Angle-resolved photoemission extended fine structure
International Nuclear Information System (INIS)
Barton, J.J.
1985-03-01
Measurements of the Angle-Resolved Photoemission Extended Fine Structure (ARPEFS) from the S(1s) core level of a c(2 x 2)S/Ni(001) are analyzed to determine the spacing between the S overlayer and the first and second Ni layers. ARPEFS is a type of photoelectron diffraction measurement in which the photoelectron kinetic energy is swept typically from 100 to 600 eV. By using this wide range of intermediate energies we add high precision and theoretical simplification to the advantages of the photoelectron diffraction technique for determining surface structures. We report developments in the theory of photoelectron scattering in the intermediate energy range, measurement of the experimental photoemission spectra, their reduction to ARPEFS, and the surface structure determination from the ARPEFS by combined Fourier and multiple-scattering analyses. 202 refs., 67 figs., 2 tabs
Estimation of Sideslip Angle Based on Extended Kalman Filter
Directory of Open Access Journals (Sweden)
Yupeng Huang
2017-01-01
Full Text Available The sideslip angle plays an extremely important role in vehicle stability control, but the sideslip angle in production car cannot be obtained from sensor directly in consideration of the cost of the sensor; it is essential to estimate the sideslip angle indirectly by means of other vehicle motion parameters; therefore, an estimation algorithm with real-time performance and accuracy is critical. Traditional estimation method based on Kalman filter algorithm is correct in vehicle linear control area; however, on low adhesion road, vehicles have obvious nonlinear characteristics. In this paper, extended Kalman filtering algorithm had been put forward in consideration of the nonlinear characteristic of the tire and was verified by the Carsim and Simulink joint simulation, such as the simulation on the wet cement road and the ice and snow road with double lane change. To test and verify the effect of extended Kalman filtering estimation algorithm, the real vehicle test was carried out on the limit test field. The experimental results show that the accuracy of vehicle sideslip angle acquired by extended Kalman filtering algorithm is obviously higher than that acquired by Kalman filtering in the area of the nonlinearity.
Extended incident-angle dependence formula of sputter yield
International Nuclear Information System (INIS)
Ono, T.; Shibata, K.; Muramoto, T.; Kenmotsu, T.; Li Z.; Kawamura, T.
2006-06-01
We extend a new semi-empirical formula for incident-angle dependence of normalized sputter yield that includes the contribution to sputter yield from the direct knock-out process that was not considered in the previously proposed one. Three parameters included in the new one are estimated for data calculated with ACAT code for D + ions incident obliquely on C, Fe and W materials in incident-energy regions from several tens of eV to 10 keV. Then, the parameters are expressed with functions of incident energy. The formula with the functions derived well reproduces that using the ACAT data in the whole energy range. (author)
Extended Lagrangian Excited State Molecular Dynamics.
Bjorgaard, J A; Sheppard, D; Tretiak, S; Niklasson, A M N
2018-02-13
An extended Lagrangian framework for excited state molecular dynamics (XL-ESMD) using time-dependent self-consistent field theory is proposed. The formulation is a generalization of the extended Lagrangian formulations for ground state Born-Oppenheimer molecular dynamics [Phys. Rev. Lett. 2008 100, 123004]. The theory is implemented, demonstrated, and evaluated using a time-dependent semiempirical model, though it should be generally applicable to ab initio theory. The simulations show enhanced energy stability and a significantly reduced computational cost associated with the iterative solutions of both the ground state and the electronically excited states. Relaxed convergence criteria can therefore be used both for the self-consistent ground state optimization and for the iterative subspace diagonalization of the random phase approximation matrix used to calculate the excited state transitions. The XL-ESMD approach is expected to enable numerically efficient excited state molecular dynamics for such methods as time-dependent Hartree-Fock (TD-HF), Configuration Interactions Singles (CIS), and time-dependent density functional theory (TD-DFT).
International Nuclear Information System (INIS)
Huff, W.R.A.; Kellar, S.A.; Moler, E.J.; California Univ., Berkeley, CA; Chen, Y.; Wu, H.; Shirley, D.A.; Hussain, Z.
1995-01-01
Recently, angle-resolved photoemission extended fine structure (ARPEFS) has been applied to experimental systems involving multiple layers of emitters and non-s core-level photoemission in an effort to broaden the utility of the technique. Most of the previous systems have been comprised of atomic or molecular overlayers adsorbed onto a single-crystal, metal surface and the photoemission data were taken from an s atomic core-level in the overlayer. For such a system, the acquired ARPEFS data is dominated by the p o final state wave backscattering from the substrate atoms and is well understood. In this study, we investigate ARPEFS as a surface-region structure determination technique when applied to experimental systems comprised of multiple layers of photoemitters and arbitrary initial state core-level photoemission. Understanding the data acquired from multiple layers of photoemitters is useful for studying multilayer interfaces, ''buried'' surfaces, and clean crystals in ultra- high vacuum. The ability to apply ARPEFS to arbitrary initial state core-level photoemission obviously opens up many systems to analysis. Efforts have been ongoing to understand such data in depth. We present clean Cu(111) 3s, 3p, and 3d core-level, normal photoemission data taken on a high resolution soft x-ray beamline 9.3.2 at the Advanced Light Source in Berkeley, California and clean Ni(111) 3p normal photoemission data taken at the National Synchrotron Light Source in Upton, New York, USA
Soneson, Joshua E
2017-04-01
Wide-angle parabolic models are commonly used in geophysics and underwater acoustics but have seen little application in medical ultrasound. Here, a wide-angle model for continuous-wave high-intensity ultrasound beams is derived, which approximates the diffraction process more accurately than the commonly used Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation without increasing implementation complexity or computing time. A method for preventing the high spatial frequencies often present in source boundary conditions from corrupting the solution is presented. Simulations of shallowly focused axisymmetric beams using both the wide-angle and standard parabolic models are compared to assess the accuracy with which they model diffraction effects. The wide-angle model proposed here offers improved focusing accuracy and less error throughout the computational domain than the standard parabolic model, offering a facile method for extending the utility of existing KZK codes.
Surface tension and contact angles: Molecular origins and associated microstructure
Davis, H. T.
1982-01-01
Gradient theory converts the molecular theory of inhomogeneous fluid into nonlinear boundary value problems for density and stress distributions in fluid interfaces, contact line regions, nuclei and microdroplets, and other fluid microstructures. The relationship between the basic patterns of fluid phase behavior and the occurrence and stability of fluid microstructures was clearly established by the theory. All the inputs of the theory have molecular expressions which are computable from simple models. On another level, the theory becomes a phenomenological framework in which the equation of state of homogeneous fluid and sets of influence parameters of inhomogeneous fluids are the inputs and the structures, stress tensions and contact angles of menisci are the outputs. These outputs, which find applications in the science and technology of drops and bubbles, are discussed.
Next generation extended Lagrangian first principles molecular dynamics.
Niklasson, Anders M N
2017-08-07
Extended Lagrangian Born-Oppenheimer molecular dynamics [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] is formulated for general Hohenberg-Kohn density-functional theory and compared with the extended Lagrangian framework of first principles molecular dynamics by Car and Parrinello [Phys. Rev. Lett. 55, 2471 (1985)]. It is shown how extended Lagrangian Born-Oppenheimer molecular dynamics overcomes several shortcomings of regular, direct Born-Oppenheimer molecular dynamics, while improving or maintaining important features of Car-Parrinello simulations. The accuracy of the electronic degrees of freedom in extended Lagrangian Born-Oppenheimer molecular dynamics, with respect to the exact Born-Oppenheimer solution, is of second-order in the size of the integration time step and of fourth order in the potential energy surface. Improved stability over recent formulations of extended Lagrangian Born-Oppenheimer molecular dynamics is achieved by generalizing the theory to finite temperature ensembles, using fractional occupation numbers in the calculation of the inner-product kernel of the extended harmonic oscillator that appears as a preconditioner in the electronic equations of motion. Material systems that normally exhibit slow self-consistent field convergence can be simulated using integration time steps of the same order as in direct Born-Oppenheimer molecular dynamics, but without the requirement of an iterative, non-linear electronic ground-state optimization prior to the force evaluations and without a systematic drift in the total energy. In combination with proposed low-rank and on the fly updates of the kernel, this formulation provides an efficient and general framework for quantum-based Born-Oppenheimer molecular dynamics simulations.
Energy Technology Data Exchange (ETDEWEB)
Zheng, Y. [Pennsylvania State Univ., University Park, PA (United States)]|[Lawrence Berkeley Lab., CA (United States); Shirley, D.A. [Pennsylvania State Univ., University Park, PA (United States)
1995-02-01
The authors show by Fourier analyses of experimental data, with no further treatment, that the positions of all the strong peaks in Fourier transforms of angle-resolved photoemission extended fine structure (ARPEFS) from adsorbed surfaces can be explicitly predicted from a trial structure with an accuracy of about {+-} 0.3 {angstrom} based on a single-scattering cluster model together with the concept of a strong backscattering cone, and without any additional analysis. This characteristic of ARPEFS Fourier transforms can be developed as a simple method for determining the structures of adsorbed surfaces to an accuracy of about {+-} 0.1 {angstrom}.
Thermostating extended Lagrangian Born-Oppenheimer molecular dynamics.
Martínez, Enrique; Cawkwell, Marc J; Voter, Arthur F; Niklasson, Anders M N
2015-04-21
Extended Lagrangian Born-Oppenheimer molecular dynamics is developed and analyzed for applications in canonical (NVT) simulations. Three different approaches are considered: the Nosé and Andersen thermostats and Langevin dynamics. We have tested the temperature distribution under different conditions of self-consistent field (SCF) convergence and time step and compared the results to analytical predictions. We find that the simulations based on the extended Lagrangian Born-Oppenheimer framework provide accurate canonical distributions even under approximate SCF convergence, often requiring only a single diagonalization per time step, whereas regular Born-Oppenheimer formulations exhibit unphysical fluctuations unless a sufficiently high degree of convergence is reached at each time step. The thermostated extended Lagrangian framework thus offers an accurate approach to sample processes in the canonical ensemble at a fraction of the computational cost of regular Born-Oppenheimer molecular dynamics simulations.
Next Generation Extended Lagrangian Quantum-based Molecular Dynamics
Negre, Christian
2017-06-01
A new framework for extended Lagrangian first-principles molecular dynamics simulations is presented, which overcomes shortcomings of regular, direct Born-Oppenheimer molecular dynamics, while maintaining important advantages of the unified extended Lagrangian formulation of density functional theory pioneered by Car and Parrinello three decades ago. The new framework allows, for the first time, energy conserving, linear-scaling Born-Oppenheimer molecular dynamics simulations, which is necessary to study larger and more realistic systems over longer simulation times than previously possible. Expensive, self-consinstent-field optimizations are avoided and normal integration time steps of regular, direct Born-Oppenheimer molecular dynamics can be used. Linear scaling electronic structure theory is presented using a graph-based approach that is ideal for parallel calculations on hybrid computer platforms. For the first time, quantum based Born-Oppenheimer molecular dynamics simulation is becoming a practically feasible approach in simulations of +100,000 atoms-representing a competitive alternative to classical polarizable force field methods. In collaboration with: Anders Niklasson, Los Alamos National Laboratory.
International Nuclear Information System (INIS)
Xia Caijuan; Fang Changfeng; Zhao Peng; Xie Shijie; Liu Desheng
2009-01-01
By applying nonequilibrium Green's function formalism combined with first-principles density functional theory, we investigate effect of torsion angle on electronic transport properties of 4,4 ' -biphenyl molecule connected with different anchoring groups (dithiocarboxylate and thiol group) to Au(111) electrodes. The influence of the HOMO-LUMO gaps and the spatial distributions of molecular orbitals on the quantum transport through the molecular device are discussed. Theoretical results show that the torsion angle plays important role in conducting behavior of molecular devices. By changing the torsion angle between two phenyl rings, namely changing the magnitude of the intermolecular coupling effect, a different transport behavior can be observed in these two systems.
Evaluation of the Contact Angle from Molecular Simulations.
Czech Academy of Sciences Publication Activity Database
Škvára, J.; Škvor, J.; Nezbeda, Ivo
2018-01-01
Roč. 44, č. 3 (2018), s. 190-199 ISSN 0892-7022 R&D Projects: GA ČR GA15-19542S Institutional support: RVO:67985858 Keywords : contact angle * argon droplet * surface molecules Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 1.254, year: 2016
Molecular complexity of primary open angle glaucoma: current ...
Indian Academy of Sciences (India)
2009-12-31
Dec 31, 2009 ... ment nor does it develop any glaucomatous phenotype (Kim ... vestigial genomic region; only to cause harm in case of any .... level, current knowledge of genetic studies suggests that the ...... rizes the unfolding network of events in primary open angle glaucoma (POAG) and has been created based on the ...
Extended molecular phylogenetics and revised systematics of Malagasy scincine lizards.
Erens, Jesse; Miralles, Aurélien; Glaw, Frank; Chatrou, Lars W; Vences, Miguel
2017-02-01
Among the endemic biota of Madagascar, skinks are a diverse radiation of lizards that exhibit a striking ecomorphological variation, and could provide an interesting system to study body-form evolution in squamate reptiles. We provide a new phylogenetic hypothesis for Malagasy skinks of the subfamily Scincinae based on an extended molecular dataset comprising 8060bp from three mitochondrial and nine nuclear loci. Our analysis also increases taxon sampling of the genus Amphiglossus by including 16 out of 25 nominal species. Additionally, we examined whether the molecular phylogenetic patterns coincide with morphological differentiation in the species currently assigned to this genus. Various methods of inference recover a mostly strongly supported phylogeny with three main clades of Amphiglossus. However, relationships among these three clades and the limb-reduced genera Grandidierina, Voeltzkowia and Pygomeles remain uncertain. Supported by a variety of morphological differences (predominantly related to the degree of body elongation), but considering the remaining phylogenetic uncertainty, we propose a redefinition of Amphiglossus into three different genera (Amphiglossus sensu stricto, Flexiseps new genus, and Brachyseps new genus) to remove the non-monophyly of Amphiglossus sensu lato and to facilitate future studies on this fascinating group of lizards. Copyright © 2016 Elsevier Inc. All rights reserved.
International Nuclear Information System (INIS)
Wang, L.H.; Guo, Y.; Tian, C.F.; Song, X.P.; Ding, B.J.
2010-01-01
Using first-principles density functional theory and nonequilibrium Green's function formalism, we investigate the effect of torsion angle on the rectifying characteristics of 4'-thiolate-biphenyl-4-dithiocarboxylate sandwiched between two Au(111) electrodes. The results show that the torsion angle has an evident influence on rectifying performance of such devices. By increasing the dihedral angle between two phenyl rings, namely changing the magnitude of the intermolecular coupling effect, a different rectifying behavior can be observed in these systems. Our findings highlight that the rectifying characteristics are intimately related to dihedral angles and can provide fundamental guidelines for the design of functional molecular devices.
Armen, Roger S; Chen, Jianhan; Brooks, Charles L
2009-10-13
Incorporating receptor flexibility into molecular docking should improve results for flexible proteins. However, the incorporation of explicit all-atom flexibility with molecular dynamics for the entire protein chain may also introduce significant error and "noise" that could decrease docking accuracy and deteriorate the ability of a scoring function to rank native-like poses. We address this apparent paradox by comparing the success of several flexible receptor models in cross-docking and multiple receptor ensemble docking for p38α mitogen-activated protein (MAP) kinase. Explicit all-atom receptor flexibility has been incorporated into a CHARMM-based molecular docking method (CDOCKER) using both molecular dynamics (MD) and torsion angle molecular dynamics (TAMD) for the refinement of predicted protein-ligand binding geometries. These flexible receptor models have been evaluated, and the accuracy and efficiency of TAMD sampling is directly compared to MD sampling. Several flexible receptor models are compared, encompassing flexible side chains, flexible loops, multiple flexible backbone segments, and treatment of the entire chain as flexible. We find that although including side chain and some backbone flexibility is required for improved docking accuracy as expected, docking accuracy also diminishes as additional and unnecessary receptor flexibility is included into the conformational search space. Ensemble docking results demonstrate that including protein flexibility leads to to improved agreement with binding data for 227 active compounds. This comparison also demonstrates that a flexible receptor model enriches high affinity compound identification without significantly increasing the number of false positives from low affinity compounds.
Extended coherence lifetimes in microcavities under angle-resonant pumping conditions
DEFF Research Database (Denmark)
Østergaard, John Erland; Birkedal, Dan; Mizeikis, V.
2001-01-01
processes by the final-state polariton population. Strong enhancements of the scattering processes have been observed as a result of up to several 100 polaritons per final k-state under angle-resonant pumping conditions (Erland et al, 2000; Stevenson et al, 2000). Energy and wave vector are conserved...
Liakopoulos, Apostolos; Olsen, Björn; Geurts, Yvon; Artursson, Karin; Berg, Charlotte; Mevius, Dik J.; Bonnedahl, Jonas
2016-01-01
Extended-spectrum-cephalosporin-resistant Enterobacteriaceae are a public health concern due to limited treatment options. Here, we report on the occurrence and the molecular characteristics of extended-spectrum-cephalosporin-resistant Enterobacteriaceae recovered from wild birds (kelp gulls).
International Nuclear Information System (INIS)
Saito, Seiki; Nakamura, Hiroaki; Ito, Atsushi
2010-01-01
Incident angle dependence of reactions between graphene and hydrogen atoms are obtained qualitatively by classical molecular dynamics simulation under the NVE condition with modified Brenner reactive empirical bond order (REBO) potential. Chemical reaction depends on two parameters, i.e., polar angle θ and azimuthal angle φ of the incident hydrogen. From the simulation results, it is found that the reaction rates strongly depend on polar angle θ. Reflection rate becomes larger with increasing θ, and the θ dependence of adsorption rate is also found. The θ dependence is caused by three dimensional structure of the small potential barrier which covers adsorption sites. φ dependence of penetration rate is also found for large θ. (author)
A Langevin model for fluctuating contact angle behaviour parametrised using molecular dynamics.
Smith, E R; Müller, E A; Craster, R V; Matar, O K
2016-12-06
Molecular dynamics simulations are employed to develop a theoretical model to predict the fluid-solid contact angle as a function of wall-sliding speed incorporating thermal fluctuations. A liquid bridge between counter-sliding walls is studied, with liquid-vapour interface-tracking, to explore the impact of wall-sliding speed on contact angle. The behaviour of the macroscopic contact angle varies linearly over a range of capillary numbers beyond which the liquid bridge pinches off, a behaviour supported by experimental results. Nonetheless, the liquid bridge provides an ideal test case to study molecular scale thermal fluctuations, which are shown to be well described by Gaussian distributions. A Langevin model for contact angle is parametrised to incorporate the mean, fluctuation and auto-correlations over a range of sliding speeds and temperatures. The resulting equations can be used as a proxy for the fully-detailed molecular dynamics simulation allowing them to be integrated within a continuum-scale solver.
Generalized extended Navier-Stokes theory: Multiscale spin relaxation in molecular fluids
DEFF Research Database (Denmark)
Hansen, Jesper Schmidt
2013-01-01
This paper studies the relaxation of the molecular spin angular velocity in the framework of generalized extended Navier-Stokes theory. Using molecular dynamics simulations, it is shown that for uncharged diatomic molecules the relaxation time decreases with increasing molecular moment of inertia...
Extending the molecular clutch beyond actin-based cell motility
International Nuclear Information System (INIS)
Havrylenko, Svitlana; Mezanges, Xavier; Batchelder, Ellen; Plastino, Julie
2014-01-01
Many cell movements occur via polymerization of the actin cytoskeleton beneath the plasma membrane at the front of the cell, forming a protrusion called a lamellipodium, while myosin contraction squeezes forward the back of the cell. In what is known as the ‘molecular clutch’ description of cell motility, forward movement results from the engagement of the acto-myosin motor with cell-matrix adhesions, thus transmitting force to the substrate and producing movement. However during cell translocation, clutch engagement is not perfect, and as a result, the cytoskeleton slips with respect to the substrate, undergoing backward (retrograde) flow in the direction of the cell body. Retrograde flow is therefore inversely proportional to cell speed and depends on adhesion and acto-myosin dynamics. Here we asked whether the molecular clutch was a general mechanism by measuring motility and retrograde flow for the Caenorhabditis elegans sperm cell in different adhesive conditions. These cells move by adhering to the substrate and emitting a dynamic lamellipodium, but the sperm cell does not contain an acto-myosin cytoskeleton. Instead the lamellipodium is formed by the assembly of major sperm protein, which has no biochemical or structural similarity to actin. We find that these cells display the same molecular clutch characteristics as acto-myosin containing cells. We further show that retrograde flow is produced both by cytoskeletal assembly and contractility in these cells. Overall this study shows that the molecular clutch hypothesis of how polymerization is transduced into motility via adhesions is a general description of cell movement regardless of the composition of the cytoskeleton. (paper)
Electron dopable molecular wires based on the extended viologens
Czech Academy of Sciences Publication Activity Database
Kolivoška, Viliam; Gál, Miroslav; Pospíšil, Lubomír; Valášek, Michal; Hromadová, Magdaléna
2011-01-01
Roč. 13, č. 23 (2011), s. 11422-11429 ISSN 1463-9076 R&D Projects: GA ČR GA203/08/1157; GA ČR GA203/09/0705; GA AV ČR IAA400400802; GA MŠk(CZ) MEB041006 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z40550506 Keywords : electron transfer * spectroelectrochemistry * molecular wires Subject RIV: CG - Electrochemistry Impact factor: 3.573, year: 2011
Energy Technology Data Exchange (ETDEWEB)
Moler, E.J.; Kellar, S.A.; Huff, W.R.A. [Lawrence Berkeley National Lab., CA (United States)] [and others
1997-04-01
The authors present a unique method of experimentally determining the angular momentum and intrinsic/extrinsic origin of core-level photoemission satellites by examining the satellite diffraction pattern in the Angle Resolved Photoemission Extended Fine Structure (ARPEFS) mode. They show for the first time that satellite peaks not associated with chemically differentiated atomic species display an ARPEFS intensity oscillation. They present ARPEFS data for the carbon 1s from ({radical}3x{radical}3)R30 CO/Cu(111) and p2mg(2xl)CO/Ni(110), nitrogen 1s from c(2x2) N{sub 2}/Ni(100), cobalt 1s from p(1x1)Co/Cu(100), and nickel 3p from clean nickel (111). The satellite peaks and tails of the Doniach-Sunjic line shapes in all cases exhibit ARPEFS curves which indicate an angular momentum identical to the main peak and are of an intrinsic nature.
International Nuclear Information System (INIS)
Moler, E.J.; Kellar, S.A.; Huff, W.R.A.
1997-01-01
The authors present a unique method of experimentally determining the angular momentum and intrinsic/extrinsic origin of core-level photoemission satellites by examining the satellite diffraction pattern in the Angle Resolved Photoemission Extended Fine Structure (ARPEFS) mode. They show for the first time that satellite peaks not associated with chemically differentiated atomic species display an ARPEFS intensity oscillation. They present ARPEFS data for the carbon 1s from (√3x√3)R30 CO/Cu(111) and p2mg(2xl)CO/Ni(110), nitrogen 1s from c(2x2) N 2 /Ni(100), cobalt 1s from p(1x1)Co/Cu(100), and nickel 3p from clean nickel (111). The satellite peaks and tails of the Doniach-Sunjic line shapes in all cases exhibit ARPEFS curves which indicate an angular momentum identical to the main peak and are of an intrinsic nature
Optimized measurements of separations and angles between intra-molecular fluorescent markers
DEFF Research Database (Denmark)
Mortensen, Kim; Sung, Jongmin; Flyvbjerg, Henrik
2015-01-01
We demonstrate a novel, yet simple tool for the study of structure and function of biomolecules by extending two-colour co-localization microscopy to fluorescent molecules with fixed orientations and in intra-molecular proximity. From each colour-separated microscope image in a time-lapse movie...
Molecular Dynamics Analyses on Microscopic Contact Angle - Effect of Wall Atom Configuration
International Nuclear Information System (INIS)
Takahiro Ito; Yosuke Hirata; Yutaka Kukita
2006-01-01
Boiling or condensing phenomena of liquid on the solid surface is greatly affected by the wetting condition of the liquid to the solid. Although the contact angle is one of the most important parameter to represent the wetting condition, the behavior of the contact angle is not understood well, especially in the dynamic condition. In this study we made molecular dynamics simulations to investigate the microscopic contact angle behavior under several conditions on the numerical density of the wall atoms. In the analyses, when the number density of the wall is lower, the changing rate of the dynamics contact angles for the variation of ΔV was higher than those for the case where the wall density is higher. This is mainly due to the crystallization of the fluid near the wall and subsequent decrease in the slip between the fluid and the wall. The analyses also show that the static contact angle decreases with increase in the number density of the wall. This was mainly induced by the increase in the number density of the wall itself. (authors)
On the equilibrium contact angle of sessile liquid drops from molecular dynamics simulations.
Ravipati, Srikanth; Aymard, Benjamin; Kalliadasis, Serafim; Galindo, Amparo
2018-04-28
We present a new methodology to estimate the contact angles of sessile drops from molecular simulations by using the Gaussian convolution method of Willard and Chandler [J. Phys. Chem. B 114, 1954-1958 (2010)] to calculate the coarse-grained density from atomic coordinates. The iso-density contour with average coarse-grained density value equal to half of the bulk liquid density is identified as the average liquid-vapor (LV) interface. Angles between the unit normal vectors to the average LV interface and unit normal vector to the solid surface, as a function of the distance normal to the solid surface, are calculated. The cosines of these angles are extrapolated to the three-phase contact line to estimate the sessile drop contact angle. The proposed methodology, which is relatively easy to implement, is systematically applied to three systems: (i) a Lennard-Jones (LJ) drop on a featureless LJ 9-3 surface; (ii) an SPC/E water drop on a featureless LJ 9-3 surface; and (iii) an SPC/E water drop on a graphite surface. The sessile drop contact angles estimated with our methodology for the first two systems are shown to be in good agreement with the angles predicted from Young's equation. The interfacial tensions required for this equation are computed by employing the test-area perturbation method for the corresponding planar interfaces. Our findings suggest that the widely adopted spherical-cap approximation should be used with caution, as it could take a long time for a sessile drop to relax to a spherical shape, of the order of 100 ns, especially for water molecules initiated in a lattice configuration on a solid surface. But even though a water drop can take a long time to reach the spherical shape, we find that the contact angle is well established much faster and the drop evolves toward the spherical shape following a constant-contact-angle relaxation dynamics. Making use of this observation, our methodology allows a good estimation of the sessile drop contact
Extended Hu¨ckel Calculations on Solids Using the Avogadro Molecular Editor and Visualizer
Avery, Patrick; Ludoweig, Herbert; Autschbach, Jochen; Zurek, Eva
2018-01-01
The "Yet Another extended Hu¨ckel Molecular Orbital Package" (YAeHMOP) has been merged with the Avogadro open-source molecular editor and visualizer. It is now possible to perform YAeHMOP calculations directly from the Avogadro graphical user interface for materials that are periodic in one, two, or three dimensions, and to visualize…
Chen, Szu-Ying; Kaufman, Yair; Schrader, Alex M; Seo, Dongjin; Lee, Dong Woog; Page, Steven H; Koenig, Peter H; Isaacs, Sandra; Gizaw, Yonas; Israelachvili, Jacob N
2017-09-26
Measuring truly equilibrium adhesion energies or contact angles to obtain the thermodynamic values is experimentally difficult because it requires loading/unloading or advancing/receding boundaries to be measured at rates that can be slower than 1 nm/s. We have measured advancing-receding contact angles and loading-unloading adhesion energies for various systems and geometries involving molecularly smooth and chemically homogeneous surfaces moving at different but steady velocities in both directions, ±V, focusing on the thermodynamic limit of ±V → 0. We have used the Bell Theory (1978) to derive expressions for the dynamic (velocity-dependent) adhesion energies and contact angles suitable for both (i) dynamic adhesion measurements using the classic Johnson-Kendall-Roberts (JKR, 1971) theory of "contact mechanics" and (ii) dynamic contact angle hysteresis measurements of both rolling droplets and syringe-controlled (sessile) droplets on various surfaces. We present our results for systems that exhibited both steady and varying velocities from V ≈ 10 mm/s to 1 nm/s, where in all cases but one, the advancing (V > 0) and receding (V contact angles converged toward the same theoretical (thermodynamic) values as V → 0. Our equations for the dynamic contact angles are similar to the classic equations of Blake & Haynes (1969) and fitted the experimental adhesion data equally well over the range of velocities studied, although with somewhat different fitting parameters for the characteristic molecular length/dimension or area and characteristic bond formation/rupture lifetime or velocity. Our theoretical and experimental methods and results unify previous kinetic theories of adhesion and contact angle hysteresis and offer new experimental methods for testing kinetic models in the thermodynamic, quasi-static, limit. Our analyses are limited to kinetic effects only, and we conclude that hydrodynamic, i.e., viscous, and inertial effects do not play a role at the
Extended Lagrangian Density Functional Tight-Binding Molecular Dynamics for Molecules and Solids
International Nuclear Information System (INIS)
Aradi, Balint; Frauenheim, Thomas
2015-01-01
A computationally fast quantum mechanical molecular dynamics scheme using an extended Lagrangian density functional tight-binding formulation has been developed and implemented in the DFTB+ electronic structure program package for simulations of solids and molecular systems. The scheme combines the computational speed of self-consistent density functional tight-binding theory with the efficiency and long-term accuracy of extended Lagrangian Born-Oppenheimer molecular dynamics. Furthermore, for systems without self-consistent charge instabilities, only a single diagonalization or construction of the single-particle density matrix is required in each time step. The molecular dynamics simulation scheme can also be applied to a broad range of problems in materials science, chemistry, and biology
Extended Lagrangian Density Functional Tight-Binding Molecular Dynamics for Molecules and Solids.
Aradi, Bálint; Niklasson, Anders M N; Frauenheim, Thomas
2015-07-14
A computationally fast quantum mechanical molecular dynamics scheme using an extended Lagrangian density functional tight-binding formulation has been developed and implemented in the DFTB+ electronic structure program package for simulations of solids and molecular systems. The scheme combines the computational speed of self-consistent density functional tight-binding theory with the efficiency and long-term accuracy of extended Lagrangian Born-Oppenheimer molecular dynamics. For systems without self-consistent charge instabilities, only a single diagonalization or construction of the single-particle density matrix is required in each time step. The molecular dynamics simulation scheme can be applied to a broad range of problems in materials science, chemistry, and biology.
Koishi, Takahiro; Yasuoka, Kenji; Fujikawa, Shigenori; Zeng, Xiao Cheng
2011-09-27
We perform large-scale molecular dynamics simulations to measure the contact-angle hysteresis for a nanodroplet of water placed on a nanopillared surface. The water droplet can be in either the Cassie state (droplet being on top of the nanopillared surface) or the Wenzel state (droplet being in contact with the bottom of nanopillar grooves). To measure the contact-angle hysteresis in a quantitative fashion, the molecular dynamics simulation is designed such that the number of water molecules in the droplets can be systematically varied, but the number of base nanopillars that are in direct contact with the droplets is fixed. We find that the contact-angle hysteresis for the droplet in the Cassie state is weaker than that in the Wenzel state. This conclusion is consistent with the experimental observation. We also test a different definition of the contact-angle hysteresis, which can be extended to estimate hysteresis between the Cassie and Wenzel state. The idea is motivated from the appearance of the hysteresis loop typically seen in computer simulation of the first-order phase transition, which stems from the metastability of a system in different thermodynamic states. Since the initial shape of the droplet can be controlled arbitrarily in the computer simulation, the number of base nanopillars that are in contact with the droplet can be controlled as well. We show that the measured contact-angle hysteresis according to the second definition is indeed very sensitive to the initial shape of the droplet. Nevertheless, the contact-angle hystereses measured based on the conventional and new definition seem converging in the large droplet limit. © 2011 American Chemical Society
Small-angle neutron scattering and molecular dynamics structural study of gelling DNA nanostars
Energy Technology Data Exchange (ETDEWEB)
Fernandez-Castanon, J.; Bomboi, F. [Sapienza–Università di Roma, P.le A. Moro 5, 00185 Roma (Italy); Rovigatti, L. [Rudolf Peierls C.T.P., University of Oxford, 1 Keble Road, Oxford OX1 3NP (United Kingdom); Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna (Austria); Zanatta, M. [Dipartimento di Fisica, Università di Perugia, Via Pascoli, 06123 Perugia (Italy); CNR-ISC, UOS Sapienza–Università di Roma, I-00186 Roma (Italy); Paciaroni, A. [Dipartimento di Fisica, Università di Perugia, Via Pascoli, 06123 Perugia (Italy); Comez, L. [Dipartimento di Fisica, Università di Perugia, Via Pascoli, 06123 Perugia (Italy); IOM-CNR, UOS Perugia c/o Dipartimento di Fisica e Geologia, Università di Perugia, Via Pascoli, 06123 Perugia (Italy); Porcar, L. [Institut Laue-Langevin, 71 Avenue des Martyrs, CS 20156, 38042 Grenoble Cedex 9 (France); Jafta, C. J. [Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Fadda, G. C. [Laboratoire Léon Brillouin, LLB, CEA Saclay, 91191 Gif-sur-Yvette Cedex (France); Bellini, T. [Department of Medical Biotechnology and Translational Medicine, Università di Milano, I-20133 Milano (Italy); Sciortino, F., E-mail: francesco.sciortino@uniroma1.it [Sapienza–Università di Roma, P.le A. Moro 5, 00185 Roma (Italy); CNR-ISC, UOS Sapienza–Università di Roma, I-00186 Roma (Italy)
2016-08-28
DNA oligomers with properly designed sequences self-assemble into well defined constructs. Here, we exploit this methodology to produce bulk quantities of tetravalent DNA nanostars (each one composed of 196 nucleotides) and to explore the structural signatures of their aggregation process. We report small-angle neutron scattering experiments focused on the evaluation of both the form factor and the temperature evolution of the scattered intensity at a nanostar concentration where the system forms a tetravalent equilibrium gel. We also perform molecular dynamics simulations of one isolated tetramer to evaluate the form factor numerically, without resorting to any approximate shape. The numerical form factor is found to be in very good agreement with the experimental one. Simulations predict an essentially temperature-independent form factor, offering the possibility to extract the effective structure factor and its evolution during the equilibrium gelation.
Directory of Open Access Journals (Sweden)
Maurer Till
2005-04-01
Full Text Available Abstract Background We have developed the program PERMOL for semi-automated homology modeling of proteins. It is based on restrained molecular dynamics using a simulated annealing protocol in torsion angle space. As main restraints defining the optimal local geometry of the structure weighted mean dihedral angles and their standard deviations are used which are calculated with an algorithm described earlier by Döker et al. (1999, BBRC, 257, 348–350. The overall long-range contacts are established via a small number of distance restraints between atoms involved in hydrogen bonds and backbone atoms of conserved residues. Employing the restraints generated by PERMOL three-dimensional structures are obtained using standard molecular dynamics programs such as DYANA or CNS. Results To test this modeling approach it has been used for predicting the structure of the histidine-containing phosphocarrier protein HPr from E. coli and the structure of the human peroxisome proliferator activated receptor γ (Ppar γ. The divergence between the modeled HPr and the previously determined X-ray structure was comparable to the divergence between the X-ray structure and the published NMR structure. The modeled structure of Ppar γ was also very close to the previously solved X-ray structure with an RMSD of 0.262 nm for the backbone atoms. Conclusion In summary, we present a new method for homology modeling capable of producing high-quality structure models. An advantage of the method is that it can be used in combination with incomplete NMR data to obtain reasonable structure models in accordance with the experimental data.
Energy Technology Data Exchange (ETDEWEB)
Cawkwell, M. J., E-mail: cawkwell@lanl.gov; Niklasson, Anders M. N. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Dattelbaum, Dana M. [Weapons Experiments Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)
2015-02-14
The initial chemical events that occur during the shock compression of liquid phenylacetylene have been investigated using self-consistent tight binding molecular dynamics simulations. The extended Lagrangian Born-Oppenheimer molecular dynamics formalism enabled us to compute microcanonical trajectories with precise conservation of the total energy. Our simulations revealed that the first density-increasing step under shock compression arises from the polymerization of phenylacetylene molecules at the acetylene moiety. The application of electronic structure-based molecular dynamics with long-term conservation of the total energy enabled us to identify electronic signatures of reactivity via monitoring changes in the HOMO-LUMO gap, and to capture directly adiabatic shock heating, transient non-equilibrium states, and changes in temperature arising from exothermic chemistry in classical molecular dynamics trajectories.
Cawkwell, M J; Niklasson, Anders M N; Dattelbaum, Dana M
2015-02-14
The initial chemical events that occur during the shock compression of liquid phenylacetylene have been investigated using self-consistent tight binding molecular dynamics simulations. The extended Lagrangian Born-Oppenheimer molecular dynamics formalism enabled us to compute microcanonical trajectories with precise conservation of the total energy. Our simulations revealed that the first density-increasing step under shock compression arises from the polymerization of phenylacetylene molecules at the acetylene moiety. The application of electronic structure-based molecular dynamics with long-term conservation of the total energy enabled us to identify electronic signatures of reactivity via monitoring changes in the HOMO-LUMO gap, and to capture directly adiabatic shock heating, transient non-equilibrium states, and changes in temperature arising from exothermic chemistry in classical molecular dynamics trajectories.
Hansen, J S; Daivis, Peter J; Dyre, Jeppe C; Todd, B D; Bruus, Henrik
2013-01-21
The extended Navier-Stokes theory accounts for the coupling between the translational and rotational molecular degrees of freedom. In this paper, we generalize this theory to non-zero frequencies and wavevectors, which enables a new study of spatio-temporal correlation phenomena present in molecular fluids. To discuss these phenomena in detail, molecular dynamics simulations of molecular chlorine are performed for three different state points. In general, the theory captures the behavior for small wavevector and frequencies as expected. For example, in the hydrodynamic regime and for molecular fluids with small moment of inertia like chlorine, the theory predicts that the longitudinal and transverse intrinsic angular velocity correlation functions are almost identical, which is also seen in the molecular dynamics simulations. However, the theory fails at large wavevector and frequencies. To account for the correlations at these scales, we derive a phenomenological expression for the frequency dependent rotational viscosity and wavevector and frequency dependent longitudinal spin viscosity. From this we observe a significant coupling enhancement between the molecular angular velocity and translational velocity for large frequencies in the gas phase; this is not observed for the supercritical fluid and liquid state points.
Stellar feedback as the origin of an extended molecular outflow in a starburst galaxy.
Geach, J E; Hickox, R C; Diamond-Stanic, A M; Krips, M; Rudnick, G H; Tremonti, C A; Sell, P H; Coil, A L; Moustakas, J
2014-12-04
Recent observations have revealed that starburst galaxies can drive molecular gas outflows through stellar radiation pressure. Molecular gas is the phase of the interstellar medium from which stars form, so these outflows curtail stellar mass growth in galaxies. Previously known outflows, however, involve small fractions of the total molecular gas content and have typical scales of less than a kiloparsec. In at least some cases, input from active galactic nuclei is dynamically important, so pure stellar feedback (the momentum return into the interstellar medium) has been considered incapable of rapidly terminating star formation on galactic scales. Molecular gas has been detected outside the galactic plane of the archetypal starburst galaxy M82 (refs 4 and 5), but so far there has been no evidence that starbursts can propel substantial quantities of cold molecular gas to the same galactocentric radius (about 10 kiloparsecs) as the warmer gas that has been traced by metal ion absorbers in the circumgalactic medium. Here we report observations of molecular gas in a compact (effective radius 100 parsecs) massive starburst galaxy at redshift 0.7, which is known to drive a fast outflow of ionized gas. We find that 35 per cent of the total molecular gas extends approximately 10 kiloparsecs, and one-third of this extended gas has a velocity of up to 1,000 kilometres per second. The kinetic energy associated with this high-velocity component is consistent with the momentum flux available from stellar radiation pressure. This demonstrates that nuclear bursts of star formation are capable of ejecting large amounts of cold gas from the central regions of galaxies, thereby strongly affecting their evolution by truncating star formation and redistributing matter.
Assess the Intra-molecular Cavity in PAMAM Dendrimers by Small Angle Neutron Scattering
International Nuclear Information System (INIS)
Chen, Wei-Ren
2008-01-01
In this report, we present a contrast variation small angle neutron scattering (SANS) study of a series of neutral PAMAM dendrimer in aqueous solutions using three different generations (G4-6) at a concentration of about 10 mg/ml. Varying the solvent hydrogen-deuterium ratio, the scattering contributions from the water molecules and the constituent components of PAMAM dendrimer can be determined. Using an analytical model of the scattering cross section I(Q) incorporating the effect of water penetration, we have quantified the intra-molecular space of PAMAM dendrimer by evaluating the number of guest water molecules and we draw a direct comparison to computational predictions. As expected, the overall available internal cavity was seen to increase as a function of increasing dendrimer generation. However, the fraction of water accessible volume in the internal cavity of a dendrimer was found to remain invariant for the three generation PAMAM dendrimers studied in this report. We have also estimated the average water density inside a dendrimer, which is found to be higher than that of bulk water
Extended Lagrangian formulation of charge-constrained tight-binding molecular dynamics.
Cawkwell, M J; Coe, J D; Yadav, S K; Liu, X-Y; Niklasson, A M N
2015-06-09
The extended Lagrangian Born-Oppenheimer molecular dynamics formalism [Niklasson, Phys. Rev. Lett., 2008, 100, 123004] has been applied to a tight-binding model under the constraint of local charge neutrality to yield microcanonical trajectories with both precise, long-term energy conservation and a reduced number of self-consistent field optimizations at each time step. The extended Lagrangian molecular dynamics formalism restores time reversal symmetry in the propagation of the electronic degrees of freedom, and it enables the efficient and accurate self-consistent optimization of the chemical potential and atomwise potential energy shifts in the on-site elements of the tight-binding Hamiltonian that are required when enforcing local charge neutrality. These capabilities are illustrated with microcanonical molecular dynamics simulations of a small metallic cluster using an sd-valent tight-binding model for titanium. The effects of weak dissipation on the propagation of the auxiliary degrees of freedom for the chemical potential and on-site Hamiltonian matrix elements that is used to counteract the accumulation of numerical noise during trajectories was also investigated.
Isolate extended state in the DNA molecular transistor with surface interaction
Energy Technology Data Exchange (ETDEWEB)
Wang, Le, E-mail: wang_le917@gs.zzu.edu.cn; Qin, Zhi-Jie
2016-02-01
The field effect characteristic of a DNA molecular device is investigated in a tight binding model with binary disorder and side site correlation. Using the transfer-matrix method and Landauer–Büttiker theory, we find that the system has isolated extended state that is irrespective of the DNA sequence and can be modulated by the gate voltage. When the gate voltage reaches some proper value, the isolated extended state appears at the Fermi level of the system and the long range charge transport is greatly enhanced. We attribute this phenomenon to the combination of the external field, the surface interaction, and the intrinsic disorder of DNA. The result is a generic feature of the nanowire with binary disorder and surface interaction.
DEFF Research Database (Denmark)
Jensen, Morten Østergaard; Mouritsen, Ole G.; Peters, Günther H.J.
2004-01-01
Structural and dynamic properties of water confined between two parallel, extended, either hydrophobic or hydrophilic crystalline surfaces of n-alkane C36H74 or n-alcohol C35H71OH, are studied by molecular dynamics simulations. Electron density profiles, directly compared with corresponding......-correlation functions reveal that water molecules have characteristic diffusive behavior and orientational ordering due to the lack of hydrogen bonding interactions with the surface. These observations suggest that the altered dynamical properties of water in contact with extended hydrophobic surfaces together...... at both surfaces. The ordering is characteristically different between the surfaces and of longer range at the hydrophilic surface. Furthermore, the dynamic properties of water are different at the two surfaces and different from the bulk behavior. In particular, at the hydrophobic surface, time...
Rational extended thermodynamics of a rarefied polyatomic gas with molecular relaxation processes
Arima, Takashi; Ruggeri, Tommaso; Sugiyama, Masaru
2017-10-01
We present a more refined version of rational extended thermodynamics of rarefied polyatomic gases in which molecular rotational and vibrational relaxation processes are treated individually. In this case, we need a triple hierarchy of the moment system and the system of balance equations is closed via the maximum entropy principle. Three different types of the production terms in the system, which are suggested by a generalized BGK-type collision term in the Boltzmann equation, are adopted. In particular, the rational extended thermodynamic theory with seven independent fields (ET7) is analyzed in detail. Finally, the dispersion relation of ultrasonic wave derived from the ET7 theory is confirmed by the experimental data for CO2, Cl2, and Br2 gases.
Energy Technology Data Exchange (ETDEWEB)
Montgomerie, Bjoern
2004-06-01
For wind turbine and propeller performance calculations aerodynamic data, valid for several radial stations along the blade, are used. For wind turbines the data must be valid for the 360 degree angle of attack range. The reason is that all kinds of abnormal conditions must be analysed especially during the design of the turbine. Frequently aerodynamic data are available from wind tunnel tests where the angle of attack range is from say -5 to +20 degrees. This report describes a method to extend such data to be valid for {+-} 180 degrees. Previously the extension of data has been very approximate following the whim of the moment with the analyst. Furthermore, the Himmelskamp effect at the root and tip effects are treated in the complete method.
Energy Technology Data Exchange (ETDEWEB)
Li, Jian-Rong; Yakovenko, Andrey A; Lu, Weigang; Timmons, Daren J; Zhuang, Wenjuan; Yuan, Daqiang; Zhou, Hong-Cai
2010-12-15
A systematic exploration of the assembly of Mo₂(O₂C-)₄-based metal–organic molecular architectures structurally controlled by the bridging angles of rigid organic linkers has been performed. Twelve bridging dicarboxylate ligands were designed to be of different sizes with bridging angles of 0, 60, 90, and 120° while incorporating a variety of nonbridging functional groups, and these ligands were used as linkers. These dicarboxylate linkers assemble with quadruply bonded Mo–Mo clusters acting as nodes to give 13 molecular architectures, termed metal–organic polygons/polyhedra with metal cluster node arrangements of a linear shape, triangle, octahedron, and cuboctahedron/anti-cuboctahedron. The syntheses of these complexes have been optimized and their structures determined by single-crystal X-ray diffraction. The results have shown that the shape and size of the resulting molecular architecture can be controlled by tuning the bridging angle and size of the linker, respectively. Functionalization of the linker can adjust the solubility of the ensuing molecular assembly but has little or no effect on the geometry of the product. Preliminary gas adsorption, spectroscopic, and electrochemical properties of selected members were also studied. The present work is trying to enrich metal-containing supramolecular chemistry through the inclusion of well-characterized quadruply bonded Mo–Mo units into the structures, which can widen the prospect of additional electronic functionality, thereby leading to novel properties.
Li, Jian-Rong; Yakovenko, Andrey A; Lu, Weigang; Timmons, Daren J; Zhuang, Wenjuan; Yuan, Daqiang; Zhou, Hong-Cai
2010-12-15
A systematic exploration of the assembly of Mo2(O2C-)4-based metal-organic molecular architectures structurally controlled by the bridging angles of rigid organic linkers has been performed. Twelve bridging dicarboxylate ligands were designed to be of different sizes with bridging angles of 0, 60, 90, and 120° while incorporating a variety of nonbridging functional groups, and these ligands were used as linkers. These dicarboxylate linkers assemble with quadruply bonded Mo-Mo clusters acting as nodes to give 13 molecular architectures, termed metal-organic polygons/polyhedra with metal cluster node arrangements of a linear shape, triangle, octahedron, and cuboctahedron/anti-cuboctahedron. The syntheses of these complexes have been optimized and their structures determined by single-crystal X-ray diffraction. The results have shown that the shape and size of the resulting molecular architecture can be controlled by tuning the bridging angle and size of the linker, respectively. Functionalization of the linker can adjust the solubility of the ensuing molecular assembly but has little or no effect on the geometry of the product. Preliminary gas adsorption, spectroscopic, and electrochemical properties of selected members were also studied. The present work is trying to enrich metal-containing supramolecular chemistry through the inclusion of well-characterized quadruply bonded Mo-Mo units into the structures, which can widen the prospect of additional electronic functionality, thereby leading to novel properties.
Possible D(*) anti D(*) and B(*) anti B(*) molecular states in the extended constituent quark models
International Nuclear Information System (INIS)
Yang, You-Chang; Tan, Zhi-Yun; Ping, Jialun; Zong, Hong-Shi
2017-01-01
The possible neutral D (*) anti D (*) and B (*) anti B (*) molecular states are studied in the framework of the constituent quark models, which is extended by including the s-channel one-gluon exchange. Using different types of quark-quark potentials, we solve the four-body Schroedinger equation by means of the Gaussian expansion method. The bound states of D (*) anti D (*) with J PC = 1 ++ , 2 ++ and B (*) anti B (*) with J PC = 0 ++ , 1 +- , 1 ++ , 2 ++ are obtained. The molecular states D* anti D with J PC = 1 ++ and B* anti B with J PC = 1 +- are good candidates for X(3872) and Z 0 b (10610), respectively. The dependence of the results on the model parameters is also discussed. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Chen Xi; Gan Conggui; Shen Zhiqiang [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030 (China); Ellingsen, Simon P.; Titmarsh, Anita [School of Mathematics and Physics, University of Tasmania, Hobart, Tasmania (Australia); He Jinhua, E-mail: chenxi@shao.ac.cn [Key Laboratory for the Structure and Evolution of Celestial Objects, Yunnan Astronomical Observatory/National Astronomical Observatory, Chinese Academy of Sciences, P.O. Box 110, Kunming 650011, Yunnan Province (China)
2013-06-01
We have undertaken a survey of molecular lines in the 3 mm band toward 57 young stellar objects using the Australia Telescope National Facility Mopra 22 m radio telescope. The target sources were young stellar objects with active outflows (extended green objects (EGOs)) newly identified from the GLIMPSE II survey. We observe a high detection rate (50%) of broad line wing emission in the HNC and CS thermal lines, which combined with the high detection rate of class I methanol masers toward these sources (reported in Paper I) further demonstrates that the GLIMPSE II EGOs are associated with outflows. The physical and kinematic characteristics derived from the 3 mm molecular lines for these newly identified EGOs are consistent with these sources being massive young stellar objects with ongoing outflow activity and rapid accretion. These findings support our previous investigations of the mid-infrared properties of these sources and their association with other star formation tracers (e.g., infrared dark clouds, methanol masers and millimeter dust sources) presented in Paper I. The high detection rate (64%) of the hot core tracer CH{sub 3}CN reveals that the majority of these new EGOs have evolved to the hot molecular core stage. Comparison of the observed molecular column densities with predictions from hot core chemistry models reveals that the newly identified EGOs from the GLIMPSE II survey are members of the youngest hot core population, with an evolutionary time scale of the order of 10{sup 3} yr.
Energy Technology Data Exchange (ETDEWEB)
Arima, Takashi, E-mail: tks@stat.nitech.ac.jp [Center for Social Contribution and Collaboration, Nagoya Institute of Technology (Japan); Mentrelli, Andrea, E-mail: andrea.mentrelli@unibo.it [Department of Mathematics and Research Center of Applied Mathematics (CIRAM), University of Bologna (Italy); Ruggeri, Tommaso, E-mail: tommaso.ruggeri@unibo.it [Department of Mathematics and Research Center of Applied Mathematics (CIRAM), University of Bologna (Italy)
2014-06-15
Molecular extended thermodynamics of rarefied polyatomic gases is characterized by two hierarchies of equations for moments of a suitable distribution function in which the internal degrees of freedom of a molecule is taken into account. On the basis of physical relevance the truncation orders of the two hierarchies are proven to be not independent on each other, and the closure procedures based on the maximum entropy principle (MEP) and on the entropy principle (EP) are proven to be equivalent. The characteristic velocities of the emerging hyperbolic system of differential equations are compared to those obtained for monatomic gases and the lower bound estimate for the maximum equilibrium characteristic velocity established for monatomic gases (characterized by only one hierarchy for moments with truncation order of moments N) by Boillat and Ruggeri (1997) (λ{sub (N)}{sup E,max})/(c{sub 0}) ⩾√(6/5 (N−1/2 )),(c{sub 0}=√(5/3 k/m T)) is proven to hold also for rarefied polyatomic gases independently from the degrees of freedom of a molecule. -- Highlights: •Molecular extended thermodynamics of rarefied polyatomic gases is studied. •The relation between two hierarchies of equations for moments is derived. •The equivalence of maximum entropy principle and entropy principle is proven. •The characteristic velocities are compared to those of monatomic gases. •The lower bound of the maximum characteristic velocity is estimated.
International Nuclear Information System (INIS)
Arima, Takashi; Mentrelli, Andrea; Ruggeri, Tommaso
2014-01-01
Molecular extended thermodynamics of rarefied polyatomic gases is characterized by two hierarchies of equations for moments of a suitable distribution function in which the internal degrees of freedom of a molecule is taken into account. On the basis of physical relevance the truncation orders of the two hierarchies are proven to be not independent on each other, and the closure procedures based on the maximum entropy principle (MEP) and on the entropy principle (EP) are proven to be equivalent. The characteristic velocities of the emerging hyperbolic system of differential equations are compared to those obtained for monatomic gases and the lower bound estimate for the maximum equilibrium characteristic velocity established for monatomic gases (characterized by only one hierarchy for moments with truncation order of moments N) by Boillat and Ruggeri (1997) (λ (N) E,max )/(c 0 ) ⩾√(6/5 (N−1/2 )),(c 0 =√(5/3 k/m T)) is proven to hold also for rarefied polyatomic gases independently from the degrees of freedom of a molecule. -- Highlights: •Molecular extended thermodynamics of rarefied polyatomic gases is studied. •The relation between two hierarchies of equations for moments is derived. •The equivalence of maximum entropy principle and entropy principle is proven. •The characteristic velocities are compared to those of monatomic gases. •The lower bound of the maximum characteristic velocity is estimated
Deakin, Dan E; Mishreki, Andrew; Aslam, Nadim; Docker, Charles
2010-01-01
The use of extended duration thromboprophylaxis following hip and knee arthroplasty is becoming widespread. The aim of our study was to determine patient compliance with extended duration thromboprophylaxis using low molecular weight (LMWH) injections following hip and knee arthroplasty. 42 consecutive patients undergoing hip and knee arthroplasty were prospectively contacted during their fifth post operative week. A fully anonymised questionnaire was completed by each patient. All patients responded. One was excluded having been prescribed warfarin for pre existing atrial fibrillation. Twenty nine (71%) patients were discharged with the intention of self administering LMWH injections. Eight (20%) and four (9%) patients were discharged with the intention of administration by a relative or district nurse respectively. No patient required the person administering the injections to be changed after discharge from hospital. 90% (n=37) of patients reported not missing any doses. 10% (n=2) of patients missed one dose and 10% (n=2) missed two doses. Patient compliance with extended duration thromboprophylaxis using LMWH injections is extremely high. Oral thromboprophylaxis may be useful in the minority of patients requiring daily visits by a nurse to administer injections.
Generalized extended Navier-Stokes theory: multiscale spin relaxation in molecular fluids.
Hansen, J S
2013-09-01
This paper studies the relaxation of the molecular spin angular velocity in the framework of generalized extended Navier-Stokes theory. Using molecular dynamics simulations, it is shown that for uncharged diatomic molecules the relaxation time decreases with increasing molecular moment of inertia per unit mass. In the regime of large moment of inertia the fast relaxation is wave-vector independent and dominated by the coupling between spin and the fluid streaming velocity, whereas for small inertia the relaxation is slow and spin diffusion plays a significant role. The fast wave-vector-independent relaxation is also observed for highly packed systems. The transverse and longitudinal spin modes have, to a good approximation, identical relaxation, indicating that the longitudinal and transverse spin viscosities have same value. The relaxation is also shown to be isomorphic invariant. Finally, the effect of the coupling in the zero frequency and wave-vector limit is quantified by a characteristic length scale; if the system dimension is comparable to this length the coupling must be included into the fluid dynamical description. It is found that the length scale is independent of moment of inertia but dependent on the state point.
C(α) torsion angles as a flexible criterion to extract secrets from a molecular dynamics simulation.
Victor Paul Raj, Fredrick Robin Devadoss; Exner, Thomas E
2014-04-01
Given the increasing complexity of simulated molecular systems, and the fact that simulation times have now reached milliseconds to seconds, immense amounts of data (in the gigabyte to terabyte range) are produced in current molecular dynamics simulations. Manual analysis of these data is a very time-consuming task, and important events that lead from one intermediate structure to another can become occluded in the noise resulting from random thermal fluctuations. To overcome these problems and facilitate a semi-automated data analysis, we introduce in this work a measure based on C(α) torsion angles: torsion angles formed by four consecutive C(α) atoms. This measure describes changes in the backbones of large systems on a residual length scale (i.e., a small number of residues at a time). Cluster analysis of individual C(α) torsion angles and its fuzzification led to continuous time patches representing (meta)stable conformations and to the identification of events acting as transitions between these conformations. The importance of a change in torsion angle to structural integrity is assessed by comparing this change to the average fluctuations in the same torsion angle over the complete simulation. Using this novel measure in combination with other measures such as the root mean square deviation (RMSD) and time series of distance measures, we performed an in-depth analysis of a simulation of the open form of DNA polymerase I. The times at which major conformational changes occur and the most important parts of the molecule and their interrelations were pinpointed in this analysis. The simultaneous determination of the time points and localizations of major events is a significant advantage of the new bottom-up approach presented here, as compared to many other (top-down) approaches in which only the similarity of the complete structure is analyzed.
Hirakawa, Teruo; Suzuki, Teppei; Bowler, David R; Miyazaki, Tsuyoshi
2017-10-11
We discuss the development and implementation of a constant temperature (NVT) molecular dynamics scheme that combines the Nosé-Hoover chain thermostat with the extended Lagrangian Born-Oppenheimer molecular dynamics (BOMD) scheme, using a linear scaling density functional theory (DFT) approach. An integration scheme for this canonical-ensemble extended Lagrangian BOMD is developed and discussed in the context of the Liouville operator formulation. Linear scaling DFT canonical-ensemble extended Lagrangian BOMD simulations are tested on bulk silicon and silicon carbide systems to evaluate our integration scheme. The results show that the conserved quantity remains stable with no systematic drift even in the presence of the thermostat.
Borkar, Aditi; Ghosh, Indira; Bhattacharyya, Dhananjay
2010-04-01
Analysis of the conformational space populated by the torsion angles and the correlation between the conformational energy and the sequence of DNA are important for fully understanding DNA structure and function. Presence of seven variable torsion angles about single covalent bonds in DNA main chain puts a big challenge for such analysis. We have carried out restrained energy minimization studies for four representative dinucleosides, namely d(ApA):d(TpT), d(CpG):d(CpG), d(GpC):d(GpC) and d(CpA):d(TpG) to determine the energy hyperspace of DNA in context to the values of the torsion angles and the structural properties of the DNA conformations populating the favorable regions of this energy hyperspace. The torsion angles were manipulated by constraining their values at the reference points and then performing energy minimization. The energy minima obtained on the potential energy contour plots mostly correspond to the conformations populated in crystal structures of DNA. Some novel favorable conformations that are not present in crystal structure data are also found. The plots also suggest few low energy routes for conformational transitions or the associated energy barrier heights. Analyses of base pairing and stacking possibility reveal structural changes accompanying these transitions as well as the flexibility of different base steps towards variations in different torsion angles.
Albaugh, Alex; Head-Gordon, Teresa; Niklasson, Anders M N
2018-02-13
Generalized extended Lagrangian Born-Oppenheimer molecular dynamics (XLBOMD) methods provide a framework for fast iteration-free simulations of models that normally require expensive electronic ground state optimizations prior to the force evaluations at every time step. XLBOMD uses dynamically driven auxiliary degrees of freedom that fluctuate about a variationally optimized ground state of an approximate "shadow" potential which approximates the true reference potential. While the requirements for such shadow potentials are well understood, constructing such potentials in practice has previously been ad hoc, and in this work, we present a systematic development of XLBOMD shadow potentials that match the reference potential to any order. We also introduce a framework for combining friction-like dissipation for the auxiliary degrees of freedom with general-order integration, a combination that was not previously possible. These developments are demonstrated with a simple fluctuating charge model and point induced dipole polarization models.
The angle of repose of spherical grains in granular Hele–Shaw cells: a molecular dynamics study
International Nuclear Information System (INIS)
Maleki, Hamed; Ebrahimi, Fatemeh; Oskoee, Ehsan Nedaaee
2008-01-01
We report the results of three-dimensional molecular dynamic simulations on the angle of repose of a sandpile formed by pouring mono-sized cohesionless spherical grains into a granular Hele–Shaw cell. In particular, we are interested in investigating the effects of those variables which may have a significant impact on the pattern formation of granular mixtures in Hele–Shaw cells. The results indicate that the frictional forces influence the formation of piles on the grain level remarkably. Furthermore, we see that increasing grain insertion rate decreases the angle of repose slightly. We also find that the cell thickness is a significant factor and the angle of repose decays when the size of the gap between the lateral walls increases. In addition to agreeing with the experimental exponential decay law, our results are in accordance with a recently proposed model which takes into account the arching effects. Using grains with different sizes reveals that the behaviour of the angle of repose when both size and cell thickness are varied is controlled by a scaled function of the ratio of these two variables
Eisenberg, Azaria Solomon; Juszczak, Laura J
2013-07-05
Molecular dynamics (MD), coupled with fluorescence data for charged dipeptides of tryptophanyl glutamic acid (Trp-Glu), reveal a detailed picture of how specific conformation affects fluorescence. Fluorescence emission spectra and time-resolved emission measurements have been collected for all four charged species. MD simulations 20 to 30 ns in length have also been carried out for the Trp-Glu species, as simulation provides aqueous phase conformational data that can be correlated with the fluorescence data. The calculations show that each dipeptide species is characterized by a similar set of six, discrete Chi 1, Chi 2 dihedral angle pairs. The preferred Chi 1 angles--60°, 180°, and 300°--play the significant role in positioning the terminal amine relative to the indole ring. A Chi 1 angle of 60° results in the arching of the backbone over the indole ring and no interaction of the ring with the terminal amine. Chi 1 values of 180° and 300° result in an extension of the backbone away from the indole ring and a NH3 cation-π interaction with indole. This interaction is believed responsible for charge transfer quenching. Two fluorescence lifetimes and their corresponding amplitudes correlate with the Chi 1 angle probability distribution for all four charged Trp-Glu dipeptides. Fluorescence emission band maxima are also consistent with the proposed pattern of terminal amine cation quenching of fluorescence. Copyright © 2013 Wiley Periodicals, Inc.
Extended phase-space methods for enhanced sampling in molecular simulations: a review
Directory of Open Access Journals (Sweden)
Hiroshi eFujisaki
2015-09-01
Full Text Available Molecular Dynamics simulations are a powerful approach to study biomolecular conformational changes or protein-ligand, protein-protein and protein-DNA/RNA interactions. Straightforward applications however are often hampered by incomplete sampling, since in a typical simulated trajectory the system will spend most of its time trapped by high energy barriers in restricted regions of the configuration space. Over the years, several techniques have been designed to overcome this problem and enhance space sampling. Here, we review a class of methods that rely on the idea of extending the set of dynamical variables of the system by adding extra ones associated to functions describing the process under study. In particular, we illustrate the Temperature Accelerated Molecular Dynamics (TAMD, Logarithmic Mean Force Dynamics (LogMFD, andMultiscale Enhanced Sampling (MSES algorithms. We also discuss combinations with techniques for searching reaction paths. We show the advantages presented by this approach and how it allows to quickly sample important regions of the free energy landscape via automatic exploration.
Oteo, Jesús; Belén Aracil, María
2015-07-01
Multi-drug resistance in bacterial pathogens increases morbidity and mortality in infected patients and it is a threat to public health concern by their high capacity to spread. For both reasons, the rapid detection of multi-drug resistant bacteria is critical. Standard microbiological procedures require 48-72 h to provide the antimicrobial susceptibility results, thus there is emerging interest in the development of rapid detection techniques. In recent years, the use of selective and differential culture-based methods has widely spread. However, the capacity for detecting antibiotic resistance genes and their low turnaround times has made molecular methods a reference for diagnosis of multidrug resistance. This review focusses on the molecular methods for detecting some mechanisms of antibiotic resistance with a high clinical and epidemiological impact: a) Enzymatic resistance to broad spectrum β-lactam antibiotics in Enterobacteriaceae, mainly extended spectrum β-lactamases (ESBL) and carbapenemases; and b) methicillin resistance in Staphylococcus aureus. Copyright © 2015 Elsevier España, S.L.U. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Ping, Tan Ai; Hoe, Yeak Su [Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor Bahru, Johor Darul Takzim (Malaysia)
2014-07-10
Typically, short range potential only depends on neighbouring atoms and its parameters function can be categorized into bond stretching, angle bending and bond rotation potential. In this paper, we present our work called Angle Bending (AB) potential, whereas AB potential is the extension of our previous work namely Bond Stretching (BS) potential. Basically, potential will tend to zero after truncated region, potential in specific region can be represented by different piecewise polynomial. We proposed the AB piecewise potential which is possible to solve a system involving three atoms. AB potential able to handle the potential of covalent bonds for three atoms as well as two atoms cases due to its degeneracy properties. Continuity for the piecewise polynomial has been enforced by coupling with penalty methods. There are still plenty of improvement spaces for this AB potential. The improvement for three atoms AB potential will be studied and further modified into torsional potential which are the ongoing current research.
Pollock, Jacob F.; Ashton, Randolph S.; Rode, Nikhil A.; Schaffer, David V.; Healy, Kevin E.
2013-01-01
The degree of substitution and valency of bioconjugate reaction products are often poorly judged or require multiple time- and product- consuming chemical characterization methods. These aspects become critical when analyzing and optimizing the potency of costly polyvalent bioactive conjugates. In this study, size-exclusion chromatography with multi-angle laser light scattering was paired with refractive index detection and ultraviolet spectroscopy (SEC-MALS-RI-UV) to characterize the reaction efficiency, degree of substitution, and valency of the products of conjugation of either peptides or proteins to a biopolymer scaffold, i.e., hyaluronic acid (HyA). Molecular characterization was more complete compared to estimates from a protein quantification assay, and exploitation of this method led to more accurate deduction of the molecular structures of polymer bioconjugates. Information obtained using this technique can improve macromolecular engineering design principles and better understand multivalent macromolecular interactions in biological systems. PMID:22794081
Impact of extended defects on recombination in CdTe heterostructures grown by molecular beam epitaxy
Energy Technology Data Exchange (ETDEWEB)
Zaunbrecher, Katherine N. [Department of Physics, Colorado State University, Fort Collins, Colorado 80523 (United States); National Renewable Energy Laboratory, Golden, Colorado 80401 (United States); Kuciauskas, Darius; Dippo, Pat; Barnes, Teresa M. [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States); Swartz, Craig H.; Edirisooriya, Madhavie; Ogedengbe, Olanrewaju S.; Sohal, Sandeep; Hancock, Bobby L.; LeBlanc, Elizabeth G.; Jayathilaka, Pathiraja A. R. D.; Myers, Thomas H. [Materials Science, Engineering and Commercialization Program, Texas State University, San Marcos, Texas 78666 (United States)
2016-08-29
Heterostructures with CdTe and CdTe{sub 1-x}Se{sub x} (x ∼ 0.01) absorbers between two wider-band-gap Cd{sub 1-x}Mg{sub x}Te barriers (x ∼ 0.25–0.3) were grown by molecular beam epitaxy to study carrier generation and recombination in bulk materials with passivated interfaces. Using a combination of confocal photoluminescence (PL), time-resolved PL, and low-temperature PL emission spectroscopy, two extended defect types were identified and the impact of these defects on charge-carrier recombination was analyzed. The dominant defects identified by confocal PL were dislocations in samples grown on (211)B CdTe substrates and crystallographic twinning-related defects in samples on (100)-oriented InSb substrates. Low-temperature PL shows that twin-related defects have a zero-phonon energy of 1.460 eV and a Huang-Rhys factor of 1.50, while dislocation-dominated samples have a 1.473-eV zero-phonon energy and a Huang-Rhys factor of 1.22. The charge carrier diffusion length near both types of defects is ∼6 μm, suggesting that recombination is limited by diffusion dynamics. For heterostructures with a low concentration of extended defects, the bulk lifetime was determined to be 2.2 μs with an interface recombination velocity of 160 cm/s and an estimated radiative lifetime of 91 μs.
Directory of Open Access Journals (Sweden)
Ioan Bâldea
2016-03-01
Full Text Available As a sanity test for the theoretical method employed, studies on (steady-state charge transport through molecular devices usually confine themselves to check whether the method in question satisfies the charge conservation. Another important test of the theory’s correctness is to check that the computed current does not depend on the choice of the central region (also referred to as the “extended molecule”. This work addresses this issue and demonstrates that the relevant transport and transport-related properties are indeed invariant upon changing the size of the extended molecule, when the embedded molecule can be described within a general single-particle picture (namely, a second-quantized Hamiltonian bilinear in the creation and annihilation operators. It is also demonstrates that the invariance of nonequilibrium properties is exhibited by the exact results but not by those computed approximately within ubiquitous wide- and flat-band limits (WBL and FBL, respectively. To exemplify the limitations of the latter, the phenomenon of negative differential resistance (NDR is considered. It is shown that the exactly computed current may exhibit a substantial NDR, while the NDR effect is absent or drastically suppressed within the WBL and FBL approximations. The analysis done in conjunction with the WBLs and FBLs reveals why general studies on nonequilibrium properties require a more elaborate theoretical than studies on linear response properties (e.g., ohmic conductance and thermopower at zero temperature. Furthermore, examples are presented that demonstrate that treating parts of electrodes adjacent to the embedded molecule and the remaining semi-infinite electrodes at different levels of theory (which is exactly what most NEGF-DFT approaches do is a procedure that yields spurious structures in nonlinear ranges of current–voltage curves.
Energy Technology Data Exchange (ETDEWEB)
Pabit, Suzette A.; Katz, Andrea M.; Pollack, Lois [School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853 (United States); Tolokh, Igor S. [Department of Computer Science, Virginia Tech, Blacksburg, Virginia 24061 (United States); Drozdetski, Aleksander [Department of Physics, Virginia Tech, Blacksburg, Virginia 24061 (United States); Baker, Nathan [Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Onufriev, Alexey V. [Department of Computer Science, Virginia Tech, Blacksburg, Virginia 24061 (United States); Department of Physics, Virginia Tech, Blacksburg, Virginia 24061 (United States)
2016-05-28
Wide-angle x-ray scattering (WAXS) is emerging as a powerful tool for increasing the resolution of solution structure measurements of biomolecules. Compared to its better known complement, small angle x-ray scattering (SAXS), WAXS targets higher scattering angles and can enhance structural studies of molecules by accessing finer details of solution structures. Although the extension from SAXS to WAXS is easy to implement experimentally, the computational tools required to fully harness the power of WAXS are still under development. Currently, WAXS is employed to study structural changes and ligand binding in proteins; however, the methods are not as fully developed for nucleic acids. Here, we show how WAXS can qualitatively characterize nucleic acid structures as well as the small but significant structural changes driven by the addition of multivalent ions. We show the potential of WAXS to test all-atom molecular dynamics (MD) simulations and to provide insight into understanding how the trivalent ion cobalt(III) hexammine (CoHex) affects the structure of RNA and DNA helices. We find that MD simulations capture the RNA structural change that occurs due to addition of CoHex.
DEFF Research Database (Denmark)
Thulstrup, Peter Waaben; Hoffmann, Søren Vrønning; Hansen, Bjarke Knud Vilster
2011-01-01
A new analysis of the optical properties of the molecular rotor 1,4-diphenyl-1,3-butadiyne (diphenyl-diacetylene, DPDA) is presented, taking account of the conformational dynamics. The absorption spectra are interpreted in terms of simultaneous contributions from planar as well as non-planar rota......A new analysis of the optical properties of the molecular rotor 1,4-diphenyl-1,3-butadiyne (diphenyl-diacetylene, DPDA) is presented, taking account of the conformational dynamics. The absorption spectra are interpreted in terms of simultaneous contributions from planar as well as non...
Liu, Xin; Wang, Hongkai; Yan, Zhuangzhi
2016-11-01
Dynamic fluorescence molecular tomography (FMT) plays an important role in drug delivery research. However, the majority of current reconstruction methods focus on solving the stationary FMT problems. If the stationary reconstruction methods are applied to the time-varying fluorescence measurements, the reconstructed results may suffer from a high level of artifacts. In addition, based on the stationary methods, only one tomographic image can be obtained after scanning one circle projection data. As a result, the movement of fluorophore in imaged object may not be detected due to the relative long data acquisition time (typically >1 min). In this paper, we apply extended kalman filter (EKF) technique to solve the non-stationary fluorescence tomography problem. Especially, to improve the EKF reconstruction performance, the generalized inverse of kalman gain is calculated by a second-order iterative method. The numerical simulation, phantom, and in vivo experiments are performed to evaluate the performance of the method. The experimental results indicate that by using the proposed EKF-based second-order iterative (EKF-SOI) method, we cannot only clearly resolve the time-varying distributions of fluorophore within imaged object, but also greatly improve the reconstruction time resolution (~2.5 sec/frame) which makes it possible to detect the movement of fluorophore during the imaging processes.
How to measure separation and angles between inter-molecular fluorescent markers
DEFF Research Database (Denmark)
Flyvbjerg, Henrik
Structure and function of an individual biomolecule can be explored with minimum two fluorescent markers of different colors. Since the light of such markers can be spec- trally separated and imaged simultaneously, the markers can be colocalized. Here, we describe the method used for such two......-color colocalization microscopy. Then we extend it to fluorescent markers with fixed orientations and in intramolecular proximity. Our benchmarking of this extension produced two extra results: (a) we established short double-labeled DNA molecules as probes of 3D orientation of anything to which one can attach them...
Energy Technology Data Exchange (ETDEWEB)
Moler, E.J.; Kellar, S.A.; Huff, W.R.A. [Lawrence Berkeley National Lab., CA (United States)] [and others
1997-04-01
The authors have determined the atomic spatial structure of c(2x2) N2Ni(100) with Angle-Resolved Photoemission Extended Fine Structure (ARPEFS) from the nitrogen 1s core level using monochromatized x-rays from beamline 6.1 at SSRL and beamline 9.3.2 at the ALS. The chemically shifted N 1s peak intensities were summed together to obtain ARPEFS curves for both nitrogen atoms in the molecule. They used a new, highly-optimized program based on the Rehr-Albers scattering matrix formalism to find the adsorption site and to quantitatively determine the bond-lengths. The nitrogen molecule stands upright at an atop site, with a N-Ni bond length of 2.25(1) {angstrom}, a N-N bond length of 1.10(7) {angstrom}, and a first layer Ni-Ni spacing of 1.76(4) {angstrom}. The shake-up peak shows an identical ARPEFS diffraction pattern, confirming its intrinsic nature and supporting a previous use of this feature to decompose the peak into contributions from the chemically inequivalent nitrogen atoms. Comparison to a previously published theoretical treatment of N-N-Ni and experimental structures of analogous adsorbate systems demonstrates the importance of adsorbate-adsorbate interactions in weakly chemisorbed systems.
Radrich, Karin; Ale, Angelique; Ermolayev, Vladimir; Ntziachristos, Vasilis
2012-12-01
We examine the improvement in imaging performance, such as axial resolution and signal localization, when employing limited-projection-angle fluorescence molecular tomography (FMT) together with x-ray computed tomography (XCT) measurements versus stand-alone FMT. For this purpose, we employed living mice, bearing a spontaneous lung tumor model, and imaged them with FMT and XCT under identical geometrical conditions using fluorescent probes for cancer targeting. The XCT data was employed, herein, as structural prior information to guide the FMT reconstruction. Gold standard images were provided by fluorescence images of mouse cryoslices, providing the ground truth in fluorescence bio-distribution. Upon comparison of FMT images versus images reconstructed using hybrid FMT and XCT data, we demonstrate marked improvements in image accuracy. This work relates to currently disseminated FMT systems, using limited projection scans, and can be employed to enhance their performance.
Correcting for the free energy costs of bond or angle constraints in molecular dynamics simulations.
König, Gerhard; Brooks, Bernard R
2015-05-01
Free energy simulations are an important tool in the arsenal of computational biophysics, allowing the calculation of thermodynamic properties of binding or enzymatic reactions. This paper introduces methods to increase the accuracy and precision of free energy calculations by calculating the free energy costs of constraints during post-processing. The primary purpose of employing constraints for these free energy methods is to increase the phase space overlap between ensembles, which is required for accuracy and convergence. The free energy costs of applying or removing constraints are calculated as additional explicit steps in the free energy cycle. The new techniques focus on hard degrees of freedom and use both gradients and Hessian estimation. Enthalpy, vibrational entropy, and Jacobian free energy terms are considered. We demonstrate the utility of this method with simple classical systems involving harmonic and anharmonic oscillators, four-atomic benchmark systems, an alchemical mutation of ethane to methanol, and free energy simulations between alanine and serine. The errors for the analytical test cases are all below 0.0007kcal/mol, and the accuracy of the free energy results of ethane to methanol is improved from 0.15 to 0.04kcal/mol. For the alanine to serine case, the phase space overlaps of the unconstrained simulations range between 0.15 and 0.9%. The introduction of constraints increases the overlap up to 2.05%. On average, the overlap increases by 94% relative to the unconstrained value and precision is doubled. The approach reduces errors arising from constraints by about an order of magnitude. Free energy simulations benefit from the use of constraints through enhanced convergence and higher precision. The primary utility of this approach is to calculate free energies for systems with disparate energy surfaces and bonded terms, especially in multi-scale molecular mechanics/quantum mechanics simulations. This article is part of a Special Issue
Wu, Bin; Li, Xin; Do, Changwoo; Kim, Tae-Hwan; Shew, Chwen-Yang; Liu, Yun; Yang, Jun; Hong, Kunlun; Porcar, Lionel; Chen, Chun-Yu; Liu, Emily L.; Smith, Gregory S.; Herwig, Kenneth W.; Chen, Wei-Ren
2011-10-01
An experimental scheme using contrast variation small angle neutron scattering technique is developed to investigate the structural characteristics of amine-terminated poly(amidoamine) dendrimers solutions. Using this methodology, we present the dependence of both the intra-dendrimer water and the polymer distribution on molecular protonation, which can be precisely adjusted by tuning the pH of the solution. Assuming spherical symmetry of the spatial arrangement of the constituent components of dendrimer, and that the atomic ratio of hydrogen-to-deuterium for the solvent residing within the cavities of dendrimer is identical to that for the solvent outside the dendrimer, the intra-dendrimer water distribution along the radial direction is determined. Our result clearly reveals an outward relocation of the peripheral groups, as well as enhanced intra-dendrimer hydration, upon increasing the molecular protonation and, therefore, allows the determination of segmental backfolding in a quantitative manner. The connection between these charge-induced structural changes and our recently observed progressively active segmental dynamics is also discussed.
Gose, Severin; Nguyen, Duylinh; Lowenberg, Daniella; Samuel, Michael; Bauer, Heidi; Pandori, Mark
2013-12-04
The spread of Neisseria gonorrhoeae strains with mosaic penA alleles and reduced susceptibility to extended-spectrum cephalosporins is a major public health problem. While much work has been performed internationally, little is known about the genetics or molecular epidemiology of N. gonorrhoeae isolates with reduced susceptibility to extended-spectrum cephalosporins in the United States. The majority of N. gonorrhoeae infections are diagnosed without a live culture. Molecular tools capable of detecting markers of extended-spectrum cephalosporin resistance are needed. Urethral N. gonorrhoeae isolates were collected from 684 men at public health clinics in California in 2011. Minimum inhibitory concentrations (MICs) to ceftriaxone, cefixime, cefpodoxime and azithromycin were determined by Etest and categorized according to the U.S. Centers for Disease Control 2010 alert value breakpoints. 684 isolates were screened for mosaic penA alleles using real-time PCR (RTPCR) and 59 reactive isolates were subjected to DNA sequencing of their penA alleles and Neisseria gonorrhoeae multi-antigen sequence typing (NG-MAST). To increase the specificity of the screening RTPCR in detecting isolates with alert value extended-spectrum cephalosporin MICs, the primers were modified to selectively amplify the mosaic XXXIV penA allele. Three mosaic penA alleles were detected including two previously described alleles (XXXIV, XXXVIII) and one novel allele (LA-A). Of the 29 isolates with an alert value extended-spectrum cephalosporin MIC, all possessed the mosaic XXXIV penA allele and 18 were sequence type 1407, an internationally successful strain associated with multi-drug resistance. The modified RTPCR detected the mosaic XXXIV penA allele in urethral isolates and urine specimens and displayed no amplification of the other penA alleles detected in this study. N. gonorrhoeae isolates with mosaic penA alleles and reduced susceptibility to extended-spectrum cephalosporins are currently
Energy Technology Data Exchange (ETDEWEB)
Sissay, Adonay [Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803 (United States); Abanador, Paul; Mauger, François; Gaarde, Mette; Schafer, Kenneth J. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803 (United States); Lopata, Kenneth, E-mail: klopata@lsu.edu [Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803 (United States); Center for Computation and Technology, Louisiana State University, Baton Rouge, Louisiana 70803 (United States)
2016-09-07
Strong-field ionization and the resulting electronic dynamics are important for a range of processes such as high harmonic generation, photodamage, charge resonance enhanced ionization, and ionization-triggered charge migration. Modeling ionization dynamics in molecular systems from first-principles can be challenging due to the large spatial extent of the wavefunction which stresses the accuracy of basis sets, and the intense fields which require non-perturbative time-dependent electronic structure methods. In this paper, we develop a time-dependent density functional theory approach which uses a Gaussian-type orbital (GTO) basis set to capture strong-field ionization rates and dynamics in atoms and small molecules. This involves propagating the electronic density matrix in time with a time-dependent laser potential and a spatial non-Hermitian complex absorbing potential which is projected onto an atom-centered basis set to remove ionized charge from the simulation. For the density functional theory (DFT) functional we use a tuned range-separated functional LC-PBE*, which has the correct asymptotic 1/r form of the potential and a reduced delocalization error compared to traditional DFT functionals. Ionization rates are computed for hydrogen, molecular nitrogen, and iodoacetylene under various field frequencies, intensities, and polarizations (angle-dependent ionization), and the results are shown to quantitatively agree with time-dependent Schrödinger equation and strong-field approximation calculations. This tuned DFT with GTO method opens the door to predictive all-electron time-dependent density functional theory simulations of ionization and ionization-triggered dynamics in molecular systems using tuned range-separated hybrid functionals.
International Nuclear Information System (INIS)
Sissay, Adonay; Abanador, Paul; Mauger, François; Gaarde, Mette; Schafer, Kenneth J.; Lopata, Kenneth
2016-01-01
Strong-field ionization and the resulting electronic dynamics are important for a range of processes such as high harmonic generation, photodamage, charge resonance enhanced ionization, and ionization-triggered charge migration. Modeling ionization dynamics in molecular systems from first-principles can be challenging due to the large spatial extent of the wavefunction which stresses the accuracy of basis sets, and the intense fields which require non-perturbative time-dependent electronic structure methods. In this paper, we develop a time-dependent density functional theory approach which uses a Gaussian-type orbital (GTO) basis set to capture strong-field ionization rates and dynamics in atoms and small molecules. This involves propagating the electronic density matrix in time with a time-dependent laser potential and a spatial non-Hermitian complex absorbing potential which is projected onto an atom-centered basis set to remove ionized charge from the simulation. For the density functional theory (DFT) functional we use a tuned range-separated functional LC-PBE*, which has the correct asymptotic 1/r form of the potential and a reduced delocalization error compared to traditional DFT functionals. Ionization rates are computed for hydrogen, molecular nitrogen, and iodoacetylene under various field frequencies, intensities, and polarizations (angle-dependent ionization), and the results are shown to quantitatively agree with time-dependent Schrödinger equation and strong-field approximation calculations. This tuned DFT with GTO method opens the door to predictive all-electron time-dependent density functional theory simulations of ionization and ionization-triggered dynamics in molecular systems using tuned range-separated hybrid functionals.
A new algorithm for extended nonequilibrium molecular dynamics simulations of mixed flow
Hunt, T.A.; Hunt, Thomas A.; Bernardi, Stefano; Todd, B.D.
2010-01-01
In this work, we develop a new algorithm for nonequilibrium molecular dynamics of fluids under planar mixed flow, a linear combination of planar elongational flow and planar Couette flow. To date, the only way of simulating mixed flow using nonequilibrium molecular dynamics techniques was to impose
Variable angle correlation spectroscopy
International Nuclear Information System (INIS)
Lee, Y.K.; Lawrence Berkeley Lab., CA
1994-05-01
In this dissertation, a novel nuclear magnetic resonance (NMR) technique, variable angle correlation spectroscopy (VACSY) is described and demonstrated with 13 C nuclei in rapidly rotating samples. These experiments focus on one of the basic problems in solid state NMR: how to extract the wealth of information contained in the anisotropic component of the NMR signal while still maintaining spectral resolution. Analysis of the anisotropic spectral patterns from poly-crystalline systems reveal information concerning molecular structure and dynamics, yet in all but the simplest of systems, the overlap of spectral patterns from chemically distinct sites renders the spectral analysis difficult if not impossible. One solution to this problem is to perform multi-dimensional experiments where the high-resolution, isotropic spectrum in one dimension is correlated with the anisotropic spectral patterns in the other dimensions. The VACSY technique incorporates the angle between the spinner axis and the static magnetic field as an experimental parameter that may be incremented during the course of the experiment to help correlate the isotropic and anisotropic components of the spectrum. The two-dimensional version of the VACSY experiments is used to extract the chemical shift anisotropy tensor values from multi-site organic molecules, study molecular dynamics in the intermediate time regime, and to examine the ordering properties of partially oriented samples. The VACSY technique is then extended to three-dimensional experiments to study slow molecular reorientations in a multi-site polymer system
Vitale, Valerio; Dziedzic, Jacek; Albaugh, Alex; Niklasson, Anders M N; Head-Gordon, Teresa; Skylaris, Chris-Kriton
2017-03-28
Iterative energy minimization with the aim of achieving self-consistency is a common feature of Born-Oppenheimer molecular dynamics (BOMD) and classical molecular dynamics with polarizable force fields. In the former, the electronic degrees of freedom are optimized, while the latter often involves an iterative determination of induced point dipoles. The computational effort of the self-consistency procedure can be reduced by re-using converged solutions from previous time steps. However, this must be done carefully, as not to break time-reversal symmetry, which negatively impacts energy conservation. Self-consistent schemes based on the extended Lagrangian formalism, where the initial guesses for the optimized quantities are treated as auxiliary degrees of freedom, constitute one elegant solution. We report on the performance of two integration schemes with the same underlying extended Lagrangian structure, which we both employ in two radically distinct regimes-in classical molecular dynamics simulations with the AMOEBA polarizable force field and in BOMD simulations with the Onetep linear-scaling density functional theory (LS-DFT) approach. Both integration schemes are found to offer significant improvements over the standard (unpropagated) molecular dynamics formulation in both the classical and LS-DFT regimes.
A novel design for electric field deflectometry on extended molecular beams
International Nuclear Information System (INIS)
Stefanov, André; Berninger, Martin; Arndt, Markus
2008-01-01
We discuss the optimal shape of a beam deflector with applications in electric susceptibility measurements on wide molecular beams. In contrast to the well-established 'two-wire' concept, which is optimized for beams with a small lateral extension, our design realizes a compact element that provides a high and homogeneous force field at moderate voltage for molecular beams with a large extension in the direction of deflection
McGuire, Brett A.; Carroll, P. Brandon; Corby, Joanna F.; Loomis, Ryan A.; Blake, Geoffrey A.; Hollis, Jan M.; Lovas, Frank J.; Jewell, Philip R.; Remijan, Anthony J.
2013-06-01
The publicly available Green Bank Telescope PRebiotic Interstellar MOlecular Survey (PRIMOS) conducted towards Sgr B2(N) provides high resolution, high-sensitivity observations with near-continuous frequency coverage from ˜300 MHz - 50 GHz. Of the eleven new molecular detections in the last year, five (45%) are a direct result of the PRIMOS observations. Further, these observations have recently been used to detect the predicted, but previously unobserved, J = 1-0 and J=2-1 transitions of the newly detected l-C_3H^+ ion. Here, we discuss the analysis of these transitions, as well as recent work to extend the PRIMOS observations to three new regions of interest: VY Canis Majoris, IRC+10216, and NGC 2023. Finally, we highlight the utility of cm-wave surveys in new molecular detections, as well as the value of publicly-available surveys in the approaching era of data-enabled, analysis-limited astrochemistry.
Directory of Open Access Journals (Sweden)
Lauren Boldon
2015-02-01
Full Text Available In this paper, the fundamental concepts and equations necessary for performing small angle X-ray scattering (SAXS experiments, molecular dynamics (MD simulations, and MD-SAXS analyses were reviewed. Furthermore, several key biological and non-biological applications for SAXS, MD, and MD-SAXS are presented in this review; however, this article does not cover all possible applications. SAXS is an experimental technique used for the analysis of a wide variety of biological and non-biological structures. SAXS utilizes spherical averaging to produce one- or two-dimensional intensity profiles, from which structural data may be extracted. MD simulation is a computer simulation technique that is used to model complex biological and non-biological systems at the atomic level. MD simulations apply classical Newtonian mechanics’ equations of motion to perform force calculations and to predict the theoretical physical properties of the system. This review presents several applications that highlight the ability of both SAXS and MD to study protein folding and function in addition to non-biological applications, such as the study of mechanical, electrical, and structural properties of non-biological nanoparticles. Lastly, the potential benefits of combining SAXS and MD simulations for the study of both biological and non-biological systems are demonstrated through the presentation of several examples that combine the two techniques.
Wei, Ye; Sang, Shengbo; Zhou, Bing; Deng, Xiao; Chai, Jing; Ji, Jianlong; Ge, Yang; Huo, Yuanliang; Zhang, Wendong
2017-09-01
Carbon cluster ion implantation is an important technique in fabricating functional devices at micro/nanoscale. In this work, a numerical model is constructed for implantation and implemented with a cutting-edge molecular dynamics method. A series of simulations with varying incident energies and incident angles is performed for incidence on silicon substrate and correlated effects are compared in detail. Meanwhile, the behavior of the cluster during implantation is also examined under elevated temperatures. By mapping the nanoscopic morphology with variable parameters, numerical formalism is proposed to explain the different impacts on phrase transition and surface pattern formation. Particularly, implantation efficiency (IE) is computed and further used to evaluate the performance of the overall process. The calculated results could be properly adopted as the theoretical basis for designing nano-structures and adjusting devices’ properties. Project supported by the National Natural Science Foundation of China (Nos. 51622507, 61471255, 61474079, 61403273, 51502193, 51205273), the Natural Science Foundation of Shanxi (Nos. 201601D021057, 201603D421035), the Youth Foundation Project of Shanxi Province (Nos. 2015021097), the Doctoral Fund of MOE of China (No. 20131402110013), the National High Technology Research and Development Program of China (No. 2015AA042601), and the Specialized Project in Public Welfare from The Ministry of Water Resources of China (Nos. 1261530110110).
Boldon, Lauren; Laliberte, Fallon; Liu, Li
2015-01-01
In this paper, the fundamental concepts and equations necessary for performing small angle X-ray scattering (SAXS) experiments, molecular dynamics (MD) simulations, and MD-SAXS analyses were reviewed. Furthermore, several key biological and non-biological applications for SAXS, MD, and MD-SAXS are presented in this review; however, this article does not cover all possible applications. SAXS is an experimental technique used for the analysis of a wide variety of biological and non-biological structures. SAXS utilizes spherical averaging to produce one- or two-dimensional intensity profiles, from which structural data may be extracted. MD simulation is a computer simulation technique that is used to model complex biological and non-biological systems at the atomic level. MD simulations apply classical Newtonian mechanics' equations of motion to perform force calculations and to predict the theoretical physical properties of the system. This review presents several applications that highlight the ability of both SAXS and MD to study protein folding and function in addition to non-biological applications, such as the study of mechanical, electrical, and structural properties of non-biological nanoparticles. Lastly, the potential benefits of combining SAXS and MD simulations for the study of both biological and non-biological systems are demonstrated through the presentation of several examples that combine the two techniques.
International Nuclear Information System (INIS)
Li, Xiaowei; Ke, Peiling; Lee, Kwang-Ryeol; Wang, Aiying
2014-01-01
The influence of incident angles of energetic carbon atoms (0–60°) on the structure and properties of diamond-like carbon (DLC) films was investigated by the molecular dynamics simulation using a Tersoff interatomic potential. The present simulation revealed that as the incident angles increased from 0 to 60°, the surface roughness of DLC films increased and the more porous structure was generated. Along the growth direction of DLC films, the whole system could be divided into four regions including substrate region, transition region, stable region and surface region except the case at the incident angle of 60°. When the incident angle was 45°, the residual stress was significantly reduced by 12% with little deterioration of mechanical behavior. The further structure analysis using both the bond angles and bond length distributions indicated that the compressive stress reduction mainly resulted from the relaxation of highly distorted C–C bond length. - Highlights: • The dependence of films properties on different incident angles was investigated. • The change of incident angles reduced the stress without obvious damage of density. • The stress reduction attributed to the relaxation of highly distorted bond length
Energy Technology Data Exchange (ETDEWEB)
Feller, D.F.
1979-01-01
The behavior of the two exponential parameters in an even-tempered gaussian basis set is investigated as the set optimally approaches an integral transform representation of the radial portion of atomic and molecular orbitals. This approach permits a highly accurate assessment of the Hartree-Fock limit for atoms and molecules.
Preston, Gail M
2017-04-01
One of the most fundamental questions in plant pathology is what determines whether a pathogen grows within a plant? This question is frequently studied in terms of the role of elicitors and pathogenicity factors in the triggering or overcoming of host defences. However, this focus fails to address the basic question of how the environment in host tissues acts to support or restrict pathogen growth. Efforts to understand this aspect of host-pathogen interactions are commonly confounded by several issues, including the complexity of the plant environment, the artificial nature of many experimental infection systems and the fact that the physiological properties of a pathogen growing in association with a plant can be very different from the properties of the pathogen in culture. It is also important to recognize that the phenotype and evolution of pathogen and host are inextricably linked through their interactions, such that the environment experienced by a pathogen within a host, and its phenotype within the host, is a product of both its interaction with its host and its evolutionary history, including its co-evolution with host plants. As the phenotypic properties of a pathogen within a host cannot be defined in isolation from the host, it may be appropriate to think of pathogens as having an 'extended phenotype' that is the product of their genotype, host interactions and population structure within the host environment. This article reflects on the challenge of defining and studying this extended phenotype, in relation to the questions posed below, and considers how knowledge of the phenotype of pathogens in the host environment could be used to improve disease control. What determines whether a pathogen grows within a plant? What aspects of pathogen biology should be considered in describing the extended phenotype of a pathogen within a host? How can we study the extended phenotype in ways that provide insights into the phenotypic properties of pathogens
Korduba, Laryssa A; Essner, Aaron; Pivec, Robert; Lancin, Perry; Mont, Michael A; Wang, Aiguo; Delanois, Ronald E
2014-10-01
The effect of acetabular component positioning on the wear rates of metal-on-polyethylene articulations has not been extensively studied. Placement of acetabular cups at abduction angles of more than 40° has been noted as a possible reason for early failure caused by increased wear. We conducted a study to evaluate the effects of different acetabular cup abduction angles on polyethylene wear rate, wear area, contact pressure, and contact area. Our in vitro study used a hip joint simulator and finite element analysis to assess the effects of cup orientation at 4 angles (0°, 40°, 50°, 70°) on wear and contact properties. Polyethylene bearings with 28-mm cobalt-chrome femoral heads were cycled in an environment mimicking in vivo joint fluid to determine the volumetric wear rate after 10 million cycles. Contact pressure and contact area for each cup abduction angle were assessed using finite element analysis. Results were correlated with cup abduction angles to determine if there were any differences among the 4 groups. The inverse relationship between volumetric wear rate and acetabular cup inclination angle demonstrated less wear with steeper cup angles. The largest abduction angle (70°) had the lowest contact area, largest contact pressure, and smallest head coverage. Conversely, the smallest abduction angle (0°) had the most wear and most head coverage. Polyethylene wear after total hip arthroplasty is a major cause of osteolysis and aseptic loosening, which may lead to premature implant failure. Several studies have found that high wear rates for cups oriented at steep angles contributed to their failure. Our data demonstrated that larger cup abduction angles were associated with lower, not higher, wear. However, this potentially "protective" effect is likely counteracted by other complications of steep cup angles, including impingement, instability, and edge loading. These factors may be more relevant in explaining why implants fail at a higher rate if
Parker, Christian R; Leary, Edmund; Frisenda, Riccardo; Wei, Zhongming; Jennum, Karsten S; Glibstrup, Emil; Abrahamsen, Peter Bæch; Santella, Marco; Christensen, Mikkel A; Della Pia, Eduardo Antonio; Li, Tao; Gonzalez, Maria Teresa; Jiang, Xingbin; Morsing, Thorbjørn J; Rubio-Bollinger, Gabino; Laursen, Bo W; Nørgaard, Kasper; van der Zant, Herre; Agrait, Nicolas; Nielsen, Mogens Brøndsted
2014-11-26
Cruciform-like molecules with two orthogonally placed π-conjugated systems have in recent years attracted significant interest for their potential use as molecular wires in molecular electronics. Here we present synthetic protocols for a large selection of cruciform molecules based on oligo(phenyleneethynylene) (OPE) and tetrathiafulvalene (TTF) scaffolds, end-capped with acetyl-protected thiolates as electrode anchoring groups. The molecules were subjected to a comprehensive study of their conducting properties as well as their photophysical and electrochemical properties in solution. The complex nature of the molecules and their possible binding in different configurations in junctions called for different techniques of conductance measurements: (1) conducting-probe atomic force microscopy (CP-AFM) measurements on self-assembled monolayers (SAMs), (2) mechanically controlled break-junction (MCBJ) measurements, and (3) scanning tunneling microscopy break-junction (STM-BJ) measurements. The CP-AFM measurements showed structure-property relationships from SAMs of series of OPE3 and OPE5 cruciform molecules; the conductance of the SAM increased with the number of dithiafulvene (DTF) units (0, 1, 2) along the wire, and it increased when substituting two arylethynyl end groups of the OPE3 backbone with two DTF units. The MCBJ and STM-BJ studies on single molecules both showed that DTFs decreased the junction formation probability, but, in contrast, no significant influence on the single-molecule conductance was observed. We suggest that the origins of the difference between SAM and single-molecule measurements lie in the nature of the molecule-electrode interface as well as in effects arising from molecular packing in the SAMs. This comprehensive study shows that for complex molecules care should be taken when directly comparing single-molecule measurements and measurements of SAMs and solid-state devices thereof.
DEFF Research Database (Denmark)
Jørgensen, Anders Dysted; Nøhr, Jane; Kastrup, Jette Sandholm
2008-01-01
is poorly understood and structurally undescribed, and data regarding domain organization and intramolecular functional cooperativity are conflicting or non-comprehensive. Here, we report a combined small angle x-ray scattering and calorimetry study of Aspergillus niger glucoamylase 1, glucoamylase 2, which...
Energy Technology Data Exchange (ETDEWEB)
Kato, Tsuyoshi; Ide, Yoshihiro; Yamanouchi, Kaoru [Department of Chemistry, School of Science, The University of Tokyo, 7-3-1, Hongo Bunkyo-ku, Tokyo, 113-0033 (Japan)
2015-12-31
We first calculate the ground-state molecular wave function of 1D model H{sub 2} molecule by solving the coupled equations of motion formulated in the extended multi-configuration time-dependent Hartree-Fock (MCTDHF) method by the imaginary time propagation. From the comparisons with the results obtained by the Born-Huang (BH) expansion method as well as with the exact wave function, we observe that the memory size required in the extended MCTDHF method is about two orders of magnitude smaller than in the BH expansion method to achieve the same accuracy for the total energy. Second, in order to provide a theoretical means to understand dynamical behavior of the wave function, we propose to define effective adiabatic potential functions and compare them with the conventional adiabatic electronic potentials, although the notion of the adiabatic potentials is not used in the extended MCTDHF approach. From the comparison, we conclude that by calculating the effective potentials we may be able to predict the energy differences among electronic states even for a time-dependent system, e.g., time-dependent excitation energies, which would be difficult to be estimated within the BH expansion approach.
Watson, Linda C.; Martini, Paul; Lisenfeld, Ute; Böker, Torsten; Schinnerer, Eva
2016-01-01
Studying star formation beyond the optical radius of galaxies allows us to test empirical relations in extreme conditions with low average gas density and low molecular fraction. Previous studies discovered galaxies with extended ultraviolet (XUV) discs, which often contain star-forming regions with lower Hα-to-far-UV (FUV) flux ratios compared to inner disc star-forming regions. However, most previous studies lack measurements of molecular gas, which is presumably the component of the interstellar medium out of which stars form. We analysed published CO measurements and upper limits for 15 star-forming regions in the XUV or outer disc of three nearby spiral galaxies and a new CO upper limit from the IRAM (Institut de Radioastronomie Millimétrique) 30 m telescope in one star-forming region at r = 3.4r25 in the XUV disc of NGC 4625. We found that the star-forming regions are in general consistent with the same molecular-hydrogen Kennicutt-Schmidt law that applies within the optical radius, independent of whether we used Hα or FUV as the star formation rate (SFR) tracer. However, a number of the CO detections are significantly offset towards higher SFR surface density for their molecular-hydrogen surface density. Deeper CO data may enable us to use the presence or absence of molecular gas as an evolutionary probe to break the degeneracy between age and stochastic sampling of the initial mass function as the explanation for the low Hα-to-FUV flux ratios in XUV discs.
Stepwise Construction of Heterobimetallic Cages by an Extended Molecular Library Approach.
Hardy, Matthias; Struch, Niklas; Topić, Filip; Schnakenburg, Gregor; Rissanen, Kari; Lützen, Arne
2018-04-02
Two novel heterobimetallic complexes, a trigonal-bipyramidal and a cubic one, have been synthesized and characterized using the same C 3 -symmetric metalloligand, prepared by a simple subcomponent self-assembly strategy. Adopting the molecular library approach, we chose a mononuclear, preorganized iron(II) complex as the metalloligand capable of self-assembly into a trigonal-bipyramidal or a cubic aggregate upon coordination to cis-protected C 2 -symmetric palladium(II) or unprotected tetravalent palladium(II) ions, respectively. The trigonal-bipyramidal complex was characterized by NMR and UV-vis spectroscopy, electrospray ionization mass spectrometry (ESI-MS), and single-crystal X-ray diffraction. The cubic structure was characterized by NMR and UV-vis spectroscopy and ESI-MS.
A quantum-mechanics molecular-mechanics scheme for extended systems.
Hunt, Diego; Sanchez, Veronica M; Scherlis, Damián A
2016-08-24
We introduce and discuss a hybrid quantum-mechanics molecular-mechanics (QM-MM) approach for Car-Parrinello DFT simulations with pseudopotentials and planewaves basis, designed for the treatment of periodic systems. In this implementation the MM atoms are considered as additional QM ions having fractional charges of either sign, which provides conceptual and computational simplicity by exploiting the machinery already existing in planewave codes to deal with electrostatics in periodic boundary conditions. With this strategy, both the QM and MM regions are contained in the same supercell, which determines the periodicity for the whole system. Thus, while this method is not meant to compete with non-periodic QM-MM schemes able to handle extremely large but finite MM regions, it is shown that for periodic systems of a few hundred atoms, our approach provides substantial savings in computational times by treating classically a fraction of the particles. The performance and accuracy of the method is assessed through the study of energetic, structural, and dynamical aspects of the water dimer and of the aqueous bulk phase. Finally, the QM-MM scheme is applied to the computation of the vibrational spectra of water layers adsorbed at the TiO2 anatase (1 0 1) solid-liquid interface. This investigation suggests that the inclusion of a second monolayer of H2O molecules is sufficient to induce on the first adsorbed layer, a vibrational dynamics similar to that taking place in the presence of an aqueous environment. The present QM-MM scheme appears as a very interesting tool to efficiently perform molecular dynamics simulations of complex condensed matter systems, from solutions to nanoconfined fluids to different kind of interfaces.
A quantum-mechanics molecular-mechanics scheme for extended systems
International Nuclear Information System (INIS)
Hunt, Diego; Scherlis, Damián A; Sanchez, Veronica M
2016-01-01
We introduce and discuss a hybrid quantum-mechanics molecular-mechanics (QM-MM) approach for Car–Parrinello DFT simulations with pseudopotentials and planewaves basis, designed for the treatment of periodic systems. In this implementation the MM atoms are considered as additional QM ions having fractional charges of either sign, which provides conceptual and computational simplicity by exploiting the machinery already existing in planewave codes to deal with electrostatics in periodic boundary conditions. With this strategy, both the QM and MM regions are contained in the same supercell, which determines the periodicity for the whole system. Thus, while this method is not meant to compete with non-periodic QM-MM schemes able to handle extremely large but finite MM regions, it is shown that for periodic systems of a few hundred atoms, our approach provides substantial savings in computational times by treating classically a fraction of the particles. The performance and accuracy of the method is assessed through the study of energetic, structural, and dynamical aspects of the water dimer and of the aqueous bulk phase. Finally, the QM-MM scheme is applied to the computation of the vibrational spectra of water layers adsorbed at the TiO 2 anatase (1 0 1) solid–liquid interface. This investigation suggests that the inclusion of a second monolayer of H 2 O molecules is sufficient to induce on the first adsorbed layer, a vibrational dynamics similar to that taking place in the presence of an aqueous environment. The present QM-MM scheme appears as a very interesting tool to efficiently perform molecular dynamics simulations of complex condensed matter systems, from solutions to nanoconfined fluids to different kind of interfaces. (paper)
Molecular epidemiology of extended-spectrum beta-lactamase-producing Escherichia coli
Directory of Open Access Journals (Sweden)
Catherine Ludden
2014-09-01
Full Text Available Objectives: E. coli O25b-ST131 has disseminated worldwide in hospitals and the community. The objective of this study was to determine the extent to which E. coli O25b-ST131 accounts for extended-spectrum beta-lactamase (ESBLproducing E. coli from clinical samples from all sources in this region. Methods: Between January and June 2010 ESBL-producing E. coli were collected from 94 routine samples including 47 from residents of 25 nursing homes, 15 categorized as hospital acquired and 32 others. PCR was performed for detection of bla CTX-M, bla OXA-1, bla TEM, bla SHV and for the identification of members of the E. coli O25b:ST131 clonal group. PFGE was carried out using Xba I in accordance with PulseNet protocols. Results: The majority (97% of isolates harbored a bla CTX-M gene.E. coli O25b-ST131 accounted for 87% of all ESBL-producing E. coliand for 96% of isolates from nursing home residents. Conclusion:The E. coli O25b-ST131 clonal group predominated in the collection of ESBL-producing E. coli, particularly in nursing home isolates. J Microbiol Infect Dis 2014; 4(3: 92-96
Harter, John Wallace
Among the multitude of known cuprate material families and associated structures, the archetype is "infinite-layer" ACuO2, where perfectly square and flat CuO2 planes are separated by layers of alkaline earth atoms. The infinite-layer structure is free of magnetic rare earth ions, oxygen chains, orthorhombic distortions, incommensurate superstructures, ordered vacancies, and other complications that abound among the other material families. Furthermore, it is the only cuprate that can be made superconducting by both electron and hole doping, making it a potential platform for decoding the complex many-body interactions responsible for high-temperature superconductivity. Research on the infinite-layer compound has been severely hindered by the inability to synthesize bulk single crystals, but recent progress has led to high-quality superconducting thin film samples. Here we report in situ angle-resolved photoemission spectroscopy measurements of epitaxially-stabilized Sr1-chiLa chiCuO2 thin films grown by molecular-beam epitaxy. At low doping, the material exhibits a dispersive lower Hubbard band typical of other cuprate parent compounds. As carriers are added to the system, a continuous evolution from Mott insulator to superconducting metal is observed as a coherent low-energy band develops on top of a concomitant remnant lower Hubbard band, gradually filling in the Mott gap. For chi = 0.10, our results reveal a strong coupling between electrons and (pi,pi) anti-ferromagnetism, inducing a Fermi surface reconstruction that pushes the nodal states below the Fermi level and realizing nodeless superconductivity. Electron diffraction measurements indicate the presence of a surface reconstruction that is consistent with the polar nature of Sr1-chiLachiCuO2. Most knowledge about the electron-doped side of the cuprate phase diagram has been deduced by generalizing from a single material family, Re2-chi CechiCuO4, where robust antiferromagnetism has been observed past chi
Directory of Open Access Journals (Sweden)
Wei Li
2012-01-01
Full Text Available An extended finite element method (XFEM for the forward model of 3D optical molecular imaging is developed with simplified spherical harmonics approximation (SPN. In XFEM scheme of SPN equations, the signed distance function is employed to accurately represent the internal tissue boundary, and then it is used to construct the enriched basis function of the finite element scheme. Therefore, the finite element calculation can be carried out without the time-consuming internal boundary mesh generation. Moreover, the required overly fine mesh conforming to the complex tissue boundary which leads to excess time cost can be avoided. XFEM conveniences its application to tissues with complex internal structure and improves the computational efficiency. Phantom and digital mouse experiments were carried out to validate the efficiency of the proposed method. Compared with standard finite element method and classical Monte Carlo (MC method, the validation results show the merits and potential of the XFEM for optical imaging.
Wang, Yueqiang; Chen, Bin; Wu, Wenjun; Li, Xin; Zhu, Weihong; Tian, He; Xie, Yongshu
2014-09-26
Porphyrin dyes containing the carbazole electron donor have been designed and optimized by wrapping the porphyrin framework, introducing an additional ethynylene bridge to extend the wavelength range of light absorption, and further suppression of the dye aggregation by introducing additional alkoxy chains. Application of a cosensitization approach results in improved current density (Jsc) and open-circuit voltage (Voc) values, thus achieving the highest cell efficiency of 10.45%. This work provides an effective combined strategy of molecular design and cosensitization for developing efficient dye-sensitized solar cells (DSSCs). In addition, carbazole has been demonstrated to be a promising donor for porphyrin sensitizers. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Iskierko, Zofia; Sosnowska, Marta; Sharma, Piyush Sindhu; Benincori, Tiziana; D'Souza, Francis; Kaminska, Izabela; Fronc, Krzysztof; Noworyta, Krzysztof
2015-12-15
A novel recognition unit of chemical sensor for selective determination of the inosine, renal disfunction biomarker, was devised and prepared. For that purpose, inosine-templated molecularly imprinted polymer (MIP) film was deposited on an extended-gate field-effect transistor (EG-FET) signal transducing unit. The MIP film was prepared by electrochemical polymerization of bis(bithiophene) derivatives bearing cytosine and boronic acid substituents, in the presence of the inosine template and a thiophene cross-linker. After MIP film deposition, the template was removed, and was confirmed by UV-visible spectroscopy. Subsequently, the film composition was characterized by spectroscopic techniques, and its morphology and thickness were determined by AFM. The finally MIP film-coated extended-gate field-effect transistor (EG-FET) was used for signal transduction. This combination is not widely studied in the literature, despite the fact that it allows for facile integration of electrodeposited MIP film with FET transducer. The linear dynamic concentration range of the chemosensor was 0.5-50 μM with inosine detectability of 0.62 μM. The obtained detectability compares well to the levels of the inosine in body fluids which are in the range 0-2.9 µM for patients with diagnosed diabetic nephropathy, gout or hyperuricemia, and can reach 25 µM in certain cases. The imprinting factor for inosine, determined from piezomicrogravimetric experiments with use of the MIP film-coated quartz crystal resonator, was found to be 5.5. Higher selectivity for inosine with respect to common interferents was also achieved with the present molecularly engineered sensing element. The obtained analytical parameters of the devised chemosensor allow for its use for practical sample measurements. Copyright © 2015 Elsevier B.V. All rights reserved.
Directory of Open Access Journals (Sweden)
Takashi Arima
2018-04-01
Full Text Available After summarizing the present status of Rational Extended Thermodynamics (RET of gases, which is an endeavor to generalize the Navier–Stokes and Fourier (NSF theory of viscous heat-conducting fluids, we develop the molecular RET theory of rarefied polyatomic gases with 15 independent fields. The theory is justified, at mesoscopic level, by a generalized Boltzmann equation in which the distribution function depends on two internal variables that take into account the energy exchange among the different molecular modes of a gas, that is, translational, rotational, and vibrational modes. By adopting the generalized Bhatnagar, Gross and Krook (BGK-type collision term, we derive explicitly the closed system of field equations with the use of the Maximum Entropy Principle (MEP. The NSF theory is derived from the RET theory as a limiting case of small relaxation times via the Maxwellian iteration. The relaxation times introduced in the theory are shown to be related to the shear and bulk viscosities and heat conductivity.
DEFF Research Database (Denmark)
Frederiksen, Thomas; Munuera, C.; Ocal, C.
2009-01-01
Electronic transport mechanisms in molecular junctions are investigated by a combination of first-principles calculations and current−voltage measurements of several well-characterized structures. We study self-assembled layers of alkanethiols grown on Au(111) and form tunnel junctions...... for the longer molecular chains. Our calculations confirm the observed trends and explain them as a result of two mechanisms, namely, a previously proposed intermolecular tunneling enhancement as well as a hitherto overlooked tilt-dependent molecular gate effect....
International Nuclear Information System (INIS)
Madey, T.E.; Stockbauer, R.
1983-01-01
A brief review of recent data related to the use of angle-resolved electron stimulated desorption and photon stimulated desorption in determining the structures of molecules at surfaces is made. Examples include a variety of structural assignments based on ESIAD (electron stimulated desorption ion angular distributions), the observation of short-range local ordering effects induced in adsorbed molecules by surface impurities, and the application of photon stimulated desorption to both ionic and covalent adsorbate systems. (Author) [pt
McRae, Jacqui M; Kirby, Nigel; Mertens, Haydyn D T; Kassara, Stella; Smith, Paul A
2014-07-23
The molecular size of wine tannins can influence astringency, and yet it has been unclear as to whether the standard methods for determining average tannin molecular weight (MW), including gel-permeation chromatography (GPC) and depolymerization reactions, are actually related to the size of the tannin in wine-like conditions. Small-angle X-ray scattering (SAXS) was therefore used to determine the molecular sizes and corresponding MWs of wine tannin samples from 3 and 7 year old Cabernet Sauvignon wine in a variety of wine-like matrixes: 5-15% and 100% ethanol; 0-200 mM NaCl and pH 3.0-4.0, and compared to those measured using the standard methods. The SAXS results indicated that the tannin samples from the older wine were larger than those of the younger wine and that wine composition did not greatly impact on tannin molecular size. The average tannin MWs as determined by GPC correlated strongly with the SAXS results, suggesting that this method does give a good indication of tannin molecular size in wine-like conditions. The MW as determined from the depolymerization reactions did not correlate as strongly with the SAXS results. To our knowledge, SAXS measurements have not previously been attempted for wine tannins.
A.K. van der Bij (Akke); G. Peirano (G.); W.H.F. Goessens (Wil); E.R. van der Vorm (Eric); M. van Westreenen (Mireille); J.D.D. Pitout (J. D D)
2011-01-01
textabstractWe investigated the clinical and molecular characteristics of bacteremia caused by extended-spectrum-β-lactamase (ESBL)-producing Escherichia coli over a 2-year period (2008 to 2009) in the Rotterdam region (including 1 teaching hospital and 2 community hospitals) of Netherlands. The
Alyamani, Essam J; Khiyami, Mohamed A; Booq, Rayan Y; Alnafjan, Basel M; Altammami, Musaad A; Bahwerth, Fayez S
2015-08-20
Acinetobacter baumannii is a common opportunistic pathogen that causes major nosocomial infections in hospitals. In this study, we hypothesized a high prevalence of A. baumanni ESBL (extended-spectrum beta-lactamase) among all collected isolates. A. baumannii isolates (n = 107) from ICU (Intensive care unit) of local hospitals in Makkah were phenotypically and genotypically characterized. The identity and antibiotic susceptibility of A. baumannii strains were determined using the Vitek-2 system. The identified ESBL producers were further analyzed by PCR and sequencing followed by MLST typing. bla TEM , bla SHV , and the bla CTX-M-group genes 1, 2, 8, 9, and 25 were investigated. Furthermore, bla OXA51-like and bla OXA23-like genes were also examined in the carbapenem-resistant A. baumannii isolates. Our data indicated a high prevalence of A. baumannii ESBL producers among the collected strains. Of the 107 A. baumannii isolates, 94 % were found to be resistant to cefepime and ceftazidime, and aztreonam using the Vitek 2 system. The genes detected encoded TEM, OXA-51-like and OXA-23-like enzymes, and CTX-M-group proteins 1, 2, 8, 9, and 25. MLST typing identified eight sequence type (ST) groups. The most dominant STs were ST195 and ST557 and all of them belong to worldwide clonal complex (CC) 2. This study has shown that there is a high prevalence of antimicrobial resistance in A. baumannii. The diversity of STs may suggest that new ESBL strains are constantly emerging. The molecular diversity of the ESBL genes in A. baumannii may have contributed to the increased antimicrobial resistance among all isolates.
International Nuclear Information System (INIS)
Zhang, Shen; Kang, Wei; Wang, Hongwei; Zhang, Ping; He, X. T.
2016-01-01
An extended first-principles molecular dynamics (FPMD) method based on Kohn-Sham scheme is proposed to elevate the temperature limit of the FPMD method in the calculation of dense plasmas. The extended method treats the wave functions of high energy electrons as plane waves analytically and thus expands the application of the FPMD method to the region of hot dense plasmas without suffering from the formidable computational costs. In addition, the extended method inherits the high accuracy of the Kohn-Sham scheme and keeps the information of electronic structures. This gives an edge to the extended method in the calculation of mixtures of plasmas composed of heterogeneous ions, high-Z dense plasmas, lowering of ionization potentials, X-ray absorption/emission spectra, and opacities, which are of particular interest to astrophysics, inertial confinement fusion engineering, and laboratory astrophysics.
Energy Technology Data Exchange (ETDEWEB)
Zhang, Shen; Kang, Wei, E-mail: weikang@pku.edu.cn [Center for Applied Physics and Technology, HEDPS, Peking University, Beijing 100871 (China); College of Engineering, Peking University, Beijing 100871 (China); Wang, Hongwei [College of Engineering, Peking University, Beijing 100871 (China); Zhang, Ping, E-mail: zhang-ping@iapcm.ac.cn [Center for Applied Physics and Technology, HEDPS, Peking University, Beijing 100871 (China); LCP, Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China); He, X. T., E-mail: xthe@iapcm.ac.cn [Center for Applied Physics and Technology, HEDPS, and IFSA Collaborative Innovation Center of MoE, Peking University, Beijing 100871 (China); Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China)
2016-04-15
An extended first-principles molecular dynamics (FPMD) method based on Kohn-Sham scheme is proposed to elevate the temperature limit of the FPMD method in the calculation of dense plasmas. The extended method treats the wave functions of high energy electrons as plane waves analytically and thus expands the application of the FPMD method to the region of hot dense plasmas without suffering from the formidable computational costs. In addition, the extended method inherits the high accuracy of the Kohn-Sham scheme and keeps the information of electronic structures. This gives an edge to the extended method in the calculation of mixtures of plasmas composed of heterogeneous ions, high-Z dense plasmas, lowering of ionization potentials, X-ray absorption/emission spectra, and opacities, which are of particular interest to astrophysics, inertial confinement fusion engineering, and laboratory astrophysics.
Toolan, Daniel T W; Adlington, Kevin; Isakova, Anna; Kalamiotis, Alexis; Mokarian-Tabari, Parvaneh; Dimitrakis, Georgios; Dodds, Christopher; Arnold, Thomas; Terrill, Nick J; Bras, Wim; Hermida Merino, Daniel; Topham, Paul D; Irvine, Derek J; Howse, Jonathan R
2017-08-09
Microwave annealing has emerged as an alternative to traditional thermal annealing approaches for optimising block copolymer self-assembly. A novel sample environment enabling small angle X-ray scattering to be performed in situ during microwave annealing is demonstrated, which has enabled, for the first time, the direct study of the effects of microwave annealing upon the self-assembly behavior of a model, commercial triblock copolymer system [polystyrene-block-poly(ethylene-co-butylene)-block-polystyrene]. Results show that the block copolymer is a poor microwave absorber, resulting in no change in the block copolymer morphology upon application of microwave energy. The block copolymer species may only indirectly interact with the microwave energy when a small molecule microwave-interactive species [diethylene glycol dibenzoate (DEGDB)] is incorporated directly into the polymer matrix. Then significant morphological development is observed at DEGDB loadings ≥6 wt%. Through spatial localisation of the microwave-interactive species, we demonstrate targeted annealing of specific regions of a multi-component system, opening routes for the development of "smart" manufacturing methodologies.
International Nuclear Information System (INIS)
Chen, Wei-Ren
2007-01-01
The structural properties of generation 4 (G4) poly(amidoamine) starburst dendrimers (PAMAM) with an ethylenediamine ne (EDA) central core in D O 2 solutions have been studied by small angle neutron scattering. Upon the addition of DCl , SANS patterns show a pronounced inter-particle 2 correlation peaks due to the strong repulsion introduced by the protonation of the amino groups of the dendrimers. By solving the Ornstein-Zernike integral equation (OZ) with hypernetted chain closure (HNC), the dendrimer-dendrimer er structure factor S(Q) is determined and used to fit the experimental data. Quantitative information such as the effective charge per dendrimer and its conformational change at different conditions can be obtained. The results obtained show clear evidence that significant counterion association occurs, strongly mediating the inter-dendrimer interaction. The influence of interplay between counterions and molecular protonation of dendrimers has strong effect on the dendrimer conformation and effective interaction.
Shioya, Nobutaka; Shimoaka, Takafumi; Murdey, Richard; Hasegawa, Takeshi
2017-06-01
Infrared (IR) p-polarized multiple-angle incidence resolution spectrometry (pMAIRS) is a powerful tool for analyzing the molecular orientation in an organic thin film. In particular, pMAIRS works powerfully for a thin film with a highly rough surface irrespective of degree of the crystallinity. Recently, the optimal experimental condition has comprehensively been revealed, with which the accuracy of the analytical results has largely been improved. Regardless, some unresolved matters still remain. A structurally isotropic sample, for example, yields different peak intensities in the in-plane and out-of-plane spectra. In the present study, this effect is shown to be due to the refractive index of the sample film and a correction factor has been developed using rigorous theoretical methods. As a result, with the use of the correction factor, organic materials having atypical refractive indices such as perfluoroalkyl compounds ( n = 1.35) and fullerene ( n = 1.83) can be analyzed with high accuracy comparable to a compound having a normal refractive index of approximately 1.55. With this improved technique, we are also ready for discriminating an isotropic structure from an oriented sample having the magic angle of 54.7°.
Pitout, Johann D D; Campbell, Lorraine; Church, Deirdre L; Gregson, Daniel B; Laupland, Kevin B
2009-06-01
Extended-spectrum-beta-lactamase (ESBL)-producing Escherichia coli has recently emerged as a major risk factor for community-acquired, travel-related infections in the Calgary Health Region. Molecular characterization was done on isolates associated with infections in returning travelers using isoelectric focusing, PCR, and sequencing for bla(CTX-M)s, bla(TEM)s, bla(SHV)s, bla(OXA)s, and plasmid-mediated quinolone resistance determinants. Genetic relatedness was determined with pulsed-field gel electrophoresis using XbaI and multilocus sequence typing (MLST). A total of 105 residents were identified; 6/105 (6%) presented with hospital-acquired infections, 9/105 (9%) with health care-associated community-onset infections, and 90/105 (86%) with community-acquired infections. Seventy-seven of 105 (73%) of the ESBL-producing E. coli isolates were positive for bla(CTX-M) genes; 55 (58%) produced CTX-M-15, 13 (14%) CTX-M-14, six (6%) CTX-M-24, one (1%) CTX-M-2, one (1%) CTX-M-3, and one (1%) CTX-M-27, while 10 (10%) produced TEM-52, three (3%) TEM-26, 11 (11%) SHV-2, and four (4%) produced SHV-12. Thirty-one (30%) of the ESBL-producing E. coli isolates were positive for aac(6')-Ib-cr, and one (1%) was positive for qnrS. The majority of the ESBL-producing isolates (n = 95 [90%]) were recovered from urine samples, and 83 (87%) were resistant to ciprofloxacin. The isolation of CTX-M-15 producers belonging to clone ST131 was associated with travel to the Indian subcontinent (India, Pakistan), Africa, the Middle East, and Europe, while clonally unrelated strains of CTX-M-14 and -24 were associated with travel to Asia. Our study suggested that clone ST131 coproducing CTX-M-15, OXA-1, TEM-1, and AAC(6')-Ib-cr and clonally unrelated CTX-M-14 producers have emerged as important causes of community-acquired, travel-related infections.
Energy Technology Data Exchange (ETDEWEB)
Li, Song [Vanderbilt University, Department of Chemical and Biomolecular Engineering (United States); Zhao, Xiongce [NIDDK, National Institutes of Health (United States); Mo, Yiming [Institute of Agriculture, University of Tennessee (United States); Cummings, Peter T., E-mail: cummingspt@ornl.gov [Vanderbilt University, Department of Chemical and Biomolecular Engineering (United States); Heller, William T., E-mail: hellerwt@ornl.gov [Oak Ridge National Laboratory, Center for Structural Molecular Biology (United States)
2013-07-15
Concern about the toxicity of engineered nanoparticles, such as the prototypical nanomaterial C{sub 60} fullerene, continues to grow. While, evidence continues to mount that C{sub 60} and its derivatives may pose health hazards, the specific molecular interactions of these particles with biological macromolecules require further investigation. In this article, we report combined experimental and theoretical studies on the interaction of one of the most prevalent proteins in the human body, human serum albumin (HSA), with C{sub 60} in an aqueous environment. The C{sub 60}-HSA interaction was probed by circular dichroism (CD) spectroscopy, small-angle neutron scattering (SANS), and atomistic molecular dynamics (MD) simulations to understand C{sub 60}-driven changes in the structure of HSA in solution. The CD spectroscopy demonstrates that the secondary structure of the protein decreases in {alpha}-helical content in response to the presence of C{sub 60} (0.68 nm in diameter). Similarly, C{sub 60} produces subtle changes in the solution conformation of HSA (an 8.0 nm Multiplication-Sign 3.8 nm protein), as evidenced by the SANS data and MD simulations, but the data do not indicate that C{sub 60} changes the oligomerization state of the protein, such as by inducing aggregation. The results demonstrate that the interaction is not highly disruptive to the protein in a manner that would prevent it from performing its physiological function.
International Nuclear Information System (INIS)
Marklund, T.
1978-01-01
The most commonly used methods of assessing the scoliotic deviation measure angles that are not clearly defined in relation to the anatomy of the patient. In order to give an anatomic basis for such measurements it is proposed to define the scoliotic deviation as the deviation the vertebral column makes with the sagittal plane. Both the Cobb and the Ferguson angles may be based on this definition. The present methods of measurement are then attempts to measure these angles. If the plane of these angles is parallel to the film, the measurement will be correct. Errors in the measurements may be incurred by the projection. A hypothetical projection, called a 'rectified orthogonal projection', is presented, which correctly represents all scoliotic angles in accordance with these principles. It can be constructed in practice with the aid of a computer and by performing measurements on two projections of the vertebral column; a scoliotic curve can be represented independent of the kyphosis and lordosis. (Auth.)
DEFF Research Database (Denmark)
Risager, Morten S.; Södergren, Carl Anders
2017-01-01
It is well known that the angles in a lattice acting on hyperbolic n -space become equidistributed. In this paper we determine a formula for the pair correlation density for angles in such hyperbolic lattices. Using this formula we determine, among other things, the asymptotic behavior of the den......It is well known that the angles in a lattice acting on hyperbolic n -space become equidistributed. In this paper we determine a formula for the pair correlation density for angles in such hyperbolic lattices. Using this formula we determine, among other things, the asymptotic behavior...... of the density function in both the small and large variable limits. This extends earlier results by Boca, Pasol, Popa and Zaharescu and Kelmer and Kontorovich in dimension 2 to general dimension n . Our proofs use the decay of matrix coefficients together with a number of careful estimates, and lead...
Fukasawa, Toshiko; Sato, Takaaki
2011-02-28
We highlight versatile applicability of a structure-factor indirect Fourier transformation (IFT) technique, hereafter called SQ-IFT. The original IFT aims at the pair distance distribution function, p(r), of colloidal particles from small angle scattering of X-rays (SAXS) and neutrons (SANS), allowing the conversion of the experimental form factor, P(q), into a more intuitive real-space spatial autocorrelation function. Instead, SQ-IFT is an interaction potential model-free approach to the 'effective' or 'experimental' structure factor to yield the pair correlation functions (PCFs), g(r), of colloidal dispersions like globular protein solutions for small-angle scattering data as well as the radial distribution functions (RDFs) of molecular liquids in liquid diffraction (LD) experiments. We show that SQ-IFT yields accurate RDFs of liquid H(2)O and monohydric alcohol reflecting their local intermolecular structures, in which q-weighted structure function, qH(q), conventionally utilized in many LD studies out of necessity of performing direct Fourier transformation, is no longer required. We also show that SQ-IFT applied to theoretically calculated structure factors for uncharged and charged colloidal dispersions almost perfectly reproduces g(r) obtained as a solution of the Ornstein-Zernike (OZ) equation. We further demonstrate the relevance of SQ-IFT in its practical applications, using SANS effective structure factors of lysozyme solutions reported in recent literatures which revealed the equilibrium cluster formation due to coexisting long range electrostatic repulsion and short range attraction between the proteins. Finally, we present SAXS experiments on human serum albumin (HSA) at different ionic strength and protein concentration, in which we discuss the real space picture of spatial distributions of the proteins via the interaction potential model-free route.
International Nuclear Information System (INIS)
Moler, E.J.; Kellar, S.A.; Huff, W.R.A.
1997-01-01
The authors report a study of the spatial structure of (√3 x √3)R30 degrees (low coverage) and (1.5 x 1.5)R18 degrees (intermediate coverage) CO adsorbed on Cu(111), using the Angle-Resolved Photoemission Extended Fine Structure (ARPEFS) technique at beamline 9.3.2 at the Advanced Light Source. The CO molecule adsorbs on an atop site for both adsorption phases. Full multiple-scattering spherical-wave (MSSW) calculations were used to extract the C-Cu. bond length and the first Cu-Cu layer spacing for each adsorption phase. The authors find that the C-Cu bond length remains unchanged with increasing coverage, but the 1st Cu-Cu layer spacing contracts at the intermediate coverage. They calculate the bending mode force constant in the (1.5 x 1.5)R18 degrees phase to be K δ = 2.2 (1) x 10 -12 dyne-cm/rad from their experimentally determined bond lengths combined with previously published infra-red absorption frequencies
Energy Technology Data Exchange (ETDEWEB)
Moler, E.J.; Kellar, S.A.; Huff, W.R.A. [Lawrence Berkeley National Lab., CA (United States)] [and others
1997-04-01
The authors report a study of the spatial structure of ({radical}3 x {radical}3)R30{degrees} (low coverage) and (1.5 x 1.5)R18{degrees} (intermediate coverage) CO adsorbed on Cu(111), using the Angle-Resolved Photoemission Extended Fine Structure (ARPEFS) technique at beamline 9.3.2 at the Advanced Light Source. The CO molecule adsorbs on an atop site for both adsorption phases. Full multiple-scattering spherical-wave (MSSW) calculations were used to extract the C-Cu. bond length and the first Cu-Cu layer spacing for each adsorption phase. The authors find that the C-Cu bond length remains unchanged with increasing coverage, but the 1st Cu-Cu layer spacing contracts at the intermediate coverage. They calculate the bending mode force constant in the (1.5 x 1.5)R18{degrees} phase to be K{sub {delta}} = 2.2 (1) x 10{sup {minus}12} dyne-cm/rad from their experimentally determined bond lengths combined with previously published infra-red absorption frequencies.
Kraus, Jodi; Gupta, Rupal; Yehl, Jenna; Lu, Manman; Case, David A; Gronenborn, Angela M; Akke, Mikael; Polenova, Tatyana
2018-03-22
Magic angle spinning NMR spectroscopy is uniquely suited to probe the structure and dynamics of insoluble proteins and protein assemblies at atomic resolution, with NMR chemical shifts containing rich information about biomolecular structure. Access to this information, however, is problematic, since accurate quantum mechanical calculation of chemical shifts in proteins remains challenging, particularly for 15 N H . Here we report on isotropic chemical shift predictions for the carbohydrate recognition domain of microcrystalline galectin-3, obtained from using hybrid quantum mechanics/molecular mechanics (QM/MM) calculations, implemented using an automated fragmentation approach, and using very high resolution (0.86 Å lactose-bound and 1.25 Å apo form) X-ray crystal structures. The resolution of the X-ray crystal structure used as an input into the AF-NMR program did not affect the accuracy of the chemical shift calculations to any significant extent. Excellent agreement between experimental and computed shifts is obtained for 13 C α , while larger scatter is observed for 15 N H chemical shifts, which are influenced to a greater extent by electrostatic interactions, hydrogen bonding, and solvation.
Energy Technology Data Exchange (ETDEWEB)
Eremin, Roman A., E-mail: era@jinr.ru [Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); Kholmurodov, Kholmirzo T. [Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); International University “Dubna”, Dubna 141980 (Russian Federation); Petrenko, Viktor I. [Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); Taras Shevchenko National University of Kyiv, Kyiv 03022 (Ukraine); Rosta, László [Wigner Research Centre for Physics, Hungarian Academy of Sciences, Budapest H-1525 (Hungary); Grigoryeva, Natalia A. [Faculty of Physics, Saint-Petersburg State University, 198504 Saint-Petersburg (Russian Federation); Avdeev, Mikhail V. [Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation)
2015-11-05
Highlights: • The model of the scattering particle for a reliable SANS analysis is proposed. • The structural parameters of saturated mono-carboxylic acids in solutions are obtained. • The differences in nematic transitions correlate to solvation peculiarities. - Abstract: The data of infrared spectroscopy (IR), molecular dynamics (MD) simulations and small-angle neutron scattering (SANS) have been combined to conclude about the nanoscale structural organization of organic non-polar solutions of saturated mono-carboxylic acids with different alkyl chain lengths for diluted solutions of saturated myristic (C14) and stearic (C18) acids in benzene and decalin. In particular, the degree of dimerization was found from the IR spectra. The structural anisotropy of the acids and their dimers was used in the treatment of the data of MD simulations to describe the solute–solvent interface in a cylindrical approximation and show its rather strong influence on SANS. The corresponding scattering length density profiles were used to fit the experimental SANS data comprising the information about the acid molecule isomerization. The SANS data from concentrated solutions showed a partial self-assembling of the acids within the nematic transition is different for two solvents due to lyophobic peculiarities.
Unveiling the Hot Molecular Core in the Ultracompact H II Region with Extended Emission G12.21-0.10
de la Fuente, E.; Trinidad, M. A.; Porras, A.; Rodríguez-Rico, C.; Araya, E. D.; Kurtz, S.; Hofner, P.; Nigoche-Netro, A.
2018-04-01
We present a multiwavelength study of the cometary H II region G12.21-0.10 using the VLA and OVRO. Both radio continuum (0.3, 0.7, 2 and 3.6 cm) and spectral lines of H41α, 13CS(2-1) & (1-0), and NH3(2,2) & (4,4) observations are included. We find two 3 mm continuum peaks toward G12.21-0.10; one of them is spatially coincident with the UC H II region, while the other coincides spatially with a molecular clump. We also find that the 0.7, 2 and 3.6 cm continuum and H41α line are only detected toward the UC H II region, while the 13CS, and NH3 are spatially associated with the molecular clump. Based on the morphology, kinetic temperature (≍86 K), volumetric density (≍1.5×106 cm-3) and linear size (≍0.22 pc) of the molecular clump, we suggest this source is consistent with a hot molecular core.
International Nuclear Information System (INIS)
Huff, W.R.A.
1996-02-01
ALS Bending magnet beamline 9.3.2 is for high resolution spectroscopy, with circularly polarized light. Fixed included-angle SGM uses three gratings for 30--1500 eV photons; circular polarization is produced by an aperture for selecting the beam above or below the horizontal plane. Photocurrent from upper and lower jaws of entrance slit sets a piezoelectric drive feedback loop on the vertically deflecting mirror for stable beam. End station has a movable platform. With photomeission data from Stanford, structure of c(2x2)P/Fe(100) was determined using angle-resolved photoemission extended fine structure (ARPEFS). Multiple-scattering spherical-wave (MSSW) calculations indicate that P atoms adsorb in fourfold hollow sites 1.02A above the first Fe layer. Self-consistent-field Xα scattered wave calculation confirm that the Fe 1 -Fe 2 space is contracted for S/Fe but not for P/Fe; comparison is made to atomic N and O on Fe(100). Final-state effects on ARPEFS curves used literature data from the S 1s and 2p core levels of c(2x2)S/Ni(001); a generalized Ramsauer-Townsend splitting is present in the 1s but not 2p data. An approximate method for analyzing ARPEFS data from a non-s initial state using only the higher-ell partial wave was tested successfully. ARPEFS data from clean surfaces were collected normal to Ni(111) (3p core levels) and 5 degree off-normal from Cu(111)(3s, 3p). Fourier transforms (FT) resemble adsorbate systems, showing backscattering signals from atoms up to 4 layers below emitters. 3p FTs show scattering from 6 nearest neighbors in the same crystal layer as the emitters. MSSW calulation indicate that Cu 3p photoemission is mostly d-wave. FTs also indicate double-scattering and single-scattering from laterally distant atoms; calculations indicate that the signal is dominated by photoemission from the first 2 crystal layers
Caldú-Primo, Anahi; Schruba, Andreas; Walter, Fabian; Leroy, Adam; Bolatto, Alberto D.; Vogel, Stuart
2015-02-01
Recent studies of the molecular medium in nearby galaxies have provided mounting evidence that the molecular gas can exist in two phases: one that is clumpy and organized as molecular clouds and another one that is more diffuse. This last component has a higher velocity dispersion than the clumpy one. In order to investigate these two molecular components further, we compare the fluxes and line widths of CO in NGC 4736 and NGC 5055, two nearby spiral galaxies for which high-quality interferometric as well as single-dish data sets are available. Our analysis leads to two main results: (1) employing three different methods, we determine the flux recovery of the interferometer as compared to the single-dish to be within a range of 35%-74% for NGC 4736 and 81%-92% for NGC 5055, and (2) when focusing on high (S/N ≥ 5) lines of sight (LOSs), the single-dish line widths are larger by ˜(40 ± 20)% than the ones derived from interferometric data, which is in agreement with stacking all LOSs. These results point to a molecular gas component that is distributed over spatial scales larger than 30″(˜1 kpc), and is therefore filtered out by the interferometer. The available observations do not allow us to distinguish between a truly diffuse gas morphology and a uniform distribution of small clouds that are separated by less than the synthesized beam size (˜3″ or ˜100 pc), as they would both be invisible for the interferometer. This high velocity dispersion component has a dispersion similar to what is found in the atomic medium, as traced through observations of the H i line.
International Nuclear Information System (INIS)
Caldú-Primo, Anahi; Walter, Fabian; Schruba, Andreas; Leroy, Adam; Bolatto, Alberto D.; Vogel, Stuart
2015-01-01
Recent studies of the molecular medium in nearby galaxies have provided mounting evidence that the molecular gas can exist in two phases: one that is clumpy and organized as molecular clouds and another one that is more diffuse. This last component has a higher velocity dispersion than the clumpy one. In order to investigate these two molecular components further, we compare the fluxes and line widths of CO in NGC 4736 and NGC 5055, two nearby spiral galaxies for which high-quality interferometric as well as single-dish data sets are available. Our analysis leads to two main results: (1) employing three different methods, we determine the flux recovery of the interferometer as compared to the single-dish to be within a range of 35%–74% for NGC 4736 and 81%–92% for NGC 5055, and (2) when focusing on high (S/N ≥ 5) lines of sight (LOSs), the single-dish line widths are larger by ∼(40 ± 20)% than the ones derived from interferometric data, which is in agreement with stacking all LOSs. These results point to a molecular gas component that is distributed over spatial scales larger than 30″(∼1 kpc), and is therefore filtered out by the interferometer. The available observations do not allow us to distinguish between a truly diffuse gas morphology and a uniform distribution of small clouds that are separated by less than the synthesized beam size (∼3″ or ∼100 pc), as they would both be invisible for the interferometer. This high velocity dispersion component has a dispersion similar to what is found in the atomic medium, as traced through observations of the H i line.
Energy Technology Data Exchange (ETDEWEB)
Yang, You-Chang [Nanjing University, Department of Physics, Nanjing (China); Zunyi Normal University, School of Physics and Electronic Science, Zunyi (China); Institute of Theoretical Physics, CAS, State Key Laboratory of Theoretical Physics, Beijing (China); Tan, Zhi-Yun [Zunyi Normal University, School of Physics and Electronic Science, Zunyi (China); Ping, Jialun [Nanjing Normal University, Department of Physics, Nanjing (China); Zong, Hong-Shi [Nanjing University, Department of Physics, Nanjing (China); Institute of Theoretical Physics, CAS, State Key Laboratory of Theoretical Physics, Beijing (China)
2017-09-15
The possible neutral D{sup (*)} anti D{sup (*)} and B{sup (*)} anti B{sup (*)} molecular states are studied in the framework of the constituent quark models, which is extended by including the s-channel one-gluon exchange. Using different types of quark-quark potentials, we solve the four-body Schroedinger equation by means of the Gaussian expansion method. The bound states of D{sup (*)} anti D{sup (*)} with J{sup PC} = 1{sup ++}, 2{sup ++} and B{sup (*)} anti B{sup (*)} with J{sup PC} = 0{sup ++}, 1{sup +-}, 1{sup ++}, 2{sup ++} are obtained. The molecular states D* anti D with J{sup PC} = 1{sup ++} and B* anti B with J{sup PC} = 1{sup +-} are good candidates for X(3872) and Z{sup 0}{sub b}(10610), respectively. The dependence of the results on the model parameters is also discussed. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Huff, W.R.A.; Moler, E.J.; Kellar, S.A. [Lawrence Berkeley National Lab., CA (United States)] [and others
1997-04-01
The first non-s initial state angle-resolved photoemission extended fine structure (ARPEFS) study of clean surfaces for the purpose of further understanding the technique is reported. The surface structure sensitivity of ARPEFS applied to clean surfaces and to arbitrary initial states is studied using normal photoemission data taken from the Ni 3p core levels of a Ni(111) single crystal and the Cu 3s and the Cu 3p core-levels of a Cu(111) single crystal. The Fourier transforms of these clean surface data are dominated by backscattering. Unlike the s initial state data, the p initial state data show a peak in the Fourier transform corresponding to in-plane scattering from the six nearest-neighbors to the emitter. Evidence was seen for single-scattering events from in the same plane as the emitters and double-scattering events. Using a newly developed, multiple-scattering calculation program, ARPEFS data from clean surfaces and from p initial states can be modeled to high precision. Although there are many layers of emitters when measuring photoemission from a clean surface, test calculations show that the ARPEFS signal is dominated by photoemission from atoms in the first two crystal layers. Thus, ARPEFS applied to clean surfaces is sensitive to surface reconstruction. The known contraction of the first two Cu(111) layers is confirmed. The best-fit calculation for clean Ni(111) indicates an expansion of the first two layers. To better understand the ARPEFS technique, the authors studied s and non-s initial state photoemission from clean metal surfaces.
Huo, Michael H; Muntz, James
2009-06-01
Prophylaxis against venous thromboembolism (VTE) is routinely administered during the hospital stay in at-risk surgical and medical patients. However, in high-risk groups, the risk of deep-vein thrombosis or pulmonary embolism may persist for several weeks after discharge. The standard duration of thromboprophylaxis (6-14 days) may not provide adequate protection against such events. This article reviews published data on the efficacy and safety profile of extended-duration thromboprophylaxis in patients at high risk for VTE, the potential cost-effectiveness of such treatment, and practical aspects of ensuring an effective transition from the inpatient to the outpatient setting. MEDLINE and the Cochrane Database of Systematic Reviews were searched through January 2009 for relevant English-language reports of clinical trials, abstracts, and case reports. The search terms included, but were not limited to, venous thromboembolism, pulmonary embolism, anticoagulation, thromboprophylaxis, prolonged duration, and extended duration. The reference lists of the identified articles were reviewed for additional relevant publications. Congress Web sites were also consulted. The principal criteria for inclusion of a study were that it have a prospective, randomized design and include a control group. Case series and retrospective analyses were excluded. Studies have found that extended-duration thromboprophylaxis (28-45 days) with low-molecular-weight heparins (LMWHs) can reduce the risk of VTE in high-risk patients. In separate meta-analyses, extended-duration thromboprophylaxis with LMWH was associated with significant reductions in the likelihood of symptomatic VTE compared with standard-duration thromboprophylaxis in patients undergoing major orthopedic surgery (odds ratio [OR] = 0.38; 95% CI, 0.24-0.61) or major abdominal or pelvic surgery (Peto OR = 0.22; 95% CI, 0.06-0.80). There was large heterogeneity in the reported rates of major and minor bleeding. The occurrence of
Xu, Xin; Zhang, Qingsong; Muller, Richard P.; Goddard, William A., III
2005-01-01
We derive here the form for the exact exchange energy density for a density that decays with Gaussian-type behavior at long range. This functional is intermediate between the B88 and the PW91 exchange functionals. Using this modified functional to match the form expected for Gaussian densities, we propose the X3LYP extended functional. We find that X3LYP significantly outperforms Becke three parameter Lee–Yang–Parr (B3LYP) for describing van der Waals and hydrogen bond interactions, while per...
Xu, Xin; Zhang, Qingsong; Muller, Richard P.; Goddard, William A.
2005-01-01
We derive here the form for the exact exchange energy density for a density that decays with Gaussian-type behavior at long range. This functional is intermediate between the B88 and the PW91 exchange functionals. Using this modified functional to match the form expected for Gaussian densities, we propose the X3LYP extended functional. We find that X3LYP significantly outperforms Becke three parameter Lee-Yang-Parr (B3LYP) for describing van der Waals and hydrogen bond interactions, while performing slightly better than B3LYP for predicting heats of formation, ionization potentials, electron affinities, proton affinities, and total atomic energies as validated with the extended G2 set of atoms and molecules. Thus X3LYP greatly enlarges the field of applications for density functional theory. In particular the success of X3LYP in describing the water dimer (with Re and De within the error bars of the most accurate determinations) makes it an excellent candidate for predicting accurate ligand-protein and ligand-DNA interactions.
Stepanova, Larisa; Bronnikov, Sergej
2018-03-01
The crack growth directional angles in the isotropic linear elastic plane with the central crack under mixed-mode loading conditions for the full range of the mixity parameter are found. Two fracture criteria of traditional linear fracture mechanics (maximum tangential stress and minimum strain energy density criteria) are used. Atomistic simulations of the central crack growth process in an infinite plane medium under mixed-mode loading using Large-scale Molecular Massively Parallel Simulator (LAMMPS), a classical molecular dynamics code, are performed. The inter-atomic potential used in this investigation is Embedded Atom Method (EAM) potential. The plane specimens with initial central crack were subjected to Mixed-Mode loadings. The simulation cell contains 400000 atoms. The crack propagation direction angles under different values of the mixity parameter in a wide range of values from pure tensile loading to pure shear loading in a wide diapason of temperatures (from 0.1 К to 800 К) are obtained and analyzed. It is shown that the crack propagation direction angles obtained by molecular dynamics method coincide with the crack propagation direction angles given by the multi-parameter fracture criteria based on the strain energy density and the multi-parameter description of the crack-tip fields.
International Nuclear Information System (INIS)
Qiu, S.; Amano, H.; Kasai, A.
1988-01-01
The solid angle in extended alpha source measurement for a series of counting geometries has been obtained by two methods: (1) calculated by means of the Nelson Blachmen series; (2) interpolated from the data table given by Gardner. A particular consequence of the application of the Nelson Blachmen series was deduced which was different from that given by the original author. The applicability of these two methods, as well as an experimentally measured method, is also evaluated. (author)
Directory of Open Access Journals (Sweden)
Diego B. Nóbrega
2013-07-01
Full Text Available The objectives of this study were to isolate Klebsiella pneumoniae from different sources in three dairy cattle herds, to use the pulsed-field gel electrophoresis (PFGE to measure genotypic similarities between isolates within a dairy herd, to verify the production of extended-spectrum β-lactamases (ESBLs by the double-disk synergy test (DDST, and to use the PCR to detect the main ESBLs subgroups genes. Three dairy farms were selected based on previous mastitis outbreaks caused by K. pneumoniae. Milk samples were collected from lactating cows and from the bulk tank. Swabs were performed in different locations, including milking parlors, waiting room, soil, animal's hind limbs and rectum. K. pneumoniae was isolated from 27 cases of intramammary infections (IMI and from 41 swabs. For farm A isolates from IMI and bulk tank were considered of the same PGFE subtype. One isolate from a bulk tank, three from IMI cases and four from environmental samples were positive in the DDST test. All eight DDST positive isolates harbored the bla shv gene, one harbored the bla tem gene, and three harbored the bla ctx-m gene, including the bulk tank isolate. Our study confirms that ESBL producing bacteria is present in different locations in dairy farms, and may be responsible for IMI. The detection of ESBLs on dairy herds could be a major concern for both public and animal health.
Directory of Open Access Journals (Sweden)
Ghassan Khudhair Ismaeel
2017-07-01
Full Text Available None response to the treatment by an antibiotic called antibiotics resistance result from some genes called resistance genes .This mechanism is widespread in most of the bacteria, like E.coli . All of the extended resistance genes called (ESBIS is a typical example for study of some genes that resistance beta-lactam antibiotic is subject of this research. Fifty feces sample were collected from cattle suffering from diarrhea in alqaissiyah city were cultured on selective media for E.coli , then DNA was extracted from all E.coli isolates for antibiotic resistance gene detection by PCR ; The results of this study revealed the prevalence of B-lactamase gene four B-lactamases genes in E.coli blaAmpc gene were (91.4%, the blactx-m gene were (80%, blaTem were (62.8% and finally and blaSHV gene were (22% among isolates E.coli ; blaAMPC gene has high prevalence than others genes while blaSHV was a lower percentage than other genes
Kanamori, Hajime; Yano, Hisakazu; Hirakata, Yoichi; Hirotani, Ayako; Arai, Kazuaki; Endo, Shiro; Ichimura, Sadahiro; Ogawa, Miho; Shimojima, Masahiro; Aoyagi, Tetsuji; Hatta, Masumitsu; Yamada, Mitsuhiro; Gu, Yoshiaki; Tokuda, Koichi; Kunishima, Hiroyuki; Kitagawa, Miho; Kaku, Mitsuo
2012-01-01
The incidence of extended-spectrum β-lactamases (ESBLs) has been increasing worldwide, but screening criteria for detection of ESBLs are not standardized for AmpC-producing Enterobacteriaceae such as Enterobacter species. In this study, we investigated the prevalence of ESBLs and/or AmpC β-lactamases in Japanese clinical isolates of Enterobacter spp. and the association of plasmid-mediated quinolone resistance (PMQR) determinants with ESBL producers. A total of 364 clinical isolates of Enterobacter spp. collected throughout Japan between November 2009 and January 2010 were studied. ESBL-producing strains were assessed by the CLSI confirmatory test and the boronic acid disk test. PCR and sequencing were performed to detect CTX-M, TEM, and SHV type ESBLs and PMQR determinants. For ESBL-producing Enterobacter spp., pulsed-field gel electrophoresis (PFGE) was performed using XbaI restriction enzyme. Of the 364 isolates, 22 (6.0%) were ESBL producers. Seven isolates of Enterobacter cloacae produced CTX-M-3, followed by two isolates producing SHV-12. Two isolates of Enterobacter aerogenes produced CTX-M-2. Of the 22 ESBL producers, 21 had the AmpC enzyme, and six met the criteria for ESBL production in the boronic acid test. We found a significant association of qnrS with CTX-M-3-producing E. cloacae. The 11 ESBL-producing Enterobacter spp. possessing bla(CTX-M), bla(SHV), or bla(TEM) were divided into six unique PFGE types. This is the first report about the prevalence of qnr determinants among ESBL-producing Enterobacter spp. from Japan. Our results suggest that ESBL-producing Enterobacter spp. with qnr determinants are spreading in Japan.
Li, J; Li, B; Ni, Y; Sun, J
2015-03-01
Shigellosis is a public health concern in China. We tested 216 Shigella isolates collected in Shanghai in 2007 for the production of extended-spectrum beta-lactamases (ESBLs). ESBL-producing isolates were characterized using polymerase chain reaction (PCR)-based genotyping, conjugation, pulsed-field gel electrophoresis (PFGE), and DNA sequence analysis of regions adjacent to bla genes. Plasmids containing genes encoding ESBLs were analyzed using plasmid replicon typing. ESBLs were produced by 18.1 % (39/216) of Shigella isolates, and all 39 ESBL-producing strains harbored bla CTX-M genes. CTX-M-14 was the most frequent variant (69.2 %, 27/39), followed by CTX-M-15 (15.4 %, 6/39). All bla CTX-M genes were transferable by conjugation, and the insertion sequence ISEcp1 was detected upstream of all bla CTX-M genes. The CTX-M-producing Shigella isolates showed high clonal diversity. IncI1, IncFII, IncN, and IncB/O replicons were respectively detected in 23 (58.9 %), 9 (23.1 %), 1 (2.6 %), and 1 (2.6 %) of the 39 transconjugants carrying bla CTX-M. The bla CTX-M-14 genes were most frequently carried by IncI1 (n = 13, 48.1 %) or IncFII (n = 9, 33.3 %) plasmids, and the bla CTX-M-15 genes were closely associated with IncI1 (n = 5, 83.3 %). Our findings demonstrate the high prevalence of ESBL-producing Shigella in Shanghai, the importance of plasmids and ISEcp1 as carriers of bla CTX-M genes, and the close association between certain bla CTX-M genes with a specific plasmid.
Energy Technology Data Exchange (ETDEWEB)
Bylaska, Eric J., E-mail: Eric.Bylaska@pnnl.gov [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352 (United States); Weare, Jonathan Q., E-mail: weare@uchicago.edu [Department of Mathematics, University of Chicago, Chicago, Illinois 60637 (United States); Weare, John H., E-mail: jweare@ucsd.edu [Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093 (United States)
2013-08-21
Parallel in time simulation algorithms are presented and applied to conventional molecular dynamics (MD) and ab initio molecular dynamics (AIMD) models of realistic complexity. Assuming that a forward time integrator, f (e.g., Verlet algorithm), is available to propagate the system from time t{sub i} (trajectory positions and velocities x{sub i} = (r{sub i}, v{sub i})) to time t{sub i+1} (x{sub i+1}) by x{sub i+1} = f{sub i}(x{sub i}), the dynamics problem spanning an interval from t{sub 0}…t{sub M} can be transformed into a root finding problem, F(X) = [x{sub i} − f(x{sub (i−1})]{sub i} {sub =1,M} = 0, for the trajectory variables. The root finding problem is solved using a variety of root finding techniques, including quasi-Newton and preconditioned quasi-Newton schemes that are all unconditionally convergent. The algorithms are parallelized by assigning a processor to each time-step entry in the columns of F(X). The relation of this approach to other recently proposed parallel in time methods is discussed, and the effectiveness of various approaches to solving the root finding problem is tested. We demonstrate that more efficient dynamical models based on simplified interactions or coarsening time-steps provide preconditioners for the root finding problem. However, for MD and AIMD simulations, such preconditioners are not required to obtain reasonable convergence and their cost must be considered in the performance of the algorithm. The parallel in time algorithms developed are tested by applying them to MD and AIMD simulations of size and complexity similar to those encountered in present day applications. These include a 1000 Si atom MD simulation using Stillinger-Weber potentials, and a HCl + 4H{sub 2}O AIMD simulation at the MP2 level. The maximum speedup ((serial execution time)/(parallel execution time) ) obtained by parallelizing the Stillinger-Weber MD simulation was nearly 3.0. For the AIMD MP2 simulations, the algorithms achieved speedups of up
Bylaska, Eric J; Weare, Jonathan Q; Weare, John H
2013-08-21
Parallel in time simulation algorithms are presented and applied to conventional molecular dynamics (MD) and ab initio molecular dynamics (AIMD) models of realistic complexity. Assuming that a forward time integrator, f (e.g., Verlet algorithm), is available to propagate the system from time ti (trajectory positions and velocities xi = (ri, vi)) to time ti + 1 (xi + 1) by xi + 1 = fi(xi), the dynamics problem spanning an interval from t0[ellipsis (horizontal)]tM can be transformed into a root finding problem, F(X) = [xi - f(x(i - 1)]i = 1, M = 0, for the trajectory variables. The root finding problem is solved using a variety of root finding techniques, including quasi-Newton and preconditioned quasi-Newton schemes that are all unconditionally convergent. The algorithms are parallelized by assigning a processor to each time-step entry in the columns of F(X). The relation of this approach to other recently proposed parallel in time methods is discussed, and the effectiveness of various approaches to solving the root finding problem is tested. We demonstrate that more efficient dynamical models based on simplified interactions or coarsening time-steps provide preconditioners for the root finding problem. However, for MD and AIMD simulations, such preconditioners are not required to obtain reasonable convergence and their cost must be considered in the performance of the algorithm. The parallel in time algorithms developed are tested by applying them to MD and AIMD simulations of size and complexity similar to those encountered in present day applications. These include a 1000 Si atom MD simulation using Stillinger-Weber potentials, and a HCl + 4H2O AIMD simulation at the MP2 level. The maximum speedup (serial execution/timeparallel execution time) obtained by parallelizing the Stillinger-Weber MD simulation was nearly 3.0. For the AIMD MP2 simulations, the algorithms achieved speedups of up to 14.3. The parallel in time algorithms can be implemented in a
International Nuclear Information System (INIS)
Bylaska, Eric J.; Weare, Jonathan Q.; Weare, John H.
2013-01-01
Parallel in time simulation algorithms are presented and applied to conventional molecular dynamics (MD) and ab initio molecular dynamics (AIMD) models of realistic complexity. Assuming that a forward time integrator, f (e.g., Verlet algorithm), is available to propagate the system from time t i (trajectory positions and velocities x i = (r i , v i )) to time t i+1 (x i+1 ) by x i+1 = f i (x i ), the dynamics problem spanning an interval from t 0 …t M can be transformed into a root finding problem, F(X) = [x i − f(x (i−1 )] i =1,M = 0, for the trajectory variables. The root finding problem is solved using a variety of root finding techniques, including quasi-Newton and preconditioned quasi-Newton schemes that are all unconditionally convergent. The algorithms are parallelized by assigning a processor to each time-step entry in the columns of F(X). The relation of this approach to other recently proposed parallel in time methods is discussed, and the effectiveness of various approaches to solving the root finding problem is tested. We demonstrate that more efficient dynamical models based on simplified interactions or coarsening time-steps provide preconditioners for the root finding problem. However, for MD and AIMD simulations, such preconditioners are not required to obtain reasonable convergence and their cost must be considered in the performance of the algorithm. The parallel in time algorithms developed are tested by applying them to MD and AIMD simulations of size and complexity similar to those encountered in present day applications. These include a 1000 Si atom MD simulation using Stillinger-Weber potentials, and a HCl + 4H 2 O AIMD simulation at the MP2 level. The maximum speedup ((serial execution time)/(parallel execution time) ) obtained by parallelizing the Stillinger-Weber MD simulation was nearly 3.0. For the AIMD MP2 simulations, the algorithms achieved speedups of up to 14.3. The parallel in time algorithms can be implemented in a
International Nuclear Information System (INIS)
Moin, Syed Tarique; Hofer, Thomas S.; Weiss, Alexander K. H.; Rode, Bernd M.
2013-01-01
Ab initio quantum mechanical charge field molecular dynamics (QMCF-MD) were successfully applied to Cu(II) embedded in water to elucidate structure and to understand dynamics of ligand exchange mechanism. From the simulation studies, it was found that using an extended large quantum mechanical region including two shells of hydration is required for a better description of the dynamics of exchanging water molecules. The structural features characterized by radial distribution function, angular distribution function and other analytical parameters were consistent with experimental data. The major outcome of this study was the dynamics of exchange mechanism and reactions in the first hydration shell that could not be studied so far. The dynamical data such as mean residence time of the first shell water molecules and other relevant data from the simulations are close to the results determined experimentally. Another major characteristic of hydrated Cu(II) is the Jahn-Teller distortion which was also successfully reproduced, leading to the final conclusion that the dominating aqua complex is a 6-coordinated species. The ab initio QMCF-MD formalism proved again its capabilities of unraveling even ambiguous properties of hydrated species that are far difficult to explore by any conventional quantum mechanics/molecular mechanics (QM/MM) approach or experiment
Moin, Syed Tarique; Hofer, Thomas S; Weiss, Alexander K H; Rode, Bernd M
2013-07-07
Ab initio quantum mechanical charge field molecular dynamics (QMCF-MD) were successfully applied to Cu(II) embedded in water to elucidate structure and to understand dynamics of ligand exchange mechanism. From the simulation studies, it was found that using an extended large quantum mechanical region including two shells of hydration is required for a better description of the dynamics of exchanging water molecules. The structural features characterized by radial distribution function, angular distribution function and other analytical parameters were consistent with experimental data. The major outcome of this study was the dynamics of exchange mechanism and reactions in the first hydration shell that could not be studied so far. The dynamical data such as mean residence time of the first shell water molecules and other relevant data from the simulations are close to the results determined experimentally. Another major characteristic of hydrated Cu(II) is the Jahn-Teller distortion which was also successfully reproduced, leading to the final conclusion that the dominating aqua complex is a 6-coordinated species. The ab initio QMCF-MD formalism proved again its capabilities of unraveling even ambiguous properties of hydrated species that are far difficult to explore by any conventional quantum mechanics/molecular mechanics (QM/MM) approach or experiment.
Directory of Open Access Journals (Sweden)
Olugbenga Adekunle Olowe
2015-01-01
Full Text Available Production of extended-spectrum β-lactamases (ESBLs producing E. coli in animals and different methods of identifications from Ado Ekiti, Ekiti State, Nigeria, were investigated. Three hundred and fifty fecal samples, collected from apparently healthy cattle and pigs, were cultured and identified following standard procedures. ESBL phenotypic detection was carried out using combination disc test, double disc synergism test, and ESBL brilliance agar screening. Molecular detection of TEM, SHV, and CTX-M genes was carried out using standard molecular method. One hundred and fourteen E. coli isolates were recovered from the 350 samples processed, out of which 72 (63.2% isolates were positive for ESBLs with multiple resistance to the antibiotics used. Eighty-one (71% isolates were positive for ESBL by combination disc test, 90 (78.9% were positive for double disc synergism test, and 93 (81.6% were positive for ESBL brilliance agar. TEM and CTX-M genes were detected in 48 (42.1% and 51 (44.7% isolates, respectively. SHV gene was not detected in any of the isolates while TEM and CTX-M were detected in 33 (28.9% isolates. This study showed high resistance of E. coli to antibiotics, particularly to the third generation cephalosporins. Regular monitoring and regulated use of antibiotics in livestock should be encouraged.
Energy Technology Data Exchange (ETDEWEB)
Sanson, A., E-mail: andrea.sanson@unipd.it [Dipartimento di Fisica e Astronomia - Università di Padova, Padova (Italy); Mathon, O.; Pascarelli, S. [ESRF - European Synchrotron Radiation Facility, Grenoble (France)
2014-06-14
The local vibrational dynamics of hematite (α-Fe{sub 2}O{sub 3}) has been investigated by temperature-dependent extended x-ray absorption fine structure spectroscopy and molecular dynamics simulations. The local dynamics of both the short and long nearest-neighbor Fe–O distances has been singled out, i.e., their local thermal expansion and the parallel and perpendicular mean-square relative atomic displacements have been determined, obtaining a partial agreement with molecular dynamics. No evidence of the Morin transition has been observed. More importantly, the strong anisotropy of relative thermal vibrations found for the short Fe–O distance has been related to its negative thermal expansion. The differences between the local dynamics of short and long Fe–O distances are discussed in terms of projection and correlation of atomic motion. As a result, we can conclude that the short Fe–O bond is stiffer to stretching and softer to bending than the long Fe–O bond.
Sid Ahmed, Mazen A; Bansal, Devendra; Acharya, Anushree; Elmi, Asha A; Hamid, Jemal M; Sid Ahmed, Abuelhassan M; Chandra, Prem; Ibrahim, Emad; Sultan, Ali A; Doiphode, Sanjay; Bilal, Naser Eldin; Deshmukh, Anand
2016-01-01
The emergence of extended-spectrum beta-lactamase (ESBL)-producing isolates has important clinical and therapeutic implications. High prevalence of ESBL-producing Enterobacteriaceae has been reported in the literature for clinical samples from a variety of infection sites. The present study was undertaken to evaluate the prevalence of ESBL-producing Enterobacteriaceae, and to perform molecular characterization and antimicrobial susceptibility testing of clinical isolates from patients admitted to the intensive care units at Hamad Medical Corporation, Doha, Qatar, from November 2012 to October 2013. A total of 629 Enterobacteriaceae isolates were included in the study. Identification and susceptibility testing was performed using Phoenix (Becton Dickinson) and the ESBL producers were confirmed by double-disk potentiation as recommended by the Clinical and Laboratory Standards Institute. Molecular analysis of the ESBL producers was performed by polymerase chain reaction. In total, 109 isolates (17.3 %) were confirmed as ESBL producers and all were sensitive to meropenem in routine susceptibility assays. Most of the ESBL producers (99.1 %) were resistant to amoxicillin/clavulanic acid and ceftriaxone and 93.6 % were resistant to cefepime. Among the ESBL-producing genes, bla CTX-M (66.1 %) was the most prevalent, followed by bla SHV (53.2 %) and bla TEM (40.4 %). These findings show the high prevalence of ESBL-producing Enterobacteriaceae within the intensive care units at Hamad Medical Corporation, Qatar, and emphasize the need for judicious use of antibiotics and the implementation of strict infection control measures.
Valency and molecular structure
Cartmell, E
1977-01-01
Valency and Molecular Structure, Fourth Edition provides a comprehensive historical background and experimental foundations of theories and methods relating to valency and molecular structures. In this edition, the chapter on Bohr theory has been removed while some sections, such as structures of crystalline solids, have been expanded. Details of structures have also been revised and extended using the best available values for bond lengths and bond angles. Recent developments are mostly noted in the chapter on complex compounds, while a new chapter has been added to serve as an introduction t
International Nuclear Information System (INIS)
Creutz, M.
1976-01-01
After some disconnected comments on the MIT bag and string models for extended hadrons, I review current understanding of extended objects in classical conventional relativistic field theories and their quantum mechanical interpretation
International Nuclear Information System (INIS)
Yu, G.
2008-12-01
Thermonuclear fusion of light atoms is considered since decades as an unlimited, safe and reliable source of energy that could eventually replace classical sources based on fossil fuel or nuclear fuel. Fusion reactor technology and materials studies are important parts of the fusion energy development program. For the time being, the most promising materials for structural applications in the future fusion power reactors are the Reduced Activation Ferritic/Martensitic (RAFM) steels for which the greatest technology maturity has been achieved, i.e., qualified fabrication routes, welding technology and a general industrial experience are almost available. The most important issues concerning the future use of RAFM steels in fusion power reactors are derived from their irradiation by 14 MeV neutrons that are the product, together with 3.5 MeV helium ions, of the envisaged fusion reactions between deuterium and tritium nuclei. Indeed, exposure of metallic materials to intense fluxes of 14 MeV neutrons will result in the formation of severe displacement damage (about 20-30 dpa per year) and high amounts of helium, which are at the origin of significant changes in the physical and mechanical properties of materials, such as hardening and embrittlement effects. This PhD Thesis work was aimed at investigating how far the Small Angle Neutron Scattering (SANS) technique could be used for detecting and characterizing nano-sized irradiation-induced defects in RAFM steels. Indeed, the resolution limit of Transmission Electron Microscopy (TEM) is about 1 nm in weak beam TEM imaging, and it is usually thought that a large number of irradiation-induced effects have a size below 1 nm in RAFM steels and that these very small defects actually contribute to the irradiation-induced hardening and embrittlement of RAFM steels occurring at irradiation temperatures below about 400 °C. The aim of this work was achieved by combining SANS experiments on unirradiated and irradiated specimens
Wavelet Analysis for Molecular Dynamics
2015-06-01
Our method takes as input the topology and sparsity of the bonding structure of a molecular system, and returns a hierarchical set of system-specific...problems, such as modeling crack initiation and propagation, or interfacial phenomena. In the present work, we introduce a wavelet-based approach to extend...Several functional forms are common for angle poten- tials complicating not only implementation but also choice of approximation. In all cases, the
DEFF Research Database (Denmark)
Krueger, Joel; Szanto, Thomas
2016-01-01
beyond the neurophysiological confines of organisms; some even argue that emotions can be socially extended and shared by multiple agents. Call this the extended emotions thesis (ExE). In this article, we consider different ways of understanding ExE in philosophy, psychology, and the cognitive sciences...
Cortés-Cortés, Gerardo; Lozano-Zarain, Patricia; Torres, Carmen; Castañeda, Miguel; Sánchez, Gabriela Moreno; Alonso, Carla A; López-Pliego, Liliana; Mayen, María G Gutiérrez; Martínez-Laguna, Ygnacio; Rocha-Gracia, Rosa Del Carmen
2016-09-01
Multidrug-resistant bacteria are a growing problem in different environments and hosts, but scarce information exists about their prevalence in reptiles. The aim of this study was to analyze the resistance mechanisms, molecular typing, and plasmid content of cefotaxime-resistant (CTX(R)) Escherichia coli isolates recovered from cloacal samples of 71 turtles sheltered in a herpetarium in Mexico. CTX(R)-E. coli were recovered in 11 of 71 samples (15.5%), and one isolate/sample was characterized. Extended-spectrum β-lactamase (ESBL)-producing E. coli isolates were detected in four samples (5.6%): two strains carried the blaCTX-M-2 gene (phylogroup D and ST2732) and two contained the blaCTX-M-15 gene (phylogroup B1 and lineages ST58 and ST156). The blaCMY-2 gene was detected by PCR in E. coli isolates of eight samples (9.8%) (one of them also carried blaCTX-M-2); these isolates were distributed into phylogroups A (n = 1), B1 (n = 6), and D (n = 1) and typed as ST155, ST156, ST2329, and ST2732. Plasmid-mediated quinolone resistance (PMQR) genes were detected in five isolates [aac(6')Ib-cr, qnrA, qnrB19, and oqxB]. From three to five replicon plasmids were detected among the strains, being IncFIB, IncI1, IncFrep, and IncK the most prevalent. ESBL or pAmpC genes were transferred by conjugation in four strains, and the blaCTX-M-15 and blaCMY-2 genes were localized in IncFIB or IncI1 plasmids by Southern blot hybridization assays. Class 1 and/or class 2 integrons were detected in eight strains with six different structures of gene cassette arrays. Nine pulsed-field gel electrophoresis patterns were found among the 11 studied strains. To our knowledge, this is the first detection of ESBL, CMY-2, PMQR, and mobile determinants of antimicrobial resistance in E. coli of turtle origin, highlighting the potential dissemination of multidrug-resistant bacteria from these animals to other environments and hosts, including humans.
Directory of Open Access Journals (Sweden)
Park Sun
2012-06-01
Full Text Available Abstract Background The prevalence of extended-spectrum β-lactamase (ESBL-producing Escherichia coli has been increased not only in the hospital but also in the community worldwide. This study was aimed to characterize ESBL- producing E. coli isolates and to investigate the molecular epidemiology of community isolates in comparison with hospital isolates at a single center in Korea. Methods A total of 142 ESBL-producing E. coli isolates were collected at Daejeon St Mary’s Hospital in Korea from January 2008 to September 2009. The ESBLs were characterized by PCR sequencing using specific primers. The genetic relatedness was determined by pulsed field gel electrophoresis (PFGE and multilocus sequence typing (MLST. Results Of 142 isolates, 139 were positive for CTX-M type ESBLs; CTX-M-14 (n = 69, 49.6 %, CTX-M-15 (n = 53, 38.1 % and both CTX-M-14 and -15 (n = 17, 12.2 %. CTX-M-14 and CTX-M-15 were detected in both community and hospital isolates whereas isolates producing both CTX-M14 and-15 were mainly identified in the hospital. CTX-M producing E. coli isolates were genetically heterogeneous, revealing 75 distinct PFGE types. By MLST, 21 distinctive STs including 5 major STs (ST131, ST405, ST38, ST10, and ST648 were identified. Major STs were distributed in both community and hospital isolates, and ST131 was the predominant clone regardless of the locations of acquisition. No specific major STs were confined to a single type of ESBLs. However, ST131 clones were significantly associated with CTX-M-15 and the majority of them were multidrug-resistant. Distinctively, we identified a hospital epidemic caused by the dissemination of an epidemic strain, ST131-PFGE type 10, characterized by multidrug resistance and co-producing both CTX-Ms with OXA-1 or TEM-1b. Conclusions The epidemiology of ESBL-producing E. coli is a complex and evolving phenomenon attributed to the horizontal transfer of genetic elements and clonal spread of
International Nuclear Information System (INIS)
Bradley, D.A.
1988-01-01
A variant of the multisection filter and annular target geometry, with a designed angular acceptance of +-0.5 0 , has been utilised in measuring accurate, O(5%), absolute total differential scattering cross sections of 60 KeV photons for H 2 O, methyl methacrylate (C 5 H 8 O 2 ) n and nylon-6 (C 12 H 22 O 3 N 2 ) n in the angular scattering range of 2 0 -10 0 . The effects of molecular correlations manifest, to varying degree, in strong forward peaking of the scattered photon distribution. Comparison is made with available experiment and theory [pt
Frequency scaling for angle gathers
Zuberi, M. A H; Alkhalifah, Tariq Ali
2014-01-01
Angle gathers provide an extra dimension to analyze the velocity after migration. Space-shift and time shift-imaging conditions are two methods used to obtain angle gathers, but both are reasonably expensive. By scaling the time-lag axis of the time-shifted images, the computational cost of the time shift imaging condition can be considerably reduced. In imaging and more so Full waveform inversion, frequencydomain Helmholtz solvers are used more often to solve for the wavefields than conventional time domain extrapolators. In such cases, we do not need to extend the image, instead we scale the frequency axis of the frequency domain image to obtain the angle gathers more efficiently. Application on synthetic data demonstrate such features.
The qualitative criterion of transient angle stability
DEFF Research Database (Denmark)
Lyu, R.; Xue, Y.; Xue, F.
2015-01-01
In almost all the literatures, the qualitative assessment of transient angle stability extracts the angle information of generators based on the swing curve. As the angle (or angle difference) of concern and the threshold value rely strongly on the engineering experience, the validity and robust...... of these criterions are weak. Based on the stability mechanism from the extended equal area criterion (EEAC) theory and combining with abundant simulations of real system, this paper analyzes the criterions in most literatures and finds that the results could be too conservative or too optimistic. It is concluded...
... Home » Statistics and Data » Glaucoma, Open-angle Listen Glaucoma, Open-angle Open-angle Glaucoma Defined In open-angle glaucoma, the fluid passes ... 2010 2010 U.S. Age-Specific Prevalence Rates for Glaucoma by Age and Race/Ethnicity The prevalence of ...
Müller, Ingo
1993-01-01
Physicists firmly believe that the differential equations of nature should be hyperbolic so as to exclude action at a distance; yet the equations of irreversible thermodynamics - those of Navier-Stokes and Fourier - are parabolic. This incompatibility between the expectation of physicists and the classical laws of thermodynamics has prompted the formulation of extended thermodynamics. After describing the motifs and early evolution of this new branch of irreversible thermodynamics, the authors apply the theory to mon-atomic gases, mixtures of gases, relativistic gases, and "gases" of phonons and photons. The discussion brings into perspective the various phenomena called second sound, such as heat propagation, propagation of shear stress and concentration, and the second sound in liquid helium. The formal mathematical structure of extended thermodynamics is exposed and the theory is shown to be fully compatible with the kinetic theory of gases. The study closes with the testing of extended thermodynamics thro...
Ouyang, Yilan; Zeng, Yangyang; Yi, Lin; Tang, Hong; Li, Duxin; Linhardt, Robert J; Zhang, Zhenqing
2017-11-03
Heparin, a highly sulfated glycosaminoglycan, has been used as a clinical anticoagulant over 80 years. Low molecular weight heparins (LMWHs), heparins partially depolymerized using different processes, are widely used as clinical anticoagulants. Qualitative molecular weight (MW) and quantitative mass content analysis are two important factors that contribute to LMWH quality control. Size exclusion chromatography (SEC), relying on multiple angle laser scattering (MALS)/refractive index (RI) detectors, has been developed for accurate analysis of heparin MW in the absence of standards. However, the cations, which ion-pair with the anionic polysaccharide chains of heparin and LMWHs, had not been considered in previous reports. In this study, SEC with MALS/RI and inductively coupled plasma/mass spectrometry detectors were used in a comprehensive analytical approach taking both anionic polysaccharide and ion-paired cations heparin products. This approach was also applied to quantitative analysis of heparin and LMWHs. Full profiles of MWs and mass recoveries for three commercial heparin/LMWH products, heparin sodium, enoxaparin sodium and nadroparin calcium, were obtained and all showed higher MWs than previously reported. This important improvement more precisely characterized the MW properties of heparin/LMWHs and potentially many other anionic polysaccharides. Copyright © 2017 Elsevier B.V. All rights reserved.
Franceschi, Alessandro
2014-01-01
This book is a clear, detailed and practical guide to learn about designing and deploying you puppet architecture, with informative examples to highlight and explain concepts in a focused manner. This book is designed for users who already have good experience with Puppet, and will surprise experienced users with innovative topics that explore how to design, implement, adapt, and deploy a Puppet architecture. The key to extending Puppet is the development of types and providers, for which you must be familiar with Ruby.
Garcia-Cobos, Silvia; Koeck, Robin; Mellmann, Alexander; Frenzel, Julia; Friedrich, Alexander W.; Rossen, John W. A.
2015-01-01
The increase of extended-spectrum beta-lactamase-producing Enterobacteriaceae (ESBL-E) in humans and in food-producing animals is of public health concern. The latter could contribute to spreading of these bacteria or their resistance genes to humans. Several studies have reported the isolation of
G. Peirano (G.); A.K. van der Bij (Akke); S. Gregson (Simon); J.D.D. Pitout (J. D D)
2012-01-01
textabstractA study was designed to assess the importance of sequence types among extended-spectrum β-lactamase (ESBL)-producing Escherichia coli isolates causing bacteremia over an 11-year period (2000 to 2010) in a centralized Canadian region. A total of 197 patients with incident infections were
Small angle spectrometers: Summary
International Nuclear Information System (INIS)
Courant, E.; Foley, K.J.; Schlein, P.E.
1986-01-01
Aspects of experiments at small angles at the Superconducting Super Collider are considered. Topics summarized include a small angle spectrometer, a high contingency spectrometer, dipole and toroid spectrometers, and magnet choices
Federal Laboratory Consortium — Description:The FTA32 goniometer provides video-based contact angle and surface tension measurement. Contact angles are measured by fitting a mathematical expression...
DEFF Research Database (Denmark)
Carrara-Augustenborg, Claudia
2012-01-01
There is no consensus yet regarding a conceptualization of consciousness able to accommodate all the features of such complex phenomenon. Different theoretical and empirical models lend strength to both the occurrence of a non-accessible informational broadcast, and to the mobilization of specific...... brain areas responsible for the emergence of the individual´s explicit and variable access to given segments of such broadcast. Rather than advocating one model over others, this chapter proposes to broaden the conceptualization of consciousness by letting it embrace both mechanisms. Within...... such extended framework, I propose conceptual and functional distinctions between consciousness (global broadcast of information), awareness (individual´s ability to access the content of such broadcast) and unconsciousness (focally isolated neural activations). My hypothesis is that a demarcation in terms...
RAMÍREZ-AMARO, S.; ORDINES, F.; ÁNGEL PUERTO, M.; GARCÍA, C.; RAMON, C.; TERRASA, B.; MASSUTÍ, E.
2017-01-01
The present study confirms the presence of the Norwegian skate Dipturus nidarosiensis (Storm, 1881) in the Mediterranean Sea, by means of morphological traits and molecular markers providing the first record of this species in the Alboran Sea. Cannas et al. (2010) reported D. nidarosiensis for the first time in the Mediterranean from specimens captured in the central western basin, but Ebert & Stehmann (2013) and Stehmann et al. (2015) considered these records "likely refer to the smaller mor...
Contact angles on stretched solids
Mensink, Liz; Snoeijer, Jacco
2017-11-01
The surface energy of solid interfaces plays a central role in wetting, as they dictate the liquid contact angle. Yet, it has been challenging to measure the solid surface energies independently, without making use of Young's law. Here we present Molecular Dynamics (MD) simulations by which we measure the surface properties for all interfaces, including the solids. We observe change in contact angles upon stretching the solid substrates, showing that the surface energy is actually strain dependent. This is clear evidence of the so-called Shuttleworth effect, making it necessary to distinguish surface energy from surface tension. We discuss how this effect gives rise to a new class of elasto-capillary phenomena. ERC Consolidator Grant No. 616918.
Directory of Open Access Journals (Sweden)
N Danesh far
2015-06-01
Full Text Available Background & objectives: Resistant microbial strains are a serious threat to public health in different societies. A mong the extended-spectrum β-lactamases (ESBL producing strains the Enterobacteriaceae family which is considered as the main factors producing urinary tract infections, have created many problems in treatment of this kind of infections. This study was conducted to determine the frequency of β-lactamase TEM-1 gene in Enterobacteriaceae isolated from urine samples in Ardabil city. Methods: Within 6 months, 400 urinary isolates of Enterobacteriaceae of inpatients and outpatients were collected in Ardabil hospitals and were identified by standard methods. Antimicrobial susceptibility of isolates was tested by disk diffusion method, and ESBL producer confirmatory test was conducted using combined disk. Finally, the frequency of β-lactamase TEM-1 gene in producing extended-spectrum β-lactamases strains was investigated using PCR. Results: From 400 isolates of Enterobacteriaceae, 150 cases (37.5% were ESBL producing. PCR results showed presence of the TEM-1 gene in 69 cases (46%. The frequency of this gene in isolates of Enterobacter (Aerogenes, Cloacae, Klebsiella (Pneumoniae, Oxytoca and E. coli was obtained to be 62.5%, 54.5% and 44.8%, respectively. Proteus mirabilis and Serratia marcescens strains were lacking these genotypes. Conclusion: As regards the presence of TEM-1 gene, there is also increasing in other members of the Enterobacteriaceae family including Klebsiella and Enterobacter in addition to E. coli, therefore sufficient identification of this strains is necessary to prescribe the right medicine.
International Nuclear Information System (INIS)
Amano, T.
1985-01-01
A cooled hollow-cathode cell was used for observation of the infrared spectra of positive ions in the 3-μm region with a difference-frequency laser as a radiation source. About an order-of-magnitude enhancement of the signal intensity was attained, compared with the similar signals obtained with our previous glow-discharge cell. Ten more weaker lines of the ν 1 fundamental band of H 2 D + , which could not be observed in our previous experiment [J. Chem. Phys. 81, 2869 (1984)] were measured. Improved molecular constants were obtained from a least-squares fit including the infrared lines and the two millimeter-and submillimeter-wave lines in the ground state
Flocking and invariance of velocity angles.
Liu, Le; Huang, Lihong; Wu, Jianhong
2016-04-01
Motsch and Tadmor considered an extended Cucker-Smale model to investigate the flocking behavior of self-organized systems of interacting species. In this extended model, a cone of the vision was introduced so that outside the cone the influence of one agent on the other is lost and hence the corresponding influence function takes the value zero. This creates a problem to apply the Motsch-Tadmor and Cucker-Smale method to prove the flocking property of the system. Here, we examine the variation of the velocity angles between two arbitrary agents, and obtain a monotonicity property for the maximum cone of velocity angles. This monotonicity permits us to utilize existing arguments to show the flocking property of the system under consideration, when the initial velocity angles satisfy some minor technical constraints.
Adjustable extender for instrument module
International Nuclear Information System (INIS)
Sevec, J.B.; Stein, A.D.
1975-01-01
A blank extender module used to mount an instrument module in front of its console for repair or test purposes has been equipped with a rotatable mount and means for locking the mount at various angles of rotation for easy accessibility. The rotatable mount includes a horizontal conduit supported by bearings within the blank module. The conduit is spring-biased in a retracted position within the blank module and in this position a small gear mounted on the conduit periphery is locked by a fixed pawl. The conduit and instrument mount can be pulled into an extended position with the gear clearing the pawl to permit rotation and adjustment of the instrument
Markovska, Rumyana Donkova; Stoeva, Temenuga Jekova; Bojkova, Kalina Dineva; Mitov, Ivan Gergov
2014-04-01
Forty-two extended-spectrum beta-lactamase (ESBL)-producing isolates of Enterobacter aerogenes, Enterobacter cloacae, Pantoea agglomerans, and Serratia marcescens, collected consecutively during the period January-November 2011 from the University Hospital in Varna, Bulgaria, were studied to characterize their ESBLs by isoelectric focusing, group-specific PCR, and sequencing. The epidemiological relationship was evaluated by random amplified polymorphic DNA analysis (RAPD). Transferability of ESBL genes was determined by conjugation experiments. Plasmid analysis was done by replicon typing and PstI fingerprinting. The overall rate of ESBL production was 20%. The most widespread enzyme was CTX-M-3, found in 64%. It was dominant in E. aerogenes (100%) and S. marcescens (83%). SHV-12, CTX-M-3, and CTX-M-15 were found among E. cloacae isolates in 50%, 35%, and 45%, respectively. Three main CTX-M-3-producing epidemic clones of E. aerogenes and S. marcescens have been detected. Among E. cloacae isolates, six different RAPD profiles were discerned. The plasmids harboring blaCTX-M-3 belonged to IncL/M type and demonstrated similar PstI fingerprinting profiles. IncFII plasmids were detected in two CTX-M-15-producing E. cloacae isolates. Our results demonstrate wide intrahospital dissemination of clonal E. aerogenes and S. marcescens isolates, carrying IncL/M conjugative plasmids.
International Nuclear Information System (INIS)
Cook, G.O. Jr.; Knight, L.
1979-07-01
The question of optimal projection angles has recently become of interest in the field of reconstruction from projections. Here, studies are concentrated on the n x n pixel space, where literative algorithms such as ART and direct matrix techniques due to Katz are considered. The best angles are determined in a Gauss--Markov statistical sense as well as with respect to a function-theoretical error bound. The possibility of making photon intensity a function of angle is also examined. Finally, the best angles to use in an ART-like algorithm are studied. A certain set of unequally spaced angles was found to be preferred in several contexts. 15 figures, 6 tables
Directory of Open Access Journals (Sweden)
Felix Simkovic
2016-07-01
Full Text Available For many protein families, the deluge of new sequence information together with new statistical protocols now allow the accurate prediction of contacting residues from sequence information alone. This offers the possibility of more accurate ab initio (non-homology-based structure prediction. Such models can be used in structure solution by molecular replacement (MR where the target fold is novel or is only distantly related to known structures. Here, AMPLE, an MR pipeline that assembles search-model ensembles from ab initio structure predictions (`decoys', is employed to assess the value of contact-assisted ab initio models to the crystallographer. It is demonstrated that evolutionary covariance-derived residue–residue contact predictions improve the quality of ab initio models and, consequently, the success rate of MR using search models derived from them. For targets containing β-structure, decoy quality and MR performance were further improved by the use of a β-strand contact-filtering protocol. Such contact-guided decoys achieved 14 structure solutions from 21 attempted protein targets, compared with nine for simple Rosetta decoys. Previously encountered limitations were superseded in two key respects. Firstly, much larger targets of up to 221 residues in length were solved, which is far larger than the previously benchmarked threshold of 120 residues. Secondly, contact-guided decoys significantly improved success with β-sheet-rich proteins. Overall, the improved performance of contact-guided decoys suggests that MR is now applicable to a significantly wider range of protein targets than were previously tractable, and points to a direct benefit to structural biology from the recent remarkable advances in sequencing.
Energy Technology Data Exchange (ETDEWEB)
Rocha, Rodrigo S.; Batistella, Cesar B.; Maciel, Maria Regina W.; Maciel Filho, Rubens [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Faculdade de Engenharia Quimica; Medina, Lilian C. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)
2008-07-01
For the determination of the TBP (True Boiling Point) Curve, which defines the yield of petroleum products, the ASTM D2892 method for petroleum distillation and ASTM D5236 method for vacuum distillation of heavy hydrocarbons were applied. Furthermore, from these distillations, cuts that are submitted to several analyses to determine its physical-chemical properties are obtained, and all this information generates the evaluation of petroleum. For heavy petroleum, these conventional methods have been limited, since the total distilled percentage determined for temperatures up to 565 deg C (maximum reached with ASTM D5236 method) is lower for these oils, reducing the points of the curve, limiting its information. To improve this data set for heavy oils, a methodology for the extension of TBP curve through molecular distillation was established. It was possible to reach values up to 700 deg C, representing a considerable progress for the extension of TBP curve. The objective of this work is to present the results of Extended TBP curve for a heavy petroleum and characterization carried out through the cuts and residues obtained in molecular distillation of the residue 'Zeta' 400 deg C+ (fancy name), made by ASTM D2892 method. (author)
Structure of the capsid of Kilham rat virus from small-angle neutron scattering
International Nuclear Information System (INIS)
Wobbe, C.R.; Mitra, S.; Ramakrishnan, V.
1984-01-01
The structure of empty capsids of Kilham rat virus, an autonomous parvovirus with icosahedral symmetry, was investigated by small-angle neutron scattering. From the forward scatter, the molecular weight was determined to be 4.0 x 10(6), and from the Guinier region, the radius of gyration was found to be 105 A in D2O and 104 A in H 2 O. On the basis of the capsid molecular weight and the molecular weights and relative abundances of the capsid proteins, the authors propose that the capsid has a triangulation number of 1. Extended scattering curves and mathematical modeling revealed that the capsid consists of two shells of protein, the inner shell extending from 58 to 91 A in D2O and from 50 to 91 A in H 2 O and containing 11% of the capsid scattering mass, and the outer shell extending to 121 A in H 2 O and D2O. The inner shell appears to have a higher content of basic amino acids than the outer shell, based on its lower scattering density in D2O than in H 2 O. The authors propose that all three capsid proteins contribute to the inner shell and that this basic region serves DNA binding and partial charge neutralization functions
DEFF Research Database (Denmark)
Miles, James Edward; Frederiksen, Jane V.; Jensen, Bente Rona
2012-01-01
: Pelvic limbs from red foxes (Vulpes vulpes). METHODS: Q angles were measured on hip dysplasia (HD) and whole limb (WL) view radiographs of each limb between the acetabular rim, mid-point (Q1: patellar center, Q2: femoral trochlea), and tibial tuberosity. Errors of 0.5-2.0 mm at measurement landmarks...
African Journals Online (AJOL)
there is a build up of pressure due to poor outflow of aqueous humor. The outflow obstruction could occur at the trabecular meshwork of the anterior chamber angle or subsequently in the episcleral vein due to raised venous pressure. Such build up of pressure results in glaucoma . Elevated intraocular pressure remains the ...
DEFF Research Database (Denmark)
Morgan, Jeannie; Lynnerup, Niels; Hoppa, R.D.
2013-01-01
measurements taken from computed tomography (CT) scans. Previous reports have observed that the lateral angle size in females is significantly larger than in males. The method was applied to an independent series of 77 postmortem CT scans (42 males, 35 females) to validate its accuracy and reliability...... method appears to be of minimal practical use in forensic anthropology and archeology....
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 17; Issue 9. At Right Angles. Shailesh A Shirali. Information and Announcements Volume 17 Issue 9 September 2012 pp 920-920. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/017/09/0920-0920 ...
International Nuclear Information System (INIS)
Kantrowitz, A.
1976-01-01
A method and apparatus is described for particle separation. The method uses a wide angle radially expanding vapor of a particle mixture. In particular, selective ionization of one isotope type in the particle mixture is produced in a multichamber separator and the ionized isotope type is accelerated out of the path of the vapor expansion for separate collection
An Extended Guinier Analysis for Intrinsically Disordered Proteins.
Zheng, Wenwei; Best, Robert B
2018-03-21
Guinier analysis allows model-free determination of the radius of gyration (R g ) of a biomolecule from X-ray or neutron scattering data, in the limit of very small scattering angles. Its range of validity is well understood for globular proteins, but is known to be more restricted for unfolded or intrinsically disordered proteins (IDPs). We have used ensembles of disordered structures from molecular dynamics simulations to investigate which structural properties cause deviations from the Guinier approximation at small scattering angles. We find that the deviation from the Guinier approximation is correlated with the polymer scaling exponent ν describing the unfolded ensemble. We therefore introduce an empirical, ν-dependent, higher-order correction term, to augment the standard Guinier analysis. We test the new fitting scheme using all-atom simulation data for several IDPs and experimental data for both an IDP and a destabilized mutant of a folded protein. In all cases tested, we achieve an accuracy of the inferred R g within ∼3% of the true R g . The method is straightforward to implement and extends the range of validity to a maximum qR g of ∼2 versus ∼1.1 for Guinier analysis. Compared with the Guinier or Debye approaches, our method allows data from wider angles with lower noise to be used to analyze scattering data accurately. In addition to R g , our fitting scheme also yields estimates of the scaling exponent ν in excellent agreement with the reference ν determined from the underlying molecular ensemble. Published by Elsevier Ltd.
Ofuchi, H; Ono, K; Oshima, M; Akinaga, H; Manago, T
2003-01-01
In this work, geometric structures for a half-metallic ferromagnet 'zinc-blende CrAs', which showed ferromagnetic behavior beyond room temperature, were investigated using fluorescence extended X-ray absorption fine structure (EXAFS) measurement. The EXAFS measurements revealed that As atoms around Cr atoms in the 2 nm CrAs film grown on a GaAs(0 0 1) substrate were coordinated tetrahedrally, indicating formation of zinc-blende CrAs. The Cr-As bond length in the zinc-blende CrAs is 2.49 A. This value is close to that which was estimated from the lattice constant (5.82 A) of ferromagnetic zinc-blende CrAs calculated by full-potential linearized augmented-plane wave method. The EXAFS analysis show that the theoretically predicted zinc-blende CrAs can be fabricated on GaAs(0 0 1) substrate by low-temperature molecular-beam epitaxy.
International Nuclear Information System (INIS)
Ofuchi, H.; Mizuguchi, M.; Ono, K.; Oshima, M.; Akinaga, H.; Manago, T.
2003-01-01
In this work, geometric structures for a half-metallic ferromagnet 'zinc-blende CrAs', which showed ferromagnetic behavior beyond room temperature, were investigated using fluorescence extended X-ray absorption fine structure (EXAFS) measurement. The EXAFS measurements revealed that As atoms around Cr atoms in the 2 nm CrAs film grown on a GaAs(0 0 1) substrate were coordinated tetrahedrally, indicating formation of zinc-blende CrAs. The Cr-As bond length in the zinc-blende CrAs is 2.49 A. This value is close to that which was estimated from the lattice constant (5.82 A) of ferromagnetic zinc-blende CrAs calculated by full-potential linearized augmented-plane wave method. The EXAFS analysis show that the theoretically predicted zinc-blende CrAs can be fabricated on GaAs(0 0 1) substrate by low-temperature molecular-beam epitaxy
Small angle neutron scattering
International Nuclear Information System (INIS)
Bernardini, G.; Cherubini, G.; Fioravanti, A.; Olivi, A.
1976-09-01
A method for the analysis of the data derived from neutron small angle scattering measurements has been accomplished in the case of homogeneous particles, starting from the basic theory without making any assumption on the form of particle size distribution function. The experimental scattering curves are interpreted with the aid the computer by means of a proper routine. The parameters obtained are compared with the corresponding ones derived from observations at the transmission electron microscope
Extended phase graphs with anisotropic diffusion
Weigel, M.; Schwenk, S.; Kiselev, V. G.; Scheffler, K.; Hennig, J.
2010-08-01
The extended phase graph (EPG) calculus gives an elegant pictorial description of magnetization response in multi-pulse MR sequences. The use of the EPG calculus enables a high computational efficiency for the quantitation of echo intensities even for complex sequences with multiple refocusing pulses with arbitrary flip angles. In this work, the EPG concept dealing with RF pulses with arbitrary flip angles and phases is extended to account for anisotropic diffusion in the presence of arbitrary varying gradients. The diffusion effect can be expressed by specific diffusion weightings of individual magnetization pathways. This can be represented as an action of a linear operator on the magnetization state. The algorithm allows easy integration of diffusion anisotropy effects. The formalism is validated on known examples from literature and used to calculate the effective diffusion weighting in multi-echo sequences with arbitrary refocusing flip angles.
Solar cell angle of incidence corrections
Burger, Dale R.; Mueller, Robert L.
1995-01-01
from normal which prevented any firm conclusions about extreme angle effects although a trend in the right direction was seen. Measurement errors were estimated and found to be consistent with the conclusions that were drawn. A controlled experiment using coverglasses and cells from the same lots and extending to larger incidence angles would probably lead to further insight into the subject area.
Blanco, Miguel; Alonso, Maria Pilar; Nicolas-Chanoine, Marie-Hélène; Dahbi, Ghizlane; Mora, Azucena; Blanco, Jesús E; López, Cecilia; Cortés, Pilar; Llagostera, Montserrat; Leflon-Guibout, Véronique; Puentes, Beatriz; Mamani, Rosalía; Herrera, Alexandra; Coira, María Amparo; García-Garrote, Fernando; Pita, Julia María; Blanco, Jorge
2009-06-01
Having shown that the Xeral-Calde Hospital in Lugo (Spain) has been concerned by Escherichia coli clone O25:H4-ST131 producing CTX-M-15 (Nicolas-Chanoine et al. J Antimicrob Chemother 2008; 61: 273-81), the present study was carried out to evaluate the prevalence of this clone among the extended-spectrum beta-lactamase (ESBL)-producing E. coli isolates and also to molecularly characterize the E. coli isolates producing ESBL other than CTX-M-15. In the first part of this study, 105 ESBL-producing E. coli isolates (February 2006 to March 2007) were characterized with regard to ESBL enzymes, serotypes, virulence genes, phylogenetic groups, multilocus sequence typing (MLST) and PFGE. In the second part of this study, 249 ESBL-producing E. coli isolates (April 2007 to May 2008) were investigated only for the detection of clone O25b:H4-ST131 producing CTX-M-15 using a triplex PCR developed in this study and based on the detection of the new operon afa FM955459 and the targets rfbO25b and 3' end of the bla(CTX-M-15) gene. Of the 105 ESBL-producing E. coli isolates, 60 (57.1%) were positive for CTX-M-14, 23 (21.9%) for CTX-M-15, 10 (9.5%) for SHV-12 and 7 (6.7%) for CTX-M-32. Serotypes, virulence genes, phylogenetic groups and molecular typing by PFGE demonstrated high homogeneity within those producing CTX-M-15 and high diversity within E. coli producing CTX-M-14 and other ESBLs. By PFGE, CTX-M-15-producing E. coli isolates O25b:H4 belonging to the phylogenetic group B2 and MLST profile ST131 were grouped in the same cluster. The epidemic strain of clone O25b:H4-ST131 represented 23.1%, 22.5% and 20.0% of all ESBL-producing E. coli isolated in 2006, 2007 and 2008, respectively. CTX-M-type ESBLs, primarily CTX-M-14 and CTX-M-15, have emerged as the predominant types of ESBL produced by E. coli isolates in Lugo. In view of the reported findings, long-term care facilities for elderly people may represent a significant reservoir for E. coli clone O25b:H4-ST131 producing CTX
The influence of flip angle on the magic angle effect
International Nuclear Information System (INIS)
Zurlo, J.V.; Blacksin, M.F.; Karimi, S.
2000-01-01
Objective. To assess the impact of flip angle with gradient sequences on the ''magic angle effect''. We characterized the magic angle effect in various gradient echo sequences and compared the signal- to-noise ratios present on these sequences with the signal-to-noise ratios of spin echo sequences.Design. Ten normal healthy volunteers were positioned such that the flexor hallucis longus tendon remained at approximately at 55 to the main magnetic field (the magic angle). The tendon was imaged by a conventional spin echo T1- and T2-weighted techniques and by a series of gradient techniques. Gradient sequences were altered by both TE and flip angle. Signal-to-noise measurements were obtained at segments of the flexor hallucis longus tendon demonstrating the magic angle effect to quantify the artifact. Signal-to-noise measurements were compared and statistical analysis performed. Similar measurements were taken of the anterior tibialis tendon as an internal control.Results and conclusions. We demonstrated the magic angle effect on all the gradient sequences. The intensity of the artifact was affected by both the TE and flip angle. Low TE values and a high flip angle demonstrated the greatest magic angle effect. At TE values less than 30 ms, a high flip angle will markedly increase the magic angle effect. (orig.)
Askerka, Mikhail; Brudvig, Gary W; Batista, Victor S
2017-01-17
Efficient photoelectrochemical water oxidation may open a way to produce energy from renewable solar power. In biology, generation of fuel due to water oxidation happens efficiently on an immense scale during the light reactions of photosynthesis. To oxidize water, photosynthetic organisms have evolved a highly conserved protein complex, Photosystem II. Within that complex, water oxidation happens at the CaMn 4 O 5 inorganic catalytic cluster, the so-called oxygen-evolving complex (OEC), which cycles through storage "S" states as it accumulates oxidizing equivalents and produces molecular oxygen. In recent years, there has been significant progress in understanding the OEC as it evolves through the catalytic cycle. Studies have combined conventional and femtosecond X-ray crystallography with extended X-ray absorption fine structure (EXAFS) and quantum mechanics/molecular mechanics (QM/MM) methods and have addressed changes in protonation states of μ-oxo bridges and the coordination of substrate water through the analysis of ammonia binding as a chemical analog of water. These advances are thought to be critical to understanding the catalytic cycle since protonation states regulate the relative stability of different redox states and the geometry of the OEC. Therefore, establishing the mechanism for substrate water binding and the nature of protonation/redox state transitions in the OEC is essential for understanding the catalytic cycle of O 2 evolution. The structure of the dark-stable S 1 state has been a target for X-ray crystallography for the past 15 years. However, traditional X-ray crystallography has been hampered by radiation-induced reduction of the OEC. Very recently, a revolutionary X-ray free electron laser (XFEL) technique was applied to PSII to reveal atomic positions at 1.95 Å without radiation damage, which brought us closer than ever to establishing the ultimate structure of the OEC in the S 1 state. However, the atom positions in this crystal
How Far Can Extended Knowledge Be Extended?
DEFF Research Database (Denmark)
Wray, K. Brad
2018-01-01
by an artifact, like a notebook or telescope. The chapter illustrates this by applying Pritchard’s account of extended knowledge to collaborating scientists. The beliefs acquired through collaborative research cannot satisfy both of Pritchard’s conditions of creditability. Further, there is evidence......Duncan Pritchard (2010) has developed a theory of extended knowledge based on the notion of extended cognition initially developed by Clark and Chalmers (1998). Pritchard’s account gives a central role to the notion of creditability, which requires the following two conditions to be met: (i...... that scientists are not prepared to take responsibility for the actions of the scientists with whom they collaborate....
Weak mixing angle measurements at hadron colliders
Di Simone, Andrea; The ATLAS collaboration
2015-01-01
The Talk will cover weak mixing angle measurements at hadron colliders ATLAS and CMS in particular. ATLAS has measured the forward-backward asymmetry for the neutral current Drell Yan process in a wide mass range around the Z resonance region using dielectron and dimuon final states with $\\sqrt{s}$ =7 TeV data. For the dielectron channel, the measurement includes electrons detected in the forward calorimeter which extends the covered phase space. The result is then used to extract a measurement of the effective weak mixing angle. Uncertainties from the limited knowledge on the parton distribution functions in the proton constitute a significant part of the uncertainty and a dedicated study is performed to obtain a PDF set describing W and Z data measured previously by ATLAS. Similar studies from CMS will be reported.
Fan Stagger Angle for Dirt Rejection
Gallagher, Edward J. (Inventor); Rose, Becky E. (Inventor); Brilliant, Lisa I. (Inventor)
2015-01-01
A gas turbine engine includes a spool, a turbine coupled to drive the spool, a propulsor coupled to be rotated about an axis by the turbine through the spool, and a gear assembly coupled between the propulsor and the spool such that rotation of the turbine drives the propulsor at a different speed than the spool. The propulsor includes a hub and a row of propulsor blades that extend from the hub. Each of the propulsor blades has a span between a root at the hub and a tip, and a chord between a leading edge and a trailing edge. The chord forms a stagger angle alpha with the axis, and the stagger angle alpha is less than 15 deg. at a position along the propulsor blade that is within an inboard 20% of the span.
Equilibrium contact angle or the most-stable contact angle?
Montes Ruiz-Cabello, F J; Rodríguez-Valverde, M A; Cabrerizo-Vílchez, M A
2014-04-01
It is well-established that the equilibrium contact angle in a thermodynamic framework is an "unattainable" contact angle. Instead, the most-stable contact angle obtained from mechanical stimuli of the system is indeed experimentally accessible. Monitoring the susceptibility of a sessile drop to a mechanical stimulus enables to identify the most stable drop configuration within the practical range of contact angle hysteresis. Two different stimuli may be used with sessile drops: mechanical vibration and tilting. The most stable drop against vibration should reveal the changeless contact angle but against the gravity force, it should reveal the highest resistance to slide down. After the corresponding mechanical stimulus, once the excited drop configuration is examined, the focus will be on the contact angle of the initial drop configuration. This methodology needs to map significantly the static drop configurations with different stable contact angles. The most-stable contact angle, together with the advancing and receding contact angles, completes the description of physically realizable configurations of a solid-liquid system. Since the most-stable contact angle is energetically significant, it may be used in the Wenzel, Cassie or Cassie-Baxter equations accordingly or for the surface energy evaluation. © 2013 Elsevier B.V. All rights reserved.
Extended Enterprise performance Management
Bobbink, Maria Lammerdina; Hartmann, Andreas
2014-01-01
The allegiance of partnering organisations and their employees to an Extended Enterprise performance is its proverbial sword of Damocles. Literature on Extended Enterprises focuses on collaboration, inter-organizational integration and learning to avoid diminishing or missing allegiance becoming an
Perspectives on extended Deterrence
International Nuclear Information System (INIS)
Tertrais, Bruno; Yost, David S.; Bunn, Elaine; Lee, Seok-soo; Levite, Ariel e.; Russell, James A.; Hokayem, Emile; Kibaroglu, Mustafa; Schulte, Paul; Thraenert, Oliver; Kulesa, Lukasz
2010-05-01
In November 2009, the Foundation for Strategic Research (Fondation pour la recherche strategique, FRS) convened a workshop on 'The Future of extended Deterrence', which included the participation of some of the best experts of this topic, from the United States, Europe, the Middle East and East Asia, as well as French and NATO officials. This document brings together the papers prepared for this seminar. Several of them were updated after the publication in April 2010 of the US Nuclear Posture Review. The seminar was organized with the support of the French Atomic energy Commission (Commissariat a l'energie atomique - CEA). Content: 1 - The future of extended deterrence: a brainstorming paper (Bruno Tertrais); 2 - US extended deterrence in NATO and North-East Asia (David S. Yost); 3 - The future of US extended deterrence (Elaine Bunn); 4 - The future of extended deterrence: a South Korean perspective (Seok-soo Lee); 5 - Reflections on extended deterrence in the Middle East (Ariel e. Levite); 6 - extended deterrence, security guarantees and nuclear weapons: US strategic and policy conundrums in the Gulf (James A. Russell); 7 - extended deterrence in the Gulf: a bridge too far? (Emile Hokayem); 8 - The future of extended deterrence: the case of Turkey (Mustafa Kibaroglu); 9 - The future of extended deterrence: a UK view (Paul Schulte); 10 - NATO and extended deterrence (Oliver Thraenert); 11 - extended deterrence and assurance in Central Europe (Lukasz Kulesa)
The double Brewster angle effect
Thirion-Lefevre, Laetitia; Guinvarc'h, Régis
2018-01-01
The Double Brewster angle effect (DBE) is an extension of the Brewster angle to double reflection on two orthogonal dielectric surfaces. It results from the combination of two pseudo-Brewster angles occurring in complementary incidence angles domains. It can be observed for a large range of incidence angles provided that double bounces mechanism is present. As a consequence of this effect, we show that the reflection coefficient at VV polarization can be at least 10 dB lower than the reflection coefficient at HH polarization over a wide range of incidence angle - typically from 20 to 70∘. It is experimentally demonstrated using a Synthetic Aperture Radar (SAR) image that this effect can be seen on buildings and forests. For large buildings, the difference can reach more than 20 dB. xml:lang="fr"
Angle Performance on Optima XE
International Nuclear Information System (INIS)
David, Jonathan; Satoh, Shu
2011-01-01
Angle control on high energy implanters is important due to shrinking device dimensions, and sensitivity to channeling at high beam energies. On Optima XE, beam-to-wafer angles are controlled in both the horizontal and vertical directions. In the horizontal direction, the beam angle is measured through a series of narrow slits, and any angle adjustment is made by steering the beam with the corrector magnet. In the vertical direction, the beam angle is measured through a high aspect ratio mask, and any angle adjustment is made by slightly tilting the wafer platen during implant.Using a sensitive channeling condition, we were able to quantify the angle repeatability of Optima XE. By quantifying the sheet resistance sensitivity to both horizontal and vertical angle variation, the total angle variation was calculated as 0.04 deg. (1σ). Implants were run over a five week period, with all of the wafers selected from a single boule, in order to control for any crystal cut variation.
Small angle neutron scattering
Directory of Open Access Journals (Sweden)
Cousin Fabrice
2015-01-01
Full Text Available Small Angle Neutron Scattering (SANS is a technique that enables to probe the 3-D structure of materials on a typical size range lying from ∼ 1 nm up to ∼ a few 100 nm, the obtained information being statistically averaged on a sample whose volume is ∼ 1 cm3. This very rich technique enables to make a full structural characterization of a given object of nanometric dimensions (radius of gyration, shape, volume or mass, fractal dimension, specific area… through the determination of the form factor as well as the determination of the way objects are organized within in a continuous media, and therefore to describe interactions between them, through the determination of the structure factor. The specific properties of neutrons (possibility of tuning the scattering intensity by using the isotopic substitution, sensitivity to magnetism, negligible absorption, low energy of the incident neutrons make it particularly interesting in the fields of soft matter, biophysics, magnetic materials and metallurgy. In particular, the contrast variation methods allow to extract some informations that cannot be obtained by any other experimental techniques. This course is divided in two parts. The first one is devoted to the description of the principle of SANS: basics (formalism, coherent scattering/incoherent scattering, notion of elementary scatterer, form factor analysis (I(q→0, Guinier regime, intermediate regime, Porod regime, polydisperse system, structure factor analysis (2nd Virial coefficient, integral equations, characterization of aggregates, and contrast variation methods (how to create contrast in an homogeneous system, matching in ternary systems, extrapolation to zero concentration, Zero Averaged Contrast. It is illustrated by some representative examples. The second one describes the experimental aspects of SANS to guide user in its future experiments: description of SANS spectrometer, resolution of the spectrometer, optimization of
Extended icosahedral structures
Jaric, Marko V
1989-01-01
Extended Icosahedral Structures discusses the concepts about crystal structures with extended icosahedral symmetry. This book is organized into six chapters that focus on actual modeling of extended icosahedral crystal structures. This text first presents a tiling approach to the modeling of icosahedral quasiperiodic crystals. It then describes the models for icosahedral alloys based on random connections between icosahedral units, with particular emphasis on diffraction properties. Other chapters examine the glassy structures with only icosahedral orientational order and the extent of tra
Automated analysis of angle closure from anterior chamber angle images.
Baskaran, Mani; Cheng, Jun; Perera, Shamira A; Tun, Tin A; Liu, Jiang; Aung, Tin
2014-10-21
To evaluate a novel software capable of automatically grading angle closure on EyeCam angle images in comparison with manual grading of images, with gonioscopy as the reference standard. In this hospital-based, prospective study, subjects underwent gonioscopy by a single observer, and EyeCam imaging by a different operator. The anterior chamber angle in a quadrant was classified as closed if the posterior trabecular meshwork could not be seen. An eye was classified as having angle closure if there were two or more quadrants of closure. Automated grading of the angle images was performed using customized software. Agreement between the methods was ascertained by κ statistic and comparison of area under receiver operating characteristic curves (AUC). One hundred forty subjects (140 eyes) were included, most of whom were Chinese (102/140, 72.9%) and women (72/140, 51.5%). Angle closure was detected in 61 eyes (43.6%) with gonioscopy in comparison with 59 eyes (42.1%, P = 0.73) using manual grading, and 67 eyes (47.9%, P = 0.24) with automated grading of EyeCam images. The agreement for angle closure diagnosis between gonioscopy and both manual (κ = 0.88; 95% confidence interval [CI), 0.81-0.96) and automated grading of EyeCam images was good (κ = 0.74; 95% CI, 0.63-0.85). The AUC for detecting eyes with gonioscopic angle closure was comparable for manual and automated grading (AUC 0.974 vs. 0.954, P = 0.31) of EyeCam images. Customized software for automated grading of EyeCam angle images was found to have good agreement with gonioscopy. Human observation of the EyeCam images may still be needed to avoid gross misclassification, especially in eyes with extensive angle closure. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.
Anomalous polymer collapse winding angle distributions
Narros, A.; Owczarek, A. L.; Prellberg, T.
2018-03-01
In two dimensions polymer collapse has been shown to be complex with multiple low temperature states and multi-critical points. Recently, strong numerical evidence has been provided for a long-standing prediction of universal scaling of winding angle distributions, where simulations of interacting self-avoiding walks show that the winding angle distribution for N-step walks is compatible with the theoretical prediction of a Gaussian with a variance growing asymptotically as Clog N . Here we extend this work by considering interacting self-avoiding trails which are believed to be a model representative of some of the more complex behaviour. We provide robust evidence that, while the high temperature swollen state of this model has a winding angle distribution that is also Gaussian, this breaks down at the polymer collapse point and at low temperatures. Moreover, we provide some evidence that the distributions are well modelled by stretched/compressed exponentials, in contradistinction to the behaviour found in interacting self-avoiding walks. Dedicated to Professor Stu Whittington on the occasion of his 75th birthday.
Extending Database Integration Technology
National Research Council Canada - National Science Library
Buneman, Peter
1999-01-01
Formal approaches to the semantics of databases and database languages can have immediate and practical consequences in extending database integration technologies to include a vastly greater range...
Generalized extended Navier-Stokes theory
DEFF Research Database (Denmark)
Hansen, J. S.; Daivis, Peter J.; Dyre, Jeppe C.
2013-01-01
in molecular fluids. To discuss these phenomena in detail, molecular dynamics simulations of molecular chlorine are performed for three different state points. In general, the theory captures the behavior for small wavevector and frequencies as expected. For example, in the hydrodynamic regime......The extended Navier-Stokes theory accounts for the coupling between the translational and rotational molecular degrees of freedom. In this paper, we generalize this theory to non-zero frequencies and wavevectors, which enables a new study of spatio-temporal correlation phenomena present...... and for molecular fluids with small moment of inertia like chlorine, the theory predicts that the longitudinal and transverse intrinsic angular velocity correlation functions are almost identical, which is also seen in the molecular dynamics simulations. However, the theory fails at large wavevector and frequencies...
Capillary Rise: Validity of the Dynamic Contact Angle Models.
Wu, Pingkeng; Nikolov, Alex D; Wasan, Darsh T
2017-08-15
The classical Lucas-Washburn-Rideal (LWR) equation, using the equilibrium contact angle, predicts a faster capillary rise process than experiments in many cases. The major contributor to the faster prediction is believed to be the velocity dependent dynamic contact angle. In this work, we investigated the dynamic contact angle models for their ability to correct the dynamic contact angle effect in the capillary rise process. We conducted capillary rise experiments of various wetting liquids in borosilicate glass capillaries and compared the model predictions with our experimental data. The results show that the LWR equations modified by the molecular kinetic theory and hydrodynamic model provide good predictions on the capillary rise of all the testing liquids with fitting parameters, while the one modified by Joos' empirical equation works for specific liquids, such as silicone oils. The LWR equation modified by molecular self-layering model predicts well the capillary rise of carbon tetrachloride, octamethylcyclotetrasiloxane, and n-alkanes with the molecular diameter or measured solvation force data. The molecular self-layering model modified LWR equation also has good predictions on the capillary rise of silicone oils covering a wide range of bulk viscosities with the same key parameter W(0), which results from the molecular self-layering. The advantage of the molecular self-layering model over the other models reveals the importance of the layered molecularly thin wetting film ahead of the main meniscus in the energy dissipation associated with dynamic contact angle. The analysis of the capillary rise of silicone oils with a wide range of bulk viscosities provides new insights into the capillary dynamics of polymer melts.
Measurement of the angle gamma
International Nuclear Information System (INIS)
Aleksan, R.; Sphicas, P.; Massachusetts Inst. of Tech., Cambridge, MA
1993-12-01
The angle γ as defined in the Wolfenstein approximation is not completely out of reach of current or proposed dedicated B experiments. This work represents but a first step in the direction of extracting the third angle of the unitarity triangle by study the feasibility of using new decay modes in a hadronic machine. (A.B.). 11 refs., 1 fig., 7 tabs
Nucleation of small angle boundaries
CSIR Research Space (South Africa)
Nabarro, FRN
1996-12-01
Full Text Available The internal stresses induced by the strain gradients in an array of lattice cells delineated by low-angle dislocation boundaries are partially relieved by the creation of new low-angle boundaries. This is shown to be a first-order transition...
Directory of Open Access Journals (Sweden)
Ana Lúcia Peixoto de Freitas
2003-12-01
Full Text Available His study was performed to compare the methods of detection and to estimate the prevalence of extended-spectrum beta-lactamases (ESBL among Klebsiella spp and E.coli in a university hospital in southern Brazil. We also used a molecular typing method to evaluate the genetic correlation between isolates of ESBL K.pneumoniae. Production of ESBL was investigated in 95 clinical isolates of Klebsiella spp and Escherichia coli from Hospital de Clínicas de Porto Alegre, using Kirby-Bauer zone diameter (KB, double-disk diffusion (DD, breakpoint for ceftazidime (MIC CAZ, increased zone diameter with clavulanate (CAZ/CAC and ratio of ceftazidime MIC/ceftazidime-clavulanate MIC (MIC CAZ/CAC. Molecular typing was performed by DNA macrorestriction analysis followed by pulsed-field gel electrophoresis. The KB method displayed the highest rates of ESBL (up to 70% of Klebsiella and 59% of E.coli, contrasting with all the other methods (p Este estudo foi desenvolvido para comparar métodos de detecção e para estimar a prevalência de Klebsiella spp e E.coli produtoras de beta-lactamases de espetro ampliado (ESBL em um Hospital Universitário no sul do Brasil. A correlação genética, determinada através de método molecular de tipagem, entre as amostras de K. pneumoniae também foi determinada. A produção de ESBL foi investigada em 95 amostras de Klebsiella spp e E.coli obtidas de pacientes no Hospital de Clínicas de Porto Alegre usando-se: medida do diâmetro a zona de inibição (KB, dupla-difusão de disco (DD, valores de concentração inibitória mínima da ceftazidima (MIC CAZ, aumento do diâmetro da zona de inibição com adição de clavulanato (CAZ/CAC e a relação entre o MIC da ceftazidima/MIC ceftazidima com clavulanato (MIC CAZ/CAC. A tipagem molecular foi realizada utilizando-se o método de macrorestrição de DNA e eletroforese em campo pulsado (PFGE. O método KB apresentou as maiores taxas de produção de ESBL (> 70% para Klebsiella e
Studies in small angle scattering techniques
International Nuclear Information System (INIS)
Moellenbach, K.
1980-03-01
Small angle scattering of neutrons, X-rays and γ-rays are found among the spectroscopic methods developed in the recent years. Although these techniques differ from each other in many respects, e.g. radiation sources and technical equipment needed, their power to resolve physical phenomena and areas of application can be discussed in a general scheme. Selected examples are given illustrating the use of specific technical methods. Jahn-Teller driven structural phase transitions in Rare Earth zircons were studied with neutron scattering as well as small angle γ-ray diffraction. The study of neutron scattering from formations of magnetic domains in the Ising ferromagnet LiTbF 4 is a second example. Both these examples represent more than experimental test cases since the theoretical interpretations of the data obtained are discussed as well. As a last example the use of small angle scattering methods for the study of molecular biological samples is discussed. In particular the experimental procedures used in connection with scattering from aqueous solutions of proteins and protein complexes are given. (Auth.)
Extended family medicine training
Slade, Steve; Ross, Shelley; Lawrence, Kathrine; Archibald, Douglas; Mackay, Maria Palacios; Oandasan, Ivy F.
2016-01-01
Abstract Objective To examine trends in family medicine training at a time when substantial pedagogic change is under way, focusing on factors that relate to extended family medicine training. Design Aggregate-level secondary data analysis based on the Canadian Post-MD Education Registry. Setting Canada. Participants All Canadian citizens and permanent residents who were registered in postgraduate family medicine training programs within Canadian faculties of medicine from 1995 to 2013. Main outcome measures Number and proportion of family medicine residents exiting 2-year and extended (third-year and above) family medicine training programs, as well as the types and numbers of extended training programs offered in 2015. Results The proportion of family medicine trainees pursuing extended training almost doubled during the study period, going from 10.9% in 1995 to 21.1% in 2013. Men and Canadian medical graduates were more likely to take extended family medicine training. Among the 5 most recent family medicine exit cohorts (from 2009 to 2013), 25.9% of men completed extended training programs compared with 18.3% of women, and 23.1% of Canadian medical graduates completed extended training compared with 13.6% of international medical graduates. Family medicine programs vary substantially with respect to the proportion of their trainees who undertake extended training, ranging from a low of 12.3% to a high of 35.1% among trainees exiting from 2011 to 2013. Conclusion New initiatives, such as the Triple C Competency-based Curriculum, CanMEDS–Family Medicine, and Certificates of Added Competence, have emerged as part of family medicine education and credentialing. In acknowledgment of the potential effect of these initiatives, it is important that future research examine how pedagogic change and, in particular, extended training shapes the care family physicians offer their patients. As part of that research it will be important to measure the breadth and uptake of
Relationship between the Angle of Repose and Angle of Internal ...
African Journals Online (AJOL)
). The angle of internal friction ... compression chambers. Lorenzen, 1957 (quoted by Mohsenin,. 1986), reported that the design of deep ... tiongiven for lateral pressure in deep bins as presented by Mohsenin. (1986). The presence of moisture ...
The ideal male jaw angle--An Internet survey.
Mommaerts, Maurice Y
2016-04-01
The ideal male jaw angle has not been established. With the advent of additive manufacturing, precise customized shaping is a reality. This study aimed to define the ideal masculine mandibular angle as an aid for 3-dimensional (3D) design. An Internet survey was conducted using black/white photographs of celebrities and non-celebrities. Preferences regarding gonial angle (profile and frontal views), intergonial width and vertical jaw angle position (face frontal view), and angle curvature and definition in oblique views were obtained using simplified, unbalanced Likert scales. Constructs were defined for planning 3D implant designs. The preferred jaw angle had these characteristics: 130° in face profile view, intergonial width similar to facial width, vertical position in frontal view at the oral commissure or at least not below the lower lip, jawline slope in the face frontal view nearly parallel to (with a maximum 15° downward deviation from) a line extending from the lateral canthus to the alare, ascending ramus slope 65°-75° to the Frankfort horizontal, and curvature in the oblique view visible from earlobe to chin and not pointy. Photogrammetric analysis of panel preferences lead to constructs with values useful for the design of 3D printed jaw angles. Copyright © 2016 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Influence of Contact Angle, Growth Angle and Melt Surface Tension on Detached Solidification of InSb
Wang, Yazhen; Regel, Liya L.; Wilcox, William R.
2000-01-01
We extended the previous analysis of detached solidification of InSb based on the moving meniscus model. We found that for steady detached solidification to occur in a sealed ampoule in zero gravity, it is necessary for the growth angle to exceed a critical value, the contact angle for the melt on the ampoule wall to exceed a critical value, and the melt-gas surface tension to be below a critical value. These critical values would depend on the material properties and the growth parameters. For the conditions examined here, the sum of the growth angle and the contact angle must exceed approximately 130, which is significantly less than required if both ends of the ampoule are open.
Ring magnet firing angle control
International Nuclear Information System (INIS)
Knott, M.J.; Lewis, L.G.; Rabe, H.H.
1975-01-01
A device is provided for controlling the firing angles of thyratrons (rectifiers) in a ring magnet power supply. A phase lock loop develops a smooth ac signal of frequency equal to and in phase with the frequency of the voltage wave developed by the main generator of the power supply. A counter that counts from zero to a particular number each cycle of the main generator voltage wave is synchronized with the smooth AC signal of the phase lock loop. Gates compare the number in the counter with predetermined desired firing angles for each thyratron and with coincidence the proper thyratron is fired at the predetermined firing angle
The Extended Enterprise concept
DEFF Research Database (Denmark)
Larsen, Lars Bjørn; Vesterager, Johan; Gobbi, Chiara
1999-01-01
This paper provides an overview of the work that has been done regarding the Extended Enterprise concept in the Common Concept team of Globeman 21 including references to results deliverables concerning the development of the Extended Enterprise concept. The first section presents the basic concept...... picture from Globeman21, which illustrates the Globeman21 way of realising the Extended Enterprise concept. The second section presents the Globeman21 EE concept in a life cycle perspective, which to a large extent is based on the thoughts and ideas behind GERAM (ISO/DIS 15704)....
Intra–cavity generation of Bessel–like beams with longitudinally dependent cone angles
CSIR Research Space (South Africa)
Litvin, IA
2010-02-01
Full Text Available The authors report on two resonator systems for producing Bessel–like beams with longitudinally dependent cone angles (LDBLBs). Such beams have extended propagation distances as compared to conventional Bessel– Gauss beams, with a far field pattern...
The equivalent incidence angle for porous absorbers backed by a hard surface
DEFF Research Database (Denmark)
Jeong, Cheol-Ho; Brunskog, Jonas
2013-01-01
experiment using a free-field absorption measurement technique with a source at the equivalent angle. This study investigates the equivalent angle for locally and extendedly reacting porous media mainly by a numerical approach: Numerical minimizations of a cost function that is the difference between...... coefficients by free-field techniques, a broad incidence angle range can be suggested: 20 hi65 for extended reaction and hi65 for locally reacting porous absorbers, if an average difference of 0.05 is allowed.......An equivalent incidence angle is defined as the incidence angle at which the oblique incidence absorption coefficient best approximates the random incidence absorption coefficient. Once the equivalent angle is known, the random incidence absorption coefficient can be estimated by a single...
International Nuclear Information System (INIS)
Appelquist, T.; Terning, J.
1994-01-01
An extended technicolor model is constructed. Quark and lepton masses, spontaneous CP violation, and precision electroweak measurements are discussed. Dynamical symmetry breaking is analyzed using the concept of the big MAC (most attractive channel)
International Nuclear Information System (INIS)
Anon.
1984-01-01
Mine layouts, new machines and techniques, research into problem areas of ground control and so on, are highlighted in this report on extending mine life. The main resources taken into account are coal mining, uranium mining, molybdenum and gold mining
Rational extended thermodynamics
Müller, Ingo
1998-01-01
Ordinary thermodynamics provides reliable results when the thermodynamic fields are smooth, in the sense that there are no steep gradients and no rapid changes. In fluids and gases this is the domain of the equations of Navier-Stokes and Fourier. Extended thermodynamics becomes relevant for rapidly varying and strongly inhomogeneous processes. Thus the propagation of high frequency waves, and the shape of shock waves, and the regression of small-scale fluctuation are governed by extended thermodynamics. The field equations of ordinary thermodynamics are parabolic while extended thermodynamics is governed by hyperbolic systems. The main ingredients of extended thermodynamics are • field equations of balance type, • constitutive quantities depending on the present local state and • entropy as a concave function of the state variables. This set of assumptions leads to first order quasi-linear symmetric hyperbolic systems of field equations; it guarantees the well-posedness of initial value problems and f...
Glaister, P.
1997-09-01
Tetrahedral Bond Angle from Elementary Trigonometry The alternative approach of using the scalar (or dot) product of vectors enables the determination of the bond angle in a tetrahedral molecule in a simple way. There is, of course, an even more straightforward derivation suitable for students who are unfamiliar with vectors, or products thereof, but who do know some elementary trigonometry. The starting point is the figure showing triangle OAB. The point O is the center of a cube, and A and B are at opposite corners of a face of that cube in which fits a regular tetrahedron. The required bond angle alpha = AÔB; and using Pythagoras' theorem, AB = 2(square root 2) is the diagonal of a face of the cube. Hence from right-angled triangle OEB, tan(alpha/2) = (square root 2) and therefore alpha = 2tan-1(square root 2) is approx. 109° 28' (see Fig. 1).
The dialogically extended mind
DEFF Research Database (Denmark)
Fusaroli, Riccardo; Gangopadhyay, Nivedita; Tylén, Kristian
2014-01-01
A growing conceptual and empirical literature is advancing the idea that language extends our cognitive skills. One of the most influential positions holds that language – qua material symbols – facilitates individual thought processes by virtue of its material properties. Extending upon this model...... relate our approach to other ideas about collective minds and review a number of empirical studies to identify the mechanisms enabling the constitution of interpersonal cognitive systems....
Extending Mondrian Memory Protection
2010-11-01
a kernel semaphore is locked or unlocked. In addition, we extended the system call interface to receive notifications about user-land locking...operations (such as calls to the mutex and semaphore code provided by the C library). By patching the dynamically loadable GLibC5, we are able to test... semaphores , and spinlocks. RTO-MP-IST-091 10- 9 Extending Mondrian Memory Protection to loading extension plugins. This prevents any untrusted code
2016-06-06
number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 06-06-2016 2. REPORT TYPE Interim Report 3. DATES COVERED ... Corrosion Testing of Traditional and Extended Life Coolants 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Hansen, Gregory A. T...providing vehicle specific coolants. Several laboratory corrosion tests were performed according to ASTM D1384 and D2570, but with a 2.5x extended time
Double field theory at SL(2) angles
Energy Technology Data Exchange (ETDEWEB)
Ciceri, Franz [Nikhef Theory Group,Science Park 105, 1098 XG Amsterdam (Netherlands); Dibitetto, Giuseppe [Institutionen för fysik och astronomi, University of Uppsala, Box 803, SE-751 08 Uppsala (Sweden); Fernandez-Melgarejo, J.J. [Yukawa Institute for Theoretical Physics, Kyoto University,Kyoto 606-8502 (Japan); Jefferson Physical Laboratory, Harvard University,Cambridge, MA 02138 (United States); Guarino, Adolfo [Physique Théorique et Mathématique, Université Libre de Bruxellesand International Solvay Institutes,ULB-Campus Plaine CP231, B-1050 Brussels (Belgium); Inverso, Gianluca [Center for Mathematical Analysis, Geometry and Dynamical Systems,Department of Mathematics, Instituto Superior Tecnico,Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal)
2017-05-05
An extended field theory is presented that captures the full SL(2)×O(6,6+n) duality group of four-dimensional half-maximal supergravities. The theory has section constraints whose two inequivalent solutions correspond to minimal D=10 supergravity and chiral half-maximal D=6 supergravity, respectively coupled to vector and tensor multiplets. The relation with O(6,6+n) (heterotic) double field theory is thoroughly discussed. Non-Abelian interactions as well as background fluxes are captured by a deformation of the generalised diffeomorphisms. Finally, making use of the SL(2) duality structure, it is shown how to generate gaugings with non-trivial de Roo-Wagemans angles via generalised Scherk-Schwarz ansätze. Such gaugings allow for moduli stabilisation including the SL(2) dilaton.
Japyassú, Hilton F; Laland, Kevin N
2017-05-01
There is a tension between the conception of cognition as a central nervous system (CNS) process and a view of cognition as extending towards the body or the contiguous environment. The centralised conception requires large or complex nervous systems to cope with complex environments. Conversely, the extended conception involves the outsourcing of information processing to the body or environment, thus making fewer demands on the processing power of the CNS. The evolution of extended cognition should be particularly favoured among small, generalist predators such as spiders, and here, we review the literature to evaluate the fit of empirical data with these contrasting models of cognition. Spiders do not seem to be cognitively limited, displaying a large diversity of learning processes, from habituation to contextual learning, including a sense of numerosity. To tease apart the central from the extended cognition, we apply the mutual manipulability criterion, testing the existence of reciprocal causal links between the putative elements of the system. We conclude that the web threads and configurations are integral parts of the cognitive systems. The extension of cognition to the web helps to explain some puzzling features of spider behaviour and seems to promote evolvability within the group, enhancing innovation through cognitive connectivity to variable habitat features. Graded changes in relative brain size could also be explained by outsourcing information processing to environmental features. More generally, niche-constructed structures emerge as prime candidates for extending animal cognition, generating the selective pressures that help to shape the evolving cognitive system.
Conformation analysis of trehalose. Molecular dynamics simulation and molecular mechanics
International Nuclear Information System (INIS)
Donnamaira, M.C.; Howard, E.I.; Grigera, J.R.
1992-09-01
Conformational analysis of the disaccharide trehalose is done by molecular dynamics and molecular mechanics. In spite of the different force fields used in each case, comparison between the molecular dynamics trajectories of the torsional angles of glycosidic linkage and energy conformational map shows a good agreement between both methods. By molecular dynamics it is observed a moderate mobility of the glycosidic linkage. The demands of computer time is comparable in both cases. (author). 6 refs, 4 figs
Extending quantum mechanics entails extending special relativity
International Nuclear Information System (INIS)
Aravinda, S; Srikanth, R
2016-01-01
The complementarity between signaling and randomness in any communicated resource that can simulate singlet statistics is generalized by relaxing the assumption of free will in the choice of measurement settings. We show how to construct an ontological extension for quantum mechanics (QMs) through the oblivious embedding of a sound simulation protocol in a Newtonian spacetime. Minkowski or other intermediate spacetimes are ruled out as the locus of the embedding by virtue of hidden influence inequalities. The complementarity transferred from a simulation to the extension unifies a number of results about quantum non-locality, and implies that special relativity has a different significance for the ontological model and for the operational theory it reproduces. Only the latter, being experimentally accessible, is required to be Lorentz covariant. There may be certain Lorentz non-covariant elements at the ontological level, but they will be inaccessible at the operational level in a valid extension. Certain arguments against the extendability of QM, due to Conway and Kochen (2009) and Colbeck and Renner (2012), are attributed to their assumption that the spacetime at the ontological level has Minkowski causal structure. (paper)
RF sheaths for arbitrary B field angles
D'Ippolito, Daniel; Myra, James
2014-10-01
RF sheaths occur in tokamaks when ICRF waves encounter conducting boundaries and accelerate electrons out of the plasma. Sheath effects reduce the efficiency of ICRF heating, cause RF-specific impurity influxes from the edge plasma, and increase the plasma-facing component damage. The rf sheath potential is sensitive to the angle between the B field and the wall, the ion mobility and the ion magnetization. Here, we obtain a numerical solution of the non-neutral rf sheath and magnetic pre-sheath equations (for arbitrary values of these parameters) and attempt to infer the parametric dependences of the Child-Langmuir law. This extends previous work on the magnetized, immobile ion regime. An important question is how the rf sheath voltage distributes itself between sheath and pre-sheath for various B field angles. This will show how generally previous estimates of the rf sheath voltage and capacitance were reasonable, and to improve the RF sheath BC. Work supported by US DOE grants DE-FC02-05ER54823 and DE-FG02-97ER54392.
Kinematics of reflections in subsurface offset and angle-domain image gathers
Dafni, Raanan; Symes, William W.
2018-05-01
Seismic migration in the angle-domain generates multiple images of the earth's interior in which reflection takes place at different scattering-angles. Mechanically, the angle-dependent reflection is restricted to happen instantaneously and at a fixed point in space: Incident wave hits a discontinuity in the subsurface media and instantly generates a scattered wave at the same common point of interaction. Alternatively, the angle-domain image may be associated with space-shift (regarded as subsurface offset) extended migration that artificially splits the reflection geometry. Meaning that, incident and scattered waves interact at some offset distance. The geometric differences between the two approaches amount to a contradictory angle-domain behaviour, and unlike kinematic description. We present a phase space depiction of migration methods extended by the peculiar subsurface offset split and stress its profound dissimilarity. In spite of being in radical contradiction with the general physics, the subsurface offset reveals a link to some valuable angle-domain quantities, via post-migration transformations. The angle quantities are indicated by the direction normal to the subsurface offset extended image. They specifically define the local dip and scattering angles if the velocity at the split reflection coordinates is the same for incident and scattered wave pairs. Otherwise, the reflector normal is not a bisector of the opening angle, but of the corresponding slowness vectors. This evidence, together with the distinguished geometry configuration, fundamentally differentiates the angle-domain decomposition based on the subsurface offset split from the conventional decomposition at a common reflection point. An asymptotic simulation of angle-domain moveout curves in layered media exposes the notion of split versus common reflection point geometry. Traveltime inversion methods that involve the subsurface offset extended migration must accommodate the split geometry
Angle imaging: Advances and challenges
Quek, Desmond T L; Nongpiur, Monisha E; Perera, Shamira A; Aung, Tin
2011-01-01
Primary angle closure glaucoma (PACG) is a major form of glaucoma in large populous countries in East and South Asia. The high visual morbidity from PACG is related to the destructive nature of the asymptomatic form of the disease. Early detection of anatomically narrow angles is important and the subsequent prevention of visual loss from PACG depends on an accurate assessment of the anterior chamber angle (ACA). This review paper discusses the advantages and limitations of newer ACA imaging technologies, namely ultrasound biomicroscopy, Scheimpflug photography, anterior segment optical coherence tomography and EyeCam, highlighting the current clinical evidence comparing these devices with each other and with clinical dynamic indentation gonioscopy, the current reference standard. PMID:21150037
Variable angle asymmetric cut monochromator
International Nuclear Information System (INIS)
Smither, R.K.; Fernandez, P.B.
1993-09-01
A variable incident angle, asymmetric cut, double crystal monochromator was tested for use on beamlines at the Advanced Photon Source (APS). For both undulator and wiggler beams the monochromator can expand area of footprint of beam on surface of the crystals to 50 times the area of incident beam; this will reduce the slope errors by a factor of 2500. The asymmetric cut allows one to increase the acceptance angle for incident radiation and obtain a better match to the opening angle of the incident beam. This can increase intensity of the diffracted beam by a factor of 2 to 5 and can make the beam more monochromatic, as well. The monochromator consists of two matched, asymmetric cut (18 degrees), silicon crystals mounted so that they can be rotated about three independent axes. Rotation around the first axis controls the Bragg angle. The second rotation axis is perpendicular to the diffraction planes and controls the increase of the area of the footprint of the beam on the crystal surface. Rotation around the third axis controls the angle between the surface of the crystal and the wider, horizontal axis for the beam and can make the footprint a rectangle with a minimum. length for this area. The asymmetric cut is 18 degrees for the matched pair of crystals, which allows one to expand the footprint area by a factor of 50 for Bragg angles up to 19.15 degrees (6 keV for Si[111] planes). This monochromator, with proper cooling, will be useful for analyzing the high intensity x-ray beams produced by both undulators and wigglers at the APS
Angle independent velocity spectrum determination
DEFF Research Database (Denmark)
2014-01-01
An ultrasound imaging system (100) includes a transducer array (102) that emits an ultrasound beam and produces at least one transverse pulse-echo field that oscillates in a direction transverse to the emitted ultrasound beam and that receive echoes produced in response thereto and a spectral vel...... velocity estimator (110) that determines a velocity spectrum for flowing structure, which flows at an angle of 90 degrees and flows at angles less than 90 degrees with respect to the emitted ultrasound beam, based on the received echoes....
Temperature dependence of Brewster's angle.
Guo, Wei
2018-01-01
In this work, a dielectric at a finite temperature is modeled as an ensemble of identical atoms moving randomly around where they are trapped. Light reflection from the dielectric is then discussed in terms of atomic radiation. Specific calculation demonstrates that because of the atoms' thermal motion, Brewster's angle is, in principle, temperature-dependent, and the dependence is weak in the low-temperature limit. What is also found is that the Brewster's angle is nothing but a result of destructive superposition of electromagnetic radiation from the atoms.
Eckalbar, John C.
2002-01-01
Illustrates how principles and intermediate microeconomic students can gain an understanding for strategic price setting by playing a relatively large oligopoly game. Explains that the game extends to a continuous price space and outlines appropriate applications. Offers the Mathematica code to instructors so that the assumptions of the game can…
International Nuclear Information System (INIS)
Akama, Keiichi
1988-01-01
Starting with the space-time action of the transversally extended string, we derive its world-sheet action, which is that of a gravitational and gauge theory with matter fields on the world-sheet, with additional effects of the second fundamental quantity. (author)
Extended artistic appreciation.
Wilson, Robert A
2013-04-01
I propose that in at least some cases, objects of artistic appreciation are best thought of not simply as causes of artistic appreciation, but as parts of the cognitive machinery that drives aesthetic appreciation. In effect, this is to say that aesthetic appreciation operates via extended cognitive systems.
Towards Extended Vantage Theory
Glaz, Adam
2010-01-01
The applicability of Vantage Theory (VT), a model of (colour) categorization, to linguistic data largely depends on the modifications and adaptations of the model for the purpose. An attempt to do so proposed here, called Extended Vantage Theory (EVT), slightly reformulates the VT conception of vantage by capitalizing on some of the entailments of…
Contact angle of sessile drops in Lennard-Jones systems.
Becker, Stefan; Urbassek, Herbert M; Horsch, Martin; Hasse, Hans
2014-11-18
Molecular dynamics simulations are used for studying the contact angle of nanoscale sessile drops on a planar solid wall in a system interacting via the truncated and shifted Lennard-Jones potential. The entire range between total wetting and dewetting is investigated by varying the solid-fluid dispersive interaction energy. The temperature is varied between the triple point and the critical temperature. A correlation is obtained for the contact angle in dependence of the temperature and the dispersive interaction energy. Size effects are studied by varying the number of fluid particles at otherwise constant conditions, using up to 150,000 particles. For particle numbers below 10,000, a decrease of the contact angle is found. This is attributed to a dependence of the solid-liquid surface tension on the droplet size. A convergence to a constant contact angle is observed for larger system sizes. The influence of the wall model is studied by varying the density of the wall. The effective solid-fluid dispersive interaction energy at a contact angle of θ = 90° is found to be independent of temperature and to decrease linearly with the solid density. A correlation is developed that describes the contact angle as a function of the dispersive interaction, the temperature, and the solid density. The density profile of the sessile drop and the surrounding vapor phase is described by a correlation combining a sigmoidal function and an oscillation term.
DEFF Research Database (Denmark)
Jespersen, Søren Kragh; Wilhjelm, Jens Erik; Sillesen, Henrik
1998-01-01
This paper reports on a scanning technique, denoted multi-angle compound imaging (MACI), using spatial compounding. The MACI method also contains elements of frequency compounding, as the transmit frequency is lowered for the highest beam angles in order to reduce grating lobes. Compared to conve......This paper reports on a scanning technique, denoted multi-angle compound imaging (MACI), using spatial compounding. The MACI method also contains elements of frequency compounding, as the transmit frequency is lowered for the highest beam angles in order to reduce grating lobes. Compared...... to conventional B-mode imaging MACI offers better defined tissue boundaries and lower variance of the speckle pattern, resulting in an image with reduced random variations. Design and implementation of a compound imaging system is described, images of rubber tubes and porcine aorta are shown and effects...... on visualization are discussed. The speckle reduction is analyzed numerically and the results are found to be in excellent agreement with existing theory. An investigation of detectability of low-contrast lesions shows significant improvements compared to conventional imaging. Finally, possibilities for improving...
Femoral varus: what's the angle
DEFF Research Database (Denmark)
Miles, James Edward; Svalastoga, Eiliv Lars; Eriksen, Thomas
angles were calculated using Microsoft Excel for the three previously reported techniques and a novel method, which we believed would be more reliable. Reliability between readings was assessed using the within-subject standard deviation and repeatability coefficient, and the effect of angulation...
International Nuclear Information System (INIS)
Heitz, Eric
2017-01-01
We present a geometric method for computing an ellipse that subtends the same solid-angle domain as an arbitrarily positioned ellipsoid. With this method we can extend existing analytical solid-angle calculations of ellipses to ellipsoids. Our idea consists of applying a linear transformation on the ellipsoid such that it is transformed into a sphere from which a disk that covers the same solid-angle domain can be computed. We demonstrate that by applying the inverse linear transformation on this disk we obtain an ellipse that subtends the same solid-angle domain as the ellipsoid. We provide a MATLAB implementation of our algorithm and we validate it numerically.
Energy Technology Data Exchange (ETDEWEB)
Heitz, Eric, E-mail: eheitz.research@gmail.com
2017-04-21
We present a geometric method for computing an ellipse that subtends the same solid-angle domain as an arbitrarily positioned ellipsoid. With this method we can extend existing analytical solid-angle calculations of ellipses to ellipsoids. Our idea consists of applying a linear transformation on the ellipsoid such that it is transformed into a sphere from which a disk that covers the same solid-angle domain can be computed. We demonstrate that by applying the inverse linear transformation on this disk we obtain an ellipse that subtends the same solid-angle domain as the ellipsoid. We provide a MATLAB implementation of our algorithm and we validate it numerically.
Systems theoretic analysis of the central dogma of molecular biology: some recent results.
Gao, Rui; Yu, Juanyi; Zhang, Mingjun; Tarn, Tzyh-Jong; Li, Jr-Shin
2010-03-01
This paper extends our early study on a mathematical formulation of the central dogma of molecular biology, and focuses discussions on recent insights obtained by employing advanced systems theoretic analysis. The goal of this paper is to mathematically represent and interpret the genetic information flow at the molecular level, and explore the fundamental principle of molecular biology at the system level. Specifically, group theory was employed to interpret concepts and properties of gene mutation, and predict backbone torsion angle along the peptide chain. Finite state machine theory was extensively applied to interpret key concepts and analyze the processes related to DNA hybridization. Using the proposed model, we have transferred the character-based model in molecular biology to a sophisticated mathematical model for calculation and interpretation.
Perkins, Stephen J; Wright, David W; Zhang, Hailiang; Brookes, Emre H; Chen, Jianhan; Irving, Thomas C; Krueger, Susan; Barlow, David J; Edler, Karen J; Scott, David J; Terrill, Nicholas J; King, Stephen M; Butler, Paul D; Curtis, Joseph E
2016-12-01
The capabilities of current computer simulations provide a unique opportunity to model small-angle scattering (SAS) data at the atomistic level, and to include other structural constraints ranging from molecular and atomistic energetics to crystallography, electron microscopy and NMR. This extends the capabilities of solution scattering and provides deeper insights into the physics and chemistry of the systems studied. Realizing this potential, however, requires integrating the experimental data with a new generation of modelling software. To achieve this, the CCP-SAS collaboration (http://www.ccpsas.org/) is developing open-source, high-throughput and user-friendly software for the atomistic and coarse-grained molecular modelling of scattering data. Robust state-of-the-art molecular simulation engines and molecular dynamics and Monte Carlo force fields provide constraints to the solution structure inferred from the small-angle scattering data, which incorporates the known physical chemistry of the system. The implementation of this software suite involves a tiered approach in which GenApp provides the deployment infrastructure for running applications on both standard and high-performance computing hardware, and SASSIE provides a workflow framework into which modules can be plugged to prepare structures, carry out simulations, calculate theoretical scattering data and compare results with experimental data. GenApp produces the accessible web-based front end termed SASSIE-web , and GenApp and SASSIE also make community SAS codes available. Applications are illustrated by case studies: (i) inter-domain flexibility in two- to six-domain proteins as exemplified by HIV-1 Gag, MASP and ubiquitin; (ii) the hinge conformation in human IgG2 and IgA1 antibodies; (iii) the complex formed between a hexameric protein Hfq and mRNA; and (iv) synthetic 'bottlebrush' polymers.
Extended Target Recognition in Cognitive Radar Networks
Directory of Open Access Journals (Sweden)
Xiqin Wang
2010-11-01
Full Text Available We address the problem of adaptive waveform design for extended target recognition in cognitive radar networks. A closed-loop active target recognition radar system is extended to the case of a centralized cognitive radar network, in which a generalized likelihood ratio (GLR based sequential hypothesis testing (SHT framework is employed. Using Doppler velocities measured by multiple radars, the target aspect angle for each radar is calculated. The joint probability of each target hypothesis is then updated using observations from different radar line of sights (LOS. Based on these probabilities, a minimum correlation algorithm is proposed to adaptively design the transmit waveform for each radar in an amplitude fluctuation situation. Simulation results demonstrate performance improvements due to the cognitive radar network and adaptive waveform design. Our minimum correlation algorithm outperforms the eigen-waveform solution and other non-cognitive waveform design approaches.
Polyurethanes elastomers with amide chain extenders of uniform length
van der Schuur, J.M.; Noordover, B.A.J.; Noordover, Bart; Gaymans, R.J.
2006-01-01
Toluene diisocyanate based polyurethanes with amide extenders were synthesized poly(propylene oxide) with a number average molecular weight of 2000 and endcapped with toluene diisocyanate was used as the polyether segment. The chain extenders were based on poly(hexamethylene terephthalamide):
Polyuretehane elastomers with amide chain extenders of uniform length
Schuur, van der M.; Noordover, B.A.J.; Gaymans, R.J.
2006-01-01
Toluene diisocyanate based polyurethanes with amide extenders were synthesized poly(propylene oxide) with a number average molecular weight of 2000 and endcapped with toluene diisocyanate was used as the polyether segment. The chain extenders were based on poly(hexamethylene terephthalamide):
Extended Irreversible Thermodynamics
Jou, David
2010-01-01
This is the 4th edition of the highly acclaimed monograph on Extended Irreversible Thermodynamics, a theory that goes beyond the classical theory of irreversible processes. In contrast to the classical approach, the basic variables describing the system are complemented by non-equilibrium quantities. The claims made for extended thermodynamics are confirmed by the kinetic theory of gases and statistical mechanics. The book covers a wide spectrum of applications, and also contains a thorough discussion of the foundations and the scope of the current theories on non-equilibrium thermodynamics. For this new edition, the authors critically revised existing material while taking into account the most recent developments in fast moving fields such as heat transport in micro- and nanosystems or fast solidification fronts in materials sciences. Several fundamental chapters have been revisited emphasizing physics and applications over mathematical derivations. Also, fundamental questions on the definition of non-equil...
International Nuclear Information System (INIS)
Pavel Bona
2000-01-01
The work can be considered as an essay on mathematical and conceptual structure of nonrelativistic quantum mechanics which is related here to some other (more general, but also to more special and 'approximative') theories. Quantum mechanics is here primarily reformulated in an equivalent form of a Poisson system on the phase space consisting of density matrices, where the 'observables', as well as 'symmetry generators' are represented by a specific type of real valued (densely defined) functions, namely the usual quantum expectations of corresponding selfjoint operators. It is shown in this paper that inclusion of additional ('nonlinear') symmetry generators (i. e. 'Hamiltonians') into this reformulation of (linear) quantum mechanics leads to a considerable extension of the theory: two kinds of quantum 'mixed states' should be distinguished, and operator - valued functions of density matrices should be used in the role of 'nonlinear observables'. A general framework for physical theories is obtained in this way: By different choices of the sets of 'nonlinear observables' we obtain, as special cases, e.g. classical mechanics on homogeneous spaces of kinematical symmetry groups, standard (linear) quantum mechanics, or nonlinear extensions of quantum mechanics; also various 'quasiclassical approximations' to quantum mechanics are all sub theories of the presented extension of quantum mechanics - a version of the extended quantum mechanics. A general interpretation scheme of extended quantum mechanics extending the usual statistical interpretation of quantum mechanics is also proposed. Eventually, extended quantum mechanics is shown to be (included into) a C * -algebraic (hence linear) quantum theory. Mathematical formulation of these theories is presented. The presentation includes an analysis of problems connected with differentiation on infinite-dimensional manifolds, as well as a solution of some problems connected with the work with only densely defined unbounded
Humbert, Richard
2010-01-01
A force acting on just part of an extended object (either a solid or a volume of a liquid) can cause all of it to move. That motion is due to the transmission of the force through the object by its material. This paper discusses how the force is distributed to all of the object by a gradient of stress or pressure in it, which creates the local…
Extending Critical Performativity
DEFF Research Database (Denmark)
Spicer, André; Alvesson, Mats; Kärreman, Dan
2016-01-01
In this article we extend the debate about critical performativity. We begin by outlining the basic tenets of critical performativity and how this has been applied in the study of management and organization. We then address recent critiques of critical performance. We note these arguments suffer...... of public importance; engaging with non-academic groups using dialectical reasoning; scaling up insights through movement building; and propagating deliberation...
An Extended Octagonal Ring Dynamometer for Measurement of ...
African Journals Online (AJOL)
The analysis, design, construction, evaluation and use of an extended octagonal ring dynamometer for measurement of draught, vertical force and moment on a simple tillage tool are presented. The dynamometer was used to measure tool forces as functions of depth, rake angle and speed, for a wide plane blade.
International Nuclear Information System (INIS)
Capozziello, Salvatore; De Laurentis, Mariafelicia
2011-01-01
Extended Theories of Gravity can be considered as a new paradigm to cure shortcomings of General Relativity at infrared and ultraviolet scales. They are an approach that, by preserving the undoubtedly positive results of Einstein’s theory, is aimed to address conceptual and experimental problems recently emerged in astrophysics, cosmology and High Energy Physics. In particular, the goal is to encompass, in a self-consistent scheme, problems like inflation, dark energy, dark matter, large scale structure and, first of all, to give at least an effective description of Quantum Gravity. We review the basic principles that any gravitational theory has to follow. The geometrical interpretation is discussed in a broad perspective in order to highlight the basic assumptions of General Relativity and its possible extensions in the general framework of gauge theories. Principles of such modifications are presented, focusing on specific classes of theories like f(R)-gravity and scalar–tensor gravity in the metric and Palatini approaches. The special role of torsion is also discussed. The conceptual features of these theories are fully explored and attention is paid to the issues of dynamical and conformal equivalence between them considering also the initial value problem. A number of viability criteria are presented considering the post-Newtonian and the post-Minkowskian limits. In particular, we discuss the problems of neutrino oscillations and gravitational waves in extended gravity. Finally, future perspectives of extended gravity are considered with possibility to go beyond a trial and error approach.
Scattering-angle based filtering of the waveform inversion gradients
Alkhalifah, Tariq Ali
2014-01-01
Full waveform inversion (FWI) requires a hierarchical approach to maneuver the complex non-linearity associated with the problem of velocity update. In anisotropic media, the non-linearity becomes far more complex with the potential trade-off between the multiparameter description of the model. A gradient filter helps us in accessing the parts of the gradient that are suitable to combat the potential non-linearity and parameter trade-off. The filter is based on representing the gradient in the time-lag normalized domain, in which the low scattering angle of the gradient update is initially muted out in the FWI implementation, in what we may refer to as a scattering angle continuation process. The result is a low wavelength update dominated by the transmission part of the update gradient. In this case, even 10 Hz data can produce vertically near-zero wavenumber updates suitable for a background correction of the model. Relaxing the filtering at a later stage in the FWI implementation allows for smaller scattering angles to contribute higher-resolution information to the model. The benefits of the extended domain based filtering of the gradient is not only it's ability in providing low wavenumber gradients guided by the scattering angle, but also in its potential to provide gradients free of unphysical energy that may correspond to unrealistic scattering angles.
Scattering-angle based filtering of the waveform inversion gradients
Alkhalifah, Tariq Ali
2014-11-22
Full waveform inversion (FWI) requires a hierarchical approach to maneuver the complex non-linearity associated with the problem of velocity update. In anisotropic media, the non-linearity becomes far more complex with the potential trade-off between the multiparameter description of the model. A gradient filter helps us in accessing the parts of the gradient that are suitable to combat the potential non-linearity and parameter trade-off. The filter is based on representing the gradient in the time-lag normalized domain, in which the low scattering angle of the gradient update is initially muted out in the FWI implementation, in what we may refer to as a scattering angle continuation process. The result is a low wavelength update dominated by the transmission part of the update gradient. In this case, even 10 Hz data can produce vertically near-zero wavenumber updates suitable for a background correction of the model. Relaxing the filtering at a later stage in the FWI implementation allows for smaller scattering angles to contribute higher-resolution information to the model. The benefits of the extended domain based filtering of the gradient is not only it\\'s ability in providing low wavenumber gradients guided by the scattering angle, but also in its potential to provide gradients free of unphysical energy that may correspond to unrealistic scattering angles.
Disorders of the cerebellopontine angle
International Nuclear Information System (INIS)
Block, F.
2006-01-01
Disorders of the cerebellopontine angle may present by symptoms like vertigo, hearing problems, affection of the trigeminal or facial nerve. Ipsilateral ataxia and contralateral hemiparesis develop in case of a rather large tumor in this region and display an involvement of the cerebellum and/or brainstem. However, some of these typical symptoms are not recognized by the patient. Thus, in case of a suspicion of a disorder of the cerebellopontine angle the relevant functions have to be tested clinically. In addition, electrophysiology can confirm dysfunction of these cranial nerves. Mainstay of the therapy should be the treatment of the underlying cause. Nevertheless, not seldom it is necessary to treat symptoms like vertigo or facial pain. (orig.) [de
Measurement of the angle gamma
International Nuclear Information System (INIS)
Aleksan, R.; Kayser, B.; Sphicas, P.
1993-01-01
The angle γ at least as defined in the Wolfenstein approximation is not completely out of reach of current or proposed dedicated B experiments. This conclusion certainly depends crucially on the assumed trigger and tagging efficiencies and also on the expected backgrounds. The work summarized here represents but a first step in the direction of extracting the third angle of the unitarity triangle. The theoretical developments during the workshop have resulted in a clearer understanding of the quantities studied. On the experimental side, new decay modes (i.e. in addition to the traditional ρK s decay) have resulted in expections for observing CP violation in B s decays which are not unreasonable. It is conceivable that a dedicated B experiment can probe a fundamental aspect of the Standard Model, the CKM matrix, in multiple ways. In the process, new physics can appear anywhere along the line
Extended Testability Analysis Tool
Melcher, Kevin; Maul, William A.; Fulton, Christopher
2012-01-01
The Extended Testability Analysis (ETA) Tool is a software application that supports fault management (FM) by performing testability analyses on the fault propagation model of a given system. Fault management includes the prevention of faults through robust design margins and quality assurance methods, or the mitigation of system failures. Fault management requires an understanding of the system design and operation, potential failure mechanisms within the system, and the propagation of those potential failures through the system. The purpose of the ETA Tool software is to process the testability analysis results from a commercial software program called TEAMS Designer in order to provide a detailed set of diagnostic assessment reports. The ETA Tool is a command-line process with several user-selectable report output options. The ETA Tool also extends the COTS testability analysis and enables variation studies with sensor sensitivity impacts on system diagnostics and component isolation using a single testability output. The ETA Tool can also provide extended analyses from a single set of testability output files. The following analysis reports are available to the user: (1) the Detectability Report provides a breakdown of how each tested failure mode was detected, (2) the Test Utilization Report identifies all the failure modes that each test detects, (3) the Failure Mode Isolation Report demonstrates the system s ability to discriminate between failure modes, (4) the Component Isolation Report demonstrates the system s ability to discriminate between failure modes relative to the components containing the failure modes, (5) the Sensor Sensor Sensitivity Analysis Report shows the diagnostic impact due to loss of sensor information, and (6) the Effect Mapping Report identifies failure modes that result in specified system-level effects.
LHC Report: playing with angles
Mike Lamont for the LHC team
2016-01-01
Ready (after a machine development period), steady (running), go (for a special run)! The crossing angles are an essential feature of the machine set-up. They have to be big enough to reduce the long-range beam-beam effect. The LHC has recently enjoyed a period of steady running and managed to set a new record for “Maximum Stable Luminosity Delivered in 7 days” of 3.29 fb-1 between 29 August and 4 September. The number of bunches per beam remains pegged at 2220 because of the limitations imposed by the SPS beam dump. The bunch population is also somewhat reduced due to outgassing near one of the injection kickers at point 8. Both limitations will be addressed during the year-end technical stop, opening the way for increased performance in 2017. On 10 and 11 September, a two day machine development (MD) period took place. The MD programme included a look at the possibility of reducing the crossing angle at the high-luminosity interaction points. The crossing angles are an ess...
Light Scattering at Various Angles
Latimer, Paul; Pyle, B. E.
1972-01-01
The Mie theory of scattering is used to provide new information on how changes in particle volume, with no change in dry weight, should influence light scattering for various scattering angles and particle sizes. Many biological cells (e.g., algal cells, erythrocytes) and large subcellular structures (e.g., chloroplasts, mitochondria) in suspension undergo this type of reversible volume change, a change which is related to changes in the rates of cellular processes. A previous study examined the effects of such volume changes on total scattering. In this paper scattering at 10° is found to follow total scattering closely, but scattering at 45°, 90°, 135°, and 170° behaves differently. Small volume changes can cause very large observable changes in large angle scattering if the sample particles are uniform in size; however, the natural particle size heterogeneity of most samples would mask this effect. For heterogeneous samples of most particle size ranges, particle shrink-age is found to increase large angle scattering. PMID:4556610
Angle comparison using an autocollimator
Geckeler, Ralf D.; Just, Andreas; Vasilev, Valentin; Prieto, Emilio; Dvorácek, František; Zelenika, Slobodan; Przybylska, Joanna; Duta, Alexandru; Victorov, Ilya; Pisani, Marco; Saraiva, Fernanda; Salgado, Jose-Antonio; Gao, Sitian; Anusorn, Tonmueanwai; Leng Tan, Siew; Cox, Peter; Watanabe, Tsukasa; Lewis, Andrew; Chaudhary, K. P.; Thalmann, Ruedi; Banreti, Edit; Nurul, Alfiyati; Fira, Roman; Yandayan, Tanfer; Chekirda, Konstantin; Bergmans, Rob; Lassila, Antti
2018-01-01
Autocollimators are versatile optical devices for the contactless measurement of the tilt angles of reflecting surfaces. An international key comparison (KC) on autocollimator calibration, EURAMET.L-K3.2009, was initiated by the European Association of National Metrology Institutes (EURAMET) to provide information on the capabilities in this field. The Physikalisch-Technische Bundesanstalt (PTB) acted as the pilot laboratory, with a total of 25 international participants from EURAMET and from the Asia Pacific Metrology Programme (APMP) providing measurements. This KC was the first one to utilise a high-resolution electronic autocollimator as a standard. In contrast to KCs in angle metrology which usually involve the full plane angle, it focused on relatively small angular ranges (+/-10 arcsec and +/-1000 arcsec) and step sizes (10 arcsec and 0.1 arcsec, respectively). This document represents the approved final report on the results of the KC. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCL, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).
Extended Wordsearches in Chemistry
Cotton, Simon
1998-04-01
Students can be encouraged to develop their factual knowledge by use of puzzles. One strategy described here is the extended wordsearch, where the wordsearch element generates a number of words or phrases from which the answers to a series of questions are selected. The wordsearch can be generated with the aid of computer programs, though in order to make them suitable for students with dyslexia or other learning difficulties, a simpler form is more appropriate. These problems can be employed in a variety of contexts, for example, as topic tests and classroom end-of-lesson fillers. An example is provided in the area of calcium chemistry. Sources of suitable software are listed.
Classical extended superconformal symmetries
International Nuclear Information System (INIS)
Viswanathan, R.R.
1990-10-01
Super-covariant differential operators are defined in two dimensions which map supersymmetry doublets to other doublets. The possibility of constructing a closed algebra among the fields appearing in such operators is explored. Such an algebra exists for Grassmann-odd differential operators. A representation for these operators in terms of free-field doublets is constructed. An explicit closed algebra involving fields of spin 2 and 5/2, in addition to the stress tensor and the supersymmetry generator, is constructed from such a free-field representation as an example of a non-linear extended superconformal algebra. (author). 9 refs
Sadeghi, Mohammad Reza; Ghotaslou, Reza; Akhi, Mohammad Taghi; Asgharzadeh, Mohammad; Hasani, Alka
2016-11-01
Very little is known about the occurrence and various types of extended-spectrum β-lactamase (ESBL), AmpC and carbapenemase in Iran. The aims of this study were to determine the prevalence of ESBLs, AmpCs and carbapenemase genes among Enterobacteriaceae in Azerbaijan and to characterize the genetic composition of the detected genes. A total of 307 Enterobacteriaceae isolates, recovered from five medical centres, were screened for ESBL, AmpC and carbapenemase activities by the disc diffusion method and phenotypic confirmatory tests. The 162 selected strains (third-generation cephalosporins, cefoxitin- or carbapenem-resistant strains with positive or negative phenotypic confirmatory tests) were selected for multiplex PCR screening for β-lactamase genes, and detected genes were confirmed by sequencing. Of 162 isolates, 156 harboured 1 to 6 β-lactamase genes of 41 types. The most prevalent genes were blaTEM-1 (29.9 %), followed by blaCTX-M-15 (25.7 %). Plasmid-mediated AmpC was detected in 66 strains (21.5 %) alone or in combination with other genes. Carbapenemase-encoding genes were detected in 18 strains (5.8 %) of 27 carbapenem-non-susceptible isolates including 11, 7, 3 and 1 cases of blaOXA-48, blaNDM-1, blaKPC-2 and blaKPC-3 genes, respectively. Interestingly, 148 (94.8 %) of 156 strains with any β-lactamase gene were found to have a multidrug-resistant pattern. The rate of resistance to β-lactams and multidrug-resistant Enterobacteriaceae is high in Azerbaijan. All positive strains for carbapenemase genes were resistant to all β-lactams. The present study reveals the high occurrence of CTX-M-type ESBLs followed by TEM and SHV variants among Enterobacteriaceae isolates. East Azerbaijan seems to be an alarming focus for OXA-48, NDM-1 and KPC dissemination.
Extending juvenility in grasses
Energy Technology Data Exchange (ETDEWEB)
Kaeppler, Shawn; de Leon Gatti, Natalia; Foerster, Jillian
2017-04-11
The present invention relates to compositions and methods for modulating the juvenile to adult developmental growth transition in plants, such as grasses (e.g. maize). In particular, the invention provides methods for enhancing agronomic properties in plants by modulating expression of GRMZM2G362718, GRMZM2G096016, or homologs thereof. Modulation of expression of one or more additional genes which affect juvenile to adult developmental growth transition such as Glossy15 or Cg1, in conjunction with such modulation of expression is also contemplated. Nucleic acid constructs for down-regulation of GRMZM2G362718 and/or GRMZM2G096016 are also contemplated, as are transgenic plants and products produced there from, that demonstrate altered, such as extended juvenile growth, and display associated phenotypes such as enhanced yield, improved digestibility, and increased disease resistance. Plants described herein may be used, for example, as improved forage or feed crops or in biofuel production.
Extended biorthogonal matrix polynomials
Directory of Open Access Journals (Sweden)
Ayman Shehata
2017-01-01
Full Text Available The pair of biorthogonal matrix polynomials for commutative matrices were first introduced by Varma and Tasdelen in [22]. The main aim of this paper is to extend the properties of the pair of biorthogonal matrix polynomials of Varma and Tasdelen and certain generating matrix functions, finite series, some matrix recurrence relations, several important properties of matrix differential recurrence relations, biorthogonality relations and matrix differential equation for the pair of biorthogonal matrix polynomials J(A,B n (x, k and K(A,B n (x, k are discussed. For the matrix polynomials J(A,B n (x, k, various families of bilinear and bilateral generating matrix functions are constructed in the sequel.
International Nuclear Information System (INIS)
Goddard, Peter
1990-01-01
The algebra of the group of conformal transformations in two dimensions consists of two commuting copies of the Virasoro algebra. In many mathematical and physical contexts, the representations of ν which are relevant satisfy two conditions: they are unitary and they have the ''positive energy'' property that L o is bounded below. In an irreducible unitary representation the central element c takes a fixed real value. In physical contexts, the value of c is a characteristic of a theory. If c < 1, it turns out that the conformal algebra is sufficient to ''solve'' the theory, in the sense of relating the calculation of the infinite set of physically interesting quantities to a finite subset which can be handled in principle. For c ≥ 1, this is no longer the case for the algebra alone and one needs some sort of extended conformal algebra, such as the superconformal algebra. It is these algebras that this paper aims at addressing. (author)
Extended Poisson Exponential Distribution
Directory of Open Access Journals (Sweden)
Anum Fatima
2015-09-01
Full Text Available A new mixture of Modified Exponential (ME and Poisson distribution has been introduced in this paper. Taking the Maximum of Modified Exponential random variable when the sample size follows a zero truncated Poisson distribution we have derived the new distribution, named as Extended Poisson Exponential distribution. This distribution possesses increasing and decreasing failure rates. The Poisson-Exponential, Modified Exponential and Exponential distributions are special cases of this distribution. We have also investigated some mathematical properties of the distribution along with Information entropies and Order statistics of the distribution. The estimation of parameters has been obtained using the Maximum Likelihood Estimation procedure. Finally we have illustrated a real data application of our distribution.
International Nuclear Information System (INIS)
Bruyere, M.; Vallee, A.; Collette, C.
1986-09-01
Extended fuel cycle length and burnup are currently offered by Framatome and Fragema in order to satisfy the needs of the utilities in terms of fuel cycle cost and of overall systems cost optimization. We intend to point out the consequences of an increased fuel cycle length and burnup on reactor safety, in order to determine whether the bounding safety analyses presented in the Safety Analysis Report are applicable and to evaluate the effect on plant licensing. This paper presents the results of this examination. The first part indicates the consequences of increased fuel cycle length and burnup on the nuclear data used in the bounding accident analyses. In the second part of this paper, the required safety reanalyses are presented and the impact on the safety margins of different fuel management strategies is examined. In addition, systems modifications which can be required are indicated
Ibáñez de Opakua, Alain; Merino, Nekane; Villate, Maider; Cordeiro, Tiago N; Ormaza, Georgina; Sánchez-Carbayo, Marta; Diercks, Tammo; Bernadó, Pau; Blanco, Francisco J
2017-01-01
The metastasis suppressor KISS1 is reported to be involved in the progression of several solid neoplasias, making it a promising molecular target for controlling their metastasis. The KISS1 sequence contains an N-terminal secretion signal and several dibasic sequences that are proposed to be the proteolytic cleavage sites. We present the first structural characterization of KISS1 by circular dichroism, multi-angle light scattering, small angle X-Ray scattering and NMR spectroscopy. An analysis of the KISS1 backbone NMR chemical shifts does not reveal any preferential conformation and deviation from a random coil ensemble. The backbone 15N transverse relaxation times indicate a mildly reduced mobility for two regions that are rich in bulky residues. The small angle X-ray scattering curve of KISS1 is likewise consistent with a predominantly random coil ensemble, although an ensemble optimization analysis indicates some preference for more extended conformations possibly due to positive charge repulsion between the abundant basic residues. Our results support the hypothesis that KISS1 mostly samples a random coil conformational space, which is consistent with its high susceptibility to proteolysis and the generation of Kisspeptin fragments.
Energy Technology Data Exchange (ETDEWEB)
Kim, Junghan; Iype, Eldhose; Frijns, Arjan J.H.; Nedea, Silvia V.; Steenhoven, Anton A. van
2014-07-01
Molecular dynamics simulations of heat transfer in gases are computationally expensive when the wall molecules are explicitly modeled. To save computational time, an implicit boundary function is often used. Steele's potential has been used in studies of fluid–solid interface for a long time. In this work, the conceptual idea of Steele's potential was extended in order to simulate water–silicon and water–silica interfaces. A new wall potential model is developed by using the electronegativity-equalization method (EEM), a ReaxFF empirical force field and a non-reactive molecular dynamics package PumMa. Contact angle simulations were performed in order to validate the wall potential model. Contact angle simulations with the resulting tabulated wall potentials gave a silicon–water contact angle of 129°, a quartz–water contact angle of 0°, and a cristobalite–water contact angle of 40°, which are in reasonable agreement with experimental values.
Small angle scattering and polymers
International Nuclear Information System (INIS)
Cotton, J.P.
1996-01-01
The determination of polymer structure is a problem of interest for both statistical physics and industrial applications. The average polymer structure is defined. Then, it is shown why small angle scattering, associated with isotopic substitution, is very well suited to the measurement of the chain conformation. The corresponding example is the old, but pedagogic, measurement of the chain form factor in the polymer melt. The powerful contrast variation method is illustrated by a recent determination of the concentration profile of a polymer interface. (author) 12 figs., 48 refs
Analysis of RTM extended images for VTI media
Li, Vladimir; Tsvankin, Ilya; Alkhalifah, Tariq Ali
2016-01-01
Extended images obtained from reverse time migration (RTM) contain information about the accuracy of the velocity field and subsurface illumination at different incidence angles. Here, we evaluate the influence of errors in the anisotropy parameters on the shape of the residual moveout (RMO) in P-wave RTM extended images for VTI (transversely isotropic with a vertical symmetry axis) media. Using the actual spatial distribution of the zero-dip NMO velocity (Vnmo), which could be approximately estimated by conventional techniques, we analyze the extended images obtained with distorted fields of the parameters η and δ. Differential semblance optimization (DSO) and stack-power estimates are employed to study the sensitivity of focusing to the anisotropy parameters. We also build angle gathers to facilitate interpretation of the shape of RMO in the extended images. The results show that the signature of η is dip-dependent, whereas errors in δ cause defocusing only if that parameter is laterally varying. Hence, earlier results regarding the influence of η and δ on reflection moveout and migration velocity analysis remain generally valid in the extended image space for complex media. The dependence of RMO on errors in the anisotropy parameters provides essential insights for anisotropic wavefield tomography using extended images.
Analysis of RTM extended images for VTI media
Li, Vladimir
2016-04-28
Extended images obtained from reverse time migration (RTM) contain information about the accuracy of the velocity field and subsurface illumination at different incidence angles. Here, we evaluate the influence of errors in the anisotropy parameters on the shape of the residual moveout (RMO) in P-wave RTM extended images for VTI (transversely isotropic with a vertical symmetry axis) media. Using the actual spatial distribution of the zero-dip NMO velocity (Vnmo), which could be approximately estimated by conventional techniques, we analyze the extended images obtained with distorted fields of the parameters η and δ. Differential semblance optimization (DSO) and stack-power estimates are employed to study the sensitivity of focusing to the anisotropy parameters. We also build angle gathers to facilitate interpretation of the shape of RMO in the extended images. The results show that the signature of η is dip-dependent, whereas errors in δ cause defocusing only if that parameter is laterally varying. Hence, earlier results regarding the influence of η and δ on reflection moveout and migration velocity analysis remain generally valid in the extended image space for complex media. The dependence of RMO on errors in the anisotropy parameters provides essential insights for anisotropic wavefield tomography using extended images.
Neutron elastic scattering at very small angles
2002-01-01
This experiment will measure neutron-proton elastic scattering at very small angles and hence very small four-momentum transfer, |t|. The range of |t| depends on the incident neutron momentum of the events but the geometrical acceptance will cover the angular range 0.025 < $\\Theta_{lab}$ < 1.9 mrad. The higher figure could be extended to 8.4 mrad by changing the geometry of the experiment in a later phase. \\\\ \\\\ The neutron beam will be highly collimated and will be derived from a 400 GeV external proton beam of up to $4 \\times 10^{10}$ protons per pulse in the SPS North Area Hall 1. The hydrogen target will be gaseous, operating at 40 atm. pressure and acts as a multiwire proportional chamber to detect the recoil protons. The forward neutron will be detected and located by interaction in a neutron vertex detector and its energy measured by a conventional steel plate calorimeter. \\\\ \\\\ The experiment will cover the angular region of nucleon-nucleon scattering which is dominated by Coulomb scattering ...
An Angle Criterion for Riesz Bases
DEFF Research Database (Denmark)
Lindner, Alexander M; Bittner, B.
1999-01-01
We present a characterization of Riesz bases in terms ofthe angles between certain finite dimensional subspaces. Correlationsbetween the bounds of the Riesz basis and the size of the angles arederived....
Advances on detectors for low-angle scattering of epithermal neutrons
International Nuclear Information System (INIS)
Perelli Cippo, E; Gorini, G; Tardocchi, M; Andreani, C; Pietropaolo, A; Senesi, R; Rhodes, N J; Schoonveld, E M
2008-01-01
The Very Low Angle Detector (VLAD) installed at the ISIS spallation neutron source is a novel instrument for epithermal neutron scattering with a range of applications in solid state physics. VLAD extends the kinematical space of the VESUVIO spectrometer to low momentum transfers at neutron energies above 1 eV. Measurements at scattering angles as low as 1° have been made with limitations due to the achievable signal/background ratio. (technical design note)
Methods for magnetic resonance analysis using magic angle technique
Hu, Jian Zhi [Richland, WA; Wind, Robert A [Kennewick, WA; Minard, Kevin R [Kennewick, WA; Majors, Paul D [Kennewick, WA
2011-11-22
Methods of performing a magnetic resonance analysis of a biological object are disclosed that include placing the object in a main magnetic field (that has a static field direction) and in a radio frequency field; rotating the object at a frequency of less than about 100 Hz around an axis positioned at an angle of about 54.degree.44' relative to the main magnetic static field direction; pulsing the radio frequency to provide a sequence that includes a phase-corrected magic angle turning pulse segment; and collecting data generated by the pulsed radio frequency. In particular embodiments the method includes pulsing the radio frequency to provide at least two of a spatially selective read pulse, a spatially selective phase pulse, and a spatially selective storage pulse. Further disclosed methods provide pulse sequences that provide extended imaging capabilities, such as chemical shift imaging or multiple-voxel data acquisition.
XFEL OSCILLATOR SIMULATION INCLUDING ANGLE-DEPENDENT CRYSTAL REFLECTIVITY
International Nuclear Information System (INIS)
Fawley, William; Lindberg, Ryan; Kim, K.-J.; Shvyd'ko, Yuri
2010-01-01
The oscillator package within the GINGER FEL simulation code has now been extended to include angle-dependent reflectivity properties of Bragg crystals. Previously, the package was modified to include frequencydependent reflectivity in order to model x-ray FEL oscillators from start-up from shot noise through to saturation. We present a summary of the algorithms used for modeling the crystal reflectivity and radiation propagation outside the undulator, discussing various numerical issues relevant to the domain of high Fresnel number and efficient Hankel transforms. We give some sample XFEL-O simulation results obtained with the angle-dependent reflectivity model, with particular attention directed to the longitudinal and transverse coherence of the radiation output.
DEFF Research Database (Denmark)
Hahn, Thomas; Foldspang, Anders
1997-01-01
Quadriceps muscle contraction tends to straighten the Q angle. We expected that sports comprising a high amount of quadriceps training could be associated with low Q angles. The aim of the present study was to estimate the Q angle in athletes and to investigate its potential associations with par......Quadriceps muscle contraction tends to straighten the Q angle. We expected that sports comprising a high amount of quadriceps training could be associated with low Q angles. The aim of the present study was to estimate the Q angle in athletes and to investigate its potential associations...... with participation in sport. Three hundred and thirty-nine athletes had their Q angle measured. The mean of right-side Q angles was higher than left side, and the mean Q angle was higher in women than in men. The Q angle was positively associated with years of jogging, and negatively with years of soccer, swimming...... and sports participation at all. It is concluded that the use of Q angle measurements is questionable....
Wafer scale oblique angle plasma etching
Burckel, David Bruce; Jarecki, Jr., Robert L.; Finnegan, Patrick Sean
2017-05-23
Wafer scale oblique angle etching of a semiconductor substrate is performed in a conventional plasma etch chamber by using a fixture that supports a multiple number of separate Faraday cages. Each cage is formed to include an angled grid surface and is positioned such that it will be positioned over a separate one of the die locations on the wafer surface when the fixture is placed over the wafer. The presence of the Faraday cages influences the local electric field surrounding each wafer die, re-shaping the local field to be disposed in alignment with the angled grid surface. The re-shaped plasma causes the reactive ions to follow a linear trajectory through the plasma sheath and angled grid surface, ultimately impinging the wafer surface at an angle. The selected geometry of the Faraday cage angled grid surface thus determines the angle at with the reactive ions will impinge the wafer.
The Action of Chain Extenders in Nylon-6, PET, and Model Compounds
Loontjens, T.; Pauwels, K.; Derks, F.; Neilen, M.; Sham, C.K.; Serné, M.
1997-01-01
The action of two complementary chain extenders is studied in model systems as well as in poly(ethylene terephthalate) (PET) and nylon–6. Chain extenders are low molecular weight compounds that can be used to increase the molecular weight of polymers in a short time. The reaction must preferably be
Evaluation of blotchy pigments in the anterior chamber angle as a sign of angle closure
Directory of Open Access Journals (Sweden)
Harsha L Rao
2012-01-01
Full Text Available Background: Blotchy pigments in the anterior chamber (AC angle are considered diagnostic of primary angle closure (PAC. But there are no reports either on the prevalence of blotchy pigments in AC angles or the validity of this sign. Aims: To determine the prevalence of blotchy pigments in AC angles and to evaluate their relationship with glaucomatous optic neuropathy (GON in eyes with occludable angles. Setting and Design: Cross-sectional, comparative study. Materials and Methods: Gonioscopy was performed in 1001 eyes of 526 subjects (245 eyes of 148 consecutive, occludable angle subjects and 756 eyes of 378 non-consecutive, open angle subjects, above 35 years of age. Quadrant-wise location of blotchy pigments was documented. Statistical Analysis: Odds of blotchy pigments in occludable angles against that in open angles were evaluated. Relationship of GON with blotchy pigments in occludable angle eyes was evaluated using a multivariate model. Results: Prevalence of blotchy pigments in occludable angles was 28.6% (95% CI, 22.9-34.3 and in open angles was 4.7% (95% CI, 3.2-6.3. Blotchy pigments were more frequently seen in inferior (16% and superior quadrants (15% of occludable angles, and inferior quadrant of open angles (4%. Odds of superior quadrant blotchy pigments in occludable angles were 33 times that in open angles. GON was seen in 107 occludable angle eyes. Blotchy pigments were not significantly associated with GON (odds ratio = 0.5; P = 0.1. Conclusions: Blotchy pigments were seen in 28.6% of occludable angle eyes and 4.7% of open angles eyes. Presence of blotchy pigments in the superior quadrant is more common in occludable angles. Presence of GON in occludable angle eyes was not associated with blotchy pigments.
Evaluation of blotchy pigments in the anterior chamber angle as a sign of angle closure
Rao, Harsha L; Mungale, Sachin C; Kumbar, Tukaram; Parikh, Rajul S; Garudadri, Chandra S
2012-01-01
Background: Blotchy pigments in the anterior chamber (AC) angle are considered diagnostic of primary angle closure (PAC). But there are no reports either on the prevalence of blotchy pigments in AC angles or the validity of this sign. Aims: To determine the prevalence of blotchy pigments in AC angles and to evaluate their relationship with glaucomatous optic neuropathy (GON) in eyes with occludable angles. Setting and Design: Cross-sectional, comparative study. Materials and Methods: Gonioscopy was performed in 1001 eyes of 526 subjects (245 eyes of 148 consecutive, occludable angle subjects and 756 eyes of 378 non-consecutive, open angle subjects), above 35 years of age. Quadrant-wise location of blotchy pigments was documented. Statistical Analysis: Odds of blotchy pigments in occludable angles against that in open angles were evaluated. Relationship of GON with blotchy pigments in occludable angle eyes was evaluated using a multivariate model. Results: Prevalence of blotchy pigments in occludable angles was 28.6% (95% CI, 22.9-34.3) and in open angles was 4.7% (95% CI, 3.2-6.3). Blotchy pigments were more frequently seen in inferior (16%) and superior quadrants (15%) of occludable angles, and inferior quadrant of open angles (4%). Odds of superior quadrant blotchy pigments in occludable angles were 33 times that in open angles. GON was seen in 107 occludable angle eyes. Blotchy pigments were not significantly associated with GON (odds ratio = 0.5; P = 0.1). Conclusions: Blotchy pigments were seen in 28.6% of occludable angle eyes and 4.7% of open angles eyes. Presence of blotchy pigments in the superior quadrant is more common in occludable angles. Presence of GON in occludable angle eyes was not associated with blotchy pigments. PMID:23202393
Dynamic Contact Angle at the Nanoscale: A Unified View.
Lukyanov, Alex V; Likhtman, Alexei E
2016-06-28
Generation of a dynamic contact angle in the course of wetting is a fundamental phenomenon of nature. Dynamic wetting processes have a direct impact on flows at the nanoscale, and therefore, understanding them is exceptionally important to emerging technologies. Here, we reveal the microscopic mechanism of dynamic contact angle generation. It has been demonstrated using large-scale molecular dynamics simulations of bead-spring model fluids that the main cause of local contact angle variations is the distribution of microscopic force acting at the contact line region. We were able to retrieve this elusive force with high accuracy. It has been directly established that the force distribution can be solely predicted on the basis of a general friction law for liquid flow at solid surfaces by Thompson and Troian. The relationship with the friction law provides both an explanation of the phenomenon of dynamic contact angle and a methodology for future predictions. The mechanism is intrinsically microscopic, universal, and irreducible and is applicable to a wide range of problems associated with wetting phenomena.
Contact angles on a soft solid: from Young's law to Neumann's law.
Marchand, Antonin; Das, Siddhartha; Snoeijer, Jacco H; Andreotti, Bruno
2012-12-07
The contact angle that a liquid drop makes on a soft substrate does not obey the classical Young's relation, since the solid is deformed elastically by the action of the capillary forces. The finite elasticity of the solid also renders the contact angles differently from those predicted by Neumann's law, which applies when the drop is floating on another liquid. Here, we derive an elastocapillary model for contact angles on a soft solid by coupling a mean-field model for the molecular interactions to elasticity. We demonstrate that the limit of a vanishing elastic modulus yields Neumann's law or a variation thereof, depending on the force transmission in the solid surface layer. The change in contact angle from the rigid limit to the soft limit appears when the length scale defined by the ratio of surface tension to elastic modulus γ/E reaches the range of molecular interactions.
Cosmetic Lateral Canthoplasty: Preserving the Lateral Canthal Angle
Directory of Open Access Journals (Sweden)
Yeon-Jun Kim
2016-07-01
Full Text Available Cosmetic lateral canthoplasty, in which the size of the eye is increased by extending the palpebral fissure and decreasing the degree of the eye slant, has become a prevalent procedure for East Asians. However, it is not uncommon for there to be complications or unfavorable results after the surgery. With this in mind, the authors have designed a surgical method to reduce complications in cosmetic lateral canthoplasty by preserving the lateral canthal angle. We discuss here the anatomy required for surgery, the surgical methods, and methods for reducing complications during cosmetic lateral canthoplasty.
The paediatric Bohler's angle and crucial angle of Gissane: a case series
Directory of Open Access Journals (Sweden)
Crawford Haemish A
2011-01-01
Full Text Available Abstract Background Bohler's angle and the crucial angle of Gissane can be used to assess calcaneal fractures. While the normal adult values of these angles are widely known, the normal paediatric values have not yet been established. Our aim is to investigate Bohler's angle and the crucial angle of Gissane in a paediatric population and establish normal paediatric reference values. Method We measured Bohler's angle and the crucial angle of Gissane using normal plain ankle radiographs of 763 patients from birth to 14 years of age completed over a five year period from July 2003 to June 2008. Results In our paediatric study group, the mean Bohler's angle was 35.2 degrees and the mean crucial angle of Gissane was 111.3 degrees. In an adult comparison group, the mean Bohler's angle was 39.2 degrees and the mean crucial angle of Gissane was 113.8 degrees. The differences in Bohler's angle and the crucial angle of Gissane between these two groups were statistically significant. Conclusion We have presented the normal values of Bohler's angle and the crucial angle of Gissane in a paediatric population. These values may provide a useful comparison to assist with the management of the paediatric calcaneal fracture.
Magic Angle Spinning NMR Metabolomics
Energy Technology Data Exchange (ETDEWEB)
Zhi Hu, Jian
2016-01-01
Nuclear Magnetic Resonance (NMR) spectroscopy is a non-destructive, quantitative, reproducible, untargeted and unbiased method that requires no or minimal sample preparation, and is one of the leading analytical tools for metabonomics research [1-3]. The easy quantification and the no need of prior knowledge about compounds present in a sample associated with NMR are advantageous over other techniques [1,4]. 1H NMR is especially attractive because protons are present in virtually all metabolites and its NMR sensitivity is high, enabling the simultaneous identification and monitoring of a wide range of low molecular weight metabolites.
Anisotropy signature in extended images from reverse-time migration
Sava, Paul
2012-11-04
Reverse-time migration can accurately image complex geologic structures in anisotropic media. Extended images at selected locations in the earth, i.e. at common-image-point gathers (CIPs), carry enough information to characterize the angle-dependent illumination and to provide measurements for migration velocity analysis. Furthermore, inaccurate anisotropy leaves a distinctive signature in CIPs, which can be used to evaluate anisotropy through techniques similar to the ones used in conventional wavefield tomography.
Broadband absorption through extended resonance modes in random metamaterials
International Nuclear Information System (INIS)
Hao, J.; Niemiec, R.; Lheurette, É.; Lippens, D.; Burgnies, L.
2016-01-01
The properties of disordered metamaterial absorbers are analyzed on the basis of numerical simulations and experimental characterizations. A broadening of the absorption spectrum is clearly evidenced. This effect is the consequence of both the coupling between nearby resonators leading to the occurrence of extended magnetic resonance modes and the interconnection of elementary particles yielding the definition of resonating clusters. The angular robustness of the absorbing structure under oblique incidence is also demonstrated for a wide domain of angles.
Anisotropy signature in extended images from reverse-time migration
Sava, Paul; Alkhalifah, Tariq Ali
2012-01-01
Reverse-time migration can accurately image complex geologic structures in anisotropic media. Extended images at selected locations in the earth, i.e. at common-image-point gathers (CIPs), carry enough information to characterize the angle-dependent illumination and to provide measurements for migration velocity analysis. Furthermore, inaccurate anisotropy leaves a distinctive signature in CIPs, which can be used to evaluate anisotropy through techniques similar to the ones used in conventional wavefield tomography.
Molecular characterization of extended spectrum β-lactamase ...
African Journals Online (AJOL)
None of these strains was resistant to carbapenems. The ESBL production patterns observed included single production of CTX-M (70%), SHV (12%) and TEM (0%). Some ESBL-producing E. coli isolates produced combinations of 2 ESBLs belonging to different groups: CTX-M+SHV (12%) and CTX-M+TEM (6%).
Extending the molecular application range of gas chromatography
Kaal, E.; Janssen, H.-G.
2008-01-01
Gas chromatography is an important analytical technique for qualitative and quantitative analysis in a wide range of application areas. It is fast, provides a high peak capacity, is sensitive and allows combination with a wide range of selective detection methods including mass spectrometry.
Extended molecular dynamics of a c-kit promoter quadruplex
Czech Academy of Sciences Publication Activity Database
Islam, B.; Stadlbauer, Petr; Krepl, Miroslav; Koča, J.; Neidle, S.; Haider, S.; Šponer, Jiří
2015-01-01
Roč. 43, č. 18 (2015), s. 8673-8693 ISSN 0305-1048 R&D Projects: GA ČR(CZ) GAP208/11/1822 Institutional support: RVO:68081707 Keywords : TELOMERIC G-QUADRUPLEX * INTRAMOLECULAR DNA QUADRUPLEXES * GASTROINTESTINAL STROMAL TUMOR Subject RIV: BO - Biophysics Impact factor: 9.202, year: 2015
Molecular characterization of extended spectrum β-lactamase ...
African Journals Online (AJOL)
M.C. El bouamri
Morocco, North Africa. M.C. El bouamria,b,∗. , L. Arsalanea,c, K. Zeroualid, K. Katfyd,. Y. El kamounia,c, S. Zouhaira,b a The Microbiology Laboratory of the Avicenne Military Teaching Hospital of Marrakech, Morocco b The School of Pharmacy and Medicine, Mohammed V University Souissi-Rabat, Morocco c The School of ...
Extended molecular phylogenetics and revised systematics of Malagasy scincine lizards
Erens, Jesse; Miralles, A.; Glaw, F.; Chatrou, L.W.; Vences, M.
2017-01-01
Among the endemic biota of Madagascar, skinks are a diverse radiation of lizards that exhibit a striking ecomorphological variation, and could provide an interesting system to study body-form evolution in squamate reptiles. We provide a new phylogenetic hypothesis for Malagasy skinks of the
Irreducibility conditions for extended superfields
International Nuclear Information System (INIS)
Sokatchev, E.
1981-05-01
The irreducible supermultiplets contained in an extended superfield are presented as sets of covariant derivatives of the superfield. Differential irreducibility constraints are easily obtained from this decomposition. (author)
A thermodynamic model of contact angle hysteresis.
Makkonen, Lasse
2017-08-14
When a three-phase contact line moves along a solid surface, the contact angle no longer corresponds to the static equilibrium angle but is larger when the liquid is advancing and smaller when the liquid is receding. The difference between the advancing and receding contact angles, i.e., the contact angle hysteresis, is of paramount importance in wetting and capillarity. For example, it determines the magnitude of the external force that is required to make a drop slide on a solid surface. Until now, fundamental origin of the contact angle hysteresis has been controversial. Here, this origin is revealed and a quantitative theory is derived. The theory is corroborated by the available experimental data for a large number of solid-liquid combinations. The theory is applied in modelling the contact angle hysteresis on a textured surface, and these results are also in quantitative agreement with the experimental data.
Jiang, Yuzhen; Chang, Dolly S; Zhu, Haogang; Khawaja, Anthony P; Aung, Tin; Huang, Shengsong; Chen, Qianyun; Munoz, Beatriz; Grossi, Carlota M; He, Mingguang; Friedman, David S; Foster, Paul J
2014-09-01
To determine longitudinal changes in angle configuration in the eyes of primary angle-closure suspects (PACS) treated by laser peripheral iridotomy (LPI) and in untreated fellow eyes. Longitudinal cohort study. Primary angle-closure suspects aged 50 to 70 years were enrolled in a randomized, controlled clinical trial. Each participant was treated by LPI in 1 randomly selected eye, with the fellow eye serving as a control. Angle width was assessed in a masked fashion using gonioscopy and anterior segment optical coherence tomography (AS-OCT) before and at 2 weeks, 6 months, and 18 months after LPI. Angle width in degrees was calculated from Shaffer grades assessed under static gonioscopy. Angle configuration was also evaluated using angle opening distance (AOD250, AOD500, AOD750), trabecular-iris space area (TISA500, TISA750), and angle recess area (ARA) measured in AS-OCT images. No significant difference was found in baseline measures of angle configuration between treated and untreated eyes. At 2 weeks after LPI, the drainage angle on gonioscopy widened from a mean of 13.5° at baseline to a mean of 25.7° in treated eyes, which was also confirmed by significant increases in all AS-OCT angle width measures (Pgonioscopy (P = 0.18), AOD250 (P = 0.167) and ARA (P = 0.83). In untreated eyes, angle width consistently decreased across all follow-up visits after LPI, with a more rapid longitudinal decrease compared with treated eyes (P values for all variables ≤0.003). The annual rate of change in angle width was equivalent to 1.2°/year (95% confidence interval [CI], 0.8-1.6) in treated eyes and 1.6°/year (95% CI, 1.3-2.0) in untreated eyes (P<0.001). Angle width of treated eyes increased markedly after LPI, remained stable for 6 months, and then decreased significantly by 18 months after LPI. Untreated eyes experienced a more consistent and rapid decrease in angle width over the same time period. Copyright © 2014 American Academy of Ophthalmology. Published by
Behavior of Tilted Angle Shear Connectors
Khorramian, Koosha; Maleki, Shervin; Shariati, Mahdi; Ramli Sulong, N. H.
2015-01-01
According to recent researches, angle shear connectors are appropriate to transfer longitudinal shear forces across the steel-concrete interface. Angle steel profile has been used in different positions as L-shaped or C-shaped shear connectors. The application of angle shear connectors in tilted positions is of interest in this study. This study investigates the behaviour of tilted-shaped angle shear connectors under monotonic loading using experimental push out tests. Eight push-out specimens are tested to investigate the effects of different angle parameters on the ultimate load capacity of connectors. Two different tilted angles of 112.5 and 135 degrees between the angle leg and steel beam are considered. In addition, angle sizes and lengths are varied. Two different failure modes were observed consisting of concrete crushing-splitting and connector fracture. By increasing the size of connector, the maximum load increased for most cases. In general, the 135 degrees tilted angle shear connectors have a higher strength and stiffness than the 112.5 degrees type. PMID:26642193
Behavior of Tilted Angle Shear Connectors.
Directory of Open Access Journals (Sweden)
Koosha Khorramian
Full Text Available According to recent researches, angle shear connectors are appropriate to transfer longitudinal shear forces across the steel-concrete interface. Angle steel profile has been used in different positions as L-shaped or C-shaped shear connectors. The application of angle shear connectors in tilted positions is of interest in this study. This study investigates the behaviour of tilted-shaped angle shear connectors under monotonic loading using experimental push out tests. Eight push-out specimens are tested to investigate the effects of different angle parameters on the ultimate load capacity of connectors. Two different tilted angles of 112.5 and 135 degrees between the angle leg and steel beam are considered. In addition, angle sizes and lengths are varied. Two different failure modes were observed consisting of concrete crushing-splitting and connector fracture. By increasing the size of connector, the maximum load increased for most cases. In general, the 135 degrees tilted angle shear connectors have a higher strength and stiffness than the 112.5 degrees type.
Molecular sensors and molecular logic gates
International Nuclear Information System (INIS)
Georgiev, N.; Bojinov, V.
2013-01-01
Full text: The rapid grow of nanotechnology field extended the concept of a macroscopic device to the molecular level. Because of this reason the design and synthesis of (supra)-molecular species capable of mimicking the functions of macroscopic devices are currently of great interest. Molecular devices operate via electronic and/or nuclear rearrangements and, like macroscopic devices, need energy to operate and communicate between their elements. The energy needed to make a device work can be supplied as chemical energy, electrical energy, or light. Luminescence is one of the most useful techniques to monitor the operation of molecular-level devices. This fact determinates the synthesis of novel fluorescence compounds as a considerable and inseparable part of nanoscience development. Further miniaturization of semiconductors in electronic field reaches their limit. Therefore the design and construction of molecular systems capable of performing complex logic functions is of great scientific interest now. In semiconductor devices the logic gates work using binary logic, where the signals are encoded as 0 and 1 (low and high current). This process is executable on molecular level by several ways, but the most common are based on the optical properties of the molecule switches encoding the low and high concentrations of the input guest molecules and the output fluorescent intensities with binary 0 and 1 respectively. The first proposal to execute logic operations at the molecular level was made in 1988, but the field developed only five years later when the analogy between molecular switches and logic gates was experimentally demonstrated by de Silva. There are seven basic logic gates: AND, OR, XOR, NOT, NAND, NOR and XNOR and all of them were achieved by molecules, the fluorescence switching as well. key words: fluorescence, molecular sensors, molecular logic gates
Small angle x-ray scattering from proteins in solution
International Nuclear Information System (INIS)
de Souza, C.F.; Torriani, I.L.; Bonafe, C.F.S.; Merrelles, N.C.; Vachette, P.
1989-01-01
In this work the authors report experiments performed with giant respiratory proteins from annelids (erythrocruorins), known to have a molecular weight in the order of four million Daltons. Preliminary x-ray scattering data was obtained using a conventional rotating anode source. High resolution small angle scattering curves were obtained with synchrotron radiation from the DCI storage ring at LURE. Data from solutions with several protein concentrations were analyzed in order to determine low resolution dimensional parameters, using Guinier plots from the smeared scattering curves and the inverse transformation method
Extending cosmology: the metric approach
Mendoza, S.
2012-01-01
Comment: 2012, Extending Cosmology: The Metric Approach, Open Questions in Cosmology; Review article for an Intech "Open questions in cosmology" book chapter (19 pages, 3 figures). Available from: http://www.intechopen.com/books/open-questions-in-cosmology/extending-cosmology-the-metric-approach
Extended cognition and epistemic luck
Carter, J.A.
2013-01-01
When extended cognition is extended into mainstream epistemology, an awkward tension arises when considering cases of environmental epistemic luck. Surprisingly, it is not at all clear how the mainstream verdict that agents lack knowledge in cases of environmental luck can be reconciled with
Wide-azimuth angle-domain imaging for anisotropic reverse-time migration
Sava, Paul C.; Alkhalifah, Tariq Ali
2011-01-01
Extended common-image-point gathers (CIP) constructed by wide-azimuth TI wave-equation migration contain all the necessary information for angle decomposition as a function of the reflection and azimuth angles at selected locations in the subsurface. The reflection and azimuth angles are derived from the extended images using analytic relations between the space-lag and time-lag extensions. This post-imaging decomposition requires only information which is already available at the time of migration, i.e. the model parameters and the tilt angles of the TI medium. The transformation amounts to a linear Radon transform applied to the CIPs obtained after the application of the extended imaging condition. If information about the reflector dip is available at the CIP locations, then only two components of the space-lag vectors are required, thus reducing computational cost and increasing the affordability of the method. This efficient angle decomposition method is suitable for wide-azimuth imaging in anisotropic media with arbitrary orientation of the symmetry plane. © 2011 Society of Exploration Geophysicists.
Wide-azimuth angle gathers for anisotropic wave-equation migration
Sava, Paul C.
2012-10-15
Extended common-image-point gathers (CIP) constructed by wide-azimuth TI wave-equation migration contain all the necessary information for angle decomposition as a function of the reflection and azimuth angles at selected locations in the subsurface. The aperture and azimuth angles are derived from the extended images using analytic relations between the space- and time-lag extensions using information which is already available at the time of migration, i.e. the anisotropic model parameters. CIPs are cheap to compute because they can be distributed in the image at the most relevant positions, as indicated by the geologic structure. If the reflector dip is known at the CIP locations, then the computational cost can be reduced by evaluating only two components of the space-lag vector. The transformation from extended images to angle gathers is a planar Radon transform which depends on the local medium parameters. This transformation allows us to separate all illumination directions for a given experiment, or between different experiments. We do not need to decompose the reconstructed wavefields or to choose the most energetic directions for decomposition. Applications of the method include illumination studies in complex areas where ray-based methods fail, and assuming that the subsurface illumination is sufficiently dense, the study of amplitude variation with aperture and azimuth angles. © 2012 European Association of Geoscientists & Engineers.
Wide-azimuth angle gathers for anisotropic wave-equation migration
Sava, Paul C.; Alkhalifah, Tariq Ali
2012-01-01
Extended common-image-point gathers (CIP) constructed by wide-azimuth TI wave-equation migration contain all the necessary information for angle decomposition as a function of the reflection and azimuth angles at selected locations in the subsurface. The aperture and azimuth angles are derived from the extended images using analytic relations between the space- and time-lag extensions using information which is already available at the time of migration, i.e. the anisotropic model parameters. CIPs are cheap to compute because they can be distributed in the image at the most relevant positions, as indicated by the geologic structure. If the reflector dip is known at the CIP locations, then the computational cost can be reduced by evaluating only two components of the space-lag vector. The transformation from extended images to angle gathers is a planar Radon transform which depends on the local medium parameters. This transformation allows us to separate all illumination directions for a given experiment, or between different experiments. We do not need to decompose the reconstructed wavefields or to choose the most energetic directions for decomposition. Applications of the method include illumination studies in complex areas where ray-based methods fail, and assuming that the subsurface illumination is sufficiently dense, the study of amplitude variation with aperture and azimuth angles. © 2012 European Association of Geoscientists & Engineers.
Scale-invariant extended inflation
International Nuclear Information System (INIS)
Holman, R.; Kolb, E.W.; Vadas, S.L.; Wang, Y.
1991-01-01
We propose a model of extended inflation which makes use of the nonlinear realization of scale invariance involving the dilaton coupled to an inflaton field whose potential admits a metastable ground state. The resulting theory resembles the Jordan-Brans-Dicke version of extended inflation. However, quantum effects, in the form of the conformal anomaly, generate a mass for the dilaton, thus allowing our model to evade the problems of the original version of extended inflation. We show that extended inflation can occur for a wide range of inflaton potentials with no fine-tuning of dimensionless parameters required. Furthermore, we also find that it is quite natural for the extended-inflation period to be followed by an epoch of slow-rollover inflation as the dilaton settles down to the minimum of its induced potential
Optimum Tilt Angle at Tropical Region
Directory of Open Access Journals (Sweden)
S Soulayman
2015-02-01
Full Text Available : One of the important parameters that affect the performance of a solar collector is its tilt angle with the horizon. This is because of the variation of tilt angle changes the amount of solar radiation reaching the collector surface. Meanwhile, is the rule of thumb, which says that solar collector Equator facing position is the best, is valid for tropical region? Thus, it is required to determine the optimum tilt as for Equator facing and for Pole oriented collectors. In addition, the question that may arise: how many times is reasonable for adjusting collector tilt angle for a definite value of surface azimuth angle? A mathematical model was used for estimating the solar radiation on a tilted surface, and to determine the optimum tilt angle and orientation (surface azimuth angle for the solar collector at any latitude. This model was applied for determining optimum tilt angle and orientation in the tropical zones, on a daily basis, as well as for a specific period. The optimum angle was computed by searching for the values for which the radiation on the collector surface is a maximum for a particular day or a specific period. The results reveal that changing the tilt angle 12 times in a year (i.e. using the monthly optimum tilt angle maintains approximately the total amount of solar radiation near the maximum value that is found by changing the tilt angle daily to its optimum value. This achieves a yearly gain in solar radiation of 11% to 18% more than the case of a solar collector fixed on a horizontal surface.
Zhu, Chongqin; Gao, Yurui; Li, Hui; Meng, Sheng; Li, Lei; Francisco, Joseph S; Zeng, Xiao Cheng
2016-11-15
Hydrophobicity of macroscopic planar surface is conventionally characterized by the contact angle of water droplets. However, this engineering measurement cannot be directly extended to surfaces of proteins, due to the nanometer scale of amino acids and inherent nonplanar structures. To measure the hydrophobicity of side chains of proteins quantitatively, numerous parameters were developed to characterize behavior of hydrophobic solvation. However, consistency among these parameters is not always apparent. Herein, we demonstrate an alternative way of characterizing hydrophobicity of amino acid side chains in a protein environment by constructing a monolayer of amino acids (i.e., artificial planar peptide network) according to the primary and the β-sheet secondary structures of protein so that the conventional engineering measurement of the contact angle of a water droplet can be brought to bear. Using molecular dynamics simulations, contact angles θ of a water nanodroplet on the planar peptide network, together with excess chemical potentials of purely repulsive methane-sized Weeks-Chandler-Andersen solute, are computed. All of the 20 types of amino acids and the corresponding planar peptide networks are studied. Expectedly, all of the planar peptide networks with nonpolar amino acids are hydrophobic due to θ [Formula: see text] 90°, whereas all of the planar peptide networks of the polar and charged amino acids are hydrophilic due to θ [Formula: see text] 90°. Planar peptide networks of the charged amino acids exhibit complete-wetting behavior due to θ [Formula: see text] 0°. This computational approach for characterization of hydrophobicity can be extended to artificial planar networks of other soft matter.
Schreurs, Mervin J; Benjaminse, Anne; Lemmink, Koen A P M
2017-10-03
Cutting is an important skill in team-sports, but unfortunately is also related to non-contact ACL injuries. The purpose was to examine knee kinetics and kinematics at different cutting angles. 13 males and 16 females performed cuts at different angles (45°, 90°, 135° and 180°) at maximum speed. 3D kinematics and kinetics were collected. To determine differences across cutting angles (45°, 90°, 135° and 180°) and sex (female, male), a 4×2 repeated measures ANOVA was conducted followed by post hoc comparisons (Bonferroni) with alpha level set at α≤0.05a priori. At all cutting angles, males showed greater knee flexion angles than females (pcutting angles with no differences in the amount of knee flexion -42.53°±8.95°, females decreased their knee flexion angle from -40.6°±7.2° when cutting at 45° to -36.81°±9.10° when cutting at 90°, 135° and 180° (pcutting towards sharper angles (pcutting angles and then stabilized compared to the 45° cutting angle (pcutting to sharper angles (pcutting angles demand different knee kinematics and kinetics. Sharper cutting angles place the knee more at risk. However, females and males handle this differently, which has implications for injury prevention. Copyright © 2017 Elsevier Ltd. All rights reserved.
Devices and process for high-pressure magic angle spinning nuclear magnetic resonance
Energy Technology Data Exchange (ETDEWEB)
Hoyt, David W.; Sears, Jesse A.; Turcu, Romulus V. F.; Rosso, Kevin M.; Hu, Jian Zhi
2017-12-05
A high-pressure magic angle spinning (MAS) rotor is detailed that includes a high-pressure sample cell that maintains high pressures exceeding 150 bar. The sample cell design minimizes pressure losses due to penetration over an extended period of time.
An evaluation of the carrying angle of the elbow joint in adolescents
African Journals Online (AJOL)
McRoy
Department of Anatomy and Orthopedics, Sri Lakshmi Narayana Institute of Medical Sciences,. Pondicherry - 605 502 ... forearm deviates laterally from the long axis of the humerus, with the arm extended and the palm ... for elbow reconstruction. Key words: Carrying angle, elbow joint, adolescent, forearm, humerus, ulna ...
Devices and process for high-pressure magic angle spinning nuclear magnetic resonance
Hoyt, David W; Sears, Jr., Jesse A; Turcu, Romulus V.F.; Rosso, Kevin M; Hu, Jian Zhi
2014-04-08
A high-pressure magic angle spinning (MAS) rotor is detailed that includes a high-pressure sample cell that maintains high pressures exceeding 150 bar. The sample cell design minimizes pressure losses due to penetration over an extended period of time.
Photoelectron photoion molecular beam spectroscopy
International Nuclear Information System (INIS)
Trevor, D.J.
1980-12-01
The use of supersonic molecular beams in photoionization mass spectroscopy and photoelectron spectroscopy to assist in the understanding of photoexcitation in the vacuum ultraviolet is described. Rotational relaxation and condensation due to supersonic expansion were shown to offer new possibilities for molecular photoionization studies. Molecular beam photoionization mass spectroscopy has been extended above 21 eV photon energy by the use of Stanford Synchrotron Radiation Laboratory (SSRL) facilities. Design considerations are discussed that have advanced the state-of-the-art in high resolution vuv photoelectron spectroscopy. To extend gas-phase studies to 160 eV photon energy, a windowless vuv-xuv beam line design is proposed
Viability of bull semen extended with commercial semen extender ...
African Journals Online (AJOL)
Andrea Raseona
stored at 24 °C. Sperm motility parameters, morphology, and viability were analysed ... body size, slow average daily weight gain, decreased fertility, extended .... were determined by counting a total of 200 spermatozoa per each stained slide.
Page 1 '---------------------------- Presenting features ofprimary angle ...
African Journals Online (AJOL)
coma were assessed. The diagnosis of primary angle-closure glaucoma was made on presentation if the intra-ocular pressure was > 21 mmHg, or if a glaucomatous visual field was found, in the presence of a partially or totally closed angle or peripheral anterior synechiae. Provocation tests were not performed. Patients ...
Gaugings at angles from orientifold reductions
International Nuclear Information System (INIS)
Roest, Diederik
2009-01-01
We consider orientifold reductions to N= 4 gauged supergravity in four dimensions. A special feature of this theory is that different factors of the gauge group can have relative angles with respect to the electro-magnetic SL(2) symmetry. These are crucial for moduli stabilization and de Sitter vacua. We show how such gaugings at angles generically arise in orientifold reductions.
Automatic Cobb Angle Determination From Radiographic Images
Sardjono, Tri Arief; Wilkinson, Michael H. F.; Veldhuizen, Albert G.; van Ooijen, Peter M. A.; Purnama, Ketut E.; Verkerke, Gijsbertus J.
2013-01-01
Study Design. Automatic measurement of Cobb angle in patients with scoliosis. Objective. To test the accuracy of an automatic Cobb angle determination method from frontal radiographical images. Summary of Background Data. Thirty-six frontal radiographical images of patients with scoliosis. Methods.
Practical evaluation of action-angle variables
International Nuclear Information System (INIS)
Boozer, A.H.
1984-02-01
A practical method is described for establishing action-angle variables for a Hamiltonian system. That is, a given nearly integrable Hamiltonian is divided into an exactly integrable system plus a perturbation in action-angle form. The transformation of variables, which is carried out using a few short trajectory integrations, permits a rapid determination of trajectory properties throughout a phase space volume
Apparent contact angle and contact angle hysteresis on liquid infused surfaces.
Semprebon, Ciro; McHale, Glen; Kusumaatmaja, Halim
2016-12-21
We theoretically investigate the apparent contact angle and contact angle hysteresis of a droplet placed on a liquid infused surface. We show that the apparent contact angle is not uniquely defined by material parameters, but also has a dependence on the relative size between the droplet and its surrounding wetting ridge formed by the infusing liquid. We derive a closed form expression for the contact angle in the limit of vanishing wetting ridge, and compute the correction for small but finite ridge, which corresponds to an effective line tension term. We also predict contact angle hysteresis on liquid infused surfaces generated by the pinning of the contact lines by the surface corrugations. Our analytical expressions for both the apparent contact angle and contact angle hysteresis can be interpreted as 'weighted sums' between the contact angles of the infusing liquid relative to the droplet and surrounding gas phases, where the weighting coefficients are given by ratios of the fluid surface tensions.
A lattice determination of gA and left angle x right angle from overlap fermions
International Nuclear Information System (INIS)
Guertler, M.; Schiller, A.; Streuer, T.; Freie Univ. Berlin
2004-10-01
We present results for the nucleon's axial charge g A and the first moment left angle x right angle of the unpolarized parton distribution function from a simulation of quenched overlap fermions. (orig.)
Laser peripheral iridoplasty for angle-closure.
Ng, Wai Siene; Ang, Ghee Soon; Azuara-Blanco, Augusto
2012-02-15
Angle-closure glaucoma is a leading cause of irreversible blindness in the world. Treatment is aimed at opening the anterior chamber angle and lowering the IOP with medical and/or surgical treatment (e.g. trabeculectomy, lens extraction). Laser iridotomy works by eliminating pupillary block and widens the anterior chamber angle in the majority of patients. When laser iridotomy fails to open the anterior chamber angle, laser iridoplasty may be recommended as one of the options in current standard treatment for angle-closure. Laser peripheral iridoplasty works by shrinking and pulling the peripheral iris tissue away from the trabecular meshwork. Laser peripheral iridoplasty can be used for crisis of acute angle-closure and also in non-acute situations. To assess the effectiveness of laser peripheral iridoplasty in the treatment of narrow angles (i.e. primary angle-closure suspect), primary angle-closure (PAC) or primary angle-closure glaucoma (PACG) in non-acute situations when compared with any other intervention. In this review, angle-closure will refer to patients with narrow angles (PACs), PAC and PACG. We searched CENTRAL (which contains the Cochrane Eyes and Vision Group Trials Register) (The Cochrane Library 2011, Issue 12), MEDLINE (January 1950 to January 2012), EMBASE (January 1980 to January 2012), Latin American and Caribbean Literature on Health Sciences (LILACS) (January 1982 to January 2012), the metaRegister of Controlled Trials (mRCT) (www.controlled-trials.com), ClinicalTrials.gov (www.clinicaltrials.gov) and the WHO International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). There were no date or language restrictions in the electronic searches for trials. The electronic databases were last searched on 5 January 2012. We included only randomised controlled trials (RCTs) in this review. Patients with narrow angles, PAC or PACG were eligible. We excluded studies that included only patients with acute presentations
Scoliosis angle. Conceptual basis and proposed definition
Energy Technology Data Exchange (ETDEWEB)
Marklund, T [Linkoepings Hoegskola (Sweden)
1978-01-01
The most commonly used methods of assessing the scoliotic deviation measure angles that are not clearly defined in relation to the anatomy of the patient. In order to give an anatomic basis for such measurements it is proposed to define the scoliotic deviation as the deviation the vertebral column makes with the sagittal plane. Both the Cobb and the Ferguson angles may be based on this definition. The present methods of measurement are then attempts to measure these angles. If the plane of these angles is parallel to the film, the measurement will be correct. Errors in the measurements may be incurred by the projection. A hypothetical projection, called a 'rectified orthogonal projection', is presented, which correctly represents all scoliotic angles in accordance with these principles. It can be constructed in practice with the aid of a computer and by performing measurements on two projections of the vertebral column; a scoliotic curve can be represented independent of the kyphosis and lordosis.
The resection angle in apical surgery
DEFF Research Database (Denmark)
von Arx, Thomas; Janner, Simone F M; Jensen, Simon S
2016-01-01
OBJECTIVES: The primary objective of the present radiographic study was to analyse the resection angle in apical surgery and its correlation with treatment outcome, type of treated tooth, surgical depth and level of root-end filling. MATERIALS AND METHODS: In the context of a prospective clinical...... study, cone beam computed tomography (CBCT) scans were taken before and 1 year after apical surgery to measure the angle of the resection plane relative to the longitudinal axis of the root. Further, the surgical depth (distance from the buccal cortex to the most lingual/palatal point of the resection...... or with the retrofilling length. CONCLUSIONS: Statistically significant differences were observed comparing resection angles of different tooth groups. However, the angle had no significant effect on treatment outcome. CLINICAL RELEVANCE: Contrary to common belief, the resection angle in maxillary anterior teeth...
Experimental study of crossing angle collision
International Nuclear Information System (INIS)
Chen, T.; Rice, D.; Rubin, D.; Sagan, D.; Tigner, M.
1993-01-01
The non-linear coupling due to the beam-beam interaction with crossing angle has been studied. The major effect of a small (∼12mrad) crossing angle is to excite 5Q x ±Q s =integer coupling resonance family on large amplitude particles, which results in bad lifetime. On the CESR, a small crossing angle (∼2.4mr) was created at the IP and a reasonable beam-beam tune-shift was achieved. The decay rate of the beam is measured as a function of horizontal tune with and without crossing angle. The theoretical analysis, simulation and experimental measurements have a good agreement. The resonance strength as a function of crossing angle is also measured
Apparent Contact Angle and Contact Angle Hysteresis on Liquid Infused Surfaces
Semprebon, Ciro; McHale, Glen; Kusumaatmaja, Halim
2016-01-01
We theoretically investigate the apparent contact angle and contact angle hysteresis of a droplet placed on a liquid infused surface. We show that the apparent contact angle is not uniquely defined by material parameters, but also has a strong dependence on the relative size between the droplet and its surrounding wetting ridge formed by the infusing liquid. We derive a closed form expression for the contact angle in the limit of vanishing wetting ridge, and compute the correction for small b...
Cosmological dynamics of extended chameleons
International Nuclear Information System (INIS)
Tamanini, Nicola; Wright, Matthew
2016-01-01
We investigate the cosmological dynamics of the recently proposed extended chameleon models at both background and linear perturbation levels. Dynamical systems techniques are employed to fully characterize the evolution of the universe at the largest distances, while structure formation is analysed at sub-horizon scales within the quasi-static approximation. The late time dynamical transition from dark matter to dark energy domination can be well described by almost all extended chameleon models considered, with no deviations from ΛCDM results at both background and perturbation levels. The results obtained in this work confirm the cosmological viability of extended chameleons as alternative dark energy models.
Extended asymptotic functions - some examples
International Nuclear Information System (INIS)
Todorov, T.D.
1981-01-01
Several examples of extended asymptotic functions of two variables are given. This type of asymptotic functions has been introduced as an extension of continuous ordinary functions. The presented examples are realizations of some Schwartz distributions delta(x), THETA(x), P(1/xsup(n)) and can be multiplied in the class of the asymptotic functions as opposed to the theory of Schwartz distributions. The examples illustrate the method of construction of extended asymptotic functions similar to the distributions. The set formed by the extended asymptotic functions is also considered. It is shown, that this set is not closed with respect to addition and multiplication
Cosmological dynamics of extended chameleons
Energy Technology Data Exchange (ETDEWEB)
Tamanini, Nicola [Institut de Physique Théorique, CEA-Saclay, CNRS UMR 3681, Université Paris-Saclay, F-91191 Gif-sur-Yvette (France); Wright, Matthew, E-mail: nicola.tamanini@cea.fr, E-mail: matthew.wright.13@ucl.ac.uk [Department of Mathematics, University College London, Gower Street, London, WC1E 6BT (United Kingdom)
2016-04-01
We investigate the cosmological dynamics of the recently proposed extended chameleon models at both background and linear perturbation levels. Dynamical systems techniques are employed to fully characterize the evolution of the universe at the largest distances, while structure formation is analysed at sub-horizon scales within the quasi-static approximation. The late time dynamical transition from dark matter to dark energy domination can be well described by almost all extended chameleon models considered, with no deviations from ΛCDM results at both background and perturbation levels. The results obtained in this work confirm the cosmological viability of extended chameleons as alternative dark energy models.
Laser Tracker Calibration - Testing the Angle Measurement System -
Energy Technology Data Exchange (ETDEWEB)
Gassner, Georg; Ruland, Robert; /SLAC
2008-12-05
Physics experiments at the SLAC National Accelerator Laboratory (SLAC) usually require high accuracy positioning, e. g. 100 {micro}m over a distance of 150 m or 25 {micro}m in a 10 x 10 x 3 meter volume. Laser tracker measurement systems have become one of the most important tools for achieving these accuracies when mapping components. The accuracy of these measurements is related to the manufacturing tolerances of various individual components, the resolutions of measurement systems, the overall precision of the assembly, and how well imperfections can be modeled. As with theodolites and total stations, one can remove the effects of most assembly and calibration errors by measuring targets in both direct and reverse positions and computing the mean to obtain the result. However, this approach does not compensate for errors originating from the encoder system. In order to improve and gain a better understanding of laser tracker angle measurement tolerances we extended our laboratory's capabilities with the addition of a horizontal angle calibration test stand. This setup is based on the use of a high precision rotary table providing an angular accuracy of better than 0.2 arcsec. Presently, our setup permits only tests of the horizontal angle measurement system. A test stand for vertical angle calibration is under construction. Distance measurements (LECOCQ & FUSS, 2000) are compared to an interferometer bench for distances of up to 32 m. Together both tests provide a better understanding of the instrument and how it should be operated. The observations also provide a reasonable estimate of covariance information of the measurements according to their actual performance for network adjustments.
Survival and Growth of Cottonwood Clones After Angle Planting and Base Angle Treatments
W.K. Randall; Harvey E. Kennedy
1976-01-01
Presently, commercial cottonwood plantations in the lower Mississippi Valley are established using vertically planted, unrooted cuttings with a flat (90Â°) base. Neither survival nor first-year growth of a group of six Stoneville clones was improved by angle planting or cutting base angles diagonally. For one clone, survival was significantly better when base angle was...
Angle-resolved effective potentials for disk-shaped molecules
Energy Technology Data Exchange (ETDEWEB)
Heinemann, Thomas, E-mail: thomas.heinemann@tu-berlin.de; Klapp, Sabine H. L., E-mail: klapp@physik.tu-berlin.de [Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin (Germany); Palczynski, Karol, E-mail: karol.palczynski@helmholtz-berlin.de; Dzubiella, Joachim, E-mail: joachim.dzubiella@helmholtz-berlin.de [Institut für Physik, Humboldt Universität zu Berlin, Newtonstraße 15, 12489 Berlin (Germany); Helmholtz Zentrum Berlin (HZB), Institute of Soft Matter and Functional Materials, Hahn-Meitner Platz 1, 14109 Berlin (Germany)
2014-12-07
We present an approach for calculating coarse-grained angle-resolved effective pair potentials for uniaxial molecules. For integrating out the intramolecular degrees of freedom we apply umbrella sampling and steered dynamics techniques in atomistically-resolved molecular dynamics (MD) computer simulations. Throughout this study we focus on disk-like molecules such as coronene. To develop the methods we focus on integrating out the van der Waals and intramolecular interactions, while electrostatic charge contributions are neglected. The resulting coarse-grained pair potential reveals a strong temperature and angle dependence. In the next step we fit the numerical data with various Gay-Berne-like potentials to be used in more efficient simulations on larger scales. The quality of the resulting coarse-grained results is evaluated by comparing their pair and many-body structure as well as some thermodynamic quantities self-consistently to the outcome of atomistic MD simulations of many-particle systems. We find that angle-resolved potentials are essential not only to accurately describe crystal structures but also for fluid systems where simple isotropic potentials start to fail already for low to moderate packing fractions. Further, in describing these states it is crucial to take into account the pronounced temperature dependence arising in selected pair configurations due to bending fluctuations.
Mariani, Giacomo; Goujon, Antoine; Moulin, Emilie; Rawiso, Michel; Giuseppone, Nicolas; Buhler, Eric
2017-11-30
In this article, the dynamic structure of complex supramolecular polymers composed of bistable [c2]daisy chain rotaxanes as molecular machines that are linked by ureidopyrimidinones (Upy) as recognition moieties was studied. pH actuation of the integrated mechanically active rotaxanes controls the contraction/extension of the polymer chains as well as their physical reticulation. Small-angle neutron and X-ray scattering were used to study in-depth the nanostructure of the contracted and extended polymer aggregates in toluene solution. The supramolecular polymers comprising contracted nanomachines were found to be equilibrium polymers with a mass that is concentration dependent in dilute and semidilute regimes. Surprisingly, the extended polymers form a gel network with a crystal-like internal structure that is independent of concentration and reminiscent of a pearl-necklace network.
Large or small angle MSW from single right-handed neutrino dominance
International Nuclear Information System (INIS)
King, S.F
2000-01-01
In this talk we discuss a natural explanation of both neutrino mass hierarchies and large neutrino mixing angles, as required by the atmospheric neutrino data, in terms of a single right-handed neutrino giving the dominant contribution to the 23 block of the light effective neutrino matrix, and illustrate this mechanism in the framework of models with U(1) family symmetries. Sub-dominant contributions from other right-handed neutrinos are required to give small mass splittings appropriate to the MSW solution to the solar neutrino problem. We present three explicit examples for achieving the small angle MSW solution in the framework of U(1) family symmetry models containing three right-handed neutrinos, which can naturally describe all quark and lepton masses and mixing angles. In this talk we also extend the analysis to the large angle MSW solution
Symmetric extendibility of quantum states
Nowakowski, Marcin L.
2015-01-01
Studies on symmetric extendibility of quantum states become especially important in a context of analysis of one-way quantum measures of entanglement, distilabillity and security of quantum protocols. In this paper we analyse composite systems containing a symmetric extendible part with a particular attention devoted to one-way security of such systems. Further, we introduce a new one-way monotone based on the best symmetric approximation of quantum state. We underpin those results with geome...
Topological defects in extended inflation
International Nuclear Information System (INIS)
Copeland, E.J.; Kolb, E.W.; Chicago Univ., IL; Liddle, A.R.
1990-04-01
We consider the production of topological defects, especially cosmic strings, in extended inflation models. In extended inflation, the Universe passes through a first-order phase transition via bubble percolation, which naturally allows defects to form at the end of inflation. The correlation length, which determines the number density of the defects, is related to the mean size of bubbles when they collide. This mechanism allows a natural combination of inflation and large-scale structure via cosmic strings. 18 refs
Quasi-extended asymptotic functions
International Nuclear Information System (INIS)
Todorov, T.D.
1979-01-01
The class F of ''quasi-extended asymptotic functions'' is introduced. It contains all extended asymptotic functions as well as some new asymptotic functions very similar to the Schwartz distributions. On the other hand, every two quasiextended asymptotic functions can be multiplied as opposed to the Schwartz distributions; in particular, the square delta 2 of an asymptotic function delta similar to Dirac's delta-function, is constructed as an example
Some problems with extended inflation
International Nuclear Information System (INIS)
Weinberg, E.J.
1989-01-01
The recently proposed extended inflation scenario is examined. Upper bounds on the Brans-Dicke parameter ω are obtained by requiring that the recovery from the supercooled regime be such that the presently observed Universe could have emerged. These bounds are well below the present-day experimental limits, implying that one must use models which have a potential to fix the present value of the Brans-Dicke-like scalar field. The implications for extended inflation in such models are discussed
Topological defects in extended inflation
International Nuclear Information System (INIS)
Copeland, E.J.; Kolb, E.W.; Liddle, A.R.
1990-01-01
We consider the production of topological defects, especially cosmic strings, in extended-inflation models. In extended inflation, the Universe passes through a first-order phase transition via bubble percolation, which naturally allows defects to form at the end of inflation. The correlation length, which determines the number density of the defects, is related to the mean size of the bubbles when they collide. This mechanism allows a natural combination of inflation and large-scale structure via cosmic strings
Creation of the {pi} angle standard for the flat angle measurements
Energy Technology Data Exchange (ETDEWEB)
Giniotis, V; Rybokas, M, E-mail: gi@ap.vtu.l, E-mail: MRybokas@gama.l [Department of Information Technologies, Vilnius Gediminas Technical University, Sauletekio al. 11, 10223 Vilnius-40 (Lithuania)
2010-07-01
Angle measurements are based mainly on multiangle prisms - polygons with autocollimators, rotary encoders for high accuracy and circular scales as the standards of the flat angle. Traceability of angle measurements is based on the standard of the plane angle - prism (polygon) calibrated at an appropriate accuracy. Some metrological institutions have established their special test benches (comparators) equipped with circular scales or rotary encoders of high accuracy and polygons with autocollimators for angle calibration purposes. Nevertheless, the standard (etalon) of plane angle - polygon has many restrictions for the transfer of angle unit - radian (rad) and other units of angle. It depends on the number of angles formed by the flat sides of the polygon that is restricted by technological and metrological difficulties related to the production and accuracy determination of the polygon. A possibility to create the standard of the angle equal to {pi} rad or half the circle or the full angle is proposed. It can be created by the circular scale with the rotation axis of very high accuracy and two precision reading instruments, usually, photoelectric microscopes (PM), placed on the opposite sides of the circular scale using the special alignment steps. A great variety of angle units and values can be measured and its traceability ensured by applying the third PM on the scale. Calibration of the circular scale itself and other scale or rotary encoder as well is possible using the proposed method with an implementation of {pi} rad as the primary standard angle. The method proposed enables to assure a traceability of angle measurements at every laboratory having appropriate environment and reading instruments of appropriate accuracy together with a rotary table with the rotation axis of high accuracy - rotation trajectory (runout) being in the range of 0.05 {mu}m. Short information about the multipurpose angle measurement test bench developed is presented.
Extended likelihood inference in reliability
International Nuclear Information System (INIS)
Martz, H.F. Jr.; Beckman, R.J.; Waller, R.A.
1978-10-01
Extended likelihood methods of inference are developed in which subjective information in the form of a prior distribution is combined with sampling results by means of an extended likelihood function. The extended likelihood function is standardized for use in obtaining extended likelihood intervals. Extended likelihood intervals are derived for the mean of a normal distribution with known variance, the failure-rate of an exponential distribution, and the parameter of a binomial distribution. Extended second-order likelihood methods are developed and used to solve several prediction problems associated with the exponential and binomial distributions. In particular, such quantities as the next failure-time, the number of failures in a given time period, and the time required to observe a given number of failures are predicted for the exponential model with a gamma prior distribution on the failure-rate. In addition, six types of life testing experiments are considered. For the binomial model with a beta prior distribution on the probability of nonsurvival, methods are obtained for predicting the number of nonsurvivors in a given sample size and for predicting the required sample size for observing a specified number of nonsurvivors. Examples illustrate each of the methods developed. Finally, comparisons are made with Bayesian intervals in those cases where these are known to exist
Angle closure glaucoma in congenital ectropion uvea
Directory of Open Access Journals (Sweden)
Grace M. Wang
2018-06-01
Full Text Available Purpose: Congenital ectropion uvea is a rare anomaly, which is associated with open, but dysplastic iridocorneal angles that cause childhood glaucoma. Herein, we present 3 cases of angle-closure glaucoma in children with congenital ectropion uvea. Observations: Three children were initially diagnosed with unilateral glaucoma secondary to congenital ectropion uvea at 7, 8 and 13 years of age. The three cases showed 360° of ectropion uvea and iris stromal atrophy in the affected eye. In one case, we have photographic documentation of progression to complete angle closure, which necessitated placement of a glaucoma drainage device 3 years after combined trabeculotomy and trabeculectomy. The 2 other cases, which presented as complete angle closure, also underwent glaucoma drainage device implantation. All three cases had early glaucoma drainage device encapsulation (within 4 months and required additional surgery (cycloablation or trabeculectomy. Conclusions and importance: Congenital ectropion uvea can be associated with angle-closure glaucoma, and placement of glaucoma drainage devices in all 3 of our cases showed early failure due to plate encapsulation. Glaucoma in congenital ectropion uvea requires attention to angle configuration and often requires multiple surgeries to obtain intraocular pressure control. Keywords: Congenital ectropion uvea, Juvenile glaucoma, Angle-closure glaucoma, Glaucoma drainage device
Modified Angle's Classification for Primary Dentition.
Chandranee, Kaushik Narendra; Chandranee, Narendra Jayantilal; Nagpal, Devendra; Lamba, Gagandeep; Choudhari, Purva; Hotwani, Kavita
2017-01-01
This study aims to propose a modification of Angle's classification for primary dentition and to assess its applicability in children from Central India, Nagpur. Modification in Angle's classification has been proposed for application in primary dentition. Small roman numbers i/ii/iii are used for primary dentition notation to represent Angle's Class I/II/III molar relationships as in permanent dentition, respectively. To assess applicability of modified Angle's classification a cross-sectional preschool 2000 children population from central India; 3-6 years of age residing in Nagpur metropolitan city of Maharashtra state were selected randomly as per the inclusion and exclusion criteria. Majority 93.35% children were found to have bilateral Class i followed by 2.5% bilateral Class ii and 0.2% bilateral half cusp Class iii molar relationships as per the modified Angle's classification for primary dentition. About 3.75% children had various combinations of Class ii relationships and 0.2% children were having Class iii subdivision relationship. Modification of Angle's classification for application in primary dentition has been proposed. A cross-sectional investigation using new classification revealed various 6.25% Class ii and 0.4% Class iii molar relationships cases in preschool children population in a metropolitan city of Nagpur. Application of the modified Angle's classification to other population groups is warranted to validate its routine application in clinical pediatric dentistry.
Modified angle's classification for primary dentition
Directory of Open Access Journals (Sweden)
Kaushik Narendra Chandranee
2017-01-01
Full Text Available Aim: This study aims to propose a modification of Angle's classification for primary dentition and to assess its applicability in children from Central India, Nagpur. Methods: Modification in Angle's classification has been proposed for application in primary dentition. Small roman numbers i/ii/iii are used for primary dentition notation to represent Angle's Class I/II/III molar relationships as in permanent dentition, respectively. To assess applicability of modified Angle's classification a cross-sectional preschool 2000 children population from central India; 3–6 years of age residing in Nagpur metropolitan city of Maharashtra state were selected randomly as per the inclusion and exclusion criteria. Results: Majority 93.35% children were found to have bilateral Class i followed by 2.5% bilateral Class ii and 0.2% bilateral half cusp Class iii molar relationships as per the modified Angle's classification for primary dentition. About 3.75% children had various combinations of Class ii relationships and 0.2% children were having Class iii subdivision relationship. Conclusions: Modification of Angle's classification for application in primary dentition has been proposed. A cross-sectional investigation using new classification revealed various 6.25% Class ii and 0.4% Class iii molar relationships cases in preschool children population in a metropolitan city of Nagpur. Application of the modified Angle's classification to other population groups is warranted to validate its routine application in clinical pediatric dentistry.
Preferred nasolabial angle in Middle Eastern population.
Alharethy, Sami
2017-05-01
To define the preferred nasolabial angle measurement in Middle Eastern population. An observational study was conducted from January 2012 to January 2016 at the Department of Otolaryngology, Head and Neck Surgery, King Abdulaziz University Hospital, King Saud University, Riyadh, Kingdom of Saudi Arabia. A total of 1027 raters, 506 males, and 521 females were asked to choose the most ideal nasolabial angle for 5 males and 5 females lateral photographs whose nasolabial angle were modified with Photoshop into the following angles (85°, 90°, 95°, 100°, 105°, and 110°). Male raters preferred the angle of 89.5° ± 3.5° (mean ± SD) for males and 90.8° ± 5.6° for females. While female raters preferred the angle of 89.3° ± 3.8° for males and 90.5° ± 4.8° for females. ANOVA test compare means among groups: p: 0.342, and there is no statistically significant difference between groups. The results of our study showed an even more acute angles than degrees found in the literature. It shows that what young generation in our region prefers and clearly reflects that what could be explained as under rotation of the nasal tip in other cultures is just the ideal for some Middle Eastern population.
Low-angle X-ray scattering from spices
International Nuclear Information System (INIS)
Desouky, O.S.; Ashour, Ahmed H.; Abdullah, Mohamed I.; Elshemey, Wael M.
2002-01-01
Low-angle scattering of X-rays is characterized by the presence of one or more peaks in the forward direction of scattering. These peaks are due to the interference of photons coherently scattered from the molecules of the medium. Thus these patterns are closely linked to the molecular structure of the investigated medium. In this work, low-angle X-ray scattering (LAXS) profiles of five spices; pimpinella anisum (anise), coriandrum sativum (coriander), cuminum cyminum (cumin), foenculum vulgare (fennel) and nigella sativa (nigella or black cumin) are presented after extensive measurements. It is found that all spices exhibit one characteristic peak at a scattering angle around 10 deg. This is equivalent to a value x=0.0565 A -1 , where x=sin(θ/2)/λ. The full width at half maximum (FWHM) of this peak is found to be characteristic for each type of the investigated spices. The possibility to detect the irradiation of these spices from their LAXS profiles is also examined after 10, 20, 30 and 40 kGy doses of gamma radiation. Except for anise, coriander and cumin at 40 kGy, there are no detectable deviations from the control samples in the scattering profiles of irradiated samples. These results comply with the recommendations of the FDA (US Food and Drug Administration) which defines 30 kGy as the maximum dose for irradiation of spices. The present technique could be used to detect over-irradiation, which causes damage to the molecular structure of some spices
Evidence for intermuscle difference in slack angle in human triceps surae.
Hirata, Kosuke; Kanehisa, Hiroaki; Miyamoto-Mikami, Eri; Miyamoto, Naokazu
2015-04-13
This study examined whether the slack angle (i.e., the joint angle corresponding to the slack length) varies among the synergists of the human triceps surae in vivo. By using ultrasound shear wave elastography, shear modulus of each muscle of the triceps surae was measured during passive stretching from 50° of plantar flexion in the knee extended position at an angular velocity of 1°/s in 9 healthy adult subjects. The slack angle of each muscle was determined from the ankle joint angle-shear modulus relationship as the first increase in shear modulus. The slack angle was significantly greater in the medial gastrocnemius (20.7±6.7° plantarflexed position) than in the lateral gastrocnemius (14.9±6.7° plantarflexed position) and soleus (2.0±4.8° dorsiflexed position) and greater in the lateral gastrocnemius than in the soleus. This study provided evidence that the slack angle differs among the triceps surae; the medial gastrocnemius produced passive force at the most plantarflexed position while the slack angle of the soleus was the most dorsiflexed position. Copyright © 2015 Elsevier Ltd. All rights reserved.
A stereological approach for measuring the groove angles of intergranular corrosion
International Nuclear Information System (INIS)
Gwinner, B.; Borgard, J.-M.; Dumonteil, E.; Zoia, A.
2017-01-01
Highlights: • The ICG morphology has been characterized in 3D by X-ray μ-tomography. • The measurement of the angles of the IGC groove on 2D cross sections induces a bias. • A methodology is proposed to estimate the true value of the IGC groove angles in 3D. - Abstract: Non-sensitized austenitic stainless steels can be prone to intergranular corrosion when they are in contact with an oxidizing medium like nitric acid. Intergranular corrosion is characterized by the formation of grooves along the grain boundaries. The angle of these grooves is a key parameter, which directly informs of the intergranular corrosion kinetics. Most of the time, the angles of the grooves are experimentally measured on 2-dimensional cross sections of the corroded samples. This study discusses the relationship between the groove angle measured on 2-dimensional sections and the true groove angle in 3-dimensional space. This approach could also be easily extended to the study of crack angle in the domains of corrosion-fatigue, stress corrosion cracking or mechanical fracture.
Computing angle of arrival of radio signals
Borchardt, John J.; Steele, David K.
2017-11-07
Various technologies pertaining to computing angle of arrival of radio signals are described. A system that is configured for computing the angle of arrival of a radio signal includes a cylindrical sheath wrapped around a cylindrical object, where the cylindrical sheath acts as a ground plane. The system further includes a plurality of antennas that are positioned about an exterior surface of the cylindrical sheath, and receivers respectively coupled to the antennas. The receivers output measurements pertaining to the radio signal. A processing circuit receives the measurements and computes the angle of arrival of the radio signal based upon the measurements.
Dynamic-angle spinning and double rotation of quadrupolar nuclei
International Nuclear Information System (INIS)
Mueller, K.T.; California Univ., Berkeley, CA
1991-07-01
Nuclear magnetic resonance (NMR) spectroscopy of quadrupolar nuclei is complicated by the coupling of the electric quadrupole moment of the nucleus to local variations in the electric field. The quadrupolar interaction is a useful source of information about local molecular structure in solids, but it tends to broaden resonance lines causing crowding and overlap in NMR spectra. Magic- angle spinning, which is routinely used to produce high resolution spectra of spin-1/2 nuclei like carbon-13 and silicon-29, is incapable of fully narrowing resonances from quadrupolar nuclei when anisotropic second-order quadrupolar interactions are present. Two new sample-spinning techniques are introduced here that completely average the second-order quadrupolar coupling. Narrow resonance lines are obtained and individual resonances from distinct nuclear sites are identified. In dynamic-angle spinning (DAS) a rotor containing a powdered sample is reoriented between discrete angles with respect to high magnetic field. Evolution under anisotropic interactions at the different angles cancels, leaving only the isotropic evolution of the spin system. In the second technique, double rotation (DOR), a small rotor spins within a larger rotor so that the sample traces out a complicated trajectory in space. The relative orientation of the rotors and the orientation of the larger rotor within the magnetic field are selected to average both first- and second-order anisotropic broadening. The theory of quadrupolar interactions, coherent averaging theory, and motional narrowing by sample reorientation are reviewed with emphasis on the chemical shift anisotropy and second-order quadrupolar interactions experienced by half-odd integer spin quadrupolar nuclei. The DAS and DOR techniques are introduced and illustrated with application to common quadrupolar systems such as sodium-23 and oxygen-17 nuclei in solids
Dynamic-angle spinning and double rotation of quadrupolar nuclei
Energy Technology Data Exchange (ETDEWEB)
Mueller, K.T. (Lawrence Berkeley Lab., CA (United States) California Univ., Berkeley, CA (United States). Dept. of Chemistry)
1991-07-01
Nuclear magnetic resonance (NMR) spectroscopy of quadrupolar nuclei is complicated by the coupling of the electric quadrupole moment of the nucleus to local variations in the electric field. The quadrupolar interaction is a useful source of information about local molecular structure in solids, but it tends to broaden resonance lines causing crowding and overlap in NMR spectra. Magic- angle spinning, which is routinely used to produce high resolution spectra of spin-{1/2} nuclei like carbon-13 and silicon-29, is incapable of fully narrowing resonances from quadrupolar nuclei when anisotropic second-order quadrupolar interactions are present. Two new sample-spinning techniques are introduced here that completely average the second-order quadrupolar coupling. Narrow resonance lines are obtained and individual resonances from distinct nuclear sites are identified. In dynamic-angle spinning (DAS) a rotor containing a powdered sample is reoriented between discrete angles with respect to high magnetic field. Evolution under anisotropic interactions at the different angles cancels, leaving only the isotropic evolution of the spin system. In the second technique, double rotation (DOR), a small rotor spins within a larger rotor so that the sample traces out a complicated trajectory in space. The relative orientation of the rotors and the orientation of the larger rotor within the magnetic field are selected to average both first- and second-order anisotropic broadening. The theory of quadrupolar interactions, coherent averaging theory, and motional narrowing by sample reorientation are reviewed with emphasis on the chemical shift anisotropy and second-order quadrupolar interactions experienced by half-odd integer spin quadrupolar nuclei. The DAS and DOR techniques are introduced and illustrated with application to common quadrupolar systems such as sodium-23 and oxygen-17 nuclei in solids.
Do changes in neuromuscular activation contribute to the knee extensor angle-torque relationship?
Lanza, Marcel B; Balshaw, Thomas G; Folland, Jonathan P
2017-08-01
What is the central question of the study? Do changes in neuromuscular activation contribute to the knee extensor angle-torque relationship? What is the main finding and its importance? Both agonist (quadriceps) and antagonist coactivation (hamstrings) differed with knee joint angle during maximal isometric knee extensions and thus both are likely to contribute to the angle-torque relationship. Specifically, two independent measurement techniques showed quadriceps activation to be lower at more extended positions. These effects might influence the capacity for neural changes in response to training and rehabilitation at different knee joint angles. The influence of joint angle on knee extensor neuromuscular activation is unclear, owing in part to the diversity of surface electromyography (sEMG) and/or interpolated twitch technique (ITT) methods used. The aim of the study was to compare neuromuscular activation, using rigorous contemporary sEMG and ITT procedures, during isometric maximal voluntary contractions (iMVCs) of the quadriceps femoris at different knee joint angles and examine whether activation contributes to the angle-torque relationship. Sixteen healthy active men completed two familiarization sessions and two experimental sessions of isometric knee extension and knee flexion contractions. The experimental sessions included the following at each of four joint angles (25, 50, 80 and 106 deg): iMVCs (with and without superimposed evoked doublets); submaximal contractions with superimposed doublets; and evoked twitch and doublet contractions whilst voluntarily passive, and knee flexion iMVC at the same knee joint positions. The absolute quadriceps femoris EMG was normalized to the peak-to-peak amplitude of an evoked maximal M-wave, and the doublet-voluntary torque relationship was used to calculate activation with the ITT. Agonist activation, assessed with both normalized EMG and the ITT, was reduced at the more extended compared with the more flexed
An engineering approach to extending lifespan in C. elegans.
Directory of Open Access Journals (Sweden)
Dror Sagi
Full Text Available We have taken an engineering approach to extending the lifespan of Caenorhabditis elegans. Aging stands out as a complex trait, because events that occur in old animals are not under strong natural selection. As a result, lifespan can be lengthened rationally using bioengineering to modulate gene expression or to add exogenous components. Here, we engineered longer lifespan by expressing genes from zebrafish encoding molecular functions not normally present in worms. Additionally, we extended lifespan by increasing the activity of four endogenous worm aging pathways. Next, we used a modular approach to extend lifespan by combining components. Finally, we used cell- and worm-based assays to analyze changes in cell physiology and as a rapid means to evaluate whether multi-component transgenic lines were likely to have extended longevity. Using engineering to add novel functions and to tune endogenous functions provides a new framework for lifespan extension that goes beyond the constraints of the worm genome.
Optical fibre angle sensor used in MEMS
International Nuclear Information System (INIS)
Golebiowski, J; Milcarz, Sz; Rybak, M
2014-01-01
There is a need for displacement and angle measurements in many movable MEMS structures. The use of fibre optical sensors helps to measure micrometre displacements and small rotation angles. Advantages of this type of transducers are their simple design, high precision of processing, low costs and ability of a non-contact measurement. The study shows an analysis of a fibre-optic intensity sensor used for MEMS movable structure rotation angle measurement. An intensity of the light in the photodetector is basically dependent on a distance between a reflecting surface and a head surface of the fibre transmitting arm, and the deflection angle. Experimental tests were made for PMMA 980/1000 plastic fibres, Θ NA =33°. The study shows both analytical and practical results. It proves that calculated and experimental characteristics for the analysed transducers are similar.
Gonioscopy in primary angle closure glaucoma.
Bruno, Christina A; Alward, Wallace L M
2002-06-01
Primary angle closure is a condition characterized by obstruction to aqueous humor outflow by the peripheral iris, and results in changes in the iridocorneal angle that are visible through gonioscopic examination. Gonioscopy in these eyes, however, can be difficult. This chapter discusses techniques that might help in the examination. These include beginning the examination with the inferior angle, methods to help in looking over the iris, cycloplegia, locating the corneal wedge, indentation, van Herick estimation, examining the other eye, and topical glycerin. Finally, there is a discussion about the pathology associated with the closed angle, with emphasis on the appearance of iris bombé, plateau iris, and the distinction between iris processes and peripheral anterior synechiae.
International Nuclear Information System (INIS)
Torrianni, I.L.
1983-01-01
The theoretical and experimental problems appearing in diffraction experiments at very low angles by several kinds of materials are discussed. The importance of synchrotron radiation in such problems is shown. (L.C.) [pt
Directional Wide-Angle Range Finder (DWARF)
National Aeronautics and Space Administration — The proposed innovation, the Directional Wide-Angle Range Finder (DWARF) is the creation of a laser range-finder with a wide field-of-view (FOV) and a directional...
Angle measurement with laser feedback instrument.
Chen, Wenxue; Zhang, Shulian; Long, Xingwu
2013-04-08
An instrument for angle measurement based on laser feedback has been designed. The measurement technique is based on the principle that when a wave plate placed into a feedback cavity rotates, its phase retardation varies. Phase retardation is a function of the rotating angle of the wave plate. Hence, the angle can be converted to phase retardation. The phase retardation is measured at certain characteristic points identified in the laser outputting curve that are then modulated by laser feedback. The angle of a rotating object can be measured if it is connected to the wave plate. The main advantages of this instrument are: high resolution, compact, flexible, low cost, effective power, and fast response.
Precision Guidance with Impact Angle Requirements
National Research Council Canada - National Science Library
Ford, Jason
2001-01-01
This paper examines a weapon system precision guidance problem in which the objective is to guide a weapon onto a non-manoeuvring target so that a particular desired angle of impact is achieved using...
Bacteriospermia in extended porcine semen.
Althouse, Gary C; Lu, Kristina G
2005-01-15
Bacteriospermia is a frequent finding in freshly extended porcine semen and can result in detrimental effects on semen quality and longevity if left uncontrolled. The primary source of bacterial contamination is the boar. Other sources that have been identified include environment, personnel, and the water used for extender preparation. A 1-year retrospective study was performed on submissions of extended porcine semen for routine quality control bacteriological screening at the University of Pennsylvania. Out of 250 sample submissions, 78 (31.2%) tested positive for bacterial contamination. The most popular contaminants included Enterococcus spp. (20.5%), Stenotrophomonas maltophilia (15.4%), Alcaligenes xylosoxidans (10.3%), Serratia marcescens (10.3%), Acinetobacter lwoffi (7.7%), Escherichia coli (6.4%), Pseudomonas spp. (6.4%), and others (23.0%). Prudent individual hygiene, good overall sanitation, and regular monitoring can contribute greatly in controlling bacterial load. Strategies that incorporate temperature-dependent bacterial growth and hyperthermic augmentation of antimicrobial activity are valuable for effective control of susceptible bacterial loads. Aminoglycosides remain the most popular antimicrobial class used in porcine semen extenders, with beta-lactam and lincosamide use increasing. With the advent of more novel antimicrobial selection and semen extender compositions in swine, prudent application and understanding of in vitro pharmacodynamics are becoming paramount to industry success in the use of this breeding modality.
Axial vector mass spectrum and mixing angles
International Nuclear Information System (INIS)
Caffarelli, R.V.; Kang, K.
1976-01-01
Spectral sum rules of the axial-vector current and axial-vector current-pseudoscalar field are used to study the axial-vector mass spectrum and mixing angles, as well as the decay constants and mixing angles of the pseudoscalar mesons. In general, the result is quite persuasive for the existence of the Jsup(PC) = 1 ++ multiplet in which one has a canonical D-E mixing. (Auth.)
Contact angle hysteresis on superhydrophobic stripes.
Dubov, Alexander L; Mourran, Ahmed; Möller, Martin; Vinogradova, Olga I
2014-08-21
We study experimentally and discuss quantitatively the contact angle hysteresis on striped superhydrophobic surfaces as a function of a solid fraction, ϕS. It is shown that the receding regime is determined by a longitudinal sliding motion of the deformed contact line. Despite an anisotropy of the texture the receding contact angle remains isotropic, i.e., is practically the same in the longitudinal and transverse directions. The cosine of the receding angle grows nonlinearly with ϕS. To interpret this we develop a theoretical model, which shows that the value of the receding angle depends both on weak defects at smooth solid areas and on the strong defects due to the elastic energy of the deformed contact line, which scales as ϕS(2)lnϕS. The advancing contact angle was found to be anisotropic, except in a dilute regime, and its value is shown to be determined by the rolling motion of the drop. The cosine of the longitudinal advancing angle depends linearly on ϕS, but a satisfactory fit to the data can only be provided if we generalize the Cassie equation to account for weak defects. The cosine of the transverse advancing angle is much smaller and is maximized at ϕS ≃ 0.5. An explanation of its value can be obtained if we invoke an additional energy due to strong defects in this direction, which is shown to be caused by the adhesion of the drop on solid sectors and is proportional to ϕS(2). Finally, the contact angle hysteresis is found to be quite large and generally anisotropic, but it becomes isotropic when ϕS ≤ 0.2.
Small-angle neutron-scattering experiments
International Nuclear Information System (INIS)
Hardy, A.D.; Thomas, M.W.; Rouse, K.D.
1981-04-01
A brief introduction to the technique of small-angle neutron scattering is given. The layout and operation of the small-angle scattering spectrometer, mounted on the AERE PLUTO reactor, is also described. Results obtained using the spectrometer are presented for three materials (doped uranium dioxide, Magnox cladding and nitrided steel) of interest to Springfields Nuclear Power Development Laboratories. The results obtained are discussed in relation to other known data for these materials. (author)
Radiodiagnosis of Cerebellopontine-angle tumors
International Nuclear Information System (INIS)
Weyer, K.H. van de
1979-01-01
The most important radiodiagnostic signs of cerebellopontine-angle tumors are demonstrated. The value of plain films and special projections is discussed. The use of recent diagnostic procedures like scintography, CT and cisternography with oily contrast medium is critically analyzed. The advantage and disadvantages of these procedures are discussed according to their usefullness in evaluating size, route of spread and localisation of cerebellopontine-angle tumors. (orig.) [de
Estimating Elevation Angles From SAR Crosstalk
Freeman, Anthony
1994-01-01
Scheme for processing polarimetric synthetic-aperture-radar (SAR) image data yields estimates of elevation angles along radar beam to target resolution cells. By use of estimated elevation angles, measured distances along radar beam to targets (slant ranges), and measured altitude of aircraft carrying SAR equipment, one can estimate height of target terrain in each resolution cell. Monopulselike scheme yields low-resolution topographical data.
Expressions for the Total Yaw Angle
2016-09-01
1. Introduction 1 2. Mathematical Notation 1 3. Total Yaw Expression Derivations 2 3.1 First Derivation 2 3.2 Second Derivation 4 3.3 Other...4 iv Approved for public release; distribution is unlimited. 1. Introduction The total yaw angle, γt , of a ballistic projectile is... elevation angles from spherical coordinates.∗ We again place point A at the end point of V. Now imagine a plane parallel to the y-z plane that includes
Lateral displacement in small angle multiple scattering
Energy Technology Data Exchange (ETDEWEB)
Bichsel, H.; Hanson, K.M.; Schillaci, K.M. (Los Alamos National Lab., NM (USA))
1982-07-01
Values have been calculated for the average lateral displacement in small angle multiple scattering of protons with energies of several hundred MeV. The calculations incorporate the Moliere distribution which does not make the gaussian approximations of the distribution in projected angle and lateral deflections. Compared to other published data, such approximations can lead to errors in the lateral displacement of up to 10% in water.
Open source molecular modeling.
Pirhadi, Somayeh; Sunseri, Jocelyn; Koes, David Ryan
2016-09-01
The success of molecular modeling and computational chemistry efforts are, by definition, dependent on quality software applications. Open source software development provides many advantages to users of modeling applications, not the least of which is that the software is free and completely extendable. In this review we categorize, enumerate, and describe available open source software packages for molecular modeling and computational chemistry. An updated online version of this catalog can be found at https://opensourcemolecularmodeling.github.io. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
Angle closure glaucoma in congenital ectropion uvea.
Wang, Grace M; Thuente, Daniel; Bohnsack, Brenda L
2018-06-01
Congenital ectropion uvea is a rare anomaly, which is associated with open, but dysplastic iridocorneal angles that cause childhood glaucoma. Herein, we present 3 cases of angle-closure glaucoma in children with congenital ectropion uvea. Three children were initially diagnosed with unilateral glaucoma secondary to congenital ectropion uvea at 7, 8 and 13 years of age. The three cases showed 360° of ectropion uvea and iris stromal atrophy in the affected eye. In one case, we have photographic documentation of progression to complete angle closure, which necessitated placement of a glaucoma drainage device 3 years after combined trabeculotomy and trabeculectomy. The 2 other cases, which presented as complete angle closure, also underwent glaucoma drainage device implantation. All three cases had early glaucoma drainage device encapsulation (within 4 months) and required additional surgery (cycloablation or trabeculectomy). Congenital ectropion uvea can be associated with angle-closure glaucoma, and placement of glaucoma drainage devices in all 3 of our cases showed early failure due to plate encapsulation. Glaucoma in congenital ectropion uvea requires attention to angle configuration and often requires multiple surgeries to obtain intraocular pressure control.
Neutron spin echo scattering angle measurement (SESAME)
International Nuclear Information System (INIS)
Pynn, R.; Fitzsimmons, M.R.; Fritzsche, H.; Gierlings, M.; Major, J.; Jason, A.
2005-01-01
We describe experiments in which the neutron spin echo technique is used to measure neutron scattering angles. We have implemented the technique, dubbed spin echo scattering angle measurement (SESAME), using thin films of Permalloy electrodeposited on silicon wafers as sources of the magnetic fields within which neutron spins precess. With 30-μm-thick films we resolve neutron scattering angles to about 0.02 deg. with neutrons of 4.66 A wavelength. This allows us to probe correlation lengths up to 200 nm in an application to small angle neutron scattering. We also demonstrate that SESAME can be used to separate specular and diffuse neutron reflection from surfaces at grazing incidence. In both of these cases, SESAME can make measurements at higher neutron intensity than is available with conventional methods because the angular resolution achieved is independent of the divergence of the neutron beam. Finally, we discuss the conditions under which SESAME might be used to probe in-plane structure in thin films and show that the method has advantages for incident neutron angles close to the critical angle because multiple scattering is automatically accounted for
Extended Year, Extended Contracts: Increasing Teacher Salary Options.
Gandara, Patricia
1992-01-01
Reports on an attempt to raise teacher salaries through an extended contract made possible through year-round school schedules. Teacher satisfaction with the 1987 experiment in three California schools (the Orchard Plan) has been high. Elements that have contributed to job satisfaction are discussed. (SLD)
Extended cognition in science communication.
Ludwig, David
2014-11-01
The aim of this article is to propose a methodological externalism that takes knowledge about science to be partly constituted by the environment. My starting point is the debate about extended cognition in contemporary philosophy and cognitive science. Externalists claim that human cognition extends beyond the brain and can be partly constituted by external devices. First, I show that most studies of public knowledge about science are based on an internalist framework that excludes the environment we usually utilize to make sense of science and does not allow the possibility of extended knowledge. In a second step, I argue that science communication studies should adopt a methodological externalism and accept that knowledge about science can be partly realized by external information resources such as Wikipedia. © The Author(s) 2013.
Undetected angle closure in patients with a diagnosis of open-angle glaucoma.
Varma, Devesh K; Simpson, Sarah M; Rai, Amandeep S; Ahmed, Iqbal Ike K
2017-08-01
The aim of this study was to identify the proportion of patients referred to a tertiary glaucoma centre with a diagnosis of open-angle glaucoma (OAG) who were found to have angle closure glaucoma. Retrospective chart review. Consecutive new patients referred for glaucoma management to a tertiary centre between July 2010 and December 2011 were reviewed. Patients whose referrals for glaucoma assessment specified angle status as "open" were included. The data collected included glaucoma specialist's angle assessment, diagnosis, and glaucoma severity. The status of those with 180 degrees or more Shaffer angle grading of 0 was classified as "closed." From 1234 glaucoma referrals, 179 cases were specified to have a diagnosis of OAG or when angles were known to be open. Of these, 16 (8.9%) were found on examination by the glaucoma specialist to have angle closure. Pseudoexfoliation was present in 4 of 16 patients (25%) in the missed angle-closure glaucoma (ACG) group and 22 of 108 patients (13.5%) in the remaining OAG group. There was no difference found in demographic or ocular biometric parameters between those with confirmed OAG versus those with missed ACG. Almost 1 in 11 patients referred by ophthalmologists to a tertiary glaucoma centre with a diagnosis of OAG were in fact found to have angle closure. Given the different treatment approaches for ACG versus OAG, this study suggests a need to strengthen angle evaluations. Copyright © 2017 Canadian Ophthalmological Society. Published by Elsevier Inc. All rights reserved.
Using an electrostatic accelerator to determine the stereochemical structures of molecular ions
International Nuclear Information System (INIS)
Gemmell, D.S.
1980-01-01
Recent high-resolution measurements on the energy and angle distributions of the fragments produced when fast (MeV) molecular-ion beams from an electrostatic accelerator dissociate (Coulomb explode) in thin foils and in gases, offer promising possibilities for deducing the stereochemical structures of the molecular ions constituting the incident beams. Bond lengths have been determined in this way for several diatomic projectiles (H 2 + , HeH + , CH + , NH + , OH + , N 2 + , O 2 + , etc.) with an accuracy of approx. 0.01 A. H 3 + has been demonstrated (for the first time) to be equilateral triangular and the interproton distance measured. Measurements on single fragments from CO 2 + , N 2 O + , C 3 H 3 + , and CH/sub n/ + have revealed the gross structures of the projectiles. An apparatus has recently been constructed at Argonne to permit precise measurements on fragments in coincidence. The apparatus has been tested on a known structure (OH 2 + ). The O-H bond length was found to be 1.0 +- 0.04 A and the H-O-H bond angle was measured as 110 +- 2 0 . These values are in excellent agreement with those found in optical experiments (0.999 A and 110.5 0 ). This Coulomb explosion technique can be expected to be refined in accuracy and to be extended to a wide range of molecular ions whose structures are inaccessible by other means
Exclusion Bounds for Extended Anyons
Larson, Simon; Lundholm, Douglas
2018-01-01
We introduce a rigorous approach to the many-body spectral theory of extended anyons, that is quantum particles confined to two dimensions that interact via attached magnetic fluxes of finite extent. Our main results are many-body magnetic Hardy inequalities and local exclusion principles for these particles, leading to estimates for the ground-state energy of the anyon gas over the full range of the parameters. This brings out further non-trivial aspects in the dependence on the anyonic statistics parameter, and also gives improvements in the ideal (non-extended) case.
Effect of chain extender on properties of silicone rubber sealant
Liu, Jiesheng; Wu, Shaopeng; Mi, Yixuan; Zhu, Guojun; Zheng, Shaoping
2010-03-01
The room-temperature vulcanizing silicone rubber sealant was prepared with chain extender. The effect of chain extender on the properties of silicone rubber sealant was discussed. The composite samples with chain extender were investigated from the aspects of tack-free time, cross-linkage density, hardness (penetration number) and adhesive strength with the concrete slab. It was found that the adding of the chain extender effectively makes the molecular chain length increase and causes the mechanical properties improvement. In addition, the increase in the amount of the chain extender reduces the cross-linkage density and hardness of silicone rubber sealant, which is accompanied with a decrease in the tack-free time. Adhesive strength is one of the most important requirements for sealant. The effect of chain extender on the adhesive strength was also investigated in this study. It was found that the increase in the amount of the chain extender makes the adhesive strength between the sealant and the concrete slab decrease.
Extending Driving Vision Based on Image Mosaic Technique
Directory of Open Access Journals (Sweden)
Chen Deng
2017-01-01
Full Text Available Car cameras have been used extensively to assist driving by make driving visible. However, due to the limitation of the Angle of View (AoV, the dead zone still exists, which is a primary origin of car accidents. In this paper, we introduce a system to extend the vision of drivers to 360 degrees. Our system consists of four wide-angle cameras, which are mounted at different sides of a car. Although the AoV of each camera is within 180 degrees, relying on the image mosaic technique, our system can seamlessly integrate 4-channel videos into a panorama video. The panorama video enable drivers to observe everywhere around a car as far as three meters from a top view. We performed experiments in a laboratory environment. Preliminary results show that our system can eliminate vision dead zone completely. Additionally, the real-time performance of our system can satisfy requirements for practical use.
Disordered porous solids : from chord distributions to small angle scattering
Levitz, P.; Tchoubar, D.
1992-06-01
Disordered biphasic porous solids are examples of complex interfacial media. Small angle scattering strongly depends on the geometrical properties of the internal surface partitioning a porous system. Properties of the second derivative of the bulk autocorrelation function quantitatively defines the level of connection between the small angle scattering and the statistical properties of this interface. A tractable expression of this second derivative, involving the pore and the mass chord distribution functions, was proposed by Mering and Tchoubar (MT). Based on the present possibility to make a quantitative connection between imaging techniques and the small angle scattering, this paper tries to complete and to extend the MT approach. We first discuss how chord distribution functions can be used as fingerprints of the structural disorder. An explicit relation between the small angle scattering and these chord distributions is then proposed. In a third part, the application to different types of disorder is critically discussed and predictions are compared to available experimental data. Using image processing, we will consider three types of disorder : the long-range Debye randomness, the “ correlated " disorder with a special emphasis on the structure of a porous glass (the vycor), and, finally, complex structures where length scale invariance properties can be observed. Les solides poreux biphasiques sont des exemples de milieux interfaciaux complexes. La diffusion aux petits angles (SAS) dépend fortement des propriétés géométriques de l'interface partitionant le milieu poreux. Les propriétés de la dérivée seconde de la fonction d'autocorrélation de densité définit quantitativement le niveau de connection entre la diffusion aux petits angles et les caractéristiques statistiques de cette interface. Une expression utilisable de cette seconde dérivée, impliquant les distributions de cordes associées à la phase massique et au réseau de pores, fut
Analysis of RTM extended images for VTI media
Li, Vladimir
2015-08-19
Extended images obtained from reverse-time migration (RTM) contain information about the accuracy of the velocity field and subsurface illumination at different incidence angles. Here, we evaluate the influence of errors in the anisotropy parameters on the shape of the residual moveout (RMO) in P-wave RTM extended images for VTI (transversely isotropic with a vertical symmetry axis) media. Considering the actual spatial distribution of the zero-dip NMO velocity (Vnmo), which could be approximately estimated by conventional techniques, we analyze the extended images obtained with distorted fields of the parameters η and δ. Differential semblance optimization (DSO) and stack-power estimates are employed to study the sensitivity of focusing to the anisotropy parameters. The results show that the signature of η is dip-dependent, whereas errors in δ cause defocusing only if that parameter is laterally varying. Hence, earlier results regarding the influence of η and δ on reflection moveout and migration velocity analysis remain generally valid in the extended image space for complex media. The dependence of RMO on errors in the anisotropy parameters provides essential insights for anisotropic wavefield tomography using extended images.
Small angle scattering of X radiation and slow neutrons in structural analyses of amorphous solids
International Nuclear Information System (INIS)
Kostorz, G.
1980-01-01
Small angle scattering of x radiation and slow neutrons allows to detect inhomogeneities of the dimension of ten to some thousands of Angstroem by the difference in the scattering length density. The progress made during recent years in the development of apparatusses has created the possibility of solving very complicated problems. A first outline shows that in separation processes as well as in investigating extended defects the method of small angle scattering may provide valuable contributions to the analysis of the non-crystalline state
Project study of a small-angle neutron scattering apparatus
International Nuclear Information System (INIS)
Schedler, E.; Pollet, J.L.
1979-03-01
This design study deals with the set up of a low angle scattering apparatus in the HMI reactor hall in Berlin. The experiences of other institutes with facilities of a similar type, - especially with D11 and D17 of the ILL in Grenoble, the set up the KFA in Juelich and of the PTB in Braunschweig -, are included to a large extend. The aim of this paper is - to define the necessary boundary conditions for the construction (including: installation of a cold source, the beam line, the neutron guide pipe and an extention of the reactor hall), -to determine the properties of the planned apparatus, especially in comparison with D11, probably the most versatile instrument, - to make desitions for the design of the components, - to work out the detailed drawings for construction - to estimate the costs and the time necessary for construction, if industrial manufacturers set up the project. (orig.) [de
Optimal directional view angles for remote-sensing missions
Kimes, D. S.; Holben, B. N.; Tucker, C. J.; Newcomb, W. W.
1984-01-01
The present investigation is concerned with the directional, off-nadir viewing of terrestrial scenes using remote-sensing systems from aircraft and satellite platforms, taking into account advantages of such an approach over strictly nadir viewing systems. Directional reflectance data collected for bare soil and several different vegetation canopies in NOAA-7 AVHRR bands 1 and 2 were analyzed. Optimum view angles were recommended for two strategies. The first strategy views the utility of off-nadir measurements as extending spatial and temporal coverage of the target area. The second strategy views the utility of off-nadir measurements as providing additional information about the physical characteristics of the target. Conclusions regarding the two strategies are discussed.
Diamond detector time resolution for large angle tracks
Energy Technology Data Exchange (ETDEWEB)
Chiodini, G., E-mail: chiodini@le.infn.it [INFN - Sezione di Lecce (Italy); Fiore, G.; Perrino, R. [INFN - Sezione di Lecce (Italy); Pinto, C.; Spagnolo, S. [INFN - Sezione di Lecce (Italy); Dip. di Matematica e Fisica “Ennio De Giorgi”, Uni. del Salento (Italy)
2015-10-01
The applications which have stimulated greater interest in diamond sensors are related to detectors close to particle beams, therefore in an environment with high radiation level (beam monitor, luminosity measurement, detection of primary and secondary-interaction vertices). Our aims is to extend the studies performed so far by developing the technical advances needed to prove the competitiveness of this technology in terms of time resolution, with respect to more usual ones, which does not guarantee the required tolerance to a high level of radiation doses. In virtue of these goals, measurements of diamond detector time resolution with tracks incident at different angles are discussed. In particular, preliminary testbeam results obtained with 5 GeV electrons and polycrystalline diamond strip detectors are shown.
User's guide for the small-angle neutron scattering facility
International Nuclear Information System (INIS)
Vlak, W.A.H.M.; Werkhoven, E.J.
1989-04-01
This report serves as a manual for the users of the small-angle neutron scattering instrument located at beamport HB3 of the High Flux Reactor in Petten. The main part of the text is devoted to the control of the facility and the data handling by means of a μVAX computer. Also, the various possibilities to access the facility across computer networks are discussed. A collection of menu-driven and command-driven programs, which utilize the flexibility of the VMS operating system without requiring detailed knowledge of the user about the computer environment, enables to control the instrument. For the convenience of the experienced user, who might wish to update or extend the software, a technical supplement is included. 15 figs.; 8 refs
Contact angle of unset elastomeric impression materials.
Menees, Timothy S; Radhakrishnan, Rashmi; Ramp, Lance C; Burgess, John O; Lawson, Nathaniel C
2015-10-01
Some elastomeric impression materials are hydrophobic, and it is often necessary to take definitive impressions of teeth coated with some saliva. New hydrophilic materials have been developed. The purpose of this in vitro study was to compare contact angles of water and saliva on 7 unset elastomeric impression materials at 5 time points from the start of mixing. Two traditional polyvinyl siloxane (PVS) (Aquasil, Take 1), 2 modified PVS (Imprint 4, Panasil), a polyether (Impregum), and 2 hybrid (Identium, EXA'lence) materials were compared. Each material was flattened to 2 mm and a 5 μL drop of distilled water or saliva was dropped on the surface at 25 seconds (t0) after the start of mix. Contact angle measurements were made with a digital microscope at initial contact (t0), t1=2 seconds, t2=5 seconds, t3=50% working time, and t4=95% working time. Data were analyzed with a generalized linear mixed model analysis, and individual 1-way ANOVA and Tukey HSD post hoc tests (α=.05). For water, materials grouped into 3 categories at all time-points: the modified PVS and one hybrid material (Identium) produced the lowest contact angles, the polyether material was intermediate, and the traditional PVS materials and the other hybrid (EXA'lence) produced the highest contact angles. For saliva, Identium, Impregum, and Imprint 4 were in the group with the lowest contact angle at most time points. Modified PVS materials and one of the hybrid materials are more hydrophilic than traditional PVS materials when measured with water. Saliva behaves differently than water in contact angle measurement on unset impression material and produces a lower contact angle on polyether based materials. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Extended memory management under RTOS
Plummer, M.
1981-01-01
A technique for extended memory management in ROLM 1666 computers using FORTRAN is presented. A general software system is described for which the technique can be ideally applied. The memory manager interface with the system is described. The protocols by which the manager is invoked are presented, as well as the methods used by the manager.
Geometrical interpretation of extended supergravity
International Nuclear Information System (INIS)
Townsend, P.K.; Nieuwenhuizen, P.van
1977-01-01
SO 2 extended supergravity is shown to be a geometrical theory, whose underlying gauge group is OSp(4,2). The couplings which gauge the SO 2 symmetry as well as the accompanying cosmological and masslike terms are directly obtained, and the usual SO 2 model is obtained after a Wigner-Inoenue group contraction. (Auth.)
Spin-4 extended conformal algebras
International Nuclear Information System (INIS)
Kakas, A.C.
1988-01-01
We construct spin-4 extended conformal algebras using the second hamiltonian structure of the KdV hierarchy. In the presence of a U(1) current a family of spin-4 algebras exists but the additional requirement that the spin-1 and spin-4 currents commute fixes the algebra uniquely. (orig.)
Departies: conceptualizing extended youth parties
DEFF Research Database (Denmark)
Fjær, Eivind Grip; Tutenges, Sébastien
2017-01-01
Every year, millions of young people travel away from home to party for days or weeks on end in permissive environments, such as music festivals, dance parties, and nightlife resorts. The studies that have been conducted on these extended youth parties have focused primarily on specific risk...
Applying and extending Oracle Spatial
Simon Gerard Greener, Siva Ravada
2013-01-01
This book is an advanced practical guide to applying and extending Oracle Spatial.This book is for existing users of Oracle and Oracle Spatial who have, at a minimum, basic operational experience of using Oracle or an equivalent database. Advanced skills are not required.
Extended unemployment and UI benefits
Robert G. Valletta; Katherine Kuang
2010-01-01
During the current labor market downturn, unemployment duration has reached levels well above its previous highs. Analysis of unemployment data suggests that extended unemployment insurance benefits have not been important factors in the increase in the duration of unemployment or in the elevated unemployment rate.
Engage, Enhance, and Extend Learning!
Keren-Kolb, Liz
2013-01-01
Educators often say that technology is more than a gimmick or add-on, and that it should engage, enhance, or extend learning in ways that traditional tools do not. Yet they seldom stop to define these terms, and they can be confusing, especially for teachers and preservice teachers. Recently, while collaborating on an English language arts and…
Magnetismo Molecular (Molecular Magentism)
Energy Technology Data Exchange (ETDEWEB)
Reis, Mario S [Universidade Federal Fluminense, Brasil; Moreira Dos Santos, Antonio F [ORNL
2010-07-01
The new synthesis processes in chemistry open a new world of research, new and surprising materials never before found in nature can now be synthesized and, as a wonderful result, observed a series of physical phenomena never before imagined. Among these are many new materials the molecular magnets, the subject of this book and magnetic properties that are often reflections of the quantum behavior of these materials. Aside from the wonderful experience of exploring something new, the theoretical models that describe the behavior these magnetic materials are, in most cases, soluble analytically, which allows us to know in detail the physical mechanisms governing these materials. Still, the academic interest in parallel this subject, these materials have a number of properties that are promising to be used in technological devices, such as in computers quantum magnetic recording, magnetocaloric effect, spintronics and many other devices. This volume will journey through the world of molecular magnets, from the structural description of these materials to state of the art research.
X-ray small angle scattering of polymer solutions
International Nuclear Information System (INIS)
Koyama, Ryuzo
1975-01-01
In recent papers, the calculated results were reported on the angular dependence of the intensity of scattered light or X-ray by chain polymers, on the basis of a stiff chain model. As the results, the curves of S 2 P (theta) corresponding to Kratky plot, for different molecular expansion, showed a plateau, and the height of the plateau was proportional to the inverse of molecular expansion coefficient α 2 . But as seen later, there is some possibility that the assumption made in the calculation overestimated the expansion of small segments which theoretically determines scattering curves at large scattering angles, such as the plateau. Accordingly, modified calculation was carried out by adopting the stiff chain polymer model as the previous case. When the contour length of a chain segment is very long, it can be treated approximately as a Gaussian coil, thus the equation for a chain segment expansion coefficient α (t) was obtained. Then the mean square distance of chain segments of polymer molecules was able to be determined, and the equation for a particle scattering factor P(theta) was obtained. The numerical calculation of P(theta) showed that this modified assumption considerably decreased the effect of molecular expansion on P(theta), and the curves of S 2 P(theta) increased monotonously without showing the plateau. The result of this calculation was compared with the experimental curves of polystyrene-toluene solution, and the agreement better than before was obtained. (Kako, I.)
Uncertainty in T1 mapping using the variable flip angle method with two flip angles
International Nuclear Information System (INIS)
Schabel, Matthias C; Morrell, Glen R
2009-01-01
Propagation of errors, in conjunction with the theoretical signal equation for spoiled gradient echo pulse sequences, is used to derive a theoretical expression for uncertainty in quantitative variable flip angle T 1 mapping using two flip angles. This expression is then minimized to derive a rigorous expression for optimal flip angles that elucidates a commonly used empirical result. The theoretical expressions for uncertainty and optimal flip angles are combined to derive a lower bound on the achievable uncertainty for a given set of pulse sequence parameters and signal-to-noise ratio (SNR). These results provide a means of quantitatively determining the effect of changing acquisition parameters on T 1 uncertainty. (note)
The Spectral Sharpness Angle of Gamma-ray Bursts
Directory of Open Access Journals (Sweden)
Hendrik J. van Eerten
2016-06-01
Full Text Available We extend the results of Yu et al. (2015b of the novel sharpness angle measurement to a large number of spectra obtained from the Fermi gamma-ray burst monitor. The sharpness angle is compared to the values obtained from various representative emission models: blackbody, single-electron synchrotron, synchrotron emission from a Maxwellian or power-law electron distribution. It is found that more than 91% of the high temporally and spectrally resolved spectra are inconsistent with any kind of optically thin synchrotron emission model alone. It is also found that the limiting case, a single temperature Maxwellian synchrotron function, can only contribute up to 58+23 -18% of the peak flux. These results show that even the sharpest but non-realistic case, the single-electron synchrotron function, cannot explain a large fraction of the observed spectra. Since any combination of physically possible synchrotron spectra added together will always further broaden the spectrum, emission mechanisms other than optically thin synchrotron radiation are likely required in a full explanation of the spectral peaks or breaks of the GRB prompt emission phase.
Anatomic structural study of cerebellopontine angle via endoscope
Institute of Scientific and Technical Information of China (English)
XIA Yin; LI Xi-ping; HAN De-min; ZHENG Jun; LONG Hai-shan; SHI Jin-feng
2007-01-01
Background Minimally invasive surgery in skull base relying on searching for possible anatomic basis for endoscopic technology is controversial. The objective of this study was to observe the spatial relationships between main blood vessels and nerves in the cerebellopontine angle area and provide anatomic basis for lateral and posterior skull base minimally invasive surgery via endoscopic retrosigmoid keyhole approach.Methods This study was conducted on thirty dried adult skulls to measure the spatial relationships among the surface bony marks of posterior cranial fossa, and to locate the most appropriate drilling area for retrosigmoid keyhole approach.In addition, we used 10 formaldehyde-fixed adult cadaver specimens for simulating endoscopic retrosigmoid approach to determine the visible scope.Results The midpoint between the mastoid tip and the asterion was the best drilling point for retrosigmoid approach. A hole centered on this point with the 2.0 cm in diameter was suitable for exposing the related structures in the cerebellopontine angle. Retrosigmoid keyhole approach can decrease the pressure on the cerebellum and expose the related structures effectively which include facial nerve, vestibulocochlear nerve, trigeminal nerve, glossopharyngeal nerve, vagus nerve, accessory nerve, hypoglossal nerve, anterior inferior cerebellar artery, posterior inferior cerebellar artery and labyrinthine artery, etc.Conclusions Exact location on endoscope retrosigmoid approach can avoid dragging cerebellum during the minimally invasive surgery. The application of retrosigmoid keyhole approach will extend the application of endoscopic technology.
Complications and Reoperations in Mandibular Angle Fractures.
Chen, Collin L; Zenga, Joseph; Patel, Ruchin; Branham, Gregory
2018-05-01
Mandible angle fractures can be repaired in a variety of ways, with no consensus on the outcomes of complications and reoperation rates. To analyze patient, injury, and surgical factors, including approach to the angle and plating technique, associated with postoperative complications, as well as the rate of reoperation with regard to mandible angle fractures. Retrospective cohort study analyzing the surgical outcomes of patients with mandible angle fractures between January 1, 2000, and December 31, 2015, who underwent open reduction and internal fixation. Patients were eligible if they were aged 18 years or older, had 3 or less mandible fractures with 1 involving the mandibular angle, and had adequate follow-up data. Patients with comminuted angle fractures, bilateral angle fractures, and multiple surgical approaches were excluded. A total of 135 patients were included in the study. All procedures were conducted at a single, large academic hospital located in an urban setting. Major complications and reoperation rates. Major complications included in this study were nonunion, malunion, severe malocclusion, severe infection, and exposed hardware. Of 135 patients 113 (83.7%) were men; median age was 29 years (range, 18-82 years). Eighty-seven patients (64.4%) underwent the transcervical approach and 48 patients (35.6%) received the transoral approach. Fifteen (17.2%) patients in the transcervical group and 9 (18.8%) patients in the transoral group experienced major complications (difference, 1%; 95% CI, -8% to 10%). Thirteen (14.9%) patients in the transcervical group and 8 (16.7%) patients in the transoral group underwent reoperations (difference, 2%; 95% CI, -13% to 17%). Active smoking had a significant effect on the rate of major complications (odds ratio, 4.04; 95% CI, 1.07 to 15.34; P = .04). During repair of noncomminuted mandibular angle fractures, both of the commonly used approaches-transcervical and transoral-can be used during treatment with equal
Fluidized bed heat exchanger utilizing angularly extending heat exchange tubes
Talmud, Fred M.; Garcia-Mallol, Juan-Antonio
1980-01-01
A fluidized bed heat exchanger in which air is passed through a bed of particulate material containing fuel disposed in a housing. A steam/water natural circulation system is provided and includes a steam drum disposed adjacent the fluidized bed and a series of tubes connected at one end to the steam drum. A portion of the tubes are connected to a water drum and in the path of the air and the gaseous products of combustion exiting from the bed. Another portion of the tubes pass through the bed and extend at an angle to the upper surface of the bed.
Methods of extending crop signatures from one area to another
Minter, T. C. (Principal Investigator)
1979-01-01
Efforts to develop a technology for signature extension during LACIE phases 1 and 2 are described. A number of haze and Sun angle correction procedures were developed and tested. These included the ROOSTER and OSCAR cluster-matching algorithms and their modifications, the MLEST and UHMLE maximum likelihood estimation procedures, and the ATCOR procedure. All these algorithms were tested on simulated data and consecutive-day LANDSAT imagery. The ATCOR, OSCAR, and MLEST algorithms were also tested for their capability to geographically extend signatures using LANDSAT imagery.
An oxide filled extended trench gate super junction MOSFET structure
International Nuclear Information System (INIS)
Cai-Lin, Wang; Jun, Sun
2009-01-01
This paper proposes an oxide filled extended trench gate super junction (SJ) MOSFET structure to meet the need of higher frequency power switches application. Compared with the conventional trench gate SJ MOSFET, new structure has the smaller input and output capacitances, and the remarkable improvements in the breakdown voltage, on-resistance and switching speed. Furthermore, the SJ in the new structure can be realized by the existing trench etching and shallow angle implantation, which offers more freedom to SJ MOSFET device design and fabrication. (condensed matter: electronic structure, electrical, magnetic, and optical properties)
Temperature profile retrievals with extended Kalman-Bucy filters
Ledsham, W. H.; Staelin, D. H.
1979-01-01
The Extended Kalman-Bucy Filter is a powerful technique for estimating non-stationary random parameters in situations where the received signal is a noisy non-linear function of those parameters. A practical causal filter for retrieving atmospheric temperature profiles from radiances observed at a single scan angle by the Scanning Microwave Spectrometer (SCAMS) carried on the Nimbus 6 satellite typically shows approximately a 10-30% reduction in rms error about the mean at almost all levels below 70 mb when compared with a regression inversion.
Extended recency effect extended: blocking, presentation mode, and retention interval.
Glidden, L M; Pawelski, C; Mar, H; Zigman, W
1979-07-01
The effect of blocking of stimulus items on the free recall of EMR adolescents was examined. In Experiment 1 a multitrial free-recall list of 15 pictures was presented either simultaneously in groups of 3, or sequentially, one at a time. Consistent ordering was used in both conditions, so that on each trial, each item in each set of 3 pictures was presented contiguously with the other 2 items from that set. In addition, recall came immediately or after a filled or unfilled delay of 24.5 seconds. Results showed that simultaneous presentation led to higher recall, subjective organization, and clustering than did sequential presentation, but analysis of serial-position curves showed a much reduced extended recency effect in comparison with previous studies. Experiment 2 was designed to determine whether the cause of the reduced extended recency was the use of pictures rather than words as stimuli. Stimuli were presented either as pictures, as pictures with auditory labels, or as words with auditory labels, with both simultaneous and consistent ordering for all conditions. Results indicated a strong extended recency effect for all groups, eliminating presentation mode as a causal factor in the data of Experiment 1. We concluded that blocking leads to increased organization and recall over a variety of presentation modes, rates, and block sizes.
Graphene spin valve: An angle sensor
Energy Technology Data Exchange (ETDEWEB)
Iqbal, Muhammad Zahir, E-mail: zahir.upc@gmail.com [Faculty of Engineering Sciences, GIK Institute of Engineering Sciences and Technology, Topi 23640, Khyber Pakhtunkhwa (Pakistan); Hussain, Ghulam [Faculty of Engineering Sciences, GIK Institute of Engineering Sciences and Technology, Topi 23640, Khyber Pakhtunkhwa (Pakistan); Siddique, Salma [Department of Bioscience & Biotechnology, Sejong University, Seoul 143-747 (Korea, Republic of); Iqbal, Muhammad Waqas [Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University, Lahore (Pakistan)
2017-06-15
Graphene spin valves can be optimized for various spintronic applications by tuning the associated experimental parameters. In this work, we report the angle dependent magnetoresistance (MR) in graphene spin valve for different orientations of applied magnetic field (B). The switching points of spin valve signals show a clear shift towards higher B for each increasing angle of the applied field, thus sensing the response for respective orientation of the magnetic field. The angular variation of B shifts the switching points from ±95 G to ±925 G as the angle is varied from 0° to 90° at 300 K. The observed shifts in switching points become more pronounced (±165 G to ±1450 G) at 4.2 K for similar orientation. A monotonic increase in MR ratio is observed as the angle of magnetic field is varied in the vertical direction at 300 K and 4.2 K temperatures. This variation of B (from 0° to 90°) increases the magnitude of MR ratio from ∼0.08% to ∼0.14% at 300 K, while at 4.2 K it progresses to ∼0.39% from ∼0.14%. The sensitivity related to angular variation of such spin valve structure can be employed for angle sensing applications.
A Viewpoint on the Quantity "Plane Angle"
Eder, W. E.
1982-01-01
Properties of the quantity "plane angle" are explored under the hypothesis that it is a dimensional quantity. The exploration proceeds especially with respect to the physical concept, its mathematical treatment, vector concepts, measurement theory, units of related quantities, engineering pragmatism, and SI. An attempt is made to bring these different relations into a rational, logical and consistent framework, and thus to justify the hypothesis. Various types of vectorial quantities are recognized, and their properties described with an outline of the necessary algebraic manipulations. The concept of plane angle is amplified, and its interdependence with the circular arc is explored. The resulting units of plane angle form a class of similar scales of measurement. Consequences of the confirmed hypothesis are developed for mathematical expressions involving trigonometric functions, rotational volumes and areas, mathematical limits, differentiation and series expansion. Consequences for mechanical rotational quantities are developed, with proposals for revisions to a number of expressions for derived units within SI. A revised definition for the quantity "plane angle" is stated to take account of the developed insights. There is a clear need to reconsider the status of plane angle and some other quantities within the international framework of SI.
Measuring contact angle and meniscus shape with a reflected laser beam.
Eibach, T F; Fell, D; Nguyen, H; Butt, H J; Auernhammer, G K
2014-01-01
Side-view imaging of the contact angle between an extended planar solid surface and a liquid is problematic. Even when aligning the view perfectly parallel to the contact line, focusing one point of the contact line is not possible. We describe a new measurement technique for determining contact angles with the reflection of a widened laser sheet on a moving contact line. We verified this new technique measuring the contact angle on a cylinder, rotating partially immersed in a liquid. A laser sheet is inclined under an angle φ to the unperturbed liquid surface and is reflected off the meniscus. Collected on a screen, the reflection image contains information to determine the contact angle. When dividing the laser sheet into an array of laser rays by placing a mesh into the beam path, the shape of the meniscus can be reconstructed from the reflection image. We verified the method by measuring the receding contact angle versus speed for aqueous cetyltrimethyl ammonium bromide solutions on a smooth hydrophobized as well as on a rough polystyrene surface.
Effect of EMIC Wave Normal Angle Distribution on Relativistic Electron Scattering in Outer RB
Khazanov, G. V.; Gamayunov, K. V.
2007-01-01
We present the equatorial and bounce average pitch angle diffusion coefficients for scattering of relativistic electrons by the H+ mode of EMIC waves. Both the model (prescribed) and self consistent distributions over the wave normal angle are considered. The main results of our calculation can be summarized as follows: First, in comparison with field aligned waves, the intermediate and highly oblique waves reduce the pitch angle range subject to diffusion, and strongly suppress the scattering rate for low energy electrons (E less than 2 MeV). Second, for electron energies greater than 5 MeV, the |n| = 1 resonances operate only in a narrow region at large pitch-angles, and despite their greatest contribution in case of field aligned waves, cannot cause electron diffusion into the loss cone. For those energies, oblique waves at |n| greater than 1 resonances are more effective, extending the range of pitch angle diffusion down to the loss cone boundary, and increasing diffusion at small pitch angles by orders of magnitude.
International Nuclear Information System (INIS)
Brewe, D.L.; Pease, D.M.; Budnick, J.I.
1994-01-01
Distortions appear in x-ray-absorption spectra obtained by monitoring the fluorescence from thick samples with concentrated absorbing species. The glancing-emergence-angle technique for obtaining spectra from this type of sample eliminates distortions from the measured spectra by monitoring the fluorescence leaving the sample at a small angle relative to the sample surface. This technique is limited by the small signal available from the inherently limited detector solid angle. In addition, no precise estimate of the required restriction on maximum emergent angle θ max has been available. We have calculated residual extended x-ray-absorption fine structure distortions as a function of θ max , and performed experimental tests of the calculations. These calculations provide a means to estimate the required detector geometry for negligible distortions, or alternatively, allow the use of a larger θ max , increasing the available signal, with the remaining residual distortions removed by application of the calculations. The calculations are also applicable to other detector geometries, and account for detectors subtending a large solid angle by an integration over the subtended angle. This represents an improvement over previous calculations. The application to more general detector configurations is also discussed
Longitudinal Changes of Angle Configuration in Primary Angle-Closure Suspects
Jiang, Yuzhen; Chang, Dolly S.; Zhu, Haogang; Khawaja, Anthony P.; Aung, Tin; Huang, Shengsong; Chen, Qianyun; Munoz, Beatriz; Grossi, Carlota M.
2015-01-01
Objective To determine longitudinal changes in angle configuration in the eyes of primary angle-closure suspects (PACS) treated by laser peripheral iridotomy (LPI) and in untreated fellow eyes. Design Longitudinal cohort study. Participants Primary angle-closure suspects aged 50 to 70 years were enrolled in a randomized, controlled clinical trial. Methods Each participant was treated by LPI in 1 randomly selected eye, with the fellow eye serving as a control. Angle width was assessed in a masked fashion using gonioscopy and anterior segment optical coherence tomography (AS-OCT) before and at 2 weeks, 6 months, and 18 months after LPI. Main Outcome Measures Angle width in degrees was calculated from Shaffer grades assessed under static gonioscopy. Angle configuration was also evaluated using angle opening distance (AOD250, AOD500, AOD750), trabecular-iris space area (TISA500, TISA750), and angle recess area (ARA) measured in AS-OCT images. Results No significant difference was found in baseline measures of angle configuration between treated and untreated eyes. At 2 weeks after LPI, the drainage angle on gonioscopy widened from a mean of 13.5° at baseline to a mean of 25.7° in treated eyes, which was also confirmed by significant increases in all AS-OCT angle width measures (Pgonioscopy (P = 0.18), AOD250 (P = 0.167) and ARA (P = 0.83). In untreated eyes, angle width consistently decreased across all follow-up visits after LPI, with a more rapid longitudinal decrease compared with treated eyes (P values for all variables ≤0.003). The annual rate of change in angle width was equivalent to 1.2°/year (95% confidence interval [CI], 0.8–1.6) in treated eyes and 1.6°/year (95% CI, 1.3–2.0) in untreated eyes (P<0.001). Conclusions Angle width of treated eyes increased markedly after LPI, remained stable for 6 months, and then decreased significantly by 18 months after LPI. Untreated eyes experienced a more consistent and rapid decrease in angle width over the
Angle-averaged Compton cross sections
International Nuclear Information System (INIS)
Nickel, G.H.
1983-01-01
The scattering of a photon by an individual free electron is characterized by six quantities: α = initial photon energy in units of m 0 c 2 ; α/sub s/ = scattered photon energy in units of m 0 c 2 ; β = initial electron velocity in units of c; phi = angle between photon direction and electron direction in the laboratory frame (LF); theta = polar angle change due to Compton scattering, measured in the electron rest frame (ERF); and tau = azimuthal angle change in the ERF. We present an analytic expression for the average of the Compton cross section over phi, theta, and tau. The lowest order approximation to this equation is reasonably accurate for photons and electrons with energies of many keV
Precision measurements of the CKM angle gamma
CERN. Geneva
2016-01-01
The level of CP-violation permitted within the Standard Model cannot account for the matter dominated universe in which we live. Within the Standard Model the CKM matrix, which describes the quark couplings, is expected to be unitary. By making precise measurements of the CKM matrix parameters new physics models can be constrained, or with sufficient precision the effects of physics beyond the standard model might become apparent. The CKM angle gamma is the least well known angle of the unitarity triangle. It is the only angle easily accessible at tree-level, and furthermore has almost no theoretical uncertainties. Therefore it provides an invaluable Standard Model benchmark against which other new physics sensitive tests of the CP-violation can be made. I will discuss recent measurements of gamma using the the Run 1 LHCb dataset, which improve our knowledge of this key parameter.
Angle-averaged Compton cross sections
Energy Technology Data Exchange (ETDEWEB)
Nickel, G.H.
1983-01-01
The scattering of a photon by an individual free electron is characterized by six quantities: ..cap alpha.. = initial photon energy in units of m/sub 0/c/sup 2/; ..cap alpha../sub s/ = scattered photon energy in units of m/sub 0/c/sup 2/; ..beta.. = initial electron velocity in units of c; phi = angle between photon direction and electron direction in the laboratory frame (LF); theta = polar angle change due to Compton scattering, measured in the electron rest frame (ERF); and tau = azimuthal angle change in the ERF. We present an analytic expression for the average of the Compton cross section over phi, theta, and tau. The lowest order approximation to this equation is reasonably accurate for photons and electrons with energies of many keV.
International Nuclear Information System (INIS)
Chang, Chi-Jung; Chou, Ray-Lin; Lin, Yu-Chi; Liang, Bau-Jy; Chen, Jyun-Ji
2011-01-01
Polyimides (PIs) with different inclination angle of polymer backbones, together with polar hydroxyl group and/or nonpolar trifluoromethyl group at various sites of the backbone were synthesized and used as liquid crystal alignment layers. The molecular conformation, surface chemistry, surface energy, surface morphology, and pretilt angle of the PI film were investigated. The distributions of fluorinated group and hydroxyl group at different depths of the PI surfaces were analyzed by X-ray photoelectron spectroscopy. Effects of the conformation of the PI molecular backbone on the surface morphology of the rubbed PI layer, the pretilt angle and surface energy of the alignment film were studied. The PI which contains both nonpolar fluorinated groups sticking out of the surface and the polar hydroxyl groups on the surface exhibits high pretilt angle.
Laser induced fluorescence of trapped molecular ions
International Nuclear Information System (INIS)
Winn, J.S.
1980-10-01
Laser induced fluoresence (LIF) spectra (laser excitation spectra) are conceptually among the most simple spectra to obtain. One need only confine a gaseous sample in a suitable container, direct a laser along one axis of the container, and monitor the sample's fluorescence at a right angle to the laser beam. As the laser wavelength is changed, the changes in fluorescence intensity map the absorption spectrum of the sample. (More precisely, only absorption to states which have a significant radiative decay component are monitored.) For ion spectroscopy, one could benefit in many ways by such an experiment. Most optical ion spectra have been observed by emission techniques, and, aside from the problems of spectral analysis, discharge emission methods often produce the spectra of many species, some of which may be unknown or uncertain. Implicit in the description of LIF given above is certainty as to the chemical identity of the carrier of the spectrum. This article describes a method by which the simplifying aspects of LIF can be extended to molecular ions
The extended bigraded Toda hierarchy
International Nuclear Information System (INIS)
Carlet, Guido
2006-01-01
We generalize the Toda lattice hierarchy by considering N + M dependent variables. We construct roots and logarithms of the Lax operator which are uniquely defined operators with coefficients that are ε-series of differential polynomials in the dependent variables, and we use them to provide a Lax pair definition of the extended bigraded Toda hierarchy, generalizing [4]. Using R-matrix theory we give the bi-Hamiltonian formulation of this hierarchy and we prove the existence of a tau function for its solutions. Finally we study the dispersionless limit and its connection with a class of Frobenius manifolds on the orbit space of the extended affine Weyl groups W-tilde (N) (A N+M-1 ) of the A series, defined by Dubrovin and Zhang (1998 Compos. Math. 111 167)
An extended Harry Dym hierarchy
International Nuclear Information System (INIS)
Ma Wenxiu
2010-01-01
An extended Harry Dym hierarchy is constructed by using eigenfunctions and adjoint eigenfunctions of the spectral problems of the Harry Dym hierarchy associated with the pseudo-differential operator L = u∂ + u 0 + u 1 ∂ -1 + .... The corresponding Lax presentation possesses a self-consistent source involving squared eigenfunctions. The resulting extended Harry Dym hierarchy is reduced to the Harry Dym hierarchy with self-consistent sources under the n-reduction, L n = (L n ) ≥2 , and the k-constrained Harry Dym hierarchy under the k-constraint, L k = (L k ) ≥2 + Σ N i=1 q i ∂ -1 r i ∂ 2 . A few particular examples are computed, together with their Lax pairs.
Parry, Joshua A; Barrett, Ian; Schoch, Bradley; Yuan, Brandon; Cass, Joseph; Cross, William
2018-04-01
To determine whether fixation of pertrochanteric hip fractures with cephalomedullary nails (CMNs) with a neck-shaft angle (NSA) less than the native NSA affects reduction and lag screw cutout. Retrospective comparative study. Level I trauma center. Patients treated with a CMN for unstable pertrochanteric femur fractures (OTA/AO 31-A2.2 and 31-A2.3) between 2005 and 2014. CMN fixation. NSA reduction and lag screw cutout. Patients fixed with a nail angle less than their native NSA were less likely to have good reductions [17% vs. 60%, 95% confidence interval (CI), -63% to -18%; P = 0.0005], secondary to more varus reductions (41% vs. 10%, 95% CI, 9%-46%; P = 0.01) and more fractures with ≥4 mm of displacement (63% vs. 35%, 95% CI, 3%-49%; P = 0.03). The cutout was not associated with the use of a nail angle less than the native NSA (60% vs. 76%, 95% CI, -56% to 18%; P = 0.5), varus reductions (60% vs. 32%, 95% CI, -13% to 62%; P = 0.3), or poor reductions (20% vs. 17%, 95% CI, -24% to 44%; P = 1.0). The fixation of unstable pertrochanteric hip fractures with a nail angle less than the native NSA was associated with more varus reductions and fracture displacement but did not affect the lag screw cutout. Therapeutic Level III. See Instructions for Authors for a complete description of levels of evidence.
National Research Council Canada - National Science Library
Provan, Drew; Gribben, John
2010-01-01
... The molecular basis of hemophilia, 219 Paul LF Giangrande 4 The genetics of acute myeloid leukemias, 42 Carolyn J Owen & Jude Fitzgibbon 19 The molecular basis of von Willebrand disease, 233 Luciano Baronc...
Contact angle studies on anodic porous alumina.
Redón, Rocío; Vázquez-Olmos, A; Mata-Zamora, M E; Ordóñez-Medrano, A; Rivera-Torres, F; Saniger, J M
2005-07-15
The preparation of nanostructures using porous anodic aluminum oxide (AAO) as templates involves the introduction of dissolved materials into the pores of the membranes; one way to determine which materials are preferred to fill the pores involves the measurement of the contact angles (theta) of different solvents or test liquids on the AAOs. Thus, we present measurements of contact angles of nine solvents on four different AAO sheets by tensiometric and goniometric methods. From the solvents tested, we found dimethyl sulfoxide (DMSO) and N,N(')-dimethylformamide (DMF) to interact with the AAOs, the polarity of the solvents and the surfaces being the driving force.
Black holes from extended inflation
International Nuclear Information System (INIS)
Hsu, S.D.H.; Lawrence Berkeley Lab., CA
1990-01-01
It is argued that models of extended inflation, in which modified Einstein gravity allows a graceful exit from the false vacuum, lead to copious production of black holes. The critical temperature of the inflationary phase transition must be >10 8 GeV in order to avoid severe cosmological problems in a universe dominated by black holes. We speculate on the possibility that the interiors of false vacuum regions evolve into baby universes. (orig.)
Locating and extending livelihoods research
DEFF Research Database (Denmark)
Prowse, Martin
2008-01-01
Much poverty and development research is not explicit about its methodology or philosophical foundations. Based on the extended case method of Burawoy and the epistemological standpoint of critical realism, this paper discusses a methodological approach for reflexive inductive livelihoods researc...... that overcomes the unproductive social science dualism of positivism and social constructivism. The approach is linked to a conceptual framework and a menu of research methods that can be sequenced and iterated in light of research questions....
Extended producer responsibility in oligopoly
Hiroaki Ino
2007-01-01
I investigate the optimal environmental tax under a policy based on extended producer responsibility (EPR) in oligopoly markets. I introduce the recycling market and explicitly consider how these policies affect the incentive for recycling. I derive the optimal tax rule, which depends on the weighted sum of the markup in the product market and the markdown in the recycling market. In contrast to the existing works that emphasize that the optimal tax rate is lower than the marginal external da...
Groiss, Heiko; Glaser, Martin; Marzegalli, Anna; Isa, Fabio; Isella, Giovanni; Miglio, Leo; Schäffler, Friedrich
2015-06-01
By transmission electron microscopy with extended Burgers vector analyses, we demonstrate the edge and screw character of vertical dislocations (VDs) in novel SiGe heterostructures. The investigated pillar-shaped Ge epilayers on prepatterned Si(001) substrates are an attempt to avoid the high defect densities of lattice mismatched heteroepitaxy. The Ge pillars are almost completely strain-relaxed and essentially defect-free, except for the rather unexpected VDs. We investigated both pillar-shaped and unstructured Ge epilayers grown either by molecular beam epitaxy or by chemical vapor deposition to derive a general picture of the underlying dislocation mechanisms. For the Burgers vector analysis we used a combination of dark field imaging and large-angle convergent beam electron diffraction (LACBED). With LACBED simulations we identify ideally suited zeroth and second order Laue zone Bragg lines for an unambiguous determination of the three-dimensional Burgers vectors. By analyzing dislocation reactions we confirm the origin of the observed types of VDs, which can be efficiently distinguished by LACBED. The screw type VDs are formed by a reaction of perfect 60° dislocations, whereas the edge types are sessile dislocations that can be formed by cross-slips and climbing processes. The understanding of these origins allows us to suggest strategies to avoid VDs.
Srinivasan, Anandi; Cortijo, Miguel; Bulicanu, Vladimir; Naim, Ahmad; Clérac, Rodolphe; Rogalev, Andrei; Wilhelm, Fabrice; Rosa, Patrick
2017-01-01
A simple procedure based on anion exchange was employed for the enantiomeric resolution of the extended metal atom chain (EMAC) [Co3(dpa)4(MeCN)2]2+. Use of the chiral salt (NBu4)2[As2(tartrate)2], (Λ-1 or Δ-1), resulted in the selective crystallization of the EMAC enantiomers as [Δ-Co3(dpa)4(MeCN)2](NBu4)2[Λ-As2(tartarte)2]2, (Δ-2) and [Λ-Co3(dpa)4(MeCN)2](NBu4)2[Δ-As2(tartrate)2]2 (Λ-2), respectively, in the P4212 space group, whereas a racemic mixture of 1 yielded [Co3(dpa)4(MeCN)2][As2(tartrate)2]·2MeCN (rac-3), which crystallized in the C2/c space group. The local electronic and magnetic structure of the EMAC enantiomers was studied, exploiting a variety of dichroisms in single crystals. A strong linear dichroism at the Co K-edge was observed in the orthoaxial configuration, whereas it vanished in the axial orientation, thus spectroscopically confirming the D4 crystal symmetry. Compounds Δ-2 and Λ-2 are shown to be enantiopure materials as evidenced by mirror-image natural circular dichroism spectra in the UV/vis in solution and in the X-ray range at the Co K-edge in single crystals. The surprising absence of detectable X-ray magnetic circular dichroism or X-ray magnetochiral dichroism signals at the Co K-edge, even at low temperature (3 K) and a high magnetic field (17 T), is ascribed to a strongly delocalized spin density on the tricobalt core. PMID:29675158
Dynamic contact angle of water-based titanium oxide nanofluid
2013-01-01
This paper presents an investigation into spreading dynamics and dynamic contact angle of TiO2-deionized water nanofluids. Two mechanisms of energy dissipation, (1) contact line friction and (2) wedge film viscosity, govern the dynamics of contact line motion. The primary stage of spreading has the contact line friction as the dominant dissipative mechanism. At the secondary stage of spreading, the wedge film viscosity is the dominant dissipative mechanism. A theoretical model based on combination of molecular kinetic theory and hydrodynamic theory which incorporates non-Newtonian viscosity of solutions is used. The model agreement with experimental data is reasonable. Complex interparticle interactions, local pinning of the contact line, and variations in solid–liquid interfacial tension are attributed to errors. PMID:23759071
Small-angle scattering study of Aspergillus awamori glycoprotein glucoamylase
International Nuclear Information System (INIS)
Schmidt, A. E.; Shvetsov, A. V.; Kuklin, A. I.; Lebedev, D. V.; Surzhik, M. A.; Sergeev, V. R.; Isaev-Ivanov, V. V.
2016-01-01
Glucoamylase from fungus Aspergillus awamori is glycoside hydrolase that catalyzes the hydrolysis of α-1,4- and α-1,6-glucosidic bonds in glucose polymers and oligomers. This glycoprotein consists of a catalytic domain and a starch-binding domain connected by an O-glycosylated polypeptide chain. The conformation of the linker, the relative arrangement of the domains, and the structure of the full-length enzyme are unknown. The structure of the recombinant glucoamylase GA1 was studied by molecular modelling and small-angle neutron scattering (SANS) methods. The experimental SANS data provide evidence that glucoamylase exists as a monomer in solution and contains a glycoside component, which makes a substantial contribution to the scattering. The model of full-length glucoamylase, which was calculated without taking into account the effect of glycosylation, is consistent with the experimental data and has a radius of gyration of 33.4 ± 0.6 Å
Small-angle scattering study of Aspergillus awamori glycoprotein glucoamylase
Schmidt, A. E.; Shvetsov, A. V.; Kuklin, A. I.; Lebedev, D. V.; Surzhik, M. A.; Sergeev, V. R.; Isaev-Ivanov, V. V.
2016-01-01
Glucoamylase from fungus Aspergillus awamori is glycoside hydrolase that catalyzes the hydrolysis of α-1,4- and α-1,6-glucosidic bonds in glucose polymers and oligomers. This glycoprotein consists of a catalytic domain and a starch-binding domain connected by an O-glycosylated polypeptide chain. The conformation of the linker, the relative arrangement of the domains, and the structure of the full-length enzyme are unknown. The structure of the recombinant glucoamylase GA1 was studied by molecular modelling and small-angle neutron scattering (SANS) methods. The experimental SANS data provide evidence that glucoamylase exists as a monomer in solution and contains a glycoside component, which makes a substantial contribution to the scattering. The model of full-length glucoamylase, which was calculated without taking into account the effect of glycosylation, is consistent with the experimental data and has a radius of gyration of 33.4 ± 0.6 Å.
Angle-resolved photoelectron spectroscopy of formaldehyde and methanol
Keller, P. R.; Taylor, J. W.; Grimm, F. A.; Carlson, Thomas A.
1984-10-01
Angle-resolved photoelectron spectroscopy was employed to obtain the angular distribution parameter, β, for the valence orbitals (IP < 21.1 eV) of formaldehyde and methanol over the 10-30 eV photon energy range using dispersed polarized synchrotron radiation as the excitation source. It was found that the energy dependence of β in the photoelectron energy range between 2 and 10 eV can be related to the molecular-orbital type from which ionization occurs. This generalized energy behavior is discussed with regard to earlier energy-dependence studies on molecules of different orbital character. Evidence is presented for the presence of resonance photoionization phenomena in formaldehyde in agreement with theoretical cross-section calculations.
Small-angle scattering study of Aspergillus awamori glycoprotein glucoamylase
Energy Technology Data Exchange (ETDEWEB)
Schmidt, A. E., E-mail: schmidt@omrb.pnpi.spb.ru; Shvetsov, A. V. [National Research Center “Kurchatov Institute”, Konstantinov Petersburg Nuclear Physics Institute (Russian Federation); Kuklin, A. I. [Joint Institute for Nuclear Research (Russian Federation); Lebedev, D. V.; Surzhik, M. A.; Sergeev, V. R.; Isaev-Ivanov, V. V. [National Research Center “Kurchatov Institute”, Konstantinov Petersburg Nuclear Physics Institute (Russian Federation)
2016-01-15
Glucoamylase from fungus Aspergillus awamori is glycoside hydrolase that catalyzes the hydrolysis of α-1,4- and α-1,6-glucosidic bonds in glucose polymers and oligomers. This glycoprotein consists of a catalytic domain and a starch-binding domain connected by an O-glycosylated polypeptide chain. The conformation of the linker, the relative arrangement of the domains, and the structure of the full-length enzyme are unknown. The structure of the recombinant glucoamylase GA1 was studied by molecular modelling and small-angle neutron scattering (SANS) methods. The experimental SANS data provide evidence that glucoamylase exists as a monomer in solution and contains a glycoside component, which makes a substantial contribution to the scattering. The model of full-length glucoamylase, which was calculated without taking into account the effect of glycosylation, is consistent with the experimental data and has a radius of gyration of 33.4 ± 0.6 Å.
An extended Fourier modal method for plane-wave scattering from finite structures
Pisarenco, M.; Maubach, J.M.L.; Setija, I.D.; Mattheij, R.M.M.
2010-01-01
This paper extends the area of application of the Fourier modal method from periodic structures to aperiodic ones, in particular for plane-wave illumination at arbitrary angles. This is achieved by placing perfectly matched layers at the lateral sides of the computational domain and reformulating
Crompton, Helen
2015-01-01
Mobile technologies are quickly becoming tools found in the educational environment. The researchers in this study use a form of mobile learning to support students in learning about angle concepts. Design-based research is used in this study to develop an empirically-substantiated local instruction theory about students' develop of angle and…
Small angle neutron scattering and small angle X-ray scattering ...
Indian Academy of Sciences (India)
Abstract. The morphology of carbon nanofoam samples comprising platinum nanopar- ticles dispersed in the matrix was characterized by small angle neutron scattering (SANS) and small angle X-ray scattering (SAXS) techniques. Results show that the structure of pores of carbon matrix exhibits a mass (pore) fractal nature ...
Using Digital Technology to See Angles from Different Angles. Part 2: Openings and Turns
Host, Erin; Baynham, Emily; McMaster, Heather
2015-01-01
Ever wondered how to use technology to teach angles? This article follows on from an earlier article published last year, providing a range of ideas for integrating technology and concrete materials with the teaching of angle concepts. The authors also provide a comprehensive list of free online games and learning objects that can be used to teach…
Sharper angle, higher risk? The effect of cutting angle on knee mechanics in invasion sport athletes
Schreurs, Mervin J.; Benjaminse, Anne; Lemmink, Koen A. P. M.
2017-01-01
Introduction: Cutting is an important skill in team-sports, but unfortunately is also related to non-contact ACL injuries. The purpose was to examine knee kinetics and kinematics at different cutting angles. Material and methods: 13 males and 16 females performed cuts at different angles (45°, 90°,
Enhanced Pedestrian Navigation Based on Course Angle Error Estimation Using Cascaded Kalman Filters.
Song, Jin Woo; Park, Chan Gook
2018-04-21
An enhanced pedestrian dead reckoning (PDR) based navigation algorithm, which uses two cascaded Kalman filters (TCKF) for the estimation of course angle and navigation errors, is proposed. The proposed algorithm uses a foot-mounted inertial measurement unit (IMU), waist-mounted magnetic sensors, and a zero velocity update (ZUPT) based inertial navigation technique with TCKF. The first stage filter estimates the course angle error of a human, which is closely related to the heading error of the IMU. In order to obtain the course measurements, the filter uses magnetic sensors and a position-trace based course angle. For preventing magnetic disturbance from contaminating the estimation, the magnetic sensors are attached to the waistband. Because the course angle error is mainly due to the heading error of the IMU, and the characteristic error of the heading angle is highly dependent on that of the course angle, the estimated course angle error is used as a measurement for estimating the heading error in the second stage filter. At the second stage, an inertial navigation system-extended Kalman filter-ZUPT (INS-EKF-ZUPT) method is adopted. As the heading error is estimated directly by using course-angle error measurements, the estimation accuracy for the heading and yaw gyro bias can be enhanced, compared with the ZUPT-only case, which eventually enhances the position accuracy more efficiently. The performance enhancements are verified via experiments, and the way-point position error for the proposed method is compared with those for the ZUPT-only case and with other cases that use ZUPT and various types of magnetic heading measurements. The results show that the position errors are reduced by a maximum of 90% compared with the conventional ZUPT based PDR algorithms.
DNA microarrays : a molecular cloning manual
National Research Council Canada - National Science Library
Sambrook, Joseph; Bowtell, David
2002-01-01
.... This manual, designed to extend and to complement the information in the best-selling Molecular Cloning, is a synthesis of the expertise and experience of more than 30 contributors all innovators in a fast moving field...
EAES: Extended Advanced Encryption Standard with Extended Security
Abul Kalam Azad; Md. Yamin Mollah
2018-01-01
Though AES is the highest secure symmetric cipher at present, many attacks are now effective against AES too which is seen from the review of recent attacks of AES. This paper describes an extended AES algorithm with key sizes of 256, 384 and 512 bits with round numbers of 10, 12 and 14 respectively. Data block length is 128 bits, same as AES. But unlike AES each round of encryption and decryption of this proposed algorithm consists of five stages except the last one which consists of four st...
Radiative generation of quark masses and mixing angles in the two Higgs doublet model
International Nuclear Information System (INIS)
Ibarra, Alejandro; Solaguren-Beascoa, Ana
2014-01-01
We present a framework to generate the quark mass hierarchies and mixing angles by extending the Standard Model with one extra Higgs doublet. The charm and strange quark masses are generated by small quantum effects, thus explaining the hierarchy between the second and third generation quark masses. All the mixing angles are also generated by small quantum effects: the Cabibbo angle is generated at zeroth order in perturbation theory, while the remaining off-diagonal entries of the Cabibbo–Kobayashi–Maskawa matrix are generated at first order, hence explaining the observed hierarchy |V ub |,|V cb |≪|V us |. The values of the radiatively generated parameters depend only logarithmically on the heavy Higgs mass, therefore this framework can be reconciled with the stringent limits on flavor violation by postulating a sufficiently large new physics scale
Anisotropy signature in reverse-time migration extended images
Sava, Paul C.; Alkhalifah, Tariq Ali
2014-01-01
Reverse-time migration can accurately image complex geologic structures in anisotropic media. Extended images at selected locations in the Earth, i.e., at common-image-point gathers, carry rich information to characterize the angle-dependent illumination and to provide measurements for migration velocity analysis. However, characterizing the anisotropy influence on such extended images is a challenge. Extended common-image-point gathers are cheap to evaluate since they sample the image at sparse locations indicated by the presence of strong reflectors. Such gathers are also sensitive to velocity error that manifests itself through moveout as a function of space and time lags. Furthermore, inaccurate anisotropy leaves a distinctive signature in common-image-point gathers, which can be used to evaluate anisotropy through techniques similar to the ones used in conventional wavefield tomography. It specifically admits a V-shaped residual moveout with the slope of the "V" flanks depending on the anisotropic parameter η regardless of the complexity of the velocity model. It reflects the fourth-order nature of the anisotropy influence on moveout as it manifests itself in this distinct signature in extended images after handling the velocity properly in the imaging process. Synthetic and real data observations support this assertion.
Anisotropy signature in reverse-time migration extended images
Sava, Paul C.
2014-11-04
Reverse-time migration can accurately image complex geologic structures in anisotropic media. Extended images at selected locations in the Earth, i.e., at common-image-point gathers, carry rich information to characterize the angle-dependent illumination and to provide measurements for migration velocity analysis. However, characterizing the anisotropy influence on such extended images is a challenge. Extended common-image-point gathers are cheap to evaluate since they sample the image at sparse locations indicated by the presence of strong reflectors. Such gathers are also sensitive to velocity error that manifests itself through moveout as a function of space and time lags. Furthermore, inaccurate anisotropy leaves a distinctive signature in common-image-point gathers, which can be used to evaluate anisotropy through techniques similar to the ones used in conventional wavefield tomography. It specifically admits a V-shaped residual moveout with the slope of the "V" flanks depending on the anisotropic parameter η regardless of the complexity of the velocity model. It reflects the fourth-order nature of the anisotropy influence on moveout as it manifests itself in this distinct signature in extended images after handling the velocity properly in the imaging process. Synthetic and real data observations support this assertion.
Contact angle measurement with a smartphone.
Chen, H; Muros-Cobos, Jesus L; Amirfazli, A
2018-03-01
In this study, a smartphone-based contact angle measurement instrument was developed. Compared with the traditional measurement instruments, this instrument has the advantage of simplicity, compact size, and portability. An automatic contact point detection algorithm was developed to allow the instrument to correctly detect the drop contact points. Two different contact angle calculation methods, Young-Laplace and polynomial fitting methods, were implemented in this instrument. The performance of this instrument was tested first with ideal synthetic drop profiles. It was shown that the accuracy of the new system with ideal synthetic drop profiles can reach 0.01% with both Young-Laplace and polynomial fitting methods. Conducting experiments to measure both static and dynamic (advancing and receding) contact angles with the developed instrument, we found that the smartphone-based instrument can provide accurate and practical measurement results as the traditional commercial instruments. The successful demonstration of use of a smartphone (mobile phone) to conduct contact angle measurement is a significant advancement in the field as it breaks the dominate mold of use of a computer and a bench bound setup for such systems since their appearance in 1980s.
Camber Angle Inspection for Vehicle Wheel Alignments.
Young, Jieh-Shian; Hsu, Hong-Yi; Chuang, Chih-Yuan
2017-02-03
This paper introduces an alternative approach to the camber angle measurement for vehicle wheel alignment. Instead of current commercial approaches that apply computation vision techniques, this study aims at realizing a micro-control-unit (MCU)-based camber inspection system with a 3-axis accelerometer. We analyze the precision of the inspection system for the axis misalignments of the accelerometer. The results show that the axes of the accelerometer can be aligned to the axes of the camber inspection system imperfectly. The calibrations that can amend these axis misalignments between the camber inspection system and the accelerometer are also originally proposed since misalignments will usually happen in fabrications of the inspection systems. During camber angle measurements, the x -axis or z -axis of the camber inspection system and the wheel need not be perfectly aligned in the proposed approach. We accomplished two typical authentic camber angle measurements. The results show that the proposed approach is applicable with a precision of ± 0.015 ∘ and therefore facilitates the camber measurement process without downgrading the precision by employing an appropriate 3-axis accelerometer. In addition, the measured results of camber angles can be transmitted via the medium such as RS232, Bluetooth, and Wi-Fi.
Wind Turbine Blade with Angled Girders
DEFF Research Database (Denmark)
2011-01-01
The present invention relates to a reinforced blade for a wind turbine, particularly to a blade having a new arrangement of two or more girders in the blade, wherein each of the girders is connected to the upper part and the lower part of the shell and forms an angle with another girder thereby...
Solid angle subtended by two circular discs
International Nuclear Information System (INIS)
Gilly, Louis.
1978-09-01
Methods of calculation of solid angles, subtended by two circular discs are analysed. Calculus are methodically classified as follow: series development Legendre polynomes, defined integral, elliptic integrals, Bessel integrals, multiple integrals, Monte Carlo method, electrostatic analogy. Applications in Nuclear Physics are added as examples. List of numeric tables completes bibliography [fr
Improved Beam Angle Control with SPV Metrology
International Nuclear Information System (INIS)
Steeples, K.; Tsidilkovski, E.; Bertuch, A.; Ishida, E.; Agarwal, A.
2008-01-01
A method of real-time monitoring of implant angle for state-of-the-art ion implant doping in integrated circuit manufacturing has been developed using Surface Photo Voltage measurements on conventional monitor wafers. Measurement results are analyzed and compared to other techniques.
Direct angle resolved photoemission spectroscopy and ...
Indian Academy of Sciences (India)
Since 1997 we systematically perform direct angle resolved photoemission spectroscopy (ARPES) on in-situ grown thin (< 30 nm) cuprate films. Specifically, we probe low-energy electronic structure and properties of high-c superconductors (HTSC) under different degrees of epitaxial (compressive vs. tensile) strain.
Contact angle measurement with a smartphone
Chen, H.; Muros-Cobos, Jesus L.; Amirfazli, A.
2018-03-01
In this study, a smartphone-based contact angle measurement instrument was developed. Compared with the traditional measurement instruments, this instrument has the advantage of simplicity, compact size, and portability. An automatic contact point detection algorithm was developed to allow the instrument to correctly detect the drop contact points. Two different contact angle calculation methods, Young-Laplace and polynomial fitting methods, were implemented in this instrument. The performance of this instrument was tested first with ideal synthetic drop profiles. It was shown that the accuracy of the new system with ideal synthetic drop profiles can reach 0.01% with both Young-Laplace and polynomial fitting methods. Conducting experiments to measure both static and dynamic (advancing and receding) contact angles with the developed instrument, we found that the smartphone-based instrument can provide accurate and practical measurement results as the traditional commercial instruments. The successful demonstration of use of a smartphone (mobile phone) to conduct contact angle measurement is a significant advancement in the field as it breaks the dominate mold of use of a computer and a bench bound setup for such systems since their appearance in 1980s.
Partitioning Pythagorean Triangles Using Pythagorean Angles
Swenson, Carl E.; Yandl, Andre L.
2012-01-01
Inside any Pythagorean right triangle, it is possible to find a point M so that drawing segments from M to each vertex of the triangle yields angles whose sines and cosines are all rational. This article describes an algorithm that generates an infinite number of such points.
Gaugings at angles from orientifold reductions
Roest, D.
2009-01-01
We consider orientifold reductions to N = 4 gauged supergravity in four dimensions. A special feature of this theory is that different factors of the gauge group can have relative angles with respect to the electro-magnetic SL(2) symmetry. These are crucial for moduli stabilization and de Sitter
Incidence angle normalization of radar backscatter data
NASA’s Soil Moisture Passive Active (SMAP) satellite (~2014) will include a radar system that will provide L-band multi-polarization backscatter at a constant incidence angle of 40º. During the pre-launch phase of the project there is a need for observations that will support the radar-based soil mo...
Labelling Angles: Care, Indifference and Mathematical Symbols
Long, Julie
2011-01-01
In this article, I explore tensions of care in the context of school mathematics by examining two accounts of a classroom moment involving labelling an angle. In particular, I draw attention to how caring for students and caring for mathematical ideas interplay in complex ways by inquiring into the two accounts through ideas of care and…
Large solid angle detectors (low energy)
International Nuclear Information System (INIS)
L'Hote, D.
1988-01-01
This lecture deals with large solid angle detectors used in low energy experiments (mainly in Nuclear Physics). The reasons for using such detectors are discussed, and several basic principles of their design are presented. Finally, two examples of data analysis from such detectors are given [fr
Experimental technique of small angle neutron scattering
International Nuclear Information System (INIS)
Xia Qingzhong; Chen Bo
2006-03-01
The main parts of Small Angle Neutron Scattering (SANS) spectrometer, and their function and different parameters are introduced from experimental aspect. Detailed information is also introduced for SANS spectrometer 'Membrana-2'. Based on practical experiments, the fundamental requirements and working condition for SANS experiments, including sample preparation, detector calibration, standard sample selection and data preliminary process are described. (authors)
Camber Angle Inspection for Vehicle Wheel Alignments
Directory of Open Access Journals (Sweden)
Jieh-Shian Young
2017-02-01
Full Text Available This paper introduces an alternative approach to the camber angle measurement for vehicle wheel alignment. Instead of current commercial approaches that apply computation vision techniques, this study aims at realizing a micro-control-unit (MCU-based camber inspection system with a 3-axis accelerometer. We analyze the precision of the inspection system for the axis misalignments of the accelerometer. The results show that the axes of the accelerometer can be aligned to the axes of the camber inspection system imperfectly. The calibrations that can amend these axis misalignments between the camber inspection system and the accelerometer are also originally proposed since misalignments will usually happen in fabrications of the inspection systems. During camber angle measurements, the x-axis or z-axis of the camber inspection system and the wheel need not be perfectly aligned in the proposed approach. We accomplished two typical authentic camber angle measurements. The results show that the proposed approach is applicable with a precision of ± 0.015 ∘ and therefore facilitates the camber measurement process without downgrading the precision by employing an appropriate 3-axis accelerometer. In addition, the measured results of camber angles can be transmitted via the medium such as RS232, Bluetooth, and Wi-Fi.
Measurement of the angle alpha at BABAR
International Nuclear Information System (INIS)
Perez, A.
2009-01-01
The authors present recent measurements of the CKM angle α using data collected by the BABAR detector at the PEP-II asymmetric-energy e + e - collider at the SLAC National Accelerator Laboratory, operating at the Υ(4S) resonance. They present constraints on α from B → ππ, B → ρρ and B → ρπ decays.
EAES: Extended Advanced Encryption Standard with Extended Security
Directory of Open Access Journals (Sweden)
Abul Kalam Azad
2018-05-01
Full Text Available Though AES is the highest secure symmetric cipher at present, many attacks are now effective against AES too which is seen from the review of recent attacks of AES. This paper describes an extended AES algorithm with key sizes of 256, 384 and 512 bits with round numbers of 10, 12 and 14 respectively. Data block length is 128 bits, same as AES. But unlike AES each round of encryption and decryption of this proposed algorithm consists of five stages except the last one which consists of four stages. Unlike AES, this algorithm uses two different key expansion algorithms with two different round constants that ensure higher security than AES. Basically, this algorithm takes one cipher key and divides the selected key of two separate sub-keys: FirstKey and SecondKey. Then expand them through two different key expansion schedules. Performance analysis shows that the proposed extended AES algorithm takes almost same amount of time to encrypt and decrypt the same amount of data as AES but with higher security than AES.
X-ray and neutron small-angle scattering studies of human serum lipoproteins
International Nuclear Information System (INIS)
Luzzati, V.; Tardieu, A.; Mateu, L.; Sardet, C.; Stuhrmann, H.B.; Aggerbeck, L.; Scanu, A.M.
1976-01-01
The paper describes an extended x-ray study of two types of human serum lipoproteins and a neutron study of one of them. The results are similar and to some extent complementary. Serum lipoproteins provide an excellent illustration of the wealth of information that can be obtained by a small-angle scattering approach to the structure of particles with non-uniform density distribution, by using solvents of variable density
Use of high flip angle in T1-prepared FAST sequences for myocardial perfusion quantification
International Nuclear Information System (INIS)
Vallee, Jean-Paul; Ivancevic, Marko; Lazeyras, Francois; Didier, Dominique; Kasuboski, Larry; Chatelain, Pascal; Righetti, Alberto
2003-01-01
This study reports on the first use of high flip angle and radio-frequency (RF) spoiling in T1-prepared fast acquisition in steady state (FAST) sequence for myocardial perfusion in patients. T1 dynamic range was measured in vitro with a FAST, an RF FAST and a snapshot fast low-angle shot (FLASH) sequences with a 90 flip angle. Myocardial perfusion was then measured twice in 6 patients during the same MR session. The RF FAST and FLASH, but not the FAST sequence, demonstrated an extended T1 dynamic range; however, the FLASH images were degraded by artifacts not present on the RF FAST images. The myocardial perfusion indices K1 (first-order transfer constant from the blood to the myocardium for the Gd-DTPA) and Vd (distribution volume of Gd-DTPA in myocardium) did not differ significantly between the two injections. K1 was 0.48±0.12 ml/min g -1 and Vd was 12.5±2.9%. With an extended T1 dynamic range and the sensitivity required for myocardial perfusion quantification, the RF FAST sequence with a 90 flip angle outperformed the snapshot FLASH sequence in terms of image quality and the FAST sequence in terms of contrast dynamic range. (orig.)
International Nuclear Information System (INIS)
Wise, D.S.; Karlin, A.; Schoenborn, B.P.
1979-01-01
The acetylcholine receptor from the electric tissue of Torpedo californica is a large, integral membrane protein containing four different types of polypeptide chains. In this paper the results of the use of low-angle neutron scattering to investigate the shape of the receptor-detergent complex and separately of its protein and detergent moieties are reported. By adjustment of the neutron-scattering density of the solvent with D 2 O to match that of one or the other of the moieties, its contribution to the scattering can be nearly, if not completely, eliminated. Neutron scattering from Triton X-100 micelles established that this detergent is contrast matched in 18% D 2 O. Scattering measurements on the receptor-detergent complex in this solvent yielded a radius of gyration of the acetylcholine receptor monomer of 46 +- 1 A. The radius of gyration and molecular volume (305,000 A 3 ) of the receptor is inconsistent with a compact spherical shape. These parameters are consistent with, for example, a prolate cylinder of dimensions (length x diameter) 150 x 50 A or an oblate cylinder, 25 x 130 A. More complex shapes are possible and in fact seem to be required to reconcile the present results with previous electron microscopic and x-ray analyses of receptor in membrane and with considerations of the function of the receptor in controlling ion permeability. The neutron-scattering data yield, in addition, an independent determination of the molecular weight of the receptor protein (240,000 +- 40,000), the extent of Triton X-100 binding in the complex (0.4 g/g protein), and from the extended scattering curve, an approximation to the shape of the receptor-Triton X-100 complex, namely an oblate ellipsoid of axial ratio 1:4
Renormalization of Extended QCD2
International Nuclear Information System (INIS)
Fukaya, Hidenori; Yamamura, Ryo
2015-01-01
Extended QCD (XQCD), proposed by Kaplan [D. B. Kaplan, arXiv:1306.5818], is an interesting reformulation of QCD with additional bosonic auxiliary fields. While its partition function is kept exactly the same as that of original QCD, XQCD naturally contains properties of low-energy hadronic models. We analyze the renormalization group flow of 2D (X)QCD, which is solvable in the limit of a large number of colors N c , to understand what kind of roles the auxiliary degrees of freedom play and how the hadronic picture emerges in the low-energy region
Axelrod Model with Extended Conservativeness
Dybiec, Bartłomiej
2012-11-01
Similarity of opinions and memory about recent interactions are two main factors determining likelihood of social contacts. Here, we explore the Axelrod model with an extended conservativeness which incorporates not only similarity between individuals but also a preference to the last source of accepted information. The additional preference given to the last source of information increases the initial decay of the number of ideas in the system, changes the character of the phase transition between homogeneous and heterogeneous final states and could increase the number of stable regions (clusters) in the final state.
Estimation of three-dimensional radar tracking using modified extended kalman filter
Aditya, Prima; Apriliani, Erna; Khusnul Arif, Didik; Baihaqi, Komar
2018-03-01
Kalman filter is an estimation method by combining data and mathematical models then developed be extended Kalman filter to handle nonlinear systems. Three-dimensional radar tracking is one of example of nonlinear system. In this paper developed a modification method of extended Kalman filter from the direct decline of the three-dimensional radar tracking case. The development of this filter algorithm can solve the three-dimensional radar measurements in the case proposed in this case the target measured by radar with distance r, azimuth angle θ, and the elevation angle ϕ. Artificial covariance and mean adjusted directly on the three-dimensional radar system. Simulations result show that the proposed formulation is effective in the calculation of nonlinear measurement compared with extended Kalman filter with the value error at 0.77% until 1.15%.
Experimental Validation of the Invariance of Electrowetting Contact Angle Saturation
Chevalliot, S.; Dhindsa, M.; Kuiper, S.; Heikenfeld, J.
2011-01-01
Basic electrowetting theory predicts that a continued increase in applied voltage will allow contact angle modulation to zero degrees. In practice, the effect of contact angle saturation has always been observed to limit the contact angle modulation, often only down to a contact angle of 60 to 70°.
Cosmic ray zenith angle distribution at low geomagnetic latitude
Energy Technology Data Exchange (ETDEWEB)
Aragon, G [Instituto de Astronomia y Fisica del Espacio, Buenos Aires, Argentina; Gagliardini, A; Ghielmetti, H S
1977-12-01
The intensity of secondary charged cosmic rays at different zenith angles was measured by narrow angle Geiger-Mueller telescopes up to an atmospheric depth of 2 g cm/sup -2/. The angular distribution observed at high altitudes is nearly flat at small angles around the vertical and suggests that the particle intensity peaks at large zenith angles, close to the horizon.
NASA Applications of Molecular Nanotechnology
Globus, Al; Bailey, David; Han, Jie; Jaffe, Richard; Levit, Creon; Merkle, Ralph; Srivastava, Deepak
1998-01-01
Laboratories throughout the world are rapidly gaining atomically precise control over matter. As this control extends to an ever wider variety of materials, processes and devices, opportunities for applications relevant to NASA's missions will be created. This document surveys a number of future molecular nanotechnology capabilities of aerospace interest. Computer applications, launch vehicle improvements, and active materials appear to be of particular interest. We also list a number of applications for each of NASA's enterprises. If advanced molecular nanotechnology can be developed, almost all of NASA's endeavors will be radically improved. In particular, a sufficiently advanced molecular nanotechnology can arguably bring large scale space colonization within our grasp.
Extended Ladder-Type Benzo[ k ]tetraphene-Derived Oligomers
Energy Technology Data Exchange (ETDEWEB)
Lee, Jongbok [Department of Chemistry, Texas A& M University, 3255 TAMU College Station TX 77843-3255 USA; Li, Huanbin [MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Rd Hangzhou 310027 China; Kalin, Alexander J. [Department of Chemistry, Texas A& M University, 3255 TAMU College Station TX 77843-3255 USA; Yuan, Tianyu [Department of Materials Science and Engineering, Texas A& M University, 3003 TAMU College Station TX 77843-3003 USA; Wang, Chenxu [Department of Materials Science and Engineering, Texas A& M University, 3003 TAMU College Station TX 77843-3003 USA; Olson, Troy [Department of Chemistry, Texas A& M University, 3255 TAMU College Station TX 77843-3255 USA; Li, Hanying [MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Rd Hangzhou 310027 China; Fang, Lei [Department of Chemistry, Texas A& M University, 3255 TAMU College Station TX 77843-3255 USA; Department of Materials Science and Engineering, Texas A& M University, 3003 TAMU College Station TX 77843-3003 USA
2017-10-02
Well-defined, fused-ring aromatic oligomers represent promising candidates for the fundamental understanding and application of advanced carbon-rich materials, though bottom-up synthesis and structure–property correlation of these compounds remain challenging. In this work, an efficient synthetic route was employed to construct extended benzo[k]tetraphene-derived oligomers with up to 13 fused rings. The molecular and electronic structures of these compounds were clearly elucidated. Precise correlation of molecular sizes and crystallization dynamics was established, thus demonstrating the pivotal balance between intermolecular interaction and molecular mobility for optimized processing of highly ordered solids of these extended conjugated molecules.
A molecular theory of smectic C liquid crystals made of rod-like molecules.
Govind, A S; Madhusudana, N V
2002-10-01
Organic compounds exhibiting the smectic C phase are made of rod-like molecules that have dipolar groups with lateral components. We argue that the off-axis character of the lateral dipolar groups can account for tilt in layered smectics (SmC, SmC*, SmI etc.). We develop a mean-field theory of the smectic C phase based on a single-particle potential of the form UC is proportional to sin(2theta) cos phi, consistent with the biaxial nature of the phase, where theta and phi are the polar and azimuthal angles, respectively. The hard-rod interactions that favour the smectic A phase with zero tilt angle are also included. The theoretical phase diagrams compare favourably with experimental trends. Our theory also leads to the following results: i) a first-order smectic C to smectic A transition above some value of the McMillan parameter alpha, leading to a tricritical point on the smectic C to smectic A transition line and ii) a first-order smectic C to smectic C transition over a very small range of values of the model parameters. We have also extended the theory to include the next higher-order term in the tilting potential and to include the effect of different tilt angles for the molecular core and the chain in the SmC phase.
Implications of Extended Solar Minima
Adams, Mitzi L.; Davis, J. M.
2009-01-01
Since the discovery of periodicity in the solar cycle, the historical record of sunspot number has been carefully examined, attempting to make predictions about the next cycle. Much emphasis has been on predicting the maximum amplitude and length of the next cycle. Because current space-based and suborbital instruments are designed to study active phenomena, there is considerable interest in estimating the length and depth of the current minimum. We have developed criteria for the definition of a minimum and applied it to the historical sunspot record starting in 1749. In doing so, we find that 1) the current minimum is not yet unusually long and 2) there is no obvious way of predicting when, using our definition, the current minimum may end. However, by grouping the data into 22- year cycles there is an interesting pattern of extended minima that recurs every fourth or fifth 22-year cycle. A preliminary comparison of this pattern with other records, suggests the possibility of a correlation between extended minima and lower levels of solar irradiance.
Extended inflation with induced gravity
International Nuclear Information System (INIS)
Accetta, F.S.; Trester, J.J.; Department of Physics, Yale University, New Haven, Connecticut 06520)
1989-01-01
We consider a recently proposed extended model of inflation which improves upon the original old inflation scenario by achieving a graceful exit from the false-vacuum phase. In this paper extended inflation is generalized to include a potential V(phi) for the Brans-Dicke-type field phi. We find that whereas a graceful exit can still be had, the inclusion of a potential places constraints on the percolation time scale for exiting the inflationary phase. Additional constraints on V(phi) and the false-vacuum energy density rho /sub F/ from density and gravitational-wave perturbations are discussed. For initially small values of phi the false vacuum undergoes power-law inflation, while for initially large values of phi the expansion is exponential. Within true-vacuum regions slow-rolling inflation can occur. As a result, this model generically leads to multiple episodes of inflation. We discuss the significance these multiple episodes of inflation may have on the formation of large-scale structure and the production of voids
Cooke, Brian K
2013-01-01
The combination of the killing of a pet and a suicide is a perplexing scenario that is largely unexplored in the literature. Many forensic psychiatrists and psychologists may be unaccustomed to considering the significance of the killing of a pet. The subject is important, however, because many people regard their pets as members of their family. A case is presented of a woman who killed her pet dog and herself by carbon monoxide poisoning. The purpose of this article is to provide an initial exploration of the topic of extended suicide with a pet. Forensic mental health evaluations may have a role in understanding the etiology of this event and in opining as to the culpability of individuals who attempt to or successfully kill a pet and then commit suicide. Because the scientific literature is lacking, there is a need to understand this act from a variety of perspectives. First, a social and anthropological perspective will be presented that summarizes the history of the practice of killing of one's pet, with a focus on the ancient Egyptians. A clinical context will examine what relationship animals have to mental illness. A vast body of existing scientific data showing the relevance of human attachment to pets suggests that conclusions from the phenomena of homicide-suicide and filicide-suicide are applicable to extended suicide with a pet. Finally, recommendations will be proposed for both clinical and forensic psychiatrists faced with similar cases.
Pipe crawler with extendable legs
International Nuclear Information System (INIS)
Zollinger, W.T.
1992-01-01
A pipe crawler for moving through a pipe in inchworm fashion having front and rear leg assemblies separated by air cylinders to increase and decrease the spacing between assemblies. Each leg of the four legs of an assembly is moved between a wall-engaging, extended position and a retracted position by a separate air cylinder. The air cylinders of the leg assemblies are preferably arranged in pairs of oppositely directed cylinders with no pair lying in the same axial plane as another pair. Therefore, the cylinders can be as long as a leg assembly is wide and the crawler can crawl through sections of pipes where the diameter is twice that of other sections. The crawler carries a valving system, a manifold to distribute air supplied by a single umbilical air hose to the various air cylinders in a sequence controlled electrically by a controller. The crawler also utilizes a rolling mechanism, casters in this case, to reduce friction between the crawler and pipe wall thereby further extending the range of the pipe crawler. 8 figs
Pipe crawler with extendable legs
Zollinger, W.T.
1992-06-16
A pipe crawler for moving through a pipe in inchworm fashion having front and rear leg assemblies separated by air cylinders to increase and decrease the spacing between assemblies. Each leg of the four legs of an assembly is moved between a wall-engaging, extended position and a retracted position by a separate air cylinder. The air cylinders of the leg assemblies are preferably arranged in pairs of oppositely directed cylinders with no pair lying in the same axial plane as another pair. Therefore, the cylinders can be as long as a leg assembly is wide and the crawler can crawl through sections of pipes where the diameter is twice that of other sections. The crawler carries a valving system, a manifold to distribute air supplied by a single umbilical air hose to the various air cylinders in a sequence controlled electrically by a controller. The crawler also utilizes a rolling mechanism, casters in this case, to reduce friction between the crawler and pipe wall thereby further extending the range of the pipe crawler. 8 figs.
Molecular modeling of inorganic compounds
National Research Council Canada - National Science Library
Comba, Peter; Hambley, Trevor W; Martin, Bodo
2009-01-01
... mechanics to inorganic and coordination compounds. Initially, simple metal complexes were modeled, but recently the field has been extended to include organometallic compounds, catalysis and the interaction of metal ions with biological macromolecules. The application of molecular mechanics to coordination compounds is complicated by the numbe...
A unified model for transfer alignment at random misalignment angles based on second-order EKF
International Nuclear Information System (INIS)
Cui, Xiao; Qin, Yongyuan; Yan, Gongmin; Liu, Zhenbo; Mei, Chunbo
2017-01-01
In the transfer alignment process of inertial navigation systems (INSs), the conventional linear error model based on the small misalignment angle assumption cannot be applied to large misalignment situations. Furthermore, the nonlinear model based on the large misalignment angle suffers from redundant computation with nonlinear filters. This paper presents a unified model for transfer alignment suitable for arbitrary misalignment angles. The alignment problem is transformed into an estimation of the relative attitude between the master INS (MINS) and the slave INS (SINS), by decomposing the attitude matrix of the latter. Based on the Rodriguez parameters, a unified alignment model in the inertial frame with the linear state-space equation and a second order nonlinear measurement equation are established, without making any assumptions about the misalignment angles. Furthermore, we employ the Taylor series expansions on the second-order nonlinear measurement equation to implement the second-order extended Kalman filter (EKF2). Monte-Carlo simulations demonstrate that the initial alignment can be fulfilled within 10 s, with higher accuracy and much smaller computational cost compared with the traditional unscented Kalman filter (UKF) at large misalignment angles. (paper)
A unified model for transfer alignment at random misalignment angles based on second-order EKF
Cui, Xiao; Mei, Chunbo; Qin, Yongyuan; Yan, Gongmin; Liu, Zhenbo
2017-04-01
In the transfer alignment process of inertial navigation systems (INSs), the conventional linear error model based on the small misalignment angle assumption cannot be applied to large misalignment situations. Furthermore, the nonlinear model based on the large misalignment angle suffers from redundant computation with nonlinear filters. This paper presents a unified model for transfer alignment suitable for arbitrary misalignment angles. The alignment problem is transformed into an estimation of the relative attitude between the master INS (MINS) and the slave INS (SINS), by decomposing the attitude matrix of the latter. Based on the Rodriguez parameters, a unified alignment model in the inertial frame with the linear state-space equation and a second order nonlinear measurement equation are established, without making any assumptions about the misalignment angles. Furthermore, we employ the Taylor series expansions on the second-order nonlinear measurement equation to implement the second-order extended Kalman filter (EKF2). Monte-Carlo simulations demonstrate that the initial alignment can be fulfilled within 10 s, with higher accuracy and much smaller computational cost compared with the traditional unscented Kalman filter (UKF) at large misalignment angles.
Dancing droplets: Contact angle, drag, and confinement
Benusiglio, Adrien; Cira, Nate; Prakash, Manu
2015-11-01
When deposited on a clean glass slide, a mixture of water and propylene glycol forms a droplet of given contact angle, when both pure liquids spread. (Cira, Benusiglio, Prakash: Nature, 2015). The droplet is stabilized by a gradient of surface tension due to evaporation that induces a Marangoni flow from the border to the apex of the droplets. The apparent contact angle of the droplets depends on both their composition and the external humidity as captured by simple models. These droplets present remarkable properties such as lack of a large pinning force. We discuss the drag on these droplets as a function of various parameters. We show theoretical and experimental results of how various confinement geometries change the vapor gradient and the dynamics of droplet attraction.
Exclusive Backward-Angle Omega Meson Electroproduction
Energy Technology Data Exchange (ETDEWEB)
Wenliang, Li [Univ. of Regina, Regina, SK (Canada)
2017-10-01
Exclusive meson electroproduction at different squared four-momenta of the exchanged virtual photon, Q^{2} , and at different four-momentum transfers, t and u, can be used to probe QCD's transition from hadronic degrees of freedom at the long distance scale to quark-gluon degrees of freedom at the short distance scale. Backward-angle meson electroproduction was previously ignored, but is anticipated to offer complimentary information to conventional forward-angle meson electroproduction studies on nucleon structure. This work is a pioneering study of backward-angle ω cross sections through the exclusive ^{1}H(e, e'p)ω reaction using the missing mass reconstruction technique. The extracted cross sections are separated into the transverse (T), longitudinal (L), and LT, TT interference terms. The analyzed data were part of experiment E01-004 (Fπ-2), which used 2.6-5.2 GeV electron beams and HMS+SOS spectrometers in Jefferson Lab Hall C. The primary objective was to detect coincidence π in the forward-angle, where the backward-angle omega events were fortuitously detected. The experiment has central Q^{2} values of 1.60 and 2.45 GeV^{2} , at W = 2.21 GeV. There was significant coverage in phi and epsilon, which allowed separation of σ_{T,L,LT,TT} . The data set has a unique u coverage of -u ~ 0, which corresponds to -t > 4 GeV^{2} . The separated σ_{T} result suggest a flat ~ 1/Q^{1.33±1.21} dependence, whereas sigma_L seems to hold a stronger 1/Q^{9.43±6.28} dependence. The σL/σ_{T} ratio indicate σ_{T} dominance at Q^{2} = 2.45 GeV^{2} at the ~90% confidence level. After translating the results into the -t space of the published CLAS data, our data show evidence of a backward-angle omega electroproduction peak at both Q^{2} settings. Previously, this phenomenon showing both forward and backward-angle peaks was only observed in the meson
The small angle diffractometer SANS at PSI
Energy Technology Data Exchange (ETDEWEB)
Wagner, W [Paul Scherrer Inst. (PSI), Villigen (Switzerland)
1996-11-01
With the start-up of SINQ an instrument for small angle neutron scattering will be operational which compares well with the world`s largest and most powerful facilities of this kind. Following the classical principle of the D11-instrument of ILL, it is equipped with state-of-the-art components as are nowadays available, including options for further upgrading. Great emphasis was laid upon providing a flexible, universal multi-user facility which guarantees a comfortable and reliable operation. In the present paper, the principle layout of the instrument is presented, and the individual components are described in detail. The paper concludes with model application of small angle scattering to a system of dilute CuCo alloys which undergo a phase separation under thermal treatment, forming spherical Co-precipitates dispersed in a Cu-rich matrix. (author) 3 figs., 1 tab., 14 refs.
Modeling small angle scattering data using FISH
International Nuclear Information System (INIS)
Elliott, T.; Buckely, C.E.
2002-01-01
Full text: Small angle neutron scattering (SANS) and small angle x-ray scattering (SAXS) are important techniques for the characterisation of samples on the nanometer scale. From the scattered intensity pattern information about the sample such as particle size distribution, concentration and particle interaction can be determined. Since the experimental data is in reciprocal space and information is needed about real space, modeling of the scattering data to obtain parameters is extremely important and several paradigms are available. The use of computer programs to analyze the data is imperative for a robust description of the sample to be obtained. This presentation gives an overview of the SAS process and describes the data-modeling program FISH, written by R. Heenan 1983-2000. The results of using FISH to obtain the particle size distribution of bubbles in the aluminum hydrogen system and other systems of interest are described. Copyright (2002) Australian X-ray Analytical Association Inc
Didactical Design Enrichment of Angle in Geometry
Setiadi, D. R.; Suryadi, D.; Mulyana, E.
2017-09-01
The underlying problem of this research is the lack of student’s competencies in understanding the concept of angle in geometry as the results of the teaching and learning pattern that only to receive the topic rather than to construct the topic and has not paid attention to the learning trajectory. The purpose of this research is to develop the didactical design of angle in space learning activity. The used research method is a method of qualitative research in the form of a didactical design research through three phases of analysis i.e. didactical situation analysis, metapedadidactical analysis, and retrospective analysis, which conducted in students from 10th grade at one of private schools in Bandung. Based on the results of research and discussion, the didactical design that has been made, is capable to change student’s learning habit and quite capable to develop student’s competencies although not optimal.
Implant Angle Monitor System of MC3-II
International Nuclear Information System (INIS)
Sato, Fumiaki; Sano, Makoto; Nakaoka, Hiroaki; Fujii, Yoshito; Kudo, Tetuya; Nakanishi, Makoto; Koike, Masazumi; Fujino, Yasushi
2008-01-01
Precise implant angle control is required for the latest generation of ion implanters to meet further shrink semiconductor device requirements. Especially, the highest angle accuracy is required for Halo implant process of Logic devices. The Halo implant angle affects the device performance, because slight differences of beam divergence change the overlap profile towards the extension. Additionally, twist angle accuracy is demanded in case of channeling angle implant. Therefore monitoring beam angles and wafer twist angles is important. A new monitoring system for the MC3-II, SEN Corp.'s single wafer type medium current implanter has been developed. This paper describes the angle control performance and monitoring system of the MC3-II. For the twist angle control, we developed a wafer notch angle monitor. The system monitors the wafer notch image on the platen. And the notch angle variation is calculated by using image processing method. It is also able to adjust the notch angle according to the angle error. For the tilt angle control, we developed a vertical beam profile monitor. The monitor system can detect beam profile of vertical directions with horizontally scanning beam. It also measures beam angles of a tilt direction to a wafer. The system configuration and sample beam data are presented.
Modelling small-angle scattering data from complex protein-lipid systems
DEFF Research Database (Denmark)
Kynde, Søren Andreas Røssell
This thesis consists of two parts. The rst part is divided into five chapters. Chapter 1 gives a general introduction to the bio-molecular systems that have been studied. These are membrane proteins and their lipid environments in the form of phospholipid nanodiscs. Membrane proteins...... the techniques very well suited for the study of the nanodisc system. Chapter 3 explains two different modelling approaches that can be used in the analysis of small-angle scattering data from lipid-protein complexes. These are the continuous approach where the system of interest is modelled as a few regular...... combine the bene ts of each of the methods and give unique structural information about relevant bio-molecular complexes in solution. Chapter 4 describes the work behind a proposal of a small-angle neutron scattering instrument for the European Spallation Source under construction in Lund. The instrument...
Tool Indicates Contact Angles In Bearing Raceways
Akian, Richard A.; Butner, Myles F.
1995-01-01
Tool devised for use in measuring contact angles between balls and races in previously operated ball bearings. Used on both inner and outer raceways of bearings having cross-sectional widths between approximately 0.5 and 2.0 in. Consists of integral protractor mounted in vertical plane on bracket equipped with leveling screws and circular level indicator. Protractor includes rotatable indicator needle and set of disks of various sizes to fit various raceway curvatures.
On accurate determination of contact angle
Concus, P.; Finn, R.
1992-01-01
Methods are proposed that exploit a microgravity environment to obtain highly accurate measurement of contact angle. These methods, which are based on our earlier mathematical results, do not require detailed measurement of a liquid free-surface, as they incorporate discontinuous or nearly-discontinuous behavior of the liquid bulk in certain container geometries. Physical testing is planned in the forthcoming IML-2 space flight and in related preparatory ground-based experiments.
Wireless Orbiter Hang-Angle Inclinometer System
Lucena, Angel; Perotti, Jose; Green, Eric; Byon, Jonathan; Burns, Bradley; Mata, Carlos; Randazzo, John; Blalock, Norman
2011-01-01
A document describes a system to reliably gather the hang-angle inclination of the orbiter. The system comprises a wireless handheld master station (which contains the main station software) and a wireless remote station (which contains the inclinometer sensors, the RF transceivers, and the remote station software). The remote station is designed to provide redundancy to the system. It includes two RF transceivers, two power-management boards, and four inclinometer sensors.
Small angle neutron scattering by polymer solutions
International Nuclear Information System (INIS)
Farnoux, B.; Jannink, G.
1980-08-01
Small angle neutron scattering is an experimental technique introduced since about 10 years for the observation of the polymer conformation in all the concentration range from dilute solution to the melt. After a brief recall of the elementary relations between scattering amplitude, index of refraction and scattered intensity, two concepts related to this last quantity (the contrast and the pair correlation function) are discussed in details
Dynamic contact angle cycling homogenizes heterogeneous surfaces.
Belibel, R; Barbaud, C; Mora, L
2016-12-01
In order to reduce restenosis, the necessity to develop the appropriate coating material of metallic stent is a challenge for biomedicine and scientific research over the past decade. Therefore, biodegradable copolymers of poly((R,S)-3,3 dimethylmalic acid) (PDMMLA) were prepared in order to develop a new coating exhibiting different custom groups in its side chain and being able to carry a drug. This material will be in direct contact with cells and blood. It consists of carboxylic acid and hexylic groups used for hydrophilic and hydrophobic character, respectively. The study of this material wettability and dynamic surface properties is of importance due to the influence of the chemistry and the potential motility of these chemical groups on cell adhesion and polymer kinetic hydrolysis. Cassie theory was used for the theoretical correction of contact angles of these chemical heterogeneous surfaces coatings. Dynamic Surface Analysis was used as practical homogenizer of chemical heterogeneous surfaces by cycling during many cycles in water. In this work, we confirmed that, unlike receding contact angle, advancing contact angle is influenced by the difference of only 10% of acidic groups (%A) in side-chain of polymers. It linearly decreases with increasing acidity percentage. Hysteresis (H) is also a sensitive parameter which is discussed in this paper. Finally, we conclude that cycling provides real information, thus avoiding theoretical Cassie correction. H(10)is the most sensible parameter to %A. Copyright © 2016 Elsevier B.V. All rights reserved.
Effect of impact angle on vaporization
Schultz, Peter H.
1996-09-01
Impacts into easily vaporized targets such as dry ice and carbonates generate a rapidly expanding vapor cloud. Laboratory experiments performed in a tenuous atmosphere allow deriving the internal energy of this cloud through well-established and tested theoretical descriptions. A second set of experiments under near-vacuum conditions provides a second measure of energy as the internal energy converts to kinetic energy of expansion. The resulting data allow deriving the vaporized mass as a function of impact angle and velocity. Although peak shock pressures decrease with decreasing impact angle (referenced to horizontal), the amount of impact-generated vapor is found to increase and is derived from the upper surface. Moreover, the temperature of the vapor cloud appears to decrease with decreasing angle. These unexpected results are proposed to reflect the increasing roles of shear heating and downrange hypervelocity ricochet impacts created during oblique impacts. The shallow provenance, low temperature, and trajectory of such vapor have implications for larger-scale events, including enhancement of atmospheric and biospheric stress by oblique terrestrial impacts and impact recycling of the early atmosphere of Mars.
Off-Angle Iris Correction Methods
Energy Technology Data Exchange (ETDEWEB)
Santos-Villalobos, Hector J [ORNL; Thompson, Joseph T [ORNL; Karakaya, Mahmut [ORNL; Boehnen, Chris Bensing [ORNL
2016-01-01
In many real world iris recognition systems obtaining consistent frontal images is problematic do to inexperienced or uncooperative users, untrained operators, or distracting environments. As a result many collected images are unusable by modern iris matchers. In this chapter we present four methods for correcting off-angle iris images to appear frontal which makes them compatible with existing iris matchers. The methods include an affine correction, a retraced model of the human eye, measured displacements, and a genetic algorithm optimized correction. The affine correction represents a simple way to create an iris image that appears frontal but it does not account for refractive distortions of the cornea. The other method account for refraction. The retraced model simulates the optical properties of the cornea. The other two methods are data driven. The first uses optical flow to measure the displacements of the iris texture when compared to frontal images of the same subject. The second uses a genetic algorithm to learn a mapping that optimizes the Hamming Distance scores between off-angle and frontal images. In this paper we hypothesize that the biological model presented in our earlier work does not adequately account for all variations in eye anatomy and therefore the two data-driven approaches should yield better performance. Results are presented using the commercial VeriEye matcher that show that the genetic algorithm method clearly improves over prior work and makes iris recognition possible up to 50 degrees off-angle.
Small Angle X-Ray Scattering Detector
Energy Technology Data Exchange (ETDEWEB)
Hessler, Jan P.
2004-06-15
A detector for time-resolved small-angle x-ray scattering includes a nearly constant diameter, evacuated linear tube having an end plate detector with a first fluorescent screen and concentric rings of first fiber optic bundles for low angle scattering detection and an annular detector having a second fluorescent screen and second fiber optic bundles concentrically disposed about the tube for higher angle scattering detection. With the scattering source, i.e., the specimen under investigation, located outside of the evacuated tube on the tube's longitudinal axis, scattered x-rays are detected by the fiber optic bundles, to each of which is coupled a respective photodetector, to provide a measurement resolution, i.e., dq/q, where q is the momentum transferred from an incident x-ray to an x-ray scattering specimen, of 2% over two (2) orders of magnitude in reciprocal space, i.e., qmax/qmin approx=lO0.
Internal Friction Angle of Metal Powders
Directory of Open Access Journals (Sweden)
Jiri Zegzulka
2018-04-01
Full Text Available Metal powders are components with multidisciplinary usage as their application is very broad. Their consistent characterization across all disciplines is important for ensuring repeatable and trouble-free processes. Ten metal powders were tested in the study. In all cases, the particle size distribution and morphology (scanning electron microscope—SEM photos were determined. The aim of this work was to inspect the flow behavior of metal powders through another measured characteristic, namely the angle of internal friction. The measured values of the effective internal friction angle in the range 28.6–32.9°, together with the spherical particle shape and the particle size distribution, revealed the likely dominant mode of the metal particle transfer mechanism for stainless steel 316L, zinc and aluminum powder. This third piston flow mechanism is described and illustrated in detail. The angle of internal friction is mentioned as another suitable parameter for the characterization of metal powders, not only for the relative simplicity of the determination but also for gaining insight into the method of the movement of individual particles during the flow.
Renal artery origins: best angiographic projection angles.
Verschuyl, E J; Kaatee, R; Beek, F J; Patel, N H; Fontaine, A B; Daly, C P; Coldwell, D M; Bush, W H; Mali, W P
1997-10-01
To determine the best projection angles for imaging the renal artery origins in profile. A mathematical model of the anatomy at the renal artery origins in the transverse plane was used to analyze the amount of aortic lumen that projects over the renal artery origins at various projection angles. Computed tomographic (CT) angiographic data about the location of 400 renal artery origins in 200 patients were statistically analyzed. In patients with an abdominal aortic diameter no larger than 3.0 cm, approximately 0.5 mm of the proximal part of the renal artery and origin may be hidden from view if there is a projection error of +/-10 degrees from the ideal image. A combination of anteroposterior and 20 degrees and 40 degrees left anterior oblique projections resulted in a 92% yield of images that adequately profiled the renal artery origins. Right anterior oblique projections resulted in the least useful images. An error in projection angle of +/-10 degrees is acceptable for angiographic imaging of the renal artery origins. Patients sex, site of interest (left or right artery), and local diameter of the abdominal aorta are important factors to consider.
Broken symmetries and the Cabibbo angle
International Nuclear Information System (INIS)
Lanik, J.
1975-04-01
Under the assumption that the SU(3) symmetry is broken down by the strong and electromagnetic interactions, a phenomenological theory of the Cabibbo angle theta is proposed. In this theory the angle theta is fixed, linking together the Cabibbo rotation in the SU(3) space and complete SU(3) breaking consisting of both the SU(3) Hamiltonian and vacuum non-invariances. Assuming that the value of theta is zero in the soft-pion limit and that, in this limit, the only forces responsible for the isotopic symmetry breaking are the usual photonic forces it is shown that the usual electromagnetic interactions can contribute for the value of theta only through the non-vanishing vacuum expectation value of a certain scalar field. Within the framework of the (3,average3)+(3,average3) chiral symmetry-breaking model and through the use of the experimental value of the ratio GAMMA (K→μν)/GAMMA(π→μν), the presented Cabibbo angle theory predicts the value sintheta=0.25 which is in good agreement with experiment. (Lanik, J.)
Pair creation at large inherent angles
International Nuclear Information System (INIS)
Chen, P.; Tauchi, T.; Schroeder, D.V.
1992-01-01
In the next-generation linear colliders, the low-energy e + e - pairs created during the collision of high-energy e + e - beams would cause potential deleterious background problems to the detectors. At low collider energies, the pairs are made essentially by the incoherent process, where the pair is created by the interaction of beamstrahlung photons on the individual particles in the oncoming beam. This problem was first identified by Zolotarev, et al. At energies where the beamstrahlung parameter Υ lies approximately in the range 0.6 approx-lt Υ approx-lt 100, pair creation from the beamstrahlung photons is dominated by a coherent process, first noted by Chen. The seriousness of this pair creation problem lies in the transverse momenta that the pair particles carry when leaving the interaction point (IP) with large angles. Since the central issue is the transverse momentum for particles with large angles, the authors notice that there is another source for it. Namely, when the pair particles are created at low energies, the intrinsic angles of these pairs when produced may already be large. In this paper they reinvestigate the problem, following essentially the same equivalent photon approach, but with changes in specific details including the virtual photon spectrum. In addition, various assumptions are made more explicit. The formulas derived are then applied to the collider parameters designed by Palmer
Head flexion angle while using a smartphone.
Lee, Sojeong; Kang, Hwayeong; Shin, Gwanseob
2015-01-01
Repetitive or prolonged head flexion posture while using a smartphone is known as one of risk factors for pain symptoms in the neck. To quantitatively assess the amount and range of head flexion of smartphone users, head forward flexion angle was measured from 18 participants when they were conducing three common smartphone tasks (text messaging, web browsing, video watching) while sitting and standing in a laboratory setting. It was found that participants maintained head flexion of 33-45° (50th percentile angle) from vertical when using the smartphone. The head flexion angle was significantly larger (p smartphone, could be a main contributing factor to the occurrence of neck pain of heavy smartphone users. Practitioner Summary: In this laboratory study, the severity of head flexion of smartphone users was quantitatively evaluated when conducting text messaging, web browsing and video watching while sitting and standing. Study results indicate that text messaging while sitting caused the largest head flexion than that of other task conditions.
Angle sensitive single photon avalanche diode
Energy Technology Data Exchange (ETDEWEB)
Lee, Changhyuk, E-mail: cl678@cornell.edu; Johnson, Ben, E-mail: bcj25@cornell.edu; Molnar, Alyosha, E-mail: am699@cornell.edu [Electrical and Computer Engineering, Cornell University, Ithaca, New York 14850 (United States)
2015-06-08
An ideal light sensor would provide exact information on intensity, timing, location, and angle of incoming photons. Single photon avalanche diodes (SPADs) provide such desired high (single photon) sensitivity with precise time information and can be implemented at a pixel-scale to form an array to extract spatial information. Furthermore, recent work has demonstrated photodiode-based structures (combined with micro-lenses or diffraction gratings) that are capable of encoding both spatial and angular information of incident light. In this letter, we describe the implementation of such a grating structure on SPADs to realize a pixel-scale angle-sensitive single photon avalanche diode (A-SPAD) built in a standard CMOS process. While the underlying SPAD structure provides high sensitivity, the time information of the two layers of diffraction gratings above offers angle-sensitivity. Such a unique combination of SPAD and diffraction gratings expands the sensing dimensions to pave a path towards lens-less 3-D imaging and light-field time-of-flight imaging.
Multi-Angle Snowflake Camera Instrument Handbook
Energy Technology Data Exchange (ETDEWEB)
Stuefer, Martin [Univ. of Alaska, Fairbanks, AK (United States); Bailey, J. [Univ. of Alaska, Fairbanks, AK (United States)
2016-07-01
The Multi-Angle Snowflake Camera (MASC) takes 9- to 37-micron resolution stereographic photographs of free-falling hydrometers from three angles, while simultaneously measuring their fall speed. Information about hydrometeor size, shape orientation, and aspect ratio is derived from MASC photographs. The instrument consists of three commercial cameras separated by angles of 36º. Each camera field of view is aligned to have a common single focus point about 10 cm distant from the cameras. Two near-infrared emitter pairs are aligned with the camera’s field of view within a 10-angular ring and detect hydrometeor passage, with the lower emitters configured to trigger the MASC cameras. The sensitive IR motion sensors are designed to filter out slow variations in ambient light. Fall speed is derived from successive triggers along the fall path. The camera exposure times are extremely short, in the range of 1/25,000th of a second, enabling the MASC to capture snowflake sizes ranging from 30 micrometers to 3 cm.
Harmonic superspaces of extended supersymmetry
International Nuclear Information System (INIS)
Ivanov, E.; Kalitzin, S.; Nguyen Ai Viet; Ogievetsky, V.
1984-01-01
The main technical apparatus of the harmonic superspace approach to extended SUSY, the calculus of harmonic variables on homogeneous spaces of the SUSY automorphism groups, is presented in detail for N=2, 3, 4. The basic harmonics for the coset manifolds G/H with G=SU(2), H=U(1); G=SU(3), H=SU(2)xU(1) and H=U(1)xU(1); G=SU(4), H=SU(3)xU(1), H=SU(2)xSU(2)xU(1), H=SU(2)xU(1)xU(1) and H=U(1)xU(1)xU(1); G=USp(2), H=SU(2)xSU(2), H=SU(2)xU(1) and H=U(1)xU(1) are tabulated a number of useful relations among them