The extreme sensitivity of the system to the coupling and initial phase difference results in a rich variety of subsequent dynamics, including vortex production, complex oscillations in relative atom number, and chiral symmetry breaking due to counter-rotation of the two clouds.
Sergienko Alexander V.
2014-01-01
The potential for efficient identification of objects carrying elements of high-order symmetry using correlated orbital angular momentum (OAM states is demonstrated. The enhanced information capacity of this approach allows the recognition of specific spatial symmetry signatures present in objects with the use of fewer resources than in a conventional pixel-by-pixel imaging, representing the first demonstration of compressive sensing using OAM states. This approach demonstrates the capability to quickly evaluate multiple Fourier coefficients directly linked with the symmetry features of the object. The results suggest further application in small-scale biological contexts where symmetry and small numbers of noninvasive measurements are important.
Zhang, Yan; Li, YuanYuan; Zhang, YunZhe
2018-03-01
We propose and experimentally demonstrate a controlled-not gate with light beams carrying orbital angular momentum (OAM) through a degenerate four-wave mixing process via a photonic band gap structure satisfying the phase-matching condition. By employing the different topological charges of a Laguerre-Gaussian beam as a qubit in this nonlinear process, the controlled-not gate with OAM can be realized. Moreover, we investigate the evolution of the controlled-not gate, which can be modulated by the frequency and the power of the incident beam, i.e., under electromagnetically induced transparency conditions. The study results are useful for applications in quantum communication and information storage.
Chen Lixiang; She Weilong
2011-01-01
Twisted photons offer a high-dimensional Hilbert space with the degree of freedom of orbital angular momentum (OAM). Entanglement swapping allows entangling photons that never interact. We report in this paper the hybrid entanglement swapping from multiphoton spin-entangled states to multiphoton OAM entangled states with the aid of N-pair hybrid spin-OAM entangled photons. Our scheme provides a feasible method for creating the two-photon OAM Bell states (N=2) or multiphoton multidimensional OAM Greenberger-Horne-Zeilinger states (N≥3). We highlight the advantage of multiparticle, multidimensional entangled states in some applications of quantum information protocols.
Schindelegger, M.; Böhm, J.; Salstein, D. A.; Schuh, H.
2012-12-01
Thermally-driven atmospheric tides provide a small but distinct contribution to shortperiod variations of Earth rotation parameters (ERP). The effect of diurnal and semi-diurnal tides, commonly denoted as S1 and S2, respectively, is in the range of 2 - 10 uas for polar motion and 2 - 10 uas for changes in length-of-day (LOD). Even though ocean tides represent a much more dominant driving agent for ERP fluctuations at short time scales, high-frequency atmospheric effects are non-negligible, particularly given the prospective measurement accuracy of space geodetic techniques. However, previous studies, such as Brzezinski et al. (2002), de Viron et al. (2005) or Schindelegger et al. (2011), have been noticeably inconclusive on the exact amplitude and phase values of S1 and S2 atmospheric excitation signals. This study aims at shedding light on the origin of these uncertainties with respect to the axial component of Earth's rotation vector by investigating times series of atmospheric angular momentum (AAM) functions that are given on global grids and computed from three-hourly meteorological data of the European Centre for Medium-Range Weather Forecasts (ECMWF). The signature of diurnal and semi-diurnal atmospheric tides is clearly visible in the gridded axial AAM functions, revealing a distinct spatial and temporal phase difference between pressure and wind tidal constituents of about ± π. It is shown that due to this counterbalance and the explicit axisymmetric spatial structure of S1 and S2, the net effect in sub-diurnal AAM (which is calculated from the global sum of gridded AAM functions) is always a small quantity, particularly sensitive to minor differences between the analysis fields of numerical weather models.
Critical angular momentum dependence of the fission barriers and the stability of superheavy nuclei
Magda, M.T.; Sandulescu, A.
1978-10-01
Measured complete fusion and evaporation cross section data are used to determine the critical angular momenta for which the fission barriers are vanishing in the region of nuclei with Z = 102 - 116. It is shown that, in order to fit these data, larger values of the critical angular momenta are obtained for superheavy nuclei (Z = 110 - 112) than for heavy ones (Z = 102 - 107), which indicates a relatively higher stability against fission for superheavy nuclei, in agreement with the theoretically predicted island of stability. (author)
Chen, Lixiang; She, Weilong
2008-09-15
We demonstrate that single photons from a rotating q-plate exhibit an entanglement in three degrees of freedom of spin, orbital angular momentum, and the rotational Doppler shift (RDS) due to the nonconservation of total spin and orbital angular momenta. We find that the rotational Doppler shift deltaomega = Omega((delta)s + deltal) , where s, l and Omega are quantum numbers of spin, orbital angular momentum, and rotating velocity of the q-plate, respectively. Of interest is that the rotational Doppler shift directly reflects the rotational symmetry of q-plates and can be also expressed as deltaomega = (Omega)n , where n = 2(q-1) denotes the fold number of rotational symmetry. Besides, based on this single-photon spin-orbit-RDS entanglement, we propose an experimental scheme to sort photons of different frequency shifts according to individual orbital angular momentum.
Graham, Mark T.; Cappellari, Michele; Li, Hongyu; Mao, Shude; Bershady, Matthew; Bizyaev, Dmitry; Brinkmann, Jonathan; Brownstein, Joel R.; Bundy, Kevin; Drory, Niv; Law, David R.; Pan, Kaike; Thomas, Daniel; Wake, David A.; Weijmans, Anne-Marie; Westfall, Kyle B.; Yan, Renbin
2018-03-01
We measure λ _{R_e}, a proxy for galaxy specific stellar angular momentum within one effective radius, and the ellipticity, ɛ, for about 2300 galaxies of all morphological types observed with integral field spectroscopy as part of the MaNGA survey, the largest such sample to date. We use the (λ _{R_e}, ɛ ) diagram to separate early-type galaxies into fast and slow rotators. We also visually classify each galaxy according to its optical morphology and two-dimensional stellar velocity field. Comparing these classifications to quantitative λ _{R_e} measurements reveals tight relationships between angular momentum and galaxy structure. In order to account for atmospheric seeing, we use realistic models of galaxy kinematics to derive a general approximate analytic correction for λ _{R_e}. Thanks to the size of the sample and the large number of massive galaxies, we unambiguously detect a clear bimodality in the (λ _{R_e}, ɛ ) diagram which may result from fundamental differences in galaxy assembly history. There is a sharp secondary density peak inside the region of the diagram with low λ _{R_e} and ɛ their distribution of the misalignments between the photometric and kinematic position angles. We confirm that genuine slow rotators start appearing above M ≥ 2 × 1011M⊙ where a significant number of high-mass fast rotators also exist.
SDSS-IV MaNGA: Uncovering the Angular Momentum Content of Central and Satellite Early-type Galaxies
Greene, J. E.; Leauthaud, A.; Emsellem, E.; Ge, J.; Aragón-Salamanca, A.; Greco, J.; Lin, Y.-T.; Mao, S.; Masters, K.; Merrifield, M.; More, S.; Okabe, N.; Schneider, D. P.; Thomas, D.; Wake, D. A.; Pan, K.; Bizyaev, D.; Oravetz, D.; Simmons, A.; Yan, R.; van den Bosch, F.
2018-01-01
We study 379 central and 159 satellite early-type galaxies with two-dimensional kinematics from the integral-field survey Mapping Nearby Galaxies at APO (MaNGA) to determine how their angular momentum content depends on stellar and halo mass. Using the Yang et al. group catalog, we identify central and satellite galaxies in groups with halo masses in the range {10}12.5 {h}-1 {M}ȯ {10}11 {h}-2 {M}ȯ tend to have very little rotation, while nearly all galaxies at lower mass show some net rotation. The ∼30% of high-mass galaxies that have significant rotation do not stand out in other galaxy properties, except for a higher incidence of ionized gas emission. Our data are consistent with recent simulation results suggesting that major merging and gas accretion have more impact on the rotational support of lower-mass galaxies. When carefully matching the stellar mass distributions, we find no residual differences in angular momentum content between satellite and central galaxies at the 20% level. Similarly, at fixed mass, galaxies have consistent rotation properties across a wide range of halo mass. However, we find that errors in classification of central and satellite galaxies with group finders systematically lower differences between satellite and central galaxies at a level that is comparable to current measurement uncertainties. To improve constraints, the impact of group-finding methods will have to be forward-modeled via mock catalogs.
Kurian, P.; Verzegnassi, C.
2016-01-01
We consider in a quantum field theory framework the effects of a classical magnetic field on the spin and orbital angular momentum (OAM) of a free electron. We derive formulae for the changes in the spin and OAM due to the introduction of a general classical background field. We consider then a constant magnetic field, in which case the relevant expressions of the effects become much simpler and conversions between spin and OAM become readily apparent. An estimate of the expectation values for a realistic electron state is also given. Our findings may be of interest to researchers in spintronics and the field of quantum biology, where electron spin has been implicated on macroscopic time and energy scales. - Highlights: • We present the first field theory treatment of magnetic changes in electron spin. • Changes in spin and orbital angular momentum (OAM) are correlated and calculated. • Expectation values of spin–OAM changes for a realistic electron state are computed. • Earth's magnetic field produces non-negligible changes in spin of a few percent. • Results apply to spin–OAM conversion in electron vortex beams and quantum biology.
Kurian, P., E-mail: pkurian@gmx.com [National Human Genome Center, Howard University, College of Medicine, Washington, DC (United States); Verzegnassi, C. [Department of Chemistry and Environmental Physics, University of Udine, Udine (Italy); Association for Medicine and Complexity (AMeC), Trieste (Italy)
2016-01-28
We consider in a quantum field theory framework the effects of a classical magnetic field on the spin and orbital angular momentum (OAM) of a free electron. We derive formulae for the changes in the spin and OAM due to the introduction of a general classical background field. We consider then a constant magnetic field, in which case the relevant expressions of the effects become much simpler and conversions between spin and OAM become readily apparent. An estimate of the expectation values for a realistic electron state is also given. Our findings may be of interest to researchers in spintronics and the field of quantum biology, where electron spin has been implicated on macroscopic time and energy scales. - Highlights: • We present the first field theory treatment of magnetic changes in electron spin. • Changes in spin and orbital angular momentum (OAM) are correlated and calculated. • Expectation values of spin–OAM changes for a realistic electron state are computed. • Earth's magnetic field produces non-negligible changes in spin of a few percent. • Results apply to spin–OAM conversion in electron vortex beams and quantum biology.
Angular momentum transport in accretion disk boundary layers around weakly magnetized stars
Pessah, M.E.; Chan, C.-K.
2013-01-01
) is inefficient in disk regions where, as expected in boundary layers, the angular frequency increases with radius. Motivated by the need of a deeper understanding of the behavior of an MHD fluid in a differentially rotating background that deviates from a Keplerian profile, we study the dynamics of MHD waves...
Kun, S.Yu.; WITS Univ., Johannesburg; Noerenberg, W.; TH Darmstadt; Papa, M.
1992-09-01
We analyze the energy autocorrelation functions and the energy coherence lengths in the strongly dissipative collision 28 Si(E lab = 130 MeV) + 4 8Ti for Z=11 and 12 reaction fragments. It is found that in order to obtain a good fit of both the energy averaged angular distributions and the angular dependence of the energy coherence lengths one has to take into account (i) the dissipation and fluctuation of the relative angular momentum of the dinucleus and (ii) the contribution from direct (fast) reactions in addition to the statistical (relatively slow) interaction processes. The established angular dependence is a direct consequence of the angular-momentum dissipation-fluctuation effects on the time-space evolution of the intermediate dinucleus. (orig.)
Fragment angular momentum and descent dynamics in {sup 252}Cf spontaneous fission
Popeko, G.S.; Ter-Akopian, G.M.; Daniel, A.V.; Oganessian, Y.T.; Kliman, J. [JINR, Dubna, 141980 (Russia); Ter-Akopian, G.M.; Hamilton, J.H.; Kormicki, J.; Daniel, A.V.; Ramayya, A.V.; Hwang, J.K.; Sandulescu, A.; Florescu, A.; Greiner, W. [Vanderbilt University, Nashville, Tennessee 37235 (United States); Ter-Akopian, G.M.; Daniel, A.V.; Florescu, A.; Greiner, W. [JIHIR, Oak Ridge, Tennessee 37831 (United States); Greiner, W. [ITP, J.W. Goethe University, D-60054, Frankfurt am Main (Germany); Florescu, A. [IAP, Bucharest, P.O. Box MG-6, (Russian Federation); Kliman, J.; Morhac, M. [IP SASc, Bratislava (Slovak Republic); Rasmussen, J.O. [LBNL, Berkeley, California 94720 (United States); Stoyer, M.A. [LLNL, Livermore , California 94550 (United States); Cole, J.D. [INEL, Idaho Falls, Idaho 83415 (United States)
1998-12-01
Fragment angular momenta as a function of neutron multiplicity were extracted for the first time for the Mo-Ba and Zr-Ce charge splits of {sup 252}Cf by studying prompt coincident {gamma}-rays. The obtained primary fragment angular momenta do not continuously rise with the increase in the number of neutrons evaporated. In frame of the scission point bending oscillation model such regularity is explained due the decrease of the bending temperature. Adiabatic bending oscillations (T=0) are obtained at large ({nu}{sub tot}{gt}5) and small ({nu}{sub tot}=0) scission point elongation. These oscillations are excited to the temperature of 2{endash}3 MeV for the most probable scission configurations indicating a weak coupling between collective and internal degrees of freedom. A strong coupling between the collective bending and dipole oscillations was found. {copyright} {ital 1998 American Institute of Physics.}
Inamori, Takaya; Wang, Jihe; Saisutjarit, Phongsatorn; Nakasuka, Shinichi
2013-07-01
Nowadays, nano- and micro-satellites, which are smaller than conventional large satellites, provide access to space to many satellite developers, and they are attracting interest as an application of space development because development is possible over shorter time period at a lower cost. In most of these nano- and micro-satellite missions, the satellites generally must meet strict attitude requirements for obtaining scientific data under strict constraints of power consumption, space, and weight. In many satellite missions, the jitter of a reaction wheel degrades the performance of the mission detectors and attitude sensors; therefore, jitter should be controlled or isolated to reduce its effect on sensor devices. In conventional standard-sized satellites, tip-tilt mirrors (TTMs) and isolators are used for controlling or isolating the vibrations from reaction wheels; however, it is difficult to use these devices for nano- and micro-satellite missions under the strict power, space, and mass constraints. In this research, the jitter of reaction wheels is reduced by using accurate sensors, small reaction wheels, and slow rotation frequency reaction wheel instead of TTMs and isolators. The objective of a reaction wheel in many satellite missions is the management of the satellite's angular momentum, which increases because of attitude disturbances. If the magnitude of the disturbance is reduced in orbit or on the ground, the magnitude of the angular momentum that the reaction wheels gain from attitude disturbances in orbit becomes smaller; therefore, satellites can stabilize their attitude using only smaller reaction wheels or slow rotation speed, which cause relatively smaller vibration. In nano- and micro-satellite missions, the dominant attitude disturbance is a magnetic torque, which can be cancelled by using magnetic actuators. With the magnetic compensation, the satellite reduces the angular momentum that the reaction wheels gain, and therefore, satellites do
Sun, Wenbo; Hu, Yongxiang; Weimer, Carl; Ayers, Kirk; Baize, Rosemary R.; Lee, Tsengdar
2017-01-01
Electromagnetic (EM) beams with orbital angular momentum (OAM) may have great potential applications in communication technology and in remote sensing of the Earth-atmosphere system and outer planets. Study of their interaction with optical lenses and dielectric or metallic objects, or scattering of them by particles in the Earth-atmosphere system, is a necessary step to explore the advantage of the OAM EM beams. In this study, the 3-dimensional (3D) scattered-field (SF) finite-difference time domain (FDTD) technique with the convolutional perfectly matched layer (CPML) absorbing boundary conditions (ABC) is applied to calculate the scattering of the purely azimuthal (the radial mode number is assumed to be zero) Laguerre–Gaussian (LG) beams with the OAM by dielectric particles. We found that for OAM beam's interaction with dielectric particles, the forward-scattering peak in the conventional phase function (P11) disappears, and light scattering peak occurs at a scattering angle of ~15° to 45°. The disappearance of forward-scattering peak means that, in laser communications most of the particle-scattered noise cannot enter the receiver, thus the received light is optimally the original OAM-encoded signal. This feature of the OAM beam also implies that in lidar remote sensing of the atmospheric particulates, most of the multiple-scattering energy will be off lidar sensors, and this may result in an accurate profiling of particle layers in the atmosphere or in the oceans by lidar, or even in the ground when a ground penetration radar (GPR) with the OAM is applied. This far-field characteristics of the scattered OAM light also imply that the optical theorem, which is derived from plane-parallel wave scattering case and relates the forward scattering amplitude to the total cross section of the scatterer, is invalid for the scattering of OAM beams by dielectric particles. - Highlights: • Scattering of orbital angular momentum (OAM) laser beam by dielectric
Transverse momentum and angular distributions of hadrons in e+e- jets from QCD
Kramer, G.; Schierholz, G.
1978-10-01
Hadron jets in e + e - annihilation will broaden at high energies due to gluon bremsstrahlung. With nonperturbative PT effects dying out rapidly, the basic features of hadron jets can be calculated in perturbation theory. We examine the PT distribution of secondarily produced hadrons. This is uniquely connected with the deviation from the 1 cos 2 THETA dependence of single particle inclusive distributions. We discuss what can be learned about the gluon fragmentation given the PT and/or angular distributions. A sum rule is derived which establishes a relationship between the average P 2 T and αs. (orig.) [de
Transverse momentum and angular distributions of hadrons in e+e- jets from QCD
Kramer, G.
1979-01-01
Hadron jets in e + e - annihilation will broaden at high energies due to gluon bremsstrahlung. With nonperturbative psub(T) effects dying out rapidly, the basic features of hadron jets can be calculated in perturbation theory. The authors examine the psub(T) distribution of secondarily produced hadrons. This is uniquely connected with the deviation from the 1 + cos 2 theta dependence of single particle inclusive distributions. The authors discuss what can be learned about the gluon fragmentation given the psub(T) and/or angular distributions. A sum rule is derived which establishes a relationship between the average p 2 sub(T) and αsub(S). (Auth.)
Robustness of plasmonic angular momentum confinement in cross resonant optical antennas
Klaer, Peter; Lehr, Martin; Krewer, Keno; Schertz, Florian; Schönhense, Gerd; Elmers, Hans Joachim, E-mail: elmers@uni-mainz.de [Institut für Physik, Johannes Gutenberg-Universität, Staudingerweg 7, D-55099 Mainz (Germany); Razinskas, Gary; Wu, Xiao-Fei; Hecht, Bert [Institut für Physik, Julius-Maximilians-Universität, Am Hubland, 97074 Würzburg (Germany)
2015-06-29
Using a combination of photoemission electron microscopy and numerical simulations, we investigated the angular moment transfer in strongly enhanced optical near-fields of artificially fabricated optical antennas. The polarization dependence of the optical near-field enhancement has been measured in a maximum symmetric geometry, i.e., excitation by a normal incident planar wave. Finite-difference time-domain simulations for the realistic antenna geometries as determined by high-resolution electron microscopy reveal a very good agreement with experimental data. The agreement confirms that the geometrical asymmetries and inhomogeneities due to the nanoscale fabrication process preserve the circular polarization in the gap regions with strong near-field enhancement.
Aksenov, Valerii P; Kolosov, Valeriy V; Pogutsa, Cheslav E
2014-06-10
The propagation of laser beams having orbital angular momenta (OAM) in the turbulent atmosphere is studied numerically. The variance of random wandering of these beams is investigated with the use of the Monte Carlo technique. It is found that, among various types of vortex laser beams, such as the Laguerre-Gaussian (LG) beam, modified Bessel-Gaussian beam, and hypergeometric Gaussian beam, having identical initial effective radii and OAM, the LG beam occupying the largest effective volume in space is the most stable one.
Hansen, J S; Daivis, Peter J; Dyre, Jeppe C; Todd, B D; Bruus, Henrik
2013-01-21
The extended Navier-Stokes theory accounts for the coupling between the translational and rotational molecular degrees of freedom. In this paper, we generalize this theory to non-zero frequencies and wavevectors, which enables a new study of spatio-temporal correlation phenomena present in molecular fluids. To discuss these phenomena in detail, molecular dynamics simulations of molecular chlorine are performed for three different state points. In general, the theory captures the behavior for small wavevector and frequencies as expected. For example, in the hydrodynamic regime and for molecular fluids with small moment of inertia like chlorine, the theory predicts that the longitudinal and transverse intrinsic angular velocity correlation functions are almost identical, which is also seen in the molecular dynamics simulations. However, the theory fails at large wavevector and frequencies. To account for the correlations at these scales, we derive a phenomenological expression for the frequency dependent rotational viscosity and wavevector and frequency dependent longitudinal spin viscosity. From this we observe a significant coupling enhancement between the molecular angular velocity and translational velocity for large frequencies in the gas phase; this is not observed for the supercritical fluid and liquid state points.
Ren, Yongxiong; Wang, Zhe; Liao, Peicheng; Li, Long; Xie, Guodong; Huang, Hao; Zhao, Zhe; Yan, Yan; Ahmed, Nisar; Willner, Asher; Lavery, Martin P J; Ashrafi, Nima; Ashrafi, Solyman; Bock, Robert; Tur, Moshe; Djordjevic, Ivan B; Neifeld, Mark A; Willner, Alan E
2016-02-01
We experimentally demonstrate and characterize the performance of a 400-Gbit/s orbital angular momentum (OAM) multiplexed free-space optical link over 120 m on the roof of a building. Four OAM beams, each carrying a 100-Gbit/s quadrature-phase-shift-keyed channel are multiplexed and transmitted. We investigate the influence of channel impairments on the received power, intermodal crosstalk among channels, and system power penalties. Without laser tracking and compensation systems, the measured received power and crosstalk among OAM channels fluctuate by 4.5 dB and 5 dB, respectively, over 180 s. For a beam displacement of 2 mm that corresponds to a pointing error less than 16.7 μrad, the link bit error rates are below the forward error correction threshold of 3.8×10(-3) for all channels. Both experimental and simulation results show that power penalties increase rapidly when the displacement increases.
Pu, Mingbo; Ma, Xiaoliang; Zhao, Zeyu; Li, Xiong; Wang, Yanqin; Gao, Hui; Hu, Chenggang; Gao, Ping; Wang, Changtao; Luo, Xiangang
2015-07-10
The orbital angular momentum (OAM) of light, as an emerging hotspot in optics and photonics, introduces many degrees of freedom for applications ranging from optical communication and quantum processing to micromanipulation. To achieve a high degree of integration, optical circuits for OAM light are essential, which are, however, challenging in the optical regime owing to the lack of well-developed theory. Here we provide a scheme to guide and collimate the OAM beam at the micro- and nano-levels. The coaxial plasmonic slit was exploited as a naturally occurring waveguide for light carrying OAM. Concentric grooves etched on the output surface of the coaxial waveguide were utilized as a plasmonic metasurface to couple the OAM beam to free space with greatly increased beam directivity. Experimental results at λ = 532 nm validated the novel transportation and collimating effect of the OAM beam. Furthermore, dynamic tuning of the topological charges was demonstrated by using a liquid crystal spatial light modulator (SLM).
Zeller, Rudolf
2013-01-01
Although the full-potential Korringa–Kohn–Rostoker Green function method yields accurate results for many physical properties, the convergence of calculated total energies with respect to the angular momentum cutoff is usually considered to be less satisfactory. This is surprising because accurate single-particle energies are expected if they are calculated by Lloyd’s formula and because accurate densities and hence accurate double-counting energies should result from the total energy variational principle. It is shown how the concept of projection potentials can be used as a tool to analyse the convergence behaviour. The key factor blocking fast convergence is identified and it is illustrated how total energies can be improved with only a modest increase of computing time. (paper)
Piccirillo, Bruno; Slussarenko, Sergei; Marrucci, Lorenzo; Santamato, Enrico
2015-10-19
The standard method for experimentally determining the probability distribution of an observable in quantum mechanics is the measurement of the observable spectrum. However, for infinite-dimensional degrees of freedom, this approach would require ideally infinite or, more realistically, a very large number of measurements. Here we consider an alternative method which can yield the mean and variance of an observable of an infinite-dimensional system by measuring only a two-dimensional pointer weakly coupled with the system. In our demonstrative implementation, we determine both the mean and the variance of the orbital angular momentum of a light beam without acquiring the entire spectrum, but measuring the Stokes parameters of the optical polarization (acting as pointer), after the beam has suffered a suitable spin-orbit weak interaction. This example can provide a paradigm for a new class of useful weak quantum measurements.
El Masri, Y.; Steckmeyer, J.C.; Martin, V.; Bizard, G.; Brou, R.; Laville, J.L.; Regimbart, R.; Tamain, B.; Peter, J.
1990-01-01
Gamma-ray multiplicities (first and second moments) have been measured, in the 220 MeV 20 Ne+ nat Re and 315 meV 40 Ar+ 165 Ho reactions, as a function of fission fragment masses and centre-of-mass total kinetic energies. The two reactions lead to the same fusion nucleus, 205 At, at the same excitation energy (167 MeV). The experimental critical angular momentum for the fission process in the Ne+Re system (91±3) ℎ is close to I Bf=0 (∝80 ℎ) while in the Ar+Ho reaction this critical angular momentum (136±4) ℎ is much larger than I Bf=0 value, favoring the occurrence of the fast fission process. The observed widths of the fission fragment mass distribution: (42±2) u in the Ne+Re system and (56±4) u in the Ar+Ho reaction strengthen this hypothesis. For both compound nucleus fission and fast fission components in Ar+Ho, the total spin values obtained in absolute magnitude and in their dependence on the mass asymmetry are well described by assuming rigid rotation of the fissioning complex and statistical excitation of some collective rotational modes such as 'Bending' and 'Wriggling' according to the Schmitt-Pacheco model. These modes, however, are not all fully excited, their degrees of excitation are approximately the same for both fission components. From theoretical estimates of equilibration times, one anticipates the 'Tilting' mode to be by far the last to be excited, and from its non-excitation in the present data together with the excitation of bending and wriggling, a time interval of about 10 -21 s to 2x10 -20 s can be derived for the reaction time of both normal fission and fast fission. (orig./HSI)
Global and regional axial ocean angular momentum signals and length-of-day variations (1985-1996)
Ponte, Rui M.; Stammer, Detlef
2000-07-01
Changes in ocean angular momentum M about the polar axis are related to fluctuations in zonal currents (relative component Mr) and latitudinal shifts in mass (planetary component MΩ). Output from a 1° ocean model is used to calculate global Mr, MΩ, and M time series at 5 day intervals for the period January 1985 to April 1996. The annual cycle in Mr, MΩ, and M is larger than the semiannual cycle, and MΩ amplitudes are nearly twice those of Mr. Year-to-year modulation of the seasonal cycle is present, but interannual variability is weak. The spectrum of M is red (background slope between ω-1 and ω-2) at subseasonal periods, implying a white or blue spectrum for the external torque on the ocean. Comparisons with previous studies indicate the importance of direct atmospheric forcing in inducing subseasonal M signals, relative to instabilities and other internal sources of rapid oceanic signals. Regional angular momentum estimates show that seasonal variability tends to be larger at low latitudes, but many local maxima exist because of the spatial structure of zonal current and mass variability. At seasonal timescales, latitudes ~20°S-10°N contribute substantial variability to MΩ, while signals in Mr can be traced to Antarctic Circumpolar Current transports and associated circulation. Variability in M is found to be small when compared with similar time series for the atmosphere and the solid Earth, but ocean signals are significantly coherent with atmosphere-solid Earth residuals, implying a measurable oceanic impact on length-of-day variations.
El-Samman, H.
1986-03-01
A Multidetector system such as multiplicity filter, set-up for energy γ energy γ correlation measurements and 12 and 14 element modular sum-spectrometers has been built with hexagonal cross-section NaI (T1) detectors. This system is used in studies of continuum γ-ray spectra at high angular momentum to determine the collective J band (2) and effective J eff (2) dynamic moments of inertia in 54≤Z≤60 transitional nuclei. Comparisons between our measurements and calculations in a cranking Nilsson-Strutinsky model show that 128,130 Ba have a pure collective behaviour with pure prolate (γ =0 deg) deformation at high spin while 118,122 Xe are triaxial (γ = 33 deg) with moderate deformation (ε = 0.25). We demonstrate the existence of a secondary minimum at larger deformation (ε = 0.35) in the potential energy surfaces of 128,130 Ba. This minimum is associated with the alignment of h 9/2 and i 13/2 neutrons and produces a shape change in the bariums. The influence of the odd proton in the A = 120 region is also demonstrated by the shape change from triaxial to prolate we observed in 123 Cs at high frequency. Informations on deformation and particle alignement are obtained from measurements of J eff (2) in Xe, Ba, Ce and Nd isotopes. A direct comparison of J band (2) and J eff (2) shows that collective motion and particle alignment participate for about 50 % each in the total increase of angular momentum [fr
Angular correlations in proton-proton collisions producing a high transverse momentum pi /sup 0/
Eggert, K; Betev, B; Darriulat, Pierre; Derado, I; Dittman, P; Eckardt, V; Gebauer, H J; Giboni, K L; Holder, M; Kaltwasser, J; McDonald, K T; Meinke, R; Modis, T; Pugh, H G; Sander, O R; Seyboth, P; Thomé, W; Tittel, K; Uhlig, S; Vesztergombi, G
1975-01-01
In an experiment at the CERN ISR a streamer chamber detector surrounding one of the intersection regions was triggered on large transverse momentum pi /sup 0,/s by means of an array of lead-glass counters. The directions of charged particles and gamma -rays converted in lead-oxide plates inside the streamer chamber were measured. Data were taken at a c.m. energy of square root s=53 GeV at two production angles of the high p/sub T/ pi /sup 0/ (90 degrees and 53 degrees ). They indicate an enhancement of particles mostly in the hemisphere opposite to the pi /sup 0/. In the 53 degrees data, a shift of this enhancement towards rapidities opposite to the rapidity of the pi /sup 0/ and confined to a +or-30 degrees azimuthal region around the collision plane is observed. (16 refs).
Ren, Yongxiong; Xie, Guodong; Yan, Yan; Li, Long; Zhao, Zhe; Wang, Jian; Tur, Moshe; Molisch, Andreas F.; Ashrafi, Solyman
2017-01-01
There is a continuing growth in the demand for data bandwidth, and the multiplexing of multiple independent data streams has the potential to provide the needed data capacity. One technique uses the spatial domain of an electromagnetic (EM) wave, and space division multiplexing (SDM) has become increasingly important for increased transmission capacity and spectral efficiency of a communication system. A subset of SDM is mode division multiplexing (MDM), in which multiple orthogonal beams each on a different mode can be multiplexed. A potential modal basis set to achieve MDM is to use orbital angular momentum (OAM) of EM waves. In such a system, multiple OAM beams each carrying an independent data stream are multiplexed at the transmitter, propagate through a common medium and are demultiplexed at the receiver. As a result, the total capacity and spectral efficiency of the communication system can be multiplied by a factor equal to the number of transmitted OAM modes. Over the past few years, progress has been made in understanding the advantages and limitations of using multiplexed OAM beams for communication systems. In this review paper, we highlight recent advances in the use of OAM multiplexing for high-capacity free-space optical and millimetre-wave communications. We discuss different technical challenges (e.g. atmospheric turbulence and crosstalk) as well as potential techniques to mitigate such degrading effects. This article is part of the themed issue ‘Optical orbital angular momentum’. PMID:28069770
The NEOTωIST mission (Near-Earth Object Transfer of angular momentum spin test)
Drube, Line; Harris, Alan W.; Engel, Kilian; Falke, Albert; Johann, Ulrich; Eggl, Siegfried; Cano, Juan L.; Ávila, Javier Martín; Schwartz, Stephen R.; Michel, Patrick
2016-10-01
We present a concept for a kinetic impactor demonstration mission, which intends to change the spin rate of a previously-visited asteroid, in this case 25143 Itokawa. The mission would determine the efficiency of momentum transfer during an impact, and help mature the technology required for a kinetic impactor mission, both of which are important precursors for a future space mission to deflect an asteroid by collisional means in an emergency situation. Most demonstration mission concepts to date are based on changing an asteroid's heliocentric orbit and require a reconnaissance spacecraft to measure the very small orbital perturbation due to the impact. Our concept is a low-cost alternative, requiring only a single launch. Taking Itokawa as an example, an estimate of the order of magnitude of the change in the spin period, δP, with such a mission results in δP of 4 min (0.5%), which could be detectable by Earth-based observatories. Our preliminary study found that a mission concept in which an impactor produces a change in an asteroid's spin rate could provide valuable information for the assessment of the viability of the kinetic-impactor asteroid deflection concept. Furthermore, the data gained from the mission would be of great benefit for our understanding of the collisional evolution of asteroids and the physics behind crater and ejecta-cloud development.
Rita de Cássia de Oliveira Sebastião
2008-01-01
Full Text Available The relationship between the magnetic dipole-dipole potential energy function and its quantum analogue is presented in this work. It is assumed the reader is familiar with the classical expression of the dipolar interaction and has basic knowledge of the quantum mechanics of angular momentum. Except for these two points only elementary steps are involved.
Philippov, Alexander A.; Rafikov, Roman R.; Stone, James M., E-mail: sashaph@princeton.edu [Department of Astrophysical Sciences, Princeton University, Ivy Lane, Princeton, NJ 08540 (United States)
2016-01-20
Disk accretion at a high rate onto a white dwarf (WD) or a neutron star has been suggested to result in the formation of a spreading layer (SL)—a belt-like structure on the object's surface, in which the accreted matter steadily spreads in the poleward (meridional) direction while spinning down. To assess its basic characteristics, we perform two-dimensional hydrodynamic simulations of supersonic SLs in the relevant morphology with a simple prescription for cooling. We demonstrate that supersonic shear naturally present at the base of the SL inevitably drives sonic instability that gives rise to large-scale acoustic modes governing the evolution of the SL. These modes dominate the transport of momentum and energy, which is intrinsically global and cannot be characterized via some form of local effective viscosity (e.g., α-viscosity). The global nature of the wave-driven transport should have important implications for triggering Type I X-ray bursts in low-mass X-ray binaries. The nonlinear evolution of waves into a system of shocks drives effective rearrangement (sensitively depending on thermodynamical properties of the flow) and deceleration of the SL, which ultimately becomes transonic and susceptible to regular Kelvin–Helmholtz instability. We interpret this evolution in terms of the global structure of the SL and suggest that mixing of the SL material with the underlying stellar fluid should become effective only at intermediate latitudes on the accreting object's surface, where the flow has decelerated appreciably. In the near-equatorial regions the transport is dominated by acoustic waves and mixing is less efficient. We speculate that this latitudinal nonuniformity of mixing in accreting WDs may be linked to the observed bipolar morphology of classical nova ejecta.
Chen Lixiang; Zheng Guoliang; She Weilong
2007-01-01
An optical spanner is a light beam that can exert a torque on an object. It is demonstrated in this Rapid Communication that, with the aid of applied electric and magnetic fields, a light beam with initially linear polarization and initially zero total spin angular momentum can interact with an optically active medium, resulting in a change of the ratio of left-handed circularly polarized photons to right-handed ones. Thus the total spin angular momentum of the light is changed, which leads to a torque, creating an electrically and magnetically controlled optical spanner on the medium. For a linearly polarized 632.8 nm laser beam incident on a 100-μm-long Ce:Bi 12 TiO 20 whisker crystal with 5 μm radius, if the magnetic field is fixed at -1.8 T, both the left- (right-)handed circularly polarized photon number and the total spin angular momentum vary with the applied electric field in a sinusoidal way, which means the torque exerted by the optical spanner on the crystal also varies sinusoidally with the electric field. It is found that at 50 (or-50) kV/cm, 56% right- (left-)handed circularly polarized photons are translated into left- (right-)handed ones, which corresponds to a transfer of 0.56(ℎ/2π) spin angular momentum contributed by each photon
Liu, Jun; Li, Shimao; Ding, Yunhong
2016-01-01
We experimentally demonstrate orbital angular momentum (OAM) mode emission from a high emission efficiency OAM emitter for 20 Gbit/s QPSK carrying data transmission in few-mode fiber (FMF). Two modes propagate through a 3.6km three-mode FMF with measured OSNR penalties less than 4 dB at a BER of 2e...
Li Wenbo; Li Mishan; Li Yaling; Wen Xiaoyang; Yuan Guangjun; Zhang Chi; Yang Tao
2005-01-01
The generality of the Calogero-Sutherland model (CSM) is studied with the aid of its several variations. The CSM is then solved by a new approach, the pseudo-angular-momentum operator method. The symmetry in spectrum space and valid region of the parameter are discussed. Analytic expressions of the eigenstate are obtained. The coherent states of the CSM are also discussed
Kallinger, T.; Weiss, W. W.; Beck, P. G.; Pigulski, A.; Kuschnig, R.; Tkachenko, A.; Pakhomov, Y.; Ryabchikova, T.; Lüftinger, T.; Palle, , P. L.; Semenko, E.; Handler, G.; Koudelka, O.; Matthews, J. M.; Moffat, A. F. J.; Pablo, H.; Popowicz, A.; Rucinski, S.; Wade, G. A.; Zwintz, K.
2017-07-01
Context. Stellar rotation affects the transport of chemical elements and angular momentum and is therefore a key process during stellar evolution, which is still not fully understood. This is especially true for massive OB-type stars, which are important for the chemical enrichment of the Universe. It is therefore important to constrain the physical parameters and internal angular momentum distribution of massive OB-type stars to calibrate stellar structure and evolution models. Stellar internal rotation can be probed through asteroseismic studies of rotationally split non radial oscillations but such results are still quite rare, especially for stars more massive than the Sun. The slowly pulsating B9V star HD 201433 is known to be part of a single-lined spectroscopic triple system, with two low-mass companions orbiting with periods of about 3.3 and 154 days. Aims: Our goal is to measure the internal rotation profile of HD 201433 and investigate the tidal interaction with the close companion. Methods: We used probabilistic methods to analyse the BRITE - Constellation photometry and radial velocity measurements, to identify a representative stellar model, and to determine the internal rotation profile of the star. Results: Our results are based on photometric observations made by BRITE - Constellation and the Solar Mass Ejection Imager on board the Coriolis satellite, high-resolution spectroscopy, and more than 96 yr of radial velocity measurements. We identify a sequence of nine frequency doublets in the photometric time series, consistent with rotationally split dipole modes with a period spacing of about 5030 s. We establish that HD 201433 is in principle a solid-body rotator with a very slow rotation period of 297 ± 76 days. Tidal interaction with the inner companion has, however, significantly accelerated the spin of the surface layers by a factor of approximately one hundred. The angular momentum transfer onto the surface of HD 201433 is also reflected by the
M. Aaboud
2017-02-01
Full Text Available The W boson angular distribution in events with high transverse momentum jets is measured using data collected by the ATLAS experiment from proton–proton collisions at a centre-of-mass energy s=8 TeV at the Large Hadron Collider, corresponding to an integrated luminosity of 20.3 fb−1. The focus is on the contributions to W+jets processes from real W emission, which is achieved by studying events where a muon is observed close to a high transverse momentum jet. At small angular separations, these contributions are expected to be large. Various theoretical models of this process are compared to the data in terms of the absolute cross-section and the angular distributions of the muon from the leptonic W decay.
Aaboud, Morad; Abbott, Brad; Abdallah, Jalal; Abdinov, Ovsat; Abeloos, Baptiste; Aben, Rosemarie; AbouZeid, Ossama; Abraham, Nicola; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adachi, Shunsuke; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Affolder, Tony; Agatonovic-Jovin, Tatjana; Aguilar-Saavedra, Juan Antonio; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Ali, Babar; Aliev, Malik; Alimonti, Gianluca; Alison, John; Alkire, Steven Patrick; Allbrooke, Benedict; Allen, Benjamin William; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Alshehri, Azzah Aziz; Alstaty, Mahmoud; Alvarez Gonzalez, Barbara; Άlvarez Piqueras, Damián; Alviggi, Mariagrazia; Amadio, Brian Thomas; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anders, John Kenneth; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Angelidakis, Stylianos; Angelozzi, Ivan; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antel, Claire; Antonelli, Mario; Antonov, Alexey; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Armitage, Lewis James; Arnaez, Olivier; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Artz, Sebastian; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Augsten, Kamil; Avolio, Giuseppe; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baak, Max; Baas, Alessandra; Baca, Matthew John; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Baines, John; Baker, Oliver Keith; Baldin, Evgenii; Balek, Petr; Balestri, Thomas; Balli, Fabrice; Balunas, William Keaton; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Barak, Liron; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisits, Martin-Stefan; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska-Blenessy, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barranco Navarro, Laura; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Basalaev, Artem; Bassalat, Ahmed; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bawa, Harinder Singh; Beacham, James; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Bechtle, Philip; Beck, Hans~Peter; Becker, Kathrin; Becker, Maurice; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bedognetti, Matteo; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Janna Katharina; Belanger-Champagne, Camille; Bell, Andrew Stuart; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Belyaev, Nikita; Benary, Odette; Benchekroun, Driss; Bender, Michael; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez, Jose; Benjamin, Douglas; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Beringer, Jürg; Berlendis, Simon; Bernard, Nathan Rogers; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertram, Iain Alexander; Bertsche, Carolyn; Bertsche, David; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethani, Agni; Bethke, Siegfried; Bevan, Adrian John; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Biedermann, Dustin; Bielski, Rafal; Biesuz, Nicolo Vladi; Biglietti, Michela; Bilbao De Mendizabal, Javier; Billoud, Thomas Remy Victor; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biondi, Silvia; Bisanz, Tobias; Bjergaard, David Martin; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blue, Andrew; Blum, Walter; Blumenschein, Ulrike; Blunier, Sylvain; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boehler, Michael; Boerner, Daniela; Bogaerts, Joannes Andreas; Bogavac, Danijela; Bogdanchikov, Alexander; Bohm, Christian; Boisvert, Veronique; Bokan, Petar; Bold, Tomasz; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Bortfeldt, Jonathan; Bortoletto, Daniela; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Bossio Sola, Jonathan David; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Boutle, Sarah Kate; Boveia, Antonio; Boyd, James; Boyko, Igor; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Breaden Madden, William Dmitri; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Lydia; Brenner, Richard; Bressler, Shikma; Bristow, Timothy Michael; Britton, Dave; Britzger, Daniel; Brochu, Frederic; Brock, Ian; Brock, Raymond; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Broughton, James; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Bruni, Alessia; Bruni, Graziano; Bruni, Lucrezia Stella; Brunt, Benjamin; Bruschi, Marco; Bruscino, Nello; Bryant, Patrick; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Buchholz, Peter; Buckley, Andrew; Budagov, Ioulian; Buehrer, Felix; Bugge, Magnar Kopangen; Bulekov, Oleg; Bullock, Daniel; Burckhart, Helfried; Burdin, Sergey; Burgard, Carsten Daniel; Burghgrave, Blake; Burka, Klaudia; Burke, Stephen; Burmeister, Ingo; Burr, Jonathan Thomas Peter; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Butler, John; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Buzykaev, Aleksey; Cabrera Urbán, Susana; Caforio, Davide; Cairo, Valentina; Cakir, Orhan; Calace, Noemi; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Callea, Giuseppe; Caloba, Luiz; Calvente Lopez, Sergio; Calvet, David; Calvet, Samuel; Calvet, Thomas Philippe; Camacho Toro, Reina; Camarda, Stefano; Camarri, Paolo; Cameron, David; Caminal Armadans, Roger; Camincher, Clement; Campana, Simone; Campanelli, Mario; Camplani, Alessandra; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Carbone, Ryne Michael; Cardarelli, Roberto; Cardillo, Fabio; Carli, Ina; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Carney, Rebecca; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Casper, David William; Castaneda-Miranda, Elizabeth; Castelijn, Remco; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Caudron, Julien; Cavaliere, Viviana; Cavallaro, Emanuele; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerda Alberich, Leonor; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chan, Stephen Kam-wah; Chan, Yat Long; Chang, Philip; Chapman, John Derek; Charlton, Dave; Chatterjee, Avishek; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Che, Siinn; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Shenjian; Chen, Shion; Chen, Xin; Chen, Ye; Cheng, Hok Chuen; Cheng, Huajie; Cheng, Yangyang; Cheplakov, Alexander; Cheremushkina, Evgenia; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiarelli, Giorgio; Chiodini, Gabriele; Chisholm, Andrew; Chitan, Adrian; Chizhov, Mihail; Choi, Kyungeon; Chomont, Arthur Rene; Chouridou, Sofia; Chow, Bonnie Kar Bo; Christodoulou, Valentinos; Chromek-Burckhart, Doris; Chudoba, Jiri; Chuinard, Annabelle Julia; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Cinca, Diane; Cindro, Vladimir; Cioara, Irina Antonela; Ciocca, Claudia; Ciocio, Alessandra; Cirotto, Francesco; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Brian Lee; Clark, Michael; Clark, Philip James; Clarke, Robert; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Colasurdo, Luca; Cole, Brian; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Connell, Simon Henry; Connelly, Ian; Consorti, Valerio; Constantinescu, Serban; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cormier, Kyle James Read; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Crawley, Samuel Joseph; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cueto, Ana; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cúth, Jakub; Czirr, Hendrik; Czodrowski, Patrick; D'amen, Gabriele; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dado, Tomas; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Dandoy, Jeffrey Rogers; Dang, Nguyen Phuong; Daniells, Andrew Christopher; Dann, Nicholas Stuart; Danninger, Matthias; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Merlin; Davison, Peter; Dawe, Edmund; Dawson, Ian; De, Kaushik; de Asmundis, Riccardo; De Benedetti, Abraham; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Maria, Antonio; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Dehghanian, Nooshin; Deigaard, Ingrid; Del Gaudio, Michela; Del Peso, Jose; Del Prete, Tarcisio; Delgove, David; Deliot, Frederic; Delitzsch, Chris Malena; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; DeMarco, David; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Denysiuk, Denys; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Dette, Karola; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Clemente, William Kennedy; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaconu, Cristinel; Diamond, Miriam; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Díez Cornell, Sergio; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Djuvsland, Julia Isabell; Barros do Vale, Maria Aline; Dobos, Daniel; Dobre, Monica; Doglioni, Caterina; Dolejsi, Jiri; Dolezal, Zdenek; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Drechsler, Eric; Dris, Manolis; Du, Yanyan; Duarte-Campderros, Jorge; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Dudder, Andreas Christian; Duffield, Emily Marie; Duflot, Laurent; Dührssen, Michael; Dumancic, Mirta; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Duschinger, Dirk; Dutta, Baishali; Dyndal, Mateusz; Eckardt, Christoph; Ecker, Katharina Maria; Edgar, Ryan Christopher; Edwards, Nicholas Charles; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellajosyula, Venugopal; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Elliot, Alison; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Ennis, Joseph Stanford; Erdmann, Johannes; Ereditato, Antonio; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Ezzi, Mohammed; Fabbri, Federica; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farina, Christian; Farina, Edoardo Maria; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Faucci Giannelli, Michele; Favareto, Andrea; Fawcett, William James; Fayard, Louis; Fedin, Oleg; Fedorko, Wojciech; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Feremenga, Last; Fernandez Martinez, Patricia; Fernandez Perez, Sonia; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Adam; Fischer, Cora; Fischer, Julia; Fisher, Wade Cameron; Flaschel, Nils; Fleck, Ivor; Fleischmann, Philipp; Fletcher, Gareth Thomas; Fletcher, Rob Roy MacGregor; Flick, Tobias; Flores Castillo, Luis; Flowerdew, Michael; Forcolin, Giulio Tiziano; Formica, Andrea; Forti, Alessandra; Foster, Andrew Geoffrey; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Francis, David; Franconi, Laura; Franklin, Melissa; Frate, Meghan; Fraternali, Marco; Freeborn, David; Fressard-Batraneanu, Silvia; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fusayasu, Takahiro; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gach, Grzegorz; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Louis Guillaume; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Ganguly, Sanmay; Gao, Jun; Gao, Yanyan; Gao, Yongsheng; Garay Walls, Francisca; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gascon Bravo, Alberto; Gasnikova, Ksenia; Gatti, Claudio; Gaudiello, Andrea; Gaudio, Gabriella; Gauthier, Lea; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Gecse, Zoltan; Gee, Norman; Geich-Gimbel, Christoph; Geisen, Marc; Geisler, Manuel Patrice; Gellerstedt, Karl; Gemme, Claudia; Genest, Marie-Hélène; Geng, Cong; Gentile, Simonetta; Gentsos, Christos; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghasemi, Sara; Ghneimat, Mazuza; Giacobbe, Benedetto; Giagu, Stefano; Giannetti, Paola; Gibbard, Bruce; Gibson, Stephen; Gignac, Matthew; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giorgi, Filippo Maria; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giromini, Paolo; Giugni, Danilo; Giuli, Francesco; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gkougkousis, Evangelos Leonidas; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Goblirsch-Kolb, Maximilian; Godlewski, Jan; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Giulia; Gonella, Laura; Gongadze, Alexi; González de la Hoz, Santiago; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Goudet, Christophe Raymond; Goujdami, Driss; Goussiou, Anna; Govender, Nicolin; Gozani, Eitan; Graber, Lars; Grabowska-Bold, Iwona; Gradin, Per Olov Joakim; Grafström, Per; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Gratchev, Vadim; Gravila, Paul Mircea; Gray, Heather; Graziani, Enrico; Greenwood, Zeno Dixon; Grefe, Christian; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Grevtsov, Kirill; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grivaz, Jean-Francois; Groh, Sabrina; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Grout, Zara Jane; Guan, Liang; Guan, Wen; Guenther, Jaroslav; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Gui, Bin; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Guo, Jun; Guo, Yicheng; Gupta, Ruchi; Gupta, Shaun; Gustavino, Giuliano; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Hadef, Asma; Hageböck, Stephan; Hagihara, Mutsuto; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Haley, Joseph; Halladjian, Garabed; Hallewell, Gregory David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamilton, Andrew; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Haney, Bijan; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Maike Christina; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harrington, Robert; Harrison, Paul Fraser; Hartjes, Fred; Hartmann, Nikolai Marcel; Hasegawa, Makoto; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauser, Reiner; Hauswald, Lorenz; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hayakawa, Daiki; Hayden, Daniel; Hays, Chris; Hays, Jonathan Michael; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Jochen Jens; Heinrich, Lukas; Heinz, Christian; Hejbal, Jiri; Helary, Louis; Hellman, Sten; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Henkelmann, Steffen; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Herbert, Geoffrey Henry; Herde, Hannah; Herget, Verena; Hernández Jiménez, Yesenia; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hetherly, Jeffrey Wayne; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hinman, Rachel Reisner; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hohn, David; Holmes, Tova Ray; Homann, Michael; Honda, Takuya; Hong, Tae Min; Hooberman, Benjamin Henry; Hopkins, Walter; Horii, Yasuyuki; Horton, Arthur James; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howarth, James; Hoya, Joaquin; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hrynevich, Aliaksei; Hsu, Catherine; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Qipeng; Hu, Shuyang; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Huo, Peng; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Idrissi, Zineb; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Yuriy; Iliadis, Dimitrios; Ilic, Nikolina; Ince, Tayfun; Introzzi, Gianluca; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Ishijima, Naoki; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Ito, Fumiaki; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jabbar, Samina; Jackson, Brett; Jackson, Paul; Jain, Vivek; Jakobi, Katharina Bianca; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jamin, David Olivier; Jana, Dilip; Jansky, Roland; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanneau, Fabien; Jeanty, Laura; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Hai; Jiang, Yi; Jiang, Zihao; Jiggins, Stephen; Jimenez Pena, Javier; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Jivan, Harshna; Johansson, Per; Johns, Kenneth; Johnson, William Joseph; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Sarah; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Jovicevic, Jelena; Ju, Xiangyang; Juste Rozas, Aurelio; Köhler, Markus Konrad; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kahn, Sebastien Jonathan; Kaji, Toshiaki; Kajomovitz, Enrique; Kalderon, Charles William; Kaluza, Adam; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneti, Steven; Kanjir, Luka; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kaplan, Laser Seymour; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karamaoun, Andrew; Karastathis, Nikolaos; Kareem, Mohammad Jawad; Karentzos, Efstathios; Karnevskiy, Mikhail; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kasahara, Kota; Kashif, Lashkar; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Kato, Chikuma; Katre, Akshay; Katzy, Judith; Kawade, Kentaro; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazanin, Vassili; Keeler, Richard; Kehoe, Robert; Keller, John; Kempster, Jacob Julian; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Keyes, Robert; Khader, Mazin; Khalil-zada, Farkhad; Khanov, Alexander; Kharlamov, Alexey; Kharlamova, Tatyana; Khoo, Teng Jian; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kido, Shogo; Kilby, Callum; Kim, Hee Yeun; Kim, Shinhong; Kim, Young-Kee; Kimura, Naoki; Kind, Oliver Maria; King, Barry; King, Matthew; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kiuchi, Kenji; Kivernyk, Oleh; Kladiva, Eduard; Klein, Matthew Henry; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Knapik, Joanna; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Aine; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koehler, Nicolas Maximilian; Koffas, Thomas; Koffeman, Els; Koi, Tatsumi; Kolanoski, Hermann; Kolb, Mathis; Koletsou, Iro; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Kortner, Oliver; Kortner, Sandra; Kosek, Tomas; Kostyukhin, Vadim; Kotwal, Ashutosh; Koulouris, Aimilianos; Kourkoumeli-Charalampidi, Athina; Kourkoumelis, Christine; Kouskoura, Vasiliki; Kowalewska, Anna Bozena; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozakai, Chihiro; Kozanecki, Witold; Kozhin, Anatoly; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kravchenko, Anton; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Krizka, Karol; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Krumnack, Nils; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kucuk, Hilal; Kuday, Sinan; Kuechler, Jan Thomas; Kuehn, Susanne; Kugel, Andreas; Kuger, Fabian; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kukla, Romain; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunigo, Takuto; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwan, Tony; Kyriazopoulos, Dimitrios; La Rosa, Alessandro; La Rosa Navarro, Jose Luis; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Lammers, Sabine; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lanfermann, Marie Christine; Lang, Valerie Susanne; Lange, J örn Christian; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Lazovich, Tomo; Lazzaroni, Massimo; Le, Brian; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Quilleuc, Eloi; LeBlanc, Matthew Edgar; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Benoit; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Leontsinis, Stefanos; Lerner, Giuseppe; Leroy, Claude; Lesage, Arthur; Lester, Christopher; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Dave; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Changqiao; Li, Haifeng; Li, Ho Ling; Li, Lei; Li, Liang; Li, Qi; Li, Shu; Li, Xingguo; Li, Yichen; Liang, Zhijun; Liberti, Barbara; Liblong, Aaron; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Lindquist, Brian Edward; Lionti, Anthony Eric; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Hao; Liu, Hongbin; Liu, Jian; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanlin; Liu, Yanwen; Livan, Michele; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina Maria; Loch, Peter; Loebinger, Fred; Loew, Kevin Michael; Loginov, Andrey; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Long, Brian Alexander; Long, Jonathan David; Long, Robin Eamonn; Longo, Luigi; Looper, Kristina Anne; López, Jorge Andrés; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lopez Solis, Alvaro; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Lösel, Philipp Jonathan; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lu, Haonan; Lu, Nan; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luedtke, Christian; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Luzi, Pierre Marc; Lynn, David; Lysak, Roman; Lytken, Else; Lyubushkin, Vladimir; Ma, Hong; Ma, Lian Liang; Ma, Yanhui; Maccarrone, Giovanni; Macchiolo, Anna; Macdonald, Calum Michael; Maček, Boštjan; Machado Miguens, Joana; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeda, Junpei; Maeland, Steffen; Maeno, Tadashi; Maevskiy, Artem; Magradze, Erekle; Mahlstedt, Joern; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maier, Thomas; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Malone, Claire; Maltezos, Stavros; Malyukov, Sergei; Mamuzic, Judita; Mancini, Giada; Mandelli, Luciano; Mandić, Igor; Maneira, José; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany; Mann, Alexander; Manousos, Athanasios; Mansoulie, Bruno; Mansour, Jason Dhia; Mantifel, Rodger; Mantoani, Matteo; Manzoni, Stefano; Mapelli, Livio; Marceca, Gino; March, Luis; Marchiori, Giovanni; Marcisovsky, Michal; Marjanovic, Marija; Marley, Daniel; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti-Garcia, Salvador; Martin, Brian Thomas; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Mario; Martinez Outschoorn, Verena; Martin-Haugh, Stewart; Martoiu, Victor Sorin; Martyniuk, Alex; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massa, Lorenzo; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Maznas, Ioannis; Mazza, Simone Michele; Mc Fadden, Neil Christopher; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McClymont, Laurie; McDonald, Emily; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Melini, Davide; Mellado Garcia, Bruce Rafael; Melo, Matej; Meloni, Federico; Meng, Xiangting; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mergelmeyer, Sebastian; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer Zu Theenhausen, Hanno; Miano, Fabrizio; Middleton, Robin; Miglioranzi, Silvia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milesi, Marco; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Minaenko, Andrey; Minami, Yuto; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Minegishi, Yuji; Ming, Yao; Mir, Lluisa-Maria; Mistry, Khilesh; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Mlynarikova, Michaela; Moa, Torbjoern; Mochizuki, Kazuya; Mohapatra, Soumya; Molander, Simon; Moles-Valls, Regina; Monden, Ryutaro; Mondragon, Matthew Craig; Mönig, Klaus; Monk, James; Monnier, Emmanuel; Montalbano, Alyssa; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Stefanie; Mori, Daniel; Mori, Tatsuya; Morii, Masahiro; Morinaga, Masahiro; Morisbak, Vanja; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Mortensen, Simon Stark; Morvaj, Ljiljana; Mosidze, Maia; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Ralph Soeren Peter; Mueller, Thibaut; Muenstermann, Daniel; Mullen, Paul; Mullier, Geoffrey; Munoz Sanchez, Francisca Javiela; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Muškinja, Miha; Myagkov, Alexey; Myska, Miroslav; Nachman, Benjamin Philip; Nackenhorst, Olaf; Nagai, Koichi; Nagai, Ryo; Nagano, Kunihiro; Nagasaka, Yasushi; Nagata, Kazuki; Nagel, Martin; Nagy, Elemer; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Naranjo Garcia, Roger Felipe; Narayan, Rohin; Narrias Villar, Daniel Isaac; Naryshkin, Iouri; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara; Nelson, Andrew; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nguyen Manh, Tuan; Nickerson, Richard; Nicolaidou, Rosy; Nielsen, Jason; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsen, Jon Kerr; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nomachi, Masaharu; Nomidis, Ioannis; Nooney, Tamsin; Norberg, Scarlet; Nordberg, Markus; Norjoharuddeen, Nurfikri; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nurse, Emily; Nuti, Francesco; O'grady, Fionnbarr; O'Neil, Dugan; O'Rourke, Abigail Alexandra; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Ochoa-Ricoux, Juan Pedro; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Oide, Hideyuki; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Oleiro Seabra, Luis Filipe; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onogi, Kouta; Onyisi, Peter; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Owen, Mark; Owen, Rhys Edward; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Pacheco Rodriguez, Laura; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paganini, Michela; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palazzo, Serena; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Panagiotopoulou, Evgenia; Pandini, Carlo Enrico; Panduro Vazquez, William; Pani, Priscilla; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Adam Jackson; Parker, Michael Andrew; Parker, Kerry Ann; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pascuzzi, Vincent; Pasqualucci, Enrico; Passaggio, Stefano; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Pater, Joleen; Pauly, Thilo; Pearce, James; Pearson, Benjamin; Pedersen, Lars Egholm; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Penc, Ondrej; Peng, Cong; Peng, Haiping; Penwell, John; Peralva, Bernardo; Perego, Marta Maria; Perepelitsa, Dennis; Perez Codina, Estel; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petroff, Pierre; Petrolo, Emilio; Petrov, Mariyan; Petrucci, Fabrizio; Pettersson, Nora Emilia; Peyaud, Alan; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Pickering, Mark Andrew; Piegaia, Ricardo; Pilcher, James; Pilkington, Andrew; Pin, Arnaud Willy J; Pinamonti, Michele; Pinfold, James; Pingel, Almut; Pires, Sylvestre; Pirumov, Hayk; Pitt, Michael; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Pluth, Daniel; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Polesello, Giacomo; Poley, Anne-luise; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Poppleton, Alan; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pozo Astigarraga, Mikel Eukeni; Pralavorio, Pascal; Pranko, Aliaksandr; Prell, Soeren; Price, Darren; Price, Lawrence; Primavera, Margherita; Prince, Sebastien; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Puddu, Daniele; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Raddum, Silje; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Raine, John Andrew; Rajagopalan, Srinivasan; Rammensee, Michael; Rangel-Smith, Camila; Ratti, Maria Giulia; Rauch, Daniel; Rauscher, Felix; Rave, Stefan; Ravenscroft, Thomas; Ravinovich, Ilia; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Reale, Marilea; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reed, Robert; Reeves, Kendall; Rehnisch, Laura; Reichert, Joseph; Reiss, Andreas; Rembser, Christoph; Ren, Huan; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter, Stefan; Richter-Was, Elzbieta; Ricken, Oliver; Ridel, Melissa; Rieck, Patrick; Riegel, Christian Johann; Rieger, Julia; Rifki, Othmane; Rijssenbeek, Michael; Rimoldi, Adele; Rimoldi, Marco; Rinaldi, Lorenzo; Ristić, Branislav; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Rizzi, Chiara; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Rodina, Yulia; Rodriguez Perez, Andrea; Rodriguez Rodriguez, Daniel; Roe, Shaun; Rogan, Christopher Sean; Røhne, Ole; Roloff, Jennifer; Romaniouk, Anatoli; Romano, Marino; Romano Saez, Silvestre Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Peyton; Rosien, Nils-Arne; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Jonatan; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Russell, Heather; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryu, Soo; Ryzhov, Andrey; Rzehorz, Gerhard Ferdinand; Saavedra, Aldo; Sabato, Gabriele; Sacerdoti, Sabrina; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Saha, Puja; Sahinsoy, Merve; Saimpert, Matthias; Saito, Tomoyuki; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Salazar Loyola, Javier Esteban; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sammel, Dirk; Sampsonidis, Dimitrios; Sánchez, Javier; Sanchez Martinez, Victoria; Sanchez Pineda, Arturo; Sandaker, Heidi; Sandbach, Ruth Laura; Sandhoff, Marisa; Sandoval, Carlos; Sankey, Dave; Sannino, Mario; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sasaki, Osamu; Sato, Koji; Sauvan, Emmanuel; Savage, Graham; Savard, Pierre; Savic, Natascha; Sawyer, Craig; Sawyer, Lee; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schachtner, Balthasar Maria; Schaefer, Douglas; Schaefer, Leigh; Schaefer, Ralph; Schaeffer, Jan; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Schiavi, Carlo; Schier, Sheena; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmidt-Sommerfeld, Korbinian Ralf; Schmieden, Kristof; Schmitt, Christian; Schmitt, Stefan; Schmitz, Simon; Schneider, Basil; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schopf, Elisabeth; Schott, Matthias; Schouwenberg, Jeroen; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schuh, Natascha; Schulte, Alexandra; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schweiger, Hansdieter; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Sciolla, Gabriella; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Seema, Pienpen; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekhon, Karishma; Sekula, Stephen; Seliverstov, Dmitry; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Sessa, Marco; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shaikh, Nabila Wahab; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shaw, Savanna Marie; Shcherbakova, Anna; Shehu, Ciwake Yusufu; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shirabe, Shohei; Shiyakova, Mariya; Shmeleva, Alevtina; Shoaleh Saadi, Diane; Shochet, Mel; Shojaii, Seyed Ruhollah; Shope, David Richard; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Sicho, Petr; Sickles, Anne Marie; Sidebo, Per Edvin; Sideras Haddad, Elias; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silverstein, Samuel; Simak, Vladislav; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simon, Dorian; Simon, Manuel; Sinervo, Pekka; Sinev, Nikolai; Sioli, Maximiliano; Siragusa, Giovanni; Sivoklokov, Serguei; Sjölin, Jörgen; Skinner, Malcolm Bruce; Skottowe, Hugh Philip; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Slawinska, Magdalena; Sliwa, Krzysztof; Slovak, Radim; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smiesko, Juraj; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Matthew; Smith, Russell; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snyder, Ian Michael; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Sokhrannyi, Grygorii; Solans Sanchez, Carlos; Solar, Michael; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Son, Hyungsuk; Song, Hong Ye; Sood, Alexander; Sopczak, Andre; Sopko, Vit; Sorin, Veronica; Sosa, David; Sotiropoulou, Calliope Louisa; Soualah, Rachik; Soukharev, Andrey; South, David; Sowden, Benjamin; Spagnolo, Stefania; Spalla, Margherita; Spangenberg, Martin; Spannowsky, Michael; Spanò, Francesco; Sperlich, Dennis; Spettel, Fabian; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; St Denis, Richard Dante; Stabile, Alberto; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Giordon; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Stärz, Steffen; Staszewski, Rafal; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Strubig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Suchek, Stanislav; Sugaya, Yorihito; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Shota; Svatos, Michal; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Taccini, Cecilia; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Masahiro; Tanaka, Reisaburo; Tanaka, Shuji; Tanioka, Ryo; Tannenwald, Benjamin Bordy; Tapia Araya, Sebastian; Tapprogge, Stefan; Tarem, Shlomit; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Aaron; Taylor, Geoffrey; Taylor, Pierre Thor Elliot; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira-Dias, Pedro; Temming, Kim Katrin; Temple, Darren; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Tepel, Fabian-Phillipp; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Paul; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Tibbetts, Mark James; Ticse Torres, Royer Edson; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tipton, Paul; Tisserant, Sylvain; Todome, Kazuki; Todorov, Theodore; Todorova-Nova, Sharka; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tolley, Emma; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tong, Baojia(Tony); Tornambe, Peter; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Trofymov, Artur; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; Truong, Loan; Trzebinski, Maciej; Trzupek, Adam; Tseng, Jeffrey; Tsiareshka, Pavel; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsui, Ka Ming; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tu, Yanjun; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turgeman, Daniel; Turra, Ruggero; Tuts, Michael; Tyndel, Mike; Ucchielli, Giulia; Ueda, Ikuo; Ughetto, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Unverdorben, Christopher; Urban, Jozef; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Usui, Junya; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valderanis, Chrysostomos; Valdes Santurio, Eduardo; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; Van Der Deijl, Pieter; van der Graaf, Harry; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vankov, Peter; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vasquez, Jared Gregory; Vasquez, Gerardo; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veeraraghavan, Venkatesh; Veloce, Laurelle Maria; Veloso, Filipe; Veneziano, Stefano; Ventura, Andrea; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigani, Luigi; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Vittori, Camilla; Vivarelli, Iacopo; Vlachos, Sotirios; Vlasak, Michal; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wallangen, Veronica; Wang, Chao; Wang, Chao; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Tingting; Wang, Wenxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Washbrook, Andrew; Watkins, Peter; Watson, Alan; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Weber, Stephen; Webster, Jordan S; Weidberg, Anthony; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Michael David; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; Whallon, Nikola Lazar; Wharton, Andrew Mark; White, Andrew; White, Martin; White, Ryan; Whiteson, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wildauer, Andreas; Wilk, Fabian; Wilkens, Henric George; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winston, Oliver James; Winter, Benedict Tobias; Wittgen, Matthias; Wittkowski, Josephine; Wolf, Tim Michael Heinz; Wolter, Marcin Wladyslaw; Wolters, Helmut; Worm, Steven D; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wu, Mengqing; Wu, Miles; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yamaguchi, Daiki; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Shimpei; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Yi; Yang, Zongchang; Yao, Weiming; Yap, Yee Chinn; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yildirim, Eda; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yuen, Stephanie P; Yusuff, Imran; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zakharchuk, Nataliia; Zalieckas, Justas; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zeng, Jian Cong; Zeng, Qi; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Guangyi; Zhang, Huijun; Zhang, Jinlong; Zhang, Lei; Zhang, Matt; Zhang, Rui; Zhang, Ruiqi; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Xiandong; Zhao, Yongke; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Chen; Zhou, Lei; Zhou, Li; Zhou, Mingliang; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Stephanie; Zinonos, Zinonas; Zinser, Markus; Ziolkowski, Michael; Živković, Lidija; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zwalinski, Lukasz
2017-02-10
The $W$ boson angular distribution in events with high transverse momentum jets is measured using data collected by the ATLAS experiment from proton--proton collisions at a centre-of-mass energy $\\sqrt{s}=$ 8 TeV at the Large Hadron Collider, corresponding to an integrated luminosity of 20.3 fb$^{-1}$. The focus is on the contributions to $W$ + jets processes from real $W$ emission, which is achieved by studying events where a muon is observed close to a high transverse momentum jet. At small angular separations, these contributions are expected to be large. Various theoretical models of this process are compared to the data in terms of the absolute cross-section and the angular distributions of the muon from the leptonic $W$ decay.
Cisneros, G. Andrés; Piquemal, Jean-Philip; Darden, Thomas A.
2006-11-01
The simulation of biological systems by means of current empirical force fields presents shortcomings due to their lack of accuracy, especially in the description of the nonbonded terms. We have previously introduced a force field based on density fitting termed the Gaussian electrostatic model-0 (GEM-0) J.-P. Piquemal et al. [J. Chem. Phys. 124, 104101 (2006)] that improves the description of the nonbonded interactions. GEM-0 relies on density fitting methodology to reproduce each contribution of the constrained space orbital variation (CSOV) energy decomposition scheme, by expanding the electronic density of the molecule in s-type Gaussian functions centered at specific sites. In the present contribution we extend the Coulomb and exchange components of the force field to auxiliary basis sets of arbitrary angular momentum. Since the basis functions with higher angular momentum have directionality, a reference molecular frame (local frame) formalism is employed for the rotation of the fitted expansion coefficients. In all cases the intermolecular interaction energies are calculated by means of Hermite Gaussian functions using the McMurchie-Davidson [J. Comput. Phys. 26, 218 (1978)] recursion to calculate all the required integrals. Furthermore, the use of Hermite Gaussian functions allows a point multipole decomposition determination at each expansion site. Additionally, the issue of computational speed is investigated by reciprocal space based formalisms which include the particle mesh Ewald (PME) and fast Fourier-Poisson (FFP) methods. Frozen-core (Coulomb and exchange-repulsion) intermolecular interaction results for ten stationary points on the water dimer potential-energy surface, as well as a one-dimensional surface scan for the canonical water dimer, formamide, stacked benzene, and benzene water dimers, are presented. All results show reasonable agreement with the corresponding CSOV calculated reference contributions, around 0.1 and 0.15kcal/mol error for
Lyapunov stability analysis of magnetohydrodynamic plasma equilibria with axisymmetric toroidal flow
Almaguer, J.A.; Hameiri, E.; Herrera, J.; Holm, D.D.
1988-01-01
Lyapunov stability conditions for ideal magnetohydrodynamic (MHD) plasmas with mass flow in axisymmetric toroidal geometry are determined in the Eulerian representation. Axisymmetric equilibrium solutions of ideal MHD are associated to critical points of a nonlinearly conserved Lyapunov functional consisting of the sum of the total energy and the following flux-weighted quantities: the circulation along field lines, the angular momentum, the toroidal flux, and the mass content within each flux tube. Conditions sufficient for Lyapunov stability of these equilibria against axisymmetric perturbations are found by taking advantage of the Hamiltonian formalism for ideal MHD. In particular [see Eq. (60)], it is sufficient for Lyapunov stability under linearized dynamics that an axisymmetric equilibrium be subsonic in the appropriate rotating frame, lie in the first elliptic regime of the Bernoulli--Grad--Shafranov (BGS) system of equations, and satisfy one additional, more complicated, condition. Effects of boundary conditions, nonlinearity, and three-dimensionality on MHD stability are also discussed
Ren, Yongxiong; Liu, Cong; Pang, Kai; Zhao, Jiapeng; Cao, Yinwen; Xie, Guodong; Li, Long; Liao, Peicheng; Zhao, Zhe; Tur, Moshe; Boyd, Robert W; Willner, Alan E
2017-12-01
We experimentally demonstrate spatial multiplexing of an orbital angular momentum (OAM)-encoded quantum channel and a classical Gaussian beam with a different wavelength and orthogonal polarization. Data rates as large as 100 MHz are achieved by encoding on two different OAM states by employing a combination of independently modulated laser diodes and helical phase holograms. The influence of OAM mode spacing, encoding bandwidth, and interference from the co-propagating Gaussian beam on registered photon count rates and quantum bit error rates is investigated. Our results show that the deleterious effects of intermodal crosstalk effects on system performance become less important for OAM mode spacing Δ≥2 (corresponding to a crosstalk value of less than -18.5 dB). The use of OAM domain can additionally offer at least 10.4 dB isolation besides that provided by wavelength and polarization, leading to a further suppression of interference from the classical channel.
Murshid, Syed H.; Muralikrishnan, Hari P.; Kozaitis, Samuel P.
2012-06-01
Bandwidth increase has always been an important area of research in communications. A novel multiplexing technique known as Spatial Domain Multiplexing (SDM) has been developed at the Optronics Laboratory of Florida Institute of Technology to increase the bandwidth to T-bits/s range. In this technique, space inside the fiber is used effectively to transmit up to four channels of same wavelength at the same time. Experimental and theoretical analysis shows that these channels follow independent helical paths inside the fiber without interfering with each other. Multiple pigtail laser sources of exactly the same wavelength are used to launch light into a single carrier fiber in a fashion that resulting channels follow independent helical trajectories. These helically propagating light beams form optical vortices inside the fiber and carry their own Orbital Angular Momentum (OAM). The outputs of these beams appear as concentric donut shaped rings when projected on a screen. This endeavor presents the experimental outputs and simulated results for a four channel spatially multiplexed system effectively increasing the system bandwidth by a factor of four.
Pu, Mingbo; Ma, Xiaoliang; Zhao, Zeyu; Li, Xiong; Wang, Yanqin; Gao, Hui; Hu, Chenggang; Gao, Ping; Wang, Changtao; Luo, Xiangang
2015-07-01
The orbital angular momentum (OAM) of light, as an emerging hotspot in optics and photonics, introduces many degrees of freedom for applications ranging from optical communication and quantum processing to micromanipulation. To achieve a high degree of integration, optical circuits for OAM light are essential, which are, however, challenging in the optical regime owing to the lack of well-developed theory. Here we provide a scheme to guide and collimate the OAM beam at the micro- and nano-levels. The coaxial plasmonic slit was exploited as a naturally occurring waveguide for light carrying OAM. Concentric grooves etched on the output surface of the coaxial waveguide were utilized as a plasmonic metasurface to couple the OAM beam to free space with greatly increased beam directivity. Experimental results at λ = 532 nm validated the novel transportation and collimating effect of the OAM beam. Furthermore, dynamic tuning of the topological charges was demonstrated by using a liquid crystal spatial light modulator (SLM).
Ruffato, Gianluca; Massari, Michele; Carli, Marta; Romanato, Filippo
2015-11-01
A design of spiral phase plates for the generation of multiring beams carrying orbital angular momentum (OAM) is presented. Besides the usual helical profile, these phase plates present radial π-discontinuities in correspondence of the zeros of the associated Laguerre polynomials. Samples were fabricated by electron beam lithography over glass substrates coated with a polymethylmethacrylate resist layer. The optical response was analyzed and the purity of the generated beams was investigated in terms of Laguerre-Gaussian modes contributions. The far-field intensity pattern was compared with theoretical models and numerical simulations, while the expected phase features were confirmed by interferometric analysis with a Mach-Zehnder setup. The high quality of the output beams confirms the applicability of these phase plates for the generation of high-order OAM beams with nonzero radial index. An application consisting of the design of computer-generated holograms encoding information for light beams carrying phase singularities is presented and described. A numerical code based on an iterative Fourier transform algorithm has been developed for the computation of phase-only diffractive optical element for illumination under OAM beams. Numerical analysis and preliminary experimental results confirm the applicability of these devices as high-security optical elements for anticounterfeiting applications.
Schmid, K.W.; Gruemmer, F.
1979-01-01
A variational principle is used to determine the optimal angular momentum projected one determinant approach to the N-nucleon yrast-wave function for a given total spin value. The solution is given in terms of a set of coupled nonlinear equations. Besides an orthonormality constraint for the occupied orbits and a normalization conditions for the total wave function, this set consists out of a matrix equation taking care of the fact that the spin-projected wave function does not depend on the orientation of the intrinsic determinant it is based on, and a second subset of equations, which can be considered as a Thouless theorem for the spin-projected N-nucleon state, and desribes the diagonalization of the total Hamiltonian in the subspace of linear independent N-nucleon shell model configurations contained in the test-determinant. Furthermore, a numerical method for the solution of these equations is proposed and an extension of the theory for the description of excited bands is given. Finally, the consistency of the equations is checked by solving them for a simple example analytically. (orig.)
Qu, Zhen; Djordjevic, Ivan B
2017-08-15
We propose and experimentally demonstrate a two-stage cross-talk mitigation method in an orbital-angular-momentum (OAM)-based free-space optical communication system, which is enabled by combining spatial offset and low-density parity-check (LDPC) coded nonuniform signaling. Different from traditional OAM multiplexing, where the OAM modes are centrally aligned for copropagation, the adjacent OAM modes (OAM states 2 and -6 and OAM states -2 and 6) in our proposed scheme are spatially offset to mitigate the mode cross talk. Different from traditional rectangular modulation formats, which transmit equidistant signal points with uniform probability, the 5-quadrature amplitude modulation (5-QAM) and 9-QAM are introduced to relieve cross-talk-induced performance degradation. The 5-QAM and 9-QAM formats are based on the Huffman coding technique, which can potentially achieve great cross-talk tolerance by combining them with corresponding nonbinary LDPC codes. We demonstrate that cross talk can be reduced by 1.6 dB and 1 dB via spatial offset for OAM states ±2 and ±6, respectively. Compared to quadrature phase shift keying and 8-QAM formats, the LDPC-coded 5-QAM and 9-QAM are able to bring 1.1 dB and 5.4 dB performance improvements in the presence of atmospheric turbulence, respectively.
Wang Le; Zhao Sheng-Mei; Cheng Wei-Wen; Gong Long-Yan
2015-01-01
In this paper, we propose a measurement-device-independent quantum-key-distribution (MDI-QKD) protocol using orbital angular momentum (OAM) in free space links, named the OAM-MDI-QKD protocol. In the proposed protocol, the OAM states of photons, instead of polarization states, are used as the information carriers to avoid the reference frame alignment, the decoy-state is adopted to overcome the security loophole caused by the weak coherent pulse source, and the high efficient OAM-sorter is adopted as the measurement tool for Charlie to obtain the output OAM state. Here, Charlie may be an untrusted third party. The results show that the authorized users, Alice and Bob, could distill a secret key with Charlie’s successful measurements, and the key generation performance is slightly better than that of the polarization-based MDI-QKD protocol in the two-dimensional OAM cases. Simultaneously, Alice and Bob can reduce the number of flipping the bits in the secure key distillation. It is indicated that a higher key generation rate performance could be obtained by a high dimensional OAM-MDI-QKD protocol because of the unlimited degree of freedom on OAM states. Moreover, the results show that the key generation rate and the transmission distance will decrease as the growth of the strength of atmospheric turbulence (AT) and the link attenuation. In addition, the decoy states used in the proposed protocol can get a considerable good performance without the need for an ideal source. (paper)
Zhu, Long; Wang, Andong; Chen, Shi; Liu, Jun; Mo, Qi; Du, Cheng; Wang, Jian
2017-10-16
Twisted light carrying orbital angular momentum (OAM) is a special kind of structured light that has a helical phase front, a phase singularity, and a doughnut intensity profile. Beyond widespread developments in manipulation, microscopy, metrology, astronomy, nonlinear and quantum optics, OAM-carrying twisted light has seen emerging application of optical communications in free space and specially designed fibers. Instead of specialty fibers, here we show the direct use of a conventional graded-index multi-mode fiber (MMF) for OAM communications. By exploiting fiber-compatible mode exciting and filtering elements, we excite the first four OAM mode groups in an MMF. We demonstrate 2.6-km MMF transmission using four data-carrying OAM mode groups (OAM 0,1 , OAM +1,1 /OAM -1,1 , OAM +2,1 , OAM +3,1 ). Moreover, we demonstrate two data-carrying OAM mode groups multiplexing transmission over the 2.6-km MMF with low-level crosstalk free of multiple-input multiple-output digital signal processing (MIMO-DSP). The demonstrations may open up new perspectives to fiber-based OAM communication/non-communication applications using already existing conventional fibers.
Itkis, M.G.; Kalpakchieva, R.; Okolovich, V.N.; Penionzhkevich, Yu.Eh.; Tolstikov, V.N.
1982-01-01
To study characteristics of fissioning nucleus fragments, investigated were reactiiiiiiiiiiiiiiiH8Pt+ 12 C → 210 Po in the 12 C ion energy range of 86-110.5 MeV, of 192 Os+ 16 O → 208 Po in 90-131 MeV range, 204 Pb+ 3 He → 207 Po, 206 Pb+ 3 He → 209 Po, 207 Pb+ 3 He → 210 Po with 60 MeV 3 He ion energy. Using a correlation technique for measuring energies of two fragments mass and energy distributions of fission fragments of 208 Po and 210 Po compound nuclei produced in the reactions have been studied. Mass and energy distributions of fragments from fission of 208 Po and 210 Po in the reactions with ions 16 O, 12 C and 3 He were investigated in an ample energy range, using the correlational techniques for measurement of energies of two fragments. An increase in the total kinetic energy with rise of the angular momentum was observed, the fact indicating a weak coupling of one-particle and collective modes of motion in the fissile nucleus resulting in that the rolational energy is transfered mainly to translation energies of the fragments
Volkov, N.G.; Emel'yanov, V.M.; Krajnov, V.P.
1979-01-01
In a statistical fission model calculated are charge distributions of fission fragments (CDFF) of a 236 U* nucleus and their dispersions as the functions of excitation energy and angular momentum (AM) of a compound nucleus as well as the effect of one-particle potential parameter on CDFF. The potential of two-center oscillator was choosen as the one-particle potential. The function of fissioning nucleus level density, which is necessary for calculations in the statistical approach, has been determined from one-particle spectrum. The scheme of calculations is realized with a computer. Presented are the results of calculating the dependence of a neutron gap size on nuclear temperature for various projections of total AM; CDFF for different values of E* excitation energy of AM projection and others. Calculated CDFF and experimental data were compared. Notwithstanding the availability of many parameters and a large volume of numerical calculations the model under consideration permits to describe many common regularities of heavy nucleus CDFF (experimental yields of charges, dispersion dependence on excitation energies and masses of nuclear fragments)
Rovibrational bound states of SO{sub 2} isotopologues. I: Total angular momentum J = 0–10
Kumar, Praveen, E-mail: Praveen.Kumar@ttu.edu; Ellis, Joseph; Poirier, Bill, E-mail: Bill.Poirier@ttu.edu
2015-04-01
Highlights: • We report calculation of the exact rovibrational energy levels of SO{sub 2} for J = 0–10. • We report sulfur isotope shifts of the SO{sub 2} isotopologues rovibrational frequencies. • Coriolis coupling is treated exactly. • All rovibrational levels are computed to a high level of numerical convergence. • All of the rovibrational data exhibit near-perfect mass-dependent fractionation. - Abstract: Isotopic variation of the rovibrational bound states of SO{sub 2} for the four stable sulfur isotopes {sup 32–34,36}S is investigated in comprehensive detail. In a two-part series, we compute the low-lying energy levels for all values of total angular momentum in the range J = 0–20. All rovibrational levels are computed, to an extremely high level of numerical convergence. The calculations have been carried out using the ScalIT suite of parallel codes. The present study (Paper I) examines the J = 0–10 rovibrational levels, providing unambiguous symmetry and rovibrational label assignments for each computed state. The calculated vibrational energy levels exhibit very good agreement with previously reported experimental and theoretical data. Rovibrational energy levels, calculated without any Coriolis approximations, are reported here for the first time. Among other potential ramifications, this data will facilitate understanding of the origin of mass-independent fractionation of sulfur isotopes in the Archean rock record—of great relevance for understanding the “oxygen revolution”.
Genouin-Duhamel, Emmanuel
1999-01-01
This work is a contribution to the study of properties of hot nuclei formed in heavy ion collisions at intermediate energies. The experiment has been performed with the INDRA multidetector. It is shown that most of the reaction cross section is associated with binary dissipative collisions, accompanied by the production of particles from a region between the two reaction partners. This study is focussed on excitation energy and angular momentum of projectile-like fragment (PLF) in 129 Xe + nat Sn reactions from 25 to 50 MeV per nucleon. Several methods are used to characterize hot nuclei (velocity, charge, mass and excitation energy). All these methods are compared between them and indicate that high energies are deposited in the nuclei during collision (it may exceed the nucleus binding energy). The angular momentum transferred into intrinsic spin to PLF in the peripheral collisions has been deduced from angular distributions and kinetic energies of the emitted light charged particles (atomic number smaller ar equal to 2). Both methods agree qualitatively. The spin values decrease with the violence of the collision. These values correspond to values averaged over the whole deexcitation chain of nuclei. The predictions of transport models reproduce qualitatively the most peripheral collisions and suggest that high spins are transferred to PLF (from 30 to 50 ℎ). Larger angular momentum values are observed at the lowest incident energy. The time hierarchy in the evaporation process and the role of mid-rapidity emission are also discussed. (author)
2003-01-01
The objective of this investigation has been to examine the mass and momentum exchange between the atmosphere, oceans, solid Earth, hydrosphere, and cryosphere. The investigation has focused on changes in the Earth's gravity field, its rotation rate, atmospheric and oceanic circulation, global sea level change, ice sheet change, and global ground water circulation observed by contemporary sensors and models. The primary component of the mass exchange is water. The geodetic observables provided by these satellite sensors are used to study the transport of water mass in the hydrological cycle from one component of the Earth to another, and they are also used to evaluate the accuracy of models. As such, the investigation is concerned with the overall global water cycle. This report provides a description of scientific, educational and programmatic activities conducted during the period July 1, 1999 through June 30,2000. Research has continued into measurements of time-varying gravity and its relationship to Earth rotation. Variability of angular momentum and the related excitation of polar motion and Earth rotation have been examined for the atmosphere and oceans at time-scales of weeks to several years. To assess the performance of hydrologic models, we have compared geodetic signals derived from them with those observed by satellites. One key component is the interannual mass variability of the oceans obtained by direct observations from altimetry after removing steric signals. Further studies have been conducted on the steric model to quantify its accuracy at global and basin-scales. The results suggest a significant loss of water mass from the Oceans to the land on time-scales longer than 1-year. These signals are not reproduced in any of the models, which have poorly determined interannual fresh water fluxes. Output from a coupled atmosphere-ocean model testing long-term climate change hypotheses has been compared to simulated errors from the Gravity Recovery and
Membranes from monopole operators in ABJM theory: Large angular momentum and M-theoretic AdS4/CFT3
Kovacs, Stefano; Sato, Yuki; Shimada, Hidehiko
2014-01-01
We study the duality between M-theory in AdS 4 ×S 7 /ℤ k and the ABJM N=6 Chern–Simons-matter theory with gauge group U(N)×U(N) and level k, taking N large and k of order 1. In this M-theoretic regime the lack of an explicit formulation of M-theory in AdS 4 ×S 7 /ℤ k makes the gravity side difficult, while the CFT is strongly coupled and the planar approximation is not applicable. We focus on states on the gravity side with large angular momentum J≫1 associated with a single plane of rotation in S 7 and identify their dual operators in the CFT. We show that natural approximation schemes arise on both sides thanks to the presence of the small parameter 1/J. On the AdS side, we use the matrix model of M-theory on the maximally supersymmetric pp-wave background with matrices of size J/k. A perturbative treatment of this matrix model provides a good approximation to M-theory in AdS 4 ×S 7 /ℤ k when N 1/3 ≪J≪N 1/2 . On the CFT side, we study the theory on S 2 ×ℝ with magnetic flux J/k. A Born–Oppenheimer-type expansion arises naturally for large J in spite of the theory being strongly coupled. The energy spectra on the two sides agree at leading order. This provides a non-trivial test of the AdS 4 /CFT 3 correspondence including near-BPS observables associated with membrane degrees of freedom, thus verifying the duality beyond the previously studied sectors corresponding to either BPS observables or the type IIA string regime
Sun, Wenbo; Hu, Yongxiang; Weimer, Carl; Ayers, Kirk; Baize, Rosemary R.; Lee, Tsengdar
2017-02-01
Electromagnetic (EM) beams with orbital angular momentum (OAM) may have great potential applications in communication technology and in remote sensing of the Earth-atmosphere system and outer planets. Study of their interaction with optical lenses and dielectric or metallic objects, or scattering of them by particles in the Earth-atmosphere system, is a necessary step to explore the advantage of the OAM EM beams. In this study, the 3-dimensional (3D) scattered-field (SF) finite-difference time domain (FDTD) technique with the convolutional perfectly matched layer (CPML) absorbing boundary conditions (ABC) is applied to calculate the scattering of the purely azimuthal (the radial mode number is assumed to be zero) Laguerre-Gaussian (LG) beams with the OAM by dielectric particles. We found that for OAM beam's interaction with dielectric particles, the forward-scattering peak in the conventional phase function (P11) disappears, and light scattering peak occurs at a scattering angle of 15° to 45°. The disappearance of forward-scattering peak means that, in laser communications most of the particle-scattered noise cannot enter the receiver, thus the received light is optimally the original OAM-encoded signal. This feature of the OAM beam also implies that in lidar remote sensing of the atmospheric particulates, most of the multiple-scattering energy will be off lidar sensors, and this may result in an accurate profiling of particle layers in the atmosphere or in the oceans by lidar, or even in the ground when a ground penetration radar (GPR) with the OAM is applied. This far-field characteristics of the scattered OAM light also imply that the optical theorem, which is derived from plane-parallel wave scattering case and relates the forward scattering amplitude to the total cross section of the scatterer, is invalid for the scattering of OAM beams by dielectric particles.
Aarnio, Alicia N. [Astronomy Department, University of Michigan, 830 Dennison Building, 500 Church Street, Ann Arbor, MI 48109 (United States); Matt, Sean P. [Laboratoire AIM Paris-Saclay, CEA/Irfu Universite Paris-Diderot CNRS/INSU, F-91191 Gif-sur-Yvette (France); Stassun, Keivan G., E-mail: aarnio@umich.edu [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States)
2012-11-20
We develop an empirical model to estimate mass-loss rates via coronal mass ejections (CMEs) for solar-type pre-main-sequence (PMS) stars. Our method estimates the CME mass-loss rate from the observed energies of PMS X-ray flares, using our empirically determined relationship between solar X-ray flare energy and CME mass: log (M {sub CME}[g]) = 0.63 Multiplication-Sign log (E {sub flare}[erg]) - 2.57. Using masses determined for the largest flaring magnetic structures observed on PMS stars, we suggest that this solar-calibrated relationship may hold over 10 orders of magnitude in flare energy and 7 orders of magnitude in CME mass. The total CME mass-loss rate we calculate for typical solar-type PMS stars is in the range 10{sup -12}-10{sup -9} M {sub Sun} yr{sup -1}. We then use these CME mass-loss rate estimates to infer the attendant angular momentum loss leading up to the main sequence. Assuming that the CME outflow rate for a typical {approx}1 M {sub Sun} T Tauri star is <10{sup -10} M {sub Sun} yr{sup -1}, the resulting spin-down torque is too small during the first {approx}1 Myr to counteract the stellar spin-up due to contraction and accretion. However, if the CME mass-loss rate is {approx}> 10{sup -10} M {sub Sun} yr{sup -1}, as permitted by our calculations, then the CME spin-down torque may influence the stellar spin evolution after an age of a few Myr.
Han, Lei; Liu, Sheng; Li, Peng; Zhang, Yi; Cheng, Huachao; Zhao, Jianlin
2018-05-01
We report on the catalystlike effect of orbital angular momentum (OAM) on local spin-state conversion within the tightly focused radially polarized beams associated with optical spin-orbit interaction. It is theoretically demonstrated that the incident OAM can lead to a conversion of purely transverse spin state to a three-dimensional spin state on the focal plane. This conversion can be conveniently manipulated by altering the sign and value of the OAM. By comparing the total OAM and spin angular momentum (SAM) on the incident plane to those on the focal plane, it is indicated that the incident OAM have no participation in the angular momentum intertransfer, and just play a role as a catalyst of local SAM conversion. Such an effect of OAM sheds new light on the optical spin-orbit interaction in tight-focusing processes. The resultant three-dimensional spin states may provide more degrees of freedom in optical manipulation and spin-dependent directive coupling.
Wang, Le; Zhao, Sheng-Mei; Gong, Long-Yan; Cheng, Wei-Wen
2015-12-01
In this paper, we propose a measurement-device-independent quantum-key-distribution (MDI-QKD) protocol using orbital angular momentum (OAM) in free space links, named the OAM-MDI-QKD protocol. In the proposed protocol, the OAM states of photons, instead of polarization states, are used as the information carriers to avoid the reference frame alignment, the decoy-state is adopted to overcome the security loophole caused by the weak coherent pulse source, and the high efficient OAM-sorter is adopted as the measurement tool for Charlie to obtain the output OAM state. Here, Charlie may be an untrusted third party. The results show that the authorized users, Alice and Bob, could distill a secret key with Charlie’s successful measurements, and the key generation performance is slightly better than that of the polarization-based MDI-QKD protocol in the two-dimensional OAM cases. Simultaneously, Alice and Bob can reduce the number of flipping the bits in the secure key distillation. It is indicated that a higher key generation rate performance could be obtained by a high dimensional OAM-MDI-QKD protocol because of the unlimited degree of freedom on OAM states. Moreover, the results show that the key generation rate and the transmission distance will decrease as the growth of the strength of atmospheric turbulence (AT) and the link attenuation. In addition, the decoy states used in the proposed protocol can get a considerable good performance without the need for an ideal source. Project supported by the National Natural Science Foundation of China (Grant Nos. 61271238 and 61475075), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20123223110003), the Natural Science Research Foundation for Universities of Jiangsu Province of China (Grant No. 11KJA510002), the Open Research Fund of Key Laboratory of Broadband Wireless Communication and Sensor Network Technology, Ministry of Education, China (Grant No. NYKL2015011), and the
Zou, Li; Wang, Le; Zhao, Sheng-Mei; Chen, Han-Wu
2016-11-01
Atmospheric turbulence (AT) induced crosstalk can significantly impair the performance of a free-space optical (FSO) communication link using orbital angular momentum (OAM) multiplexing. In this paper, we propose a multiple-user detection (MUD) turbulence mitigation scheme in an OAM-multiplexed FSO communication link. First, we present a MUD equivalent communication model for an OAM-multiplexed FSO communication link under AT. In the equivalent model, each input bit stream represents one user’s information. The deformed OAM spatial modes caused by AT, instead of the pure OAM spatial modes, are used as information carriers, and the overlapping between the deformed OAM spatial modes are computed as the correlation coefficients between the users. Then, we present a turbulence mitigation scheme based on MUD idea to enhance AT tolerance of the OAM-multiplexed FSO communication link. In the proposed scheme, the crosstalk caused by AT is used as a useful component to deduce users’ information. The numerical results show that the performance of the OAM-multiplexed communication link has greatly improved by the proposed scheme. When the turbulence strength is 1 × 10-15 m-2/3, the transmission distance is 1000 m and the channel signal-to-noise ratio (SNR) is 26 dB, the bit-error-rate (BER) performance of four spatial multiplexed OAM modes lm = +1,+2,+3,+4 are all close to 10-5, and there is a 2-3 fold increase in the BER performance in comparison with those results without the proposed scheme. In addition, the proposed scheme is more effective for an OAM-multiplexed FSO communication link with a larger OAM mode topological charge interval. The proposed scheme is a promising direction for compensating the interference caused by AT in the OAM-multiplexed FSO communication link. Project supported by the National Natural Science Foundation of China (Grant Nos. 61271238 and 61475075), the Open Research Fund of Key Lab of Broadband Wireless Communication and Sensor Network
Steckmeyer, J.C.; Genouin-Duhamel, E.; Vient, E.; Colin, J.; Durand, D.; Auger, G.; Bacri, C.O.; Bellaize, N.; Borderie, B.; Bougault, R.; Bouriquet, B.; Brou, R.; Buchet, P.; Charvet, J.L.; Chbihi, A.; Cussol, D.; Dayras, R.; De Cesare, N.; Demeyer, A.; Dore, D.; Frankland, J.D.; Galichet, E.; Gerlic, E.; Guinet, D.; Hudan, S.; Lautesse, P.; Lavaud, F.; Laville, J.L.; Lecolley, J.F.; Leduc, C.; Legrain, R.; Le Neindre, N.; Lopez, O.; Louvel, M.; Maskay, A.M.; Nalpas, L.; Normand, J.; Parlog, M.; Pawlowski, P.; Plagnol, E.; Rivet, M.F.; Rosato, E.; Saint-Laurent, F.; Tabacaru, G.; Tamain, B.; Tassan-Got, L.; Tirel, O.; Turzo, K.; Vigilante, M.; Volant, C.; Wieleczko, J.P.
2001-01-01
The excitation energy and angular momentum transferred to quasiprojectiles have been measured in the 129 Xe+ nat Sn collisions at bombarding energies between 25 and 50 MeV/nucleon. The excitation energy of quasiprojectiles has been determined from the kinetic energy of all decay products (calorimetry). It increases with the violence of the collision, approaching 10 MeV/nucleon in the most dissipative ones. The angular momentum has been deduced from the kinetic energies and angular distributions of the emitted light charged particles (p, d, t, 3 He and α). The (apparent) spin value decreases with the violence of the collision. Larger spin values are observed at the lowest bombarding energy. Data are compared with the predictions of dynamical and statistical models. They reproduce the data in a quantitative way indicating that large spin values are transferred to quasiprojectiles during the interaction. The results show that the one-body dissipation formalism still applies at intermediate bombarding energies and low-energy dissipations. With the increase of the energy, the data seem to be better described when the two-body interaction is accounted for
Ezhilov, Aleksei; The ATLAS collaboration
2016-01-01
The ATLAS collaboration has performed precision measurements sensitive to the transverse momentum of the Z/gamma* bosons, both directly through the transverse momentum of the di-lepton pair and through the angular decorrelation as measured in the phi* observable. These measurements are sensitive to soft resummation effects and hard jet emissions for small and large momentum transfers, respectively, probing QCD in a unique way. The studies carried out with 20.3 /fb of data at a center-of-mass energy of 8TeV probe a wide di-lepton invariant mass region from 12 GeV to 150 GeV, both integrated and differential in the di-lepton rapidity. The measurements are compared to a variety of resummation calculations and parton shower Monte Carlos at up to NNLO+NNLL as well as fixed order predictions at NNLO QCD including NLO electroweak corrections. The precision measurement of angular distributions of the Drell-Yan lepton pairs around the Z-boson mass peak provide a stringent test of the underlying QCD dynamic of the Z-bo...
Lehmann, E.; Hansen, F.; Ulbrich, U.; Nevir, P.; Leckebusch, G. C.
2009-04-01
While most studies on model-projected future climate warming discuss climatological quantities, this study investigates the response of the relative atmospheric angular momentum (AAM) to climate warming for the 21th century and discusses its possible effects on future length-of-day variations. Following the derivation of the dynamic relation between atmosphere and solid earth by Barnes et al. (Proc. Roy. Soc., 1985) this study relates the axial atmospheric excitation function X3 to changes in length-of-day that are proportional to variations in zonal winds. On interannual time scales changes in the relative AAM (ERA40 reanalyses) are well correlated with observed length-of-day (LOD, IERS EOP CO4) variability (r=0.75). The El Niño-Southern Oscillation (ENSO) is a prominent coupled ocean-atmosphere phenomenon to cause global climate variability on interannual time scales. Correspondingly, changes in observed LOD relate to ENSO due to observed strong wind anomalies. This study investigates the varying effect of AAM anomalies on observed LOD by relating AAM to variations to ENSO teleconnections (sea surface temperatures, SSTs) and the Pacific North America (PNA) oscillation for the 20th and 21st century. The differently strong effect of strong El Niño events (explained variance 71%-98%) on present time (1962-2000) observed LOD-AAM relation can be associated to variations in location and strength of jet streams in the upper troposphere. Correspondingly, the relation between AAM and SSTs in the NIÑO 3.4 region also varies between explained variances of 15% to 73%. Recent coupled ocean-atmosphere projections on future climate warming suggest changes in frequency and amplitude of ENSO events. Since changes in the relative AAM indicate shifts in large-scale atmospheric circulation patterns due to climate change, AAM - ENSO relations are assessed in coupled atmosphere-ocean (ECHAM5-OM1) climate warming projections (A1B) for the 21st century. A strong rise (+31%) in
Poisson, Eric
2004-01-01
The first objective of this work is to obtain practical prescriptions to calculate the absorption of mass and angular momentum by a black hole when external processes produce gravitational radiation. These prescriptions are formulated in the time domain (in contrast with the frequency-domain formalism of Teukolsky and Press) within the framework of black-hole perturbation theory. Two such prescriptions are presented. The first is based on the Teukolsky equation and it applies to general (rotating) black holes. The second is based on the Regge-Wheeler and Zerilli equations and it applies to nonrotating black holes. The second objective of this work is to apply the time-domain absorption formalisms to situations in which the black hole is either small or slowly moving; the mass of the black hole is then assumed to be much smaller than the radius of curvature of the external spacetime in which the hole moves. In the context of this small-hole/slow-motion approximation, the equations of black-hole perturbation theory can be solved analytically, and explicit expressions can be obtained for the absorption of mass and angular momentum. The changes in the black-hole parameters can then be understood in terms of an interaction between the tidal gravitational fields supplied by the external universe and the hole's tidally-induced mass and current quadrupole moments. For a nonrotating black hole the quadrupole moments are proportional to the rate of change of the tidal fields on the hole's world line. For a rotating black hole they are proportional to the tidal fields themselves. When placed in identical environments, a rotating black hole absorbs more energy and angular momentum than a nonrotating black hole
Cen, Renyue, E-mail: cen@astro.princeton.edu [Princeton University Observatory, Princeton, NJ 08544 (United States)
2015-05-20
We reason that without physical fine-tuning, neither the supermassive black holes (SMBHs) nor the stellar bulges can self-regulate or inter-regulate by driving away already fallen cold gas to produce the observed correlation between them. We suggest an alternative scenario where the observed mass ratios of the SMBHs to bulges reflect the angular momentum distribution of infallen gas such that the mass reaching the stable accretion disk is a small fraction of that reaching the bulge region, averaged over the cosmological timescales. We test this scenario using high-resolution, large-scale cosmological hydrodynamic simulations, without active galactic nucleus (AGN) feedback, assuming the angular momentum distribution of gas landing in the bulge region yields a Mestel disk that is supported by independent simulations resolving the Bondi radii of SMBHs. A mass ratio of 0.1%–0.3% between the very low angular momentum gas that free falls to the subparsec region to accrete to the SMBH and the overall star formation rate is found. This ratio is found to increase with increasing redshift to within a factor of ∼2, suggesting that the SMBH-to-bulge ratio is nearly redshift independent, with a modest increase with redshift, which is a testable prediction. Furthermore, the duty cycle of AGNs with high Eddington ratios is expected to increase significantly with redshift. Finally, while SMBHs and bulges are found to coevolve on ∼30–150 Myr timescales or longer, there is indication that on still smaller timescales, the SMBH accretion and star formation may be less correlated.