WorldWideScience

Sample records for angle-resolved electron energy

  1. Angle resolved electron energy loss spectroscopy on graphite

    Science.gov (United States)

    Diebold, U.; Preisinger, A.; Schattschneider, P.; Varga, P.

    We report on angle resolved electron energy loss spectroscopy (EELS) in reflection mode with low primary energy on a graphite single crystal. Measurements with primary electron energy of 175 eV have been performed in off-Bragg-reflex geometry in two different directions within the (0001) surface plane of the graphite single crystal. In addition, EELS measurements in specular reflection mode with different primary energies and angles of incidence were done in order to distinguish between surface and bulk plasmon losses. The energy losses and the transferred momenta of the losses have been analyzed. The results are compared with the loss functions for bulk and surface excitations calculated from the dielectric function ɛ(ω, q) obtained from TEELS-data (EELS in transmission mode) [Springer Tracts Mod. Phys. 54 (1970) 77].

  2. Imaging electron dynamics with time- and angle-resolved photoelectron spectroscopy

    Science.gov (United States)

    Popova-Gorelova, Daria; Küpper, Jochen; Santra, Robin

    2016-07-01

    We theoretically study how time- and angle-resolved photoemission spectroscopy can be applied for imaging coherent electron dynamics in molecules. We consider a process in which a pump pulse triggers coherent electronic dynamics in a molecule by creating a valence electron hole. An ultrashort extreme ultraviolet probe pulse creates a second electron hole in the molecule. Information about the electron dynamics is accessed by analyzing angular distributions of photoemission probabilities at a fixed photoelectron energy. We demonstrate that a rigorous theoretical analysis, which takes into account the indistinguishability of transitions induced by the ultrashort, broadband probe pulse and electron hole correlation effects, is necessary for the interpretation of time- and angle-resolved photoelectron spectra. We show how a Fourier analysis of time- and angle-resolved photoelectron spectra from a molecule can be applied to follow its electron dynamics by considering photoelectron distributions from an indole molecular cation with coherent electron dynamics.

  3. Imaging electron dynamics with time- and angle-resolved photoelectron spectroscopy

    CERN Document Server

    Popova-Gorelova, Daria; Santra, Robin

    2016-01-01

    We theoretically study how time- and angle-resolved photoemission spectroscopy can be applied for imaging coherent electron dynamics in molecules. We consider a process in which a pump pulse triggers coherent electronic dynamics in a molecule by creating a valence electron hole. An ultrashort extreme ultraviolet (XUV) probe pulse creates a second electron hole in the molecule. Information about the electron dynamics is accessed by analyzing angular distributions of photoemission probabilities at a fixed photoelectron energy. We demonstrate that a rigorous theoretical analysis, which takes into account the indistinguishability of transitions induced by the ultrashort, broadband probe pulse and electron hole correlation effects, is necessary for the interpretation of time- and angle-resolved photoelectron spectra. We show how a Fourier analysis of time- and angle-resolved photoelectron spectra from a molecule can be applied to follow its electron dynamics by considering photoelectron distributions from an indol...

  4. Angle-Resolved Photoemission of Solvated Electrons in Sodium-Doped Clusters

    CERN Document Server

    West, Adam H C; Luckhaus, David; Saak, Clara-Magdalena; Doppelbauer, Maximilian; Signorell, Ruth

    2015-01-01

    Angle-resolved photoelectron spectroscopy of the unpaired electron in sodium-doped water, methanol, ammonia, and dimethyl ether clusters is presented. The experimental observations and the complementary calculations are consistent with surface electrons for the cluster size range studied. Evidence against internally solvated electrons is provided by the photoelectron angular distribution. The trends in the ionization energies seem mainly determined by the degree of hydrogen bonding in the solvent and the solvation of the ion core. The onset ionization energies of water and methanol clusters do not level off at small cluster sizes, but decrease slightly with increasing cluster size.

  5. Momentum-Dependent Charge Transfer Excitations in Sr{sub {bold 2}}CuO {sub {bold 2}}Cl{sub {bold 2}} Angle-Resolved Electron Energy Loss Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y.Y.; Zhang, F.C.; Dravid, V.P.; Ng, K.K.; Klein, M.V.; Schnatterly, S.E.; Miller, L.L. [Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208 (United States)]|[Science and Technology Center for Superconductivity, Northwestern University, Evanston, Illinois 60208 (United States)]|[Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221 (United States)]|[Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)]|[Department of Physics, Science and Technology Center for Superconductivity, University of Illinois, Urbana, Illinois 61801 (United States)]|[Department of Physics, University of Virginia, Charlottesville, Virginia 22901 (United States)]|[Ames Laboratory, Iowa State University, Ames, Iowa 50011 (United States)

    1996-08-01

    Electron-hole pair excitations in the insulating cuprates Sr{sub 2}CuO{sub 2}Cl{sub 2} were investigated by angle-resolved electron energy loss spectroscopy. The optically allowed and optically forbidden transitions were observed to be strongly anisotropic in Cu-O{sub 2} plane. The former show a large energy dispersion {approximately}1.5 eV along [110], and the latter appear at a higher energy position ({approximately}4.5 eV) only along [100], but not along [110]. We interpret these results as transitions involving excitons. A small exciton model is examined to explain both the observed features. {copyright} {ital 1996 The American Physical Society.}

  6. The electronic structure of spintronic materials as seen by spin-polarized angle-resolved photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Plucinski, L., E-mail: l.plucinski@fz-juelich.de [Peter Grünberg Institute PGI-6, Forschungszentrum Jülich, D-52425 Jülich (Germany); Fakultät f. Physik, Universität Duisburg-Essen, D-47057 Duisburg (Germany); Schneider, C.M. [Peter Grünberg Institute PGI-6, Forschungszentrum Jülich, D-52425 Jülich (Germany); Fakultät f. Physik, Universität Duisburg-Essen, D-47057 Duisburg (Germany)

    2013-08-15

    Highlights: •Introduction of spin-dependent effects in modern angle-resolved photoemission from the point of view of potential applications in spintronics. •Review on modern spin-polarimeters, including the historical development of the field. •Several examples to illustrate the application of spin-polarized photoemission to ferromagnetic and non-ferromagnetic sample systems. -- Abstract: The key quantity in spintronic devices is the spin polarization of the current flowing through the various device components, which in turn is closely determined by the components’ electronic structure. Modern spin- and angle-resolved photoemission spectroscopy (spin-ARPES) can map the details of the spin-polarized electronic structure in many novel material systems – both magnetic and nonmagnetic. In order to separate close-lying electronic states, however, an improvement in energy and angular resolution as well as information depth is still mandatory. We review several types of modern photoemission spectrometers capable of spin analysis and discuss the application of the technique for several physical systems including ferromagnetic thin films and topological insulators.

  7. Electronic structure of MgB2 from angle-resolved photoemission spectroscopy.

    Science.gov (United States)

    Uchiyama, H; Shen, K M; Lee, S; Damascelli, A; Lu, D H; Feng, D L; Shen, Z-X; Tajima, S

    2002-04-15

    The first angle-resolved photoemission spectroscopy results from MgB2 single crystals are reported. Along the GammaK and GammaM directions, we observed three distinct dispersive features approaching the Fermi energy. These can be assigned to the theoretically predicted sigma (B 2p(x,y)) and pi (B 2p(z)) bands. In addition, a small parabolic-like band is detected around the Gamma point, which can be attributed to a surface-derived state. The overall agreement between our results and the band calculations suggests that the electronic structure of MgB2 is of a conventional nature, thus implying that electron correlations are weak and may be of little importance to superconductivity in this system.

  8. One-dimensional electron system of Au/Ge(001) revealed by angle-resolved photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Sebastian; Schaefer, Joerg; Blumenstein, Christian; Claessen, Ralph [Experimentelle Physik 4, Universitaet Wuerzburg, 97074 Wuerzburg (Germany); Bostwick, Aaron; Rotenberg, Eli [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley 94720, California (United States)

    2010-07-01

    Self-organized atomic nanowires of noble metals on semiconductor surfaces are characterized by strict spatial separation and a high degree of charge confinement. The ultimate width of single-atom dimension seems to be reached with gold chains on Ge(001).Thus they might offer the possibility to observe exotic properties, like a charge density wave (CDW), or, alternatively, a Luttinger liquid phase. Insight is gained by angle-resolved photoelectron spectroscopy (ARPES). We find that two shallow electron pockets disperse along the wire direction within the surface Brillouin zone, while a dispersion perpendicular to the wires is absent. This is confirmed by mapping the full Fermi surface (FS) topology, where sheets are found to be perfectly 1D without any interchain coupling. This is indicative of the virtual absence of coupling to the second dimension. Interestingly, while various nesting conditions are offered from the FS topology, no band back-folding from a CDW superstructure or energy gap opening is found, which opens a pathway for non-Fermi liquid physics. Thus the system emerges as a prototypical 1D electron system.

  9. Angle-Resolved Photoemission Spectroscopy on Electronic Structure and Electron-Phonon Coupling in Cuprate Superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, X.J.

    2010-04-30

    In addition to the record high superconducting transition temperature (T{sub c}), high temperature cuprate superconductors are characterized by their unusual superconducting properties below T{sub c}, and anomalous normal state properties above T{sub c}. In the superconducting state, although it has long been realized that superconductivity still involves Cooper pairs, as in the traditional BCS theory, the experimentally determined d-wave pairing is different from the usual s-wave pairing found in conventional superconductors. The identification of the pairing mechanism in cuprate superconductors remains an outstanding issue. The normal state properties, particularly in the underdoped region, have been found to be at odd with conventional metals which is usually described by Fermi liquid theory; instead, the normal state at optimal doping fits better with the marginal Fermi liquid phenomenology. Most notable is the observation of the pseudogap state in the underdoped region above T{sub c}. As in other strongly correlated electrons systems, these unusual properties stem from the interplay between electronic, magnetic, lattice and orbital degrees of freedom. Understanding the microscopic process involved in these materials and the interaction of electrons with other entities is essential to understand the mechanism of high temperature superconductivity. Since the discovery of high-T{sub c} superconductivity in cuprates, angle-resolved photoemission spectroscopy (ARPES) has provided key experimental insights in revealing the electronic structure of high temperature superconductors. These include, among others, the earliest identification of dispersion and a large Fermi surface, an anisotropic superconducting gap suggestive of a d-wave order parameter, and an observation of the pseudogap in underdoped samples. In the mean time, this technique itself has experienced a dramatic improvement in its energy and momentum resolutions, leading to a series of new discoveries not

  10. Surface and subsurface oxidation of Mo2C/Mo(100): low-energy ion-scattering, auger electron, angle-resolved X-ray photoelectron, and mass spectroscopy studies.

    Science.gov (United States)

    Ovári, László; Kiss, János; Farkas, Arnold P; Solymosi, Frigyes

    2005-03-17

    The interaction of oxygen with a carburized Mo(100) surface was investigated at different temperatures (300-1000 K). The different information depths of low-energy ion-scattering (LEIS) spectroscopy, with topmost layer sensitivity, Auger electron spectroscopy (AES), and angle-resolved X-ray photoelectron spectroscopy (ARXPS) allowed us to discriminate between reactions on the topmost layer and subsurface transformations. According to ARXPS measurements, a carbide overlayer was prepared by the high-temperature decomposition of C(2)H(4) on Mo(100), and the carbon distribution proved to be homogeneous with a Mo(2)C stoichiometry down to the information depth of XPS. O(2) adsorbs dissociatively on the carbide layer at room temperature. One part of the chemisorbed oxygen is bound to both C and Mo sites, indicated by LEIS. Another fraction of oxygen atoms probably resides in the hollow sites not occupied by C. The removal of C from the outermost layer by O(2), in the form of CO, detected by mass spectroscopy (MS), was observed at 500-600 K. The carbon-depleted first layer is able to adsorb more oxygen compared to the Mo(2)C/Mo(100) surface. Applying higher doses of O(2) at 800 K results in the inward diffusion of O and the partial oxidation of Mo atoms. This process, however, is not accompanied by the removal of C from subsurface sites. The depletion of C from the bulk starts only at 900 K (as shown by MS, AES, and XPS), very probably by the diffusion of C to the surface followed by its reaction with oxygen. At T(ads) = 1000 K, the carbon content of the sample, down to the information depth of XPS, decreased further, accompanied by the attenuation of the C concentration gradient and a substantially decreased amount of oxygen.

  11. Energy and angle resolved ion scattering spectroscopy: new possibilities for surface analysis

    International Nuclear Information System (INIS)

    In this thesis the design and development of a novel, very sensitive and high-resolving spectrometer for surface analysis is described. This spectrometer is designed for Energy and Angle Resolved Ion Scattering Spectroscopy (EARISS). There are only a few techniques that are sensitive enough to study the outermost atomic layer of surfaces. One of these techniques, Low-Energy Ion Scattering (LEIS), is discussed in chapter 2. Since LEIS is destructive, it is important to make a very efficient use of the scattered ions. This makes it attractive to simultaneously carry out energy and angle dependent measurements (EARISS). (Auth.)

  12. Electronic and geometric structure of the PTCDA/Ag(110) interface probed by angle-resolved photoemission

    Science.gov (United States)

    Wießner, M.; Hauschild, D.; Schöll, A.; Reinert, F.; Feyer, V.; Winkler, K.; Krömker, B.

    2012-07-01

    The properties of molecular films are determined by the geometric structure of the first layers near the interface. These are in contact with the substrate and feel the effect of the interfacial bonding, which particularly, for metal substrates, can be substantial. For the model system 3,4,9,10-perylenetetracarboxylic dianhydride on Ag(110), the geometric structure of the first monolayer can be modified by preparation parameters. This leads to significant differences in the electronic structure of the first layer. Here, we show that, by combining angle-resolved photoelectron spectroscopy with low-energy electron diffraction, we cannot only determine the electronic structure of the interfacial layer and the unit cell of the adsorbate superstructure, but also the arrangement of the molecules in the unit cell. Moreover, in bilayer films, we can distinguish the first from the second layer and, thus, study the formation of the second layer and its influence on the buried interface.

  13. Valence Electronic Structure of Oxygen-Modified α-Mo2C(0001) Surface:. Angle-Resolved Photoemission Study

    Science.gov (United States)

    Kato, M.; Ozawa, K.; Sato, T.; Edamoto, K.

    Adsorption of oxygen on α-Mo2C(0001) is investigated with Auger electron spectroscopy (AES), low-energy electron diffraction (LEED) and angle-resolved photoemission spectroscopy (ARPES) utilizing synchrotron radiation. It is found that C KLL Auger peak intensity does not change during O2 exposure, indicating that the depletion of C atoms does not proceed. It is deduced from ARPES and LEED results that adsorbed oxygen atoms from a well-ordered (1 × 1) lattice on the α-Mo2C(0001) surface. The ARPES study shows that oxygen adsorption induces a peculiar state around Fermi level (EF). Off-normal-emission measurements prove that the state is a half-filled metallic state.

  14. SmB6 electron-phonon coupling constant from time- and angle-resolved photoelectron spectroscopy

    Science.gov (United States)

    Sterzi, A.; Crepaldi, A.; Cilento, F.; Manzoni, G.; Frantzeskakis, E.; Zacchigna, M.; van Heumen, E.; Huang, Y. K.; Golden, M. S.; Parmigiani, F.

    2016-08-01

    SmB6 is a mixed valence Kondo system resulting from the hybridization between localized f electrons and delocalized d electrons. We have investigated its out-of-equilibrium electron dynamics by means of time- and angle-resolved photoelectron spectroscopy. The transient electronic population above the Fermi level can be described by a time-dependent Fermi-Dirac distribution. By solving a two-temperature model that well reproduces the relaxation dynamics of the effective electronic temperature, we estimate the electron-phonon coupling constant λ to range from 0.13 ±0.03 to 0.04 ±0.01 . These extremes are obtained assuming a coupling of the electrons with either a phonon mode at 10 or 19 meV. A realistic value of the average phonon energy will give an actual value of λ within this range. Our results provide an experimental report on the material electron-phonon coupling, contributing to both the electronic transport and the macroscopic thermodynamic properties of SmB6.

  15. Experimental electronic structure and Fermi-surface instability of the correlated 3d sulphide BaVS3 : High-resolution angle-resolved photoemission spectroscopy

    Science.gov (United States)

    Mitrovic, S.; Fazekas, P.; Søndergaard, C.; Ariosa, D.; Barišić, N.; Berger, H.; Cloëtta, D.; Forró, L.; Höchst, H.; Kupčić, I.; Pavuna, D.; Margaritondo, G.

    2007-04-01

    The correlated 3d sulphide BaVS3 exhibits an interesting coexistence of one-dimensional and three-dimensional properties. Our experiments determine the electronic band structure and shed light on this puzzle. High-resolution angle-resolved photoemission measurements in a 4-eV -wide range below the Fermi energy level uncover and investigate the coexistence of a1g wide-band and eg narrow-band d electrons, which lead to the complicated electronic properties of this material. We explore the effects of strong correlations and the Fermi surface instability associated with the metal-insulator transition.

  16. Angle-resolved 2D imaging of electron emission processes in atoms and molecules

    International Nuclear Information System (INIS)

    A variety of electron emission processes have been studied in detail for both atomic and molecular systems, using a highly efficient experimental system comprising two time-of-flight (TOF) rotatable electron energy analyzers and a 3rd generation synchrotron light source. Two examples are used here to illustrate the obtained results. Firstly, electron emissions in the HCL molecule have been mapped over a 14 eV wide photon energy range over the Cl 2p ionization threshold. Particular attention is paid to the dissociative core-excited states, for which the Auger electron emission shows photon energy dependent features. Also, the evolution of resonant Auger to the normal Auger decay distorted by post-collision interaction has been observed and the resonating behavior of the valence photoelectron lines studied. Secondly, an atomic system, neon, in which excitation of doubly excited states and their subsequent decay to various accessible ionic states has been studied. Since these processes only occurs via inter-electron correlations, the many body dynamics of an atom can be probed, revealing relativistic effects, surprising in such a light atom. Angular distribution of the decay of the resonances to the parity unfavored continuum exhibits significant deviation from the LS coupling predictions

  17. Electronic structure studies of ferro-pnictide superconductors and their parent compounds using angle-resolved photoemission spectroscopy (ARPES)

    Energy Technology Data Exchange (ETDEWEB)

    Setti, Thirupathaiah

    2011-07-14

    The discovery of high temperature superconductivity in the iron pnictide compound LaO{sub 1-x}F{sub x}FeAs with T{sub c} = 26 K as created enormous interest in the high-T{sub c} superconductor community. So far, four prototypes of crystal structures have been found in the Fe-pnictide family. All four show a structural deformation followed or accompanied by a magnetic transition from a high temperature paramagnetic conductor to a low temperature antiferromagnetic metal whose transition temperature T{sub N} varies between the compounds. Charge carrier doping, isovalent substitution of the As atoms or the application of pressure suppresses the antiferromagnetic spin density wave (SDW) order and leads to a superconducting phase. More recently high Tc superconductivity has been also detected in iron chalchogenides with similar normal state properties. Since superconductivity is instability of the normal state, the study of normal state electronic structure in comparison with superconducting state could reveal important information on the pairing mechanism. Therefore, it is most important to study the electronic structure of these new superconductors, i.e., to determine Fermi surfaces and band dispersions near the Fermi level at the high symmetry points in order to obtain a microscopic understanding of the superconducting properties. Using the technique angle-resolved photoemission spectroscopy (ARPES) one measures the electrons ejected from a sample when photons impinge on it. In this way one can map the Fermi surface which provides useful information regarding the physics behind the Fermi surface topology of high T{sub c} superconductors. Furthermore, this technique provides information on the band dispersion, the orbital character of the bands, the effective mass, the coupling to bosonic excitations, and the superconducting gap. This emphasizes the importance of studying the electronic structure of the newly discovered Fe-pnictides using ARPES. In this work we have

  18. Method to map one-dimensional electronic wave function by using multiple Brillouin zone angle resolved photoemission

    Directory of Open Access Journals (Sweden)

    Dong-Wook Lee

    2010-10-01

    Full Text Available Angle resolved photoemission spectroscopy (ARPES is a powerful tool to investigate electronic structures in solids and has been widely used in studying various materials. The electronic structure information by ARPES is obtained in the momentum space. However, in the case of one-dimensional system, we here show that we extract the real space information from ARPES data taken over multiple Brillouin zones (BZs. Intensities in the multiple BZs are proportional to the photoemission matrix element which contains information on the coefficient of the Bloch wave function. It is shown that the Bloch wave function coefficients can be extracted from ARPES data, which allows us to construct the real space wave function. As a test, we use ARPES data from proto-typical one-dimensional system SrCuO2 and construct the real space wave function.

  19. Attosecond electronic and nuclear quantum photodynamics of ozone monitored with time and angle resolved photoelectron spectra

    CERN Document Server

    Decleva, P; Perveaux, A; Lauvergnat, D; Gatti, F; Lasorne, B; Halász, G J; Vibók, Á

    2016-01-01

    Recently we reported a series of numerical simulations proving that it is possible in principle to create an electronic wave packet and subsequent electronic motion in a neutral molecule photoexcited by a UV pump pulse within a few femtoseconds. We considered the ozone molecule: for this system the electronic wave packet leads to a dissociation process. In the present work, we investigate more specifically the time-resolved photoelectron angular distribution of the ozone molecule that provides a much more detailed description of the evolution of the electronic wave packet. We thus show that this experimental technique should be able to give access to observing in real time the creation of an electronic wave packet in a neutral molecule and its impact on a chemical process.

  20. Electronic structure of ion arsenic high temperature superconductors studied by angle resolved photoemission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chang [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    The main purpose of the present thesis is to present our ARPES results on the iron arsenic superconductors. As revealed by a series of ARPES measurements on both the AEFe2As2 and the RFeAs(O,F) families (parent compound and carrier-doped systems), the electronic structures of the pnictides are complicated, three dimensional, and closely linked to their superconducting behavior (13; 14; 15; 16; 17; 18; 19). Parent compounds of these materials exhibit the basic hole-electron pocket dual plus an apparent Fermi surface reconstruction caused by long range antiferromagnetism (13; 15). When carriers are introduced, the chemical potential shifts in accordance with the Luttinger theorem and the rigid band shifting picture (13). Importantly, both the appearance and disappearance of the superconducting dome at low and high doping levels have intimate relation with topological changes at the Fermi surfaces, resulting in a specific Fermi topology being favored by superconductivity (15; 16). On the low doping side, superconductivity emerges in the phase diagram once the antiferromagnetic reconstruction disappears below the Fermi level, returning the Fermi surface to its paramagnetic-like appearance. On the high doping side, superconductivity disappears around a doping level at which the central hole pocket vanishes due to increasing electron concentration. Such phenomena are evidence for the governing role the electronic structure plays in their superconducting behavior.

  1. Momentum-resolved electronic structure at a buried interface from soft X-ray standing-wave angle-resolved photoemission

    NARCIS (Netherlands)

    Gray, A.X.; Minar, J.; Plucinski, L.; Huijben, M.; Bostwick, A.; Rotenberg, E.; Yang, S.-H.; Braun, J.; Winkelmann, A.; Conti, G.; Eiteneer, D.; Rattanachata, A.; Greer, A.A.; Ciston, J.; Ophus, C.; Rijnders, A.J.H.M.; Blank, D.H.A.; Doennig, D.; Pentcheva, R.; Kortright, J.B.; Schneider, C.M.; Ebert, H.; Fadley, C.S.

    2013-01-01

    Angle-resolved photoemission spectroscopy (ARPES) is a powerful technique for the study of electronic structure, but it lacks a direct ability to study buried interfaces between two materials. We address this limitation by combining ARPES with soft X-ray standing-wave (SW) excitation (SWARPES), in w

  2. Depth- and momentum- resolved electronic structure at buried oxide interfaces from standing-wave angle-resolved photoemission

    Science.gov (United States)

    Fadley, Charles

    2015-03-01

    It is clear that interfaces in complex oxide heterostructures often represent emergent materials that possess surprising properties not associated with the parent oxides, such as two-dimensional electron gases (2DEGs), superconductivity, and magnetism. A detailed knowledge of the composition, atomic structure, and electronic structure through such interfaces is thus critical. Photomission (PES) and angle-resolved photoemission (ARPES) represent techniques of choice for such studies, but have certain limitations in being too surface sensitive and in not being able to focus specifically on buried interfaces or heterostructure layers. In this talk, I will discuss combining two newer elements of PES/ARPES to deal with this challenge: - the use of soft x-rays in the ca. few hundred-to-2000 eV regime, or even into the true hard x-ray regime, to probe more deeply into the structure, and - tailoring of the x-ray intensity profile into a strong standing wave (SW) through reflection from a multilayer heterostructure to provide much enhanced depth resolution. The relative advantages of soft/hard x-ray PES and ARPES and their complementarity to conventional VUV ARPES in the ca. 5-150 eV regime will be considered. As illustrative examples, by combining SW-PES and SW-ARPES, it has been possible to measure for the first time the detailed concentration profiles and momentum-resolved electronic structure at the SrTiO3/La0.67Sr0.33MnO3 interface and to directly measure the depth profile of the 2DEG at SrTiO3/GdTiO3 interfaces. Future directions for such measurements will also be discussed. Supported by US DOE Contract No. DE-AC02-05CH11231, ARO-MURI Grant W911-NF-09-1-0398, and the PALM-APTCOM Project (France).

  3. Introductory Lecture. Probing wavepacket dynamics with femtosecond energy- and angle-resolved photoelectron spectroscopy

    OpenAIRE

    Takatsuka, Kazuo; Arasaki, Yasuki; Wang, Kwanghsi; McKoy, Vincent

    2000-01-01

    Several recent studies have demonstrated how well-suited femtosecond time-resolved photoelectron spectra are for mapping wavepacket dynamics in molecular systems. Theoretical studies of femtosecond photoelectron spectra which incorporate a robust description of the underlying photoionization dynamics should enhance the utility of such spectra as a probe of wavepackets and of the evolution of electronic structure. This should be particularly true in regions of avoided crossings where the photo...

  4. Angle-resolved photoemission analysis on electronic structures and thermoelectric properties of off-stoichiometric Fe2-xV1+xAl

    International Nuclear Information System (INIS)

    The electronic states of Heusler (L21)-type off-stoichiometric Fe2-xV1+xAl have been investigated by soft X-ray angle-resolved photoelectron spectroscopy (ARPES) in order to clarify the origin of their large thermoelectric powers, which cannot be explained in terms of the rigid band model. In off-normal and normal ARPES, Fe2.05V0.95Al shows a weakly dispersive bulk band around the binding energy of 0.3 eV in the Γ-X direction and an almost dispersion-less one around 0.3 eV in a gap of dispersive bulk bands in the Γ-L direction, which is attributed to the anti-site Fe defect. At the Γ point, the bulk band does not appear to cross the Fermi level EF, consistent with the rigid band model for the excess Fe content bringing about the increase in the valence electrons, but no band crossing EF down is found at the X point. The anti-site Fe defect states near EF might push up the band at the X point and cause the p-type thermoelectric properties, unexpected with the rigid band picture. The change in the electronic structures and thermoelectric properties are discussed on the off-stoichiometry and substitution of the forth element. (author)

  5. Angle-resolved photoemission spectroscopy study of adsorption process and electronic structure of silver on ZnO(1010).

    Science.gov (United States)

    Ozawa, K; Sato, T; Kato, M; Edamoto, K; Aiura, Y

    2005-08-01

    The adsorption process and valence band structure of Ag on ZnO(1010) have been investigated by angle-resolved photoelectron spectroscopy utilizing synchrotron radiation. The coverage-dependent measurements of the Ag 4d band structure reveal that the Ag bands with a dispersing feature are formed even at low coverages and that the basic structure of the bands is essentially the same throughout the submonolayer region. These results indicate that the Ag atoms aggregate to form islands with an atomically ordered structure from the low coverages. Upon annealing the Ag-covered surface at 900 K, the Ag 4d band undergoes only a minor change, suggesting that the ordered structure within the Ag islands is persistent against mild annealing. From the dispersive feature of the Ag 4d states, we propose that the atomic structure has locally rectangular symmetry with a good lattice matching with the ZnO(1010) surface.

  6. A spin- and angle-resolving photoelectron spectrometer

    International Nuclear Information System (INIS)

    A new type of hemispherical electron energy analyzer that permits angle and spin resolved photoelectron spectroscopy has been developed. The analyzer permits standard angle resolved spectra to be recorded with a two-dimensional detector in parallel with spin detection using a mini-Mott polarimeter. General design considerations as well as technical solutions are discussed and test results from the Au(111) surface state are presented.

  7. The electronic structure of clean and adsorbate-covered Bi2Se3: an angle-resolved photoemission study

    DEFF Research Database (Denmark)

    Bianchi, Marco; Hatch, Richard; Guan, Dandan;

    2012-01-01

    , the Dirac point moves to higher binding energies, indicating an increasingly strong downward bending of the bands near the surface. This time-dependent band bending is related to a contamination of the surface and can be accelerated by intentionally exposing the surface to carbon monoxide and other species...

  8. Electronic structure of Pc2Lu and (PcAlF)n oriented thin films using angle resolved photoelectron spectroscopy

    Science.gov (United States)

    Fahy, M. R.; Fujimoto, H.; Dann, A. J.; Hoshi, H.; Inokuchi, H.; Maruyama, Y.; Willis, M. R.

    1990-04-01

    Ultraviolet photoelectron spectra have been measured for the radical phthalocyanine dimer, Pc2Lu, and the fluorine bridge stacked phthalocyanine polymer (PcAlF)n. Previous workers have shown that both materials can, under appropriate conditions, be prepared in a well characterised, highly oriented thin film form. Thus, samples for this work were prepared by in situ sublimation at very slow evaporation rates onto crystalline substrates to try to maximise the degree of sample orientation. The angle dependence of the spectra were measured and the sample structure subsequently examined using high resolution TEM. The TEM results show that the (PcAlF)n films have a much higher level of orientation than the Pc2Lu films and this is reflected by the angle dependences of the UPS measurements. The spectra for (PcAlF)n are very similar to measurements on most other simple phthalocyanine compounds and have a small angular dependence. The spectra for Pc2Lu show almost no angular dependence. Again the spectra are broadly similar to that of other Pc's with two significant differences, the lowest energy peak is split and the whole spectra is shifted to lower energy. This result will be discussed in terms of simple molecular orbital ideas. The effect of air on the spectra of both materials was examined and the spectra of (PcAlF)n was found to be particularly sensitive. Attempts to determine the position of the lutetium orbitals by varying the light frequency around the lutetium resonance energies was attempted but no significant variation in the spectra was observed.

  9. Fermi surface of MoO2 studied by angle-resolved photoemission spectroscopy, de Haas-van Alphen measurements, and electronic structure calculations

    Science.gov (United States)

    Moosburger-Will, Judith; Kündel, Jörg; Klemm, Matthias; Horn, Siegfried; Hofmann, Philip; Schwingenschlögl, Udo; Eyert, Volker

    2009-03-01

    A comprehensive study of the electronic properties of monoclinic MoO2 from both an experimental and a theoretical point of view is presented. We focus on the investigation of the Fermi body and the band structure using angle-resolved photoemission spectroscopy, de Haas-van Alphen measurements, and electronic structure calculations. For the latter, the full-potential augmented spherical wave method has been applied. Very good agreement between the experimental and theoretical results is found. In particular, all Fermi surface sheets are correctly identified by all three approaches. Previous controversies concerning additional holelike surfaces centered around the Z and B points could be resolved; these surfaces were artifacts of the atomic-sphere approximation used in the old calculations. Our results underline the importance of electronic structure calculations for the understanding of MoO2 and the neighboring rutile-type early transition-metal dioxides. This includes the low-temperature insulating phases of VO2 and NbO2 , which have crystal structures very similar to that of molybdenum dioxide and display the well-known prominent metal-insulator transitions.

  10. Orbital character and electron correlation effects on two- and three-dimensional Fermi surfaces in KFe2As2 revealed by angle-resolved photoemission spectroscopy

    Directory of Open Access Journals (Sweden)

    Teppei eYoshida

    2014-04-01

    Full Text Available We have investigated orbital character and electron correlation effects on Fermi surfaces in the hole-overdoped iron pnictide superconductor KFe2As2, which shows a low Tc of ~4 K, by angle-resolved photoemission spectroscopy. From the polarization-dependence of the ARPES spectra, we have determined the orbital character of each Fermi surface. Electron mass renormalization of each band is quantitatively consistent with de Haas-van Alphen results. The outer beta and middle zeta Fermi surfaces show large renormalization factor of m*/mb ~6-7, while the inner Fermi surface has a smaller factor m*/mb ~2. Middle hole Fermi surface zeta has strong three-dimensionality compared to other Fermi surfaces, indicating the d3z2-r2 orbital character, which may be related to the octet-line nodes recently observed by laser ARPES. The observed orbital-dependent mass renormalization would give constraints on the pairing mechanism with line nodes of this system.

  11. Electronic structure as a function of doping in YBa2Cu3Ox(6.2≤x≤6.9) studied by angle-resolved photoemission

    International Nuclear Information System (INIS)

    We report angle-resolved photoemission studies on YBa2Cu3Ox with oxygen stoichiometry varied in the range 6.2≤x≤6.9. The distinct 1-eV peak, observed with hν=24 eV at the X(Y) point(s), shifts monotonically toward higher binding energies (as much as 0.20 eV) as oxygen stoichiometry is reduced from x=6.9 to 6.3. The direction and the magnitude of the shift are consistent with a simple rigid-band filling picture. However, another distinct peak observed at the X(Y) point(s), but with energy very close to EF, remains at nearly the same energy when the oxygen stoichiometry is varied from 6.9 to 6.4. This behavior is not consistent with a rigid-band picture. The intensities of the 1-eV peak and the peak at EF are significantly attenuated when the material becomes insulating

  12. Angle-resolved photoemission spectroscopy with 9-eV photon-energy pulses generated in a gas-filled hollow-core photonic crystal fiber

    International Nuclear Information System (INIS)

    A recently developed source of ultraviolet radiation, based on optical soliton propagation in a gas-filled hollow-core photonic crystal fiber, is applied here to angle-resolved photoemission spectroscopy (ARPES). Near-infrared femtosecond pulses of only few μJ energy generate vacuum ultraviolet radiation between 5.5 and 9 eV inside the gas-filled fiber. These pulses are used to measure the band structure of the topological insulator Bi2Se3 with a signal to noise ratio comparable to that obtained with high order harmonics from a gas jet. The two-order-of-magnitude gain in efficiency promises time-resolved ARPES measurements at repetition rates of hundreds of kHz or even MHz, with photon energies that cover the first Brillouin zone of most materials

  13. Angle-resolved photoemission spectroscopy with 9-eV photon-energy pulses generated in a gas-filled hollow-core photonic crystal fiber

    CERN Document Server

    Bromberger, H; Belli, F; Liu, H; Calegari, F; Chavez-Cervantes, M; Li, M T; Lin, C T; Abdolvand, A; Russell, P St J; Cavalleri, A; Travers, J C; Gierz, I

    2015-01-01

    A recently developed source of ultraviolet radiation, based on optical soliton propagation in a gas-filled hollow-core photonic crystal fiber, is applied here to angle-resolved photoemission spectroscopy (ARPES). Near-infrared femtosecond pulses of only few {\\mu}J energy generate vacuum ultraviolet (VUV) radiation between 5.5 and 9 eV inside the gas-filled fiber. These pulses are used to measure the band structure of the topological insulator Bi2Se3 with a signal to noise ratio comparable to that obtained with high order harmonics from a gas jet. The two-order-of-magnitude gain in efficiency promises time-resolved ARPES measurements at repetition rates of hundreds of kHz or even MHz, with photon energies that cover the first Brillouin zone of most materials.

  14. Angle-resolved photoemission spectroscopy with 9-eV photon-energy pulses generated in a gas-filled hollow-core photonic crystal fiber

    Energy Technology Data Exchange (ETDEWEB)

    Bromberger, H., E-mail: Hubertus.Bromberger@mpsd.mpg.de; Liu, H.; Chávez-Cervantes, M.; Gierz, I. [Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg (Germany); Ermolov, A.; Belli, F.; Abdolvand, A.; Russell, P. St. J.; Travers, J. C. [Max Planck Institute for the Science of Light, Günther-Scharowsky-Str. 1, 91058 Erlangen (Germany); Calegari, F. [Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg (Germany); Institute for Photonics and Nanotechnologies, IFN-CNR, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy); Li, M. T.; Lin, C. T. [Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart (Germany); Cavalleri, A. [Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg (Germany); Clarendon Laboratory, Department of Physics, University of Oxford, Parks Rd. Oxford OX1 3PU (United Kingdom)

    2015-08-31

    A recently developed source of ultraviolet radiation, based on optical soliton propagation in a gas-filled hollow-core photonic crystal fiber, is applied here to angle-resolved photoemission spectroscopy (ARPES). Near-infrared femtosecond pulses of only few μJ energy generate vacuum ultraviolet radiation between 5.5 and 9 eV inside the gas-filled fiber. These pulses are used to measure the band structure of the topological insulator Bi{sub 2}Se{sub 3} with a signal to noise ratio comparable to that obtained with high order harmonics from a gas jet. The two-order-of-magnitude gain in efficiency promises time-resolved ARPES measurements at repetition rates of hundreds of kHz or even MHz, with photon energies that cover the first Brillouin zone of most materials.

  15. Spin-dependent surface electronic structure of Gd(0001) near the Fermi-level: An angle-resolved (I)PE study

    Energy Technology Data Exchange (ETDEWEB)

    Budke, Michael; Wittkowski, Alexander; Correa, Juliet; Donath, Markus [Physikalisches Institut, WWU Muenster, Wilhelm-Klemm-Str. 10, 48149 Muenster (Germany)

    2008-07-01

    A widely accepted picture for the surface electronic structure of Gd(0001) comprises a spin-split surface state (SS) with its majority part 0.2 eV below E{sub F} and its minority part 0.5 eV above E{sub F} with a finite exchange splitting of 0.4 eV at T{sub C}. The discussion about this SS remains controversially because spin-resolved inverse photoemission identified a SS with both minority and majority components above E{sub F}. The reason for these conflicting results might be found in different sample conditions since the Gd films are usually grown on W(110), a material with considerably different lattice constant than Gd. To overcome this suspicion, we performed both, spin- and angle-resolved direct (PE) and inverse photoemission (IPE) on the same sample preparation of a 30 ML Gd film grown on Y(0001). We were able to identify two SSs with their minority and majority components well separated from E{sub F}. While the occupied SS shows spin-mixing behaviour as observed in other PE experiments, the unoccupied SS exhibits an exchange splitting of 250 meV that vanishes at T{sub C}. To identify the nature of the unexpected SS, we performed angular-resolved IPE measurements that support the interpretation as d-like SS above E{sub F} and reveal a variety of additional spectral features.

  16. Electronic structure of transition metal dichalcogenides PdTe2 and Cu0.05PdTe2 superconductors obtained by angle-resolved photoemission spectroscopy

    Science.gov (United States)

    Liu, Yan; Zhao, Jian-Zhou; Yu, Li; Lin, Cheng-Tian; Hu, Cheng; Liu, De-Fa; Peng, Ying-Ying; Xie, Zhuo-Jin; He, Jun-Feng; Chen, Chao-Yu; Feng, Ya; Yi, He-Mian; Liu, Xu; Zhao, Lin; He, Shao-Long; Liu, Guo-Dong; Dong, Xiao-Li; Zhang, Jun; Chen, Chuang-Tian; Xu, Zu-Yan; Weng, Hong-Ming; Dai, Xi; Fang, Zhong; Zhou, Xing-Jiang

    2015-06-01

    The layered transition metal chalcogenides have been a fertile land in solid state physics for many decades. Various MX2-type transition metal dichalcogenides, such as WTe2, IrTe2, and MoS2, have triggered great attention recently, either for the discovery of novel phenomena or some extreme or exotic physical properties, or for their potential applications. PdTe2 is a superconductor in the class of transition metal dichalcogenides, and superconductivity is enhanced in its Cu-intercalated form, Cu0.05PdTe2. It is important to study the electronic structures of PdTe2 and its intercalated form in order to explore for new phenomena and physical properties and understand the related superconductivity enhancement mechanism. Here we report systematic high resolution angle-resolved photoemission (ARPES) studies on PdTe2 and Cu0.05PdTe2 single crystals, combined with the band structure calculations. We present in detail for the first time the complex multi-band Fermi surface topology and densely-arranged band structure of these compounds. By carefully examining the electronic structures of the two systems, we find that Cu-intercalation in PdTe2 results in electron-doping, which causes the band structure to shift downwards by nearly 16 meV in Cu0.05PdTe2. Our results lay a foundation for further exploration and investigation on PdTe2 and related superconductors. Project supported by the National Natural Science Foundation of China (Grant No. 11190022), the National Basic Research Program of China (Grant Nos. 2011CB921703 and 2011CBA00110), and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB07020300).

  17. Time and angle resolved photoemission spectroscopy using femtosecond visible and high-harmonic light

    Energy Technology Data Exchange (ETDEWEB)

    Mathias, S; Deicke, F; Ruffing, A; Aeschlimann, M [Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, 67663 Kaiserslautern (Germany); Wiesenmayer, M; Bauer, M [Institut fuer experimentelle und angewandte Physik, Christian-Albrechts Universitaet zu Kiel, 24118 Kiel (Germany); Miaja-Avila, L; Murnane, M M; Kapteyn, H C, E-mail: SMathias@gmx.d [JILA, University of Colorado and National Institute of Standards and Technology, and Department of Physics, University of Colorado, Boulder, Colorado 80309-0440 (United States)

    2009-02-01

    The angle resolved photoelectron spectroscopy (ARPES) has emerged as a leading technique in identifying static key properties of complex systems such as the electronic band structure of adsorbed molecules, ultrathin quantum-well films or high temperature superconductors. We efficiently combined ARPES by using a two-dimensional analyzer for parallel energy (E) and momentum (k{sub ||}) detection with femtosecond time-resolved spectroscopies. Using time and angle resolved two photon photoemission (2PPE) with visible light pulses, the hot electron dynamics in complex electronic structures are directly accessible by means of angle resolved hot electron lifetime mapping. Furthermore, femtosecond ARPES spectra recorded with high harmonic generation (HHG) light pulses are presented, showing the potential of this technique for future investigations of surface dynamics and photo-induced phase transition processes.

  18. Level sequence and splitting identification of closely spaced energy levels by angle-resolved analysis of fluorescence light

    Science.gov (United States)

    Wu, Z. W.; Volotka, A. V.; Surzhykov, A.; Dong, C. Z.; Fritzsche, S.

    2016-06-01

    The angular distribution and linear polarization of the fluorescence light following the resonant photoexcitation is investigated within the framework of density matrix and second-order perturbation theory. Emphasis has been placed on "signatures" for determining the level sequence and splitting of intermediate (partially) overlapping resonances, if analyzed as a function of photon energy of incident light. Detailed computations within the multiconfiguration Dirac-Fock method have been performed, especially for the 1 s22 s22 p63 s ,Ji=1 /2 +γ1→(1s22 s 2 p63 s ) 13 p3 /2,J =1 /2 ,3 /2 →1 s22 s22 p63 s ,Jf=1 /2 +γ2 photoexcitation and subsequent fluorescence emission of atomic sodium. A remarkably strong dependence of the angular distribution and linear polarization of the γ2 fluorescence emission is found upon the level sequence and splitting of the intermediate (1s22 s 2 p63 s ) 13 p3 /2,J =1 /2 ,3 /2 overlapping resonances owing to their finite lifetime (linewidth). We therefore suggest that accurate measurements of the angular distribution and linear polarization might help identify the sequence and small splittings of closely spaced energy levels, even if they cannot be spectroscopically resolved.

  19. Level sequence and splitting identification of closely-spaced energy levels by angle-resolved analysis of the fluorescence light

    CERN Document Server

    Wu, Z W; Surzhykov, A; Dong, C Z; Fritzsche, S

    2016-01-01

    The angular distribution and linear polarization of the fluorescence light following the resonant photoexcitation is investigated within the framework of the density matrix and second-order perturbation theory. Emphasis has been placed on "signatures" for determining the level sequence and splitting of intermediate (partially) overlapping resonances, if analyzed as a function of the photon energy of the incident light. Detailed computations within the multiconfiguration Dirac-Fock method have been performed especially for the $1s^{2}2s^{2}2p^{6}3s\\;\\, J_{i}=1/2 \\,+\\, \\gamma_{1} \\:\\rightarrow\\: (1s^{2}2s2p^{6}3s)_{1}3p_{3/2}\\;\\, J=1/2, \\, 3/2 \\:\\rightarrow\\: 1s^{2}2s^{2}2p^{6}3s\\;\\, J_{f}=1/2 \\,+\\, \\gamma_{2}$ photoexcitation and subsequent fluorescence emission of atomic sodium. A remarkably strong dependence of the angular distribution and linear polarization of the $\\gamma_{2}$ fluorescence emission is found upon the level sequence and splitting of the intermediate $(1s^{2}2s2p^{6}3s)_{1}3p_{3/2}\\;\\, J=1/2,...

  20. Electronic structure, Dirac points and Fermi arc surface states in three-dimensional Dirac semimetal Na3Bi from angle-resolved photoemission spectroscopy

    Science.gov (United States)

    Aiji, Liang; Chaoyu, Chen; Zhijun, Wang; Youguo, Shi; Ya, Feng; Hemian, Yi; Zhuojin, Xie; Shaolong, He; Junfeng, He; Yingying, Peng; Yan, Liu; Defa, Liu; Cheng, Hu; Lin, Zhao; Guodong, Liu; Xiaoli, Dong; Jun, Zhang; M, Nakatake; H, Iwasawa; K, Shimada; M, Arita; H, Namatame; M, Taniguchi; Zuyan, Xu; Chuangtian, Chen; Hongming, Weng; Xi, Dai; Zhong, Fang; Xing-Jiang, Zhou

    2016-07-01

    The three-dimensional (3D) Dirac semimetals have linearly dispersive 3D Dirac nodes where the conduction band and valence band are connected. They have isolated 3D Dirac nodes in the whole Brillouin zone and can be viewed as a 3D counterpart of graphene. Recent theoretical calculations and experimental results indicate that the 3D Dirac semimetal state can be realized in a simple stoichiometric compound A 3Bi (A = Na, K, Rb). Here we report comprehensive high-resolution angle-resolved photoemission (ARPES) measurements on the two cleaved surfaces, (001) and (100), of Na3Bi. On the (001) surface, by comparison with theoretical calculations, we provide a proper assignment of the observed bands, and in particular, pinpoint the band that is responsible for the formation of the three-dimensional Dirac cones. We observe clear evidence of 3D Dirac cones in the three-dimensional momentum space by directly measuring on the k x –k y plane and by varying the photon energy to get access to different out-of-plane k z s. In addition, we reveal new features around the Brillouin zone corners that may be related with surface reconstruction. On the (100) surface, our ARPES measurements over a large momentum space raise an issue on the selection of the basic Brillouin zone in the (100) plane. We directly observe two isolated 3D Dirac nodes on the (100) surface. We observe the signature of the Fermi-arc surface states connecting the two 3D Dirac nodes that extend to a binding energy of ∼150 meV before merging into the bulk band. Our observations constitute strong evidence on the existence of the Dirac semimetal state in Na3Bi that are consistent with previous theoretical and experimental work. In addition, our results provide new information to clarify on the nature of the band that forms the 3D Dirac cones, on the possible formation of surface reconstruction of the (001) surface, and on the issue of basic Brillouin zone selection for the (100) surface. Project supported by the

  1. Observation by resonant angle-resolved photoemission of a critical thickness for 2-dimensional electron gas formation in SrTiO3 embedded in GdTiO3

    International Nuclear Information System (INIS)

    For certain conditions of layer thickness, the interface between GdTiO3 (GTO) and SrTiO3 (STO) in multilayer samples has been found to form a two-dimensional electron gas (2DEG) with very interesting properties including high mobilities and ferromagnetism. We have here studied two trilayer samples of the form [2 nm GTO/1.0 or 1.5 unit cells STO/10 nm GTO] as grown on (001) (LaAlO3)0.3(Sr2AlTaO6)0.7, with the STO layer thicknesses being at what has been suggested is the critical thickness for 2DEG formation. We have studied these with Ti-resonant angle-resolved and angle-integrated photoemission and find that the spectral feature in the spectra associated with the 2DEG is present in the 1.5 unit cell sample, but not in the 1.0 unit cell sample. We also observe through core-level spectra additional states in Ti and Sr, with the strength of a low-binding-energy state for Sr being associated with the appearance of the 2DEG, and we suggest it to have an origin in final-state core-hole screening

  2. Observation by resonant angle-resolved photoemission of a critical thickness for 2-dimensional electron gas formation in SrTiO{sub 3} embedded in GdTiO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Nemšák, S. [Department of Physics, University of California, 1 Shields Ave, Davis, California 95616 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, California 94720 (United States); Peter-Grünberg-Institut PGI-6, Forschungszentrum Jülich, 52425 Jülich (Germany); Conti, G.; Palsson, G. K.; Conlon, C.; Fadley, C. S. [Department of Physics, University of California, 1 Shields Ave, Davis, California 95616 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, California 94720 (United States); Cho, S.; Rault, J. E.; Avila, J.; Asensio, M.-C. [Synchrotron SOLEIL, L' Orme des Merisiers, Saint-Aubin, 91192 Gif sur Yvette Cedex (France); Jackson, C. A.; Moetakef, P.; Janotti, A.; Bjaalie, L.; Himmetoglu, B.; Van de Walle, C. G.; Stemmer, S. [Materials Department, University of California, Santa Barbara, California 93106-5050 (United States); Balents, L. [Department of Physics, University of California, Santa Barbara, California 93106-9530 (United States); Schneider, C. M. [Peter-Grünberg-Institut PGI-6, Forschungszentrum Jülich, 52425 Jülich (Germany)

    2015-12-07

    For certain conditions of layer thickness, the interface between GdTiO{sub 3} (GTO) and SrTiO{sub 3} (STO) in multilayer samples has been found to form a two-dimensional electron gas (2DEG) with very interesting properties including high mobilities and ferromagnetism. We have here studied two trilayer samples of the form [2 nm GTO/1.0 or 1.5 unit cells STO/10 nm GTO] as grown on (001) (LaAlO{sub 3}){sub 0.3}(Sr{sub 2}AlTaO{sub 6}){sub 0.7}, with the STO layer thicknesses being at what has been suggested is the critical thickness for 2DEG formation. We have studied these with Ti-resonant angle-resolved and angle-integrated photoemission and find that the spectral feature in the spectra associated with the 2DEG is present in the 1.5 unit cell sample, but not in the 1.0 unit cell sample. We also observe through core-level spectra additional states in Ti and Sr, with the strength of a low-binding-energy state for Sr being associated with the appearance of the 2DEG, and we suggest it to have an origin in final-state core-hole screening.

  3. Angle-resolved photoemission extended fine structure

    International Nuclear Information System (INIS)

    Measurements of the Angle-Resolved Photoemission Extended Fine Structure (ARPEFS) from the S(1s) core level of a c(2 x 2)S/Ni(001) are analyzed to determine the spacing between the S overlayer and the first and second Ni layers. ARPEFS is a type of photoelectron diffraction measurement in which the photoelectron kinetic energy is swept typically from 100 to 600 eV. By using this wide range of intermediate energies we add high precision and theoretical simplification to the advantages of the photoelectron diffraction technique for determining surface structures. We report developments in the theory of photoelectron scattering in the intermediate energy range, measurement of the experimental photoemission spectra, their reduction to ARPEFS, and the surface structure determination from the ARPEFS by combined Fourier and multiple-scattering analyses. 202 refs., 67 figs., 2 tabs

  4. Angle-resolved photoelectron spectroscopy studies of the many-body effects in the electronic structure of high-T{sub c} cuprates

    Energy Technology Data Exchange (ETDEWEB)

    Inosov, Dmytro S.

    2008-06-18

    In the present work some steps are done towards understanding the anomalous effects observed in the single-particle excitation spectra of cuprates. First, the electronic properties of BSCCO are considered. The main result of this part of the work is a model of the Green's function that is later used for calculating the two-particle excitation spectrum. Then, the matrix element effects in the photoemission spectra of cuprates are discussed. After a general introduction to the problem, the thesis focuses on the recently discovered anomalous behavior of the ARPES spectra that partially originates from the momentum-dependent photoemission matrix element. The momentum- and excitation energy dependence of the anomalous high-energy dispersion, termed ''waterfalls'', is covered in full detail. Understanding the role of the matrix element effects in this phenomenon proves crucial, as they obstruct the view of the underlying excitation spectrum that is of indisputable interest. For the optimally doped bilayer Bi-based cuprate, the renormalized two-particle correlation function in the superconducting state is calculated from ARPES data within an itinerant model based on the random phase approximation (RPA). (orig.)

  5. Photoelectron spectroscopy at a free-electron laser. Investigation of space-charge effects in angle-resolved and core-level spectroscopy and realizaton of a time-resolved core-level photoemission experiment

    Energy Technology Data Exchange (ETDEWEB)

    Marczynski-Buehlow, Martin

    2012-01-30

    The free-electron laser (FEL) in Hamburg (FLASH) is a very interesting light source with which to perform photoelectron spectroscopy (PES) experiments. Its special characteristics include highly intense photon pulses (up to 100 J/pulse), a photon energy range of 30 eV to 1500 eV, transverse coherence as well as pulse durations of some ten femtoseconds. Especially in terms of time-resolved PES (TRPES), the deeper lying core levels can be reached with photon energies up to 1500 eV with acceptable intensity now and, therefore, element-specific, time-resolved core-level PES (XPS) is feasible at FLASH. During the work of this thesis various experimental setups were constructed in order to realize angle-resolved (ARPES), core-level (XPS) as well as time-resolved PES experiments at the plane grating monochromator beamline PG2 at FLASH. Existing as well as newly developed systems for online monitoring of FEL pulse intensities and generating spatial and temporal overlap of FEL and optical laser pulses for time-resolved experiments are successfully integrated into the experimental setup for PES. In order to understand space-charge effects (SCEs) in PES and, therefore, being able to handle those effects in future experiments using highly intense and pulsed photon sources, the origin of energetic broadenings and shifts in photoelectron spectra are studied by means of a molecular dynamic N-body simulation using a modified Treecode Algorithm for sufficiently fast and accurate calculations. It turned out that the most influencing parameter is the ''linear electron density'' - the ratio of the number of photoelectrons to the diameter of the illuminated spot on the sample. Furthermore, the simulations could reproduce the observations described in the literature fairly well. Some rules of thumb for XPS and ARPES measurements could be deduced from the simulations. Experimentally, SCEs are investigated by means of ARPES as well as XPS measurements as a function of

  6. Photoelectron spectroscopy at a free-electron laser. Investigation of space-charge effects in angle-resolved and core-level spectroscopy and realizaton of a time-resolved core-level photoemission experiment

    International Nuclear Information System (INIS)

    The free-electron laser (FEL) in Hamburg (FLASH) is a very interesting light source with which to perform photoelectron spectroscopy (PES) experiments. Its special characteristics include highly intense photon pulses (up to 100 J/pulse), a photon energy range of 30 eV to 1500 eV, transverse coherence as well as pulse durations of some ten femtoseconds. Especially in terms of time-resolved PES (TRPES), the deeper lying core levels can be reached with photon energies up to 1500 eV with acceptable intensity now and, therefore, element-specific, time-resolved core-level PES (XPS) is feasible at FLASH. During the work of this thesis various experimental setups were constructed in order to realize angle-resolved (ARPES), core-level (XPS) as well as time-resolved PES experiments at the plane grating monochromator beamline PG2 at FLASH. Existing as well as newly developed systems for online monitoring of FEL pulse intensities and generating spatial and temporal overlap of FEL and optical laser pulses for time-resolved experiments are successfully integrated into the experimental setup for PES. In order to understand space-charge effects (SCEs) in PES and, therefore, being able to handle those effects in future experiments using highly intense and pulsed photon sources, the origin of energetic broadenings and shifts in photoelectron spectra are studied by means of a molecular dynamic N-body simulation using a modified Treecode Algorithm for sufficiently fast and accurate calculations. It turned out that the most influencing parameter is the ''linear electron density'' - the ratio of the number of photoelectrons to the diameter of the illuminated spot on the sample. Furthermore, the simulations could reproduce the observations described in the literature fairly well. Some rules of thumb for XPS and ARPES measurements could be deduced from the simulations. Experimentally, SCEs are investigated by means of ARPES as well as XPS measurements as a function of FEL pulse

  7. Exploring the Electronic Structure and Chemical Homogeneity of Individual Bi2Te3 Nanowires by Nano-Angle-Resolved Photoemission Spectroscopy.

    Science.gov (United States)

    Krieg, Janina; Chen, Chaoyu; Avila, José; Zhang, Zeying; Sigle, Wilfried; Zhang, Hongbin; Trautmann, Christina; Asensio, Maria Carmen; Toimil-Molares, Maria Eugenia

    2016-07-13

    Due to their high surface-to-volume ratio, cylindrical Bi2Te3 nanowires are employed as model systems to investigate the chemistry and the unique conductive surface states of topological insulator nanomaterials. We report on nanoangle-resolved photoemission spectroscopy (nano-ARPES) characterization of individual cylindrical Bi2Te3 nanowires with a diameter of 100 nm. The nanowires are synthesized by electrochemical deposition inside channels of ion-track etched polymer membranes. Core level spectra recorded with submicron resolution indicate a homogeneous chemical composition along individual nanowires, while nano-ARPES intensity maps reveal the valence band structure at the single nanowire level. First-principles electronic structure calculations for chosen crystallographic orientations are in good agreement with those revealed by nano-ARPES. The successful application of nano-ARPES on single one-dimensional nanostructures constitutes a new avenue to achieve a better understanding of the electronic structure of topological insulator nanomaterials. PMID:27311702

  8. Angle resolved photoemission spectroscopy of Sr_2CuO_2Cl_2 - a revisit

    OpenAIRE

    Duerr, C; Legner, S.; Hayn, R.; Borisenko, S. V.; Z. Hu; Theresiak, A.; Knupfer, M.; Golden, M. S.; Fink, J.; Ronning, F.; Shen, Z.-X.; Eisaki, H.; Uchida, S.; Janowitz, C.; Mueller, R.

    2000-01-01

    We have investigated the lowest binding-energy electronic structure of the model cuprate Sr_2CuO_2Cl_2 using angle resolved photoemission spectroscopy (ARPES). Our data from about 80 cleavages of Sr_2CuO_2Cl_2 single crystals give a comprehensive, self-consistent picture of the nature of the first electron-removal state in this model undoped CuO_2-plane cuprate. Firstly, we show a strong dependence on the polarization of the excitation light which is understandable in the context of the matri...

  9. Direct observation of the mass renormalization in SrVO3 by angle resolved photoemission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, t.

    2010-05-03

    We have performed an angle-resolved photoemission study of the three-dimensional perovskite-type SrVO{sub 3}. Observed spectral weight distribution of the coherent part in the momentum space shows cylindrical Fermi surfaces consisting of the V 3d t{sub 2g} orbitals as predicted by local-density approximation (LDA) band-structure calculation. The observed energy dispersion shows a moderately enhanced effective mass compared to the LDA results, corresponding to the effective mass enhancement seen in the thermodynamic properties. Contributions from the bulk and surface electronic structures to the observed spectra are discussed based on model calculations.

  10. Angle-resolved intensity and energy distributions of positive and negative hydrogen ions released from tungsten surface by molecular hydrogen ion impact

    Energy Technology Data Exchange (ETDEWEB)

    Kato, S., E-mail: eun1302@mail4.doshsha.ac.jp [Doshisha University, Kyotanabe, Kyoto 610-0321 (Japan); Tanaka, N. [Institute of Laser Engineering, Osaka University, Suita, Osaka 565-0871 (Japan); Sasao, M. [Doshisha University, Kyotanabe, Kyoto 610-0321 (Japan); Kisaki, M.; Tsumori, K. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Nishiura, M. [University of Tokyo, Kashiwa, Chiba 277-8568 (Japan); Matsumoto, Y. [Tokushima Bunri University, Yamashiro, Tokushima 770-8514 (Japan); Kenmotsu, T.; Wada, M. [Doshisha University, Kyotanabe, Kyoto 610-0321 (Japan); Yamaoka, H. [RIKEN SPring-8 Center, Sayo, Hyogo 679-5148 (Japan)

    2015-08-15

    Hydrogen ion reflection properties have been investigated following the injection of H{sup +}, H{sub 2}{sup +} and H{sub 3}{sup +} ions onto a polycrystalline W surface. Angle- and energy-resolved intensity distributions of both scattered H{sup +} and H{sup −} ions are measured by a magnetic momentum analyzer. We have detected atomic hydrogen ions reflected from the surface, while molecular hydrogen ions are unobserved within our detection limit. The reflected hydrogen ion energy is approximately less than one-third of the incident beam energy for H{sub 3}{sup +} ion injection and less than a half of that for H{sub 2}{sup +} ion injection. Other reflection properties are very similar to those of monoatomic H{sup +} ion injection. Experimental results are compared to the classical trajectory simulations using the ACAT code based on the binary collision approximation.

  11. Angle-resolved intensity and energy distributions of positive and negative hydrogen ions released from tungsten surface by molecular hydrogen ion impact

    Science.gov (United States)

    Kato, S.; Tanaka, N.; Sasao, M.; Kisaki, M.; Tsumori, K.; Nishiura, M.; Matsumoto, Y.; Kenmotsu, T.; Wada, M.; Yamaoka, H.

    2015-08-01

    Hydrogen ion reflection properties have been investigated following the injection of H+, H2+ and H3+ ions onto a polycrystalline W surface. Angle- and energy-resolved intensity distributions of both scattered H+ and H- ions are measured by a magnetic momentum analyzer. We have detected atomic hydrogen ions reflected from the surface, while molecular hydrogen ions are unobserved within our detection limit. The reflected hydrogen ion energy is approximately less than one-third of the incident beam energy for H3+ ion injection and less than a half of that for H2+ ion injection. Other reflection properties are very similar to those of monoatomic H+ ion injection. Experimental results are compared to the classical trajectory simulations using the ACAT code based on the binary collision approximation.

  12. Angle-resolved photoemission study of Ag(1 1 1)

    Science.gov (United States)

    Edamoto, K.; Miyazaki, E.; Shimokoshi, K.; Kato, H.

    1990-01-01

    The (1 1 1) face of Ag has been studied by angle-resolved photoemission spectroscopy utilizing synchrotron radiation as the excitation source (25 FIRO method. The peak positions thus determined are used to map the dispersion curves along the lang1 1 1rang (Γ-L) direction. The results show general agreement with calculated band structure, so far as the energy levels and symmetries are concerned. However, it is found that the density of state effect is dominant in the spectra obtained in the present photon energy region. The emission from the Ag 5s, p bands is observed to be broadened due to the indirect transition process.

  13. Highly Angle-Resolved X-Ray Photoelectron Diffraction from Solid Surfaces

    Science.gov (United States)

    Tamura, K.; Shiraki, S.; Ishii, H.; Owari, M.; Nihei, Y.

    We have carried out the highly angle-resolved X-ray photoelectron diffraction (XPED) measurements by using the input-lens system for restriction of the detection angle. In the input-lens system, high angular resolution and high throughput are accomplished by placing an aperture not on the image plane but on the diffraction plane of electron optics. The aperture sizes (ϕ 4 mm, ϕ 2 mm, ϕ 0.5 mm, ϕ 0.25 mm) correspond to the angular resolutions (± 0.6°, ± 0.3°, ± 0.08°, ± 0.04°) respectively. Highly angle-resolved Ge3d XPED patterns from Ge(111) obtained by the angle-resolving system contain fine structure such as Kikuchi patterns. The fine structure was reproduced by multiple scattering cluster calculations.

  14. Precision angle-resolved autoionization resonances in Ar and Ne

    Energy Technology Data Exchange (ETDEWEB)

    Berrah, N.; Langer, B.; Gorczyca, T.W. [Western Michigan Univ., Kalamazoo, MI (United States)] [and others

    1997-04-01

    Theoretical work has shown that the electron angular distribution and the shape of the autoionization resonances are crucial to the understanding of certain types of electron-electron correlation. Autoionization resonances in Ne (Ar) result from the decay of the excited discrete state Ne{sup *} 2s2p{sup 6} np (Ar{sup *} 3s3p{sup 6} np) into the continuum state Ne{sup +} 2s{sup 2}2p{sup 5} + e{sup {minus}} (ks,kd) (Ar{sup +} 3s{sup 2}3p{sup 5} + e{sup {minus}} (ks,kd)). Since the continuum can also be reached by direct photoionization, both paths add coherently, giving rise to interferences that produce the characteristic Beutler-Fano line shape. In this work, the authors report on quantitative angle-resolved electron spectrometry studies of (a) the Ne 2s{sup 2}2p{sup 6} {r_arrow} 2s2p{sup 6} np (n=3-5) autoionizing resonances and the 2s{sup 2}2p{sup 6} {r_arrow} 2p{sup 4}3s3p doubly excited resonance, (b) the Ar 3s{sup 2}3p{sup 6} {r_arrow} 3s3p{sup 6} np (n=4-9) autoionization resonances and extended R-matrix calculations of the angular-distribution parameters for both Ne and Ar measurements. Their results are compared with previous theoretical work by Taylor.

  15. Imaging the wave functions of adsorbed molecules using angle-resolved photoemmision data

    Science.gov (United States)

    Lüftner, Daniel; Ules, Thomas; Reinisch, Eva Maria; Koller, Georg; Soubatch, Serguei; Tautz, F. Stefan; Ramsey, Michael G.; Puschnig, Peter

    2014-03-01

    The frontier electronic orbitals of molecules are the prime determinants of the respective compounds' chemical, electronic, and optical properties. Although orbitals are very powerful concepts, experimentally only the electron densities and energy levels are directly observable. As has been shown in recent publications, angle-resolved photoemission (ARPES) intensity maps of organic molecular layers are related to the absolute value of the Fourier transform of the initial state molecular orbital. However, the lost phase information impedes the back-transformation of the orbital into real space. Here, we show how molecular orbital images as well as the absent phase information can be retrieved by applying an iterative procedure which takes experimental ARPES maps as input and only assumes spatial confinement of the orbital. The method is demonstrated for several molecular orbitals of two proto-typical pi-conjugated molecules: the LUMO, HOMO, and HOMO-1 of pentacene, and the LUMO and HOMO of PTCDA. The technique is simple and robust and further emphasizes the capabilities of ARPES looking at spatial distributions of wave functions of adsorbed molecules thereby complementing data obtained from scanning probe methods.

  16. Angle-resolved photoemission studies of the CdTe(110) surface

    Science.gov (United States)

    Qu, H.; Kanski, J.; Nilsson, P. O.; Karlsson, U. O.

    1991-06-01

    The electronic structure of the CdTe(110) surface has been studied with angle-resolved photoelectron spectroscopy using synchrotron radiation. An empirical tight-binding linar combination of atomic orbitals band structure has been derived, based on normal-emission spectra. Several, previously unreported, surface-related states have been observed in off-normal emission, and their dispersions have been mapped along symmetry directions of the surface Brillouin zone.

  17. High Resolution Angle Resolved Photoemission with Tabletop 11eV Laser

    CERN Document Server

    He, Yu; Yi, Ming; Yang, Shuolong; Liu, Zhongkai; Lee, James; Chen, Sudi; Rebec, Slavko; Leuenberger, Dominik; Zong, Alfred; Jefferson, Michael; Moore, Robert; Kirchmann, Patrick; Merriam, Andrew; Shen, Zhixun

    2015-01-01

    We developed a table-top vacuum ultraviolet (VUV) laser with $113.778$nm wavelength (10.897eV) and demonstrated its viability as a photon source for high resolution angle-resolved photoemission spectroscopy (ARPES). This sub-nanosecond pulsed VUV laser operates at a repetition rate of 10MHz, provides a flux of 2$\\times$10$^{12}$ photons/second, and enables photoemission with energy and momentum resolutions better than 2meV and 0.012\\AA$^{-1}$, respectively. Space-charge induced energy shifts and spectral broadenings can be reduced below 2meV. The setup reaches electron momenta up to 1.2\\AA$^{-1}$, granting full access to the first Brillouin zone of most materials. Control over the linear polarization, repetition rate, and photon flux of the VUV source facilitates ARPES investigations of a broad range of quantum materials, bridging the application gap between contemporary low energy laser-based ARPES and synchrotron-based ARPES. We describe the principles and operational characteristics of this source, and sho...

  18. Invited Article: High resolution angle resolved photoemission with tabletop 11 eV laser

    Energy Technology Data Exchange (ETDEWEB)

    He, Yu; Vishik, Inna M.; Yi, Ming; Yang, Shuolong; Lee, James J.; Chen, Sudi; Rebec, Slavko N.; Leuenberger, Dominik; Shen, Zhi-Xun [SIMES, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Department of Applied Physics, Stanford University, Stanford, California 94305 (United States); Liu, Zhongkai [SIMES, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Department of Physics, Stanford University, Stanford, California 94305 (United States); Zong, Alfred [Department of Physics, Stanford University, Stanford, California 94305 (United States); Jefferson, C. Michael; Merriam, Andrew J. [Lumeras LLC, 207 McPherson St, Santa Cruz, California 95060 (United States); Moore, Robert G.; Kirchmann, Patrick S. [SIMES, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States)

    2016-01-15

    We developed a table-top vacuum ultraviolet (VUV) laser with 113.778 nm wavelength (10.897 eV) and demonstrated its viability as a photon source for high resolution angle-resolved photoemission spectroscopy (ARPES). This sub-nanosecond pulsed VUV laser operates at a repetition rate of 10 MHz, provides a flux of 2 × 10{sup 12} photons/s, and enables photoemission with energy and momentum resolutions better than 2 meV and 0.012 Å{sup −1}, respectively. Space-charge induced energy shifts and spectral broadenings can be reduced below 2 meV. The setup reaches electron momenta up to 1.2 Å{sup −1}, granting full access to the first Brillouin zone of most materials. Control over the linear polarization, repetition rate, and photon flux of the VUV source facilitates ARPES investigations of a broad range of quantum materials, bridging the application gap between contemporary low energy laser-based ARPES and synchrotron-based ARPES. We describe the principles and operational characteristics of this source and showcase its performance for rare earth metal tritellurides, high temperature cuprate superconductors, and iron-based superconductors.

  19. Invited Article: High resolution angle resolved photoemission with tabletop 11 eV laser.

    Science.gov (United States)

    He, Yu; Vishik, Inna M; Yi, Ming; Yang, Shuolong; Liu, Zhongkai; Lee, James J; Chen, Sudi; Rebec, Slavko N; Leuenberger, Dominik; Zong, Alfred; Jefferson, C Michael; Moore, Robert G; Kirchmann, Patrick S; Merriam, Andrew J; Shen, Zhi-Xun

    2016-01-01

    We developed a table-top vacuum ultraviolet (VUV) laser with 113.778 nm wavelength (10.897 eV) and demonstrated its viability as a photon source for high resolution angle-resolved photoemission spectroscopy (ARPES). This sub-nanosecond pulsed VUV laser operates at a repetition rate of 10 MHz, provides a flux of 2 × 10(12) photons/s, and enables photoemission with energy and momentum resolutions better than 2 meV and 0.012 Å(-1), respectively. Space-charge induced energy shifts and spectral broadenings can be reduced below 2 meV. The setup reaches electron momenta up to 1.2 Å(-1), granting full access to the first Brillouin zone of most materials. Control over the linear polarization, repetition rate, and photon flux of the VUV source facilitates ARPES investigations of a broad range of quantum materials, bridging the application gap between contemporary low energy laser-based ARPES and synchrotron-based ARPES. We describe the principles and operational characteristics of this source and showcase its performance for rare earth metal tritellurides, high temperature cuprate superconductors, and iron-based superconductors. PMID:26827301

  20. Angle-resolved ion TOF spectrometer with a position sensitive detector

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Norio [Electrotechnical Lab., Tsukuba, Ibaraki (Japan); Heiser, F.; Wieliczec, K.; Becker, U.

    1996-07-01

    A angle-resolved ion time-of-flight mass spectrometer with a position sensitive anode has been investigated. Performance of this spectrometer has been demonstrated by measuring an angular distribution of a fragment ion pair, C{sup +} + O{sup +}, from CO at the photon energy of 287.4 eV. The obtained angular distribution is very close to the theoretically expected one. (author)

  1. Surface band structure of CdTe(111)-2 × 2 by angle-resolved photoemission

    Science.gov (United States)

    Janowitz, C.; Manzke, R.; Skibowski, M.; Orlowski, B. A.

    1991-05-01

    The surface band structure of non-cleavable CdTe(111)-2 × 2 reconstructed surfaces is determined by means of angle-resolved photoemission and constant-final-state (CFS) spectroscopy. The experiments were performed with He I radiation and synchrotron radiation from the DORIS II storage ring at HASYLAB. High-quality (111)-2 × 2 surfaces were prepared by sputtering and annealing controlled by electron diffraction (LEED and RHEED). In order to distinguish between surface and bulk related emissions in the spectra we utilized, besides the criteria that the k∥ dispersion of surface states should reveal the 2 × 2 periodicity of the surfac mesh, also photon energy dependent CFS series at several critical points of the surface Brillouin zone. The data on CdTe(111) will be compared with experimental and theoretical results which are available for the electronically similar GaAs(111) surface.

  2. Fingerprints of entangled spin and orbital physics in itinerant ferromagnets via angle-resolved resonant photoemission

    Science.gov (United States)

    Da Pieve, F.

    2016-01-01

    A method for mapping the local spin and orbital nature of the ground state of a system via corresponding flip excitations is proposed based on angle-resolved resonant photoemission and related diffraction patterns, obtained here via an ab initio modified one-step theory of photoemission. The analysis is done on the paradigmatic weak itinerant ferromagnet bcc Fe, whose magnetism, a correlation phenomenon given by the coexistence of localized moments and itinerant electrons, and the observed non-Fermi-Liquid behavior at extreme conditions both remain unclear. The combined analysis of energy spectra and diffraction patterns offers a mapping of local pure spin-flip, entangled spin-flip-orbital-flip excitations and chiral transitions with vortexlike wave fronts of photoelectrons, depending on the valence orbital symmetry and the direction of the local magnetic moment. Such effects, mediated by the hole polarization, make resonant photoemission a promising tool to perform a full tomography of the local magnetic properties even in itinerant ferromagnets or macroscopically nonmagnetic systems.

  3. Direct angle resolved photoemission spectroscopy and superconductivity of strained high-c films

    Indian Academy of Sciences (India)

    Davor Pavuna; Daniel Ariosa; Dominique Cloetta; Claudia Cancellieri; Mike Abrecht

    2008-02-01

    Since 1997 we systematically perform direct angle resolved photoemission spectroscopy (ARPES) on in-situ grown thin (< 30 nm) cuprate films. Specifically, we probe low-energy electronic structure and properties of high-c superconductors (HTSC) under different degrees of epitaxial (compressive vs. tensile) strain. In overdoped and underdoped in-plane compressed (the strain is induced by the choice of substrate) ≃ 15 nm thin La2-SrCuO4 (LSCO) films we almost double c to 40 K, from 20 K and 24 K, respectively. Yet the Fermi surface (FS) remains essentially two-dimensional. In contrast, ARPES data under tensile strain exhibit the dispersion that is three-dimensional, yet c drastically decreases. It seems that the in-plane compressive strain tends to push the apical oxygen far away from the CuO2 plane, enhances the two-dimensional character of the dispersion and increases c, while the tensile strain acts in the opposite direction and the resulting dispersion is three-dimensional. We have established the shape of the FS for both cases, and all our data are consistent with other ongoing studies, like EXAFS. As the actual lattice of cuprates is like a `Napoleon-cake', i.e. rigid CuO2 planes alternating with softer `reservoir', that distort differently under strain, our data rule out all oversimplified two-dimensional (rigid lattice) mean field models. The work is still in progress on optimized La-doped Bi-2201 films with enhanced c.

  4. Band structures of 4f and 5f materials studied by angle-resolved photoelectron spectroscopy

    Science.gov (United States)

    Fujimori, Shin-ichi

    2016-04-01

    Recent remarkable progress in angle-resolved photoelectron spectroscopy (ARPES) has enabled the direct observation of the band structures of 4f and 5f materials. In particular, ARPES with various light sources such as lasers (hν ∼ 7~\\text{eV} ) or high-energy synchrotron radiations (hν ≳ 400~\\text{eV} ) has shed light on the bulk band structures of strongly correlated materials with energy scales of a few millielectronvolts to several electronvolts. The purpose of this paper is to summarize the behaviors of 4f and 5f band structures of various rare-earth and actinide materials observed by modern ARPES techniques, and understand how they can be described using various theoretical frameworks. For 4f-electron materials, ARPES studies of \\text{Ce}M\\text{I}{{\\text{n}}5} (M=\\text{Rh} , \\text{Ir} , and \\text{Co} ) and \\text{YbR}{{\\text{h}}2}\\text{S}{{\\text{i}}2} with various incident photon energies are summarized. We demonstrate that their 4f electronic structures are essentially described within the framework of the periodic Anderson model, and that the band-structure calculation based on the local density approximation cannot explain their low-energy electronic structures. Meanwhile, electronic structures of 5f materials exhibit wide varieties ranging from itinerant to localized states. For itinerant \\text{U}~5f compounds such as \\text{UFeG}{{\\text{a}}5} , their electronic structures can be well-described by the band-structure calculation assuming that all \\text{U}~5f electrons are itinerant. In contrast, the band structures of localized \\text{U}~5f compounds such as \\text{UP}{{\\text{d}}3} and \\text{U}{{\\text{O}}2} are essentially explained by the localized model that treats \\text{U}~5f electrons as localized core states. In regards to heavy fermion \\text{U} -based compounds such as the hidden-order compound \\text{UR}{{\\text{u}}2}\\text{S}{{\\text{i}}2} , their electronic structures exhibit complex behaviors. Their overall band structures

  5. Observation by resonant angle-resolved photoemission of a critical thickness for 2-dimensional electron gas formation in SrTiO$_3$ embedded in GdTiO$_3$

    OpenAIRE

    Nemšák, S.; CONTI, G; Pálsson, G. K.; Conlon, C.; Cho, S.; Rault, J.; Avila, J.; Asensio, M. -C.; Jackson, C; Moetakef, P.; Janotti, A.; Bjaalie, L.; Himmetoglu, B.; Van de Walle, C. G.; Balents, L.

    2015-01-01

    For certain conditions of layer thickness, the interface between GdTiO$_3$ (GTO) and SrTiO$_3$ (STO) in multilayer samples has been found to form a two-dimensional electron gas (2DEG) with very interesting properties including high mobilities and ferromagnetism. We have here studied two trilayer samples of the form [2 nm GTO/1.0 or 1.5 unit cells STO/10 nm GTO] as grown on (001) (LaAlO$_3$)$_{0.3}$(Sr$_2$AlTaO$_6$)$_{0.7}$ (LSAT), with the STO layer thicknesses being at what has been suggeste...

  6. Tetragonal and collapsed-tetragonal phases of CaFe2As2 : A view from angle-resolved photoemission and dynamical mean-field theory

    Science.gov (United States)

    van Roekeghem, Ambroise; Richard, Pierre; Shi, Xun; Wu, Shangfei; Zeng, Lingkun; Saparov, Bayrammurad; Ohtsubo, Yoshiyuki; Qian, Tian; Sefat, Athena S.; Biermann, Silke; Ding, Hong

    2016-06-01

    We present a study of the tetragonal to collapsed-tetragonal transition of CaFe2As2 using angle-resolved photoemission spectroscopy and dynamical mean field theory-based electronic structure calculations. We observe that the collapsed-tetragonal phase exhibits reduced correlations and a higher coherence temperature due to the stronger Fe-As hybridization. Furthermore, a comparison of measured photoemission spectra and theoretical spectral functions shows that momentum-dependent corrections to the density functional band structure are essential for the description of low-energy quasiparticle dispersions. We introduce those using the recently proposed combined "screened exchange + dynamical mean field theory" scheme.

  7. Angle-resolved effective potentials for disk-shaped molecules

    International Nuclear Information System (INIS)

    We present an approach for calculating coarse-grained angle-resolved effective pair potentials for uniaxial molecules. For integrating out the intramolecular degrees of freedom we apply umbrella sampling and steered dynamics techniques in atomistically-resolved molecular dynamics (MD) computer simulations. Throughout this study we focus on disk-like molecules such as coronene. To develop the methods we focus on integrating out the van der Waals and intramolecular interactions, while electrostatic charge contributions are neglected. The resulting coarse-grained pair potential reveals a strong temperature and angle dependence. In the next step we fit the numerical data with various Gay-Berne-like potentials to be used in more efficient simulations on larger scales. The quality of the resulting coarse-grained results is evaluated by comparing their pair and many-body structure as well as some thermodynamic quantities self-consistently to the outcome of atomistic MD simulations of many-particle systems. We find that angle-resolved potentials are essential not only to accurately describe crystal structures but also for fluid systems where simple isotropic potentials start to fail already for low to moderate packing fractions. Further, in describing these states it is crucial to take into account the pronounced temperature dependence arising in selected pair configurations due to bending fluctuations

  8. Angle-resolved effective potentials for disk-shaped molecules

    Energy Technology Data Exchange (ETDEWEB)

    Heinemann, Thomas, E-mail: thomas.heinemann@tu-berlin.de; Klapp, Sabine H. L., E-mail: klapp@physik.tu-berlin.de [Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin (Germany); Palczynski, Karol, E-mail: karol.palczynski@helmholtz-berlin.de; Dzubiella, Joachim, E-mail: joachim.dzubiella@helmholtz-berlin.de [Institut für Physik, Humboldt Universität zu Berlin, Newtonstraße 15, 12489 Berlin (Germany); Helmholtz Zentrum Berlin (HZB), Institute of Soft Matter and Functional Materials, Hahn-Meitner Platz 1, 14109 Berlin (Germany)

    2014-12-07

    We present an approach for calculating coarse-grained angle-resolved effective pair potentials for uniaxial molecules. For integrating out the intramolecular degrees of freedom we apply umbrella sampling and steered dynamics techniques in atomistically-resolved molecular dynamics (MD) computer simulations. Throughout this study we focus on disk-like molecules such as coronene. To develop the methods we focus on integrating out the van der Waals and intramolecular interactions, while electrostatic charge contributions are neglected. The resulting coarse-grained pair potential reveals a strong temperature and angle dependence. In the next step we fit the numerical data with various Gay-Berne-like potentials to be used in more efficient simulations on larger scales. The quality of the resulting coarse-grained results is evaluated by comparing their pair and many-body structure as well as some thermodynamic quantities self-consistently to the outcome of atomistic MD simulations of many-particle systems. We find that angle-resolved potentials are essential not only to accurately describe crystal structures but also for fluid systems where simple isotropic potentials start to fail already for low to moderate packing fractions. Further, in describing these states it is crucial to take into account the pronounced temperature dependence arising in selected pair configurations due to bending fluctuations.

  9. Nodal Quasiparticle Meltdown in Ultra-High Resolution Pump-Probe Angle-Resolved Photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Graf, Jeff; Jozwiak, Chris; Smallwood, Chris L.; Eisaki, H.; Kaindl, Robert A.; Lee, Dung-Hai; Lanzara, Alessandra

    2011-06-03

    High-T{sub c} cuprate superconductors are characterized by a strong momentum-dependent anisotropy between the low energy excitations along the Brillouin zone diagonal (nodal direction) and those along the Brillouin zone face (antinodal direction). Most obvious is the d-wave superconducting gap, with the largest magnitude found in the antinodal direction and no gap in the nodal direction. Additionally, while antin- odal quasiparticle excitations appear only below T{sub c}, superconductivity is thought to be indifferent to nodal excitations as they are regarded robust and insensitive to T{sub c}. Here we reveal an unexpected tie between nodal quasiparticles and superconductivity using high resolution time- and angle-resolved photoemission on optimally doped Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} . We observe a suppression of the nodal quasiparticle spectral weight following pump laser excitation and measure its recovery dynamics. This suppression is dramatically enhanced in the superconducting state. These results reduce the nodal-antinodal dichotomy and challenge the conventional view of nodal excitation neutrality in superconductivity. The electronic structures of high-Tc cuprates are strongly momentum-dependent. This is one reason why the momentum-resolved technique of angle-resolved photoemission spectroscopy (ARPES) has been a central tool in the field of high-temperature superconductivity. For example, coherent low energy excitations with momenta near the Brillouin zone face, or antinodal quasiparticles (QPs), are only observed below T{sub c} and have been linked to superfluid density. They have therefore been the primary focus of ARPES studies. In contrast, nodal QPs, with momenta along the Brillouin zone diagonal, have received less attention and are usually regarded as largely immune to the superconducting transition because they seem insensitive to perturbations such as disorder, doping, isotope exchange, charge ordering, and temperature. Clearly

  10. High-resolution three-dimensional spin- and angle-resolved photoelectron spectrometer using vacuum ultraviolet laser light

    Science.gov (United States)

    Yaji, Koichiro; Harasawa, Ayumi; Kuroda, Kenta; Toyohisa, Sogen; Nakayama, Mitsuhiro; Ishida, Yukiaki; Fukushima, Akiko; Watanabe, Shuntaro; Chen, Chuangtian; Komori, Fumio; Shin, Shik

    2016-05-01

    We describe a spin- and angle-resolved photoelectron spectroscopy (SARPES) apparatus with a vacuum-ultraviolet (VUV) laser (hν = 6.994 eV) developed at the Laser and Synchrotron Research Center at the Institute for Solid State Physics, The University of Tokyo. The spectrometer consists of a hemispherical photoelectron analyzer equipped with an electron deflector function and twin very-low-energy-electron-diffraction-type spin detectors, which allows us to analyze the spin vector of a photoelectron three-dimensionally with both high energy and angular resolutions. The combination of the high-performance spectrometer and the high-photon-flux VUV laser can achieve an energy resolution of 1.7 meV for SARPES. We demonstrate that the present laser-SARPES machine realizes a quick SARPES on the spin-split band structure of a Bi(111) film even with 7 meV energy and 0.7∘ angular resolutions along the entrance-slit direction. This laser-SARPES machine is applicable to the investigation of spin-dependent electronic states on an energy scale of a few meV.

  11. Application of a time-of-flight spectrometer with delay-line detector for time- and angle-resolved two-photon photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Damm, A. [Fachbereich Physik und Zentrum für Materialwissenschaften, Philipps-Universität, D-35032 Marburg (Germany); Güdde, J., E-mail: Jens.Guedde@physik.uni-marburg.de [Fachbereich Physik und Zentrum für Materialwissenschaften, Philipps-Universität, D-35032 Marburg (Germany); Feulner, P. [Physikdepartment E20, Technische Universität München, 85747 Garching (Germany); Czasch, A.; Jagutzki, O.; Schmidt-Böcking, H. [Institut für Kernphysik, Goethe-Universität, D-60438 Frankfurt am Main (Germany); RoentDek Handels GmbH, D-65779 Kelkheim (Germany); Höfer, U. [Fachbereich Physik und Zentrum für Materialwissenschaften, Philipps-Universität, D-35032 Marburg (Germany)

    2015-07-15

    Highlights: • The performance of a 2D time-of-flight electron spectrometer is demonstrated. • We discuss its application for time- and angle-resolved two-photon photoemission. • The decay dynamics of the first image-potential state on Cu(1 0 0) is investigated. • We find an azimuthal anisotropy of the decay rate with one-fold symmetry. • The anisotropy is attributed to residual steps on the nominal flat surface. - Abstract: We describe the design and operation of a time-of-flight electron spectrometer which is capable of simultaneously acquiring the energy and momentum distribution of low-energy photoelectrons in two dimensions parallel to the surface. We discuss its capabilities and limitations in particular for time- and angle-resolved two-photon photoemission (2PPE) with pulsed lasers. The performance of the spectrometer is demonstrated by presenting 2PPE data on the momentum-dependent electron dynamics of the first (n = 1) image-potential state on Cu(0 0 1). The data reveal a weak but systematic dependence of the decay dynamics on sample azimuth with one-fold symmetry which we attribute to a small residual step density on the nominal flat surface.

  12. Laser-based spin- and angle-resolved photoemission spectroscopy for rapid, high-resolution measurements

    Science.gov (United States)

    Gotlieb, Kenneth; Bostwick, Aaron; Hussain, Zahid; Lanzara, Alessandra; Jozwiak, Christopher

    2014-03-01

    A unique spin-and angle-resolved photoemission spectrometer (spin-ARPES) is coupled with a 6 eV laser to achieve unprecedented measurements of near-EF physics in topological insulators and Rashba systems. The pairing of the spin-ARPES system with the laser allows for energy and angular resolutions never before seen in a spin-ARPES experiment. Most importantly, the high efficiency of the system and high photon flux of the laser make measurements very rapid, permitting exploration of a large experimental phase space.

  13. Direct angle resolved photoemission spectroscopy and superconductivity of strained high-Tc films

    Science.gov (United States)

    Pavuna, Davor; Ariosa, Daniel; Cloetta, Dominique; Cancellieri, Claudia; Abrecht, Mike

    2008-02-01

    Since 1997 we systematically perform direct angle resolved photoemission spectroscopy (ARPES) on in-situ grown thin (<30 nm) cuprate films. Specifically, we probe low-energy electronic structure and properties of high-T_{c} superconductors (HTSC) under different degrees of epitaxial ({compressive vs. tensile}) strain. In overdoped and underdoped in-plane compressed (the strain is induced by the choice of substrate) ≈15 nm thin La_{2-x}Sr_{x}CuO_{4} (LSCO) films we almost double T_{c} to 40 K, from 20 K and 24 K, respectively. Yet the Fermi surface (FS) remains essentially two-dimensional. In contrast, ARPES data under {tensile} strain exhibit the dispersion that is three-dimensional, yet T_{c} drastically decreases. It seems that the in-plane compressive strain tends to push the apical oxygen far away from the CuO_{2} plane, enhances the two-dimensional character of the dispersion and increases T_{c}, while the tensile strain acts in the opposite direction and the resulting dispersion is three-dimensional. We have established the shape of the FS for both cases, and all our data are consistent with other ongoing studies, like EXAFS. As the actual lattice of cuprates is like a `Napoleon-cake', i.e. rigid CuO_{2 } planes alternating with softer `reservoir', that distort differently under strain, our data rule out all oversimplified two-dimensional (rigid lattice) mean field models. The work is still in progress on optimized La-doped Bi-2201 films with enhanced T_{c}.

  14. Probing the momentum-dependent response of the charge density wave phase in TbTe3 by ultrafast time- and angle-resolved photoemission

    International Nuclear Information System (INIS)

    Charge density wave (CDW) systems such as TbTe3 offer fascinating options for studying the correlation of electrons and the lattice. We investigate the ultrafast response of the charge density wave (CDW) phase in TbTe3 after femtosecond IR excitation using time- and angle-resolved photoemission. The time-dependent photoemission intensity at the Fermi level yields a characteristic time for the closing of the CDW bandgap. With increasing laser fluence the bandgap closes faster, pointing to an increasing slope of the excited potential energy surface. As function of electron momentum the amplitude of the response increases strongly at the position of the Fermi wave vector kF. These results vividly demonstrate that the CDW system is most susceptible to electronic excitations near kF and that these electronic perturbations drive collective excitations of the coupled electron-lattice system.

  15. Angle-Resolved Plasmonic Properties of Single Gold Nanorod Dimers

    Institute of Scientific and Technical Information of China (English)

    Jian Wu; Xuxing Lu; Qiannan Zhu; Junwei Zhao; Qishun Shen; Li Zhan; Weihai Ni

    2014-01-01

    Through wet-chemical assembly methods, gold nanorods were placed close to each other and formed a dimer with a gap distance*1 nm, and hence degenerated plasmonic dipole modes of individual nanorods coupled together to produce hybridized bonding and antibonding resonance modes. Previous studies using a condenser for illumination result in averaged signals over all excitation angles. By exciting an individual dimer obliquely at different angles, we demonstrate that these two new resonance modes are highly tunable and sensitive to the angle between the excitation polarization and the dimer orientation, which follows cos2u dependence. Moreover, for dimer structures with various structure angles, the resonance wavelengths as well as the refractive index sensitivities were found independent of the structure angle. Cal-culated angle-resolved plasmonic properties are in good agreement with the measurements. The assembled nanostructures investigated here are important for fundamental researches as well as potential applications when they are used as building blocks in plasmon-based optical and optoelectronic devices.

  16. Spin-orbit-induced photoelectron spin polarization in angle-resolved photoemission from both atomic and condensed matter targets

    International Nuclear Information System (INIS)

    The existence of highly spin polarized photoelectrons emitted from non-magnetic solids as well as from unpolarized atoms and molecules has been found to be very common in many studies over the past 40 years. This so-called Fano effect is based upon the influence of the spin-orbit interaction in the photoionization or the photoemission process. In a non-angle-resolved photoemission experiment, circularly polarized radiation has to be used to create spin polarized photoelectrons, while in angle-resolved photoemission even unpolarized or linearly polarized radiation is sufficient to get a high spin polarization. In past years the Rashba effect has become very important in the angle-resolved photoemission of solid surfaces, also with an observed high photoelectron spin polarization. It is the purpose of the present topical review to cross-compare the spin polarization experimentally found in angle-resolved photoelectron emission spectroscopy of condensed matter with that of free atoms, to compare it with the Rashba effect and topological insulators to describe the influence and the importance of the spin-orbit interaction and to show and disentangle the matrix element and phase shift effects therein. The relationship between the energy dispersion of these phase shifts and the emission delay of photoelectron emission in attosecond-resolved photoemission is also discussed. Furthermore the influence of chiral structures of the photo-effect target on the spin polarization, the interferences of different spin components in coherent superpositions in photoemission and a cross-comparison of spin polarization in photoemission from non-magnetic solids with XMCD on magnetic materials are presented; these are all based upon the influence of the spin-orbit interaction in angle-resolved photoemission. (topical review)

  17. Angle-resolved multioctave supercontinua from mid-infrared laser filaments.

    Science.gov (United States)

    Mitrofanov, A V; Voronin, A A; Sidorov-Biryukov, D A; Mitryukovsky, S I; Rozhko, M V; Pugžlys, A; Fedotov, A B; Panchenko, V Ya; Baltuška, A; Zheltikov, A M

    2016-08-01

    Angle-resolved spectral analysis of a multioctave high-energy supercontinuum output of mid-infrared laser filaments is shown to provide a powerful tool for understanding intricate physical scenarios behind laser-induced filamentation in the mid-infrared. The ellipticity of the mid-infrared driver beam breaks the axial symmetry of filamentation dynamics, offering a probe for a truly (3+1)-dimensional spatiotemporal evolution of mid-IR pulses in the filamentation regime. With optical harmonics up to the 15th order contributing to supercontinuum generation in such filaments alongside Kerr-type and ionization-induced nonlinearities, the output supercontinuum spectra span over five octaves from the mid-ultraviolet deep into the mid-infrared. Full (3+1)-dimensional field evolution analysis is needed for an adequate understanding of this regime of laser filamentation. Supercomputer simulations implementing such analysis articulate the critical importance of angle-resolved measurements for both descriptive and predictive power of filamentation modeling. Strong enhancement of ionization-induced blueshift is shown to offer new approaches in filamentation-assisted pulse compression, enabling the generation of high-power few- and single-cycle pulses in the mid-infrared. PMID:27472598

  18. Spin- and angle-resolved photoemission on the topological Kondo insulator candidate: SmB6.

    Science.gov (United States)

    Xu, Nan; Ding, Hong; Shi, Ming

    2016-09-14

    Topological Kondo insulators are a new class of topological insulators in which metallic surface states protected by topological invariants reside in the bulk band gap at low temperatures. Unlike other 3D topological insulators, a truly insulating bulk state, which is critical for potential applications in next-generation electronic devices, is guaranteed by many-body effects in the topological Kondo insulator. Furthermore, the system has strong electron correlations that can serve as a testbed for interacting topological theories. This topical review focuses on recent advances in the study of SmB6, the most promising candidate for a topological Kondo insulator, from the perspective of spin- and angle-resolved photoemission spectroscopy with highlights of some important transport results. PMID:27391865

  19. Spin- and angle-resolved photoemission on the topological Kondo insulator candidate: SmB6

    Science.gov (United States)

    Xu, Nan; Ding, Hong; Shi, Ming

    2016-09-01

    Topological Kondo insulators are a new class of topological insulators in which metallic surface states protected by topological invariants reside in the bulk band gap at low temperatures. Unlike other 3D topological insulators, a truly insulating bulk state, which is critical for potential applications in next-generation electronic devices, is guaranteed by many-body effects in the topological Kondo insulator. Furthermore, the system has strong electron correlations that can serve as a testbed for interacting topological theories. This topical review focuses on recent advances in the study of SmB6, the most promising candidate for a topological Kondo insulator, from the perspective of spin- and angle-resolved photoemission spectroscopy with highlights of some important transport results.

  20. Orbital Rashba effect and its detection by circular dichroism angle-resolved photoemission spectroscopy

    Science.gov (United States)

    Park, Jin-Hong; Kim, Choong H.; Rhim, Jun-Won; Han, Jung Hoon

    2012-05-01

    We show, by way of tight-binding and first-principles calculations, that a one-to-one correspondence between an electron's crystal momentum k and nonzero orbital angular momentum (OAM) is a generic feature of surface bands. The OAM forms a chiral structure in momentum space much as its spin counterpart in Rashba model does, as a consequence of the inherent inversion symmetry breaking at the surface but not of spin-orbit interaction. This is the orbital counterpart of conventional Rashba effect and may be called the “orbital Rashba effect.” The circular dichroism (CD) angle-resolved photoemission (ARPES) method is an efficient way to detect this new order, and we derive formulas explicitly relating the CD-ARPES signal to the existence of OAM in the band structure. The cases of degenerate p- and d-orbital bands are considered.

  1. Modeling angle-resolved photoemission of graphene and black phosphorus nano structures.

    Science.gov (United States)

    Park, Sang Han; Kwon, Soonnam

    2016-05-10

    Angle-resolved photoemission spectroscopy (ARPES) data on electronic structure are difficult to interpret, because various factors such as atomic structure and experimental setup influence the quantum mechanical effects during the measurement. Therefore, we simulated ARPES of nano-sized molecules to corroborate the interpretation of experimental results. Applying the independent atomic-center approximation, we used density functional theory calculations and custom-made simulation code to compute photoelectron intensity in given experimental setups for every atomic orbital in poly-aromatic hydrocarbons of various size, and in a molecule of black phosphorus. The simulation results were validated by comparing them to experimental ARPES for highly-oriented pyrolytic graphite. This database provides the calculation method and every file used during the work flow.

  2. Angle-resolved photoemission spectroscopy (ARPES) studies of cuprate superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Palczewski, Ari Deibert [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    This dissertation is comprised of three different angle-resolved photoemission spectroscopy (ARPES) studies on cuprate superconductors. The first study compares the band structure from two different single layer cuprates Tl2Ba2CuO6+δ (Tl2201) Tc, max ≈ 95 K and (Bi 1.35Pb0.85)(Sr1.47La0.38)CuO6+δ (Bi2201) Tc, max ≈ 35 K. The aim of the study was to provide some insight into the reasons why single layer cuprate's maximum transition temperatures are so different. The study found two major differences in the band structure. First, the Fermi surface segments close to (π,0) are more parallel in Tl2201 than in Bi2201. Second, the shadow band usually related to crystal structure is only present in Bi2201, but absent in higher Tc Tl2201. The second study looks at the different ways of doping Bi2Sr2CaCu2O8+δ (Bi2212) in-situ by only changing the post bake-out vacuum conditions and temperature. The aim of the study is to systematically look into the generally overlooked experimental conditions that change the doping of a cleaved sample in ultra high vacuum (UHV) experiments. The study found two major experimental facts. First, in inadequate UHV conditions the carrier concentration of Bi2212 increases with time, due to the absorption of oxygen from CO2/CO molecules, prime contaminants present in UHV systems. Second, in a very clean UHV system at elevated temperatures (above about 200 K), the carrier concentration decreases due to the loss of oxygen atoms from the Bi-O layer. The final study probed the particle-hole symmetry of the pseudogap phase in high temperature superconducting cuprates by looking at the thermally excited bands above the Fermi level. The data showed a particle-hole symmetric pseudogap which symmetrically closes away from the nested FS before the node. The data is

  3. Tunable VUV laser based spectrometer for Angle Resolved Photoemission Spectroscopy (ARPES)

    CERN Document Server

    Jiang, Rui; Wu, Yun; Huang, Lunan; McMillen, Colin D; Kolis, Joseph; Giesber, Henry G; Egan, John J; Kaminski, Adam

    2014-01-01

    We have developed an angle-resolved photoemission spectrometer with tunable VUV laser as a photon source. The photon source is based on the fourth harmonic generation of a near IR beam from a Ti:sapphire laser pumped by a CW green laser and tunable between 5.3eV and 7eV. The most important part of the set-up is a compact, vacuum enclosed fourth harmonic generator based on KBBF crystals, grown hydrothermally in the US. This source can deliver a photon flux of over 10^14 photons/s. We demonstrate that this energy range is sufficient to measure the kz dispersion in an iron arsenic high temperature superconductor, which was previously only possible at synchrotron facilities.

  4. Angle-resolved photoemission studies of the superconducting gap symmetry in Fe-based superconductors

    Directory of Open Access Journals (Sweden)

    Y.-B. Huang

    2012-12-01

    Full Text Available The superconducting gap is the fundamental parameter that characterizes the superconducting state, and its symmetry is a direct consequence of the mechanism responsible for Cooper pairing. Here we discuss about angle-resolved photoemission spectroscopy measurements of the superconducting gap in the Fe-based high-temperature superconductors. We show that the superconducting gap is Fermi surface dependent and nodeless with small anisotropy, or more precisely, a function of the momentum location in the Brillouin zone. We show that while this observation seems inconsistent with weak coupling approaches for superconductivity in these materials, it is well supported by strong coupling models and global superconducting gaps. We also suggest that a smaller lifetime of the superconducting Cooper pairs induced by the momentum dependent interband scattering inherent to these materials could affect the residual density of states at low energies, which is critical for a proper evaluation of the superconducting gap.

  5. Dual analyzer system for surface analysis dedicated for angle-resolved photoelectron spectroscopy at liquid surfaces and interfaces

    Science.gov (United States)

    Niedermaier, Inga; Kolbeck, Claudia; Steinrück, Hans-Peter; Maier, Florian

    2016-04-01

    The investigation of liquid surfaces and interfaces with the powerful toolbox of ultra-high vacuum (UHV)-based surface science techniques generally has to overcome the issue of liquid evaporation within the vacuum system. In the last decade, however, new classes of liquids with negligible vapor pressure at room temperature—in particular, ionic liquids (ILs)—have emerged for surface science studies. It has been demonstrated that particularly angle-resolved X-ray Photoelectron Spectroscopy (ARXPS) allows for investigating phenomena that occur at gas-liquid and liquid-solid interfaces on the molecular level. The results are not only relevant for IL systems but also for liquids in general. In all of these previous ARXPS studies, the sample holder had to be tilted in order to change the polar detection angle of emitted photoelectrons, which restricted the liquid systems to very thin viscous IL films coating a flat solid support. We now report on the concept and realization of a new and unique laboratory "Dual Analyzer System for Surface Analysis (DASSA)" which enables fast ARXPS, UV photoelectron spectroscopy, imaging XPS, and low-energy ion scattering at the horizontal surface plane of macroscopically thick non-volatile liquid samples. It comprises a UHV chamber equipped with two electron analyzers mounted for simultaneous measurements in 0° and 80° emission relative to the surface normal. The performance of DASSA on a first macroscopic liquid system will be demonstrated.

  6. Anomalous asymmetry in the Fermi surface of the high-temperature superconductor YBa2Cu4O8 revealed by angle-resolved photoemission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, Takeshi; Khasanov, R.; Sassa, Y.; Bendounan, A.; Paihes, S.; Chang, J.; Mesot, J.; Keller, H.; Zhigadlo, N.D.; Shi, M.; Bukowski, Z.; Karpinski, J.; Kaminski, A.

    2009-09-15

    We use microprobe angle-resolved photoemission spectroscopy to study the Fermi surface and band dispersion of the CuO{sub 2} planes in the high-temperature superconductor, YBa{sub 2}Cu{sub 4}O{sub 8}. We find a strong in-plane asymmetry of the electronic structure between directions along a and b axes. The saddle point of the antibonding band lies at a significantly higher energy in the a direction ({pi},0) than the b direction (0,{pi}), whereas the bonding band displays the opposite behavior. We demonstrate that the abnormal band shape is due to a strong asymmetry of the bilayer band splitting, likely caused by a nontrivial hybridization between the planes and chains. This asymmetry has an important implication for interpreting key properties of the Y-Ba-Cu-O family, especially the superconducting gap, transport, and results of inelastic neutron scattering.

  7. Angle resolved photoemission spectroscopy study on the non-saturate magnetoresistance material WTe2

    Science.gov (United States)

    Jiang, Juan; Niu, Xiaohai; Xie, Binping; Zhang, Tong; Feng, Donglai

    2015-03-01

    By performing high resolution angle-resolved photoemission spectroscopy, we obtain the detailed electronic structure of WTe2, which has an extremely large non-saturated magnetoresistance. Unlike the simple one electron and one hole pocket as expected, we resolved a rather complicated Fermi surface in WTe2. There is a hole pocket around the Brillouin zone center Γ, two hole pockets and two electron pockets along the tungsten chain direction. Thus the large magnetoresistance cannot be simply attributed to the electron-hole compensation, since this is based on a two carrier assumption model, the real case in WTe2 should be more complicated. Surprisingly, the circular dichroism ARPES result shows a strong intensity inversion between the data under the right-circular polarized light and the left-circular polarized light. This, indicates a proper different orbital angular momentum along the tungsten chain direction, which might also related to the different spin angular momentum since there're coupled with each other. Therefore, we propose that to fully understand the large magnetoresistance in WTe2, spin channel should also be involved where backscattering are forbidden under zero field.

  8. Angle resolved x-ray photoelectron spectroscopy (ARXPS) analysis of lanthanum oxide for micro-flexography printing

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, S., E-mail: suhaimihas@uthm.edu.my; Yusof, M. S., E-mail: mdsalleh@uthm.edu.my; Maksud, M. I., E-mail: midris1973@gmail.com [Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Batu Pahat, Johor (Malaysia); Embong, Z., E-mail: zaidi@uthm.edu.my [Faculty of Science, Technology and Human Development, Universiti Tun Hussein Onn Malaysia, 86400 Batu Pahat, Johor (Malaysia)

    2016-01-22

    Micro-flexography printing was developed in patterning technique from micron to nano scale range to be used for graphic, electronic and bio-medical device on variable substrates. In this work, lanthanum oxide (La{sub 2}O{sub 3}) has been used as a rare earth metal candidate as depositing agent. This metal deposit was embedded on Carbon (C) and Silica (Si) wafer substrate using Magnetron Sputtering technique. The choose of Lanthanum as a target is due to its wide application in producing electronic devices such as thin film battery and printed circuit board. The La{sub 2}O{sub 3} deposited on the surface of Si wafer substrate was then analyzed using Angle Resolve X-Ray Photoelectron Spectroscopy (ARXPS). The position for each synthetic component in the narrow scan of Lanthanum (La) 3d and O 1s are referred to the electron binding energy (eV). The La 3d narrow scan revealed that the oxide species of this particular metal is mainly contributed by La{sub 2}O{sub 3} and La(OH){sub 3}. The information of oxygen species, O{sup 2-} component from O 1s narrow scan indicated that there are four types of species which are contributed from the bulk (O{sup 2−}), two chemisorb component (La{sub 2}O{sub 3}) and La(OH){sub 3} and physisorp component (OH). Here, it is proposed that from the adhesive and surface chemical properties of La, it is suitable as an alternative medium for micro-flexography printing technique in printing multiple fine solid lines at nano scale. Hence, this paper will describe the capability of this particular metal as rare earth metal for use in of micro-flexography printing practice. The review of other parameters contributing to print fine lines will also be described later.

  9. Angle resolved x-ray photoelectron spectroscopy (ARXPS) analysis of lanthanum oxide for micro-flexography printing

    Science.gov (United States)

    Hassan, S.; Yusof, M. S.; Embong, Z.; Maksud, M. I.

    2016-01-01

    Micro-flexography printing was developed in patterning technique from micron to nano scale range to be used for graphic, electronic and bio-medical device on variable substrates. In this work, lanthanum oxide (La2O3) has been used as a rare earth metal candidate as depositing agent. This metal deposit was embedded on Carbon (C) and Silica (Si) wafer substrate using Magnetron Sputtering technique. The choose of Lanthanum as a target is due to its wide application in producing electronic devices such as thin film battery and printed circuit board. The La2O3 deposited on the surface of Si wafer substrate was then analyzed using Angle Resolve X-Ray Photoelectron Spectroscopy (ARXPS). The position for each synthetic component in the narrow scan of Lanthanum (La) 3d and O 1s are referred to the electron binding energy (eV). The La 3d narrow scan revealed that the oxide species of this particular metal is mainly contributed by La2O3 and La(OH)3. The information of oxygen species, O2- component from O 1s narrow scan indicated that there are four types of species which are contributed from the bulk (O2-), two chemisorb component (La2O3) and La(OH)3 and physisorp component (OH). Here, it is proposed that from the adhesive and surface chemical properties of La, it is suitable as an alternative medium for micro-flexography printing technique in printing multiple fine solid lines at nano scale. Hence, this paper will describe the capability of this particular metal as rare earth metal for use in of micro-flexography printing practice. The review of other parameters contributing to print fine lines will also be described later.

  10. Angle resolved x-ray photoelectron spectroscopy (ARXPS) analysis of lanthanum oxide for micro-flexography printing

    International Nuclear Information System (INIS)

    Micro-flexography printing was developed in patterning technique from micron to nano scale range to be used for graphic, electronic and bio-medical device on variable substrates. In this work, lanthanum oxide (La2O3) has been used as a rare earth metal candidate as depositing agent. This metal deposit was embedded on Carbon (C) and Silica (Si) wafer substrate using Magnetron Sputtering technique. The choose of Lanthanum as a target is due to its wide application in producing electronic devices such as thin film battery and printed circuit board. The La2O3 deposited on the surface of Si wafer substrate was then analyzed using Angle Resolve X-Ray Photoelectron Spectroscopy (ARXPS). The position for each synthetic component in the narrow scan of Lanthanum (La) 3d and O 1s are referred to the electron binding energy (eV). The La 3d narrow scan revealed that the oxide species of this particular metal is mainly contributed by La2O3 and La(OH)3. The information of oxygen species, O2- component from O 1s narrow scan indicated that there are four types of species which are contributed from the bulk (O2−), two chemisorb component (La2O3) and La(OH)3 and physisorp component (OH). Here, it is proposed that from the adhesive and surface chemical properties of La, it is suitable as an alternative medium for micro-flexography printing technique in printing multiple fine solid lines at nano scale. Hence, this paper will describe the capability of this particular metal as rare earth metal for use in of micro-flexography printing practice. The review of other parameters contributing to print fine lines will also be described later

  11. Spin- and angle-resolved photoemission spectroscopy study of the Au(1 1 1) Shockley surface state

    Energy Technology Data Exchange (ETDEWEB)

    Muntwiler, Matthias E-mail: m.muntwiler@physik.unizh.ch; Hoesch, Moritz; Petrov, Vladimir N.; Hengsberger, Matthias; Patthey, Luc; Shi Ming; Falub, Mihaela; Greber, Thomas; Osterwalder, Juerg

    2004-07-01

    The spin character of the splitting of the Shockley surface state on Au(111) is directly verified by measurements of the in-plane and out-of-plane spin polarizations in angle-resolved photoemission spectra. The two parabolic sub-bands that are momentum-shifted with respect to each other, reveal a distinct, opposite spin polarization that within the errors lies in the surface plane. The measured in-plane orientation of the spin vectors is consistent with the simple spin structure expected from a nearly-free-electron model, where the polarization axis is tangential to the Fermi surface of the surface state.

  12. A flexible setup for angle-resolved X-ray fluorescence spectrometry with laboratory sources.

    Science.gov (United States)

    Spanier, M; Herzog, C; Grötzsch, D; Kramer, F; Mantouvalou, I; Lubeck, J; Weser, J; Streeck, C; Malzer, W; Beckhoff, B; Kanngießer, B

    2016-03-01

    X-ray fluorescence (XRF) analysis is one of the standard tools for the analysis of stratified materials and is widely applied for the investigation of electronics and coatings. The composition and thickness of the layers can be determined quantitatively and non-destructively. Recent work showed that these capabilities can be extended towards retrieving stratigraphic information like concentration depth profiles using angle-resolved XRF (ARXRF). This paper introduces an experimental sample chamber which was developed as a multi-purpose tool enabling different measurement geometries suited for transmission measurements, conventional XRF, ARXRF, etc. The chamber was specifically designed for attaching all kinds of laboratory X-ray sources for the soft and hard X-ray ranges as well as various detection systems. In detail, a setup for ARXRF using an X-ray tube with a polycapillary X-ray lens as source is presented. For such a type of setup, both the spectral and lateral characterizations of the radiation field are crucial for quantitative ARXRF measurements. The characterization is validated with the help of a stratified validation sample. PMID:27036820

  13. A flexible setup for angle-resolved X-ray fluorescence spectrometry with laboratory sources

    Science.gov (United States)

    Spanier, M.; Herzog, C.; Grötzsch, D.; Kramer, F.; Mantouvalou, I.; Lubeck, J.; Weser, J.; Streeck, C.; Malzer, W.; Beckhoff, B.; Kanngießer, B.

    2016-03-01

    X-ray fluorescence (XRF) analysis is one of the standard tools for the analysis of stratified materials and is widely applied for the investigation of electronics and coatings. The composition and thickness of the layers can be determined quantitatively and non-destructively. Recent work showed that these capabilities can be extended towards retrieving stratigraphic information like concentration depth profiles using angle-resolved XRF (ARXRF). This paper introduces an experimental sample chamber which was developed as a multi-purpose tool enabling different measurement geometries suited for transmission measurements, conventional XRF, ARXRF, etc. The chamber was specifically designed for attaching all kinds of laboratory X-ray sources for the soft and hard X-ray ranges as well as various detection systems. In detail, a setup for ARXRF using an X-ray tube with a polycapillary X-ray lens as source is presented. For such a type of setup, both the spectral and lateral characterizations of the radiation field are crucial for quantitative ARXRF measurements. The characterization is validated with the help of a stratified validation sample.

  14. Angle-resolved heat capacity of heavy fermion superconductors.

    Science.gov (United States)

    Sakakibara, Toshiro; Kittaka, Shunichiro; Machida, Kazushige

    2016-09-01

    Owing to a strong Coulomb repulsion, heavy electron superconductors mostly have anisotropic gap functions which have nodes for certain directions in the momentum space. Since the nodal structure is closely related to the pairing mechanism, its experimental determination is of primary importance. This article discusses the experimental methods of the gap determination by bulk heat capacity measurements in a rotating magnetic field. The basic idea is based on the fact that the quasiparticle density of states in the vortex state of nodal superconductors is field and direction dependent. We present our recent experimental results of the field-orientation dependence of the heat capacity in heavy fermion superconductors CeTIn5 (T  =  Co, Ir), UPt3, CeCu2Si2, and UBe13 and discuss their gap structures. PMID:27482621

  15. Two dimensional band structure mapping of organic single crystals using the new generation electron energy analyzer ARTOF

    OpenAIRE

    Vollmer, A.; R. Ovsyannikov; Gorgoi, M.; Krause, S.; Oehzelt, M.; Lindblad, Andreas; Mårtensson, Nils; Svensson, Svante; Karlsson, P; Lundvuist, M.; Schmeiler, T.; Pflaum, J.; Koch, N.

    2012-01-01

    We report on a novel type of photoemission detector, the Angle Resolved Time Of Flight electron energy analyzer (ARTOF 10k), which enables electronic band structure determination under measurement conditions that are ideal for radiation-sensitive samples. This is facilitated through the combination of very high electron transmission and wide accessible angular range in one geometry. These properties make the ARTOF 10k predestined to investigate specimens that strongly suffer from radiation da...

  16. Angle-Resolved Auger Spectroscopy as a Sensitive Access to Vibronic Coupling

    Science.gov (United States)

    Knie, A.; Patanen, M.; Hans, A.; Petrov, I. D.; Bozek, J. D.; Ehresmann, A.; Demekhin, Ph. V.

    2016-05-01

    In the angle-averaged excitation and decay spectra of molecules, vibronic coupling may induce the usually weak dipole-forbidden transitions by the excitation intensity borrowing mechanism. The present complementary theoretical and experimental study of the resonant Auger decay of core-to-Rydberg excited CH4 and Ne demonstrates that vibronic coupling plays a decisive role in the formation of the angle-resolved spectra by additionally involving the decay rate borrowing mechanism. Thereby, we propose that the angle-resolved Auger spectroscopy can in general provide very insightful information on the strength of the vibronic coupling.

  17. Gantry-angle resolved VMAT pretreatment verification using EPID image prediction

    Energy Technology Data Exchange (ETDEWEB)

    Woodruff, Henry C.; Rowshanfarzad, Pejman [School of Mathematical and Physical Sciences, The University of Newcastle, NSW 2308 (Australia); Fuangrod, Todsaporn [School of Electrical Engineering and Computer Science, The University of Newcastle, NSW 2308 (Australia); McCurdy, Boyd M. C. [Division of Medical Physics, CancerCare Manitoba, 675 McDermot Avenue, Winnipeg, Manitoba R3E 0V9 (Canada); Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada); Department of Radiology, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada); Greer, Peter B. [School of Mathematical and Physical Sciences, The University of Newcastle, NSW 2308, Australia and Department of Radiation Oncology, Calvary Mater Newcastle Hospital, Locked Bag 7, Hunter region Mail Centre, Newcastle, NSW 2310 (Australia)

    2013-08-15

    Purpose: Pretreatment verification of volumetric modulated arc therapy (VMAT) dose delivery with electronic portal imaging device (EPID) uses images integrated over the entire delivery or over large subarcs. This work aims to develop a new method for gantry-angle-resolved verification of VMAT dose delivery using EPID.Methods: An EPID dose prediction model was used to calculate EPID images as a function of gantry angle for eight prostate patient deliveries. EPID image frames at 7.5 frames per second were acquired during delivery via a frame-grabber system. The gantry angle for each image was encoded in kV frames which were synchronized to the MV frames. Gamma analysis results as a function of gantry angle were assessed by integrating the frames over 2° subarcs with an angle-to-agreement tolerance of 0.5° about the measured image angle.Results: The model agreed with EPID images integrated over the entire delivery with average Gamma pass-rates at 2%, 2 mm of 99.7% (10% threshold). The accuracy of the kV derived gantry angle for each image was found to be 0.1° (1 SD) using a phantom test. For the gantry-resolved analysis all Gamma pass-rates were greater than 90% at 3%, 3 mm criteria (with only two exceptions), and more than 90% had a 95% pass-rate, with an average of 97.3%. The measured gantry angle lagged behind the predicted angle by a mean of 0.3°± 0.3°, with a maximum lag of 1.3°.Conclusions: The method provides a comprehensive and highly efficient pretreatment verification of VMAT delivery using EPID. Dose delivery accuracy is assessed as a function of gantry angle to ensure accurate treatment.

  18. Angle-resolved soft X-ray magnetic circular dichroism in a monatomic Fe layer facing an MgO(0 0 1) tunnel barrier

    Energy Technology Data Exchange (ETDEWEB)

    Mamiya, K. [Photon Factory, Institute of Materials Structure Science (IMSS), High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Koide, T. [Photon Factory, Institute of Materials Structure Science (IMSS), High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)]. E-mail: tsuneharu.koide@kek.jp; Ishida, Y. [Department of Complexity Science and Engineering, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561 (Japan); Osafune, Y. [Department of Complexity Science and Engineering, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561 (Japan); Fujimori, A. [Department of Complexity Science and Engineering, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561 (Japan); Suzuki, Y. [Graduate School of Engineering Science, Osaka University, 1-3 Toyonaka, Osaka 560-8531 (Japan); NanoElectronics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Katayama, T. [NanoElectronics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Yuasa, S. [NanoElectronics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan)

    2006-11-15

    The electronic and magnetic states of a monatomic Fe(0 0 1) layer directly facing an MgO(0 0 1) tunnel barrier were studied by angle-resolved X-ray magnetic circular dichroism (XMCD) at the Fe L {sub 2,3} edges in the longitudinal (L) and transverse (T) arrangements. A strong XMCD reveals no oxidation of the 1-ML Fe, showing its crucial role in giant tunnel magnetoresistance effects in Fe/MgO/Fe magnetic tunnel junctions. Sum-rule analyses of the angle-resolved XMCD give values of a spin moment, in-plane and out-of-plane orbital and magnetic dipole moments. Argument is given on their physical implication.

  19. Sidewall passivation layer thickness and composition profiles of etched silicon patterns from angle resolved x-ray photoelectron spectroscopy analysis

    Energy Technology Data Exchange (ETDEWEB)

    Haass, Moritz; Darnon, Maxime; Joubert, Olivier [CNRS/UJF-Grenoble1/CEA LTM, 17 avenue des Martyrs, 38054 Grenoble cedex 9 (France)

    2012-06-15

    In this study, we present a technique to analyze side wall passivation layers formed on silicon sidewalls after plasma processing. The thickness and chemical composition are derived from angle resolved x-ray photoelectron spectroscopy analyses. It is a non-destructive, quasi in situ method to determine profiles of the thickness and the chemical composition of passivation layers in trenches up to an aspect ratio of about 3. The performance of this technique to quantify the passivation layer thickness is compared to a standard technique using secondary electron microscopy images with respect to two different samples and is found to be at least equivalent. The possible uncertainties and limitations of this technique are discussed as well.

  20. Soft X-ray angle-resolved photoemission spectroscopy of heavily boron-doped superconducting diamond films

    Directory of Open Access Journals (Sweden)

    T. Yokoya, T. Nakamura, T. Matushita, T. Muro, H. Okazaki, M. Arita, K. Shimada, H. Namatame, M. Taniguchi, Y. Takano, M. Nagao, T. Takenouchi, H. Kawarada and T. Oguchi

    2006-01-01

    Full Text Available We have performed soft X-ray angle-resolved photoemission spectroscopy (SXARPES of microwave plasma-assisted chemical vapor deposition diamond films with different B concentrations in order to study the origin of the metallic behavior of superconducting diamond. SXARPES results clearly show valence band dispersions with a bandwidth of ~23 eV and with a top of the valence band at gamma point in the Brillouin zone, which are consistent with the calculated valence band dispersions of pure diamond. Boron concentration-dependent band dispersions near the Fermi level (EF exhibit a systematic shift of EF, indicating depopulation of electrons due to hole doping. These SXARPES results indicate that diamond bands retain for heavy boron doping and holes in the diamond band are responsible for the metallic states leading to superconductivity at low temperature. A high-resolution photoemission spectroscopy spectrum near EF of a heavily boron-doped diamond superconductor is also presented.

  1. Gauge invariance in the theoretical description of time-resolved angle-resolved pump/probe photoemission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Freericks, J. K.; Krishnamurthy, H. R.; Sentef, M. A.; Devereaux, T. P.

    2015-10-01

    Nonequilibrium calculations in the presence of an electric field are usually performed in a gauge, and need to be transformed to reveal the gauge-invariant observables. In this work, we discuss the issue of gauge invariance in the context of time-resolved angle-resolved pump/probe photoemission. If the probe is applied while the pump is still on, one must ensure that the calculations of the observed photocurrent are gauge invariant. We also discuss the requirement of the photoemission signal to be positive and the relationship of this constraint to gauge invariance. We end by discussing some technical details related to the perturbative derivation of the photoemission spectra, which involve processes where the pump pulse photoexcites electrons due to nonequilibrium effects.

  2. High-harmonic XUV source for time- and angle-resolved photoemission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dakovski, Georgi L [Los Alamos National Laboratory; Li, Yinwan [Los Alamos National Laboratory; Durakiewicz, Tomasz [Los Alamos National Laboratory; Rodriguez, George [Los Alamos National Laboratory

    2009-01-01

    We present a laser-based apparatus for visible pump/XUV probe time- and angle-resolved photoemission spectroscopy (TRARPES) utilizing high-harmonic generation from a noble gas. Femtosecond temporal resolution for each selected harmonic is achieved by using a time-delay-compensated monochromator (TCM). The source has been used to obtain photoemission spectra from insulators (UO{sub 2}) and ultrafast pump/probe processes in semiconductors (GaAs).

  3. Spectral data of specular reflectance, narrow-angle transmittance and angle-resolved surface scattering of materials for solar concentrators

    Directory of Open Access Journals (Sweden)

    Philipp Good

    2016-03-01

    Full Text Available The spectral specular reflectance of conventional and novel reflective materials for solar concentrators is measured with an acceptance angle of 17.5 mrad over the wavelength range 300−2500 nm at incidence angles 15–60° using a spectroscopic goniometry system. The same experimental setup is used to determine the spectral narrow-angle transmittance of semi-transparent materials for solar collector covers at incidence angles 0–60°. In addition, the angle-resolved surface scattering of reflective materials is recorded by an area-scan CCD detector over the spectral range 350–1050 nm. A comprehensive summary, discussion, and interpretation of the results are included in the associated research article “Spectral reflectance, transmittance, and angular scattering of materials for solar concentrators” in Solar Energy Materials and Solar Cells.

  4. Spectral data of specular reflectance, narrow-angle transmittance and angle-resolved surface scattering of materials for solar concentrators.

    Science.gov (United States)

    Good, Philipp; Cooper, Thomas; Querci, Marco; Wiik, Nicolay; Ambrosetti, Gianluca; Steinfeld, Aldo

    2016-03-01

    The spectral specular reflectance of conventional and novel reflective materials for solar concentrators is measured with an acceptance angle of 17.5 mrad over the wavelength range 300-2500 nm at incidence angles 15-60° using a spectroscopic goniometry system. The same experimental setup is used to determine the spectral narrow-angle transmittance of semi-transparent materials for solar collector covers at incidence angles 0-60°. In addition, the angle-resolved surface scattering of reflective materials is recorded by an area-scan CCD detector over the spectral range 350-1050 nm. A comprehensive summary, discussion, and interpretation of the results are included in the associated research article "Spectral reflectance, transmittance, and angular scattering of materials for solar concentrators" in Solar Energy Materials and Solar Cells.

  5. Structural studies of molecular and metallic overlayers using angle- resolved photoemission extended fine structure

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Z.

    1992-10-01

    Angle-resolved photoemission extended fine structure (ARPEFS) was used to study molecular and metallic overlayers on metal surfaces through analysis of p2mg(2[times]1)CO/Ni(110) and the p(2[times]2)K/Ni(111) adsorption. For the dense p2mg(2[times]1)CO/Ni(110) surface layer, photoemission intensities from C 1s level were measured in three directions at photoelectron kinetic energies 60-400 eV. Using multiple-scattering spherical-wave (MSSW) modeling, it was found that CO molecules are adsorbed on short-bridge sites, with adjacent CO along the [110] direction displaced alternatively in opposite directions towards the [001] azimuths to form a zigzag chain geometry. The tilt angle is 16[plus minus]2[degree] from the surface normal for the direction linking the C atom and the center of the Ni bridge. The carbon C-Ni interatomic distance was determined to be 1.94[plus minus]0.02[Angstrom]. The first- to second-layer spacing of Ni is 1.27[plus minus]0.04[Angstrom], up from 1.10[Angstrom] for the clean Ni(110) surface, but close to the 1.25[Angstrom] Ni interlayer spacing in the bulk. The C-O bond length and tilt angle were varied within small ranges (1.10--1.20[Angstrom] and 15--23[degrees]) in our MSSW simulations. Best agreement between experiment and simulations was achieved at 1.16[Angstrom] and 19[degrees]. This yields an O-O distance of 2.95[Angstrom] for the two nearest CO molecules, (van der Waals' radius [approximately] 1.5 [Angstrom] for oxygen). Two different partial-wave phase-shifts were used in MSSW, and structural results from both are in very good agreement. For the p(2[times]2)K/Ni(111) overlayer, ARPEFS [chi](k) curves from K 1s level measured along [111] and [771] at 130K showed that the K atoms are preferentially adsorbed on the atop sites, in agreement with a LEED study of the same system.

  6. Structural studies of molecular and metallic overlayers using angle- resolved photoemission extended fine structure

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Z.

    1992-10-01

    Angle-resolved photoemission extended fine structure (ARPEFS) was used to study molecular and metallic overlayers on metal surfaces through analysis of p2mg(2{times}1)CO/Ni(110) and the p(2{times}2)K/Ni(111) adsorption. For the dense p2mg(2{times}1)CO/Ni(110) surface layer, photoemission intensities from C 1s level were measured in three directions at photoelectron kinetic energies 60-400 eV. Using multiple-scattering spherical-wave (MSSW) modeling, it was found that CO molecules are adsorbed on short-bridge sites, with adjacent CO along the [110] direction displaced alternatively in opposite directions towards the [001] azimuths to form a zigzag chain geometry. The tilt angle is 16{plus_minus}2{degree} from the surface normal for the direction linking the C atom and the center of the Ni bridge. The carbon C-Ni interatomic distance was determined to be 1.94{plus_minus}0.02{Angstrom}. The first- to second-layer spacing of Ni is 1.27{plus_minus}0.04{Angstrom}, up from 1.10{Angstrom} for the clean Ni(110) surface, but close to the 1.25{Angstrom} Ni interlayer spacing in the bulk. The C-O bond length and tilt angle were varied within small ranges (1.10--1.20{Angstrom} and 15--23{degrees}) in our MSSW simulations. Best agreement between experiment and simulations was achieved at 1.16{Angstrom} and 19{degrees}. This yields an O-O distance of 2.95{Angstrom} for the two nearest CO molecules, (van der Waals` radius {approximately} 1.5 {Angstrom} for oxygen). Two different partial-wave phase-shifts were used in MSSW, and structural results from both are in very good agreement. For the p(2{times}2)K/Ni(111) overlayer, ARPEFS {chi}(k) curves from K 1s level measured along [111] and [771] at 130K showed that the K atoms are preferentially adsorbed on the atop sites, in agreement with a LEED study of the same system.

  7. Angle-resolved X-ray photoelectron spectroscopy of topmost surface for LaNiO 3 thin film grown on SrTiO 3 substrate by laser molecular beam epitaxy

    Science.gov (United States)

    Chen, P.; Xu, S. Y.; Lin, J.; Ong, C. K.; Cui, D. F.

    1999-01-01

    The LaNiO 3 thin film was grown on SrTiO 3 (001) substrate by computer-controlled laser molecular beam epitaxy (laser MBE). In situ monitoring of the growing film surface was performed with a reflection high energy electron diffraction (RHEED). Angle-resolved X-ray photoelectron spectroscopy (ARXPS) indicated that the terminating plane of the LaNiO 3 film was the LaO atomic plane, and the SrTiO 3 (001) surfaces of as-supplied substrate as well as HF-pretreated substrate were predominantly terminated with TiO atomic plane. The structural conversion of the topmost atomic layer from NiO to LaO occurred during the LaNiO 3 epitaxial growth process.

  8. Simple surface structure determination from Fourier transforms of angle-resolved photoemission extended fine structure

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Y. [Pennsylvania State Univ., University Park, PA (United States)]|[Lawrence Berkeley Lab., CA (United States); Shirley, D.A. [Pennsylvania State Univ., University Park, PA (United States)

    1995-02-01

    The authors show by Fourier analyses of experimental data, with no further treatment, that the positions of all the strong peaks in Fourier transforms of angle-resolved photoemission extended fine structure (ARPEFS) from adsorbed surfaces can be explicitly predicted from a trial structure with an accuracy of about {+-} 0.3 {angstrom} based on a single-scattering cluster model together with the concept of a strong backscattering cone, and without any additional analysis. This characteristic of ARPEFS Fourier transforms can be developed as a simple method for determining the structures of adsorbed surfaces to an accuracy of about {+-} 0.1 {angstrom}.

  9. Is the Separable Propagator Perturbation Approach Accurate in Calculating Angle Resolved Photoelectron Diffraction Spectra?

    Science.gov (United States)

    Ng, C. N.; Chu, T. P.; Wu, Huasheng; Tong, S. Y.; Huang, Hong

    1997-03-01

    We compare multiple scattering results of angle-resolved photoelectron diffraction spectra between the exact slab method and the separable propagator perturbation method. In the slab method,footnote C.H. Li, A.R. Lubinsky and S.Y. Tong, Phys. Rev. B17, 3128 (1978). the source wave and multiple scattering within the strong scattering atomic layers are expanded in spherical waves while interlayer scattering is expressed in plane waves. The transformation between spherical waves and plane waves is done exactly. The plane waves are then matched across the solid-vacuum interface to a single outgoing plane wave in the detector's direction. The separable propagator perturbation approach uses two approximations: (i) A separable representation of the Green's function propagator and (ii) A perturbation expansion of multiple scattering terms. Results of c(2x2) S-Ni(001) show that this approximate method fails to converge due to the very slow convergence of the separable representation for scattering angles less than 90^circ. However, this method is accurate in the backscattering regime and may be applied to XAFS calculations.(J.J. Rehr and R.C. Albers, Phys. Rev. B41, 8139 (1990).) The use of this method for angle-resolved photoelectron diffraction spectra is substantially less reliable.

  10. Accessing Phonon Polaritons in Hyperbolic Crystals by Angle-Resolved Photoemission Spectroscopy

    Science.gov (United States)

    Tomadin, Andrea; Principi, Alessandro; Song, Justin C. W.; Levitov, Leonid S.; Polini, Marco

    2015-08-01

    Recently studied hyperbolic materials host unique phonon-polariton (PP) modes. The ultrashort wavelengths of these modes, as well as their low damping, hold promise for extreme subdiffraction nanophotonics schemes. Polar hyperbolic materials such as hexagonal boron nitride can be used to realize long-range coupling between PP modes and extraneous charge degrees of freedom. The latter, in turn, can be used to control and probe PP modes. Here we analyze coupling between PP modes and plasmons in an adjacent graphene sheet, which opens the door to accessing PP modes by angle-resolved photoemission spectroscopy (ARPES). A rich structure in the graphene ARPES spectrum due to PP modes is predicted, providing a new probe of PP modes and their coupling to graphene plasmons.

  11. Angle resolved XPS of monomolecular layer of 5-chlorobenzotriazole on oxidized metallic surface

    Science.gov (United States)

    Kazansky, L. P.; Selyaninov, I. A.; Kuznetsov, Yu. I.

    2012-10-01

    Angle resolved XPS is used to study adsorption of 5-chlorobenzotriazole (5-chloroBTAH) on surfaces of the oxidized metals: mild steel, copper and zinc from borate buffer solution (pH 7.4). It is shown that for the metals studied the 5-chloroBTA anions, when adsorbed, form a monomolecular layer whose thickness is ∼6 Å comparable with the size of BTA. As XPS evidences adsorption proceeds with deprotonation of 5-chloroBTAH and formation of the coordination bonds between the lone pair of nitrogens and cation of a metal. Measuring XPS at two different angles unequivocally points out almost vertical arrangement of the anions toward the sample surface, when chlorine atoms form outmost virtual layer.

  12. Angle-resolved spin wave band diagrams of square antidot lattices studied by Brillouin light scattering

    Energy Technology Data Exchange (ETDEWEB)

    Gubbiotti, G.; Tacchi, S. [Istituto Officina dei Materiali del Consiglio Nazionale delle Ricerche (IOM-CNR), Sede di Perugia, c/o Dipartimento di Fisica e Geologia, Via A. Pascoli, I-06123 Perugia (Italy); Montoncello, F.; Giovannini, L. [Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, Via G. Saragat 1, I-44122 Ferrara (Italy); Madami, M.; Carlotti, G. [Dipartimento di Fisica e Geologia, Università di Perugia, Via A. Pascoli, I-06123 Perugia (Italy); Ding, J.; Adeyeye, A. O. [Information Storage Materials Laboratory, Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore)

    2015-06-29

    The Brillouin light scattering technique has been exploited to study the angle-resolved spin wave band diagrams of squared Permalloy antidot lattice. Frequency dispersion of spin waves has been measured for a set of fixed wave vector magnitudes, while varying the wave vector in-plane orientation with respect to the applied magnetic field. The magnonic band gap between the two most dispersive modes exhibits a minimum value at an angular position, which exclusively depends on the product between the selected wave vector magnitude and the lattice constant of the array. The experimental data are in very good agreement with predictions obtained by dynamical matrix method calculations. The presented results are relevant for magnonic devices where the antidot lattice, acting as a diffraction grating, is exploited to achieve multidirectional spin wave emission.

  13. Anisotropy of chemical bonding in semifluorinated graphite C2F revealed with angle-resolved X-ray absorption spectroscopy.

    Science.gov (United States)

    Okotrub, Alexander V; Yudanov, Nikolay F; Asanov, Igor P; Vyalikh, Denis V; Bulusheva, Lyubov G

    2013-01-22

    Highly oriented pyrolytic graphite characterized by a low misorientation of crystallites is fluorinated using a gaseous mixture of BrF(3) with Br(2) at room temperature. The golden-colored product, easily delaminating into micrometer-size transparent flakes, is an intercalation compound where Br(2) molecules are hosted between fluorinated graphene layers of approximate C(2)F composition. To unravel the chemical bonding in semifluorinated graphite, we apply angle-resolved near-edge X-ray absorption fine structure (NEXAFS) spectroscopy and quantum-chemical modeling. The strong angular dependence of the CK and FK edge NEXAFS spectra on the incident radiation indicates that room-temperature-produced graphite fluoride is a highly anisotropic material, where half of the carbon atoms are covalently bonded with fluorine, while the rest of the carbon atoms preserve π electrons. Comparison of the experimental CK edge spectrum with theoretical spectra plotted for C(2)F models reveals that fluorine atoms are more likely to form chains. This conclusion agrees with the atomic force microscopy observation of a chain-like pattern on the surface of graphite fluoride layers. PMID:23214423

  14. Quantitative angle-resolved small-spot reflectance measurements on plasmonic perfect absorbers: impedance matching and disorder effects.

    Science.gov (United States)

    Tittl, Andreas; Harats, Moshe G; Walter, Ramon; Yin, Xinghui; Schäferling, Martin; Liu, Na; Rapaport, Ronen; Giessen, Harald

    2014-10-28

    Plasmonic devices with absorbance close to unity have emerged as essential building blocks for a multitude of technological applications ranging from trace gas detection to infrared imaging. A crucial requirement for such elements is the angle independence of the absorptive performance. In this work, we develop theoretically and verify experimentally a quantitative model for the angular behavior of plasmonic perfect absorber structures based on an optical impedance matching picture. To achieve this, we utilize a simple and elegant k-space measurement technique to record quantitative angle-resolved reflectance measurements on various perfect absorber structures. Particularly, this method allows quantitative reflectance measurements on samples where only small areas have been nanostructured, for example, by electron-beam lithography. Combining these results with extensive numerical modeling, we find that matching of both the real and imaginary parts of the optical impedance is crucial to obtain perfect absorption over a large angular range. Furthermore, we successfully apply our model to the angular dispersion of perfect absorber geometries with disordered plasmonic elements as a favorable alternative to current array-based designs. PMID:25251075

  15. High-resolution soft-X-ray beamline ADRESS at Swiss Light Source for resonant inelastic X-ray scattering and angle-resolved photoelectron spectroscopies

    OpenAIRE

    Strocov, V. N.; Schmitt, T; U. Flechsig; Schmidt, T.; Imhof, A; Q. Chen; J. Raabe; Betemps, R.; Zimoch, D.; Krempasky, J.; A. Piazzalunga; X Wang; Grioni, M.; Patthey, L.

    2009-01-01

    We describe the concepts and technical realization of the high-resolution soft-X-ray beamline ADRESS operating in the energy range from 300 to 1600 eV and intended for Resonant Inelastic X-ray Scattering (RIXS) and Angle-Resolved Photoelectron Spectroscopy (ARPES). The photon source is an undulator of novel fixed-gap design where longitudinal movement of permanent magnetic arrays controls not only the light polarization (including circular and 0-180 deg rotatable linear polarizations) but als...

  16. High-resolution soft X-ray beamline ADRESS at the Swiss Light Source for resonant inelastic X-ray scattering and angle-resolved photoelectron spectroscopies

    OpenAIRE

    Strocov, V. N.; Schmitt, T; U. Flechsig; Schmidt, T.; Imhof, A; Q. Chen; J. Raabe; Betemps, R.; Zimoch, D.; Krempasky, J.; X Wang; Grioni, M.; A. Piazzalunga; Patthey, L.

    2010-01-01

    The concepts and technical realisation of the high-resolution soft X-ray beamline ADRESS operating in the energy range from 300 to 1600 eV and intended for resonant inelastic X-ray scattering (RIXS) and angle-resolved photoelectron spectroscopy (ARPES) are described. The photon source is an undulator of novel fixed-gap design where longitudinal movement of permanent magnetic arrays controls not only the light polarization (including circular and 0–180° rotatable linear polarizations) but also...

  17. Angle resolved XPS of monomolecular layer of 5-chlorobenzotriazole on oxidized metallic surface

    International Nuclear Information System (INIS)

    Highlights: ► Adsorption of 5-chloroBTA on oxidized metals is studied by ARXPS. ► When adsorbed, 5-chloroBTA forms a monolayer whose thickness is close to molecule size. ► According to ARXPS, the planes of 5-chloroBTA anions are vertical to a metal oxide surface. ► Metal cations of the surface coordinate nitrogen atoms of 5-chloroBTA. ► Chlorine atoms forming outmost virtual layer. - Abstract: Angle resolved XPS is used to study adsorption of 5-chlorobenzotriazole (5-chloroBTAH) on surfaces of the oxidized metals: mild steel, copper and zinc from borate buffer solution (pH 7.4). It is shown that for the metals studied the 5-chloroBTA anions, when adsorbed, form a monomolecular layer whose thickness is ∼6 Å comparable with the size of BTA. As XPS evidences adsorption proceeds with deprotonation of 5-chloroBTAH and formation of the coordination bonds between the lone pair of nitrogens and cation of a metal. Measuring XPS at two different angles unequivocally points out almost vertical arrangement of the anions toward the sample surface, when chlorine atoms form outmost virtual layer.

  18. Fourier-domain angle-resolved low coherence interferometry for clinical detection of dysplasia

    Science.gov (United States)

    Terry, Neil G.; Zhu, Yizheng; Wax, Adam

    2010-02-01

    Improved methods for detecting dysplasia, or pre-cancerous growth are a current clinical need, particularly in the esophagus. The currently accepted method of random biopsy and histological analysis provides only a limited examination of tissue in question while being coupled with a long time delay for diagnosis. Light scattering spectroscopy, in contrast, allows for inspection of the cellular structure and organization of tissue in vivo. Fourier-domain angle-resolved low-coherence interferometry (a/LCI) is a novel light scattering spectroscopy technique that provides quantitative depth-resolved morphological measurements of the size and optical density of the examined cell nuclei, which are characteristic biomarkers of dysplasia. Previously, clinical viability of the a/LCI system was demonstrated through analysis of ex vivo human esophageal tissue in Barrett's esophagus patients using a portable a/LCI, as was the development of a clinical a/LCI system. Data indicating the feasibility of the technique in other organ sites (colon, oral cavity) will be presented. We present an adaptation of the a/LCI system that will be used to investigate the presence of dysplasia in vivo in Barrett's esophagus patients.

  19. Dirac cones, Floquet side bands, and theory of time-resolved angle-resolved photoemission

    Science.gov (United States)

    Farrell, Aaron; Arsenault, A.; Pereg-Barnea, T.

    2016-10-01

    Pump-probe techniques with high temporal resolution allow one to drive a system of interest out of equilibrium and at the same time probe its properties. Recent advances in these techniques open the door to studying new, nonequilibrium phenomena such as Floquet topological insulators and superconductors. These advances also necessitate the development of theoretical tools for understanding the experimental findings and predicting new ones. In the present paper, we provide a theoretical foundation to understand the nonequilibrium behavior of a Dirac system. We present detailed numerical calculations and simple analytic results for the time evolution of a Dirac system irradiated by light. These results are framed by appealing to the recently revitalized notion of side bands [A. Farrell and T. Pereg-Barnea, Phys. Rev. Lett. 115, 106403 (2015), 10.1103/PhysRevLett.115.106403; Phys. Rev. B 93, 045121 (2016), 10.1103/PhysRevB.93.045121], extended to the case of nonperiodic drive where the fast oscillations are modified by an envelope function. We apply this formalism to the case of photocurrent generated by a second probe pulse. We find that, under the application of circularly polarized light, a Dirac point only ever splits into two copies of side bands. Meanwhile, the application of linearly polarized light leaves the Dirac point intact while producing side bands. In both cases the population of the side bands are time dependent through their nonlinear dependence on the envelope of the pump pulse. Our immediate interest in this work is in connection to time- and angle-resolved photoemission experiments, where we find excellent qualitative agreement between our results and those in the literature [Wang et al., Science 342, 453 (2013), 10.1126/science.1239834]. However, our results are general and may prove useful beyond this particular application and should be relevant to other pump-probe experiments.

  20. Gap anisotropy in Bi2Sr2CaCu2O8+δ by ultrahigh-resolution angle-resolved photoemission

    International Nuclear Information System (INIS)

    Ultrahigh-resolution (ΔE up to 10 meV) angle-resolved photoemission spectroscopy on single crystals of Bi2Sr2CaCu2O8+δ (Bi-2212) show a highly anisotropic superconducting energy gap: the gap is minimized, with a value close to zero, along the Γ-X and Γ-Y symmetry directions, while a large gap (Δ=22 meV) is observed along the Γ-bar M (Cu-O bond) direction. However, the observation of gap anisotropy may depend on sample conditions; in a few cases the gap becomes more isotropic. A dip in the spectral weight at 65 meV below the Fermi energy is clearly observed only in samples with an anisotropic gap

  1. A flat band at the chemical potential of a Fe1.03Te0.94S0.06 superconductor observed by angle-resolved photoemission spectroscopy.

    Science.gov (United States)

    Starowicz, P; Schwab, H; Goraus, J; Zajdel, P; Forster, F; Rak, J R; Green, M A; Vobornik, I; Reinert, F

    2013-05-15

    The electronic structure of superconducting Fe1.03Te0.94S0.06 has been studied by angle-resolved photoemission spectroscopy (ARPES). Experimental band topography is compared to the calculations using the methods of Korringa-Kohn-Rostoker (KKR) with the coherent potential approximation (CPA) and the linearized augmented plane wave with local orbitals (LAPW+LO) method. The region of the Γ point exhibits two hole pockets and a quasiparticle peak close to the chemical potential (μ) with undetectable dispersion. This flat band with mainly d(z)(2) orbital character is most likely formed by the top of the outer hole pocket or is evidence of a third hole band. It may cover up to 3% of the Brillouin zone volume and should give rise to a Van Hove singularity. Studies performed for various photon energies indicate that at least one of the hole pockets has a two-dimensional character. The apparently nondispersing peak at μ is clearly visible for 40 eV and higher photon energies, due to an effect of the photoionization cross-section rather than band dimensionality. Orbital characters calculated by LAPW+LO for stoichiometric FeTe do not reveal the flat dz(2) band but are in agreement with the experiment for the other dispersions around Γ in Fe1.03Te0.94S0.06.

  2. Quasiparticle dynamics across the full Brillouin zone of Bi2Sr2CaCu2O8+δ traced with ultrafast time and angle-resolved photoemission spectroscopy

    Directory of Open Access Journals (Sweden)

    Georgi L. Dakovski

    2015-09-01

    Full Text Available A hallmark in the cuprate family of high-temperature superconductors is the nodal-antinodal dichotomy. In this regard, angle-resolved photoemission spectroscopy (ARPES has proven especially powerful, providing band structure information directly in energy-momentum space. Time-resolved ARPES (trARPES holds great promise of adding ultrafast temporal information, in an attempt to identify different interaction channels in the time domain. Previous studies of the cuprates using trARPES were handicapped by the low probing energy, which significantly limits the accessible momentum space. Using 20.15 eV, 12 fs pulses, we show for the first time the evolution of quasiparticles in the antinodal region of Bi2Sr2CaCu2O8+δ and demonstrate that non-monotonic relaxation dynamics dominates above a certain fluence threshold. The dynamics is heavily influenced by transient modification of the electron-phonon interaction and phase space restrictions, in stark contrast to the monotonic relaxation in the nodal and off-nodal regions.

  3. Angle Resolved Photoemission Spectroscopy Studies of the Mott Insulator to Superconductor Evolution in Ca2-xNaxCuO2Cl2

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Kyle Michael

    2005-09-02

    It is widely believed that many of the exotic physical properties of the high-T{sub c} cuprate superconductors arise from the proximity of these materials to the strongly correlated, antiferromagnetic Mott insulating state. Therefore, one of the fundamental questions in the field of high-temperature superconductivity is to understand the insulator-to-superconductor transition and precisely how the electronic structure of Mott insulator evolves as the first holes are doped into the system. This dissertation presents high-resolution, doping dependent angle-resolved photoemission (ARPES) studies of the cuprate superconductor Ca{sub 2-x}Na{sub x}CuO{sub 2}Cl{sub 2}, spanning from the undoped parent Mott insulator to a high-temperature superconductor with a T{sub c} of 22 K. A phenomenological model is proposed to explain how the spectral lineshape, the quasiparticle band dispersion, and the chemical potential all progress with doping in a logical and self-consistent framework. This model is based on Franck-Condon broadening observed in polaronic systems where strong electron-boson interactions cause the quasiparticle residue, Z, to be vanishingly small. Comparisons of the low-lying states to different electronic states in the valence band strongly suggest that the coupling of the photohole to the lattice (i.e. lattice polaron formation) is the dominant broadening mechanism for the lower Hubbard band states. Combining this polaronic framework with high-resolution ARPES measurements finally provides a resolution to the long-standing controversy over the behavior of the chemical potential in the high-T{sub c} cuprates. This scenario arises from replacing the conventional Fermi liquid quasiparticle interpretation of the features in the Mott insulator by a Franck-Condon model, allowing the reassignment of the position of the quasiparticle pole. As a function of hole doping, the chemical potential shifts smoothly into the valence band while spectral weight is transferred

  4. High energy electron cooling

    Energy Technology Data Exchange (ETDEWEB)

    Parkhomchuk, V. [Budker Institute of Nuclear Physics, Novosibirsk (Russian Federation)

    1997-09-01

    High energy electron cooling requires a very cold electron beam. The questions of using electron cooling with and without a magnetic field are presented for discussion at this workshop. The electron cooling method was suggested by G. Budker in the middle sixties. The original idea of the electron cooling was published in 1966. The design activities for the NAP-M project was started in November 1971 and the first run using a proton beam occurred in September 1973. The first experiment with both electron and proton beams was started in May 1974. In this experiment good result was achieved very close to theoretical prediction for a usual two component plasma heat exchange.

  5. Nanofocusing, shadowing, and electron mean free path in the photoemission from aerosol droplets

    CERN Document Server

    Signorell, Ruth; Yoder, Bruce L; Bodi, Andras; Chasovskikh, Egor; Lang, Lukas; Luckhaus, David

    2016-01-01

    Angle-resolved photoelectron spectroscopy of aerosol droplets is a promising method for the determination of electron mean free paths in liquids. It is particularly attractive for volatile liquids, such as water. Here we report the first angle-resolved photoelectron images of droplets with defined sizes, viz. of water, glycerol, and dioctyl phthalate droplets. We present an approach that allows one to gradually vary the conditions from dominant shadowing to dominant nanofocusing to optimize the information content contained in the photoelectron images. Example simulations of water droplet photoelectron images and preliminary data for electron mean free paths for liquid water at low kinetic energy (<3eV) are provided.

  6. Nanofocusing, shadowing, and electron mean free path in the photoemission from aerosol droplets

    Science.gov (United States)

    Signorell, Ruth; Goldmann, Maximilian; Yoder, Bruce L.; Bodi, Andras; Chasovskikh, Egor; Lang, Lukas; Luckhaus, David

    2016-08-01

    Angle-resolved photoelectron spectroscopy of aerosol droplets is a promising method for the determination of electron mean free paths in liquids. It is particularly attractive for volatile liquids, such as water. Here we report the first angle-resolved photoelectron images of droplets with defined sizes, viz. of water, glycerol, and dioctyl phthalate droplets. Simulations of water droplet photoelectron images and data for electron mean free paths for liquid water at low kinetic energy (<3 eV) are provided. We present an approach that allows one to gradually vary the conditions from shadowing to nanofocusing to optimize the information content contained in the photoelectron images.

  7. Extracting the spectral function of the cuprates by a full two-dimensional analysis: Angle-resolved photoemission spectra of Bi2Sr2CuO6

    Energy Technology Data Exchange (ETDEWEB)

    Meevasana, W.

    2010-04-30

    Recently, angle-resolved photoemission spectroscopy (ARPES) has revealed a dispersion anomaly at high binding energy near 0.3-0.5 eV in various families of the high-temperature superconductors. For further studies of this anomaly we present a new two-dimensional fitting-scheme and apply it to high-statistics ARPES data of the strongly-overdoped Bi{sub 2}Sr{sub 2}CuO{sub 6} cuprate superconductor. The procedure allows us to extract the self-energy in an extended energy and momentum range. It is found that the spectral function of Bi{sub 2}Sr{sub 2}CuO{sub 6} can be parameterized using a small set of tight-binding parameters and a weakly-momentum-dependent self-energy up to 0.7 eV in binding energy and over the entire first Brillouin zone. Moreover the analysis gives an estimate of the momentum dependence of the matrix element, a quantity, which is often neglected in ARPES analyses.

  8. Rapid high-resolution spin- and angle-resolved photoemission spectroscopy with pulsed laser source and time-of-flight spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Gotlieb, K. [Graduate Group in Applied Science and Technology, University of California, Berkeley, California 94720 (United States); Hussain, Z.; Bostwick, A.; Jozwiak, C. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Lanzara, A. [Department of Physics, University of California, Berkeley, California 94720, USA and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2013-09-15

    A high-efficiency spin- and angle-resolved photoemission spectroscopy (spin-ARPES) spectrometer is coupled with a laboratory-based laser for rapid high-resolution measurements. The spectrometer combines time-of-flight (TOF) energy measurements with low-energy exchange scattering spin polarimetry for high detection efficiencies. Samples are irradiated with fourth harmonic photons generated from a cavity-dumped Ti:sapphire laser that provides high photon flux in a narrow bandwidth, with a pulse timing structure ideally matched to the needs of the TOF spectrometer. The overall efficiency of the combined system results in near-E{sub F} spin-resolved ARPES measurements with an unprecedented combination of energy resolution and acquisition speed. This allows high-resolution spin measurements with a large number of data points spanning multiple dimensions of interest (energy, momentum, photon polarization, etc.) and thus enables experiments not otherwise possible. The system is demonstrated with spin-resolved energy and momentum mapping of the L-gap Au(111) surface states, a prototypical Rashba system. The successful integration of the spectrometer with the pulsed laser system demonstrates its potential for simultaneous spin- and time-resolved ARPES with pump-probe based measurements.

  9. Rapid high-resolution spin- and angle-resolved photoemission spectroscopy with pulsed laser source and time-of-flight spectrometer

    Science.gov (United States)

    Gotlieb, K.; Hussain, Z.; Bostwick, A.; Lanzara, A.; Jozwiak, C.

    2013-09-01

    A high-efficiency spin- and angle-resolved photoemission spectroscopy (spin-ARPES) spectrometer is coupled with a laboratory-based laser for rapid high-resolution measurements. The spectrometer combines time-of-flight (TOF) energy measurements with low-energy exchange scattering spin polarimetry for high detection efficiencies. Samples are irradiated with fourth harmonic photons generated from a cavity-dumped Ti:sapphire laser that provides high photon flux in a narrow bandwidth, with a pulse timing structure ideally matched to the needs of the TOF spectrometer. The overall efficiency of the combined system results in near-EF spin-resolved ARPES measurements with an unprecedented combination of energy resolution and acquisition speed. This allows high-resolution spin measurements with a large number of data points spanning multiple dimensions of interest (energy, momentum, photon polarization, etc.) and thus enables experiments not otherwise possible. The system is demonstrated with spin-resolved energy and momentum mapping of the L-gap Au(111) surface states, a prototypical Rashba system. The successful integration of the spectrometer with the pulsed laser system demonstrates its potential for simultaneous spin- and time-resolved ARPES with pump-probe based measurements.

  10. High-resolution soft-X-ray beamline ADRESS at Swiss Light Source for resonant inelastic X-ray scattering and angle-resolved photoelectron spectroscopies

    CERN Document Server

    Strocov, V N; Flechsig, U; Schmidt, T; Imhof, A; Chen, Q; Raabe, J; Betemps, R; Zimoch, D; Krempasky, J; Piazzalunga, A; Wang, X; Grioni, M; Patthey, L

    2009-01-01

    We describe the concepts and technical realization of the high-resolution soft-X-ray beamline ADRESS operating in the energy range from 300 to 1600 eV and intended for Resonant Inelastic X-ray Scattering (RIXS) and Angle-Resolved Photoelectron Spectroscopy (ARPES). The photon source is an undulator of novel fixed-gap design where longitudinal movement of permanent magnetic arrays controls not only the light polarization (including circular and 0-180 deg rotatable linear polarizations) but also the energy without changing the gap. The beamline optics is based on the well-established scheme of plane grating monochromator (PGM) operating in collimated light. The ultimate resolving power E/dE is above 33000 at 1 keV photon energy. The choice of blazed vs lamellar gratings and optimization of their profile parameters is described. Due to glancing angles on the mirrors as well as optimized groove densities and profiles of the gratings, high photon flux is achieved up to 1.0e13 photons/s/0.01%BW at 1 keV. Ellipsoida...

  11. Angle-resolved light scattering of individual rod-shaped bacteria based on Fourier transform light scattering

    Science.gov (United States)

    Jo, Youngju; Jung, Jaehwang; Lee, Jee Woong; Shin, Della; Park, Hyunjoo; Nam, Ki Tae; Park, Ji-Ho; Park, Yongkeun

    2014-05-01

    Two-dimensional angle-resolved light scattering maps of individual rod-shaped bacteria are measured at the single-cell level. Using quantitative phase imaging and Fourier transform light scattering techniques, the light scattering patterns of individual bacteria in four rod-shaped species (Bacillus subtilis, Lactobacillus casei, Synechococcus elongatus, and Escherichia coli) are measured with unprecedented sensitivity in a broad angular range from -70° to 70°. The measured light scattering patterns are analyzed along the two principal axes of rod-shaped bacteria in order to systematically investigate the species-specific characteristics of anisotropic light scattering. In addition, the cellular dry mass of individual bacteria is calculated and used to demonstrate that the cell-to-cell variations in light scattering within bacterial species is related to the cellular dry mass and growth.

  12. Evidence of the nature of core-level photoemission satellites using angle-resolved photoemission extended fine structure

    Energy Technology Data Exchange (ETDEWEB)

    Moler, E.J.; Kellar, S.A.; Huff, W.R.A. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    The authors present a unique method of experimentally determining the angular momentum and intrinsic/extrinsic origin of core-level photoemission satellites by examining the satellite diffraction pattern in the Angle Resolved Photoemission Extended Fine Structure (ARPEFS) mode. They show for the first time that satellite peaks not associated with chemically differentiated atomic species display an ARPEFS intensity oscillation. They present ARPEFS data for the carbon 1s from ({radical}3x{radical}3)R30 CO/Cu(111) and p2mg(2xl)CO/Ni(110), nitrogen 1s from c(2x2) N{sub 2}/Ni(100), cobalt 1s from p(1x1)Co/Cu(100), and nickel 3p from clean nickel (111). The satellite peaks and tails of the Doniach-Sunjic line shapes in all cases exhibit ARPEFS curves which indicate an angular momentum identical to the main peak and are of an intrinsic nature.

  13. The orbital structure of {pi}-conjugated organic molecules on metal surfaces probed by angle-resolved photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Ziroff, Johannes; Wiessner, Michael; Forster, Frank; Schoell, Achim [Universitaet Wuerzburg, Experimentelle Physik VII, D-97074 Wuerzburg (Germany); Puschnig, Peter [University of Leoben, Chair of Atomistic Modelling and Design of Materials, A-8700 Leoben (Austria); Reinert, Friedrich [Universitaet Wuerzburg, Experimentelle Physik VII, D-97074 Wuerzburg (Germany); FZ Karlsruhe, Gemeinschaftslabor fuer Nanoanalytik, D-76021 Karlsruhe (Germany)

    2010-07-01

    We present angle resolved photoemission spectra of monolayers of {pi}-conjugated molecules adsorbed on single-crystalline metal surfaces. Comparing the experimental k-dependant intensity distribution of the molecular states to DFT calculations for the free molecule allows to detect sophisticated modifications of the molecular orbitals at the interface. In case of the single-domain system PTCDA on Ag(110) the 2D emission pattern confirms that the now occupied interface state is mainly derived from the former LUMO-orbital. Moreover, a clear contribution of metal states is evident from additional intensity in normal emission. In the contrary, the structure of the molecular HOMO changes only slightly upon chemisorption on Ag surfaces. Additional data on other planar {pi}-conjugated organic molecules such as coronene or NTCDA demonstrates the potential of this approach in analysing the interaction at metal-organic interfaces in great detail.

  14. Symmetric and anti-symmetric magnetic resonances in double-triangle nanoparticle arrays fabricated via angle-resolved nanosphere lithography

    Directory of Open Access Journals (Sweden)

    Jian Pan

    2011-12-01

    Full Text Available We report experimentally that for a particular high-symmetry planar periodic arrangement of metal double-triangle nanoparticle arrays fabricated via angle resolved nanosphere lithography, both anti-symmetric and symmetric magnetic resonances can be explicitly excited at off-normal incidence. Further, we demonstrate that the underlying mechanism for the formation of these two modes is a result of direct interactions with the incident electric and magnetic fields, respectively. As a consequence, with increasing the incident angle there is a relatively small blue-shift in the transmission for the electric-field induced anti-symmetric mode, while a remarkable red-shift is observed for the magnetic-field induced symmetric mode.

  15. Quantum Transport and Nano Angle-resolved Photoemission Spectroscopy on the Topological Surface States of Single Sb2Te3 Nanowires

    Science.gov (United States)

    Arango, Yulieth C.; Huang, Liubing; Chen, Chaoyu; Avila, Jose; Asensio, Maria C.; Grützmacher, Detlev; Lüth, Hans; Lu, Jia Grace; Schäpers, Thomas

    2016-09-01

    We report on low-temperature transport and electronic band structure of p-type Sb2Te3 nanowires, grown by chemical vapor deposition. Magnetoresistance measurements unravel quantum interference phenomena, which depend on the cross-sectional dimensions of the nanowires. The observation of periodic Aharonov-Bohm-type oscillations is attributed to transport in topologically protected surface states in the Sb2Te3 nanowires. The study of universal conductance fluctuations demonstrates coherent transport along the Aharonov-Bohm paths encircling the rectangular cross-section of the nanowires. We use nanoscale angle-resolved photoemission spectroscopy on single nanowires (nano-ARPES) to provide direct experimental evidence on the nontrivial topological character of those surface states. The compiled study of the bandstructure and the magnetotransport response unambiguosly points out the presence of topologically protected surface states in the nanowires and their substantial contribution to the quantum transport effects, as well as the hole doping and Fermi velocity among other key issues. The results are consistent with the theoretical description of quantum transport in intrinsically doped quasi-one-dimensional topological insulator nanowires.

  16. Si(111)-sq root 21 x sq root 21 -(Ag+Cs) surface studied by scanning tunneling microscopy and angle-resolved photoemission spectroscopy

    CERN Document Server

    Liu, C; Morikawa, H; Okino, H; Hasegawa, S; Okuda, T; Kinoshita, T

    2003-01-01

    Scanning tunneling microscopy (STM) and angle-resolved photoemission spectroscopy (ARPES) were used to study the atomic and electronic structures of the Si(111)-sq root 21 x sq root 21-(Ag + Cs) surface (sq root 21-Cs in short), which was induced by depositing caesium atoms on the Si(111)-sq root 3 x sq root 3-Ag surface at room temperature (RT). Compared with previously reported STM images of noble-metal induced sq root 21 x sq root 21 phases including the Si(111)-sq root 21 x sq root 21-(Ag+Ag) and Si(111)-sq root 21 x sq root 21-(Ag+Au) surfaces (sq root 21-Ag and sq root 21-Au, respectively), the sq root 21-Cs surface displayed quite different features in STM images. The ARPES data of the sq root 21-Cs surface revealed an intrinsic dispersive surface-state band, together with a non-dispersive one near the Fermi level, which was also different from those of the sq root 21-Ag and sq root 21-Au surfaces. These results strongly suggest different atomic arrangements between Cs- and noble-metal induced sq root ...

  17. High-resolution-angle resolved photoemission studies of high temperature superconductors

    International Nuclear Information System (INIS)

    This paper presents recent photoemission studies of Y 123 and Bi 2212 performed with high energy and angular resolution. They provide detailed information on the nature of the states near the Fermi level. Measurements of the superconducting gap, band dispersion, and the density of states near the Fermi level in the normal state all support a Fermi liquid description of these materials

  18. Measurement of Random Surface Parameters by Angle-Resolved In-plane Light Scattering with Constant Perpendicular Wave Vector

    Institute of Scientific and Technical Information of China (English)

    LI Hai-Xia; LIU Chun-Xiang; CHEN Xiao-Yi; ZHANG Mei-Na; CHENG Chuan-Fu

    2011-01-01

    We report the experimental method of angle-resolved in-plane light scattering for random surface parameter extraction. In the measurement of the scattered intensity profile at a certain angle of incidence, the perpendicular component of wave vector remains constant, which is realized by controlling the movement of the detector along a specified circular arc segment. We use the central δ-peak and the half-width of the diffused intensity profiles and their variations to obtain the roughness w, the lateral correlation length ξ and roughness exponent α of the rough surface sample. The measurement copes strictly with the theoretical analysis, and the inherent problem in previous in-plane light scattering experiment is overcome so that the changes of the perpendicular component of wave vector affect the half width a diffused intensity profile and the measurement accuracy.%@@ We report the experimental method of angle-resolved in-plane light scattering for random surface parameter extraction.In the measurement of the scattered intensity profile at a certain angle of incidence, the perpendicular component of wave vector remains constant, which is realized by controlling the movement of the detector along a specified circular arc segment.We use the central S-peak and the half-width of the diffused intensity profiles and their variations to obtain the roughness w, the lateral correlation length ξ and roughness exponent a of the rough surface sample.The measurement copes strictly with the theoretical analysis, and the inherent problem in previous in-plane light scattering experiment is overcome so that the changes of the perpendicular component of wave vector affect the half width a diffused intensity profile and the measurement accuracy.

  19. Angle-resolved photoemission spectroscopy of band tails in lightly doped cuprates

    OpenAIRE

    Alexandrov, A. S.; Reynolds, K.

    2007-01-01

    We amend ab initio strongly-correlated band structures by taking into account the band-tailing phenomenon in doped charge-transfer Mott-Hubbard insulators. We show that the photoemission from band tails accounts for sharp "quasi-particle" peaks, rapid loss of their intensities in some directions of the Brillouin zone ("Fermi-arcs") and high-energy "waterfall" anomalies as a consequence of matrix-element effects of disorder-localised states in the charge-transfer gap of doped cuprates.

  20. Two dimensional band structure mapping of organic single crystals using the new generation electron energy analyzer ARTOF

    Energy Technology Data Exchange (ETDEWEB)

    Vollmer, A.; Ovsyannikov, R.; Gorgoi, M.; Krause, S.; Oehzelt, M. [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Elektronenspeicherring BESSY II, 12489 Berlin (Germany); Lindblad, A.; Martensson, N.; Svensson, S. [Uppsala University, Department of Materials Chemistry and Department of Physics and Astronomy, Uppsala (Sweden); Karlsson, P.; Lundvuist, M. [VG Scienta AB, Uppsala (Sweden); Schmeiler, T.; Pflaum, J. [Lehrstuhl fuer Experimentelle Physik VI, Universitaet Wuerzburg und ZAE Bayern, 97074 Wuerzburg (Germany); Koch, N., E-mail: norbert.koch@physik.hu-berlin.de [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Elektronenspeicherring BESSY II, 12489 Berlin (Germany); Institut fuer Physik, Humboldt-Universitaet zu Berlin, 12489 Berlin (Germany)

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer A novel type of photoemission detector is introduced: the Angle Resolved Time Of Flight electron energy analyzer (ARTOF). Black-Right-Pointing-Pointer It enables electronic band structure determination under measurement conditions that are ideal for radiation-sensitive samples. Black-Right-Pointing-Pointer The band structures of rubrene single crystal is confirmed. Black-Right-Pointing-Pointer The absence of HOMO-band dispersion for tetracene single crystals is revealed. - Abstract: We report on a novel type of photoemission detector, the Angle Resolved Time Of Flight electron energy analyzer (ARTOF 10k), which enables electronic band structure determination under measurement conditions that are ideal for radiation-sensitive samples. This is facilitated through the combination of very high electron transmission and wide accessible angular range in one geometry. These properties make the ARTOF 10k predestined to investigate specimens that strongly suffer from radiation damage during photoemission experiments under 'standard' conditions, such as organic single crystals, as extremely low fluxes can be used while not compromising spectra accumulation times and signal-to-noise ratio. Even though organic single crystals are of increasing fundamental and applied scientific interest, knowledge of their electronic properties is still largely based on theoretical calculations due to major experimental challenges in measuring photoemission. In this work we show that the band structures of rubrene and tetracene single crystals can be obtained with unprecedented quality using the ARTOF 10k detector. The dispersion of the highest occupied band in rubrene is confirmed in accordance with an earlier report and we disclose the absence of notable dispersion for the highest occupied energy level on the surface of tetracene single crystals.

  1. Studies of Dirac and Weyl fermions by angle resolved photoemission spectroscopy

    Science.gov (United States)

    Huang, Lunan

    This dissertation consists of three parts. First, we study magnetic domains in Nd2Fe14 B single crystals using high resolution magnetic force microscopy (MFM). In addition to the elongated, wavy nano-domains reported by a previous MFM study, we found that the micrometer size, star-shaped fractal pattern is constructed of an elongated network of nano-domains about 20 nm in width, with resolution-limited domain walls thinner than 2 nm. Second, we studied extra Dirac cones of multilayer graphene on SiC surface by ARPES and SPA-LEED. We discovered extra Dirac cones on Fermi surface due to SiC 6 x 6 and graphene 6√3 x 6√3 coincidence lattice on both single-layer and three-layer graphene sheets. We interpreted the position and intensity of the Dirac cone replicas, based on the scattering vectors from LEED patterns. We found the positions of replica Dirac cones are determined mostly by the 6 x 6 SiC superlattice even graphene layers grown thicker. Finally, we studied the electronic structure of MoTe2 by ARPES and experimentally confirmed the prediction of type II Weyl state in this material. By combining the result of Density Functional Theory calculations and Berry curvature calculations with out experimental data, we identified Fermi arcs, track states and Weyl points, all features predicted to exist in a type II Weyl semimetal. This material is an excellent playground for studies of exotic Fermions.

  2. Magnetic dichroism in angle-resolved hard x-ray photoemission from buried layers

    Science.gov (United States)

    Kozina, Xeniya; Fecher, Gerhard H.; Stryganyuk, Gregory; Ouardi, Siham; Balke, Benjamin; Felser, Claudia; Schönhense, Gerd; Ikenaga, Eiji; Sugiyama, Takeharu; Kawamura, Naomi; Suzuki, Motohiro; Taira, Tomoyuki; Uemura, Tetsuya; Yamamoto, Masafumi; Sukegawa, Hiroaki; Wang, Wenhong; Inomata, Koichiro; Kobayashi, Keisuke

    2011-08-01

    This work reports the measurement of magnetic dichroism in angular-resolved photoemission from in-plane magnetized buried thin films. The high bulk sensitivity of hard x-ray photoelectron spectroscopy (HAXPES) in combination with circularly polarized radiation enables the investigation of the magnetic properties of buried layers. HAXPES experiments with an excitation energy of 8 keV were performed on exchange-biased magnetic layers covered by thin oxide films. Two types of structures were investigated with the IrMn exchange-biasing layer either above or below the ferromagnetic layer: one with a CoFe layer on top and another with a Co2FeAl layer buried beneath the IrMn layer. A pronounced magnetic dichroism is found in the Co and Fe 2p states of both materials. The localization of the magnetic moments at the Fe site conditioning the peculiar characteristics of the Co2FeAl Heusler compound, predicted to be a half-metallic ferromagnet, is revealed from the magnetic dichroism detected in the Fe 2p states.

  3. High-resolution soft X-ray beamline ADRESS at the Swiss Light Source for resonant inelastic X-ray scattering and angle-resolved photoelectron spectroscopies.

    Science.gov (United States)

    Strocov, V N; Schmitt, T; Flechsig, U; Schmidt, T; Imhof, A; Chen, Q; Raabe, J; Betemps, R; Zimoch, D; Krempasky, J; Wang, X; Grioni, M; Piazzalunga, A; Patthey, L

    2010-09-01

    The concepts and technical realisation of the high-resolution soft X-ray beamline ADRESS operating in the energy range from 300 to 1600 eV and intended for resonant inelastic X-ray scattering (RIXS) and angle-resolved photoelectron spectroscopy (ARPES) are described. The photon source is an undulator of novel fixed-gap design where longitudinal movement of permanent magnetic arrays controls not only the light polarization (including circular and 0-180 degrees rotatable linear polarizations) but also the energy without changing the gap. The beamline optics is based on the well established scheme of plane-grating monochromator operating in collimated light. The ultimate resolving power E/DeltaE is above 33000 at 1 keV photon energy. The choice of blazed versus lamellar gratings and optimization of their profile parameters is described. Owing to glancing angles on the mirrors as well as optimized groove densities and profiles of the gratings, the beamline is capable of delivering high photon flux up to 1 x 10(13) photons s(-1) (0.01% BW)(-1) at 1 keV. Ellipsoidal refocusing optics used for the RIXS endstation demagnifies the vertical spot size down to 4 microm, which allows slitless operation and thus maximal transmission of the high-resolution RIXS spectrometer delivering E/DeltaE > 11000 at 1 keV photon energy. Apart from the beamline optics, an overview of the control system is given, the diagnostics and software tools are described, and strategies used for the optical alignment are discussed. An introduction to the concepts and instrumental realisation of the ARPES and RIXS endstations is given. PMID:20724785

  4. Pump laser-induced space-charge effects in HHG-driven time- and angle-resolved photoelectron spectroscopy

    Science.gov (United States)

    Oloff, L.-P.; Hanff, K.; Stange, A.; Rohde, G.; Diekmann, F.; Bauer, M.; Rossnagel, K.

    2016-06-01

    With the advent of ultrashort-pulsed extreme ultraviolet sources, such as free-electron lasers or high-harmonic-generation (HHG) sources, a new research field for photoelectron spectroscopy has opened up in terms of femtosecond time-resolved pump-probe experiments. The impact of the high peak brilliance of these novel sources on photoemission spectra, so-called vacuum space-charge effects caused by the Coulomb interaction among the photoemitted probe electrons, has been studied extensively. However, possible distortions of the energy and momentum distributions of the probe photoelectrons caused by the low photon energy pump pulse due to the nonlinear emission of electrons have not been studied in detail yet. Here, we systematically investigate these pump laser-induced space-charge effects in a HHG-based experiment for the test case of highly oriented pyrolytic graphite. Specifically, we determine how the key parameters of the pump pulse—the excitation density, wavelength, spot size, and emitted electron energy distribution—affect the measured time-dependent energy and momentum distributions of the probe photoelectrons. The results are well reproduced by a simple mean-field model, which could open a path for the correction of pump laser-induced space-charge effects and thus toward probing ultrafast electron dynamics in strongly excited materials.

  5. A model-based approach for the calibration and traceability of the angle resolved scattering light sensor

    Science.gov (United States)

    Seewig, Jörg; Eifler, Matthias; Schneider, Frank; Kirsch, Benjamin; Aurich, Jan C.

    2016-06-01

    Within the field of geometric product specification there is a growing need for the application of inline measurement systems. The use of inline measurement requires robust and fast measurement principles. A very robust optical measurement principle is the angle resolved scattering light (ARS) sensor. The ARS sensor provides high precision and high resolution measurement data of technical surfaces because the surface angles are measured as an intensity distribution on a detector instead of measuring a series of discrete height values. However, until now, there were no specific measurement standards for the calibration of the ARS sensor and no traceability was ensured. In this paper, new strategies for the calibration of an ARS sensor are proposed. A new mathematical model for the ARS sensor is introduced. Based on this, two new measurement standards for the calibration of the sensor parameters are derived. These standards are designed with a model-based approach and can calibrate sensor-specific properties of the ARS sensor. The manufacturing of the standards is described and measurement results are provided.

  6. Angle-resolved inverse photoemission of the H-etched 6H-SiC(0001) surface

    Energy Technology Data Exchange (ETDEWEB)

    Aghdassi, Nabi; Ostendorf, Ralf; Zacharias, Helmut [Physikalisches Institut, Westfaelische Wilhelms-Universitaet Muenster (Germany)

    2009-07-01

    The etching of 6H-SiC(0001) substrates in molecular hydrogen at elevated temperatures leads to an ordered silicate adlayer as it is confirmed by LEED and AES. LEED patterns clearly feature a ({radical}(3) x {radical}(3))R30 periodicity while AES spectra are evidence for the presence of Si-O bonds. The generated surfaces appear to be fully passivated and therefore stable in ambient air. After cleaning the samples by heating in UHV up to temperatures around 750 C angle-resolved inverse photoemission is performed on the SiO{sub 2}/SiC interface. The IPE spectra reveal five features above the Fermi level around 0.5 eV, 1.2 eV, 2.3 eV, 3.5 eV and 5.5 eV, respectively, which show only a weak dispersion along the {gamma} - M and {gamma} - K directions of the (1 x 1) surface Brillouin zone.

  7. Doping Dependence of the $(\\pi,\\pi)$ Shadow Band in La-Based Cuprates Studied by Angle-Resolved Photoemission Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Z. X.

    2011-08-15

    The ({pi},{pi}) shadow band (SB) in La-based cuprate family (La214) was studied by angle-resolved photoemission spectroscopy (ARPES) over a wide doping range from x = 0.01 to x = 0.25. Unlike the well-studied case of the Bi-based cuprate family, an overall strong, monotonic doping dependence of the SB intensity at the Fermi level (E{sub F}) was observed. In contrast to a previous report for the presence of the SB only close to x = 1/8, we found it exists in a wide doping range, associated with a doping-independent ({pi},{pi}) wave vector but strongly doping-dependent intensity: It is the strongest at x {approx} 0.03 and systematically diminishes as the doping increases until it becomes negligible in the overdoped regime. This SB with the observed doping dependence of intensity can in principle be caused by the antiferromagnetic fluctuations or a particular form of low-temperature orthorhombic lattice distortion known to persist up to x {approx} 0.21 in the system, with both being weakened with increasing doping. However, a detailed binding energy dependent analysis of the SB at x = 0.07 does not appear to support the former interpretation, leaving the latter as a more plausible candidate, despite a challenge in quantitatively linking the doping dependences of the SB intensity and the magnitude of the lattice distortion. Our finding highlights the necessity of a careful and global consideration of the inherent structural complications for correctly understanding the cuprate Fermiology and its microscopic implication.

  8. Optically Forbidden Excitations of 2s Electron of Neon Studied by Fast Electron Impact

    Institute of Scientific and Technical Information of China (English)

    GE Min; ZHU Lin-Fan; LIU Cun-Ding; XU Ke-Zun

    2008-01-01

    The electron energy loss spectrum in the energy region of 42-48.5 eV of neon is measured with an angle-resolved fast-electron energy-loss spectrometer at an incident electron energy of 2500eV. Besides the dipole-allowed autoionization transitions of 2s-1np (n = 3, 4) and 2p-23s3p, the dipole-forbidden ones of 2s-1ns (n = 3 - 6) and 2s-13d are observed. The line profile parameters, i.e. ET, F and q for these transitions, are determined, and the momentum transfer dependence behaviour is discussed.

  9. Spin orbit splitting in the valence bands of ZrS{sub x}Se{sub 2−x}: Angle resolved photoemission and density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Moustafa, Mohamed, E-mail: moustafa@physik.hu-berlin.de [Institut für Physik, Humboldt Universität zu Berlin, Newtonstr. 15, D-12489 Berlin (Germany); Faculty of Engineering, Pharos University in Alexandria, Canal El Mahmoudia Str., Alexandria (Egypt); Ghafari, Aliakbar; Paulheim, Alexander; Janowitz, Christoph; Manzke, Recardo [Institut für Physik, Humboldt Universität zu Berlin, Newtonstr. 15, D-12489 Berlin (Germany)

    2013-08-15

    Highlights: ► We performed high resolution ARPES on 1T–ZrS{sub x}Se{sub 2−x}. ► A characteristic splitting of the chalcogen p-derived VB along high symmetry directions was observed. ► The splitting size at the A point of the BZ is found to increase from 0.06 to 0.31 eV from ZrS{sub 2} towards ZrSe{sub 2}. ► Electronic structure calculations based on the DFT were performed using the model of TB–MBJ. ► The calculations show that the splitting is due to SO coupling of the valence bands. -- Abstract: Angle-resolved photoelectron spectroscopy using synchrotron radiation has been performed on 1T–ZrS{sub x}Se{sub 2−x}, where x varies from 0 to 2, in order to study the influence of the spin-orbit interaction in the valence bands. The crystals were grown by chemical vapour transport technique using Iodine as transport agent. A characteristic splitting of the chalcogen p-derived valence bands along high symmetry directions has been observed experimentally. The size of the splitting increases with the increase of the atomic number of the chalcogenide, e.g. at the A point of the Brillouin zone from 0.06 eV to 0.31 eV with an almost linear dependence with x, as progressing from ZrS{sub 2} towards ZrSe{sub 2}, respectively. Electronic structure calculations based on the density functional theory have been performed using the model of Tran–Blaha [1] and the modified version of the exchange potential proposed by Becke and Johnson [2] (TB–MBJ) both with and without spin-orbit (SO) coupling. The calculations show that the splitting is mainly due to spin-orbit coupling and the degeneracy of the valance bands is lifted.

  10. Use of angle-resolved XPS to determine depth profiles based on Fick's second law of diffusion: description of method and simulation study

    International Nuclear Information System (INIS)

    An iterative algorithm is proposed to extract depth profiles based on Fick's second law of diffusion in a multi-element system from data supplied by angle-resolved X-ray photoelectron spectroscopy (ARXPS). Parameters related to the concentration profiles are obtained by fitting the experimental angle-dependent relative photoelectron intensities to predictions from the algorithm. The use of relative instead of absolute photoelectron intensities eliminates error due to changes in absolute photoelectron intensities resulting from the change of system geometries in angle-resolved experiments. Simulations using an infinite source diffusion model have been conducted to study the influence of errors in the raw data and to demonstrate the robustness of the algorithm. The algorithm is tested based on preliminary experimental ARXPS data from a chemically treated polymer film

  11. Effect of Strong Correlations on the High Energy Anomaly in Hole- and Electron-Doped High-Tc Superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Moritz, B.; /SLAC, SIMES; Schmitt, F.; /Stanford U., Geballe Lab. /Stanford U., Appl. Phys. Dept.; Meevasana, W.; /Stanford U., Geballe Lab. /Stanford U., Phys. Dept.; Johnston, S.; /SLAC, SIMES /Waterloo U.; Motoyama, E.M.; /Stanford U., Geballe Lab. /Stanford U., Phys. Dept.; Greven, M.; /SLAC, SIMES /Stanford U., Geballe Lab. /Stanford U., Appl. Phys. Dept.; Lu, D.H.; /SLAC, SSRL; Kim, C.; /IPAP, Seoul; Scalettar, R.T.; /UC, Davis; Shen, Z.-X.; /SLAC, SIMES /Stanford U., Geballe Lab. /Stanford U., Appl. Phys. Dept. /Stanford U., Phys. Dept.; Devereaux, T.P.; /SLAC, SIMES

    2010-02-15

    Recently, angle-resolved photoemission spectroscopy (ARPES) has been used to highlight an anomalously large band renormalization at high binding energies in cuprate superconductors: the high energy 'waterfall' or high energy anomaly (HEA). This paper demonstrates, using a combination of new ARPES measurements and quantum Monte Carlo simulations, that the HEA is not simply the byproduct of matrix element effects, but rather represents a cross-over from a quasi-particle band at low binding energies near the Fermi level to valence bands at higher binding energy, assumed to be of strong oxygen character, in both hole- and electron-doped cuprates. While photoemission matrix elements clearly play a role in changing the aesthetic appearance of the band dispersion, i.e. the 'waterfall'-like behavior, they provide an inadequate description for the physics that underlies the strong band renormalization giving rise to the HEA. Model calculations of the single-band Hubbard Hamiltonian showcase the role played by correlations in the formation of the HEA and uncover significant differences in the HEA energy scale for hole- and electron-doped cuprates. In addition, this approach properly captures the transfer of spectral weight accompanying both hole and electron doping in a correlated material and provides a unifying description of the HEA across both sides of the cuprate phase diagram.

  12. Direct angle resolved photoelectron spectroscopy (DARPES) on high-Tc films: doping, strains, Fermi surface topology and superconductivity

    Science.gov (United States)

    Pavuna, D.; Ariosa, D.; Cancellieri, C.; Cloetta, D.; Abrecht, M.

    2008-03-01

    Since 1997 we systematically perform Direct ARPES ( = DARPES) on in-situ grown, non-cleaved, ultra-thin (<25nm) cuprate films. Specifically, we probe low energy electronic structure and properties of high-Tc films under different degree of epitaxial (compressive vs tensile) strain. In overdoped in-plane compressed La2-xSrxCuO4 (LSCO) thin films we double Tc from 20K to 40K, yet the Fermi surface (FS) remains essentially 2-dimensional (2D). In contrast, tensile strained films show 3-dimensional (3D) dispersion, while Tc is drastically reduced. It seems that the in-plane compressive strain tends to push the apical oxygen far away from the CuO2 plane, enhances the 2D character of the dispersion and increases Tc, while the tensile strain seems to act exactly in the opposite direction and the resulting dispersion is 3D. We have the FS topology for both cases. As the actual lattice of cuprates is 'Napoleon-cake' -like i.e. rigid CuO2 planes alternate with softer 'reservoir' (that strains distort differently) our results tend to rule out 2D rigid lattice mean field models. Finally, we briefly discuss recent successful determination of the FS topology from the observed wavevector quantization by DARPES in cuprate films thinner than 18 units cells (<24nm). Such an approach is of broader interest as it can be extended to other similar confined (ultra-thin) functional oxide systems.

  13. Analyzing spatial correlations in tissue using angle-resolved low coherence interferometry measurements guided by co-located optical coherence tomography.

    Science.gov (United States)

    Kim, Sanghoon; Heflin, Stephanie; Kresty, Laura A; Halling, Meredith; Perez, Laura N; Ho, Derek; Crose, Michael; Brown, William; Farsiu, Sina; Arshavsky, Vadim; Wax, Adam

    2016-04-01

    Angle-resolved low coherence interferometry (a/LCI) is an optical technique used to measure nuclear morphology in situ. However, a/LCI is not an imaging modality and can produce ambiguous results when the measurements are not properly oriented to the tissue architecture. Here we present a 2D a/LCI system which incorporates optical coherence tomography imaging to guide the measurements. System design and characterization are presented, along with example cases which demonstrate the utility of the combined measurements. In addition, future development and applications of this dual modality approach are discussed. PMID:27446664

  14. The Use of XPS and Angle Resolved XPS for the Characterization of Self Assembled Monolayer Grown on Substrate Surfaces for Specific Biological Applications

    International Nuclear Information System (INIS)

    The techniques of X-Ray Photoelectron Spectroscopy (XPS) and angle resolved XPS have been utilised to characterise the chemistry and structure of SAMs grown on gold surfaces for biological applications. A study of a series of alkane thiol SAMs on gold showed that the film thickness is proportional to alkane chain length and that changes in the sulphur chemistry indicate different bonding modes at low and high overlayer coverage. It is determined that a well ordered matrix thiol has a SAM film thickness confirming that the molecules are aligned at a 27 degree tilt angle to the surface normal and bond to the gold surface via the sulphur group. (author)

  15. Direct angle resolved photoelectron spectroscopy (DARPES) on high-T{sub c} films: doping, strains, Fermi surface topology and superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Pavuna, D; Ariosa, D; Cancellieri, C; Cloetta, D; Abrecht, M [Institute of Physics of Complex Matter, FSB, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland)], E-mail: davor.pavuna@epfl.ch

    2008-03-15

    Since 1997 we systematically perform Direct ARPES ( = DARPES) on in-situ grown, non-cleaved, ultra-thin (<25nm) cuprate films. Specifically, we probe low energy electronic structure and properties of high-T{sub c} films under different degree of epitaxial (compressive vs tensile) strain. In overdoped in-plane compressed La{sub 2-x}Sr{sub x}CuO{sub 4} (LSCO) thin films we double T{sub c} from 20K to 40K, yet the Fermi surface (FS) remains essentially 2-dimensional (2D). In contrast, tensile strained films show 3-dimensional (3D) dispersion, while T{sub c} is drastically reduced. It seems that the in-plane compressive strain tends to push the apical oxygen far away from the CuO{sub 2} plane, enhances the 2D character of the dispersion and increases T{sub c}, while the tensile strain seems to act exactly in the opposite direction and the resulting dispersion is 3D. We have the FS topology for both cases. As the actual lattice of cuprates is 'Napoleon-cake' -like i.e. rigid CuO{sub 2} planes alternate with softer 'reservoir' (that strains distort differently) our results tend to rule out 2D rigid lattice mean field models. Finally, we briefly discuss recent successful determination of the FS topology from the observed wavevector quantization by DARPES in cuprate films thinner than 18 units cells (<24nm). Such an approach is of broader interest as it can be extended to other similar confined (ultra-thin) functional oxide systems.

  16. ARPES Studies of Low-energy electronic structure of the strong spin-orbit semimetal SrIrO3

    Science.gov (United States)

    Nie, Yuefeng; King, Philip D. C.; Wei, Haofei; Uchida, Masaki; Harter, John; Monkman, Eric; Shai, Daniel; Schlom, Darrell; Shen, Kyle

    2013-03-01

    The similar energy scales of spin-orbit coupling and electron-electron correlation strength lead to exotic Jeff = 1/2 Mott insulating ground states for layered Ruddlesden-Popper 5d iridates, Srn+1IrnO3n+1. A metal-insulator transition occurs upon increasing dimensionality from the two-dimensional layered Sr2IrO4 to the three-dimensional perovskite SrIrO3. However, little is known about the electronic structure and nature of the metallic states in SrIrO3. We synthesized epitaxial SrIrO3 films on (001) LSAT substrates by molecular beam epitaxy and investigated their electronic structure using angle-resolved photoemission spectroscopy. We find an exotic semi-metallic state comprised of massive hole-like bands, whose extrema are pinned very close to the chemical potential, and rapidly dispersive electron bands which dominate the transport. Intriguingly, the bandwidths of SrIrO3 are smaller than in its Mott insulating counterpart Sr2IrO4, indicating that metal-insulator transitions in Ruddlesden-Popper iridates are not simply driven by band narrowing resulting from reduced dimensionality.

  17. Thermo electronic laser energy conversion

    Science.gov (United States)

    Hansen, L. K.; Rasor, N. S.

    1976-01-01

    The thermo electronic laser energy converter (TELEC) is described and compared to the Waymouth converter and the conventional thermionic converter. The electrical output characteristics and efficiency of TELEC operation are calculated for a variety of design variables. Calculations and results are briefly outlined. It is shown that the TELEC concept can potentially convert 25 to 50 percent of incident laser radiation into electric power at high power densities and high waste heat rejection temperatures.

  18. Imaging the formation of high-energy dispersion anomalies in the actinide UCoGa$_5$

    OpenAIRE

    Das, Tanmoy; Durakiewicz, Tomasz; Zhu, Jian-Xin; Joyce, John J.; Sarrao, John L.; Graf, Matthias J.

    2012-01-01

    We use angle-resolved photoemission spectroscopy (ARPES) to image the emergence of substaintial dispersion anomalies in the electronic renormalization of the actinide compound UCoGa$_5$ which was presumed to belong to a conventional Fermi liquid family. Kinks or abrupt breaks in the slope of the quasiparticle dispersion are detected both at low ($\\sim$130 meV) and high ($\\sim$1 eV) binding energies below the Fermi energy, ruling out any significant contribution of phonons. We perform numerica...

  19. Growth dynamics and thickness-dependent electronic structure of topological insulator Bi2Te3 thin films on Si

    OpenAIRE

    Li, Yao-Yi; Wang, Guang; Zhu, Xie-Gang; Liu, Min-Hao; Ye, Cun; Chen, Xi; Wang, Ya-Yu; He, Ke; Wang, Li-Li; Ma, Xu-Cun; Zhang, Hai-Jun; Dai, Xi; Fang, Zhong; Xie, Xin-Cheng; Liu, Ying

    2009-01-01

    We use real-time reflection high energy electron diffraction intensity oscillation to establish the Te-rich growth dynamics of topological insulator thin films of Bi2Te3 on Si(111) substrate by molecular beam epitaxy. In situ angle resolved photoemission spectroscopy (ARPES), scanning tunneling microscopy and ex situ transport measurements reveal that the as-grown Bi2Te3 films without any doping are an intrinsic topological insulator with its Fermi level intersecting only the metallic surface...

  20. Low-temperature (1 K) angle-resolved photoemission investigation of the predicted topological Kondo insulator behavior of SmB6

    Science.gov (United States)

    Rader, Oliver; Hlawenka, Peter; Rienks, Emile; Siemensmeyer, Konrad; Weschke, Eugen; Varykhalov, Andrei; Shitsevalova, Natalya; Gabani, Slavomir; Flachbart, Karol

    2015-03-01

    The system SmB6 is known for its unusual resistivity which increases exponentially with decreasing temperature and saturates below 3 K. This has recently been attributed to topological-Kondo-insulator behavior where a topological surface state is created by Sm 4 f - 5 d hybridization and is responsible for the transport. Local-density-approximation + Gutzwiller calculations of the (100) surface predict the appearance of three Dirac cones in the surface Brillouin zone. We perform angle-resolved photoemission at temperatures below 1 K and reveal surface states at Γ and X . Bulk conduction band states near X appear at higher temperature. These findings will be discussed in detail vis-á-vis the theoretical and experimental literature.

  1. Housing Electrons: Relating Quantum Numbers, Energy Levels, and Electron Configurations.

    Science.gov (United States)

    Garofalo, Anthony

    1997-01-01

    Presents an activity that combines the concepts of quantum numbers and probability locations, energy levels, and electron configurations in a concrete, hands-on way. Uses model houses constructed out of foam board and colored beads to represent electrons. (JRH)

  2. Electron energy loss and diffraction of backscattered electrons from silicon

    Science.gov (United States)

    Winkelmann, Aimo; Aizel, Koceila; Vos, Maarten

    2010-05-01

    Electrons backscattered from crystals can show Kikuchi patterns: variations in intensity for different outgoing directions due to diffraction by the lattice. Here, we measure these effects as a function of their energy loss for 30 keV electrons backscattered from silicon. The change in diffraction contrast with energy loss depends strongly on the scattering geometry. At steep incidence on the sample, diffraction contrast in the observed Kikuchi bands decreases rapidly with energy loss. For an energy loss larger than about 150 eV the contrast is more than 5 times less than the contrast due to electrons near zero energy loss. However, for grazing incidence angles, maximum Kikuchi band contrast is observed for electrons with an energy loss near 60 eV, where the contrast is more than 2.5× larger than near zero energy loss. In addition, in this grazing incidence geometry, the Kikuchi diffraction effects stay significant even for electrons that have lost hundreds of electron volts. For the maximum measured energy loss of 440 eV, the electrons still show a contrast that is 1.5 × larger than that of the electrons near zero energy loss. These geometry-dependent observations of Kikuchi band diffraction contrast are interpreted based on the elastic and inelastic scattering properties of electrons and dynamical diffraction simulations.

  3. Electronic and structural characterizations of unreconstructed {0001} surfaces and the growth of graphene overlayers

    International Nuclear Information System (INIS)

    The present work is focused on the characterization of the clean unreconstructed SiC{0001} surfaces and the growth of graphene overlayers thereon. Electronic properties of SiC surfaces and their interfaces with graphene and few layer graphene films were investigated by means of angle resolved photoelectron spectroscopy, X-ray photoelectron spectroscopy and low energy electron diffraction. Structural characterizations of the epitaxial graphene films grown on SiC were carried out by atomic force microscopy and low energy electron microscopy. Supplementary data was obtained by scanning tunneling microscopy. (orig.)

  4. Energy Efficient Electronics Cooling Project

    Energy Technology Data Exchange (ETDEWEB)

    Steve O' Shaughnessey; Tim Louvar; Mike Trumbower; Jessica Hunnicutt; Neil Myers

    2012-02-17

    Parker Precision Cooling Business Unit was awarded a Department of Energy grant (DE-EE0000412) to support the DOE-ITP goal of reducing industrial energy intensity and GHG emissions. The project proposed by Precision Cooling was to accelerate the development of a cooling technology for high heat generating electronics components. These components are specifically related to power electronics found in power drives focused on the inverter, converter and transformer modules. The proposed cooling system was expected to simultaneously remove heat from all three of the major modules listed above, while remaining dielectric under all operating conditions. Development of the cooling system to meet specific customer's requirements and constraints not only required a robust system design, but also new components to support long system functionality. Components requiring further development and testing during this project included pumps, fluid couplings, cold plates and condensers. All four of these major categories of components are required in every Precision Cooling system. Not only was design a key area of focus, but the process for manufacturing these components had to be determined and proven through the system development.

  5. High-energy electron diffraction and microscopy

    CERN Document Server

    Peng, L M; Whelan, M J

    2011-01-01

    This book provides a comprehensive introduction to high energy electron diffraction and elastic and inelastic scattering of high energy electrons, with particular emphasis on applications to modern electron microscopy. Starting from a survey of fundamental phenomena, the authors introduce the most important concepts underlying modern understanding of high energy electron diffraction. Dynamical diffraction in transmission (THEED) and reflection (RHEED) geometries is treated using ageneral matrix theory, where computer programs and worked examples are provided to illustrate the concepts and to f

  6. Momentum-resolved electron-phonon coupling and self-energy effects in YBa2Cu3O7: an LDA study

    International Nuclear Information System (INIS)

    The observation of kinks in the electronic dispersion of high-Tc cuprates by angle resolved photoemission experiments has revived the discussion about the importance of electron-phonon interaction in the cuprates. Here we determine the effect of the electron-phonon coupling on the electronic self-energy in the normal state within the local-density approximation. Using a realistic phonon spectrum we determine the momentum and frequency dependence of α2F(k,ω) in YBa2Cu3O7 for the bonding, antibonding, and chain band. We find that the maximum in the real part of the self-energy at low frequencies is about a factor 5 too small compared to the experiment. The renormalization factor Z(k,ω), which determines the change in the slope of the electronic dispersion due to the interaction, varies smoothly as a function of frequency and momentum. These findings show that, at least within the LDA, phonons cannot produce well-pronounced kinks in YBa2Cu3O7

  7. Momentum-resolved electron-phonon coupling and self-energy effects in YBa{sub 2}Cu{sub 3}O{sub 7}: an LDA study

    Energy Technology Data Exchange (ETDEWEB)

    Heid, Rolf; Bohnen, Klaus-Peter [Forschungszentrum Karlsruhe, Institut fuer Festkoerperphysik (Germany); Zeyher, Roland; Manske, Dirk [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany)

    2008-07-01

    The observation of kinks in the electronic dispersion of high-T{sub c} cuprates by angle resolved photoemission experiments has revived the discussion about the importance of electron-phonon interaction in the cuprates. Here we determine the effect of the electron-phonon coupling on the electronic self-energy in the normal state within the local-density approximation. Using a realistic phonon spectrum we determine the momentum and frequency dependence of {alpha}{sup 2}F(k,{omega}) in YBa{sub 2}Cu{sub 3}O{sub 7} for the bonding, antibonding, and chain band. We find that the maximum in the real part of the self-energy at low frequencies is about a factor 5 too small compared to the experiment. The renormalization factor Z(k,{omega}), which determines the change in the slope of the electronic dispersion due to the interaction, varies smoothly as a function of frequency and momentum. These findings show that, at least within the LDA, phonons cannot produce well-pronounced kinks in YBa{sub 2}Cu{sub 3}O{sub 7}.

  8. Electronic and structural characterizations of unreconstructed {l_brace}0001{r_brace} surfaces and the growth of graphene overlayers

    Energy Technology Data Exchange (ETDEWEB)

    Emtsev, Konstantin

    2009-06-03

    The present work is focused on the characterization of the clean unreconstructed SiC{l_brace}0001{r_brace} surfaces and the growth of graphene overlayers thereon. Electronic properties of SiC surfaces and their interfaces with graphene and few layer graphene films were investigated by means of angle resolved photoelectron spectroscopy, X-ray photoelectron spectroscopy and low energy electron diffraction. Structural characterizations of the epitaxial graphene films grown on SiC were carried out by atomic force microscopy and low energy electron microscopy. Supplementary data was obtained by scanning tunneling microscopy. (orig.)

  9. Angle-resolved cathodoluminescence nanoscopy

    NARCIS (Netherlands)

    T. Coenen

    2014-01-01

    The field of microscopy is an important cornerstone of physical and biological sciences. The development of high-resolution microscopy/nanoscopy techniques has enabled a revolution in science and technology, greatly improving our understanding of the microscopic world around us, and forming the basi

  10. China's Electronic Information Product Energy Consumption Standard

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ The electronic information industry of China is facing increasingly urgent ecological challenges. This year, China will study and advance an electronic information product energy consumption standard, and establish a key list of pollution controls and classified frame system.

  11. The mapping of electronic energy distributions using experimental electron density.

    Science.gov (United States)

    Tsirelson, Vladimir G

    2002-08-01

    It is demonstrated that the approximate kinetic energy density calculated using the second-order gradient expansion with parameters of the multipole model fitted to experimental structure factors reproduces the main features of this quantity in a molecular or crystal position space. The use of the local virial theorem provides an appropriate derivation of approximate potential energy density and electronic energy density from the experimental (model) electron density and its derivatives. Consideration of these functions is not restricted by the critical points in the electron density and provides a comprehensive characterization of bonding in molecules and crystals. PMID:12149553

  12. The mapping of electronic energy distributions using experimental electron density.

    Science.gov (United States)

    Tsirelson, Vladimir G

    2002-08-01

    It is demonstrated that the approximate kinetic energy density calculated using the second-order gradient expansion with parameters of the multipole model fitted to experimental structure factors reproduces the main features of this quantity in a molecular or crystal position space. The use of the local virial theorem provides an appropriate derivation of approximate potential energy density and electronic energy density from the experimental (model) electron density and its derivatives. Consideration of these functions is not restricted by the critical points in the electron density and provides a comprehensive characterization of bonding in molecules and crystals.

  13. Design and validation of an angle-resolved low-coherence interferometry fiber probe for in vivo clinical measurements of depth-resolved nuclear morphology

    Science.gov (United States)

    Zhu, Yizheng; Terry, Neil G.; Woosley, John T.; Shaheen, Nicholas J.; Wax, Adam

    2011-01-01

    We present a novel Fourier-domain angle-resolved low-coherence interferometry (a /LCI) fiber probe designed for in vivo clinical application in gastrointestinal endoscopy. The a/LCI technique measures the depth-resolved angular scattering distribution to determine the size distribution and optical density of cell nuclei for assessing the health of epithelial tissues. Clinical application is enabled by an endoscopic fiber-optic probe that employs a 2.3-m-long coherent fiber bundle and is compatible with the standard 2.8-mm-diam biopsy channel of a gastroscope. The probe allows for real-time data acquisition by collecting the scattering from multiple angles in parallel, enabled by the Fourier domain approach. The performance of the probe is characterized through measurement of critical parameters. The depth-resolved sizing capability of the system is demonstrated using single- and double-layer microsphere phantoms with subwavelength sizing precision and accuracy achieved. Initial results from a clinical feasibility test are also presented to show in vivo application in the human esophagus.

  14. Omnidirectional Measurements of Angle-Resolved Heat Capacity for Complete Detection of Superconducting Gap Structure in the Heavy-Fermion Antiferromagnet UPd_{2}Al_{3}.

    Science.gov (United States)

    Shimizu, Yusei; Kittaka, Shunichiro; Sakakibara, Toshiro; Tsutsumi, Yasumasa; Nomoto, Takuya; Ikeda, Hiroaki; Machida, Kazushige; Homma, Yoshiya; Aoki, Dai

    2016-07-15

    Quasiparticle excitations in UPd_{2}Al_{3} were studied by means of heat-capacity (C) measurements under rotating magnetic fields using a high-quality single crystal. The field dependence shows C(H)∝H^{1/2}-like behavior at low temperatures for both two hexagonal crystal axes, i.e., H∥[0001] (c axis) and H∥[112[over ¯]0] (a axis), suggesting the presence of nodal quasiparticle excitations from heavy bands. At low temperatures, the polar-angle (θ) dependence of C exhibits a maximum along H∥[0001] with a twofold symmetric oscillation below 0.5 T, and an unusual shoulder or hump anomaly has been found around 30°-60° from the c axis in C(θ) at intermediate fields (1≲μ_{0}H≲2  T). These behaviors in UPd_{2}Al_{3} purely come from the superconducting nodal quasiparticle excitations, and can be successfully reproduced by theoretical calculations assuming the gap symmetry with a horizontal linear line node. We demonstrate the whole angle-resolved heat-capacity measurements done here as a novel spectroscopic method for nodal gap determination, which can be applied to other exotic superconductors. PMID:27472129

  15. Adsorption site and structure determination of c(2x2) N{sub 2}/Ni(100) using angle-resolved photoemission extended fine structure

    Energy Technology Data Exchange (ETDEWEB)

    Moler, E.J.; Kellar, S.A.; Huff, W.R.A. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    The authors have determined the atomic spatial structure of c(2x2) N2Ni(100) with Angle-Resolved Photoemission Extended Fine Structure (ARPEFS) from the nitrogen 1s core level using monochromatized x-rays from beamline 6.1 at SSRL and beamline 9.3.2 at the ALS. The chemically shifted N 1s peak intensities were summed together to obtain ARPEFS curves for both nitrogen atoms in the molecule. They used a new, highly-optimized program based on the Rehr-Albers scattering matrix formalism to find the adsorption site and to quantitatively determine the bond-lengths. The nitrogen molecule stands upright at an atop site, with a N-Ni bond length of 2.25(1) {angstrom}, a N-N bond length of 1.10(7) {angstrom}, and a first layer Ni-Ni spacing of 1.76(4) {angstrom}. The shake-up peak shows an identical ARPEFS diffraction pattern, confirming its intrinsic nature and supporting a previous use of this feature to decompose the peak into contributions from the chemically inequivalent nitrogen atoms. Comparison to a previously published theoretical treatment of N-N-Ni and experimental structures of analogous adsorbate systems demonstrates the importance of adsorbate-adsorbate interactions in weakly chemisorbed systems.

  16. Fast Electronics in High-Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Weigand, Clyde

    1958-08-08

    A brief review of fast electronics is given, leading up to the present state of the art. Cherenkov counters in high-energy physics are discussed, including an example of a velocity-selecting Cherenkov counter. An electronic device to aid in aligning external beams from high-energy accelerators is described. A scintillation-counter matrix to identify bubble chamber tracks is discussed. Some remarks on the future development of electronics in high-energy physics experiments are included.

  17. Low energy electron interactions with water

    OpenAIRE

    Monckton, Rhiannon

    2014-01-01

    Understanding the radiation chemistry of water is important in many disciplines including the nuclear industry, astrochemistry, and medicine. In recent years, low-energy electrons have been paid much greater attention, due to their abundance and reactivity in irradiated materials. Electrons with energies < 20 eV may interact via the dissociative electron attachment (DEA) mechanism, which has been found to cause single-strand breaks in DNA.DEA in water involves the capture of a low energy elec...

  18. Towards understanding the influence of electron-gas interactions on imaging in an environmental TEM

    DEFF Research Database (Denmark)

    Wagner, Jakob Birkedal; Boothroyd, Chris; Beleggia, Marco;

    2011-01-01

    by scattering from gas molecules. Furthermore, the electrons lose energy when they are scattered by gas molecules leading to a less isochromatic incident electron beam. Figure 2 shows a preliminary result of angle-resolved low-loss EELS acquired in the presence of 980 Pa of O2 in the absence of a specimen. Our...... on-going work involves the systematic measurements of images, diffraction patterns and energy-loss spectra acquired in the presence of gas, for a variety of different beam current densities, accelerating voltages and choices of specimen....

  19. Isotope Effect on Electron-Phonon Coupling in Multiband Superconductor MgB2

    Science.gov (United States)

    Mou, Daixiang; Taufour, Valentin; Wu, Yun; Huang, Lunan; Bud'Ko, Serguei; Canfield, Paul; Kaminski, Adam

    We systematically investigate the isotope effect of electron-phonon coupling in multi-band superconductor MgB2 by laser based Angle Resolved Photoemission Spectroscopy. The kink structure around 70 meV on two σ bands, which is caused by electron coupling to E2 g phonon mode, is shifted to higher binding energy in Mg10B2 than that in Mg11B2. The measured shifting energy of 3.5 meV is consistent with theoretical calculation based on harmonic phonon in MgB2. Our temperature dependent measurement also indicates the isotope effect of kink structure is not dependent on superconducting transition.

  20. Complete Fermi Surface and Surface State in WTe2 Revealed by High-Resolution Laser-Based Angle-Resolved Photoemission Spectroscopy

    Science.gov (United States)

    Wang, Chenlu; Zhang, Yan; Liu, Guodong; Mao, Zhiqiang; He, Shaolong; Zhao, Lin; Chen, Chuangtian; Xu, Zuyan; Zhou, Xingjiang

    WTe2, an unique transition metal dichalcogenide, attracts considerable attention recently, which shows an extremely large magnetoresistance (MR) with no saturation under very high field. In this talk, we will present our high resolution laser-ARPES study on WTe2. Our distinctive ARPES system is equipped with the VUV laser and the time-of-flight (TOF) electron energy analyzer, being featured by super-high energy resolution, simultaneous data acquisition for two-dimensional momentum space and much reduced nonlinearity effect. With this advanced apparatus, the very high quality of electronic structure data are obtained for WTe2 which gives a full picture of the Fermi surface. Meanwhile, the obtained systematic temperature dependence of its electronic state leads us to a better understanding on the origin of large magnetoresistance in WTe2.

  1. Angle-resolved and core-level photoemission study of interfacing the topological insulator Bi1.5Sb0.5Te1.7Se1.3 with Ag, Nb, and Fe

    NARCIS (Netherlands)

    N. de Jong; E. Frantzeskakis; B. Zwartsenberg; Y.K. Huang; D. Wu; P. Hlawenka; J. Sanchez-Barriga; A. Varykhalov; E. van Heumen; M.S. Golden

    2015-01-01

    Interfaces between a bulk-insulating topological insulator (TI) and metallic adatoms have been studied using high-resolution, angle-resolved, and core-level photoemission. Fe, Nb, and Ag were evaporated onto Bi1.5Sb0.5Te1.7Se1.3 (BSTS) surfaces both at room temperature and 38 K. The coverage and tem

  2. Power Electronics for Renewable Energy Systems

    DEFF Research Database (Denmark)

    Choi, U. M.; Lee, K. B.; Blaabjerg, Frede

    2012-01-01

    The use of renewable energy sources are increased because of the depletion of natural resources and the increasing pollution level from energy production. The wind energy and the solar energy are most widely used among the renewable energy sources. Power electronics is needed in almost all kinds...... of renewable energy system. It controls the renewable source and interfaces with the load effectively, which can be grid-connected or van work in stand-alone mode. In this presentation, overview of wind and photovoltaic energy systems are introduced. Next, the power electronic circuits behind the most common...

  3. Automated classification of single airborne particles from two-dimensional angle-resolved optical scattering (TAOS) patterns by non-linear filtering

    Science.gov (United States)

    Crosta, Giovanni Franco; Pan, Yong-Le; Aptowicz, Kevin B.; Casati, Caterina; Pinnick, Ronald G.; Chang, Richard K.; Videen, Gorden W.

    2013-12-01

    Measurement of two-dimensional angle-resolved optical scattering (TAOS) patterns is an attractive technique for detecting and characterizing micron-sized airborne particles. In general, the interpretation of these patterns and the retrieval of the particle refractive index, shape or size alone, are difficult problems. By reformulating the problem in statistical learning terms, a solution is proposed herewith: rather than identifying airborne particles from their scattering patterns, TAOS patterns themselves are classified through a learning machine, where feature extraction interacts with multivariate statistical analysis. Feature extraction relies on spectrum enhancement, which includes the discrete cosine FOURIER transform and non-linear operations. Multivariate statistical analysis includes computation of the principal components and supervised training, based on the maximization of a suitable figure of merit. All algorithms have been combined together to analyze TAOS patterns, organize feature vectors, design classification experiments, carry out supervised training, assign unknown patterns to classes, and fuse information from different training and recognition experiments. The algorithms have been tested on a data set with more than 3000 TAOS patterns. The parameters that control the algorithms at different stages have been allowed to vary within suitable bounds and are optimized to some extent. Classification has been targeted at discriminating aerosolized Bacillus subtilis particles, a simulant of anthrax, from atmospheric aerosol particles and interfering particles, like diesel soot. By assuming that all training and recognition patterns come from the respective reference materials only, the most satisfactory classification result corresponds to 20% false negatives from B. subtilis particles and <11% false positives from all other aerosol particles. The most effective operations have consisted of thresholding TAOS patterns in order to reject defective ones

  4. Electron-beam induced disorder effects in optimally doped Bi2Sr2CaCu2O8+x single crystal samples

    Science.gov (United States)

    Vobornik, I.; Berger, H.; Pavuna, D.; Margaritondo, G.; Forro, L.; Grioni, M.; Rullier-Albenque, F.; Onellion, M.; EPFL Collaboration; Laboratoire Des Solides Irradiés Collaboration

    2000-03-01

    We report on the effects of electron-beam induced disorder in optimally doped Bi2Sr2CaCu2O8+x single crystal samples, measured with angle-resolved photoemission. In the superconducting state, the disorder fills in the gap, without changing the binding energy or the width of the narrow coherent feature.[1] In the normal state, disorder leads to an anisotropic pseudogap in angle-resolved photoemission, with the largest pseudogap near the (0,p) point and no pseudogap in the direction.[2,3] We discuss implications of these data. 1. I. Vobornik et.al., Phys. Rev. Lett. 82 , 3128 (1999). 2. I. Vobornik, Ph.D. thesis, EPFL, Lausanne, Switzerland, October, 1999. 3. I. Vobornik et.al., unpublished.

  5. Electronic Structure of Transition Metal Dichalcogenides PdTe2 and Cu0.05PdTe2 Superconductors Obtained by Angle-Resolved Photoemission Spectroscopy

    OpenAIRE

    Liu, Yan; Zhao, Jianzhou; Yu, Li; Lin, Chengtian; Hu, Cheng; Liu, Defa; Peng, Yingying; Xie, Zhuojin; He, Junfeng; Chen, Chaoyu; Feng, Ya; Yi, Hemian; Liu, Xu; Zhao, Lin; He, Shaolong

    2015-01-01

    The layered transition metal chalcogenides have been a fertile land in solid state physics for many decades. Various MX2-type transition metal dichalcogenides, such as WTe2, IrTe2, and MoS2, have triggered great attention recently, either for the discovery of novel phenomena or some extreme or exotic physical properties, or for their potential applications. PdTe2 is a superconductor in the class of transition metal dichalcogenides, and superconductivity is enhanced in its Cu-intercalated form...

  6. Strongly anisotropic spin-orbit splitting in a two-dimensional electron gas

    DEFF Research Database (Denmark)

    Michiardi, Matteo; Bianchi, Marco; Dendzik, Maciej;

    2015-01-01

    Near-surface two-dimensional electron gases on the topological insulator Bi$_2$Te$_2$Se are induced by electron doping and studied by angle-resolved photoemission spectroscopy. A pronounced spin-orbit splitting is observed for these states. The $k$-dependent splitting is strongly anisotropic...... to be negative, reducing the energy splitting at high $k$. The interplay of band structure, higher order Rashba effect and tuneable doping offers the opportunity to engineer not only the size of the spin-orbit splitting but also its direction....

  7. Isotope effect on electron-phonon interaction in the multiband superconductor MgB2

    Science.gov (United States)

    Mou, Daixiang; Manni, Soham; Taufour, Valentin; Wu, Yun; Huang, Lunan; Bud'ko, S. L.; Canfield, P. C.; Kaminski, Adam

    2016-04-01

    We investigate the effect of isotope substitution on the electron-phonon interaction in the multiband superconductor MgB2 using tunable laser-based angle-resolved photoemission spectroscopy. The kink structure around 70 meV in the σ band, which is caused by electron coupling to the E2 g phonon mode, is shifted to higher binding energy by ˜3.5 meV in Mg 10B2 and the shift is not affected by superconducting transition. These results serve as the benchmark for investigations of isotope effects in known, unconventional superconductors and newly discovered superconductors where the origin of pairing is unknown.

  8. The electronic couplings in electron transfer and excitation energy transfer.

    Science.gov (United States)

    Hsu, Chao-Ping

    2009-04-21

    The transport of charge via electrons and the transport of excitation energy via excitons are two processes of fundamental importance in diverse areas of research. Characterization of electron transfer (ET) and excitation energy transfer (EET) rates are essential for a full understanding of, for instance, biological systems (such as respiration and photosynthesis) and opto-electronic devices (which interconvert electric and light energy). In this Account, we examine one of the parameters, the electronic coupling factor, for which reliable values are critical in determining transfer rates. Although ET and EET are different processes, many strategies for calculating the couplings share common themes. We emphasize the similarities in basic assumptions between the computational methods for the ET and EET couplings, examine the differences, and summarize the properties, advantages, and limits of the different computational methods. The electronic coupling factor is an off-diagonal Hamiltonian matrix element between the initial and final diabatic states in the transport processes. ET coupling is essentially the interaction of the two molecular orbitals (MOs) where the electron occupancy is changed. Singlet excitation energy transfer (SEET), however, contains a Frster dipole-dipole coupling as its most important constituent. Triplet excitation energy transfer (TEET) involves an exchange of two electrons of different spin and energy; thus, it is like an overlap interaction of two pairs of MOs. Strategies for calculating ET and EET couplings can be classified as (1) energy-gap-based approaches, (2) direct calculation of the off-diagonal matrix elements, or (3) use of an additional operator to describe the extent of charge or excitation localization and to calculate the coupling value. Some of the difficulties in calculating the couplings were recently resolved. Methods were developed to remove the nondynamical correlation problem from the highly precise coupled cluster

  9. Low energy electron scattering from polyatomic targets

    Energy Technology Data Exchange (ETDEWEB)

    Khakoo, Murtadha A; Muse, John; Campbell, Colin [Department of Physics, California State University, Fullerton, CA 92834 (United States); Lopes, Maria Cristina A; Silva, Helen [Departamento de Fisica, ICE, Universidade Federal de Juiz de Fora, Juiz de Fora-MG, CEP 36036-330 (Brazil); Winstead, Carl; McKoy, Vincent, E-mail: mkhakoo@fullerton.ed [A. A. Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125 (United States)

    2009-11-15

    Low energy elastic electron scattering cross-sections from water and several alcohols are presented. This paper addresses accurately measuring quantitative differential elastic scattering cross-sections, using the relative flow method with an aperture source, and focuses on the long range dipole interaction of the scattering electron with these polar targets. The electron-dipole interaction dominates the scattering for these molecules and contributes significantly to their integral elastic cross-sections.

  10. Stability of electron energy in the Fermilab electron cooler

    Energy Technology Data Exchange (ETDEWEB)

    Shemyakin, A.; Carlson, K.; Prost, L.R.; Saewert, G.; /Fermilab

    2009-02-01

    A powerful electron beam (4.3 MeV, 0.1 A DC) generated by an electrostatic accelerator has been used at Fermilab for three years to cool antiprotons in the Recycler ring. For electron cooling to be effective, the electron energy should not deviate from its optimum value by more than 500V. The main tool for studying the energy stability is the electron beam position in a high-dispersion area. The energy ripple (frequencies above 0.2 Hz) was found to be less than 150 eV rms; the main cause of the ripple is the fluctuations of the chain current. In addition, the energy can drift to up to several keV that is traced to two main sources. One of them is a drift of the charging current, and another is a temperature dependence of generating voltmeter readings. The paper describes the efforts to reach the required level of stability as well as the setup, diagnostics, results of measurements, and operational experience.

  11. FREE ELECTRON LASERS AND HIGH-ENERGY ELECTRON COOLING.

    Energy Technology Data Exchange (ETDEWEB)

    LITVINENKO,V.N.

    2007-08-31

    Cooling intense high-energy hadron beams remains a major challenge in modern accelerator physics. Synchrotron radiation of such beams is too feeble to provide significant cooling: even in the Large Hadron Collider (LHC) with 7 TeV protons, the longitudinal damping time is about thirteen hours. Decrements of traditional electron cooling decrease rapidly as the high power of beam energy, and an effective electron cooling of protons or antiprotons at energies above 100 GeV seems unlikely. Traditional stochastic cooling still cannot catch up with the challenge of cooling high-intensity bunched proton beams--to be effective, its bandwidth must be increased by about two orders-of-magnitude. Two techniques offering the potential to cool high-energy hadron beams are optical stochastic cooling (OSC) and coherent electron cooling (CEC)--the latter is the focus of this paper. In the early 1980s, CEC was suggested as a possibility for using various instabilities in an electron beam to enhance its interaction with hadrons (i.e., cooling them). The capabilities of present-day accelerator technology, Energy Recovery Linacs (ERLs), and high-gain Free-Electron Lasers (FELs), finally caught up with the idea and provided the all necessary ingredients for realizing such a process. In this paper, we discuss the principles, and the main limitations of the CEC process based on a high-gain FEL driven by an ERL. We also present, and summarize in Table 1, some numerical examples of CEC for ions and protons in RHIC and the LHC.

  12. Manifestation of nonlocal electron-electron interaction in graphene

    Science.gov (United States)

    Ulstrup, Søren; Schüler, Malte; Bianchi, Marco; Fromm, Felix; Raidel, Christian; Seyller, Thomas; Wehling, Tim; Hofmann, Philip

    2016-08-01

    Graphene is an ideal platform to study many-body effects due to its semimetallic character and the possibility to dope it over a wide range. Here we study the width of graphene's occupied π band as a function of doping using angle-resolved photoemission. Upon increasing electron doping, we observe the expected shift of the band to higher binding energies. However, this shift is not rigid and the bottom of the band moves less than the Dirac point. We show that the observed shift cannot be accounted for by single-particle effects and local self-energies alone, but that nonlocal many-body effects, in particular exchange interactions, must be taken into account.

  13. Powering the Digital: From Energy Ecologies to Electronic Environmentalism

    OpenAIRE

    Gabrys, Jennifer

    2014-01-01

    Electronics and all that they plug into are energy intensive. Energy is another form of waste, like electronic waste that contributes to the material footprint of electronic technologies. This chapter examines the particular ways in which electronics use energy, from manufacture to powering devices to running cloud servers. While electronics consume energy, they are also used to manage energy consumption with the hope of achieving greater sustainability. By developing the concept of “electron...

  14. Electronic market places in the energy

    International Nuclear Information System (INIS)

    Electronic market places in the energy domain occurred at the end of the 90's in the US and have started to develop in Europe in the year 2000. About 60 platforms are registered today and this development can be explained by the advantages raised by such an infrastructure: simplification of purchase procedures, reduction of delays in the purchase decision, reduction of administrative costs etc.. However, today none of these electronic market places is profitable and several have closed down. On the other hand, this tool will certainly become necessary in the future and all energy actors are developing projects in this way. This study analyzes the electronic market places phenomenon in the energy domain using 10 market places examples with their key-factors of success. It draws out a complete status of the initiatives developed today and presents some scenarios of evolution. (J.S.)

  15. On Puthoff's Semiclassical Electron and Vacuum Energy

    Science.gov (United States)

    Pereira, N. R.

    2016-09-01

    A possible connection between a point electron and vacuum energy was recently claimed by Puthoff (Int. J. Theor. Phys. 46, 3005 (2007)). He envisions a point electron as an ideally conducting spherical shell with a distributed charge on the surface, in equilibrium with the radiation pressure from electromagnetic vacuum fluctuations on the outside, and claims that his analysis demonstrates the reality of high-energy-density vacuum fluctuation fields. The present paper finds, instead, that the analysis is meaningless without specific knowledge on the cutoff frequency that is a free parameter in the model.

  16. Power electronics for renewable energy systems

    DEFF Research Database (Denmark)

    Iov, Florin; Blaabjerg, Frede

    2009-01-01

    sources from the conventional, fossil (and short term) based energy sources to renewable energy resources. Another is to use high efficient power electronics in power generation, power transmission/distribution and end-user application. This paper discuss some of the most emerging renewable energy sources......The global electrical energy consumption is still rising and there is a demand to double the power capacity within 20 years. The production, distribution and use of energy should be as technological efficient as possible and incentives to save energy at the end-user should also be set up....... Deregulation of energy has in the past lowered the investment in larger power plants, which means the need for new electrical power sources may be very high in the near future. Two major technologies will play important roles to solve the future problems. One is to change the electrical power production...

  17. Impact of Electron-Electron Cusp on Configuration Interaction Energies

    OpenAIRE

    Prendergast, David; Nolan, M.; Filippi, Claudia; Fahy, Stephen; Greer, J. C.

    2001-01-01

    The effect of the electron-electron cusp on the convergence of configuration interaction (CI) wave functions is examined. By analogy with the pseudopotential approach for electron-ion interactions, an effective electron-electron interaction is developed which closely reproduces the scattering of the Coulomb interaction but is smooth and finite at zero electron-electron separation. The exact many-electron wave function for this smooth effective interaction has no cusp at zero electron-electron...

  18. Electron clouds in high energy hadron accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, Fedor

    2013-08-29

    The formation of electron clouds in accelerators operating with positrons and positively charge ions is a well-known problem. Depending on the parameters of the beam the electron cloud manifests itself differently. In this thesis the electron cloud phenomenon is studied for the CERN Super Proton Synchrotron (SPS) and Large Hadron Collider (LHC) conditions, and for the heavy-ion synchrotron SIS-100 as a part of the FAIR complex in Darmstadt, Germany. Under the FAIR conditions the extensive use of slow extraction will be made. After the acceleration the beam will be debunched and continuously extracted to the experimental area. During this process, residual gas electrons can accumulate in the electric field of the beam. If this accumulation is not prevented, then at some point the beam can become unstable. Under the SPS and LHC conditions the beam is always bunched. The accumulation of electron cloud happens due to secondary electron emission. At the time when this thesis was being written the electron cloud was known to limit the maximum intensity of the two machines. During the operation with 25 ns bunch spacing, the electron cloud was causing significant beam quality deterioration. At moderate intensities below the instability threshold the electron cloud was responsible for the bunch energy loss. In the framework of this thesis it was found that the instability thresholds of the coasting beams with similar space charge tune shifts, emittances and energies are identical. First of their kind simulations of the effect of Coulomb collisions on electron cloud density in coasting beams were performed. It was found that for any hadron coasting beam one can choose vacuum conditions that will limit the accumulation of the electron cloud below the instability threshold. We call such conditions the ''good'' vacuum regime. In application to SIS-100 the design pressure 10{sup -12} mbar corresponds to the good vacuum regime. The transition to the bad vacuum

  19. Applications for Energy Recovering Free Electron Lasers

    Energy Technology Data Exchange (ETDEWEB)

    George Neil

    2007-08-01

    The availability of high-power, high-brilliance sources of tunable photons from energy-recovered Free Electron Lasers is opening up whole new fields of application of accelerators in industry. This talk will review some of the ideas that are already being put into production, and some of the newer ideas that are still under development.

  20. Electron-ion recombination at low energy

    International Nuclear Information System (INIS)

    The work is based on results obtained with a merged-beams experiment. A beam of electronics with a well characterized density and energy distribution was merged with a fast, monoenergetic ion beam. Results have been obtained for radiative recombination and dielectronic recombination at low relative energies (0 to ∼70eV). The obtained energy resolution was improved by about a factor of 30. High vacuum technology was used to suppress interactions with electrons from the environments. The velocity distribution of the electron beam was determined. State-selective dielectronic-recombination measurements were performable. Recombination processes were studied. The theoretical background for radiative recombination and Kramers' theory are reviewed. The quantum mechanical result and its relation to the semiclassical theory is discussed. Radiative recombination was also measured with several different non-bare ions, and the applicability of the semiclassical theory to non-bare ions was investigated. The use of an effective charge is discussed. For dielectronic recombination, the standard theoretical approach in the isolated resonance and independent-processes approximation is debated. The applicability of this method was tested. The theory was able to reproduce most of the experimental data except when the recombination process was sensitive to couplings between different electronic configurations. The influence of external perturbing electrostatic fields is discussed. (AB) (31 refs.)

  1. Low Energy Electron Scattering from Fuels

    Science.gov (United States)

    Lopes, M. Cristina A.

    2012-06-01

    We report an investigation of processes that occur during the ignition of the plasma and its consequences in post-discharge time for an internal combustion engine, in order to find the appropriate parameters to be used in cars that operate with lean mixtures air-fuel. The relevance of this theme has attracted much attention, and has been one of the subjects of collaboration between experimental and theoretical groups in the USA and Brazil. We have produced some basic information necessary to modeling spark ignition in alcohol- fuelled engines. Total cross sections of electron scattering by methanol and ethanol molecules were obtained, using the linear transmission method based on the Beer-Lambert law to first approximation. Measurements and calculations of differential cross sections for low-energy (rotationally unresolved) electron scattering were also obtained, for scattering angles of 5 --130 . The measurements were taken using the relative flow method with an aperture source, and calculations using two different implementations of the Schwinger multichannel method, one that takes all electrons into account and is adapted for parallel computers, and another that uses pseudopotentials and considers only the valence electrons. Additionally to these, computer simulation studies of electronic discharge in mixtures of ethanol were performed, using a Zero-Dimensional Plasma Kinetic solver. Previous reported models for combustion of ethanol and cross sections data for momentum transfer of electron collisions with ethanol were used. The time evolutions of the main species densities are reported and the ignition time delay discussed.

  2. Prediction of electron energies in metal oxides.

    Science.gov (United States)

    Walsh, Aron; Butler, Keith T

    2014-02-18

    The ability to predict energy levels in metal oxides is paramount to developinguseful materials, such as in the development of water photolysis catalysts and efficient photovoltaic cells. The binding energy of electrons in materials encompasses a wealth of information concerning their physicochemistry. The energies control the optical and electrical properties, dictating for which kinds of chemistry and physics a particular material is useful. Scientists have developed theories and models for electron energies in a variety of chemical systems over the past century. However, the prediction of quantitative energy levels in new materials remains a major challenge. This issue is of particular importance in metal oxide research, where novel chemistries have opened the possibility of a wide range of tailored systems with applications in important fields including light-emitting diodes, energy efficient glasses, and solar cells. In this Account, we discuss the application of atomistic modeling techniques, covering the spectrum from classical to quantum descriptions, to explore the alignment of electron energies between materials. We present a number of paradigmatic examples, including a series of oxides (ZnO, In2O3, and Cu2O). Such calculations allow the determination of a "band alignment diagram" between different materials and can facilitate the prediction of the optimal chemical composition of an oxide for use in a given application. Throughout this Account, we consider direct computational solutions in the context of heuristic models, which are used to relate the fundamental theory to experimental observations. We review a number of techniques that have been commonly applied in the study of electron energies in solids. These models have arisen from different answers to the same basic question, coming from solid-state chemistry and physics perspectives. We highlight common factors, as well as providing a critical appraisal of the strengths and weaknesses of each

  3. Low-energy electron scattering from cyanamide

    Science.gov (United States)

    Wang, Kedong; Guo, Shuangcheng; Meng, Ju; Huang, Xiaotian; Wang, Yongfeng

    2016-09-01

    The low-energy electron collisions with cyanamide molecule are investigated by using the UK molecular R -matrix codes for electron energies ranging from 0.01 eV to 10 eV. Three models including static-exchange, static-exchange plus polarization, and close-coupling (CC) approximations are employed to reveal the dynamic interaction. Elastic (integrated and differential), momentum-transfer, and excitation cross sections from the ground state to the three low-lying electron excited states have been presented. Two shape resonances, two core-excited resonances, and two Feshbach resonances are detected in the CC approximation. The role of active space in the target and scattering problem including the resonances is discussed. The precise resonance parameters are found to be sensitive to the treatment of polarization effects employed. These resonances may be responsible for the fragments observed in a recent experiment of the dissociative electron attachments to cyanamide. Since the cyanamide molecule has a large permanent dipole moment, a Born closure procedure is used to account for the contribution of partial waves higher than l =4 to obtain converged cross sections.

  4. Energy Transformation in Molecular Electronic Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kasha, Michael

    1999-05-17

    This laboratory has developed many new ideas and methods in the electronic spectroscopy of molecules. This report covers the contract period 1993-1995. A number of the projects were completed in 1996, and those papers are included in the report. The DOE contract was terminated at the end of 1995 owing to a reorganizational change eliminating nationally the projects under the Office of Health and Environmental Research, U. S. Department of Energy.

  5. Transfer of chirality from adsorbed chiral molecules to the substrates highlighted by circular dichroism in angle-resolved valence photoelectron spectroscopy

    DEFF Research Database (Denmark)

    Contini, G.; Turchini, S.; Sanna, Simone;

    2012-01-01

    state, that the presence of molecular chiral domains induces asymmetry in the interaction with the substrate and locally transfers the chiral character to the underlying metal atoms participating in the adsorption process; combined information related to the asymmetry of the initial electronic state......Studies of self-assembled chiral molecules on achiral metallic surfaces have mostly focused on the determination of the geometry of adsorbates and their electronic structure. The aim of this paper is to provide direct information on the chirality character of the system and on the chirality......, which is expected to be chiral, and the final electronic state, which locally probes the asymmetry of the potential, has been obtained. Identification of chirality in the adsorption footprint sheds new light on the transfer of chirality from a chiral modifier to a symmetric metal surface and represents...

  6. Momentum dependent electron and hole relaxation dynamics in EuFe{sub 2}As{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Rettig, L.; Cortes, R.; Wolf, M. [Freie Universitaet Berlin, D-14195 Berlin (Germany); Thirupathaiah, S.; Duerr, H.A. [Helmholtz-Zentrum Berlin, D-12489 Berlin (Germany); Bovensiepen, U. [Freie Universitaet Berlin, D-14195 Berlin (Germany); Universitaet Duisburg-Essen, D-47048 Duisburg (Germany); Gegenwart, P. [Georg-August-Universitaet Goettingen, D-37077 Goettingen (Germany); Wolf, T. [Karlsruhe Institute of Technology, D-76021 Karlsruhe (Germany); Fink, J. [Helmholtz-Zentrum Berlin, D-12489 Berlin (Germany); Leibniz-Institute for Solid State and Materials Research Dresden, D-01171 Dresden (Germany)

    2010-07-01

    The recently discovered class of Fe-based high-T{sub c} superconductors and their parent compounds presents an interesting correlated electronic system to study the effects of intra- and interband scattering. The influence of the electronic bandstructure on the fundamental relaxation processes of excited carriers leading to intra- and interband scattering is of fundamental interest in solid state physics. Here, we report on fs time- and angle-resolved photoemission spectroscopy (trARPES) on the parent compound EuFe{sub 2}As{sub 2} of the new class of FeAs based high-T{sub c} superconductors. Using intense fs laser pulses (h{nu}=1.5 eV), part of the electronic population is excited to states above the Fermi level. The transient evolution of both occupied and unoccupied states is probed by energy- and angle-resolved photoelectron spectroscopy using a time-delayed ultraviolet pulse (h{nu}=6.0 eV). Upon excitation, occupied states around the hole-pocket at the {gamma}-point of the Brillouin zone become partially depopulated by excited holes, whereas electrons are filling the empty states within the hole-pocket. The timescales of electron and hole dynamics within this band differ drastically and cannot be explained solely by intraband e-h pair generation, but an additional interband excitation channel has to be considered.

  7. Electron energy loss spectroscopy in advanced materials

    Energy Technology Data Exchange (ETDEWEB)

    Zaluzec, N.J.

    1991-01-01

    The combination of a Transmission Electron Microscope (TEM) with an electron energy loss spectrometer (EELS) yields a powerful tool for the microcharacterization of materials. However, the application of this technique to advanced materials problems can only be fully appreciated when the information obtained using EELS is related to that obtained from other analytical spectroscopies. In this chapter, we briefly discuss the relative performance of X-ray, Auger and Photoelectron Spectroscopies with EELS pointing out the limitations and merits of each. This comparison is followed by examples of the application of EELS to investigations involving high {Tc} superconductors, artificial metallic superlattices, amorphous magnetic materials and the characterization of metallic hydride phases. 14 refs., 22 figs.

  8. Electronic phase diagram of high-temperature copper oxide superconductors

    Science.gov (United States)

    Chatterjee, Utpal; Ai, Dingfei; Zhao, Junjing; Rosenkranz, Stephan; Kaminski, Adam; Raffy, Helene; Li, Zhizhong; Kadowaki, Kazuo; Randeria, Mohit; Norman, Michael R.; Campuzano, J. C.

    2011-01-01

    In order to understand the origin of high-temperature superconductivity in copper oxides, we must understand the normal state from which it emerges. Here, we examine the evolution of the normal state electronic excitations with temperature and carrier concentration in Bi2Sr2CaCu2O8+δ using angle-resolved photoemission. In contrast to conventional superconductors, where there is a single temperature scale Tc separating the normal from the superconducting state, the high-temperature superconductors exhibit two additional temperature scales. One is the pseudogap scale T∗, below which electronic excitations exhibit an energy gap. The second is the coherence scale Tcoh, below which sharp spectral features appear due to increased lifetime of the excitations. We find that T∗ and Tcoh are strongly doping dependent and cross each other near optimal doping. Thus the highest superconducting Tc emerges from an unusual normal state that is characterized by coherent excitations with an energy gap. PMID:21606341

  9. Energy relaxation in the spin-polarized disordered electron liquid

    OpenAIRE

    Chtchelkatchev, N. M.; Burmistrov, I. S.

    2007-01-01

    The energy relaxation in the spin-polarized disordered electron systems is studied in the diffusive regime. We derived the quantum kinetic equation in which the kernel of electron-electron collision integral explicitly depends on the electron magnetization. As the consequence, the inelastic scattering rate is found to have non-monotonic dependence on the spin polarization of the electron system.

  10. Equation satisfied by electron-electron mutual Coulomb repulsion energy density functional

    OpenAIRE

    Joubert, Daniel P.

    2011-01-01

    The electron-electron mutual Coulomb repulsion energy density functional satisfies an equation that links functionals and functional derivatives at N-electron and (N-1)-electron densities for densities determined from the same adiabatic scaled external potential for the N-electron system.

  11. Metal-insulator transition and tunable Dirac-cone surface state in the topological insulator TlBi1 -xSbxTe2 studied by angle-resolved photoemission

    Science.gov (United States)

    Trang, Chi Xuan; Wang, Zhiwei; Yamada, Keiko; Souma, Seigo; Sato, Takafumi; Takahashi, Takashi; Segawa, Kouji; Ando, Yoichi

    2016-04-01

    We report a systematic angle-resolved photoemission spectroscopy on topological insulator (TI) TlBi1 -xSbxTe2 which is bulk insulating at 0.5 ≲x ≲0.9 and undergoes a metal-insulator-metal transition with the Sb content x . We found that this transition is characterized by a systematic hole doping with increasing x , which results in the Fermi-level crossings of the bulk conduction and valence bands at x ˜0 and x ˜1 , respectively. The Dirac point of the topological surface state is gradually isolated from the valence-band edge, accompanied by a sign reversal of Dirac carriers. We also found that the Dirac velocity is the largest among known solid-solution TI systems. The TlBi1 -xSbxTe2 system thus provides an excellent platform for Dirac-cone engineering and device applications of TIs.

  12. Angle-resolved photoemission study of the evolution of band structure and charge density wave properties in RTe3 (R= Y, La, Ce, Sm, Gd, Tb and Dy)

    Energy Technology Data Exchange (ETDEWEB)

    Brouet, V.; Yang, W.L.; Zhou, X.J.; Hussain, Z.; Moore, R.G.; He, R.; Lu, D.H.; Shen, Z.X.; Laverock, J.; Dugdale, S.; Ru, N.; Fisher, I.R.

    2010-02-15

    We present a detailed ARPES investigation of the RTe{sub 3} family, which sets this system as an ideal 'textbook' example for the formation of a nesting driven Charge Density Wave (CDW). This family indeed exhibits the full range of phenomena that can be associated to CDW instabilities, from the opening of large gaps on the best nested parts of Fermi Surface (FS) (up to 0.4eV), to the existence of residual metallic pockets. ARPES is the best suited technique to characterize these features, thanks to its unique ability to resolve the electronic structure in k-space. An additional advantage of RTe{sub 3} is that the band structure can be very accurately described by a simple 2D tight-binding (TB) model, which allows one to understand and easily reproduce many characteristics of the CDW. In this paper, we first establish the main features of the electronic structure, by comparing our ARPES measurements with Linear Muffin-Tin Orbital band calculations. We use this to define the validity and limits of the TB model. We then present a complete description of the CDW properties and, for the first time, of their strong evolution as a function of R. Using simple models, we are able to reproduce perfectly the evolution of gaps in k-space, the evolution of the CDW wave vector with R and the shape of the residual metallic pockets. Finally, we give an estimation of the CDW interaction parameters and find that the change in the electronic density of states n(Ef), due to lattice expansion when different R ions are inserted, has the correct order of magnitude to explain the evolution of the CDW properties.

  13. Low-energy electron collisions with thiophene

    Science.gov (United States)

    da Costa, R. F.; Varella, M. T. do N.; Lima, M. A. P.; Bettega, M. H. F.

    2013-05-01

    We report on elastic integral, momentum transfer, and differential cross sections for collisions of low-energy electrons with thiophene molecules. The scattering calculations presented here used the Schwinger multichannel method and were carried out in the static-exchange and static-exchange plus polarization approximations for energies ranging from 0.5 eV to 6 eV. We found shape resonances related to the formation of two long-lived π* anion states. These resonant structures are centered at the energies of 1.00 eV (2.85 eV) and 2.82 eV (5.00 eV) in the static-exchange plus polarization (static-exchange) approximation and belong to the B1 and A2 symmetries of the C2v point group, respectively. Our results also suggest the existence of a σ* shape resonance in the B2 symmetry with a strong d-wave character, located at around 2.78 eV (5.50 eV) as obtained in the static-exchange plus polarization (static-exchange) calculation. It is worth to mention that the results obtained at the static-exchange plus polarization level of approximation for the two π* resonances are in good agreement with the electron transmission spectroscopy results of 1.15 eV and 2.63 eV measured by Modelli and Burrow [J. Phys. Chem. A 108, 5721 (2004), 10.1021/jp048759a]. The existence of the σ* shape resonance is in agreement with the observations of Dezarnaud-Dandiney et al. [J. Phys. B 31, L497 (1998), 10.1088/0953-4075/31/11/004] based on the electron transmission spectra of dimethyl(poly)sulphides. A comparison among the resonances of thiophene with those of pyrrole and furan is also performed and, altogether, the resonance spectra obtained for these molecules point out that electron attachment to π* molecular orbitals is a general feature displayed by these five-membered heterocyclic compounds.

  14. Ionization By Impact Electrons in Solids: Electron Mean Free Path Fitted Over A Wide Energy Range

    Energy Technology Data Exchange (ETDEWEB)

    Ziaja, B; London, R A; Hajdu, J

    2005-06-09

    We propose a simple formula for fitting the electron mean free paths in solids both at high and at low electron energies. The free-electron-gas approximation used for predicting electron mean free paths is no longer valid at low energies (E < 50 eV), as the band structure effects become significant at those energies. Therefore we include the results of the band structure calculations in our fit. Finally, we apply the fit to 9 elements and 2 compounds.

  15. Power Electronics and Control of Renewable Energy Systems

    DEFF Research Database (Denmark)

    Iov, Florin; Ciobotaru, Mihai; Sera, Dezso;

    2007-01-01

    sources from the conventional, fossil (and short term) based energy sources to renewable energy resources. Another is to use high efficient power electronics in power generation, power transmission/distribution and end-user application. This paper discuss some of the most emerging renewable energy sources......, wind energy and photovoltaics, which by means of power electronics are changing from being minor energy sources to be acting as important power sources in the energy system....

  16. Electron mean free path from angle-dependent photoelectron spectroscopy of aerosol particles

    CERN Document Server

    Goldmann, Maximilian; West, Adam H C; Yoder, Bruce L; Signorell, Ruth

    2015-01-01

    We propose angle-resolved photoelectron spectroscopy of aerosol particles as an alternative way to determine the electron mean free path of low energy electrons in solid and liquid materials. The mean free path is obtained from fits of simulated photoemission images to experimental ones over a broad range of different aerosol particle sizes. The principal advantage of the aerosol approach is twofold. Firstly, aerosol photoemission studies can be performed for many different materials, including liquids. Secondly, the size-dependent anisotropy of the photoelectrons can be exploited in addition to size-dependent changes in their kinetic energy. These finite size effects depend in different ways on the mean free path and thus provide more information on the mean free path than corresponding liquid jet, thin film, or bulk data. The present contribution is a proof of principle employing a simple model for the photoemission of electrons and preliminary experimental data for potassium chloride aerosol particles.

  17. Electron mean free path from angle-dependent photoelectron spectroscopy of aerosol particles

    International Nuclear Information System (INIS)

    We propose angle-resolved photoelectron spectroscopy of aerosol particles as an alternative way to determine the electron mean free path of low energy electrons in solid and liquid materials. The mean free path is obtained from fits of simulated photoemission images to experimental ones over a broad range of different aerosol particle sizes. The principal advantage of the aerosol approach is twofold. First, aerosol photoemission studies can be performed for many different materials, including liquids. Second, the size-dependent anisotropy of the photoelectrons can be exploited in addition to size-dependent changes in their kinetic energy. These finite size effects depend in different ways on the mean free path and thus provide more information on the mean free path than corresponding liquid jet, thin film, or bulk data. The present contribution is a proof of principle employing a simple model for the photoemission of electrons and preliminary experimental data for potassium chloride aerosol particles

  18. Sterilization of foods with low-energy electrons ('soft-electrons')

    International Nuclear Information System (INIS)

    Electrons with an energy of 300 keV or lower were defined as 'Soft-electrons', which showed several advantages over conventional irradiation with gamma-rays or high-energy electrons in decontamination of grains and spices. Energies of electrons necessary to reduce microbial loads to levels lower than 10 CFU/g were 60 keV for brown rice, 75 keV for wheat, 100 keV for white pepper, coriander and basil, 130 keV for buckwheat, 160 keV for rough rice, and 210 keV for black pepper. Electrons with such energies did not significantly influence the quality

  19. Optimal Electron Energies for Driving Chromospheric Evaporation in Solar Flares

    CERN Document Server

    Reep, Jeffrey; Alexander, David

    2015-01-01

    In the standard model of solar flares, energy deposition by a beam of electrons drives strong chromospheric evaporation leading to a significantly denser corona and much brighter emission across the spectrum. Chromospheric evaporation was examined in great detail by Fisher, Canfield, & McClymont (1985a,b,c), who described a distinction between two different regimes, termed explosive and gentle evaporation. In this work, we examine the importance of electron energy and stopping depths on the two regimes and on the atmospheric response. We find that with explosive evaporation, the atmospheric response does not depend strongly on electron energy. In the case of gentle evaporation, lower energy electrons are significantly more efficient at heating the atmosphere and driving up-flows sooner than higher energy electrons. We also find that the threshold between explosive and gentle evaporation is not fixed at a given beam energy flux, but also depends strongly on the electron energy and duration of heating. Furt...

  20. Low-energy electron beams through ultra-thin foils, applications for electron microscopy

    NARCIS (Netherlands)

    Van Aken, R.H.

    2005-01-01

    This thesis has discussed two electron microscopy applications that make use of ultra-thin foils: the tunnel junction emitter and the low-energy foil corrector. Both applications have in common that the electron beam is sent through the thin foil at low energy. Part of the electrons will scatter in

  1. Energy spectra of solar flare electrons

    International Nuclear Information System (INIS)

    A survey of 50 electron energy spectra from .1 to 100 MeV originating from solar flares was made by the combination of data from two spectrometers onboard the International Sun Earth Explorer-3 spacecraft. The observed spectral shapes of flare events can be divided into two classes through the criteria of fit to an acceleration model. This standard two step acceleration model, which fits the spectral shape of the first class of flares, involves an impulsive step that accelerates particles up to 100 keV and a second step that further accelerates these particles up to 100 MeV by a single shock. This fit fails for the second class of flares that can be characterized as having excessively hard spectra above 1 MeV relative to the predictions of the model. Correlations with soft x-ray and meter radio observations imply that the acceleration of the high energy particles in the second class of flares is dominated by the impulsive phase of the flares

  2. Electron-helium and electron-neon scattering cross sections at low electron energies using a photoelectron source

    Science.gov (United States)

    Kumar, Vijay; Subramanian, K. P.; Krishnakumar, E.

    1987-01-01

    Absolute electron-helium and electron-neon scattering cross sections have been measured at low electron energies using the powerful technique of photoelectron spectroscopy. The measurements have been carried out at 17 electron energies varying from 0.7 to 10 eV with an accuracy of + or - 2.7 percent. The results obtained in the present work have been compared with other recent measurement and calculations.

  3. High-energy attosecond nanoplasmonic-based electron gun

    Science.gov (United States)

    Greig, S. R.; Elezzabi, A. Y.

    2016-03-01

    We present the design of an ultrafast conical lens based nanoplasmonic electron gun. Through excitation with a radially polarized laser pulse, and a combination of magnetostatic and spatial filtering, high energy electron packets with attosecond durations can be achieved.

  4. Angle-resolved time delay in photoemission

    CERN Document Server

    Wätzel, Jonas; Pavlyukh, Yaroslav; Berakdar, Jamal

    2014-01-01

    We investigate theoretically the relative time delay of photoelectrons originating from different atomic subshells of noble gases. This quantity was measured via attosecond streaking and studied theoretically by Schultze et al. [Science 328, 1658 (2010)] for neon. A substantial discrepancy was found between the measured and the calculated values of the relative time delay. Several theoretical studies were put forward to resolve this issue, e.g., by including correlation effects. In the present paper we explore a further aspect, namely the directional dependence of time delay. In contrast to neon, for argon target a strong angular dependence of time delay is found near a Cooper minimum.

  5. Angle-resolved cathodoluminescence imaging polarimetry

    CERN Document Server

    Osorio, Clara I; Brenny, Benjamin; Polman, Albert; Koenderink, A Femius

    2015-01-01

    Cathodoluminescence spectroscopy (CL) allows characterizing light emission in bulk and nanostructured materials and is a key tool in fields ranging from materials science to nanophotonics. Previously, CL measurements focused on the spectral content and angular distribution of emission, while the polarization was not fully determined. Here we demonstrate a technique to access the full polarization state of the cathodoluminescence emission, that is the Stokes parameters as a function of the emission angle. Using this technique, we measure the emission of metallic bullseye nanostructures and show that the handedness of the structure as well as nanoscale changes in excitation position induce large changes in polarization ellipticity and helicity. Furthermore, by exploiting the ability of polarimetry to distinguish polarized from unpolarized light, we quantify the contributions of different types of coherent and incoherent radiation to the emission of a gold surface, silicon and gallium arsenide bulk semiconductor...

  6. Casimir self-energy of a free electron

    OpenAIRE

    Rosencwaig, Allan

    2006-01-01

    We derive the electromagnetic self-energy and the radiative correction to the gyromagnetic ratio of a free electron using a Casimir energy approach. This method provides an attractive and straightforward physical basis for the renormalization process.

  7. Power electronic converter systems for direct drive renewable energy applications

    DEFF Research Database (Denmark)

    Chen, Zhe

    2013-01-01

    This chapter presents power electronic conversion systems for wind and marine energy generation applications, in particular, direct drive generator energy conversion systems. Various topologies are presented and system design optimization and reliability are briefly discussed....

  8. Electronic excitation of some silicium compounds in the vacuum ultravi olet region

    International Nuclear Information System (INIS)

    Angle-resolved electron energy-loss spectra have been measured for the tetramethylsilane, trimethylchlorosilane and dimethyldichloresilane molecules in the 5 - 300 eV energy range. The spectra have been obtained at 1 KeV incident energy, with an energy resolution of about 0.5 eV (valense region) and 0.8 eV (inner-shell region). Both the valence and core-level excitation bands can be as associated to transitions to Rydber and valence states. No dipole-allowed transition has been observed in the spectra measured in the angular range of 1 to 9 degrees (valence region) and 3 to 7 degrees (inner-shell region). (Author)

  9. Disentangling bulk from surface contributions in the electronic structure of black phosphorus

    Science.gov (United States)

    Golias, E.; Krivenkov, M.; Sánchez-Barriga, J.

    2016-02-01

    Most recently, black phosphorus has come into focus as a promising material for future applications in nanoelectronic devices due to its unique electronic and transport properties. Here, we use angle-resolved photoemission spectroscopy in conjunction with ab initio calculations within the framework of density-functional theory to disentangle surface from the bulk contributions in the electronic structure of black phosphorus. We find good agreement between our theoretical predictions for the intra- and interlayer energy-momentum dispersions and the experimentally obtained three-dimensional band structure of this material. Our results provide compelling evidence for the existence of surface-resonant states near the top of the valence band, which can play an important role in the performance of electronic devices based on black phosphorus.

  10. Structural and electronic properties of V2O3 ultrathin film on Ag(001): LEED and photoemission study

    Science.gov (United States)

    Kundu, Asish K.; Menon, Krishnakumar S. R.

    2016-05-01

    V2O3 ultrathin films were grown on Ag(001) substrate by reactive evaporation of vanadium (V) metal in presence of oxygen and their structural and electronic properties were studied by Low Energy Electron Diffraction (LEED), X-ray Photo Electron Spectroscopy (XPS) and Angle Resolved Photoemission Spectroscopic (ARPES) techniques, respectively. On top of square symmetry substrate Ag(001), hexagonal surface of V2O3 (0001) is stabilized in the form of two domain structure, rotated by 30°(or 90°)to each other, has been observed by LEED. Rather than epitaxial flat monolayer, formation of well-ordered V2O3 (0001) island has been confirmed from the LEED and the Photoemission Spectroscopic (PES) study. Stoichiometry of the grown film was confirmed by the XPS study. Evolution of valance band electronic structure of V2O3 (0001) surface has been studied as a function of film thickness by ARPES.

  11. Common Electronic Features and Electronic Nematicity in Parent Compounds of Iron-Based Superconductors and FeSe/SrTiO3 Films Revealed by Angle-Resolved Photoemission Spectroscopy

    Science.gov (United States)

    De-Fa, Liu; Lin, Zhao; Shao-Long, He; Yong, Hu; Bing, Shen; Jian-Wei, Huang; Ai-Ji, Liang; Yu, Xu; Xu, Liu; Jun-Feng, He; Dai-Xiang, Mou; Shan-Yu, Liu; Hai-Yun, Liu; Guo-Dong, Liu; Wen-Hao, Zhang; Fang-Sen, Li; Xu-Cun, Ma; Qi-Kun, Xue; Xian-Hui, Chen; Gen-Fu, Chen; Li, Yu; Jun, Zhang; Zu-Yan, Xu; Chuang-Tian, Chen; Xing-Jiang, Zhou

    2016-07-01

    Not Available Supported by the National Natural Science Foundation of China under Grant Nos 11190022, 11334010 and 11534007, the National Basic Research Program of China under Grant No 2015CB921000, and the Strategic Priority Research Program (B) of Chinese Academy of Sciences under Grant No XDB07020300.

  12. Spatial structure determination of ({radical}3 x {radical}3)R30{degrees} and (1.5 x 1.5)R18{degrees}CO on Cu(111) using angle-resolved photoemission extended fine structure

    Energy Technology Data Exchange (ETDEWEB)

    Moler, E.J.; Kellar, S.A.; Huff, W.R.A. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    The authors report a study of the spatial structure of ({radical}3 x {radical}3)R30{degrees} (low coverage) and (1.5 x 1.5)R18{degrees} (intermediate coverage) CO adsorbed on Cu(111), using the Angle-Resolved Photoemission Extended Fine Structure (ARPEFS) technique at beamline 9.3.2 at the Advanced Light Source. The CO molecule adsorbs on an atop site for both adsorption phases. Full multiple-scattering spherical-wave (MSSW) calculations were used to extract the C-Cu. bond length and the first Cu-Cu layer spacing for each adsorption phase. The authors find that the C-Cu bond length remains unchanged with increasing coverage, but the 1st Cu-Cu layer spacing contracts at the intermediate coverage. They calculate the bending mode force constant in the (1.5 x 1.5)R18{degrees} phase to be K{sub {delta}} = 2.2 (1) x 10{sup {minus}12} dyne-cm/rad from their experimentally determined bond lengths combined with previously published infra-red absorption frequencies.

  13. ELEC-2005: Electronics in High Energy Physics

    CERN Multimedia

    Monique Duval

    2004-01-01

    ELEC-2005 is a new course series on modern electronics, given by CERN physicists and engineers in the format of the successful ELEC-2002 course series, and within the framework of the 2005 Technical Training Programme. This comprehensive course series is designed for people who are not electronics specialists, for example physicists, engineers and technicians working at or visiting the laboratory, who use or will use electronics in their present or future activities, in particular in the context of the LHC accelerator and experiments. ELEC-2005 will composed of four Terms throughout the year: Winter Term: Introduction to electronics in HEP (January-February, 6 lectures) Spring Term: Integrated circuits and VLSI technology for physics (March, 6 lectures) Summer Term: System electronics for physics: Issues (May, 7 lectures) Winter Term: Electronics applications in HEP experiments (November-December, 10 lectures) Lectures within each Term will take place on Tuesdays and Thursdays, from 10:00 to 12:30. The...

  14. Validation of Geant4 simulation of electron energy deposition

    CERN Document Server

    Batic, Matej; Pia, Maria Grazia; Saracco, Paolo; Weidenspointner, Georg

    2013-01-01

    Geant4-based simulations of the energy deposited by electrons in various materials are quantitatively compared to high precision calorimetric measurements taken at Sandia Laboratories. The experimental data concern electron beams of energy between a few tens of keV and 1 MeV at various incidence angles. Two experimental scenarios are evaluated: the longitudinal energy deposition pattern in a finely segmented detector, and the total energy deposited in a larger size calorimeter. The simulations are produced with Geant4 versions from 9.1 to 9.6; they involve models of electron-photon interactions in the standard and low energy electromagnetic packages, and various implementations of electron multiple scattering. Significant differences in compatibility with experimental data are observed in the longitudinal energy deposition patterns produced by the examined Geant4 versions, while the total deposited energy exhibits smaller variations across the various Geant4 versions, with the exception Geant4 9.4. The valida...

  15. Short-range exchange-correlation energy of a uniform electron gas with modified electron-electron interaction

    OpenAIRE

    Toulouse, Julien; Savin, Andreas; Flad, Heinz-Juergen

    2006-01-01

    We calculate the short-range exchange-correlation energy of the uniform electron gas with two modified electron-electron interactions. While the short-range exchange functionals are calculated analytically, coupled-cluster and Fermi hypernetted-chain calculations are carried out for the correlation energy and the results are fitted to an analytical parametrization. These data enable us to construct the local density approximation corresponding to these modified interactions.

  16. Electron Clouds in High Energy Hadron Accelerators

    OpenAIRE

    Petrov, Fedor

    2013-01-01

    The formation of electron clouds in accelerators operating with positrons and positively charge ions is a well-known problem. Depending on the parameters of the beam the electron cloud manifests itself differently. In this thesis the electron cloud phenomenon is studied for the CERN Super Proton Synchrotron (SPS) and Large Hadron Collider (LHC) conditions, and for the heavy-ion synchrotron SIS-100 as a part of the FAIR complex in Darmstadt, Germany. Under the FAIR conditions the extensive use...

  17. Low Energy Electron Gun Power Control Unit

    OpenAIRE

    Fish, Chad

    1998-01-01

    Orbiting spacecraft are subject to surface charging induced by plasma currents. The reaction of spacecraft materials to electron and ion bombardments is a major factor in spacecraft surface charging. A key bombardment process known to induce severe spacecraft surface charging is secondary electron emission. NASA funds the Surface Science Group in the Physics Department at Utah State University to research and document different secondary electron emission material characteristics. The Surface...

  18. Influence of binding energies of electrons on nuclear mass predictions

    Science.gov (United States)

    Tang, Jing; Niu, Zhong-Ming; Guo, Jian-You

    2016-07-01

    Nuclear mass contains a wealth of nuclear structure information, and has been widely employed to extract the nuclear effective interactions. The known nuclear mass is usually extracted from the experimental atomic mass by subtracting the masses of electrons and adding the binding energy of electrons in the atom. However, the binding energies of electrons are sometimes neglected in extracting the known nuclear masses. The influence of binding energies of electrons on nuclear mass predictions are carefully investigated in this work. If the binding energies of electrons are directly subtracted from the theoretical mass predictions, the rms deviations of nuclear mass predictions with respect to the known data are increased by about 200 keV for nuclei with Z, N ⩾ 8. Furthermore, by using the Coulomb energies between protons to absorb the binding energies of electrons, their influence on the rms deviations is significantly reduced to only about 10 keV for nuclei with Z, N ⩾ 8. However, the binding energies of electrons are still important for the heavy nuclei, about 150 keV for nuclei around Z = 100 and up to about 500 keV for nuclei around Z = 120. Therefore, it is necessary to consider the binding energies of electrons to reliably predict the masses of heavy nuclei at an accuracy of hundreds of keV. Supported by National Natural Science Foundation of China (11205004)

  19. The source of multi spectral energy of solar energetic electron

    International Nuclear Information System (INIS)

    We study the solar energetic electron distribution obtained from ACE and GOES satellites which have different altitudes and electron spectral energy during the year 1997 to 2011. The electron spectral energies were 0.038–0.315 MeV from EPAM instrument onboard ACE satellite and >2 MeV from GOES satellite. We found that the low electron energy has no correlation with high energy. In spite of we have corrected to the altitude differences. It implied that they originated from time dependent events with different sources and physical processes at the solar atmosphere. The sources of multi spectral energetic electron were related to flare and CME phenomena. However, we also found that high energetic electron comes from coronal hole

  20. The source of multi spectral energy of solar energetic electron

    Energy Technology Data Exchange (ETDEWEB)

    Herdiwijaya, Dhani [Astronomy Division and Bosscha Observatory, Faculty Mathematics and Natural Sciences, Intitute Technology of Bandung, Ganesha 10, Bandung, Indonesia 40132 dhani@as.itb.ac.id (Indonesia)

    2015-04-16

    We study the solar energetic electron distribution obtained from ACE and GOES satellites which have different altitudes and electron spectral energy during the year 1997 to 2011. The electron spectral energies were 0.038–0.315 MeV from EPAM instrument onboard ACE satellite and >2 MeV from GOES satellite. We found that the low electron energy has no correlation with high energy. In spite of we have corrected to the altitude differences. It implied that they originated from time dependent events with different sources and physical processes at the solar atmosphere. The sources of multi spectral energetic electron were related to flare and CME phenomena. However, we also found that high energetic electron comes from coronal hole.

  1. Electrothermal energy conversion using electron gas volumetric change inside semiconductors

    Science.gov (United States)

    Yazawa, K.; Shakouri, A.

    2016-07-01

    We propose and analyze an electrothermal energy converter using volumetric changes in non-equilibrium electron gas inside semiconductors. The geometric concentration of electron gas under an electric field increases the effective pressure of the electrons, and then a barrier filters out cold electrons, acting like a valve. Nano- and micro-scale features enable hot electrons to arrive at the contact in a short enough time to avoid thermalization with the lattice. Key length and time scales, preliminary device geometry, and anticipated efficiency are estimated for electronic analogs of Otto and Brayton power generators and Joule-Thomson micro refrigerators on a chip. The power generators convert the energy of incident photons from the heat source to electrical current, and the refrigerator can reduce the temperature of electrons in a semiconductor device. The analytic calculations show that a large energy conversion efficiency or coefficient of performance may be possible.

  2. Theoretical Study of Lithium Ionic Conductors by Electronic Stress Tensor Density and Electronic Kinetic Energy Density

    CERN Document Server

    Nozaki, Hiroo; Ichikawa, Kazuhide; Watanabe, Taku; Aihara, Yuichi; Tachibana, Akitomo

    2016-01-01

    We analyze the electronic structure of lithium ionic conductors, ${\\rm Li_3PO_4}$ and ${\\rm Li_3PS_4}$, using the electronic stress tensor density and kinetic energy density with special focus on the ionic bonds among them. We find that, as long as we examine the pattern of the eigenvalues of the electronic stress tensor density, we cannot distinguish between the ionic bonds and bonds among metalloid atoms. We then show that they can be distinguished by looking at the morphology of the electronic interface, the zero surface of the electronic kinetic energy density.

  3. Electrospun Fibers for Energy, Electronic, & Environmental Applications

    Science.gov (United States)

    Bedford, Nicholas M.

    Electrospinning is an established method for creating polymer and bio-polymer fibers of dimensions ranging from ˜10 nanometers to microns. The process typically involves applying a high voltage between a solution source (usually at the end of a capillary or syringe) and a substrate on which the nanofibers are deposited. The high electric field distorts the shape of the liquid droplet, creating a Taylor cone. Additional applied voltage ejects a liquid jet of the polymer solution in the Taylor cone toward the counter electrode. The formation of fibers is generated by the rapid electrostatic elongation and solvent evaporation of this viscoelastic jet, which typically generates an entangled non-woven mesh of fibers with a high surface area to volume ratio. Electrospinning is an attractive alternative to other processes for creating nano-scale fibers and high surface area to volume ratio surfaces due to its low start up cost, overall simplicity, wide range of processable materials, and the ability to generate a moderate amount of fibers in one step. It has also been demonstrated that coaxial electrospinning is possible, wherein the nanofiber has two distinct phases, one being the core and another being the sheath. This method is advantageous because properties of two materials can be combined into one fiber, while maintaining two distinct material phases. Materials that are inherently electrospinable could be made into fibers using this technique as well. The most common applications areas for electrospun fibers are in filtration and biomedical areas, with a comparatively small amount of work done in energy, environmental, and sensor applications. Furthermore, the use of biologically materials in electrospun fibers is an avenue of research that needs more exploration, given the unique properties these materials can exhibit. The research aim of this thesis is to explore the use of electrospun fibers for energy, electrical and environmental applications. For energy

  4. Simple simulation for electron energy levels in geometrical potential wells

    CERN Document Server

    Pengpan, Teparksorn

    2008-01-01

    An octopus program is demonstrated to generate electron energy levels in three-dimensional geometrical potential wells. The wells are modeled to have shapes similar to cone, pyramid and truncated-pyramid. To simulate the electron energy levels in quantum mechanical scheme like the ones in parabolic band approximation scheme, the program is run initially to find a suitable electron mass fraction that can produce ground-state energies in the wells as close to those in quantum dots as possible and further to simulate excited-state energies. The programs also produce wavefunctions for exploring and determining their degeneracies and vibrational normal modes.

  5. Trends in Power Electronics and Control of Renewable Energy Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Iov, Florin; Kerekes, Tamas;

    2010-01-01

    term) based energy sources to renewable energy sources. Another is to use high efficient power electronics in power generation, power transmission/distribution and end-user application. This paper discuss trends of the most emerging renewable energy sources, wind energy and photovoltaics, which...... by means of power electronics are changing the future electrical infrastructure but also contributes steadily more to non-carbon based electricity production. Most focus is on the power electronics technologies used. In the case of photovoltaics transformer-less systems are discussed as they have...

  6. High-temperature behavior of supported graphene: Electron-phonon coupling and substrate-induced doping

    DEFF Research Database (Denmark)

    Ulstrup, Søren; Bianchi, Marco; Guan, Dandan;

    2012-01-01

    The temperature-dependent electronic structure and electron-phonon coupling of weakly doped supported graphene is studied by angle-resolved photoemission spectroscopy and ab initio molecular dynamics simulations. The electron-phonon coupling is found to be extremely weak, reaching the lowest value...

  7. Power Electronics Control of Wind Energy in Distributed Power System

    DEFF Research Database (Denmark)

    Iov, Florin; Ciobotaru, Mihai; Blaabjerg, Frede

    2008-01-01

    is to change the electrical power production sources from the conventional, fossil (and short term) based energy sources to renewable energy resources. The other is to use high efficient power electronics in power generation, power transmission/distribution and end-user application. This paper discuss the most...... emerging renewable energy sources, wind energy, which by means of power electronics are changing from being a minor energy source to be acting as an important power source in the energy system. Power electronics is the enabling technology and the presentation will cover the development in wind turbine...... technology from kW to MW, discuss which power electronic solutions are most feasible and used today....

  8. Power electronics - The key technology for Renewable Energy Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Ma, Ke; Yang, Yongheng

    2014-01-01

    and effectively, energy conversion systems, currently based on power electronics technology, will again play an essential role in this energy paradigm shift. Using highly efficient power electronics in power generation, power transmission/distribution and end-user application, together with advanced control...... solutions, can pave the way for renewable energies. In light of this, some of the most emerging renewable energies, e.g. wind energy and photovoltaic, which by means of power electronics are changing character as a major part in the electricity generation, are explored in this paper. Issues like technology...... development, implementation, power converter technologies, control of the systems, and synchronization are addressed. Special focuses are paid on the future trends in power electronics for those systems like how to lower the cost of energy and to develop emerging power devices and better reliability tool....

  9. Electron binding energies using perturbative delta-SCF method

    Science.gov (United States)

    Bhusal, Shusil; Baruah, Tunna; Zope, Rajendra

    The knowledge of fundamental and optical gaps is of significant importance for organic photovoltaics. The electron binding energies estimated from the Kohn-Sham eigenvalues are significantly underestimated. Here, we use our recently outlined perturbative delta-SCF approach to compute the electron binding energies of a number of aromatic organic molecules commonly used in organic photovoltaics. Further, the electron affinities are also computed for the C60, C70 and PCBM. The results show that the perturbative delta-SCF provide adequate description of valence electron binding energies. We also applied the method to compute the core binding energies and the core-valence excited states. While the method can successfully predict the core-valence excited states the results on the core-binding energies are mixed. The strategies for improvement of the core binding energies will be discussed.

  10. Treatment of foods with 'soft-electrons' (low-energy electrons)

    International Nuclear Information System (INIS)

    Electrons with energies of 300 keV or lower were defined as soft-electrons'. Soft-electrons can eradicate microorganisms residing on the surface of grains, pulses, spices, dehydrated vegetables, tea leaves and seeds, and reduce their microbial loads to levels lower than 10 CFU/g with little quality deterioration. Soft-electrons can inactivate insect pests infesting grains and pulses and inhibit sprouting of potatoes. (author)

  11. Treatment of foods with 'soft-electrons' (low-energy electrons)

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Toru [Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki (Japan); Todoriki, Setsuko [National Food Research Institute (NFRI), Tsukuba, Ibaraki (Japan)

    2003-02-01

    Electrons with energies of 300 keV or lower were defined as soft-electrons'. Soft-electrons can eradicate microorganisms residing on the surface of grains, pulses, spices, dehydrated vegetables, tea leaves and seeds, and reduce their microbial loads to levels lower than 10 CFU/g with little quality deterioration. Soft-electrons can inactivate insect pests infesting grains and pulses and inhibit sprouting of potatoes. (author)

  12. Silicon thin films for mobile energy electronics

    OpenAIRE

    Ahnood, A.

    2011-01-01

    Consumer needs for mobile devices include the requirement for longer battery life, so that recharging can be performed less frequently or eliminated completely. To this end a key component of any mobile system is a high power and high energy density battery. An alternative to better batteries is for mobile devices to harvest some of their own energy. Solar energy is an accessible, free and environmentally friendly source of energy, making it ideal for powering mobile devices. ...

  13. Low-energy electron-induced reactions in condensed matter

    Science.gov (United States)

    Arumainayagam, Christopher R.; Lee, Hsiao-Lu; Nelson, Rachel B.; Haines, David R.; Gunawardane, Richard P.

    2010-01-01

    The goal of this review is to discuss post-irradiation analysis of low-energy (≤50 eV) electron-induced processes in nanoscale thin films. Because electron-induced surface reactions in monolayer adsorbates have been extensively reviewed, we will instead focus on low-energy electron-induced reactions in multilayer adsorbates. The latter studies, involving nanoscale thin films, serve to elucidate the pivotal role that the low-energy electron-induced reactions play in high-energy radiation-induced chemical reactions in condensed matter. Although electron-stimulated desorption (ESD) experiments conducted during irradiation have yielded vital information relevant to primary or initial electron-induced processes, we wish to demonstrate in this review that analyzing the products following low-energy electron irradiation can provide new insights into radiation chemistry. This review presents studies of electron-induced reactions in nanoscale films of molecular species such as oxygen, nitrogen trifluoride, water, alkanes, alcohols, aldehydes, ketones, carboxylic acids, nitriles, halocarbons, alkane and phenyl thiols, thiophenes, ferrocene, amino acids, nucleotides, and DNA using post-irradiation techniques such as temperature-programmed desorption (TPD), reflection-absorption infrared spectroscopy (RAIRS), X-ray photoelectron spectroscopy (XPS), high-resolution electron energy loss spectroscopy (HREELS), gel electrophoresis, and microarray fluorescence. Post-irradiation temperature-programmed desorption, in particular, has been shown to be useful in identifying labile radiolysis products as demonstrated by the first identification of methoxymethanol as a reaction product of methanol radiolysis. Results of post-irradiation studies have been used not only to identify radiolysis products, but also to determine the dynamics of electron-induced reactions. For example, studies of the radiolysis yield as a function of incident electron energy have shown that dissociative

  14. Energy Sharing in the 2-Electron Attosecond Streak Camera

    CERN Document Server

    Price, H; Emmanouilidou, A

    2011-01-01

    Using the recently developed concept of the 2-electron streak camera (see NJP 12, 103024 (2010)), we have studied the energy-sharing between the two ionizing electrons in single-photon double ionization of He(1s2s). We find that the most symmetric and asymmetric energy sharings correspond to different ionization dynamics with the ion's Coulomb potential significantly influencing the latter. This different dynamics for the two extreme energy sharings gives rise to different patterns in asymptotic observables and different time-delays between the emission of the two electrons. We show that the 2-electron streak camera resolves the time-delays between the emission of the two electrons for different energy sharings.

  15. Low energy electron cooler for the Heidelberg CSR

    International Nuclear Information System (INIS)

    The cryogenic storage ring (CSR) is currently under development at MPI-K in Heidelberg. The CSR is an electrostatic ring intended for storing ions in the 20-300 keV energy range (E/Q) in cryogenic environment at temperature down to 2 K. CSR will be equipped with an electron cooler which has to combine cooler and electron target functions. For cooling operation at given ion energies corresponding electron energies are in the range from 160 down to a few eV. Main problems in such operation mode are the decrease of electron beam intensity, the degradation of the electron longitudinal energy spread and the distortion of stored low energy ion trajectories during beams merging. For the CSR a new merging beam section layout together with a photocathode based cold electron source (tested at the Heidelberg TSR) have been proposed. In this paper we present the design of CSR electron cooler including the cryogenic implementation together with numerical calculations of the electron beam longitudinal and transverse energy spread in merged beam section

  16. Properties of the electron cloud in a high-energy positron and electron storage ring

    International Nuclear Information System (INIS)

    Low-energy, background electrons are ubiquitous in high-energy particle accelerators. Under certain conditions, interactions between this electron cloud and the high-energy beam can give rise to numerous effects that can seriously degrade the accelerator performance. These effects range from vacuum degradation to collective beam instabilities and emittance blowup. Although electron-cloud effects were first observed two decades ago in a few proton storage rings, they have in recent years been widely observed and intensely studied in positron and proton rings. Electron-cloud diagnostics developed at the Advanced Photon Source enabled for the first time detailed, direct characterization of the electron-cloud properties in a positron and electron storage ring. From in situ measurements of the electron flux and energy distribution at the vacuum chamber wall, electron-cloud production mechanisms and details of the beam-cloud interaction can be inferred. A significant longitudinal variation of the electron cloud is also observed, due primarily to geometrical details of the vacuum chamber. Such experimental data can be used to provide realistic limits on key input parameters in modeling efforts, leading ultimately to greater confidence in predicting electron-cloud effects in future accelerators.

  17. Study on electron beam in a low energy plasma focus

    International Nuclear Information System (INIS)

    Electron beam emission was investigated in a low energy plasma focus device (2.2 kJ) using copper hollow anode. Faraday cup was used to estimate the energy of the electron beam. XR100CR X-ray spectrometer was used to explore the impact of the electron beam on the target observed from top-on and side-on position. Experiments were carried out at optimized pressure of argon gas. The impact of electron beam is exceptionally notable with two different approaches using lead target inside hollow anode in our plasma focus device

  18. Energy Spread Reduction of Electron Beams Produced via Laser Wake

    Energy Technology Data Exchange (ETDEWEB)

    Pollock, Bradley Bolt [Univ. of California, San Diego, CA (United States)

    2012-01-01

    Laser wakefield acceleration of electrons holds great promise for producing ultra-compact stages of GeV scale, high quality electron beams for applications such as x-ray free electron lasers and high energy colliders. Ultra-high intensity laser pulses can be self-guided by relativistic plasma waves over tens of vacuum diffraction lengths, to give >1 GeV energy in cm-scale low density plasma using ionization-induced injection to inject charge into the wake at low densities. This thesis describes a series of experiments which investigates the physics of LWFA in the self-guided blowout regime. Beginning with high density gas jet experiments the scaling of the LWFA-produced electron beam energy with plasma electron density is found to be in excellent agreement with both phenomenological theory and with 3-D PIC simulations. It is also determined that self-trapping of background electrons into the wake exhibits a threshold as a function of the electron density, and at the densities required to produce electron beams with energies exceeding 1 GeV a different mechanism is required to trap charge into low density wakes. By introducing small concentrations of high-Z gas to the nominal He background the ionization-induced injection mechanism is enabled. Electron trapping is observed at densities as low as 1.3 x 1018 cm-3 in a gas cell target, and 1.45 GeV electrons are demonstrated for the first time from LWFA. This is currently the highest electron energy ever produced from LWFA. The ionization-induced trapping mechanism is also shown to generate quasi-continuous electron beam energies, which is undesirable for accelerator applications. By limiting the region over which ionization-induced trapping occurs, the energy spread of the electron beams can be controlled. The development of a novel two-stage gas cell target provides the capability to tailor the gas composition in the longitudinal direction, and confine the trapping process to occur only in a

  19. Plasma expansion into vacuum assuming a steplike electron energy distribution.

    Science.gov (United States)

    Kiefer, Thomas; Schlegel, Theodor; Kaluza, Malte C

    2013-04-01

    The expansion of a semi-infinite plasma slab into vacuum is analyzed with a hydrodynamic model implying a steplike electron energy distribution function. Analytic expressions for the maximum ion energy and the related ion distribution function are derived and compared with one-dimensional numerical simulations. The choice of the specific non-Maxwellian initial electron energy distribution automatically ensures the conservation of the total energy of the system. The estimated ion energies may differ by an order of magnitude from the values obtained with an adiabatic expansion model supposing a Maxwellian electron distribution. Furthermore, good agreement with data from experiments using laser pulses of ultrashort durations τ(L)electron distribution is assumed.

  20. A study of angle-resolved photoemission extended fine structure as applied to the Ni 3p, Cu 3s, and Cu 3p core levels of the respective clean (111) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Huff, W.R.A.; Moler, E.J.; Kellar, S.A. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    The first non-s initial state angle-resolved photoemission extended fine structure (ARPEFS) study of clean surfaces for the purpose of further understanding the technique is reported. The surface structure sensitivity of ARPEFS applied to clean surfaces and to arbitrary initial states is studied using normal photoemission data taken from the Ni 3p core levels of a Ni(111) single crystal and the Cu 3s and the Cu 3p core-levels of a Cu(111) single crystal. The Fourier transforms of these clean surface data are dominated by backscattering. Unlike the s initial state data, the p initial state data show a peak in the Fourier transform corresponding to in-plane scattering from the six nearest-neighbors to the emitter. Evidence was seen for single-scattering events from in the same plane as the emitters and double-scattering events. Using a newly developed, multiple-scattering calculation program, ARPEFS data from clean surfaces and from p initial states can be modeled to high precision. Although there are many layers of emitters when measuring photoemission from a clean surface, test calculations show that the ARPEFS signal is dominated by photoemission from atoms in the first two crystal layers. Thus, ARPEFS applied to clean surfaces is sensitive to surface reconstruction. The known contraction of the first two Cu(111) layers is confirmed. The best-fit calculation for clean Ni(111) indicates an expansion of the first two layers. To better understand the ARPEFS technique, the authors studied s and non-s initial state photoemission from clean metal surfaces.

  1. A study of angle-resolved photoemission extended fine structure as applied to the Ni 3p, Cu 3s, and Cu 3p core levels of the respective clean (111) surfaces

    International Nuclear Information System (INIS)

    The first non-s initial state angle-resolved photoemission extended fine structure (ARPEFS) study of clean surfaces for the purpose of further understanding the technique is reported. The surface structure sensitivity of ARPEFS applied to clean surfaces and to arbitrary initial states is studied using normal photoemission data taken from the Ni 3p core levels of a Ni(111) single crystal and the Cu 3s and the Cu 3p core-levels of a Cu(111) single crystal. The Fourier transforms of these clean surface data are dominated by backscattering. Unlike the s initial state data, the p initial state data show a peak in the Fourier transform corresponding to in-plane scattering from the six nearest-neighbors to the emitter. Evidence was seen for single-scattering events from in the same plane as the emitters and double-scattering events. Using a newly developed, multiple-scattering calculation program, ARPEFS data from clean surfaces and from p initial states can be modeled to high precision. Although there are many layers of emitters when measuring photoemission from a clean surface, test calculations show that the ARPEFS signal is dominated by photoemission from atoms in the first two crystal layers. Thus, ARPEFS applied to clean surfaces is sensitive to surface reconstruction. The known contraction of the first two Cu(111) layers is confirmed. The best-fit calculation for clean Ni(111) indicates an expansion of the first two layers. To better understand the ARPEFS technique, the authors studied s and non-s initial state photoemission from clean metal surfaces

  2. An electronic structure perspective of graphene interfaces

    Science.gov (United States)

    Schultz, Brian J.; Dennis, Robert V.; Lee, Vincent; Banerjee, Sarbajit

    2014-03-01

    The unusual electronic structure of graphene characterized by linear energy dispersion of bands adjacent to the Fermi level underpins its remarkable transport properties. However, for practical device integration, graphene will need to be interfaced with other materials: 2D layered structures, metals (as ad-atoms, nanoparticles, extended surfaces, and patterned metamaterial geometries), dielectrics, organics, or hybrid structures that in turn are constituted from various inorganic or organic components. The structural complexity at these nanoscale interfaces holds much promise for manifestation of novel emergent phenomena and provides a means to modulate the electronic structure of graphene. In this feature article, we review the modifications to the electronic structure of graphene induced upon interfacing with disparate types of materials with an emphasis on iterative learnings from theoretical calculations and electronic spectroscopy (X-ray absorption fine structure (XAFS) spectroscopy, scanning transmission X-ray microscopy (STXM), angle-resolved photoemission spectroscopy (ARPES), and X-ray magnetic circular dichroism (XMCD)). We discuss approaches for engineering and modulating a bandgap in graphene through interfacial hybridization, outline experimental methods for examining electronic structure at interfaces, and overview device implications of engineered interfaces. A unified view of how geometric and electronic structure are correlated at interfaces will provide a rational means for designing heterostructures exhibiting emergent physical phenomena with implications for plasmonics, photonics, spintronics, and engineered polymer and metal matrix composites.

  3. Electronically droplet energy harvesting using piezoelectric cantilevers

    KAUST Repository

    Al Ahmad, Mahmoud Al

    2012-01-01

    A report is presented on free falling droplet energy harvesting using piezoelectric cantilevers. The harvester incorporates a multimorph clamped-free cantilever which is composed of five layers of lead zirconate titanate piezoelectric thick films. During the impact, the droplet kinetic energy is transferred into the form of mechanical stress forcing the piezoelectric structure to vibrate. Experimental results show energy of 0.3 μJ per droplet. The scenario of moderate falling drop intensity, i.e. 230 drops per second, yields a total energy of 400 μJ. © 2012 The Institution of Engineering and Technology.

  4. Polarization of high-energy electrons traversing a laser beam

    CERN Document Server

    Kotkin, G L; Serbo, V G

    1998-01-01

    When polarized electrons traverse a region where the laser light is focused their polarization varies even if their energy and direction of motion are not changed. This effect is due to interference of the incoming electron wave and an electron wave scattered at zero angle. Equations are obtained which determine the variation of the electron density matrix, and their solutions are given. The change in the electron polarization depends not only on the Compton cross section but on the real part of the forward Compton amplitude as well. It should be taken into account, for example, in simulations of the $e \\to \\gamma$ conversion for future $\\gamma \\gamma$ colliders.

  5. CAMAC high energy physics electronics hardware

    International Nuclear Information System (INIS)

    CAMAC hardware for high energy physics large spectrometers and control systems is reviewed as is the development of CAMAC modules at the High Energy Laboratory, JINR (Dubna). The total number of crates used at the Laboratory is 179. The number of CAMAC modules of 120 different types exceeds 1700. The principles of organization and the structure of developed CAMAC systems are described. (author)

  6. Modified Fermi energy of electrons in a superhigh magnetic field

    Science.gov (United States)

    Zhu, Cui; Gao, Zhi Fu; Li, Xiang Dong; Wang, Na; Yuan, Jian Ping; Peng, Qiu He

    2016-04-01

    In this paper, we investigate the electron Landau level stability and its influence on the electron Fermi energy, EF(e), in the circumstance of magnetars, which are powered by magnetic field energy. In a magnetar, the Landau levels of degenerate and relativistic electrons are strongly quantized. A new quantity gn, the electron Landau level stability coefficient is introduced. According to the requirement that gn decreases with increasing the magnetic field intensity B, the magnetic field index β in the expression of EF(e) must be positive. By introducing the Dirac-δ function, we deduce a general formulae for the Fermi energy of degenerate and relativistic electrons, and obtain a particular solution to EF(e) in a superhigh magnetic field (SMF). This solution has a low magnetic field index of β = 1/6, compared with the previous one, and works when ρ ≥ 107g cm-3 and Bcr ≪ B ≤ 1017 Gauss. By modifying the phase space of relativistic electrons, a SMF can enhance the electron number density ne, and decrease the maximum of electron Landau level number, which results in a redistribution of electrons. According to Pauli exclusion principle, the degenerate electrons will fill quantum states from the lowest Landau level to the highest Landau level. As B increases, more and more electrons will occupy higher Landau levels, though gn decreases with the Landau level number n. The enhanced ne in a SMF means an increase in the electron Fermi energy and an increase in the electron degeneracy pressure. The results are expected to facilitate the study of the weak-interaction processes inside neutron stars and the magnetic-thermal evolution mechanism for magnetars.

  7. Spatial distribution of energy deposited in nitrogen by electrons

    International Nuclear Information System (INIS)

    The spatial distribution of the energy deposited by kilovolt electrons moving through gaseous molecular nitrogen was measured. The range of electrons of initial energy 300 eV to 5 keV was obtained and can be expressed by the formula R=K1+K2E/subA/1-K3E/subA/2, where R is the range, E is the initial energy of the electrons, and K/subi/,A/subi/ are constants. The range, in this energy interval, is greater than that determined by previous measurements. A source of error, not previously discussed, is considered. The energy region (above 1 keV) where the simpler expression R=KE/subA/ holds is discussed. It is shown that this is the energy region where the energy and range dependence of the energy deposition curve can be removed and a normalized, characteristic energy deposition curve lambda can be obtained. The efficiency of conversion of electron energy at 1 keV and 280 μ pressure to energy of photons at 3914 A was measured to be (0.28+-0.03) %

  8. Secondary-electron-emission spectroscopy of tungsten: Angular dependence and phenomenology

    DEFF Research Database (Denmark)

    Willis, Roy F.; Christensen, Niels Egede

    1978-01-01

    -vacuum interface. In addition, transmission-induced spectral features are observed (transmission resonances), which are not related to the density-of-states fine structure, but are due to a quantum-mechanical enhancement in the escape probability arising from wave-function matching at the emitter-vacuum interface....... Bulk and surface band-structure effects are concurrently manifest in the SEE spectra via the wave-matching conditions imposed at the solid-vacuum interface. The results are discussed within the general conceptual framework provided by "the (time-reversed) incoming final-state wave-function" approach......Angle-resolved energy-distribution measurements of secondary-electron emission (SEE) from metals reveal spectral fine structure that relates directly to the density distribution of the one-electron states throughout E-K→ space located above the vacuum level Ev. The angular dependence of the SEE...

  9. Power electronics - key technology for renewable energy systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Iov, Florin; Kerekes, Tamas;

    2011-01-01

    The electrical energy consumption continues to grow and more applications are based on electricity. We can expect that more 60% of all energy consumption will be converted and used as electricity. Therefore, it is a demand that production, distribution and use of electrical energy are done...... sources to renewable energy sources. Another is to use high efficient power electronics in power generation, power transmission/distribution and end-user application. This paper discuss trends of the most emerging renewable energy sources, wind energy and photovoltaics, which by means of power electronics...... are changing and challenging the future electrical infrastructure but also contributes steadily more to non-carbon based electricity production. Most focus in the paper is on the power electronics technologies used. In the case of photovoltaics transformer-less systems are discussed as they have the potential...

  10. Electron tunneling in single layer graphene with an energy gap

    Institute of Scientific and Technical Information of China (English)

    Xu Xu-Guang; Zhang Chao; Xu Gong-Jie; Cao Jun-Cheng

    2011-01-01

    When a single layer graphene is epitaxially grown on silicon carbide, it will exhibit a finite energy gap like a conventional semiconductor, and its energy dispersion is no longer linear in momentum in the low energy regime. In this paper, we have investigated the tunneling characteristics through a two-dimensional barrier in a single layer graphene with an energy gap. It is found that when the electron is at a zero angle of incidence, the transmission probability as a function of incidence energy has a gap. Away from the gap the transmission coefficient oscillates with incidence energy which is analogous to that of a conventional semiconductor. The conductance under zero temperature has a gap. The properties of electron transmission may be useful for developing graphene-based nano-electronics.

  11. Quantitative measurements of Kikuchi bands in diffraction patterns of backscattered electrons using an electrostatic analyzer.

    Science.gov (United States)

    Went, M R; Winkelmann, A; Vos, M

    2009-09-01

    Diffraction patterns of backscattered electrons can provide important crystallographic information with high spatial resolution. Recently, the dynamical theory of electron diffraction was applied to reproduce in great detail backscattering patterns observed in the scanning electron microscope (SEM). However, a fully quantitative comparison of theory and experiment requires angle-resolved measurements of the intensity and the energy of the backscattered electrons, which is difficult to realize in an SEM. This paper determines diffraction patterns of backscattered electrons using an electrostatic analyzer, operating at energies up to 40 keV with sub-eV energy resolution. Measurements are done for different measurement geometries and incoming energies. Generally a good agreement is found between theory and experiment. This spectrometer also allows us to test the influence of the energy loss of the detected electron on the backscattered electron diffraction pattern. It is found that the amplitude of the intensity variation decreases only slowly with increasing energy loss from 0 to 60 eV.

  12. Stochastic Acceleration of Low Energy Electrons in Cold Plasmas

    CERN Document Server

    Pryadko, J M; Pryadko, Julia M.; Petrosian, Vahe

    1996-01-01

    We investigate the possibility of stochastic acceleration of background low-energy electrons by turbulent plasma waves. We consider the resonant interaction of the charged particles with all branches of the transverse plasma waves propagating parallel to a uniform magnetic field. Numerical results and asymptotic analytic solutions valid at non-relativistic and ultra-relativistic energies are obtained for the acceleration and scattering times of electrons. These times have a strong dependence on plasma parameter alpha = Omega_pe / Omega_e (the ratio of electron plasma frequency to electron gyrofrequency) and on the spectral index of plasma turbulence. It is shown that particles with energies above certain critical value may interact with higher frequency electromagnetic plasma waves and this interaction is allowed only in plasmas with alpha < 1. We show that for non-relativistic and semi-relativistic electrons in low-alpha plasmas the ratio of the acceleration time to the scattering time can be less than un...

  13. Development of total-skin electron therapy at two energies

    International Nuclear Information System (INIS)

    Total-Skin Electron Therapy (TSET) modalities have been developed at two energies on a Varian Clinac 1800. The physical criteria for the beams were determined mainly from the requirement of continuing the Stanford treatment technique, which was 12 Total-Skin Electron Therapy portals combined in six pairs. The penetration of the lower energy mode matches that previously obtained at Stanford on the Varian Clinac 10, (about 4 mm for the 80% isodose contour in the 12-field treatment). The penetration of the higher energy mode is about 8 mm at the 80% contour. The Total-Skin Electron Therapy modes necessarily use electrons produced by the two standard electron-beam modes of lowest energy, nominally 6 and 9 MeV. Measurements to verify the beam specifications were carried out with diodes, a variety of ionization chambers, and a specially constructed circular phantom for film dosimetry. Initially, the penetration of the Total-Skin Electron Therapy beams was too large to match our criteria, so two methods of reducing it were explored: (a) the energies of the electron beams produced by the machine were reduced (which also reduced the energies of the corresponding standard electron modes) and (b) a large polymethylmethacrylate degrader (2.4 m X 1.2 m) 1 cm thick was placed just in front of the patient plane. Acceptable Total-Skin Electron Therapy beams could be produced by either method and the latter was finally used. The use of the standard dose monitoring system for the Total-Skin Electron Therapy modes considerably simplifies the daily treatment delivery as well as the implementation. However, the need for reasonable dose rates at the treatment plane (3.5 meters beyond the isocenter) requires dose rates of 24 Gy/min at the isocenter. Nevertheless, it is possible to use the internal dose monitor provided the problems associated with high dose rates are addressed

  14. In Situ Electron Energy Loss Spectroscopy in Liquids

    CERN Document Server

    Holtz, Megan E; Gao, Jie; Abruña, Héctor D; Muller, David A

    2012-01-01

    In situ scanning transmission electron microscopy (STEM) through liquids is a promising approach for exploring biological and materials processes. However, options for in situ chemical identification are limited: X-ray analysis is precluded because the holder shadows the detector, and electron energy loss spectroscopy (EELS) is degraded by multiple scattering events in thick layers. Here, we explore the limits of EELS for studying chemical reactions in their native environments in real time and on the nanometer scale. The determination of the local electron density, optical gap and thickness of the liquid layer by valence EELS is demonstrated for liquids. By comparing theoretical and experimental plasmon energies, we find that liquids appear to follow the free-electron model that has been previously established for solids. Signals at energies below the optical gap and plasmon energy of the liquid provide a high signal-to-background ratio as demonstrated for LiFePO4 in aqueous solution. The potential for using...

  15. Parametrization of ambient energy harvesters for complementary balanced electronic applications

    Science.gov (United States)

    Verbelen, Yannick; Braeken, An; Touhafi, Abdellah

    2013-05-01

    The specific technical challenges associated with the design of an ambient energy powered electronic system currently requires thorough knowledge of the environment of deployment, energy harvester characteristics and power path management. In this work, a novel flexible model for ambient energy harvesters is presented that allows decoupling of the harvester's physical principles and electrical behavior using a three dimensional function. The model can be adapted to all existing harvesters, resulting in a design methodology for generic ambient energy powered systems using the presented model. Concrete examples are included to demonstrate the versatility of the presented design in the development of electronic appliances on system level.

  16. Electron, photons, and molecules: Storing energy from light

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J.R. [Argonne National Laboratory, IL (United States)

    1996-09-01

    Molecular charge separation has important potential for photochemical energy storage. Its efficiency can be enhanced by principals which maximize the rates of the electron transfer steps which separate charge and minimize those which recombine high-energy charge pairs to lose stored energy. Dramatic scientific progress in understanding these principals has occurred since the founding of DOE and its predecessor agency ERDA. While additional knowledge in needed in broad areas of molecular electron transfer, some key areas of knowledge hold particular promise for the possibility of moving this area from science toward technology capable of contributing to the nation`s energy economy.

  17. Communication: Investigation of the electron momentum density distribution of nanodiamonds by electron energy-loss spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Zhenbao; Yang, Bing; Lin, Yangming; Su, Dangsheng, E-mail: dssu@imr.ac.cn [Shenyang National Laboratory of Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Wenhua Road 72, Shenyang 110016 (China)

    2015-12-07

    The electron momentum distribution of detonation nanodiamonds (DND) was investigated by recording electron energy-loss spectra at large momentum transfer in the transmission electron microscope (TEM), which is known as electron Compton scattering from solid (ECOSS). Compton profile of diamond film obtained by ECOSS was found in good agreement with prior photon experimental measurement and theoretical calculation that for bulk diamond. Compared to the diamond film, the valence Compton profile of DND was found to be narrower, which indicates a more delocalization of the ground-state charge density for the latter. Combining with other TEM characterizations such as high-resolution transmission electron spectroscopy, diffraction, and energy dispersive X-ray spectroscopy measurements, ECOSS was shown to be a great potential technique to study ground-state electronic properties of nanomaterials.

  18. Electron spectroscopy at the high-energy endpoint of electron-nucleus bremsstrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Hillenbrand, Pierre-Michel [GSI Darmstadt (Germany); Univ. Giessen (Germany); Hagmann, Siegbert [GSI Darmstadt (Germany); Univ. Frankfurt (Germany); Banas, Dariusz [Univ. Kielce (Poland); Brandau, Carsten [Extreme Matter Institute Darmstadt (Germany); Univ. Giessen (Germany); Doerner, Reinhard [Univ. Frankfurt (Germany); De Filippo, Enrico [INFN Catania (Italy); Gumberidze, Alexandre [Extreme Matter Institute Darmstadt (Germany); Guo, Dalong [IMP Lanzhou (China); Univ. Beijing (China); Jakubassa-Amundsen, Doris [Univ. Muenchen (Germany); Lestinsky, Michael; Spillmann, Uwe [GSI Darmstadt (Germany); Litvinov, Yuri [GSI Darmstadt (Germany); Univ. Heidelberg (Germany); Mueller, Alfred; Schippers, Stefan [Univ. Giessen (Germany); Rothard, Hermann [CIRIL GANIL Caen (France); Surzhykov, Andrey [Helmholtz-Institut Jena (Germany); Trotsenko, Sergey [GSI Darmstadt (Germany); Helmholtz-Institut Jena (Germany); Voitkiv, Alexander [MPI-K Heidelberg (Germany); Yerokhin, Vladimir [Petersburg State Univ. (Russian Federation); Stoehlker, Thomas [GSI Darmstadt (Germany); Helmholtz-Institut Jena (Germany); Univ. Jena (Germany)

    2014-07-01

    The high-energy endpoint of electron-nucleus bremsstrahlung has been studied in inverse kinematics: For collisions U{sup 88+}+N{sub 2} → U{sup 88+}+[N{sub 2}{sup +}]{sup *} + e{sup -} + γ the energy distribution of electrons scattered under θ{sub e}{sup lab} = 0 {sup circle} with v{sub e} ∼ v{sub proj} was measured coincident with the bremsstrahlung photons emitted under various angles θ{sub γ}{sup lab}. The triple-differential cross sections provide a stringent test for the fully relativistic theory of electron-nucleus bremsstrahlung. Furthermore the studied process, also termed radiative electron capture to continuum RECC, was compared to the competing processes of non-radiative electron capture to continuum ECC and the electron loss to continuum ELC.

  19. Communication: Investigation of the electron momentum density distribution of nanodiamonds by electron energy-loss spectroscopy

    International Nuclear Information System (INIS)

    The electron momentum distribution of detonation nanodiamonds (DND) was investigated by recording electron energy-loss spectra at large momentum transfer in the transmission electron microscope (TEM), which is known as electron Compton scattering from solid (ECOSS). Compton profile of diamond film obtained by ECOSS was found in good agreement with prior photon experimental measurement and theoretical calculation that for bulk diamond. Compared to the diamond film, the valence Compton profile of DND was found to be narrower, which indicates a more delocalization of the ground-state charge density for the latter. Combining with other TEM characterizations such as high-resolution transmission electron spectroscopy, diffraction, and energy dispersive X-ray spectroscopy measurements, ECOSS was shown to be a great potential technique to study ground-state electronic properties of nanomaterials

  20. Utilization of low-energy electron accelerators in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Cheol [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2003-02-01

    There are more than 20 electron accelerators in Korea. Most of those are installed in factories for heat-resistant cables, heat-shrinkable cables, radial tires, foams, tube/ films, curing, etc. Four low-energy electron accelerators are in operation for research purposes such as polymer modification, purification of flue gas, waste water treatment, modification of semiconductor characteristics, etc. (author)

  1. Recent applications of low energy electron beam processing

    International Nuclear Information System (INIS)

    It is obvious that radiation processing reduces energy consumption and avoids pollution because the coatings are solventless; but as important these factors may be, they alone do not justify the investment of an electron beam accelerator. With a few examples from the industry, motivations of users to choose electron processing is explained. (author)

  2. Flux profile scanners for scattered high-energy electrons

    CERN Document Server

    Hicks, R S; Arroyo, C; Breuer, M; Celli, J; Chudakov, E; Kumar, K S; Olson, M; Peterson, G A; Pope, K; Ricci, J; Savage, J; Souder, P A

    2005-01-01

    The paper describes the design and performance of flux integrating Cherenkov scanners with air-core reflecting light guides used in a high-energy, high-flux electron scattering experiment at the Stanford Linear Accelerator Center. The scanners were highly radiation resistant and provided a good signal to background ratio leading to very good spatial resolution of the scattered electron flux profile scans.

  3. Computation of the average energy for LXY electrons

    International Nuclear Information System (INIS)

    The application of an atomic rearrangement model in which we only consider the three shells K, L and M, to compute the counting efficiency for electron capture nuclides, requires a fine averaged energy value for LMN electrons. In this report, we illustrate the procedure with two example, ''125 I and ''109 Cd. (Author) 4 refs

  4. Medipix 2 detector applied to low energy electron microscopy

    NARCIS (Netherlands)

    Gastel, van R.; Sikharulidze, I.; Schramm, S.; Abrahams, J.P.; Poelsema, B.; Tromp, R.M.; Molen, van der S.J.

    2009-01-01

    Low energy electron microscopy (LEEM) and photo-emission electron microscopy (PEEM) traditionally use microchannel plates (MCPs), a phosphor screen and a CCD-camera to record images and diffraction patterns. In recent years, however, MCPs have become a limiting factor for these types of microscopy.

  5. Analysis of electron energy-loss spectra and images

    NARCIS (Netherlands)

    C.W.J. Sorber (Lianne)

    1993-01-01

    textabstractSeveral methods are proposed for the elemental analysis of biological material with the use of electron energy-loss spectroscopy (EELS) and electron spectroscopic imaging (ESI) in a Zeiss EM902. For spectra, the Simplex-method was tested and compared to Egerton's 2- area method, the Stee

  6. International Conference on Power Electronics and Renewable Energy Systems

    CERN Document Server

    Suresh, L; Dash, Subhransu; Panigrahi, Bijaya

    2015-01-01

    The book is a collection of high-quality peer-reviewed research papers presented in Proceedings of International Conference on Power Electronics and Renewable Energy Systems (ICPERES 2014) held at Rajalakshmi Engineering College, Chennai, India. These research papers provide the latest developments in the broad area of Power Electronics and Renewable Energy. The book discusses wide variety of industrial, engineering and scientific applications of the emerging techniques. It presents invited papers from the inventors/originators of new applications and advanced technologies.

  7. Electronic Energy Transfer in Polarizable Heterogeneous Environments

    DEFF Research Database (Denmark)

    Svendsen, Casper Steinmann; Kongsted, Jacob

    2015-01-01

    such couplings provide important insight into the strength of interaction between photo-active pigments in protein-pigment complexes. Recently, attention has been payed to how the environment modifies or even controls the electronic couplings. To enable such theoretical predictions, a fully polarizable...... higher-order multipole moments. We use this extended model to systematically examine three different ways of obtaining EET couplings in a heterogeneous medium ranging from use of the exact transition density to a point-dipole approximation. Several interesting observations are made including that...... explicit use of transition densities in the calculation of the electronic couplings - also when including the explicit environment contribution - can be replaced by a much simpler transition point charge description without comprising the quality of the model predictions....

  8. Interaction of low energy electrons with platinum surface

    Science.gov (United States)

    Borka, D.; Tőkési, K.

    2015-07-01

    We present Monte Carlo simulation of low energy electrons backscattered from platinum (Pt) surface. We take into account both elastic and inelastic collisions during the simulation. For the case of the elastic scattering of electrons by Pt atoms we use the static field approximation with non-relativistic Schrödinger partial wave analysis. For the case of inelastic scattering we use the dielectric response formalism. In our simulations the primary electron energy is 250 eV and the incidence angle of the electron beam with respect to the surface is varied between 1° and 90°. The backscattered electron energy loss distributions for primary and as well for secondary electrons and the distribution of maximum electron penetration depths in the Pt sample were calculated using only the bulk and also the surface dielectric function. We found that the maximum attained depth of the electrons is around 20 Å, i.e. the electrons are at the vicinity of the surface. Therefore we expect that the experimental data will be close to our simulation using surface-excitations modes.

  9. Hot Electrons and Energy Transport in Metals at MK Temperatures.

    Science.gov (United States)

    Roukes, Michael Lee

    Using a new technique involving the generation of hot carriers, we directly measure energy loss lifetimes for electrons in impure metals at mK temperatures. At these temperatures very weak inelastic scattering processes determine energy transport out of the electron gas. A temperature difference between the electron gas and the lattice can be induced by applying an extremely small electric field (of order 1 (mu)V/cm at 25 mK). This temperature difference reflects the rate at which electrons lose energy to the surroundings. The experiment is carried out using a pair of interdigitated thin film resistors mounted on a millidegree demagnetization cryostat: we obtain electron temperature directly by observing current fluctuations. Noise generated by the resistors is measured using an ultra-sensitive two -channel dc SQUID system, providing femtoamp resolution at KHz frequencies. A dc voltage applied across one resistor imposes the bias field causing electron heating. Phonon temperature in the metal lattice is obtained by measuring noise from a second (unbiased) resistor, which is tightly coupled thermally to the first (biased). Our measurements show that electron heating follows an E('2/5) power law in the regime where electron temperature is largely determined by the electric field, E. This implies a T('-3) law for the energy loss lifetime, suggesting electron -acoustic phonon processes dominate. In the mK temperature regime the conductivity is impurity limited and remains ohmic, even as the electrons heat. Assuming a T('3) dependence and extrapolating our measured rates to higher temperatures, we find agreement with electron-phonon rates measured above 1K in clean bulk metals. This contrasts with results from weak localization experiments showing a power law differing from T('3) and much faster rates. This difference arises because weak localization experiments measure the electron phase coherence lifetime; our electron heating experiments, however, measure an energy

  10. Controlling the Electron Energy Distribution Function Using an Anode

    Science.gov (United States)

    Baalrud, Scott D.; Barnat, Edward V.; Hopkins, Mathew M.

    2014-10-01

    Positively biased electrodes inserted into plasmas influence the electron energy distribution function (EEDF) by providing a sink for low energy electrons that would otherwise be trapped by ion sheaths at the chamber walls. We develop a model for the EEDF in a hot filament generated discharge in the presence of positively biased electrodes of various surface areas, and compare the model results with experimental Langmuir probe measurements and particle-in-cell simulations. In the absence of an anode, the EEDF is characterized by a cool trapped population at energies below the sheath energy, and a comparatively warm tail population associated with the filament primaries. Anodes that are small enough to collect a negligible fraction of the electrons exiting the plasma have little affect on the EEDF, but as the anode area approaches √{me /mi }Aw , where Aw is the chamber wall area, the anode collects most of the electrons leaving the plasma. This drastically reduces the density of the otherwise trapped population, causing an effective heating of the electrons and a corresponding density decrease. A global model is developed based on the EEDF model and current balance, which shows the interconnected nature of the electron temperature, density and the plasma potential. This work was supported by the Office of Fusion Energy Science at the U.S. Department of Energy under Contract DE-AC04-94SL85000, and by the University of Iowa Old Gold Program.

  11. Energy Filtering and Coaxial Detection of the Backscattered Electrons in Scanning Electron Microscope

    Institute of Scientific and Technical Information of China (English)

    JIANG Chang-Zhong; P. Morin; N. Rosenberg

    2000-01-01

    A new detection system in scanning electron microscope, which filters in energy and detects the backscattered electrons close to the microscope axis, is described. This technique ameliorates the dependence of the back. scat tering coefficient on atomic number, and suppresses effectively the relief contrast at the same time. Therefore this new method is very suitable to the composition analysis.

  12. Spin- and valley-coupled electronic states in monolayer WSe{sub 2} on bilayer graphene

    Energy Technology Data Exchange (ETDEWEB)

    Sugawara, K.; Souma, S. [WPI Research Center, Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Sato, T.; Tanaka, Y. [Department of Physics, Tohoku University, Sendai 980-8578 (Japan); Takahashi, T. [WPI Research Center, Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Department of Physics, Tohoku University, Sendai 980-8578 (Japan)

    2015-08-17

    We have fabricated a high-quality monolayer WSe{sub 2} film on bilayer graphene by epitaxial growth and revealed the electronic states by spin- and angle-resolved photoemission spectroscopy. We observed a direct energy gap at the Brillouin-zone corner in contrast to the indirect nature of gap in bulk WSe{sub 2}, which is attributed to the lack of interlayer interaction and the breaking of space-inversion symmetry in monolayer film. A giant spin splitting of ∼0.5 eV, which is the largest among known monolayer transition-metal dichalcogenides, is observed in the energy band around the zone corner. The present results suggest a high potential applicability of WSe{sub 2} to develop advanced devices based with the coupling of spin- and valley-degrees of freedom.

  13. Electronic structure of a superconducting topological insulator Sr-doped Bi2Se3

    International Nuclear Information System (INIS)

    Using high-resolution angle-resolved photoemission spectroscopy and scanning tunneling microscopy/spectroscopy, the atomic and low energy electronic structure of the Sr-doped superconducting topological insulators (SrxBi2Se3) was studied. Scanning tunneling microscopy shows that most of the Sr atoms are not in the van der Waals gap. After Sr doping, the Fermi level was found to move further upwards when compared with the parent compound Bi2Se3, which is consistent with the low carrier density in this system. The topological surface state was clearly observed, and the position of the Dirac point was determined in all doped samples. The surface state is well separated from the bulk conduction bands in the momentum space. The persistence of separated topological surface state combined with small Fermi energy makes this superconducting material a very promising candidate for the time reversal invariant topological superconductor

  14. Evaluation of Miscellaneous and Electronic Device Energy Use in Hospitals

    Energy Technology Data Exchange (ETDEWEB)

    Black, Douglas R.; Lanzisera, Steven M.; Lai, Judy; Brown, Richard E.; Singer, Brett C.

    2012-09-01

    Miscellaneous and electronic loads (MELs) consume about one-thirdof the primary energy used in US buildings, and their energy use is increasing faster than other end-uses. In healthcare facilities, 30percent of the annual electricity was used by MELs in 2008. This paper presents methods and challenges for estimating medical MELs energy consumption along with estimates of energy use in a hospital by combining device-level metered data with inventories and usage information. An important finding is that common, small devices consume large amounts of energy in aggregate and should not be ignored when trying to address hospital energy use.

  15. Characteristic energy losses of electrons in organic NTCDA-films

    CERN Document Server

    Komolov, S A; Sidorenko, A G; Alyaev, Y G; Novolodskij, V A

    2001-01-01

    The studies on the characteristic energy losses of slow electrons in the NTCDA thin film on the ZnO (0001) surface are presented. It is shown, that the spectrum of the energy losses (E sub p =4.0; 5.6; 12.5 and 14.5 eV) in the area of low energies (< 60 eV) reflects the structure of transitions between the valency zone and the conductivity zone. The energy losses on the plasma oscillations excitation the excitation of pi-plasmon with the energy of 6.5 eV and excitation of the pi-sigma plasmon with the energy of 25 eV become prevailing with the growth of the initial electrons energy

  16. Technological conditions of electronic energy market

    International Nuclear Information System (INIS)

    The restructurization of Polish power industry is discussed. The national power system will be controlled by Transmission Grid Management and therefore a free trade of electric energy will be limited. A nature of power industry requires control coordination of infrastructure modernization and investments. The conditions of free market are analysed. The third party access to transmission system will be allowed. The energy law and actions towards an electric market development require taking into accounts the technical conditions and the systematic character of generation and transmission

  17. Electron beam energy QA - a note on measurement tolerances.

    Science.gov (United States)

    Meyer, Juergen; Nyflot, Matthew J; Smith, Wade P; Wottoon, Landon S; Young, Lori; Yang, Fei; Kim, Minsun; Hendrickson, Kristi R G; Ford, Eric; Kalet, Alan M; Cao, Ning; Dempsey, Claire; Sandison, George A

    2016-01-01

    Monthly QA is recommended to verify the constancy of high-energy electron beams generated for clinical use by linear accelerators. The tolerances are defined as 2%/2 mm in beam penetration according to AAPM task group report 142. The practical implementation is typically achieved by measuring the ratio of readings at two different depths, preferably near the depth of maximum dose and at the depth corresponding to half the dose maximum. Based on beam commissioning data, we show that the relationship between the ranges of energy ratios for different electron energies is highly nonlinear. We provide a formalism that translates measurement deviations in the reference ratios into change in beam penetration for electron energies for six Elekta (6-18 MeV) and eight Varian (6-22 MeV) electron beams. Experimental checks were conducted for each Elekta energy to compare calcu-lated values with measurements, and it was shown that they are in agreement. For example, for a 6 MeV beam a deviation in the measured ionization ratio of ± 15% might still be acceptable (i.e., be within ± 2 mm), whereas for an 18 MeV beam the corresponding tolerance might be ± 6%. These values strongly depend on the initial ratio chosen. In summary, the relationship between differences of the ionization ratio and the corresponding beam energy are derived. The findings can be translated into acceptable tolerance values for monthly QA of electron beam energies. PMID:27074488

  18. Soft electron (low energy electron) processing of foods for microbial control

    International Nuclear Information System (INIS)

    'Soft-electron' is a new term we have created referring to electrons with energies of 300 kV or lower. Homogenous irradiation of surfaces with soft electrons can decontaminate dry food ingredients such as gains, pulses, spices, dehydrated vegetables and tealeaves without detrimental effects. Treatment of soybeans with electrons of acceleration voltages at 170 kV reduced their microbial count to an undetectable level. Pre-treatment of soybeans with soft electrons enabled the extension of soymilk without sterilization process at a high temperature (120 deg. C). The gelatinized property of soymilk from soft electron-treated beans was better than that of high-temperature sterilized soymilks. These results indicate that soft-electron sterilization improved the quality of soybeans for the processing of soymilk and Tofu(soymilk curd)

  19. Development of a spin polarized low energy electron diffraction system.

    Science.gov (United States)

    Pradeep, A V; Roy, Arnab; Kumar, P S Anil; Kirschner, J

    2016-02-01

    We have designed and constructed a spin polarized low energy electron diffraction system working in the reflected electron pulse counting mode. This system is capable of measuring asymmetries due to spin-orbit and exchange interactions. Photoemission from a strained GaAs/GaAsP super lattice is used as the source of spin polarized electrons. Spin-orbit asymmetry is evaluated for Ir(100) single crystal at various energies. Subsequently, exchange asymmetry has been evaluated on 40 monolayer Fe deposited on Ir(100). This instrument proves to be useful in understanding structure and magnetism at surfaces. PMID:26931865

  20. Modelling low energy electron interactions for biomedical uses of radiation

    Energy Technology Data Exchange (ETDEWEB)

    Fuss, M; Garcia, G [Instituto de Fisica Fundamental, Consejo Superior de Investigaciones CientIficas (CSIC), Serrano 113-bis, 28006 Madrid (Spain); Munoz, A; Oller, J C [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Avenida Complutense 22, 28040 Madrid (Spain); Blanco, F [Departamento de Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid, Avenida Complutense s.n., 28040 Madrid (Spain); Limao-Vieira, P [Departamento de Fisica, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Huerga, C; Tellez, M [Hospital Universitario La Paz, paseo de la Castellana 261, 28046 Madrid (Spain); Hubin-Fraskin, M J [Department of Chemistry, University of Liege, 4000 Liege 1 (Belgium); Nixon, K; Brunger, M, E-mail: g.garcia@imaff.cfmac.csic.e [School of Chemistry, Physics and Earth Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia)

    2009-11-15

    Current radiation based medical applications in the field of radiotherapy, radio-diagnostic and radiation protection require modelling single particle interactions at the molecular level. Due to their relevance in radiation damage to biological systems, special attention should be paid to include the effect of low energy secondary electrons. In this study we present a single track simulation procedure for photons and electrons which is based on reliable experimental and theoretical cross section data and the energy loss distribution functions derived from our experiments. The effect of including secondary electron interactions in this model will be discussed.

  1. Power electronics for renewable energy systems, transportation and industrial applications

    CERN Document Server

    Abu-Rub, Haitham; Al-Haddad, Kamal

    2014-01-01

    Compiles current research into the analysis and design of power electronic converters for industrial applications and renewable energy systems, presenting modern and future applications of power electronics systems in the field of electrical vehicles With emphasis on the importance and long-term viability of Power Electronics for Renewable Energy this book brings together the state of the art knowledge and cutting-edge techniques in various stages of research.  The topics included are not currently available for practicing professionals and aim to enable the reader to directly apply the know

  2. Power Electronics and Reliability in Renewable Energy Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Ma, Ke; Zhou, Dao

    2012-01-01

    Power Electronics are needed in almost all kind of renewable energy systems. It is used both for controlling the renewable source and also for interfacing to the load, which can be grid-connected or working in stand-alone mode. More and more efforts are put into making renewable energy systems...... better in terms of reliability in order to ensure a high availability of the power sources, in this case the knowledge of mission profile of a certain application is crucial for the reliability evaluation/design of power electronics. In this paper an overview on the power electronic circuits behind...

  3. Electrons with continuous energy distribution from energetic heavy ion collisions

    International Nuclear Information System (INIS)

    The properties and origin of continuous electron spectrum emitted in high energy heavy ion collisions are reviewed. The basic processes causing the characteristic regions of the continuous spectrum are described. The contribution of electrons ejected from the target and from the projectile are investigated in detail in the cases of light and heavy projectiles. The recently recognized mechanisms, electron-capture-to-continuum (ECC) and electron-loss-to-continuum (ELC), leading to a cusp in forward direction, and their theoretical interpretations are discussed. The importance of data from ion-atom collisions in the field of atomic physics and in applications are briefly summarized. (D.Gy)

  4. Proposal to detect an emission of unusual super-high energy electrons in electron storage rings

    Directory of Open Access Journals (Sweden)

    Da-peng Qian

    2014-01-01

    Full Text Available According to an extended Lorentz–Einstein mass formula taken into the uncertainty principle, it is predicted that the electron beams passing accelerating electric field should with a small probability generate abnormal super-high energy electrons which are much higher than the beam energy. Author’s preliminary experiment result at electron storage ring has hinted these signs, so suggests to more strictly detect this unusual phenomenon, and thus to test the extended mass formula as well as a more perfect special relativity.

  5. Renewable Energy Systems in the Power Electronics Curriculum

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Chen, Zhe; Teodorescu, Remus

    2005-01-01

    , magnetics, electrical machines, power systems, analogue and digital control, materials, power converters, electronics, materials, thermal design and EMC. However, those fields may not be enough in order to give the students enough skills. It is also necessary to learn about systems and for the moment one......Power Electronics is still an emerging technology and its applications are increasing. The primary function is to convert electrical energy from one stage to another and it is used in many different applications. The power electronics curriculum is multidisciplinary covering fields like devices...... of the most important area is renewable energy systems. This paper will discuss the basic courses for the power electronics curriculum. It will also discuss how to teach power electronic systems efficiently through a projectoriented and problem-based learning approach with Aalborg University in Denmark...

  6. Development of a high-resolution soft x-ray (30--1500 eV) beamline at the Advanced Light Source and its use for the study of angle-resolved photoemission extended fine structure

    Energy Technology Data Exchange (ETDEWEB)

    Huff, W R.A. [California Univ., Berkeley, CA (United States). Dept. of Chemistry

    1996-02-01

    ALS Bending magnet beamline 9.3.2 is for high resolution spectroscopy, with circularly polarized light. Fixed included-angle SGM uses three gratings for 30--1500 eV photons; circular polarization is produced by an aperture for selecting the beam above or below the horizontal plane. Photocurrent from upper and lower jaws of entrance slit sets a piezoelectric drive feedback loop on the vertically deflecting mirror for stable beam. End station has a movable platform. With photomeission data from Stanford, structure of c(2{times}2)P/Fe(100) was determined using angle-resolved photoemission extended fine structure (ARPEFS). Multiple-scattering spherical-wave (MSSW) calculations indicate that P atoms adsorb in fourfold hollow sites 1.02A above the first Fe layer. Self-consistent-field X{alpha} scattered wave calculation confirm that the Fe{sub 1}-Fe{sub 2} space is contracted for S/Fe but not for P/Fe; comparison is made to atomic N and O on Fe(100). Final-state effects on ARPEFS curves used literature data from the S 1s and 2p core levels of c(2{times}2)S/Ni(001); a generalized Ramsauer-Townsend splitting is present in the 1s but not 2p data. An approximate method for analyzing ARPEFS data from a non-s initial state using only the higher-{ell} partial wave was tested successfully. ARPEFS data from clean surfaces were collected normal to Ni(111) (3p core levels) and 5{degree} off-normal from Cu(111)(3s, 3p). Fourier transforms (FT) resemble adsorbate systems, showing backscattering signals from atoms up to 4 layers below emitters. 3p FTs show scattering from 6 nearest neighbors in the same crystal layer as the emitters. MSSW calulation indicate that Cu 3p photoemission is mostly d-wave. FTs also indicate double-scattering and single-scattering from laterally distant atoms; calculations indicate that the signal is dominated by photoemission from the first 2 crystal layers.

  7. Power Electronics as Efficient Interface of Renewable Energy Sources

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Chen, Zhe; Kjær, Søren Bækhøj

    2004-01-01

    renewable energy conversion system, will play an important part in our future energy supply. But other sources like microturbines, photovoltaics and fuel cell systems may also be serious contributor to the power supply. Characteristically, power electronics will be an efficient and important interface...

  8. A molecularly based theory for electron transfer reorganization energy

    International Nuclear Information System (INIS)

    Using field-theoretic techniques, we develop a molecularly based dipolar self-consistent-field theory (DSCFT) for charge solvation in pure solvents under equilibrium and nonequilibrium conditions and apply it to the reorganization energy of electron transfer reactions. The DSCFT uses a set of molecular parameters, such as the solvent molecule’s permanent dipole moment and polarizability, thus avoiding approximations that are inherent in treating the solvent as a linear dielectric medium. A simple, analytical expression for the free energy is obtained in terms of the equilibrium and nonequilibrium electrostatic potential profiles and electric susceptibilities, which are obtained by solving a set of self-consistent equations. With no adjustable parameters, the DSCFT predicts activation energies and reorganization energies in good agreement with previous experiments and calculations for the electron transfer between metallic ions. Because the DSCFT is able to describe the properties of the solvent in the immediate vicinity of the charges, it is unnecessary to distinguish between the inner-sphere and outer-sphere solvent molecules in the calculation of the reorganization energy as in previous work. Furthermore, examining the nonequilibrium free energy surfaces of electron transfer, we find that the nonequilibrium free energy is well approximated by a double parabola for self-exchange reactions, but the curvature of the nonequilibrium free energy surface depends on the charges of the electron-transferring species, contrary to the prediction by the linear dielectric theory

  9. A molecularly based theory for electron transfer reorganization energy

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Bilin; Wang, Zhen-Gang, E-mail: zgw@cheme.caltech.edu [Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125 (United States)

    2015-12-14

    Using field-theoretic techniques, we develop a molecularly based dipolar self-consistent-field theory (DSCFT) for charge solvation in pure solvents under equilibrium and nonequilibrium conditions and apply it to the reorganization energy of electron transfer reactions. The DSCFT uses a set of molecular parameters, such as the solvent molecule’s permanent dipole moment and polarizability, thus avoiding approximations that are inherent in treating the solvent as a linear dielectric medium. A simple, analytical expression for the free energy is obtained in terms of the equilibrium and nonequilibrium electrostatic potential profiles and electric susceptibilities, which are obtained by solving a set of self-consistent equations. With no adjustable parameters, the DSCFT predicts activation energies and reorganization energies in good agreement with previous experiments and calculations for the electron transfer between metallic ions. Because the DSCFT is able to describe the properties of the solvent in the immediate vicinity of the charges, it is unnecessary to distinguish between the inner-sphere and outer-sphere solvent molecules in the calculation of the reorganization energy as in previous work. Furthermore, examining the nonequilibrium free energy surfaces of electron transfer, we find that the nonequilibrium free energy is well approximated by a double parabola for self-exchange reactions, but the curvature of the nonequilibrium free energy surface depends on the charges of the electron-transferring species, contrary to the prediction by the linear dielectric theory.

  10. High energy electron-positron physics

    CERN Document Server

    Ali, Ahmed

    1988-01-01

    With the termination of the physics program at PETRA, and with the start of TRISTAN and the SLC and later LEP, an era of e+e- physics has come to an end and a new one begins. The field is changing from a field of few specialists, to becoming one of the mainstream efforts of the high energy community. It seems appropriate at this moment to summarize what has been learned over the past years, in a way most useful to any high energy physicists, in particular to newcomers in the e+e- field. This is the purpose of the book. This book should be used as a reference for future workers in the field of

  11. Energy of auroral electrons and Z mode generation

    Science.gov (United States)

    Krauss-Varban, D.; Wong, H. K.

    1990-01-01

    The present consideration of Z-mode radiation generation, in light of observational results indicating that the O mode and second-harmonic X-mode emissions can prevail over the X-mode fundamental radiation when suprathermal electron energy is low, gives attention to whether the thermal effect on the Z-mode dispersion can be equally important, and whether the Z-mode can compete for the available free-energy source. It is found that, under suitable circumstances, the growth rate of the Z-mode can be substantial even for low suprathermal auroral electron energies. Growth is generally maximized for propagation perpendicular to the magnetic field.

  12. Electron and photon energy measurement calibration with the ATLAS detector

    CERN Document Server

    Manzoni, Stefano; The ATLAS collaboration

    2016-01-01

    An accurate calibration of the energy measurement of electron and photon is paramount for many ATLAS physics analysis. The calibration of the energy measurement is performed in-situ using a large statistics of Z->ee events. The results obtained with the pp collisions data recorded in 2015 and 2016 at sqrt(s)= 13 TeV, corresponding to an integrated luminosity of 3.2 fb-1 and 2.7 fb-1 respectively , as well as the corresponding uncertainties on the electron and photon energy scales, are presented.

  13. GEANT4 simulation of electron energy deposition in extended media

    CERN Document Server

    Kadri, O; Gharbi, F; Trabelsi, A

    2007-01-01

    The present work demonstrates that GEANT4 yields a consistent description of electron transport processes in semi-infinite homogeneous and heterogeneous extended media. This comparison covers the e− energy deposition profiles in a range of elements from aluminum to tantalum through molybdenum at source energies from 0.3 to 1.0 MeV and at incident angles from 0° to 60°. The good agreement between simulation results and data confirms that the Monte Carlo used code is capable of accurate electron beam energy deposition calculation even under such conditions.

  14. Feasibility of Electron Cooling for Low-Energy RHIC Operation

    Energy Technology Data Exchange (ETDEWEB)

    Fedotov,A.; Ben-Zvi, I.; Chang, X.; Kayran, D.; Litvinenko, V.; Pozdeyev, E.; Satogata, T.

    2008-04-01

    A concrete interest in running RHIC at low energies in a range of 2.5-25 GeV/nucleon total energy of a single beam has recently emerged. Providing collisions in this energy range, which in the RHIC case is termed 'low-energy' operation, will help to answer one of the key questions in the field of QCD about existence and location of a critical point on the QCD phase diagram. However, luminosity projections are relatively low for the lowest energy points of interest. Luminosity improvement can be provided with electron cooling applied directly in RHIC at low energies. This report summarizes the expected luminosity improvement with electron cooling, possible technical approaches and various limitations.

  15. Household energy consumption and consumer electronics: The case of television

    International Nuclear Information System (INIS)

    In recent years, there has been a dramatic rise in the number of consumer electronics in households. These new technologies and the services that support them enable new highly energy intensive behaviours. Using in-depth interview data collected from 20 households in 2006, this paper explores these energy intensive behaviours, using the example of the use of televisions. In doing so, it illustrates how the design and marketing of consumer electronics, and the services which support them, actively encourage energy intensive behaviours and how householders are reconfiguring their homes and lifestyles to fit these behaviours. This latter point is significant because, as householders change their homes and daily lives to fit energy intensive consuming behaviours, it will become increasingly difficult to encourage people to reduce their household energy consumption. This paper concludes with the implications of the research findings for policies designed to reduce household energy consumption

  16. Design for Reliability of Power Electronics in Renewable Energy Systems

    DEFF Research Database (Denmark)

    Ma, Ke; Yang, Yongheng; Wang, Huai;

    2014-01-01

    Power electronics is the enabling technology for maximizing the power captured from renewable electrical generation, e.g., the wind and solar technology, and also for an efficient integration into the grid. Therefore, it is important that the power electronics are reliable and do not have too many...... failures during operation which otherwise will increase cost for operation, maintenance and reputation. Typically, power electronics in renewable electrical generation has to be designed for 20–30 years of operation, and in order to do that, it is crucial to know about the mission profile of the power...... electronics technology as well as to know how the power electronics technology is loaded in terms of temperature and other stressors relevant, to reliability. Hence, this chapter will show the basics of power electronics technology for renewable energy systems, describe the mission profile of the technology...

  17. Technical Training: ELEC-2005: Electronics in High Energy Physics

    CERN Multimedia

    Monique Duval

    2005-01-01

    CERN Technical Training 2005: Learning for the LHC! ELEC-2005: Electronics in High Energy Physics - Spring Term ELEC-2005 is a new course series on modern electronics, given by CERN physicists and engineers within the framework of the 2005 Technical Training Programme, in an extended format of the successful ELEC-2002 course series. This comprehensive course series is designed for people who are not electronics specialists, for example physicists, engineers and technicians working at or visiting the laboratory, who use or will use electronics in their present or future activities, in particular in the context of the LHC accelerator and experiments. ELEC-2005 is composed of four Terms: the Winter Term, Introduction to electronics in HEP, already took place; the next three Terms will run throughout the year: Spring Term: Integrated circuits and VLSI technology for physics (March, 6 lectures) - now open for registration Summer Term: System electronics for physics: Issues (May, 7 lectures) Autumn Term: Ele...

  18. Electron beam directed energy device and methods of using same

    Science.gov (United States)

    Retsky, Michael W.

    2007-10-16

    A method and apparatus is disclosed for an electron beam directed energy device. The device consists of an electron gun with one or more electron beams. The device includes one or more accelerating plates with holes aligned for beam passage. The plates may be flat or preferably shaped to direct each electron beam to exit the electron gun at a predetermined orientation. In one preferred application, the device is located in outer space with individual beams that are directed to focus at a distant target to be used to impact and destroy missiles. The aimings of the separate beams are designed to overcome Coulomb repulsion. A method is also presented for directing the beams to a target considering the variable terrestrial magnetic field. In another preferred application, the electron beam is directed into the ground to produce a subsurface x-ray source to locate and/or destroy buried or otherwise hidden objects including explosive devices.

  19. Separated high-energy electron beams using synchrotron radiation

    CERN Document Server

    Farley, F J M; Picasso, Emilio

    1972-01-01

    Electrons with kinetic energy in the 100 GeV range may be separated from other particles by using their energy-loss due to synchrotron radiation in a high-field magnet. In this paper the associated fluctuations in energy and angle are shown to be small enough for the method to be useful. Detailed design formulae are presented for several magnet configurations. (7 refs).

  20. Electronic transport of molecular nanowires by considering of electron hopping energy between the second neighbors

    Directory of Open Access Journals (Sweden)

    H Rabani

    2015-07-01

    Full Text Available In this paper, we study the electronic conductance of molecular nanowires by considering the electron hopping between the first and second neighbors with the help Green’s function method at the tight-binding approach. We investigate three types of structures including linear uniform and periodic chains as well as poly(p-phenylene molecule which are embedded between two semi-infinite metallic leads. The results show that in the second neighbor approximation, the resonance, anti-resonance and Fano phenomena occur in the conductance spectra of these structures. Moreover, a new gap is observed at edge of the lead energy band wich its width depends on the value of the electron hopping energy between the second neighbors. In the systems including intrinsic gap, this hopping energy shifts the gap in the energy spectra.

  1. Photoelectron spectroscopy bulk and surface electronic structures

    CERN Document Server

    Suga, Shigemasa

    2014-01-01

    Photoelectron spectroscopy is now becoming more and more required to investigate electronic structures of various solid materials in the bulk, on surfaces as well as at buried interfaces. The energy resolution was much improved in the last decade down to 1 meV in the low photon energy region. Now this technique is available from a few eV up to 10 keV by use of lasers, electron cyclotron resonance lamps in addition to synchrotron radiation and X-ray tubes. High resolution angle resolved photoelectron spectroscopy (ARPES) is now widely applied to band mapping of materials. It attracts a wide attention from both fundamental science and material engineering. Studies of the dynamics of excited states are feasible by time of flight spectroscopy with fully utilizing the pulse structures of synchrotron radiation as well as lasers including the free electron lasers (FEL). Spin resolved studies also made dramatic progress by using higher efficiency spin detectors and two dimensional spin detectors. Polarization depend...

  2. Calculation of Electron Beam Potential Energy from RF Photocathode Gun

    CERN Document Server

    Liu Wan Ming; Power, John G; Wang, Haitao

    2005-01-01

    In this paper, we consider the contribution of potential energy to beam dynamics as simulated by PARMELA at low energies (10 - 30MeV). We have developed a routine to calculate the potential energy of the relativistic electron beam using the static coulomb potential in the rest frame (first order approximation as in PARMELA). We found that the potential energy contribution to the beam dynamics could be very significant, particularly with high charge beams generated by an RF photocathode gun. Our results show that when the potential energy is counted correctly and added to the kinetic energy from PARMELA, the total energy is conserved. Simulation results of potential and kinetic energies for short beams (~1 mm) at various charges (1 - 100 nC) generated by a high current RF photocathode gun are presented.

  3. Energy response of liquid scintillator using Compton tagged electrons

    International Nuclear Information System (INIS)

    Liquid scintillation detectors have been widely used for the fast neutron spectroscopy. These detectors have very good time resolution (≲ns) comparable to the plastic scintillators. In addition, these detectors have pulse shape discrimination (PSD) property which enables unambiguous detection of the neutrons in the presence of gamma rays. The knowledge of absolute efficiency which is a function of incident neutron energy and threshold is essential for folding of the neutron spectra. Accurate determination of threshold for the analysis of the neutron spectra and neutron response function require very precise energy calibration. The position of pulse height associated with the maximum energy of recoil electrons is taken in between the maximum edge and the 'half maximum' of the spectrum and the arbitrary selection of the calibration point introduced the error in the energy calibration. A coincidence between Compton scattered gamma rays and the recoil electron is used for the energy calibration in the scale of electron energy equivalent. In this paper, the response of the liquid scintillator (EJ-301 equivalent to NE-213) to the electron is reported along with the neutron time of flight (TOF) and pulse shape discrimination

  4. Steering continuum electron dynamics by low-energy attosecond streaking

    Science.gov (United States)

    Geng, Ji-Wei; Xiong, Wei-Hao; Xiao, Xiang-Ru; Gong, Qihuang; Peng, Liang-You

    2016-08-01

    A semiclassical model is developed to understand the electronic dynamics in the low-energy attosecond streaking. Under a relatively strong infrared (IR) pulse, the low-energy part of photoelectrons initialized by a single attosecond pulse (SAP) can either rescatter with the ionic core and induce interferences structures in the momentum spectra of the ionized electrons or be recaptured into the Rydberg states. The Coulomb potential plays essential roles in both the electron rescattering and recapturing processes. We find that by changing the time delay between the SAP and the IR pulse, the photoelectrons yield or the population of the Rydberg states can be effectively controlled. The present study demonstrates a fascinating way to steer the electron motion in the continuum.

  5. Sustainably powering wearable electronics solely by biomechanical energy

    Science.gov (United States)

    Wang, Jie; Li, Shengming; Yi, Fang; Zi, Yunlong; Lin, Jun; Wang, Xiaofeng; Xu, Youlong; Wang, Zhong Lin

    2016-01-01

    Harvesting biomechanical energy is an important route for providing electricity to sustainably drive wearable electronics, which currently still use batteries and therefore need to be charged or replaced/disposed frequently. Here we report an approach that can continuously power wearable electronics only by human motion, realized through a triboelectric nanogenerator (TENG) with optimized materials and structural design. Fabricated by elastomeric materials and a helix inner electrode sticking on a tube with the dielectric layer and outer electrode, the TENG has desirable features including flexibility, stretchability, isotropy, weavability, water-resistance and a high surface charge density of 250 μC m−2. With only the energy extracted from walking or jogging by the TENG that is built in outsoles, wearable electronics such as an electronic watch and fitness tracker can be immediately and continuously powered. PMID:27677971

  6. Monte Carlo Simulation on Energy Deposition of Low-Energy Electrons in Liquid Water

    Institute of Scientific and Technical Information of China (English)

    TAN Zhen-Yu; XIA Yue-Yuan; ZHAO Ming-Wen; LIU Xiang-Dong; HUANG Bo-Da; LI Feng; JI Yan-Ju

    2005-01-01

    @@ A Monte Carlo approach to simulate the transport and energy deposition of low energy electrons (E0 ≤ 10 keV) in liquid water is presented. The elastic scattering of electrons is described by Mott cross section, which is derivedfrom the relativistic wave equation of Dirac. The inelastic scattering model of electrons is b~ed on the dielectric response theory with exchange effect included. A new method of sampling various inelaltic scattering events is proposed in the simulation. Using the approach stated, the spatial distribution of inel~tic scattering events and energy deposition of electrons in liquid water are computed and the results are compared with other theoretical studies.

  7. A novel method for measuring energy loss in electron rings

    OpenAIRE

    Byrd, John M.; De Santis, Stefano

    2001-01-01

    We present a novel method for measuring the energy loss per turn in an electron storage ring. The method involves the accurate measurement of the change in the rotation period of an uncaptured electron bunch using a dual-sweep streak camera. In our opinion, this method is more direct and accurate than other techniques. We present examples of measurements performed at the Advanced Light Source.

  8. Electron radiative self-energy of highly stripped heavy atoms

    International Nuclear Information System (INIS)

    A new algorithm is presented for the evaluation of the electron radiative self-energy in heavy atoms, for which Zα is not a perturbative expansion parameter. The algorithm for hydrogenic ions is presented in detail. The terms to be evaluated numerically are finite, free of spurious gauge dependent parts, and are not in the form of a subtraction. The extension to many electron ions is also discussed. copyright 1991 Academic Press, Inc

  9. Flexible Nanogenerators for Energy Harvesting and Self-Powered Electronics.

    Science.gov (United States)

    Fan, Feng Ru; Tang, Wei; Wang, Zhong Lin

    2016-06-01

    Flexible nanogenerators that efficiently convert mechanical energy into electrical energy have been extensively studied because of their great potential for driving low-power personal electronics and self-powered sensors. Integration of flexibility and stretchability to nanogenerator has important research significance that enables applications in flexible/stretchable electronics, organic optoelectronics, and wearable electronics. Progress in nanogenerators for mechanical energy harvesting is reviewed, mainly including two key technologies: flexible piezoelectric nanogenerators (PENGs) and flexible triboelectric nanogenerators (TENGs). By means of material classification, various approaches of PENGs based on ZnO nanowires, lead zirconate titanate (PZT), poly(vinylidene fluoride) (PVDF), 2D materials, and composite materials are introduced. For flexible TENG, its structural designs and factors determining its output performance are discussed, as well as its integration, fabrication and applications. The latest representative achievements regarding the hybrid nanogenerator are also summarized. Finally, some perspectives and challenges in this field are discussed.

  10. Data Acquisition System for Electron Energy Loss Coincident Spectrometers

    Institute of Scientific and Technical Information of China (English)

    Zhang Chi; Yu Xiaoqi; Yang Tao

    2005-01-01

    A Data Acquisition System (DAQ) for electron energy loss coincident spectrometers (EELCS) has been developed. The system is composed of a Multiplex Time-Digital Converter (TDC) that measures the flying time of positive and negative ions and a one-dimension positionsensitive detector that records the energy loss of scattering electrons. The experimental data are buffered in a first-in-first-out(FIFO) memory module, then transferred from the FIFO memory to PC by the USB interface. The DAQ system can record the flying time of several ions in one collision, and allows of different data collection modes. The system has been demonstrated at the Electron Energy Loss Coincident Spectrometers at the Laboratory of Atomic and Molecular Physics, USTC. A detail description of the whole system is given and experimental results shown.

  11. Ionization cross sections for low energy electron transport

    CERN Document Server

    Seo, Hee; Saracco, Paolo; Kim, Chan Hyeong

    2011-01-01

    Two models for the calculation of ionization cross sections by electron impact on atoms, the Binary-Encouter-Bethe and the Deutsch-Maerk models, have been implemented; they are intended to extend and improve Geant4 simulation capabilities in the energy range below 1 keV. The physics features of the implementation of the models are described, and their differences with respect to the original formulations are discussed. Results of the verification with respect to the original theoretical sources and of extensive validation with respect to experimental data are reported. The validation process also concerns the ionization cross sections included in the Evaluated Electron Data Library used by Geant4 for low energy electron transport. Among the three cross section options, the Deutsch-Maerk model is identified as the most accurate at reproducing experimental data over the energy range subject to test.

  12. High-Energy Electron Beam Application to Air Pollutants Removal

    International Nuclear Information System (INIS)

    The advantage of electron beam (EB) process in pollutants removal is connected to its high efficiency to transfer high amount of energy directly into the matter under treatment. Disadvantage which is mostly related to high investment cost of accelerator may be effectively overcome in future as the result of use accelerator new developments. The potential use of medium to high-energy high power EB accelerators for air pollutants removal is demonstrated in [1]. The lower electrical efficiencies of accelerators with higher energies are partially compensated by the lower electron energy losses in the beam windows. In addition, accelerators with higher electron energies can provide higher beam powers with lower beam currents [1]. The total EB energy losses (backscattering, windows and in the intervening air space) are substantially lower with higher EB incident energy. The useful EB energy is under 50% for 0.5 MeV and about 95% above 3 MeV. In view of these arguments we decided to study the application of high energy EB for air pollutants removal. Two electron beam accelerators are available for our studies: electron linear accelerators ALIN-10 and ALID-7, built in the Electron Accelerator Laboratory, INFLPR, Bucharest, Romania. Both accelerators are of traveling-wave type, operating at a wavelength of 10 cm. They utilize tunable S-band magnetrons, EEV M 5125 type, delivering 2 MW of power in 4 μ pulses. The accelerating structure is a disk-loaded tube operating in the 2 mode. The optimum values of the EB peak current IEB and EB energy EEB to produce maximum output power PEB for a fixed pulse duration EB and repetition frequency fEB are as follows: for ALIN-10: EEB = 6.23 MeV; IEB =75 mA; PEB 164 W (fEB = 100 Hz, EB = 3.5 s) and for ALID-7: EEB 5.5 MeV; IEB = 130 mA; PEB = 670 W (fEB = 250 Hz, EB = 3.75 s). This paper presents a special designed installation, named SDI-1, and several representative results obtained by high energy EB application to SO2, NOx and VOCs

  13. Superconductor digital electronics: Scalability and energy efficiency issues (Review Article)

    Science.gov (United States)

    Tolpygo, Sergey K.

    2016-05-01

    Superconductor digital electronics using Josephson junctions as ultrafast switches and magnetic-flux encoding of information was proposed over 30 years ago as a sub-terahertz clock frequency alternative to semiconductor electronics based on complementary metal-oxide-semiconductor (CMOS) transistors. Recently, interest in developing superconductor electronics has been renewed due to a search for energy saving solutions in applications related to high-performance computing. The current state of superconductor electronics and fabrication processes are reviewed in order to evaluate whether this electronics is scalable to a very large scale integration (VLSI) required to achieve computation complexities comparable to CMOS processors. A fully planarized process at MIT Lincoln Laboratory, perhaps the most advanced process developed so far for superconductor electronics, is used as an example. The process has nine superconducting layers: eight Nb wiring layers with the minimum feature size of 350 nm, and a thin superconducting layer for making compact high-kinetic-inductance bias inductors. All circuit layers are fully planarized using chemical mechanical planarization (CMP) of SiO2 interlayer dielectric. The physical limitations imposed on the circuit density by Josephson junctions, circuit inductors, shunt and bias resistors, etc., are discussed. Energy dissipation in superconducting circuits is also reviewed in order to estimate whether this technology, which requires cryogenic refrigeration, can be energy efficient. Fabrication process development required for increasing the density of superconductor digital circuits by a factor of ten and achieving densities above 107 Josephson junctions per cm2 is described.

  14. Some aspects of electron cooling technique at different energies

    Energy Technology Data Exchange (ETDEWEB)

    Reva, Vladimir B. E-mail: v.b.reva@inp.nsk.su

    2004-10-11

    The cooling rate depends on the property of collision between an ion and electron. The magnetized electron cooling is able to strongly increase the cooling rate and enables it to obtain higher parameters of the ion (proton) beams. At medium and high energies of the electron beam it is difficult to have magnetized motion of electron at a whole cooling device. The length of the Larmor spiral is larger or almost equal to the characteristic length of parts of a cooler device, moreover it is difficult to combine the longitudinal magnetic field with RF accelerating structures. So, the special methods for the electron transport along a cooler are necessary. In this article, the different ways of problem solving are described. The merits and demerits of variants with continuous and discontinuous longitudinal magnetic fields are discussed.

  15. Polarization of high-energy electrons traversing a laser beam

    Energy Technology Data Exchange (ETDEWEB)

    Kotkin, G.L.; Serbo, V.G. [Novosibirsk State Univ. (Russian Federation). Phys. Dept.; Perlt, H. [Institut fuer Theoretische Physik, Leipzig University, 04109, Leipzig, BRD (Germany)

    1998-02-21

    When polarized electrons traverse a region where the laser light is focused their polarization varies even if their energy and direction of motion are not changed. This effect is due to interference of the incoming electron wave and an electron wave scattered at zero angle. Equations are obtained which determine the variation of the electron-density matrix, and their solutions are given. The change in the electron polarization depends not only on the Compton cross section but on the real part of the forward Compton amplitude as well. It should be taken into account, for example, in simulations of the e{yields}{gamma} conversion for future {gamma}{gamma} colliders. (orig.). 16 refs.

  16. Electronic structure of a superconducting topological insulator Sr-doped Bi{sub 2}Se{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Han, C. Q.; Chen, W. J.; Zhu, Fengfeng; Yao, Meng-Yu [Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Li, H.; Li, Z. J.; Wang, M.; Gao, Bo F., E-mail: bo-f-gao@mail.sim.ac.cn [Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Science, Shanghai 200050 (China); Guan, D. D.; Liu, Canhua; Qian, Dong, E-mail: dqian@sjtu.edu.cn; Jia, Jin-Feng [Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093 (China); Gao, C. L. [Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093 (China); Department of Physics, Fudan University, Shanghai 200433 (China)

    2015-10-26

    Using high-resolution angle-resolved photoemission spectroscopy and scanning tunneling microscopy/spectroscopy, the atomic and low energy electronic structure of the Sr-doped superconducting topological insulators (Sr{sub x}Bi{sub 2}Se{sub 3}) was studied. Scanning tunneling microscopy shows that most of the Sr atoms are not in the van der Waals gap. After Sr doping, the Fermi level was found to move further upwards when compared with the parent compound Bi{sub 2}Se{sub 3}, which is consistent with the low carrier density in this system. The topological surface state was clearly observed, and the position of the Dirac point was determined in all doped samples. The surface state is well separated from the bulk conduction bands in the momentum space. The persistence of separated topological surface state combined with small Fermi energy makes this superconducting material a very promising candidate for the time reversal invariant topological superconductor.

  17. Optimum target source term estimation for high energy electron accelerators

    Science.gov (United States)

    Nayak, M. K.; Sahu, T. K.; Nair, Haridas G.; Nandedkar, R. V.; Bandyopadhyay, Tapas; Tripathi, R. M.; Hannurkar, P. R.

    2016-05-01

    Optimum target for bremsstrahlung emission is defined as the thickness of the target material, which produces maximum bremsstrahlung yield, on interaction of electron with the target. The bremsstrahlung dose rate per unit electron beam power at a distance of 1 m from the target material gives the optimum target source term. In the present work, simulations were performed for three different electron energies, 450, 1000 and 2500 MeV using EGSnrc Monte-Carlo code to determine the optimum thickness. An empirical relation for optimum target as a function of electron energy and atomic number of the target materials is found out from results. Using the simulated optimum target thickness, experiments are conducted to determine the optimum target source term. For the experimental determination, two available electron energies, 450 MeV and 550 MeV from booster synchrotron of Indus facility is used. The optimum target source term for these two energies are also simulated. The experimental and simulated source term are found to be in very good agreement within ±3%. Based on the agreement of the simulated source term with the experimental source term at 450 MeV and 550 MeV, the same simulation methodology is used to simulate optimum target source term up to 2500 MeV. The paper describes the simulations and experiments carried out on optimum target bremsstrahlung source term and the results obtained.

  18. Energy Spectrum Of Nonthermal Electrons Accelerated At A Plane Shock

    CERN Document Server

    Kang, Hyesung

    2011-01-01

    We calculate the energy spectra of cosmic ray (CR) protons and electrons at a plane shock with quasi-parallel magnetic fields, using time-dependent, diffusive shock acceleration (DSA) simulations, including energy losses via synchrotron emission and Inverse Compton (IC) scattering. A thermal leakage injection model and a Bohm type diffusion coefficient are adopted. The electron spectrum at the shock becomes steady after the DSA energy gains balance the synchrotron/IC losses, and it cuts off at the equilibrium momentum p_{eq}. In the postshock region the cutoff momentum of the electron spectrum decreases with the distance from the shock due to the energy losses and the thickness of the spatial distribution of electrons scales as p^{-1}. Thus the slope of the downstream integrated spectrum steepens by one power of p for p_{br}electron spectrum exhibit a concave curvature and...

  19. Electronic structure of undoped and potassium doped coronene investigated by electron energy-loss spectroscopy

    OpenAIRE

    Roth, Friedrich; Bauer, Johannes; Mahns, Benjamin; Büchner, Bernd; Knupfer, Martin

    2012-01-01

    We performed electron energy-loss spectroscopy studies in transmission in order to obtain insight into the electronic properties of potassium intercalated coronene, a recently discovered superconductor with a rather high transition temperature of about 15\\,K. A comparison of the loss function of undoped and potassium intercalated coronene shows the appearance of several new peaks in the optical gap upon potassium addition. Furthermore, our core level excitation data clearly signal filling of ...

  20. TESLA ENERGY SPACE FOR MIE–SCHWINGER CONTINUOUS ELECTRON

    OpenAIRE

    Bulyzhenkov, I.

    2013-01-01

    Tesla reading of electricity through invisible energy ether between visible bodies corresponds to the found radial solution for a continuous source. The Mie–Schwinger distributed electron extends over the very structure of its Coulomb radial field. The electric charge is not a basic concept of Maxwell-Tesla electrodynamics but is the field energy distribution under the unified, non-dual approach to matter-energy in the nonempty world space. Electric self-energy of such a unified nonlocal carrier ...

  1. Stopping power of diamond for low energy electrons

    International Nuclear Information System (INIS)

    Theoretical models used to describe the interaction of electrons with the valence band of insulators are discussed. Results for the application of these models to calculate stopping power and mean-free path of low-energy electrons (< 10 KeV) in diamond are presented. The influence of core polarizability, oscillator strength coupling between core and valence electrons, and exchange corrections is included. The contributions to the mean-free path and stopping power from ionization of inner shells have been evaluated from sum-rule-constrained classical binary-collision model. (author)

  2. Ion induced high energy electron emission from copper

    Energy Technology Data Exchange (ETDEWEB)

    Ruano, G. [Instituto de Desarrollo Tecnologico para la Industria Quimica, Consejo Nacional de Investigaciones Cientificas y Tecnicas and Universidad Nacional del Litoral Gueemes 3450 CC 91, 3000 Santa Fe (Argentina)], E-mail: gdruano@ceride.gov.ar; Ferron, J. [Instituto de Desarrollo Tecnologico para la Industria Quimica, Consejo Nacional de Investigaciones Cientificas y Tecnicas and Universidad Nacional del Litoral Gueemes 3450 CC 91, 3000 Santa Fe (Argentina); Departamento de Ingenieria de Materiales, Facultad de Ingenieria Quimica, Consejo Nacional de Investigaciones Cientificas y Tecnicas and Universidad Nacional del Litoral Gueemes 3450 CC 91, 3000 Santa Fe (Argentina)

    2008-11-15

    We present measurements of secondary electron emission from Cu induced by low energy bombardment (1-5 keV) of noble gas (He{sup +}, Ne{sup +} and Ar{sup +}) and Li{sup +} ions. We identify different potential and kinetic mechanisms and find the presence of high energetic secondary electrons for a couple of ion-target combinations. In order to understand the presence of these fast electrons we need to consider the Fermi shuttle mechanism and the different ion neutralization efficiencies.

  3. Double aberration correction in a low-energy electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Th., E-mail: schmidtt@fhi-berlin.mpg.de [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 6-8, D-14195 Berlin (Germany); Universitaet Wuerzburg, Experimentelle Physik II, Am Hubland, D-97074 Wuerzburg (Germany); Marchetto, H.; Levesque, P.L. [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 6-8, D-14195 Berlin (Germany); Groh, U.; Maier, F. [Universitaet Wuerzburg, Experimentelle Physik II, Am Hubland, D-97074 Wuerzburg (Germany); Preikszas, D. [Technische Universitaet Darmstadt, Angewandte Physik, Hochschulstrasse 6, D-64289 Darmstadt (Germany); Carl Zeiss NTS GmbH, Carl-Zeiss-Strasse 56, D-73447 Oberkochen (Germany); Hartel, P.; Spehr, R. [Technische Universitaet Darmstadt, Angewandte Physik, Hochschulstrasse 6, D-64289 Darmstadt (Germany); Lilienkamp, G. [Technische Universitaet Clausthal, Physikalisches Institut, Leibnizstrasse 4, D-38678 (Germany); Engel, W. [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 6-8, D-14195 Berlin (Germany); Fink, R. [Universitaet Erlangen-Nuernberg, Physikalische Chemie II, Egerlandstrasse 3, D-91058 Erlangen (Germany); Bauer, E. [Technische Universitaet Clausthal, Physikalisches Institut, Leibnizstrasse 4, D-38678 (Germany); Arizona State University, Department of Physics, Tempe, AZ 85287 (United States); Rose, H. [Technische Universitaet Darmstadt, Angewandte Physik, Hochschulstrasse 6, D-64289 Darmstadt (Germany); Umbach, E. [Universitaet Wuerzburg, Experimentelle Physik II, Am Hubland, D-97074 Wuerzburg (Germany); Freund, H.-J. [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 6-8, D-14195 Berlin (Germany)

    2010-10-15

    The lateral resolution of a surface sensitive low-energy electron microscope (LEEM) has been improved below 4 nm for the first time. This breakthrough has only been possible by simultaneously correcting the unavoidable spherical and chromatic aberrations of the lens system. We present an experimental criterion to quantify the aberration correction and to optimize the electron optical system. The obtained lateral resolution of 2.6 nm in LEEM enables the first surface sensitive, electron microscopic observation of the herringbone reconstruction on the Au(1 1 1) surface.

  4. Valence electron energy-loss spectroscopy in monochromated scanning transmission electron microscopy

    International Nuclear Information System (INIS)

    With the development of monochromators for (scanning) transmission electron microscopes, valence electron energy-loss spectroscopy (VEELS) is developing into a unique technique to study the band structure and optical properties of nanoscale materials. This article discusses practical aspects of spatially resolved VEELS performed in scanning transmission mode and the alignments necessary to achieve the current optimum performance of ∼0.15 eV energy resolution with an electron probe size of ∼1 nm. In particular, a collection of basic concepts concerning the acquisition process, the optimization of the energy resolution, the spatial resolution and the data processing are provided. A brief study of planar defects in a Y1Ba2Cu3O7-δ high-temperature superconductor illustrates these concepts and shows what kind of information can be accessed by VEELS

  5. Numerically fitting the electron Fermi energy and the electron fraction in a neutron star

    Science.gov (United States)

    Li, Xing Hu; Gao, Zhi Fu; Li, Xiang Dong; Xu, Yan; Wang, Pei; Wang, Na; Peng, Qiu He

    2016-10-01

    Based on the basic definition of the Fermi energy of degenerate and relativistic electrons, we obtain a special solution to the electron Fermi energy, EF(e), and express EF(e) as a function of the electron fraction, Ye, and matter density, ρ. We obtain several useful analytical formula for Ye and ρ within classical models and the work of Dutra et al. (2014) (Type-2) in relativistic mean-field theory are obtained using numerically fitting. When describing the mean-field Lagrangian, density, we adopt the TMA parameter set, which is remarkably consistent with the updated astrophysical observations of neutron stars (NSs). Due to the importance of the density dependence of the symmetry energy, J, in nuclear astrophysics, a brief discussion on J and its slop is presented. Combining these fitting formula with boundary conditions for different density regions, we can evaluate the value of EF(e) in any given matter density, and obtain a schematic diagram of EF(e) as a continuous function of ρ. Compared with previous studies on the electron Fermi energy in other studies models, our methods of calculating EF(e) are more simple and convenient, and can be universally suitable for the relativistic electron regions in the circumstances of common neutron stars. We have deduced a general expression of EF(e) and ne, which could be used to indirectly test whether one equation of state of a NS is correct in our future studies on neutron star matter properties. Since URCA reactions are expected in the center of a massive star due to high-value electron Fermi energy and electron fraction, this study could be useful in the future studies on the NS thermal evolution.

  6. Electron correlations in narrow energy bands: modified polar model approach

    Directory of Open Access Journals (Sweden)

    L. Didukh

    2008-09-01

    Full Text Available The electron correlations in narrow energy bands are examined within the framework of the modified form of polar model. This model permits to analyze the effect of strong Coulomb correlation, inter-atomic exchange and correlated hopping of electrons and explain some peculiarities of the properties of narrow-band materials, namely the metal-insulator transition with an increase of temperature, nonlinear concentration dependence of Curie temperature and peculiarities of transport properties of electronic subsystem. Using a variant of generalized Hartree-Fock approximation, the single-electron Green's function and quasi-particle energy spectrum of the model are calculated. Metal-insulator transition with the change of temperature is investigated in a system with correlated hopping. Processes of ferromagnetic ordering stabilization in the system with various forms of electronic DOS are studied. The static conductivity and effective spin-dependent masses of current carriers are calculated as a function of electron concentration at various DOS forms. The correlated hopping is shown to cause the electron-hole asymmetry of transport and ferromagnetic properties of narrow band materials.

  7. Computation of electron energy loss spectra by an iterative method

    Energy Technology Data Exchange (ETDEWEB)

    Koval, Peter [Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, E-20018 San Sebastián (Spain); Centro de Física de Materiales CFM-MPC, Centro Mixto CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián (Spain); Ljungberg, Mathias Per [Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, E-20018 San Sebastián (Spain); Foerster, Dietrich [LOMA, Université de Bordeaux 1, 351 Cours de la Liberation, 33405 Talence (France); Sánchez-Portal, Daniel [Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, E-20018 San Sebastián (Spain); Centro de Física de Materiales CFM-MPC, Centro Mixto CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián (Spain)

    2015-07-01

    A method is presented to compute the dielectric function for extended systems using linear response time-dependent density functional theory. Localized basis functions with finite support are used to expand both eigenstates and response functions. The electron-energy loss function is directly obtained by an iterative Krylov-subspace method. We apply our method to graphene and silicon and compare it to plane-wave based approaches. Finally, we compute electron-energy loss spectrum of C{sub 60} crystal to demonstrate the merits of the method for molecular crystals, where it will be most competitive.

  8. Mercuric iodide dosimeter response to high energy electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Loewinger, E.; Nissenbaum, J.; Schieber, M.M.

    1988-01-01

    Mercuric iodide solid state dosimeter response to high energy electron beams of up to 35 MeV is reported. High sensitivity of up to 1.5 V/cGy was observed with a 200 V external bias, as well as several mV/cGy, with no external bias for small volume (approx. 10 mm/sup 3/) detectors. The physical characteristics of the detector response are discussed, showing the feasibility of mercuric iodide as a reliable dosimeter for high energy electron beams.

  9. Study of energy delivery and mean free path of low energy electrons in EUV resists

    Science.gov (United States)

    Bhattarai, Suchit; Neureuther, Andrew R.; Naulleau, Patrick P.

    2016-03-01

    The relative importance of secondary electrons in delivering energy in photoresist films was assessed by performing large area exposures and by quantifying the inelastic mean free path of electrons in a leading chemically amplified positive tone EUV resist. A low energy electron microscope was used to directly pattern large (~15μm x 20μm) features with 15-80 eV electrons followed by analyzing the resulting dissolution rate contrast curve data. In the 40 to 80 eV regime the energy delivery was found to scale roughly proportionally with electron energy. In 15 to 30 eV regime however, this energy scaling did not explain the resist thickness loss data. The dose required to lower the resist thickness down to 20 nm was found to be 2-5X larger for 15 eV electrons than for 20, 25 and 30 eV electrons. Using scattering models from the literature including phonon scattering and optical data deduced electron energy loss spectroscopy and optical reflectometry, the inelastic mean free path values at energies between 10 eV and 92 eV range between about 2.8 and 0.6 nm respectively.

  10. Free electron lasers for transmission of energy in space

    Science.gov (United States)

    Segall, S. B.; Hiddleston, H. R.; Catella, G. C.

    1981-01-01

    A one-dimensional resonant-particle model of a free electron laser (FEL) is used to calculate laser gain and conversion efficiency of electron energy to photon energy. The optical beam profile for a resonant optical cavity is included in the model as an axial variation of laser intensity. The electron beam profile is matched to the optical beam profile and modeled as an axial variation of current density. Effective energy spread due to beam emittance is included. Accelerators appropriate for a space-based FEL oscillator are reviewed. Constraints on the concentric optical resonator and on systems required for space operation are described. An example is given of a space-based FEL that would produce 1.7 MW of average output power at 0.5 micrometer wavelength with over 50% conversion efficiency of electrical energy to laser energy. It would utilize a 10 m-long amplifier centered in a 200 m-long optical cavity. A 3-amp, 65 meV electrostatic accelerator would provide the electron beam and recover the beam after it passes through the amplifier. Three to five shuttle flights would be needed to place the laser in orbit.

  11. Secondary electrons monitor for continuous electron energy measurements in UHF linac

    International Nuclear Information System (INIS)

    A continuous energy measurement become now an obligatory in accelerator facility dedicated to radiation sterilization process. This is one of several accelerator parameters, like dose rate, beam current, beam scan width, conveyer speed, which must be recorded as it is required condition of accelerator validation procedure. The described below secondary electrons monitor for continuous energy measurement has been tested at accelerator facility with scanned electron beam, typically applied for radiation sterilization. Data processing and visualization is performed by control computer, which utilizes collected information for irradiation process parameters optimization. (author)

  12. A Flexible Power Electronics Configuration for Coupling Renewable Energy Sources

    OpenAIRE

    Mattia Filippini; Marta Molinas; Eneko Olea Oregi

    2015-01-01

    A combination of series, parallel and multilevel power electronics has been investigated as a potential interface for two different types of renewable energy sources and in order to reach higher power levels. Renewable energy sources are typically dispersed in a territory, and sources, like wind and solar, allow small to medium-scale generation of electricity. The configuration investigated in this article aims at adapting the coupling solution to the specific generation characteristics of th...

  13. Modified Fermi Energy of Electrons in a Superhigh Magnetic Field

    CERN Document Server

    Zhu, C; Li, X D; Wang, N; Yuan, J P; Peng, Q H

    2016-01-01

    In this paper, we investigate the electron Landau-level stability and its influence on the electron Fermi energy, $E_{\\rm F}(e)$, in the circumstance of magnetars, which are powered by magnetic field energy. In a magnetar, the Landau levels of degenerate and relativistic electrons are strongly quantized. A new quantity $g_{n}$, the electron Landau-level stability coefficient is introduced. According to the requirement that $g_{n}$ decreases with increasing the magnetic field intensity $B$, the magnetic-field index $\\beta$ in the expression of $E_{\\rm F}(e)$ must be positive. By introducing the Dirac$-\\delta$ function, we deduce a general formulae for the Fermi energy of degenerate and relativistic electrons, and obtain a particular solution to $E_{\\rm F}(e)$ in a superhigh magnetic field. This solution has a low magnetic-field index of $\\beta=1/6$, compared with the previous one, and works when $\\rho\\geq 10^{7}$~g cm$^{-3}$ and $B_{\\rm cr}\\ll B\\leq 10^{17}$~Gauss. By modifying the phase space of relativistic ...

  14. Energy exchange in strongly coupled plasmas with electron drift

    Energy Technology Data Exchange (ETDEWEB)

    Akbari-Moghanjoughi, M. [Department of Physics, Faculty of Sciences, Azarbaijan Shahid Madani University, 51745-406 Tabriz (Iran, Islamic Republic of); International Centre for Advanced Studies in Physical Sciences and Institute for Theoretical Physics, Ruhr University Bochum, D-44780 Bochum (Germany); Ghorbanalilu, M. [Physics Department, Shahid Beheshti University, G.C., Evin, Tehran (Iran, Islamic Republic of)

    2015-11-15

    In this paper, the generalized viscoelastic collisional quantum hydrodynamic model is employed in order to investigate the linear dielectric response of a quantum plasma in the presence of strong electron-beam plasma interactions. The generalized Chandrasekhar's relativistic degeneracy pressure together with the electron-exchange and Coulomb interaction effects are taken into account in order to extend current research to a wide range of plasma number density relevant to big planetary cores and astrophysical compact objects. The previously calculated shear viscosity and the electron-ion collision frequencies are used for strongly coupled ion fluid. The effect of the electron-beam velocity on complex linear dielectric function is found to be profound. This effect is clearly interpreted in terms of the wave-particle interactions and their energy-exchange according to the sign of the imaginary dielectric function, which is closely related to the wave attenuation coefficient in plasmas. Such kinetic effect is also shown to be in close connection with the stopping power of a charged-particle beam in a quantum plasma. The effect of many independent plasma parameters, such as the ion charge-state, electron beam-velocity, and relativistic degeneracy, is shown to be significant on the growing/damping of plasma instability or energy loss/gain of the electron-beam.

  15. Preliminary investigations on high energy electron beam tomography

    Energy Technology Data Exchange (ETDEWEB)

    Baertling, Yves; Hoppe, Dietrich; Hampel, Uwe

    2010-12-15

    In computed tomography (CT) cross-sectional images of the attenuation distribution within a slice are created by scanning radiographic projections of an object with a rotating X-ray source detector compound and subsequent reconstruction of the images from these projection data on a computer. CT can be made very fast by employing a scanned electron beam instead of a mechanically moving X-ray source. Now this principle was extended towards high-energy electron beam tomography with an electrostatic accelerator. Therefore a dedicated experimental campaign was planned and carried out at the Budker Institute of Nuclear Physics (BINP), Novosibirsk. There we investigated the capabilities of BINP's accelerators as an electron beam generating and scanning unit of a potential high-energy electron beam tomography device. The setup based on a 1 MeV ELV-6 (BINP) electron accelerator and a single detector. Besides tomographic measurements with different phantoms, further experiments were carried out concerning the focal spot size and repeat accuracy of the electron beam as well as the detector's response time and signal to noise ratio. (orig.)

  16. Control System for Multi-energy Electron Irradiation Accelerator

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Li-feng; LIU; Bao-jie

    2012-01-01

    <正>Multi-energy electron irradiation accelerator has a wide range of applications in areas such as industrial irradiation. Accelerator is operated under control system with accelerator subsystems, in which new technologies are involved, such as fiber-based network communication technology and PLC technology. The control system integrates pulse modulator systems,

  17. Study on the high spectral intensity at the Dirac energy of single-layer graphene on an SiC substrate

    Science.gov (United States)

    Hwang, Jinwoong; Hwang, Choongyu

    2016-04-01

    We have investigated electron band structure of epitaxially grown graphene on an SiC(0001) substrate using angle-resolved photoemission spectroscopy. In single-layer graphene, abnormal high spectral intensity is observed at the Dirac energy whose origin has been questioned between in-gap states induced by the buffer layer and plasmaron bands induced by electron–plasmon interactions. With the formation of double-layer graphene, the Dirac energy does not show the high spectral intensity any longer different from the single-layer case. The inconsistency between the two systems suggests that the main ingredient of the high spectral intensity at the Dirac energy of single-layer graphene is the electronic states originating from the coupling of the graphene π bands to the localized π states of the buffer layer, consistent with the theoretical prediction on the presence of in-gap states.

  18. Curing Composite Materials Using Lower-Energy Electron Beams

    Science.gov (United States)

    Byrne, Catherine A.; Bykanov, Alexander

    2004-01-01

    In an improved method of fabricating composite-material structures by laying up prepreg tapes (tapes of fiber reinforcement impregnated by uncured matrix materials) and then curing them, one cures the layups by use of beams of electrons having kinetic energies in the range of 200 to 300 keV. In contrast, in a prior method, one used electron beams characterized by kinetic energies up to 20 MeV. The improved method was first suggested by an Italian group in 1993, but had not been demonstrated until recently. With respect to both the prior method and the present improved method, the impetus for the use of electron- beam curing is a desire to avoid the high costs of autoclaves large enough to effect thermal curing of large composite-material structures. Unfortunately, in the prior method, the advantages of electron-beam curing are offset by the need for special walls and ceilings on curing chambers to shield personnel from x rays generated by impacts of energetic electrons. These shields must be thick [typically 2 to 3 ft (about 0.6 to 0.9 m) if made of concrete] and are therefore expensive. They also make it difficult to bring large structures into and out of the curing chambers. Currently, all major companies that fabricate composite-material spacecraft and aircraft structures form their layups by use of automated tape placement (ATP) machines. In the present improved method, an electron-beam gun is attached to an ATP head and used to irradiate the tape as it is pressed onto the workpiece. The electron kinetic energy between 200 and 300 keV is sufficient for penetration of the ply being laid plus one or two of the plies underneath it. Provided that the electron-beam gun is properly positioned, it is possible to administer the required electron dose and, at the same time, to protect personnel with less shielding than is needed in the prior method. Adequate shielding can be provided by concrete walls 6 ft (approximately equal to 1.8 m) high and 16 in. (approximately

  19. Experimental Benchmarking of Pu Electronic Structure

    Energy Technology Data Exchange (ETDEWEB)

    Tobin, J.G.; Moore, K.T.; Chung, B.W.; Wall, M.A.; Schwartz, A.J.; Ebbinghaus, B.B.; Butterfield, M.T.; Teslich, Jr., N.E.; Bliss, R.A.; Morton, S.A.; Yu, S.W.; Komesu, T.; Waddill, G.D.; van der Laan, G.; Kutepov, A.L. (UMR-MUST); (LLNL)

    2008-10-30

    The standard method to determine the band structure of a condensed phase material is to (1) obtain a single crystal with a well defined surface and (2) map the bands with angle resolved photoelectron spectroscopy (occupied or valence bands) and inverse photoelectron spectroscopy (unoccupied or conduction bands). Unfortunately, in the case of Pu, the single crystals of Pu are either nonexistent, very small and/or having poorly defined surfaces. Furthermore, effects such as electron correlation and a large spin-orbit splitting in the 5f states have further complicated the situation. Thus, we have embarked upon the utilization of unorthodox electron spectroscopies, to circumvent the problems caused by the absence of large single crystals of Pu with well-defined surfaces. Our approach includes the techniques of resonant photoelectron spectroscopy, x-ray absorption spectroscopy, electron energy loss spectroscopy, Fano Effect measurements, and Bremstrahlung Isochromat Spectroscopy, including the utilization of micro-focused beams to probe single-crystallite regions of polycrystalline Pu samples.

  20. Controlled cooling of an electronic system for reduced energy consumption

    Energy Technology Data Exchange (ETDEWEB)

    David, Milnes P.; Iyengar, Madhusudan K.; Schmidt, Roger R.

    2016-08-09

    Energy efficient control of a cooling system cooling an electronic system is provided. The control includes automatically determining at least one adjusted control setting for at least one adjustable cooling component of a cooling system cooling the electronic system. The automatically determining is based, at least in part, on power being consumed by the cooling system and temperature of a heat sink to which heat extracted by the cooling system is rejected. The automatically determining operates to reduce power consumption of the cooling system and/or the electronic system while ensuring that at least one targeted temperature associated with the cooling system or the electronic system is within a desired range. The automatically determining may be based, at least in part, on one or more experimentally obtained models relating the targeted temperature and power consumption of the one or more adjustable cooling components of the cooling system.

  1. Excitation of the lowest electronic transitions in ethanol by low-energy electrons

    Science.gov (United States)

    Hargreaves, L. R.; Khakoo, M. A.; Winstead, C.; McKoy, V.

    2016-09-01

    We report absolute differential and integral cross sections for electronic excitation of ethanol, by low-energy electron impact. Cross sections for low-lying excited states were measured at incident electron energies from 9 to 20 eV and at scattering angles from {5}\\circ through {130}\\circ . Our results include cross sections for excitation of the 1{}3A\\prime \\prime and 1{}1A\\prime \\prime states as well as for the 2{}3A\\prime \\prime + 1{}3A\\prime and 2{}1A\\prime \\prime + 2{}1A\\prime cross section sums. Corresponding calculations were also performed using the Schwinger multichannel method, within an 11-channel close-coupling scheme.

  2. High proton energies from cone targets: electron acceleration mechanisms

    International Nuclear Information System (INIS)

    Recent experiments in the Trident laser facility (Los Alamos National Laboratory) have shown that hollow conical targets with a flat top at the tip can enhance the maximum energy of proton beams created during the interaction of an ultra-intense short laser pulse with the target (Gaillard S A et al 2011 Phys. Plasmas 18 056710). The proton energies that have been seen in these experiments are the highest energies observed so far in laser-driven proton acceleration. This is attributed to a new acceleration mechanism, direct light pressure acceleration of electrons (DLLPA), which increases the number and energy of hot electrons that drive the proton acceleration. This acceleration process of protons due to a two-temperature sheath formed at the flat-top rear side is very robust and produces a large number of protons per shot, similar to what is regularly observed in target normal sheath acceleration (Hatchett S P et al 2000 Phys. Plasmas 7 2076, Maksimchuk A et al 2000 Phys. Rev. Lett. 84 4108, Snavely R A et al 2000 Phys. Rev. Lett. 85 2945) with flat foils. In this paper, we investigate the electron kinetics during DLLPA, showing that they are governed by two mechanisms, both of which lead to continuous electron acceleration along the inner cone wall. Based on our model, we predict the scaling of the hot electron temperature and ion maximum energy with both laser and target geometrical parameters. The scaling of T=mec02a02/4 with the laser strength parameter a0 leads to an ion energy scaling that surpasses that of some recently proposed acceleration mechanisms such as radiation pressure acceleration (RPA), while in addition the maximum electron energy is found to scale linearly with the length of the cone neck. We find that when optimizing parameters, high proton energies suitable for applications can be reached using compact short-pulse laser systems with pulse durations of only a few tens to hundreds of laser periods. (paper)

  3. High energy electron processing of icy regoliths on Saturn's moons

    Science.gov (United States)

    Schaible, Micah; Johnson, Robert E.

    2015-11-01

    A unique space weathering phenomenon has been identified on several icy Saturnian moons. Cassini revealed anomalous lens shaped regions in both optical and thermal wavelengths, colloquially known as the 'PacMan' feature, which are centered on the leading hemispheres and approximately symmetric about the equators. In particular, the Cassini InfraRed Spectrometer (CIRS) measurements of thermal emission in the mid-IR showed that surface temperature variations during a diurnal cycle were smaller inside the anomalous regions. The locations of the anomalies were shown to closely match the expected deposition profile of high energy (~ MeV) electrons moving counter rotational to the moons, suggesting an energetic source to drive their formation. However, the mechanisms by which thermal conductivity enhancement occur lack quantitative comparison with theoretical and experimental results.Electron interactions with the grains can excite molecules, which, if near enough to an intergrain contact, can cause atoms or molecules to migrate into the contact region, thus increasing the contact volume or 'sintering' the grains. Sintering improves the thermal contact between grains, leading to increased effective thermal conductivity of the regolith. Equations previously developed to describe material behavior in nuclear reactor were used to estimate the timescale for the energetic electrons to increase the contact volume sufficiently to describe the enhanced thermal conductivity of the anomalous regions. In order to properly constrain the sintering calculations, the unique electron energy distribution measured in the vicinity of each of the moons was used in the calculations, and molecular dynamics simulations of excited electrons in water ice were carried out to determine the length scale for an average electron excitation or ionization event. This length scale determines the distance from the primary reaction at which electrons can still be mobilized to move into the contact region

  4. Measuring the electron beam energy in a magnetic bunch compressor

    International Nuclear Information System (INIS)

    Within this thesis, work was carried out in and around the first bunch compressor chicane of the FLASH (Free-electron LASer in Hamburg) linear accelerator in which two distinct systems were developed for the measurement of an electron beams' position with sub-5 μm precision over a 10 cm range. One of these two systems utilized RF techniques to measure the difference between the arrival-times of two broadband electrical pulses generated by the passage of the electron beam adjacent to a pickup antenna. The other system measured the arrival-times of the pulses from the pickup with an optical technique dependent on the delivery of laser pulses which are synchronized to the RF reference of the machine. The relative advantages and disadvantages of these two techniques are explored and compared to other available approaches to measure the same beam property, including a time-of-flight measurement with two beam arrival-time monitors and a synchrotron light monitor with two photomultiplier tubes. The electron beam position measurement is required as part of a measurement of the electron beam energy and could be used in an intra-bunch-train beam-based feedback system that would stabilize the amplitude of the accelerating field. By stabilizing the accelerating field amplitude, the arrival-time of the electron beam can be made more stable. By stabilizing the electron beam arrival-time relative to a stable reference, diagnostic, seeding, and beam-manipulation lasers can be synchronized to the beam. (orig.)

  5. Ultra High Energy Electrons Powered by Pulsar Rotation

    CERN Document Server

    Mahajan, Swadesh; Osmanov, Zaza; Chkheidze, Nino

    2013-01-01

    A new mechanism of particle acceleration to ultra high energies, driven by the rotational slow down of a pulsar (Crab pulsar, for example), is explored. The rotation, through the time dependent centrifugal force, can very efficiently excite unstable Langmuir waves in the e-p plasma of the star magnetosphere via a parametric process. These waves, then, Landau damp on electrons accelerating them in the process. The net transfer of energy is optimal when the wave growth and the Landau damping times are comparable and are both very short compared to the star rotation time. We show, by detailed calculations, that these are precisely the conditions for the parameters of the Crab pulsar. This highly efficient route for energy transfer allows the electrons in the primary beam to be catapulted to multiple TeV ($\\sim 100$ TeV) and even PeV energy domain. It is expected that the proposed mechanism may, partially, unravel the puzzle of the origin of ultra high energy cosmic ray electrons.

  6. Energy distribution of field emission electrons from a niobium tip

    Science.gov (United States)

    Nagaoka, K.; Ogawa, H.; Arai, N.; Uchiyama, S.; Yamashita, T.; Oshima, C.; Otani, S.

    1996-06-01

    We have fabricated Nb tips by electrochemical polishing from the single crystal wires along the orientation, which has been prepared by means of floating zone, spark erosion, and mechanical polishing techniques. The energy distribution of the field emission electrons from the Nb tip has been measured at room temperature using a high resolution electron spectrometer recently developed. The experiments were carried out in vacuum of ˜ 3 × 10 -9 Pa, and the tip surface was cleaned by field evaporation. The main part of the energy distribution is in agreement with the theoretical curves calculated on the basis of the Fowler-Nordheim theory. Two discrepancies are observed on low and high energy sides.

  7. Energy determination and identification of high-energy electrons by energy release measurement near the shower maximum

    International Nuclear Information System (INIS)

    The performance of a simple detector of electrons and photons, consisting of a lead convertor and a scintillation counter, exposed to 6.65 - 40 GeV electrons and 40 GeV hadrons is described. The best energy resolution - delta/E=0.69xEsup(-0.45) (E in GeV), is obtained when the convertor thickness is close to the shower maximum. The detector can be used for electron/hadron discrimination. The probability to identify a 40 GeV hadron as an electron with the same energy is approximately 4x10-3 at 95% electron detection efficiency

  8. Electronic and optical properties of Fe, Pd, and Ti studied by reflection electron energy loss spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tahir, Dahlang [Department of Physics, Hasanuddin University, Makassar 90245 (Indonesia); Kraaer, Jens; Tougaard, Sven [Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, DK-5230 Odense M (Denmark)

    2014-06-28

    We have studied the electronic and optical properties of Fe, Pd, and Ti by reflection electron energy-loss spectroscopy (REELS). REELS spectra recorded for primary energies in the range from 300 eV to 10 keV were corrected for multiple inelastically scattered electrons to determine the effective inelastic-scattering cross section. The dielectric functions and optical properties were determined by comparing the experimental inelastic-electron scattering cross section with a simulated cross section calculated within the semi-classical dielectric response model in which the only input is Im(−1/ε) by using the QUEELS-ε(k,ω)-REELS software package. The complex dielectric functions ε(k,ω), in the 0–100 eV energy range, for Fe, Pd, and Ti were determined from the derived Im(−1/ε) by Kramers-Kronig transformation and then the refractive index n and extinction coefficient k. The validity of the applied model was previously tested and found to give consistent results when applied to REELS spectra at energies between 300 and 1000 eV taken at widely different experimental geometries. In the present paper, we provide, for the first time, a further test on its validity and find that the model also gives consistent results when applied to REELS spectra in the full range of primary electron energies from 300 eV to 10000 eV. This gives confidence in the validity of the applied method.

  9. Analyzer of energy spectra of a magnetized relativistic electron beam

    International Nuclear Information System (INIS)

    Analyzer of magnetized REB instant energy spectrum is described. The analyzer operation principle is based on the application of a sharp change of the direction of force lines of a magnetic field which is non-adiabatic for the beam electrons. The analyzer design is described, the main factors effecting the energy resolution are considered. The analyzer serviceability is examined in the course of experiments on plasma heating using a heavy-current microsecond REB at the GOL-3 device. The analyzer energy resolution which does not exceed 10% at 0.8 MeV energy and 20% at 0.3 MeV is determined. Beam energy spectra are obtained in one of the regimes of beam interaction with plasma. The efficiency of beam interaction with plasma determined using the analyzer achieves 30%. 10 refs.; 7 figs

  10. Electronic structure of the quasi-one-dimensional organic conductor TTF-TCNQ

    DEFF Research Database (Denmark)

    Sing, M.; Schwingenschlögl, U.; Claessen, R.;

    2003-01-01

    We study the electronic structure of the quasi-one-dimensional organic conductor TTF-TCNQ by means of density-functional band theory, Hubbard model calculations, and angle-resolved photoelectron spectroscopy (ARPES). The experimental spectra reveal significant quantitative and qualitative...

  11. Direct Measurement of the Band Structure of a Buried Two-Dimensional Electron Gas

    DEFF Research Database (Denmark)

    Miwa, Jill; Hofmann, Philip; Simmons, Michelle Y.;

    2013-01-01

    We directly measure the band structure of a buried two dimensional electron gas (2DEG) using angle resolved photoemission spectroscopy. The buried 2DEG forms 2 nm beneath the surface of p-type silicon, because of a dense delta-type layer of phosphorus n-type dopants which have been placed there...

  12. Energy Dependence of SEP Electron and Proton Onset Times

    CERN Document Server

    Xie, Hong; Gopalswamy, Nat; Cyr, Orville St

    2016-01-01

    We study the large solar energetic particle (SEP) events that were detected by GOES in the $>$ 10 MeV energy channel during December 2006 to March 2014. We derive and compare solar particle release (SPR) times for the 0.25--10.4 MeV electrons and 10--100 MeV protons for the 28 SEP events. In the study, the electron SPR times are derived with the time-shifting analysis (TSA) and the proton SPR times are derived using both the TSA and the velocity dispersion analysis (VDA). Electron anisotropies are computed to evaluate the amount of scattering for the events under study. Our main results include: 1)near-relativistic electrons and high-energy protons are released at the same time within 8 min for most (16 of 23) SEP events. 2)There exists a good correlation between electron and proton acceleration, peak intensity and intensity time profiles. 3) The TSA SPR times for 90.5 MeV and 57.4 MeV protons have maximum errors of 6 min and 10 min compared to the proton VDA release times, respectively, while the maximum err...

  13. Electronic structure studies of topological materials

    Science.gov (United States)

    Zhou, Shuyun

    Three-dimensional (3D) Dirac fermions are a new class of topological quantum materials. In 3D Dirac semimetals, the conduction and valence bands touch each other at discrete points in the momentum space and show linear dispersions along all momentum directions, forming 3D Dirac cones which are protected by the crystal symmetry. Here I will present our recent studies of the electronic structures of novel materials which host 3D Dirac fermions by using angle-resolved photoemission spectroscopy.

  14. Emission of Low-Energy Photons by Electrons at Electron-Positron and Electron-Ion Colliders with Dense Bunches

    CERN Document Server

    Jentschura, U D; Serbo, V G; 10.1103/PhysRevSTAB.12.011003

    2009-01-01

    Usually, the emission of low-energy photons in electron-positron (or electron-ion) bunch collisions is calculated with the same approach as for synchrotron radiation (beamstrahlung). However, for soft photons (E_gamma < E_c where E_c is a critical photon energy), when the coherence length of the radiation becomes comparable to the bunch length, the beamstrahlung approximation becomes invalid. In this paper, we present results of our calculation for this region based on approximation of classical currents. We consider several colliders with dense bunches. The number of low-energy photons dN_gamma emitted by N_e electrons per bunch crossing in the energy interval dE_gamma is dN_gamma = alpha g N_e dE_gamma/E_gamma, where alpha is the fine-structure constant, and the function g, which depends on the bunch parameters, typically is of order unity for modern colliders. In particular, for the ILC, we find that E_c = 83 keV and g=5.5 at a vanishing beam axis displacement, and g=0.88, E_c=0.24 keV for KEKB. We also...

  15. Low-Energy Electron Scattering by Sugarcane Lignocellulosic Biomass Molecules

    Science.gov (United States)

    Oliveira, Eliane; Sanchez, Sergio; Bettega, Marcio; Lima, Marco; Varella, Marcio

    2012-06-01

    The use of second generation (SG) bioethanol instead of fossil fuels could be a good strategy to reduce greenhouse gas emissions. However, the efficient production of SG bioethanol has being a challenge to researchers around the world. The main barrier one must overcome is the pretreatment, a very important step in SG bioethanol aimed at breaking down the biomass and facilitates the extraction of sugars from the biomass. Plasma-based treatment, which can generate reactive species, could be an interesting possibility since involves low-cost atmospheric-pressure plasma. In order to offer theoretical support to this technique, the interaction of low-energy electrons from the plasma with biomass is investigated. This study was motived by several works developed by Sanche et al., in which they understood that DNA damage arises from dissociative electron attachment, a mechanism in which electrons are resonantly trapped by DNA subunits. We will present elastic cross sections for low-energy electron scattering by sugarcane biomass molecules, obtained with the Schwinger multichannel method. Our calculations indicate the formation of π* shape resonances in the lignin subunits, while a series of broad and overlapping σ* resonances are found in cellulose and hemicellulose subunits. The presence of π* and σ* resonances could give rise to direct and indirect dissociation pathways in biomass. Then, theoretical resonance energies can be useful to guide the plasma-based pretreatment to break down specific linkages of interest in biomass.

  16. Whole body irradiation by high energy electron for mycosis fungoides

    Energy Technology Data Exchange (ETDEWEB)

    Koga, Kenji; Nishikawa, Kiyoshi; Wakuta, Yuhji; Asada, Keiko; Murai, Nobuko; Watanabe, Katsushi; Takada, Takuo

    1985-02-01

    Five patients with mycosis fungoides were treated with whole body irradiation by high energy electron. They were irradiated by a linear accelerator (ML-15MIII, Mitsubishi Company) with the electron of 8 MeV, using the acrylics decelerator at the window to reduce the electron energy. Source skin distance was 150 cm and three beams with a separation of 60 cm were used. The dose distribution at the skin surface was within homogeneity of +-7.5%. The 2 patients have been alive without evidence of disease for 2 years, and 1 year and half after the treatment, respectively. Three patients were dead; two of the dead were associated with pancytopenia, one irradiated 6 times for 2 years and 4 months and the other 3 times for 2 years. The remaining one patient developed the brain metastasis without skin lesions 6 months later. Our results suggest that mycosis fungoides is curable in infiltrative stage, but not in tumorous stage. Some discussion on the problem of this treatment technique and haematological changes caused by the contaminated X-ray as well as high energy electron were made, reviewing the pertinent literatures on the device to reduce the contaminated X-ray. (author).

  17. Low energy electron attachment to cyanamide (NH2CN)

    International Nuclear Information System (INIS)

    Cyanamide (NH2CN) is a molecule relevant for interstellar chemistry and the chemical evolution of life. In the present investigation, dissociative electron attachment to NH2CN has been studied in a crossed electron–molecular beams experiment in the electron energy range from about 0 eV to 14 eV. The following anionic species were detected: NHCN−, NCN−, CN−, NH2−, NH−, and CH2−. The anion formation proceeds within two broad electron energy regions, one between about 0.5 and 4.5 eV and a second between 4.5 and 12 eV. A discussion of possible reaction channels for all measured negative ions is provided. The experimental results are compared with calculations of the thermochemical thresholds of the anions observed. For the dehydrogenated parent anion, we explain the deviation between the experimental appearance energy of the anion with the calculated corresponding reaction threshold by electron attachment to the isomeric form of NH2CN—carbodiimide

  18. Charge reorganization energy and small polaron binding energy of rubrene thin films by ultraviolet photoelectron spectroscopy.

    Science.gov (United States)

    Duhm, Steffen; Xin, Qian; Hosoumi, Shunsuke; Fukagawa, Hirohiko; Sato, Kazushi; Ueno, Nobuo; Kera, Satoshi

    2012-02-14

    The hole–phonon coupling of a rubrene monolayer on graphite is measured by means of angle resolved ultraviolet photoelectron spectroscopy. Thus, the charge reorganization energy λ and the small polaron binding energy is determined, which allows insight into the nature of charge transport in condensed rubrene. PMID:22403829

  19. Piezoelectric energy harvesting for powering low power electronics

    Energy Technology Data Exchange (ETDEWEB)

    Leinonen, M.; Palosaari, J.; Hannu, J.; Juuti, J.; Jantunen, H. (Univ. of Oulu, Dept. of Electrical and Information Engineering (Finland)). email: jajuu@ee.oulu.fi

    2009-07-01

    Although wireless data transmission techniques are commonly used in electronic devices, they still suffer from wires for the power supply or from batteries which require charging, replacement and other maintenance. The vision for the portable electronics and industrial measurement systems of the future is that they are intelligent and independent on their energy supply. The major obstacle in this path is the energy source which enables all other functions and 'smartness' of the systems as the computing power is also restricted by the available energy. The development of long-life energy harvesters would reduce the need for batteries and wires thus enabling cost-effective and environment friendlier solutions for various applications such as autonomous wireless sensor networks, powering of portable electronics and other maintenance-free systems. One of the most promising techniques is mechanical energy harvesting e.g. by piezoelectric components where deformations produced by different means is directly converted to electrical charge via direct piezoelectric effect. Subsequently the electrical energy can be regulated or stored for further use. The total mechanical energy in vibration of machines can be very large and usually only a fraction of it can be transformed to electrical energy. Recently, piezoelectric vibration based energy harvesters have been developed widely for different energy consumption and application areas. As an example for low energy device an piezoelectric energy harvester based on impulse type excitations has been developed for active RFID identification. Moreover, piezoharvester with externally leveraged mechanism for force amplification was reported to be able to generate mean power of 0.4 mW from backpack movement. Significantly higher power levels are expected from larger scale testing in Israel, where piezoelectric material is embedded under active walking street, road, airport or railroad. The energy is harvested from human or

  20. Low-energy electron scattering from molecules, biomolecules and surfaces

    CERN Document Server

    Carsky, Petr

    2011-01-01

    Since the turn of the 21st century, the field of electron molecule collisions has undergone a renaissance. The importance of such collisions in applications from radiation chemistry to astrochemistry has flowered, and their role in industrial processes such as plasma technology and lighting are vital to the advancement of next generation devices. Furthermore, the development of the scanning tunneling microscope highlights the role of such collisions in the condensed phase, in surface processing, and in the development of nanotechnology.Low-Energy Electron Scattering from Molecules, Biomolecule

  1. Probing Plasmonic Nanostructures with Electron Energy - Loss Spectroscopy

    DEFF Research Database (Denmark)

    Raza, Søren

    for nonlocal response. The experimental work comprises the use of electron energy-loss spectroscopy (EELS) to excite and study both localized and propagating surface plasmons in metal structures. Following a short introduction, we present the theoretical foundation to describe nonlocal response in Maxwell...... the generalized nonlocal optical response model, which expands the hydrodynamic model by taking into account the diffusion of free electrons in metals through Fick’s law. We go on to consider the implications of these two nonlocal models in the following plasmonic geometries: metal-insulator interface, nanosphere...

  2. Extraction of electron plasma energy distribution function using distortion meters

    Science.gov (United States)

    Azooz, A. A.

    2006-06-01

    A new method for direct evaluation of the electron energy distribution function in plasmas is suggested, which involves the use of audio frequencies distortion factor meters. The amount of distortion suffered by a Langmuir probe AC current produced by superimposing a clean AC voltage on the DC probe voltage is measured. Although such distortions are proportional to the second derivative of the probe characteristic at any point when its neighborhood can be approximated by a second-degree polynomial, the instrument function is always sharper than that of harmonic differentiation. The method is analyzed theoretically, and tested experimentally. It is also shown that distortion additionally provides a direct measure of the electron temperature.

  3. Low-energy scattering of electrons by atomic oxygen

    International Nuclear Information System (INIS)

    The method of polarized pseudostates has been used to calculate cross sections for the elastic scattering of electrons by atomic oxygen. These pseudostates are added to the close-coupling expansion to give a polarization potential in agreement with experimental values of polarizability. The resulting elastic cross sections are in good agreement with other theoretical calculations as well as with experiment for energies up to 10 eV. The reactance matrices obtained in this calculation have been used to calculate collision strengths for fine-structure transitions in the ground-state 3P term for electron temperatures above 5000 degree K

  4. Probing Battery Chemistry with Liquid Cell Electron Energy Loss Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Unocic, Raymond R.; Baggetto, Loic; Veith, Gabriel M.; Aguiar, Jeffery A.; Unocic, Kinga A.; Sacci, Robert L.; Dudney, Nancy J.; More, Karren L.

    2015-11-25

    We demonstrate the ability to apply electron energy loss spectroscopy (EELS) to follow the chemistry and oxidation states of LiMn2O4 and Li4Ti5O12 battery electrodes within a battery solvent. The use and importance of in situ electrochemical cells coupled with a scanning/transmission electron microscope (S/TEM) has expanded and been applied to follow changes in battery chemistry during electrochemical cycling. Furthermore, we discuss experimental parameters that influence measurement sensitivity and provide a framework to apply this important analytical method to future in situ electrochemical studies.

  5. Weissenberg reflection high-energy electron diffraction for surface crystallography.

    Science.gov (United States)

    Abukawa, Tadashi; Yamazaki, Tomoyuki; Yajima, Kentaro; Yoshimura, Koji

    2006-12-15

    The principle of a Weissenberg camera is applied to surface crystallographic analysis by reflection high-energy electron diffraction. By removing inelastic electrons and measuring hundreds of patterns as a function of sample rotation angle phi, kinematical analysis can be performed over a large volume of reciprocal space. The data set is equivalent to a three-dimensional stack of Weissenberg photographs. The method is applied to analysis of an Si(111)-square root of 3 x square root of 3-Ag surface, and the structural data obtained are in excellent agreement with the known atomic structure.

  6. Determining the static electronic and vibrational energy correlations via two-dimensional electronic-vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Hui; Lewis, Nicholas H. C.; Oliver, Thomas A. A.; Fleming, Graham R., E-mail: grfleming@lbl.gov [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, Californial 94720 (United States); Kavli Energy NanoSciences Institute at Berkeley, Berkeley, California 94720 (United States)

    2015-05-07

    Changes in the electronic structure of pigments in protein environments and of polar molecules in solution inevitably induce a re-adaption of molecular nuclear structure. Both changes of electronic and vibrational energies can be probed with visible or infrared lasers, such as two-dimensional electronic spectroscopy or vibrational spectroscopy. The extent to which the two changes are correlated remains elusive. The recent demonstration of two-dimensional electronic-vibrational (2DEV) spectroscopy potentially enables a direct measurement of this correlation experimentally. However, it has hitherto been unclear how to characterize the correlation from the spectra. In this paper, we present a theoretical formalism to demonstrate the slope of the nodal line between the excited state absorption and ground state bleach peaks in the spectra as a characterization of the correlation between electronic and vibrational transition energies. We also show the dynamics of the nodal line slope is correlated to the vibrational spectral dynamics. Additionally, we demonstrate the fundamental 2DEV spectral line-shape of a monomer with newly developed response functions.

  7. Accounting for both electron--lattice and electron--electron coupling in conjugated polymers: minimum total energy calculations on the Hubbard--Peierls hamiltonian

    OpenAIRE

    Rossi, Giuseppe

    1993-01-01

    Minimum total energy calculations, which account for both electron--lattice and electron--electron interactions in conjugated polymers are performed for chains with up to eight carbon atoms. These calculations are motivated in part by recent experimental results on the spectroscopy of polyenes and conjugated polymers and shed light on the longstanding question of the relative importance of electron--lattice vs. electron--electron interactions in determining the properties of these systems.

  8. Mechanism and Experimental Observability of Global Switching Between Reactive and Nonreactive Coordinates at High Total Energies.

    Science.gov (United States)

    Teramoto, Hiroshi; Toda, Mikito; Takahashi, Masahiko; Kono, Hirohiko; Komatsuzaki, Tamiki

    2015-08-28

    We present a mechanism of global reaction coordinate switching, namely, a phenomenon in which the reaction coordinate dynamically switches to another coordinate as the total energy of the system increases. The mechanism is based on global changes in the underlying phase space geometry caused by a switching of dominant unstable modes from the original reactive mode to another nonreactive mode in systems with more than 2 degrees of freedom. We demonstrate an experimental observability to detect a reaction coordinate switching in an ionization reaction of a hydrogen atom in crossed electric and magnetic fields. For this reaction, the reaction coordinate is a coordinate along which electrons escape and its switching changes the escaping direction from the direction of the electric field to that of the magnetic field and, thus, the switching can be detected experimentally by measuring the angle-resolved momentum distribution of escaping electrons. PMID:26371648

  9. Momentum-Resolved Electronic Structure of the High-Tc Superconductor Parent Compound BaBiO3

    Science.gov (United States)

    Plumb, N. C.; Gawryluk, D. J.; Wang, Y.; Ristić, Z.; Park, J.; Lv, B. Q.; Wang, Z.; Matt, C. E.; Xu, N.; Shang, T.; Conder, K.; Mesot, J.; Johnston, S.; Shi, M.; Radović, M.

    2016-07-01

    We investigate the band structure of BaBiO3 , an insulating parent compound of doped high-Tc superconductors, using in situ angle-resolved photoemission spectroscopy on thin films. The data compare favorably overall with density functional theory calculations within the local density approximation, demonstrating that electron correlations are weak. The bands exhibit Brillouin zone folding consistent with known BiO6 breathing distortions. Though the distortions are often thought to coincide with Bi3 +/Bi5 + charge ordering, core level spectra show that bismuth is monovalent. We further demonstrate that the bands closest to the Fermi level are primarily oxygen derived, while the bismuth 6 s states mostly contribute to dispersive bands at deeper binding energy. The results support a model of Bi-O charge transfer in which hole pairs are localized on combinations of the O 2 p orbitals.

  10. Momentum-Resolved Electronic Structure of the High-T_{c} Superconductor Parent Compound BaBiO_{3}.

    Science.gov (United States)

    Plumb, N C; Gawryluk, D J; Wang, Y; Ristić, Z; Park, J; Lv, B Q; Wang, Z; Matt, C E; Xu, N; Shang, T; Conder, K; Mesot, J; Johnston, S; Shi, M; Radović, M

    2016-07-15

    We investigate the band structure of BaBiO_{3}, an insulating parent compound of doped high-T_{c} superconductors, using in situ angle-resolved photoemission spectroscopy on thin films. The data compare favorably overall with density functional theory calculations within the local density approximation, demonstrating that electron correlations are weak. The bands exhibit Brillouin zone folding consistent with known BiO_{6} breathing distortions. Though the distortions are often thought to coincide with Bi^{3+}/Bi^{5+} charge ordering, core level spectra show that bismuth is monovalent. We further demonstrate that the bands closest to the Fermi level are primarily oxygen derived, while the bismuth 6s states mostly contribute to dispersive bands at deeper binding energy. The results support a model of Bi-O charge transfer in which hole pairs are localized on combinations of the O 2p orbitals.

  11. Momentum-Resolved Electronic Structure of the High-T_{c} Superconductor Parent Compound BaBiO_{3}.

    Science.gov (United States)

    Plumb, N C; Gawryluk, D J; Wang, Y; Ristić, Z; Park, J; Lv, B Q; Wang, Z; Matt, C E; Xu, N; Shang, T; Conder, K; Mesot, J; Johnston, S; Shi, M; Radović, M

    2016-07-15

    We investigate the band structure of BaBiO_{3}, an insulating parent compound of doped high-T_{c} superconductors, using in situ angle-resolved photoemission spectroscopy on thin films. The data compare favorably overall with density functional theory calculations within the local density approximation, demonstrating that electron correlations are weak. The bands exhibit Brillouin zone folding consistent with known BiO_{6} breathing distortions. Though the distortions are often thought to coincide with Bi^{3+}/Bi^{5+} charge ordering, core level spectra show that bismuth is monovalent. We further demonstrate that the bands closest to the Fermi level are primarily oxygen derived, while the bismuth 6s states mostly contribute to dispersive bands at deeper binding energy. The results support a model of Bi-O charge transfer in which hole pairs are localized on combinations of the O 2p orbitals. PMID:27472130

  12. Influence of Heat-radiating on Multi-photon Compton Scattering High-energy Electron

    Institute of Scientific and Technical Information of China (English)

    HAO Dong-shan; WANG Xin-min

    2007-01-01

    Using the model of the inverse Compton scattering between high-energy electrons and heat-radiation photons, the influence of heat-radiating photons on multi-photon Compton scattering high-energy electrons is studied . The results show that the energy loss, power loss, light resistance and light pressure of the high-energy electron formed by heat radiating are all proportional to the temperature T4 of the vacuum cavity of the electron,the Lorentz factor γ2 of the high-energy electrons, the scattering section of the electron and the number of photons acting at the same time with high-energy electrons. A good method for lessening the energy loss of the high-energy electron by using the one-photon Compton scattering between high-energy electrons and heat radiation photons is proposed.

  13. Electronic structure of germanium selenide investigated using ultra-violet photo-electron spectroscopy

    International Nuclear Information System (INIS)

    The valence band electronic structure of GeSe single crystals has been investigated using angle resolved photoemission spectroscopy (ARPES) and x-ray photoelectron spectroscopy. The experimentally observed bands from ARPES, match qualitatively with our LDA-based band structure calculations along the Γ–Z, Γ–Y and Γ–T symmetry directions. The valence band maximum occurs nearly midway along the Γ–Z direction, at a binding energy of −0.5 eV, substantiating the indirect band gap of GeSe. Non-dispersive features associated with surface states and indirect transitions have been observed. The difference in hybridization of Se and Ge 4p orbitals leads to the variation of dispersion along the three symmetry directions. The predominance of the Se 4pz orbitals, evidenced from theoretical calculations, may be the cause for highly dispersive bands along the Γ–T direction. Detailed electronic structure analysis reveals the significance of the cation–anion 4p orbitals hybridization in the valence band dispersion of IV–VI semiconductors. This is the first comprehensive report of the electronic structure of a GeSe single crystal using ARPES in conjugation with theoretical band structure analysis. (paper)

  14. Energy fluctuations of a finite free-electron Fermi gas

    Science.gov (United States)

    Pekola, Jukka P.; Muratore-Ginanneschi, Paolo; Kupiainen, Antti; Galperin, Yuri M.

    2016-08-01

    We discuss the energy distribution of free-electron Fermi-gas, a problem with a textbook solution of Gaussian energy fluctuations in the limit of a large system. We find that for a small system, characterized solely by its heat capacity C , the distribution can be solved analytically, and it is both skewed and it vanishes at low energies, exhibiting a sharp drop to zero at the energy corresponding to the filled Fermi sea. The results are relevant from the experimental point of view, since the predicted non-Gaussian effects become pronounced when C /kB≲103 (kB is the Boltzmann constant), a regime that can be easily achieved for instance in mesoscopic metallic conductors at sub-kelvin temperatures.

  15. Electron thermal self-energy in a magnetic field

    CERN Document Server

    Persson, D

    1995-01-01

    Using the general form of the static energy solutions to the Dirac equation with a magnetic field, we calculate a general self-energy matrix in the Furry-picture. In the limit of high temperatures, but even higher magnetic fields, a self-consistent dispersion relation is solved. In contrast to the high temperature limit, this merely results in a small mass shift. The electron anomalous magnetic moment is calculated. The contribution from thermal fermions is found to be different from the corresponding contribution using perturbation theory and plane-wave external states. In the low temperature limit the self-energy is shown to exhibit de Haas--van Alphen oscillations. In the limit of low temperatures and high densities, the self-energy becomes very large.

  16. Energy fluctuations of a finite free-electron Fermi gas.

    Science.gov (United States)

    Pekola, Jukka P; Muratore-Ginanneschi, Paolo; Kupiainen, Antti; Galperin, Yuri M

    2016-08-01

    We discuss the energy distribution of free-electron Fermi-gas, a problem with a textbook solution of Gaussian energy fluctuations in the limit of a large system. We find that for a small system, characterized solely by its heat capacity C, the distribution can be solved analytically, and it is both skewed and it vanishes at low energies, exhibiting a sharp drop to zero at the energy corresponding to the filled Fermi sea. The results are relevant from the experimental point of view, since the predicted non-Gaussian effects become pronounced when C/k_{B}≲10^{3} (k_{B} is the Boltzmann constant), a regime that can be easily achieved for instance in mesoscopic metallic conductors at sub-kelvin temperatures. PMID:27627262

  17. Modeling ellipsometry and electron energy loss spectroscopy of graphene

    Energy Technology Data Exchange (ETDEWEB)

    Lyon, Keenan A.; Miskovic, Zoran L. [Department of Applied Mathematics, University of Waterloo, 200 University Ave W, N2L 3G1, Waterloo, Ontario (Canada); Diebold, Alain C. [College of Nanoscale Science and Engineering, State University of New York at Albany, 255 Fuller Rd., Albany, New York 12203 (United States); Idrobo, Juan-Carlos [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2014-03-31

    Recent studies of electronic excitations in graphene by Electron Energy Loss Spectroscopy (EELS) have revealed massive high-frequency peaks assigned to the π and σ+π plasmons [1], which were semi-quantitatively modeled with a two-dimensional, two-fluid hydrodynamic (HD) model [2]. On the other hand, Spectroscopic Ellipsometry (SE) of graphene covers the region of nearly constant absorbance due to graphene’s universal optical conductivity at infrared frequencies, which is not clearly resolved by EELS, and goes up to cover the π-plasmon peak at ultraviolet frequencies [3]. To attempt to model both the SE and EELS, we amend the HD model by including a low-frequency contribution of graphene’s inter-band transitions, while monitoring the fulfillment of the f-sum rule [4] up to frequencies that cover excitations of all valence electrons.

  18. Electron Beam Energy Compensation by Controlling RF Pulse Shape

    CERN Document Server

    Kii, T; Kusukame, K; Masuda, K; Nakai, Y; Ohgaki, H; Yamazaki, T; Yoshikawa, K; Zen, H

    2005-01-01

    We have studied on improvement of electron beam macropulse properties from a thermionic RF gun. Though a thermionic RF gun has many salient features, there is a serious problem that back-bombardment effect worsens quality of the beam. To reduce beam energy degradation by this effect, we tried to feed non-flat RF power into the gun. As a result, we successfully obtained about 1.5 times longer macropulse and two times larger total charge per macropulse. On the other hand, we calculated transient evolution of RF power considering non-constant beam loading. The beam loading is evaluated from time evolution of cathode temperature, by use of one dimensional heat conduction model and electron trajectories' calculations by a particle simulation code. Then we found good agreement between the experimental and calculation results. Furthermore, with the same way, we studied the electron beam output dependence on the cathode radius.

  19. New stopping power formula for intermediate energy electrons.

    Science.gov (United States)

    Gümüş, Hasan

    2008-12-01

    This study presents a new stopping power (SP) formula for electrons. In the modified Bethe-Bloch SP expression, analytical expressions for the effective charge and effective mean excitation energies (EMEE) of target atoms are used, while for the effective charge of incoming electrons, Sugiyama's semiempirical formula from Peterson and Green is used. An analytical expression for practical SP calculations is obtained using the Bethe approximation and a Thomas-Fermi model of the atom. The calculated results of the SP for electrons in some materials, such as H(2)O, H(2), CO(2), N(2), and O(2), are compared with experimental data, together with Penelope code results and a number of other semiempirical and analytical calculations. PMID:18586505

  20. Absorption effects in intermediate-energy electron scattering by difluoroethylene

    International Nuclear Information System (INIS)

    Full text: Although several solid-based ab-initio theoretical methods have been developed in the past few decades for the investigation on electron-molecule collisions, most of them can only be successfully applied in the low incident electron energy range. The extension of their application to the intermediate-energy range (roughly from the first ionization potential to around 1 keV) is not straightforward. It is known that at these energies the numerous open inelastic scattering channels are responsible for absorption effects that play an important role on the collision dynamics. In the last two decades, several model absorption potentials have been proposed to include absorption effects into the scattering dynamics and so, the resolution of the scattering equations is kept in the single-channel framework. Although these model-potential methods have shown to provide, in general, quite accurate differential (DCS), integral (ICS) and momentum-transfer (MTCS) cross sections for elastic electron-molecule collisions, most of the calculations have systematically underestimated the values of the grand-total (TCS) and total absorption (TACS) cross sections. In recent papers, our group has reported a modified version of the widely used Stazewska's version 3 of the quasi-free scattering model (QFSM3) absorption potential. In order to obtain a better description of screening effects due to the target electronic cloud, we have proposed a multiplicative screening factor that should be applied on the original QFSM3 absorption potential. In our works, we have shown that such a simple modification in the absorption model potential is capable of providing significant improvement in the calculated TCS and TAGS for a variety of targets for intermediate-energy electron-molecule collisions. In the present work we apply our modified model absorption potential to study electron scattering by a strongly polar molecule, cis-difluoroethylene in a wide incident energy range (1-500 e

  1. National energy use of consumer electronics in 1999

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, Karen; Meier, Alan; Zandelin, Stefan

    2000-02-15

    The major consumer electronics in U.S. homes accounted for nearly 7 percent of U.S. residential electricity consumption in 1999. We attribute more than half of this figure (3.6 percent) to televisions, videocassette recorders, and DVD players, and nearly one-third (1.8 percent) to audio products. Set-top boxes currently account for a relatively small fraction of residential electricity use (0.7 percent), but we expect this end-use to grow quickly with the proliferation of digital set-top boxes, which currently use 40 percent more energy per unit than the average TV set. In all, these consumer electronics plus telephone products consumed 75 TWh in the U.S. in 1999, half of which was consumed while the products were not in use. This energy use is expected to grow as products with new or advanced functionality hit the market.

  2. LEETECH facility as a flexible source of low energy electrons

    CERN Document Server

    Attie, D; Bezshyyko, O; Burmistrov, L; Chaus, A; Colas, P; Fedorchuk, O; Golinka-Bezshyyko, L; Kadenko, I; Krylov, V; Kubytskyi, V; Lopez, R; Monard, H; Rodin, V; Titov, M; Tomassini, D; Variola, A

    2016-01-01

    A new versatile facility LEETECH for detector R&D, tests and calibration is designed and constructed. It uses electrons produced by the photoinjector PHIL at LAL, Orsay and provides a powerful tool for wide range R&D studies of different detector concepts delivering "mono-chromatic" samples of low energy electrons with adjustable energy and intensity. Among other innovative instrumentation techniques, LEETECH will be used for testing various gaseous tracking detectors and studying new Micromegas/InGrid concept which has very promising characteristics of spatial resolution and can be a good candidate for particle tracking and identification. In this paper the importance and expected characteristics of such facility based on detailed simulation studies are addressed.

  3. Low-Energy Electron Beam Direct Writing Equipment

    Science.gov (United States)

    Fuse, Takashi; Ando, Atsushi; Kotsugi, Tadashi; Kinoshita, Hidetoshi; Sugihara, Kazuyoshi

    2007-09-01

    We proposed an electron beam direct writing (EBDW) system capable of high throughput and maskless operation based on a novel concept of using both low-energy electron beam (EB) and character projection (CP) system. We fabricated an EB optical column of low-energy EBDW equipment and obtained a resist pattern. We also investigated the beam blur and line width roughness (LWR) of lines and spaces (L/S) formed on a resist to change various EB current densities and convergence half angles. The obtained results show that a Coulomb interaction effect markedly affects the beam blur in our EB optical column. Thus, we reduce the number of sources caused by LWR and developed photoresists to obtain small LWR L/S patterns for achieving a high throughput.

  4. National energy use of consumer electronics in 1999

    International Nuclear Information System (INIS)

    The major consumer electronics in U.S. homes accounted for nearly 7 percent of U.S. residential electricity consumption in 1999. We attribute more than half of this figure (3.6 percent) to televisions, videocassette recorders, and DVD players, and nearly one-third (1.8 percent) to audio products. Set-top boxes currently account for a relatively small fraction of residential electricity use (0.7 percent), but we expect this end-use to grow quickly with the proliferation of digital set-top boxes, which currently use 40 percent more energy per unit than the average TV set. In all, these consumer electronics plus telephone products consumed 75 TWh in the U.S. in 1999, half of which was consumed while the products were not in use. This energy use is expected to grow as products with new or advanced functionality hit the market

  5. Theory of high-energy electron scattering by composite targets

    Energy Technology Data Exchange (ETDEWEB)

    Coester, F.

    1988-01-01

    The emphasis of these expository lectures is on the role of relativistic invariance and the unity of the theory for medium and high energies. Sec. 2 introduces the kinematic notation and provides an elementary derivation of the general cross section. The relevant properties of the Poincare group and the transformation properties of current operators and target states are described in Sec 3. In Sec. 4 representations of target states with kinematic light-front symmetry are briefly discussed. The focus is on two applications. An impulse approximation of inclusive electron nucleus scattering at both medium and high energies. A parton model of the proton applied to deep inelastic scattering of polarized electrons by polarized protons. 19 refs.

  6. LDRD project 151362 : low energy electron-photon transport.

    Energy Technology Data Exchange (ETDEWEB)

    Kensek, Ronald Patrick; Hjalmarson, Harold Paul; Magyar, Rudolph J.; Bondi, Robert James; Crawford, Martin James

    2013-09-01

    At sufficiently high energies, the wavelengths of electrons and photons are short enough to only interact with one atom at time, leading to the popular %E2%80%9Cindependent-atom approximation%E2%80%9D. We attempted to incorporate atomic structure in the generation of cross sections (which embody the modeled physics) to improve transport at lower energies. We document our successes and failures. This was a three-year LDRD project. The core team consisted of a radiation-transport expert, a solid-state physicist, and two DFT experts.

  7. Narrow beam dosimetry for high-energy hadrons and electrons

    CERN Document Server

    Pelliccioni, M; Ulrici, Luisa

    2001-01-01

    Organ doses and effective dose were calculated with the latest version of the Monte Carlo transport code FLUKA in the case of an anthropomorphic mathematical model exposed to monoenergetic narrow beams of protons, pions and electrons in the energy range 10°— 400 GeV. The target organs considered were right eye, thyroid, thymus, lung and breast. Simple scaling laws to the calculated values are given. The present data and formula should prove useful for dosimetric estimations in case of accidental exposures to high-energy beams.

  8. Power Electronics and Reliability in Renewable Energy Systems

    OpenAIRE

    Blaabjerg, Frede; Ma, Ke; Zhou, Dao

    2012-01-01

    Power Electronics are needed in almost all kind of renewable energy systems. It is used both for controlling the renewable source and also for interfacing to the load, which can be grid-connected or working in stand-alone mode. More and more efforts are put into making renewable energy systems better in terms of reliability in order to ensure a high availability of the power sources, in this case the knowledge of mission profile of a certain application is crucial for the reliability evaluati...

  9. Low energy electrons for pasteurization and aseptic practice

    International Nuclear Information System (INIS)

    The enhanced stopping power of matter for electrons in the energy range under 300 kiloelectronvolts renders them particularly effective for the 'non-chemical' pasteurization of raw produce, as well as for the high speed sterilization of container material. Performance data for electron sterilizers operating in the 130 to 250 kilovolt regime will be presented along with a discussion of the thin film dosimetry techniques used for their characterization. This process is particularly attractive for citrus processing as the energy need only be delivered to the upper epidermis with a depth of penetration of 100 μ. The inner mesocarp or albedo, and the endocarp or edible pulp of the fruit, are unaffected by the process. The lethality of 100 keV electrons for some typical fruit pathogens has been studied in this laboratory. These include typical penicillin molds (P. chrysogenum) and the common brown stem rot (Phyt. citrophthora). D values for these, both on the outer surface of the orange flavedo and on specimens of controlled geometry, are reported. These results indicate that 100 keV electron treatment at surface levels of 0.2 megarads is adequate for in vitro control of these pathogens. (author)

  10. Inclusive quasielastic and deep inelastic electron scattering at high energies

    International Nuclear Information System (INIS)

    With high electron energies a kinematic regime can be reached where it will be possible to separate quasielastic and deep inelastic scattering. We present a short description of these processes which dominate the inclusive spectrum. Using the highest momentum transfer data available to guide our estimates, we give the kinematic requirements and the cross sections expected. These results indicate that inclusive scattering at high q has a yet unfilled potential. 18 refs., 13 figs

  11. Nanocellulose as Material Building Block for Energy and Flexible Electronics

    Science.gov (United States)

    Hu, Liangbing

    2014-03-01

    In this talk, I will discuss the fabrications, properties and device applications of functional nanostructured paper based on nanocellulose. Nanostructures with tunable optical, electrical, ionic and mechanical properties will be discussed. Lab-scale demonstration devices, including low-cost Na-ion batteries, microbial fuel cells, solar cells, transparent transistors, actuators and touch screens will be briefly mentioned. These studies show that nanocellulose is a promising green material for electronics and energy devices.

  12. Nanobiotechnology in energy, environment and electronics methods and applications

    CERN Document Server

    Nicolini, Claudio

    2015-01-01

    Introduction: Present Challenges and Future Solutions via Nanotechnology for Electronics, Environment and Energy; Claudio NicoliniPart A: MethodsInfluence of Chromosome Translocation on Yeast Life Span: Implications for Long-Term Industrial Biofermentation; Jason Sims, Dmitri Nikitin, and Carlo V. BruschiPulsed Power Nanotechnologies for Disintegration and Breaking Up of Refractory Precious Metals Ores; Valentin A. Chanturiya and Igor Zh. BuninModeling of Software Sensors in Bioprocess; Luca Belmonte and Claudio NicoliniN

  13. An Emphasis of Electron Energy Calculation in Quantum Wells

    Institute of Scientific and Technical Information of China (English)

    GAO Shao-Wen; CAO Jun-Cheng; FENG Song-Lin

    2004-01-01

    We investigate various methods for the calculation of the electron energy in semiconductor quantum wellsand focus on a matrix algorithm method. The results show better fitness of the factor -h/2 / z 1/m* (z) / z than that ofh2/2 1/m*(z) 2/ z2in the first part of the Schrodinger equation. The effect of nonparabolicity in the conduction band isalso discussed.

  14. Direct Measurements of the Electron Energy Flux versus Electron Temperature Gradient in Tokamak Discharges

    Institute of Scientific and Technical Information of China (English)

    K.W. Gentle; M.E. Austin; P.E. Phillips

    2004-01-01

    Electron thermal transport is one of the most complex processes in fusion plasmas. It is generally described by a simple thermal diffusivity in transport analyses of discharges, but there is evidence of critical gradient effects with moderate stiffness. By analyzing periodic perturbations to an equilibrium, one can measure the variations in electron energy flux and electron temperature gradient over the perturbation cycle, obtaining the flux as a function of gradient over the range of parameters generated by the perturbation. Although time-dependent transport analysis is very sensitive to noise in the input data, averaging over many cycles of a periodic perturbation can provide data of sufficient quality. The analyses presented here are based on the ECE temperature data with high spatial and temporal resolution and full profile coverage on DIII-D for sawteeth and modulated ECH heating.

  15. Microwave beatwave excitation of electron plasma wave and high energy electron production

    Energy Technology Data Exchange (ETDEWEB)

    Yatsuzuka, M.; Obata, K.; Nobuhara, S. [Himeji Inst. of Tech., Hyogo (Japan)

    1997-12-31

    Two X-band microwave beams with a slightly different frequency and the maximum output power of 50 kW are injected into a target plasma antiparallel to each other through a standard horn. The resonant excitation of an electron plasma wave is observed when the difference in frequency between counterstreaming microwaves is equal to the electron plasma frequency. The excited wave propagates in the same direction as the higher-frequency microwave with a wave length which satisfies the resonance condition of wave number. The wave amplitude grows with an increase in incident microwave power, and reaches the density perturbation {delta}n/n{sub 0} of approximately 3.2 % at the incident microwave power of 40 kW and beat frequency of 600 MHz. A small amount of high-energy electrons with the speed of 27 eV are observed in the high-power region of incident microwave. (author)

  16. Single electron response and energy resolution of a Micromegas detector

    CERN Document Server

    Zerguerras, T; Lepeltier, V; Peyre, J; Pouthas, J; Rosier, P

    2009-01-01

    Micro-Pattern Gaseous Detectors (MPGDs) such as Micromegas or GEM are used in particle physics experiments for their capabilities in particle tracking at high rates. Their excellent position resolutions are well known but their energy characteristics have been less studied. The energy resolution is mainly affected by the ionisation processes and detector gain fluctuations. This paper presents a method to separetely measure those two contributions to the energy resolution of a Micromegas detector. The method relies on the injection of a controlled number of electrons. The Micromegas has a 1.6-mm drift zone and a 160-$\\mu$m amplification gap. It is operated in Ne 95%-iC$\\mathrm{_4}$H$\\mathrm{_{10}}$ 5% at atmospheric pressure. The electrons are generated by non-linear photoelectric emission issued from the photons of a pulsed 337-nm wavelength laser coupled to a focusing system. The single electron response has been measured at different gains (3.7 10$\\mathrm{^4}$, 5.0 10$\\mathrm{^4}$ and 7.0 10$\\mathrm{^4}$) a...

  17. Superthermal Electron Energy Interchange in the Ionosphere-Plasmasphere System

    Science.gov (United States)

    Khazanov, G. V.; Glocer, A.; Liemohn, M. W.; Himwich, E. W.

    2013-01-01

    A self-consistent approach to superthermal electron (SE) transport along closed field lines in the inner magnetosphere is used to examine the concept of plasmaspheric transparency, magnetospheric trapping, and SE energy deposition to the thermal electrons. The dayside SE population is generated both by photoionization of the thermosphere and by secondary electron production from impact ionization when the photoelectrons collide with upper atmospheric neutral particles. It is shown that a self-consistent approach to this problem produces significant changes, in comparison with other approaches, in the SE energy exchange between the plasmasphere and the two magnetically conjugate ionospheres. In particular, plasmaspheric transparency can vary by a factor of two depending on the thermal plasma content along the field line and the illumination conditions of the two conjugate ionospheres. This variation in plasmaspheric transparency as a function of thermal plasma and ionospheric conditions increases with L-shell, as the field line gets longer and the equatorial pitch angle extent of the fly-through zone gets smaller. The inference drawn from these results is that such a self-consistent approach to SE transport and energy deposition should be included to ensure robustness in ionosphere-magnetosphere modeling networks.

  18. Electronic structure basis for the titanic magnetoresistance in WTe$_2$

    OpenAIRE

    Pletikosić, I.; Ali, Mazhar N.; Fedorov, A; Cava, R. J.; Valla, T.

    2014-01-01

    The electronic structure basis of the extremely large magnetoresistance in layered non-magnetic tungsten ditelluride has been investigated by angle-resolved photoelectron spectroscopy. Hole and electron pockets of approximately the same size were found at the Fermi level, suggesting that carrier compensation should be considered the primary source of the effect. The material exhibits a highly anisotropic, quasi one-dimensional Fermi surface from which the pronounced anisotropy of the magnetor...

  19. Electronic structure and electron energy-loss spectroscopy of ZrO2 zirconia

    Science.gov (United States)

    Dash, L. K.; Vast, Nathalie; Baranek, Philippe; Cheynet, Marie-Claude; Reining, Lucia

    2004-12-01

    The atomic and electronic structures of zirconia are calculated within density functional theory, and their evolution is analyzed as the crystal-field symmetry changes from tetrahedral [cubic (c-ZrO2) and tetragonal (t-ZrO2) phases] to octahedral (hypothetical rutile ZrO2 ), to a mixing of these symmetries (monoclinic phase, m-ZrO2 ). We find that the theoretical bulk modulus in c-ZrO2 is 30% larger than the experimental value, showing that the introduction of yttria in zirconia has a significant effect. Electronic structure fingerprints which characterize each phase from their electronic spectra are identified. We have carried out electron energy-loss spectroscopy experiments at low momentum transfer and compared these results to the theoretical spectra calculated within the random phase approximation. We show a dependence of the valence and 4p ( N2,3 edge) plasmons on the crystal structure, the dependence of the latter being brought into the spectra by local-field effects. Last, we attribute low energy excitations observed in EELS of m-ZrO2 to defect states 2eV above the top of the intrinsic valence band, and the EELS fundamental band gap value is reconciled with the 5.2 or 5.8eV gaps determined by vacuum ultraviolet spectroscopy.

  20. Power electronics for renewable and distributed energy systems a sourcebook of topologies, control and integration

    CERN Document Server

    Chakraborty, Sudipta; Kramer, William E

    2013-01-01

    While most books approach power electronics and renewable energy as two separate subjects, Power Electronics for Renewable and Distributed Energy Systems takes an integrative approach; discussing power electronic converters topologies, controls and integration that are specific to the renewable and distributed energy system applications. An overview of power electronic technologies is followed by the introduction of various renewable and distributed energy resources that includes photovoltaics, wind, small hydroelectric, fuel cells, microturbines and variable speed generation. Energy storage s

  1. Measuring the electron beam energy in a magnetic bunch compressor

    Energy Technology Data Exchange (ETDEWEB)

    Hacker, Kirsten

    2010-09-15

    Within this thesis, work was carried out in and around the first bunch compressor chicane of the FLASH (Free-electron LASer in Hamburg) linear accelerator in which two distinct systems were developed for the measurement of an electron beams' position with sub-5 {mu}m precision over a 10 cm range. One of these two systems utilized RF techniques to measure the difference between the arrival-times of two broadband electrical pulses generated by the passage of the electron beam adjacent to a pickup antenna. The other system measured the arrival-times of the pulses from the pickup with an optical technique dependent on the delivery of laser pulses which are synchronized to the RF reference of the machine. The relative advantages and disadvantages of these two techniques are explored and compared to other available approaches to measure the same beam property, including a time-of-flight measurement with two beam arrival-time monitors and a synchrotron light monitor with two photomultiplier tubes. The electron beam position measurement is required as part of a measurement of the electron beam energy and could be used in an intra-bunch-train beam-based feedback system that would stabilize the amplitude of the accelerating field. By stabilizing the accelerating field amplitude, the arrival-time of the electron beam can be made more stable. By stabilizing the electron beam arrival-time relative to a stable reference, diagnostic, seeding, and beam-manipulation lasers can be synchronized to the beam. (orig.)

  2. Numerically Fitting The Electron Fermi Energy and The Electron Fraction in A Neutron Star

    CERN Document Server

    Li, Xing Hu; Li, Xiang Dong; Xu, Yan; Wang, Pei; Wang, Na; Yuan, Jianping

    2016-01-01

    Based on the basic definition of Fermi energy of degenerate and relativistic electrons, we obtain a special solution to electron Fermi energy, $E_{\\rm F}(e)$, and express $E_{\\rm F}(e)$ as a function of electron fraction, $Y_{e}$, and matter density, $\\rho$. Several useful analytical formulae for $Y_{e}$ and $\\rho$ within classical models and the work of Dutra et al. 2014 (Type-2) in relativistic mean field theory are obtained using numerically fitting. When describing the mean-field Lagrangian, density, we adopt the TMA parameter set, which is remarkably consistent with with the updated astrophysical observations of neutron stars. Due to the importance of the density dependence of the symmetry energy, $S$, in nuclear astrophysics, a brief discussion on the symmetry parameters $S_v$ and $L$ (the slope of $S$) is presented. Combining these fit formulae with boundary conditions for different density regions, we can evaluate the value of $E_{\\rm F}(e)$ in any given matter density, and obtain a schematic diagram ...

  3. Ultrafast quenching of electron-boson interaction and superconducting gap in a cuprate superconductor.

    Science.gov (United States)

    Zhang, Wentao; Hwang, Choongyu; Smallwood, Christopher L; Miller, Tristan L; Affeldt, Gregory; Kurashima, Koshi; Jozwiak, Chris; Eisaki, Hiroshi; Adachi, Tadashi; Koike, Yoji; Lee, Dung-Hai; Lanzara, Alessandra

    2014-01-01

    Ultrafast spectroscopy is an emerging technique with great promise in the study of quantum materials, as it makes it possible to track similarities and correlations that are not evident near equilibrium. Thus far, however, the way in which these processes modify the electron self-energy--a fundamental quantity describing many-body interactions in a material--has been little discussed. Here we use time- and angle-resolved photoemission to directly measure the ultrafast response of self-energy to near-infrared photoexcitation in high-temperature cuprate superconductor. Below the critical temperature of the superconductor, ultrafast excitations trigger a synchronous decrease of electron self-energy and superconducting gap, culminating in a saturation in the weakening of electron-boson coupling when the superconducting gap is fully quenched. In contrast, electron-boson coupling is unresponsive to ultrafast excitations above the critical temperature of the superconductor and in the metallic state of a related material. These findings open a new pathway for studying transient self-energy and correlation effects in solids.

  4. Low-energy electron elastic scattering from Os atom: New electron affinity

    Science.gov (United States)

    Felfli, Z.; Kiros, F.; Msezane, A. Z.

    2013-05-01

    Bilodeau and Haugan measured the binding energies (BEs) of the ground state and the excited state of the Os- ion to be 1.07780(12) eV and 0.553(3) eV, respectively. These values are consistent with those calculated in. Here our investigation, using the recent complex angular momentum methodology wherein is embedded the crucial electron-electron correlations and the vital core polarization interaction, has found that the near threshold electron-Os elastic scattering total cross section (TCS) is characterized by three stable bound states of the Os- ion formed as resonances during the slow electron collision, with BEs of 1.910 eV, 1.230 eV and 0.224 eV. The new extracted electron affinity (EA) value from the TCS of 1.910 eV for the Os atom is significantly different from that measured in. Our calculated elastic differential cross sections (DCSs) also yield the relevant BEs for the ground and the two excited states of the Os- ion. The complex characteristic resonance structure in the TCS for the Os atom is ideal for catalysis, but makes it difficult to execute the Wigner threshold law in describing the threshold detachment behavior of complex atoms and extracting the reliable attendant EAs. Supported by U.S. DOE, AFOSR and CAU CFNM, NSF-CREST Program.

  5. Reduced density matrix hybrid approach: application to electronic energy transfer.

    Science.gov (United States)

    Berkelbach, Timothy C; Markland, Thomas E; Reichman, David R

    2012-02-28

    Electronic energy transfer in the condensed phase, such as that occurring in photosynthetic complexes, frequently occurs in regimes where the energy scales of the system and environment are similar. This situation provides a challenge to theoretical investigation since most approaches are accurate only when a certain energetic parameter is small compared to others in the problem. Here we show that in these difficult regimes, the Ehrenfest approach provides a good starting point for a dynamical description of the energy transfer process due to its ability to accurately treat coupling to slow environmental modes. To further improve on the accuracy of the Ehrenfest approach, we use our reduced density matrix hybrid framework to treat the faster environmental modes quantum mechanically, at the level of a perturbative master equation. This combined approach is shown to provide an efficient and quantitative description of electronic energy transfer in a model dimer and the Fenna-Matthews-Olson complex and is used to investigate the effect of environmental preparation on the resulting dynamics.

  6. Energy recuperation of intense proton beam compensated by slow electrons

    International Nuclear Information System (INIS)

    Experimental studies of direct transformation (recuperation) of intense ion beam energy are described. In a recuperator low-energy electrons of a beam are separated by a grid unit and ions are detected by one of the three types of collectors: plane, ''Faraday cylinder'' with a grid in the input hole and without it. The transformation of proton beam energy with current density up to 150 mA/cm2 at current pulse duration of 300 μ and power of ∼ 0.5 kW is realized with the efficiency of 70%, at power up to 30 kW - with the efficiency of about 50%. The investigation results can be used for the development of recuperation systems in thermonuclear facilities

  7. Power Electronics for Renewable Energy Systems - Status and Trends

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Ma, Ke; Yang, Yongheng

    2014-01-01

    In the past few decades, the energy paradigms in many countries are experiencing significant change from fossil-based resources to cleaner renewables. It is expected that the scenario of highly penetrated renewables is going to be further enhanced. This requires that the production, distribution ...... in the electricity production, are explored in this paper. Issues like technology demands, power converter topologies, and control structures are addressed. Some special focuses are also paid on the emerging trends in power electronics development for those systems....... and use of the energy to be as technological efficient as possible, and incentives to save energy at the end-user should also be strengthened. In order to realize the transition smoothly and effectively, power conversion systems will continue to play an essential role. Using highly efficient power...

  8. CSR routine for low energy electron beam in GPT

    International Nuclear Information System (INIS)

    General Particle Tracer (GPT) is a particle tracking code, which includes 3D space charge effect based on nonequidistant multigrid Poisson solver or point-to-point method. It is used to investigate beam dynamics in ERL and FEL injectors. We have developed a new routine to simulate coherent synchrotron radiation (CSR) in GPT based on the formalism of Sagan. The routine can calculate 1D-wake functions for arbitrary beam trajectories as well as CSR shielding effect. In particular, the CSR routine does not assume ultrarelativistic electron beam and is therefore applicable at low beam energies in the injector. Energy loss and energy spread caused by CSR effect were checked for a simple circular orbit, and compared with analytic formulas. (author)

  9. Atom location using scanning transmission electron microscopy based on electron energy loss spectroscopy

    International Nuclear Information System (INIS)

    Full text: The technique of atom location by channelling enhanced microanalysis (ALCHEMI) using cross section data, measured as a function of electron beam orientation, has been widely implemented by many researchers. The accurate application of ALCHEMI, usually based on energy dispersive x-ray analysis (EDX), requires knowledge, from first principles, of the relative delocalization of the inner-shell ionization interaction (see for example Oxley and Allen, 1998; Oxley et al., 1999). Scanning transmission electron microscopy (STEM) based on electron energy loss spectroscopy (EELS) also provides information about the location of atoms of different types within the crystal lattice. Unlike high angle annular dark field (HAADF), EELS provides a unique signal for each atom type. In conjunction with highly focused probes, allowing near atomic resolution, this makes possible, in principle, the application of ALCHEMI like techniques to STEM images to determine the distribution of impurities within the unit cell. The accurate interpretation of STEM results requires that both the inner-shell ionization interaction and resulting ionization cross section or image be correctly modelled. We present model calculations demonstrating the in principle application of ALCHEMI type techniques to STEM images pertinent to EELS. The inner-shell ionisation interaction is modelled using Hartree-Fock wave functions to describe the atomic bound states and Hartree-Slater wave functions to describe the continuum states. The wave function within the crystal is calculated using boundary conditions appropriate for a highly focussed probe (Rossouw and Allen, 2001) and STEM images or ionisation cross sections are simulated using an inelastic cross section formulation that correctly accounts for the contribution from both dynamical electrons and those dechannelled by absorptive scattering processes such as thermal diffuse scattering (TDS). Copyright (2002) Australian Society for Electron Microscopy

  10. Electron Thermionic Emission from Graphene and a Thermionic Energy Converter

    Science.gov (United States)

    Liang, Shi-Jun; Ang, L. K.

    2015-01-01

    In this paper, we propose a model to investigate the electron thermionic emission from single-layer graphene (ignoring the effects of the substrate) and to explore its application as the emitter of a thermionic energy converter (TIC). An analytical formula is derived, which is a function of the temperature, work function, and Fermi energy level. The formula is significantly different from the traditional Richardson-Dushman (RD) law for which it is independent of mass to account for the supply function of the electrons in the graphene behaving like massless fermion quasiparticles. By comparing with a recent experiment [K. Jiang et al., Nano Res. 7, 553 (2014)] measuring electron thermionic emission from suspended single-layer graphene, our model predicts that the intrinsic work function of single-layer graphene is about 4.514 eV with a Fermi energy level of 0.083 eV. For a given work function, a scaling of T3 is predicted, which is different from the traditional RD scaling of T2. If the work function of the graphene is lowered to 2.5-3 eV and the Fermi energy level is increased to 0.8-0.9 eV, it is possible to design a graphene-cathode-based TIC operating at around 900 K or lower, as compared with the metal-based cathode TIC (operating at about 1500 K). With a graphene-based cathode (work function=4.514 eV ) at 900 K and a metallic-based anode (work function=2.5 eV ) like LaB6 at 425 K, the efficiency of our proposed TIC is about 45%.

  11. DNA comet assay for rice seeds treated with low energy electrons ('soft-electrons')

    International Nuclear Information System (INIS)

    As rice seeds are sometimes contaminated with phytopathogenic organisms such as blast disease fungi and nematodes, a novel non-chemical disinfection method for rice seeds is highly required. In order to develop a disinfection method, the effect of low energy electron ('soft-electrons') on seed DNA was examined by using the neutral comet assay. Rice seeds (whole grain) were treated with electrons of different acceleration voltages (180 kV to 1 MV) at a dose of 5 kGy. Nucleus suspensions were prepared from whole brown rice and subjected to electrophoresis. DNA from un-irradiated (control) seeds relaxed and produced comets with a short tail, most of the comets distributed within the range of comet length between 30 μm to 70 μm. In the case of seeds treated with electrons at acceleration voltages up to 190 kV, cells without seed coats were not damaged and the frequency histograms of comet length showed almost the same pattern as that for control. At acceleration voltages higher than 200 kV, the cells were distributed into two categories; DNA comets with a short tail (with little DNA damages, less than 70 μm in the comet length) and DNA comets with long tails (with sever strand breaks, more than 130 μm in the comet length). The ratios of damaged cells increased with increasing acceleration voltage. The growths of rice seedlings were not affected by the treatment with electrons at up to 200 kV. On the contrary, the cells of gamma-irradiated seed showed small variations in the comet length, and which were depending on radiation dose. The individual cells of gamma-irradiated seeds at 1 kGy showed shorter comet than the damaged cells with soft electron, seed treated with gamma rays (1-5 kGy) did not shoot nor root. (author)

  12. Electronic properties of Mn-phthalocyanine–C{sub 60} bulk heterojunctions: Combining photoemission and electron energy-loss spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Roth, Friedrich [Center for Free-Electron Laser Science/DESY, Notkestraße 85, D-22607 Hamburg (Germany); Herzig, Melanie; Knupfer, Martin [FW Dresden, P.O. Box 270116, D-01171 Dresden (Germany); Lupulescu, Cosmin [Institute of Optics and Atomic Physics, TU Berlin, Straße des 17. Juni 135, D-10623 Berlin (Germany); Darlatt, Erik; Gottwald, Alexander [Physikalisch-Technische Bundesanstalt (PTB), Abbestraße 2-12, D-10587 Berlin (Germany); Eberhardt, Wolfgang [Center for Free-Electron Laser Science/DESY, Notkestraße 85, D-22607 Hamburg (Germany); Institute of Optics and Atomic Physics, TU Berlin, Straße des 17. Juni 135, D-10623 Berlin (Germany)

    2015-11-14

    The electronic properties of co-evaporated mixtures (blends) of manganese phthalocyanine and the fullerene C{sub 60} (MnPc:C{sub 60}) have been studied as a function of the concentration of the two constituents using two supplementary electron spectroscopic methods, photoemission spectroscopy (PES) and electron energy-loss spectroscopy (EELS) in transmission. Our PES measurements provide a detailed picture of the electronic structure measured with different excitation energies as well as different mixing ratios between MnPc and C{sub 60}. Besides a relative energy shift, the occupied electronic states of the two materials remain essentially unchanged. The observed energy level alignment is different compared to that of the related CuPc:C{sub 60} bulk heterojunction. Moreover, the results from our EELS investigations show that, despite the rather small interface interaction, the MnPc related electronic excitation spectrum changes significantly by admixing C{sub 60} to MnPc thin films.

  13. Energy Quantization and Probability Density of Electron in Intense-Field-Atom Interactions

    Institute of Scientific and Technical Information of China (English)

    敖淑艳; 程太旺; 李晓峰; 吴令安; 付盘铭

    2003-01-01

    We find that, due to the quantum correlation between the electron and the field, the electronic energy becomes quantized also, manifesting the particle aspect of light in the electron-light interaction. The probability amplitude of finding electron with a given energy is given by a generalized Bessel function, which can be represented as a coherent superposition of contributions from a few electronic quantum trajectories. This concept is illustrated by comparing the spectral density of the electron with the laser assisted recombination spectrum.

  14. Composite electron propagator methods for calculating ionization energies

    Science.gov (United States)

    Díaz-Tinoco, Manuel; Dolgounitcheva, O.; Zakrzewski, V. G.; Ortiz, J. V.

    2016-06-01

    Accurate ionization energies of molecules may be determined efficiently with composite electron-propagator (CEP) techniques. These methods estimate the results of a calculation with an advanced correlation method and a large basis set by performing a series of more tractable calculations in which large basis sets are used with simpler approximations and small basis sets are paired with more demanding correlation techniques. The performance of several CEP methods, in which diagonal, second-order electron propagator results with large basis sets are combined with higher-order results obtained with smaller basis sets, has been tested for the ionization energies of closed-shell molecules from the G2 set. Useful compromises of accuracy and computational efficiency employ complete-basis-set extrapolation for second-order results and small basis sets in third-order, partial third-order, renormalized partial-third order, or outer valence Green's function calculations. Analysis of results for vertical as well as adiabatic ionization energies leads to specific recommendations on the best use of regular and composite methods. Results for 22 organic molecules of interest in the design of photovoltaic devices, benzo[a]pyrene, Mg-octaethylporphyrin, and C60 illustrate the capabilities of CEP methods for calculations on large molecules.

  15. Composite electron propagator methods for calculating ionization energies.

    Science.gov (United States)

    Díaz-Tinoco, Manuel; Dolgounitcheva, O; Zakrzewski, V G; Ortiz, J V

    2016-06-14

    Accurate ionization energies of molecules may be determined efficiently with composite electron-propagator (CEP) techniques. These methods estimate the results of a calculation with an advanced correlation method and a large basis set by performing a series of more tractable calculations in which large basis sets are used with simpler approximations and small basis sets are paired with more demanding correlation techniques. The performance of several CEP methods, in which diagonal, second-order electron propagator results with large basis sets are combined with higher-order results obtained with smaller basis sets, has been tested for the ionization energies of closed-shell molecules from the G2 set. Useful compromises of accuracy and computational efficiency employ complete-basis-set extrapolation for second-order results and small basis sets in third-order, partial third-order, renormalized partial-third order, or outer valence Green's function calculations. Analysis of results for vertical as well as adiabatic ionization energies leads to specific recommendations on the best use of regular and composite methods. Results for 22 organic molecules of interest in the design of photovoltaic devices, benzo[a]pyrene, Mg-octaethylporphyrin, and C60 illustrate the capabilities of CEP methods for calculations on large molecules. PMID:27305999

  16. Cost analysis of low energy electron accelerator for film curing

    International Nuclear Information System (INIS)

    Low energy electron accelerators are recognized as one of the advanced curing means of converting processes for films and papers. In the last three years the price of the accelerator equipment has been greatly reduced. The targeted application areas are mainly processes of curing inks, coatings, and adhesives to make packaging materials. The operating cost analyses were made for electron beam (EB) processes over the conventional ones without EB. Then three new proposals for cost reduction of EB processes are introduced. Also being developed are new EB chemistries such as coatings, laminating adhesives and inks. EB processes give instantaneous cure and EB chemistries are basically non solvent causing less VOC emission to the environment. These developments of both equipment and chemistries might have a potential to change conventional packaging film industries. (author)

  17. Modeling Plasmas with a Kappa Electron Energy Distribution

    Science.gov (United States)

    Hahn, Michael; Savin, Daniel Wolf

    2016-06-01

    Nonthermal kappa electron energy distributions have been observed in the Earth's magnetosphere and the solar wind, and are likely also present in the solar corona and in solar flares. In order to model the spectra of these plasmas, it is necessary to obtain the appropriate collision rate coefficients. We show that this can be done simply by summing appropriately weighted Maxwellian rate coefficients. The resulting data have similar or better accuracies than are obtained with other approaches. Summing Maxwellians has the additional advantages of being easy to implement and extendable to many different collision processes. We apply this technique to modeling the charge state distribution (CSD) of kappa-distribution plasmas. In particular, we examine the influence of electron impact multiple ionization on the equilibrium CSD and calculate the time variation of the CSD during a solar flare.

  18. The transfer of energy between electrons and ions in solids

    International Nuclear Information System (INIS)

    In this review we consider those processes in condensed matter that involve the irreversible flow of energy between electrons and nuclei that follows from a system being taken out of equilibrium. We survey some of the more important experimental phenomena associated with these processes, followed by a number of theoretical techniques for studying them. The techniques considered are those that can be applied to systems containing many non-equivalent atoms. They include both perturbative approaches (Fermi's Golden Rule and non-equilibrium Green's functions) and molecular dynamics based (the Ehrenfest approximation, surface hopping, semi-classical Gaussian wavefunction methods and correlated electron-ion dynamics). These methods are described and characterized, with indications of their relative merits

  19. Electron scattering by O2 at intermediate and high energies

    Institute of Scientific and Technical Information of China (English)

    Deheng Shi; Jinfeng Sun; Xiangdong Yang; Zunlue Zhu; Yufang Liu

    2005-01-01

    @@ A complex optical model potential correlated by the concept of bonded atoms, which considers the overlapping effect of electron clouds between two atoms in a molecule, is firstly employed to calculate the absolute differential cross sections, the integrated and momentum transfer cross sections for electrons scattered by O2 at intermediate and high energies by using additivity rule model at Hartree-Fock level. In the study,the complex optical model potential is composed of static, exchange, correlation polarization plus absorption contributions. The quantitative absolute differential cross sections, the integrated and momentum transfer cross sections are obtained. Compared with available experimental data, this approach presents good results. It is shown that the additivity rule model together with the complex optical model potential correlated by the concept of bonded atoms is completely suitable for the calculations of the absolute differential cross sections, the integrated and momentum transfer cross sections.

  20. Microsolvation effects on the electron binding energies of halide anions

    Science.gov (United States)

    Dolgounitcheva, O.; Zakrzewski, V. G.; Streit, L.; Ortiz, J. V.

    2014-02-01

    Ab initio electron propagator calculations in the partial third order (P3) and P3+ approximations were performed to obtain vertical electron detachment energies (VEDEs) of fluoride and chloride clusters with one through three molecules of water. Larger clusters of F- and Cl- with six water molecules were also treated with and without the polarisable continuum model (PCM). For the smaller clusters, good agreement between calculated VEDEs and peak positions in photoelectron spectra is achieved. Large shifts in VEDEs are observed for both hexameric fluoride-water and chloride-water complexes when the PCM is applied. Significant changes in coordination geometries about the chloride anion also occur in this model. In all fluoride complexes, Dyson orbitals for the lowest VEDEs are delocalised over oxygen atoms. On the contrary, for the case of chloride-water clusters, the Dyson orbitals corresponding to the lowest VEDEs are localised on the anion.

  1. Advanced Power Electronics Interfaces for Distributed Energy Workshop Summary: August 24, 2006, Sacramento, California

    Energy Technology Data Exchange (ETDEWEB)

    Treanton, B.; Palomo, J.; Kroposki, B.; Thomas, H.

    2006-10-01

    The Advanced Power Electronics Interfaces for Distributed Energy Workshop, sponsored by the California Energy Commission Public Interest Energy Research program and organized by the National Renewable Energy Laboratory, was held Aug. 24, 2006, in Sacramento, Calif. The workshop provided a forum for industry stakeholders to share their knowledge and experience about technologies, manufacturing approaches, markets, and issues in power electronics for a range of distributed energy resources. It focused on the development of advanced power electronic interfaces for distributed energy applications and included discussions of modular power electronics, component manufacturing, and power electronic applications.

  2. Atomic displacements effects on the electronic properties of Bi{sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10}

    Energy Technology Data Exchange (ETDEWEB)

    Camargo M, J. A. [Fundacion Universitaria Internacional del Tropico Americano, Grupo de Investigacion en Ciencias Basicas, Aplicacion e Innovacion, Carrera 19 No. 39-40, Yopal, Yopal (Colombia); Espitia, D.; Baquero, R., E-mail: jcamargo@unitropico.edu.co [Instituto Politecnico Nacional, Centro de Investigacion y de Estudios Avanzados, Departamento de Fisica, Av. IPN 2508, 07360 Mexico D. F. (Mexico)

    2015-07-01

    The displacements effects of the oxygen atom associated to the Sr-plane (O3) in the electronic properties of Bi{sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10} (Bi-2223), have been investigated using density functional theory. We determined intervals of the O3 atomic positions for which the band structure calculations show that the Bi-O bands, around the high symmetry point M in the irreducible Brillouin zone, emerge towards higher energies avoiding its contribution at Fermi level, as experimentally has been reported. This procedure does not introduce foreign doping elements into the calculation. Our calculations present a good agreement with the angle-resolved photoemission spectroscopy and nuclear magnetic resonance (NMR) experiments. The two options found differ in character (metallic or nonmetallic) of the Bi-O plane. The are not any experiments, to the best of our knowledge, which determine this character for Bi-2223. (Author)

  3. Enhancement of electron-phonon coupling in Cs-overlayered intercalated bilayer graphene.

    Science.gov (United States)

    Kleeman, J; Sugawara, K; Sato, T; Takahashi, T

    2016-05-25

    We have performed high-resolution angle-resolved photoemission spectroscopy (ARPES) on cesium (Cs) intercalated bilayer graphene with a Cs overlayer (Cs-C8CsC8). Low-energy electron diffraction shows a (2  ×  2) pattern consistent with intercalation of a Cs layer similar to bulk C8Cs, in addition to the signature of a nearly commensurate superstructure created by the Cs overlayer. ARPES results reveal folding of the π bands due to the periodic (2  ×  2) potential of the intercalated Cs atoms, together with a free-electron-like state at the [Formula: see text] point. Significant mass renormalization is observed in the band dispersion near the Fermi level, indicative of strong electron-phonon coupling. Based on analysis of the self-energy, we find anisotropic electron-phonon coupling with an estimated strength of [Formula: see text]  ±  0.02 in the K-[Formula: see text] direction, and [Formula: see text] in the K-M direction. This coupling is much larger than that of other doped graphenes, and comparable to superconducting bulk GICs. We attribute this large electron-phonon coupling constant to the presence of the Cs overlayer, which highly dopes [Formula: see text] bands, and creates a structure similar to stage-I graphite intercalation compounds. PMID:27094681

  4. Electronic Structure of Magnetic 3D Metals: Ground State, Fermi Surface and Photoemission Properties

    Energy Technology Data Exchange (ETDEWEB)

    Eastman, D. E.; Janak, J. F.; Williams, A. R.; Coleman, R. V.; Wendin, G.

    1979-01-01

    Various electronic and magnetic properties of the ferromagnetic 3d metals Ni, Co and Fe and related metals are described, including ground-state properties, Fermi surfaces and both one-electron and many-electron aspects of photoemission and optical absorption processes. Experimental de Haas-van Alphen results for the spin-polarized Fermi surfaces and angle-resolved photoemission results for the exchange-split energy-band dispersions for Ni, Co and Fe are summarized. Single-particle energy-band descriptions of these Fermi surfaces and band dispersions, as well as various ground-state properties (lattice constant, cohesive energy, bulk modulus, magnetic moment, hyperfine field, etc.) are given in terms of the density-functional theory of Hohenberg, Kohn and Sham. In general, these properties can be understood quite well within the single-particle picture. Also discussed are troublesome questions concerning the exchange splitting, band dispersions and satellite structure of Ni. Various optical and photoemission processes for Co, Fe, Ni and Cu exhibiting many-electron phenomena are discussed, including four-level absorption edges, resonances, photoemission relaxation effects, shake-up processes and Auger processes.

  5. Evolution of the electronic structure in Mo1 xRex alloys

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Michio [Osaka University; Rotenberg, Eli [Advanced Light Source, Lawrence Berkeley National Laboratory (LBNL); Kevan, S. D. [Advanced Light Source, Lawrence Berkeley National Laboratory (LBNL); Schäfer, J. [Universitat Wurzburg, Germany; Ujfalussy, Balazs [ORNL; Stocks, George Malcolm [ORNL; Genatempo, B. [University of Messina, Messina, Italy; Bruno, E. [University of Messina, Messina, Italy; Plummer, E. W. [Louisiana State University

    2013-01-01

    We report a detailed experimental and theoretical study of the electronic structure of Mo1 xRex random alloys. We have measured electronic band dispersions for clean and hydrogen-covered Mo1 xRex (110) with x = 0 0.25 using angle-resolved photoemission spectroscopy. Our results suggest that the bulk and most surface electronic bands shift relative to the Fermi level systematically and approximately rigidly with Re concentration. We distinguish and quantify two contributions to these shifts: a raise of the Fermi energy and an increase of the overall bandwidth. Alloy bands calculated using the firstprinciples Korringa Kohn Rostoker coherent-potential-approximation method accurately predict both of these effects. As derived from the rigid band model, the Fermi energy shift is inversely related to the bulk density of states in this energy region. Using our results, we also characterize an electronic topological transition of the bulk Fermi surface and relate this to bulk transport properties. Finally, we distinguish effects beyond the rigid band approximation: a highly surface-localized state and a composition-dependent impact of the spin orbit interaction.

  6. Investigations of surface plasmon resonances by energy-filtering transmission electron microscopy methods

    OpenAIRE

    Ögüt, Burcu

    2013-01-01

    This thesis concentrates on different plasmonic phenomena which are observed with a transmission electron microscope (TEM) in combination with electron energy loss spectroscopy (EELS) and energy-filtering transmission electron microscopy (EFTEM) techniques offering high energy and spatial resolution. Plasmonic coupling behaviour of nanoholes and nanoparticles having rectangular, circular, triangular etc. shapes were investigated using different techniques. The electromagnetic nature of the ob...

  7. Simulations and Measurement of Electron Energy and Effective Electron Temperature of Nanosecond Pulsed Argon Plasma%Simulations and Measurement of Electron Energy and Effective Electron Temperature of Nanosecond Pulsed Argon Plasma

    Institute of Scientific and Technical Information of China (English)

    闻雪晴; 信裕; 冯春雷; 丁洪斌

    2012-01-01

    The behavior of argon plasma driven by nanosecond pulsed plasma in a low-pressure plasma reactor is investigated using a global model, and the results are compared with the experimental measurements. The time evolution of plasma density and the electron energy probability function are calculated by solving the energy balance and Boltzmann equations. During and shortly after the discharge pulse, the electron energy probability function can be represented by a bi-Maxwellian distribution, indicating two energy groups of electrons. According to the effective electron temperature calculation, we find that there are more high-energy electrons that play an important role in the excitation and ionization processes than low-energy electrons. The effective electron temperature is also measured via optical emission spectroscopy to evaluate the simulation model. In the comparison, the simulation results are found to be in agreement with the measure- ments. Furthermore, variations of the effective electron temperature are presented versus other discharge parameters, such as pulse width time, pulse rise time and gas pressure.

  8. Control and power electronics technology in renewable energy

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    As the cut-in point of research on control and power electronics technology used in renewable energy, this paper does not aim to analyze particular theories or tech-nologies in this field, but, instead, is to go back to the fountainhead of the issue to illustrate the essential concepts in this field, which are usually neglected and may become bottle-neck of the research. Research experiences have shown that con-fusion and trouble may be created if researchers do not understand these essential concepts well.

  9. Tomography of Particle Plasmon Fields from Electron Energy Loss Spectroscopy

    Science.gov (United States)

    Hörl, Anton; Trügler, Andreas; Hohenester, Ulrich

    2013-08-01

    We theoretically investigate electron energy loss spectroscopy (EELS) of metallic nanoparticles in the optical frequency domain. Using a quasistatic approximation scheme together with a plasmon eigenmode expansion, we show that EELS can be rephrased in terms of a tomography problem. For selected single and coupled nanoparticles we extract the three-dimensional plasmon fields from a collection of rotated EELS maps. Our results pave the way for a fully three-dimensional plasmon-field tomography and establish EELS as a quantitative measurement device for plasmonics.

  10. Diffraction and electron energy loss to plasmons in silicon slabs

    Science.gov (United States)

    Levine, Zachary H.

    2008-03-01

    Dynamical diffraction patterns were calculated for 25nm slabs of silicon with [001], [111], and [110] faces for a 120keV electron beam. The calculation used the mixed dynamical form factor in the dielectric formulation. Dielectric matrices with wave vector and frequency dependence were calculated within the local density approximation using the random phase approximation. The energy losses, 10-25eV , span the plasmon peak. Near the zone axes, the results show the preservation of elastic contrast and both excess and deficit Kikuchi lines.

  11. Energy spectra of field emission electrons from a W tip

    Science.gov (United States)

    Ogawa, H.; Arai, N.; Nagaoka, K.; Uchiyama, S.; Yamashita, T.; Itoh, H.; Oshima, C.

    1996-06-01

    Total energy distributions of field emission electrons from a single crystal -oriented tungsten tip have been measured at temperatures of 80 and 300 K and in the emission current region from 10 -8 to 10 -6 A. We have used a high resolution field emission spectrometer computer-controlled by a low-noise power supply developed in this experiment. The main part of the observed distributions agree with the theoretical ones calculated on the basis of the Fowler-Nordheim theory, while discrepancies have been observed in two regions.

  12. Electron Emission Sites on Carbon Nanotubes and the Energy Spectra

    Science.gov (United States)

    Oshima, Chuhei; Matsuda, Kohei; Kona, Takayuki; Mogami, Yuhta; Komaki, Masashi; Murata, Yoshitaka; Yamashita, Tetsutane; Saito, Yahachi; Hata, Koichi; Takakura, Akihiro

    2001-11-01

    Two kinds of electron emission sites on carbon nanotubes have been clarified; one is a nanoprotrusion exhibiting deformed honeycomb structures composed of carbon hexagons,pentagons and possibly heptagons. The other is either an edged species or adsorbates. The emission spectra show two characteristic features; a broad main peak as compared with theoretical curves based on Fowler-Nordheim theory, and an additional shoulder at about 0.5 eV from EF, of which the features are observed independent of the emission direction. The broad main peak may indicate that energy band bending occurs near the emission sites.

  13. The industrial applications of high energy electron accelerators

    International Nuclear Information System (INIS)

    The Industrial Processing accelerator competes with other processing techniques and although it may have a 'Space Age' image it will only be used by industry if it is economically viable. The area of application that is changing with the evolution of high energy medium power accelerator is the use for medical sterilisation as an alternative to gamma but the future application that is evolving slowly and that will use many kilo watts of electron power is food. The processing accelerator is here to stay and it will extend its application into even more diverse applications in the future than it has in the past. (author)

  14. Measurement of the Electron Structure Function at LEP energies

    CERN Document Server

    Abdallah, J; Adam, W; Adzic, P; Albrecht, T; Alemany-Fernandez, R; Allmendinger, T; Allport, P P; Amaldi, U; Amapane, N; Amato, S; Anashkin, E; Andreazza, A; Andringa, S; Anjos, N; Antilogus, P; Apel, W-D; Arnoud, Y; Ask, S; Asman, B; Augustin, J E; Augustinus, A; Baillon, P; Ballestrero, A; Bambade, P; Barbier, R; Bardin, D; Barker, G J; Baroncelli, A; Battaglia, M; Baubillier, M; Becks, K-H; Begalli, M; Behrmann, A; Ben-Haim, E; Benekos, N; Benvenuti, A; Berat, C; Berggren, M; Bertrand, D; Besancon, M; Besson, N; Bloch, D; Blom, M; Bluj, M; Bonesini, M; Boonekamp, M; Booth, P S L; Borisov, G; Botner, O; Bouquet, B; Bowcock, T J V; Boyko, I; Bracko, M; Brenner, R; Brodet, E; Bruckman, P; Brunet, J M; Buschbeck, B; Buschmann, P; Calvi, M; Camporesi, T; Canale, V; Carena, F; Castro, N; Cavallo, F; Chapkin, M; Charpentier, Ph; Checchia, P; Chierici, R; Chliapnikov, P; Chudoba, J; Chung, S U; Cieslik, K; Collins, P; Contri, R; Cosme, G; Cossutti, F; Costa, M J; Crennell, D; Cuevas, J; D'Hondt, J; da Silva, T; Da Silva, W; Della Ricca, G; De Angelis, A; De Boer, W; De Clercq, C; De Lotto, B; De Maria, N; De Min, A; de Paula, L; Di Ciaccio, L; Di Simone, A; Doroba, K; Drees, J; Eigen, G; Ekelof, T; Ellert, M; Elsing, M; Espirito Santo, M C; Fanourakis, G; Fassouliotis, D; Feindt, M; Fernandez, J; Ferrer, A; Ferro, F; Flagmeyer, U; Foeth, H; Fokitis, E; Fulda-Quenzer, F; Fuster, J; Gandelman, M; Garcia, C; Gavillet, Ph; Gazis, E; Gokieli, R; Golob, B; Gomez-Ceballos, G; Goncalves, P; Graziani, E; Grosdidier, G; Grzelak, K; Guy, J; Haag, C; Hallgren, A; Hamacher, K; Hamilton, K; Haug, S; Hauler, F; Hedberg, V; Hennecke, M; Hoffman, J; Holmgren, S-O; Holt, P J; Houlden, M A; Jackson, J N; Jarlskog, G; Jarry, P; Jeans, D; Johansson, E K; Jonsson, P; Joram, C; Jungermann, L; Kapusta, F; Katsanevas, S; Katsoufis, E; Kernel, G; Kersevan, B P; Kerzel, U; King, B T; Kjaer, N J; Kluit, P; Kokkinias, P; Kourkoumelis, C; Kouznetsov, O; Krumstein, Z; Kucharczyk, M; Lamsa, J; Leder, G; Ledroit, F; Leinonen, L; Leitner, R; Lemonne, J; Lepeltier, V; Lesiak, T; Liebig, W; Liko, D; Lipniacka, A; Lopes, J H; Lopez, J M; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J; Malek, A; Maltezos, S; Mandl, F; Marco, J; Marco, R; Marechal, B; Margoni, M; Marin, J-C; Mariotti, C; Markou, A; Martinez-Rivero, C; Masik, J; Mastroyiannopoulos, N; Matorras, F; Matteuzzi, C; Mazzucato, F; Mazzucato, M; Mc Nulty, R; Meroni, C; Migliore, E; Mitaroff, W; Mjoernmark, U; Moa, T; Moch, M; Moenig, K; Monge, R; Montenegro, J; Moraes, D; Moreno, S; Morettini, P; Mueller, U; Muenich, K; Mulders, M; Mundim, L; Murray, W; Muryn, B; Myatt, G; Myklebust, T; Nassiakou, M; Navarria, F; Nawrocki, K; Nemecek, S; Nicolaidou, R; Nikolenko, M; Oblakowska-Mucha, A; Obraztsov, V; Olshevski, A; Onofre, A; Orava, R; Osterberg, K; Ouraou, A; Oyanguren, A; Paganoni, M; Paiano, S; Palacios, J P; Palka, H; Papadopoulou, Th D; Pape, L; Parkes, C; Parodi, F; Parzefall, U; Passeri, A; Passon, O; Peralta, L; Perepelitsa, V; Perrotta, A; Petrolini, A; Piedra, J; Pieri, L; Pierre, F; Pimenta, M; Piotto, E; Podobnik, T; Poireau, V; Pol, M E; Polok, G; Pozdniakov, V; Pukhaeva, N; Pullia, A; Radojicic, D; Rebecchi, P; Rehn, J; Reid, D; Reinhardt, R; Renton, P; Richard, F; Ridky, J; Rivero, M; Rodriguez, D; Romero, A; Ronchese, P; Roudeau, P; Rovelli, T; Ruhlmann-Kleider, V; Ryabtchikov, D; Sadovsky, A; Salmi, L; Salt, J; Sander, C; Savoy-Navarro, A; Schwickerath, U; Sekulin, R; Siebel, M; Sisakian, A; Slominski, W; Smadja, G; Smirnova, O; Sokolov, A; Sopczak, A; Sosnowski, R; Spassov, T; Stanitzki, M; Stocchi, A; Strauss, J; Stugu, B; Szczekowski, M; Szeptycka, M; Szumlak, T; Szwed, J; Tabarelli, T; Tegenfeldt, F; Timmermans, J; Tkatchev, L; Tobin, M; Todorovova, S; Tome, B; Tonazzo, A; Tortosa, P; Travnicek, P; Treille, D; Tristram, G; Trochimczuk, M; Troncon, C; Turluer, M L; Tyapkin, I A; Tyapkin, P; Tzamarias, S; Uvarov, V; Valenti, G; Van Dam, P; Van Eldik, J; van Remortel, N; Van Vulpen, I; Vegni, G; Veloso, F; Venus, W; Verdier, P; Verzi, V; Vilanova, D; Vitale, L; Vrba, V; Wahlen, H; Washbrook, A J; Weiser, C; Wicke, D; Wickens, J; Wilkinson, G; Winter, M; Witek, M; Yushchenko, O; Zalewska, A; Zalewski, P; Zavrtanik, D; Zhuravlov, V; Zimin, N I; Zintchenko, A; Zupan, M

    2010-01-01

    The hadronic part of the Electron Structure Function (ESF) has been measured for the first time, using e+e- data collected by the DELPHI experiment at LEP, at centre-of-mass energies sqrt(s) = 91.2-209.5 GeV. The data analysis is simpler than that of the measurement of the photon structure function. The ESF data are compared to predictions of phenomenological models based on the photon structure function. It is shown that the quasi-real photon virtuality contribution is significant. The presented data can serve as a cross-check of the photon structure function analyses and help in refining existing parametrizations.

  15. Radiation processing of liquid with low energy electron accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Makuuchi, Keizo [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2003-02-01

    Radiation induced emulsion polymerization, radiation vulcanization of NR latex (RVNRL) and radiation degradation of natural polymers were selected and reviewed as the radiation processing of liquid. The characteristic of high dose rate emulsion polymerization is the occurrence of cationic polymerization. Thus, it can be used for the production of new materials that cannot be obtained by radical polymerization. A potential application will be production of polymer emulsion that can be used as water-borne UV/EB curing resins. The technology of RVNRL by {gamma}-ray has been commercialized. RVNRL with low energy electron accelerator is under development for further vulcanization cost reduction. Vessel type irradiator will be favorable for industrial application. Radiation degradation of polysaccharides is an emerging and promising area of radiation processing. However, strict cost comparison between liquid irradiation with low energy EB and state irradiation with {gamma}-ray should be carried out. (author)

  16. Low-energy electron rescattering in laser-induced ionization

    International Nuclear Information System (INIS)

    The low-energy structure (LES) in the energy spectrum of above-threshold ionization of rare-gas atoms is reinvestigated from three different points of view. First, the role of forward rescattering in the completely classical simple-man model (SMM) is considered. Then, the corresponding classical electronic trajectories are retrieved in the quantum-mechanical ionization amplitude derived in the strong-field approximation augmented to allow for rescattering. Third, classical trajectories in the presence of both the laser field and the Coulomb field are scrutinized in order to see how they are related to the LES. It is concluded that the LES is already rooted in the SMM. The Coulomb field enhances the structure so that it can successfully compete with other contributions and become visible in the total spectrum. (paper)

  17. Precessed electron beam electron energy loss spectroscopy of graphene: Beyond channelling effects

    International Nuclear Information System (INIS)

    The effects of beam precession on the Electron Energy Loss Spectroscopy (EELS) signal of the carbon K edge in a 2 monolayer graphene sheet are studied. In a previous work, we demonstrated the use of precession to compensate for the channeling-induced reduction of EELS signal when in zone axis. In the case of graphene, no enhancement of EELS signal is found in the usual experimental conditions, as graphene is not thick enough to present channeling effects. Interestingly, though it is found that precession makes it possible to increase the collection angle, and, thus, the overall signal, without a loss of signal-to-background ratio

  18. Electron cyclotron emission imaging and applications in magnetic fusion energy

    Science.gov (United States)

    Tobias, Benjamin John

    Energy production through the burning of fossil fuels is an unsustainable practice. Exponentially increasing energy consumption and dwindling natural resources ensure that coal and gas fueled power plants will someday be a thing of the past. However, even before fuel reserves are depleted, our planet may well succumb to disastrous side effects, namely the build up of carbon emissions in the environment triggering world-wide climate change and the countless industrial spills of pollutants that continue to this day. Many alternatives are currently being developed, but none has so much promise as fusion nuclear energy, the energy of the sun. The confinement of hot plasma at temperatures in excess of 100 million Kelvin by a carefully arranged magnetic field for the realization of a self-sustaining fusion power plant requires new technologies and improved understanding of fundamental physical phenomena. Imaging of electron cyclotron radiation lends insight into the spatial and temporal behavior of electron temperature fluctuations and instabilities, providing a powerful diagnostic for investigations into basic plasma physics and nuclear fusion reactor operation. This dissertation presents the design and implementation of a new generation of Electron Cyclotron Emission Imaging (ECEI) diagnostics on toroidal magnetic fusion confinement devices, or tokamaks, around the world. The underlying physics of cyclotron radiation in fusion plasmas is reviewed, and a thorough discussion of millimeter wave imaging techniques and heterodyne radiometry in ECEI follows. The imaging of turbulence and fluid flows has evolved over half a millennium since Leonardo da Vinci's first sketches of cascading water, and applications for ECEI in fusion research are broad ranging. Two areas of physical investigation are discussed in this dissertation: the identification of poloidal shearing in Alfven eigenmode structures predicted by hybrid gyrofluid-magnetohydrodynamic (gyrofluid-MHD) modeling, and

  19. Effects of high-energy electron radiation on polypropylene dielectric

    International Nuclear Information System (INIS)

    Polypropylene, a polymeric materials widely used as the main dielectric in many high-voltage components such as capacitors and cables, was exposed to electron irradiation in air at room temperature. The 25.4-μm-thick dry polypropylene films were irradiated to different doses up to 108 rads with electron beam having energies of 0.5, 1.0, and 1.5 MeV. Monoisopropyl biphenyl (MIPB)-impregnated polypropylene films were also exposed to 1-MeV electron beam to doses up to 108 rads and the post-irradiation effects on the electrical, mechanical, and morphological and chemical properties of the films were evaluated. The electrical properties included the AC, DC and pulsed breakdown strengths, dielectric constant, dissipation factor, conductivity, and pulsed life-endurance. The mechanical properties comprised the Young's modulus, elongation-at-break, tensile strength, complex modulus, and mechanical loss. Finally, the morphological and chemical diagnoses carried out included surface morphology, elemental analysis, crystallinity changes, and identification of newly formed bonds and degree of oxidation. The results obtained indicate that the dry polypropylene films started to exhibit degradation at doses as low as 106 rads. The properties that were mostly affected included the film's tensile properties, pulsed life, dissipation factor, and electrical conductivity

  20. TCO/metal/TCO structures for energy and flexible electronics

    Energy Technology Data Exchange (ETDEWEB)

    Guillen, C., E-mail: c.guillen@ciemat.es; Herrero, J.

    2011-10-31

    There is increasing attention paid to improving transparent conductive electrodes for applications in large area photovoltaic devices and displays that are being developed for energy and electronics. To date, transparent and conductive oxides (TCO) based on In{sub 2}O{sub 3}, ZnO, or SnO{sub 2} are commonly used, but advanced devices require new electrodes with lower resistivities than previously achieved and with optical properties superior to those of the present generation. TCO/metal/TCO multilayer structures have emerged as an interesting alternative because they provide optical and electrical characteristics globally superior to those attainable with a single-layer TCO or metal electrode and can be deposited at low temperatures onto inexpensive plastic substrates. Indeed, the fabrication of thin film devices on flexible substrates has substantial interest for application to lightweight products and implementation of roll-to-roll deposition processes that can significantly reduce production costs. In this sense, organic electronics that require low deposition temperatures have the best chance to be the first transferred from conventional glass to inexpensive plastic substrates. The present critical review summarizes current TCO/metal/TCO research results, first analyzed for materials and thickness selection as a function of the optical transmittance and electrical resistance parameters, and then analyzed according to other important properties such as mechanical reliability and thermal and humidity stability. The review concludes with a brief discussion of the results obtained for TCO/metal/TCO structures applied as electrodes in several organic electronic devices.

  1. Electronic Structure and Maximum Energy Product of MnBi

    Directory of Open Access Journals (Sweden)

    Jihoon Park

    2014-08-01

    Full Text Available We have performed first-principles calculations to obtain magnetic moment, magnetocrystalline anisotropy energy (MAE, i.e., the magnetic crystalline anisotropy constant (K, and the Curie temperature (Tc of low temperature phase (LTP MnBi and also estimated the maximum energy product (BHmax at elevated temperatures. The full-potential linearized augmented plane wave (FPLAPW method, based on density functional theory (DFT within the local spin density approximation (LSDA, was used to calculate the electronic structure of LPM MnBi. The Tc was calculated by the mean field theory. The calculated magnetic moment, MAE, and Tc are 3.63 μB/f.u. (formula unit (79 emu/g or 714 emu/cm3, −0.163 meV/u.c. (or K = −0.275 × 106 J/m3 and 711 K, respectively. The (BHmax at the elevated temperatures was estimated by combining experimental coercivity (Hci and the temperature dependence of magnetization (Ms(T. The (BHmax is 17.7 MGOe at 300 K, which is in good agreement with the experimental result for directionally-solidified LTP MnBi (17 MGOe. In addition, a study of electron density maps and the lattice constant c/a ratio dependence of the magnetic moment suggested that doping of a third element into interstitial sites of LTP MnBi can increase the Ms.

  2. Low energy electron point source microscopy: beyond imaging

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, Andre; Goelzhaeuser, Armin [Physics of Supramolecular Systems and Surfaces, University of Bielefeld, Postfach 100131, 33501 Bielefeld (Germany)

    2010-09-01

    Low energy electron point source (LEEPS) microscopy has the capability to record in-line holograms at very high magnifications with a fairly simple set-up. After the holograms are numerically reconstructed, structural features with the size of about 2 nm can be resolved. The achievement of an even higher resolution has been predicted. However, a number of obstacles are known to impede the realization of this goal, for example the presence of electric fields around the imaged object, electrostatic charging or radiation induced processes. This topical review gives an overview of the achievements as well as the difficulties in the efforts to shift the resolution limit of LEEPS microscopy towards the atomic level. A special emphasis is laid on the high sensitivity of low energy electrons to electrical fields, which limits the structural determination of the imaged objects. On the other hand, the investigation of the electrical field around objects of known structure is very useful for other tasks and LEEPS microscopy can be extended beyond the task of imaging. The determination of the electrical resistance of individual nanowires can be achieved by a proper analysis of the corresponding LEEPS micrographs. This conductivity imaging may be a very useful application for LEEPS microscopes. (topical review)

  3. Initial electron energy spectra in water irradiated by photons with energies to 1 GeV

    International Nuclear Information System (INIS)

    This work was undertaken to provide basic physical data for use in the dosimetry of high-energy photons. Present and future sources of such photons are described, and the relevant literature is reviewed and summarized. Calculations were performed with a Monte Carlo computer code, PHOEL-3, which is also described. Tables of initial electron and positron energies are presented for monoenergetic photons undergoing single interactions in water. Photon energies to 1 GeV are treated. The code treats explicitly the production of electron-positron pairs, Compton scattering, photoelectric absorption, and the emission of Auger electrons following the occurrence of K-shell vacancies in oxygen. The tables give directly the information needed to specify the absolute single-collision kerma in water, which approximates tissue, at each photon energy. Results for continuous photon energy spectra can be obtained by using linear interpolation with the tables. (Continuous spectra can also be used directly in PHOEL-3.) The conditions under whch first-collision kerma approximate absorbed dose are discussed. A formula is given for estimating bremsstrahlung energy loss, one of the principal differences between kerma and absorbed dose in practical cases. 31 references, 4 figures, 18 tables

  4. Nature and topology of the low-energy states in ZrTe5

    Science.gov (United States)

    Moreschini, L.; Johannsen, J. C.; Berger, H.; Denlinger, J.; Jozwiack, C.; Rotenberg, E.; Kim, K. S.; Bostwick, A.; Grioni, M.

    2016-08-01

    Long known for its peculiar resistivity, showing a thus far unexplained anomalous peak as a function of temperature, ZrTe5 has recently received rising attention in a somewhat different context. While both theoretical and experimental results seem to point to a nontrivial topology of the low-energy electronic states, there is no agreement on the nature of their topological character. Here, by an angle-resolved photoemission study of the evolution of the band structure with temperature and surface doping, we show that (i) the material presents a van Hove singularity close to the Fermi level, and (ii) no surface states exist at the (010) surface. These findings reconcile band structure measurements with transport results and establish the topology of this puzzling compound.

  5. Electron-Nuclear Energy Sharing in Above-Threshold Multiphoton Dissociative Ionization of H2

    DEFF Research Database (Denmark)

    Wu, J.; Kunitski, M.; Pitzer, M.;

    2013-01-01

    We report experimental observation of the energy sharing between electron and nuclei in above-threshold multiphoton dissociative ionization of H2 by strong laser fields. The absorbed photon energy is shared between the ejected electron and nuclei in a correlated fashion, resulting in multiple...... diagonal lines in their joint energy spectrum governed by the energy conservation of all fragment particles....

  6. Electron-nuclear energy sharing in above-threshold multiphoton dissociative ionization of H2.

    Science.gov (United States)

    Wu, J; Kunitski, M; Pitzer, M; Trinter, F; Schmidt, L Ph H; Jahnke, T; Magrakvelidze, M; Madsen, C B; Madsen, L B; Thumm, U; Dörner, R

    2013-07-12

    We report experimental observation of the energy sharing between electron and nuclei in above-threshold multiphoton dissociative ionization of H2 by strong laser fields. The absorbed photon energy is shared between the ejected electron and nuclei in a correlated fashion, resulting in multiple diagonal lines in their joint energy spectrum governed by the energy conservation of all fragment particles.

  7. High energy electron generation by the 15 mJ ultrashort pulse laser

    Energy Technology Data Exchange (ETDEWEB)

    Takano, K; Hotta, E; Nemoto, K [Department of Energy Sciences Tokyo Institute of Technology 4259 Nagatsuta-cho Midori-ku Yokohama 226-8502 (Japan); Nayuki, T; Oishi, Y; Fujii, T; Zhidkov, A [Central Research Institute of Electric Power Industry 2-6-1 Nagasaka, Yokosuka, Kanagawa, 240-0196 (Japan); Todoriki, M; Hasegawa, S [University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8654 (Japan)], E-mail: k-tn@plasma.es.titech.ac.jp

    2008-05-01

    We propose a small size high energy X-ray source utilizing ultrashort pulse lasers, and a new scheme for generating quasi-monoenergetic electrons. In this paper, we developed a compact laser electron generator and performed experiment that generated energetic electrons over 1 MeV electrons with only 15 mJ laser energy. The temperatures of emitted electrons were measured to be 0.2 MeV and 0.25 MeV without and with prepulse, respectively.

  8. Graphene functionalization with nitrogen and oxygen: controlled modification of the electronic properties

    Science.gov (United States)

    Brommer, Peter; Marsden, Alexander; Wilson, Neil; Bell, Gavin; Quigley, David

    2014-03-01

    For many applications it is essential to modify the electronic properties of graphene in a controlled fashion. This can be achieved via oxygen and nitrogen functionalization in ultra-high vacuum, leading to a system in which electronic and structural properties can be systematically studied. Here we present insights from DFT calculations on functionalized graphene systems, such as the low-energy configurations and simulated transmission electron microscopy (TEM) images, binding energies and effective band structures (EBS) of the N and O decorated graphene sheets. We directly compare our results with experiments on CVD grown graphene. Angle-resolved photoemission spectroscopy (ARPES - performed at the Antares beamline of Synchrotron SOLEIL, France) resolves the band structure changes on functionalization, whilst the simulated TEM images provide feedback for the interpretation of low-voltage aberration-corrected TEM measurements. Combined, the computational and experimental results have important implications for the manipulation of electronic properties in graphene by controlled functionalization. We acknowledge funding by the EPSRC through grant number EP/H00341X/1.

  9. A Smart Wireless Electronic Energy Meter Reading Using Embedded Technology

    Directory of Open Access Journals (Sweden)

    Shraddha Male,

    2014-01-01

    Full Text Available The AMR (Automatic Meter Reading system is a system used for reading energy consumption remotely. This wireless AMR system is based on wireless network and embedded technology to solve the problems in existing AMR system. This paper presents the simple low cost wireless GSM energy meter and it has remote access of existing meter. It saves huge human labour. A GSM based wireless module for communication is integrated with electronic energy meter and it has remote access over the usage of electricity. Authentication is provided to users for accessing the developed web pages details from anywhere in the world. So GSM based wireless AMR system is more effective approach for convention of billing system. This system also provide authority to electricity companies to take actions against lenient customers who have outstanding dues, otherwise company has right to disconnect the power supply and also it can reconnect power supply after deposition of dues. The complete monthly usage of electricity and due bill is messaged back to the customer after processing these data. We finally thought of building such a system that will do the above process automatically.

  10. A Flexible Power Electronics Configuration for Coupling Renewable Energy Sources

    Directory of Open Access Journals (Sweden)

    Mattia Filippini

    2015-05-01

    Full Text Available A combination of series, parallel and multilevel power electronics has been investigated as a potential interface for two different types of renewable energy sources and in order to reach higher power levels. Renewable energy sources are typically dispersed in a territory, and sources, like wind and solar, allow small to medium-scale generation of electricity. The configuration investigated in this article aims at adapting the coupling solution to the specific generation characteristics of the renewable energy source to make it fit the electrical network. The configuration consists of a combination of three-phase multilevel converters and single-phase inverters, which are designed to provide flexibility, high power quality and high efficiency. A detailed analysis and simulation is performed to identify the properties in conjunction with the electrical grid requirements and the potential challenges encountered during operation. An optimized operation example of wind generation combined with solar PV generation is presented to exemplify the flexibility and benefits of the proposed configuration.

  11. The impacts of electronic state hybridization on the binding energy of single phosphorus donor electrons in extremely downscaled silicon nanostructures

    Science.gov (United States)

    The Anh, Le; Moraru, Daniel; Manoharan, Muruganathan; Tabe, Michiharu; Mizuta, Hiroshi

    2014-08-01

    We present the density functional theory calculations of the binding energy of the Phosphorus (P) donor electrons in extremely downscaled single P-doped Silicon (Si) nanorods. In past studies, the binding energy of donor electrons was evaluated for the Si nanostructures as the difference between the ionization energy for the single P-doped Si nanostructures and the electron affinity for the un-doped Si nanostructures. This definition does not take into account the strong interaction of donor electron states and Si electron states explicitly at the conductive states and results in a monotonous increase in the binding energy by reducing the nanostructure's dimensions. In this paper, we introduce a new approach to evaluate the binding energy of donor electrons by combining the projected density of states (PDOS) analysis and three-dimensional analysis of associated electron wavefunctions. This enables us to clarify a gradual change of the spatial distribution of the 3D electron wavefunctions (3DWFs) from the donor electron ground state, which is fully localized around the P donor site to the first conductive state, which spreads over the outer Si nanorods contributing to current conduction. We found that the energy of the first conductive state is capped near the top of the atomistic effective potential at the donor site with respect to the surrounding Si atoms in nanorods smaller than about 27 a0. This results in the binding energy of approximately 1.5 eV, which is virtually independent on the nanorod's dimensions. This fact signifies a good tolerance of the binding energy, which governs the operating temperature of the single dopant-based transistors in practice. We also conducted the computationally heavy transmission calculations of the single P-doped Si nanorods connected to the source and drain electrodes. The calculated transmission spectra are discussed in comparison with the atomistic effective potential distributions and the PDOS-3DWFs method.

  12. Insights on the Cuprate High Energy Anomaly Observed in ARPES

    Energy Technology Data Exchange (ETDEWEB)

    Moritz, Brian

    2011-08-16

    Recently, angle-resolved photoemission spectroscopy has been used to highlight an anomalously large band renormalization at high binding energies in cuprate superconductors: the high energy 'waterfall' or high energy anomaly (HEA). The anomaly is present for both hole- and electron-doped cuprates as well as the half-filled parent insulators with different energy scales arising on either side of the phase diagram. While photoemission matrix elements clearly play a role in changing the aesthetic appearance of the band dispersion, i.e. creating a 'waterfall'-like appearance, they provide an inadequate description for the physics that underlies the strong band renormalization giving rise to the HEA. Model calculations of the single-band Hubbard Hamiltonian showcase the role played by correlations in the formation of the HEA and uncover significant differences in the HEA energy scale for hole- and electron-doped cuprates. In addition, this approach properly captures the transfer of spectral weight accompanying doping in a correlated material and provides a unifying description of the HEA across both sides of the cuprate phase diagram. We find that the anomaly demarcates a transition, or cross-over, from a quasiparticle band at low binding energies near the Fermi level to valence bands at higher binding energy, assumed to be of strong oxygen character.

  13. Modeling the high-energy electronic state manifold of adenine: Calibration for nonlinear electronic spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nenov, Artur, E-mail: Artur.Nenov@unibo.it; Giussani, Angelo; Segarra-Martí, Javier; Jaiswal, Vishal K. [Dipartimento di Chimica “G. Ciamician,” Università di Bologna, Via Selmi 2, IT-40126 Bologna (Italy); Rivalta, Ivan [Université de Lyon, CNRS, Institut de Chimie de Lyon, École Normale Supérieure de Lyon, 46 Allée d’Italie, F-69364 Lyon Cedex 07 (France); Cerullo, Giulio [Dipartimento di Fisica, Politecnico di Milano, IFN-CNR, Piazza Leonardo Da Vinci 32, IT-20133 Milano (Italy); Mukamel, Shaul [Department of Chemistry, University of California, Irvine, California 92697-2025 (United States); Garavelli, Marco, E-mail: marco.garavelli@unibo.it, E-mail: marco.garavelli@ens-lyon.fr [Dipartimento di Chimica “G. Ciamician,” Università di Bologna, Via Selmi 2, IT-40126 Bologna (Italy); Université de Lyon, CNRS, Institut de Chimie de Lyon, École Normale Supérieure de Lyon, 46 Allée d’Italie, F-69364 Lyon Cedex 07 (France)

    2015-06-07

    Pump-probe electronic spectroscopy using femtosecond laser pulses has evolved into a standard tool for tracking ultrafast excited state dynamics. Its two-dimensional (2D) counterpart is becoming an increasingly available and promising technique for resolving many of the limitations of pump-probe caused by spectral congestion. The ability to simulate pump-probe and 2D spectra from ab initio computations would allow one to link mechanistic observables like molecular motions and the making/breaking of chemical bonds to experimental observables like excited state lifetimes and quantum yields. From a theoretical standpoint, the characterization of the electronic transitions in the visible (Vis)/ultraviolet (UV), which are excited via the interaction of a molecular system with the incoming pump/probe pulses, translates into the determination of a computationally challenging number of excited states (going over 100) even for small/medium sized systems. A protocol is therefore required to evaluate the fluctuations of spectral properties like transition energies and dipole moments as a function of the computational parameters and to estimate the effect of these fluctuations on the transient spectral appearance. In the present contribution such a protocol is presented within the framework of complete and restricted active space self-consistent field theory and its second-order perturbation theory extensions. The electronic excited states of adenine have been carefully characterized through a previously presented computational recipe [Nenov et al., Comput. Theor. Chem. 1040–1041, 295-303 (2014)]. A wise reduction of the level of theory has then been performed in order to obtain a computationally less demanding approach that is still able to reproduce the characteristic features of the reference data. Foreseeing the potentiality of 2D electronic spectroscopy to track polynucleotide ground and excited state dynamics, and in particular its expected ability to provide

  14. Design Considerations for High Energy Electron -- Positron Storage Rings

    Science.gov (United States)

    Richter, B.

    1966-11-01

    High energy electron-positron storage rings give a way of making a new attack on the most important problems of elementary particle physics. All of us who have worked in the storage ring field designing, building, or using storage rings know this. The importance of that part of storage ring work concerning tests of quantum electrodynamics and mu meson physics is also generally appreciated by the larger physics community. However, I do not think that most of the physicists working tin the elementary particle physics field realize the importance of the contribution that storage ring experiments can make to our understanding of the strongly interacting particles. I would therefore like to spend the next few minutes discussing the sort of things that one can do with storage rings in the strongly interacting particle field.

  15. Graphene for energy harvesting/storage devices and printed electronics

    Institute of Scientific and Technical Information of China (English)

    Lorenzo Grande; Vishnu Teja Chundi; Di Wei; Chris Bower; Piers Andrew; Tapani Ryh(a)nen

    2012-01-01

    Graphene-based materials are intriguing from the perspective of fundamental science and technology because they are non-toxic,chemically and thermally tolerant,and mechanically robust.Graphene exhibits superior electrical conductivity,high surface area and a broad electrochemical window that may be particularly advantageous for their applications in energy storage devices.In addition,graphene can be prepared in the form of a colloidal suspension with adjustable solubility and thus is suitable for printing applications and offers both transparency and good conductivity at the same time.In this review,applications of graphene in solar cells,batteries,supercapacitors and fuel cells are summarized with the latest developments.Furthermore,graphene as a conductive ink for printed electronics is also discussed.

  16. Electron self-energy and effective mass in a single heterostructure

    Institute of Scientific and Technical Information of China (English)

    花修坤; 吴银忠; 李振亚

    2003-01-01

    In this paper, we investigate the electron self-energy and effective mass in a single heterostructure using Greenfunction method. Numerical calculations of the electron self-energy and effective mass for GaAs/AlAs heterostructure are performed. The results show that the self-energy (effective mass) of electrons, which incorporate the energy of electron coupling to interface-optical phonons and half of the three-dimensional longitudinal optical phonons, increase (decrease) monotonically from that of interface polaron to that of the 3D bulk polaron with increasing the distance between the positions of the electron and interface.

  17. Bistable solutions for the electron energy distribution function in electron swarms in xenon via Boltzmann equation analysis and particle simulations

    OpenAIRE

    Dyatko, Nikolay; Donko, Zoltan

    2015-01-01

    At low reduced electric fields the electron energy distribution function in heavy noble gases can take two distinct shapes. This "bistability effect" - in which electron-electron (Coulomb) collisions play an essential role - is analyzed here for Xe with a Boltzmann equation approach and with a first principles particle simulation method. The solution of the Boltzmann equation adopts the usual approximations of (i) searching for the distribution function in the form of two terms ("two-term app...

  18. A New Method of Measuring Electron Emission Induced by Low Energy Ions from Solids

    Institute of Scientific and Technical Information of China (English)

    ZHANG Heng-Da; A. Breskin; R. Chechik; S. Shckemelinin; E. Cheifetz

    2005-01-01

    @@ A new mathematical method of measuring electron emission induced by low energy ions from solids is described and used to calculate secondary electron emission according to the recorded pulse-height spectra of ions and ultraviolet (UV) photons. Using the UV single secondary electron spectra, we predict the shape of many secondary electron distributions under consideration of detection efficiency of MCP detector. These calculated distributions allow us to characterize the secondary electrons yield, and to give a secondary electron distribution for measured data. It seems rather feasible to determine secondary electron yield emitted by low energy ions at very low ion fluxes.

  19. Calculations of energies and absolute intensities of Auger electrons and X-rays arising from electron capture decay

    Institute of Scientific and Technical Information of China (English)

    ZHOU Chun-Mei; WU Zhen-Dong; HUANG Xiao-Long

    2005-01-01

    Calculations of energies and absolute intensities of Auger electron and X-ray arising from electron capture are introduced briefly. The calculation codes and main process are also presented. The application is also given by taking 55Fe ε decay as an example.

  20. Surface energy loss processes in XPS studied by absolute reflection electron energy loss spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nagatomi, T., E-mail: nagatomi@mls.eng.osaka-u.ac.j [Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan); Goto, K. [National Institute of Advanced Industrial Science and Technology (AIST) Chubu, Moriyama-ku, Nagoya, Aichi 463-8560 (Japan)

    2010-05-15

    The results of the investigation of the inelastic interaction of 300-3000 eV electrons with the Ni and Au surfaces by the analysis of absolute reflection electron energy loss spectroscopy (REELS) spectra were described. The present analysis enables the inelastic mean free path (IMFP), surface excitation parameter (SEP) and differential SEP (DSEP) to be obtained simultaneously from an absolute REELS spectrum. The obtained IMFPs for Ni and Au showed a good agreement with those calculated using the TPP-2M predictive equation. The present SEPs determined for Ni and Au were fitted to the Chen's formula describing the dependence of the SEP on the electron energy, and material parameters for Ni and Au in Chen's formula were proposed. The present DESPs were compared with the theoretical results, and a reasonable agreement between the experimentally determined DSEPs and theoretical results was confirmed. The MC modeling of calculating the REELS spectrum, in which energy loss processes due to surface excitations are taken into account, was also described. The IMFP, SEP and DSEP determined by the present absolute REELS analysis were employed to describe energy loss processes by inelastic scattering in the proposed MC simulation. The simulated REELS spectra were found to be in a good agreement with the experimental spectra for both Ni and Au.

  1. High-Resolution Measurements of Low-Energy Conversion Electrons

    CERN Multimedia

    Gizon, A; Putaux, J

    2002-01-01

    Measurements of low-energy internal conversion electrons have been performed with high energy resolution in some N = 105 odd and odd-odd nuclei using a semi-circular spectrograph associated to a specific tape transport system. These experiments aimed to answer the following questions~: \\begin{itemize} \\item Do M3 isomeric transitions exist in $^{183}$Pt and $^{181}$Os, isotones of $^{184}$Au~? \\item Are the neutron configurations proposed to describe the isomeric and ground states of $^{184}$Au right or wrong~? \\item Does it exist an isomeric state in $^{182}$Ir, isotone of $^{181}$Os, $^{183}$Pt and $^{184}$Au~? \\item What are the spin and parity values of the excited states of $^{182}$Ir~? \\end{itemize} In $^{183}$Pt, the 35.0 keV M3 isomeric transition has been clearly observed and the reduced transition probability has been determined. The deduced hindrance factor is close to that observed in the neighbouring odd-odd $^{184}$Au nucleus. This confirms the neutron configurations previously proposed for the ...

  2. Conductive Elastomers for Stretchable Electronics, Sensors and Energy Harvesters

    Directory of Open Access Journals (Sweden)

    Jin-Seo Noh

    2016-04-01

    Full Text Available There have been a wide variety of efforts to develop conductive elastomers that satisfy both mechanical stretchability and electrical conductivity, as a response to growing demands on stretchable and wearable devices. This article reviews the important progress in conductive elastomers made in three application fields of stretchable technology: stretchable electronics, stretchable sensors, and stretchable energy harvesters. Diverse combinations of insulating elastomers and non-stretchable conductive materials have been studied to realize optimal conductive elastomers. It is noted that similar material combinations and similar structures have often been employed in different fields of application. In terms of stretchability, cyclic operation, and overall performance, fields such as stretchable conductors and stretchable strain/pressure sensors have achieved great advancement, whereas other fields like stretchable memories and stretchable thermoelectric energy harvesting are in their infancy. It is worth mentioning that there are still obstacles to overcome for the further progress of stretchable technology in the respective fields, which include the simplification of material combination and device structure, securement of reproducibility and reliability, and the establishment of easy fabrication techniques. Through this review article, both the progress and obstacles associated with the respective stretchable technologies will be understood more clearly.

  3. GOES Observations of Pitch Angle Evolution During an Electron Radiation Belt Dropout

    Science.gov (United States)

    Hartley, D. P.; Denton, M. H.; Green, J. C.; Onsager, T. G.; Rodriguez, J. V.; Singer, H. J.

    2012-12-01

    High Speed Stream (HSS) events exhibit characteristic structure in the solar wind which, when studied in conjunction with in situ observations at geostationary orbit (GEO) from GOES, allows us to examine the temporal evolution of dropouts in the outer electron radiation belt. Using pitch-angle-resolved Magnetospheric Electron Detector (MAGED) data, we study the evolution of perpendicular and parallel electron flux. During the HSS commencing on January 6th 2011, the flux over the entire energy distribution (30-600 keV) takes ~1.5 hours to dropout by two orders of magnitude from its pre-onset level. At this time, the lower energy electrons begin to reappear at GEO; however the 350-600 keV electron flux becomes highly parallel oriented and continues to decrease. Calculating the phase space density as a function of the three adiabatic invariants allows us to further investigate these loss mechanisms. Taking partial moments of the available electron distribution, we observe the number density quickly recovers (~4 hours), as well as the flux of the lower energy channels, however, the highest energy channel takes ~18 hours to recover to an approximately constant elevated level. This indicates that the electrons quickly reappear at GEO following the dropout before being heated over a period of days. This is consistent with the temperature values from GOES, showing an increase after the arrival of the HSS, peaking after ~3 days. This study provides independent confirmation of earlier statistical work and is a first step toward gaining understanding of the electron radiation belt dropout and recovery phenomena, in conjunction with coincident magnetic field measurements.

  4. Occurrence characteristics of outer zone relativistic electron butterfly distribution: A survey of Van Allen Probes REPT measurements

    Science.gov (United States)

    Ni, Binbin; Zou, Zhengyang; Li, Xinlin; Bortnik, Jacob; Xie, Lun; Gu, Xudong

    2016-06-01

    Using Van Allen Probes Relativistic Electron Proton Telescope (REPT) pitch angle resolved electron flux data from September 2012 to March 2015, we investigate in detail the global occurrence pattern of equatorial (|λ| ≤ 3°) butterfly distribution of outer zone relativistic electrons and its potential correlation with the solar wind dynamic pressure. The statistical results demonstrate that these butterfly distributions occur with the highest occurrence rate ~ 80% at ~ 20-04 magnetic local time (MLT) and L > ~ 5.5 and with the second peak (> ~ 50%) at ~ 11-15 MLT of lower L shells ~ 4.0. They can also extend to L = 3.5 and to other MLT intervals but with the occurrence rates predominantly butterfly distributions are likely to peak between 58° and 79° for L = 4.0 and 5.0 and between 37° and 58° for L = 6.0, regardless of the level of solar wind dynamic pressure. Relativistic electron butterfly distributions at L = 4.0 also exhibit a pronounced day-night asymmetry in response to the Pdyn variations. Compared to the significant L shell and MLT dependence of the global occurrence pattern, outer zone relativistic electron butterfly distributions show much less but still discernable sensitivity to Pdyn, geomagnetic activity level, and electron energy, the full understanding of which requires future attempts of detailed simulations that combine and differentiate underlying physical mechanisms of the geomagnetic field asymmetry and scattering by various magnetospheric waves.

  5. Accurate studies on the full vibrational energy spectra and molecular dissociation energies for some electronic states of N2 molecule

    Institute of Scientific and Technical Information of China (English)

    REN; Weiyi; SUN; Weiguo; HOU; Shilin; FENG; Hao

    2005-01-01

    It is usually very difficult to directly obtain molecular dissociation energy De and all accurate high-lying vibrational energies for most diatomic electronic states using modern experimental techniques or quantum theories, and it is also very difficult to give accurate analytical expression for diatomic molecular dissociation energy. This study proposes a new analytical formula for obtaining accurate molecular dissociation energy based on the LeRoy and Bernstein's energy expression in dissociation limit. A set of full vibrational energy spectra for some electronic states of N2 molecule are studied using the algebraic method (AM) suggested recently, and the corresponding accurate molecular dissociation energies are evaluated using the proposed new formula and high-lying AM vibrational energies. The results show that the AM spectra and the new theoretical dissociation energies agree excellently with experimental data, and thereby providing a new physical approach to generating accurate dissociation energies for electronic states of diatomic molecules.

  6. The role of low-energy (≤ 20 eV) electrons in astrochemistry

    Science.gov (United States)

    Boyer, Michael C.; Rivas, Nathalie; Tran, Audrey A.; Verish, Clarissa A.; Arumainayagam, Christopher R.

    2016-10-01

    UV photon-driven condensed phase cosmic ice reactions have been the main focus in understanding the extraterrestrial synthesis of complex organic molecules. Low-energy (≤ 20 eV) electron-induced reactions, on the other hand, have been largely ignored. In this article, we review studies employing surface science techniques to study low-energy electron-induced condensed phase reactions relevant to astrochemistry. In particular, we show that low-energy electron irradiation of methanol ices leads to the synthesis of many of the same complex molecules formed through UV irradiation. Moreover, our results are qualitatively consistent with the hypothesis that high-energy condensed phase radiolysis is mediated by low-energy electron-induced reactions. In addition, due to the numbers of available low-energy secondary electrons resulting from the interaction of high-energy radiation with matter as well as differences between electron- and photon-induced processes, low-energy electron-induced reactions are perhaps as, or even more, effective than photon-induced reactions in initiating condensed-phase chemical reactions in the interstellar medium. Consequently, we illustrate a need for astrochemical models to include the details of electron-induced reactions in addition to those driven by UV photons. Finally, we show that low-energy electron-induced reactions may lead to the production of unique molecular species that could serve as tracer molecules for electron-induced condensed phase reactions in the interstellar medium.

  7. Development of Grid Control Electron Gun for Multi-energy Irradiation Accelerator

    Institute of Scientific and Technical Information of China (English)

    HAN; Guang-wen; ZHU; Zhi-bin; WANG; Shu-xian

    2012-01-01

    <正>In the project of multi-energy electron irradiation accelerator, It is necessary to adjust the electron beam pulse inject to the accelerating tube. Under the same conditions of the injection energy, the grid controlled electron gun was used in the accelerator. Using cathode-grid assembly, after the simulation of electron optics program design, we manufactured focus electrode, the anode, and built an experiment

  8. Non-local electron energy probability function in a plasma expanding along a magnetic nozzle.

    Directory of Open Access Journals (Sweden)

    Roderick William Boswell

    2015-03-01

    Full Text Available Electron energy probability functions (eepfs have been measured along the axis of low pressure plasma expanding in a magnetic nozzle. The eepf at the maximum magnetic field of the nozzle shows a depleted tail commencing at an energy corresponding to the measured potential drop in the magnetic nozzle. The eepfs measured along the axis demonstrate that the potential and kinetic energies of the electrons are conserved and confirm the non-local collisionless kinetics of the electron dynamics.

  9. Multi-port power electronic interface for renewable energy sources

    Science.gov (United States)

    Jiang, Wei

    Energy intensive products and services are penetrating people's daily life as well as different sectors of industry during recent decades. Further effort to improve efficiency, reduce green house gas and hazardous particle emission lead to the emergence of the "more electric" concept in several industries including transportation. This trend, however, burdens the aging power system and existing local power networks. To offer a remedy to the problem and a smooth transition to a more reliable, more diverse, and more efficient power grid of the future, the concept of Multi-port Power Electronic Interface (MPEI) for localized power processing is introduced in this dissertation, which interfaces and manages various sources, loads and storages. Different means of integrating multiple sources and storages into the existing power system are studied and evaluated; the six phase-leg structure is chosen to interface five sources/loads: fuel cell, wind turbine, solar cell, battery and utility grid. Partitioning of source-interface and load-interface on a system level as well as analysis and modeling on small signal level are performed. A novel control structure for source-interface is proposed in the design, which forms Controlled Quasi Current Source (CQCS) during the load sharing operation and offers several salient advantages: • Inherent average current-mode control. • Easy share of steady state current/power. • Share of load dynamics for better source protection. Local control loops for various input ports are designed based on linearized system model; controller performance is tuned to accommodate the characteristics of different sources. To maintain a sustainable operation, different modes of operation are defined for MPEI; detailed state-transition with associated events are also defined in each operation mode. Prototype of MPEI is built and control system is implemented digitally in a digital signal processor; steady state and transient performance of MPEI is

  10. Windows : Optical Performance and Energy Efficiency

    OpenAIRE

    Karlsson, Joakim

    2001-01-01

    This thesis treats angle-resolved optical properties and the energy efficiency of windows. A theoretical evaluation of optical and thermal properties of windows is briefly surveyed and the energy performance of a large selection of windows, under different conditions, is examined. In particular, angle dependent optical properties are analysed. A new model assessing angle dependence of the total solar energy transmittance, g, of windows is presented. A comparison of simple models for angle-dep...

  11. Theoretical study of atoms by the electronic kinetic energy density and stress tensor density

    CERN Document Server

    Nozaki, Hiroo; Tachibana, Akitomo

    2016-01-01

    We analyze the electronic structure of atoms in the first, second and third periods using the electronic kinetic energy density and stress tensor density, which are local quantities motivated by quantum field theoretic consideration, specifically the rigged quantum electrodynamics. We compute the zero surfaces of the electronic kinetic energy density, which we call the electronic interfaces, of the atoms. We find that their sizes exhibit clear periodicity and are comparable to the conventional atomic and ionic radii. We also compute the electronic stress tensor density and its divergence, tension density, of the atoms, and discuss how their electronic structures are characterized by them.

  12. Circular dichroism measurements at an x-ray free-electron laser with polarization control

    Science.gov (United States)

    Hartmann, G.; Lindahl, A. O.; Knie, A.; Hartmann, N.; Lutman, A. A.; MacArthur, J. P.; Shevchuk, I.; Buck, J.; Galler, A.; Glownia, J. M.; Helml, W.; Huang, Z.; Kabachnik, N. M.; Kazansky, A. K.; Liu, J.; Marinelli, A.; Mazza, T.; Nuhn, H.-D.; Walter, P.; Viefhaus, J.; Meyer, M.; Moeller, S.; Coffee, R. N.; Ilchen, M.

    2016-08-01

    A non-destructive diagnostic method for the characterization of circularly polarized, ultraintense, short wavelength free-electron laser (FEL) light is presented. The recently installed Delta undulator at the LCLS (Linac Coherent Light Source) at SLAC National Accelerator Laboratory (USA) was used as showcase for this diagnostic scheme. By applying a combined two-color, multi-photon experiment with polarization control, the degree of circular polarization of the Delta undulator has been determined. Towards this goal, an oriented electronic state in the continuum was created by non-resonant ionization of the O2 1s core shell with circularly polarized FEL pulses at hν ≃ 700 eV. An also circularly polarized, highly intense UV laser pulse with hν ≃ 3.1 eV was temporally and spatially overlapped, causing the photoelectrons to redistribute into so-called sidebands that are energetically separated by the photon energy of the UV laser. By determining the circular dichroism of these redistributed electrons using angle resolving electron spectroscopy and modeling the results with the strong-field approximation, this scheme allows to unambiguously determine the absolute degree of circular polarization of any pulsed, ultraintense XUV or X-ray laser source.

  13. Exceptional surface and bulk electronic structures in a topological insulator, Bi2Se3

    Science.gov (United States)

    Biswas, Deepnarayan; Thakur, Sangeeta; Balakrishnan, Geetha; Maiti, Kalobaran

    2015-12-01

    The outstanding problem in topological insulators is the bulk metallicity underneath topologically ordered surface states and the appearance of Dirac point far away from the Fermi energy. Enormous efforts are being devoted to get the Dirac point at the Fermi level via exposure to foreign materials so that these materials can be used in technology and realize novel fundamental physics. Ironically, the conclusion of bulk metallicity in the electronic structure is essentially based on the angle resolved photoemission spectroscopy, a highly surface sensitive technique. Here, we employed state-of-the-art hard x-ray photoemission spectroscopy with judiciously chosen experiment geometry to delineate the bulk electronic structure of a topological insulator and a potential thermoelectric material, Bi2Se3. The results exhibit signature of insulating bulk electronic structure with tiny intensities at akin to defect/vacancy induced doped states in the semiconductors. The core level spectra exhibit intense plasmon peak associated to core level excitations manifesting the signature of coupling of electrons to the collective excitations, a possible case of plasmon-phonon coupling. In addition, a new loss feature appear in the core level spectra indicating presence of additional collective excitations in the system.

  14. Correlation effects on the energy spectra of quantum dot electrons with harmonic model interactions

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The low-lying excitation energy spectra of two, three and five quantum dot electrons with harmonic model interactions in a large magnetic field are calculated by the Hartree-Fock(HF) methods. Correlation effects on the energy level structures are investigated by comparing the HF results with the exact ones. It is found that the pure collective excitations(center-of-mass mode quanta) existing in the exact energy spectra do not appear in the HF energy spectra. The degeneracies of energy levels are also related to the correlation interactions, especially in the energy spectrum of two electrons. In the cases of more than two electrons, as the electron-electron interaction strength is increased the HF energy levels exhibit more complex crossings than the exact ones.

  15. Applications of CCTO supercapacitor in energy storage and electronics

    Directory of Open Access Journals (Sweden)

    R. K. Pandey

    2013-06-01

    Full Text Available Since the discovery of colossal dielectric constant in CCTO supercapacitor in 2000, development of its practical application to energy storage has been of great interest. In spite of intensive efforts, there has been thus far, no report of proven application. The object of this research is to understand the reason for this lack of success and to find ways to overcome this limitation. Reported herein is the synthesis of our research in ceramic processing of this material and its characterization, particularly with the objective of identifying potential applications. Experimental results have shown that CCTO's permittivity and loss tangent, the two most essential dielectric parameters of fundamental importance for the efficiency of a capacitor device, are intrinsically coupled. They increase or decrease in tandem. Therefore, efforts to simultaneously retain the high permittivity while minimizing the loss tangent of CCTO might not succeed unless an entirely non-typical approach is taken for processing this material. Based on the experimental results and their analysis, it has been identified that it is possible to produce CCTO bulk ceramics with conventional processes having properties that can be exploited for fabricating an efficient energy storage device (EDS. We have additionally identified that CCTO can be used for the development of efficient solid state capacitors of Class II type comparable to the widely used barium titanate (BT capacitors. Based on high temperature studies of the resistivity and the Seebeck coefficient it is found that CCTO is a wide bandgap n-type semiconductor material which could be used for high temperature electronics. The temperature dependence of the linear thermal expansion of CCTO shows the presence of possible phase changes at 220 and 770 °C the origin of which remains unexplained.

  16. Electronic structure at the perylene-tetracarboxylic acid dianhydride/Ag(111) interface studied with two-photon photoelectron spectroscopy.

    Science.gov (United States)

    Sachs, Sönke; Schwalb, Christian H; Marks, Manuel; Schöll, Achim; Reinert, Friedrich; Umbach, Eberhard; Höfer, Ulrich

    2009-10-14

    The electronic structure of the prototype metal/organic contact 3,4,9,10-perylene-tetracarboxylic acid dianhydride (PTCDA) on a Ag(111)-surface has been investigated using time- and angle-resolved two-photon photoelectron spectroscopy (2PPE). Our analysis addresses particularly the nature of the interface state (IS) emerging at the interface due to the substrate-adsorbate interaction [C. H. Schwalb, S. Sachs, M. Marks et al., Phys. Rev. Lett. 101, 146801 (2008)]. Its free-electron-like dispersion and a possible backfolding at the surface Brillouin zone boundaries are discussed. Time-resolved pump-probe experiments reveal the inelastic electron lifetime along the dispersion parabola and show its decrease for increasing parallel momentum. The temperature dependence of the peak linewidth indicates a coupling of the IS to molecular vibrations. Moreover, additional aspects are addressed, such as the determination of the electron attenuation length of photoelectrons for low kinetic energy originating from the IS and the work function change of the sample upon PTCDA adsorption with very high energy resolution. PMID:19831458

  17. Orbital dependent Rashba splitting and electron-phonon coupling of 2D Bi phase on Cu(100) surface

    Energy Technology Data Exchange (ETDEWEB)

    Gargiani, Pierluigi; Lisi, Simone; Betti, Maria Grazia [Dipartimento di Fisica, Università di Roma “La Sapienza,” Piazzale A. Moro 5, I-00185 Roma (Italy); Ibrahimi, Amina Taleb; Bertran, François; Le Fèvre, Patrick [Synchrotron SOLEIL, Saint-Aubin-BP 48, F-91192 Gif sur Yvette (France); Chiodo, Letizia [Center for Life Nano Science - Sapienza, Istituto Italiano di Tecnologia and European Theoretical Spectroscopy Facility (ETSF), Viale Regina Elena 291, I-00161, Roma (Italy)

    2013-11-14

    A monolayer of bismuth deposited on the Cu(100) surface forms a highly ordered c(2×2) reconstructed phase. The low energy single particle excitations of the c(2×2) Bi/Cu(100) present Bi-induced states with a parabolic dispersion in the energy region close to the Fermi level, as observed by angle-resolved photoemission spectroscopy. The electronic state dispersion, the charge density localization, and the spin-orbit coupling have been investigated combining photoemission spectroscopy and density functional theory, unraveling a two-dimensional Bi phase with charge density well localized at the interface. The Bi-induced states present a Rashba splitting, when the charge density is strongly localized in the Bi plane. Furthermore, the temperature dependence of the spectral density close to the Fermi level has been evaluated. Dispersive electronic states offer a large number of decay channels for transitions coupled to phonons and the strength of the electron-phonon coupling for the Bi/Cu(100) system is shown to be stronger than for Bi surfaces and to depend on the electronic state symmetry and localization.

  18. Energy modulation of nonrelativistic electrons in an optical near field on a metal microslit

    Science.gov (United States)

    Ishikawa, R.; Bae, J.; Mizuno, K.

    2001-04-01

    Energy modulation of nonrelativistic electrons with a laser beam using a metal microslit as an interaction circuit has been investigated. An optical near field is induced in the proximity of the microslit by illumination of the laser beam. The electrons passing close to the slit are accelerated or decelerated by an evanescent wave contained in the near field whose phase velocity is equal to the velocity of the electrons. The electron-evanescent wave interaction in the microslit has been analyzed theoretically and experimentally. The theory has predicted that electron energy can be modulated at optical frequencies. Experiments performed in the infrared region have verified theoretical predictions. The electron-energy changes of more than ±5 eV with a 10 kW CO2 laser pulse at the wavelength of 10.6 μm has been successfully observed for an electron beam with an energy of less than 80 keV.

  19. High-Energy Electron Confinement in a Magnetic Cusp Configuration

    Science.gov (United States)

    Park, Jaeyoung; Krall, Nicholas A.; Sieck, Paul E.; Offermann, Dustin T.; Skillicorn, Michael; Sanchez, Andrew; Davis, Kevin; Alderson, Eric; Lapenta, Giovanni

    2015-04-01

    We report experimental results validating the concept that plasma confinement is enhanced in a magnetic cusp configuration when β (plasma pressure/magnetic field pressure) is of order unity. This enhancement is required for a fusion power reactor based on cusp confinement to be feasible. The magnetic cusp configuration possesses a critical advantage: the plasma is stable to large scale perturbations. However, early work indicated that plasma loss rates in a reactor based on a cusp configuration were too large for net power production. Grad and others theorized that at high β a sharp boundary would form between the plasma and the magnetic field, leading to substantially smaller loss rates. While not able to confirm the details of Grad's work, the current experiment does validate, for the first time, the conjecture that confinement is substantially improved at high β . This represents critical progress toward an understanding of the plasma dynamics in a high-β cusp system. We hope that these results will stimulate a renewed interest in the cusp configuration as a fusion confinement candidate. In addition, the enhanced high-energy electron confinement resolves a key impediment to progress of the Polywell fusion concept, which combines a high-β cusp configuration with electrostatic fusion for a compact, power-producing nuclear fusion reactor.

  20. Preservation effect of high energy electron beam on kyoho grape

    International Nuclear Information System (INIS)

    The Kyoho grapes were kept in cold storage of-0.5 degree C ∼ 0.5 degree C, RH 85% ∼ 95% after irradiation of 400, 700, 1000, 1500, 2500 Gy and SO2 treatment, and the antiseptic effect and storage quality were studied. The result showed that high energy electron beam could control the growth of bacteria, mould, yeast, coliform, alleviate the deterioration of grapes during storage. Irradiation below the dose 1000 Gy can decrease the respiration intensity, prevent the decreasing of titratable acid, ascorbic acid content, and keep higher activity of SOD enzyme. The Vc content was 3.79 mg /100 g after 700 Gy irradiation 90 days, the titratable acid and total soluble sugar content were 0.348%, 11.44%, and the activity of SOD was 14.89 U /g, which was higher than the control significantly (P 2 bleaching spot. Integrate the effects on microorganism control and grape quality, treatment of 700 Gy had the best preservation effect in this study. After preserved for 98 d, the good fruit rate of 700 Gy treatment was 93.33% , significantly higher than other treatments (P < 0.05). (authors)