WorldWideScience

Sample records for angular acceleration

  1. Angular velocities, angular accelerations, and coriolis accelerations

    Science.gov (United States)

    Graybiel, A.

    1975-01-01

    Weightlessness, rotating environment, and mathematical analysis of Coriolis acceleration is described for man's biological effective force environments. Effects on the vestibular system are summarized, including the end organs, functional neurology, and input-output relations. Ground-based studies in preparation for space missions are examined, including functional tests, provocative tests, adaptive capacity tests, simulation studies, and antimotion sickness.

  2. Angular momentum evolution in laser-plasma accelerators

    OpenAIRE

    Thaury, Cédric; E. Guillaume; Corde, Sébastien; Lehe, R.; Le Bouteiller, M.; Ta Phuoc, K.; X. Davoine; Rax, Jean-Marcel; Rax, J. M.; Rousse, Antoine; Malka, Victor

    2013-01-01

    The transverse properties of an electron beam are characterized by two quantities, the emittance which indicates the electron beam extend in the phase space and the angular momentum which allows for non-planar electron trajectories. Whereas the emittance of electron beams produced in laser- plasma accelerator has been measured in several experiments, their angular momentum has been scarcely studied. It was demonstrated that electrons in laser-plasma accelerator carry some angular momentum, bu...

  3. Variation in Angular Velocity and Angular Acceleration of a Particle in Rectilinear Motion

    Science.gov (United States)

    Mashood, K. K.; Singh, V. A.

    2012-01-01

    We discuss the angular velocity ([image omitted]) and angular acceleration ([image omitted]) associated with a particle in rectilinear motion with constant acceleration. The discussion was motivated by an observation that students and even teachers have difficulty in ascribing rotational motion concepts to a particle when the trajectory is a…

  4. Angular velocity and centripetal acceleration relationship

    Science.gov (United States)

    Monteiro, Martín; Cabeza, Cecilia; Marti, Arturo C.; Vogt, Patrik; Kuhn, Jochen

    2014-05-01

    During the last few years, the growing boom of smartphones has given rise to a considerable number of applications exploiting the functionality of the sensors incorporated in these devices. A sector that has unexpectedly taken advantage of the power of these tools is physics teaching, as reflected in several recent papers. In effect, the use of smartphones has been proposed in several physics experiments spanning mechanics, electromagnetism, optics, oscillations, and waves, among other subjects. Although mechanical experiments have received considerable attention, most of them are based on the use of the accelerometer. An aspect that has received less attention is the use of rotation sensors or gyroscopes. An additional advance in the use of these devices is given by the possibility of obtaining data using the accelerometer and the gyroscope simultaneously. The aim of this paper is to consider the relation between the centripetal acceleration and the angular velocity. Instead of using a formal laboratory setup, in this experiment a smartphone is attached to the floor of a merry-go-round, found in many playgrounds. Several experiments were performed with the roundabout rotating in both directions and with the smart-phone at different distances from the center. The coherence of the measurements is shown.

  5. All joint moments significantly contribute to trunk angular acceleration.

    Science.gov (United States)

    Nott, Cameron R; Zajac, Felix E; Neptune, Richard R; Kautz, Steven A

    2010-09-17

    Computationally advanced biomechanical analyses of gait demonstrate the often counter-intuitive roles of joint moments on various aspects of gait such as propulsion, swing initiation, and balance. Each joint moment can produce linear and angular acceleration of all body segments (including those on which the moment does not directly act) due to the dynamic coupling inherent in the interconnected musculoskeletal system. This study presents quantitative relationships between individual joint moments and trunk control with respect to balance during gait to show that the ankle, knee, and hip joint moments all affect the angular acceleration of the trunk. We show that trunk angular acceleration is affected by all joints in the leg with varying degrees of dependence during the gait cycle. Furthermore, it is shown that inter-planar coupling exists and a two-dimensional analysis of trunk balance neglects important out-of-plane joint moments that affect trunk angular acceleration.

  6. Coriolis effects are principally caused by gyroscopic angular acceleration.

    Science.gov (United States)

    Isu, N; Yanagihara, M; Mikuni, T; Koo, J

    1994-07-01

    A cause of nausea evoked by cross-coupled rotation (termed Coriolis stimulus) was determined. Subjects were provided with two types of cross-coupled rotations: neck-forward flexion (Neck Flx) and upper body-forward flexion (Body Flx) during horizontal whole body rotation at a constant angular velocity. These Coriolis stimuli were given alternatively in an experimental sequence, and the severity of the nausea they evoked was compared by the subjects. The results indicated that the same quality of nausea was evoked by a slightly higher angular velocity during Body Flx (100.5 degrees/s) than during Neck Flx (90 degrees/s). While Body Flx generated Coriolis linear acceleration several times larger than Neck Flx, both the stimuli generated a similar magnitude of gyroscopic angular acceleration in this condition. Therefore, it was inferred that the nausea evoked by a Coriolis stimulus is principally caused by gyroscopic angular acceleration.

  7. Static and dynamic characteristics of angular velocity and acceleration transducers based on optical tunneling effect

    Science.gov (United States)

    Busurin, V. I.; Korobkov, V. V.; Htoo Lwin, Naing; Tuan, Phan Anh

    2016-08-01

    Theoretical and experimental analysis of quasi-linear conversion function of angular velocity and acceleration microoptoelectromechnical (MOEM) transducers based on optical tunneling effect (OTE) are conducted. Equivalent oscillating circuit is developed and dynamic characteristics of angular velocity and acceleration MOEM-transducers are investigated.

  8. Robust flight control using incremental nonlinear dynamic inversion and angular acceleration prediction

    NARCIS (Netherlands)

    Sieberling, S.; Chu, Q.P.; Mulder, J.A.

    2010-01-01

    This paper presents a flight control strategy based on nonlinear dynamic inversion. The approach presented, called incremental nonlinear dynamic inversion, uses properties of general mechanical systems and nonlinear dynamic inversion by feeding back angular accelerations. Theoretically, feedback of

  9. Visual reaction times during prolonged angular acceleration parallel the subjective perception of rotation

    Science.gov (United States)

    Mattson, D. L.

    1975-01-01

    The effect of prolonged angular acceleration on choice reaction time to an accelerating visual stimulus was investigated, with 10 commercial airline pilots serving as subjects. The pattern of reaction times during and following acceleration was compared with the pattern of velocity estimates reported during identical trials. Both reaction times and velocity estimates increased at the onset of acceleration, declined prior to the termination of acceleration, and showed an aftereffect. These results are inconsistent with the torsion-pendulum theory of semicircular canal function and suggest that the vestibular adaptation is of central origin.

  10. High Accuracy Speed-fed Grating Angular Acceleration Measurement System Based on FPGA

    Directory of Open Access Journals (Sweden)

    Hao Zhao

    2012-09-01

    Full Text Available Shaft angular acceleration is one of the most important parameter of rotary machines, the error of angular acceleration increased when the shaft speed up. For this problem, a new high accuracy angular acceleration measurement system is presented, the principle of measurement is self-regulating the period of speed sampling signal according to the proportion of the shaft speed up. This measurement system combined FPGA and SCM, the speed of shaft is received by the timer of SCM responding the interrupts of FPGA, and then set the parameter of frequency divider in FPGA, so as to make the period of speed sampling consistent with the proportion of the speed up. This measurement system could overcome the error when system speed up according to the experiment.

  11. Characterization of gait pattern by 3D angular accelerations in hemiparetic and healthy gait.

    Science.gov (United States)

    Rueterbories, Jan; Spaich, Erika G; Andersen, Ole K

    2013-02-01

    Characterization of gait pattern is of interest for clinical gait assessment. Past developments of ambulatory measurement systems have still limitations for daily usage in the clinical environment. This study investigated the potential of 3D angular accelerations of foot, shank, and thigh to characterize gait events and phases of ten healthy and ten hemiparetic subjects. The key feature of the system was the use of angular accelerations obtained by differential measurement. Further, the effect of sensor position and walking cadence on the signal was investigated. We found that gait phases are characterized as modulated amplitudes of angular accelerations of foot, shank, and thigh. Increasing the gait cadence from 70 steps/min to 100 steps/min caused an amplitude increase of the magnitude of the vector, summing all 3D angular accelerations on the sensor position (pgait showed a lower mean of the magnitude of the vector during the loading response in the hemiparetic gait (pgait were observed. A comparison of the tangential acceleration component in the frontal plane showed no statistically significant difference between healthy and hemiparetic gait. Further, no statistically significant difference between the tangential components was found for both groups. This method demonstrated promising results for a possible use for gait assessment.

  12. Angular momentum transport and particle acceleration during magnetorotational instability in a kinetic accretion disk.

    Science.gov (United States)

    Hoshino, Masahiro

    2015-02-13

    Angular momentum transport and particle acceleration during the magnetorotational instability (MRI) in a collisionless accretion disk are investigated using three-dimensional particle-in-cell simulation. We show that the kinetic MRI can provide not only high-energy particle acceleration but also enhancement of angular momentum transport. We find that the plasma pressure anisotropy inside the channel flow with p(∥)>p(⊥) induced by active magnetic reconnection suppresses the onset of subsequent reconnection, which, in turn, leads to high-magnetic-field saturation and enhancement of the Maxwell stress tensor of angular momentum transport. Meanwhile, during the quiescent stage of reconnection, the plasma isotropization progresses in the channel flow and the anisotropic plasma with p(⊥)>p(∥) due to the dynamo action of MRI outside the channel flow contribute to rapid reconnection and strong particle acceleration. This efficient particle acceleration and enhanced angular momentum transport in a collisionless accretion disk may explain the origin of high-energy particles observed around massive black holes.

  13. Investigation of Microopto-eletromechanical Angular Velocity and Acceleration Transducers based on Optical Tunneling Effect

    Science.gov (United States)

    Busurin, V. I.; Lwin, Naing Htoo; Tuan, Pham Anh

    In this paper the possibility of microopto-electromechanical (MOEM) angular velocity and acceleration transducers based on optical tunneling effect (OTE) is considered. The generalized model of MOEM transducers with various types of sensing elements (SE) is developed, transfer functions are investigated, and the errors with various design parameters of transducers are estimated.

  14. Angular Impact Mitigation System for Bicycle Helmets to Reduce Head Acceleration and Risk of Traumatic Brain Injury

    Science.gov (United States)

    Hansen, Kirk; Dau, Nathan; Feist, Florian; Deck, Caroline; Willinger, Rémy; Madey, Steven M.; Bottlang, Michael

    2013-01-01

    Angular acceleration of the head is a known cause of traumatic brain injury (TBI), but contemporary bicycle helmets lack dedicated mechanisms to mitigate angular acceleration. A novel Angular Impact Mitigation (AIM) system for bicycle helmets has been developed that employs an elastically suspended aluminum honeycomb liner to absorb linear acceleration in normal impacts as well as angular acceleration in oblique impacts. This study tested bicycle helmets with and without AIM technology to comparatively assess impact mitigation. Normal impact tests were performed to measure linear head acceleration. Oblique impact tests were performed to measure angular head acceleration and neck loading. Furthermore, acceleration histories of oblique impacts were analyzed in a computational head model to predict the resulting risk of TBI in the form of concussion and diffuse axonal injury (DAI). Compared to standard helmets, AIM helmets resulted in a 14% reduction in peak linear acceleration (p < 0.001), a 34% reduction in peak angular acceleration (p < 0.001), and a 22% to 32% reduction in neck loading (p < 0.001). Computational results predicted that AIM helmets reduced the risk of concussion and DAI by 27% and 44%, respectively. In conclusion, these results demonstrated that AIM technology could effectively improve impact mitigation compared to a contemporary expanded polystyrene-based bicycle helmet, and may enhance prevention of bicycle-related TBI. Further research is required. PMID:23770518

  15. Measuring the angular dependence of betatron x-ray spectra in a laser-wakefield accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Albert, F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pollock, B. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Shaw, J. L. [Univ. of California, Los Angeles, CA (United States); Marsh, K. A. [Univ. of California, Los Angeles, CA (United States); Ralph, J. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chen, Y. -H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Alessi, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pak, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Clayton, C. E. [Univ. of California, Los Angeles, CA (United States); Glenzer, S. H. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Joshi, C. [Univ. of California, Los Angeles, CA (United States)

    2014-07-22

    This paper presents a new technique to measure the angular dependence of betatron x-ray spectra in a laser-wakefield accelerator. Measurements are performed with a stacked image plates spectrometer, capable of detecting broadband x-ray radiation up to 1 MeV. It can provide measurements of the betatron x-ray spectrum at any angle of observation (within a 40 mrad cone) and of the beam profile. A detailed description of our data analysis is given, along with comparison for several shots. As a result, these measurements provide useful information on the dynamics of the electrons are they are accelerated and wiggled by the wakefield.

  16. A Stable Formation Control Using Approximation of Translational and Angular Accelerations

    Directory of Open Access Journals (Sweden)

    Viet-Hong Tran

    2011-03-01

    Full Text Available In this paper, a stable leader-following formation control for multiple non-holonomic mobile robot systems using only limited on-board sensor information is proposed. The control can be used for the conventional single leader - single follower (SLSF or for novel two leaders - single follower (TLSF schemes. The control algorithm utilizes estimations of the leaders' translational and angular accelerations in a simple form to reduce the measurement of indirect information. Simulation results show that the TLSF scheme can suppress the oscillation and damping in formation of large robot teams.

  17. Spectral and angular distributions of charged particles outside biological shielding of the 70 GeV Serpukhov accelerator

    International Nuclear Information System (INIS)

    Space, angular and energy distributions of the charged particle of radiation field outside the Serpukhov accelerator shielding at different protons beam energies obtained with the ΔE-E spectrometer are presented. The influence of the accelerating complex operation on the charged particles field shaping outside the concrete and heterogeneous steel-concrete shieldings has been analyzed. The ratios between neutrons and charged particles of the radiation field outside the 70 GeV accelerator shielding have been estimated

  18. Unveiling orbital angular momentum and acceleration of light beams and electron beams

    Science.gov (United States)

    Arie, Ady

    Special beams, such as the vortex beams that carry orbital angular momentum (OAM) and the Airy beam that preserves its shape while propagating along parabolic trajectory, have drawn significant attention recently both in light optics and in electron optics experiments. In order to utilize these beams, simple methods are needed that enable to easily quantify their defining properties, namely the OAM for the vortex beams and the nodal trajectory acceleration coefficient for the Airy beam. Here we demonstrate a straightforward method to determine these quantities by astigmatic Fourier transform of the beam. For electron beams in a transmission electron microscope, this transformation is easily realized using the condenser and objective stigmators, whereas for light beam this can be achieved using a cylindrical lens. In the case of Laguerre-Gauss vortex beams, it is already well known that applying the astigmatic Fourier transformation converts them to Hermite-Gauss beams. The topological charge (and hence the OAM) can be determined by simply counting the number of dark stripes of the Hermite-Gauss beam. We generated a series of electron vortex beams and managed to determine the topological charge up to a value of 10. The same concept of astigmatic transformation was then used to unveil the acceleration of an electron Airy beam. The shape of astigmatic-transformed depends only on the astigmatic measure and on the acceleration coefficient. This method was experimentally verified by generating electron Airy beams with different known acceleration parameters, enabling direct comparison to the deduced values from the astigmatic transformation measurements. The method can be extended to other types of waves. Specifically, we have recently used it to determine the acceleration of an optical Airy beams and the topological charge of so-called Airy-vortex light beam, i.e. an Airy light beam with an embedded vortex. This work was supported by DIP and the Israel Science

  19. Relationship between Lower Limb Angular Kinematic Variables and the Effectiveness of Sprinting during the Acceleration Phase

    Science.gov (United States)

    Konieczny, Grzegorz; Winiarski, Sławomir; Rokita, Andrzej

    2016-01-01

    The ability to reach a high running velocity over a short distance is essential to a high playing performance in team games. The aim of this study was to determine the relationship between running time over a 10-meter section of a 30-meter sprint along a straight line and changes in the angle and angular velocity that were observed in the ankle, knee, and hip joints. The possible presence may help to optimize motion efficiency during acceleration sprint phase. Eighteen girls involved in team sports were examined in the study. The Fusion Smart Speed System was employed for running time measurements. The kinematic data were recorded using the Noraxon MyoMotion system. Statistically significant relationships were found between running time over a 10-meter section and the kinematic variables of hip and ankle joints. An excessively large flexion in hip joints might have an unfavorable effect on running time during the acceleration phase. Furthermore, in order to minimize running time during the acceleration phase, stride should be maintained along a line (a straight line) rather than from side to side. It is also necessary to ensure an adequate range of motion in the hip and ankle joints with respect to the sagittal axis.

  20. Transport methods: general. 3. An Additive Angular-Dependent Re-balance Acceleration Method for Neutron Transport Equations

    International Nuclear Information System (INIS)

    An additive angular-dependent re-balance (AADR) factor acceleration method is described to accelerate the source iteration of discrete ordinates transport calculation. The formulation of the AADR method follows that of the angular-dependent re-balance (ADR) method in that the re-balance factor is defined only on the cell interface and in that the low-order equation is derived by integrating the transport equation (high-order equation) over angular subspaces. But, the re-balance factor is applied additively. While the AADR method is similar to the boundary projection acceleration and the alpha-weighted linear acceleration, it is more general and does have distinct features. The method is easily extendible to DPN and low-order SN re-balancing, and it does not require consistent discretizations between the high- and low-order equations as in diffusion synthetic acceleration. We find by Fourier analysis and numerical results that the AADR method with a chosen form of weighting functions is unconditionally stable and very effective. There also exists an optimal weighting parameter that leads to the smallest spectral radius. The AADR acceleration method described in this paper is simple to implement, unconditionally stable, and very effective. It uses a physically based weighting function with an optimal parameter, leading to the best spectral radius of ρ<0.1865, compared to ρ<0.2247 of DSA. The application of the AADR acceleration method with the LMB scheme on a test problem shows encouraging results

  1. Estimating the angular velocity of a rigid body moving in the plane from tangential and centripetal acceleration measurements

    Energy Technology Data Exchange (ETDEWEB)

    Cardou, Philippe, E-mail: pcardou@cim.mcgill.ca; Angeles, Jorge [McGill University, Macdonald Engineering Building, Department of Mechanical Engineering, Centre for Intelligent Machines (Canada)

    2008-05-15

    Two methods are available for the estimation of the angular velocity of a rigid body from point-acceleration measurements: (i) the time-integration of the angular acceleration and (ii) the square-rooting of the centripetal acceleration. The inaccuracy of the first method is due mainly to the accumulation of the error on the angular acceleration throughout the time-integration process, which does not prevent that it be used successfully in crash tests with dummies, since these experiments never last more than one second. On the other hand, the error resulting from the second method is stable through time, but becomes inaccurate whenever the rigid body angular velocity approaches zero, which occurs in many applications. In order to take advantage of the complementarity of these two methods, a fusion of their estimates is proposed. To this end, the accelerometer measurements are modeled as exact signals contaminated with bias errors and Gaussian white noise. The relations between the variables at stake are written in the form of a nonlinear state-space system in which the angular velocity and the angular acceleration are state variables. Consequently, a minimum-variance-error estimate of the state vector is obtained by means of extended Kalman filtering. The performance of the proposed estimation method is assessed by means of simulation. Apparently, the resulting estimation method is more robust than the existing accelerometer-only methods and competitive with gyroscope measurements. Moreover, it allows the identification and the compensation of any bias error in the accelerometer measurements, which is a significant advantage over gyroscopes.

  2. 压阻式振动角加速度传感器%Vibration Angular Acceleration Sensor of Compressive Resistance

    Institute of Scientific and Technical Information of China (English)

    孙慧明; 于泉; 方伟林; 范茂军

    2001-01-01

    本文对压阻式振动角加速度传感器的惯性变换系统的结构特性、工作原理进行了分析讨论.建立了数学模型.并用实验证实了该惯性系统设计合理.它可以作为角度传感器的惯性变换系统,用于振动角位移、角速度、角加速度的测量中.%The paper aims at discussing structural performance and operation principle of inertial transform system for vibration angular acceleration transducer of compressive resistance.In this paper, mathematical model is built. It is proved by experiment that designing of inertial system is reasonable, it can be used as inertial transform system of angular transducer, which is suitable for measuring of angular displacement, angular velocity and angular acceleration.

  3. Conformal Transformations, Rotating String and Effects of angular velocity on Accelerating Quark-Antiquark pair in $AdS_3$

    CERN Document Server

    Sadeghi, Jafar

    2015-01-01

    In order to study quark and anti-quark interaction, one should consider all effects of the medium in motion of the pair. Because the pair, is not produced at rest in QGP. So the velocity of the pair, has some effects on its interactions that should be taken into account. In this paper we apply some conformal transformations for a rotat- ing string dual to a rotating heavy quark in $AdS_3$ which construct an accelerating string dual to an accelerating quark and anti-quark pair. So, we can have a comparison between when pair has angular velocity or not. Then we can study effects of angular velocity on the accelerating quark and anti-quark which are constructed by performing special con- formal transformations, conformal SO(2,2) transformation and particular $SL(2;R)_L$ and $SL(2;R)_R$ transformation. The accelerating quark and anti-quark show different behavior with increasing in angular velocity. With useful numerical solutions we show that quark and anti-quark can deccelerate to achieve each other or accelera...

  4. Sloshing dynamics modulated fluid angular momentum and moment fluctuations driven by orbital gravity gradient and jitter accelerations in microgravity

    Science.gov (United States)

    Hung, R. J.; Pan, H. L.

    1995-01-01

    The dynamical behavior of spacecraft propellant affected by the asymmetric combined gravity gradient and jitter accelerations, in particular the effect of surface tension on partially-filled rotating fluids applicable to a full-scale Gravity Probe-B Spacecraft dewar tank has been investigated. Three different cases of orbital accelerations: (1) gravity gradient-dominated, (2) equally weighted between gravity gradient and jitter, and (3) gravity jitter-dominated accelerations are studied. The results of slosh wave excitation along the liquid-vapor interface induced by gravity gradient-dominated accelerations provide a torsional moment with tidal motion of bubble oscillations in the rotating dewar. The results are clearly seen from the twisting shape of the bubble oscillations driven by gravity gradient-dominated acceleration. The results of slosh wave excitation along the liquid-vapor interface induced by gravity jitter-dominated acceleration indicate the results of bubble motion in a manner of down-and-up and leftward-and-rightward movement of oscillation when the bubble is rotating with respect to rotating dewar axis. Fluctuations of angular momentum, fluid moment and bubble mass center caused by slosh wave excitations driven by gravity gradient acceleration or gravity jitter acceleration are also investigated.

  5. Integrated accretion disk angular momentum removal and astrophysical jet acceleration mechanism

    Science.gov (United States)

    Bellan, Paul

    2015-11-01

    A model has been developed for how accretion disks discard angular momentum while powering astrophysical jets. The model depends on the extremely weak ionization of disks. This causes disk ions to be collisionally locked to adjacent disk neutrals so a clump of disk ions and neutrals has an effective cyclotron frequency αωci where α is the fractional ionization. When αωci is approximately twice the Kepler orbital frequency, conservation of canonical momentum shows that the clump spirals radially inwards producing a radially inward disk electric current as electrons cannot move radially in the disk. Upon reaching the jet radius, this current then flows axially away from the disk plane along the jet, producing a toroidal magnetic field that drives the jet. Electrons remain frozen to poloidal flux surfaces everywhere and electron motion on flux surfaces in the ideal MHD region outside the disk completes the current path. Angular momentum absorbed from accreting material in the disk by magnetic counter-torque -JrBz is transported by the electric circuit and ejected at near infinite radius in the disk plane. This is like an electric generator absorbing angular momentum and wired to a distant electric motor that emits angular momentum. Supported by USDOE/NSF Partnership in Plasma Science.

  6. The role of perilymph in the response of the semicircular canals to angular acceleration.

    Science.gov (United States)

    Anliker, M.; Van Buskirk, W.

    1971-01-01

    A new model for the response of the semicircular canals to angular motion is postulated. This model is based on evidence that the bony canal is not compartmentalized and assumes that the ampulla wall is highly flexible. It is shown that the perilymph induces a cupula displacement far greater than that produced by the endolymph alone. The predicted dynamic behavior of the canals on the basis of this model is found to be consistent with experimental observations.

  7. Reduction of angular divergence of laser-driven ion beams during their acceleration and transport

    Science.gov (United States)

    Zakova, M.; Pšikal, Jan; Margarone, Daniele; Maggiore, Mario; Korn, G.

    2015-05-01

    Laser plasma physics is a field of big interest because of its implications in basic science, fast ignition, medicine (i.e. hadrontherapy), astrophysics, material science, particle acceleration etc. 100-MeV class protons accelerated from the interaction of a short laser pulse with a thin target have been demonstrated. With continuing development of laser technology, greater and greater energies are expected, therefore projects focusing on various applications are being formed, e.g. ELIMAIA (ELI Multidisciplinary Applications of laser-Ion Acceleration). One of the main characteristic and crucial disadvantage of ion beams accelerated by ultra-short intense laser pulses is their large divergence, not suitable for the most of applications. In this paper two ways how to decrease beam divergence are proposed. Firstly, impact of different design of targets on beam divergence is studied by using 2D Particlein-cell simulations (PIC). Namely, various types of targets include at foils, curved foil and foils with diverse microstructures. Obtained results show that well-designed microstructures, i.e. a hole in the center of the target, can produce proton beam with the lowest divergence. Moreover, the particle beam accelerated from a curved foil has lower divergence compared to the beam from a flat foil. Secondly, another proposed method for the divergence reduction is using of a magnetic solenoid. The trajectories of the laser accelerated particles passing through the solenoid are modeled in a simple Matlab program. Results from PIC simulations are used as input in the program. The divergence is controlled by optimizing the magnetic field inside the solenoid and installing an aperture in front of the device.

  8. Dual-rate-loop control based on disturbance observer of angular acceleration for a three-axis aerial inertially stabilized platform.

    Science.gov (United States)

    Zhou, Xiangyang; Jia, Yuan; Zhao, Qiang; Cai, Tongtong

    2016-07-01

    This paper presents a dual-rate-loop control method based on disturbance observer (DOB) of angular acceleration for a three-axis ISP for aerial remote sensing applications, by which the control accuracy and stabilization of ISP are improved obviously. In stabilization loop of ISP, a dual-rate-loop strategy is designed through constituting inner rate loop and the outer rate loop, by which the capability of disturbance rejection is advanced. Further, a DOB-based on angular acceleration is proposed to attenuate the influences of the main disturbances on stabilization accuracy. Particularly, an information fusion method is suggested to obtain accurate angular acceleration in DOB design, which is the key for the disturbance compensation. The proposed methods are theoretically analyzed and experimentally validated to illustrate the effectiveness. PMID:27016450

  9. Evaluation system for minor nervous dysfunction by pronation and supination of forearm using wireless acceleration and angular velocity sensors.

    Science.gov (United States)

    Iramina, Keiji; Kamei, Yuuichiro; Katayama, Yoshinori

    2011-01-01

    We developed a simple, portable and easy system to the motion of pronation and supination of the forearm. This motion was measured by wireless acceleration and angular velocity sensor. The aim of this system is evaluation of minor nervous dysfunction. It is for the screening of the developmental disorder child. In this study, in order to confirm the effectiveness of this system, the reference curve of the neuromotor development was experimentally obtained. We studied 212 participants (108 males, 104 females) aged 7 to 12 years attending the kindergarten school. We could obtain the reference curve of the neuromotor development using this system. We also investigated the difference of neuromotor function between normally developed children and a ADHD child. There is a possibility that abnormality of the minor nervous dysfunction can be detected by using this system. PMID:22256040

  10. Acceleration of High Angular Momentum Electron Repulsion Integrals and Integral Derivatives on Graphics Processing Units.

    Science.gov (United States)

    Miao, Yipu; Merz, Kenneth M

    2015-04-14

    We present an efficient implementation of ab initio self-consistent field (SCF) energy and gradient calculations that run on Compute Unified Device Architecture (CUDA) enabled graphical processing units (GPUs) using recurrence relations. We first discuss the machine-generated code that calculates the electron-repulsion integrals (ERIs) for different ERI types. Next we describe the porting of the SCF gradient calculation to GPUs, which results in an acceleration of the computation of the first-order derivative of the ERIs. However, only s, p, and d ERIs and s and p derivatives could be executed simultaneously on GPUs using the current version of CUDA and generation of NVidia GPUs using a previously described algorithm [Miao and Merz J. Chem. Theory Comput. 2013, 9, 965-976.]. Hence, we developed an algorithm to compute f type ERIs and d type ERI derivatives on GPUs. Our benchmarks shows the performance GPU enable ERI and ERI derivative computation yielded speedups of 10-18 times relative to traditional CPU execution. An accuracy analysis using double-precision calculations demonstrates that the overall accuracy is satisfactory for most applications. PMID:26574356

  11. Measurement of angularly dependent spectra of betatron gamma-rays from a laser plasma accelerator with quadrant-sectored range filters

    Science.gov (United States)

    Jeon, Jong Ho; Nakajima, Kazuhisa; Kim, Hyung Taek; Rhee, Yong Joo; Pathak, Vishwa Bandhu; Cho, Myung Hoon; Shin, Jung Hun; Yoo, Byung Ju; Jo, Sung Ha; Shin, Kang Woo; Hojbota, Calin; Bae, Lee Jin; Jung, Jaehyung; Cho, Min Sang; Sung, Jae Hee; Lee, Seong Ku; Cho, Byoung Ick; Choi, Il Woo; Nam, Chang Hee

    2016-07-01

    Measurement of angularly dependent spectra of betatron gamma-rays radiated by GeV electron beams from laser wakefield accelerators (LWFAs) are presented. The angle-resolved spectrum of betatron radiation was deconvolved from the position dependent data measured for a single laser shot with a broadband gamma-ray spectrometer comprising four-quadrant sectored range filters and an unfolding algorithm, based on the Monte Carlo code GEANT4. The unfolded gamma-ray spectra in the photon energy range of 0.1-10 MeV revealed an approximately isotropic angular dependence of the peak photon energy and photon energy-integrated fluence. As expected by the analysis of betatron radiation from LWFAs, the results indicate that unpolarized gamma-rays are emitted by electrons undergoing betatron motion in isotropically distributed orbit planes.

  12. Two-dimensional angular energy spectrum of electrons accelerated by the ultra-short relativistic laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Borovskiy, A. V. [Department of Computer Science and Cybernetics, Baikal State University of Economics and Law, 11 Lenin Street, Irkutsk 664003 (Russian Federation); Galkin, A. L. [Coherent and Nonlinear Optics Department, A.M. Prokhorov General Physics Institute of the RAS, 38 Vavilov Street, Moscow 119991 (Russian Federation); Department of Physics of MBF, Pirogov Russian National Research Medical University, 1 Ostrovitianov Street, Moscow 117997 (Russian Federation); Kalashnikov, M. P., E-mail: galkin@kapella.gpi.ru [Max-Born-Institute for Nonlinear Optics and Short-Time Spectroscopy, 2a Max-Born-Strasse, Berlin 12489 (Germany)

    2015-04-15

    The new method of calculating energy spectra of accelerated electrons, based on the parameterization by their initial coordinates, is proposed. The energy spectra of electrons accelerated by Gaussian ultra-short relativistic laser pulse at a selected angle to the axis of the optical system focusing the laser pulse in a low density gas are theoretically calculated. The two-peak structure of the electron energy spectrum is obtained. Discussed are the reasons for its appearance as well as an applicability of other models of the laser field.

  13. Conformal Transformations, Rotating String and Effects of angular velocity on Accelerating Quark-Antiquark pair in $AdS_3$

    OpenAIRE

    Sadeghi, Jafar; Razavi, Fatemeh

    2015-01-01

    In order to study quark and anti-quark interaction, one should consider all effects of the medium in motion of the pair. Because the pair, is not produced at rest in QGP. So the velocity of the pair, has some effects on its interactions that should be taken into account. In this paper we apply some conformal transformations for a rotat- ing string dual to a rotating heavy quark in $AdS_3$ which construct an accelerating string dual to an accelerating quark and anti-quark pair. So, we can have...

  14. Aging curve of neuromotor function by pronation and supination of forearms using three-dimensional wireless acceleration and angular velocity sensors.

    Science.gov (United States)

    Kaneko, M; Okui, H; Hirakawa, G; Ishinishi, H; Katayama, Y; Iramina, K

    2012-01-01

    We have developed an evaluation system for pronation and supination of forearms. The motion of pronation and supination of the forearm is used as a diagnosis method of developmental disability, etc. However, this diagnosis method has a demerit in which diagnosis results between doctors are not consistent. It is hoped that a more quantitative and simple evaluation method is established. Moreover it is hoped a diagnostic criteria obtained from healthy subjects can be established to diagnose developmental disorder patients. We developed a simple and portable evaluation system for pronation and supination of forearms. Three-dimensional wireless acceleration and angular velocity sensors are used for this system. In this study, pronation and supination of forearms of 570 subjects (subjects aged 6-12, 21-100) were examined. We could obtain aging curves in the neuromotor function of pronation and supination. These aging curves obtained by our developed system, has the potential to become diagnostic criteria for a developmental disability, etc. PMID:23366971

  15. 一种旋转角加速度传感器标定方法的研究%Research of a Calibration Method for Rotating Angular Acceleration Sensor

    Institute of Scientific and Technical Information of China (English)

    赵浩; 冯浩

    2016-01-01

    针对旋转角加速度传感器标定困难这一问题,提出了一种能够校准旋转角加速度传感器的方法。角加速度激励源采用伺服电动机产生,被校准的传感器与激励源同轴连接,通过调节激励源的电参数,能够产生幅值可调的旋转角加速度量值,测取角加速度传感器的输出电压值后即可实现标定。本文详细阐述了激励源的角加速度产生机理,推导了角加速度量值的理论公式,给出了计算角加速度量值所需参数的测取方法,最后对感应式角加速度传感器进行了校准实验,验证了标定方法的可行性。%For the calibration problem of angular acceleration sensor,a calibration method is presented in this paper. The angular acceleration excitation source is generated by servo motor,and angular acceleration sensor is connected with the excitation source coaxially. The amplitude of angular acceleration can be adjusted by adjusting electrical pa⁃rameters of excitation source,the characteristic of sensor is received after measuring the sensor output voltage. In this paper,the working mechanism of angular acceleration excitation source is described in detail,the theoretical for⁃mula of angular acceleration is deduced,and the parameters measuring method for calculating angular acceleration is given. Finally,a induction angular acceleration sensor is calibrated by this method,and the feasibility is verified.

  16. Accelerator

    International Nuclear Information System (INIS)

    The invention claims equipment for stabilizing the position of the front covers of the accelerator chamber in cyclic accelerators which significantly increases accelerator reliability. For stabilizing, it uses hydraulic cushions placed between the electromagnet pole pieces and the front chamber covers. The top and the bottom cushions are hydraulically connected. The cushions are disconnected and removed from the hydraulic line using valves. (J.P.)

  17. DVL Angular Velocity Recorder

    Science.gov (United States)

    Liebe, Wolfgang

    1944-01-01

    In many studies, especially of nonstationary flight motion, it is necessary to determine the angular velocities at which the airplane rotates about its various axes. The three-component recorder is designed to serve this purpose. If the angular velocity for one flight attitude is known, other important quantities can be derived from its time rate of change, such as the angular acceleration by differentiations, or - by integration - the angles of position of the airplane - that is, the angles formed by the airplane axes with the axis direction presented at the instant of the beginning of the motion that is to be investigated.

  18. Control Law of Fly-Wing UAVs Based on Angular Acceleration%基于角加速度的飞翼无人机的控制律设计

    Institute of Scientific and Technical Information of China (English)

    赵塞峰; 李秀娟; 李春涛

    2016-01-01

    The fly-wing UAVs have large individual difference, a large number of control surfaces, short longitudinal control lever and static instable heading. To solve the problems, this paper presents a direct allocation method from angular acceleration to the control surface, and a control law taking angular acceleration as the control instruction. First of all, the angular acceleration is directly allocated to the control surfaces that have been graded in discrete state. Taking the angular acceleration as control instruction, a longitudinal Robustness Servomechanism Linear Quadratic Regulator ( RSLQR ) control law, and a lateral stabilization control law, are designed. The simulation results for the sample UAV under nonlinear condition show that:1 ) The angular acceleration allocated to the control surface satisfies the distributed precision requirement;and 2 ) The control law with the angular acceleration as control instruction has high tracking accuracy and satisfies the speed requirement.%针对飞翼布局无人机个体差异大、操纵面数量多、纵向操纵力臂短以及航向静不稳定等问题,提出角加速度到操纵面的直接分配策略,以及以角加速度为控制指令的控制律。首先在离散状态下将角加速度直接分配到操纵效率分级后的各操纵面上,最终以角加速度为控制指令设计纵向鲁棒伺服LQR控制律和横侧向增稳控制律。样例无人机非线性仿真结果表明,角加速度到操纵面的直接分配满足分配精度要求,以角加速度为控制指令的控制律满足飞翼无人机的快速、高精度要求。

  19. Angular velocity and acceleration meter

    Science.gov (United States)

    Melamed, L.

    1972-01-01

    Meter uses a liquid crystalline film which changes coloration due to shear-stresses produced by a rotating disk. Device is advantageous in that it is not subject to bearing failure or electrical burnouts as are conventional devices.

  20. Use of PASCO Optical-sensors to Measure Angular Velocity and Acceleration of the Disc%用PASCO光传感器测量圆盘转动速度和加速度

    Institute of Scientific and Technical Information of China (English)

    余剑敏; 钟健松; 魏健宁; 谌庆春; 吴米贵

    2011-01-01

    This article describes using PASCO optical-sensors in real time measurement of angular velocity and angular acceleration of the circular disc,and makes the circular disc rotational speed and acceleration measurements.The experimental design,measurement sciences,accurate and reliable data,reference to reality.%介绍了利用PASCO光传感器实时测量圆盘的角速度与角加速度,进而实现对圆盘转动速度、加速度的测量。实验设计合理,测量方法科学,数据精确可靠,对现实应用有借鉴作用。

  1. Energy spectra, angular spread, fluence profiles and dose distributions of 6 and 18 MV photon beams: results of Monte Carlo simulations for a Varian 2100EX accelerator

    International Nuclear Information System (INIS)

    The purpose of this study is to provide detailed characteristics of incident photon beams for different field sizes and beam energies. This information is critical to the future development of accurate treatment planning systems. It also enhances our knowledge of radiotherapy photon beams. The EGS4 Monte Carlo code, BEAM, has been used to simulate 6 and 18 MV photon beams from a Varian Clinac-2100EX accelerator. A simulated realistic beam is stored in a phase space data file, which contains details of each particle's complete history including where it has been and where it has interacted. The phase space files are analysed to obtain energy spectra, angular distribution, fluence profile and mean energy profiles at the phantom surface for particles separated according to their charge and history. The accuracy of a simulated beam is validated by the excellent agreement between the Monte Carlo calculated and measured dose distributions. Measured depth-dose curves are obtained from depth-ionization curves by accounting for newly introduced chamber fluence corrections and the stopping-power ratios for realistic beams. The study presents calculated depth-dose components from different particles as well as calculated surface dose and contribution from different particles to surface dose across the field. It is shown that the increase of surface dose with the increase of the field size is mainly due to the increase of incident contaminant charged particles. At 6 MV, the incident charged particles contribute 7% to 21% of maximum dose at the surface when the field size increases from 10x10 to 40x40 cm2. At 18 MV, their contributions are up to 11% and 29% of maximum dose at the surface for 10x10 cm2 and 40x40 cm2 fields respectively. However, the fluence of these incident charged particles is less than 1% of incident photon fluence in all cases. (author)

  2. Angular Cheilitis

    Science.gov (United States)

    ... A This image displays a frequent location for candida infection (angular cheilitis), the corners of the mouth. Overview ... infection, those affected may also have thrush (oral candidiasis). The areas are generally slightly painful. The condition ...

  3. Inertia electrical emulation and angular acceleration estimation for transmission test rig%变速器试验台惯量电模拟与角加速度估计

    Institute of Scientific and Technical Information of China (English)

    王皖君; 张为公; 李旭

    2012-01-01

    研究了变速器试验台采用电机模拟机械飞轮惯量的实现方法.以在相同转矩作用下机械惯量系统和电惯量系统的转速变化一致为控制目标,提出了电惯量角加速度控制法.以电枢电流和角速度为输入,设计Luenberger观测器来估计角加速度,并在观测器中加入滤波器模型,同时反馈增益根据转速变化的大小自适应变化来平衡噪声抑制和响应速度之间的矛盾.采用Matlab/Simulink建立了变速器试验台及惯量电模拟系统的仿真模型,研究了电惯量在变速器升档过程中的作用.结果表明,转速误差的峰值小于1 rad/s时,观测器可以快速、准确实现角加速度的估计,且噪声抑制能力强,以此为基础的惯量电模拟方法可以有效取代机械飞轮.%Realization method of emulating mechanical flywheel inertia by electrical motor for transmission test rig was researched. To make the speed variation of electrical motor correspond with the mechanical inertia under the same torque was token as a control target, and the electrical inertia angular acceleration control method was proposed. Luenberger observer with the armature current and angular velocity as input was designed to estimate angular acceleration. The filter model was integrated into the observer, and the feedback gain was adapted according to the change rate of the speed, thus a compromise between the noise attenuation and response speed was achieved. The simulation model of transmission test rig and inertia electrical emulation system was developed by Mat-lab/Simulink. The up-gear shift process was analyzed. The results indicate that the error of angular velocity is less than 1 rad/s. The observer can estimate the angular acceleration accurately and attenuate noise robustly. On this basis, the proposed inertia electrical emulation can replace the mechanical flywheel effectively.

  4. Implementation of Constant Dose Rate and Constant Angular Spacing Intensity-modulated Arc Therapy for Cervical Cancer by Using a Conventional Linear Accelerator

    Science.gov (United States)

    Zhang, Ruo-Hui; Fan, Xiao-Mei; Bai, Wen-Wen; Cao, Yan-Kun

    2016-01-01

    Background: Volumetric-modulated arc therapy (VMAT) can only be implemented on the new generation linacs such as the Varian Trilogy® and Elekta Synergy®. This prevents most existing linacs from delivering VMAT. The purpose of this study was to investigate the feasibility of using a conventional linear accelerator delivering constant dose rate and constant angular spacing intensity-modulated arc therapy (CDR-CAS-IMAT) for treating cervical cancer. Methods: Twenty patients with cervical cancer previously treated with intensity-modulated radiation therapy (IMRT) using Varian Clinical 23EX were retreated using CDR-CAS-IMAT. The planning target volume (PTV) was set as 50.4 Gy in 28 fractions. Plans were evaluated based on the ability to meet the dose volume histogram. The homogeneity index (HI), target volume conformity index (CI), the dose to organs at risk, radiation delivery time, and monitor units (MUs) were also compared. The paired t-test was used to analyze the two data sets. All statistical analyses were performed using SPSS 19.0 software. Results: Compared to the IMRT group, the CDR-CAS-IMAT group showed better PTV CI (0.85 ± 0.03 vs. 0.81 ± 0.03, P = 0.001), clinical target volume CI (0.46 ± 0.05 vs. 0.43 ± 0.05, P = 0.001), HI (0.09±0.02 vs. 0.11 ± 0.02, P = 0.005) and D95 (5196.33 ± 28.24 cGy vs. 5162.63 ± 31.12 cGy, P = 0.000), and cord D2 (3743.8 ± 118.7 cGy vs. 3806.2 ± 98.7 cGy, P = 0.017) and rectum V40 (41.9 ± 6.1% vs. 44.2 ± 4.8%, P = 0.026). Treatment time (422.7 ± 46.7 s vs. 84.6 ± 7.8 s, P = 0.000) and the total plan Mus (927.4 ± 79.1 vs. 787.5 ± 78.5, P = 0.000) decreased by a factor of 0.8 and 0.15, respectively. The IMRT group plans were superior to the CDR-CAS-IMAT group plans considering decreasing bladder V50 (17.4 ± 4.5% vs. 16.6 ± 4.2%, P = 0.049), bowel V30 (39.6 ± 6.5% vs. 36.6 ± 7.5%, P = 0.008), and low-dose irradiation volume; there were no significant differences in other statistical indexes. Conclusions

  5. 基于俯仰角加速度的驾驶室悬置系统修改%Modification of Cab Suspension System Based on Pitch Angular Acceleration

    Institute of Scientific and Technical Information of China (English)

    张军峰; 贺岩松; 杨海威; 黄勇

    2012-01-01

    A multi-body dynamics model based on flexible suspension cab was built. The excitation and validation signals were acquired through road-test. The accuracy of the model was investigated in three ways by degree of freedom, acceleration RMS and system mode shapes. Taking weighted pitch angular acceleration RMS as the evaluation target,the orthogonal test for matching parameters of the cab suspension was conducted in the frequency domain,the driver's seat weighted pitch angular acceleration RMS is reduced by 9% on average at various speeds, the weighted vertical acceleration RMS is reduced by 14% on average and reduction of the dynamic deflection of cab suspension is as 18%. Finally,the cab suspension springs were redesigned according to the calculation results.%采用柔性化的驾驶室建立驾驶室悬置系统的多体动力学模型,通过道路试验测得仿真模型的激励和验证信号,从自由度、加速度均方根值和系统模态等三个方面验证了模型的正确性.以俯仰角加权加速度均方根值为优化目标,在频域内对驾驶室悬置参数进行了正交试验匹配,使得不同车速下座椅处的俯仰角加权加速度均方根值平均降低14%,垂向加权加速度均方根值平均降低9%,驾驶室悬置动扰度平均降低18%.最后重新设计了驾驶室前后悬置弹簧.

  6. Angular Momentum

    Science.gov (United States)

    Shakur, Asif; Sinatra, Taylor

    2013-01-01

    The gyroscope in a smartphone was employed in a physics laboratory setting to verify the conservation of angular momentum and the nonconservation of rotational kinetic energy. As is well-known, smartphones are ubiquitous on college campuses. These devices have a panoply of built-in sensors. This creates a unique opportunity for a new paradigm in…

  7. The role of perilymph in the response of the semicircular canals to angular acceleration. [dynamic model for perilymph induced displacement of cupula

    Science.gov (United States)

    Anliker, M.; Vanbuskirk, W.

    1973-01-01

    A new model for the response of the semicircular canals to angular motion is postulated. This model is based on evidence that the bony canal is not compartmentalized and assumes that the ampulla wall is highly flexible. It is shown that the perilymph induces a cupula displacement far greater than that produced by the endolymph alone. The predicted dynamic behavior of the canals on the basis of this model is found to be consistent with experimental observations.

  8. Angular velocity and acceleration analysis for ground-level tracking system%地平式跟踪系统中目标角速度与角加速度分析

    Institute of Scientific and Technical Information of China (English)

    游安清; 张家如

    2013-01-01

    Many fire control systems nowadays need real-time tracking and pointing to targets.In their design,demonstration and analysis,it is often necessary to estimate the angular velocity,angular acceleration and their variation law to provide basis for designing tracking and pointing system.However,systematic exposition for these issues is hard to find.Therefore,theoretical deductions are strictly made for often-involved long-range space targets to obtain quantitive formulae about angular velocity,angular acceleration as well as their maximum values.The deductions specially aim at ground-level tracking systems.Results of theoretical calculations with these formulae are compared with some real-measured data from a target.Conformity of the two types of results proves all the formulae are correct.The obtained formulae are also fit for short-range targets,which can be seen from the procedure of deduction.%在需要对目标进行实时跟踪瞄准的火控系统设计、论证与分析中,经常要估算目标运动的角速度、角加速度及其变化规律,以作为跟踪系统设计的依据,但目前很难找到针对此类问题的系统性论述.为此,以经常涉及的空间远程目标为对象,从理论上对地平式跟踪系统中目标运动的角速度、角加速度、最大角速度、最大角加速度等物理量进行了严格推导,给出定量的计算公式,并将理论计算结果与对某目标的实测数据进行了比较,证明了理论公式的正确性.从推导过程看,所得公式同样适用于近程目标.

  9. Maximal Acceleration Is Nonrotating

    OpenAIRE

    Page, Don N.

    1997-01-01

    In a stationary axisymmetric spacetime, the angular velocity of a stationary observer that Fermi-Walker transports its acceleration vector is also the angular velocity that locally extremizes the magnitude of the acceleration of such an observer, and conversely if the spacetime is also symmetric under reversing both t and phi together. Thus a congruence of Nonrotating Acceleration Worldlines (NAW) is equivalent to a Stationary Congruence Accelerating Locally Extremely (SCALE). These congruenc...

  10. Acceleration in Linear and Circular Motion

    Science.gov (United States)

    Kellington, S. H.; Docherty, W.

    1975-01-01

    Describes the construction of a simple accelerometer and explains its use in demonstrating acceleration, deceleration, constant speed, measurement of acceleration, acceleration and the inclined plane and angular and radial acceleration. (GS)

  11. Maximal Acceleration Is Nonrotating

    CERN Document Server

    Page, D N

    1998-01-01

    In a stationary axisymmetric spacetime, the angular velocity of a stationary observer that Fermi-Walker transports its acceleration vector is also the angular velocity that locally extremizes the magnitude of the acceleration of such an observer, and conversely if the spacetime is also symmetric under reversing both t and phi together. Thus a congruence of Nonrotating Acceleration Worldlines (NAW) is equivalent to a Stationary Congruence Accelerating Locally Extremely (SCALE). These congruences are defined completely locally, unlike the case of Zero Angular Momentum Observers (ZAMOs), which requires knowledge around a symmetry axis. The SCALE subcase of a Stationary Congruence Accelerating Maximally (SCAM) is made up of stationary worldlines that may be considered to be locally most nearly at rest in a stationary axisymmetric gravitational field. Formulas for the angular velocity and other properties of the SCALEs are given explicitly on a generalization of an equatorial plane, infinitesimally near a symmetry...

  12. Plate tectonics conserves angular momentum

    Directory of Open Access Journals (Sweden)

    C. Bowin

    2009-03-01

    Full Text Available A new combined understanding of plate tectonics, Earth internal structure, and the role of impulse in deformation of the Earth's crust is presented. Plate accelerations and decelerations have been revealed by iterative filtering of the quaternion history for the Euler poles that define absolute plate motion history for the past 68 million years, and provide an unprecedented precision for plate angular rotation variations with time at 2-million year intervals. Stage poles represent the angular rotation of a plate's motion between adjacent Euler poles, and from which the maximum velocity vector for a plate can be determined. The consistent maximum velocity variations, in turn, yield consistent estimates of plate accelerations and decelerations. The fact that the Pacific plate was shown to accelerate and decelerate, implied that conservation of plate tectonic angular momentum must be globally conserved, and that is confirmed by the results shown here (total angular momentum ~1.4 E+27 kgm2s−1. Accordingly, if a plate decelerates, other plates must increase their angular momentums to compensate. In addition, the azimuth of the maximum velocity vectors yields clues as to why the "bend" in the Emperor-Hawaiian seamount trend occurred near 46 Myr. This report summarizes processing results for 12 of the 14 major tectonic plates of the Earth (except for the Juan de Fuca and Philippine plates. Plate accelerations support the contention that plate tectonics is a product of torques that most likely are sustained by the sinking of positive density anomalies due to phase changes in subducted gabbroic lithosphere at depth in the upper lower mantle (above 1200 km depth. The tectonic plates are pulled along by the sinking of these positive mass anomalies, rather than moving at near constant velocity on the crests of convection cells driven by rising heat. These results imply that spreading centers are primarily passive reactive

  13. Professional AngularJS

    CERN Document Server

    Karpov, Valeri

    2015-01-01

    A comprehensive guide to AngularJS, Google's open-source client-side framework for app development. Most of the existing guides to AngularJS struggle to provide simple and understandable explanations for more advanced concepts. As a result, some developers who understand all the basic concepts of AngularJS struggle when it comes to building more complex real-world applications. Professional AngularJS provides a thorough understanding of AngularJS, covering everything from basic concepts, such as directives and data binding, to more advanced concepts like transclusion, build systems, and auto

  14. On Angular Momentum

    Science.gov (United States)

    Schwinger, J.

    1952-01-26

    The commutation relations of an arbitrary angular momentum vector can be reduced to those of the harmonic oscillator. This provides a powerful method for constructing and developing the properties of angular momentum eigenvectors. In this paper many known theorems are derived in this way, and some new results obtained. Among the topics treated are the properties of the rotation matrices; the addition of two, three, and four angular momenta; and the theory of tensor operators.

  15. Partonic orbital angular momentum

    Science.gov (United States)

    Arash, Firooz; Taghavi-Shahri, Fatemeh; Shahveh, Abolfazl

    2013-04-01

    Ji's decomposition of nucleon spin is used and the orbital angular momentum of quarks and gluon are calculated. We have utilized the so called valon model description of the nucleon in the next to leading order. It is found that the average orbital angular momentum of quarks is positive, but small, whereas that of gluon is negative and large. Individual quark flavor contributions are also calculated. Some regularities on the total angular momentum of the quarks and gluon are observed.

  16. Quark Orbital Angular Momentum

    OpenAIRE

    Burkardt Matthias

    2015-01-01

    Definitions of orbital angular momentum based on Wigner distributions are used as a framework to discuss the connection between the Ji definition of the quark orbital angular momentum and that of Jaffe and Manohar. We find that the difference between these two definitions can be interpreted as the change in the quark orbital angular momentum as it leaves the target in a DIS experiment. The mechanism responsible for that change is similar to the mechanism that causes transverse single-spin asy...

  17. Quark Orbital Angular Momentum

    Directory of Open Access Journals (Sweden)

    Burkardt Matthias

    2015-01-01

    Full Text Available Definitions of orbital angular momentum based on Wigner distributions are used as a framework to discuss the connection between the Ji definition of the quark orbital angular momentum and that of Jaffe and Manohar. We find that the difference between these two definitions can be interpreted as the change in the quark orbital angular momentum as it leaves the target in a DIS experiment. The mechanism responsible for that change is similar to the mechanism that causes transverse single-spin asymmetries in semi-inclusive deep-inelastic scattering.

  18. Optical Angular Momentum

    International Nuclear Information System (INIS)

    For many years the Institute of Physics has published books on hot topics based on a collection of reprints from different journals, including some remarks by the editors of each volume. The book on Optical Angular Momentum, edited by L Allen, S M Barnett and M J Padgett, is a recent addition to the series. It reproduces forty four papers originally published in different journals and in a few cases it provides direct access to works not easily accessible to a web navigator. The collection covers nearly a hundred years of progress in physics, starting from an historic 1909 paper by Poynting, and ending with a 2002 paper by Padgett, Barnett and coworkers on the measurement of the orbital angular momentum of a single photon. The field of optical angular momentum has expanded greatly, creating an interdisciplinary attraction for researchers operating in quantum optics, atomic physics, solid state physics, biophysics and quantum information theory. The development of laser optics, especially the control of single mode sources, has made possible the specific design of optical radiation modes with a high degree of control on the light angular momentum. The editors of this book are important figures in the field of angular momentum, having contributed to key progress in the area. L Allen published an historical paper in 1999, he and M J Padgett (together with M Babiker) produced few years ago a long review article which is today still the most complete basic introduction to the angular momentum of light, while S M Barnett has contributed several high quality papers to the progress of this area of physics. The editors' choice provides an excellent overview to all readers, with papers classified into eight different topics, covering the basic principles of the light and spin and orbital angular momentum, the laboratory tools for creating laser beams carrying orbital angular momentum, the optical forces and torques created by laser beams carrying angular momentum on

  19. Average Angular Velocity

    OpenAIRE

    Van Essen, H.

    2004-01-01

    This paper addresses the problem of the separation of rotational and internal motion. It introduces the concept of average angular velocity as the moment of inertia weighted average of particle angular velocities. It extends and elucidates the concept of Jellinek and Li (1989) of separation of the energy of overall rotation in an arbitrary (non-linear) $N$-particle system. It generalizes the so called Koenig's theorem on the two parts of the kinetic energy (center of mass plus internal) to th...

  20. Angular velocity discrimination

    Science.gov (United States)

    Kaiser, Mary K.

    1990-01-01

    Three experiments designed to investigate the ability of naive observers to discriminate rotational velocities of two simultaneously viewed objects are described. Rotations are constrained to occur about the x and y axes, resulting in linear two-dimensional image trajectories. The results indicate that observers can discriminate angular velocities with a competence near that for linear velocities. However, perceived angular rate is influenced by structural aspects of the stimuli.

  1. Angular distribution of oriented nucleus fission neutrons

    International Nuclear Information System (INIS)

    Calculations of anisotropy of angular distribution of oriented 235U nuclei thermal fission neutrons have been carried out. the neutrons were assumed to evaporate isotropically by completely accelerated fragements in the fragment system with only its small part, i. e. fission-producing neutrons, emitted at the moment of neck break. It has been found out that at low energies of neutrons Esub(n)=1-2 MeV the sensitivity of the angular distribution anisotropy to variations of spectrum of neutron evaporation from fragments and the magnitude of a share of fission-producing neutrons reaches approximately 100%, which at high energies, Esub(n) > 5 MeV it does not exceed approximately 20%. Therefore the angular distribution of fast neutrons to a greater degree of confidence may be used for restoring the angular distribution anisotropy of fragments while the angular distribution of low energy neutrons may be used for deriving information on the fission process, but only in case 6f the experiment accuracy is better than approximately 3%

  2. Metamaterial Broadband Angular Selectivity

    CERN Document Server

    Shen, Yichen; Wang, Zhiyu; Wang, Li; Celanovic, Ivan; Ran, Lixin; Joannopoulos, John D; Soljacic, Marin

    2014-01-01

    We demonstrate how broadband angular selectivity can be achieved with stacks of one-dimensionally periodic photonic crystals, each consisting of alternating isotropic layers and effective anisotropic layers, where each effective anisotropic layer is constructed from a multilayered metamaterial. We show that by simply changing the structure of the metamaterials, the selective angle can be tuned to a broad range of angles; and, by increasing the number of stacks, the angular transmission window can be made as narrow as desired. As a proof of principle, we realize the idea experimentally in the microwave regime. The angular selectivity and tunability we report here can have various applications such as in directional control of electromagnetic emitters and detectors.

  3. Fluidic angular velocity sensor

    Science.gov (United States)

    Berdahl, C. M. (Inventor)

    1986-01-01

    A fluidic sensor providing a differential pressure signal proportional to the angular velocity of a rotary input is described. In one embodiment the sensor includes a fluid pump having an impeller coupled to a rotary input. A housing forming a constricting fluid flow chamber is connected to the fluid input of the pump. The housing is provided with a fluid flow restrictive input to the flow chamber and a port communicating with the interior of the flow chamber. The differential pressure signal measured across the flow restrictive input is relatively noise free and proportional to the square of the angular velocity of the impeller. In an alternative embodiment, the flow chamber has a generally cylindrical configuration and plates having flow restrictive apertures are disposed within the chamber downstream from the housing port. In this embodiment, the differential pressure signal is found to be approximately linear with the angular velocity of the impeller.

  4. Angular Scaling In Jets

    Energy Technology Data Exchange (ETDEWEB)

    Jankowiak, Martin; Larkoski, Andrew J.; /SLAC

    2012-02-17

    We introduce a jet shape observable defined for an ensemble of jets in terms of two-particle angular correlations and a resolution parameter R. This quantity is infrared and collinear safe and can be interpreted as a scaling exponent for the angular distribution of mass inside the jet. For small R it is close to the value 2 as a consequence of the approximately scale invariant QCD dynamics. For large R it is sensitive to non-perturbative effects. We describe the use of this correlation function for tests of QCD, for studying underlying event and pile-up effects, and for tuning Monte Carlo event generators.

  5. Average Angular Velocity

    CERN Document Server

    Essén, H

    2003-01-01

    This paper addresses the problem of the separation of rotational and internal motion. It introduces the concept of average angular velocity as the moment of inertia weighted average of particle angular velocities. It extends and elucidates the concept of Jellinek and Li (1989) of separation of the energy of overall rotation in an arbitrary (non-linear) $N$-particle system. It generalizes the so called Koenig's theorem on the two parts of the kinetic energy (center of mass plus internal) to three parts: center of mass, rotational, plus the remaining internal energy relative to an optimally translating and rotating frame.

  6. Induced Angular Momentum

    Science.gov (United States)

    Parker, G. W.

    1978-01-01

    Discusses, classically and quantum mechanically, the angular momentum induced in the bound motion of an electron by an external magnetic field. Calculates the current density and its magnetic moment, and then uses two methods to solve the first-order perturbation theory equation for the required eigenfunction. (Author/GA)

  7. Angular velocity gradients in the solar convection zone

    Energy Technology Data Exchange (ETDEWEB)

    Gilman, P.A.; Foukal, P.V.

    1979-05-01

    We test the hypothesis that the weak influence of rotation upon solar supergranulation, resulting in fluid particles conserving their angular momentum while moving radially, is responsible for the outward decrease in angular velocity inferred from the difference between photospheric plasma and sunspot rotation rates. This test is performed using numerical integrations of a Boussinesq spherical convection model for a thin shell at small Taylor number (implying weak influence of rotation). We find that the convection does maintain an outward decrease in angular velocity, which approaches the limit implied by angular momentum conservation as the Rayleigh number or driving for convection is increased.By examining the energetics of the motion, we verify that the dominant process maintaining the calculated angular velocity profile against viscous diffusion is the inward transport of angular momentum by the convection. Axisymmetric meridional circulation plays virtually no role in this process. We further find there is no tendency for convection weakly influenced by rotation to form an equatorial acceleration. We argue from these and earlier calculations that the origin of the Sun's latitudinal gradient of angular velocity is deep in the convection zone. At these depths there may be a strong tendency for angular velocity to be constant on cylinders, implying a positive radial gradient of angular velocity. The latitude gradient is transmitted to the photosphere by supergranulation which locally produces the negative radial gradient in the top layers. We suggest from the rotation of various magnetic features that the transition from negative to positive radial angular velocity gradient occurs near the bottom of the supergranule layer. We argue that angular momentum conservation in radially moving fluid particles should produce a similar angular velocity profile in compressible convecting fluid layers.

  8. Quantum Heuristics of Angular Momentum

    Science.gov (United States)

    Levy-Leblond, Jean-Marc

    1976-01-01

    Discusses the quantization of angular momentum components, Heisenberg-type inequalities for their spectral dispersions, and the quantization of the angular momentum modulus, without using operators or commutation relations. (MLH)

  9. Angular momentum projected semiclassics

    Science.gov (United States)

    Hasse, Rainer W.

    1987-06-01

    By using angular momentum projected plane waves as wave functions, we derive semiclassical expressions for the single-particle propagator, the partition function, the nonlocal density matrix, the single-particle density and the one particle-one hole level density for fixed angular momentum and fixed z-component or summed over the z-components. Other quantities can be deduced from the propagator. In coordinate space ( r, r') the relevant quantities depend on |r-r'| instead of | r- r'| and in Wigner space ( R, P) they become proportional to the angular momentum constraints δ(| R × P|/ h̵-l) and δ( R × P) z/ h̵-m) . As applications we calculate the single-particle and one-particle-one hole level densities for harmonic oscillator and Hill-Wheeler box potentials and the imaginary part of the optical potential and its volume integral with an underlying harmonic oscillator potential and a zero range two-body interaction.

  10. Quark Orbital Angular Momentum

    Science.gov (United States)

    Burkardt, Matthias

    2016-06-01

    Generalized parton distributions provide information on the distribution of quarks in impact parameter space. For transversely polarized nucleons, these impact parameter distributions are transversely distorted and this deviation from axial symmetry leads on average to a net transverse force from the spectators on the active quark in a DIS experiment. This force when acting along the whole trajectory of the active quark leads to transverse single-spin asymmetries. For a longitudinally polarized nucleon target, the transverse force implies a torque acting on the quark orbital angular momentum (OAM). The resulting change in OAM as the quark leaves the target equals the difference between the Jaffe-Manohar and Ji OAMs.

  11. AngularJS directives

    CERN Document Server

    Vanston, Alex

    2013-01-01

    This book uses a practical, step-by-step approach, starting with how to build directives from the ground up before moving on to creating web applications comprised of multiple modules all working together to provide the best user experience possible.This book is intended for intermediate JavaScript developers who are looking to enhance their understanding of single-page web application development with a focus on AngularJS and the JavaScript MVC frameworks.It is expected that readers will understand basic JavaScript patterns and idioms and can recognize JSON formatted data.

  12. Orbital angular momentum microlaser

    Science.gov (United States)

    Miao, Pei; Zhang, Zhifeng; Sun, Jingbo; Walasik, Wiktor; Longhi, Stefano; Litchinitser, Natalia M.; Feng, Liang

    2016-07-01

    Structured light provides an additional degree of freedom for modern optics and practical applications. The effective generation of orbital angular momentum (OAM) lasing, especially at a micro- and nanoscale, could address the growing demand for information capacity. By exploiting the emerging non-Hermitian photonics design at an exceptional point, we demonstrate a microring laser producing a single-mode OAM vortex lasing with the ability to precisely define the topological charge of the OAM mode. The polarization associated with OAM lasing can be further manipulated on demand, creating a radially polarized vortex emission. Our OAM microlaser could find applications in the next generation of integrated optoelectronic devices for optical communications in both quantum and classical regimes.

  13. Orbital angular momentum microlaser.

    Science.gov (United States)

    Miao, Pei; Zhang, Zhifeng; Sun, Jingbo; Walasik, Wiktor; Longhi, Stefano; Litchinitser, Natalia M; Feng, Liang

    2016-07-29

    Structured light provides an additional degree of freedom for modern optics and practical applications. The effective generation of orbital angular momentum (OAM) lasing, especially at a micro- and nanoscale, could address the growing demand for information capacity. By exploiting the emerging non-Hermitian photonics design at an exceptional point, we demonstrate a microring laser producing a single-mode OAM vortex lasing with the ability to precisely define the topological charge of the OAM mode. The polarization associated with OAM lasing can be further manipulated on demand, creating a radially polarized vortex emission. Our OAM microlaser could find applications in the next generation of integrated optoelectronic devices for optical communications in both quantum and classical regimes. PMID:27471299

  14. On the relation between angular momentum and angular velocity

    Science.gov (United States)

    Silva, J. P.; Tavares, J. M.

    2007-01-01

    Students of mechanics usually have difficulties when they learn about the rotation of a rigid body. These difficulties are rooted in the relation between angular momentum and angular velocity, because these vectors are not parallel, and we need in general to utilize a rotating frame of reference or a time dependent inertia tensor. We discuss a series of problems that introduce both difficulties.

  15. Angular momentum in subbarrier fusion

    International Nuclear Information System (INIS)

    We have measured the ratio of the isomer to ground-state yields of 137Ce produced in the fusion reactions 128Te(12C,3n), 133Cs(7Li,3n), 136Ba(3He,2n), 136Ba(4He,3n), and 137Ba(3He,3n), from energies above the Coulomb barrier to energies typically 20--30% below the barrier by observing the delayed x- and γ-ray emission. We deduce the average angular momentum, , from the measured isomer ratios with a statistical model. In the first three reactions we observe that the values of exhibit the behavior predicted for low energies and the expected variation with the reduced mass of the entrance channel. We analyze these data and the associated cross sections with a barrier penetration model that includes the coupling of inelastic channels. Measurements of average angular momenta and cross sections made on other systems using the γ-multiplicity and fission-fragment angular correlation techniques are then analyzed in a similar way with this model. The discrepancies with theory for the γ-multiplicity data show correlations in cross section and angular momentum that suggest a valid model can be found. The measurements of angular momentum using the fission fragment angular correlation technique, however, do not appear reconcilable with the energy dependence of the cross sections. This systematic overview suggests, in particular, that our current understanding of the relationship of angular momentum and anisotropy in fission fragment angular correlations is incomplete. 26 refs

  16. Intrinsic Angular Momentum of Light.

    Science.gov (United States)

    Santarelli, Vincent

    1979-01-01

    Derives a familiar torque-angular momentum theorem for the electromagnetic field, and includes the intrinsic torques exerted by the fields on the polarized medium. This inclusion leads to the expressions for the intrinsic angular momentum carried by the radiation traveling through a charge-free medium. (Author/MA)

  17. Angular signal radiography.

    Science.gov (United States)

    Li, Panyun; Zhang, Kai; Bao, Yuan; Ren, Yuqi; Ju, Zaiqiang; Wang, Yan; He, Qili; Zhu, Zhongzhu; Huang, Wanxia; Yuan, Qingxi; Zhu, Peiping

    2016-03-21

    Microscopy techniques using visible photons, x-rays, neutrons, and electrons have made remarkable impact in many scientific disciplines. The microscopic data can often be expressed as the convolution of the spatial distribution of certain properties of the specimens and the inherent response function of the imaging system. The x-ray grating interferometer (XGI), which is sensitive to the deviation angle of the incoming x-rays, has attracted significant attention in the past years due to its capability in achieving x-ray phase contrast imaging with low brilliance source. However, the comprehensive and analytical theoretical framework is yet to be presented. Herein, we propose a theoretical framework termed angular signal radiography (ASR) to describe the imaging process of the XGI system in a classical, comprehensive and analytical manner. We demonstrated, by means of theoretical deduction and synchrotron based experiments, that the spatial distribution of specimens' physical properties, including absorption, refraction and scattering, can be extracted by ASR in XGI. Implementation of ASR in XGI offers advantages such as simplified phase retrieval algorithm, reduced overall radiation dose, and improved image acquisition speed. These advantages, as well as the limitations of the proposed method, are systematically investigated in this paper. PMID:27136780

  18. Angular momentum evolution for galaxies

    CERN Document Server

    Pedrosa, Susana

    2015-01-01

    Using cosmological hydrodynamics simulations we study the angular momentum content of the simulated galaxies in relation with their morphological type. We found that not only the angular momentum of the disk component follow the expected theoretical relation, Mo, Mao & Whiye (1998), but also the spheroidal one, with a gap due to its lost of angular momentum, in agreement with Fall & Romanowsky (2013),. We also found that the galaxy size can plot in one general relation, despite the morphological type, as found by Kravtsov (2013).

  19. AngularJS testing cookbook

    CERN Document Server

    Bailey, Simon

    2015-01-01

    This book is intended for developers who have an understanding of the basic principles behind both AngularJS and test-driven development. You, as a developer, are interested in eliminating the fear related to either introducing tests to an existing codebase or starting out testing on a fresh AngularJS application. If you're a team leader or part of a QA team with the responsibility of ensuring full test coverage of an application, then this book is ideal for you to comprehend the full testing scope required by your developers. Whether you're new to or are well versed with AngularJS, this book

  20. Linear Accelerators

    CERN Document Server

    Vretenar, M

    2014-01-01

    The main features of radio-frequency linear accelerators are introduced, reviewing the different types of accelerating structures and presenting the main characteristics aspects of linac beam dynamics.

  1. The integration of angular velocity

    OpenAIRE

    Boyle, Michael

    2016-01-01

    A common problem in physics and engineering is determination of the orientation of an object given its angular velocity. When the direction of the angular velocity changes in time, this is a nontrivial problem involving coupled differential equations. Several possible approaches are examined, along with various improvements over previous efforts. These are then evaluated numerically by comparison to a complicated but analytically known rotation that is motivated by the important astrophysical...

  2. Achromatic orbital angular momentum generator

    OpenAIRE

    Bouchard, Frédéric; Mand, Harjaspreet; Mirhosseini, Mohammad; Karimi, Ebrahim; Boyd, Robert W

    2014-01-01

    We describe a novel approach for generating light beams that carry orbital angular momentum (OAM) by means of total internal reflection in an isotropic medium. A continuous space-varying cylindrically symmetric reflector, in the form of \\textit{two glued hollow axicons}, is used to introduce a nonuniform rotation of polarisation into a linearly polarised input beam. This device acts as a full spin-to-orbital angular momentum convertor. It functions by switching the helicity of the incoming be...

  3. Relativistic Rotation in the Large Radius, Small Angular Velocity Limit

    OpenAIRE

    Klauber, Robert D.

    2002-01-01

    Relativistic rotation is considered in the limit of angular velocity approaching zero and radial distance approaching infinity, such that centrifugal acceleration is immeasurably small while tangent velocity remains close to the speed of light. For this case, the predictions of the traditional approach to relativistic rotation using local co-moving Lorentz frames are compared and contrasted with those of the differential geometry based non-time-orthogonal analysis approach. Different predicti...

  4. Factors influencing perceived angular velocity

    Science.gov (United States)

    Kaiser, Mary K.; Calderone, Jack B.

    1991-01-01

    Angular velocity perception is examined for rotations both in depth and in the image plane and the influence of several object properties on this motion parameter is explored. Two major object properties are considered, namely, texture density which determines the rate of edge transitions for rotations in depth, i.e., the number of texture elements that pass an object's boundary per unit of time, and object size which determines the tangential linear velocities and 2D image velocities of texture elements for a given angular velocity. Results of experiments show that edge-transition rate biased angular velocity estimates only when edges were highly salient. Element velocities had an impact on perceived angular velocity; this bias was associated with 2D image velocity rather than 3D tangential velocity. Despite these biases judgements were most strongly determined by the true angular velocity. Sensitivity to this higher order motion parameter appeared to be good for rotations both in depth (y-axis) and parallel to the line of sight (z-axis).

  5. Achromatic orbital angular momentum generator

    CERN Document Server

    Bouchard, Frédéric; Mirhosseini, Mohammad; Karimi, Ebrahim; Boyd, Robert W

    2014-01-01

    We describe a novel approach for generating light beams that carry orbital angular momentum (OAM) by means of total internal reflection in an isotropic medium. A continuous space-varying cylindrically symmetric reflector, in the form of \\textit{two glued hollow axicons}, is used to introduce a nonuniform rotation of polarisation into a linearly polarised input beam. This device acts as a full spin-to-orbital angular momentum convertor. It functions by switching the helicity of the incoming beam's polarisation, and by conservation of total angular momentum thereby generates a well-defined value of OAM. Our device is broadband, since the phase shift due to total internal reflection is nearly independent of wavelength. We verify the broad-band behaviour by measuring the conversion efficiency of the device for three different wavelengths corresponding to the RGB colours, red, green and blue. An average conversion efficiency of $95\\%$ for these three different wavelengths is observed. %, which confirms its wavelen...

  6. Angular momentum in human walking.

    Science.gov (United States)

    Herr, Hugh; Popovic, Marko

    2008-02-01

    Angular momentum is a conserved physical quantity for isolated systems where no external moments act about a body's center of mass (CM). However, in the case of legged locomotion, where the body interacts with the environment (ground reaction forces), there is no a priori reason for this relationship to hold. A key hypothesis in this paper is that angular momentum is highly regulated throughout the walking cycle about all three spatial directions [|Lt| approximately 0], and therefore horizontal ground reaction forces and the center of pressure trajectory can be explained predominantly through an analysis that assumes zero net moment about the body's CM. Using a 16-segment human model and gait data for 10 study participants, we found that calculated zero-moment forces closely match experimental values (Rx2=0.91; Ry2=0.90). Additionally, the centroidal moment pivot (point where a line parallel to the ground reaction force, passing through the CM, intersects the ground) never leaves the ground support base, highlighting how closely the body regulates angular momentum. Principal component analysis was used to examine segmental contributions to whole-body angular momentum. We found that whole-body angular momentum is small, despite substantial segmental momenta, indicating large segment-to-segment cancellations ( approximately 95% medio-lateral, approximately 70% anterior-posterior and approximately 80% vertical). Specifically, we show that adjacent leg-segment momenta are balanced in the medio-lateral direction (left foot momentum cancels right foot momentum, etc.). Further, pelvis and abdomen momenta are balanced by leg, chest and head momenta in the anterior-posterior direction, and leg momentum is balanced by upper-body momentum in the vertical direction. Finally, we discuss the determinants of gait in the context of these segment-to-segment cancellations of angular momentum.

  7. On the magnetic field required for driving the observed angular-velocity variations in the solar convection zone

    OpenAIRE

    Antia, H. M.; Chitre, S. M.; Gough, D. O.

    2012-01-01

    A putative temporally varying circulation-free magnetic-field configuration is inferred in an equatorial segment of the solar convection zone from the helioseismologically inferred angular-velocity variation, assuming that the predominant dynamics is angular acceleration produced by the azimuthal Maxwell stress exerted by a field whose surface values are consistent with photospheric line-of-sight measurements.

  8. On the magnetic field required for driving the observed angular-velocity variations in the solar convection zone

    Science.gov (United States)

    Antia, H. M.; Chitre, S. M.; Gough, D. O.

    2013-01-01

    A putative temporally varying circulation-free magnetic-field configuration is inferred in an equatorial segment of the solar convection zone from the helioseismologically inferred angular-velocity variation, assuming that the predominant dynamics is an angular acceleration produced by the azimuthal Maxwell stress exerted by a field whose surface values are consistent with photospheric line-of-sight measurements.

  9. Non-Colinearity of Angular Velocity and Angular Momentum

    Science.gov (United States)

    Burr, A. F.

    1974-01-01

    Discusses the principles, construction, and operation of an apparatus which serves to demonstrate the non-colinearity of the angular velocity and momentum vectors as well as the inertial tensors. Applications of the apparatus to teaching of advanced undergraduate mechanics courses are recommended. (CC)

  10. Future accelerators (?)

    Energy Technology Data Exchange (ETDEWEB)

    John Womersley

    2003-08-21

    I describe the future accelerator facilities that are currently foreseen for electroweak scale physics, neutrino physics, and nuclear structure. I will explore the physics justification for these machines, and suggest how the case for future accelerators can be made.

  11. Olympic Wrestling and Angular Momentum.

    Science.gov (United States)

    Carle, Mark

    1988-01-01

    Reported is the use of a wrestling photograph in a noncalculus introductory physics course. The photograph presents a maneuver that could serve as an example for a discussion on equilibrium, forces, torque, and angular motion. Provided are some qualitative thoughts as well as quantitative calculations. (YP)

  12. Turbodrill rod angular velocity indicator

    Energy Technology Data Exchange (ETDEWEB)

    Rogachev, O.K.; Belozerova, L.P.; Konenkov, A.K.

    1984-01-01

    This paper outlines shortcomings of existing types of telemetry systems which resulted in production of the IChT-1 unit. Unit is intended for control of angular velocity of serially produced turbodrill rods, during drilling of wells up to 5000 m deep, and bottomhole temperatures to 100C. The paper provides a detailed description and diagrams for installing this unit.

  13. Donut wakefields generated by intense laser pulses with orbital angular momentum

    Energy Technology Data Exchange (ETDEWEB)

    Mendonça, J. T.; Vieira, J. [IPFN, Instituto Superior Técnico, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal)

    2014-03-15

    We study the wakefields produced in a plasma by intense laser pulses carrying a finite amount of orbital angular momentum. We show that these wakefields have new donut-like shapes, different from those usually considered in the literature, and could be used to accelerate hollow electron beams. Wakefields with a more general angular structure were also considered. The analytical solutions are corroborated by relativistic particle-in-cell simulations using OSIRIS.

  14. Donut wakefields generated by intense laser pulses with orbital angular momentum

    International Nuclear Information System (INIS)

    We study the wakefields produced in a plasma by intense laser pulses carrying a finite amount of orbital angular momentum. We show that these wakefields have new donut-like shapes, different from those usually considered in the literature, and could be used to accelerate hollow electron beams. Wakefields with a more general angular structure were also considered. The analytical solutions are corroborated by relativistic particle-in-cell simulations using OSIRIS

  15. Angular glint calculation and analysis of radar targets via adaptive cross approximation algorithm

    Institute of Scientific and Technical Information of China (English)

    Miao Sui; Xiaojian Xu

    2014-01-01

    Angular glint is a significant electromagnetic (EM) scat-tering signature of extended radar targets. Based on the adaptive cross approximation (ACA) algorithm accelerated method of mo-ments (MoM) and the plane incident wave assumption, the narrow-band, wideband and newly developed high-resolution range profile (HRRP) based angular glint calculation formulations are derived and applied to arbitrarily shaped three-dimensional (3D) perfectly electrical y conducting (PEC) objects. In addition, the near-field angular glint is emphasized, which is of great importance for radar-seeker applications. Furthermore, with the HRRP based angular glint, an approach to rigorously determine range resolution cel s which own relatively smal er angular glint is provided. Numerical results are presented with new findings to demonstrate the useful-ness of the developed formulations.

  16. Vestibular coriolis effect differences modeled with three-dimensional linear-angular interactions.

    Science.gov (United States)

    Holly, Jan E

    2004-01-01

    The vestibular coriolis (or "cross-coupling") effect is traditionally explained by cross-coupled angular vectors, which, however, do not explain the differences in perceptual disturbance under different acceleration conditions. For example, during head roll tilt in a rotating chair, the magnitude of perceptual disturbance is affected by a number of factors, including acceleration or deceleration of the chair rotation or a zero-g environment. Therefore, it has been suggested that linear-angular interactions play a role. The present research investigated whether these perceptual differences and others involving linear coriolis accelerations could be explained under one common framework: the laws of motion in three dimensions, which include all linear-angular interactions among all six components of motion (three angular and three linear). The results show that the three-dimensional laws of motion predict the differences in perceptual disturbance. No special properties of the vestibular system or nervous system are required. In addition, simulations were performed with angular, linear, and tilt time constants inserted into the model, giving the same predictions. Three-dimensional graphics were used to highlight the manner in which linear-angular interaction causes perceptual disturbance, and a crucial component is the Stretch Factor, which measures the "unexpected" linear component.

  17. Measurement of the angular distribution of neutron-proton scattering at 10 MeV

    International Nuclear Information System (INIS)

    The relative angular distribution of neutrons scattered from protons was measured at an incident neutron energy of 10 MeV at the Ohio University Accelerator Laboratory. An array of 11 detector telescopes at laboratory angles of 0 to 60 degrees was used to detect recoil protons from neutron interactions with a CH2 (polypropylene) target. Data for 7 of these telescopes were obtained with one set of electronics and are presented here. These data, from 108 to 180 degrees for the center-of-mass scattering angles, have a small slope which agrees better with angular distributions predicted by the Arndt phase shifts than with the ENDF/B-VI angular distribution

  18. Muscle contributions to whole-body sagittal plane angular momentum during walking.

    Science.gov (United States)

    Neptune, R R; McGowan, C P

    2011-01-01

    Walking is a complex dynamic task that requires the regulation of whole-body angular momentum to maintain dynamic balance while performing walking subtasks such as propelling the body forward and accelerating the leg into swing. In human walking, the primary mechanism to regulate angular momentum is muscle force generation. Muscles accelerate body segments and generate ground reaction forces that alter angular momentum about the body's center-of-mass to restore and maintain dynamic stability. In addition, gravity contributes to whole-body angular momentum through its contribution to the ground reaction forces. The purpose of this study was to generate a muscle-actuated forward dynamics simulation of normal walking to quantify how individual muscles and gravity contribute to whole-body angular momentum in the sagittal plane. In early stance, the uniarticular hip and knee extensors (GMAX and VAS), biarticular hamstrings (HAM) and ankle dorsiflexors (TA) generated backward angular momentum while the ankle plantar flexors (SOL and GAS) generated forward momentum. In late stance, SOL and GAS were the primary contributors and generated angular momentum in opposite directions. SOL generated primarily forward angular momentum while GAS generated backward angular momentum. The difference between muscles was due to their relative contributions to the horizontal and vertical ground reaction forces. Gravity contributed to the body's angular momentum in early stance and to a lesser extent in late stance, which was counteracted primarily by the plantar flexors. These results may provide insight into balance and movement disorders and provide a basis for developing locomotor therapies that target specific muscle groups.

  19. Accelerating Value Creation with Accelerators

    DEFF Research Database (Denmark)

    Jonsson, Eythor Ivar

    2015-01-01

    accelerator programs. Microsoft runs accelerators in seven different countries. Accelerators have grown out of the infancy stage and are now an accepted approach to develop new ventures based on cutting-edge technology like the internet of things, mobile technology, big data and virtual reality. It is also...... with the traditional audit and legal universes and industries are examples of emerging potentials both from a research and business point of view to exploit and explore further. The accelerator approach may therefore be an Idea Watch to consider, no matter which industry you are in, because in essence accelerators...

  20. Gasflow style level posture sensor and angular velocity gyroscope assembled inertial sensor

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The compensational loop consisting of a gasflow style angular velocity gyroscope and gasflow level posture sensor is proposed to improve the signal of gasflow style tilt. This compensational loop could remove acceleration interfere from the signal of tilt. This assembled gasflow type inertial sensor not only measures static state angular, but also restrains the acceleration which interferes the output signal of level posture sensor in dynamic situations. Therefore, the precision of outputs signal increases greatly. Moreover, the output signal includes the angle velocity signal.

  1. AngularJS test-driven development

    CERN Document Server

    Chaplin, Tim

    2015-01-01

    This book is for developers who want to learn about AngularJS development by applying testing techniques. You are assumed to have a basic knowledge and understanding of HTML, JavaScript, and AngularJS.

  2. Orbital angular momentum in phase space

    OpenAIRE

    Rigas, I.; Sanchez-Soto, L. L.; Klimov, A. B.; Rehacek, J.; Hradil, Z.

    2010-01-01

    A comprehensive theory of the Weyl-Wigner formalism for the canonical pair angle-angular momentum is presented. Special attention is paid to the problems linked to rotational periodicity and angular-momentum discreteness.

  3. Phonons with orbital angular momentum

    Energy Technology Data Exchange (ETDEWEB)

    Ayub, M. K. [Theoretical Plasma Physics Division, PINSTECH, P. O. Nilore, Islamabad (Pakistan); National Centre for Physics, Shahdra Valley Road, Quaid-i-Azam University Campus, Islamabad 44000 (Pakistan); Ali, S. [National Centre for Physics, Shahdra Valley Road, Quaid-i-Azam University Campus, Islamabad 44000 (Pakistan); Mendonca, J. T. [IPFN, Instituto Superior Tecnico, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal)

    2011-10-15

    Ion accoustic waves or phonon modes are studied with orbital angular momentum (OAM) in an unmagnetized collissionless uniform plasma, whose constituents are the Boltzmann electrons and inertial ions. For this purpose, we have employed the fluid equations to obtain a paraxial equation in terms of ion density perturbations and discussed its Gaussian beam and Laguerre-Gauss (LG) beam solutions. Furthermore, an approximate solution for the electrostatic potential problem is presented, allowing to express the components of the electric field in terms of LG potential perturbations. The energy flux due to phonons is also calculated and the corresponding OAM is derived. Numerically, it is shown that the parameters such as azimuthal angle, radial and angular mode numbers, and beam waist, strongly modify the profiles of the phonon LG potential. The present results should be helpful in understanding the phonon mode excitations produced by Brillouin backscattering of laser beams in a uniform plasma.

  4. On Dunkl angular momenta algebra

    Science.gov (United States)

    Feigin, Misha; Hakobyan, Tigran

    2015-11-01

    We consider the quantum angular momentum generators, deformed by means of the Dunkl operators. Together with the reflection operators they generate a subalgebra in the rational Cherednik algebra associated with a finite real reflection group. We find all the defining relations of the algebra, which appear to be quadratic, and we show that the algebra is of Poincaré-Birkhoff-Witt (PBW) type. We show that this algebra contains the angular part of the Calogero-Moser Hamiltonian and that together with constants it generates the centre of the algebra. We also consider the gl( N ) version of the subalge-bra of the rational Cherednik algebra and show that it is a non-homogeneous quadratic algebra of PBW type as well. In this case the central generator can be identified with the usual Calogero-Moser Hamiltonian associated with the Coxeter group in the harmonic confinement.

  5. Angular momentum in QGP holography

    Directory of Open Access Journals (Sweden)

    Brett McInnes

    2014-10-01

    Full Text Available The quark chemical potential is one of the fundamental parameters describing the quark–gluon plasma produced by sufficiently energetic heavy-ion collisions. It is not large at the extremely high temperatures probed by the LHC, but it plays a key role in discussions of the beam energy scan programmes at the RHIC and other facilities. On the other hand, collisions at such energies typically (that is, in peripheral collisions give rise to very high values of the angular momentum density. Here we explain that holographic estimates of the quark chemical potential of a rotating sample of plasma can be very considerably improved by taking the angular momentum into account.

  6. The integration of angular velocity

    CERN Document Server

    Boyle, Michael

    2016-01-01

    A common problem in physics and engineering is determination of the orientation of an object given its angular velocity. When the direction of the angular velocity changes in time, this is a nontrivial problem involving coupled differential equations. Several possible approaches are examined, along with various improvements over previous efforts. These are then evaluated numerically by comparison to a complicated but analytically known rotation that is motivated by the important astrophysical problem of precessing black-hole binaries. It is shown that a straightforward solution directly using quaternions is most efficient and accurate, and that the norm of the quaternion is irrelevant. Integration of the generator of the rotation can also be made roughly as efficient as integration of the rotation. Both methods will typically be twice as efficient naive vector- or matrix-based methods. Implementation by means of standard general-purpose numerical integrators is stable and efficient, so that such problems can ...

  7. Gait event detection using linear accelerometers or angular velocity transducers in able-bodied and spinal-cord injured individuals.

    Science.gov (United States)

    Jasiewicz, Jan M; Allum, John H J; Middleton, James W; Barriskill, Andrew; Condie, Peter; Purcell, Brendan; Li, Raymond Che Tin

    2006-12-01

    We report on three different methods of gait event detection (toe-off and heel strike) using miniature linear accelerometers and angular velocity transducers in comparison to using standard pressure-sensitive foot switches. Detection was performed with normal and spinal-cord injured subjects. The detection of end contact (EC), normally toe-off, and initial contact (IC) normally, heel strike was based on either foot linear accelerations or foot sagittal angular velocity or shank sagittal angular velocity. The results showed that all three methods were as accurate as foot switches in estimating times of IC and EC for normal gait patterns. In spinal-cord injured subjects, shank angular velocity was significantly less accurate (p<0.02). We conclude that detection based on foot linear accelerations or foot angular velocity can correctly identify the timing of IC and EC events in both normal and spinal-cord injured subjects. PMID:16500102

  8. Integrating rotation from angular velocity

    OpenAIRE

    Zupan, Eva; Saje, Miran

    2011-01-01

    Abstract The integration of the rotation from a given angular velocity is often required in practice. The present paper explores how the choice of the parametrization of rotation, when employed in conjuction with different numerical time-integration schemes, effects the accuracy and the computational efficiency. Three rotation parametrizations – the rotational vector, the Argyris tangential vector and the rotational quaternion – are combined with three different numerical time-integration ...

  9. Laser accelerator

    OpenAIRE

    Vigil, Ricardo

    2014-01-01

    Approved for public release; distribution is unlimited In 1979,W. B. Colson and S. K. Ride proposed a new kind of electron accelerator using a uniform magnetic field in combination with a circularly-polarized laser field. A key concept is to couple the oscillating electric field to the electron’s motion so that acceleration is sustained. This dissertation investigates the performance of the proposed laser accelerator using modern high powered lasers and mag-netic fields that are significan...

  10. Orbital angular momentum is dependent on polarization

    OpenAIRE

    Li, Chun-Fang

    2009-01-01

    It is shown that the momentum density of free electromagnetic field splits into two parts. One has no contribution to the net momentum due to the transversality condition. The other yields all the momentum. The angular momentum that originates from the former part is spin, and the angular momentum that originates from the latter part is orbital angular momentum. Expressions for the spin and orbital angular momentum are given in terms of the electric vector in reciprocal space. The spin and or...

  11. Achromatic orbital angular momentum generator

    International Nuclear Information System (INIS)

    We describe a novel approach for generating light beams that carry orbital angular momentum (OAM) by means of total internal reflection in an isotropic medium. A continuous space-varying cylindrically symmetric reflector, in the form of two glued hollow axicons, is used to introduce a nonuniform rotation of polarization into a linearly polarized input beam. This device acts as a full spin-to-orbital angular momentum convertor. It functions by switching the helicity of the incoming beam's polarization, and by conservation of total angular momentum thereby generates a well-defined value of OAM. Our device is broadband, since the phase shift due to total internal reflection is nearly independent of wavelength. We verify the broad-band behaviour by measuring the conversion efficiency of the device for three different wavelengths corresponding to the RGB colours, red, green and blue. An average conversion efficiency of 95% for these three different wavelengths is observed. This device may find applications in imaging from micro- to astronomical systems where a white vortex beam is needed. (paper)

  12. AngularJS web application development

    CERN Document Server

    Darwin, Peter Bacon

    2013-01-01

    The book will be a step-by-step guide showing the readers how to build a complete web app with AngularJSJavaScript developers who want to learn AngularJS for developing web apps. Knowledge of JavaScript and HTML is expected. No knowledge of AngularJS is required.

  13. LIBO accelerates

    CERN Multimedia

    2002-01-01

    The prototype module of LIBO, a linear accelerator project designed for cancer therapy, has passed its first proton-beam acceleration test. In parallel a new version - LIBO-30 - is being developed, which promises to open up even more interesting avenues.

  14. Dependency injection with AngularJS

    CERN Document Server

    Knol, Alex

    2013-01-01

    This book is a practical, hands-on approach to using dependency injection and implementing test-driven development using AngularJS. Dependency Injection with AngularJS is aimed at developers who are aware of AngularJS but need to get started with using it in real life applications. Also, developers who want to get into test-driven development with AngularJS can use this book as practical guide. Even if you know about dependency injection, it can serve as a good reference on how it is used within AngularJS. Readers are expected to have some experience with JavaScript.

  15. Matter waves with angular momentum

    CERN Document Server

    Bracher, C; Kleber, M; Bracher, Christian; Kramer, Tobias; Kleber, Manfred

    2003-01-01

    An alternative description of quantum scattering processes rests on inhomogeneous terms amended to the Schr\\"odinger equation. We detail the structure of sources that give rise to multipole scattering waves of definite angular momentum, and introduce pointlike multipole sources as their limiting case. Partial wave theory is recovered for freely propagating particles. We obtain novel results for ballistic scattering in an external uniform force field, where we provide analytical solutions for both the scattering waves and the integrated particle flux. As an illustration of the theory, we predict some properties of vortex-bearing atom laser beams outcoupled from a rotating Bose--Einstein condensate under the influence of gravity.

  16. Boundary-projection acceleration: A new approach to synthetic acceleration of transport calculations

    Energy Technology Data Exchange (ETDEWEB)

    Adams, M.L.; Martin, W.R.

    1987-01-01

    We present a new class of synthetic acceleration methods which can be applied to transport calculations regardless of geometry, discretization scheme, or mesh shape. Unlike other synthetic acceleration methods which base their acceleration on P1 equations, these methods use acceleration equations obtained by projecting the transport solution onto a coarse angular mesh only on cell boundaries. We demonstrate, via Fourier analysis of a simple model problem as well as numerical calculations of various problems, that the simplest of these methods are unconditionally stable with spectral radius less than or equal toc/3 (c being the scattering ratio), for several different discretization schemes in slab geometry. 28 refs., 4 figs., 3 tabs.

  17. Relativistic Rotation in the Large Radius, Small Angular Velocity Limit

    CERN Document Server

    Klauber, R D

    2002-01-01

    Relativistic rotation is considered in the limit of angular velocity approaching zero and radial distance approaching infinity, such that centrifugal acceleration is immeasurably small while tangent velocity remains close to the speed of light. For this case, the predictions of the traditional approach to relativistic rotation using local co-moving Lorentz frames are compared and contrasted with those of the differential geometry based non-time-orthogonal analysis approach. Different predictions by the two approaches imply that only the non-time-orthogonal approach is valid.

  18. Photons, phonons, and plasmons with orbital angular momentum in plasmas

    CERN Document Server

    Chen, Qiang; Liu, Jian

    2016-01-01

    Exact eigen modes with orbital angular momentum (OAM) in the complex media of unmagnetized homogeneous plasma are studied. Three exact eigen modes with OAM are discovered, i.e., photons, phonons, and plasmons. It is found that an OAM photon can be excited by two familiar Bessel modes without OAM. For the phonons and plasmons, their OAM are carried by the electrons and ions. The OAM modes in plasmas and their characteristics can be explored for various potential applications in plasma physics and accelerator physics.

  19. Angular correlations and fragmentation in intermediate energy heavy ion collisions

    International Nuclear Information System (INIS)

    Intermediate energy heavy-ion collisions have been studied from 35 A MeV up to 94 A MeV at various accelerators. Angular correlations between light particles and detection of projectile- and target-fragments have been used to investigate the reaction mechanisms in this transition region between low- and high energy. An excess of correlations is observed in the particle-particle elastic scattering plane. This excess increases with particle mass and can be understood in terms of momentum conservation. The fragmentation measurements gives an indication that both energy and momentum transfer to the spectator volumes does occur. (author)

  20. Gravitational waves generated by laser accelerated relativistic ions

    OpenAIRE

    Gelfer, Evgeny; Kadlecová, Hedvika; Klimo, Ondřej; Weber, Stefan; Korn, Georg

    2015-01-01

    The generation of gravitational waves by laser accelerated relativistic ions is investigated. The piston and light sail models of laser plasma acceleration are considered and analytical expressions for space-time metric perturbation are derived. For both models the dependence of gravitational waves amplitude on the laser and plasma parameters as well as gravitational waves spectrum and angular distribution are examined

  1. Controlling neutron orbital angular momentum.

    Science.gov (United States)

    Clark, Charles W; Barankov, Roman; Huber, Michael G; Arif, Muhammad; Cory, David G; Pushin, Dmitry A

    2015-09-24

    The quantized orbital angular momentum (OAM) of photons offers an additional degree of freedom and topological protection from noise. Photonic OAM states have therefore been exploited in various applications ranging from studies of quantum entanglement and quantum information science to imaging. The OAM states of electron beams have been shown to be similarly useful, for example in rotating nanoparticles and determining the chirality of crystals. However, although neutrons--as massive, penetrating and neutral particles--are important in materials characterization, quantum information and studies of the foundations of quantum mechanics, OAM control of neutrons has yet to be achieved. Here, we demonstrate OAM control of neutrons using macroscopic spiral phase plates that apply a 'twist' to an input neutron beam. The twisted neutron beams are analysed with neutron interferometry. Our techniques, applied to spatially incoherent beams, demonstrate both the addition of quantum angular momenta along the direction of propagation, effected by multiple spiral phase plates, and the conservation of topological charge with respect to uniform phase fluctuations. Neutron-based studies of quantum information science, the foundations of quantum mechanics, and scattering and imaging of magnetic, superconducting and chiral materials have until now been limited to three degrees of freedom: spin, path and energy. The optimization of OAM control, leading to well defined values of OAM, would provide an additional quantized degree of freedom for such studies. PMID:26399831

  2. The spinning disc: studying radial acceleration and its damping process with smartphone acceleration sensors

    Science.gov (United States)

    Hochberg, K.; Gröber, S.; Kuhn, J.; Müller, A.

    2014-03-01

    Here, we show the possibility of analysing circular motion and acceleration using the acceleration sensors of smartphones. For instance, the known linear dependence of the radial acceleration on the distance to the centre (a constant angular frequency) can be shown using multiple smartphones attached to a revolving disc. As a second example, the decrease of the radial acceleration and the rotation frequency due to friction can be measured and fitted with a quadratic function, in accordance with theory. Finally, because the disc is not set up exactly horizontal, each smartphone measures a component of the gravitational acceleration that adds to the radial acceleration during one half of the period and subtracts from the radial acceleration during the other half. Hence, every graph shows a small modulation, which can be used to determine the rotation frequency, thus converting a ‘nuisance effect’ into a source of useful information, making additional measurements with stopwatches or the like unnecessary.

  3. Angular Motion Estimation Using Dynamic Models in a Gyro-Free Inertial Measurement Unit

    Directory of Open Access Journals (Sweden)

    Otmar Loffeld

    2012-04-01

    Full Text Available In this paper, we summarize the results of using dynamic models borrowed from tracking theory in describing the time evolution of the state vector to have an estimate of the angular motion in a gyro-free inertial measurement unit (GF-IMU. The GF-IMU is a special type inertial measurement unit (IMU that uses only a set of accelerometers in inferring the angular motion. Using distributed accelerometers, we get an angular information vector (AIV composed of angular acceleration and quadratic angular velocity terms. We use a Kalman filter approach to estimate the angular velocity vector since it is not expressed explicitly within the AIV. The bias parameters inherent in the accelerometers measurements’ produce a biased AIV and hence the AIV bias parameters are estimated within an augmented state vector. Using dynamic models, the appended bias parameters of the AIV become observable and hence we can have unbiased angular motion estimate. Moreover, a good model is required to extract the maximum amount of information from the observation. Observability analysis is done to determine the conditions for having an observable state space model. For higher grades of accelerometers and under relatively higher sampling frequency, the error of accelerometer measurements is dominated by the noise error. Consequently, simulations are conducted on two models, one has bias parameters appended in the state space model and the other is a reduced model without bias parameters.

  4. Effect of equal channel angular pressing on aging treatment of Al-7075 alloy

    Directory of Open Access Journals (Sweden)

    M.H. Shaeri

    2015-04-01

    Full Text Available The effect of aging treatment on microstructure and mechanical properties of equal channel angular pressed Al-7075 alloy was examined. Commercial Al-7075 alloy in the solid solution heat-treated condition was processed by equal channel angular pressing through route BC at both the room temperature and 120 °C. Only three passes of equal channel angular pressing was possible due to the low ductility of the alloy at both temperatures. Followed by equal channel angular pressing, the specimens have been aged at 120 °C for different aging times. Mechanical properties were measured by Vickers microhardness and tensile tests and microstructural observations were undertaken using transmission electron microscopy, X-ray diffractometer as well as optical microscopy. Microstructural investigations showed that ultrafine-grained materials with grain size in the range of 200–350 nm and 300–500 nm could be obtained after three passes of equal channel angular pressing at room temperature and 120 °C, respectively. Equal channel angular pressing of solid solution heat-treated Al-7075 alloy accelerates precipitation rate and subsequently leads to a significant decrease in aging time to attain maximum mechanical properties. Furthermore, it is possible to achieve maximum mechanical properties during equal channel angular pressing at 120 °C as a result of dynamic aging and formation of small ɳ´ phase.

  5. The difficulty of measuring orbital angular momentum

    OpenAIRE

    Preece, D; Nieminen, T. A.; Asavei, T.; Heckenberg, N. R.; Rubinsztein-Dunlop, H.

    2011-01-01

    Light can carry angular momentum as well as energy and momentum; the transfer of this angular momentum to an object results in an optical torque. The development of a rotational analogue to the force measurement capability of optical tweezers is hampered by the difficulty of optical measurement of orbital angular momentum. We present an experiment with encouraging results, but emphasise the difficulty of the task.

  6. The difficulty of measuring orbital angular momentum

    Directory of Open Access Journals (Sweden)

    D. Preece

    2011-09-01

    Full Text Available Light can carry angular momentum as well as energy and momentum; the transfer of this angular momentum to an object results in an optical torque. The development of a rotational analogue to the force measurement capability of optical tweezers is hampered by the difficulty of optical measurement of orbital angular momentum. We present an experiment with encouraging results, but emphasise the difficulty of the task.

  7. Orbital angular momentum and the parton model

    Energy Technology Data Exchange (ETDEWEB)

    Ratcliffe, P.G.

    1987-06-25

    The role of orbital angular momentum is discussed within the framework of the parton model. It is shown that a consistent interpretation of the Altarelli-Parisi equations governing the Q/sup 2/-evolution of helicity-weighted parton distributions necessitates the assumption that partons carry a large orbital angular momentum, contrary to popular belief. In developing the arguments presented, the Altarelli-Parisi formalism is extended to include orbital angular momentum dependence.

  8. Photoionization with Orbital Angular Momentum Beams

    OpenAIRE

    Picón, A.; Mompart, J.; de Aldana, J. R. Vázquez; Plaja, L.; Calvo, G. F.; Roso, L.

    2010-01-01

    Intense laser ionization expands Einstein's photoelectric effect rules giving a wealth of phenomena widely studied over the last decades. In all cases, so far, photons were assumed to carry one unit of angular momentum. However it is now clear that photons can possess extra angular momentum, the orbital angular momentum (OAM), related to their spatial profile. We show a complete description of photoionization by OAM photons, including new selection rules involving more than one unit of angula...

  9. Quantum formulation of fractional orbital angular momentum

    OpenAIRE

    Götte, Jörg B; Franke-Arnold, Sonja; Zambrini, Roberta; Barnett, Stephen M.

    2007-01-01

    The quantum theory of rotation angles (S. M. Barnett and D. T. Pegg, Phys. Rev. A, 41, 3427-3425 (1990)) is generalised to non-integer values of the orbital angular momentum. This requires the introduction of an additional parameter, the orientation of a phase discontinuity associated with fractional values of the orbital angular momentum. We apply our formalism to the propagation of light modes with fractional orbital angular momentum in the paraxial and non-paraxial regime.

  10. Orbital angular momentum induced beam shifts

    OpenAIRE

    Hermosa N.; Merano M.; Aiello A.; Woerdman J.P.

    2011-01-01

    We present experiments on Orbital Angular Momentum (OAM) induced beam shifts in optical reflection. Specifically, we observe the spatial Goos-H\\"anchen shift in which the beam is displaced parallel to the plane of incidence and the angular Imbert-Fedorov shift which is a transverse angular deviation from the geometric optics prediction. Experimental results agree well with our theoretical predictions. Both beam shifts increase with the OAM of the beam; we have measured these for OAM indices u...

  11. Oral candidiasis and angular cheilitis.

    Science.gov (United States)

    Sharon, Victoria; Fazel, Nasim

    2010-01-01

    Candidiasis, an often encountered oral disease, has been increasing in frequency. Most commonly caused by the overgrowth of Candida albicans, oral candidiasis can be divided into several categories including acute and chronic forms, and angular cheilitis. Risk factors for the development of oral candidiasis include immunosuppression, wearing of dentures, pharmacotherapeutics, smoking, infancy and old age, endocrine dysfunction, and decreased salivation. Oral candidiasis may be asymptomatic. More frequently, however, it is physically uncomfortable, and the patient may complain of burning mouth, dysgeusia, dysphagia, anorexia, and weight loss, leading to nutritional deficiency and impaired quality of life. A plethora of antifungal treatments are available. The overall prognosis of oral candidiasis is good, and rarely is the condition life threatening with invasive or recalcitrant disease.

  12. Magnetic Modulation of Stellar Angular Momentum Loss

    CERN Document Server

    Garraffo, Cecilia; Cohen, Ofer

    2014-01-01

    Angular Momentum Loss is important for understanding astrophysical phenomena such as stellar rotation, magnetic activity, close binaries, and cataclysmic variables. Magnetic breaking is the dominant mechanism in the spin down of young late-type stars. We have studied angular momentum loss as a function of stellar magnetic activity. We argue that the complexity of the field and its latitudinal distribution are crucial for angular momentum loss rates. In this work we discuss how angular momentum is modulated by magnetic cycles, and how stellar spin down is not just a simple function of large scale magnetic field strength.

  13. The Angular Momentum of the Solar System

    Science.gov (United States)

    Cang, Rongquin; Guo, Jianpo; Hu, Juanxiu; He, Chaoquiong

    2016-05-01

    The angular momentum of the Solar System is a very important physical quantity to the formation and evolution of the Solar System. Previously, the spin angular momentum of the Sun and the orbital angular momentum of the Eight Giant Planets were only taken into consideration, when researchers calculated the angular momentum of the Solar System. Nowadays, it seems narrow and conservative. Using Eggleton's code, we calculate the rotational inertia of the Sun. Furthermore, we obtain that the spin angular momentum of the Sun is 1.8838 x 10^41 kg m^2 s^-1. Besides the spin angular momentum of the Sun and the orbital angular momentum of the Eight Giant Planets, we also account for the orbital angular momentum of the Asteroid Belt, the Kuiper Belt, the Oort Cloud, the Ninth Giant Planet and the Solar Companion. We obtain that the angular momentum of the whole Solar System is 3.3212 x 10^45 kg m^2 s^-1.

  14. METRIC OF ACCELERATING AND ROTATING REFERENCE SYSTEMS IN GENERAL RELATIVITY

    OpenAIRE

    Trunev A. P.

    2015-01-01

    Metric describing the accelerated and rotating reference system in general relativity in the case of an arbitrary dependence of acceleration and angular velocity on time has been proposed. It is established that the curvature tensor in such metrics is zero, which corresponds to movement in the flat spaces. It is shown that the motion of test bodies in the metric accelerated and rotating reference system in general relativity is similarly to the classical motion in non-inertial reference frame...

  15. Transverse and longitudinal angular momenta of light

    International Nuclear Information System (INIS)

    We review basic physics and novel types of optical angular momentum. We start with a theoretical overview of momentum and angular momentum properties of generic optical fields, and discuss methods for their experimental measurements. In particular, we describe the well-known longitudinal (i.e., aligned with the mean momentum) spin and orbital angular momenta in polarized vortex beams. Then, we focus on the transverse (i.e., orthogonal to the mean momentum) spin and orbital angular momenta, which were recently actively discussed in theory and observed in experiments. First, the recently-discovered transverse spin  angular momenta appear in various structured fields: evanescent waves, interference fields, and focused beams. We show that there are several kinds of transverse spin angular momentum, which differ strongly in their origins and physical properties. We describe extraordinary features of the transverse optical spins and overview recent experiments. In particular, the helicity-independent transverse spin inherent in edge evanescent waves offers robust spin–direction coupling at optical interfaces (the quantum spin Hall effect of light). Second, we overview the transverse orbital angular momenta of light, which can be both extrinsic and intrinsic. These two types of the transverse orbital angular momentum are produced by spatial shifts of the optical beams (e.g., in the spin Hall effect of light) and their Lorentz boosts, respectively. Our review is underpinned by a unified theory of the angular momentum of light based on the canonical momentum and spin densities, which avoids complications associated with the separation of spin and orbital angular momenta in the Poynting picture. It allows us to construct a comprehensive classification of all known optical angular momenta based on their key parameters and main physical properties

  16. Angular momentum of non-paraxial light beam: Dependence of orbital angular momentum on polarization

    OpenAIRE

    Li, Chun-Fang

    2009-01-01

    It is shown that the momentum density of free electromagnetic field splits into two parts. One has no contribution to the net momentum due to the transversality condition. The other yields all the momentum. The angular momentum that is associated with the former part is spin, and the angular momentum that is associated with the latter part is orbital angular momentum. Expressions for the spin and orbital angular momentum are given in terms of the electric vector in reciprocal space. The spin ...

  17. A variable acceleration calibration system

    Science.gov (United States)

    Johnson, Thomas H.

    2011-12-01

    A variable acceleration calibration system that applies loads using gravitational and centripetal acceleration serves as an alternative, efficient and cost effective method for calibrating internal wind tunnel force balances. Two proof-of-concept variable acceleration calibration systems are designed, fabricated and tested. The NASA UT-36 force balance served as the test balance for the calibration experiments. The variable acceleration calibration systems are shown to be capable of performing three component calibration experiments with an approximate applied load error on the order of 1% of the full scale calibration loads. Sources of error are indentified using experimental design methods and a propagation of uncertainty analysis. Three types of uncertainty are indentified for the systems and are attributed to prediction error, calibration error and pure error. Angular velocity uncertainty is shown to be the largest indentified source of prediction error. The calibration uncertainties using a production variable acceleration based system are shown to be potentially equivalent to current methods. The production quality system can be realized using lighter materials and a more precise instrumentation. Further research is needed to account for balance deflection, forcing effects due to vibration, and large tare loads. A gyroscope measurement technique is shown to be capable of resolving the balance deflection angle calculation. Long term research objectives include a demonstration of a six degree of freedom calibration, and a large capacity balance calibration.

  18. Radiofrequency encoded angular-resolved light scattering

    DEFF Research Database (Denmark)

    Buckley, Brandon W.; Akbari, Najva; Diebold, Eric D.;

    2015-01-01

    Encoded Angular-resolved Light Scattering (REALS), this technique multiplexes angular light scattering in the radiofrequency domain, such that a single photodetector captures the entire scattering spectrum from a particle over approximately 100 discrete incident angles on a single shot basis. As a proof...

  19. Angular-Rate Estimation Using Quaternion Measurements

    Science.gov (United States)

    Azor, Ruth; Bar-Itzhack, Y.; Deutschmann, Julie K.; Harman, Richard R.

    1998-01-01

    In most spacecraft (SC) there is a need to know the SC angular rate. Precise angular rate is required for attitude determination, and a coarse rate is needed for attitude control damping. Classically, angular rate information is obtained from gyro measurements. These days, there is a tendency to build smaller, lighter and cheaper SC, therefore the inclination now is to do away with gyros and use other means and methods to determine the angular rate. The latter is also needed even in gyro equipped satellites when performing high rate maneuvers whose angular-rate is out of range of the on board gyros or in case of gyro failure. There are several ways to obtain the angular rate in a gyro-less SC. When the attitude is known, one can differentiate the attitude in whatever parameters it is given and use the kinematics equation that connects the derivative of the attitude with the satellite angular-rate and compute the latter. Since SC usually utilize vector measurements for attitude determination, the differentiation of the attitude introduces a considerable noise component in the computed angular-rate vector.

  20. Exposing Library Services with AngularJS

    OpenAIRE

    Jakob Voß; Moritz Horn

    2014-01-01

    This article provides an introduction to the JavaScript framework AngularJS and specific AngularJS modules for accessing library services. It shows how information such as search suggestions, additional links, and availability can be embedded in any website. The ease of reuse may encourage more libraries to expose their services via standard APIs to allow usage in different contexts.

  1. Concepts of radial and angular kinetic energies

    DEFF Research Database (Denmark)

    Dahl, Jens Peder; Schleich, W.P.

    2002-01-01

    We consider a general central-field system in D dimensions and show that the division of the kinetic energy into radial and angular parts proceeds differently in the wave-function picture and the Weyl-Wigner phase-space picture, Thus, the radial and angular kinetic energies are different quantities...

  2. Angular Momentum Eigenstates for Equivalent Electrons.

    Science.gov (United States)

    Tuttle, E. R.; Calvert, J. B.

    1981-01-01

    Simple and efficient methods for adding angular momenta and for finding angular momentum eigenstates for systems of equivalent electrons are developed. Several different common representations are used in specific examples. The material is suitable for a graduate course in quantum mechanics. (SK)

  3. Angular Momentum Distribution in the Transverse Plane

    CERN Document Server

    Adhikari, Lekha

    2016-01-01

    Several possibilities to relate the $t$-dependence of Generalized Parton Distributions (GPDs) to the distribution of angular momentum in the transverse plane are discussed. Using a simple spectator model we demonstrate that non of them correctly describes the orbital angular momentum distribution that for a longitudinally polarized nucleon obtained directly from light-front wavefunctions.

  4. Orbital Angular Momentum in the Nucleon

    OpenAIRE

    Garvey, Gerald T.

    2010-01-01

    Analysis of the measured value of the integrated \\bar{d}-\\bar{u} asymmetry (Ifas = 0.147+-0.027) in the nucleon show it to arise from nucleon fluctuations into baryon plus pion. Requiring angular momentum conservation in these fluctuations shows the associated orbital angular momentum is equal to the value of the flavor asymmetry.

  5. Detecting orbital angular momentum in radio signals

    OpenAIRE

    Then, H.; Thidé, B.; Mendonça, J T; Carozzi, T.D.; Bergman, J.; Baan, W. A.; Mohammadi, S. (Siawoosh); Eliasson, B.

    2008-01-01

    Electromagnetic waves with an azimuthal phase shift are known to have a well defined orbital angular momentum. Different methods that allow for the detection of the angular momentum are proposed. For some, we discuss the required experimental setup and explore the range of applicability.

  6. Responsive web design with AngularJS

    CERN Document Server

    Patel, Sandeep Kumar

    2014-01-01

    If you are an AngularJS developer who wants to learn about responsive web application development, this book is ideal for you. Responsive Web Design with AngularJS is intended for web developers or designers with a basic knowledge of HTML, CSS, and JavaScript.

  7. Angular momentum decomposition of Richardson's pairs

    International Nuclear Information System (INIS)

    The angular momentum decomposition of pairs obtained using Richardson's exact solution of the pairing Hamiltonian for the deformed 174Yb nucleus are displayed. The probabilities for low angular momenta of the collective pairs are strikingly different from the ones obtained in the BCS ground state

  8. Accelerator operations

    International Nuclear Information System (INIS)

    This section is concerned with the operation of both the tandem-linac system and the Dynamitron, two accelerators that are used for entirely different research. Developmental activities associated with the tandem and the Dynamitron are also treated here, but developmental activities associated with the superconducting linac are covered separately because this work is a program of technology development in its own right

  9. Advanced accelerators

    International Nuclear Information System (INIS)

    This report discusses the suitability of four novel particle acceleration technologies for multi-TeV particle physics machines: laser driven linear accelerators (linac), plasma beat-wave devices, plasma wakefield devices, and switched power and cavity wakefield linacs. The report begins with the derivation of beam parameters practical for multi-TeV devices. Electromagnetic field breakdown of materials is reviewed. The two-beam accelerator scheme for using a free electron laser as the driver is discussed. The options recommended and the conclusions reached reflect the importance of cost. We recommend that more effort be invested in achieving a self-consistent range of TeV accelerator design parameters. Beat-wave devices have promise for 1-100 GeV applications and, while not directly scalable to TeV designs, the current generation of ideas are encouraging for the TeV regime. In particular, surfatrons, finite-angle optical mixing devices, plasma grating accelerator, and the Raman forward cascade schemes all deserve more complete analysis. The exploitation of standard linac geometry operated in an unconventional mode is in a phase of rapid evolution. While conceptual projects abound, there are no complete designs. We recommend that a fraction of sponsored research be devoted to this approach. Wakefield devices offer a great deal of potential; trades among their benefits and constraints are derived and discussed herein. The study of field limitation processes has received inadequate attention; this limits experiment designers. The costs of future experiments are such that investment in understanding these processes is prudent. 34 refs., 12 figs., 3 tabs

  10. Does high harmonic generation conserve angular momentum?

    CERN Document Server

    Fleischer, Avner; Diskin, Tzvi; Sidorenko, Pavel; Cohen, Oren

    2013-01-01

    High harmonic generation (HHG) is a unique and useful process in which infrared or visible radiation is frequency up converted into the extreme ultraviolet and x ray spectral regions. As a parametric process, high harmonic generation should conserve the radiation energy, momentum and angular momentum. Indeed, conservation of energy and momentum have been demonstrated. Angular momentum of optical beams can be divided into two components: orbital and spin (polarization). Orbital angular momentum is assumed to be conserved and recently observed deviations were attributed to propagation effects. On the other hand, conservation of spin angular momentum has thus far never been studied, neither experimentally nor theoretically. Here, we present the first study on the role of spin angular momentum in extreme nonlinear optics by experimentally generating high harmonics of bi chromatic elliptically polarized pump beams that interact with isotropic media. While observing that the selection rules qualitatively correspond...

  11. Physical Angular Momentum Separation for QED

    CERN Document Server

    Sun, Weimin

    2016-01-01

    We study the non-uniqueness problem of the gauge-invariant angular momentum separation for the case of QED, which stems from the recent controversy concerning the proper definitions of the orbital angular momentum and spin operator of the individual parts of a gauge field system. For the free quantum electrodynamics without matter, we show that the basic requirement of Euclidean symmetry selects a unique physical angular momentum separation scheme from the multitude of the possible angular momentum separation schemes constructed using the various Gauge Invariant Extentions. Based on these results, we propose a set of natural angular momentum separation schemes for the case of interacting QED by invoking the formalism of asymptotic fields. Some perspectives on such a problem for the case of QCD are briefly discussed.

  12. Quark angular momentum in a spectator model

    International Nuclear Information System (INIS)

    We investigate the quark angular momentum in a model with the nucleon being a quark and a spectator. Both scalar and axial-vector spectators are included. We perform the calculations in the light-cone formalism where the parton concept is well defined. We calculate the quark helicity and canonical orbital angular momentum. Then we calculate the gravitational form factors which are often related to the kinetic angular momentums, and find that even in a no gauge field model we cannot identify the canonical angular momentums with half the sum of gravitational form factors. In addition, we examine the model relation between the orbital angular momentum and pretzelosity, and find it is violated in the axial-vector case

  13. Angular velocity spread of relativistic photoelectrons induced by excimer laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kawai, M.; Kawamura, Y.; Toyoda, K.

    1984-12-15

    The angular velocity spread of relativistic photoelectrons induced by a pulsed excimer laser was measured. The energy, the current density, and the pulse duration of the accelerated photoelectron were 0.34 MeV, 0.5 A/cm/sup 2/, and 20 ns, respectively. (The method of measurement is based on measuring Larmor radius which corresponds to the transverse component of the electron velocity.)= The angular velocity spread ..beta../sub perpendicular//..beta../sub parallel/ was found to be less than 8 x 10/sup -3/, which means that the energy component due to ..beta../sub perpendicular/ was as small as < or approx. =17 eV.

  14. Angular Distribution of the 12C(6He, 7Li)11B Reaction

    Institute of Scientific and Technical Information of China (English)

    LI Er-Tao; LI Zhi-Hong; LI Yun-Ju; YAN Sheng-Quan; BAI Xi-Xiang; GUO Bing; SU Jun; WANG You-Bao; WANG Bao-Xiang; LIAN Gang; ZENG Sheng; FANG Xiao; ZHAO Wei-Juan; LIU Wei-Ping

    2009-01-01

    Angular distribution of the 12C(6He, 7Li)11B transfer reaction is measured with a secondary 6He beam of 36.4 Me V for the first time. The experimental angular distribution is well reproduced by the distorted-wave Born approxima-tion (DWBA) calculation. The success of the present experiment shows that it is feasible to measure one-nucleon transfer reaction on a light nucleus target with the secondary beam facility of the HI-13 tandem accelerator at China Institute of Atomic Energy (CIAE), Beifing.

  15. KEKB accelerator

    International Nuclear Information System (INIS)

    KEKB, the B-Factory at High Energy Accelerator Research Organization (KEK) recently achieved the luminosity of 1 x 1034 cm-2s-1. This luminosity is two orders higher than the world's level at 1990 when the design of KEKB started. This unprecedented result was made possible by KEKB's innovative design and technology in three aspects - beam focusing optics, high current storage, and beam - beam interaction. Now KEKB is leading the luminosity frontier of the colliders in the world. (author)

  16. Accelerating networks

    International Nuclear Information System (INIS)

    Evolving out-of-equilibrium networks have been under intense scrutiny recently. In many real-world settings the number of links added per new node is not constant but depends on the time at which the node is introduced in the system. This simple idea gives rise to the concept of accelerating networks, for which we review an existing definition and-after finding it somewhat constrictive-offer a new definition. The new definition provided here views network acceleration as a time dependent property of a given system as opposed to being a property of the specific algorithm applied to grow the network. The definition also covers both unweighted and weighted networks. As time-stamped network data becomes increasingly available, the proposed measures may be easily applied to such empirical datasets. As a simple case study we apply the concepts to study the evolution of three different instances of Wikipedia, namely, those in English, German, and Japanese, and find that the networks undergo different acceleration regimes in their evolution

  17. Angular momentum conservation for dynamical black holes

    OpenAIRE

    Hayward, Sean A.

    2006-01-01

    Angular momentum can be defined by rearranging the Komar surface integral in terms of a twist form, encoding the twisting around of space-time due to a rotating mass, and an axial vector. If the axial vector is a coordinate vector and has vanishing transverse divergence, it can be uniquely specified under certain generic conditions. Along a trapping horizon, a conservation law expresses the rate of change of angular momentum of a general black hole in terms of angular momentum densities of ma...

  18. Quartz angular rate sensor for automotive navigation

    Energy Technology Data Exchange (ETDEWEB)

    Nozoe, Toshiyuki; Ichinose, Toshihiko; Kawasaki, Syusaku; Hatanaka, Masakazu; Kuroda, Keisuke [Matsushita Electronic Components Co. Ltd. (Japan); Yamamoto, Kohji; Ogata, Motoki; Takeno, Shoichi [Fukui Matsushita Electric Co. Ltd. (Japan); Ishihara, Minoru; Ishii, Tadashi; Umeki, Mitoshi [Nihonn Denpa Kogyo Co. Ltd. (Japan)

    1999-07-01

    Many of the recent automotive navigation systems are introducing an angular rate sensor that detect vehicle yaw in their system due to the advantage of higher accuracy, in addition to a conventional GPS (Global Positioning System) and vehicle speed signals. Though there are a couple of other methods to get a vehicle direction information, the angular rate sensor is the most suitable device as a gyro in accuracy and reliability point of view. Matsushita developed a new compact angular rate sensor using quartz crystal for automotive navigation systems. The sensor's operation is based upon Coriolis force imposed on a vibrating quartz tuning fork. (orig.)

  19. Angular velocity: a new dimension in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Diamond, R.M.; Stephens, F.S.

    1984-08-09

    Nuclei can be studied from their ground states (approx.O(h/2..pi..)) up to angular momenta of order 100 (h/2..pi..), where they are literally pulled apart by centrifugal effects. This range of angular momenta can be viewed as resulting from cranking the nucleus around a rotation axis, where the critical variable is the cranking velocity. The calculated response of nuclei to such an imposed angular velocity corresponds well with recent observations, and includes a rich and varied interplay of collective and single-particle phenomena.

  20. Accelerators and the Accelerator Community

    Energy Technology Data Exchange (ETDEWEB)

    Malamud, Ernest; Sessler, Andrew

    2008-06-01

    In this paper, standing back--looking from afar--and adopting a historical perspective, the field of accelerator science is examined. How it grew, what are the forces that made it what it is, where it is now, and what it is likely to be in the future are the subjects explored. Clearly, a great deal of personal opinion is invoked in this process.

  1. Diagnostics for studies of novel laser ion acceleration mechanisms

    International Nuclear Information System (INIS)

    Diagnostic for investigating and distinguishing different laser ion acceleration mechanisms has been developed and successfully tested. An ion separation wide angle spectrometer can simultaneously investigate three important aspects of the laser plasma interaction: (1) acquire angularly resolved energy spectra for two ion species, (2) obtain ion energy spectra for multiple species, separated according to their charge to mass ratio, along selected axes, and (3) collect laser radiation reflected from and transmitted through the target and propagating in the same direction as the ion beam. Thus, the presented diagnostic constitutes a highly adaptable tool for accurately studying novel acceleration mechanisms in terms of their angular energy distribution, conversion efficiency, and plasma density evolution

  2. Angular Momentum Acquisition in Galaxy Halos

    CERN Document Server

    Stewart, Kyle R; Bullock, James S; Maller, Ariyeh H; Diemand, Juerg; Wadsley, James; Moustakas, Leonidas A

    2013-01-01

    We use high-resolution cosmological hydrodynamic simulations to study the angular momentum acquisition of gaseous halos around Milky Way sized galaxies. We find that cold mode accreted gas enters a galaxy halo with ~70% more specific angular momentum than dark matter averaged over cosmic time (though with a very large dispersion). In fact, we find that all matter has a higher spin parameter when measured at accretion than when averaged over the entire halo lifetime, and is well characterized by \\lambda~0.1, at accretion. Combined with the fact that cold flow gas spends a relatively short time (1-2 dynamical times) in the halo before sinking to the center, this naturally explains why cold flow halo gas has a specific angular momentum much higher than that of the halo and often forms "cold flow disks". We demonstrate that the higher angular momentum of cold flow gas is related to the fact that it tends to be accreted along filaments.

  3. Gravitational waves carrying orbital angular momentum

    CERN Document Server

    Bialynicki-Birula, Iwo

    2015-01-01

    Spinorial formalism is used to map every electromagnetic wave into the gravitational wave (within the linearized gravity). In this way we can obtain the gravitational counterparts of Bessel, Laguerre-Gauss, and other light beams carrying orbital angular momentum.

  4. The physics of angular momentum radio

    CERN Document Server

    Thidé, B; Then, H; Someda, C G; Ravanelli, R A

    2014-01-01

    Wireless communications, radio astronomy and other radio science applications are mainly implemented with techniques built on top of the electromagnetic linear momentum (Poynting vector) physical layer. As a supplement and/or alternative to this conventional approach, techniques rooted in the electromagnetic angular momentum physical layer have been advocated, and promising results from proof-of-concept radio communication experiments using angular momentum were recently published. This sparingly exploited physical observable describes the rotational (spinning and orbiting) physical properties of the electromagnetic fields and the rotational dynamics of the pertinent charge and current densities. In order to facilitate the exploitation of angular momentum techniques in real-world implementations, we present a systematic, comprehensive theoretical review of the fundamental physical properties of electromagnetic angular momentum observable. Starting from an overview that puts it into its physical context among ...

  5. Gravitational waves carrying orbital angular momentum

    Science.gov (United States)

    Bialynicki-Birula, Iwo; Bialynicka-Birula, Zofia

    2016-02-01

    Spinorial formalism is used to map every electromagnetic wave into the gravitational wave (within the linearized gravity). In this way we can obtain the gravitational counterparts of Bessel, Laguerre-Gauss, and other light beams carrying orbital angular momentum.

  6. accelerating cavity

    CERN Multimedia

    On the inside of the cavitytThere is a layer of niobium. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment.

  7. Measurement of Coriolis Acceleration with a Smartphone

    Science.gov (United States)

    Shakur, Asif; Kraft, Jakob

    2016-05-01

    Undergraduate physics laboratories seldom have experiments that measure the Coriolis acceleration. This has traditionally been the case owing to the inherent complexities of making such measurements. Articles on the experimental determination of the Coriolis acceleration are few and far between in the physics literature. However, because modern smartphones come with a raft of built-in sensors, we have a unique opportunity to experimentally determine the Coriolis acceleration conveniently in a pedagogically enlightening environment at modest cost by using student-owned smartphones. Here we employ the gyroscope and accelerometer in a smartphone to verify the dependence of Coriolis acceleration on the angular velocity of a rotatingtrack and the speed of the sliding smartphone.

  8. Tailoring Accelerating Beams in Phase Space

    CERN Document Server

    Wen, Yuanhui; Zhang, Yanfeng; Chen, Hui; Yu, Siyuan

    2016-01-01

    An appropriate design of wavefront will enable light fields propagating along arbitrary trajectories thus forming accelerating beams in free space. Previous ways of designing such accelerating beams mainly rely on caustic methods, which start from diffraction integrals and only deal with two-dimensional fields. Here we introduce a new perspective to construct accelerating beams in phase space by designing the corresponding Wigner distribution function (WDF). We find such a WDF-based method is capable of providing both the initial field distribution and the angular spectrum in need by projecting the WDF into the real space and the Fourier space respectively. Moreover, this approach applies to the construction of both two- and three-dimensional fields, greatly generalizing previous caustic methods. It may therefore open up a new route to construct highly-tailored accelerating beams and facilitate applications ranging from particle manipulation and trapping to optical routing as well as material processing.

  9. Topological Orbital Angular Momentum Hall Current

    OpenAIRE

    Hu, Jiangping

    2005-01-01

    We show that there is a fundamental difference between spin Hall current and orbital angular momentum Hall current in Rashba- Dresselhaus spin orbit coupling systems. The orbital angular momentum Hall current has a pure topological contribution which is originated from the existence of magnetic flux in momentum space while there is no such topological nature for the spin Hall current. Moreover, we show that the orbital Hall conductance is always larger than the spin Hall conductance in the pr...

  10. ZKDR Distance, Angular Size and Phantom Cosmology

    OpenAIRE

    R.C. Santos; Lima, J. A. S.

    2006-01-01

    The influence of mass inhomogeneities on the angular size-redshift test is investigated for a large class of flat cosmological models driven by dark energy plus a cold dark matter component. The results are presented in two steps. First, the mass inhomogeneities are modeled by a generalized Zeldovich-Kantowski-Dyer-Roeder (ZKDR) distance which is characterized by a smoothness parameter $\\alpha(z)$ and a power index $\\gamma$, and, second, we provide a statistical analysis to angular size data ...

  11. Generalized Uncertainty Principle and Angular Momentum

    CERN Document Server

    Bosso, Pasquale

    2016-01-01

    Various models of quantum gravity suggest a modification of the Heisenberg's Uncertainty Principle, to the so-called Generalized Uncertainty Principle, between position and momentum. In this work we show how this modification influences the theory of angular momentum in Quantum Mechanics. In particular, we compute Planck scale corrections to angular momentum eigenvalues, the Hydrogen atom spectrum, the Stern-Gerlach experiment and the Clebsch-Gordan coefficients. We also examine effects of the Generalized Uncertainty Principle on multi-particle systems.

  12. Integrating rotation and angular velocity from curvature

    OpenAIRE

    Saje, Miran; Treven, Anita

    2016-01-01

    The problem of integrating the rotational vector from a given angular velocity vector is met in such diverse fields as the navigation, robotics, computer graphics, optical tracking and non-linear dynamics of flexible beams. For example, if the numerical formulation of non-linear dynamics of flexible beams is based on the interpolation of curvature, one needs to derive the rotation from the assumed curvature field. The relation between the angular velocity and the rotation is described by the ...

  13. Angular velocity nonlinear observer from vector measurements

    OpenAIRE

    Magnis, Lionel; Petit, Nicolas

    2015-01-01

    The paper proposes a technique to estimate the angular velocity of a rigid body from vector measurements. Compared to the approaches presented in the literature, it does not use attitude information nor rate gyros as inputs. Instead, vector measurements are directly filtered through a nonlinear observer estimating the angular velocity. Convergence is established using a detailed analysis of the linear-time varying dynamics appearing in the estimation error equation. This equation stems from t...

  14. Multipolar expansion of orbital angular momentum modes

    OpenAIRE

    Molina-Terriza, Gabriel

    2008-01-01

    In this letter a general method for expanding paraxial beams into multipolar electromagnetic fields is presented. This method is applied to the expansion of paraxial modes with orbital angular momentum (OAM), showing how the paraxial OAM is related to the general angular momentum of an electromagnetic wave. This method can be extended to quasi-paraxial beams, i.e. highly focused laser beams. Some applications to the control of electronic transitions in atoms are discussed.

  15. Orbital angular momentum in the nucleons

    OpenAIRE

    Lorcé, Cédric

    2014-01-01

    In the last decade, it has been realized that the orbital angular momentum of partons inside the nucleon plays a major role. It contributes significantly to nucleon properties and is at the origin of many asymmetries observed in spin physics. It is therefore of paramount importance to determine this quantity if we want to understand the nucleon internal structure and experimental observables. This triggered numerous discussions and controversies about the proper definition of orbital angular ...

  16. Orbital angular momentum of partially coherent beams

    OpenAIRE

    Serna Galán, Julio; Movilla Serrano, Jesús María

    2001-01-01

    The definition of the orbital angular momentum established for coherent beams is extended to partially coherent beams, expressed in terms of two elements of the beam matrix. This extension is justified by use of the Mercer expansion of partially coherent fields. General Gauss-Schell-model fields are considered, and the relation between the twist; parameter and the orbital angular momentum is analyzed. © 2001 Optical Society of America.

  17. Entanglement of Polarization and Orbital Angular Momentum

    OpenAIRE

    Bhatti, Daniel; von Zanthier, Joachim; Agarwal, Girish S.

    2015-01-01

    We investigate two-photon entangled states using two important degrees of freedom of the electromagnetic field, namely orbital angular momentum (OAM) and spin angular momentum. For photons propagating in the same direction we apply the idea of $\\textit{entanglement duality}$ and develop schemes to do $\\textit{entanglement sorting}$ based either on OAM or polarization. In each case the entanglement is tested using appropriate witnesses. We finally present generalizations of these ideas to thre...

  18. Radio beam vorticity and orbital angular momentum

    OpenAIRE

    Thidé, Bo; Tamburini, Fabrizio; Mari, Elettra; Romanato, Filippo; Barbieri, Cesare

    2011-01-01

    It has been known for a century that electromagnetic fields can transport not only energy and linear momentum but also angular momentum. However, it was not until twenty years ago, with the discovery in laser optics of experimental techniques for the generation, detection and manipulation of photons in well-defined, pure orbital angular momentum (OAM) states, that twisted light and its pertinent optical vorticity and phase singularities began to come into widespread use in science and technol...

  19. Pretzelosity TMD and Quark Orbital Angular Momentum

    OpenAIRE

    Lorce, Cédric; Pasquini, B.

    2015-01-01

    We study the connection between the quark orbital angular momentum and the pretzelosity transverse-momentum dependent parton distribution function. We discuss the origin of this relation in quark models, identifying as key ingredient for its validity the assumption of spherical symmetry for the nucleon in its rest frame. Finally we show that the individual quark contributions to the orbital angular momentum obtained from this relation can not be interpreted as the intrinsic contributions, but...

  20. Mastering AngularJD for .NET developers

    CERN Document Server

    Majid, Mohammad Wadood

    2015-01-01

    This book is envisioned for traditional developers and programmers who want to develop client-side applications using the AngularJS framework and ASP.NET Web API 2 with Visual Studio. .NET developers who have already built web applications or web services and who have a fundamental knowledge of HTML, JavaScript, and CSS and want to explore single-page applications will also find this guide useful. Basic knowledge of AngularJS would be helpful.

  1. Development of a High Accuracy Angular Measurement System for Langley Research Center Hypersonic Wind Tunnel Facilities

    Science.gov (United States)

    Newman, Brett; Yu, Si-bok; Rhew, Ray D. (Technical Monitor)

    2003-01-01

    Modern experimental and test activities demand innovative and adaptable procedures to maximize data content and quality while working within severely constrained budgetary and facility resource environments. This report describes development of a high accuracy angular measurement capability for NASA Langley Research Center hypersonic wind tunnel facilities to overcome these deficiencies. Specifically, utilization of micro-electro-mechanical sensors including accelerometers and gyros, coupled with software driven data acquisition hardware, integrated within a prototype measurement system, is considered. Development methodology addresses basic design requirements formulated from wind tunnel facility constraints and current operating procedures, as well as engineering and scientific test objectives. Description of the analytical framework governing relationships between time dependent multi-axis acceleration and angular rate sensor data and the desired three dimensional Eulerian angular state of the test model is given. Calibration procedures for identifying and estimating critical parameters in the sensor hardware is also addressed.

  2. Neutron angular distribution in plutonium-240 spontaneous fission

    Science.gov (United States)

    Marcath, Matthew J.; Shin, Tony H.; Clarke, Shaun D.; Peerani, Paolo; Pozzi, Sara A.

    2016-09-01

    Nuclear safeguards applications require accurate fission models that exhibit prompt neutron anisotropy. In the laboratory reference frame, an anisotropic neutron angular distribution is observed because prompt fission neutrons carry momentum from fully accelerated fission fragments. A liquid organic scintillation detector array was used with pulse shape discrimination techniques to produce neutron-neutron cross-correlation time distributions and angular distributions from spontaneous fission in a 252Cf, a 0.84 g 240Pueff metal, and a 1.63 g 240Pueff metal sample. The effect of cross-talk, estimated with MCNPX-PoliMi simulations, is removed from neutron-neutron coincidences as a function of the angle between detector pairs. Fewer coincidences were observed at detector angles near 90°, relative to higher and lower detector angles. As light output threshold increases, the observed anisotropy increases due to spectral effects arising from fission fragment momentum transfer to emitted neutrons. Stronger anisotropy was observed in Cf-252 spontaneous fission prompt neutrons than in Pu-240 neutrons.

  3. Depth dose and angular dose distribution experiments with high energy electron-photon radiation

    International Nuclear Information System (INIS)

    India's first synchrotron radiation source, Indus-1, is commissioned at the Centre for Advanced Technology (CAT), Indore. Radiation environment of this facility is quite different in comparison to that of nuclear or irradiator facilities and proton or heavy ion accelerator facilities. The primary particle accelerated being the electron, the radiation environment mainly comprises of Bremsstrahlung photons followed by photo-neutrons, whereas electron contamination too exists within the containment area. Due to the complex nature of the radiation viz. high energy, broad energy spectrum, pulsed, mixed field, sharp angular distribution etc. quantification of radiation dose becomes a difficult task. In this paper, experiments on depth dose and angular dose distribution done with 450 MeV electron-photon radiation are described

  4. Effect of equal channel angular pressing on aging treatment of Al-7075 alloy

    Institute of Scientific and Technical Information of China (English)

    M.H. Shaeri; M. Shaeri; M.T. Salehi; S.H. Seyyedein; M.R. Abutalebi

    2015-01-01

    The effect of aging treatment on microstructure and mechanical properties of equal channel angular pressed Al-7075 alloy was examined. Commercial Al-7075 alloy in the solid solution heat-treated condition was processed by equal channel angular pressing through route BC at both the room temperature and 120 1C. Only three passes of equal channel angular pressing was possible due to the low ductility of the alloy at both temperatures. Followed by equal channel angular pressing, the specimens have been aged at 120 1C for different aging times. Mechanical properties were measured by Vickers microhardness and tensile tests and microstructural observations were undertaken using transmission electron microscopy, X-ray diffractometer as well as optical microscopy. Microstructural investigations showed that ultrafine-grained materials with grain size in the range of 200–350 nm and 300–500 nm could be obtained after three passes of equal channel angular pressing at room temperature and 120 1C, respectively. Equal channel angular pressing of solid solution heat-treated Al-7075 alloy accelerates precipitation rate and subsequently leads to a significant decrease in aging time to attain maximum mechanical properties. Furthermore, it is possible to achieve maximum mechanical properties during equal channel angular pressing at 120 1C as a result of dynamic aging and formation of smallɳ´ phase.&2015 Chinese Materials Research Society. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

  5. Role of unsteady mechanisms in maintaining a nonuniform angular-velocity distribution through the depth of the solar convection zone

    Energy Technology Data Exchange (ETDEWEB)

    Zherbina, A.S.

    1977-01-01

    Unsteady rotation of a viscous convective layer with friction at its lower boundary is analyzed. Such friction is shown to be capable of maintaining a radial dependence of angular velocity for a long time. It is found, however, that this mechanism cannot be the cause of the sun's equatorial acceleration.

  6. Ultrafast angular momentum transfer in multisublattice ferrimagnets.

    Science.gov (United States)

    Bergeard, N; López-Flores, V; Halté, V; Hehn, M; Stamm, C; Pontius, N; Beaurepaire, E; Boeglin, C

    2014-03-11

    Femtosecond laser pulses can be used to induce ultrafast changes of the magnetization in magnetic materials. However, one of the unsolved questions is that of conservation of the total angular momentum during the ultrafast demagnetization. Here we report the ultrafast transfer of angular momentum during the first hundred femtoseconds in ferrimagnetic Co0.8Gd0.2 and Co0.74Tb0.26 films. Using time-resolved X-ray magnetic circular dichroism allowed for time-resolved determination of spin and orbital momenta for each element. We report an ultrafast quenching of the magnetocrystalline anisotropy and show that at early times the demagnetization in ferrimagnetic alloys is driven by the local transfer of angular momenta between the two exchange-coupled sublattices while the total angular momentum stays constant. In Co0.74Tb0.26 we have observed a transfer of the total angular momentum to an external bath, which is delayed by ~150 fs.

  7. An orbital angular momentum spectrometer for electrons

    Science.gov (United States)

    Harvey, Tyler; Grillo, Vincenzo; McMorran, Benjamin

    2016-05-01

    With the advent of techniques for preparation of free-electron and neutron orbital angular momentum (OAM) states, a basic follow-up question emerges: how do we measure the orbital angular momentum state distribution in matter waves? Control of both the energy and helicity of light has produced a range of spectroscopic applications, including molecular fingerprinting and magnetization mapping. Realization of an analogous dual energy-OAM spectroscopy with matter waves demands control of both initial and final energy and orbital angular momentum states: unlike for photons, final state post-selection is necessary for particles that cannot be annihilated. We propose a magnetic field-based mechanism for quantum non-demolition measurement of electron OAM. We show that OAM-dependent lensing is produced by an operator of form U =exp iLzρ2/ℏb2 where ρ =√{x2 +y2 } is the radial position operator, Lz is the orbital angular momentum operator along z, and b is the OAM dispersion length. We can physically realize this operator as a term in the time evolution of an electron in magnetic round lens. We discuss prospects and practical challenges for implementation of a lensing orbital angular momentum measurement. This work was supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), under the Early Career Research Program Award # DE-SC0010466.

  8. Dirac Green function for angular projection potentials

    Science.gov (United States)

    Zeller, Rudolf

    2015-11-01

    The aim of this paper is twofold: first, it is shown that the angular dependence of the Dirac Green function can be described analytically for potentials with non-local dependence on the angular variables if they are chosen as projection potentials in angular momentum space. Because the local dependence on the radial variable can be treated to any precision with present computing capabilities, this means that the Green function can be calculated practically exactly. Second, it is shown that a result of this kind not only holds for a single angular projection potential but also more generally, for instance if space is divided into non-overlapping cells and a separate angular projection potential is used in each cell. This opens the way for relativistic density-functional calculations within a different perspective than the conventional one. Instead of trying to obtain the density for a given potential approximately as well as possible, the density is determined exactly for non-local potentials which can approximate arbitrary local potentials as well as desired.

  9. Data-oriented development with AngularJS

    CERN Document Server

    Waikar, Manoj

    2015-01-01

    This book helps beginner-level AngularJS developers organize AngularJS applications by discussing important AngularJS concepts and best practices. If you are an experienced AngularJS developer but haven't written directives or haven't created custom HTML controls before, then this book is ideal for you.

  10. Physics from Angular Projection of Rectangular Grids

    CERN Document Server

    Singh, Ashmeet

    2015-01-01

    In this paper, we present a mathematical model for the angular projection of a rectangular arrangement of points in a grid. This simple, yet interesting problem, has both a scholarly value and applications for data extraction techniques to study the physics of various systems. Our work can interest undergraduate students to understand subtle points in the angular projection of a grid and describes various quantities of interest in the projection with completeness and sufficient rigour. We show that for certain angular ranges, the projection has non-distinctness, and calculate the details of such angles, and correspondingly, the number of distinct points and the total projected length. We focus on interesting trends obtained for the projected length of the grid elements and present a simple application of the model to determine the geometry of an unknown grid whose spatial extensions are known, using measurement of the grid projection at two angles only. Towards the end, our model is shown to have potential ap...

  11. Chirality and angular momentum in optical radiation

    CERN Document Server

    Coles, Matt M

    2012-01-01

    This paper develops, in precise quantum electrodynamic terms, photonic attributes of the "optical chirality density", one of several measures long known to be conserved quantities for a vacuum electromagnetic field. The analysis lends insights into some recent interpretations of chiroptical experiments, in which this measure, and an associated chirality flux, have been treated as representing physically distinctive "superchiral" phenomena. In the fully quantized formalism the chirality density is promoted to operator status, whose exploration with reference to an arbitrary polarization basis reveals relationships to optical angular momentum and helicity operators. Analyzing multi-mode beams with complex wave-front structures, notably Laguerre-Gaussian modes, affords a deeper understanding of the interplay between optical chirality and optical angular momentum. By developing theory with due cognizance of the photonic character of light, it emerges that only the spin angular momentum of light is engaged in such...

  12. Angular momentum transfer in incomplete fusion

    Indian Academy of Sciences (India)

    B S Tomar; K Surendra Babu; K Sudarshan; R Tripathi; A Goswami

    2005-02-01

    Isomeric cross-section ratios of evaporation residues formed in 12C+93Nb and 16O + 89Y reactions were measured by recoil catcher technique followed by off-line -ray spectrometry in the beam energy range of 55.7-77.5 MeV for 12C and 68-81 MeV for 16O. The isomeric cross-section ratios were resolved into that for complete and incomplete fusion reactions. The angular momentum of the intermediate nucleus formed in incomplete fusion was deduced from the isomeric cross-section ratio by considering the statistical de-excitation of the incompletely fused composite nucleus. The data show that incomplete fusion is associated with angular momenta slightly smaller than critical angular momentum for complete fusion, indicating the deeper interpenetration of projectile and target nuclei than that in peripheral collisions.

  13. Radio beam vorticity and orbital angular momentum

    CERN Document Server

    Thidé, Bo; Mari, Elettra; Romanato, Filippo; Barbieri, Cesare

    2011-01-01

    It has been known for a century that electromagnetic fields can transport not only energy and linear momentum but also angular momentum. However, it was not until twenty years ago, with the discovery in laser optics of experimental techniques for the generation, detection and manipulation of photons in well-defined, pure orbital angular momentum (OAM) states, that twisted light and its pertinent optical vorticity and phase singularities began to come into widespread use in science and technology. We have now shown experimentally how OAM and vorticity can be readily imparted onto radio beams. Our results extend those of earlier experiments on angular momentum and vorticity in radio in that we used a single antenna and reflector to directly generate twisted radio beams and verified that their topological properties agree with theoretical predictions. This opens the possibility to work with photon OAM at frequencies low enough to allow the use of antennas and digital signal processing, thus enabling software con...

  14. Surface angular momentum of light beams.

    Science.gov (United States)

    Ornigotti, Marco; Aiello, Andrea

    2014-03-24

    Traditionally, the angular momentum of light is calculated for "bullet-like" electromagnetic wave packets, although in actual optical experiments "pencil-like" beams of light are more commonly used. The fact that a wave packet is bounded transversely and longitudinally while a beam has, in principle, an infinite extent along the direction of propagation, renders incomplete the textbook calculation of the spin/orbital separation of the angular momentum of a light beam. In this work we demonstrate that a novel, extra surface part must be added in order to preserve the gauge invariance of the optical angular momentum per unit length. The impact of this extra term is quantified by means of two examples: a Laguerre-Gaussian and a Bessel beam, both circularly polarized.

  15. Quark orbital angular momentum from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Mathur, N.; Dong, S. J.; Liu, K. F.; Mankiewicz, L.; Mukhopadhyay, N. C.

    2000-12-01

    We calculate the quark orbital angular momentum of the nucleon from the quark energy-momentum tensor form factors on the lattice with the quenched approximation. The disconnected insertion is estimated stochastically which employs the Z{sub 2} noise with an unbiased subtraction. This reduced the error by a factor of 3--4 with negligible overhead. The total quark contribution to the proton spin is found to be 0.30{+-}0.07. From this and the quark spin content we deduce the quark orbital angular momentum to be 0.17{+-}0.06 which is {approx}34% of the proton spin. We further predict that the gluon angular momentum is 0.20{+-}0.07; i.e., {approx}40% of the proton spin is due to the glue.

  16. Quark orbital angular momentum from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Liu, K.F.

    2000-01-10

    The authors calculate the quark orbital angular momentum of the nucleon from the quark energy-momentum tensor form factors on the lattice. The disconnected insertion is estimated stochastically which employs the Z{sub 2} noise with an unbiased subtraction. This reduced the error by a factor of 4 with negligible overhead. The total quark contribution to the proton spin is found to be 0.30{+-}0.07. From this and the quark spin content the authors deduce the quark orbital angular momentum to be 0.17{+-}0.06 which is {approximately} 34% of the proton spin. The authors further predict that the gluon angular momentum to be 0.20{+-}0.07, i. e. {approximately} 40% of the proton spin is due to the glue.

  17. Ghost Imaging Using Orbital Angular Momentum

    Institute of Scientific and Technical Information of China (English)

    赵生妹; 丁建; 董小亮; 郑宝玉

    2011-01-01

    We present a novel encoding scheme in a ghost-imaging system using orbital angular momentum. In the signal arm, object spatial information is encoded as a phase matrix. For an N-grey-scale object, different phase matrices, varying from 0 to K with increment n/N, are used for different greyscales, and then they are modulated to a signal beam by a spatial light modulator. According to the conservation of the orbital angular momentum in the ghost imaging system, these changes will give different coincidence rates in measurement, and hence the object information can be extracted in the idler arm. By simulations and experiments, the results show that our scheme can improve the resolution of the image effectively. Compared with another encoding method using orbital angular momentum, our scheme has a better performance for both characters and the image object.%We present a novel encoding scheme in a ghost-imaging system using orbital angular momentum.In the signal arm,object spatial information is encoded as a phase matrix.For an N-grey-scale object,different phase matrices,varying from 0 to π with increment π/N,are used for different greyscales,and then they are modulated to a signal beam by a spatial light modulator.According to the conservation of the orbital angular momentum in the ghost imaging system,these changes will give different coincidence rates in measurement,and hence the object information can be extracted in the idler arm.By simulations and experiments,the results show that our scheme can improve the resolution of the image effectively.Compared with another encoding method using orbital angular momentum,our scheme has a better performance for both characters and the image object.

  18. Angular momentum and the electromagnetic top

    Indian Academy of Sciences (India)

    GIANFRANCO SPAVIERI; GEORGE T GILLIES

    2016-08-01

    The electric charge–magnetic dipole interaction is considered. If $\\Gamma_{\\rm em}$ is the electromagnetic and $\\Gamma_{\\rm mech}$ the mechanical angular momentum, the conservation law for the total angular momentum $\\Gamma_{\\rm tot}$ holds: $\\Gamma_{\\rm tot}$ =$\\Gamma_{\\rm em}$ + $\\Gamma_{\\rm mech}$ = ${\\rm const.}$, but when the dipole moment varies with time, $\\Gamma_{\\rm mech}$ is not conserved. We show that the non-conserved $\\Gamma_{\\rm mech}$ of such a macroscopic isolated system might be experimentally observable. With advanced technology, the strength of the interaction hints to the possibility of novel applications for gyroscopes, such as the electromagnetic top.

  19. Time-resolved orbital angular momentum spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Noyan, Mehmet A.; Kikkawa, James M. [Department of Physics and Astronomy, The University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States)

    2015-07-20

    We introduce pump-probe magneto-orbital spectroscopy, wherein Laguerre-Gauss optical pump pulses impart orbital angular momentum to the electronic states of a material and subsequent dynamics are studied with 100 fs time resolution. The excitation uses vortex modes that distribute angular momentum over a macroscopic area determined by the spot size, and the optical probe studies the chiral imbalance of vortex modes reflected off the sample. First observations in bulk GaAs yield transients that evolve on time scales distinctly different from population and spin relaxation, as expected, but with surprisingly large lifetimes.

  20. Time-resolved orbital angular momentum spectroscopy

    International Nuclear Information System (INIS)

    We introduce pump-probe magneto-orbital spectroscopy, wherein Laguerre-Gauss optical pump pulses impart orbital angular momentum to the electronic states of a material and subsequent dynamics are studied with 100 fs time resolution. The excitation uses vortex modes that distribute angular momentum over a macroscopic area determined by the spot size, and the optical probe studies the chiral imbalance of vortex modes reflected off the sample. First observations in bulk GaAs yield transients that evolve on time scales distinctly different from population and spin relaxation, as expected, but with surprisingly large lifetimes

  1. Wilson lines and orbital angular momentum

    International Nuclear Information System (INIS)

    We present an explicit realization of the Chen et al. approach to the proton spin decomposition in terms of Wilson lines, generalizing the light-front gauge-invariant extensions discussed recently by Hatta. Particular attention is drawn to the residual gauge freedom by further separating the pure-gauge term into contour and residual terms. We show that the kinetic orbital angular momentum operator can be expressed in terms of the Wigner operator only when the momentum variable is integrated over. Finally, we confirm from twist-2 arguments that the advanced, retarded and antisymmetric light-front canonical orbital angular momenta are the same

  2. Quark Orbital Angular Momentum from Lattice QCD

    OpenAIRE

    N. Mathur; Dong, S. J.; Liu, K. F.; Mankiewicz, L.; Mukhopadhyay, N. C.

    1999-01-01

    We calculate the quark orbital angular momentum of the nucleon from the quark energy-momentum tensor form factors on the lattice. The disconnected insertion is estimated stochastically which employs the $Z_2$ noise with an unbiased subtraction. This reduced the error by a factor of 4 with negligible overhead. The total quark contribution to the proton spin is found to be $0.30 \\pm 0.07$. From this and the quark spin content we deduce the quark orbital angular momentum to be $0.17 \\pm 0.06$ wh...

  3. Wilson lines and orbital angular momentum

    Energy Technology Data Exchange (ETDEWEB)

    Lorcé, Cédric, E-mail: cedric.lorce@googlemail.com [IPNO, Université Paris-Sud, CNRS/IN2P3, 91406 Orsay (France); LPT, Université Paris-Sud, CNRS, 91406 Orsay (France)

    2013-02-12

    We present an explicit realization of the Chen et al. approach to the proton spin decomposition in terms of Wilson lines, generalizing the light-front gauge-invariant extensions discussed recently by Hatta. Particular attention is drawn to the residual gauge freedom by further separating the pure-gauge term into contour and residual terms. We show that the kinetic orbital angular momentum operator can be expressed in terms of the Wigner operator only when the momentum variable is integrated over. Finally, we confirm from twist-2 arguments that the advanced, retarded and antisymmetric light-front canonical orbital angular momenta are the same.

  4. On the vector model of angular momentum

    Science.gov (United States)

    Saari, Peeter

    2016-09-01

    Instead of (or in addition to) the common vector diagram with cones, we propose to visualize the peculiarities of quantum mechanical angular momentum by a completely quantized 3D model. It spotlights the discrete eigenvalues and noncommutativity of components of angular momentum and corresponds to outcomes of measurements—real or computer-simulated. The latter can be easily realized by an interactive worksheet of a suitable program package of algebraic calculations. The proposed complementary method of visualization helps undergraduate students to better understand the counterintuitive properties of this quantum mechanical observable.

  5. Angular Spread of Solar Energetic Electrons: Multipoint Observations by STEREO, ACE and SOHO (Invited)

    Science.gov (United States)

    Gómez-Herrero, R.; Dresing, N.; Malandraki, O.; Klassen, A.; Wiedenbeck, M. E.; Cohen, C. M.; Mason, G. M.; Heber, B.; Wimmer-Schweingruber, R. F.; Müller-Mellin, R.; Kartavykh, Y.; Droege, W.

    2010-12-01

    Particles accelerated in Solar Energetic Particle (SEP) events sometimes exhibit large angular extents. The broadest angular spreads observed in large events are commonly interpreted in terms of extended acceleration in a shock source which intercepts interplanetary magnetic field lines often separated by more than 100 degrees in longitude. By way of contrast, during impulsive flare-associated events the small spatial scale of the source typically leads to modest angular spread of energetic particles. In absence of shocks, the longitudinal spread of the particles has been attributed to lateral transport in the interplanetary medium or in the corona (e.g. Wibberenz and Cane, 2006) or to quickly diverging open magnetic field lines above the source active region (e.g. Klein et al., 2008). Such kind of processes could also operate during large gradual events with a significant flare contribution. After an extended solar minimum a significant increase in the SEP activity starting late in 2009 has been observed. During this period, several events were detected simultaneously by the Solar Electron and Proton Telescope (SEPT) onboard the two STEREO spacecraft when their longitudinal separation was more than 120 degrees. We present a survey of multi-spacecraft observations of 55-425 keV electron events during the early phase of solar cycle 24. With the aim of understanding the physical processes responsible for the large angular spread of the particles, we link the multi-point in-situ observations at 1 AU to the associated solar phenomena. We discuss the importance of these phenomena with respect to the particle observations. Pure impulsive events are identified by the lack of shock signatures and enhanced 3He abundances. The good observational coverage provided by the two STEREO together with SOHO and ACE provides the opportunity to compare time profiles, onset times, anisotropies and spectra observed by different spacecraft, and to study their dependences with angular

  6. Delayless acceleration measurement method for motion control applications

    Energy Technology Data Exchange (ETDEWEB)

    Vaeliviita, S.; Ovaska, S.J. [Helsinki University of Technology, Otaniemi (Finland). Institute of Intelligent Power Electronics

    1997-12-31

    Delayless and accurate sensing of angular acceleration can improve the performance of motion control in motor drives. Acceleration control is, however, seldom implemented in practical drive systems due to prohibitively high costs or unsatisfactory results of most acceleration measurement methods. In this paper we propose an efficient and accurate acceleration measurement method based on direct differentiation of the corresponding velocity signal. Polynomial predictive filtering is used to smooth the resulting noisy signal without delay. This type of prediction is justified by noticing that a low-degree polynomial can usually be fitted into the primary acceleration curve. No additional hardware is required to implement the procedure if the velocity signal is already available. The performance of the acceleration measurement method is evaluated by applying it to a demanding motion control application. (orig.) 12 refs.

  7. Angular-momentum-bearing modes in fission

    International Nuclear Information System (INIS)

    The angular-momentum-bearing degrees of freedom involved in the fission process are identified and their influence on experimental observables is discussed. The excitation of these modes is treated in the ''thermal'' limit, and the resulting distributions of observables are calculated. Experiments demonstrating the role of these modes are presented and discussed. 61 refs., 12 figs

  8. Angular Momentum Transport in Accretion Disks

    DEFF Research Database (Denmark)

    E. Pessah, Martin; Chan, Chi-kwan; Psaltis, Dimitrios;

    2007-01-01

    if the resolution were set equal to the natural dissipation scale in astrophysical disks. We conclude that, in order for MRI-driven turbulent angular momentum transport to be able to account for the large value of the effective alpha viscosity inferred observationally, the disk must be threaded by a significant...

  9. On the quantisation of the angular momentum

    CERN Document Server

    Ho, V B

    1994-01-01

    When a hydrogen-like atom is treated as a two dimensional system whose configuration space is multiply connected, then in order to obtain the same energy spectrum as in the Bohr model the angular momentum must be half-integral.

  10. Probabilistic calculation for angular dependence collision

    International Nuclear Information System (INIS)

    This collision probabilistic method is broadly used in cylindrical geometry (in one- or two-dimensions). It constitutes a powerful tool for the heterogeneous Response Method where, the coupling current is of the cosine type, that is, without angular dependence at azimuthal angle θ and proportional to μ (cosine of the θ polar angle). (Author)

  11. Angular and linear momentum of excited ferromagnets

    NARCIS (Netherlands)

    Yan, P.; Kamra, A.; Cao, Y.; Bauer, G.E.W.

    2013-01-01

    The angular momentum vector of a Heisenberg ferromagnet with isotropic exchange interaction is conserved, while under uniaxial crystalline anisotropy the projection of the total spin along the easy axis is a constant of motion. Using Noether's theorem, we prove that these conservation laws persist i

  12. Critical gravitational collapse with angular momentum

    CERN Document Server

    Gundlach, Carsten

    2016-01-01

    We derive a theoretical model of mass and angular momentum scaling in type-II critical collapse with rotation. We focus on the case where the critical solution has precisely one, spherically symmetric, unstable mode. We demonstrate excellent agreement with numerical results for critical collapse of a rotating radiation fluid, which falls into this case.

  13. Optical angular momentum conversion in a nanoslit

    NARCIS (Netherlands)

    Chimento, P.F.; Alkemade, P.F.A.; T Hooft, G.W.; Eliel, E.R.

    2012-01-01

    We demonstrate partial conversion of circularly polarized light into orbital angular momentum-carrying vortex light with opposite-handed circular polarization. This conversion is accomplished in a novel manner using the birefringent properties of a circular subwavelength slit in a thin metal film. O

  14. Wigner Functions and Quark Orbital Angular Momentum

    Directory of Open Access Journals (Sweden)

    Mukherjee Asmita

    2015-01-01

    Full Text Available Wigner distributions contain combined position and momentum space information of the quark distributions and are related to both generalized parton distributions (GPDs and transverse momentum dependent parton distributions (TMDs. We report on a recent model calculation of the Wigner distributions for the quark and their relation to the orbital angular momentum.

  15. A new method for angular displacement measurement

    Institute of Scientific and Technical Information of China (English)

    Caini Zhang(张彩妮); Xiangzhao Wang(王向朝)

    2003-01-01

    We describe a new method for angular displacement measurements that is based on a Fabry-Perot inter-ferometer. A measurement accuracy of 10-s rad is obtained by use of the sinusoidal phase modulatinginterferometry. Another Fabry-Perot interferometer is used to obtain the key initial angle of incidence.

  16. Quantum Entanglement of High Angular Momenta

    International Nuclear Information System (INIS)

    Full text: Orbital angular momentum (OAM) of single photons represents a relatively novel optical degree of freedom for the entanglement of photons. One physical realization of OAM carrying light beams are the so called Laguerre-Gaussian modes which have the required helical phase structure. One big advantage over the well-known polarization degree of freedom is the possibility of realizing entanglement between two photons with very high quantum numbers and momenta respectively. However, the creation of photonic OAM entanglement by the widely used spontaneous parametric down conversion (SPDC) process is limited by the strongly reduced efficiency for higher momenta. We have realized a novel method to create entanglement between two photons which is not constrained by the SPDC efficiency or conservation law for the OAM degree of freedom. We created and measured the entanglement of two photons with up to 600ħ difference in their angular momentum by transferring the polarization entanglement to the orbital angular momentum degree of freedom within an interferometric scheme. Additionally, we used hybrid entangled biphoton states between polarization and OAM to show the angular resolution enhancement in possible remote sensing applications. (author)

  17. Wigner Functions and Quark Orbital Angular Momentum

    OpenAIRE

    Mukherjee Asmita; Nair Sreeraj; Ojha Vikash Kumar

    2014-01-01

    Wigner distributions contain combined position and momentum space information of the quark distributions and are related to both generalized parton distributions (GPDs) and transverse momentum dependent parton distributions (TMDs). We report on a recent model calculation of the Wigner distributions for the quark and their relation to the orbital angular momentum.

  18. Photon Orbital Angular Momentum in Astrophysics

    OpenAIRE

    Harwit, Martin

    2003-01-01

    Astronomical observations of the orbital angular momentum of photons, a property of electromagnetic radiation that has come to the fore in recent years, have apparently never been attempted. Here, I show that measurements of this property of photons have a number of astrophysical applications.

  19. Linear Accelerator (LINAC)

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Linear Accelerator A linear accelerator (LINAC) customizes high energy x-rays to ... ensured? What is this equipment used for? A linear accelerator (LINAC) is the device most commonly used ...

  20. Angular circulation speed of tablets in a vibratory tablet coating pan.

    Science.gov (United States)

    Kumar, Rahul; Wassgren, Carl

    2013-03-01

    In this work, a single tablet model and a discrete element method (DEM) computer simulation are developed to obtain the angular circulation speed of tablets in a vibratory tablet coating pan for range of vibration frequencies and amplitudes. The models identify three important dimensionless parameters that influence the speed of the tablets: the dimensionless amplitude ratio (a/R), the Froude number (aω2/g), and the tablet-wall friction coefficient, where a is the peak vibration amplitude at the drum center, ω is the vibration angular frequency, R is the drum radius, and g is the acceleration due to gravity. The models predict that the angular circulation speed of tablets increases with an increase in each of these parameters. The rate of increase in the angular circulation speed is observed to decrease for larger values of a/R. The angular circulation speed reaches an asymptote beyond a tablet-wall friction coefficient value of about 0.4. Furthermore, it is found that the Froude number should be greater than one for the tablets to start circulating. The angular circulation speed increases as Froude number increases but then does not change significantly at larger values of the Froude number. Period doubling, where the motion of the bed is repeated every two cycles, occurs at a Froude number larger than five. The single tablet model, although much simpler than the DEM model, is able to predict the maximum circulation speed (the limiting case for a large value of tablet-wall friction coefficient) as well as the transition to period doubling. PMID:23325382

  1. Kerr Naked Singularities as Particle Accelerators

    CERN Document Server

    Patil, Mandar

    2011-01-01

    We investigate here the particle acceleration by Kerr naked singularities. We consider a collision between particles dropped in from infinity at rest, which follow geodesic motion in the equatorial plane, with angular momentum of one of the particles in an appropriate finite range of values. The absence of an event horizon and the repulsive nature of angular momentum makes it possible for the initially infalling particle to turn back as an outgoing particle and then collide with another infalling particle. When these particles collide at a location close to what would have been the event horizon in the extremal Kerr blackhole case, the center of mass energy of collision turns out to be arbitrarily large depending on how close is the Kerr naked singularity to extremality. We briefly discuss the possible astrophysical consequences of this process and suggest that the fast rotating Kerr configurations could provide a good cosmic laboratory to probe ultra-high-energy physics.

  2. Angular-momentum-dominated electron beams and flat-beam generation

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yin-e

    2005-06-01

    In the absence of external forces, if the dynamics within an electron beam is dominated by its angular momentum rather than other effects such as random thermal motion or self Coulomb-repulsive force (i.e., space-charge force), the beam is said to be angular-momentum-dominated. Such a beam can be directly applied to the field of electron-cooling of heavy ions; or it can be manipulated into an electron beam with large transverse emittance ratio, i.e., a flat beam. A flat beam is of interest for high-energy electron-positron colliders or accelerator-based light sources. An angular-momentum-dominated beam is generated at the Fermilab/NICADD photoinjector Laboratory (FNPL) and is accelerated to an energy of 16 MeV. The properties of such a beam is investigated systematically in experiment. The experimental results are in very good agreement with analytical expectations and simulation results. This lays a good foundation for the transformation of an angular-momentum-dominated beam into a flat beam. The round-to-flat beam transformer is composed of three skew quadrupoles. Based on a good knowledge of the angular-momentum-dominated beam, the quadrupoles are set to the proper strengths in order to apply a total torque which removes the angular momentum, resulting in a flat beam. For bunch charge around 0.5 nC, an emittance ratio of 100 {+-} 5 was measured, with the smaller normalized root-mean-square emittance around 0.4 mm-mrad. Effects limiting the flat-beam emittance ratio are investigated, such as the chromatic effects in the round-to-flat beam transformer, asymmetry in the initial angular-momentum-dominated beam, and space-charge effects. The most important limiting factor turns out to be the uncorrelated emittance growth caused by space charge when the beam energy is low, for example, in the rf gun area. As a result of such emittance growth prior to the round-to-flat beam transformer, the emittance ratio achievable in simulation decreases from orders of thousands to

  3. Ultra-sensitive and super-resolving angular rotation measurement based on photon orbital angular momentum using parity measurement.

    Science.gov (United States)

    Zhang, Zijing; Qiao, Tianyuan; Ma, Kun; Cen, Longzhu; Zhang, Jiandong; Wang, Feng; Zhao, Yuan

    2016-08-15

    Photon orbital angular momentum has led to many novel insights and applications in quantum measurement. Photon orbital angular momentum can increase the resolution and sensitivity of angular rotation measurement. However, quantum measurement strategy can further surpass this limit and improve the resolution of angular rotation measurement. This Letter proposes and demonstrates a parity measurement method in angular rotation measurement scheme for the first time. Parity measurement can make the resolution superior to the limit of the existing method. The sensitivity can be improved with higher orbital angular momentum photons. Moreover, this Letter gives a detailed discussion of the change of resolution and sensitivity in the presence of photon loss.

  4. Ultra-sensitive and super-resolving angular rotation measurement based on photon orbital angular momentum using parity measurement.

    Science.gov (United States)

    Zhang, Zijing; Qiao, Tianyuan; Ma, Kun; Cen, Longzhu; Zhang, Jiandong; Wang, Feng; Zhao, Yuan

    2016-08-15

    Photon orbital angular momentum has led to many novel insights and applications in quantum measurement. Photon orbital angular momentum can increase the resolution and sensitivity of angular rotation measurement. However, quantum measurement strategy can further surpass this limit and improve the resolution of angular rotation measurement. This Letter proposes and demonstrates a parity measurement method in angular rotation measurement scheme for the first time. Parity measurement can make the resolution superior to the limit of the existing method. The sensitivity can be improved with higher orbital angular momentum photons. Moreover, this Letter gives a detailed discussion of the change of resolution and sensitivity in the presence of photon loss. PMID:27519107

  5. Effect of stride length on overarm throwing delivery: Part II: An angular momentum response.

    Science.gov (United States)

    Ramsey, Dan K; Crotin, Ryan L

    2016-04-01

    This is the second component of a two-part series investigating 3D momentum profiles specific to overhand throwing, where altering stride reportedly influences throwing mechanics resulting in significantly different physiologic outcomes and linear momentum profiles. Using a randomized cross-over design, nineteen pitchers (15 collegiate and 4 high school) were assigned to pitch two simulated 80-pitch games at ±25% of their desired stride length. An 8-camera motion capture system (240Hz) integrated with two force plates (960Hz) and radar gun tracked each overhand throw. Segmental angular momentums were summed yielding throwing arm and total body momentums, from which compensation ratio's (relative contribution between the two) were derived. Pairwise comparisons at hallmark events and phases identified significantly different angular momentum profiles, in particular total body, throwing arm, and momentum compensation ratios (P⩽0.05) as a result of manipulating stride length. Sagittal, frontal, and transverse angular momentums were affected by stride length changes. Transverse magnitudes showed greatest effects for total body, throwing arm, and momentum compensation ratios. Since the trunk is the main contributor to linear and angular momentum, longer strides appear to better regulate transverse trunk momentum in double support, whereas shorter strides show increased momentum prior to throwing arm acceleration.

  6. GEANT4 Simulations of Gamma-Ray Emission from Accelerated Particles in Solar Flares

    OpenAIRE

    Tang, Shichao; Smith, David M

    2010-01-01

    Gamma-ray spectroscopy provides diagnostics of particle acceleration in solar flares, but care must be taken when interpreting the spectra due to effects of the angular distribution of the accelerated particles (such as relativistic beaming) and Compton reprocessing of the radiation in the solar atmosphere. In this paper, we use the GEANT4 Monte Carlo package to simulate the interactions of accelerated electrons and protons and study these effects on the gamma-rays resulting from electron bre...

  7. Efficient separation of light's orbital angular momentum

    CERN Document Server

    Mirhosseini, Mohammad; Shi, Zhimin; Boyd, Robert W

    2013-01-01

    The orbital angular momentum (OAM) of light is an attractive degree of freedom for fundamentals studies in quantum mechanics. In addition, the discrete unbounded state-space provided by OAM has been used to enhance classical and quantum communications. The ability to unambiguously measure the OAM of single photons is a key part of all such experiments. However, state-of-the-art methods for sorting OAM modes are limited to a separation efficiency of about 80 percent. Here we demonstrate a method which uses a series of complex optical transformations to enable the measurement of light's OAM with a separation efficiency of more than 92 percent. Further, we demonstrate the separation of modes in the angular position basis, which is mutually unbiased with respect to the OAM basis. The high degree of certainty makes our approach particularly attractive for quantum key distribution systems employing spatial encoding.

  8. Mass and Angular Momentum in General Relativity

    CERN Document Server

    Jaramillo, J L

    2010-01-01

    We present an introduction to mass and angular momentum in General Relativity. After briefly reviewing energy-momentum for matter fields, first in the flat Minkowski case (Special Relativity) and then in curved spacetimes with or without symmetries, we focus on the discussion of energy-momentum for the gravitational field. We illustrate the difficulties rooted in the Equivalence Principle for defining a local energy-momentum density for the gravitational field. This leads to the understanding of gravitational energy-momentum and angular momentum as non-local observables that make sense, at best, for extended domains of spacetime. After introducing Komar quantities associated with spacetime symmetries, it is shown how total energy-momentum can be unambiguously defined for isolated systems, providing fundamental tests for the internal consistency of General Relativity as well as setting the conceptual basis for the understanding of energy loss by gravitational radiation. Finally, several attempts to formulate q...

  9. Phenomenological determination of the orbital angular momentum.

    Energy Technology Data Exchange (ETDEWEB)

    Ramsey, G. P.; High Energy Physics; Loyola Univ.

    2009-01-01

    Measurements involving the gluon spin, {Delta}G(x, t) and the corresponding asymmetry, A(x,t) = {Delta}G(x,t)/G(x,t) play an important role in quantitative understanding of proton structure. We have modeled the asymmetry perturbatively and calculated model corrections to obtain information about non-perturbative spin-orbit effects. These models are consistent with existing COMPASS and HERMES data on the gluon asymmetry. The J{sub z} = 1/2 sum rule is used to generate values of orbital angular momentum at LO and NLO. For models consistent with data, the orbital angular momentum is small. Our studies specify accuracy that future measurements should achieve to constrain theoretical models for nucleon structure.

  10. The Cosmology Large Angular Scale Surveyor

    Science.gov (United States)

    Marriage, Tobias; Ali, A.; Amiri, M.; Appel, J. W.; Araujo, D.; Bennett, C. L.; Boone, F.; Chan, M.; Cho, H.; Chuss, D. T.; Colazo, F.; Crowe, E.; Denis, K.; Dünner, R.; Eimer, J.; Essinger-Hileman, T.; Gothe, D.; Halpern, M.; Harrington, K.; Hilton, G.; Hinshaw, G. F.; Huang, C.; Irwin, K.; Jones, G.; Karakla, J.; Kogut, A. J.; Larson, D.; Limon, M.; Lowry, L.; Mehrle, N.; Miller, A. D.; Miller, N.; Moseley, S. H.; Novak, G.; Reintsema, C.; Rostem, K.; Stevenson, T.; Towner, D.; U-Yen, K.; Wagner, E.; Watts, D.; Wollack, E.; Xu, Z.; Zeng, L.

    2014-01-01

    Some of the most compelling inflation models predict a background of primordial gravitational waves (PGW) detectable by their imprint of a curl-like "B-mode" pattern in the polarization of the Cosmic Microwave Background (CMB). The Cosmology Large Angular Scale Surveyor (CLASS) is a novel array of telescopes to measure the B-mode signature of the PGW. By targeting the largest angular scales (>2°) with a multifrequency array, novel polarization modulation and detectors optimized for both control of systematics and sensitivity, CLASS sets itself apart in the field of CMB polarization surveys and opens an exciting new discovery space for the PGW and inflation. This poster presents an overview of the CLASS project.

  11. Clustering, Angular Size and Dark Energy

    OpenAIRE

    R.C. Santos; Lima, J. A. S.

    2008-01-01

    The influence of dark matter inhomogeneities on the angular size-redshift test is investigated for a large class of flat cosmological models driven by dark energy plus a cold dark matter component (XCDM model). The results are presented in two steps. First, the mass inhomogeneities are modeled by a generalized Zeldovich-Kantowski-Dyer-Roeder (ZKDR) distance which is characterized by a smoothness parameter $\\alpha(z)$ and a power index $\\gamma$, and, second, we provide a statistical analysis t...

  12. Time-dependent angularly averaged inverse transport

    OpenAIRE

    Bal, Guillaume; Jollivet, Alexandre

    2009-01-01

    This paper concerns the reconstruction of the absorption and scattering parameters in a time-dependent linear transport equation from knowledge of angularly averaged measurements performed at the boundary of a domain of interest. We show that the absorption coefficient and the spatial component of the scattering coefficient are uniquely determined by such measurements. We obtain stability results on the reconstruction of the absorption and scattering parameters with respect to the measured al...

  13. Angular Momentum in Loop Quantum Gravity

    OpenAIRE

    Bojowald, Martin

    2000-01-01

    An angular momentum operator in loop quantum gravity is defined using spherically symmetric states as a non-rotating reference system. It can be diagonalized simultaneously with the area operator and has the familiar spectrum. The operator indicates how the quantum geometry of non-rotating isolated horizons can be generalized to rotating ones and how the recent computations of black hole entropy can be extended to rotating black holes.

  14. Angular Momentum Sharing in Dissipative Collisions

    Science.gov (United States)

    Casini, G.; Poggi, G.; Bini, M.; Calamai, S.; Maurenzig, P. R.; Olmi, A.; Pasquali, G.; Stefanini, A. A.; Taccetti, N.; Steckmeyer, J. C.; Laforest, R.; Saint-Laurent, F.

    1999-09-01

    Light charged particles emitted by the projectilelike fragment were measured in the direct and reverse collision of 93Nb and 116Sn at 25A MeV. The experimental multiplicities of hydrogen and helium particles as a function of the primary mass of the emitting fragment show evidence for a correlation with net mass transfer. The ratio of hydrogen and helium multiplicities points to a dependence of the angular momentum sharing on the net mass transfer.

  15. Angular momentum sharing in dissipative collisions

    CERN Document Server

    Casini, G; Bini, M; Calamai, S; Maurenzig, P R; Olmi, A; Pasquali, G; Stefanini, A A; Taccetti, N; Steckmeyer, J C; Laforest, R; Saint-Laurent, F

    1999-01-01

    Light charged particles emitted by the projectile-like fragment were measured in the direct and reverse collision of $^{93}$Nb and $^{116}$Sn at 25 AMeV. The experimental multiplicities of Hydrogen and Helium particles as a function of the primary mass of the emitting fragment show evidence for a correlation with net mass transfer. The ratio of Hydrogen and Helium multiplicities points to a dependence of the angular momentum sharing on the net mass transfer.

  16. Angular resolution of stacked resistive plate chambers

    CERN Document Server

    Samuel, Deepak; Murgod, Lakshmi P

    2016-01-01

    We present here detailed derivations of mathematical expressions for the angular resolution of a set of stacked resistive plate chambers (RPCs). The expressions are validated against experimental results using data collected from the prototype detectors (without magnet) of the upcoming India-based Neutrino Observatory (INO). In principle, these expressions can be used for any other detector with an architecture similar to that of RPCs.

  17. Angular Momentum of Dark Matter Black Holes

    OpenAIRE

    Frampton, Paul H.

    2016-01-01

    The putative black holes which may constitute all the dark matter are described by a Kerr metric with only two parameters, mass M and angular momentum J. There has been little discussion of J since it plays no role in the upcoming attempt at detection by microlensing. Nevertheless J does play a central role in understanding the previous lack of detection, especially of CMB distortion. We explain why bounds previously derived from lack of CMB distortion are too strong for primordial black hole...

  18. Arbitrary orbital angular momentum of photons

    OpenAIRE

    Pan, Yue; Gao, Xu-Zhen; Ren, Zhi-Cheng; Wang, Xi-Lin; Tu, Chenghou; Li, Yongnan; Wang, Hui-Tian

    2015-01-01

    Orbital angular momentum (OAM) of photons, as a new fundamental degree of freedom, has excited a great diversity of interest, because of a variety of emerging applications. Arbitrarily tunable OAM has gained much attention, but its creation remains still a tremendous challenge. We demonstrate the realization of well-controlled arbitrary OAM in both theory and experiment. We present the concept of general OAM, which extends the OAM carried by the scalar vortex field to the OAM carried by the a...

  19. Quark Orbital Angular Momentum in the Baryon

    OpenAIRE

    Song, Xiaotong

    2000-01-01

    Analytical and numerical results, for the orbital and spin content carried by different quark flavors in the baryons, are given in the chiral quark model with symmetry breaking. The reduction of the quark spin, due to the spin dilution in the chiral splitting processes, is transferred into the orbital motion of quarks and antiquarks. The orbital angular momentum for each quark flavor in the proton as a function of the partition factor $\\kappa$ and the chiral splitting probability $a$ is shown...

  20. Wilson lines and orbital angular momentum

    OpenAIRE

    Lorce, Cédric

    2013-01-01

    We present an explicit realization of the Chen et al. approach to the proton spin decomposition in terms of Wilson lines, generalizing the light-front gauge-invariant extensions discussed recently by Hatta. Particular attention is drawn to the residual gauge freedom by further separating the pure-gauge term into contour and residual terms. We show that the kinetic orbital angular momentum operator can be expressed in terms of the Wigner operator only when the momentum variable is integrated o...

  1. Orbital angular momentum photonic quantum interface

    OpenAIRE

    Zhou, Zhi-Yuan; Li, Yan; Ding, Dong-Sheng; Zhang, Wei; Shi, Shuai; Shi, Bao-Sen; Guo, Guang-Can

    2014-01-01

    Light carrying orbital angular momentum (OAM) has great potential in enhancing the information channel capacity in both classical and quantum optical communications. Long distance optical communication requires the wavelengths of light are situated in the low-loss communication windows, but most quantum memories currently being developed for use in a quantum repeater work at different wavelengths, so a quantum interface to bridge the wavelength gap is necessary. So far, such an interface for ...

  2. Orbital angular momentum-entanglement frequency transducer

    OpenAIRE

    Zhou, Zhi-Yuan; Liu, Shi-Long; Li, Yan; Ding, Dong-Sheng; Zhang, Wei; Shi, Shuai; Dong, Ming-xin; Shi, Bao-Sen; Guo, Guang-Can

    2016-01-01

    Entanglement is a vital resource for realizing many tasks such as teleportation, secure key distribution, metrology and quantum computations. To effectively build entanglement between different quantum systems and share information between them, a frequency transducer to convert between quantum states of different wavelengths while retaining its quantum features is indispensable. Information encoded in the photons orbital angular momentum OAM degrees of freedom is preferred in harnessing the ...

  3. Wigner distributions and quark orbital angular momentum

    OpenAIRE

    Cedric LorceOrsay, IPN and Orsay, LPT; Barbara Pasquini(Pavia U. and INFN, Pavia)

    2015-01-01

    We discuss the quark phase-space or Wigner distributions of the nucleon which combine in a single picture all the information contained in the generalized parton distributions and the transverse-momentum dependent parton distributions. In particular, we present results for the distribution of unpolarized quarks in a longitudinally polarized nucleon obtained in a light-front constituent quark model. We show how the quark orbital angular momentum can be extracted from the Wigner distributions a...

  4. Orbital angular momentum entanglement in turbulence

    OpenAIRE

    Ibrahim, Alpha Hamadou; Roux, Filippus S.; McLaren, Melanie; Konrad, Thomas; Forbes, Andrew

    2013-01-01

    The turbulence induced decay of orbital angular momentum (OAM) entanglement between two photons is investigated numerically and experimentally. To compare our results with previous work, we simulate the turbulent atmosphere with a single phase screen based on the Kolmogorov theory of turbulence. We consider two different scenarios: in the first only one of the two photons propagates through turbulence, and in the second both photons propagate through uncorrelated turbulence. Comparing the ent...

  5. Four-photon orbital angular momentum entanglement

    OpenAIRE

    Hiesmayr, B. C.; De Dood, M.J.A.; Löffler, W.

    2015-01-01

    Quantum entanglement shared between more than two particles is essential to foundational questions in quantum mechanics, and upcoming quantum information technologies. So far, up to 14 two-dimensional qubits have been entangled, and an open question remains if one can also demonstrate entanglement of higher-dimensional discrete properties of more than two particles. A promising route is the use of the photon orbital angular momentum (OAM), which enables implementation of novel quantum informa...

  6. Coherent Control of Photoelectron Wavepacket Angular Interferograms

    OpenAIRE

    Hockett, Paul; Wollenhaupt, Matthias; Baumert, Thomas,

    2015-01-01

    Coherent control over photoelectron wavepackets, via the use of polarization-shaped laser pulses, can be understood as a time and polarization-multiplexed process. In this work, we investigate this multiplexing via computation of the observable photoelectron angular interferograms resulting from multi-photon atomic ionization with polarization-shaped laser pulses. We consider the polarization sensitivity of both the instantaneous and cumulative continuum wavefunction; the nature of the cohere...

  7. Angular Diameter Distances in Clumpy Friedmann Universes

    OpenAIRE

    Tomita, Kenji

    1998-01-01

    Solving null-geodesic equations, behavior of angular diameter distances is studied in inhomogeneous cosmological models, which are given by performing N-body simulations with the CDM spectrum. The distances depend on the separation angle of ray pairs, the mass and the radius of particles cosisting of galaxies and dark matter balls, and cosmological model parameters. The calculated distances are compared with the Dyer- Roeder distance, and after many ray-shooting, the average, dispersion and d...

  8. Angular quadratures for improved transport computations

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Shumays, I.K.

    1999-07-22

    This paper introduces new octant-range, composite-type Gauss and mid-point rule angular quadrature formulas for neutron and photon transport computations. A generalization to octant-range quadratures is also introduced in order to allow for discontinuities at material interfaces for two- and three-dimensional transport problems which can be modeled with 60-degree triangular or hexagonal mesh subdivisions in the x-y plane.

  9. Localization of angular momentum in optical waves propagating through turbulence.

    Science.gov (United States)

    Sanchez, Darryl J; Oesch, Denis W

    2011-12-01

    This is the first in a series of papers demonstrating that photons with orbital angular momentum can be created in optical waves propagating through distributed turbulence. The scope of this first paper is much narrower. Here, we demonstrate that atmospheric turbulence can impart non-trivial angular momentum to beams and that this non-trivial angular momentum is highly localized. Furthermore, creation of this angular momentum is a normal part of propagation through atmospheric turbulence.

  10. Angular momentum of a brane-world model

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this paper we discuss the properties of the general covariant angular momentum of a fivedimensional brane-world model. Through calculating the total angular momentum of this model, we are able to analyze the properties of the total angular momentum in the inflationary RS model. We show that the space-like components of the total angular momentum of the inflationary RS model are all zero while the others are non-zero, which agrees with the results from ordinary RS model.

  11. Study of the Angular Distribution of Scintillation Photons

    CERN Document Server

    Fornaro, Giulia Alice; Ghezzi, Alessio; Knapitsch, Arno; Modrzynski, Pawel; Pizzichemi, Marco; Lecoq, Paul; Auffray, Etiennette

    2014-01-01

    This paper presents a characterization method to experimentally determine the angular distribution of scintillation light. By exciting LYSO crystals with a radioactive source, we measured the light angular profiles obtained with samples of different geometries in different conditions of wrapping. We also measured the angular distribution of light emitting in glue and compared it with the one emitting in air. Angular distribution of light output of photonic crystals is also provided. Consistency of the measurements is verified with conventional light output measurements.

  12. Contactless Measurement of Angular Velocity using Circularly Polarized Antennas

    OpenAIRE

    Sipal, Vit; Narbudowicz, Adam; Ammann, Max

    2014-01-01

    An innovative method to measure the angular velocity using circularly polarized antennas is proposed. Due to the properties of circular polarization, the angular velocity is frequency modulated (FM) on a wireless carrier. This enables a low-cost precise continuous measurement of angular velocity using a standard FM demodulator. The hardware can be easily adapted for both high and low angular velocity values. The precise alignment angle between the antennas can be determined if the initial ant...

  13. Quark Orbital-Angular-Momentum Distribution in the Nucleon

    OpenAIRE

    Hoodbhoy, Pervez; Ji, Xiangdong; Lu, Wei

    1998-01-01

    We introduce gauge-invariant quark and gluon angular momentum distributions after making a generalization of the angular momentum density operators. From the quark angular momentum distribution, we define the gauge-invariant and leading-twist quark {\\it orbital} angular momentum distribution $L_q(x)$. The latter can be extracted from data on the polarized and unpolarized quark distributions and the off-forward distribution $E(x)$ in the forward limit. We comment upon the evolution equations o...

  14. Angular Momentum of a Brane-world Model

    CERN Document Server

    Jia, Bei; Zhang, Peng-Ming

    2008-01-01

    In this paper we discuss the properties of the general covariant angular momentum of a five-dimensional brane-world model. Through calculating the total angular momentum of this model, we are able to analyze the properties of the total angular momentum in the inflationary RS model. We show that the space-like components of the total angular momentum of are all zero while the others are non-zero, which agrees with the results from ordinary RS model.

  15. A neural circuit for angular velocity computation

    Directory of Open Access Journals (Sweden)

    Samuel B Snider

    2010-12-01

    Full Text Available In one of the most remarkable feats of motor control in the animal world, some Diptera, such as the housefly, can accurately execute corrective flight maneuvers in tens of milliseconds. These reflexive movements are achieved by the halteres, gyroscopic force sensors, in conjunction with rapidly-tunable wing-steering muscles. Specifically, the mechanosensory campaniform sensilla located at the base of the halteres transduce and transform rotation-induced gyroscopic forces into information about the angular velocity of the fly's body. But how exactly does the fly's neural architecture generate the angular velocity from the lateral strain forces on the left and right halteres? To explore potential algorithms, we built a neuro-mechanical model of the rotation detection circuit. We propose a neurobiologically plausible method by which the fly could accurately separate and measure the three-dimensional components of an imposed angular velocity. Our model assumes a single sign-inverting synapse and formally resembles some models of directional selectivity by the retina. Using multidimensional error analysis, we demonstrate the robustness of our model under a variety of input conditions. Our analysis reveals the maximum information available to the fly given its physical architecture and the mathematics governing the rotation-induced forces at the haltere's end knob.

  16. The Cosmology Large Angular Scale Surveyor (CLASS)

    Science.gov (United States)

    Harrington, Kathleen; Marriange, Tobias; Aamir, Ali; Appel, John W.; Bennett, Charles L.; Boone, Fletcher; Brewer, Michael; Chan, Manwei; Chuss, David T.; Colazo, Felipe; Denis, Kevin; Moseley, Samuel H.; Rostem, Karwan; Wollack, Edward

    2016-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) is a four telescope array designed to characterize relic primordial gravitational waves from in ation and the optical depth to reionization through a measurement of the polarized cosmic microwave background (CMB) on the largest angular scales. The frequencies of the four CLASS telescopes, one at 38 GHz, two at 93 GHz, and one dichroic system at 145/217 GHz, are chosen to avoid spectral regions of high atmospheric emission and span the minimum of the polarized Galactic foregrounds: synchrotron emission at lower frequencies and dust emission at higher frequencies. Low-noise transition edge sensor detectors and a rapid front-end polarization modulator provide a unique combination of high sensitivity, stability, and control of systematics. The CLASS site, at 5200 m in the Chilean Atacama desert, allows for daily mapping of up to 70% of the sky and enables the characterization of CMB polarization at the largest angular scales. Using this combination of a broad frequency range, large sky coverage, control over systematics, and high sensitivity, CLASS will observe the reionization and recombination peaks of the CMB E- and B-mode power spectra. CLASS will make a cosmic variance limited measurement of the optical depth to reionization and will measure or place upper limits on the tensor-to-scalar ratio, r, down to a level of 0.01 (95% C.L.).

  17. The Cosmology Large Angular Scale Surveyor

    CERN Document Server

    Harrington, Kathleen; Ali, Aamir; Appel, John W; Bennett, Charles L; Boone, Fletcher; Brewer, Michael; Chan, Manwei; Chuss, David T; Colazo, Felipe; Dahal, Sumit; Denis, Kevin; Dünner, Rolando; Eimer, Joseph; Essinger-Hileman, Thomas; Fluxa, Pedro; Halpern, Mark; Hilton, Gene; Hinshaw, Gary F; Hubmayr, Johannes; Iuliano, Jeffery; Karakla, John; McMahon, Jeff; Miller, Nathan T; Moseley, Samuel H; Palma, Gonzalo; Parker, Lucas; Petroff, Matthew; Pradenas, Bastián; Rostem, Karwan; Sagliocca, Marco; Valle, Deniz; Watts, Duncan; Wollack, Edward; Xu, Zhilei; Zeng, Lingzhen

    2016-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) is a four telescope array designed to characterize relic primordial gravitational waves from inflation and the optical depth to reionization through a measurement of the polarized cosmic microwave background (CMB) on the largest angular scales. The frequencies of the four CLASS telescopes, one at 38 GHz, two at 93 GHz, and one dichroic system at 145/217 GHz, are chosen to avoid spectral regions of high atmospheric emission and span the minimum of the polarized Galactic foregrounds: synchrotron emission at lower frequencies and dust emission at higher frequencies. Low-noise transition edge sensor detectors and a rapid front-end polarization modulator provide a unique combination of high sensitivity, stability, and control of systematics. The CLASS site, at 5200 m in the Chilean Atacama desert, allows for daily mapping of up to 70\\% of the sky and enables the characterization of CMB polarization at the largest angular scales. Using this combination of a broad f...

  18. A neural circuit for angular velocity computation.

    Science.gov (United States)

    Snider, Samuel B; Yuste, Rafael; Packer, Adam M

    2010-01-01

    In one of the most remarkable feats of motor control in the animal world, some Diptera, such as the housefly, can accurately execute corrective flight maneuvers in tens of milliseconds. These reflexive movements are achieved by the halteres, gyroscopic force sensors, in conjunction with rapidly tunable wing steering muscles. Specifically, the mechanosensory campaniform sensilla located at the base of the halteres transduce and transform rotation-induced gyroscopic forces into information about the angular velocity of the fly's body. But how exactly does the fly's neural architecture generate the angular velocity from the lateral strain forces on the left and right halteres? To explore potential algorithms, we built a neuromechanical model of the rotation detection circuit. We propose a neurobiologically plausible method by which the fly could accurately separate and measure the three-dimensional components of an imposed angular velocity. Our model assumes a single sign-inverting synapse and formally resembles some models of directional selectivity by the retina. Using multidimensional error analysis, we demonstrate the robustness of our model under a variety of input conditions. Our analysis reveals the maximum information available to the fly given its physical architecture and the mathematics governing the rotation-induced forces at the haltere's end knob. PMID:21228902

  19. Neutron angular distribution in a plasma focus obtained using nuclear track detectors.

    Science.gov (United States)

    Castillo-Mejía, F; Herrera, J J E; Rangel, J; Golzarri, J I; Espinosa, G

    2002-01-01

    The dense plasma focus (DPF) is a coaxial plasma gun in which a high-density, high-temperature plasma is obtained in a focused column for a few nanoseconds. When the filling gas is deuterium, neutrons can be obtained from fusion reactions. These are partially due to a beam of deuterons which are accelerated against the background hot plasma by large electric fields originating from plasma instabilities. Due to a beam-target effect, the angular distribution of the neutron emission is anisotropic, peaked in the forward direction along the axis of the gun. The purpose of this work is to illustrate the use of CR-39 nuclear track detectors as a diagnostic tool in the determination of the time-integrated neutron angular distribution. For the case studied in this work, neutron emission is found to have a 70% contribution from isotropic radiation and a 30% contribution from anisotropic radiation.

  20. Feasibility study on an angular velocity-based damage detection method using gyroscopes

    International Nuclear Information System (INIS)

    This paper proposes an angular velocity-based damage detection method using gyroscopes and investigates its feasibility. This study basically intends to enhance the performance of the existing modal flexibility-based methods by replacing accelerations measured from accelerometers with angular velocities measured from gyroscopes. In order to verify the superiority of a gyroscope in damage detection, numerical studies were performed by changing optional parameters such as damage location, severity, and measurement noise. From parametric studies, it was shown that the damage detection results using gyroscopes are more sensitive to damage and more robust to noise generated from the curvature estimation than those using accelerometers. Experimental validations were also carried out to investigate the feasibility of a gyroscope in damage detection. From the results, it was shown that the gyroscope-based damage detection method can successfully identify damage location. In conclusion, it was numerically and experimentally verified that a new damage detection approach using gyroscopes could improve damage detection ability significantly. (paper)

  1. Primordial Rotation of the Universe and Angular Momentum of a wide range of Celestial Objects

    CERN Document Server

    Sivaram, C

    2011-01-01

    The origin of rotation or spin of objects, from stars to galaxies, is still an unanswered question. Even though there are models which try to explain this, none of them can account for the initial impulse that gave rise to this spin. In this paper we present that a cosmological model that contains a term involving the primordial spin of the universe can explain how these objects acquired the property of spin. This model also gives a natural explanation for the quadratic scaling of angular momentum with mass. Again, from this model, the background torsion due to a universal spin density not only give rise to angular momenta for all structures but also provide a background 'centrifugal term' acting as a repulsive gravity accelerating the universe, with spin density acting as effective cosmological constant.

  2. Neutron angular distribution in a plasma focus obtained using nuclear track detectors.

    Science.gov (United States)

    Castillo-Mejía, F; Herrera, J J E; Rangel, J; Golzarri, J I; Espinosa, G

    2002-01-01

    The dense plasma focus (DPF) is a coaxial plasma gun in which a high-density, high-temperature plasma is obtained in a focused column for a few nanoseconds. When the filling gas is deuterium, neutrons can be obtained from fusion reactions. These are partially due to a beam of deuterons which are accelerated against the background hot plasma by large electric fields originating from plasma instabilities. Due to a beam-target effect, the angular distribution of the neutron emission is anisotropic, peaked in the forward direction along the axis of the gun. The purpose of this work is to illustrate the use of CR-39 nuclear track detectors as a diagnostic tool in the determination of the time-integrated neutron angular distribution. For the case studied in this work, neutron emission is found to have a 70% contribution from isotropic radiation and a 30% contribution from anisotropic radiation. PMID:12382811

  3. Feasibility study on an angular velocity-based damage detection method using gyroscopes

    Science.gov (United States)

    Sung, S. H.; Lee, J. H.; Park, J. W.; Koo, K. Y.; Jung, H. J.

    2014-07-01

    This paper proposes an angular velocity-based damage detection method using gyroscopes and investigates its feasibility. This study basically intends to enhance the performance of the existing modal flexibility-based methods by replacing accelerations measured from accelerometers with angular velocities measured from gyroscopes. In order to verify the superiority of a gyroscope in damage detection, numerical studies were performed by changing optional parameters such as damage location, severity, and measurement noise. From parametric studies, it was shown that the damage detection results using gyroscopes are more sensitive to damage and more robust to noise generated from the curvature estimation than those using accelerometers. Experimental validations were also carried out to investigate the feasibility of a gyroscope in damage detection. From the results, it was shown that the gyroscope-based damage detection method can successfully identify damage location. In conclusion, it was numerically and experimentally verified that a new damage detection approach using gyroscopes could improve damage detection ability significantly.

  4. Application of Novel Rotation Angular Model for 3D Mouse System Based on MEMS Accelerometers

    Institute of Scientific and Technical Information of China (English)

    QIAN Li; CHEN Wen-yuan; XU Guo-ping

    2009-01-01

    A new scheme is proposed to model 3D angular motion of a revolving regular object with miniature, low-cost micro electro mechanical systems (MEMS) accelerometers (instead of gyroscope), which is employed in 3D mouse system. To sense 3D angular motion, the static property of MEMS accelerometer, sensitive to gravity acceleration, is exploited. With the three outputs of configured accelerometers, the proposed model is implemented to get the rotary motion of the rigid object. In order to validate the effectiveness of the proposed model, an input device is developed with the configuration of the scheme. Experimental results show that a simulated 3D cube can accurately track the rotation of the input device. The result indicates the feasibility and effectiveness of the proposed model in the 3D mouse system.

  5. Measurement of six degrees of freedom head kinematics in impact conditions employing six accelerometers and three angular rate sensors (6aω configuration).

    Science.gov (United States)

    Kang, Yun-Seok; Moorhouse, Kevin; Bolte, John H

    2011-11-01

    The ability to measure six degrees of freedom (6 DOF) head kinematics in motor vehicle crash conditions is important for assessing head-neck loads as well as brain injuries. A method for obtaining accurate 6 DOF head kinematics in short duration impact conditions is proposed and validated in this study. The proposed methodology utilizes six accelerometers and three angular rate sensors (6aω configuration) such that an algebraic equation is used to determine angular acceleration with respect to the body-fixed coordinate system, and angular velocity is measured directly rather than numerically integrating the angular acceleration. Head impact tests to validate the method were conducted using the internal nine accelerometer head of the Hybrid III dummy and the proposed 6aω scheme in both low (2.3 m/s) and high (4.0 m/s) speed impact conditions. The 6aω method was compared with a nine accelerometer array sensor package (NAP) as well as a configuration of three accelerometers and three angular rate sensors (3aω), both of which have been commonly used to measure 6 DOF kinematics of the head for assessment of brain and neck injuries. The ability of each of the three methods (6aω, 3aω, and NAP) to accurately measure 6 DOF head kinematics was quantified by calculating the normalized root mean squared deviation (NRMSD), which provides an average percent error over time. Results from the head impact tests indicate that the proposed 6aω scheme is capable of producing angular accelerations and linear accelerations transformed to a remote location that are comparable to that determined from the NAP scheme in both low and high speed impact conditions. The 3aω scheme was found to be unable to provide accurate angular accelerations or linear accelerations transformed to a remote location in the high speed head impact condition due to the required numerical differentiation. Both the 6aω and 3aω schemes were capable of measuring accurate angular displacement while the

  6. A critique of the angular momentum sum rules and a new angular momentum sum rule

    CERN Document Server

    Bakker, B L G; Trueman, T L

    2004-01-01

    We show that the expressions in the literature for the tensorial structure of the hadronic matrix elements of the angular momentum operators J are incorrect. Given this disagreement with the published results, we have taken pains to derive the correct expressions in three different ways, two involving explicit physical wave packets and the third, totally independent, based upon the rotational properties of the state vectors. Surprisingly it turns out that the results are very sensitive to the type of relativistic spin state used to describe the motion of the particle i.e. whether a canonical (i.e. boost) state or a helicity state is utilized. We present results for the matrix elements of the angular momentum operators, valid in an arbitrary Lorentz frame, both for helicity states and canonical states. These results are relevant for the construction of angular momentum sum rules, relating the angular momentum of a nucleon to the spin and orbital angular momentum of its constituents. Moreover, we show that it i...

  7. Angular Dispersion and Deflection Function for Heavy Ion Elastic Scattering

    Institute of Scientific and Technical Information of China (English)

    BAI Zhen; MAO Rui-Shi; YUAN Xiao-Hua; Xu Zhi-Guo; ZHANG Hong-Bin; XU Hua-Gen; QI Hui-Rong; WANG Yue; JIA Fei; WU Li-Jie; DING Xian-Li; WANG Qi; GAO Qi; GAO Hui; LI Song-Lin; LI Jun-Qing; ZHANG Ya-Peng; XIAO Guo-Qing; JIN Gen-Ming; REN Zhong-Zhou; ZHOU Shan-Gui; XU Wang; HAN Jian-Long; Fan Gong-Tao; ZHANG Shuang-Quan; PANG Dan-Yang; SERGEY Yu-Kun; XIAO Zhi-Gang; XU Hu-Shan; SUN Zhi-Yu; HU Zheng-Guo; ZHANG Xue-Ying; WANG Hong-Wei

    2007-01-01

    The differential cross sections for elastic scattering products of17 F on 208 Pb have been measured.The angular dispersion plots of In(dσ/dθ)versus θ2 are obtained from the angular distribution of the elastic scattering differential cross sections.Systematical analysis on the angular dispersion for the available experimental data indicates that there is an angular dispersion turning angle at forward angular range within the grazing angle.This turning angle can be clarified as nuclear rainbow in classical deflection function.The exotic behaviour of the nuclear rainbow angle offers a new probe to investigate the halo and skin phenomena.

  8. Analysis of orbital angular momentum of a misaligned optical beam

    Energy Technology Data Exchange (ETDEWEB)

    Vasnetsov, M V [Optics Group, Department of Physics and Astronomy, University of Glasgow, Glasgow (United Kingdom); Pas' ko, V A [Institute of Physics, National Academy of Sciences of Ukraine, Prospect Nauki 46, Kiev 03028 (Ukraine); Soskin, M S [Institute of Physics, National Academy of Sciences of Ukraine, Prospect Nauki 46, Kiev 03028 (Ukraine)

    2005-02-01

    We report an analysis of the orbital angular momentum of an optical beam misaligned with respect to a reference axis. Both laterally displaced and angularly deflected Laguerre-Gaussian beams are represented in terms of the superposition of azimuthal harmonics with well-defined orbital angular momentum. Simultaneous parallel displacement and angular tilt cause the coupling between azimuthal harmonics and therefore change the projection of the orbital angular momentum on the reference axis. Rotation of beams around the reference axis was simulated by attributing corresponding rotational frequency shifts to the components.

  9. The Angular Distribution Of Electron-positron Pairs From Exclusive Charmonium Decays In Antiproton-proton Annihilations

    CERN Document Server

    McTaggart, R J

    1998-01-01

    The angular distributions of the charmonium resonances J/ Y (3097) and Y (3686) in their exclusive decay to an electron-positron pair are studied. Experiment 835 at the Fermi National Accelerator Laboratory produced charmonium resonances by annihilating protons with antiprotons in the Fixed Target Mode of the Antiproton Accumulator: A stochastically cooled antiproton beam collides with a hydrogen gas jet, which forms clusters under the right pressure and low temperature. The charmonium decay products are detected out of a large hadronic background with the help of a segmented lead glass sampling calorimeter, which is sensitive to the high mass electron-positron charmonium decay, and a set of Cerenkov threshold detectors that provide good electron/pion separation. Several factors influence the angular distribution parameter l taken from the angular distribution, including the energy scale of the resonance, the coupling strength of the charmonium atom, and how quarks and gluons interact in the dissolution...

  10. Whole-body angular momentum during stair ascent and descent.

    Science.gov (United States)

    Silverman, Anne K; Neptune, Richard R; Sinitski, Emily H; Wilken, Jason M

    2014-04-01

    The generation of whole-body angular momentum is essential in many locomotor tasks and must be regulated in order to maintain dynamic balance. However, angular momentum has not been investigated during stair walking, which is an activity that presents a biomechanical challenge for balance-impaired populations. We investigated three-dimensional whole-body angular momentum during stair ascent and descent and compared it to level walking. Three-dimensional body-segment kinematic and ground reaction force (GRF) data were collected from 30 healthy subjects. Angular momentum was calculated using a 13-segment whole-body model. GRFs, external moment arms and net joint moments were used to interpret the angular momentum results. The range of frontal plane angular momentum was greater for stair ascent relative to level walking. In the transverse and sagittal planes, the range of angular momentum was smaller in stair ascent and descent relative to level walking. Significant differences were also found in the ground reaction forces, external moment arms and net joint moments. The sagittal plane angular momentum results suggest that individuals alter angular momentum to effectively counteract potential trips during stair ascent, and reduce the range of angular momentum to avoid falling forward during stair descent. Further, significant differences in joint moments suggest potential neuromuscular mechanisms that account for the differences in angular momentum between walking conditions. These results provide a baseline for comparison to impaired populations that have difficulty maintaining dynamic balance, particularly during stair ascent and descent.

  11. ANGULAR MOMENTUM AND GALAXY FORMATION REVISITED

    Energy Technology Data Exchange (ETDEWEB)

    Romanowsky, Aaron J. [University of California Observatories, 1156 High Street, Santa Cruz, CA 95064 (United States); Fall, S. Michael [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2012-12-15

    Motivated by a new wave of kinematical tracers in the outer regions of early-type galaxies (ellipticals and lenticulars), we re-examine the role of angular momentum in galaxies of all types. We present new methods for quantifying the specific angular momentum j, focusing mainly on the more challenging case of early-type galaxies, in order to derive firm empirical relations between stellar j{sub *} and mass M{sub *} (thus extending earlier work by Fall). We carry out detailed analyses of eight galaxies with kinematical data extending as far out as 10 effective radii, and find that data at two effective radii are generally sufficient to estimate total j{sub *} reliably. Our results contravene suggestions that ellipticals could harbor large reservoirs of hidden j{sub *} in their outer regions owing to angular momentum transport in major mergers. We then carry out a comprehensive analysis of extended kinematic data from the literature for a sample of {approx}100 nearby bright galaxies of all types, placing them on a diagram of j{sub *} versus M{sub *}. The ellipticals and spirals form two parallel j{sub *}-M{sub *} tracks, with log-slopes of {approx}0.6, which for the spirals are closely related to the Tully-Fisher relation, but for the ellipticals derives from a remarkable conspiracy between masses, sizes, and rotation velocities. The ellipticals contain less angular momentum on average than spirals of equal mass, with the quantitative disparity depending on the adopted K-band stellar mass-to-light ratios of the galaxies: it is a factor of {approx}3-4 if mass-to-light ratio variations are neglected for simplicity, and {approx}7 if they are included. We decompose the spirals into disks and bulges and find that these subcomponents follow j{sub *}-M{sub *} trends similar to the overall ones for spirals and ellipticals. The lenticulars have an intermediate trend, and we propose that the morphological types of galaxies reflect disk and bulge subcomponents that follow

  12. 2014 CERN Accelerator Schools: Plasma Wake Acceleration

    CERN Multimedia

    2014-01-01

    A specialised school on Plasma Wake Acceleration will be held at CERN, Switzerland from 23-29 November, 2014.   This course will be of interest to staff and students in accelerator laboratories, university departments and companies working in or having an interest in the field of new acceleration techniques. Following introductory lectures on plasma and laser physics, the course will cover the different components of a plasma wake accelerator and plasma beam systems. An overview of the experimental studies, diagnostic tools and state of the art wake acceleration facilities, both present and planned, will complement the theoretical part. Topical seminars and a visit of CERN will complete the programme. Further information can be found at: http://cas.web.cern.ch/cas/PlasmaWake2014/CERN-advert.html http://indico.cern.ch/event/285444/

  13. The direction of acceleration

    Science.gov (United States)

    Wilhelm, Thomas; Burde, Jan-Philipp; Lück, Stephan

    2015-11-01

    Acceleration is a physical quantity that is difficult to understand and hence its complexity is often erroneously simplified. Many students think of acceleration as equivalent to velocity, a ˜ v. For others, acceleration is a scalar quantity, which describes the change in speed Δ|v| or Δ|v|/Δt (as opposed to the change in velocity). The main difficulty with the concept of acceleration therefore lies in developing a correct understanding of its direction. The free iOS app AccelVisu supports students in acquiring a correct conception of acceleration by showing acceleration arrows directly at moving objects.

  14. Effects of Filtering the Angular Motion of the Crankshaft on the Estimation of the Instantaneous Engine Friction Torque

    Science.gov (United States)

    NEHME, H. K.; CHALHOUB, N. G.; HENEIN, N. A.

    2000-10-01

    The focus of this study is to investigate the effects of filtering the actual angular displacement, velocity and acceleration of the crankshaft on the computation of the instantaneous engine friction torque. These effects are isolated from those of measurement errors and/or noise by relying on a detailed model of the crank-slider mechanism to generate the rigid and flexible motions of the piston/connecting-rod/crankshaft mechanism along with the engine friction torque. The (P-ω) method is used herein to estimate the instantaneous engine friction torque based on the actual and the filtered angular displacement, velocity and acceleration of the crankshaft. The digital simulation results have demonstrated that the (P-ω) method cannot produce an acceptable estimation of the instantaneous engine friction torque in spite of filtering the actual angular motion of the crankshaft. It should be mentioned that the low-pass filter is commonly implemented to attenuate the measurement noise and the effects of structural deformations on the measured angular velocity of the crankshaft. However, the ineffectiveness of the low-pass filter stems from the non-linearities of the crank-slider mechanism that induced superharmonic and combination resonance frequencies in the angular displacement, velocity and acceleration of the crankshaft. The filter has severely attenuated some of the superharmonic resonance frequencies, which constitute an important part of the rigid-body behavior of the crankshaft that is needed by the (P-ω) method to accurately predict the engine friction torque. Moreover, the filtered signals would still be contaminated by the combination resonance frequencies that may appear in the low-frequency range commonly assumed to be dominated by the frequency components of the rigid-body motion of the crankshaft.

  15. Angular Momentum Sensitive Two-Center Interference

    Science.gov (United States)

    Ilchen, M.; Glaser, L.; Scholz, F.; Walter, P.; Deinert, S.; Rothkirch, A.; Seltmann, J.; Viefhaus, J.; Decleva, P.; Langer, B.; Knie, A.; Ehresmann, A.; Al-Dossary, O. M.; Braune, M.; Hartmann, G.; Meissner, A.; Tribedi, L. C.; AlKhaldi, M.; Becker, U.

    2014-01-01

    In quantum mechanics the Young-type double-slit experiment can be performed with electrons either traveling through a double slit or being coherently emitted from two inversion symmetric molecular sites. In the latter one the valence photoionization cross sections of homonuclear diatomic molecules were predicted to oscillate over kinetic energy almost 50 years ago. Beyond the direct proof of the oscillatory behavior of these photoionization cross sections σ, we show that the angular distribution of the emitted electrons reveals hitherto unexplored information on the relative phase shift between the corresponding partial waves through two-center interference patterns.

  16. Statistical analysis of angular correlation measurements

    International Nuclear Information System (INIS)

    Obtaining the multipole mixing ratio, δ, of γ transitions in angular correlation measurements is a statistical problem characterized by the small number of angles in which the observation is made and by the limited statistic of counting, α. The inexistence of a sufficient statistics for the estimator of δ, is shown. Three different estimators for δ were constructed and their properties of consistency, bias and efficiency were tested. Tests were also performed in experimental results obtained in γ-γ directional correlation measurements. (Author)

  17. Linear Upconversion of Orbit Angular Momentum

    CERN Document Server

    Ding, Dong-Sheng; Shi, Bao-Sen; Zou, Xu-Bo; Guo, Guang-Can

    2012-01-01

    We experimentally demonstrate that an infrared light imprinted the orbit angular momentum is linearly converted into a visible light using Four-wave mixing (FWM) via a Ladder-type configuration in Rb85 atoms. Simultaneously, we theoretically simulate this linear conversion process, and theoretical analysis is in reasonable agreement with the experimental result. A large single-photon detuning is used to reduce the absorption of the atoms to the up-converted light and to avoid the pattern formation in FWM process. The multi-mode image linear conversion is important for applications in image communications, astrophysics and quantum information so on.

  18. Time-dependent angularly averaged inverse transport

    International Nuclear Information System (INIS)

    This paper concerns the reconstruction of the absorption and scattering parameters in a time-dependent linear transport equation from knowledge of angularly averaged measurements performed at the boundary of a domain of interest. Such measurement settings find applications in medical and geophysical imaging. We show that the absorption coefficient and the spatial component of the scattering coefficient are uniquely determined by such measurements. We obtain stability results on the reconstruction of the absorption and scattering parameters with respect to the measured albedo operator. The stability results are obtained by a precise decomposition of the measurements into components with different singular behavior in the time domain

  19. Time-dependent angularly averaged inverse transport

    CERN Document Server

    Bal, Guillaume

    2009-01-01

    This paper concerns the reconstruction of the absorption and scattering parameters in a time-dependent linear transport equation from knowledge of angularly averaged measurements performed at the boundary of a domain of interest. We show that the absorption coefficient and the spatial component of the scattering coefficient are uniquely determined by such measurements. We obtain stability results on the reconstruction of the absorption and scattering parameters with respect to the measured albedo operator. The stability results are obtained by a precise decomposition of the measurements into components with different singular behavior in the time domain.

  20. Angular Momentum of Dark Matter Black Holes

    CERN Document Server

    Frampton, Paul H

    2016-01-01

    The putative black holes which may constitute all the dark matter are described by a Kerr metric with only two parameters, mass M and angular momentum J. There has been little discussion of J since it plays no role in the upcoming attempt at detection by microlensing. Nevertheless J does play a central role in understanding the previous lack of detection, especially of CMB distortion. We explain why bounds previously derived from lack of CMB distortion are too strong for primordial black holes with J non-vanishing. Almost none of the dark matter black holes can be from stellar collapse, and nearly all are primordial, to avoid excessive CMB distortion.

  1. Angular momentum evolution of galaxies in EAGLE

    CERN Document Server

    Lagos, Claudia del P; Stevens, Adam R H; Cortese, Luca; Padilla, Nelson D; Davis, Timothy A; Contreras, Sergio; Croton, Darren

    2016-01-01

    We use EAGLE to study the specific angular momentum of galaxies, j, at z1.2, and then increase as lstars~a. Galaxy mergers reduce lstars by a factor of 2-3. These tracks are driven by both the evolution of the total jstars but also its radial distribution. Regardless of the aperture used to measure j, two distinct channels leading to low jstars in galaxies at z=0 are identified: (i) galaxy mergers, and (ii) early formation of most of the stars.

  2. Angular correlation studies in noble gases

    Science.gov (United States)

    Coleman, P. G.

    1990-01-01

    There has been a recent revival of interest in the measurement of angular correlation of annihilation photons from the decay of positrons and positronium in gases. This revival has been stimulated by the possibility offered by the technique to shed new light on the apparently low positronium formation fraction in the heavier noble gases and to provide information on positronium quenching processes in gases such as oxygen. There is also the potential for learning about positronium slowing down in gases. This review focuses on experimental noble gas work and considers what new information has been, and may be, gained from these studies.

  3. Angular Distributions of Discrete Mesoscale Mapping Functions

    Directory of Open Access Journals (Sweden)

    Kroszczyński Krzysztof

    2015-08-01

    Full Text Available The paper presents the results of analyses of numerical experiments concerning GPS signal propagation delays in the atmosphere and the discrete mapping functions defined on their basis. The delays were determined using data from the mesoscale non-hydrostatic weather model operated in the Centre of Applied Geomatics, Military University of Technology. A special attention was paid to investigating angular characteristics of GPS slant delays for low angles of elevation. The investigation proved that the temporal and spatial variability of the slant delays depends to a large extent on current weather conditions

  4. All-fiber sensor of angular velocity

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, A.TS.; Vlasenko, O.A.; Dianov, E.M.; Diankov, G.L.; Zafirova, B.S.

    1989-06-01

    The paper reports the construction of an all-fiber optical sensor of angular velocity whose operation is based on the Sagnac effect in a fiber ring interferometer. An all-fiber system does not require the use of external discrete optical elements; division, polarization, and modulation functions are performed by the fiber waveguide itself. The fiber elements and sensor are constructed on the basis of slightly anisotropic fiber waveguides. The sensitivity of the device was 0.0077 deg/sq rt hr, while the zero drift was 0.5 deg/hr. 6 refs.

  5. The Cosmology Large Angular Scale Surveyor (CLASS)

    Science.gov (United States)

    Eimer, Joseph; Ali, A.; Amiri, M.; Appel, J. W.; Araujo, D.; Bennett, C. L.; Boone, F.; Chan, M.; Cho, H.; Chuss, D. T.; Colazo, F.; Crowe, E.; Denis, K.; Dünner, R.; Essinger-Hileman, T.; Gothe, D.; Halpern, M.; Harrington, K.; Hilton, G.; Hinshaw, G. F.; Huang, C.; Irwin, K.; Jones, G.; Karakla, J.; Kogut, A. J.; Larson, D.; Limon, M.; Lowry, L.; Marriage, T.; Mehrle, N.; Miller, A. D.; Miller, N.; Moseley, S. H.; Novak, G.; Reintsema, C.; Rostem, K.; Stevenson, T.; Towner, D.; U-Yen, K.; Wagner, E.; Watts, D.; Wollack, E.; Xu, Z.; Zeng, L.

    2014-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) is an array of telescopes designed to search for the signature of inflation in the polarization of the Cosmic Microwave Background (CMB). By combining the strategy of targeting large scales (>2 deg) with novel front-end polarization modulation and novel detectors at multiple frequencies, CLASS will pioneer a new frontier in ground-based CMB polarization surveys. In this talk, I give an overview of the CLASS instrument, survey, and outlook on setting important new limits on the energy scale of inflation.

  6. Angular Momentum Transfer in Catastrophic Asteroid Impacts

    Science.gov (United States)

    Love, S. G.; Ahrens, T. J.

    1996-09-01

    Incomplete knowledge of angular momentum transfer in asteroid impacts has hampered efforts to deduce asteroid collisional histories from their rotation rates. This problem traditionally has been investigated using impact experiments on cm-scale, strength-dominated targets. Recent evidence, however, indicates that impacts on asteroids of km size and larger may be controlled by gravity rather than strength, and that the analogy to laboratory impacts may not hold. Accordingly, we have modelled catastrophic impacts on gravitating asteroids to better understand angular momentum transfer in such events. We employ a 3--D, strengthless, gravitating SPH computer code. Target bodies are 10 to 1000 km in diameter and do not initially rotate. Impact speeds are 3--7 km/s; impact angles are 15--75(deg) . Each target is composed of 1791 mass elements: spatial resolution is coarse but acceptable for large scale energy transfer. We simulate the hydrodynamic phase of each impact, after which particle motions are ballistic and treated analytically. Escaping particles have kinetic energy greater than the gravitational energy binding them to the rest of the system; the others reaccrete to form a ``rubble pile'' which is assumed spherical. The rubble pile's size, mass, and angular momentum define its rotation rate. Spin rates for ejected fragments cannot be determined. The target's final spin period depends on the impact angle and the fraction of target mass ejected, but not on impact speed or target size in the ranges tested. The lack of size dependence cannot explain the observed excess of slowly rotating asteroids of ~ 100 km diameter. The fraction of projectile angular momentum retained by the target varies dramatically with impact speed and angle and with target size and fraction of mass removed, complicating its use in models where collision geometry varies. The final spin period of an asteroid losing 50% of its mass is 6--10 hours, comparable to the asteroidal mean of 8 hours

  7. Angular Diameter Distances in Clumpy Friedmann Universes

    CERN Document Server

    Tomita, K

    1998-01-01

    Solving null-geodesic equations, behavior of angular diameter distances is studied in inhomogeneous cosmological models, which are given by performing N-body simulations with the CDM spectrum. The distances depend on the separation angle of ray pairs, the mass and the radius of particles cosisting of galaxies and dark matter balls, and cosmological model parameters. The calculated distances are compared with the Dyer- Roeder distance, and after many ray-shooting, the average, dispersion and distribution of the clumpiness parameter are derived.

  8. Biased retro-proportional navigation law for interception of high-speed targets with angular constraint

    Institute of Scientific and Technical Information of China (English)

    Liang YAN; Ji-guang ZHAO; Huai-rong SHEN; Yuan LI

    2014-01-01

    A new guidance law, called biased retro proportional navigation (BRPN), is proposed. The guidance law is designed to intercept high-speed targets with angular constraint, which can be used for ballistic target interception. BRPN guidance law is defined, and the exact time-varying bias for a required impact angle is derived. Furthermore, the simulation results (trajectory, variation of navigation ratio, capture region, etc) are compared with those of biased proportional navigation (BPN), proportional navigation and retro-proportional navigation. The results show that, at the cost of a higher intercept time, BRPN demands lower terminal lateral acceleration and has larger capture region compared to BPN.

  9. Measurement of neutron yield and angular distribution for thick natLi(p,n+x) reaction

    International Nuclear Information System (INIS)

    The low energy accelerators have been used to produce intense neutron flux for various applications employing lower threshold reactions involving light targets. Among those p+7Li, 9Be, 13C, D+D,T are the popular ones. In the present work the total neutron yield has been measured for thick Lithium target up to 5.5 proton energy using BF3 counter. Angular distribution of the neutrons at 4.5 and 5.5 MeV also measured to investigate the feasibility of a neutron time of flight facility at FOTIA

  10. San Francisco Accelerator Conference

    International Nuclear Information System (INIS)

    'Where are today's challenges in accelerator physics?' was the theme of the open session at the San Francisco meeting, the largest ever gathering of accelerator physicists and engineers

  11. Improved plasma accelerator

    Science.gov (United States)

    Cheng, D. Y.

    1971-01-01

    Converging, coaxial accelerator electrode configuration operates in vacuum as plasma gun. Plasma forms by periodic injections of high pressure gas that is ionized by electrical discharges. Deflagration mode of discharge provides acceleration, and converging contours of plasma gun provide focusing.

  12. Standing wave linear accelerator

    International Nuclear Information System (INIS)

    Consideration is being given to standing wave linear accelerator containing generator, phase shifter, two accelerating resonator sections, charged particle injector and waveguide bridge. Its first arm is oined up with generator via the phase shifter, the second and the third ones-with accelerating sections and the fourth one - with HF-power absorber. HF-power absorber represents a section of circular diaphragmatic wavequide with transformer with input wave and intrawaveguide output load located between injector and the first accelerating section. The section possesses holes in side walls lying on accelerator axis. The distances between centers of the last cell of the fast accelerating section and the first cell of the second accelerating sectiOn equal (2n+3)lambda/4, where n=1, 2, 3..., lambda - wave length of generator. The suggested system enables to improve by one order spectral characteristics of accelerators as compared to the prototype in which magnetrons are used as generator

  13. Accelerator Technology Division

    Science.gov (United States)

    1992-04-01

    In fiscal year (FY) 1991, the Accelerator Technology (AT) division continued fulfilling its mission to pursue accelerator science and technology and to develop new accelerator concepts for application to research, defense, energy, industry, and other areas of national interest. This report discusses the following programs: The Ground Test Accelerator Program; APLE Free-Electron Laser Program; Accelerator Transmutation of Waste; JAERI, OMEGA Project, and Intense Neutron Source for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Super Collider; The High-Power Microwave Program; (Phi) Factory Collaboration; Neutral Particle Beam Power System Highlights; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations.

  14. High Energy Particle Accelerators

    CERN Multimedia

    Audio Productions, Inc, New York

    1960-01-01

    Film about the different particle accelerators in the US. Nuclear research in the US has developed into a broad and well-balanced program.Tour of accelerator installations, accelerator development work now in progress and a number of typical experiments with high energy particles. Brookhaven, Cosmotron. Univ. Calif. Berkeley, Bevatron. Anti-proton experiment. Negative k meson experiment. Bubble chambers. A section on an electron accelerator. Projection of new accelerators. Princeton/Penn. build proton synchrotron. Argonne National Lab. Brookhaven, PS construction. Cambridge Electron Accelerator; Harvard/MIT. SLAC studying a linear accelerator. Other research at Madison, Wisconsin, Fixed Field Alternate Gradient Focusing. (FFAG) Oakridge, Tenn., cyclotron. Two-beam machine. Comments : Interesting overview of high energy particle accelerators installations in the US in these early years. .

  15. Angular anisotropy representation by probability tables

    International Nuclear Information System (INIS)

    In this paper, we improve point-wise or group-wise angular anisotropy representation by using probability tables. The starting point of this study was to give more flexibility (sensitivity analysis) and more accuracy (ray effect) to group-wise anisotropy representation by Dirac functions, independently introduced at CEA (Mao, 1998) and at IRSN (Le Cocq, 1998) ten years ago. Basing ourselves on our experience of cross-section description, acquired in CALENDF (Sublet et al., 2006), we introduce two kinds of moment based probability tables, Dirac (DPT) and Step-wise (SPT) Probability Tables where the angular probability distribution is respectively represented by Dirac functions or by a step-wise function. First, we show how we can improve equi-probable cosine representation of point-wise anisotropy by using step-wise probability tables. Then we show, by Monte Carlo techniques, how we can obtain a more accurate description of group-wise anisotropy than the one usually given by a finite expansion on a Legendre polynomial basis (that can induce negative values) and finally, we describe it by Dirac probability tables. This study is carried out in the framework of GALILEE project R and D activities (Coste-Delclaux, 2008). (authors)

  16. Detection and recognition of angular frequency patterns.

    Science.gov (United States)

    Wilson, Hugh R; Propp, Roni

    2015-05-01

    Previous research has extensively explored visual encoding of smoothly curved, closed contours described by sinusoidal variation of pattern radius as a function of polar angle (RF patterns). Although the contours of many biologically significant objects are curved, we also confront shapes with a more jagged and angular appearance. To study these, we introduce here a novel class of visual stimuli that deform smoothly from a circle to an equilateral polygon with N sides (AF patterns). Threshold measurements reveal that both AF and RF patterns can be discriminated from circles at the same deformation amplitude, approximately 18.0arcsec, which is in the hyperacuity range. Thresholds were slightly higher for patterns with 3.0 cycles than for those with 5.0 cycles. Discrimination between AF and RF patterns was 75% correct at an amplitude that was approximately 3.0 times the threshold amplitude, which implies that AF and RF patterns activate different neural populations. Experiments with jittered patterns in which the contour was broken into several pieces and shifted inward or outward had much less effect on AF patterns than on RF patterns. Similarly, thresholds for single angles of AF patterns showed no significant difference from thresholds for the entire AF pattern. Taken together, these results imply that the visual system incorporates angles explicitly in the representation of closed object contours, but it suggests that angular contours are represented more locally than are curved contours.

  17. Understanding GRETINA using angular correlation method

    Science.gov (United States)

    Austin, Madeline

    2015-10-01

    The ability to trace the path of gamma rays through germanium is not only necessary for taking full advantage of GRETINA but also a promising possibility for homeland security defense against nuclear threats. This research tested the current tracking algorithm using the angular correlation method by comparing results from raw and tracked data to the theoretical model for Co-60. It was found that the current tracking method is unsuccessful in reproducing angular correlation. Variations to the tracking algorithm were made in the FM value, tracking angle, number of angles of separation observed, and window of coincidence in attempt to improve correlation results. From these variations it was observed that having a larger FM improved results, reducing the number of observational angles worsened correlation, and that overall larger tracking angles improved with larger windows of coincidence and vice-verse. Future research would be to refine the angle of measurement for raw data and to explore the possibility of an energy dependence by testing other elements. This work is supported by the United States Department of Energy, Office of Science, under Contract Number DE-AC02-06CH11357

  18. High-angular Resolution Laser Threat Warner

    Directory of Open Access Journals (Sweden)

    Sushil Kumar

    2007-07-01

    Full Text Available In this paper, the design and development aspects of a high-angular resolution laser-threat Warner developed at the Laser Science & Technology Centre (LASTEC, Delhi are presented. It describes a high-angular resolution laser-threat warner capable of giving warning with a resolution of i 3" when it is exposed to laser radiation from visible and near-IR pulsed solid-state laser source. It has a field of view of 90' in the azimuth direction, whereas the elevation coverage is between -5" and + 25". It is capable of handling multiple types of laser threats covering wavelength from 400 nm to 1100 nm and has an operational range of 4 km for a Q-switched laser source energy (10 ns of 10 mJ/pulse and output beam divergence of 1 mrad. The paper also describes its simulated evaluation process and field-testing which it has undergone. The result of field-testing confirms that it meets all its performance specifications mentioned above.

  19. Supramolecular architectures constructed using angular bipyridyl ligands

    CERN Document Server

    Barnett, S A

    2003-01-01

    This work details the synthesis and characterization of a series of coordination frameworks that are formed using bidentate angular N-donor ligands. Pyrimidine was reacted with metal(ll) nitrate salts. Reactions using Cd(NO sub 3) sub 2 receive particular focus and the analogous reactions using the linear ligand, pyrazine, were studied for comparison. In all cases, two-dimensional coordination networks were prepared. Structural diversity is observed for the Cd(ll) centres including metal-nitrate bridging. In contrast, first row transition metal nitrates form isostructural one-dimensional chains with only the bridging N-donor ligands generating polymeric propagation. The angular ligand, 2,4-bis(4-pyridyl)-1,3,5-triazine (dpt), was reacted with Cd(NO sub 3) sub 2 and Zn(NO sub 3) sub 2. Whereas Zn(NO sub 3) sub 2 compounds exhibit solvent mediated polymorphism, a range of structures were obtained for the reactions with Cd(NO sub 3) sub 2 , including the first example of a doubly parallel interpenetrated 4.8 sup...

  20. A Solid state accelerator

    International Nuclear Information System (INIS)

    We present a solid state accelerator concept utilizing particle acceleration along crystal channels by longitudinal electron plasma waves in a metal. Acceleration gradients of order 100 GV/cm are theoretically possible, but channeling radiation limits the maximum attainable energy to 105 TeV for protons. Beam dechanneling due to multiple scattering is substantially reduced by the high acceleration gradient. Plasma wave dissipation and generation in metals are also discussed

  1. Applications of particle accelerators

    International Nuclear Information System (INIS)

    Particle accelerators are now widely used in a variety of applications for scientific research, applied physics, medicine, industrial processing, while possible utilisation in power engineering is envisaged. Earlier presentations of this subject, given at previous CERN Accelerator School sessions have been updated with papers contributed to the first European Conference on Accelerators in Applied Research and Technology (ECAART) held in September 1989 in Frankfurt and to the Second European Particle Accelerator Conference in Nice in June 1990. (orig.)

  2. Accelerators at school

    International Nuclear Information System (INIS)

    Latest subject covered by the CERN Accelerator School was 'Applied Geodesy of Particle Accelerators', which attracted an impressive number of outside participants to CERN for a week in April. Since the forerunners of today's particle accelerators were demonstrated over 50 years ago, the positioning of accelerator components has progressed from the laboratory bench-top to tunnels tens of kilometres long. Despite this phenomenal growth in size, sub-millimetre accuracy is still required

  3. Acceleration: It's Elementary

    Science.gov (United States)

    Willis, Mariam

    2012-01-01

    Acceleration is one tool for providing high-ability students the opportunity to learn something new every day. Some people talk about acceleration as taking a student out of step. In actuality, what one is doing is putting a student in step with the right curriculum. Whole-grade acceleration, also called grade-skipping, usually happens between…

  4. The CERN Accelerator School

    CERN Multimedia

    2016-01-01

    Introduction to accelerator physics The CERN Accelerator School: Introduction to Accelerator Physics, which should have taken place in Istanbul, Turkey, later this year has now been relocated to Budapest, Hungary.  Further details regarding the new hotel and dates will be made available as soon as possible on a new Indico site at the end of May.

  5. Accelerators and Dinosaurs

    CERN Document Server

    Turner, Michael Stanley

    2003-01-01

    Using naturally occuring particles on which to research might have made accelerators become extinct. But in fact, results from astrophysics have made accelerator physics even more important. Not only are accelerators used in hospitals but they are also being used to understand nature's inner workings by searching for Higgs bosons, CP violation, neutrino mass and dark matter (2 pages)

  6. Far field acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Fernow, R.C.

    1995-07-01

    Far fields are propagating electromagnetic waves far from their source, boundary surfaces, and free charges. The general principles governing the acceleration of charged particles by far fields are reviewed. A survey of proposed field configurations is given. The two most important schemes, Inverse Cerenkov acceleration and Inverse free electron laser acceleration, are discussed in detail.

  7. Quantitative relationship between axonal injury and mechanical response in a rodent head impact acceleration model.

    Science.gov (United States)

    Li, Yan; Zhang, Liying; Kallakuri, Srinivasu; Zhou, Runzhou; Cavanaugh, John M

    2011-09-01

    A modified Marmarou impact acceleration model was developed to study the mechanical responses induced by this model and their correlation to traumatic axonal injury (TAI). Traumatic brain injury (TBI) was induced in 31 anesthetized male Sprague-Dawley rats (392±13 g) by a custom-made 450-g impactor from heights of 1.25 m or 2.25 m. An accelerometer and angular rate sensor measured the linear and angular responses of the head, while the impact event was captured by a high-speed video camera. TAI distribution along the rostro-caudal direction, as well as across the left and right hemispheres, was determined using β-amyloid precursor protein (β-APP) immunocytochemistry, and detailed TAI injury maps were constructed for the entire corpus callosum. Peak linear acceleration 1.25 m and 2.25 m impacts were 666±165 g and 907±501 g, respectively. Peak angular velocities were 95±24 rad/sec and 124±48 rad/sec, respectively. Compared to the 2.25-m group, the observed TAI counts in the 1.25-m impact group were significantly lower. Average linear acceleration, peak angular velocity, average angular acceleration, and surface righting time were also significantly different between the two groups. A positive correlation was observed between normalized total TAI counts and average linear acceleration (R(2)=0.612, plinear and angular acceleration response of the rat head during impact, not necessarily the drop height.

  8. Radiation safety research at Indus accelerator complex

    International Nuclear Information System (INIS)

    A brief description of the radiation safety research being carried out at the electron synchrotron radiation sources, Indus-1 (450 MeV) and Indus-2 (2.5 GeV) is presented. As these sources being operated at high energy, the radiation environment is primarily due to the interaction of these electrons with accelerating structure, when beam loss takes place, and subsequent development of electromagnetic cascade. Radiation in the cascade mainly consists of the Bremsstrahlung component which initiates photo-neutron production. Characteristics of these radiations are that the energy can be as high up to the energy of the accelerated electron. This gives rise to problems in detection and personnel dosimetry due to dose buildup effects. The angular dependency and pulsed nature of these radiations complicate the issue of detection. Besides, accidental loss of beam in the vacuum envelope of the accelerator, in addition to normal loss calls for appropriate evaluation of these contributions for personnel radiation safety. Attempts made to understand these problems and the research and development work carried out at Indus Accelerator Complex in order to address them will be discussed. (author)

  9. Direct Laser Acceleration in Laser Wakefield Accelerators

    OpenAIRE

    Shaw, Jessica

    2016-01-01

    In this dissertation, the direct laser acceleration (DLA) of ionization-injected electrons in a laser wakefield accelerator (LWFA) operating in the quasi-blowout regime has been investigated through experiment and simulation. In the blowout regime of LWFA, the radiation pressure of an intense laser pulse can push a majority of the plasma electrons out and around the main body of the pulse. The expelled plasma electrons feel the electrostatic field of the relatively-stationary ions and are t...

  10. The Accelerator Reliability Forum

    CERN Document Server

    Lüdeke, Andreas; Giachino, R

    2014-01-01

    A high reliability is a very important goal for most particle accelerators. The biennial Accelerator Reliability Workshop covers topics related to the design and operation of particle accelerators with a high reliability. In order to optimize the over-all reliability of an accelerator one needs to gather information on the reliability of many different subsystems. While a biennial workshop can serve as a platform for the exchange of such information, the authors aimed to provide a further channel to allow for a more timely communication: the Particle Accelerator Reliability Forum [1]. This contribution will describe the forum and advertise it’s usage in the community.

  11. Soft Neurological Signs in Childhood by Measurement of Arm Movements Using Acceleration and Angular Velocity Sensors

    Directory of Open Access Journals (Sweden)

    Miki Kaneko

    2015-10-01

    Full Text Available Soft neurological signs (SNS are evident in the motor performance of children and disappear as the child grows up. Therefore SNS are used as criteria for evaluating age-appropriate development of neurological function. The aim of this study was to quantify SNS during arm movement in childhood. In this study, we focused on pronation and supination, which are arm movements included in the SNS examination. Two hundred and twenty-three typically developing children aged 4–12 years (107 boys, 116 girls and 18 adults aged 21–26 years (16 males, two females participated in the experiment. To quantify SNS during pronation and supination, we calculated several evaluation index scores: bimanual symmetry, compliance, postural stability, motor speed and mirror movement. These index scores were evaluated using data obtained from sensors attached to the participants’ hands and elbows. Each score increased as age increased. Results obtained using our system showed developmental changes that were consistent with criteria for SNS. We were able to successfully quantify SNS during pronation and supination. These results indicate that it may be possible to use our system as quantitative criteria for evaluating development of neurological function.

  12. Soft neurological signs in childhood by measurement of arm movements using acceleration and angular velocity sensors.

    Science.gov (United States)

    Kaneko, Miki; Yamashita, Yushiro; Inomoto, Osamu; Iramina, Keiji

    2015-01-01

    Soft neurological signs (SNS) are evident in the motor performance of children and disappear as the child grows up. Therefore SNS are used as criteria for evaluating age-appropriate development of neurological function. The aim of this study was to quantify SNS during arm movement in childhood. In this study, we focused on pronation and supination, which are arm movements included in the SNS examination. Two hundred and twenty-three typically developing children aged 4-12 years (107 boys, 116 girls) and 18 adults aged 21-26 years (16 males, two females) participated in the experiment. To quantify SNS during pronation and supination, we calculated several evaluation index scores: bimanual symmetry, compliance, postural stability, motor speed and mirror movement. These index scores were evaluated using data obtained from sensors attached to the participants' hands and elbows. Each score increased as age increased. Results obtained using our system showed developmental changes that were consistent with criteria for SNS. We were able to successfully quantify SNS during pronation and supination. These results indicate that it may be possible to use our system as quantitative criteria for evaluating development of neurological function. PMID:26473867

  13. Soft Neurological Signs in Childhood by Measurement of Arm Movements Using Acceleration and Angular Velocity Sensors

    OpenAIRE

    Miki Kaneko; Yushiro Yamashita; Osamu Inomoto; Keiji Iramina

    2015-01-01

    Soft neurological signs (SNS) are evident in the motor performance of children and disappear as the child grows up. Therefore SNS are used as criteria for evaluating age-appropriate development of neurological function. The aim of this study was to quantify SNS during arm movement in childhood. In this study, we focused on pronation and supination, which are arm movements included in the SNS examination. Two hundred and twenty-three typically developing children aged 4–12 years (107 boys, 11...

  14. Measurement of Newton's Constant Using a Torsion Balance with Angular Acceleration Feedback

    OpenAIRE

    Gundlach, Jens H.; Merkowitz, Stephen M.

    2000-01-01

    We measured Newton's gravitational constant G using a new torsion balance method. Our technique greatly reduces several sources of uncertainty compared to previous measurements: (1) it is insensitive to anelastic torsion fiber properties; (2) a flat plate pendulum minimizes the sensitivity due to the pendulum density distribution; (3) continuous attractor rotation reduces background noise. We obtain G = (6.674215 +- 0.000092)x10^-11 m^3kg^-1s^-2; the Earth's mass is, therefore, M = (5.972245 ...

  15. The SKA as a Doorway to Angular Momentum

    CERN Document Server

    Obreschkow, D; Popping, A; Power, C; Quinn, P; Staveley-Smith, L

    2015-01-01

    Angular momentum is one of the most fundamental physical quantities governing galactic evolution. Differences in the colours, morphologies, star formation rates and gas fractions amongst galaxies of equal stellar/baryon mass M are potentially widely explained by variations in their specific stellar/baryon angular momentum j. The enormous potential of angular momentum science is only just being realised, thanks to the emergence of the first simulations of galaxies with converged spins, paralleled by a dramatic increase in kinematic observations. Such observations are still challenged by the fact that most of the stellar/baryon angular momentum resides at large radii. In fact, the radius that maximally contributes to the angular momentum of an exponential disk (3Re-4Re) is twice as large as the radius that maximally contributes to the disk mass; thus converged measurements of angular momentum require either extremely deep IFS data or, alternatively, kinematic measurements of neutral atomic hydrogen (HI), which ...

  16. Creating high-harmonic beams with controlled orbital angular momentum.

    Science.gov (United States)

    Gariepy, Genevieve; Leach, Jonathan; Kim, Kyung Taec; Hammond, T J; Frumker, E; Boyd, Robert W; Corkum, P B

    2014-10-10

    A beam with an angular-dependant phase Φ = ℓϕ about the beam axis carries an orbital angular momentum of ℓℏ per photon. Such beams are exploited to provide superresolution in microscopy. Creating extreme ultraviolet or soft-x-ray beams with controllable orbital angular momentum is a critical step towards extending superresolution to much higher spatial resolution. We show that orbital angular momentum is conserved during high-harmonic generation. Experimentally, we use a fundamental beam with |ℓ| = 1 and interferometrically determine that the harmonics each have orbital angular momentum equal to their harmonic number. Theoretically, we show how any small value of orbital angular momentum can be coupled to any harmonic in a controlled manner. Our results open a route to microscopy on the molecular, or even submolecular, scale.

  17. Motion fading is driven by perceived, not actual angular velocity.

    Science.gov (United States)

    Kohler, P J; Caplovitz, G P; Hsieh, P-J; Sun, J; Tse, P U

    2010-06-01

    After prolonged viewing of a slowly drifting or rotating pattern under strict fixation, the pattern appears to slow down and then momentarily stop. Here we examine the relationship between such 'motion fading' and perceived angular velocity. Using several different dot patterns that generate emergent virtual contours, we demonstrate that whenever there is a difference in the perceived angular velocity of two patterns of dots that are in fact rotating at the same angular velocity, there is also a difference in the time to undergo motion fading for those two patterns. Conversely, whenever two patterns show no difference in perceived angular velocity, even if in fact rotating at different angular velocities, we find no difference in the time to undergo motion fading. Thus, motion fading is driven by the perceived rather than actual angular velocity of a rotating stimulus. PMID:20371254

  18. Angular momentum in quantum mechanics as a group study topic

    International Nuclear Information System (INIS)

    A largely practical approach to the teaching of angular momentum in quantum mechanics at the undergraduate level is described. In an intensive seven week period towards the end of their final year, undergraduates working in pairs perform experiments in nuclear physics which demonstrate some of the important properties of angular momentum. Three experiments are selected and discussed in this article to illustrate the teaching method. The existence of intrinsic spin and parity is investigated by measuring the polarisation of annihilation radiation; the conservation of angular momentum is demonstrated by a measurement of orbital angular momentum in a nucleon transfer reaction and the coupling of angular momenta is illustrated by the method of angular correlation. (author)

  19. The Accelerated Rotating Disk in a Micropolar Fluid Flow

    OpenAIRE

    Sajjad Hussain; Muhammad Anwar Kamal; Farooq Ahmad

    2013-01-01

    The problem of a micropolar fluid about an accelerated disk rotating with angular velocity Ω proportional to time has been studied. By means of the usual similarity transformations, the governing equations are reduced to ordinary non-linear differential equations and then solved numerically, using SOR method and Simpson’s (1/3) rule for s ≥ 0, where s is non-dimensional parameter which measures unsteadiness. The calculations have been carried out using three differen...

  20. Induction linear accelerators

    Science.gov (United States)

    Birx, Daniel

    1992-03-01

    Among the family of particle accelerators, the Induction Linear Accelerator is the best suited for the acceleration of high current electron beams. Because the electromagnetic radiation used to accelerate the electron beam is not stored in the cavities but is supplied by transmission lines during the beam pulse it is possible to utilize very low Q (typicallymarriage of liner accelerator technology and nonlinear magnetic compressors has produced some unique capabilities. It now appears possible to produce electron beams with average currents measured in amperes, peak currents in kiloamperes and gradients exceeding 1 MeV/meter, with power efficiencies approaching 50%. The nonlinear magnetic compression technology has replaced the spark gap drivers used on earlier accelerators with state-of-the-art all-solid-state SCR commutated compression chains. The reliability of these machines is now approaching 1010 shot MTBF. In the following paper we will briefly review the historical development of induction linear accelerators and then discuss the design considerations.

  1. Coherent detection of orbital angular momentum in radio

    OpenAIRE

    Daldorff, L. K. S.; S. M. Mohammadi; Bergman, J. E. S.; Isham, B.; Al-Nuaimi, M. K. T.; Forozesh, K.; Carozzi, T.D.

    2015-01-01

    The angular momentum propagated by a beam of radiation has two contributions: spin angular momentum (SAM) and orbital angular momentum (OAM). SAM corresponds to wave polarisation, while OAM-carrying beams are characterized by a phase which is a function of azimuth. We demonstrate experimentally that radio beams propagating OAM can be generated and coherently detected using ordinary electric dipole antennas. The results presented here could pave the way for novel radio OAM applications in tech...

  2. Angular momentum and conservation laws for dynamical black holes

    OpenAIRE

    Hayward, Sean A.

    2006-01-01

    Black holes can be practically located (e.g. in numerical simulations) by trapping horizons, hypersurfaces foliated by marginal surfaces, and one desires physically sound measures of their mass and angular momentum. A generically unique angular momentum can be obtained from the Komar integral by demanding that it satisfy a simple conservation law. With the irreducible (Hawking) mass as the measure of energy, the conservation laws of energy and angular momentum take a similar form, expressing ...

  3. Orbital angular momentum in /sup 3/He-A-italic

    Energy Technology Data Exchange (ETDEWEB)

    Balatskii-breve, A.V.; Mineev, V.P.

    1985-12-01

    The intrinsic angular momentum in the A-italic phase of superfluid /sup 3/He is found in terms of the response to the angular velocity of rotation. It is shown that in the weak-coupling approximation at an arbitrary temperature and with allowance for the Fermi-liquid renormalization the intrinsic angular momentum is small in accordance with the smallness of the asymmetry in the distribution of particles and holes.

  4. Quantum orbital angular momentum of elliptically-symmetric light

    OpenAIRE

    Plick, William N.; Krenn, Mario; Fickler, Robert; Ramelow, Sven; Zeilinger, Anton

    2012-01-01

    We present a quantum mechanical analysis of the orbital angular momentum of a class of recently discovered elliptically-symmetric stable light fields --- the so-called Ince-Gauss modes. We study, in a fully quantum formalism, how the orbital angular momentum of these beams varies with their ellipticity and discover several compelling features, including: non-monotonic behavior, stable beams with real continuous (non-integer) orbital angular momenta, and orthogonal modes with the same orbital ...

  5. Spin and orbital angular momentum of the tensor gauge field

    OpenAIRE

    Chen, Xiang-Song; Zhu, Ben-Chao; Murchadha, Niall Ó

    2011-01-01

    Following the recent studies of the trickiness in spin and orbital angular momentum of the vector gauge fields, we perform here a parallel analysis for the tensor gauge field, which has certain relation to gravitation. Similarly to the vector case, we find a nice feature that after removing all gauge degrees of freedom the angular momentum of the tensor gauge field vanishes for a stationary system. This angular momentum also shows a one-parameter invariance over the infinitely many ways of co...

  6. Quantitative measurement of orbital angular momentum in electron microscopy

    OpenAIRE

    Clark, L.; Béché, A.; Guzzinati, G.; Verbeeck, J.

    2014-01-01

    Abstract: Electron vortex beams have been predicted to enable atomic scale magnetic information measurement, via transfer of orbital angular momentum. Research so far has focused on developing production techniques and applications of these beams. However, methods to measure the outgoing orbital angular momentum distribution are also a crucial requirement towards this goal. Here, we use a method to obtain the orbital angular momentum decomposition of an electron beam, using a multipinhole int...

  7. Orbital angular momentum exchange in post-collision interaction

    Energy Technology Data Exchange (ETDEWEB)

    Burgt, P.J.M. van der; Eck, J. van; Heideman, H.G.M.

    1985-03-14

    The authors have measured the angular distribution of electrons ejected by the He**(2s/sup 2/)/sup 1/S autoionising state after its electron impact excitation via the He/sup -/(2s2p/sup 2/)/sup 2/D resonance. Taking into account interference with electrons from the direct ionisation of helium, analysis of this angular distribution provides evidence for angular momentum exchange between ejected and scattered electrons during the post-collision interaction.

  8. Parton Orbital Angular Momentum and Final State Interactions

    OpenAIRE

    Burkardt, Matthias

    2012-01-01

    Definitions of orbital angular momentum based on Wigner distributions are used as a framework to discuss the connection between the Ji definition of the quark orbital angular momentum and that of Jaffe and Manohar.We find that the difference between these two definitions can be interpreted as the change in the quark orbital angular momentum as it leaves the target in a DIS experiment. The mechanism responsible for that change is similar to the mechanism that causes transverse single-spin asym...

  9. Quark Orbital Angular Momentum in the MIT Bag Model

    OpenAIRE

    Burkardt, Matthias; Jarrah, Abdullah

    2010-01-01

    Using the MIT bag model, we study the contribution from the gluon vector potential due to the spectators to the orbital angular momentum of a quark in the bag model. For $\\alpha_s = {\\cal O}(1)$, this spectator contribution to the quark orbital angular momentum in the gauge-covariant Ji decomposition is of the same order as the non gauge-covariant quark orbital angular momentum and its magnitude is larger for $d$ than for $u$ quarks and negative for both.

  10. Optical communication beyond orbital angular momentum

    Science.gov (United States)

    Trichili, Abderrahmen; Rosales-Guzmán, Carmelo; Dudley, Angela; Ndagano, Bienvenu; Ben Salem, Amine; Zghal, Mourad; Forbes, Andrew

    2016-01-01

    Mode division multiplexing (MDM) is mooted as a technology to address future bandwidth issues, and has been successfully demonstrated in free space using spatial modes with orbital angular momentum (OAM). To further increase the data transmission rate, more degrees of freedom are required to form a densely packed mode space. Here we move beyond OAM and demonstrate multiplexing and demultiplexing using both the radial and azimuthal degrees of freedom. We achieve this with a holographic approach that allows over 100 modes to be encoded on a single hologram, across a wide wavelength range, in a wavelength independent manner. Our results offer a new tool that will prove useful in realizing higher bit rates for next generation optical networks. PMID:27283799

  11. Optical communication beyond orbital angular momentum

    Science.gov (United States)

    Trichili, Abderrahmen; Rosales-Guzmán, Carmelo; Dudley, Angela; Ndagano, Bienvenu; Ben Salem, Amine; Zghal, Mourad; Forbes, Andrew

    2016-06-01

    Mode division multiplexing (MDM) is mooted as a technology to address future bandwidth issues, and has been successfully demonstrated in free space using spatial modes with orbital angular momentum (OAM). To further increase the data transmission rate, more degrees of freedom are required to form a densely packed mode space. Here we move beyond OAM and demonstrate multiplexing and demultiplexing using both the radial and azimuthal degrees of freedom. We achieve this with a holographic approach that allows over 100 modes to be encoded on a single hologram, across a wide wavelength range, in a wavelength independent manner. Our results offer a new tool that will prove useful in realizing higher bit rates for next generation optical networks.

  12. Effects of Angular Momentum on Halo Profiles

    CERN Document Server

    Lentz, Erik W; Rosenberg, Leslie J

    2016-01-01

    The near universality of DM halo density profiles provided by N-body simulations has proven to be robust against changes in total mass density, power spectrum, and some forms of initial velocity dispersion. In this letter we study the effects of coherently spinning up an isolated DM-only progenitor on halo structure. Halos with spins within several standard deviations of the simulated mean ($\\lambda \\lesssim 0.20$) produce profiles with negligible deviations from the universal form. Only when the spin becomes quite large ($\\lambda \\gtrsim 0.20$) do departures become evident. The angular momentum distribution also exhibits a near universal form, which is also independent of halo spin up to $\\lambda \\lesssim 0.20$. A correlation between these epidemic profiles and the presence of a strong bar in the virialized halo is also observed. These bar structures bear resemblance to the radial orbit instability in the rotationless limit.

  13. Arbitrarily tunable orbital angular momentum of photons.

    Science.gov (United States)

    Pan, Yue; Gao, Xu-Zhen; Ren, Zhi-Cheng; Wang, Xi-Lin; Tu, Chenghou; Li, Yongnan; Wang, Hui-Tian

    2016-01-01

    Orbital angular momentum (OAM) of photons, as a new fundamental degree of freedom, has excited a great diversity of interest, because of a variety of emerging applications. Arbitrarily tunable OAM has gained much attention, but its creation remains still a tremendous challenge. We demonstrate the realization of well-controlled arbitrarily tunable OAM in both theory and experiment. We present the concept of general OAM, which extends the OAM carried by the scalar vortex field to the OAM carried by the azimuthally varying polarized vector field. The arbitrarily tunable OAM we presented has the same characteristics as the well-defined integer OAM: intrinsic OAM, uniform local OAM and intensity ring, and propagation stability. The arbitrarily tunable OAM has unique natures: it is allowed to be flexibly tailored and the radius of the focusing ring can have various choices for a desired OAM, which are of great significance to the benefit of surprising applications of the arbitrary OAM. PMID:27378234

  14. Orbital angular momentum photonic quantum interface

    CERN Document Server

    Li, Yan; Ding, Dong-Sheng; Zhang, Wei; Shi, Shuai; Shi, Bao-Sen; Guo, Guang-Can

    2014-01-01

    High dimensional orbital angular momentum (OAM) light states are very important in enhancing the information carrying capacity in optical communications and quantum key distributions. Light at wavelengths of fiber communication windows or free space communication windows are suitable for long distance quantum communication, but most quantum processing tasks are performed in the visible wavelength ranges. The interface to bridge the wavelength gap of single photon with Gaussian shape has been realized, however, to create such interface for OAM-carrying light is a great challenge. We report the demonstration of such an interface to frequency up-conversion of herald single photon OAM state from 1560nm to 525nm with high efficiency by using nonlinear crystal in an external cavity. We show that different single photon OAM light shapes are observed directly by using single photon counting camera and the single photon entangled property is retained in the conversion process.

  15. Orbital angular momentum-entanglement frequency transducer

    CERN Document Server

    Zhou, Zhi-Yuan; Li, Yan; Ding, Dong-Sheng; Zhang, Wei; Shi, Shuai; Dong, Ming-Xin; Shi, Bao-Sen; Guo, Guang-Can

    2016-01-01

    Entanglement is a vital resource for realizing many tasks such as teleportation, secure key distribution, metrology and quantum computations. To effectively build entanglement between different quantum systems and share information between them, a frequency transducer to convert between quantum states of different wavelengths while retaining its quantum features is indispensable. Information encoded in the photons orbital angular momentum OAM degrees of freedom is preferred in harnessing the information carrying capacity of a single photon because of its unlimited dimensions. A quantum transducer, which operates at wavelengths from 1558.3 nm to 525 nm for OAM qubits, OAMpolarization hybrid entangled states, and OAM entangled states, is reported for the first time. Nonclassical properties and entanglements are demonstrated following the conversion process by performing quantum tomography, interference, and Bell inequality measurements. Our results demonstrate the capability to create an entanglement link betwe...

  16. Orbital angular momentum photonic quantum interface

    Institute of Scientific and Technical Information of China (English)

    Zhi-Yuan Zhou; Yan Li; Dong-Sheng Ding; Wei Zhang; Shuai Shi; Bao-Sen Shi; Guang-Can Guo

    2016-01-01

    Light-carrying orbital angular momentum (OAM) has great potential in enhancing the information channel capacity in both classical and quantum optical communications.Long distance optical communication requires the wavelengths of light are situated in the low-loss communication windows,but most quantum memories currently being developed for use in a quantum repeater work at different wavelengths,so a quantum interface to bridge the wavelength gap is necessary.So far,such an interface for OAM-carried light has not been realized yet.Here,we report the first experimental realization of a quantum interface for a heralded single photon carrying OAM using a nonlinear crystal in an optical cavity.The spatial structures of input and output photons exhibit strong similarity.More importantly,single-photon coherence is preserved during up-conversion as demonstrated.

  17. Colliding particles carrying nonzero orbital angular momentum

    Science.gov (United States)

    Ivanov, Igor P.

    2011-05-01

    Photons carrying nonzero orbital angular momentum (twisted photons) are well-known in optics. Recently, using Compton backscattering to boost optical twisted photons to high energies was suggested. Twisted electrons in the intermediate energy range have also been produced recently. Thus, collisions involving energetic twisted particles seem to be feasible and represent a new tool in high-energy physics. Here we discuss some generic features of scattering processes involving twisted particles in the initial and/or final state. In order to avoid additional complications arising from nontrivial polarization states, we focus here on scalar fields only. We show that processes involving twisted particles allow one to perform a Fourier analysis of the plane-wave cross section with respect to the azimuthal angles of the initial particles. In addition, using twisted states, one can probe the autocorrelation function of the amplitude, which is inaccessible in the plane-wave collisions. Finally, we discuss prospects for experimental study of these effects.

  18. Arbitrarily tunable orbital angular momentum of photons

    Science.gov (United States)

    Pan, Yue; Gao, Xu-Zhen; Ren, Zhi-Cheng; Wang, Xi-Lin; Tu, Chenghou; Li, Yongnan; Wang, Hui-Tian

    2016-01-01

    Orbital angular momentum (OAM) of photons, as a new fundamental degree of freedom, has excited a great diversity of interest, because of a variety of emerging applications. Arbitrarily tunable OAM has gained much attention, but its creation remains still a tremendous challenge. We demonstrate the realization of well-controlled arbitrarily tunable OAM in both theory and experiment. We present the concept of general OAM, which extends the OAM carried by the scalar vortex field to the OAM carried by the azimuthally varying polarized vector field. The arbitrarily tunable OAM we presented has the same characteristics as the well-defined integer OAM: intrinsic OAM, uniform local OAM and intensity ring, and propagation stability. The arbitrarily tunable OAM has unique natures: it is allowed to be flexibly tailored and the radius of the focusing ring can have various choices for a desired OAM, which are of great significance to the benefit of surprising applications of the arbitrary OAM. PMID:27378234

  19. Angular characteristics of pion-nucleus interaction

    International Nuclear Information System (INIS)

    In the present paper pion-nucleus interactions have been studied using nuclear emulsion technique. The investigation of these interactions is expected to provide some very useful information about the multiparticle production mechanism. Nuclear emulsion is a material which memorizes the tracks of charged particles. When a primary particle collides with a nucleus, it may interact with the nucleons of the target nucleus in two ways. In the first case, independent reactions may take place between the incident particle and the nucleons present in the target nucleus. Secondly the primary particle may interact coherently with the various nucleons of the target nucleus and the secondary particles are produced. Angular distribution of charged secondaries produced in these interactions has been studied for central collision events. Different workers have used different criterion for the selection of central collisions. We analysed the events with high shower particle multiplicity i.e., Ns ≥ 28 and call them as central collision events

  20. Coherent control of photoelectron wavepacket angular interferograms

    Science.gov (United States)

    Hockett, P.; Wollenhaupt, M.; Baumert, T.

    2015-11-01

    Coherent control over photoelectron wavepackets, via the use of polarization-shaped laser pulses, can be understood as a time and polarization-multiplexed process, where the final (time-integrated) observable coherently samples all instantaneous states of the light-matter interaction. In this work, we investigate this multiplexing via computation of the observable photoelectron angular interferograms resulting from multi-photon atomic ionization with polarization-shaped laser pulses. We consider the polarization sensitivity of both the instantaneous and cumulative continuum wavefunction; the nature of the coherent control over the resultant photoelectron interferogram is thus explored in detail. Based on this understanding, the use of coherent control with polarization-shaped pulses as a methodology for a highly multiplexed coherent quantum metrology is also investigated, and defined in terms of the information content of the observable.

  1. Coherent Control of Photoelectron Wavepacket Angular Interferograms

    CERN Document Server

    Hockett, Paul; Baumert, Thomas

    2015-01-01

    Coherent control over photoelectron wavepackets, via the use of polarization-shaped laser pulses, can be understood as a time and polarization-multiplexed process. In this work, we investigate this multiplexing via computation of the observable photoelectron angular interferograms resulting from multi-photon atomic ionization with polarization-shaped laser pulses. We consider the polarization sensitivity of both the instantaneous and cumulative continuum wavefunction; the nature of the coherent control over the resultant photoelectron interferogram is thus explored in detail. Based on this understanding, the use of coherent control with polarization-shaped pulses as a methodology for a highly multiplexed coherent quantum metrology is also investigated, and defined in terms of the information content of the observable.

  2. Arbitrary orbital angular momentum of photons

    CERN Document Server

    Pan, Yue; Ren, Zhi-Cheng; Wang, Xi-Lin; Tu, Chenghou; Li, Yongnan; Wang, Hui-Tian

    2015-01-01

    Orbital angular momentum (OAM) of photons, as a new fundamental degree of freedom, has excited a great diversity of interest, because of a variety of emerging applications. Arbitrarily tunable OAM has gained much attention, but its creation remains still a tremendous challenge. We demonstrate the realization of well-controlled arbitrary OAM in both theory and experiment. We present the concept of general OAM, which extends the OAM carried by the scalar vortex field to the OAM carried by the azimuthally varying polarized vector field. The arbitrary OAM has the same characteristics as the well-defined integer OAM: intrinsic OAM, uniform local OAM and intensity ring, and propagation stability. The arbitrary OAM has unique natures: it is allowed to be flexibly tailored and the radius of the focusing ring can have various choices for a desired OAM, which are of great significance to the benefit of surprising applications of the arbitrary OAM.

  3. Angular Spectrum Simulation of Pulsed Ultrasound Fields

    DEFF Research Database (Denmark)

    Du, Yigang; Jensen, Henrik; Jensen, Jørgen Arendt

    2009-01-01

    The optimization of non-linear ultrasound imaging should in a first step be based on simulation, as this makes parameter studies considerably easier than making transducer prototypes. Such a simulation program should be capable of simulating non-linear pulsed fields for arbitrary transducer...... geometries for any kind of focusing and apodization. The Angular Spectrum Approach (ASA) is capable of simulating monochromatic non-linear acoustic wave propagation. However, for ultrasound imaging the time response of each specific point in space is required, and a pulsed ASA simulation with multi temporal....... The RMS error of the pulses for all points in the simulated plane is 10.9%. The good agreement between ASA and Field II simulation for the pulsed ultrasound fields obtained in this paper makes it possible to expand Field II to non-linear pulsed fields....

  4. Supramolecular architectures constructed using angular bipyridyl ligands

    International Nuclear Information System (INIS)

    This work details the synthesis and characterization of a series of coordination frameworks that are formed using bidentate angular N-donor ligands. Pyrimidine was reacted with metal(ll) nitrate salts. Reactions using Cd(NO3)2 receive particular focus and the analogous reactions using the linear ligand, pyrazine, were studied for comparison. In all cases, two-dimensional coordination networks were prepared. Structural diversity is observed for the Cd(ll) centres including metal-nitrate bridging. In contrast, first row transition metal nitrates form isostructural one-dimensional chains with only the bridging N-donor ligands generating polymeric propagation. The angular ligand, 2,4-bis(4-pyridyl)-1,3,5-triazine (dpt), was reacted with Cd(NO3)2 and Zn(NO3)2. Whereas Zn(NO3)2 compounds exhibit solvent mediated polymorphism, a range of structures were obtained for the reactions with Cd(NO3)2, including the first example of a doubly parallel interpenetrated 4.82 net. 4,7-phenanthroline, was reacted with various metal(ll) nitrates as well as cobalt(ll) and copper(ll) halides. The ability of 4,7-phenanthroline to act as both a N-donor ligand and a hydrogen bond acceptor has been discussed. Reactions of CuSCN with pyrimidine yield an unusual three-dimensional structure in which polymeric propagation is not a result of ligand bridging. The reaction of CuSCN with dpt yielded structural supramolecular isomers. (author)

  5. Angular Approach Scanning Ion Conductance Microscopy.

    Science.gov (United States)

    Shevchuk, Andrew; Tokar, Sergiy; Gopal, Sahana; Sanchez-Alonso, Jose L; Tarasov, Andrei I; Vélez-Ortega, A Catalina; Chiappini, Ciro; Rorsman, Patrik; Stevens, Molly M; Gorelik, Julia; Frolenkov, Gregory I; Klenerman, David; Korchev, Yuri E

    2016-05-24

    Scanning ion conductance microscopy (SICM) is a super-resolution live imaging technique that uses a glass nanopipette as an imaging probe to produce three-dimensional (3D) images of cell surface. SICM can be used to analyze cell morphology at nanoscale, follow membrane dynamics, precisely position an imaging nanopipette close to a structure of interest, and use it to obtain ion channel recordings or locally apply stimuli or drugs. Practical implementations of these SICM advantages, however, are often complicated due to the limitations of currently available SICM systems that inherited their design from other scanning probe microscopes in which the scan assembly is placed right above the specimen. Such arrangement makes the setting of optimal illumination necessary for phase contrast or the use of high magnification upright optics difficult. Here, we describe the designs that allow mounting SICM scan head on a standard patch-clamp micromanipulator and imaging the sample at an adjustable approach angle. This angle could be as shallow as the approach angle of a patch-clamp pipette between a water immersion objective and the specimen. Using this angular approach SICM, we obtained topographical images of cells grown on nontransparent nanoneedle arrays, of islets of Langerhans, and of hippocampal neurons under upright optical microscope. We also imaged previously inaccessible areas of cells such as the side surfaces of the hair cell stereocilia and the intercalated disks of isolated cardiac myocytes, and performed targeted patch-clamp recordings from the latter. Thus, our new, to our knowledge, angular approach SICM allows imaging of living cells on nontransparent substrates and a seamless integration with most patch-clamp setups on either inverted or upright microscopes, which would facilitate research in cell biophysics and physiology. PMID:27224490

  6. Whole-body angular momentum in incline and decline walking.

    Science.gov (United States)

    Silverman, Anne K; Wilken, Jason M; Sinitski, Emily H; Neptune, Richard R

    2012-04-01

    Angular momentum is highly regulated over the gait cycle and is important for maintaining dynamic stability and control of movement. However, little is known regarding how angular momentum is regulated on irregular surfaces, such as slopes, when the risk of falling is higher. This study examined the three-dimensional whole-body angular momentum patterns of 30 healthy subjects walking over a range of incline and decline angles. The range of angular momentum was either similar or reduced on decline surfaces and increased on incline surfaces relative to level ground, with the greatest differences occurring in the frontal and sagittal planes. These results suggest that angular momentum is more tightly controlled during decline walking when the risk of falling is greater. In the frontal plane, the range of angular momentum was strongly correlated with the peak hip and knee abduction moments in early stance. In the transverse plane, the strongest correlation occurred with the knee external rotation peak in late stance. In the sagittal plane, all external moment peaks were correlated with the range of angular momentum. The peak ankle plantarflexion, knee flexion and hip extension moments were also strongly correlated with the sagittal-plane angular momentum. These results highlight how able-bodied subjects control angular momentum differently on sloped surfaces relative to level walking and provide a baseline for comparison with pathological populations that are more susceptible to falling. PMID:22325978

  7. Ideal linear-chain polymers with fixed angular momentum.

    Science.gov (United States)

    Brunner, Matthew; Deutsch, J M

    2011-07-01

    The statistical mechanics of a linear noninteracting polymer chain with a large number of monomers is considered with fixed angular momentum. The radius of gyration for a linear polymer is derived exactly by functional integration. This result is then compared to simulations done with a large number of noninteracting rigid links at fixed angular momentum. The simulation agrees with the theory up to finite-size corrections. The simulations are also used to investigate the anisotropic nature of a spinning polymer. We find universal scaling of the polymer size along the direction of the angular momentum, as a function of rescaled angular momentum.

  8. Whole-body angular momentum in incline and decline walking.

    Science.gov (United States)

    Silverman, Anne K; Wilken, Jason M; Sinitski, Emily H; Neptune, Richard R

    2012-04-01

    Angular momentum is highly regulated over the gait cycle and is important for maintaining dynamic stability and control of movement. However, little is known regarding how angular momentum is regulated on irregular surfaces, such as slopes, when the risk of falling is higher. This study examined the three-dimensional whole-body angular momentum patterns of 30 healthy subjects walking over a range of incline and decline angles. The range of angular momentum was either similar or reduced on decline surfaces and increased on incline surfaces relative to level ground, with the greatest differences occurring in the frontal and sagittal planes. These results suggest that angular momentum is more tightly controlled during decline walking when the risk of falling is greater. In the frontal plane, the range of angular momentum was strongly correlated with the peak hip and knee abduction moments in early stance. In the transverse plane, the strongest correlation occurred with the knee external rotation peak in late stance. In the sagittal plane, all external moment peaks were correlated with the range of angular momentum. The peak ankle plantarflexion, knee flexion and hip extension moments were also strongly correlated with the sagittal-plane angular momentum. These results highlight how able-bodied subjects control angular momentum differently on sloped surfaces relative to level walking and provide a baseline for comparison with pathological populations that are more susceptible to falling.

  9. On angular momentum transport in convection-dominated accretion flows

    CERN Document Server

    Igumenshchev, I V

    2002-01-01

    Convection-dominated accretion flow (CDAF) is a promising model to explain underluminous accreting black holes in X-ray binaries and galactic nuclei. I discuss effects of angular momentum transport in viscous hydrodynamical and MHD CDAFs. In hydrodynamical CDAFs, convection transports angular momentum inward, and this together with outward convection transport of thermal energy determine the radial structure of the flow. In MHD CDAFs, convection can transport angular momentum either inward or outward, depending on properties of turbulence in rotating magnetized plasma, which are not fully understood yet. Direction of convection angular momentum transport can affect the law of rotation of MHD CDAFs.

  10. Orbital Angular Momentum in the Chiral Quark Model

    OpenAIRE

    Song, Xiaotong

    1998-01-01

    We developed a new and unified scheme for describing both quark spin and orbital angular momenta in symmetry-breaking chiral quark model. The loss of quark spin in the chiral splitting processes is compensated by the gain of the orbital angular momentum carried by quarks and antiquarks. The sum of both spin and orbital angular momenta carried by quarks and antiquarks is 1/2. The analytic and numerical results for the spin and orbital angular momenta carried by quarks and antiquarks in the nuc...

  11. Quark orbital-angular-momentum distribution in the nucleon

    Energy Technology Data Exchange (ETDEWEB)

    Hoodbhoy, P.; Ji, X.; Lu, W. [Department of Physics, University of Maryland, College Park, Maryland 20742 (United States)

    1999-01-01

    We introduce gauge-invariant quark and gluon angular momentum distributions after making a generalization of the angular momentum density operators. From the quark angular momentum distribution, we define the gauge-invariant and leading-twist quark {ital orbital} angular momentum distribution L{sub q}(x). The latter can be extracted from data on the polarized and unpolarized quark distributions and the off-forward distribution E(x) in the forward limit. We comment upon the evolution equations obeyed by this as well as other orbital distributions considered in the literature. {copyright} {ital 1998} {ital The American Physical Society}

  12. Angular dynamics of small crystals in viscous flow

    CERN Document Server

    Fries, J; Mehlig, B

    2016-01-01

    The angular dynamics of a very small ellipsoidal particle in a viscous flow decouples from its translational dynamics, and the particle angular velocity is given by Jeffery's theory. It is known that cuboid particles share these properties. In the literature a special case is most frequently discussed, that of axisymmetric particles, with a continuous rotational symmetry. Here we compute the angular dynamics of crystals that possess a discrete rotational symmetry and certain mirror symmetries, but that do not have a continuous rotational symmetry. We give examples of such particles that nevertheless obey Jeffery's theory. But there are other examples where the angular dynamics is determined by a more general equation of motion.

  13. Particle-accelerator decommissioning

    International Nuclear Information System (INIS)

    Generic considerations involved in decommissioning particle accelerators are examined. There are presently several hundred accelerators operating in the United States that can produce material containing nonnegligible residual radioactivity. Residual radioactivity after final shutdown is generally short-lived induced activity and is localized in hot spots around the beam line. The decommissioning options addressed are mothballing, entombment, dismantlement with interim storage, and dismantlement with disposal. The recycle of components or entire accelerators following dismantlement is a definite possibility and has occurred in the past. Accelerator components can be recycled either immediately at accelerator shutdown or following a period of storage, depending on the nature of induced activation. Considerations of cost, radioactive waste, and radiological health are presented for four prototypic accelerators. Prototypes considered range from small accelerators having minimal amounts of radioactive mmaterial to a very large accelerator having massive components containing nonnegligible amounts of induced activation. Archival information on past decommissionings is presented, and recommendations concerning regulations and accelerator design that will aid in the decommissioning of an accelerator are given

  14. Particle-accelerator decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Opelka, J.H.; Mundis, R.L.; Marmer, G.J.; Peterson, J.M.; Siskind, B.; Kikta, M.J.

    1979-12-01

    Generic considerations involved in decommissioning particle accelerators are examined. There are presently several hundred accelerators operating in the United States that can produce material containing nonnegligible residual radioactivity. Residual radioactivity after final shutdown is generally short-lived induced activity and is localized in hot spots around the beam line. The decommissioning options addressed are mothballing, entombment, dismantlement with interim storage, and dismantlement with disposal. The recycle of components or entire accelerators following dismantlement is a definite possibility and has occurred in the past. Accelerator components can be recycled either immediately at accelerator shutdown or following a period of storage, depending on the nature of induced activation. Considerations of cost, radioactive waste, and radiological health are presented for four prototypic accelerators. Prototypes considered range from small accelerators having minimal amounts of radioactive mmaterial to a very large accelerator having massive components containing nonnegligible amounts of induced activation. Archival information on past decommissionings is presented, and recommendations concerning regulations and accelerator design that will aid in the decommissioning of an accelerator are given.

  15. An introduction to acceleration mechanisms

    International Nuclear Information System (INIS)

    This paper discusses the acceleration of charged particles by electromagnetic fields, i.e., by fields that are produced by the motion of other charged particles driven by some power source. The mechanisms that are discussed include: Ponderamotive Forces, Acceleration, Plasma Beat Wave Acceleration, Inverse Free Electron Laser Acceleration, Inverse Cerenkov Acceleration, Gravity Acceleration, 2D Linac Acceleration and Conventional Iris Loaded Linac Structure Acceleration

  16. Orbital angular momentum filter of photon based on spin-orbital angular momentum coupling

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Dong-Xu; Zhang, Pei, E-mail: zhangpei@mail.ustc.edu.cn; Liu, Rui-Feng; Li, Hong-Rong; Gao, Hong; Li, Fu-Li

    2015-10-16

    Highlights: • We propose a scheme that can filter the orbital angular momentum of photons. • Our scheme filters the specific mode with destroying the mode. • Our scheme can theoretically filter infinity modes. • The orientation of Dove lens and HWP decides which mode will output. - Abstract: Determination of the orbital angular momentum (OAM) of vortex beams has been hotly discussed. We propose a new type of method to determine the orbital angular momentum of photons, filtering. We present an OAM filter scheme which consists of a cavity with a polarization-based Mach–Zehnder interferometer inside. Our scheme can purify the specific OAM with unitary efficiency theoretically without the pre-knowledge of the OAM spectrum of the input light. We also implemented a proof-of-principle experiment to demonstrate the feasibility of our scheme by cascading three interferometers. Our method offers a new way to determine the OAM spectrum of a light and this method can also be exploited to prepare the eigenstate of vortex beams.

  17. Orbital angular momentum filter of photon based on spin-orbital angular momentum coupling

    International Nuclear Information System (INIS)

    Highlights: • We propose a scheme that can filter the orbital angular momentum of photons. • Our scheme filters the specific mode with destroying the mode. • Our scheme can theoretically filter infinity modes. • The orientation of Dove lens and HWP decides which mode will output. - Abstract: Determination of the orbital angular momentum (OAM) of vortex beams has been hotly discussed. We propose a new type of method to determine the orbital angular momentum of photons, filtering. We present an OAM filter scheme which consists of a cavity with a polarization-based Mach–Zehnder interferometer inside. Our scheme can purify the specific OAM with unitary efficiency theoretically without the pre-knowledge of the OAM spectrum of the input light. We also implemented a proof-of-principle experiment to demonstrate the feasibility of our scheme by cascading three interferometers. Our method offers a new way to determine the OAM spectrum of a light and this method can also be exploited to prepare the eigenstate of vortex beams

  18. Accelerator reliability workshop

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, L.; Duru, Ph.; Koch, J.M.; Revol, J.L.; Van Vaerenbergh, P.; Volpe, A.M.; Clugnet, K.; Dely, A.; Goodhew, D

    2002-07-01

    About 80 experts attended this workshop, which brought together all accelerator communities: accelerator driven systems, X-ray sources, medical and industrial accelerators, spallation sources projects (American and European), nuclear physics, etc. With newly proposed accelerator applications such as nuclear waste transmutation, replacement of nuclear power plants and others. Reliability has now become a number one priority for accelerator designers. Every part of an accelerator facility from cryogenic systems to data storage via RF systems are concerned by reliability. This aspect is now taken into account in the design/budget phase, especially for projects whose goal is to reach no more than 10 interruptions per year. This document gathers the slides but not the proceedings of the workshop.

  19. Switched Matrix Accelerator

    International Nuclear Information System (INIS)

    We describe a new concept for a microwave circuit functioning as a charged-particle accelerator at mm-wavelengths, permitting an accelerating gradient higher than conventional passive circuits can withstand consistent with cyclic fatigue. The device provides acceleration for multiple bunches in parallel channels, and permits a short exposure time for the conducting surface of the accelerating cavities. Our analysis includes scalings based on a smooth transmission line model and a complementary treatment with a coupled-cavity simulation. We provide also an electromagnetic design for the accelerating structure, arriving at rough dimensions for a seven-cell accelerator matched to standard waveguide and suitable for bench tests at low power in air at 91.392. GHz. A critical element in the concept is a fast mm-wave switch suitable for operation at high-power, and we present the considerations for implementation in an H-plane tee. We discuss the use of diamond as the photoconductor switch medium

  20. Accelerator and radiation physics

    CERN Document Server

    Basu, Samita; Nandy, Maitreyee

    2013-01-01

    "Accelerator and radiation physics" encompasses radiation shielding design and strategies for hadron therapy accelerators, neutron facilities and laser based accelerators. A fascinating article describes detailed transport theory and its application to radiation transport. Detailed information on planning and design of a very high energy proton accelerator can be obtained from the article on radiological safety of J-PARC. Besides safety for proton accelerators, the book provides information on radiological safety issues for electron synchrotron and prevention and preparedness for radiological emergencies. Different methods for neutron dosimetry including LET based monitoring, time of flight spectrometry, track detectors are documented alongwith newly measured experimental data on radiation interaction with dyes, polymers, bones and other materials. Design of deuteron accelerator, shielding in beam line hutches in synchrotron and 14 MeV neutron generator, various radiation detection methods, their characteriza...

  1. Leaky Fermi accelerators

    CERN Document Server

    Shah, Kushal; Rom-Kedar, Vered; Turaev, Dmitry

    2015-01-01

    A Fermi accelerator is a billiard with oscillating walls. A leaky accelerator interacts with an environment of an ideal gas at equilibrium by exchange of particles through a small hole on its boundary. Such interaction may heat the gas: we estimate the net energy flow through the hole under the assumption that the particles inside the billiard do not collide with each other and remain in the accelerator for sufficiently long time. The heat production is found to depend strongly on the type of the Fermi accelerator. An ergodic accelerator, i.e. one which has a single ergodic component, produces a weaker energy flow than a multi-component accelerator. Specifically, in the ergodic case the energy gain is independent of the hole size, whereas in the multi-component case the energy flow may be significantly increased by shrinking the hole size.

  2. Nuclear physics accelerator facilities

    International Nuclear Information System (INIS)

    This paper describes many of the nuclear physics heavy-ion accelerator facilities in the US and the research programs being conducted. The accelerators described are: Argonne National Laboratory--ATLAS; Brookhaven National Laboratory--Tandem/AGS Heavy Ion Facility; Brookhaven National Laboratory--Relativistic Heavy Ion Collider (RHIC) (Proposed); Continuous Electron Beam Accelerator Facility; Lawrence Berkeley Laboratory--Bevalac; Lawrence Berkeley Laboratory--88-Inch Cyclotron; Los Alamos National Laboratory--Clinton P. Anderson Meson Physics Facility (LAMPF); Massachusetts Institute of Technology--Bates Linear Accelerator Center; Oak Ridge National Laboratory--Holifield Heavy Ion Research Facility; Oak Ridge National Laboratory--Oak Ridge Electron Linear Accelerator; Stanford Linear Accelerator Center--Nuclear Physics Injector; Texas AandM University--Texas AandM Cyclotron; Triangle Universities Nuclear Laboratory (TUNL); University of Washington--Tandem/Superconducting Booster; and Yale University--Tandem Van de Graaff

  3. Accelerator reliability workshop

    International Nuclear Information System (INIS)

    About 80 experts attended this workshop, which brought together all accelerator communities: accelerator driven systems, X-ray sources, medical and industrial accelerators, spallation sources projects (American and European), nuclear physics, etc. With newly proposed accelerator applications such as nuclear waste transmutation, replacement of nuclear power plants and others. Reliability has now become a number one priority for accelerator designers. Every part of an accelerator facility from cryogenic systems to data storage via RF systems are concerned by reliability. This aspect is now taken into account in the design/budget phase, especially for projects whose goal is to reach no more than 10 interruptions per year. This document gathers the slides but not the proceedings of the workshop

  4. Research on Acceleration Disturbance Suppression for Dynamic Detection of Level Attitude

    Science.gov (United States)

    Tan, Linxia; Zhang, Fuxue

    The paper presents a new method to eliminate acceleration disturbance in level attitude measurement and control of moving carrier. Output signals of micro-machined inclinometer and gyroscope are analyzed in different states of moving carrier by experimental simulation, results show that gyroscope almost keeps the zero output voltage while inclinometer outputs in significant fluctuations. With the analysis results, a new method on acceleration disturbance suppression is developed base on a combination of inclinometers and gyroscopes, which includes establishment and derivation of its mathematical model and implementation, and an algorithm software design. Finally, tests to the acceleration disturbance suppression effect are demonstrated in line motion, line vibration, angular motion and angular motion plus pitch swing. Experimental results show that the method achieves its expected effect. The inertial system constitutes of inclinometers and gyros interacting with acceleration disturbance suppression method can dynamic detect the level attitude of moving carrier.

  5. Angular and Linear Velocity Estimation for a Re-Entry Vehicle Using Six Distributed Accelerometers: Theory, Simulation and Feasibility

    Energy Technology Data Exchange (ETDEWEB)

    Clark, G

    2003-04-28

    This report describes a feasibility study. We are interested in calculating the angular and linear velocities of a re-entry vehicle using six acceleration signals from a distributed accelerometer inertial measurement unit (DAIMU). Earlier work showed that angular and linear velocity calculation using classic nonlinear ordinary differential equation (ODE) solvers is not practically feasible, due to mathematical and numerical difficulties. This report demonstrates the theoretical feasibility of using model-based nonlinear state estimation techniques to obtain the angular and linear velocities in this problem. Practical numerical and calibration issues require additional work to resolve. We show that the six accelerometers in the DAIMU are not sufficient to provide observability, so additional measurements of the system states are required (e.g. from a Global Positioning System (GPS) unit). Given the constraint that our system cannot use GPS, we propose using the existing on-board 3-axis magnetometer to measure angular velocity. We further show that the six nonlinear ODE's for the vehicle kinematics can be decoupled into three ODE's in the angular velocity and three ODE's in the linear velocity. This allows us to formulate a three-state Gauss-Markov system model for the angular velocities, using the magnetometer signals in the measurement model. This re-formulated model is observable, allowing us to build an Extended Kalman Filter (EKF) for estimating the angular velocities. Given the angular velocity estimates from the EKF, the three ODE's for the linear velocity become algebraic, and the linear velocity can be calculated by numerical integration. Thus, we do not need direct measurements of the linear velocity to provide observability, and the technique is mathematically feasible. Using a simulation example, we show that the estimator adds value over the numerical ODE solver in the presence of measurement noise. Calculating the velocities in the

  6. High Gradient Accelerator Research

    Energy Technology Data Exchange (ETDEWEB)

    Temkin, Richard [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Physics. Plasma Science and Fusion Center

    2016-07-12

    The goal of the MIT program of research on high gradient acceleration is the development of advanced acceleration concepts that lead to a practical and affordable next generation linear collider at the TeV energy level. Other applications, which are more near-term, include accelerators for materials processing; medicine; defense; mining; security; and inspection. The specific goals of the MIT program are: • Pioneering theoretical research on advanced structures for high gradient acceleration, including photonic structures and metamaterial structures; evaluation of the wakefields in these advanced structures • Experimental research to demonstrate the properties of advanced structures both in low-power microwave cold test and high-power, high-gradient test at megawatt power levels • Experimental research on microwave breakdown at high gradient including studies of breakdown phenomena induced by RF electric fields and RF magnetic fields; development of new diagnostics of the breakdown process • Theoretical research on the physics and engineering features of RF vacuum breakdown • Maintaining and improving the Haimson / MIT 17 GHz accelerator, the highest frequency operational accelerator in the world, a unique facility for accelerator research • Providing the Haimson / MIT 17 GHz accelerator facility as a facility for outside users • Active participation in the US DOE program of High Gradient Collaboration, including joint work with SLAC and with Los Alamos National Laboratory; participation of MIT students in research at the national laboratories • Training the next generation of Ph. D. students in the field of accelerator physics.

  7. High Gradient Accelerator Research

    Energy Technology Data Exchange (ETDEWEB)

    Temkin, Richard [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Physics. Plasma Science and Fusion Center

    2016-07-12

    The goal of the MIT program of research on high gradient acceleration is the development of advanced acceleration concepts that lead to a practical and affordable next generation linear collider at the TeV energy level. Other applications, which are more near-term, include accelerators for materials processing; medicine; defense; mining; security; and inspection. The specific goals of the MIT program are: • Pioneering theoretical research on advanced structures for high gradient acceleration, including photonic structures and metamaterial structures; evaluation of the wakefields in these advanced structures • Experimental research to demonstrate the properties of advanced structures both in low power microwave cold test and high power, high gradient test at megawatt power levels • Experimental research on microwave breakdown at high gradient including studies of breakdown phenomena induced by RF electric fields and RF magnetic fields; development of new diagnostics of the breakdown process • Theoretical research on the physics and engineering features of RF vacuum breakdown • Maintaining and improving the Haimson / MIT 17 GHz accelerator, the highest frequency operational accelerator in the world, a unique facility for accelerator research • Providing the Haimson / MIT 17 GHz accelerator facility as a facility for outside users • Active participation in the US DOE program of High Gradient Collaboration, including joint work with SLAC and with Los Alamos National Laboratory; participation of MIT students in research at the national laboratories • Training the next generation of Ph. D. students in the field of accelerator physics.

  8. Fundamental methods to measure the orbital angular momentum of light

    NARCIS (Netherlands)

    Berkhout, Gregorius Cornelis Gerardus (Joris)

    2011-01-01

    Light is a ubiquitous carrier of information. This information can be encoded in the intensity, direction, frequency and polarisation of the light and, which was described more recently, in its orbital angular momentum. Although creating light beams with orbital angular momentum is relatively easy,

  9. Angular Momentum Phase State Representation for Quantum Pendulum

    Institute of Scientific and Technical Information of China (English)

    FAN Hong-Yi; WANG Ji-Suo

    2005-01-01

    To consummate the quantum pendulum theory whose Hamiltonian takes bosonic operator formalism and manifestly exhibits its dynamic behaviour in the entangled state representation, we introduce angular momentum state representation and phase state representation. It turns out that the angular momentum state is the partial wave expansion of the entangled state.

  10. Evolution equations for higher moments of angular momentum distributions

    CERN Document Server

    Hägler, P

    1998-01-01

    Based on a sumrule for the nucleon spin we expand quark and gluon orbital angular momentum operators and derive an evolution matrix for higher moments of the corresponding distributions. In combination with the spin-dependent DGLAP-matrix we find a complete set of spin and orbital angular momentum evolution equations.

  11. Learning web development with Bootstrap and AngularJS

    CERN Document Server

    Radford, Stephen

    2015-01-01

    Whether you know a little about Bootstrap or AngularJS, or you're a complete beginner, this book will enhance your capabilities in both frameworks and you'll build a fully functional web app. A working knowledge of HTML, CSS, and JavaScript is required to fully get to grips with Bootstrap and AngularJS.

  12. Relativistic calculations of angular dependent photoemission time delay

    CERN Document Server

    Kheifets, A S; Deshmukh, P C; Dolmatov, V K; Manson, S T

    2016-01-01

    Angular dependence of photoemission time delay for the valence $np_{3/2}$ and $np_{1/2}$ subshells of Ar, Kr and Xe is studied in the dipole relativistic random phase approximation. Strong angular anisotropy of the time delay is reproduced near respective Cooper minima while the spin-orbit splitting affects the time delay near threshold.

  13. Anomalous Magnetic Moments and Quark Orbital Angular Momentum

    OpenAIRE

    Burkardt, M.; Schnell, G.(University of the Basque Country UPV/EHU, 48080 Bilbao, Spain)

    2005-01-01

    We derive an inequality for the distribution of quarks with non-zero orbital angular momentum, and thus demonstrate, in a model-independent way, that a non-vanishing anomalous magnetic moment requires both a non-zero size of the target as well as the presence of wave function components with quark orbital angular momentum L_z>0.

  14. Quark and Gluon Orbital Angular Momentum: Where Are We?

    Science.gov (United States)

    Lorcé, Cédric; Liu, Keh-Fei

    2016-06-01

    The orbital angular momentum of quarks and gluons contributes significantly to the proton spin budget and attracted a lot of attention in the recent years, both theoretically and experimentally. We summarize the various definitions of parton orbital angular momentum together with their relations with parton distributions functions. In particular, we highlight current theoretical puzzles and give some prospects.

  15. Conservation of Orbital Angular Momentum in Stimulated Down-Conversion

    OpenAIRE

    Caetano, D. P.; Almeida, M. P.; Ribeiro, P. H. Souto; Huguenin, J. A. O.; Santos, B. Coutinho dos; Khoury, A. Z.

    2001-01-01

    We report on an experiment demonstrating the conservation of orbital angular momentum in stimulated down-conversion. The orbital angular momentum is not transferred to the individual beams of the spontaneous down-conversion, but it is conserved when twin photons are taken individually. We observe the conservation law for an individual beam of the down-conversion through cavity-free stimulated emission.

  16. Nuclear Level Density with Non-zero Angular Momentum

    Institute of Scientific and Technical Information of China (English)

    A.N. Behkami; M. Gholami; M. Kildir; M. Soltani

    2006-01-01

    The statistical properties of interacting fermions have been studied for various angular momentum with the inclusion of pairing interaction. The dependence of the critical temperature on angular momentum for several nuclei,have been studied. The yrast energy as a function of angular momentum for 28 Si and 24Mg nuclei have been calculated up to 60.0 MeV of excitation energy. The computed limiting angular momenta are compared with the experimental results for 26Al produced by 12C + 14N reaction. The relevant nuclear level densities for non-zero angular momentum have been computed for 44Ti and l36Ba nuclei. The results are compared with their corresponding values obtained from the approximateformulas.

  17. Towards optical intensity interferometry for high angular resolution stellar astrophysics

    CERN Document Server

    Nunez, Paul D

    2012-01-01

    Most neighboring stars are still detected as point sources and are beyond the angular resolution reach of current observatories. Methods to improve our understanding of stars at high angular resolution are investigated. Air Cherenkov telescopes (ACTs), primarily used for Gamma-ray astronomy, enable us to increase our understanding of the circumstellar environment of a particular system. When used as optical intensity interferometers, future ACT arrays will allow us to detect stars as extended objects and image their surfaces at high angular resolution. Optical stellar intensity interferometry (SII) with ACT arrays, composed of nearly 100 telescopes, will provide means to measure fundamental stellar parameters and also open the possibility of model-independent imaging. A data analysis algorithm is developed and permits the reconstruction of high angular resolution images from simulated SII data. The capabilities and limitations of future ACT arrays used for high angular resolution imaging are investigated via ...

  18. Alignment of wave functions for angular momentum projection

    CERN Document Server

    Taniguchi, Yasutaka

    2016-01-01

    Angular momentum projection is used to obtain eigen states of angular momentum from general wave functions. Multi-configuration mixing calculation with angular momentum projection is an important microscopic method in nuclear physics. For accurate multi-configuration mixing calculation with angular momentum projection, concentrated distribution of $z$ components $K$ of angular momentum in the body-fixed frame ($K$-distribution) is favored. Orientation of wave functions strongly affects $K$-distribution. Minimization of variance of $\\hat{J}_z$ is proposed as an alignment method to obtain wave functions that have concentrated $K$-distribution. Benchmark calculations are performed for $\\alpha$-$^{24}$Mg cluster structure, triaxially superdeformed states in $^{40}$Ar, and Hartree-Fock states of some nuclei. The proposed alignment method is useful and works well for various wave functions to obtain concentrated $K$-distribution.

  19. Cyclic transformation of orbital angular momentum modes

    CERN Document Server

    Schlederer, Florian; Fickler, Robert; Malik, Mehul; Zeilinger, Anton

    2015-01-01

    The spatial modes of photons are one realization of a QuDit, a quantum system that is described in a D-dimensional Hilbert space. In order to perform quantum information tasks with QuDits, a general class of D-dimensional unitary transformations is needed. Among these, cyclic transformations are an important special case required in many high-dimensional quantum communication protocols. In this paper, we experimentally demonstrate a cyclic transformation in the high-dimensional space of photonic orbital angular momentum (OAM). Using simple linear optical components, we show a successful four-fold cyclic transformation of OAM modes. Interestingly, our experimental setup was found by a computer algorithm. In addition to the four-cyclic transformation, the algorithm also found extensions to higher-dimensional cycles in a hybrid space of OAM and polarization. Besides being useful for quantum cryptography with QuDits, cyclic transformations are key for the experimental production of high-dimensional maximally enta...

  20. Cyclic transformation of orbital angular momentum modes

    Science.gov (United States)

    Schlederer, Florian; Krenn, Mario; Fickler, Robert; Malik, Mehul; Zeilinger, Anton

    2016-04-01

    The spatial modes of photons are one realization of a QuDit, a quantum system that is described in a D-dimensional Hilbert space. In order to perform quantum information tasks with QuDits, a general class of D-dimensional unitary transformations is needed. Among these, cyclic transformations are an important special case required in many high-dimensional quantum communication protocols. In this paper, we experimentally demonstrate a cyclic transformation in the high-dimensional space of photonic orbital angular momentum (OAM). Using simple linear optical components, we show a successful four-fold cyclic transformation of OAM modes. Interestingly, our experimental setup was found by a computer algorithm. In addition to the four-cyclic transformation, the algorithm also found extensions to higher-dimensional cycles in a hybrid space of OAM and polarization. Besides being useful for quantum cryptography with QuDits, cyclic transformations are key for the experimental production of high-dimensional maximally entangled Bell-states.

  1. Non-gaussian CMBR angular power spectra

    CERN Document Server

    Magueijo, J

    1995-01-01

    In this paper we show how the prediction of CMBR angular power spectra C_l in non-Gaussian theories is affected by a cosmic covariance problem, that is (C_l,C_{l'}) correlations impart features on any observed C_l spectrum which are absent from the average C^l spectrum. Therefore the average spectrum is rendered a bad observational prediction, and two new prediction strategies, better adjusted to these theories, are proposed. In one we search for hidden random indices conditional to which the theory is released from the correlations. Contact with experiment can then be made in the form of the conditional power spectra plus the random index distribution. In another approach we apply to the problem a principal component analysis. We discuss the effect of correlations on the predictivity of non-Gaussian theories. We finish by showing how correlations may be crucial in delineating the borderline between predictions made by non-Gaussian and Gaussian theories. In fact, in some particular theories, correlations may ...

  2. Spatial Angular Compounding of Photoacoustic Images.

    Science.gov (United States)

    Kang, Hyun Jae; Bell, Muyinatu A Lediju; Guo, Xiaoyu; Boctor, Emad M

    2016-08-01

    Photoacoustic (PA) images utilize pulsed lasers and ultrasound transducers to visualize targets with higher optical absorption than the surrounding medium. However, they are susceptible to acoustic clutter and background noise artifacts that obfuscate biomedical structures of interest. We investigated three spatial-angular compounding methods to improve PA image quality for biomedical applications, implemented by combining multiple images acquired as an ultrasound probe was rotated about the elevational axis with the laser beam and target fixed. Compounding with conventional averaging was based on the pose information of each PA image, while compounding with weighted and selective averaging utilized both the pose and image content information. Weighted-average compounding enhanced PA images with the least distortion of signal size, particularly when there were large (i.e., 2.5 mm and 7 (°)) perturbations from the initial probe position. Selective-average compounding offered the best improvement in image quality with up 181, 1665, and 1568 times higher contrast, CNR, and SNR, respectively, compared to the mean values of individual PA images. The three presented spatial compounding methods have promising potential to enhance image quality in multiple photoacoustic applications. PMID:26890642

  3. Orbital Angular Momentum-Entanglement Frequency Transducer

    Science.gov (United States)

    Zhou, Zhi-Yuan; Liu, Shi-Long; Li, Yan; Ding, Dong-Sheng; Zhang, Wei; Shi, Shuai; Dong, Ming-Xin; Shi, Bao-Sen; Guo, Guang-Can

    2016-09-01

    Entanglement is a vital resource for realizing many tasks such as teleportation, secure key distribution, metrology, and quantum computations. To effectively build entanglement between different quantum systems and share information between them, a frequency transducer to convert between quantum states of different wavelengths while retaining its quantum features is indispensable. Information encoded in the photon's orbital angular momentum (OAM) degrees of freedom is preferred in harnessing the information-carrying capacity of a single photon because of its unlimited dimensions. A quantum transducer, which operates at wavelengths from 1558.3 to 525 nm for OAM qubits, OAM-polarization hybrid-entangled states, and OAM-entangled states, is reported for the first time. Nonclassical properties and entanglements are demonstrated following the conversion process by performing quantum tomography, interference, and Bell inequality measurements. Our results demonstrate the capability to create an entanglement link between different quantum systems operating in a photon's OAM degrees of freedom, which will be of great importance in building a high-capacity OAM quantum network.

  4. Millimetre Wave with Rotational Orbital Angular Momentum

    Science.gov (United States)

    Zhang, Chao; Ma, Lu

    2016-01-01

    Orbital angular momentum (OAM) has been widely studied in fibre and short-range communications. The implementation of millimetre waves with OAM is expected to increase the communication capacity. Most experiments demonstrate the distinction of OAM modes by receiving all of the energy in the surface vertical to the radiation axis in space. However, the reception of OAM is difficult in free space due to the non-zero beam angle and divergence of energy. The reception of OAM in the space domain in a manner similar to that in optical fibres (i.e., receiving all of the energy rings vertical to the radiation axis) is impractical, especially for long-distance transmission. Here, we fabricate a prototype of the antenna and demonstrate that rather than in the space domain, the OAM can be well received in the time domain via a single antenna by rotating the OAM wave at the transmitter, i.e., the radio wave with rotational OAM. The phase and frequency measured in the experiment reveal that for different OAM modes, the received signals act as a commonly used orthogonal frequency division multiplexing (OFDM) signal in the time domain. This phase rotation has promising prospects for use in the practical reception of different OAMs of millimetre waves in long-distance transmission. PMID:27596746

  5. CLASS: The Cosmology Large Angular Scale Surveyor

    CERN Document Server

    Essinger-Hileman, Thomas; Amiri, Mandana; Appel, John W; Araujo, Derek; Bennett, Charles L; Boone, Fletcher; Chan, Manwei; Cho, Hsiao-Mei; Chuss, David T; Colazo, Felipe; Crowe, Erik; Denis, Kevin; Dünner, Rolando; Eimer, Joseph; Gothe, Dominik; Halpern, Mark; Harrington, Kathleen; Hilton, Gene; Hinshaw, Gary F; Huang, Caroline; Irwin, Kent; Jones, Glenn; Karakla, John; Kogut, Alan J; Larson, David; Limon, Michele; Lowry, Lindsay; Marriage, Tobias; Mehrle, Nicholas; Miller, Amber D; Miller, Nathan; Moseley, Samuel H; Novak, Giles; Reintsema, Carl; Rostem, Karwan; Stevenson, Thomas; Towner, Deborah; U-Yen, Kongpop; Wagner, Emily; Watts, Duncan; Wollack, Edward; Xu, Zhilei; Zeng, Lingzhen

    2014-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) is an experiment to measure the signature of a gravita-tional-wave background from inflation in the polarization of the cosmic microwave background (CMB). CLASS is a multi-frequency array of four telescopes operating from a high-altitude site in the Atacama Desert in Chile. CLASS will survey 70\\% of the sky in four frequency bands centered at 38, 93, 148, and 217 GHz, which are chosen to straddle the Galactic-foreground minimum while avoiding strong atmospheric emission lines. This broad frequency coverage ensures that CLASS can distinguish Galactic emission from the CMB. The sky fraction of the CLASS survey will allow the full shape of the primordial B-mode power spectrum to be characterized, including the signal from reionization at low $\\ell$. Its unique combination of large sky coverage, control of systematic errors, and high sensitivity will allow CLASS to measure or place upper limits on the tensor-to-scalar ratio at a level of $r=0.01$ and make a cosmi...

  6. CLASS: The Cosmology Large Angular Scale Surveyor

    Science.gov (United States)

    Essinger-Hileman, Thomas; Ali, Aamir; Amiri, Mandana; Appel, John W.; Araujo, Derek; Bennett, Charles L.; Boone, Fletcher; Chan, Manwei; Cho, Hsiao-Mei; Chuss, David T.; Colazo, Felipe; Crowe, Erik; Denis, Kevin; Dunner, Rolando; Eimer, Joseph; Gothe, Dominik; Halpern, Mark; Kogut, Alan J.; Miller, Nathan; Moseley, Samuel; Rostem, Karwan; Stevenson, Thomas; Towner, Deborah; U-Yen, Kongpop; Wollack, Edward

    2014-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) is an experiment to measure the signature of a gravitational wave background from inflation in the polarization of the cosmic microwave background (CMB). CLASS is a multi-frequency array of four telescopes operating from a high-altitude site in the Atacama Desert in Chile. CLASS will survey 70% of the sky in four frequency bands centered at 38, 93, 148, and 217 GHz, which are chosen to straddle the Galactic-foreground minimum while avoiding strong atmospheric emission lines. This broad frequency coverage ensures that CLASS can distinguish Galactic emission from the CMB. The sky fraction of the CLASS survey will allow the full shape of the primordial B-mode power spectrum to be characterized, including the signal from reionization at low-length. Its unique combination of large sky coverage, control of systematic errors, and high sensitivity will allow CLASS to measure or place upper limits on the tensor-to-scalar ratio at a level of r = 0:01 and make a cosmic-variance-limited measurement of the optical depth to the surface of last scattering, tau. (c) (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  7. Orbital angular momentum divider of light

    CERN Document Server

    Dong, Hailong Zhou Jianji; Cai, Xinlun; Yu, SiYuan; Zhang, Xinliang

    2016-01-01

    Manipulation of orbital angular momentum (OAM) of light is essential in OAM-based optical systems. Especially, OAM divider, which can convert the incoming OAM mode into one or several new smaller modes in proportion at different spatial paths, is very useful in OAM-based optical networks. However, this useful tool was never reported yet. For the first time, we put forward a passive OAM divider based on coordinate transformation. The device consists of a Cartesian to log-polar coordinate converter and an inverse converter. The first converter converts the OAM light into a rectangular-shaped plane light with a transverse phase gradient. And the second converter converts the plane light into multiple diffracted light. The OAM of zeroth-order diffracted light is the product of the input OAM and the scaling parameter. The residual light is output from other diffracted orders. Furthermore, we extend the scheme to realize equal N-dividing of OAM and arbitrary dividing of OAM. The ability of dividing OAM shows huge p...

  8. Semiclassical model for attosecond angular streaking.

    Science.gov (United States)

    Smolarski, M; Eckle, P; Keller, U; Dörner, R

    2010-08-16

    Attosecond angular streaking is a new technique to achieve unsurpassed time accuracy of only a few attoseconds. Recently this has been successfully used to set an upper limit on the electron tunneling delay time in strong laser field ionization. The measurement technique can be modeled with either the time-dependent Schrödinger equation (TDSE) or a more simple semiclassical approach that describes the process in two steps in analogy to the three-step model in high harmonic generation (HHG): step one is the tunnel ionization and step two is the classical motion in the strong laser field. Here we describe in detail a semiclassical model which is based on the ADK theory for the tunneling step, with subsequent classical propagation of the electron in the laser field. We take into account different ellipticities of the laser field and a possible wavelength-dependent ellipticity that is typically observed for pulses in the two-optical-cycle regime. This semiclassical model shows excellent agreement with the experimental result. PMID:20721150

  9. Angular momentum and galaxy formation revisited

    CERN Document Server

    Romanowsky, Aaron J

    2012-01-01

    Motivated by new kinematic data in the outer parts of early-type galaxies (ETGs), we re-examine angular momentum (AM) in all galaxy types. We present methods for estimating the specific AM j, focusing on ETGs, to derive relations between stellar j_* and mass M_* (after Fall 1983). We perform analyses of 8 galaxies out to ~10 R_e, finding that data at 2 R_e are sufficient to estimate total j_*. Our results contravene suggestions that ellipticals (Es) harbor large reservoirs of hidden j_* from AM transport in major mergers. We carry out a j_*-M_* analysis of literature data for ~100 nearby bright galaxies of all types. The Es and spirals form parallel j_*-M_* tracks, which for spirals is like the Tully-Fisher relation, but for Es derives from a mass-size-rotation conspiracy. The Es contain ~3-4 times less AM than equal-mass spirals. We decompose the spirals into disks+bulges and find similar j_*-M_* trends to spirals and Es overall. The S0s are intermediate, and we propose that morphological types reflect disk/...

  10. Millimetre Wave with Rotational Orbital Angular Momentum.

    Science.gov (United States)

    Zhang, Chao; Ma, Lu

    2016-01-01

    Orbital angular momentum (OAM) has been widely studied in fibre and short-range communications. The implementation of millimetre waves with OAM is expected to increase the communication capacity. Most experiments demonstrate the distinction of OAM modes by receiving all of the energy in the surface vertical to the radiation axis in space. However, the reception of OAM is difficult in free space due to the non-zero beam angle and divergence of energy. The reception of OAM in the space domain in a manner similar to that in optical fibres (i.e., receiving all of the energy rings vertical to the radiation axis) is impractical, especially for long-distance transmission. Here, we fabricate a prototype of the antenna and demonstrate that rather than in the space domain, the OAM can be well received in the time domain via a single antenna by rotating the OAM wave at the transmitter, i.e., the radio wave with rotational OAM. The phase and frequency measured in the experiment reveal that for different OAM modes, the received signals act as a commonly used orthogonal frequency division multiplexing (OFDM) signal in the time domain. This phase rotation has promising prospects for use in the practical reception of different OAMs of millimetre waves in long-distance transmission. PMID:27596746

  11. Accelerator Modeling with MATLAB Accelerator Toolbox

    International Nuclear Information System (INIS)

    This paper introduces Accelerator Toolbox (AT)--a collection of tools to model storage rings and beam transport lines in the MATLAB environment. The objective is to illustrate the flexibility and efficiency of the AT-MATLAB framework. The paper discusses three examples of problems that are analyzed frequently in connection with ring-based synchrotron light sources

  12. Angular Distribution and Angular Dispersion in Collision of 19F+27A1 at 114 MeV

    Institute of Scientific and Technical Information of China (English)

    WANG Qi; Li Zhi-Chang; LU Xiu-Qin; ZHAO Kui; LIU Jian-Cheng; SERGEY Yu-Kun; DONG Yu-Chuan; LI Song-Lin; DUAN Li-Min; XU Hu-Shan; XU Hua-Gen; CHEN Ruo-Fu; WU He-Yu; HAN Jian-Long

    2004-01-01

    Angular distributions of fragments B, C, N, O, F, Ne, Na, Mg and Al induced by the collision of 19F+27 A1 at 114MeV have been measured. Angular dispersion parameters are extracted from the experimental data and compared with the theoretical ones. The dynamic dispersions for dissipative products depend strongly on the charge number Z of the fragments.

  13. Racetrack linear accelerators

    International Nuclear Information System (INIS)

    An improved recirculating electron beam linear accelerator of the racetrack type is described. The system comprises a beam path of four straight legs with four Pretzel bending magnets at the end of each leg to direct the beam into the next leg of the beam path. At least one of the beam path legs includes a linear accelerator. (UK)

  14. COLLECTIVE-FIELD ACCELERATION

    Energy Technology Data Exchange (ETDEWEB)

    Sessler, Andrew M.

    1969-07-04

    Diverse methods proposed for the acceleration of particles by means of collective fields are reviewed. A survey is made of the various currently active experimental programs devoted to investigating collective acceleration, and the present status of the research is briefly noted.

  15. KEK digital accelerator

    Science.gov (United States)

    Iwashita, T.; Adachi, T.; Takayama, K.; Leo, K. W.; Arai, T.; Arakida, Y.; Hashimoto, M.; Kadokura, E.; Kawai, M.; Kawakubo, T.; Kubo, Tomio; Koyama, K.; Nakanishi, H.; Okazaki, K.; Okamura, K.; Someya, H.; Takagi, A.; Tokuchi, A.; Wake, M.

    2011-07-01

    The High Energy Accelerator Research Organization KEK digital accelerator (KEK-DA) is a renovation of the KEK 500 MeV booster proton synchrotron, which was shut down in 2006. The existing 40 MeV drift tube linac and rf cavities have been replaced by an electron cyclotron resonance (ECR) ion source embedded in a 200 kV high-voltage terminal and induction acceleration cells, respectively. A DA is, in principle, capable of accelerating any species of ion in all possible charge states. The KEK-DA is characterized by specific accelerator components such as a permanent magnet X-band ECR ion source, a low-energy transport line, an electrostatic injection kicker, an extraction septum magnet operated in air, combined-function main magnets, and an induction acceleration system. The induction acceleration method, integrating modern pulse power technology and state-of-art digital control, is crucial for the rapid-cycle KEK-DA. The key issues of beam dynamics associated with low-energy injection of heavy ions are beam loss caused by electron capture and stripping as results of the interaction with residual gas molecules and the closed orbit distortion resulting from relatively high remanent fields in the bending magnets. Attractive applications of this accelerator in materials and biological sciences are discussed.

  16. Asia honours accelerator physicists

    CERN Multimedia

    2010-01-01

    "Steve Meyers of Cern and Jie Wei of Beijing's Tsinghua University are the first recipients of a new prize for particle physics. The pair were honoured for their contributions to numerous particle-accelerator projects - including Cern's Large Hadron Collider - by the Asian Committee for Future Accelerators (ACFA)..." (1 paragraph)

  17. Accelerators for energy production

    International Nuclear Information System (INIS)

    A tremendous progress of accelerators for these several decades, has been motivated mainly by the research on subnuclear physics. The culmination in high energy accelerators might be SSC, 20 TeV collider in USA, probably the ultimate accelerator being built with the conventional principle. The technology cultivated and integrated for the accelerator development, can now stably offer the high power beam which could be used for the energy problems. The Inertial Confinement Fusion (ICF) with high current, 10 kA and short pulse, 20 ns heavy ion beam (HIB) of mass number ∼200, would be the most promising application of accelerators for energy production. In this scenario, the fuel containing D-T mixture, will be compressed to the high temperature, ∼10 keV and to the high density state, ∼1000 times the solid density with the pressure of ablative plasma or thermal X ray produced by bombarding of high power HIB. The efficiency, beam power/electric power for accelerator, and the repetition rate of HIB accelerators could be most suitable for the energy production. In the present paper, the outline of HIB ICF (HIF) is presented emphasizing the key issues of high current heavy ion accelerator system. (author)

  18. Accelerators Beyond The Tevatron?

    Energy Technology Data Exchange (ETDEWEB)

    Lach, Joseph; /Fermilab

    2010-07-01

    Following the successful operation of the Fermilab superconducting accelerator three new higher energy accelerators were planned. They were the UNK in the Soviet Union, the LHC in Europe, and the SSC in the United States. All were expected to start producing physics about 1995. They did not. Why?

  19. Linear induction accelerator

    International Nuclear Information System (INIS)

    This paper examines a new layout for the injector and accelerating sectins of a linear induction accelerator. The sections are combined in a single housing: an induction system with a current-pulse generator based on double strip shaping lines laid over ferromagnetic cores; a multichannel spark discharger with forced current division among channels; and a system for core demagnetization and electron-beam formation and transport. The results of formation of an electron beam in the injector system and its acceleration in the first accelerating section of the accelerator for injection of beams with energies of 0.2-0.4 MeV, currents of 1-2 kA, and pulse durations of 60 nsec are given

  20. Collinear wake field acceleration

    International Nuclear Information System (INIS)

    In the Voss-Weiland scheme of wake field acceleration a high current, ring-shaped driving bunch is used to accelerate a low current beam following along on axis. In such a structure, the transformer ratio, i.e., the ratio of maximum voltage that can be gained by the on-axis beam and the voltage lost by the driving beam, can be large. In contrast, it has been observed that for an arrangement in which driving and driven bunches follow the same path, and where the current distribution of both bunches is gaussian, the transformer ratio is not normally greater than two. This paper explores some of the possibilities and limitations of a collinear acceleration scheme. In addition to its application to wake field acceleration in structures, this study is also of interest for the understanding of the plasma wake field accelerator. 11 refs., 4 figs

  1. Accelerators, Beams And Physical Review Special Topics - Accelerators And Beams

    Energy Technology Data Exchange (ETDEWEB)

    Siemann, R.H.; /SLAC

    2011-10-24

    Accelerator science and technology have evolved as accelerators became larger and important to a broad range of science. Physical Review Special Topics - Accelerators and Beams was established to serve the accelerator community as a timely, widely circulated, international journal covering the full breadth of accelerators and beams. The history of the journal and the innovations associated with it are reviewed.

  2. The origin of angular momentum in dark matter halos

    CERN Document Server

    Vitvitska, M; Kravtsov, A V; Bullock, J S; Wechsler, R H; Primack, Joel R

    2002-01-01

    We propose a new explanation for the origin of angular momentum in galaxies and their dark halos, in which the halos obtain their spin through the cumulative acquisition of angular momentum from satellite accretion. In our model, the build-up of angular momentum is a random walk process associated with the mass assembly history of the halo's major progenitor. We assume no correlation between the angular momenta of accreted objects. Using the extended Press-Schechter approximation, we calculate the growth of mass, angular momentum, and spin parameter $\\lambda$ for many halos. Our random walk model reproduces the key features of the angular momentum of halos found in N-body simulations: a lognormal distribution in $\\lambda$ with an average of $ \\approx 0.04$, independent of mass and redshift. The evolution of the spin parameter in individual halos in this model is quite different from the steady increase with time of angular momentum in the tidal torque picture. We find both in N-body simulations and in our ran...

  3. Angular dependent light emission from planar waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Peter, Jaison, E-mail: jaison.peter@gmail.com [International School of Photonics, Cochin University of Science and Technology, Cochin 682022 (India); CRE" +E, IDEAS Research Institute, Robert Gordon University, Aberdeen AB10 7GJ (United Kingdom); Prabhu, Radhakrishna [CRE" +E, IDEAS Research Institute, Robert Gordon University, Aberdeen AB10 7GJ (United Kingdom); Radhakrishnan, P.; Vallabhan, C. P. G.; Nampoori, V. P. N.; Kailasnath, M. [International School of Photonics, Cochin University of Science and Technology, Cochin 682022 (India)

    2015-01-07

    We have investigated the angular dependence of amplified spontaneous emission (ASE) and laser emission from an asymmetric and free-standing polymer thin films doped with rhodamine 6G, which is transversely pumped by a pulsed Nd:YAG laser. A semi-leaky waveguide or quasi-waveguide structure has been developed by spin coating technique. In these waveguides, the light was confined by the film/air-film/glass substrate interfaces. At the film/substrate interface, a portion of light will reflect back into the film (guided mode) and the remaining refracted to the substrate resulting in cutoff modes. A blue-shift in ASE has been observed when the pump power was increased from 8 to 20 mW allowing a limited range of tuning of emission wavelength. To study the directionality of the ASE from the waveguide, we have measured the output intensity and FWHM of emission spectra as a function of viewing angle (θ) from the plane parallel to film. From the detailed examination of the output emission spectra, as +θ increases from 0° there has been an initial decrease in output intensity, but at a particular angle ≈10° an increase in output intensity was observed. This additional peak in output intensity as +θ is a clear indication of coexistence of the cutoff mode. We also present a compact solid-state laser based on leaky mode propagation from the dye-doped polymer free-standing film (∼50 μm thickness) waveguide. The partial reflections from the broad lateral surfaces of the free-standing films provided the optical feedback for the laser emission with high directionality. For a pump power of 22 mW, an intense line with FWHM <0.2 nm was observed at 578 nm.

  4. Knee abduction angular impulses during prolonged running with wedged insoles.

    Science.gov (United States)

    Lewinson, Ryan T; Worobets, Jay T; Stefanyshyn, Darren J

    2013-07-01

    Wedged insoles may produce immediate effects on knee abduction angular impulses during running; however, it is currently not known whether these knee abduction angular impulse magnitudes are maintained throughout a run when fatigue sets in. If changes occur, this could affect the clinical utility of wedged insoles in treating conditions such as patellofemoral pain. Thus, the purpose of this study was to determine whether knee abduction angular impulses are altered during a prolonged run with wedged insoles. It was hypothesized that knee abduction angular impulses would be reduced following a prolonged run with wedged insoles. Nine healthy runners participated. Runners were randomly assigned to either a 6-mm medial wedge condition or a 6-mm lateral wedge condition and then ran continuously overground for 30 min. Knee abduction angular impulses were quantified at 0 and 30 min using a gait analysis procedure. After 2 days, participants returned to perform the same test but with the other wedge type. Two-way repeated-measures analysis of variance was used to evaluate main effects of wedge condition and time and interactions between wedge condition and time (α = 0.05). Paired t-tests were used for post hoc analysis (α = 0.01). No interaction effects (p = 0.958) were found, and knee abduction angular impulses were not significantly different over time (p = 0.384). Lateral wedge conditions produced lesser knee abduction angular impulses than medial conditions at 0 min (difference of 2.79 N m s, p = 0.006) and at 30 min (difference of 2.76 N m s, p < 0.001). It is concluded that significant knee abduction angular impulse changes within wedge conditions do not occur during a 30-min run. Additionally, knee abduction angular impulse differences between wedge conditions are maintained during a 30-min run.

  5. The miniature accelerator

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    The image that most people have of CERN is of its enormous accelerators and their capacity to accelerate particles to extremely high energies. But thanks to some cutting-edge studies on beam dynamics and radiofrequency technology, along with innovative construction techniques, teams at CERN have now created the first module of a brand-new accelerator, which will be just 2 metres long. The potential uses of this miniature accelerator will include deployment in hospitals for the production of medical isotopes and the treatment of cancer. It’s a real David-and-Goliath story.   Serge Mathot, in charge of the construction of the "mini-RFQ", pictured with the first of the four modules that will make up the miniature accelerator. The miniature accelerator consists of a radiofrequency quadrupole (RFQ), a component found at the start of all proton accelerator chains around the world, from the smallest to the largest. The LHC is designed to produce very high-intensity beams ...

  6. Large electrostatic accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Jones, C.M.

    1984-01-01

    The increasing importance of energetic heavy ion beams in the study of atomic physics, nuclear physics, and materials science has partially or wholly motivated the construction of a new generation of large electrostatic accelerators designed to operate at terminal potentials of 20 MV or above. In this paper, the author briefly discusses the status of these new accelerators and also discusses several recent technological advances which may be expected to further improve their performance. The paper is divided into four parts: (1) a discussion of the motivation for the construction of large electrostatic accelerators, (2) a description and discussion of several large electrostatic accelerators which have been recently completed or are under construction, (3) a description of several recent innovations which may be expected to improve the performance of large electrostatic accelerators in the future, and (4) a description of an innovative new large electrostatic accelerator whose construction is scheduled to begin next year. Due to time and space constraints, discussion is restricted to consideration of only tandem accelerators.

  7. Accelerator programme at CAT

    International Nuclear Information System (INIS)

    The Accelerator Programme at the Centre for Advanced Technology (CAT), Indore, has very broad based concept under which all types of accelerators are to be taken up for design and fabrication. This centre will be housing a wide variety of accelerators to serve as a common facility for the universities, national laboratories in addition to laboratories under the Department of Atomic Energy. In the first phase of the programme, a series of electron accelerators are designed and fabricated. They are synchrotron radiation sources of 450 MeV (INDUS-I) and of 2 GeV (INDUS-II), microtron upto energy of 20 MeV, linear accelerator upto 20 MeV, and DC Accelerator for industrial irradiation upto 750 KeV and 20 KW. A proton accelerator of 300 MeV with 20 MeV linac injector is also designed. CAT is also developing a strong base for support technologies like ultra high vacuum, radio frequency and microwaves, DC pulsed and superconducting magnets, power supplies and controls etc. These technologies are very useful for other industrial applications also. To develop user groups to utilise INDUS-II synchrotron radiation source, a batch production of rotating Anode X-ray generators with power supplies has been initiated. So also, the sputter ion pumps, electron guns, turbo molecular pumps are brought into batch production. (author)

  8. Collective ion acceleration

    International Nuclear Information System (INIS)

    Progress achieved in the understanding and development of collective ion acceleration is presented. Extensive analytic and computational studies of slow cyclotron wave growth on an electron beam in a helix amplifier were performed. Research included precise determination of linear coupling between beam and helix, suppression of undesired transients and end effects, and two-dimensional simulations of wave growth in physically realizable systems. Electrostatic well depths produced exceed requirements for the Autoresonant Ion Acceleration feasibility experiment. Acceleration of test ions to modest energies in the troughs of such waves was also demonstrated. Smaller efforts were devoted to alternative acceleration mechanisms. Langmuir wave phase velocity in Converging Guide Acceleration was calculated as a function of the ratio of electron beam current to space-charge limiting current. A new collective acceleration approach, in which cyclotron wave phase velocity is varied by modulation of electron beam voltage, is proposed. Acceleration by traveling Virtual Cathode or Localized Pinch was considered, but appears less promising. In support of this research, fundamental investigations of beam propagation in evacuated waveguides, of nonneutral beam linear eigenmodes, and of beam stability were carried out. Several computer programs were developed or enhanced. Plans for future work are discussed

  9. Diffusive Acceleration of Particles at Oblique, Relativistic, Magnetohydrodynamic Shocks

    CERN Document Server

    Summerlin, Errol J

    2011-01-01

    Diffusive shock acceleration (DSA) at relativistic shocks is expected to be an important acceleration mechanism in a variety of astrophysical objects including extragalactic jets in active galactic nuclei and gamma ray bursts. These sources remain good candidate sites for the generation of ultra-high energy cosmic rays. In this paper, key predictions of DSA at relativistic shocks that are germane to production of relativistic electrons and ions are outlined. The technique employed to identify these characteristics is a Monte Carlo simulation of such diffusive acceleration in test-particle, relativistic, oblique, magnetohydrodynamic (MHD) shocks. Using a compact prescription for diffusion of charges in MHD turbulence, this approach generates particle angular and momentum distributions at any position upstream or downstream of the shock. Simulation output is presented for both small angle and large angle scattering scenarios, and a variety of shock obliquities including superluminal regimes when the de Hoffmann...

  10. Generation and detection of orbital angular momentum via metasurface

    Science.gov (United States)

    Jin, Jinjin; Luo, Jun; Zhang, Xiaohu; Gao, Hui; Li, Xiong; Pu, Mingbo; Gao, Ping; Zhao, Zeyu; Luo, Xiangang

    2016-04-01

    Beams carrying orbital angular momentum possess a significant potential for modern optical technologies ranging from classical and quantum communication to optical manipulation. In this paper, we theoretically design and experimentally demonstrate an ultracompact array of elliptical nanoholes, which could convert the circularly polarized light into the cross-polarized vortex beam. To measure the topological charges of orbital angular momentum in a simple manner, another elliptical nanoholes array is designed to generate reference beam as a reference light. This approach may provide a new way for the generation and detection of orbital angular momentum in a compact device.

  11. Coherent detection of orbital angular momentum in radio

    CERN Document Server

    Daldorff, L K S; Bergman, J E S; Isham, B; Al-Nuaimi, M K T; Forozesh, K; Carozzi, T D

    2015-01-01

    The angular momentum propagated by a beam of radiation has two contributions: spin angular momentum (SAM) and orbital angular momentum (OAM). SAM corresponds to wave polarisation, while OAM-carrying beams are characterized by a phase which is a function of azimuth. We demonstrate experimentally that radio beams propagating OAM can be generated and coherently detected using ordinary electric dipole antennas. The results presented here could pave the way for novel radio OAM applications in technology and science, including radio communication, passive remote sensing, and new types of active (continuous or pulsed transmission) electromagnetic measurements.

  12. Angular magnetoresistance in semiconducting undoped amorphous carbon thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sagar, Rizwan Ur Rehman; Saleemi, Awais Siddique; Zhang, Xiaozhong, E-mail: xzzhang@tsinghua.edu.cn [Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People' s Republic of China and Beijing National Center for Electron Microscopy, Beijing 100084 (China)

    2015-05-07

    Thin films of undoped amorphous carbon thin film were fabricated by using Chemical Vapor Deposition and their structure was investigated by using High Resolution Transmission Electron Microscopy and Raman Spectroscopy. Angular magnetoresistance (MR) has been observed for the first time in these undoped amorphous carbon thin films in temperature range of 2 ∼ 40 K. The maximum magnitude of angular MR was in the range of 9.5% ∼ 1.5% in 2 ∼ 40 K. The origin of this angular MR was also discussed.

  13. Induced Compression of White Dwarfs by Angular Momentum Loss

    CERN Document Server

    Boshkayev, Kuantay; Ruffini, Remo; Zhami, Bakytzhan

    2016-01-01

    We investigate isolated sub- and super-Chandrasekhar white dwarfs which lose angular momentum through magnetic dipole braking. We construct constant rest mass sequences by fulfilling all stability criteria of rotating configurations and show how the main structure of white dwarfs such as the central density, mean radius and angular velocity change with time. We explicitly demonstrate that all isolated white dwarfs regardless of their masses, by angular momentum loss, shrink and increase their central density. We also analyze the effects of the structure parameters on the evolution timescale both in the case of constant magnetic field and constant magnetic flux.

  14. Notes on the quantum theory of angular momentum

    CERN Document Server

    Feenberg, Eugene

    1999-01-01

    This classic, concise text has served a generation of physicists as an exceptionally useful guide to the mysteries of angular momenta and Clebsch-Gordon Coefficients. Derived from notes originally prepared to assist graduate students in reading research papers on atomic, molecular, and nuclear structure, the text first reviews the basic elements of quantum theory. It then examines the development of the fundamental commutation relations for angular momentum components and vector operators, and the ways in which matrix elements and eigenvalues of the angular momentum operators are worked out f

  15. Electro-optic analyzer of angular momentum hyperentanglement.

    Science.gov (United States)

    Wu, Ziwen; Chen, Lixiang

    2016-02-25

    Characterizing a high-dimensional entanglement is fundamental in quantum information applications. Here, we propose a theoretical scheme to analyze and characterize the angular momentum hyperentanglement that two photons are entangled simultaneously in spin and orbital angular momentum. Based on the electro-optic sampling with a proposed hyper-entanglement analyzer and the simple matrix operation using Cramer rule, our simulations show that it is possible to retrieve effectively both the information about the degree of polarization entanglement and the spiral spectrum of high-dimensional orbital angular momentum entanglement.

  16. Detection of a spinning object using light's orbital angular momentum.

    Science.gov (United States)

    Lavery, Martin P J; Speirits, Fiona C; Barnett, Stephen M; Padgett, Miles J

    2013-08-01

    The linear Doppler shift is widely used to infer the velocity of approaching objects, but this shift does not detect rotation. By analyzing the orbital angular momentum of the light scattered from a spinning object, we observed a frequency shift proportional to product of the rotation frequency of the object and the orbital angular momentum of the light. This rotational frequency shift was still present when the angular momentum vector was parallel to the observation direction. The multiplicative enhancement of the frequency shift may have applications for the remote detection of rotating bodies in both terrestrial and astronomical settings.

  17. Generation and detection of orbital angular momentum via metasurface.

    Science.gov (United States)

    Jin, Jinjin; Luo, Jun; Zhang, Xiaohu; Gao, Hui; Li, Xiong; Pu, Mingbo; Gao, Ping; Zhao, Zeyu; Luo, Xiangang

    2016-04-07

    Beams carrying orbital angular momentum possess a significant potential for modern optical technologies ranging from classical and quantum communication to optical manipulation. In this paper, we theoretically design and experimentally demonstrate an ultracompact array of elliptical nanoholes, which could convert the circularly polarized light into the cross-polarized vortex beam. To measure the topological charges of orbital angular momentum in a simple manner, another elliptical nanoholes array is designed to generate reference beam as a reference light. This approach may provide a new way for the generation and detection of orbital angular momentum in a compact device.

  18. Control of Angular Intervals for Angle-Multiplexed Holographic Memory

    Science.gov (United States)

    Kinoshita, Nobuhiro; Muroi, Tetsuhiko; Ishii, Norihiko; Kamijo, Koji; Shimidzu, Naoki

    2009-03-01

    In angle-multiplexed holographic memory, the full width at half maximum of the Bragg selectivity curves is dependent on the angle formed between the medium and incident laser beams. This indicates the possibility of high density and high multiplexing number by varying the angular intervals between adjacent holograms. We propose an angular interval scheduling for closely stacking holograms into medium even when the angle range is limited. We obtained bit error rates of the order of 10-4 under the following conditions: medium thickness of 1 mm, laser beam wavelength of 532 nm, and angular multiplexing number of 300.

  19. Generation and detection of orbital angular momentum via metasurface.

    Science.gov (United States)

    Jin, Jinjin; Luo, Jun; Zhang, Xiaohu; Gao, Hui; Li, Xiong; Pu, Mingbo; Gao, Ping; Zhao, Zeyu; Luo, Xiangang

    2016-01-01

    Beams carrying orbital angular momentum possess a significant potential for modern optical technologies ranging from classical and quantum communication to optical manipulation. In this paper, we theoretically design and experimentally demonstrate an ultracompact array of elliptical nanoholes, which could convert the circularly polarized light into the cross-polarized vortex beam. To measure the topological charges of orbital angular momentum in a simple manner, another elliptical nanoholes array is designed to generate reference beam as a reference light. This approach may provide a new way for the generation and detection of orbital angular momentum in a compact device. PMID:27052796

  20. The pretzelosity TMD and quark orbital angular momentum

    Energy Technology Data Exchange (ETDEWEB)

    Lorce, C. [IPNO, Universite Paris-Sud, CNRS/IN2P3, 91406 Orsay (France); LPT, Universite Paris-Sud, CNRS, 91406 Orsay (France); Pasquini, B., E-mail: pasquini@pv.infn.it [Dipartimento di Fisica, Universita degli Studi di Pavia, Pavia (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, Pavia (Italy)

    2012-04-12

    We study the connection between the quark orbital angular momentum and the pretzelosity transverse-momentum dependent parton distribution function. We discuss the origin of this relation in quark models, identifying as key ingredient for its validity the assumption of spherical symmetry for the nucleon in its rest frame. Finally we show that the individual quark contributions to the orbital angular momentum obtained from this relation cannot be interpreted as the intrinsic contributions, but include the contribution from the transverse centre of momentum which cancels out only in the total orbital angular momentum.

  1. Experimental Evidence for Partonic Orbital Angular Momentum at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Fields, Douglas E. [University of New Mexico, Department of Physics and Astronomy, Albuquerque, NM 871331 (United States)

    2011-12-14

    Although one might naively anticipate that the proton, being the lowest baryonic energy state, would be in a L = 0 state, the current theoretical understanding is that it must carry orbital angular momentum in order, for example, to have a non-zero anomalous magnetic moment. I will review the experimental evidence linked theoretically to orbital angular momentum of the proton's constituents from the RHIC experiments and summarize by presenting a challenge to the theory community--to develop a consistent framework which can explain the spin polarization asymmetries seen at RHIC and elsewhere, and give insight to the partonic wave-functions including orbital angular momentum.

  2. Femtosecond dynamics of spin and orbital angular momentum in nickel

    Energy Technology Data Exchange (ETDEWEB)

    Stamm, Christian; Pontius, Niko; Holldack, Karsten; Quast, Torsten; Kachel, Torsten; Wietstruk, Marko; Mitzner, Rolf; Duerr, Hermann A. [Elektronenspeicherring BESSY II, Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, 12489 Berlin (Germany)

    2009-07-01

    At the BESSY femtoslicing source we measure X-ray magnetic circular dichroism (XMCD) with 100 fs time resolution. By virtue of the XMCD sum rules, we find that the spin and orbital momenta in a thin nickel film are quenched with a time constant of 150 fs upon excitation with a fs laser pulse. This represents the first unambiguous proof that the total electronic angular momentum is transferred to the lattice on the same ultrafast time scale. The quenching of orbital angular momentum also is a serious constraint for models of angular momentum dissipation.

  3. Angular correlation of electrons and positrons in internal pair conversion

    International Nuclear Information System (INIS)

    The angular distribution of electrons and positrons which are emitted in internal pair conversion (IPC) is calculated. Coulomb-distorted waves are used as electron wave functions. Nuclear transitions of various multipolarities L>0 and of magnetic (ML) and electric (EL) type are considered as well as E0-conversion. Analytical expressions for the angular correlation are derived which are evaluated numerically assuming a finite extension of the nucleus and, for the EL and ML conversion, also in point-nucleus approximation. The calculated angular correlations are compared with results obtained within the Born approximation and, for the E0 case, with experimental data. (orig.)

  4. MEASUREMENT OF ANGULAR VIBRATION AMPLITUDE BY ACTIVELY BLURRED IMAGES

    Institute of Scientific and Technical Information of China (English)

    GUAN Baiqing; WANG Shigang; LIU Chong; LI Qian

    2007-01-01

    A novel motion-blur-based method for measuring the angular amplitude of a high-frequency rotational vibration is schemed. The proposed approach combines the active vision concept and the mechanism of motion-from-blur, generates motion blur on the image plane actively by extending exposure time, and utilizes the motion blur information in polar images to estimate the angular amplitude of a high-frequency rotational vibration. This method obtains the analytical results of the angular vibration amplitude from the geometric moments of a motion blurred polar image and an unblurred image for reference. Experimental results are provided to validate the presented scheme.

  5. Accelerator Toolbox for MATLAB

    International Nuclear Information System (INIS)

    This paper introduces Accelerator Toolbox (AT)--a collection of tools to model particle accelerators and beam transport lines in the MATLAB environment. At SSRL, it has become the modeling code of choice for the ongoing design and future operation of the SPEAR 3 synchrotron light source. AT was designed to take advantage of power and simplicity of MATLAB--commercially developed environment for technical computing and visualization. Many examples in this paper illustrate the advantages of the AT approach and contrast it with existing accelerator code frameworks

  6. Hadron accelerators in medicine

    Energy Technology Data Exchange (ETDEWEB)

    Amaldi, U. [European Organization for Nuclear Research (CERN), Geneva (Switzerland). Accelerator School; Silari, M. [Consiglio Nazionale delle Ricerche, Milan (Italy)

    1996-12-31

    The application of hadron accelerators (protons and light ions) in cancer therapy is discussed. After a brief introduction on the rationale for the use of heavy charged particles in radiation therapy, a discussion is given on accelerator technology and beam delivery systems. Next, existing and planned facilities are briefly reviewed. The Italian Hadron-therapy Project is then described in some detail, with reference ro both the National Centre for Oncological Hadron-therapy and the design of different types of compact proton accelerators aimed at introducing proton therapy in a large umber of hospitals. (author) 28 refs.

  7. Confronting Twin Paradox Acceleration

    Science.gov (United States)

    Murphy, Thomas W.

    2016-05-01

    The resolution to the classic twin paradox in special relativity rests on the asymmetry of acceleration. Yet most students are not exposed to a satisfactory analysis of what exactly happens during the acceleration phase that results in the nonaccelerated observer's more rapid aging. The simple treatment presented here offers both graphical and quantitative solutions to the problem, leading to the correct result that the acceleration-induced age gap is 2Lβ years when the one-way distance L is expressed in light-years and velocity β ≡v/c .

  8. Entropic accelerating universe

    Energy Technology Data Exchange (ETDEWEB)

    Easson, Damien A., E-mail: easson@asu.ed [Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8568 (Japan); Department of Physics and School of Earth and Space Exploration and Beyond Center, Arizona State University, Phoenix, AZ 85287-1504 (United States); Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106-4030 (United States); Frampton, Paul H., E-mail: frampton@physics.unc.ed [Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8568 (Japan); Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599 (United States); Smoot, George F., E-mail: gfsmoot@lbl.go [Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8568 (Japan); Lawrence Berkeley National Lab, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Physics Department, University of California, Berkeley, CA 94720 (United States); Institute for the Early Universe, Ewha Womans University and Advanced Academy, Seoul (Korea, Republic of); Chaire Blaise Pascale, Universite Paris Denis Diderot, Paris (France)

    2011-01-31

    To accommodate the observed accelerated expansion of the universe, one popular idea is to invoke a driving term in the Friedmann-Lemaitre equation of dark energy which must then comprise 70% of the present cosmological energy density. We propose an alternative interpretation which takes into account the entropy and temperature intrinsic to the horizon of the universe due to the information holographically stored there. Dark energy is thereby obviated and the acceleration is due to an entropic force naturally arising from the information storage on the horizon surface screen. We consider an additional quantitative approach inspired by surface terms in general relativity and show that this leads to the entropic accelerating universe.

  9. ACCELERATORS: School prizes

    International Nuclear Information System (INIS)

    Dedicated to its goal of encouraging scientists and students to work in the field of particle accelerators, the US Particle Accelerator School (operating since 1981) has switched to a new format. Starting this year, it will offer in alternate years basic accelerator physics plus advanced subjects in both university and symposium styles over four weeks. Expanding the school from two to four weeks gives additional flexibility, and undergraduate participation should be encouraged by university credits being offered for particular courses. In the intervening years, the school will organize six-day topical courses

  10. Auroral electron acceleration

    International Nuclear Information System (INIS)

    Two theories of auroral electron acceleration are discussed. Part 1 examines the currently widely held view that the acceleration is an ordered process in a quasi-static electric field. It is suggested that, although there are many factors seeming to support this theory, the major qualifications and uncertainties that have been identified combine to cast serious doubt over its validity. Part 2 is devoted to a relatively new interpretation in terms of stochastic acceleration in turbulent electric fields. This second theory, which appears to account readily for most known features of the electron distribution function, is considered to provide a more promising approach to this central question in magnetospheric plasma physics. (author)

  11. The particle accelerator

    International Nuclear Information System (INIS)

    As the Palais de la Decouverte (in Paris) is the sole scientific vulgarization establishment in the world to operate an actual particle accelerator able to provoke different types of nuclear reactions, the author recalls some historical aspects of the concerned department since the creation of the 'Radioactivity - Atom synthesis' department in 1937. He recalls the experiments which were then performed, the installation of the particle accelerator in 1964 and its renewal. He describes what's going on in this accelerator. He gives an overview of the difficulties faced after it has been decided to move it, of the works which had to be performed, and of radiation protection measures

  12. Radiation from an accelerating neutral body: The case of rotation

    Science.gov (United States)

    Yarman, Tolga; Arik, Metin; Kholmetskii, Alexander L.

    2013-11-01

    When an object is bound at rest to an attractional field, its rest mass (owing to the law of energy conservation, including the mass and energy equivalence of the Special Theory of Relativity) must decrease. The mass deficiency coming into play indicates a corresponding rest energy discharge. Thus, bringing an object to a rotational motion means that the energy transferred for this purpose serves to extract just as much rest mass (or similarly "rest energy", were the speed of light in empty space taken to be unity) out of it. Here, it is shown that during angular acceleration, photons of fundamental energy are emitted, while the object is kept on being delivered to a more and more intense rotational accelerational field, being the instantaneous angular velocity of the rotating object. This fundamental energy, as seen, does not depend on anything else (such as the mass or charge of the object), and it is in harmony with Bohr's Principle of Correspondence. This means at the same time, that emission will be achieved, as long as the angular velocity keeps on increasing, and will cease right after the object reaches a stationary rotational motion (a constant centrifugal acceleration), but if the object were brought to rotation in vacuum with no friction. By the same token, one can affirm that even the rotation at a macroscopic level is quantized, and can only take on "given angular velocities" (which can only be increased, bit by bit). The rate of emission of photons of concern is, on the other hand, proportional to the angular acceleration of the object, similarly to the derivative of the tangential acceleration with respect to time. It is thus constant for a "constant angular acceleration", although the energy of the emitted photons will increase with increasing , until the rotation reaches a stationary level, after which we expect no emission --let us stress-- if the object is in rotation in vacuum, along with no whatsoever friction (such as the case of a rotating

  13. SPS accelerating cavity

    CERN Multimedia

    1983-01-01

    See photo 8202397: View towards the downstream end of one of the SPS accelerating cavities (200 MHz, travelling wave structure). See 7603195 and 8011289 for more details, 7411032 for the travelling wave structure, and also 8104138.

  14. SPS accelerating cavity

    CERN Multimedia

    1983-01-01

    View towards the downstream end of one of the SPS accelerating cavities (200 MHz, travelling wave structure). See 7603195 and 8011289 for more details, 7411032 for the travelling wave structure, and also 8104138.

  15. Rejuvenating CERN's Accelerators

    CERN Multimedia

    2004-01-01

    In the coming years and especially in 2005, CERN's accelerators are going to receive an extensive renovation programme to ensure they will perform reliably and effectively when the LHC comes into service.

  16. Dimension Driven Accelerating Universe

    CERN Document Server

    Chatterjee, S

    2009-01-01

    The current acceleration of the universe leads us to investigate higher dimensional gravity theory, which is able to explain acceleration from a theoretical view point without the need of introducing dark energy by hand. We argue that the terms containing higher dimensional metric coefficients produce an extra negative pressure that apparently drives an acceleration of the 3D space, tempting us to suggest that the accelerating universe seems to act as a window to the existence of extra spatial dimensions. Interesting to point out that in this case our cosmology apparently mimics the well known quintessence scenario fuelled by a generalised Chaplygin-type of fluid where a smooth transition from a dust dominated model to a de Sitter like one takes place. Correspondence to models generated by a tachyonic form of matter is also briefly discussed.

  17. Revisiting Caianiello's Maximal Acceleration

    OpenAIRE

    Papini, G.

    2003-01-01

    A quantum mechanical limit on the speed of orthogonality evolution justifies the last remaining assumption in Caianiello's derivation of the maximal acceleration. The limit is perfectly compatible with the behaviour of superconductors of the first type.

  18. Joint International Accelerator School

    CERN Multimedia

    CERN Accelerator School

    2014-01-01

    The CERN and US Particle Accelerator Schools recently organised a Joint International Accelerator School on Beam Loss and Accelerator Protection, held at the Hyatt Regency Hotel, Newport Beach, California, USA from 5-14 November 2014. This Joint School was the 13th in a series of such schools, which started in 1985 and also involves the accelerator communities in Japan and Russia.   Photo courtesy of Alfonse Pham, Michigan State University.   The school attracted 58 participants representing 22 different nationalities, with around half from Europe and the other half from Asia and the Americas. The programme comprised 26 lectures, each of 90 minutes, and 13 hours of case study. The students were given homework each day and had an opportunity to sit a final exam, which counted towards university credit. Feedback from the participants was extremely positive, praising the expertise and enthusiasm of the lecturers, as well as the high standard and quality of their lectures. Initial dis...

  19. Pluto Moons exhibit Orbital Angular Momentum Quantization per Mass

    OpenAIRE

    Potter F.

    2012-01-01

    The Pluto satellite system of the planet plus five moons is shown to obey the quan- tum celestial mechanics (QCM) angular momentum per mass quantization condition predicted for any gravitationally bound system.

  20. Imaging the Earth's Interior: the Angular Distribution of Terrestrial Neutrinos

    CERN Document Server

    Fields, Brian D

    2004-01-01

    Decays of radionuclides throughout the Earth's interior produce geothermal heat, but also are a source of antineutrinos. The (angle-integrated) geoneutrino flux places an integral constraint on the terrestrial radionuclide distribution. In this paper, we calculate the angular distribution of geoneutrinos, which opens a window on the differential radionuclide distribution. We develop the general formalism for the neutrino angular distribution, and we present the inverse transformation which recovers the terrestrial radioisotope distribution given a measurement of the neutrino angular distribution. Thus, geoneutrinos not only allow a means to image the Earth's interior, but offering a direct measure of the radioactive Earth, both (1) revealing the Earth's inner structure as probed by radionuclides, and (2) allowing for a complete determination of the radioactive heat generation as a function of radius. We present the geoneutrino angular distribution for the favored Earth model which has been used to calculate g...

  1. Pluto Moons exhibit Orbital Angular Momentum Quantization per Mass

    Directory of Open Access Journals (Sweden)

    Potter F.

    2012-10-01

    Full Text Available The Pluto satellite system of the planet plus five moons is shown to obey the quan- tum celestial mechanics (QCM angular momentum per mass quantization condition predicted for any gravitationally bound system.

  2. Uncertainty Relation between Angular Momentum and Angle Variable.

    Science.gov (United States)

    Roy, C. L.; Sannigrahi, A. B.

    1979-01-01

    Discusses certain pitfalls regarding the uncertainty relation between angular momentum and the angle variable from a pedagogic point of view. Further, an uncertainty relation has been derived for these variables in a simple and consistant manner. (Author/HM)

  3. Effect of angular momentum conservation on hydrodynamic simulations of colloids.

    Science.gov (United States)

    Yang, Mingcheng; Theers, Mario; Hu, Jinglei; Gompper, Gerhard; Winkler, Roland G; Ripoll, Marisol

    2015-07-01

    In contrast to most real fluids, angular momentum is not a locally conserved quantity in some mesoscopic simulation methods. Here we quantify the importance of this conservation in the flow fields associated with different colloidal systems. The flow field is analytically calculated with and without angular momentum conservation for the multiparticle collision dynamics (MPC) method, and simulations are performed to verify the predictions. The flow field generated around a colloidal particle moving under an external force with slip boundary conditions depends on the conservation of angular momentum, and the amplitude of the friction force is substantially affected. Interestingly, no dependence on the angular momentum conservation is found for the flow fields generated around colloids under the influence of phoretic forces. Moreover, circular Couette flow between a no-slip and a slip cylinder is investigated, which allows us to validate one of the two existing expressions for the MPC stress tensor.

  4. Orbital angular momentum in optical waves propagating through distributed turbulence.

    Science.gov (United States)

    Sanchez, Darryl J; Oesch, Denis W

    2011-11-21

    This is the second of two papers demonstrating that photons with orbital angular momentum can be created in optical waves propagating through distributed turbulence. In the companion paper, it is shown that propagation through atmospheric turbulence can create non-trivial angular momentum. Here, we extend the result and demonstrate that this momentum is, at least in part, orbital angular momentum. Specifically, we demonstrate that branch points (in the language of the adaptive optic community) indicate the presence of photons with non-zero OAM. Furthermore, the conditions required to create photons with non-zero orbital angular momentum are ubiquitous. The repercussions of this statement are wide ranging and these are cursorily enumerated.

  5. Relevance of angular momentum conservation in mesoscale hydrodynamics simulations.

    Science.gov (United States)

    Götze, Ingo O; Noguchi, Hiroshi; Gompper, Gerhard

    2007-10-01

    The angular momentum is conserved in fluids with a few exceptions such as ferrofluids. However, it can be violated locally in fluid simulations to reduce computational costs. The effects of this violation are investigated using a particle-based simulation method, multiparticle collision dynamics, which can switch on or off angular-momentum conservation. To this end, we study circular Couette flows between concentric and eccentric cylinders, where nonphysical torques due to the lack of the angular-momentum conservation are found whereas the velocity field is not affected. In addition, in simulations of fluids with different viscosities in contact and star polymers in solvent, incorrect angular velocities occur. These results quantitatively agree with the theoretical predictions based on the macroscopic stress tensor.

  6. General covariant conservative angular momentum as internal charges

    Institute of Scientific and Technical Information of China (English)

    赵德品

    1996-01-01

    The usual approach to internal conservative charges is used to obtain the conservation laws of angular-momentum in both Einstein gravity and gravitational anyons.The results are in complete agreement with those of references.

  7. Design and Implementation of a Digital Angular Rate Sensor

    Directory of Open Access Journals (Sweden)

    Zhen Peng

    2010-10-01

    Full Text Available With the aim of detecting the attitude of a rotating carrier, the paper presents a novel, digital angular rate sensor. The sensor consists of micro-sensing elements (gyroscope and accelerometer, signal processing circuit and micro-processor (DSP2812. The sensor has the feature of detecting three angular rates of a rotating carrier at the same time. The key techniques of the sensor, including sensing construction, sensing principles, and signal processing circuit design are presented. The test results show that the sensor can sense rolling, pitch and yaw angular rate at the same time and the measurement error of yaw (or pitch angular rate and rolling rate of the rotating carrier is less than 0.5%.

  8. Stellar Diameters and Temperatures IV. Predicting Stellar Angular Diameters

    CERN Document Server

    Boyajian, Tabetha; von Braun, Kaspar

    2013-01-01

    The number of stellar angular diameter measurements has greatly increased over the past few years due to innovations and developments in the field of long baseline optical interferometry (LBOI). We use a collection of high-precision angular diameter measurements for nearby, main-sequence stars to develop empirical relations that allow the prediction of stellar angular sizes as a function of observed photometric color. These relations are presented for a combination of 48 broad-band color indices. We empirically show for the first time a dependence on metallicity to these relations using Johnson $(B-V)$ and Sloan $(g-r)$ colors. Our relations are capable of predicting diameters with a random error of less than 5% and represent the most robust and empirical determinations to stellar angular sizes to date.

  9. Phase-space distributions and orbital angular momentum

    Directory of Open Access Journals (Sweden)

    Pasquini B.

    2014-06-01

    Full Text Available We review the concept of Wigner distributions to describe the phase-space distributions of quarks in the nucleon, emphasizing the information encoded in these functions about the quark orbital angular momentum.

  10. Electronic orbital angular momentum and magnetism of graphene

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Ji, E-mail: ji.luo@upr.edu

    2014-10-01

    Orbital angular momentum (OAM) of graphene electrons in a perpendicular magnetic field is calculated and corresponding magnetic moment is used to investigate the magnetism of perfect graphene. Variation in magnetization demonstrates its decrease with carrier-doping, plateaus in a large field, and de Haas–van Alphen oscillation. Regulation of graphene's magnetism by a parallel electric field is presented. The OAM originates from atomic-scale electronic motion in graphene lattice, and vector hopping interaction between carbon atomic orbitals is the building element. A comparison between OAM of graphene electrons, OAM of Dirac fermions, and total angular momentum of the latter demonstrates their different roles in graphene's magnetism. Applicability and relation to experiments of the results are discussed. - Highlights: • Orbital angular momentum of graphene electrons is calculated. • Orbital magnetic moment of graphene electrons is obtained. • Variation in magnetization of graphene is calculated. • Roles of different kinds of angular momentum are investigated.

  11. Phase-space distributions and orbital angular momentum

    OpenAIRE

    Pasquini B.; Lorcé C.

    2014-01-01

    We review the concept of Wigner distributions to describe the phase-space distributions of quarks in the nucleon, emphasizing the information encoded in these functions about the quark orbital angular momentum.

  12. Electronic orbital angular momentum and magnetism of graphene

    International Nuclear Information System (INIS)

    Orbital angular momentum (OAM) of graphene electrons in a perpendicular magnetic field is calculated and corresponding magnetic moment is used to investigate the magnetism of perfect graphene. Variation in magnetization demonstrates its decrease with carrier-doping, plateaus in a large field, and de Haas–van Alphen oscillation. Regulation of graphene's magnetism by a parallel electric field is presented. The OAM originates from atomic-scale electronic motion in graphene lattice, and vector hopping interaction between carbon atomic orbitals is the building element. A comparison between OAM of graphene electrons, OAM of Dirac fermions, and total angular momentum of the latter demonstrates their different roles in graphene's magnetism. Applicability and relation to experiments of the results are discussed. - Highlights: • Orbital angular momentum of graphene electrons is calculated. • Orbital magnetic moment of graphene electrons is obtained. • Variation in magnetization of graphene is calculated. • Roles of different kinds of angular momentum are investigated

  13. Cosmology Large Angular Scale Surveyor (CLASS) Focal Plane Development

    CERN Document Server

    Chuss, D T; Amiri, M; Appel, J; Bennett, C L; Colazo, F; Denis, K L; Dünner, R; Essinger-Hileman, T; Eimer, J; Fluxa, P; Gothe, D; Halpern, M; Harrington, K; Hilton, G; Hinshaw, G; Hubmayr, J; Iuliano, J; Marriage, T A; Miller, N; Moseley, S H; Mumby, G; Petroff, M; Reintsema, C; Rostem, K; U-Yen, K; Watts, D; Wagner, E; Wollack, E J; Xu, Z; Zeng, L

    2015-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) will measure the polarization of the Cosmic Microwave Background to search for and characterize the polarized signature of inflation. CLASS will operate from the Atacama Desert and observe $\\sim$70% of the sky. A variable-delay polarization modulator (VPM) modulates the polarization at $\\sim$10 Hz to suppress the 1/f noise of the atmosphere and enable the measurement of the large angular scale polarization modes. The measurement of the inflationary signal across angular scales that span both the recombination and reionization features allows a test of the predicted shape of the polarized angular power spectra in addition to a measurement of the energy scale of inflation. CLASS is an array of telescopes covering frequencies of 38, 93, 148, and 217 GHz. These frequencies straddle the foreground minimum and thus allow the extraction of foregrounds from the primordial signal. Each focal plane contains feedhorn-coupled transition-edge sensors that simultaneously d...

  14. Differential reflective fiber-optic angular displacement sensor

    Science.gov (United States)

    Shan, Mingguang; Min, Rui; Zhong, Zhi; Wang, Ying; Zhang, Yabin

    2015-05-01

    Using the characteristic that the distance apart between the emitting fiber and receiving fiber only shifts the angular-power curve, a differential reflective fiber-optic sensor for angular displacement measurement is presented through subtraction of two power signals from two receiving fibers placed on both sides of one emitting fiber. A theoretical model is established to characterize the performance of the differential reflective fiber-optic angular displacement sensor. The measurements made indicate that the general behavior of the experimental results agrees with that of the theoretical results, and the sensor can improve sensitivity by about 120%, resulting in the significant improvement of anti-interference capability, which will be more suitable for high accuracy bipolar absolute angular displacement measurement. Design guidelines are also suggested to achieve desired sensor performances.

  15. Quantum optimal control of photoelectron spectra and angular distributions

    CERN Document Server

    Goetz, R Esteban; Santra, Robin; Koch, Christiane P

    2016-01-01

    Photoelectron spectra and photoelectron angular distributions obtained in photoionization reveal important information on e.g. charge transfer or hole coherence in the parent ion. Here we show that optimal control of the underlying quantum dynamics can be used to enhance desired features in the photoelectron spectra and angular distributions. To this end, we combine Krotov's method for optimal control theory with the time-dependent configuration interaction singles formalism and a splitting approach to calculate photoelectron spectra and angular distributions. The optimization target can account for specific desired properties in the photoelectron angular distribution alone, in the photoelectron spectrum, or in both. We demonstrate the method for hydrogen and then apply it to argon under strong XUV radiation, maximizing the difference of emission into the upper and lower hemispheres, in order to realize directed electron emission in the XUV regime.

  16. Quantum optimal control of photoelectron spectra and angular distributions

    Science.gov (United States)

    Goetz, R. Esteban; Karamatskou, Antonia; Santra, Robin; Koch, Christiane P.

    2016-01-01

    Photoelectron spectra and photoelectron angular distributions obtained in photoionization reveal important information on, e.g., charge transfer or hole coherence in the parent ion. Here we show that optimal control of the underlying quantum dynamics can be used to enhance desired features in the photoelectron spectra and angular distributions. To this end, we combine Krotov's method for optimal control theory with the time-dependent configuration interaction singles formalism and a splitting approach to calculate photoelectron spectra and angular distributions. The optimization target can account for specific desired properties in the photoelectron angular distribution alone, in the photoelectron spectrum, or in both. We demonstrate the method for hydrogen and then apply it to argon under strong XUV radiation, maximizing the difference of emission into the upper and lower hemispheres, in order to realize directed electron emission in the XUV regime.

  17. Fabrication of the planar angular rotator using the CMOS process

    Science.gov (United States)

    Dai, Ching-Liang; Chang, Chien-Liu; Chen, Hung-Lin; Chang, Pei-Zen

    2002-05-01

    In this investigation we propose a novel planar angular rotator fabricated by the conventional complementary metal-oxide semiconductor (CMOS) process. Following the 0.6 μm single poly triple metal (SPTM) CMOS process, the device is completed by a simple maskless, post-process etching step. The rotor of the planar angular rotator rotates around its geometric center with electrostatic actuation. The proposed design adopts an intelligent mechanism including the slider-crank system to permit simultaneous motion. The CMOS planar angular rotator could be driven with driving voltages of around 40 V. The design proposed here has a shorter response time and longer life, without problems of friction and wear, compared to the more common planar angular micromotor.

  18. "Angle" Operator Conjugate to Photon's Intrinsic Angular Momentum

    Institute of Scientific and Technical Information of China (English)

    范洪义

    2001-01-01

    We find the correct "angle" operator conjugate to the intrinsic angular momentum of the photon by introducing a suitable representation which involves both left-handed and right-handed polarization photon operators.

  19. Unilateral adaptation of the human angular vestibulo-ocular reflex.

    Science.gov (United States)

    Migliaccio, Americo A; Schubert, Michael C

    2013-02-01

    A recent study showed that the angular vestibulo-ocular reflex (VOR) can be better adaptively increased using an incremental retinal image velocity error signal compared with a conventional constant large velocity-gain demand (×2). This finding has important implications for vestibular rehabilitation that seeks to improve the VOR response after injury. However, a large portion of vestibular patients have unilateral vestibular hypofunction, and training that raises their VOR response during rotations to both the ipsilesional and contralesional side is not usually ideal. We sought to determine if the vestibular response to one side could selectively be increased without affecting the contralateral response. We tested nine subjects with normal vestibular function. Using the scleral search coil and head impulse techniques, we measured the active and passive VOR gain (eye velocity / head velocity) before and after unilateral incremental VOR adaptation training, consisting of self-generated (active) head impulses, which lasted ≈ 15 min. The head impulses consisted of rapid, horizontal head rotations with peak-amplitude 15°, peak-velocity 150°/s and peak-acceleration 3,000°/s(2). The VOR gain towards the adapting side increased after training from 0.92 ± 0.18 to 1.11 ± 0.22 (+22.7 ± 20.2 %) during active head impulses and from 0.91 ± 0.15 to 1.01 ± 0.17 (+11.3 ± 7.5 %) during passive head impulses. During active impulses, the VOR gain towards the non-adapting side also increased by ≈ 8 %, though this increase was ≈ 70 % less than to the adapting side. A similar increase did not occur during passive impulses. This study shows that unilateral vestibular adaptation is possible in humans with a normal VOR; unilateral incremental VOR adaptation may have a role in vestibular rehabilitation. The increase in passive VOR gain after active head impulse adaptation suggests that the training effect is robust.

  20. A symmetrical rail accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Igenbergs, E. (Technische Univ. Muenchen, Lehrstuhl fuer Raumfahrttechnik, Richard-Wagner-Strasse 18, 8000 Muenchen 2 (DE))

    1991-01-01

    This paper reports on the symmetrical rail accelerator that has four rails, which are arranged symmetrically around the bore. The opposite rails have the same polarity and the adjacent rails the opposite polarity. In this configuration the radial force acting upon the individual rails is significantly smaller than in a conventional 2-rail configuration and a plasma armature is focussed towards the axis of the barrel. Experimental results indicate a higher efficiency compared to a conventional rail accelerator.

  1. Advanced Accelerator Concepts

    International Nuclear Information System (INIS)

    This conference proceedings represent the results of theThird Advanced Accelerator Concepts Workshop held in PortJefferson, New York. The workshop was sponsored by the U.S.Department of Energy, the Office of Navel Research and BrookhavenNational Laboratory. The purpose was to assess new techniques forproduction of ultra-high gradient acceleration and to addressengineering issues in achieving this goal. There are eighty-onepapers collected in the proceedings and all have been abstractedfor the database

  2. CEBAF Accelerator Achievements

    International Nuclear Information System (INIS)

    In the past decade, nuclear physics users of Jefferson Lab's Continuous Electron Beam Accelerator Facility (CEBAF) have benefited from accelerator physics advances and machine improvements. As of early 2011, CEBAF operates routinely at 6 GeV, with a 12 GeV upgrade underway. This article reports highlights of CEBAF's scientific and technological evolution in the areas of cryomodule refurbishment, RF control, polarized source development, beam transport for parity experiments, magnets and hysteresis handling, beam breakup, and helium refrigerator operational optimization.

  3. Accelerating Cosmologies from Compactification

    CERN Document Server

    Townsend, P K; Townsend, Paul K.; Wohlfarth, Mattias N.R.

    2003-01-01

    A solution of the (4+n)-dimensional vacuum Einstein equations is found for which spacetime is compactified on a compact hyperbolic manifold of time-varying volume to a flat four-dimensional FLRW cosmology undergoing accelerated expansion in Einstein conformal frame. This shows that the `no-go' theorem forbidding acceleration in `standard' (time-independent) compactifications of string/M-theory does not apply to `cosmological' (time-dependent) hyperbolic compactifications.

  4. Designing reliability into accelerators

    International Nuclear Information System (INIS)

    Future accelerators will have to provide a high degree of reliability. Quality must be designed in right from the beginning and must remain a central theme throughout the project. The problem is similar to the problems facing US industry today, and examples of the successful application of quality engineering will be given. Different aspects of an accelerator project will be addressed: Concept, Design, Motivation, Management Techniques, and Fault Diagnosis. The importance of creating and maintaining a coherent team will be stressed

  5. Accelerated cyclic corrosion tests

    OpenAIRE

    Prošek T.

    2016-01-01

    Accelerated corrosion testing is indispensable for material selection, quality control and both initial and residual life time prediction for bare and painted metallic, polymeric, adhesive and other materials in atmospheric exposure conditions. The best known Neutral Salt Spray (NSS) test provides unrealistic conditions and poor correlation to exposures in atmosphere. Modern cyclic accelerated corrosion tests include intermittent salt spray, wet and dry phases and eventually other technical p...

  6. Accelerating News Issue 2

    CERN Document Server

    Kahle, K; Wildner, E

    2012-01-01

    In this summer issue we look at how developments in collimator materials could have applications in aerospace and beyond, and how Polish researchers are harnessing accelerators for medical and industrial uses. We see how the LHC luminosity upgrade is linking with European industry and US researchers, and how the neutrino oscillation community is progressing. We find out the mid-term status of TIARA-PP and how it is mapping European accelerator education resources.

  7. Angular momentum transport by internal gravity waves III - Wave excitation by core convection and the Coriolis effect

    CERN Document Server

    Pantillon, Florian P; Charbonnel, Corinne

    2007-01-01

    This is the third in a series of papers that deal with angular momentum transport by internal gravity waves. We concentrate on the waves excited by core convection in a 3Msun, Pop I main sequence star. Here, we want to examine the role of the Coriolis acceleration in the equations of motion that describe the behavior of waves and to evaluate its impact on angular momentum transport. We use the so-called traditional approximation of geophysics, which allows variable separation in radial and horizontal components. In the presence of rotation, the horizontal structure is described by Hough functions instead of spherical harmonics. The Coriolis acceleration has two main effects on waves. It transforms pure gravity waves into gravito-inertial waves that have a larger amplitude closer to the equator, and it introduces new waves whose restoring force is mainly the conservation of vorticity. Taking the Coriolis acceleration into account changes the subtle balance between prograde and retrograde waves in non-rotating ...

  8. Generation and detection of orbital angular momentum via metasurface

    OpenAIRE

    Jin, Jinjin; Luo, Jun; Zhang, Xiaohu; Gao, Hui; Li, Xiong; Pu, Mingbo; Gao, Ping; Zhao, Zeyu; Luo, Xiangang

    2016-01-01

    Beams carrying orbital angular momentum possess a significant potential for modern optical technologies ranging from classical and quantum communication to optical manipulation. In this paper, we theoretically design and experimentally demonstrate an ultracompact array of elliptical nanoholes, which could convert the circularly polarized light into the cross-polarized vortex beam. To measure the topological charges of orbital angular momentum in a simple manner, another elliptical nanoholes a...

  9. The angular momentum of baryons and dark matter halos revisited

    OpenAIRE

    Kimm, Taysun; Devriendt, Julien; Slyz, Adrianne; Pichon, Christophe; Kassin, Susan A.; Dubois, Yohan

    2011-01-01

    Recent theoretical studies have shown that galaxies at high redshift are fed by cold, dense gas filaments, suggesting angular momentum transport by gas differs from that by dark matter. Revisiting this issue using high-resolution cosmological hydrodynamics simulations with adaptive mesh refinement, we find that at the time of accretion, gas and dark matter do carry a similar amount of specific angular momentum, but that it is systematically higher than that of the dark matter halo as a whole....

  10. Angular momentum and torque described with the complex octonion

    OpenAIRE

    Zi-Hua Weng

    2014-01-01

    The paper aims to adopt the complex octonion to formulate the angular momentum, torque, and force etc in the electromagnetic and gravitational fields. Applying the octonionic representation enables one single definition of angular momentum (or torque, force) to combine some physics contents, which were considered to be independent of each other in the past. J. C. Maxwell used simultaneously two methods, the vector terminology and quaternion analysis, to depict the electromagnetic theory. It m...

  11. Comparison between two concepts of angular glint:general considerations

    Institute of Scientific and Technical Information of China (English)

    Wang Chao; Yin Hongcheng; Huang Peikang

    2008-01-01

    Angular glint can be interpreted as a distortion of the radar echo signal phase front,or alternatively,a tilt of the direction of energy flow from the radial direction.As the complementarities and support of argumentation in our previous work,a general discussion about two concepts of angular glint is made based on electromagnetic theory to demonstrate that these two concepts are equivalent when geometrical optics approximation is used and the receiving antenna is linearly polarized.

  12. Relaxation times for angular momentum in damped nuclear reactions

    International Nuclear Information System (INIS)

    The evolution of the angular momentum distribution in damped nuclear reactions is discussed within the framework of the nucleon exchange transport model. First order equations are derived for the time evolution of the mean values and covariances of the spin variables. Solutions are given for 1400 MeV 165Ho + 165Ho reactions at various values of total angular momentum and total kinetic energy loss. Spin dispersions are well described by the calculations

  13. Students' Understanding of the Addition of Angular Momentum

    CERN Document Server

    Singh, Chandralekha

    2016-01-01

    We describe the difficulties advanced undergraduate and graduate students have with concepts related to the addition of angular momentum. We also describe the development and implementation of a research-based learning tool, a Quantum Interactive Learning Tutorial (QuILT), to reduce these difficulties. The preliminary evaluation shows that the QuILT on the addition of angular momentum is helpful in improving students' understanding of these concepts.

  14. Asymmetry in the angular distributions of spectator-nucleons

    International Nuclear Information System (INIS)

    The asymmetry in the angular distributions of spectator-nucleons has been studied in dp interactions, and it has been found that the sign of the asymmetry depends on the reaction channel. It is shown that in the momentum interval 0-200 MeV/c of spectators basic features of the angular distributions can be reproduced in the framework of the spectator model taking into account the energy dependence of the NN cross section and the flux-factor

  15. Alignment of angular velocity sensors for a vestibular prosthesis

    OpenAIRE

    DiGiovanna Jack; Carpaneto Jacopo; Micera Silvestro; Merfeld Daniel M

    2012-01-01

    Abstract Vestibular prosthetics transmit angular velocities to the nervous system via electrical stimulation. Head-fixed gyroscopes measure angular motion, but the gyroscope coordinate system will not be coincident with the sensory organs the prosthetic replaces. Here we show a simple calibration method to align gyroscope measurements with the anatomical coordinate system. We benchmarked the method with simulated movements and obtain proof-of-concept with one healthy subject. The method was r...

  16. Alignment of angular velocity sensors for a vestibular prosthesis.

    Science.gov (United States)

    Digiovanna, Jack; Carpaneto, Jacopo; Micera, Silvestro; Merfeld, Daniel M

    2012-01-01

    Vestibular prosthetics transmit angular velocities to the nervous system via electrical stimulation. Head-fixed gyroscopes measure angular motion, but the gyroscope coordinate system will not be coincident with the sensory organs the prosthetic replaces. Here we show a simple calibration method to align gyroscope measurements with the anatomical coordinate system. We benchmarked the method with simulated movements and obtain proof-of-concept with one healthy subject. The method was robust to misalignment, required little data, and minimal processing. PMID:22329908

  17. Angular velocity nonlinear observer from single vector measurements

    OpenAIRE

    Magnis, Lionel; Petit, Nicolas

    2015-01-01

    The paper proposes a technique to estimate the angular velocity of a rigid body from single vector measurements. Compared to the approaches presented in the literature, it does not use attitude information nor rate gyros as inputs. Instead, vector measurements are directly filtered through a nonlinear observer estimating the angular velocity. Convergence is established using a detailed analysis of a linear-time varying dynamics appearing in the estimation error equation. This equation stems f...

  18. Mechanical Faraday effect for orbital angular momentum-carrying beams

    OpenAIRE

    Wisniewski-Barker, Emma; Gibson, Graham; Franke-Arnold, Sonja; Boyd, Robert W; Padgett, Miles J.

    2014-01-01

    When linearly polarised light is transmitted through a spinning window, the plane of polarisation is rotated. This rotation arises through a phase change that is applied to the circularly polarised states corresponding to the spin angular momentum (SAM). Here we show an analogous effect for the orbital angular momentum (OAM), where a differential phase between the positive and negative modes (±ℓ) is observed as a rotation of the transmitted image. For normal materials, this rotation is on the...

  19. A quantum memory for orbital angular momentum photonic qubits

    OpenAIRE

    Nicolas, A; Veissier, L.; Giner, L.; Giacobino, E.; Maxein, D.; Laurat, J.

    2013-01-01

    Among the optical degrees of freedom, the orbital angular momentum of light provides unique properties, including mechanical torque action with applications for light manipulation, enhanced sensitivity in imaging techniques and potential high-density information coding for optical communication systems. Recent years have also seen a tremendous interest in exploiting orbital angular momentum at the single-photon level in quantum information technologies. In this endeavor, here we demonstrate t...

  20. Fundamental methods to measure the orbital angular momentum of light

    OpenAIRE

    Berkhout, Gregorius Cornelis Gerardus (Joris)

    2011-01-01

    Light is a ubiquitous carrier of information. This information can be encoded in the intensity, direction, frequency and polarisation of the light and, which was described more recently, in its orbital angular momentum. Although creating light beams with orbital angular momentum is relatively easy, measuring this property has proven to be difficult. In this thesis we present two fundamental methods to solve this problem. First, we show that by analysing the interference pattern behind a multi...

  1. Spin-to-Orbital Angular Momentum Conversion in Semiconductor Microcavities

    OpenAIRE

    Manni, Francesco; Lagoudakis, Konstantinos G.; Paraïso, Taofiq; Cerna, Roland; Léger, Yoan; Liew, Timothy Chi Hin; Shelykh, Ivan; Kavokin, Alexey V.; Morier-Genoud, François; Deveaud-Plédran, Benoît

    2011-01-01

    We experimentally demonstrate a technique for the generation of optical beams carrying orbital angular momentum using a planar semiconductor microcavity. Despite being isotropic systems with no structural gyrotropy, semiconductor microcavities, because of the transverse-electric–transverse-magnetic polarization splitting that they feature, allow for the conversion of the circular polarization of an incoming laser beam into the orbital angular momentum of the transmitted light field. The proce...

  2. Orbital Angular Momentum and Generalized Transverse Momentum Distribution

    OpenAIRE

    Zhao, Yong; Liu, Keh-Fei; Yang, Yibo

    2015-01-01

    We show that, when boosted to the infinite momentum frame, the quark and gluon orbital angular momentum operators defined in the nucleon spin sum rule of X. S. Chen et al. are the same as those derived from generalized transverse momentum distributions. This completes the connection between the infinite momentum limit of each term in that sum rule and experimentally measurable observables. We also show that these orbital angular momentum operators can be defined locally, and discuss the strat...

  3. Total Internal Reflection of Orbital Angular Momentum Beams

    OpenAIRE

    Loffler W.; Hermosa N.; Aiello A.; Woerdman J.P.

    2012-01-01

    We investigate how beams with orbital angular momentum (OAM) behave under total internal reflection. This is studied in two complementary experiments: In the first experiment, we study geometric shifts of OAM beams upon total internal reflection (Goos-H\\"anchen and Imbert-Fedorov shifts, for each the spatial and angular variant), and in the second experiment we determine changes in the OAM mode spectrum of a beam, again upon total internal reflection. As a result we find that in the first cas...

  4. Relativistic electron ring equilibrium with angular momentum spread

    Energy Technology Data Exchange (ETDEWEB)

    Croitoru, M.; Grecu, D. (Institutul de Fizica si Inginerie Nucleara, Bucharest (Romania))

    1980-01-01

    The equilibrium properties of a relativistic electron ring are determined by solving in a consistent way the Vlasov-Maxwell equations for a distribution function with an angular momentum spread. In the thin ring approximation there have been deduced general formulae for the electron density and the current density. A general theorem concerning the sharp form in space of the electron density is also obtained for the case of a microcanonical distribution function both in energy and angular momentum.

  5. Asymmetric angular dependence of domain wall motion in magnetic nanowires.

    Science.gov (United States)

    Nam, Chunghee

    2013-03-01

    An angular dependence of domain wall (DW) motion is studied in a magnetic wire consisting of a giant-magnetoresistance spin-valve. A DW pinning site is formed by a single notch, where a conventional linear one and a specially designed tilted one are compared. The asymmetric angular dependence was found in the DW depinning behavior with the tilted notch. The geometry control of the pinning site can be useful for DW diode devices using a rotating magnetic field. PMID:23755619

  6. Modelling black holes with angular momentum in loop quantum gravity

    Science.gov (United States)

    Frodden, Ernesto; Perez, Alejandro; Pranzetti, Daniele; Röken, Christian

    2014-12-01

    We construct a connection formulation of Kerr isolated horizons. As in the non-rotating case, the model is based on a Chern-Simons theory describing the degrees of freedom on the horizon. The presence of a non-vanishing angular momentum modifies the admissibility conditions for spin network states. Physical states of the system are in correspondence with open intertwiners with total spin matching the angular momentum of the spacetime.

  7. Topological defects, geometric phases, and the angular momentum of light

    CERN Document Server

    Tiwari, S C

    2007-01-01

    Recent reports on the intriguing features of vector vortex bearing beams are analyzed using geometric phases in optics. It is argued that the spin redirection phase induced circular birefringence is the origin of topological phase singularities arising in the inhomogeneous polarization patterns. A unified picture of recent results is presented based on this proposition. Angular momentum shift within the light beam (OAM) has exact equivalence with the angular momentum holonomy associated with the geometric phase consistent with our conjecture.

  8. A Role for Improved Angular Observations in Geosynchronous Orbit Determination

    Science.gov (United States)

    Sabol, Christopher Andrew

    1998-12-01

    The goal of this thesis is to show that improved angular observations can aid in the determination of satellite position and velocity in the geosynchronous orbit regime. Raven is a new sensor being developed by the U.S. Air Force Research Laboratory which should allow for angular observations of satellites to be made with a standard deviation of 1 arcsecond (which maps into approximately 170 meters at geosynchronous altitude); this is an order of magnitude improvement over traditional angular observation techniques and represents state of the art accuracy of angular observations for geosynchronous orbit determination work. Simulation studies are undertaken to show that these angular observations can be used in the orbit determination process both as the only cracking data source and as a supplement to other tracking data sources such as radar and radio transponder ranges. Results from the radio transponder range analysis are extended to cover Satellite Laser Ranging (SLR) and Global Positioning System (GPS) observation types as well. The studies target both space surveillance and owner/operator mission support aspects of orbit determination although the emphasis will be on mission support satellite operations. Parameters varied in the simulation studies include the number of observing stations, the density of the angular observations, and the number of nights of optical tracking. The data simulations are calibrated based on real data results from a geosynchronous satellite to ensure the integrity of the simulations and the accuracy of the results. The studies show that including the improved angular observations with traditional high accuracy range observations produces a significant improvement in orbit determination accuracy over the range observations alone. The studies also show single site geosynchronous orbit determination is an attractive alternative when combining improved angular and high accuracy range observations.

  9. Nuclear physics accelerator facilities

    International Nuclear Information System (INIS)

    Brief descriptions are given of DOE and Nuclear Physics program operated and sponsored accelerator facilities. Specific facilities covered are the Argonne Tandem/Linac Accelerator System, the Tandem/AGS Heavy Ion Facility at Brookhaven National Laboratory, the proposed Continuous Beam Accelerator at Newport News, Virginia, the Triangle Universities Nuclear Laboratory at Duke University, the Bevalac and the SuperHILAC at Lawrence Berkeley Laboratory, the 88-Inch Cyclotron at Lawrence Berkeley Laboratory, the Clinton P. Anderson Meson Physics Facility at Los Alamos National Laboratory, the Bates Linear Accelerator Center at Massachusetts Institute of Technology, the Holifield Heavy Ion Research Facility at Oak Ridge National Laboratory, the Nuclear Physics Injector at Stanford Linear Accelerator Center, the Texas A and M Cyclotrons, the Tandem/Superconducting Booster Accelerator at the University of Washington and the Tandem Van de Graaff at the A.W. Wright Nuclear Structure Laboratory of Yale University. Included are acquisition cost, research programs, program accomplishments, future directions, and operating parameters of each facility

  10. Accelerators for America's Future

    Science.gov (United States)

    Bai, Mei

    2016-03-01

    Particle accelerator, a powerful tool to energize beams of charged particles to a desired speed and energy, has been the working horse for investigating the fundamental structure of matter and fundermental laws of nature. Most known examples are the 2-mile long Stanford Linear Accelerator at SLAC, the high energy proton and anti-proton collider Tevatron at FermiLab, and Large Hadron Collider that is currently under operation at CERN. During the less than a century development of accelerator science and technology that led to a dazzling list of discoveries, particle accelerators have also found various applications beyond particle and nuclear physics research, and become an indispensible part of the economy. Today, one can find a particle accelerator at almost every corner of our lives, ranging from the x-ray machine at the airport security to radiation diagnostic and therapy in hospitals. This presentation will give a brief introduction of the applications of this powerful tool in fundermental research as well as in industry. Challenges in accelerator science and technology will also be briefly presented

  11. Angular Impulse and Balance Regulation During the Golf Swing.

    Science.gov (United States)

    Peterson, Travis J; Wilcox, Rand R; McNitt-Gray, Jill L

    2016-08-01

    Our aim was to determine how skilled players regulate linear and angular impulse while maintaining balance during the golf swing. Eleven highly-skilled golf players performed swings with a 6-iron and driver. Components contributing to linear and angular impulse generated by the rear and target legs (resultant horizontal reaction force [RFh], RFh-angle, and moment arm) were quantified and compared across the group and within a player (α = .05). Net angular impulse generated by both the rear and target legs was greater for the driver than the 6-iron. Mechanisms used to regulate angular impulse generation between clubs varied across players and required coordination between the legs. Increases in net angular impulse with a driver involved increases in target leg RFh. Rear leg RFh-angle was maintained between clubs whereas target leg RFh became more aligned with the target line. Net linear impulse perpendicular to the target line remained near zero, preserving balance, while net linear impulse along the target line decreased in magnitude. These results indicate that the net angular impulse was regulated between clubs by coordinating force generation of the rear and target legs while sustaining balance throughout the task. PMID:26958870

  12. Angular-velocity control approach for stance-control orthoses.

    Science.gov (United States)

    Lemaire, Edward D; Goudreau, Louis; Yakimovich, Terris; Kofman, Jonathan

    2009-10-01

    Currently, stance-control knee orthoses require external control mechanisms to control knee flexion during stance and allow free knee motion during the swing phase of gait. A new angular-velocity control approach that uses a rotary-hydraulic device to resist knee flexion when the knee angular velocity passes a preset threshold is presented. This angular-velocity approach for orthotic stance control is based on the premise that knee-flexion angular velocity during a knee-collapse event, such as a stumble or fall, is greater than that during walking. The new hydraulic knee-flexion control device does not require an external control mechanism to switch from free motion to stance control mode. Functional test results demonstrated that the hydraulic angular-velocity activated knee joint provided free knee motion during walking, engaged upon knee collapse, and supported body weight while the end-user recovered to a safe body position. The joint was tested to 51.6 Nm in single loading tests and passed 200,000 repeated loading cycles with a peak load of 88 Nm per cycle. The hydraulic, angular velocity activation approach has potential to improve safety and security for people with lower extremity weakness or when recovering from joint trauma. PMID:19497821

  13. Diffusive Shock Acceleration and Reconnection Acceleration Processes

    Science.gov (United States)

    Zank, G. P.; Hunana, P.; Mostafavi, P.; Le Roux, J. A.; Li, Gang; Webb, G. M.; Khabarova, O.; Cummings, A.; Stone, E.; Decker, R.

    2015-12-01

    Shock waves, as shown by simulations and observations, can generate high levels of downstream vortical turbulence, including magnetic islands. We consider a combination of diffusive shock acceleration (DSA) and downstream magnetic-island-reconnection-related processes as an energization mechanism for charged particles. Observations of electron and ion distributions downstream of interplanetary shocks and the heliospheric termination shock (HTS) are frequently inconsistent with the predictions of classical DSA. We utilize a recently developed transport theory for charged particles propagating diffusively in a turbulent region filled with contracting and reconnecting plasmoids and small-scale current sheets. Particle energization associated with the anti-reconnection electric field, a consequence of magnetic island merging, and magnetic island contraction, are considered. For the former only, we find that (i) the spectrum is a hard power law in particle speed, and (ii) the downstream solution is constant. For downstream plasmoid contraction only, (i) the accelerated spectrum is a hard power law in particle speed; (ii) the particle intensity for a given energy peaks downstream of the shock, and the distance to the peak location increases with increasing particle energy, and (iii) the particle intensity amplification for a particular particle energy, f(x,c/{c}0)/f(0,c/{c}0), is not 1, as predicted by DSA, but increases with increasing particle energy. The general solution combines both the reconnection-induced electric field and plasmoid contraction. The observed energetic particle intensity profile observed by Voyager 2 downstream of the HTS appears to support a particle acceleration mechanism that combines both DSA and magnetic-island-reconnection-related processes.

  14. Directionality Of Flare-Accelerated Particles From Gamma-Ray Lines

    Science.gov (United States)

    Share, G. H.; Murphy, R. J.; Kiener, J.; de Sereville, N.; Tatischeff, V.

    2001-12-01

    The energies and widths of gamma-ray lines emitted by ambient nuclei excited by flare-accelerated proton and alpha particles provide information on the particles' angular distributions, compositions, and spectra, and on the uniformity of the interaction region. We have measured the energies and widths of strong lines from de-excitations of 12C, 16O, and 20Ne in solar flares as a function of heliocentric angle. The line energies from all three nuclei exhibit ~1% redshifts at small heliocentric angles, but are not significantly shifted near the limb. The lines at all heliocentric angles have widths from ~2.5 to 4% (FWHM) of their rest energies. These results are suggestive of accelerated particles with a broad angular distribution that preferentially interact in the downward direction. We compare the 12C line measurements with calculations based on recent accelerator measurements and an optical model at higher energies. This work is supported by NASA DPR W-18,995.

  15. Simplified neutron detector for angular distribution measurement of p-Li neutron source

    International Nuclear Information System (INIS)

    Boron Neutron Capture Therapy (BNCT) is one of the most promising cancer therapies using 10B(n, α)7Li nuclear reaction. Because nuclear reactor is currently used for BNCT, the therapy is much restricted. Many kinds of accelerator based neutron sources for BNCT are being investigated worldwide and p-Li reaction is one of the most promising candidates because the emitted neutron energy is comparatively low and no gamma-ray is produced. To use p-Li neutron source for BNCT, measurement of the angular distribution is important. However, the energy of neutrons changes depending on the angle with respect to the proton beam, e.g., the energy of forward emitted neutrons are about 700 keV and it is 100 keV for backward direction. So a neutron detector, the efficiency of which is not dependent on energy, is needed. Though so-called “Long Counter” is known to be available, its structure is complicated and moreover it is expensive. Thus we have designed and developed a simplified neutron detector using Monte Carlo simulation. We verified the developed detector experimentally and measured the angular distribution in detail for p-Li reaction by using it. The obtained results were compared with analytical calculations. (author)

  16. Structured caustic vector vortex optical field: manipulating optical angular momentum flux and polarization rotation.

    Science.gov (United States)

    Chen, Rui-Pin; Chen, Zhaozhong; Chew, Khian-Hooi; Li, Pei-Gang; Yu, Zhongliang; Ding, Jianping; He, Sailing

    2015-05-29

    A caustic vector vortex optical field is experimentally generated and demonstrated by a caustic-based approach. The desired caustic with arbitrary acceleration trajectories, as well as the structured states of polarization (SoP) and vortex orders located in different positions in the field cross-section, is generated by imposing the corresponding spatial phase function in a vector vortex optical field. Our study reveals that different spin and orbital angular momentum flux distributions (including opposite directions) in different positions in the cross-section of a caustic vector vortex optical field can be dynamically managed during propagation by intentionally choosing the initial polarization and vortex topological charges, as a result of the modulation of the caustic phase. We find that the SoP in the field cross-section rotates during propagation due to the existence of the vortex. The unique structured feature of the caustic vector vortex optical field opens the possibility of multi-manipulation of optical angular momentum fluxes and SoP, leading to more complex manipulation of the optical field scenarios. Thus this approach further expands the functionality of an optical system.

  17. Exploring dissipative processes at high angular momentum in 58Ni+60Ni reactions

    Directory of Open Access Journals (Sweden)

    Williams E.

    2016-01-01

    Full Text Available Current coupled channels (CC models treat fusion as a coherent quantum-mechanical process, in which coupling between the collective states of the colliding nuclei influences the probability of fusion in near-barrier reactions. While CC models have been used to successfully describe many experimental fusion barrier distribution (BD measurements, the CC approach has failed in the notable case of 16O+208Pb. The reason for this is poorly understood; however, it has been postulated that dissipative processes may play a role. Traditional BD experiments can only probe the physics of fusion for collisions at the top of the Coulomb barrier (L = 0ħ. In this work, we will present results using a novel method of probing dissipative processes inside the Coulomb barrier. The method exploits the predicted sharp onset of fission at L ~ 60ħ for reactions forming compound nuclei with A < 160. Using the ANU’s 14UD tandem accelerator and CUBE spectrometer, reaction outcomes have been measured for the 58Ni+60Ni reaction at a range of energies, in order to explore dissipative processes at high angular momentum. In this reaction, deep inelastic processes have been found to set in before the onset fission at high angular momentum following fusion. The results will be discussed in relation to the need for a dynamical model of fusion.

  18. Exploring dissipative processes at high angular momentum in 58Ni+60Ni reactions

    Science.gov (United States)

    Williams, E.; Hinde, D. J.; Dasgupta, M.; Carter, I. P.; Cook, K. J.; Jeung, D. Y.; Luong, D. H.; McNeil, S. D.; Palshetkar, C. S.; Rafferty, D. C.; Ramachandran, K.; Simenel, C.; Simpson, E. C.; Wakhle, A.

    2016-05-01

    Current coupled channels (CC) models treat fusion as a coherent quantum-mechanical process, in which coupling between the collective states of the colliding nuclei influences the probability of fusion in near-barrier reactions. While CC models have been used to successfully describe many experimental fusion barrier distribution (BD) measurements, the CC approach has failed in the notable case of 16O+208Pb. The reason for this is poorly understood; however, it has been postulated that dissipative processes may play a role. Traditional BD experiments can only probe the physics of fusion for collisions at the top of the Coulomb barrier (L = 0ħ). In this work, we will present results using a novel method of probing dissipative processes inside the Coulomb barrier. The method exploits the predicted sharp onset of fission at L ~ 60ħ for reactions forming compound nuclei with A < 160. Using the ANU's 14UD tandem accelerator and CUBE spectrometer, reaction outcomes have been measured for the 58Ni+60Ni reaction at a range of energies, in order to explore dissipative processes at high angular momentum. In this reaction, deep inelastic processes have been found to set in before the onset fission at high angular momentum following fusion. The results will be discussed in relation to the need for a dynamical model of fusion.

  19. The Angular Momentum of Baryons and Dark Matter Halos Revisited

    Science.gov (United States)

    Kimm, Taysun; Devriendt, Julien; Slyz, Adrianne; Pichon, Christophe; Kassin, Susan A.; Dubois, Yohan

    2011-01-01

    Recent theoretical studies have shown that galaxies at high redshift are fed by cold, dense gas filaments, suggesting angular momentum transport by gas differs from that by dark matter. Revisiting this issue using high-resolution cosmological hydrodynamics simulations with adaptive-mesh refinement (AMR), we find that at the time of accretion, gas and dark matter do carry a similar amount of specific angular momentum, but that it is systematically higher than that of the dark matter halo as a whole. At high redshift, freshly accreted gas rapidly streams into the central region of the halo, directly depositing this large amount of angular momentum within a sphere of radius r = 0.1R(sub vir). In contrast, dark matter particles pass through the central region unscathed, and a fraction of them ends up populating the outer regions of the halo (r/R(sub vir) > 0.1), redistributing angular momentum in the process. As a result, large-scale motions of the cosmic web have to be considered as the origin of gas angular momentum rather than its virialised dark matter halo host. This generic result holds for halos of all masses at all redshifts, as radiative cooling ensures that a significant fraction of baryons remain trapped at the centre of the halos. Despite this injection of angular momentum enriched gas, we predict an amount for stellar discs which is in fair agreement with observations at z=0. This arises because the total specific angular momentum of the baryons (gas and stars) remains close to that of dark matter halos. Indeed, our simulations indicate that any differential loss of angular momentum amplitude between the two components is minor even though dark matter halos continuously lose between half and two-thirds of their specific angular momentum modulus as they evolve. In light of our results, a substantial revision of the standard theory of disc formation seems to be required. We propose a new scenario where gas efficiently carries the angular momentum generated

  20. Small type accelerator. Try for accelerator driven system

    CERN Document Server

    Mori, Y

    2003-01-01

    FFAG (Fixed-field alternating gradient) accelerator for accelerator driven subcritical reactor, which aims to change from long-lived radioactive waste to short-lived radioactivity, is introduced. It is ring accelerator. The performance needed is proton as accelerator particle, 10MW (total) beam power, about 1GeV beam energy, >30% power efficiency and continuous beam. The feature of FFAG accelerator is constant magnetic field. PoP (Proof-of-principle)-FFAG accelerator, radial type, was run at first in Japan in 2000. The excursion is about some ten cm. In principle, beam can be injected and extracted at any place of ring. The 'multi-fish' acceleration can accelerate beams to 100% duty by repeating acceleration. 150MeV-FFAG accelerator has been started since 2001. It tried to practical use, for example, treatment of cancer. (S.Y.)