Variable angle correlation spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Lee, Y K [Univ. of California, Berkeley, CA (United States)
1994-05-01
In this dissertation, a novel nuclear magnetic resonance (NMR) technique, variable angle correlation spectroscopy (VACSY) is described and demonstrated with {sup 13}C nuclei in rapidly rotating samples. These experiments focus on one of the basic problems in solid state NMR: how to extract the wealth of information contained in the anisotropic component of the NMR signal while still maintaining spectral resolution. Analysis of the anisotropic spectral patterns from poly-crystalline systems reveal information concerning molecular structure and dynamics, yet in all but the simplest of systems, the overlap of spectral patterns from chemically distinct sites renders the spectral analysis difficult if not impossible. One solution to this problem is to perform multi-dimensional experiments where the high-resolution, isotropic spectrum in one dimension is correlated with the anisotropic spectral patterns in the other dimensions. The VACSY technique incorporates the angle between the spinner axis and the static magnetic field as an experimental parameter that may be incremented during the course of the experiment to help correlate the isotropic and anisotropic components of the spectrum. The two-dimensional version of the VACSY experiments is used to extract the chemical shift anisotropy tensor values from multi-site organic molecules, study molecular dynamics in the intermediate time regime, and to examine the ordering properties of partially oriented samples. The VACSY technique is then extended to three-dimensional experiments to study slow molecular reorientations in a multi-site polymer system.
Particle-Particle-String Vertex
Ishibashi, Nobuyuki
1996-01-01
We study a theory of particles interacting with strings. Considering such a theory for Type IIA superstring will give some clue about M-theory. As a first step toward such a theory, we construct the particle-particle-string interaction vertex generalizing the D-particle boundary state.
Brown, W. Michael; Kohlmeyer, Axel; Plimpton, Steven J.; Tharrington, Arnold N.
2012-03-01
The use of accelerators such as graphics processing units (GPUs) has become popular in scientific computing applications due to their low cost, impressive floating-point capabilities, high memory bandwidth, and low electrical power requirements. Hybrid high-performance computers, machines with nodes containing more than one type of floating-point processor (e.g. CPU and GPU), are now becoming more prevalent due to these advantages. In this paper, we present a continuation of previous work implementing algorithms for using accelerators into the LAMMPS molecular dynamics software for distributed memory parallel hybrid machines. In our previous work, we focused on acceleration for short-range models with an approach intended to harness the processing power of both the accelerator and (multi-core) CPUs. To augment the existing implementations, we present an efficient implementation of long-range electrostatic force calculation for molecular dynamics. Specifically, we present an implementation of the particle-particle particle-mesh method based on the work by Harvey and De Fabritiis. We present benchmark results on the Keeneland InfiniBand GPU cluster. We provide a performance comparison of the same kernels compiled with both CUDA and OpenCL. We discuss limitations to parallel efficiency and future directions for improving performance on hybrid or heterogeneous computers.
ANALYSIS OF PARTICLE-PARTICLE FORCES IN ELECTRORHEOLOGICAL FLUIDS
Institute of Scientific and Technical Information of China (English)
ZHAO HE-PING; LIU ZHENG-YOU; LIU YOU-YAN
2001-01-01
The Rayleigh identity, based on a multipole expansion theory, is extended to analyse the forces between particles in an electrorheological system. The shear modulus for chains of particles arrayed on a square lattice is calculated. It is found that the modulus increases linearly with the ratio of dielectric constants of the dispersed particles to that of the continuous phase; as the ratio becomes larger, contrary to the expectations from a simple dipole approximation, the modulus would saturate. In the case of conducting particles, the modulus varies with the frequency of the applied field. In a limiting case of perfectly conducting particles, the conductivity is also considered. It is found that the particle-particle forces are extremely sensitive to their separations from each other.
Energy Technology Data Exchange (ETDEWEB)
Aggelen, Helen van [Department of Inorganic and Physical Chemistry, Ghent University, Ghent (Belgium); Department of Chemistry, Duke University, Durham, North Carolina 27708 (United States); Yang, Yang [Department of Chemistry, Duke University, Durham, North Carolina 27708 (United States); Yang, Weitao [Department of Chemistry and Department of Physics, Duke University, Durham, North Carolina 27708 (United States)
2014-05-14
Despite their unmatched success for many applications, commonly used local, semi-local, and hybrid density functionals still face challenges when it comes to describing long-range interactions, static correlation, and electron delocalization. Density functionals of both the occupied and virtual orbitals are able to address these problems. The particle-hole (ph-) Random Phase Approximation (RPA), a functional of occupied and virtual orbitals, has recently known a revival within the density functional theory community. Following up on an idea introduced in our recent communication [H. van Aggelen, Y. Yang, and W. Yang, Phys. Rev. A 88, 030501 (2013)], we formulate more general adiabatic connections for the correlation energy in terms of pairing matrix fluctuations described by the particle-particle (pp-) propagator. With numerical examples of the pp-RPA, the lowest-order approximation to the pp-propagator, we illustrate the potential of density functional approximations based on pairing matrix fluctuations. The pp-RPA is size-extensive, self-interaction free, fully anti-symmetric, describes the strong static correlation limit in H{sub 2}, and eliminates delocalization errors in H{sub 2}{sup +} and other single-bond systems. It gives surprisingly good non-bonded interaction energies – competitive with the ph-RPA – with the correct R{sup −6} asymptotic decay as a function of the separation R, which we argue is mainly attributable to its correct second-order energy term. While the pp-RPA tends to underestimate absolute correlation energies, it gives good relative energies: much better atomization energies than the ph-RPA, as it has no tendency to underbind, and reaction energies of similar quality. The adiabatic connection in terms of pairing matrix fluctuation paves the way for promising new density functional approximations.
Conical Intersections from Particle-Particle Random Phase and Tamm-Dancoff Approximations.
Yang, Yang; Shen, Lin; Zhang, Du; Yang, Weitao
2016-07-01
The particle-particle random phase approximation (pp-RPA) and the particle-particle Tamm-Dancoff approximation (pp-TDA) are applied to the challenging conical intersection problem. Because they describe the ground and excited states on the same footing and naturally take into account the interstate interaction, these particle-particle methods, especially the pp-TDA, can correctly predict the dimensionality of the conical intersection seam as well as describe the potential energy surface in the vicinity of conical intersections. Though the bond length of conical intersections is slightly underestimated compared with the complete-active-space self-consistent field (CASSCF) theory, the efficient particle-particle methods are promising for conical intersections and nonadiabatic dynamics. PMID:27293013
Volume integral of particle-particle collision probability in nuclear matter
International Nuclear Information System (INIS)
Average volume integrals per nucleon of particle-particle collision probability in nuclear matter are evaluated using the preequilibrium exciton model. The results obtained are in quite reasonable accord with the volume integrals of optical model absorptive potentials
Non-renormalization of the full left angle VVA right angle correlator at two-loop order
International Nuclear Information System (INIS)
By explicit calculation of the two-loop QCD corrections we show that for singlet axial and vector currents the full off-shell langleVVA right angle correlation function in the limit of massless fermions is proportional to the one-loop result, when calculated in the MS scheme. By the same finite renormalization which is needed to make the one-loop anomaly exact to all orders, we arrive at the conclusion that two-loop corrections are absent altogether, for the complete correlator not only its anomalous part. In accordance with the one-loop nature of the langleVVArangle correlator, one possible amplitude, which seems to be missing by accident at the one-loop level, also does not show up at the two-loop level. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Buta, A. [Caen Univ., 14 (France). Lab. de Physique Corpusculaire]|[Institute of Atomic Physics, Bucharest (Romania); Angelique, J.C.; Bizard, G.; Brou, R.; Cussol, D. [Caen Univ., 14 (France). Lab. de Physique Corpusculaire; Auger, G.; Cabot, C. [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France); Cassagnou, Y. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. d`Astrophysique, de la Physique des Particules, de la Physique Nucleaire et de l`Instrumentation Associee; Crema, E. [Caen Univ., 14 (France). Lab. de Physique Corpusculaire]|[Sao Paulo Univ., SP (Brazil). Inst. de Fisica; El Masri, Y. [Louvain Univ., Louvain-la-Neuve (Belgium). Unite de Physique Nucleaire; and others
1996-09-01
Measuring the in-plane flow parameter appears to be a promising method to gain information on the equation of state of nuclear matter. A new method, based on particle-particle azimuthal correlations is proposed. This method does not require the knowledge of the reaction plane. The collisions Zn+Ni and Ar+Al are presented as an example. (K.A.).
Deepak P; Eknath D; Vijayanand; Satish
2014-01-01
BOHLER'S ANGLE: correlation with outcome in displaced intra-articular calcaneal fractures Treated with locking compression Plate Fixation with and without bone grafting. AIMS: The aim is an accurate reduction of the fracture with reconstruction of Bohler’s angle, length and axis and sub talar joint surface. To determine whether autologous bone graft supplementation is beneficial in achieving and maintaining restoration of Calcaneal height and anatomic reduction. SETTINGS AND ...
Lu, Jianfeng
2016-01-01
The particle-particle random phase approximation (pp-RPA) has been shown to be capable of describing double, Rydberg, and charge transfer excitations, for which the conventional time-dependent density functional theory (TDDFT) might not be suitable. It is thus desirable to reduce the computational cost of pp-RPA so that it can be efficiently applied to larger molecules and even solids. This paper introduces an $O(N^3)$ algorithm, where $N$ is the number of orbitals, based on an interpolative separable density fitting technique and the Jacobi-Davidson eigensolver to calculate a few low-lying excitations in the pp-RPA framework. The size of the pp-RPA matrix can also be reduced by keeping only a small portion of orbitals with orbital energy close to the Fermi energy. This reduced system leads to a smaller prefactor of the cubic scaling algorithm, while keeping the accuracy for the low-lying excitation energies.
Lattice Boltzmann Simulations of Particle-Particle Interaction in Steady Poiseuille Flow
Institute of Scientific and Technical Information of China (English)
YI Hou-Hui; FAN Li-Juan; YANG Xiao-Feng; LI Hua-Bing
2009-01-01
@@ The moving behaviour of two-and three-particles in a pressure-driven flow is studied by the lattice Boltzmann simulation in two dimensions. The time-dependent values, including particles' radial positions, translational velocities, angular velocities, and the x-directional distance between the particles are analysed extensively. The effect of flow Reynolds number on particle motion is also investigated numerically. The simulation results show that the leading particle equilibrium position is closer to the channel centre while the trailing particle equilibrium position is closer to the channel wall. If Reynolds number Re is less than 85.30, the larger flow Reynolds number results in the smaller x-directional equilibrium distance, otherwise the x-directional distance increases almost linearly with the increase of time and the particles separate finally. The simulation results are helpful to understand the particle-particle interaction in suspensions with swarms of particles.
Accurate atomic quantum defects from particle-particle random phase approximation
Yang, Yang; Yang, Weitao
2015-01-01
The accuracy of calculations of atomic Rydberg excitations cannot be judged by the usual measures, such as mean unsigned errors of many transitions. We show how to use quantum defect theory to (a) separate errors due to approximate ionization potentials, (b) extract smooth quantum defects to compare with experiment, and (c) quantify those defects with a few characteristic parameters. The particle-particle random phase approximation (pp-RPA) produces excellent Rydberg transitions that are an order of magnitude more accurate than those of time-dependent density functional theory with standard approximations. We even extract reasonably accurate defects from the lithium Rydberg series, despite the reference being open-shell. Our methodology can be applied to any Rydberg series of excitations with 4 transitions or more to extract the underlying threshold energy and characteristic quantum defect parameters. Our pp-RPA results set a demanding challenge for other excitation methods to match.
Efficient Methods for Handling Long-Range Forces in Particle-Particle Simulations
Fangohr, H; Cox, S J; De Groot, R A; Daniell, G J; Fangohr, Hans; Price, Andrew R.; Cox, Simon J.; Groot, Peter A.J. de; Daniell, Geoffrey J.
2000-01-01
A number of problems arise when long-range forces, such as those governed by Bessel functions, are used in particle-particle simulations. If a simple cut-off for the interaction is used, the system may find an equilibrium configuration at zero temperature that is not a regular lattice yet has an energy lower than the theoretically predicted minimum for the physical system. We demonstrate two methods to overcome these problems in Monte Carlo and molecular dynamics simulations. The first uses a smoothed potential to truncate the interaction in a single unit cell: this is appropriate for phenomenological characterisations, but may be applied to any potential. The second is a new method for summing the unmodified potential in an infinitely tiled periodic system, which is in excess of 20,000 times faster than previous naive methods which add periodic images in shells of increasing radius: this is suitable for quantitative studies. Finally we show that numerical experiments which do not handle the long-range force ...
On improving the algorithm efficiency in the particle-particle force calculations
Kozynchenko, Alexander I.; Kozynchenko, Sergey A.
2016-09-01
The problem of calculating inter-particle forces in the particle-particle (PP) simulation models takes an important place in scientific computing. Such simulation models are used in diverse scientific applications arising in astrophysics, plasma physics, particle accelerators, etc., where the long-range forces are considered. The inverse-square laws such as Coulomb's law of electrostatic forces and Newton's law of universal gravitation are the examples of laws pertaining to the long-range forces. The standard naïve PP method outlined, for example, by Hockney and Eastwood [1] is straightforward, processing all pairs of particles in a double nested loop. The PP algorithm provides the best accuracy of all possible methods, but its computational complexity is O (Np2), where Np is a total number of particles involved. Too low efficiency of the PP algorithm seems to be the challenging issue in some cases where the high accuracy is required. An example can be taken from the charged particle beam dynamics where, under computing the own space charge of the beam, so-called macro-particles are used (see e.g., Humphries Jr. [2], Kozynchenko and Svistunov [3]).
Adler, S S; Aidala, C; Ajitanand, N N; Akiba, Y; Al-Jamel, A; Alexander, J; Aoki, K; Aphecetche, L; Armendariz, R; Aronson, S H; Averbeck, R; Awes, T C; Babintsev, V; Baldisseri, Alberto; Barish, K N; Barnes, P D; Bassalleck, B; Bathe, S; Batsouli, S; Baublis, V; Bauer, F; Bazilevsky, A; Belikov, S; Bjorndal, M T; Boissevain, J G; Borel, H; Brooks, M L; Brown, D S; Bruner, N; Bucher, D; Büsching, H; Bumazhnov, V; Bunce, G; Burward-Hoy, J M; Butsyk, S; Camard, X; Chand, P; Chang, W C; Chernichenko, S; Chi, C Y; Chiba, J; Chiu, M; Choi, I J; Choudhury, R K; Chujo, T; Cianciolo, V; Cobigo, Y; Cole, B A; Comets, M P; Constantin, P; Csanad, M; Csorg}o, T; Cussonneau, J P; D'Enterria, D G; Das, K; Dávid, G; Deák, F; Delagrange, H; Denisov, A; Deshpande, Abhay A; Desmond, E J; Devismes, A; Dietzsch, O; Drachenberg, J L; Drapier, O; Drees, A; Durum, A; Dutta, D; Dzhordzhadze, V; Efremenko, Yu V; Enyo, H; Espagnon, B; Esumi, S; Fields, D E; Finck, C; Fleuret, F; Fokin, S L; Fox, B D; Fraenkel, Zeev; Frantz, J E; Franz, A; Frawley, A D; Fukao, Y; Fung, S Y; Gadrat, S; Germain, M; Glenn, A; Gonin, M; Gosset, J; Goto, Y; Granier de Cassagnac, R; Grau, N; Greene, S V; Grosse-Perdekamp, M; Gustafsson, Hans Åke; Hachiya, T; Haggerty, J S; Hamagaki, H; Hansen, A G; Hartouni, E P; Harvey, M; Hasuko, K; Hayano, R; He, X; Heffner, M; Hemmick, T K; Heuser, J M; Hidas, P; Hiejima, H; Hill, J C; Hobbs, R; Holzmann, W; Homma, K; Hong, B; Hoover, A; Horaguchi, T; Ichihara, T; Ikonnikov, V V; Imai, K; Inaba, M; Inuzuka, M; Isenhower, D; Isenhower, L D; Ishihara, M; Issah, M; Isupov, A; Jacak, B V; Jia, J; Jinnouchi, O; Johnson, B M; Johnson, S C; Joo, K S; Jouan, D; Kajihara, F; Kametani, S; Kamihara, N; Kaneta, M; Kang, J H; Katou, K; Kawabata, T; Kazantsev, A V; Kelly, S; Khachaturov, B; Khanzadeev, A; Kikuchi, J; Kim, D J; Kim, E; Kim, G B; Kim, H J; Kinney, E; Kiss, A; Kistenev, E P; Kiyomichi, A; Klein-Bösing, C; Kobayashi, H; Kochenda, L; Kochetkov, V; Kohara, R; Komkov, B; Konno, M; Kotchetkov, D; Kozlov, A; Kroon, P J; Kuberg, C H; Kunde, G J; Kurita, K; Kweon, M J; Kwon, Y; Kyle, G S; Lacey, R; Lajoie, J G; Le Bornec, Y; Lebedev, A; Leckey, S; Lee, D M; Leitch, M J; Leite, M A L; Li, X H; Lim, H; Litvinenko, A; Liu, M X; Maguire, C F; Makdisi, Y I; Malakhov, A; Man'ko, V I; Mao, Y; Martínez, G; Masui, H; Matathias, F; Matsumoto, T; McCain, M C; McGaughey, P L; Miake, Y; Miller, T E; Milov, A; Mioduszewski, S; Mishra, G C; Mitchell, J T; Mohanty, A K; Morrison, D P; Moss, J M; Mukhopadhyay, D; Muniruzzaman, M; Nagamiya, S; Nagle, J L; Nakamura, T; Newby, J; Nyanin, A S; Nystrand, J; O'Brien, E; Ogilvie, C A; Ohnishi, H; Ojha, I D; Okada, H; Okada, K; Oskarsson, A; Otterlund, I; Oyama, K; Ozawa, K; Pal, D; Palounek, A P T; Pantuev, V S; Papavassiliou, V; Park, J; Park, W J; Pate, S F; Pei, H; Penev, V; Peng, J C; Pereira, H; Peresedov, V; Pierson, A; Pinkenburg, C; Pisani, R P; Purschke, M L; Purwar, A K; Qualls, J M; Rak, J; Ravinovich, I; Read, K F; Reuter, M; Reygers, K; Riabov, V; Riabov, Y; Roche, G; Romana, A; Rosati, M; Rosendahl, S S E; Rosnet, P; Rykov, V L; Ryu, S S; Saitô, N; Sakaguchi, T; Sakai, S; Samsonov, V; Sanfratello, L; Santo, R; Sato, H D; Sato, S; Sawada, S; Schutz, Y; Semenov, V; Seto, R; Shea, T K; Shein, I; Shibata, T A; Shigaki, K; Shimomura, M; Sickles, A; Silva, C L; Silvermyr, D; Sim, K S; Soldatov, A; Soltz, R A; Sondheim, W E; Sørensen, S P; Sourikova, I V; Staley, F; Stankus, P W; Stenlund, E; Stepanov, M; Ster, A; Stoll, S P; Sugitate, T; Sullivan, J P; Takagi, S; Takagui, E M; Taketani, A; Tanaka, K H; Tanaka, Y; Tanida, K; Tannenbaum, M J; Taranenko, A; Tarjan, P; Thomas, T L; Togawa, M; Tojo, J; Torii, H; Towell, R S; Tram, V N; Tserruya, Itzhak; Tsuchimoto, Y; Tydesjo, H; Tyurin, N; Uam, T J; van Hecke, H W; Velkovska, J; Velkovsky, M; Veszpremi, V; Vinogradov, A A; Volkov, M A; Vznuzdaev, E; Wang, X R; Watanabe, Y; White, S N; Willis, N; Wohn, F K; Woody, C L; Xie, W; Yanovich, A A; Yokkaichi, S; Young, G R; Yushmanov, I E; Zajc, W A; Zhang, C; Zhou, S; Zimányi, J; Zolin, L; Zong, X
2006-01-01
We report on two-particle azimuthal angle correlations between charged hadrons at forward/backward (deuteron/gold going direction) rapidity and charged hadrons at mid-rapidity in deuteron-gold (d+Au) and proton-proton (p+p) collisions at sqrt(s_NN) = 200 GeV. Jet structures are observed in the correlations which we quantify in terms of the conditional yield and angular width of away side partners. The kinematic region studied here samples partons in the gold nucleus carrying nucleon momentum fraction x~0.1 to x~0.01. Within this range, we find no x dependence of the jet structure in d+Au collisions.
Yang, Yang; van Aggelen, Helen; Yang, Weitao
2013-12-14
Double, Rydberg, and charge transfer (CT) excitations have been great challenges for time-dependent density functional theory (TDDFT). Starting from an (N ± 2)-electron single-determinant reference, we investigate excitations for the N-electron system through the pairing matrix fluctuation, which contains information on two-electron addition/removal processes. We adopt the particle-particle random phase approximation (pp-RPA) and the particle-particle Tamm-Dancoff approximation (pp-TDA) to approximate the pairing matrix fluctuation and then determine excitation energies by the differences of two-electron addition/removal energies. This approach captures all types of interesting excitations: single and double excitations are described accurately, Rydberg excitations are in good agreement with experimental data and CT excitations display correct 1/R dependence. Furthermore, the pp-RPA and the pp-TDA have a computational cost similar to TDDFT and consequently are promising for practical calculations.
Energy Technology Data Exchange (ETDEWEB)
Kotte, R. [Forschungszentrum Rossendorf, IKH, PF 510119, Dresden (Germany); Alard, P.; Barret, V.; Bastid, N.; Crochet, P.; Dupieux, P. [IN2P3/CNRS and Universite Blaise Pascal, Laboratoire de Physique Corpusculaire, Clermont-Ferrand (France); Andronic, A.A. [Institute for Nuclear Physics and Engineering, Bucharest (Romania); Gesellschaft fuer Schwerionenforschung, Darmstadt (Germany); Basrak, Z.; Caplar, R.; Dzelalija, M.; Gasparic, I. [Rudjer Boskovic Institute Zagreb, Zagreb (Croatia); Benabderrahmane, M.L.; Cordier, E.; Herrmann, N. [Physikalisches Institut der Universitaet Heidelberg, Heidelberg (Germany); Fodor, Z. [Central Research Institute for Physics, Budapest (Hungary); Gobbi, A.; Hartmann, O.N.; Hildenbrand, K.D. [Gesellschaft fuer Schwerionenforschung, Darmstadt (Germany); Grishkin, Y. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Hong, B. [Korea University, Seoul (Korea); Kecskemeti, J.; Kim, Y.J.; Kirejczyk, M.; Koczon, P.; Korolija, M.; Kress, T.; Lebedev, A.; Leifels, Y.; Lopez, X.; Merschmeyer, M.; Moesner, J.; Neubert, W.; Pelte, P.; Petrovici, M.; Rami, F.; Reisdorf, W.; De Schauenburg, B.; Schuettauf, A.; Seres, Z.; Sikora, B.; Sim, K.S.; Simion, V.; Siwek-Wilczynska, K.; Smolyankin, V.; Stoicea, G.; Tyminski, Z.; Wagner, P.; Wisniewski, K.; Wohlfarth, D.; Xiao, Z.G.; Yushmanov, Y.; Zhilin, A.
2005-02-01
Small-angle correlations of pairs of protons emitted in central collisions of Ca+Ca, Ru+Ru and Au+Au at beam energies from 400 to 1500 MeV per nucleon are investigated with the FOPI detector system at SIS/GSI Darmstadt. Dependences on system size and beam energy are presented which extend the experimental data basis of pp correlations in the SIS energy range substantially. The size of the proton-emitting source is estimated by comparing the experimental data with the output of a final-state interaction model which utilizes either static Gaussian sources or the one-body phase-space distribution of protons provided by the BUU transport approach. The trends in the experimental data, i.e.system size and beam energy dependences, are well reproduced by this hybrid model. However, the pp correlation function is found rather insensitive to the stiffness of the equation of state entering the transport model calculations. (orig.)
Adler, S S; Afanasiev, S; Aidala, C; Ajitanand, N N; Akiba, Y; Al-Jamel, A; Alexander, J; Aoki, K; Aphecetche, L; Armendariz, R; Aronson, S H; Averbeck, R; Awes, T C; Babintsev, V; Baldisseri, A; Barish, K N; Barnes, P D; Bassalleck, B; Bathe, S; Batsouli, S; Baublis, V; Bauer, F; Bazilevsky, A; Belikov, S; Bjorndal, M T; Boissevain, J G; Borel, H; Brooks, M L; Brown, D S; Bruner, N; Bucher, D; Buesching, H; Bumazhnov, V; Bunce, G; Burward-Hoy, J M; Butsyk, S; Camard, X; Chand, P; Chang, W C; Chernichenko, S; Chi, C Y; Chiba, J; Chiu, M; Choi, I J; Choudhury, R K; Chujo, T; Cianciolo, V; Cobigo, Y; Cole, B A; Comets, M P; Constantin, P; Csanád, M; Csörgo, T; Cussonneau, J P; d'Enterria, D; Das, K; David, G; Deák, F; Delagrange, H; Denisov, A; Deshpande, A; Desmond, E J; Devismes, A; Dietzsch, O; Drachenberg, J L; Drapier, O; Drees, A; Durum, A; Dutta, D; Dzhordzhadze, V; Efremenko, Y V; En'yo, H; Espagnon, B; Esumi, S; Fields, D E; Finck, C; Fleuret, F; Fokin, S L; Fox, B D; Fraenkel, Z; Frantz, J E; Franz, A; Frawley, A D; Fukao, Y; Fung, S-Y; Gadrat, S; Germain, M; Glenn, A; Gonin, M; Gosset, J; Goto, Y; Granier de Cassagnac, R; Grau, N; Greene, S V; Perdekamp, M Grosse; Gustafsson, H-A; Hachiya, T; Haggerty, J S; Hamagaki, H; Hansen, A G; Hartouni, E P; Harvey, M; Hasuko, K; Hayano, R; He, X; Heffner, M; Hemmick, T K; Heuser, J M; Hidas, P; Hiejima, H; Hill, J C; Hobbs, R; Holzmann, W; Homma, K; Hong, B; Hoover, A; Horaguchi, T; Ichihara, T; Ikonnikov, V V; Imai, K; Inaba, M; Inuzuka, M; Isenhower, D; Isenhower, L; Ishihara, M; Issah, M; Isupov, A; Jacak, B V; Jia, J; Jinnouchi, O; Johnson, B M; Johnson, S C; Joo, K S; Jouan, D; Kajihara, F; Kametani, S; Kamihara, N; Kaneta, M; Kang, J H; Katou, K; Kawabata, T; Kazantsev, A V; Kelly, S; Khachaturov, B; Khanzadeev, A; Kikuchi, J; Kim, D J; Kim, E; Kim, G-B; Kim, H J; Kinney, E; Kiss, A; Kistenev, E; Kiyomichi, A; Klein-Boesing, C; Kobayashi, H; Kochenda, L; Kochetkov, V; Kohara, R; Komkov, B; Konno, M; Kotchetkov, D; Kozlov, A; Kroon, P J; Kuberg, C H; Kunde, G J; Kurita, K; Kweon, M J; Kwon, Y; Kyle, G S; Lacey, R; Lajoie, J G; Le Bornec, Y; Lebedev, A; Leckey, S; Lee, D M; Leitch, M J; Leite, M A L; Li, X H; Lim, H; Litvinenko, A; Liu, M X; Maguire, C F; Makdisi, Y I; Malakhov, A; Manko, V I; Mao, Y; Martinez, G; Masui, H; Matathias, F; Matsumoto, T; McCain, M C; McGaughey, P L; Miake, Y; Miller, T E; Milov, A; Mioduszewski, S; Mishra, G C; Mitchell, J T; Mohanty, A K; Morrison, D P; Moss, J M; Mukhopadhyay, D; Muniruzzaman, M; Nagamiya, S; Nagle, J L; Nakamura, T; Newby, J; Nyanin, A S; Nystrand, J; O'Brien, E; Ogilvie, C A; Ohnishi, H; Ojha, I D; Okada, H; Okada, K; Oskarsson, A; Otterlund, I; Oyama, K; Ozawa, K; Pal, D; Palounek, A P T; Pantuev, V; Papavassiliou, V; Park, J; Park, W J; Pate, S F; Pei, H; Penev, V; Peng, J-C; Pereira, H; Peresedov, V; Pierson, A; Pinkenburg, C; Pisani, R P; Purschke, M L; Purwar, A K; Qualls, J M; Rak, J; Ravinovich, I; Read, K F; Reuter, M; Reygers, K; Riabov, V; Riabov, Y; Roche, G; Romana, A; Rosati, M; Rosendahl, S S E; Rosnet, P; Rykov, V L; Ryu, S S; Saito, N; Sakaguchi, T; Sakai, S; Samsonov, V; Sanfratello, L; Santo, R; Sato, H D; Sato, S; Sawada, S; Schutz, Y; Semenov, V; Seto, R; Shea, T K; Shein, I; Shibata, T-A; Shigaki, K; Shimomura, M; Sickles, A; Silva, C L; Silvermyr, D; Sim, K S; Soldatov, A; Soltz, R A; Sondheim, W E; Sorensen, S P; Sourikova, I V; Staley, F; Stankus, P W; Stenlund, E; Stepanov, M; Ster, A; Stoll, S P; Sugitate, T; Sullivan, J P; Takagi, S; Takagui, E M; Taketani, A; Tanaka, K H; Tanaka, Y; Tanida, K; Tannenbaum, M J; Taranenko, A; Tarján, P; Thomas, T L; Togawa, M; Tojo, J; Torii, H; Towell, R S; Tram, V-N; Tserruya, I; Tsuchimoto, Y; Tydesjö, H; Tyurin, N; Uam, T J; van Hecke, H W; Velkovska, J; Velkovsky, M; Veszprémi, V; Vinogradov, A A; Volkov, M A; Vznuzdaev, E; Wang, X R; Watanabe, Y; White, S N; Willis, N; Wohn, F K; Woody, C L; Xie, W; Yanovich, A; Yokkaichi, S; Young, G R; Yushmanov, I E; Zajc, W A; Zhang, C; Zhou, S; Zimányi, J; Zolin, L; Zong, X
2006-06-01
Deuteron-gold (d+Au) collisions at the Relativistic Heavy Ion Collider provide ideal platforms for testing QCD theories in dense nuclear matter at high energy. In particular, models suggesting strong saturation effects for partons carrying small nucleon momentum fraction (x) predict modifications to jet production at forward rapidity (deuteron-going direction) in d+Au collisions. We report on two-particle azimuthal angle correlations between charged hadrons at forward/backward (deuteron/gold going direction) rapidity and charged hadrons at midrapidity in d+Au and p+p collisions at square root of sNN=200 GeV. Jet structures observed in the correlations are quantified in terms of the conditional yield and angular width of away-side partners. The kinematic region studied here samples partons in the gold nucleus with x~0.1 to ~0.01. Within this range, we find no x dependence of the jet structure in d+Au collisions. PMID:16803304
Energy Technology Data Exchange (ETDEWEB)
Kawano, Toshihiko [Los Alamos National Laboratory; Talou, Patrick [Los Alamos National Laboratory; Watanabe, Takehito [Los Alamos National Laboratory; Chadwick, Mark [Los Alamos National Laboratory
2010-01-01
Monte Carlo simulations for particle and {gamma}-ray emissions from an excited nucleus based on the Hauser-Feshbach statistical theory are performed to obtain correlated information between emitted particles and {gamma}-rays. We calculate neutron induced reactions on {sup 51}V to demonstrate unique advantages of the Monte Carlo method. which are the correlated {gamma}-rays in the neutron radiative capture reaction, the neutron and {gamma}-ray correlation, and the particle-particle correlations at higher energies. It is shown that properties in nuclear reactions that are difficult to study with a deterministic method can be obtained with the Monte Carlo simulations.
Directory of Open Access Journals (Sweden)
Deepak P
2014-09-01
Full Text Available BOHLER'S ANGLE: correlation with outcome in displaced intra-articular calcaneal fractures Treated with locking compression Plate Fixation with and without bone grafting. AIMS: The aim is an accurate reduction of the fracture with reconstruction of Bohler’s angle, length and axis and sub talar joint surface. To determine whether autologous bone graft supplementation is beneficial in achieving and maintaining restoration of Calcaneal height and anatomic reduction. SETTINGS AND DESIGN: Level 1 trauma center, Prospective, randomized. METHODS AND MATERIAL: Consecutive 46 patients who had fracture calcaneum were treated by open reduction and internal fixation by locking plate with and without bone graft during the period from November 2009 to April 2012. STATISTICAL ANALYSIS USED: AOFAS-Ankle-Hind foot Scale, t Test. RESULTS: Fewer complications and statistically significant better results related to treatment with locking plates with bone grafting confirmed in comparison to without bone grafting ones were noted for intra-articular calcaneal fractures. In Group A the mean time for union was 10.39wks. The results were good and excellent in 86.95%, 8.69 % had fair result and 4.34% had poor results. In Group B the mean time for union was 11.95 wks. The overall results were good and excellent in 73.91%, 13.04 % had fair result and 13.04 % had poor results. CONCLUSIONS: The operative treatment of intra-articular calcaneal fractures could restore Böhler's angle better and the patient could return to full weight bearing earlier. We confirmed that autologous bone graft supplementation is beneficial in achieving and maintaining restoration of calcaneal height and anatomic reduction.
Energy Technology Data Exchange (ETDEWEB)
DeYoung, P.A.; Gelderloos, C.J.; Kortering, D.; Sarafa, J.; Zienert, K.; Gordon, M.S.; Fineman, B.J.; Gilfoyle, G.P.; Lu, X.; McGrath, R.L.; de Castro Rizzo, D.M.; Alexander, J.M.; Auger, G.; Kox, S.; Vaz, L.C.; Beck, C.; Henderson, D.J.; Kovar, D.G.; Vineyard, M.F. (Department of Physics, Hope College, Holland, Michigan 49423 (US) Department of Physics, State University of New York at Stony Brook, Stony Brook, New York 11794 Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York 11794 Argonne National Laboratory, Argonne, Illinois 60439)
1990-05-01
We present data for small-angle particle-particle correlations from the reactions 80, 140, 215, and 250 MeV {sup 16}O+{sup 27}Al{r arrow}{ital p}-{ital p} or {ital p}-{ital d}. The main features of these data are anticorrelations for small relative momenta ({le}25 MeV/{ital c}) that strengthen with increasing bombarding energy. Statistical model calculations have been performed to predict the mean lifetimes for each step of evaporative decay, and then simulate the trajectories of the particle pairs and the resulting particle correlations. This simulation accounts very well for the trends of the data and can provide an important new test for the hypothesis of equilibration on which the model is built.
Ferrarese, Giorgio
2011-01-01
Lectures: A. Jeffrey: Lectures on nonlinear wave propagation.- Y. Choquet-Bruhat: Ondes asymptotiques.- G. Boillat: Urti.- Seminars: D. Graffi: Sulla teoria dell'ottica non-lineare.- G. Grioli: Sulla propagazione del calore nei mezzi continui.- T. Manacorda: Onde nei solidi con vincoli interni.- T. Ruggeri: "Entropy principle" and main field for a non linear covariant system.- B. Straughan: Singular surfaces in dipolar materials and possible consequences for continuum mechanics
Zhang, Du; Yang, Weitao
2016-10-01
An efficient method for calculating excitation energies based on the particle-particle random phase approximation (ppRPA) is presented. Neglecting the contributions from the high-lying virtual states and the low-lying core states leads to the significantly smaller active-space ppRPA matrix while keeping the error to within 0.05 eV from the corresponding full ppRPA excitation energies. The resulting computational cost is significantly reduced and becomes less than the construction of the non-local Fock exchange potential matrix in the self-consistent-field (SCF) procedure. With only a modest number of active orbitals, the original ppRPA singlet-triplet (ST) gaps as well as the low-lying single and double excitation energies can be accurately reproduced at much reduced computational costs, up to 100 times faster than the iterative Davidson diagonalization of the original full ppRPA matrix. For high-lying Rydberg excitations where the Davidson algorithm fails, the computational savings of active-space ppRPA with respect to the direct diagonalization is even more dramatic. The virtues of the underlying full ppRPA combined with the significantly lower computational cost of the active-space approach will significantly expand the applicability of the ppRPA method to calculate excitation energies at a cost of O(K4), with a prefactor much smaller than a single SCF Hartree-Fock (HF)/hybrid functional calculation, thus opening up new possibilities for the quantum mechanical study of excited state electronic structure of large systems.
International Nuclear Information System (INIS)
The main part of this thesis consists of 15 published papers, in which the numerical Beam Propagating Method (BPM) is investigated, verified and used in a number of applications. In the introduction a derivation of the nonlinear Schroedinger equation is presented to connect the beginning of the soliton papers with Maxwell's equations including a nonlinear polarization. This thesis focuses on the wide use of the BPM for numerical simulations of propagating light and particle beams through different types of structures such as waveguides, fibers, tapers, Y-junctions, laser arrays and crystalline solids. We verify the BPM in the above listed problems against other numerical methods for example the Finite-element Method, perturbation methods and Runge-Kutta integration. Further, the BPM is shown to be a simple and effective way to numerically set up the Green's function in matrix form for periodic structures. The Green's function matrix can then be diagonalized with matrix methods yielding the eigensolutions of the structure. The BPM inherent transverse periodicity can be untied, if desired, by for example including an absorptive refractive index at the computational window edges. The interaction of two first-order soliton pulses is strongly dependent on the phase relationship between the individual solitons. When optical phase shift keying is used in coherent one-carrier wavelength communication, the fiber attenuation will suppress or delay the nonlinear instability. (orig.)
Kliucininkas, Linas; Martuzevicius, Dainius; Krugly, Edvinas; Prasauskas, Tadas; Kauneliene, Violeta; Molnar, Peter; Strandberg, Bo
2011-01-01
This complex study presents indoor and outdoor levels of air-borne fine particles, particle-bound PAHs and VOCs at two urban locations in the city of Kaunas, Lithuania, and considers possible sources of pollution. Two sampling campaigns were performed in January-February and March-April 2009. The mean outdoor PM(2.5) concentration at Location 1 in winter was 34.5 ± 15.2 µg m(-3) while in spring it was 24.7 ± 12.2 µg m(-3); at Location 2 the corresponding values were 36.7 ± 21.7 and 22.4 ± 19.4 µg m(-3), respectively. In general there was little difference between the PM concentrations at Locations 1 and 2. PM(2.5) concentrations were lower during the spring sampling campaign. These PM concentrations were similar to those in many other European cities; however, the levels of most PAHs analysed were notably higher. The mean sum PAH concentrations at Locations 1 and 2 in the winter campaign were 75.1 ± 32.7 and 32.7 ± 11.8 ng m(-3), respectively. These differences are greater than expected from the difference in traffic intensity at the two sites, suggesting that there is another significant source of PAH emissions at Location 1 in addition to the traffic. The low observed indoor/outdoor (I/O) ratios indicate that PAH emissions at the locations studied arise primarily from outdoor sources. The buildings at both locations have old windows with wooden frames that are fairly permissive in terms of air circulation. VOC concentrations were mostly low and comparable to those reported from Sweden. The mean outdoor concentrations of VOC's were: 0.7 ± 0.2, 3.0 ± 0.8, 0.5 ± 0.2, 3.5 ± 0.3, and 0.2 ± 0.1 µg m(-3), for benzene, toluene, ethylbenzene, sum of m-, p-, o-xylenes, and naphthalene, respectively. Higher concentrations of VOCs were observed during the winter campaign, possibly due to slower dispersion, slower chemical transformations and/or the lengthy "cold start" period required by vehicles in the wintertime. A trajectory analysis showed that air masses
Peng, Degao; van Aggelen, Helen; Steinmann, Stephan; Yang, Yang; Yang, Weitao; Duke University Team
2014-03-01
The particle-particle random-phase approximation (pp-RPA) recently attracts extensive interests in quantum chemistry recently. Pp-RPA is a versatile model to calculate ground-state correlation energies, and double ionization potential/double electron affinity. We inspect particle-particle random-phase approximation in different perspectives to further understand its theoretical fundamentals. Viewed as summation of all ladder diagrams, the pp-RPA correlation energy is proved to be analytically equivalent to the ladder coupled-cluster doubles (ladder-CCD) theory. With this equivalence, we can make use of various well-established coupled-cluster techniques to study pp-RPA. Furthermore, we establish linear-response time-dependent density-functional theory with pairing fields (TDDFT-PF), where pp-RPA can be interpreted as the mean-field approximation to a general theory. TDDFT-PF is closely related to the density-functional theory of superconductors, but is applied to normal systems to capture exact N plus/minus 2 excitations. In the linear-response regime, both the adiabatic and non-adiabatic TDDFT-PF equations are established. This sets the fundamentals for further density-functional developments aiming for pp-RPA. These theoretical perspectives will be very helpful for future study.
Ultrasonic propagation: a technique to reveal field induced structures in magnetic nanofluids.
Parekh, Kinnari; Patel, Jaykumar; Upadhyay, R V
2015-07-01
The paper reports the study of magnetic field induced structures in magnetic nanofluid investigated through ultrasonic wave propagation. Modified Tarapov's theory is used to study variation in velocity anisotropy with magnetic field. The types of field induced structures depend upon the chemical structure of the carrier in which magnetic nanoparticles are dispersed. Our study indicates formation of fractals and chain respectively, in transformer oil and kerosene based fluid. This difference is explained on the basis of particle-particle interaction and particle-medium interaction. PMID:25791205
Nijhof, Marten Jozef Johannes
2010-01-01
In this work, the accuracy, efficiency and range of applicability of various (approximate) models for viscothermal wave propagation are investigated. Models for viscothermal wave propagation describe thewave behavior of fluids including viscous and thermal effects. Cases where viscothermal effects a
Towards "Propagation = Logic + Control"
Brand, Sebastian; Yap, Roland H. C.
2006-01-01
Constraint propagation algorithms implement logical inference. For efficiency, it is essential to control whether and in what order basic inference steps are taken. We provide a high-level framework that clearly differentiates between information needed for controlling propagation versus that needed for the logical semantics of complex constraints composed from primitive ones. We argue for the appropriateness of our controlled propagation framework by showing that it c...
Directory of Open Access Journals (Sweden)
M. Hajek
2006-04-01
Full Text Available The propagation of ultra wide band (UWB signals through walls is analyzed. For this propagation studies, it is necessary to consider not only propagation at a single frequency but in the whole band. The UWB radar output signal is formed by both transmitter and antenna. The effects of antenna receiving and transmitting responses for various antenna types (such as small and aperture antennas are studied in the frequency as well as time domain. Moreover, UWB radar output signals can be substantially affected due to electromagnetic wave propagation through walls and multipath effects.
A generalized photon propagator
Itin, Yakov
2007-01-01
A covariant gauge independent derivation of the generalized dispersion relation of electromagnetic waves in a medium with local and linear constitutive law is presented. A generalized photon propagator is derived. For Maxwell constitutive tensor, the standard light cone structure and the standard Feynman propagator are reinstated.
NASA propagation information center
Smith, Ernest K.; Flock, Warren L.
1990-07-01
The NASA Propagation Information Center became formally operational in July 1988. It is located in the Department of Electrical and Computer Engineering of the University of Colorado at Boulder. The center is several things: a communications medium for the propagation with the outside world, a mechanism for internal communication within the program, and an aid to management.
Hierarchical Affinity Propagation
Givoni, Inmar; Frey, Brendan J
2012-01-01
Affinity propagation is an exemplar-based clustering algorithm that finds a set of data-points that best exemplify the data, and associates each datapoint with one exemplar. We extend affinity propagation in a principled way to solve the hierarchical clustering problem, which arises in a variety of domains including biology, sensor networks and decision making in operational research. We derive an inference algorithm that operates by propagating information up and down the hierarchy, and is efficient despite the high-order potentials required for the graphical model formulation. We demonstrate that our method outperforms greedy techniques that cluster one layer at a time. We show that on an artificial dataset designed to mimic the HIV-strain mutation dynamics, our method outperforms related methods. For real HIV sequences, where the ground truth is not available, we show our method achieves better results, in terms of the underlying objective function, and show the results correspond meaningfully to geographi...
David, P
2013-01-01
Propagation of Waves focuses on the wave propagation around the earth, which is influenced by its curvature, surface irregularities, and by passage through atmospheric layers that may be refracting, absorbing, or ionized. This book begins by outlining the behavior of waves in the various media and at their interfaces, which simplifies the basic phenomena, such as absorption, refraction, reflection, and interference. Applications to the case of the terrestrial sphere are also discussed as a natural generalization. Following the deliberation on the diffraction of the "ground? wave around the ear
Temporal scaling in information propagation
Junming Huang; Chao Li; Wen-Qiang Wang; Hua-Wei Shen; Guojie Li; Xue-Qi Cheng
2014-01-01
For the study of information propagation, one fundamental problem is uncovering universal laws governing the dynamics of information propagation. This problem, from the microscopic perspective, is formulated as estimating the propagation probability that a piece of information propagates from one individual to another. Such a propagation probability generally depends on two major classes of factors: the intrinsic attractiveness of information and the interactions between individuals. Despite ...
Urrutxua, Hodei; Sanjurjo-Rivo, Manuel; Peláez, Jesús
2016-01-01
In the year 2000 an in-house orbital propagator called DROMO (Peláez et al. in Celest Mech Dyn Astron 97:131-150, 2007. doi: 10.1007/s10569-006-9056-3) was developed by the Space Dynamics Group of the Technical University of Madrid, based in a set of redundant variables including Euler-Rodrigues parameters. An original deduction of the DROMO propagator is carried out, underlining its close relation with the ideal frame concept introduced by Hansen (Abh der Math-Phys Cl der Kon Sachs Ges der Wissensch 5:41-218, 1857). Based on the very same concept, Deprit (J Res Natl Bur Stand Sect B Math Sci 79B(1-2):1-15, 1975) proposed a formulation for orbit propagation. In this paper, similarities and differences with the theory carried out by Deprit are analyzed. Simultaneously, some improvements are introduced in the formulation, that lead to a more synthetic and better performing propagator. Also, the long-term effect of the oblateness of the primary is studied in terms of DROMO variables, and new numerical results are presented to evaluate the performance of the method.
Neutrino Propagation Through Matter
V. A. NaumovLab. of Theoretical Physics, Irkutsk State University, Irkutsk, Russia; L. Perrone(Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, Firenze, Italy)
2015-01-01
We discuss a simple approach to solve the transport equation for high-energy neutrinos in media of any thickness. We present illustrative results obtained with some specific models for the initial spectra of muon neutrinos and antineutrinos propagating through a normal cold medium.
Neutrino Propagation Through Matter
Naumov, V A
1999-01-01
We discuss a simple approach to solve the transport equation for high-energy neutrinos in media of any thickness. We present illustrative results obtained with some specific models for the initial spectra of muon neutrinos and antineutrinos propagating through a normal cold medium.
Nessel, James
2013-01-01
NASA Glenn Research Center has been involved in the characterization of atmospheric effects on space communications links operating at Ka-band and above for the past 20 years. This presentation reports out on the most recent activities of propagation characterization that NASA is currently involved in.
Vegetative propagation of jojoba
Energy Technology Data Exchange (ETDEWEB)
Low, C.B.; Hackett, W.P.
1981-03-01
Development of jojoba as an economically viable crop requires improved methods of propagation and culture. Rooting experiments were performed on cutting material collected from wild jojoba plants. A striking seasonal fluctuation in rooting potential was found. Jojoba plants can be successfully propagated from stem cuttings made during spring, summer, and, to some extent, fall. Variability among jojoba plants may also play a role in rooting potential, although it is not as important as season. In general, the use of auxin (4,000 ppm indolebutyric acid) on jojoba cuttings during periods of high rooting potential promotes adventitious root formation, but during periods of low rooting potential it has no effect or is even slightly inhibitory. In the greenhouse, cutting-grown plants apparently reproductively matured sooner than those grown from seed. If this observation holds true for plants transplanted into the field, earlier fruit production by cutting--grown plants would mean earlier return of initial planting and maintenance costs.
Infrared finite electron propagator
International Nuclear Information System (INIS)
We investigate the properties of a dressed electron which reduces, in a particular class of gauges, to the usual fermion. A one-loop calculation of the propagator is presented. We show explicitly that an infrared finite, multiplicative, mass shell renormalization is possible for this dressed electron, or, equivalently, for the usual fermion in the above-mentioned gauges. The results are in complete accord with previous conjectures. copyright 1997 The American Physical Society
Energy Technology Data Exchange (ETDEWEB)
Maas, Axel [University of Graz, Institute of Physics, Graz (Austria)
2015-03-01
Two popular perspectives on the non-perturbative domain of Yang-Mills theories are either in terms of the gluons themselves or in terms of collective gluonic excitations, i.e. topological excitations. If both views are correct, then they are only two different representations of the same underlying physics. One possibility to investigate this connection is by the determination of gluon correlation functions in topological background fields, as created by the smearing of lattice configurations. This is performed here for the minimal Landau gauge gluon propagator, ghost propagator, and running coupling, both in momentum and position space for SU(2) Yang-Mills theory. The results show that the salient low-momentum features of the propagators are qualitatively retained under smearing at sufficiently small momenta, in agreement with an equivalence of both perspectives. However, the mid-momentum behavior is significantly affected. These results are also relevant for the construction of truncations in functional methods, as they provide hints on necessary properties to be retained in truncations. (orig.)
Propagating waves along spicules
Okamoto, Takenori J
2011-01-01
Alfv\\'enic waves are thought to play an important role in coronal heating and acceleration of solar wind. Here we investigated the statistical properties of Alfv\\'enic waves along spicules (jets that protrude into the corona) in a polar coronal hole using high cadence observations of the Solar Optical Telescope (SOT) onboard \\emph{Hinode}. We developed a technique for the automated detection of spicules and high-frequency waves. We detected 89 spicules, and found: (1) a mix of upward propagating, downward propagating, as well as standing waves (occurrence rates of 59%, 21%, and 20%, respectively). (2) The phase speed gradually increases with height. (3) Upward waves dominant at lower altitudes, standing waves at higher altitudes. (4) Standing waves dominant in the early and late phases of each spicule, while upward waves were dominant in the middle phase. (5) In some spicules, we find waves propagating upward (from the bottom) and downward (from the top) to form a standing wave in the middle of the spicule. (...
Sciacchitano, Andrea; Wieneke, Bernhard
2016-08-01
This paper discusses the propagation of the instantaneous uncertainty of PIV measurements to statistical and instantaneous quantities of interest derived from the velocity field. The expression of the uncertainty of vorticity, velocity divergence, mean value and Reynolds stresses is derived. It is shown that the uncertainty of vorticity and velocity divergence requires the knowledge of the spatial correlation between the error of the x and y particle image displacement, which depends upon the measurement spatial resolution. The uncertainty of statistical quantities is often dominated by the random uncertainty due to the finite sample size and decreases with the square root of the effective number of independent samples. Monte Carlo simulations are conducted to assess the accuracy of the uncertainty propagation formulae. Furthermore, three experimental assessments are carried out. In the first experiment, a turntable is used to simulate a rigid rotation flow field. The estimated uncertainty of the vorticity is compared with the actual vorticity error root-mean-square, with differences between the two quantities within 5-10% for different interrogation window sizes and overlap factors. A turbulent jet flow is investigated in the second experimental assessment. The reference velocity, which is used to compute the reference value of the instantaneous flow properties of interest, is obtained with an auxiliary PIV system, which features a higher dynamic range than the measurement system. Finally, the uncertainty quantification of statistical quantities is assessed via PIV measurements in a cavity flow. The comparison between estimated uncertainty and actual error demonstrates the accuracy of the proposed uncertainty propagation methodology.
Temporal scaling in information propagation
Huang, Junming; Li, Chao; Wang, Wen-Qiang; Shen, Hua-Wei; Li, Guojie; Cheng, Xue-Qi
2014-06-01
For the study of information propagation, one fundamental problem is uncovering universal laws governing the dynamics of information propagation. This problem, from the microscopic perspective, is formulated as estimating the propagation probability that a piece of information propagates from one individual to another. Such a propagation probability generally depends on two major classes of factors: the intrinsic attractiveness of information and the interactions between individuals. Despite the fact that the temporal effect of attractiveness is widely studied, temporal laws underlying individual interactions remain unclear, causing inaccurate prediction of information propagation on evolving social networks. In this report, we empirically study the dynamics of information propagation, using the dataset from a population-scale social media website. We discover a temporal scaling in information propagation: the probability a message propagates between two individuals decays with the length of time latency since their latest interaction, obeying a power-law rule. Leveraging the scaling law, we further propose a temporal model to estimate future propagation probabilities between individuals, reducing the error rate of information propagation prediction from 6.7% to 2.6% and improving viral marketing with 9.7% incremental customers.
Validity of Parametrized Quark Propagator
Institute of Scientific and Technical Information of China (English)
ZHU Ji-Zhen; ZHOU Li-Juan; MA Wei-Xing
2005-01-01
Based on an extensively study of the Dyson-Schwinger equations for a fully dressed quark propagator in the "rainbow" approximation, a parametrized fully dressed quark propagator is proposed in this paper. The parametrized propagator describes a confining quark propagator in hadron since it is analytic everywhere in complex p2-plane and has no Lemmann representation. The validity of the new propagator is discussed by comparing its predictions on selfenergy functions Af(p2), Bf(p2) and effective mass Mf(p2) of quark with flavor f to their corresponding theoretical results produced by Dyson-Schwinger equations. Our comparison shows that the parametrized quark propagator is a good approximation to the fully dressed quark propagator given by the solutions of Dyson-Schwinger equations in the rainbow approximation and is convenient to use in any theoretical calculations.
Validity of Parametrized Quark Propagator
Institute of Scientific and Technical Information of China (English)
ZHUJi-Zhen; ZHOULi-Juan; MAWei-Xing
2005-01-01
Based on an extensively study of the Dyson-Schwinger equations for a fully dressed quark propagator in the “rainbow”approximation, a parametrized fully dressed quark propagator is proposed in this paper. The parametrized propagator describes a confining quark propagator in hadron since it is analytic everywhere in complex p2-plane and has no Lemmann representation. The validity of the new propagator is discussed by comparing its predictions on selfenergy functions A/(p2), Bl(p2) and effective mass M$(p2) of quark with flavor f to their corresponding theoretical results produced by Dyson-Schwinger equations. Our comparison shows that the parametrized quark propagator is a good approximation to the fully dressed quark propagator given by the solutions of Dyson-Schwinger equations in the rainbow approximation and is convenient to use in any theoretical calculations.
Institute of Scientific and Technical Information of China (English)
王晖; 刘大有; 等
1994-01-01
In this paper we consider the problem of sequential processing and present a sequential model based on the back-propagation algorithm.This model is intended to deal with intrinsically sequential problems,such as word recognition,speech recognition,natural language understanding.This model can be used to train a network to learn the sequence of input patterns,in a fixed order or a random order.Besides,this model is open- and partial-associative,characterized as “resognizing while accumulating”, which, as we argue, is mental cognition process oriented.
Rockower, Edward B.
1985-01-01
A number of laser propagation codes have been assessed as to their suitability for modeling Army High Energy Laser (HEL) weapons used in an anti- sensor mode. We identify a number of areas in which systems analysis HEL codes are deficient. Most notably, available HEL scaling law codes model the laser aperture as circular, possibly with a fixed (e.g. 10%) obscuration. However, most HELs have rectangular apertures with up to 30% obscuration. We present a beam-quality/aperture shape scaling rela...
Light Front Boson Model Propagation
Institute of Scientific and Technical Information of China (English)
Jorge Henrique Sales; Alfredo Takashi Suzuki
2011-01-01
stract The scope and aim of this work is to describe the two-body interaction mediated by a particle (either the scalar or the gauge boson) within the light-front formulation. To do this, first of all we point out the importance of propagators and Green functions in Quantum Mechanics. Then we project the covariant quantum propagator onto the light front time to get the propagator for scalar particles in these coordinates. This operator propagates the wave function from x+ = 0 to x+ ＞ O. It corresponds to the definition of the time ordering operation in the light front time x+. We calculate the light-front Green's function for 2 interacting bosons propagating forward in x+. We also show how to write down the light front Green's function from the Feynman propagator and finally make a generalization to N bosons.
Gauge engineering and propagators
Maas, Axel
2016-01-01
Beyond perturbation theory gauge-fixing becomes more involved due to the Gribov-Singer ambiguity: The appearance of additional gauge copies requires to define a procedure how to handle them. For the case of Landau gauge the structure and properties of these additional gauge copies will be investigated. Based on these properties gauge conditions are constructed to account for these gauge copies. The dependence of the propagators on the choice of these complete gauge-fixings will then be investigated using lattice gauge theory for Yang-Mills theory. It is found that the implications for the infrared, and to some extent mid-momentum behavior, can be substantial. In going beyond the Yang-Mills case it turns out that the influence of matter can generally not be neglected. This will be briefly discussed for various types of matter.
Join-Graph Propagation Algorithms
Mateescu, Robert; Kask, Kalev; Gogate, Vibhav; Dechter, Rina
2014-01-01
The paper investigates parameterized approximate message-passing schemes that are based on bounded inference and are inspired by Pearl's belief propagation algorithm (BP). We start with the bounded inference mini-clustering algorithm and then move to the iterative scheme called Iterative Join-Graph Propagation (IJGP), that combines both iteration and bounded inference. Algorithm IJGP belongs to the class of Generalized Belief Propagation algorithms, a framework that allowed connections with a...
Propagation Terminal Design and Measurements
Nessel, James
2015-01-01
The NASA propagation terminal has been designed and developed by the Glenn Research Center and is presently deployed at over 5 NASA and partner ground stations worldwide collecting information on the effects of the atmosphere on Ka-band and millimeter wave communications links. This lecture provides an overview of the fundamentals and requirements of the measurement of atmospheric propagation effects and, specifically, the types of hardware and digital signal processing techniques employed by current state-of-the-art propagation terminal systems.
Vegetative propagation of Strelitzia reginae.
Pol, van de, J.; Hell, van, T.F.
1988-01-01
Strelitzia reginae is propagated either by division of naturally developed branches known as fans or by seeds. Vegetative propagation by division is limited by a low rate of multiplication being 0.5–1.5 divisions per branch per year. Branching originates in the division of the apical dome with an absolute abscence of branching from axillary buds. Propagation by seeds is undesirable due to juvenility and genetic variation. Therefore induction of branching to increase the multiplication rate of...
Vegetative propagation of Strelitzia reginae.
Pol, van de P.A.; Hell, van T.F.
1988-01-01
Strelitzia reginae is propagated either by division of naturally developed branches known as fans or by seeds. Vegetative propagation by division is limited by a low rate of multiplication being 0.5–1.5 divisions per branch per year. Branching originates in the division of the apical dome with an ab
Propagation of Ion Acoustic Perturbations
DEFF Research Database (Denmark)
Pécseli, Hans
1975-01-01
Equations describing the propagation of ion acoustic perturbations are considered, using the assumption that the electrons are Boltzman distributed and isothermal at all times. Quasi-neutrality is also considered.......Equations describing the propagation of ion acoustic perturbations are considered, using the assumption that the electrons are Boltzman distributed and isothermal at all times. Quasi-neutrality is also considered....
Modeling turbulent flame propagation
Energy Technology Data Exchange (ETDEWEB)
Ashurst, W.T.
1994-08-01
Laser diagnostics and flow simulation techniques axe now providing information that if available fifty years ago, would have allowed Damkoehler to show how turbulence generates flame area. In the absence of this information, many turbulent flame speed models have been created, most based on Kolmogorov concepts which ignore the turbulence vortical structure, Over the last twenty years, the vorticity structure in mixing layers and jets has been shown to determine the entrainment and mixing behavior and these effects need to be duplicated by combustion models. Turbulence simulations reveal the intense vorticity structure as filaments and simulations of passive flamelet propagation show how this vorticity Creates flame area and defines the shape of the expected chemical reaction surface. Understanding how volume expansion interacts with flow structure should improve experimental methods for determining turbulent flame speed. Since the last decade has given us such powerful new tools to create and see turbulent combustion microscopic behavior, it seems that a solution of turbulent combustion within the next decade would not be surprising in the hindsight of 2004.
Propagation Engineering in Wireless Communications
Ghasemi, Abdollah; Ghasemi, Farshid
2012-01-01
Wireless communications has seen explosive growth in recent decades, in a realm that is both broad and rapidly expanding to include satellite services, navigational aids, remote sensing, telemetering, audio and video broadcasting, high-speed data communications, mobile radio systems and much more. Propagation Engineering in Wireless Communications deals with the basic principles of radiowaves propagation for frequency bands used in radio-communications, offering descriptions of new achievements and newly developed propagation models. The book bridges the gap between theoretical calculations and approaches, and applied procedures needed for advanced radio links design. The primary objective of this two-volume set is to demonstrate the fundamentals, and to introduce propagation phenomena and mechanisms that engineers are likely to encounter in the design and evaluation of radio links of a given type and operating frequency. Volume one covers basic principles, along with tropospheric and ionospheric propagation,...
Energy Technology Data Exchange (ETDEWEB)
NA
2002-03-04
The purpose of this Analysis and Model Report (AMR) supporting the Site Recommendation/License Application (SR/LA) for the Yucca Mountain Project is the development of elementary analyses of the interactions of a hypothetical dike with a repository drift (i.e., tunnel) and with the drift contents at the potential Yucca Mountain repository. This effort is intended to support the analysis of disruptive events for Total System Performance Assessment (TSPA). This AMR supports the Process Model Report (PMR) on disruptive events (CRWMS M&O 2000a). This purpose is documented in the development plan (DP) ''Coordinate Modeling of Dike Propagation Near Drifts Consequences for TSPA-SR/LA'' (CRWMS M&O 2000b). Evaluation of that Development Plan and the work to be conducted to prepare Interim Change Notice (ICN) 1 of this report, which now includes the design option of ''Open'' drifts, indicated that no revision to that DP was needed. These analyses are intended to provide reasonable bounds for a number of expected effects: (1) Temperature changes to the waste package from exposure to magma; (2) The gas flow available to degrade waste containers during the intrusion; (3) Movement of the waste package as it is displaced by the gas, pyroclasts and magma from the intruding dike (the number of packages damaged); (4) Movement of the backfill (Backfill is treated here as a design option); (5) The nature of the mechanics of the dike/drift interaction. These analyses serve two objectives: to provide preliminary analyses needed to support evaluation of the consequences of an intrusive event and to provide a basis for addressing some of the concerns of the Nuclear Regulatory Commission (NRC) expressed in the Igneous Activity Issue Resolution Status Report.
Laser beam propagation generation and propagation of customized light
Forbes, Andrew
2014-01-01
""The text is easy to read and is accompanied by beautiful illustrations. It is an excellent book for anyone working in laser beam propagation and an asset for any library.""-Optics & Photonics News, July 2014
Laser Propagation in Uranium Hexafluoride
Chu, Danny
1990-01-01
Several researchers have simulated the laser pulse propagation through simple N-level systems; but, for UF _6 models, large CPU time and memory is required. In an attempt to efficiently yet accurately characterize laser pulse propagation through a UF _6 molecule, a model of UF_6 is created and analyzed by adiabatic excitation. A minimax numerical method is developed to solve the time -dependent Schrodinger equation and then applied to the study of laser excitation of UF_6 using various Gaussian pulses. The process of laser isotope separation is also discussed. The results from the laser excitation of UF_6 are used to simulate laser propagation through ^{235} UF_6.
Gluon propagator in diffractive scattering
Ducati, M B G
2006-01-01
In this work, we perform a comparison of the employ of distinct gluon propagators with the experimental data in diffractive processes, $pp$ elastic scattering and light meson photo-production. The gluon propagators are calculated through non-perturbative methods, being justified their use in this class of events, due to the smallness of the momentum transfer. Our results are not able to select the best choice for the modified gluon propagator among the analyzed ones, showing that the application of this procedure in this class of high energy processes, although giving a reasonable fit to the experimental data, should be taken with same caution.
Radial propagators and Wilson loops
Leupold, S; Leupold, Stefan; Weigert, Heribert
1996-01-01
We present a relation which connects the propagator in the radial (Fock-Schwinger) gauge with a gauge invariant Wilson loop. It is closely related to the well-known field strength formula and can be used to calculate the radial gauge propagator. The result is shown to diverge in four-dimensional space even for free fields, its singular nature is however naturally explained using the renormalization properties of Wilson loops with cusps and self-intersections. Using this observation we provide a consistent regularization scheme to facilitate loop calculations. Finally we compare our results with previous approaches to derive a propagator in Fock-Schwinger gauge.
TSUNAMI WAVE PROPAGATION ALONG WAVEGUIDES
Directory of Open Access Journals (Sweden)
Andrei G. Marchuk
2009-01-01
Full Text Available This is a study of tsunami wave propagation along the waveguide on a bottom ridge with flat sloping sides, using the wave rays method. During propagation along such waveguide the single tsunami wave transforms into a wave train. The expression for the guiding velocities of the fastest and slowest signals is defined. The tsunami wave behavior above the ocean bottom ridges, which have various model profiles, is investigated numerically with the help of finite difference method. Results of numerical experiments show that the highest waves are detected above a ridge with flat sloping sides. Examples of tsunami propagation along bottom ridges of the Pacific Ocean are presented.
Reconstruction of nonlinear wave propagation
Fleischer, Jason W; Barsi, Christopher; Wan, Wenjie
2013-04-23
Disclosed are systems and methods for characterizing a nonlinear propagation environment by numerically propagating a measured output waveform resulting from a known input waveform. The numerical propagation reconstructs the input waveform, and in the process, the nonlinear environment is characterized. In certain embodiments, knowledge of the characterized nonlinear environment facilitates determination of an unknown input based on a measured output. Similarly, knowledge of the characterized nonlinear environment also facilitates formation of a desired output based on a configurable input. In both situations, the input thus characterized and the output thus obtained include features that would normally be lost in linear propagations. Such features can include evanescent waves and peripheral waves, such that an image thus obtained are inherently wide-angle, farfield form of microscopy.
Propagation engineering in wireless communications
Ghasemi, Abdollah; Ghasemi, Farshid
2016-01-01
This book covers the basic principles for understanding radio wave propagation for common frequency bands used in radio-communications. This includes achievements and developments in propagation models for wireless communication. This book is intended to bridge the gap between the theoretical calculations and approaches to the applied procedures needed for radio links design in a proper manner. The authors emphasize propagation engineering by giving fundamental information and explain the use of basic principles together with technical achievements. This new edition includes additional information on radio wave propagation in guided media and technical issues for fiber optics cable networks with several examples and problems. This book also includes a solution manual - with 90 solved examples distributed throughout the chapters - and 158 problems including practical values and assumptions.
Wave propagation in electromagnetic media
Davis, Julian L
1990-01-01
This is the second work of a set of two volumes on the phenomena of wave propagation in nonreacting and reacting media. The first, entitled Wave Propagation in Solids and Fluids (published by Springer-Verlag in 1988), deals with wave phenomena in nonreacting media (solids and fluids). This book is concerned with wave propagation in reacting media-specifically, in electro magnetic materials. Since these volumes were designed to be relatively self contained, we have taken the liberty of adapting some of the pertinent material, especially in the theory of hyperbolic partial differential equations (concerned with electromagnetic wave propagation), variational methods, and Hamilton-Jacobi theory, to the phenomena of electromagnetic waves. The purpose of this volume is similar to that of the first, except that here we are dealing with electromagnetic waves. We attempt to present a clear and systematic account of the mathematical methods of wave phenomena in electromagnetic materials that will be readily accessi...
Survey of propagation Model in wireless Network
Hemant Kumar Sharma; Sanjeev Sharma; Krishna Kumar Pandey
2011-01-01
To implementation of mobile ad hoc network wave propagation models are necessary to determine propagation characteristic through a medium. Wireless mobile ad hoc networks are self creating and self organizing entity. Propagation study provides an estimation of signal characteristics. Accurate prediction of radio propagation behaviour for MANET is becoming a difficult task. This paper presents investigation of propagation model. Radio wave propagation mechanisms are absorption, reflection, ref...
Fundamentals of Seismic Wave Propagation
Chapman, Chris
2004-08-01
Presenting a comprehensive introduction to the propagation of high-frequency body-waves in elastodynamics, this volume develops the theory of seismic wave propagation in acoustic, elastic and anisotropic media to allow seismic waves to be modelled in complex, realistic three-dimensional Earth models. The book is a text for graduate courses in theoretical seismology, and a reference for all academic and industrial seismologists using numerical modelling methods. Exercises and suggestions for further reading are included in each chapter.
The physical theory and propagation model of THz atmospheric propagation
Wang, R.; Yao, J. Q.; Xu, D. G.; Wang, J. L.; Wang, P.
2011-02-01
Terahertz (THz) radiation is extensively applied in diverse fields, such as space communication, Earth environment observation, atmosphere science, remote sensing and so on. And the research on propagation features of THz wave in the atmosphere becomes more and more important. This paper firstly illuminates the advantages and outlook of THz in space technology. Then it introduces the theoretical framework of THz atmospheric propagation, including some fundamental physical concepts and processes. The attenuation effect (especially the absorption of water vapor), the scattering of aerosol particles and the effect of turbulent flow mainly influence THz atmosphere propagation. Fundamental physical laws are illuminated as well, such as Lamber-beer law, Mie scattering theory and radiative transfer equation. The last part comprises the demonstration and comparison of THz atmosphere propagation models like Moliere(V5), SARTre and AMATERASU. The essential problems are the deep analysis of physical mechanism of this process, the construction of atmospheric propagation model and databases of every kind of material in the atmosphere, and the standardization of measurement procedures.
Parametrization of Fully Dressed Quark Propagator
Institute of Scientific and Technical Information of China (English)
MA Wei-Xing; ZHU Ji-Zhen; ZHOU Li-Juan; SHEN Peng-Nian; HU Zhao-Hui
2005-01-01
Based on an extensive study of the Dyson-Schwinger equations for a fully dressed quark propagator in the "rainbow" approximation, a parametrized form of the quark propagator is suggested. The corresponding quark selfform of the quark propagator proposed in this work describes a confining quark propagation, and is quite convenient to be used in any numerical calculations.
Modification of tropospheric propagation conditions
Jeske, H.
1990-10-01
The propagation mechanisms of ultra-short radio waves and microwaves are governed by the composition of the troposphere and their space-time structure of the refractive index field. Useful effects are obtained by chaff clouds concerning communication channels, masking of targets or meteorological research. A wide field of posiibilities seems to be within the scope of weather modification experiments. But due to the huge variability of cloud and rain parameters only minor propagation changes are to be expected. A successful application of remotely determining atmospheric temperature profiles is the modulation of the atmospheric refractive index field by sound waves and tracking the acoustic wave fronts by a Doppler radar (Radio Acoustic Sounding System). Oil and alga slicks on water surfaces may change the reflection/scattering and emission properties for radar waves. They also suppress evaporation which may influence the development of tropical storms but just so evaporation duct propagation of microwaves.
Gluon propagator with dynamical quarks
Papavassiliou, Joannis
2014-01-01
We review recent work on the effects of quark loops on the gluon propagator in the Landau gauge, relying mainly on the Schwinger-Dyson equations that describe the two-point sector of QCD. Particularly important in this context is the detailed study of how the standard gluon mass generation mechanism, which is responsible for the infrared finiteness of the quenched gluon propagator, is affected by the inclusions of dynamical quarks. This issue is especially relevant and timely, given the qualitative picture that emerges from recent unquenched lattice simulations. Our results demonstrate clearly that the gluon mass generation persists, and that the corresponding saturation points of the unquenched gluon propagators are progressively suppressed, as the number of quark flavors increases.
SIS epidemic propagation on hypergraphs
Bodó, Ágnes; Simon, Péter L
2015-01-01
Mathematical modeling of epidemic propagation on networks is extended to hypergraphs in order to account for both the community structure and the nonlinear dependence of the infection pressure on the number of infected neighbours. The exact master equations of the propagation process are derived for an arbitrary hypergraph given by its incidence matrix. Based on these, moment closure approximation and mean-?eld models are introduced and compared to individual-based stochastic simulations. The simulation algorithm, developed for networks, is extended to hypergraphs. The e?ects of hypergraph structure and the model parameters are investigated via individual-based simulation results.
Congestion Propagation among Routers with TCP Flows
Hiroyuki Ohsaki; Kouhei Sugiyama; Makoto Imase
2009-01-01
In recent years, various non-linear phenomena of the Internet have been discovered. For instance,it is reported that congestion of a router propagates to neighboring routers like a wave. Severalresearches on congestion propagation among routers have been performed. However, in theseresearches, cause of congestion propagation and condition that congestion propagation occurshave not been sufficiently investigated. In this paper, we reveal a cause of congestion propagation,and also investigate u...
Overseas propagation of kiwifruit pollinator
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
@@ One year after granting to the Italian firm Kiwigold Consortium the world-wide propagation and commercialization rights of Jintao,a female cultivar plant from the novel variety of kiwifruit (Actinidia chinensis Planch), the CAS Wuhan Botanical Garden (WBG) reached a new agreement with the firm on the similar right of a male plant cultivar Moshan-4.
Radio frequency propagation made easy
Faruque, Saleh
2015-01-01
This book introduces Radio Frequency Propagation to a broad audience. The author blends theory and practice to bring readers up-to-date in key concepts, underlying principles and practical applications of wireless communications. The presentation is designed to be easily accessible, minimizing mathematics and maximizing visuals.
Wave equations for pulse propagation
Shore, B. W.
1987-06-01
Theoretical discussions of the propagation of pulses of laser radiation through atomic or molecular vapor rely on a number of traditional approximations for idealizing the radiation and the molecules, and for quantifying their mutual interaction by various equations of propagation (for the radiation) and excitation (for the molecules). In treating short-pulse phenomena it is essential to consider coherent excitation phenomena of the sort that is manifest in Rabi oscillations of atomic or molecular populations. Such processes are not adequately treated by rate equations for excitation nor by rate equations for radiation. As part of a more comprehensive treatment of the coupled equations that describe propagation of short pulses, this memo presents background discussion of the equations that describe the field. This memo discusses the origin, in Maxwell's equations, of the wave equation used in the description of pulse propagation. It notes the separation into lamellar and solenoidal (or longitudinal and transverse) and positive and negative frequency parts. It mentions the possibility of separating the polarization field into linear and nonlinear parts, in order to define a susceptibility or index of refraction and, from these, a phase and group velocity.
Light Front Fermion Model Propagation
Institute of Scientific and Technical Information of China (English)
Jorge Henrique Sales; Alfredo Takashi Suzuki
2013-01-01
In this work we consider the propagation of two fermion fields interacting with each other by the exchange of intermediate scalar bosons in the light front.We obtain the corrections up to fourth order in the coupling constant using hierarchical equations in order to obtain the bound state equation (Bethe-Salpeter equation).
Trust Propagation in Small Worlds
DEFF Research Database (Denmark)
Gray, Elizabeth; Seigneur, Jean-Marc; Chen, Yong;
2003-01-01
The possibility of a massive, networked infrastructure of diverse entities partaking in collaborative applications with each other increases more and more with the proliferation of mobile devices and the development of ad hoc networking technologies. In this context, traditional security measures...... do not scale well. We aim to develop trust-based security mechanisms using small world concepts to optimise formation and propagation of trust amongst entities in these vast networks. In this regard, we surmise that in a very large mobile ad hoc network, trust, risk, and recommendations can...... be propagated through relatively short paths connecting entities. Our work describes the design of trust-formation and risk-assessment systems, as well as that of an entity recognition scheme, within the context of the small world network topology....
Flame Propagation Through Concentration Gradient
Institute of Scientific and Technical Information of China (English)
JunyaIINO; MitsuakiTANABE; 等
2000-01-01
The experiment was carried out in homogeneous propane-air mixture and in several concentration gradient of mixture.Igniter is put on the upper side of the combustion chamber,In concentration gradient experiment.ixture was ignited from lean side.An experimental study was conducted in a combustion chamber.The combustion chamber has glass windows for optical measurements at any side.For the measurement of distribution of fuel concentration,infraed absorption method using 3.39μm He-Ne laser was used,and for the observation of proagating flams,Schlieren method was employed.As a measurment result of flame propagation velocity and flammable limit,for a mixture of an identical local equivalence ratio.flame propagation velocity in concentration gradient is faster than that in homogeneous mixture,and rich flammable limit in concentration gradient shows a tendency to be higher than that in homogeneous mixture.
LASER BEAM PROPAGATION THROUGH FOG
Duchet, M; Flocon, B.; Sap, J
1980-01-01
The atmosphere is characterized by its molecular absorption coefficient and the fog by the initial radius of droplets which can be drifted by the wind. Absorption and scattering coefficients of droplets are calculated by the MIE's theory from their radius and complex index. In the laser beam, droplets are partially vaporized (we neglect thermal conductivity). Propagation equations are solved by numerical means giving steady state in a first slice of atmosphere and by incremental process in th...
Wireless Channel Propagation Models Evaluation
Raikel Bordón López; Reinier Alonso Quintana; Samuel Montejo Sánchez
2012-01-01
In the design of wireless communications systems, channel modelling is an efficient alternative to predict the path loss. In this paper we present a comparative study between Okumura, Hata, Walfisch-Bertoni and Walfisch-Ikegami propagation models. We present a developed software tool, which is useful to evaluate these models from a graphical user interface. The main objective is to analyze and compare path loss predictions, taking into account different environment conditions and a common val...
Interprocedural Analysis with Lazy Propagation
DEFF Research Database (Denmark)
Jensen, Simon Holm; Møller, Anders; Thiemann, Peter
2010-01-01
We propose lazy propagation as a technique for flow- and context-sensitive interprocedural analysis of programs with objects and first-class functions where transfer functions may not be distributive. The technique is described formally as a systematic modification of a variant of the monotone fr...... framework and its theoretical properties are shown. It is implemented in a type analysis tool for JavaScript where it results in a significant improvement in performance....
Photon propagator in skewon electrodynamics
Itin, Yakov
2015-01-01
Electrodynamics with a local and linear constitutive law is used as a framework for models violating Lorentz covariance. The constitutive tensor of such a construction is irreducibly decomposed into three independent pieces. The principal part is the anisotropic generalisation of the standard electrodynamics. The two other parts, axion and skewon, represent non-classical modifications of electrodynamics. We derive the expression for the photon propagator in the Minkowski spacetime endowed wit...
Wave Propagation in Modified Gravity
Lindroos, Jan Ø; Mota, David F
2015-01-01
We investigate the propagation of scalar waves induced by matter sources in the context of scalar-tensor theories of gravity which include screening mechanisms for the scalar degree of freedom. The usual approach when studying these theories in the non-linear regime of cosmological perturbations is based on the assumption that scalar waves travel at the speed of light. Within General Relativity such approximation is good and leads to no loss of accuracy in the estimation of observables. We find, however, that mass terms and non-linearities in the equations of motion lead to propagation and dispersion velocities significantly different from the speed of light. As the group velocity is the one associated to the propagation of signals, a reduction of its value has direct impact on the behavior and dynamics of nonlinear structures within modified gravity theories with screening. For instance, the internal dynamics of galaxies and satellites submerged in large dark matter halos could be affected by the fact that t...
Stochastic and epistemic uncertainty propagation in LCA
DEFF Research Database (Denmark)
Clavreul, Julie; Guyonnet, Dominique; Tonini, Davide;
2013-01-01
When performing uncertainty propagation, most LCA practitioners choose to represent uncertainties by single probability distributions and to propagate them using stochastic methods. However, the selection of single probability distributions appears often arbitrary when faced with scarce informati...
47 CFR 80.767 - Propagation curve.
2010-10-01
... 47 Telecommunication 5 2010-10-01 2010-10-01 false Propagation curve. 80.767 Section 80.767... MARITIME SERVICES Standards for Computing Public Coast Station VHF Coverage § 80.767 Propagation curve. The propagation graph, § 80.767 Graph 1, must be used in computing the service area contour. The graph...
49 CFR 195.111 - Fracture propagation.
2010-10-01
... 49 Transportation 3 2010-10-01 2010-10-01 false Fracture propagation. 195.111 Section 195.111... PIPELINE Design Requirements § 195.111 Fracture propagation. A carbon dioxide pipeline system must be designed to mitigate the effects of fracture propagation....
Fast Heat Pulse Propagation by Turbulence Spreading
DEFF Research Database (Denmark)
Naulin, Volker; Juul Rasmussen, Jens; Mantica, Paola;
2009-01-01
The propagation of a cold pulse initiated by edge cooling in JET is compared to propagation of the heat wave originating from a modulation of the heating source roughly at mid radius. It is found that the propagation of the cold pulse is by far faster than what could be predicted on the basis of ...
Propagating separable equalities in an MDD store
DEFF Research Database (Denmark)
Hadzic, Tarik; Hooker, John N.; Tiedemann, Peter
2008-01-01
We present a propagator that achieves MDD consistency for a separable equality over an MDD (multivalued decision diagram) store in pseudo-polynomial time. We integrate the propagator into a constraint solver based on an MDD store introduced in [1]. Our experiments show that the new propagator...
Cutting line determination for plant propagation
Lo, Li-Yun; Hsia, Chi-Chun; Sun, Hua-Hong; Chen, Hsiang-Ju; Wu, Xin-Ting; Hu, Min-Chun
2014-01-01
Investigating an efficient method for plant propagation can help not only prevent extinction of plants but also facilitate the development of botanical industries. In this paper, we propose to use image processing techniques to determine the cutting-line for the propagation of two kinds of plants, i.e. Melaleuca alternifolia Cheel and Cinnamomum kanehirai Hay, which have quite different characteristics in terms of shape, structure, and propagation way (e.g. propagation by seeding and rooting, respectively). The proposed cutting line determination methods can be further applied to develop an automatic control system to reduce labor cost and increase the effectiveness of plant propagation.
Tropospheric radiowave propagation beyond the horizon
Du Castel, François
1966-01-01
Tropospheric Radiowave Propagation Beyond the Horizon deals with developments concerning the tropospheric propagation of ultra-short radio waves beyond the horizon, with emphasis on the relationship between the theoretical and the experimental. Topics covered include the general conditions of propagation in the troposphere; general characteristics of propagation beyond the horizon; and attenuation in propagation. This volume is comprised of six chapters and begins with a brief historical look at the various stages that have brought the technique of transhorizon links to its state of developmen
Wave Propagation in Bimodular Geomaterials
Kuznetsova, Maria; Pasternak, Elena; Dyskin, Arcady; Pelinovsky, Efim
2016-04-01
Observations and laboratory experiments show that fragmented or layered geomaterials have the mechanical response dependent on the sign of the load. The most adequate model accounting for this effect is the theory of bimodular (bilinear) elasticity - a hyperelastic model with different elastic moduli for tension and compression. For most of geo- and structural materials (cohesionless soils, rocks, concrete, etc.) the difference between elastic moduli is such that their modulus in compression is considerably higher than that in tension. This feature has a profound effect on oscillations [1]; however, its effect on wave propagation has not been comprehensively investigated. It is believed that incorporation of bilinear elastic constitutive equations within theory of wave dynamics will bring a deeper insight to the study of mechanical behaviour of many geomaterials. The aim of this paper is to construct a mathematical model and develop analytical methods and numerical algorithms for analysing wave propagation in bimodular materials. Geophysical and exploration applications and applications in structural engineering are envisaged. The FEM modelling of wave propagation in a 1D semi-infinite bimodular material has been performed with the use of Marlow potential [2]. In the case of the initial load expressed by a harmonic pulse loading strong dependence on the pulse sign is observed: when tension is applied before compression, the phenomenon of disappearance of negative (compressive) strains takes place. References 1. Dyskin, A., Pasternak, E., & Pelinovsky, E. (2012). Periodic motions and resonances of impact oscillators. Journal of Sound and Vibration, 331(12), 2856-2873. 2. Marlow, R. S. (2008). A Second-Invariant Extension of the Marlow Model: Representing Tension and Compression Data Exactly. In ABAQUS Users' Conference.
Propagation phenomena in real world networks
Fay, Damien; Gabryś, Bogdan
2015-01-01
“Propagation, which looks at spreading in complex networks, can be seen from many viewpoints; it is undesirable, or desirable, controllable, the mechanisms generating that propagation can be the topic of interest, but in the end all depends on the setting. This book covers leading research on a wide spectrum of propagation phenomenon and the techniques currently used in its modelling, prediction, analysis and control. Fourteen papers range over topics including epidemic models, models for trust inference, coverage strategies for networks, vehicle flow propagation, bio-inspired routing algorithms, P2P botnet attacks and defences, fault propagation in gene-cellular networks, malware propagation for mobile networks, information propagation in crisis situations, financial contagion in interbank networks, and finally how to maximize the spread of influence in social networks. The compendium will be of interest to researchers, those working in social networking, communications and finance and is aimed at providin...
Energy propagation throughout chemical networks.
Le Saux, Thomas; Plasson, Raphaël; Jullien, Ludovic
2014-06-14
In order to maintain their metabolism from an energy source, living cells rely on chains of energy transfer involving functionally identified components and organizations. However, propagation of a sustained energy flux through a cascade of reaction cycles has only been recently reproduced at a steady state in simple chemical systems. As observed in living cells, the spontaneous onset of energy-transfer chains notably drives local generation of singular dissipative chemical structures: continuous matter fluxes are dynamically maintained at boundaries between spatially and chemically segregated zones but in the absence of any membrane or predetermined material structure. PMID:24681890
Continuous propagation of microalgae. III.
Hanson, D. T.; Fredrickson, A. G.; Tsuchiya, H. M.
1971-01-01
Data are presented which give the specific photosynthetic rate and the specific utilization rates of urea and carbon dioxide as functions of specific growth rate for Chlorella. A mathematical model expresses a set of mass balance relations between biotic and environmental materials. Criteria of validity are used to test this model. Predictive procedures are complemented by a particular model of microbial growth. Methods are demonstrated for predicting substrate utilization rates, production rates of extracellular metabolites, growth limiting conditions, and photosynthetic quotients from propagator variables.
Photon propagator in skewon electrodynamics
Itin, Yakov
2015-01-01
Electrodynamics with a local and linear constitutive law is used as a framework for models violating Lorentz covariance. The constitutive tensor of such a construction is irreducibly decomposed into three independent pieces. The principal part is the anisotropic generalisation of the standard electrodynamics. The two other parts, axion and skewon, represent non-classical modifications of electrodynamics. We derive the expression for the photon propagator in the Minkowski spacetime endowed with a skewon field. For a relatively small (antisymmetric) skewon field, a modified Coulom law is exhibited.
Wave propagation in linear electrodynamics
Obukhov, Yu N; Rubilar, G F; Obukhov, Yuri N.; Fukui, Tetsuo; Rubilar, Guillermo
2000-01-01
The Fresnel equation governing the propagation of electromagnetic waves for the most general linear constitutive law is derived. The wave normals are found to lie, in general, on a fourth order surface. When the constitutive coefficients satisfy the so-called reciprocity or closure relation, one can define a duality operator on the space of the two-forms. We prove that the closure relation is a sufficient condition for the reduction of the fourth order surface to the familiar second order light cone structure. We finally study whether this condition is also necessary.
Wave propagation and group velocity
Brillouin, Léon
1960-01-01
Wave Propagation and Group Velocity contains papers on group velocity which were published during the First World War and are missing in many libraries. It introduces three different definitions of velocities: the group velocity of Lord Rayleigh, the signal velocity of Sommerfeld, and the velocity of energy transfer, which yields the rate of energy flow through a continuous wave and is strongly related to the characteristic impedance. These three velocities are identical for nonabsorbing media, but they differ considerably in an absorption band. Some examples are discussed in the last chapter
Ultrasound propagation measurements and applications
Lynnworth, L. C.; Papadakis, E. P.; Fowler, K. A.
1977-01-01
This paper reviews three systems designed for accurately measuring the propagation of ultrasonic pulses. The three systems are presented in order of velocity-measuring precision: + or - 100 ns, + or - 1 ns, + or - 0.2 ns. Also included is a brief discussion of phase and group velocities, with reference to dispersive, highly attenuating materials. Measurement of attenuation by pulse-echo buffer rod techniques is described briefly. These techniques and instruments have been used to measure sound velocity and attenuation in a variety of materials and shapes, over a wide temperature range.
Theory of electromagnetic wave propagation
Papas, Charles Herach
1965-01-01
While there are so many books on general electromagnetic theory for graduate-level students, there are significantly fewer that concentrate on the radiation aspects as does this well-known work. Interfacing physics and electrical engineering, Dr. Papas's clearly written text discusses highly important topics in the theory of electromagnetic wave propagation and antennas in a way that reveals the inherent simplicity of the basic ideas and their logical development from the Maxwell field equation.Chapter 1: Maxwell's field equations and those parts of electromagnetic field theory necessary for u
Högberg, Karl-Anders
2003-01-01
The use of vegetative mass propagation in practical forestry with Norway spruce (Picea abies (L.) Karst.) is limited at present, although its potential to deliver high genetic gains is obvious. The objective of this thesis was to study possibilities and limitations of vegetative propagation when applied in different parts of a breeding/mass propagation system for Norway spruce. Two vegetative propagation methods were studied: somatic embryogenesis and cutting propagation. Somatic embryogenesi...
Uncertainty propagation in nuclear forensics
International Nuclear Information System (INIS)
Uncertainty propagation formulae are presented for age dating in support of nuclear forensics. The age of radioactive material in this context refers to the time elapsed since a particular radionuclide was chemically separated from its decay product(s). The decay of the parent radionuclide and ingrowth of the daughter nuclide are governed by statistical decay laws. Mathematical equations allow calculation of the age of specific nuclear material through the atom ratio between parent and daughter nuclides, or through the activity ratio provided that the daughter nuclide is also unstable. The derivation of the uncertainty formulae of the age may present some difficulty to the user community and so the exact solutions, some approximations, a graphical representation and their interpretation are presented in this work. Typical nuclides of interest are actinides in the context of non-proliferation commitments. The uncertainty analysis is applied to a set of important parent–daughter pairs and the need for more precise half-life data is examined. - Highlights: • Uncertainty propagation formulae for age dating with nuclear chronometers. • Applied to parent–daughter pairs used in nuclear forensics. • Investigated need for better half-life data
Propagation engineering in radio links design
Ghasemi, Abdollah; Ghasemi, Farshid
2013-01-01
Propagation Engineering in Radio Link Design covers the basic principles of radiowaves propagation in a practical manner. This fundamental understanding enables the readers to design radio links efficiently. This book elaborates on new achievements as well as recently developed propagation models. This is in addition to a comprehensive overview of fundamentals of propagation in various scenarios. It examines theoretical calculations, approaches and applied procedures needed for radio links design. The authors study and analysis of the main propagation phenomena and its mechanisms based on the recommendations of International Telecommunications Union, (ITU). The book has been organized in 9 chapters and examines the role of antennas and passive reflectors in radio services, propagation mechanisms related to radar, satellite, short distance, broadcasting and trans-horizon radio links, with two chapters devoted to radio noise and main parameters of radio link design. The book presents some 278 illustration...
Fiber propagation of vector modes
Ndagano, Bienvenu; McLaren, Melanie; Duparre, Michael; Forbes, Andrew
2015-01-01
Here we employ both dynamic and geometric phase control of light to produce radially modulated vector-vortex modes, the natural modes of optical fibers. We then measure these modes using a vector modal decomposition set-up as well as a tomography measurement, the latter providing a degree of the non-separability of the vector states, akin to an entanglement measure for quantum states. We demonstrate the versatility of the approach by creating the natural modes of a step-index fiber, which are known to exhibit strong mode coupling, and measure the modal cross-talk and non-separability decay during propagation. Our approach will be useful in mode division multiplexing schemes for transport of classical and quantum states.
Singularities formation, structure, and propagation
Eggers, J
2015-01-01
Many key phenomena in physics and engineering are described as singularities in the solutions to the differential equations describing them. Examples covered thoroughly in this book include the formation of drops and bubbles, the propagation of a crack and the formation of a shock in a gas. Aimed at a broad audience, this book provides the mathematical tools for understanding singularities and explains the many common features in their mathematical structure. Part I introduces the main concepts and techniques, using the most elementary mathematics possible so that it can be followed by readers with only a general background in differential equations. Parts II and III require more specialised methods of partial differential equations, complex analysis and asymptotic techniques. The book may be used for advanced fluid mechanics courses and as a complement to a general course on applied partial differential equations.
Progress in front propagation research
Fort, Joaquim; Pujol, Toni
2008-08-01
We review the progress in the field of front propagation in recent years. We survey many physical, biophysical and cross-disciplinary applications, including reduced-variable models of combustion flames, Reid's paradox of rapid forest range expansions, the European colonization of North America during the 19th century, the Neolithic transition in Europe from 13 000 to 5000 years ago, the description of subsistence boundaries, the formation of cultural boundaries, the spread of genetic mutations, theory and experiments on virus infections, models of cancer tumors, etc. Recent theoretical advances are unified in a single framework, encompassing very diverse systems such as those with biased random walks, distributed delays, sequential reaction and dispersion, cohabitation models, age structure and systems with several interacting species. Directions for future progress are outlined.
Pulse Propagation on close conductors
Dieckmann, A
2001-01-01
The propagation and reflection of arbitrarily shaped pulses on non-dispersive parallel conductors of finite length with user defined cross section is simulated employing the discretized telegraph equation. The geometry of the system of conductors and the presence of dielectric material determine the capacities and inductances that enter the calculation. The values of these parameters are found using an iterative Laplace equation solving procedure and confirmed for certain calculable geometries including the line charge inside a box. The evolving pulses and the resulting crosstalk can be plotted at any instant and - in the Mathematica notebook version of this report - be looked at in an animation. As an example a differential pair of microstrips as used in the ATLAS vertex detector is analysed.
Negative Tree Reweighted Belief Propagation
Liu, Qiang
2012-01-01
We introduce a new class of lower bounds on the log partition function of a Markov random field which makes use of a reversed Jensen's inequality. In particular, our method approximates the intractable distribution using a linear combination of spanning trees with negative weights. This technique is a lower-bound counterpart to the tree-reweighted belief propagation algorithm, which uses a convex combination of spanning trees with positive weights to provide corresponding upper bounds. We develop algorithms to optimize and tighten the lower bounds over the non-convex set of valid parameter values. Our algorithm generalizes mean field approaches (including naive and structured mean field approximations), which it includes as a limiting case.
Error propagation in polarimetric demodulation
Ramos, A Asensio
2008-01-01
The polarization analysis of the light is typically carried out using modulation schemes. The light of unknown polarization state is passed through a set of known modulation optics and a detector is used to measure the total intensity passing the system. The modulation optics is modified several times and, with the aid of such several measurements, the unknown polarization state of the light can be inferred. How to find the optimal demodulation process has been investigated in the past. However, since the modulation matrix has to be measured for a given instrument and the optical elements can present problems of repeatability, some uncertainty is present in the elements of the modulation matrix and/or covariances between these elements. We analyze in detail this issue, presenting analytical formulae for calculating the covariance matrix produced by the propagation of such uncertainties on the demodulation matrix, on the inferred Stokes parameters and on the efficiency of the modulation process. We demonstrate...
Light propagation in nanorod arrays
Rahachou, A I
2006-01-01
We study propagation of TM- and TE-polarized light in two-dimensional arrays of silver nanorods of various diameters in a gelatin background. We calculate the transmittance, reflectance and absorption of arranged and disordered nanorod arrays and compare the exact numerical results with the predictions of the Maxwell-Garnett effective-medium theory. We show that interactions between nanorods, multipole contributions and formations of photonic gaps affect strongly the transmittance spectra that cannot be accounted for in terms of the conventional effective-medium theory. We also demonstrate and explain the degradation of the transmittance in arrays with randomly located rods as well as weak influence of their fluctuating diameter. For TM modes we outline the importance of skin-effect, which causes the full reflection of the incoming light. We then illustrate the possibility of using periodic arrays of nanorods as high-quality polarizers.
Progress in front propagation research
International Nuclear Information System (INIS)
We review the progress in the field of front propagation in recent years. We survey many physical, biophysical and cross-disciplinary applications, including reduced-variable models of combustion flames, Reid's paradox of rapid forest range expansions, the European colonization of North America during the 19th century, the Neolithic transition in Europe from 13 000 to 5000 years ago, the description of subsistence boundaries, the formation of cultural boundaries, the spread of genetic mutations, theory and experiments on virus infections, models of cancer tumors, etc. Recent theoretical advances are unified in a single framework, encompassing very diverse systems such as those with biased random walks, distributed delays, sequential reaction and dispersion, cohabitation models, age structure and systems with several interacting species. Directions for future progress are outlined
Backward Propagation of Otoacoustic Emissions
Institute of Scientific and Technical Information of China (English)
HE Wenxuan; REN Tianying
2006-01-01
Normal mammalian ears not only detect but also generate sounds. The ear-generated sounds, I.e., otoacoustic emissions (OAEs), can be measured in the external ear canal using a tiny sensitive microphone. In spite of wide applications of OAEs in diagnosis of hearing disorders and in studies of cochlear functions, the question of how the cochlea emits sounds remains unclear. The current dominating theory is that the OAE reaches the cochlear base through a backward traveling wave. However, recently published works, including experimental data on the spatial pattern ofbasilar membrane vibrations at the emission frequency, demonstrated only forward traveling waves and no signs of backward traveling waves. These new findings indicate that the cochlea emits sounds through cochlear fluids as compression waves rather than through the basilar membrane as backward traveling waves. This article reviews different mechanisms of the backward propagation of OAEs and summarizes recent experimental results.
Constraint Propagation as Information Maximization
Abdallah, A Nait
2012-01-01
Dana Scott used the partial order among partial functions for his mathematical model of recursively defined functions. He interpreted the partial order as one of information content. In this paper we elaborate on Scott's suggestion of regarding computation as a process of information maximization by applying it to the solution of constraint satisfaction problems. Here the method of constraint propagation can be interpreted as decreasing uncertainty about the solution -- that is, as gain in information about the solution. As illustrative example we choose numerical constraint satisfaction problems to be solved by interval constraints. To facilitate this approach to constraint solving we formulate constraint satisfaction problems as formulas in predicate logic. This necessitates extending the usual semantics for predicate logic so that meaning is assigned not only to sentences but also to formulas with free variables.
Vibration Propagation in Spider Webs
Hatton, Ross; Otto, Andrew; Elias, Damian
Due to their poor eyesight, spiders rely on web vibrations for situational awareness. Web-borne vibrations are used to determine the location of prey, predators, and potential mates. The influence of web geometry and composition on web vibrations is important for understanding spider's behavior and ecology. Past studies on web vibrations have experimentally measured the frequency response of web geometries by removing threads from existing webs. The full influence of web structure and tension distribution on vibration transmission; however, has not been addressed in prior work. We have constructed physical artificial webs and computer models to better understand the effect of web structure on vibration transmission. These models provide insight into the propagation of vibrations through the webs, the frequency response of the bare web, and the influence of the spider's mass and stiffness on the vibration transmission patterns. Funded by NSF-1504428.
Progress in front propagation research
Energy Technology Data Exchange (ETDEWEB)
Fort, Joaquim [Departament de Fisica, Campus de Montilivi, Universitat de Girona, 17071 Girona, Catalonia (Spain); Pujol, Toni [Departament de Mecanica, Campus de Montilivi, Universitat de Girona, 17071 Girona, Catalonia (Spain)
2008-08-15
We review the progress in the field of front propagation in recent years. We survey many physical, biophysical and cross-disciplinary applications, including reduced-variable models of combustion flames, Reid's paradox of rapid forest range expansions, the European colonization of North America during the 19th century, the Neolithic transition in Europe from 13 000 to 5000 years ago, the description of subsistence boundaries, the formation of cultural boundaries, the spread of genetic mutations, theory and experiments on virus infections, models of cancer tumors, etc. Recent theoretical advances are unified in a single framework, encompassing very diverse systems such as those with biased random walks, distributed delays, sequential reaction and dispersion, cohabitation models, age structure and systems with several interacting species. Directions for future progress are outlined.
Noise sustained propagation: Local versus global noise
Locher, M.; Chatterjee, N.; Marchesoni, F.; Ditto, W. L.; Hunt, E. R.
2000-01-01
We expand on prior results on noise supported signal propagation in arrays of coupled bistable elements. We present and compare experimental and numerical results for kink propagation under the influence of local and global fluctuations. As demonstrated previously for local noise, an optimum range of global noise power exists for which the medium acts as a reliable transmission ``channel''. We discuss implications for propagation failure in a model of cardiac tissue and present a general theo...
Correlation length facilitates Voigt wave propagation
Mackay, Tom G.; Lakhtakia, Akhlesh
2004-01-01
Under certain circumstances, Voigt waves can propagate in a biaxial composite medium even though the component material phases individually do not support Voigt wave propagation. This phenomenon is considered within the context of the strong--permittivity--fluctuation theory. A generalized implementation of the theory is developed in order to explore the propagation of Voigt waves in any direction. It is shown that the correlation length--a parameter characterizing the distributional statisti...
Removing Propagation Redundant Constraints in Redundant Modeling
Choi, Chiu Wo; Lee, Jimmy Ho-Man; Stuckey, Peter J.
2004-01-01
A widely adopted approach to solving constraint satisfaction problems combines systematic tree search with various degrees of constraint propagation for pruning the search space. One common technique to improve the execution efficiency is to add redundant constraints, which are constraints logically implied by others in the problem model. However, some redundant constraints are propagation redundant and hence do not contribute additional propagation information to the constraint solver. Redun...
Aspects of HF radio propagation
Directory of Open Access Journals (Sweden)
Stephane Saillant
2009-06-01
Full Text Available
radio systems. From the point of view Working Group 2 of the COST 296 Action, interest lies with effects associated
with propagation via the ionosphere of signals within the HF band. Several aspects are covered in this paper:
a The directions of arrival and times of flight of signals received over a path oriented along the trough have
been examined and several types of propagation effects identified. Of particular note, combining the HF observations
with satellite measurements has identified the presence of irregularities within the floor of the trough that
result in propagation displaced from the great circle direction. An understanding of the propagation effects that
result in deviations of the signal path from the great circle direction are of particular relevance to the operation
of HF radiolocation systems.
b Inclusion of the results from the above mentioned measurements into a propagation model of the northerly
ionosphere (i.e. those regions of the ionosphere located poleward of, and including, the mid-latitude trough
and the use of this model to predict the coverage expected from transmitters where the signals impinge on the
northerly ionosphere
Detonation Propagation Characteristics of Superposition Explosive Materials
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
In order to investigate detonation propagation characteristics of different charge patterns,the detonation velocities of superposition strip-shaped charges made up of a detonating cord and explosives were measured by a detonation velocity measuring instrument under conditions of different ignition.The experimental results and theoretical analysis show that the maximum detonation propagation velocity depends on the explosive materials with the maximum velocity among all the explosive materials.Using detonating cord in a superposition charge can shorten detonation propagation time and improve the efficiency of explosive energy.The measurement method of detonation propagation velocity and experimental results are presented and investigated.
Propagation handbook for wireless communication system design
Crane, Robert K
2003-01-01
PROPAGATION PHENOMENA AFFECTING WIRELESS SYSTEMS Types of SystemsDesign Criteria Antenna Considerations Propagation Effects Propagation Models Model Verification Statistics and RiskList of Symbols ReferencesPROPAGATION FUNDAMENTALSMaxwell's EquationsPlane Waves Spherical Waves Reflection and Refraction Geometrical OpticsRay TracingScalar Diffraction Theory Geometrical Theory of Diffraction List of Symbols ReferencesABSORPTION Molecular Absorption Absorption on a Slant Path ACTS Statistics List of Symbols ReferencesREFRACTION Ray BendingPath Delay ScintillationList of Symbols ReferencesATTENUAT
Voigt-wave propagation in active materials
Mackay, Tom G
2015-01-01
If a dissipative anisotropic dielectric material, characterized by the permittivity matrix $\\underline{\\underline{\\epsilon}}$, supports Voigt-wave propagation, then so too does the analogous active material characterized by the permittivity matrix $\\underline{\\underline{{\\tilde{\\epsilon}}}}$, where $\\underline{\\underline{{\\tilde{\\epsilon}}}}$ is the hermitian conjugate of $\\underline{\\underline{\\epsilon}}$. Consequently, a dissipative material that supports Voigt-wave propagation can give rise to a material that supports the propagation of Voigt waves with attendant linear gain in amplitude with propagation distance, by infiltration with an active dye.
Correlation length facilitates Voigt wave propagation
Mackay, Tom G
2004-01-01
Under certain circumstances, Voigt waves can propagate in a biaxial composite medium even though the component material phases individually do not support Voigt wave propagation. This phenomenon is considered within the context of the strong--permittivity--fluctuation theory. A generalized implementation of the theory is developed in order to explore the propagation of Voigt waves in any direction. It is shown that the correlation length--a parameter characterizing the distributional statistics of the component material phases--plays a crucial role in facilitating the propagation of Voigt waves in the homogenized composite medium.
Terrestrial propagation of long electromagnetic waves
Galejs, Janis; Fock, V A
2013-01-01
Terrestrial Propagation of Long Electromagnetic Waves deals with the propagation of long electromagnetic waves confined principally to the shell between the earth and the ionosphere, known as the terrestrial waveguide. The discussion is limited to steady-state solutions in a waveguide that is uniform in the direction of propagation. Wave propagation is characterized almost exclusively by mode theory. The mathematics are developed only for sources at the ground surface or within the waveguide, including artificial sources as well as lightning discharges. This volume is comprised of nine chapte
Explosion propagation in inert porous media.
Ciccarelli, G
2012-02-13
Porous media are often used in flame arresters because of the high surface area to volume ratio that is required for flame quenching. However, if the flame is not quenched, the flow obstruction within the porous media can promote explosion escalation, which is a well-known phenomenon in obstacle-laden channels. There are many parallels between explosion propagation through porous media and obstacle-laden channels. In both cases, the obstructions play a duel role. On the one hand, the obstruction enhances explosion propagation through an early shear-driven turbulence production mechanism and then later by shock-flame interactions that occur from lead shock reflections. On the other hand, the presence of an obstruction can suppress explosion propagation through momentum and heat losses, which both impede the unburned gas flow and extract energy from the expanding combustion products. In obstacle-laden channels, there are well-defined propagation regimes that are easily distinguished by abrupt changes in velocity. In porous media, the propagation regimes are not as distinguishable. In porous media the entire flamefront is affected, and the effects of heat loss, turbulence and compressibility are smoothly blended over most of the propagation velocity range. At low subsonic propagation speeds, heat loss to the porous media dominates, whereas at higher supersonic speeds turbulence and compressibility are important. This blending of the important phenomena results in no clear transition in propagation mechanism that is characterized by an abrupt change in propagation velocity. This is especially true for propagation velocities above the speed of sound where many experiments performed with fuel-air mixtures show a smooth increase in the propagation velocity with mixture reactivity up to the theoretical detonation wave velocity. PMID:22213663
Uncertainty Propagation in an Ecosystem Nutrient Budget.
New aspects and advancements in classical uncertainty propagation methods were used to develop a nutrient budget with associated error for a northern Gulf of Mexico coastal embayment. Uncertainty was calculated for budget terms by propagating the standard error and degrees of fr...
Robust varieties and vigorous propagation material
Sukkel, W.; Hommes, M.
2009-01-01
Research on organic plant breeding and propagation material in the Netherlands is booming. This research is carried out in close cooperation with growers, breeders and the seed industry. Is organic breeding and propagation really different from the conventional system? And which types of varieties a
Bolus propagation in pig ureter in vitro
van Mastrigt, Ron; Tauecchio, E.A.
1984-01-01
textabstractPig ureters were made to propagate injected fluid boluses by electrical stimulation in vitro. The propagation velocity was determined from EMG measurements made at several points along the ureter. It was found that this velocity varied both along the ureter and as a function of time, and that it was related to the contraction pressure but not to the bolus size.
Nondestructive evaluation of pyroshock propagation using hydrocodes
Lee, Juho; Hwang, Dae-Hyeon; Jang, Jae-Kyeong; Lee, Jung-Ryul; Han, Jae-Hung
2016-04-01
Pyroshock or pyrotechnic shock generated by explosive events of pyrotechnic devices can induce fatal failures in electronic payloads. Therefore, understanding and estimation of pyroshock propagation through complex structures are necessary. However, an experimental approach using real pyrotechnic devices is quite burdensome because pyrotechnic devices can damage test structures and newly manufactured test structures are necessary for each experiment. Besides, pyrotechnic experiments are quite expensive, time-consuming, and dangerous. Consequently, nondestructive evaluation (NDE) of pyroshock propagation without using real pyrotechnic devices is necessary. In this study, nondestructive evaluation technique for pyroshock propagation estimation using hydrocodes is proposed. First, pyroshock propagation is numerically analyzed using AUTODYN, a commercial hydrocodes. Hydrocodes can handle stress wave propagation including elastic, plastic, and shock wave in the time domain. Test structures are modeled and pyroshock time history is applied to where the pyroshock propagation originates. Numerical NDE results of pyroshock propagation on test structures are analyzed in terms of acceleration time histories and acceleration shock response spectra (SRS) results. To verify the proposed numerical methodology, impact tests using airsoft gun are performed. The numerical analysis results for the impact tests are compared with experimental results and they show good agreements. The proposed numerical techniques enable us to nondestructively characterize pyroshock propagation.
Steps toward quantitative infrasound propagation modeling
Waxler, Roger; Assink, Jelle; Lalande, Jean-Marie; Velea, Doru
2016-04-01
Realistic propagation modeling requires propagation models capable of incorporating the relevant physical phenomena as well as sufficiently accurate atmospheric specifications. The wind speed and temperature gradients in the atmosphere provide multiple ducts in which low frequency sound, infrasound, can propagate efficiently. The winds in the atmosphere are quite variable, both temporally and spatially, causing the sound ducts to fluctuate. For ground to ground propagation the ducts can be borderline in that small perturbations can create or destroy a duct. In such cases the signal propagation is very sensitive to fluctuations in the wind, often producing highly dispersed signals. The accuracy of atmospheric specifications is constantly improving as sounding technology develops. There is, however, a disconnect between sound propagation and atmospheric specification in that atmospheric specifications are necessarily statistical in nature while sound propagates through a particular atmospheric state. In addition infrasonic signals can travel to great altitudes, on the order of 120 km, before refracting back to earth. At such altitudes the atmosphere becomes quite rare causing sound propagation to become highly non-linear and attenuating. Approaches to these problems will be presented.
ATA gas propagation - 1 foot tank experiment
International Nuclear Information System (INIS)
The first gas propagation experiment on ATA is planned to be conducted in a 1-foot diameter tank of up to 10 m length. The primary objectives are to measure beam parameters at injection to determine whether the desired beam conditioning is achieved, and to observe how such conditioned beams propagate in air and neon
Diagnostics for the ATA beam propagation experiments
Energy Technology Data Exchange (ETDEWEB)
Fessenden, T.J.; Atchison, W.L.; Barletta, W.A.
1981-11-01
This report contains a discussion of the diagnostics required for the beam propagation experiment to be done with the ATA accelerator. Included are a list of the diagnostics needed; a description of the ATA experimental environment; the status of beam diagnostics available at Livermore including recent developments, and a prioritized list of accelerator and propagation diagnostics under consideration or in various stages of development.
Content Propagation in Online Social Networks
Blenn, N.
2014-01-01
This thesis presents methods and techniques to analyze content propagation within online social networks (OSNs) using a graph theoretical approach. Important factors and different techniques to analyze and describe content propagation, starting from the smallest entity in a network, representing a u
Wave Beam Propagation Through Density Fluctuations
Balakin, A. A.; Bertelli, N.; Westerhof, E.
2011-01-01
Perturbations induced by edge density fluctuations on electron cyclotron wave beams propagating in fusion plasmas are studied by means of a quasi-optical code. The effects of such fluctuations are illustrated here by showing the beam propagation in the case of single harmonic perturbations to the wa
Topology optimization of wave-propagation problems
DEFF Research Database (Denmark)
Jensen, Jakob Søndergaard; Sigmund, Ole
2006-01-01
Topology optimization is demonstrated as a useful tool for systematic design of wave-propagation problems. We illustrate the applicability of the method for optical, acoustic and elastic devices and structures.......Topology optimization is demonstrated as a useful tool for systematic design of wave-propagation problems. We illustrate the applicability of the method for optical, acoustic and elastic devices and structures....
Initiation and Propagation of Coronal Mass Ejections
Indian Academy of Sciences (India)
P. F. Chen
2008-03-01
This paper reviews recent progress in the research on the initiation and propagation of CMEs. In the initiation part, several trigger mechanisms are discussed; in the propagation part, the observations and modelings of EIT waves/dimmings, as the EUV counterparts of CMEs, are described.
Propagation testing multi-cell batteries.
Energy Technology Data Exchange (ETDEWEB)
Orendorff, Christopher J.; Lamb, Joshua; Steele, Leigh Anna Marie; Spangler, Scott Wilmer
2014-10-01
Propagation of single point or single cell failures in multi-cell batteries is a significant concern as batteries increase in scale for a variety of civilian and military applications. This report describes the procedure for testing failure propagation along with some representative test results to highlight the potential outcomes for different battery types and designs.
Rapid vegetative propagation method for carob
Many fruit species are propagated by vegetative methods such as budding, grafting, cutting, suckering, layering etc. to avoid heterozygosity. Carob trees (Ceratonia siliqua L.) are of highly economical value and it is among the most difficult-to-propagate fruit species. In this study, air-layering p...
Topographic effects on infrasound propagation.
McKenna, Mihan H; Gibson, Robert G; Walker, Bob E; McKenna, Jason; Winslow, Nathan W; Kofford, Aaron S
2012-01-01
Infrasound data were collected using portable arrays in a region of variable terrain elevation to quantify the effects of topography on observed signal amplitude and waveform features at distances less than 25 km from partially contained explosive sources during the Frozen Rock Experiment (FRE) in 2006. Observed infrasound signals varied in amplitude and waveform complexity, indicating propagation effects that are due in part to repeated local maxima and minima in the topography on the scale of the dominant wavelengths of the observed data. Numerical simulations using an empirically derived pressure source function combining published FRE accelerometer data and historical data from Project ESSEX, a time-domain parabolic equation model that accounted for local terrain elevation through terrain-masking, and local meteorological atmospheric profiles were able to explain some but not all of the observed signal features. Specifically, the simulations matched the timing of the observed infrasound signals but underestimated the waveform amplitude observed behind terrain features, suggesting complex scattering and absorption of energy associated with variable topography influences infrasonic energy more than previously observed. PMID:22280569
Crack propagation in prestressed plates
Energy Technology Data Exchange (ETDEWEB)
Farshad, M.; Flueler, P. [EMPA, Duebendorf (Switzerland)
1995-12-31
A second-order theory of initially stressed plates in the plane stress mode was used to find the dynamic stress field in the vicinity of a crack tip. Rapid crack propagation (RCP) behaviour associated with stresses caused by internal pressure and temperature was examined. The flat plate was placed under thermal conditions and was prestressed in such a way as to simulate hoop stress that may be expected in a pipe made of the same material. The presence of the tensile prestress in the thin plate raised the levels of the principal stress values and affected the direction at which the maxima of principal stress occurred. Second-order effects played an important role in the vicinity of the crack tip. Increased crack speed caused increased stress levels. There existed a limiting value at which the stresses at the crack tip became unbounded. The limiting value was affected by prestressing. The concept of simulating RCP testing of polymer pipes by a test on a conditioned plate of the same material, prestressed to simulate hoop stress caused by internal pressure, was judged to be reasonable. 6 refs. 5 figs.
S-Band propagation measurements
Briskman, Robert D.
1994-08-01
A geosynchronous satellite system capable of providing many channels of digital audio radio service (DARS) to mobile platforms within the contiguous United States using S-band radio frequencies is being implemented. The system is designed uniquely to mitigate both multipath fading and outages from physical blockage in the transmission path by use of satellite spatial diversity in combination with radio frequency and time diversity. The system also employs a satellite orbital geometry wherein all mobile platforms in the contiguous United States have elevation angles greater than 20 deg to both of the diversity satellites. Since implementation of the satellite system will require three years, an emulation has been performed using terrestrial facilities in order to allow evaluation of DARS capabilities in advance of satellite system operations. The major objective of the emulation was to prove the feasibility of broadcasting from satellites 30 channels of CD quality programming using S-band frequencies to an automobile equipped with a small disk antenna and to obtain quantitative performance data on S-band propagation in a satellite spatial diversity system.
In vitro propagation of jojoba.
Llorente, Berta E; Apóstolo, Nancy M
2013-01-01
Jojoba (Simmondsia chinensis (Link) Schn.) is a nontraditional crop in arid and semi-arid areas. Vegetative propagation can be achieved by layering, grafting, or rooting semi-hardwood cuttings, but the highest number of possible propagules is limited by the size of the plants and time of the year. Micropropagation is highly recommended strategy for obtaining jojoba elite clones. For culture initiation, single-node explants are cultivated on Murashige and Skoog medium (MS) supplemented with Gamborg's vitamins (B5), 11.1 μM BA (N(6)-benzyl-adenine), 0.5 μM IBA (indole-3-butyric acid), and 1.4 μM GA(3) (gibberellic acid). Internodal and apical cuttings proliferate on MS medium containing B5 vitamins and 4.4 μM BA. Rooting is achieved on MS medium (half strength mineral salt) amended with B5 vitamins and 14.7 μM IBA during 7 days and transferred to develop in auxin-free rooting medium. Plantlets are acclimatized using a graduated humidity regime on soil: peat: perlite (5:1:1) substrate. This micropagation protocol produces large numbers of uniform plants from selected genotypes of jojoba.
Premixed flame propagation in vertical tubes
Kazakov, Kirill A
2015-01-01
Analytical treatment of premixed flame propagation in vertical tubes with smooth walls is given. Using the on-shell flame description, equations describing quasi-steady flame with a small but finite front thickness are obtained and solved numerically. It is found that near the limits of inflammability, solutions describing upward flame propagation come in pairs having close propagation speeds, and that the effect of gravity is to reverse the burnt gas velocity profile generated by the flame. On the basis of these results, a theory of partial flame propagation driven by the gravitational field is developed. A complete explanation is given of the intricate observed behavior of limit flames, including dependence of the inflammability range on the size of the combustion domain, the large distances of partial flame propagation, and the progression of flame extinction. The role of the finite front-thickness effects is discussed in detail. Also, various mechanisms governing flame acceleration in smooth tubes are ide...
Intense electron beam propagation into vacuum
International Nuclear Information System (INIS)
The authors have performed experimental and theoretical studies of the propagation of an intense electron beam (1 MeV, 27 kA, 30 ns) into a long evacuated drift cube. In one case the beam propagates because an applied axial magnetic field immerses the entire system. In the second case a localized source of ions for charge neutralization enables the beam is propagate. In the case of a magnetically confined beam, experimental results for current propagation as a function of uniform applied magnetic field (0-1.2 Tesla) are presented for various drift tube diameters, cathode geometries, and anode aperture sizes. An analytic model of laminar beam flow is presented which predicts the space charge limited current of a solid intense relativistic electron beam (IREB) propagating in a grounded drift tube as a function of tube and diode sizes and applied magnetic field. Comparisons between the experimental and theoretical results are discussed
Phase changes in delay propagation networks
Belkoura, Seddik
2016-01-01
The analysis of the dynamics of delays propagation is one of the major topics inside Air Transport Management research. Delays are generated by the elements of the system, but their propagation is a global process fostered by relationships inside the network. If the topology of such propagation process has been extensively studied in the literature, little attention has been devoted to the fact that such topology may have a dynamical nature. Here we differentiate between two phases of the system by applying two causality metrics, respectively describing the standard phase (i.e. propagation of normal delays) and a disrupted one (corresponding to abnormal and unexpected delays). We identify the critical point triggering the change of the topology of the system, in terms of delays magnitude, using a historical data set of flights crossing Europe in 2011. We anticipate that the proposed results will open new doors towards the understanding of the delay propagation dynamics and the mitigation of extreme events.
The semiclassical propagator in fermionic Fock space
Engl, Thomas; Urbina, Juan Diego; Richter, Klaus
2014-01-01
We present a rigorous derivation of a semiclassical propagator for anticommuting (fermionic) degrees of freedom, starting from an exact representation in terms of Grassmann variables. As a key feature of our approach the anticommuting variables are integrated out exactly, and an exact path integral representation of the fermionic propagator in terms of commuting variables is constructed. Since our approach is not based on auxiliary (Hubbard-Stratonovich) fields, it surpasses the calculation of fermionic determinants yielding a standard form $\\int {\\cal D}[\\psi,\\psi^{*}] {\\rm e}^{i R[\\psi,\\psi^{*}]}$ with real actions for the propagator. These two features allow us to provide a rigorous definition of the classical limit of interacting fermionic fields and therefore to achieve the long-standing goal of a theoretically sound construction of a semiclassical van Vleck-Gutzwiller propagator in fermionic Fock space. As an application, we use our propagator to investigate how the different universality classes (ortho...
Propagation of SLF/ELF electromagnetic waves
Pan, Weiyan
2014-01-01
This book deals with the SLF/ELF wave propagation, an important branch of electromagnetic theory. The SLF/ELF wave propagation theory is well applied in earthquake electromagnetic radiation, submarine communication, thunderstorm detection, and geophysical prospecting and diagnostics. The propagation of SLF/ELF electromagnetic waves is introduced in various media like the earth-ionospheric waveguide, ionospheric plasma, sea water, earth, and the boundary between two different media or the stratified media. Applications in the earthquake electromagnetic radiation and the submarine communications are also addressed. This book is intended for scientists and engineers in the fields of radio propagation and EM theory and applications. Prof. Pan is a professor at China Research Institute of Radiowave Propagation in Qingdao (China). Dr. Li is a professor at Zhejiang University in Hangzhou (China).
Effect of Soliton Propagation in Fiber Amplifiers
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The propagation of optical solitons in fiber amplifiers is discussed by considering a model that includes linear high order dispersion, two-photon absorption, nonlinear high-order dispersion, self-induced Ramam and five-order nonlinear effects. Based on travelling wave method, the solutions of the nonlinear Schrdinger equations, and the influence on soliton propagation as well as high-order effect in the fiber amplifier are discussed in detail. It is found that because of existing five-order nonlinear effect, the solution is not of secant hyperbola type, but shows high gain state of the fiber amplifier which is very favourable to the propagation of solitons.
Photon propagator in light-shell gauge
Georgi, Howard; Kestin, Greg; Sajjad, Aqil
2016-05-01
We derive the photon propagator in light-shell gauge (LSG) vμAμ=0 , where vμ=(1,r ^ ) μ . This gauge is an important ingredient of the light-shell effective theory—an effective theory for describing high energy jet processes on a 2-dimensional spherical shell expanding at the speed of light around the point of the initial collision producing the jets. Since LSG is a noncovariant gauge, we cannot calculate the LSG propagator by using the standard procedure for covariant gauges. We therefore employ a new technique for computing the propagator, which we hope may be of relevance in other gauges as well.
Pole solutions for flame front propagation
Kupervasser, Oleg
2015-01-01
This book deals with solving mathematically the unsteady flame propagation equations. New original mathematical methods for solving complex non-linear equations and investigating their properties are presented. Pole solutions for flame front propagation are developed. Premixed flames and filtration combustion have remarkable properties: the complex nonlinear integro-differential equations for these problems have exact analytical solutions described by the motion of poles in a complex plane. Instead of complex equations, a finite set of ordinary differential equations is applied. These solutions help to investigate analytically and numerically properties of the flame front propagation equations.
Asymmetric counter propagation of domain walls
Andrade-Silva, I.; Clerc, M. G.; Odent, V.
2016-07-01
Far from equilibrium systems show different states and domain walls between them. These walls, depending on the type of connected equilibria, exhibit a rich spatiotemporal dynamics. Here, we investigate the asymmetrical counter propagation of domain walls in an in-plane-switching cell filled with a nematic liquid crystal. Experimentally, we characterize the shape and speed of the domain walls. Based on the molecular orientation, we infer that the counter propagative walls have different elastic deformations. These deformations are responsible of the asymmetric counter propagating fronts. Theoretically, based on symmetry arguments, we propose a simple bistable model under the influence of a nonlinear gradient, which qualitatively describes the observed dynamics.
Wave propagation in thermoelastic saturated porous medium
Indian Academy of Sciences (India)
M D Sharma
2008-12-01
Biot ’s theory for wave propagation in saturated porous solid is modiﬁed to study the propagation of thermoelastic waves in poroelastic medium. Propagation of plane harmonic waves is considered in isotropic poroelastic medium. Relations are derived among the wave-induced temperature in the medium and the displacements of ﬂuid and solid particles. Christoffel equations obtained are modiﬁed with the thermal as well as thermoelastic coupling parameters. These equations explain the existence and propagation of four waves in the medium. Three of the waves are attenuating longitudinal waves and one is a non-attenuating transverse wave. Thermal properties of the medium have no effect on the transverse wave. The velocities and attenuation of the longitudinal waves are computed for a numerical model of liquid-saturated sandstone. Their variations with thermal as well as poroelastic parameters are exhibited through numerical examples.
Propagation Regime of Iron Dust Flames
Tang, Francois-David; Goroshin, Samuel; Higgins, Andrew J.
2012-01-01
A flame propagating through an iron-dust mixture can propagate in two asymptotic regimes. When the characteristic time of heat transfer between particles is much smaller than the characteristic time of particle combustion, the flame propagates in the continuum regime where the heat released by reacting particles can be modelled as a space-averaged function. In contrast, when the characteristic time of heat transfer is much larger than the particle reaction time, the flame can no longer be treated as a continuum due to dominating effects associated with the discrete nature of the particle reaction. The discrete regime is characterized by weak dependence of the flame speed on the oxygen concentration compared to the continuum regime. The discrete regime is observed in flames propagating through an iron dust cloud within a gas mixture containing xenon, while the continuum regime is obtained when xenon is substituted with helium.
In vitro propagation of Paphiopedilum orchids.
Zeng, Songjun; Huang, Weichang; Wu, Kunlin; Zhang, Jianxia; Teixeira da Silva, Jaime A; Duan, Jun
2016-06-01
Paphiopedilum is one of the most popular and rare orchid genera. Members of the genus are sold and exhibited as pot plants and cut flowers. Wild populations of Paphiopedilum are under the threat of extinction due to over-collection and loss of suitable habitats. A reduction in their commercial value through large-scale propagation in vitro is an option to reduce pressure from illegal collection, to attempt to meet commercial needs and to re-establish threatened species back into the wild. Although they are commercially propagated via asymbiotic seed germination, Paphiopedilum are considered to be difficult to propagate in vitro, especially by plant regeneration from tissue culture. This review aims to cover the most important aspects and to provide an up-to-date research progress on in vitro propagation of Paphiopedilum and to emphasize the importance of further improving tissue culture protocols for ex vitro-derived explants. PMID:25582733
Universal self-similarity of propagating populations
Eliazar, Iddo; Klafter, Joseph
2010-07-01
This paper explores the universal self-similarity of propagating populations. The following general propagation model is considered: particles are randomly emitted from the origin of a d -dimensional Euclidean space and propagate randomly and independently of each other in space; all particles share a statistically common—yet arbitrary—motion pattern; each particle has its own random propagation parameters—emission epoch, motion frequency, and motion amplitude. The universally self-similar statistics of the particles’ displacements and first passage times (FPTs) are analyzed: statistics which are invariant with respect to the details of the displacement and FPT measurements and with respect to the particles’ underlying motion pattern. Analysis concludes that the universally self-similar statistics are governed by Poisson processes with power-law intensities and by the Fréchet and Weibull extreme-value laws.
The ghost propagator in Coulomb gauge
Watson, P
2010-01-01
We present results for a numerical study of the ghost propagator in Coulomb gauge whereby lattice results for the spatial gluon propagator are used as input to solving the ghost Dyson-Schwinger equation. We show that in order to solve completely, the ghost equation must be supplemented by a boundary condition (the value of the inverse ghost propagator dressing function at zero momentum) which determines if the solution is critical (zero value for the boundary condition) or subcritical (finite value). The various solutions exhibit a characteristic behavior where all curves follow the same (critical) solution when going from high to low momenta until `forced' to freeze out in the infrared to the value of the boundary condition. The boundary condition can be interpreted in terms of the Gribov gauge-fixing ambiguity; we also demonstrate that this is not connected to the renormalization. Further, the connection to the temporal gluon propagator and the infrared slavery picture of confinement is discussed.
Pulse Wave Propagation in the Arterial Tree
van de Vosse, Frans N.; Stergiopulos, Nikos
2011-01-01
The beating heart creates blood pressure and flow pulsations that propagate as waves through the arterial tree that are reflected at transitions in arterial geometry and elasticity. Waves carry information about the matter in which they propagate. Therefore, modeling of arterial wave propagation extends our knowledge about the functioning of the cardiovascular system and provides a means to diagnose disorders and predict the outcome of medical interventions. In this review we focus on the physical and mathematical modeling of pulse wave propagation, based on general fluid dynamical principles. In addition we present potential applications in cardiovascular research and clinical practice. Models of short- and long-term adaptation of the arterial system and methods that deal with uncertainties in personalized model parameters and boundary conditions are briefly discussed, as they are believed to be major topics for further study and will boost the significance of arterial pulse wave modeling even more.
Probabilistic infrasound propagation using realistic atmospheric perturbations
Smets, P.S.M.; Evers, L.G.; Näsholm, S.P.; Gibbons, S.J.
2015-01-01
This study demonstrates probabilistic infrasound propagation modeling using realistic perturbations. The ensembles of perturbed analyses, provided by the European Centre for Medium-Range Weather Forecasts (ECMWF), include error variances of both model and assimilated observations. Ensemble spread pr
In vitro propagation of Paphiopedilum orchids.
Zeng, Songjun; Huang, Weichang; Wu, Kunlin; Zhang, Jianxia; da Silva, Jaime A Teixeira; Duan, Jun
2016-01-01
Paphiopedilum is one of the most popular and rare orchid genera. Members of the genus are sold and exhibited as pot plants and cut flowers. Wild populations of Paphiopedilum are under the threat of extinction due to over-collection and loss of suitable habitats. A reduction in their commercial value through large-scale propagation in vitro is an option to reduce pressure from illegal collection, to attempt to meet commercial needs and to re-establish threatened species back into the wild. Although they are commercially propagated via asymbiotic seed germination, Paphiopedilum are considered to be difficult to propagate in vitro, especially by plant regeneration from tissue culture. This review aims to cover the most important aspects and to provide an up-to-date research progress on in vitro propagation of Paphiopedilum and to emphasize the importance of further improving tissue culture protocols for ex vitro-derived explants.
Asymptotic analysis of outwardly propagating spherical flames
Institute of Scientific and Technical Information of China (English)
Yun-Chao Wu; Zheng Chen
2012-01-01
Asymptotic analysis is conducted for outwardly propagating spherical flames with large activation energy.The spherical flame structure consists of the preheat zone,reaction zone,and equilibrium zone.Analytical solutions are separately obtained in these three zones and then asymptotically matched.In the asymptotic analysis,we derive a correlation describing the spherical flame temperature and propagation speed changing with the flame radius.This correlation is compared with previous results derived in the limit of infinite value of activation energy.Based on this correlation,the properties of spherical flame propagation are investigated and the effects of Lewis number on spherical flame propagation speed and extinction stretch rate are assessed.Moreover,the accuracy and performance of different models used in the spherical flame method are examined.It is found that in order to get accurate laminar flame speed and Markstein length,non-linear models should be used.
Propagation in Polymer Parameterised Field Theory
Varadarajan, Madhavan
2016-01-01
The Hamiltonian constraint operator in Loop Quantum Gravity acts ultralocally. Smolin has argued that this ultralocality seems incompatible with the existence of a quantum dynamics which propagates perturbations between macroscopically seperated regions of quantum geometry. We present evidence to the contrary within an LQG type `polymer' quantization of two dimensional Parameterised Field Theory (PFT). PFT is a generally covariant reformulation of free field propagation on flat spacetime. We show explicitly that while, as in LQG, the Hamiltonian constraint operator in PFT acts ultralocally, states in the joint kernel of the Hamiltonian and diffeomorphism constraints of PFT necessarily describe propagation effects. The particular structure of the finite triangulation Hamiltonian constraint operator plays a crucial role, as does the necessity of imposing (the continuum limit of) its kinematic adjoint as a constraint. Propagation is seen as a property encoded by physical states in the kernel of the constraints r...
Modeling Propagation of Gas Path Damage
National Aeronautics and Space Administration — This paper describes how damage propagation can be tracked and modeled for a range of fault modes in some modules of commercial high bypass aircraft engines. To...
Malware propagation modeling by the means of genetic algorithms
Goranin, N.; Čenys, A.
2008-01-01
Existing malware propagation models mainly concentrate to forecasting the number of infected computers in the initial propagation phase. In this article we propose a genetic algorithm based model for estimating the propagation rates of known and perspective Internet worms after their propagation reaches the satiation phase. Estimation algorithm is based on the known worms’ propagation strategies with correlated propagation rates analysis and is presented as a decision tree, generated by GAtre...
Error Propagation in a System Model
Schloegel, Kirk (Inventor); Bhatt, Devesh (Inventor); Oglesby, David V. (Inventor); Madl, Gabor (Inventor)
2015-01-01
Embodiments of the present subject matter can enable the analysis of signal value errors for system models. In an example, signal value errors can be propagated through the functional blocks of a system model to analyze possible effects as the signal value errors impact incident functional blocks. This propagation of the errors can be applicable to many models of computation including avionics models, synchronous data flow, and Kahn process networks.
Outdoor Propagation Models-Comparison Literature Review
Directory of Open Access Journals (Sweden)
Mr. Umesh Yadav
2013-05-01
Full Text Available The aim of comparing different outdoor propagation models is to study the earlier introduced models in the present environment of RF technology and requirement. In the present era of telecom services coverage is not enough but we need to introduce cellular network with high quality parameters. In this comparison review we will focus on the type of terrain/ environment which will best suit the different outdoor propagations models
Beams Propagation Modelled by Bi-filters
Lacaze, Bernard
2010-01-01
In acoustic, ultrasonic or electromagnetic propagation, crossed media are often modelled by linear filters with complex gains in accordance with the Beer-Lambert law. This paper addresses the problem of propagation in media where polarization has to be taken into account. Because waves are now bi-dimensional, an unique filter is not sufficient to represent the effects of the medium. We propose a model which uses four linear invariant filters, which allows to take into account exchanges betwee...
POPPY: Physical Optics Propagation in PYthon
Perrin, Marshall; Long, Joseph; Douglas, Ewan; Sivaramakrishnan, Anand; Slocum, Christine
2016-02-01
POPPY (Physical Optics Propagation in PYthon) simulates physical optical propagation including diffraction. It implements a flexible framework for modeling Fraunhofer and Fresnel diffraction and point spread function formation, particularly in the context of astronomical telescopes. POPPY provides the optical modeling framework for WebbPSF (ascl:1504.007) and was developed as part of a simulation package for JWST, but is available separately and is broadly applicable to many kinds of imaging simulations.
Uncertainty propagation with functionally correlated quantities
Giordano, Mosè
2016-01-01
Many uncertainty propagation software exist, written in different programming languages, but not all of them are able to handle functional correlation between quantities. In this paper we review one strategy to deal with uncertainty propagation of quantities that are functionally correlated, and introduce a new software offering this feature: the Julia package Measurements.jl. It supports real and complex numbers with uncertainty, arbitrary-precision calculations, mathematical and linear algebra operations with matrices and arrays.
Laser Propagation in Biaxial Liquid Crystal Polymers
Choate, Eric P.; Zhou, Hong
2011-01-01
We examine the propagation of a laser beam through a liquid crystal polymer (LCP) layer using the finite-difference time-domain (FDTD) method. Anchoring conditions on supporting glass plates induce an orientational structure in the LCP between the plates. The orientation can deflect energy away from the direction of propagation of the incident beam when the optical axis or major director of a uniaxial medium is neither parallel nor orthogonal to the incident beam. The maximum e...
Observations of Obliquely Propagating Electron Bernstein Waves
DEFF Research Database (Denmark)
Armstrong, R. J.; Juul Rasmussen, Jens; Stenzel, R. L.;
1981-01-01
Plane electron Bernstein waves propagating obliquely to the magnetic field are investigated. The waves are excited by a plane grid antenna in a large volume magnetoplasma. The observations compare favorably with the predictions of the linear dispersion relation.......Plane electron Bernstein waves propagating obliquely to the magnetic field are investigated. The waves are excited by a plane grid antenna in a large volume magnetoplasma. The observations compare favorably with the predictions of the linear dispersion relation....
Propagation of sound waves in ducts
DEFF Research Database (Denmark)
Jacobsen, Finn
2000-01-01
Plane wave propagation in ducts with rigid walls, radiation from ducts, classical four-pole theory for composite duct systems, and three-dimentional waves in wave guides of various cross-sectional shape are described.......Plane wave propagation in ducts with rigid walls, radiation from ducts, classical four-pole theory for composite duct systems, and three-dimentional waves in wave guides of various cross-sectional shape are described....
OUTDOOR PROPAGATION MODELS A LITERATURE REVIEW
Directory of Open Access Journals (Sweden)
Mr. Sumit Joshi
2012-02-01
Full Text Available The major focus of this review is based on earlier & present day developments encompassing the field of radio transmission & propagation. It covers a wide area of radio communication in a moresubtle & elastic manner, the leading aspects of the review involves an overall discussion of different models & techniques developed so far, facilitating radio propagation. A more penetrating aspect of mobility lead communications & associated software developments along with recent advancements also forms an important part of it.
Lifted Region-Based Belief Propagation
Smith, David; Singla, Parag; Gogate, Vibhav
2016-01-01
Due to the intractable nature of exact lifted inference, research has recently focused on the discovery of accurate and efficient approximate inference algorithms in Statistical Relational Models (SRMs), such as Lifted First-Order Belief Propagation. FOBP simulates propositional factor graph belief propagation without constructing the ground factor graph by identifying and lifting over redundant message computations. In this work, we propose a generalization of FOBP called Lifted Generalized ...
Voigt-wave propagation in active materials
Mackay, Tom G.; Lakhtakia, Akhlesh
2015-01-01
If a dissipative anisotropic dielectric material, characterized by the permittivity matrix $\\underline{\\underline{\\epsilon}}$, supports Voigt-wave propagation, then so too does the analogous active material characterized by the permittivity matrix $\\underline{\\underline{{\\tilde{\\epsilon}}}}$, where $\\underline{\\underline{{\\tilde{\\epsilon}}}}$ is the hermitian conjugate of $\\underline{\\underline{\\epsilon}}$. Consequently, a dissipative material that supports Voigt-wave propagation can give ris...
Propagation of waves in porous media
Çorapçıoplu, M. Yavuz; Tuncay, Kağan
1996-01-01
Wave propagation in porous media is of interest in various diversified areas of science and engineering. The theory of the phenomenon has been studied extensively in soil mechanics, seismology, acoustics, earthquake engineering, ocean engineering, geophysics, and many other disciplines. This review presents a general survey of the literature within the context of porous media mechanics. Following a review of the Biot's theory of wave propagation in linear, elastic, fluid saturated porous medi...
Radio propagation measurement and channel modelling
Salous, Sana
2013-01-01
While there are numerous books describing modern wireless communication systems that contain overviews of radio propagation and radio channel modelling, there are none that contain detailed information on the design, implementation and calibration of radio channel measurement equipment, the planning of experiments and the in depth analysis of measured data. The book would begin with an explanation of the fundamentals of radio wave propagation and progress through a series of topics, including the measurement of radio channel characteristics, radio channel sounders, measurement strategies
Propagator in a theory with confinement
International Nuclear Information System (INIS)
The author studies the propagator in d model theory with confinement and attempts to show that, when summed to all orders, the propagator is free of singularities in the finite momentum plane. It is found that Bethe-Salpeter ladder-like diagrams alone are insufficient to exhibit this behavior. However, in a non-relativistic approximation in the crossed channel, confinement is obtained and all poles disappear. (Auth.)
Propagation in quantum walks and relativistic diffusions
Debbasch, Fabrice; Di Molfetta, Giuseppe; Espaze, David; Foulonneau, Vincent
2013-01-01
Propagation in quantum walks is revisited by showing that very general 1D discrete-time quantum walks with time- and space-dependent coefficients can be described, at the continuous limit, by Dirac fermions coupled to electromagnetic fields. Short-time propagation is also established for relativistic diffusions by presenting new numerical simulations of the Relativistic Ornstein-Uhlenbeck Process. A geometrical generalization of Fick's law is also obtained for this process. The results sugges...
Crack propagation in fracture mechanical graded structures
Directory of Open Access Journals (Sweden)
B. Schramm
2015-10-01
Full Text Available The focus of manufacturing is more and more on innovative and application-oriented products considering lightweight construction. Hence, especially functional graded materials come to the fore. Due to the application-matched functional material gradation different local demands such as absorbability, abrasion and fatigue of structures are met. However, the material gradation can also have a remarkable influence on the crack propagation behavior. Therefore, this paper examines how the crack propagation behavior changes when a crack grows through regions which are characterized by different fracture mechanical material properties (e.g. different threshold values KI,th, different fracture toughness KIC. In particular, the emphasis of this paper is on the beginning of stable crack propagation, the crack velocity, the crack propagation direction as well as on the occurrence of unstable crack growth under static as well as cyclic loading. In this context, the developed TSSR-concept is presented which allows the prediction of crack propagation in fracture mechanical graded structures considering the loading situation (Mode I, Mode II and plane Mixed Mode and the material gradation. In addition, results of experimental investigations for a mode I loading situation and numerical simulations of crack growth in such graded structures confirm the theoretical findings and clarify the influence of the material gradation on the crack propagation behavior.
Premixed flame propagation in vertical tubes
Kazakov, Kirill A.
2016-04-01
Analytical treatment of the premixed flame propagation in vertical tubes with smooth walls is given. Using the on-shell flame description, equations for a quasi-steady flame with a small but finite front thickness are obtained and solved numerically. It is found that near the limits of inflammability, solutions describing upward flame propagation come in pairs having close propagation speeds and that the effect of gravity is to reverse the burnt gas velocity profile generated by the flame. On the basis of these results, a theory of partial flame propagation driven by a strong gravitational field is developed. A complete explanation is given of the intricate observed behavior of limit flames, including dependence of the inflammability range on the size of the combustion domain, the large distances of partial flame propagation, and the progression of flame extinction. The role of the finite front-thickness effects is discussed in detail. Also, various mechanisms governing flame acceleration in smooth tubes are identified. Acceleration of methane-air flames in open tubes is shown to be a combined effect of the hydrostatic pressure difference produced by the ambient cold air and the difference of dynamic gas pressure at the tube ends. On the other hand, a strong spontaneous acceleration of the fast methane-oxygen flames at the initial stage of their evolution in open-closed tubes is conditioned by metastability of the quasi-steady propagation regimes. An extensive comparison of the obtained results with the experimental data is made.
NLO error propagation exercise: statistical results
International Nuclear Information System (INIS)
Error propagation is the extrapolation and cumulation of uncertainty (variance) above total amounts of special nuclear material, for example, uranium or 235U, that are present in a defined location at a given time. The uncertainty results from the inevitable inexactness of individual measurements of weight, uranium concentration, 235U enrichment, etc. The extrapolated and cumulated uncertainty leads directly to quantified limits of error on inventory differences (LEIDs) for such material. The NLO error propagation exercise was planned as a field demonstration of the utilization of statistical error propagation methodology at the Feed Materials Production Center in Fernald, Ohio from April 1 to July 1, 1983 in a single material balance area formed specially for the exercise. Major elements of the error propagation methodology were: variance approximation by Taylor Series expansion; variance cumulation by uncorrelated primary error sources as suggested by Jaech; random effects ANOVA model estimation of variance effects (systematic error); provision for inclusion of process variance in addition to measurement variance; and exclusion of static material. The methodology was applied to material balance area transactions from the indicated time period through a FORTRAN computer code developed specifically for this purpose on the NLO HP-3000 computer. This paper contains a complete description of the error propagation methodology and a full summary of the numerical results of applying the methodlogy in the field demonstration. The error propagation LEIDs did encompass the actual uranium and 235U inventory differences. Further, one can see that error propagation actually provides guidance for reducing inventory differences and LEIDs in future time periods
Controls on flood and sediment wave propagation
Bakker, Maarten; Lane, Stuart N.; Costa, Anna; Molnar, Peter
2015-04-01
The understanding of flood wave propagation - celerity and transformation - through a fluvial system is of generic importance for flood forecasting/mitigation. In association with flood wave propagation, sediment wave propagation may induce local erosion and sedimentation, which will affect infrastructure and riparian natural habitats. Through analysing flood and sediment wave propagation, we gain insight in temporal changes in transport capacity (the flood wave) and sediment availability and transport (the sediment wave) along the river channel. Heidel (1956) was amongst the first to discuss the progressive lag of sediment concentration behind the corresponding flood wave based on field measurements. Since then this type of hysteresis has been characterized in a number of studies, but these were often based on limited amount of floods and measurement sites, giving insufficient insight into associated forcing mechanisms. Here, as part of a project concerned with the hydrological and geomorphic forcing of sediment transfer processes in alpine environments, we model the downstream propagation of short duration, high frequency releases of water and sediment (purges) from a flow intake in the Borgne d'Arolla River in south-west Switzerland. A total of >50 events were measured at 1 minute time intervals using pressure transducers and turbidity probes at a number of sites along the river. We show that flood and sediment wave propagation can be well represented through simple convection diffusion models. The models are calibrated/validated to describe the set of measured waves and used to explain the observed variation in wave celerity and diffusion. In addition we explore the effects of controlling factors including initial flow depth, flood height, flood duration, bed roughness, bed slope and initial sediment concentration, on the wave propagation processes. We show that the effects of forcing mechanisms on flood and sediment wave propagation will lead to different
Classification of neocortical interneurons using affinity propagation
Santana, Roberto; McGarry, Laura M.; Bielza, Concha; Larrañaga, Pedro; Yuste, Rafael
2013-01-01
In spite of over a century of research on cortical circuits, it is still unknown how many classes of cortical neurons exist. In fact, neuronal classification is a difficult problem because it is unclear how to designate a neuronal cell class and what are the best characteristics to define them. Recently, unsupervised classifications using cluster analysis based on morphological, physiological, or molecular characteristics, have provided quantitative and unbiased identification of distinct neuronal subtypes, when applied to selected datasets. However, better and more robust classification methods are needed for increasingly complex and larger datasets. Here, we explored the use of affinity propagation, a recently developed unsupervised classification algorithm imported from machine learning, which gives a representative example or exemplar for each cluster. As a case study, we applied affinity propagation to a test dataset of 337 interneurons belonging to four subtypes, previously identified based on morphological and physiological characteristics. We found that affinity propagation correctly classified most of the neurons in a blind, non-supervised manner. Affinity propagation outperformed Ward's method, a current standard clustering approach, in classifying the neurons into 4 subtypes. Affinity propagation could therefore be used in future studies to validly classify neurons, as a first step to help reverse engineer neural circuits. PMID:24348339
Quantum dynamics via a time propagator in Wigner's phase space
DEFF Research Database (Denmark)
Grønager, Michael; Henriksen, Niels Engholm
1995-01-01
We derive an expression for a short-time phase space propagator. We use it in a new propagation scheme and demonstrate that it works for a Morse potential. The propagation scheme is used to propagate classical distributions which do not obey the Heisenberg uncertainty principle. It is shown...
Displacement of squeezed propagating microwave states
Fedorov, Kirill G.; Zhong, Ling; Pogorzalek, Stefan; Eder, Peter; Fischer, Michael; Goetz, Jan; Wulschner, Friedrich; Xie, Edwar; Menzel, Edwin; Deppe, Frank; Marx, Achim; Gross, Rudolf
Displacement of propagating squeezed states is a fundamental operation for quantum communications. It can be applied to fundamental studies of macroscopic quantum coherence and has an important role in quantum teleportation protocols with propagating microwaves. We generate propagating squeezed states using a Josephson parametric amplifier and implement displacement using a cryogenic directional coupler. We study single- and two-mode displacement regimes. For the single-mode displacement we find that the squeezing level of the displaced squeezed state does not depend on the displacement amplitude. Also, we observe that quantum entanglement between two spatially separated channels stays constant across 4 orders of displacement power. We acknowledge support by the German Research Foundation through SFB 631 and FE 1564/1-1, the EU project PROMISCE, and Elite Network of Bavaria through the program ExQM.
Contour Propagation With Riemannian Elasticity Regularization
DEFF Research Database (Denmark)
Bjerre, Troels; Hansen, Mads Fogtmann; Sapru, W.;
2011-01-01
guided corrections. This study compares manual delineations in replanning CT scans of head-and-neck patients to automatic contour propagation using deformable registration with Riemannian regularization. The potential benefit of locally assigned regularization parameters according to tissue type...... the planning CT onto the rescans and correcting to reflect actual anatomical changes. For deformable registration, a free-form, multi-level, B-spline deformation model with Riemannian elasticity, penalizing non-rigid local deformations, and volumetric changes, was used. Regularization parameters was defined...... regularization parameters was performed. For each replanning scan, the volume of the manually delineated and automatically propagated GTV was determined and Dice’s coefficient was calculated between segmentations from the propagated contours and manual delineations. Results: The replanning segmentations showed...
Cosmic ray propagation with CRPropa 3
Batista, Rafael Alves; Evoli, Carmelo; Kampert, Karl-Heinz; Kuempel, Daniel; Mueller, Gero; Sigl, Günter; Van Vliet, Arjen; Walz, David; Winchen, Tobias
2014-01-01
Solving the question of the origin of ultra-high energy cosmic rays (UHECRs) requires the development of detailed simulation tools in order to interpret the experimental data and draw conclusions on the UHECR universe. CRPropa is a public Monte Carlo code for the galactic and extragalactic propagation of cosmic ray nuclei above $\\sim 10^{17}$ eV, as well as their photon and neutrino secondaries. In this contribution the new algorithms and features of CRPropa 3, the next major release, are presented. CRPropa 3 introduces time-dependent scenarios to include cosmic evolution in the presence of cosmic ray deflections in magnetic fields. The usage of high resolution magnetic fields is facilitated by shared memory parallelism, modulated fields and fields with heterogeneous resolution. Galactic propagation is enabled through the implementation of galactic magnetic field models, as well as an efficient forward propagation technique through transformation matrices. To make use of the large Python ecosystem in astrophy...
Large scale propagation intermittency in the atmosphere
Mehrabi, Ali
2000-11-01
Long-term (several minutes to hours) amplitude variations observed in outdoor sound propagation experiments at Disneyland, California, in February 1998 are explained in terms of a time varying index of refraction. The experimentally propagated acoustic signals were received and recorded at several locations ranging from 300 meters to 2,800 meters. Meteorological data was taken as a function of altitude simultaneously with the received signal levels. There were many barriers along the path of acoustic propagation that affected the received signal levels, especially at short ranges. In a downward refraction situation, there could be a random change of amplitude in the predicted signals. A computer model based on the Fast Field Program (FFP) was used to compute the signal loss at the different receiving locations and to verify that the variations in the received signal levels can be predicted numerically. The calculations agree with experimental data with the same trend variations in average amplitude.
Propagation of shock waves through petroleum suspensions
Mukuk, K. V.; Makhkamov, S. M.; Azizov, K. K.
1986-01-01
Anomalous shock wave propagation through petroleum with a high paraffin content was studied in an attempt to confirm the theoretically predicted breakdown of a forward shock wave into oscillating waves and wave packets as well as individual solitons. Tests were performed in a shock tube at 10, 20, and 50 to 60 C, with pure kerosene as reference and with kerosene + 5, 10, 15, and 20% paraffin. The addition of paraffin was found to radically alter the rheodynamic characteristics of the medium and, along with it, the pattern of shock wave propagation. The integro-differential equation describing a one dimensional hydraulic shock process in viscoelastic fluids is reduced to the Burgers-Korteweg-deVries equation, which is solved numerically for given values of the system parameters. The results indicate that the theory of shock wave propagation through such an anomalous suspension must be modified.
Anisotropic Shock Propagation in Single Crystals
Energy Technology Data Exchange (ETDEWEB)
Eggert, J; Hicks, D; Celliers, P; Bradley, D; Cox, J; Unites, W; Collins, G; McWilliams, R; Jeanloz, R; Bruygoo, S; Loubeyre, P
2005-05-26
Most single-crystal shock experiments have been performed in high-symmetry directions while the nature of shock propagation in low-symmetry directions remains relatively unstudied. It is well known that small-amplitude, linear acoustic waves propagating in low-symmetry directions can focus and/or form caustics (Wolfe, 1995). In this report we provide evidence for similar focusing behavior in nonlinear (shock) waves propagating in single crystals of silicon and diamond. Using intense lasers, we have driven non-planar (divergent geometry) shock waves through single-crystals of silicon or diamond and into an isotropic backing plate. On recovery of the backing plates we observe a depression showing evidence of anisotropic plastic strain with well-defined crystallographic registration. We observe 4-, 2-, and 3-fold symmetric impressions for [100], [110], and [111] oriented crystals respectively.
Propagating Characteristics of Pulsed Laser in Rain
Directory of Open Access Journals (Sweden)
Jing Guo
2015-01-01
Full Text Available To understand the performance of laser ranging system under the rain weather condition, we need to know the propagating characteristics of laser pulse in rain. In this paper, the absorption and attenuation coefficients were calculated based on the scattering theories in discrete stochastic media, and the propagating characteristics of laser pulse in rain were simulated and analyzed using Monte-Carlo method. Some simulation results were verified by experiments, and the simulation results are well matched with the experimental data, with the maximal deviation not less than 7.5%. The results indicated that the propagating laser beam would be attenuated and distorted due to the scattering and absorption of raindrops, and the energy attenuation and pulse shape distortion strongly depended on the laser pulse widths.
FRACTAL KINEMATICS OF CRACK PROPAGATION IN GEOMATERIALS
Institute of Scientific and Technical Information of China (English)
谢和平
1995-01-01
Experimental results indicate that propagation paths of cracks in geomaterials are often irregular, producing rough fracture surfaces which are fractal. A formula is derived for the fractal kinematics of crack propagation in geomaterials. The formula correlates the dynamic and static fracture toughnesses with crack velocity, crack length and a microstructural parameter, and allows the fractal dimension to be obtained. From the equations for estimating crack velocity and fractal dimension it can be shown that the measured crack velocity, Vo , should be much smaller than the fractal crack velocity, V. It can also be shown that the fractal dimension of the crack propagation path can be calculated directly from Vo and from the fracture toughness.
Polarization shaping for control of nonlinear propagation
Bouchard, Frédéric; Yao, Alison M; Travis, Christopher; De Leon, Israel; Rubano, Andrea; Karimi, Ebrahim; Oppo, Gian-Luca; Boyd, Robert W
2016-01-01
We study the nonlinear optical propagation of two different classes of space-varying polarized light beams -- radially symmetric vector beams and Poincar\\'e beams with lemon and star topologies -- in a rubidium vapour cell. Unlike Laguerre-Gauss and other types of beams that experience modulational instabilities, we observe that their propagation is not marked by beam breakup while still exhibiting traits such as nonlinear confinement and self-focusing. Our results suggest that by tailoring the spatial structure of the polarization, the effects of nonlinear propagation can be effectively controlled. These findings provide a novel approach to transport high-power light beams in nonlinear media with controllable distortions to their spatial structure and polarization properties.
Wave propagation in spatially modulated tubes
Ziepke, A; Engel, H
2016-01-01
We investigate wave propagation in rotationally symmetric tubes with a periodic spatial modulation of cross section. Using an asymptotic perturbation analysis, the governing quasi two-dimensional reaction-diffusion equation can be reduced into a one-dimensional reaction-diffusion-advection equation. Assuming a weak perturbation by the advection term and using projection method, in a second step, an equation of motion for traveling waves within such tubes can be derived. Both methods predict properly the nonlinear dependence of the propagation velocity on the ratio of the modulation period of the geometry to the intrinsic width of the front, or pulse. As a main feature, we can observe finite intervals of propagation failure of waves induced by the tube's modulation. In addition, using the Fick-Jacobs approach for the highly diffusive limit we show that wave velocities within tubes are governed by an effective diffusion coefficient. Furthermore, we discuss the effects of a single bottleneck on the period of pul...
Displacement of Propagating Squeezed Microwave States
Fedorov, Kirill G.; Zhong, L.; Pogorzalek, S.; Eder, P.; Fischer, M.; Goetz, J.; Xie, E.; Wulschner, F.; Inomata, K.; Yamamoto, T.; Nakamura, Y.; Di Candia, R.; Las Heras, U.; Sanz, M.; Solano, E.; Menzel, E. P.; Deppe, F.; Marx, A.; Gross, R.
2016-07-01
Displacement of propagating quantum states of light is a fundamental operation for quantum communication. It enables fundamental studies on macroscopic quantum coherence and plays an important role in quantum teleportation protocols with continuous variables. In our experiments, we have successfully implemented this operation for propagating squeezed microwave states. We demonstrate that, even for strong displacement amplitudes, there is no degradation of the squeezing level in the reconstructed quantum states. Furthermore, we confirm that path entanglement generated by using displaced squeezed states remains constant over a wide range of the displacement power.
Surface acoustic wave propagation in graphene film
International Nuclear Information System (INIS)
Surface acoustic wave (SAW) propagation in a graphene film on the surface of piezoelectric crystals was studied at the BESSY II synchrotron radiation source. Talbot effect enabled the visualization of the SAW propagation on the crystal surface with the graphene film in a real time mode, and high-resolution x-ray diffraction permitted the determination of the SAW amplitude in the graphene/piezoelectric crystal system. The influence of the SAW on the electrical properties of the graphene film was examined. It was shown that the changing of the SAW amplitude enables controlling the magnitude and direction of current in graphene film on the surface of piezoelectric crystals
Displacement of Propagating Squeezed Microwave States.
Fedorov, Kirill G; Zhong, L; Pogorzalek, S; Eder, P; Fischer, M; Goetz, J; Xie, E; Wulschner, F; Inomata, K; Yamamoto, T; Nakamura, Y; Di Candia, R; Las Heras, U; Sanz, M; Solano, E; Menzel, E P; Deppe, F; Marx, A; Gross, R
2016-07-01
Displacement of propagating quantum states of light is a fundamental operation for quantum communication. It enables fundamental studies on macroscopic quantum coherence and plays an important role in quantum teleportation protocols with continuous variables. In our experiments, we have successfully implemented this operation for propagating squeezed microwave states. We demonstrate that, even for strong displacement amplitudes, there is no degradation of the squeezing level in the reconstructed quantum states. Furthermore, we confirm that path entanglement generated by using displaced squeezed states remains constant over a wide range of the displacement power. PMID:27447495
Conductivity dependent surface plasmon polariton propagation
Ali, Arshad; Bacha, Bakht Amin; Jabar, M. S. Abdul; Khan, Anwar Ali; Uddin, Rafi; Ahmad, Iftikhar
2016-09-01
Conductivity-dependent surface plasmon polariton (SPP) propagation is investigated at the interface between a metal and a tripod-type atomic medium. Our theoretical investigations show that the SPP propagation depends on the conductivity of the metallic medium and the coherent driving fields applied in the atomic medium up to a saturation limit. Further, the SPPs drag and rotate with collective spinning of the proposed structure. The rotation is modified with the spin angular velocity of the whole structure. A maximum rotation of ±4 microradians is observed. Our results may find applications in plasmonster technology.
STREPTOCARPUS - FLOWERING POT PLANT - PROPAGATION AND CULTURE
Directory of Open Access Journals (Sweden)
Maria CANTOR
2004-08-01
Full Text Available In the last years in Romania and throughout the world we assist at diversification of floral plants assortment by introducing new species and cultivars. For this goal, at the University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Floriculture Department we diversified and enriched the collection for indoor plants with a pot species, which decorates by flowers, Streptocarpus x hybridus. In this work are presented the main morphological and biological characteristics, propagation by seeds and vegetative propagation, growth requirements, the main diseases and pests of this species, in order to recommend it for indoor culture.
Enhancement of in vitro Guayule propagation
Dastoor, M. N.; Schubert, W. W.; Petersen, G. R. (Inventor)
1982-01-01
A method for stimulating in vitro propagation of Guayule from a nutrient medium containing Guayule tissue by adding a substituted trialkyl amine bioinducing agent to the nutrient medium is described. Selective or differentiated propagation of shoots or callus is obtained by varying the amounts of substituted trialky amine present in the nutrient medium. The luxuriant growth provided may be processed for its poly isoprene content or may be transferred to a rooting medium for production of whole plants as identical clones of the original tissue. The method also provides for the production of large numbers of Guayule plants having identical desirable properties such as high polyisoprene levels.
Overlap Quark Propagator in Coulomb Gauge QCD
Mercado, Ydalia Delgado; Schröck, Mario
2014-01-01
The chirally symmetric Overlap quark propagator is explored in Coulomb gauge. This gauge is well suited for studying the relation between confinement and chiral symmetry breaking, since confinement can be attributed to the infrared divergent Lorentz-vector dressing function. Using quenched gauge field configurations on a $20^4$ lattice, the quark propagator dressing functions are evaluated, the dynamical quark mass is extracted and the chiral limit of these quantities is discussed. By removing the low-lying modes of the Dirac operator, chiral symmetry is artificially restored. Its effect on the dressing functions is discussed.
Surface acoustic wave propagation in graphene film
Energy Technology Data Exchange (ETDEWEB)
Roshchupkin, Dmitry, E-mail: rochtch@iptm.ru; Plotitcyna, Olga; Matveev, Viktor; Kononenko, Oleg; Emelin, Evgenii; Irzhak, Dmitry [Institute of Microelectronics Technology and High-Purity Materials Russian Academy of Sciences, Chernogolovka 142432 (Russian Federation); Ortega, Luc [Laboratoire de Physique des Solides, Univ. Paris-Sud, CNRS, UMR 8502, 91405 Orsay Cedex (France); Zizak, Ivo; Erko, Alexei [Institute for Nanometre Optics and Technology, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein Strasse 15, 12489 Berlin (Germany); Tynyshtykbayev, Kurbangali; Insepov, Zinetula [Nazarbayev University Research and Innovation System, 53 Kabanbay Batyr St., Astana 010000 (Kazakhstan)
2015-09-14
Surface acoustic wave (SAW) propagation in a graphene film on the surface of piezoelectric crystals was studied at the BESSY II synchrotron radiation source. Talbot effect enabled the visualization of the SAW propagation on the crystal surface with the graphene film in a real time mode, and high-resolution x-ray diffraction permitted the determination of the SAW amplitude in the graphene/piezoelectric crystal system. The influence of the SAW on the electrical properties of the graphene film was examined. It was shown that the changing of the SAW amplitude enables controlling the magnitude and direction of current in graphene film on the surface of piezoelectric crystals.
Propagators and Masses of Light Quarks
Institute of Scientific and Technical Information of China (English)
ZHOU Li-Juan; ZHU Ji-Zhen; MA Wei-Xing
2003-01-01
Based on Dyson-Schwinger equations in "rainbow" approximation, fully dressed confining quark propagator is obtained, and then the masses of light quarks (mu, md, and ms) are derived from the fully dressed confining quark propagator. At the same time, the local and non-local quark vacuum condensates as well as the quark-gluon mixed condensate are also predicted. Furthermore, the quark masses are also deduced from the Gell-Mann-Oakes-Renner relation and chiral perturbative theory. The results from different methods are consistent with each other.
Propagators and Masses of Light Quarks
Institute of Scientific and Technical Information of China (English)
ZHOULi-Juan; ZHUJi-Zhen; MAWei-Xing
2003-01-01
Based on Dyson-Schwinger equations in “rainbow” approximation, fully dressed confining quark propagator is obtained, and then the masses of light quarks (mu, md, and ms) are derived from the fully dressed confining quark propagator. At the same time, the local and non-local quark vacuum condensates as well as the quark-gluon mixed condensate are also predicted. Furthermore, the quark masses are also deduced from the Gell-Mann-Oakes-Renner relation and chiral perturbative theory. The results from different methods are consistent with each other.
Enhancing data locality by using terminal propagation
Energy Technology Data Exchange (ETDEWEB)
Hendrickson, B.; Leland, R. [Sandia National Labs., Albuquerque, NM (United States); Van Driessche, R. [Katholieke Univ. Leuven (Belgium). Dept. Computer Sciences
1995-12-31
Terminal propagation is a method developed in the circuit placement community for adding constraints to graph partitioning problems. This paper adapts and expands this idea, and applies it to the problem of partitioning data structures among the processors of a parallel computer. We show how the constraints in terminal propagation can be used to encourage partitions in which messages are communicated only between architecturally near processors. We then show how these constraints can be handled in two important partitioning algorithms, spectral bisection and multilevel-KL. We compare the quality of partitions generated by these algorithms to each other and to Partitions generated by more familiar techniques.
Information and influence propagation in social networks
Chen, Wei; Lakshmanan, Laks V S
2013-01-01
Research on social networks has exploded over the last decade. To a large extent, this has been fueled by the spectacular growth of social media and online social networking sites, which continue growing at a very fast pace, as well as by the increasing availability of very large social network datasets for purposes of research. A rich body of this research has been devoted to the analysis of the propagation of information, influence, innovations, infections, practices and customs through networks. Can we build models to explain the way these propagations occur? How can we validate our models
The propagation of gamma quanta in matter
Lejpunskij, Ovsej Ilich; Sakharov, Vsevolod Nikolaevich
1965-01-01
The Propagation of Gamma Quanta in Matter deals with various problems of the propagation and absorption of gamma quanta in matter, particularly the occurrence of multiple scattering of radiation. The ultimate objective is to determine the material, size, and configuration that will ensure the safe absorption of nuclear radiation. Shield design problems are given, the solution of which is achieved using numerical data presented in graphs and tables. This volume is comprised of three chapters and begins with an overview of the interaction of gamma radiation with matter and multiple scattering of
Research on Information Propagation Model for Microblogging
Directory of Open Access Journals (Sweden)
Di Song
2013-07-01
Full Text Available Music is beautiful, and music communication is a dissemination of beauty, which could make more people enjoy that kind of beauty. MicroBlogging, as a new media, is more and more popular for users, especially for younger people. The timeliness of Microblogging makes it more convenient for music communication on the Internet. In this paper, we study how a musical event is propagated according to this new kind of media. Our purpose is to find influential people about some given event. We propose an information propagation model for Microblogging, and its estimation method. By two real datasets, we validate the efficiency of the proposed method.
Dark propagation modes in optical lattices
Schiavoni, M; Carminati, F R; Renzoni, F; Grynberg, G; Schiavoni, Michele; Sanchez-Palencia, Laurent; Carminati, Francois-Regis; Renzoni, Ferruccio; Proxy, Gilbert Grynberg; ccsd-00000108, ccsd
2002-01-01
We examine the stimulated light scattering onto the propagation modes of a dissipative optical lattice. We show that two different pump-probe configurations may lead to the excitation, via different mechanisms, of the same mode. We found that in one configuration the scattering on the propagation mode results in a resonance in the probe transmission spectrum while in the other configuration no modification of the scattering spectrum occurs, i.e. the mode is dark. A theoretical explanation of this behaviour is provided.
Intergalactic Propagation of UHE Cosmic Rays
Achterberg, Abraham; Gallant, Yves A.; Norman, Colin A.; Melrose, Donald B.
1999-01-01
We discuss the intergalactic propagation of ultra-high-energy cosmic rays (UHECRs) with energies E \\geq 10^{18.5} eV. We consider the propagation of UHECRs under the influence of the energy-dependent deflection by a weak random magnetic field in the intergalactic medium and energy losses by photo-pion and pair production. We calculate arrival spectra taking full account of the kinematics of photo-pion production and the Poisson statistics of the photo-pion interaction rate. We give estimates ...
Wave propagation and scattering in random media
Ishimaru, Akira
1978-01-01
Wave Propagation and Scattering in Random Media, Volume 2, presents the fundamental formulations of wave propagation and scattering in random media in a unified and systematic manner. The topics covered in this book may be grouped into three categories: waves in random scatterers, waves in random continua, and rough surface scattering. Random scatterers are random distributions of many particles. Examples are rain, fog, smog, hail, ocean particles, red blood cells, polymers, and other particles in a state of Brownian motion. Random continua are the media whose characteristics vary randomly an
Burning invariant manifolds in reactive front propagation
Mahoney, John; Mitchell, Kevin; Solomon, Tom
2011-01-01
We present theory and experiments on the dynamics of reaction fronts in a two-dimensional flow composed of a chain of alternating vortices. Inspired by the organization of passive transport by invariant manifolds, we introduce burning invariant manifolds (BIMs), which act as one-sided barriers to front propagation. The BIMs emerge from the theory when the advection-reaction- diffusion system is recast as an ODE for reaction front elements. Experimentally, we demonstrate how these BIMs can be measured and compare their behavior with simulation. Finally, a topological BIM formalism yields a maximum front propagation speed.
Dilaton field and cosmic wave propagation
Ni, Wei-Tou
2014-01-01
We study the electromagnetic wave propagation in the joint dilaton field and axion field. Dilaton field induces amplification/attenuation in the propagation while axion field induces polarization rotation. The amplification/attenuation induced by dilaton is independent of the frequency (energy) and the polarization of electromagnetic waves (photons). From observations, the agreement with and the precise calibration of the cosmic microwave background (CMB) to blackbody radiation constrains the fractional change of dilaton |{\\Delta}{\\psi}|/{\\psi} to less than about 8 x 10^(-4) since the time of the last scattering surface of the CMB.
SDEM modelling of fault-propagation folding
DEFF Research Database (Denmark)
Clausen, O.R.; Egholm, D.L.; Poulsen, Jane Bang;
2009-01-01
and variations in Mohr-Coulomb parameters including internal friction. Using SDEM modelling, we have mapped the propagation of the tip-line of the fault, as well as the evolution of the fold geometry across sedimentary layers of contrasting rheological parameters, as a function of the increased offset...... a precise indication of when faults develop and hence also the sequential evolution of secondary faults. Here we focus on the generation of a fault -propagated fold with a reverse sense of motion at the master fault, and varying only the dip of the master fault and the mechanical behaviour of the deformed...
FLEXURAL WAVE PROPAGATION IN NARROW MINDLIN'S PLATE
Institute of Scientific and Technical Information of China (English)
HU Chao; HAN Gang; FANG Xue-qian; HUANG Wen-hu
2006-01-01
Appling Mindlin's theory of thick plates and Hamilton system to propagation of elastic waves under free boundary condition, a solution of the problem was given.Dispersion equations of propagation mode of strip plates were deduced from eigenfunction expansion method. It was compared with the dispersion relation that was gained through solution of thick plate theory proposed by Mindlin. Based on the two kinds of theories,the dispersion curves show great difference in the region of short waves, and the cutoff frequencies are higher in Hamiltonian systems. However, the dispersion curves are almost the same in the region of long waves.
Deterministic simulation of UWB indoor propagation channel
Institute of Scientific and Technical Information of China (English)
Wang Yang; Zhang Naitong; Zhang Qinyu; Zhang Zhongzhao
2008-01-01
A site-specific model of UWB pulse propagation in indoor environment is addressed. The simulation utilizes the principles of geometrical optics (GO) for direct and reflected paths' tracing and the time domain technique for describing the transient electromagnetic field reflected from wall, floor, ceiling, and objects. The polarization of the received waveform is determined by taking into account the radiation pattern of the transmitting and receiving antennas, as well as the polarization changes owing to every reflection. The model provides more intrinsical interpretations for UWB pulse propagation in realistic indoor environment.
Modeling of nonlinear propagation in fiber tapers
DEFF Research Database (Denmark)
Lægsgaard, Jesper
2012-01-01
A full-vectorial nonlinear propagation equation for short pulses in tapered optical fibers is developed. Specific emphasis is placed on the importance of the field normalization convention for the structure of the equations, and the interpretation of the resulting field amplitudes. Different...
Gluon Propagator in Fractional Analytic Perturbation Theory
Allendes, Pedro; Cvetič, Gorazd
2014-01-01
We consider the gluon propagator in the Landau gauge at low spacelike momenta and with the dressing function $Z(Q^2)$ at the two-loop order. We incorporate the nonperturbative effects by making the (noninteger) powers of the QCD coupling in the dressing function $Z(Q^2)$ analytic (holomorphic) via the Fractional Analytic Perturbation Theory (FAPT) model, and simultaneously introducing the gluon dynamical mass in the propagator as motivated by the previous analyses of the Dyson-Schwinger equations. The obtained propagator has behavior compatible with the unquenched lattice data ($N_f=2+1$) at low spacelike momenta $0.4 \\ {\\rm GeV} < Q \\lesssim 10$ GeV. We conclude that the removal of the unphysical Landau singularities of the powers of the coupling via the (F)APT prescription, in conjunction with the introduction of the dynamical mass $M \\approx 0.62$ GeV of the gluon, leads to an acceptable behavior of the propagator in the infrared regime.
Three-dimensional collinearly propagating solitons
International Nuclear Information System (INIS)
The generalized nonlinear Schrödinger equation is modified in order to describe three-dimensional solitons propagating collinearly with a constant velocity. One- and two-soliton solutions are obtained and analysed. When the frequencies of the respective solitons approach, then the effect of the repulsion of the solitons is observed. These solitons are proposed to model photons. (paper)
Lamb Wave Propagation in Laminated Composite Structures
Gopalakrishnan, S.
2013-01-01
Damage detection using guided Lamb waves is an important tool in Structural health Monitoring. In this paper, we outline a method of obtaining Lamb wave modes in composite structures using two dimensional Spectral Finite Elements. Using this approach, Lamb wave dispersion curves are obtained for laminated composite structures with different fibre orientation. These propagating Lamb wave modes are pictorially captured using tone burst signal.
Aircraft noise and its nearfield propagation computations
Zhang, Xin
2012-08-01
Noise generated by civil transport aircraft during take-off and approach-to-land phases of operation is an environmental problem. The aircraft noise problem is firstly reviewed in this article. The review is followed by a description and assessment of a number of sound propagation methods suitable for applications with a background mean flow field pertinent to aircraft noise. Of the three main areas of the noise problem, i.e. generation, propagation, and radiation, propagation provides a vital link between near-field noise generation and far-field radiation. Its accurate assessment ensures the overall validity of a prediction model. Of the various classes of propagation equations, linearised Euler equations are often casted in either time domain or frequency domain. The equations are often solved numerically by computational aeroacoustics techniques, bur are subject to the onset of Kelvin-Helmholtz (K-H) instability modes which may ruin the solutions. Other forms of linearised equations, e.g. acoustic perturbation equations have been proposed, with differing degrees of success.
Antenna Construction and Propagation of Radio Waves.
Marine Corps Inst., Washington, DC.
Developed as part of the Marine Corps Institute (MCI) correspondence training program, this course on antenna construction and propagation of radio waves is designed to provide communicators with instructions in the selection and/or construction of the proper antenna(s) for use with current field radio equipment. Introductory materials include…
Propagation of nuclear particle fluxes in atmosphere
International Nuclear Information System (INIS)
The Monte Carlo model of propagation of nuclear-active particle shower initiated in the atmosphere by cosmic rays or by any other radiation source is developed. The model permits to calculate spatial distributions and energy spectra of charged and neutral particle fluxes in the air and inside the blocks
Propagation of drought through groundwater systems
Peters, E.
2003-01-01
Index words: drought, groundwater, simulation, synthetic data, extreme events
The transformation of droughts as a result of the propagation through groundwater systems is examined by comparing droughts in time se
Slow light pulse propagation in dispersive media
DEFF Research Database (Denmark)
Nielsen, Torben Roland; Mørk, Jesper; Lavrinenko, Andrei
2009-01-01
We present a theoretical and numerical analysis of pulse propagation in a semiconductor photonic crystal waveguide with embedded quantum dots in a regime where the pulse is subjected to both waveguide and material dispersion. The group index and the transmission are investigated by finite-differe...
Cosmic Ray Origin, Acceleration and Propagation
Baring, M G
1999-01-01
This paper summarizes highlights of the OG3.1, 3.2 and 3.3 sessions of the XXVIth International Cosmic Ray Conference in Salt Lake City, which were devoted to issues of origin/composition, acceleration and propagation.
Modelling delay propagation within an airport network
Pyrgiotis, N.; Malone, K.M.; Odoni, A.
2013-01-01
We describe an analytical queuing and network decomposition model developed to study the complex phenomenon of the propagation of delays within a large network of major airports. The Approximate Network Delays (AND) model computes the delays due to local congestion at individual airports and capture
Propagation and band width of smeared cracks
Slobbe, A.T.
2015-01-01
The crack band approach (in the smeared crack concept) is widely used for the modeling of concrete fracture and is an important analysis technique within advanced engineering. However, the simulations can be impeded by mesh-induced directional bias. Cracks prefer to propagate along continuous mesh l
Classification of neocortical interneurons using affinity propagation
Directory of Open Access Journals (Sweden)
Roberto eSantana
2013-12-01
Full Text Available In spite of over a century of research on cortical circuits, it is still unknown how many classes of cortical neurons exist. Neuronal classification has been a difficult problem because it is unclear what a neuronal cell class actually is and what are the best characteristics are to define them. Recently, unsupervised classifications using cluster analysis based on morphological, physiological or molecular characteristics, when applied to selected datasets, have provided quantitative and unbiased identification of distinct neuronal subtypes. However, better and more robust classification methods are needed for increasingly complex and larger datasets. We explored the use of affinity propagation, a recently developed unsupervised classification algorithm imported from machine learning, which gives a representative example or exemplar for each cluster. As a case study, we applied affinity propagation to a test dataset of 337 interneurons belonging to four subtypes, previously identified based on morphological and physiological characteristics. We found that affinity propagation correctly classified most of the neurons in a blind, non-supervised manner. In fact, using a combined anatomical/physiological dataset, our algorithm differentiated parvalbumin from somatostatin interneurons in 49 out of 50 cases. Affinity propagation could therefore be used in future studies to validly classify neurons, as a first step to help reverse engineer neural circuits.
Optimization of directional elastic energy propagation
DEFF Research Database (Denmark)
Andreassen, Erik; Chang, Hannah R.; Ruzzene, Massimo;
2016-01-01
The aim of this paper is to demonstrate how topology optimization can be used to design a periodically perforated plate, in order to obtain a tailored anisotropic group velocity profile. The main method is demonstrated on both low and high frequency bending wave propagation in an aluminum plate, ...... results. (C) 2016 Elsevier Ltd. All rights reserved....
Vertical laser beam propagation through the troposphere
Minott, P. O.; Bufton, J. L.; Schaefer, W. H.; Grolemund, D. A.
1974-01-01
The characteristics of the earth's atmosphere and its effects upon laser beams was investigated in a series of balloon borne, optical propagation experiments. These experiments were designed to simulate the space to ground laser link. An experiment to determine the amplitude fluctuation, commonly called scintillation, caused by the atmosphere was described.
An Immunization Strategy Based on Propagation Mechanism
Directory of Open Access Journals (Sweden)
Yixin Zhu
2014-01-01
Full Text Available With the ubiquity of smart phones, wearable equipment, and wireless sensors, the topologies of networks composed by them change along with time. The immunization strategies in which network immune nodes are chosen by analyzing the static aggregation network topologies have been challenged. The studies about interaction propagations between two pathogens show that the interaction can change propagation threshold and the final epidemic size of each other, which provides a new thinking of immunization method. The eradication or inhibition of the virus can be achieved through the spread of its opposite party. Here, we put forward an immunization strategy whose implementation does not depend on the analysis of network topology. The immunization agents are randomly placed on a few of individuals of network and spread out from these individuals on network in a propagation method. The immunization agents prevent virus infecting their habitat nodes with certain immune success rate. The analysis and simulation of evolution equation of the model show that immune propagation has a significant impact on the spread threshold and steady-state density of virus on a finite size of BA networks. Simulations on some real-world networks also suggest that the immunization strategy is feasible and effective.
Optical system defect propagation in ABCD systems
DEFF Research Database (Denmark)
McKinley, W.G.; Yura, H.T.; Hanson, Steen Grüner
1988-01-01
We describe how optical system defects (tilt/jitter, decenter, and despace) propagate through an arbitrary paraxial optical system that can be described by an ABCD ray transfer matrix. A pedagogical example is given that demonstrates the effect of alignment errors on a typical optical system...
Radio Channel Modelling Using Stochastic Propagation Graphs
DEFF Research Database (Denmark)
Pedersen, Troels; Fleury, Bernard Henri
2007-01-01
, we develop a closed form analytical expression for the transfer matrix of the propagation graph. It is shown by simulation that impulse response and the delay-power spectrum of the graph exhibit exponentially decaying power as a result of the recursive scattering structure of the graph. The impulse...
Aircraft noise and its nearfield propagation computations
Institute of Scientific and Technical Information of China (English)
Xin Zhang
2012-01-01
Noise generated by civil transport aircraft during take-off and approach-to-land phases of operation is an environmental problem.The aircraft noise problem is firstly reviewed in this article.The review is followed by a description and assessment of a number of sound propagation methods suitable for applications with a background mean flow field pertinent to aircraft noise.Of the three main areas of the noise problem,i.e.generation,propagation,and radiation,propagation provides a vital link between near-field noise generation and far-field radiation.Its accurate assessment ensures the overall validity of a prediction model.Of the various classes of propagation equations,linearised Euler equations are often casted in either time domain or frequency domain.The equations are often solved numerically by computational aeroacoustics techniques,bur are subject to the onset of Kelvin-Helmholtz (K-H) instability modes which may ruin the solutions. Other forms of linearised equations,e.g.acoustic perturbation equations have been proposed,with differing degrees of success.
Measuring propagation speed of Coulomb fields
Energy Technology Data Exchange (ETDEWEB)
Sangro, R. de; Finocchiaro, G.; Patteri, P.; Piccolo, M.; Pizzella, G. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, Frascati (Italy)
2015-03-01
The problem of gravity propagation has been subject of discussion for quite a long time: Newton, Laplace and, in relatively more modern times, Eddington pointed out that, if gravity propagated with finite velocity, planet motion around the sun would become unstable due to a torque originating from time lag of the gravitational interactions. Such an odd behavior can be found also in electromagnetism, when one computes the propagation of the electric fields generated by a set of uniformly moving charges. As a matter of fact the Lienard-Weichert retarded potential leads to the same formula as the one obtained assuming that the electric field propagate with infinite velocity. The Feynman explanation for this apparent paradox was based on the fact that uniform motions last indefinitely. To verify such an explanation, we performed an experiment to measure the time/space evolution of the electric field generated by an uniformly moving electron beam. The results we obtain, on a finite lifetime kinematical state, are compatible with an electric field rigidly carried by the beam itself. (orig.)
Propagation of Innovations in Networked Groups
Mason, Winter A.; Jones, Andy; Goldstone, Robert L.
2008-01-01
A novel paradigm was developed to study the behavior of groups of networked people searching a problem space. The authors examined how different network structures affect the propagation of information in laboratory-created groups. Participants made numerical guesses and received scores that were also made available to their neighbors in the…
Domain Wall Propagation through Spin Wave Emission
Wang, X.S.; Yan, P.; Shen, Y.H.; Bauer, G.E.W.; Wang, X.R.
2012-01-01
We theoretically study field-induced domain wall motion in an electrically insulating ferromagnet with hard- and easy-axis anisotropies. Domain walls can propagate along a dissipationless wire through spin wave emission locked into the known soliton velocity at low fields. In the presence of damping
Electromagnetic Wave Propagation in Random Media
DEFF Research Database (Denmark)
Pécseli, Hans
1984-01-01
The propagation of a narrow frequency band beam of electromagnetic waves in a medium with randomly varying index of refraction is considered. A novel formulation of the governing equation is proposed. An equation for the average Green function (or transition probability) can then be derived...
Satellite-to-ground radiowave propagation
Allnutt, JE
2011-01-01
This book is a follow up to the award winning first edition and is written as a comprehensive guide for those who need to obtain a working knowledge of radiowave propagation on satellite-to-ground links at frequencies above 1 GHz, and as a reference book for experts in the field.
Urban traffic congestion propagation and bottleneck identification
Institute of Scientific and Technical Information of China (English)
LONG JianCheng; GAO ZiYou; REN HuaLing; LIAN AiPing
2008-01-01
Bottlenecks in urban traffic network are sticking points in restricting network col-lectivity traffic efficiency.To identify network bottlenecks effectively is a founda-tional work for improving network traffic condition and preventing traffic conges-tion.In this paper,a congestion propagation model of urban network traffic is proposed based on the cell transmission model (CTM).The proposed model in-cludes a link model,which describes flow propagation on links,and a node model,which represents link-to-link flow propagation.A new method of estimating average journey velocity (AJV) of both link and network is developed to identify network congestion bottlenecks.A numerical example is studied in Sioux Falls urban traffic network.The proposed model is employed in simulating network traffic propaga-tion and congestion bottleneck identification under different traffic demands.The simulation results show that continual increase of traffic demand is an immediate factor in network congestion bottleneck emergence and increase as well as re-ducing network collectivity capability.Whether a particular link will become a bot-tleneck is mainly determined by its position in network,its traffic flow (attributed to different OD pairs) component,and network traffic demand.
Detonation propagation in a high loss configuration
Energy Technology Data Exchange (ETDEWEB)
Jackson, Scott I [Los Alamos National Laboratory; Shepherd, Joseph E [CALTECH
2009-01-01
This work presents an experimental study of detonation wave propagation in tubes with inner diameters (ID) comparable to the mixture cell size. Propane-oxygen mixtures were used in two test section tubes with inner diameters of 1.27 mm and 6.35 mm. For both test sections, the initial pressure of stoichiometric mixtures was varied to determine the effect on detonation propagation. For the 6.35 mm tube, the equivalence ratio {phi} (where the mixture was {phi} C{sub 3}H{sub 8} + 50{sub 2}) was also varied. Detonations were found to propagate in mixtures with cell sizes as large as five times the diameter of the tube. However, under these conditions, significant losses were observed, resulting in wave propagation velocities as slow as 40% of the CJ velocity U{sub CJ}. A review of relevant literature is presented, followed by experimental details and data. Observed velocity deficits are predicted using models that account for boundary layer growth inside detonation waves.
Rapid Vegetative Propagation Method for Carob
Directory of Open Access Journals (Sweden)
Hamide GUBBUK
2011-05-01
Full Text Available Most of fruit species are propagated by vegetative methods such as budding, grafting, cutting, suckering, layering etc. to avoid heterozygocity. Carob trees (Ceratonia siliqua L. are of highly economical value and are among the most difficult to propagate fruit species. In the study, air-layering propagation method was investigated first time to compare wild and cultivated (�Sisam� carob types. In the experiment, one year old carob limbs were air-layered on coco peat medium by wrapping with aluminum foil and polyethylene film. Initial roots were observed after three months of treatment and the well rooted limbs were cut-off after six months of treatment. Root length, diameter, and the number of roots were recorded on treated shoots and the rooted shoots were transferred into soil. As a result, it has been found that air-layering is successful in carob. This method is more labor intensive and thus it is recommend the method only for genetically important carob types propagation.
DBEM crack propagation for nonlinear fracture problems
Directory of Open Access Journals (Sweden)
R. Citarella
2015-10-01
Full Text Available A three-dimensional crack propagation simulation is performed by the Dual Boundary Element Method (DBEM. The Stress Intensity Factors (SIFs along the front of a semi elliptical crack, initiated from the external surface of a hollow axle, are calculated for bending and press fit loading separately and for a combination of them. In correspondence of the latter loading condition, a crack propagation is also simulated, with the crack growth rates calculated using the NASGRO3 formula, calibrated for the material under analysis (steel ASTM A469. The J-integral and COD approaches are selected for SIFs calculation in DBEM environment, where the crack path is assessed by the minimum strain energy density criterion (MSED. In correspondence of the initial crack scenario, SIFs along the crack front are also calculated by the Finite Element (FE code ZENCRACK, using COD, in order to provide, by a cross comparison with DBEM, an assessment on the level of accuracy obtained. Due to the symmetry of the bending problem a pure mode I crack propagation is realised with no kinking of the propagating crack whereas for press fit loading the crack propagation becomes mixed mode. The crack growth analysis is nonlinear because of normal gap elements used to model the press fit condition with added friction, and is developed in an iterative-incremental procedure. From the analysis of the SIFs results related to the initial cracked configuration, it is possible to assess the impact of the press fit condition when superimposed to the bending load case.
Andreasen, J
2012-01-01
Unidirectional pulse propagation equations [UPPE, Phys. Rev. E 70, 036604 (2004)] have provided a theoretical underpinning for computer-aided investigations into dynamics of high-power ultrashort laser pulses and have been successfully utilized for almost a decade. Unfortunately, they are restricted to applications in bulk media or, with additional approximations, to simple waveguide geometries in which only a few guided modes can approximate the propagating waveform. The purpose of this work is to generalize the directional pulse propagation equations to structures characterized by strong refractive index differences and material interfaces. We also outline a numerical solution framework that draws on the combination of the bulk-media UPPE method with single-frequency beam-propagation techniques.
Andreasen, J.; Kolesik, M.
2012-01-01
Unidirectional pulse propagation equations [UPPE, Phys. Rev. E 70, 036604 (2004)] have provided a theoretical underpinning for computer-aided investigations into dynamics of high-power ultrashort laser pulses and have been successfully utilized for almost a decade. Unfortunately, they are restricted to applications in bulk media or, with additional approximations, to simple waveguide geometries in which only a few guided modes can approximate the propagating waveform. The purpose of this work...
Beam propagation method using a [(p- 1)/ p] Padé approximant of the propagator.
Lu, Ya Yan; Ho, Pui Lin
2002-05-01
A new beam propagation method (BPM) is developed based on a direct approximation to the propagator by its [(p-1)/p] Padé approximant. The approximant is simple to construct and has the desired damping effect for the evanescent modes. The method is applied to a tapered waveguide for TM-polarized waves, based on the energy-conserving improvement of the one-way Helmholtz equation. Numerical results are compared with those obtained with other variants of the BPM. PMID:18007898
Propagation speed of gamma radiation in brass
Energy Technology Data Exchange (ETDEWEB)
Cavalcante, Jose T.P.D.; Silva, Paulo R.J.; Saitovich, Henrique
2009-07-01
The propagation speed (PS) of visible light -represented by a short frequency range in the large frame of electromagnetic radiations (ER) frequencies- in air was measured during the last century, using a great deal of different methods, with high precision results being achieved. Presently, a well accepted value, with very small uncertainty, is c= 299,792.458 Km/s) (c reporting to the Latin word celeritas: 'speed swiftness'). When propagating in denser material media (MM), such value is always lower when compared to the air value, with the propagating MM density playing an important role. Until present, such studies focusing propagation speeds, refractive indexes, dispersions were specially related to visible light, or to ER in wavelengths ranges dose to it, and with a transparent MM. A first incursion in this subject dealing with {gamma}-rays was performed using an electronic coincidence counting system, when the value of it's PS was measured in air, C{sub {gamma}}{sub (air)}298,300.15 Km/s; a method that went on with later electronic improvements. always in air. To perform such measurements the availability of a {gamma}-radiation source in which two {gamma}-rays are emitted simultaneously in opposite directions -as already used as well as applied in the present case- turns out to be essential to the feasibility of the experiment, as far as no reflection techniques could be used. Such a suitable source was the positron emitter {sup 22}Na placed in a thin wall metal container in which the positrons are stopped and annihilated when reacting with the medium electrons, in such way originating -as it is very well established from momentum/energy conservation laws - two gamma-rays, energy 511 KeV each, both emitted simultaneously in opposite directions. In all the previous experiments were used photomultiplier detectors coupled to NaI(Tl) crystal scintillators, which have a good energy resolution but a deficient time resolution for such purposes
Laser beam propagation in a long solenoid
International Nuclear Information System (INIS)
An analysis of the propagation of a laser beam in a cylindrical magnetically confined plasma with parabolic density profile is presented. The normal modes which are self-trapped are given. It is found that the largest mode that can be trapped by the plasma is given by 1/2 (R02/w2 -- 1) where R0 is the radius of the plasma column and w is the fundamental mode width. It is found that all the trapped modes in a finite plasma can easily propagate distances of the order of one kilometer. An exact solution for the amplitude of the electric field for an incident gaussian beam was obtained. The solution exhibits alternate focusing and defocusing of the beam. The effect of this on the plasma heating is discussed. (U.S.)
Cosmic ray propagation in galactic turbulence
Energy Technology Data Exchange (ETDEWEB)
Evoli, Carmelo [II. Institut für Theoretische Physik, Universität Hamburg, Luruper Chaussee 149, D-22761 Hamburg (Germany); Yan, Huirong, E-mail: carmelo.evoli@desy.de, E-mail: hryan@pku.edu.cn [Kavli Institute of Astronomy and Astrophysics, Peking University, Beijing 100871 (China)
2014-02-10
We revisit propagation of galactic cosmic rays (CRs) in light of recent advances in CR diffusion theory in realistic interstellar turbulence. We use a tested model of turbulence in which it has been shown that fast modes dominate scattering of CRs. As a result, propagation becomes inhomogeneous and environment dependent. By adopting the formalism of the nonlinear theory developed by Yan and Lazarian, we calculate the diffusion of CRs self-consistently from first principles. We assume a two-phase model for the Galaxy to account for different damping mechanisms of the fast modes, and we find that the energy dependence of the diffusion coefficient is mainly affected by medium properties. We show that it gives a correct framework to interpret some of the recent CR puzzles.
Anisotropy of light propagation in human skin
Nickell, Stephan; Hermann, Marcus; Essenpreis, Matthias; Farrell, Thomas J.; Krämer, Uwe; Patterson, Michael S.
2000-10-01
Using spatially resolved, steady state diffuse reflectometry, a directional dependence was found in the propagation of visible and near infrared light through human skin in vivo. The skin's reduced scattering coefficient µ's varies by up to a factor of two between different directions of propagation at the same position. This anisotropy is believed to be caused by the preferential orientation of collagen fibres in the dermis, as described by Langer's skin tension lines. Monte Carlo simulations that examine the effect of partial collagen fibre orientation support this hypothesis. The observation has consequences for non-invasive diagnostic methods relying on skin optical properties, and it could be used non-invasively to determine the direction of lines of cleavage in order to minimize scars due to surgical incisions.
Axion-photon Propagation in Magnetized Universe
Wang, Chen
2015-01-01
Oscillations between photons and axion-like particles (ALP) travelling in intergalactic magnetic fields have been invoked to explain a number of astrophysical phenomena, or used to constrain ALP properties using observations. One example is the anomalous transparency of the universe to TeV gamma-rays. The intergalactic magnetic field is usually modeled as patches of coherent domains, each with a uniform magnetic field, but the field orientation changes randomly from one domain to the next ("discrete-$\\varphi$ model"). We show in this paper that in more realistic situations, when the magnetic field direction varies continuously along the propagation path, the photon-to-ALP conversion probability $P$ can be significantly different from the discrete-$\\varphi$ model. In particular, $P$ has a distinct dependence on the photon energy and ALP mass, and can be as large as 100 percent. This result may affect previous constraints on ALP properties based on ALP-photon propagation in intergalactic magnetic fields.
Photon propagation in slowly varying electromagnetic fields
Karbstein, Felix
2016-01-01
We study the effective theory of soft photons in slowly varying electromagnetic background fields at one-loop order in QED. This is of relevance for the study of all-optical signatures of quantum vacuum nonlinearity in realistic electromagnetic background fields as provided by high-intensity lasers. The central result derived in this article is a new analytical expression for the photon polarization tensor in two linearly polarized counter-propagating pulsed Gaussian laser beams. As we treat the peak field strengths of both laser beams as free parameters this field configuration can be considered as interpolating between the limiting cases of a purely right- or left-moving laser beam (if one of the peak field strengths is set to zero) and the standing-wave type scenario with two counter-propagating beams of equal strength.
Ultrashort Pulse Propagation in Nonlinear Dispersive Fibers
Agrawal, Govind P.
Ultrashort optical pulses are often propagated through optical waveguides for a variety of applications including telecommunications and supercontinuum generation [1]. Typically the waveguide is in the form of an optical fiber but it can also be a planar waveguide. The material used to make the waveguide is often silica glass, but other materials such as silicon or chalcogenides have also been used in recent years. What is common to all such materials is they exhibit chromatic dispersion as well as the Kerr nonlinearity. The former makes the refractive index frequency dependent, whereas the latter makes it to depend on the intensity of light propagating through the medium [2]. Both of these effects become more important as optical pulses become shorter and more intense. For pulses not too short (pulse widths > 1 ns) and not too intense (peak powers fibers but similar results are expected for other waveguides made of different materials
Diffuse photon propagation in multilayered geometries
International Nuclear Information System (INIS)
Diffuse optical tomography (DOT) is an emerging functional medical imaging modality which aims to recover the optical properties of biological tissue. The forward problem of the light propagation of DOT can be modelled in the frequency domain as a diffusion equation with Robin boundary conditions. In the case of multilayered geometries with piecewise constant parameters, the forward problem is equivalent to a set of coupled Helmholtz equations. In this paper, we present solutions for the multilayered diffuse light propagation for a three-layer concentric sphere model using a series expansion method and for a general layered geometry using the boundary element method (BEM). Results are presented comparing these solutions to an independent Monte Carlo model, and for an example three layered head model
The stratospheric arrival pair in infrasound propagation.
Waxler, Roger; Evers, Läslo G; Assink, Jelle; Blom, Phillip
2015-04-01
The ideal case of a deep and well-formed stratospheric duct for long range infrasound propagation in the absence of tropospheric ducting is considered. A canonical form, that of a pair of arrivals, for ground returns of impulsive signals in a stratospheric duct is determined. The canonical form is derived from the geometrical acoustics approximation, and is validated and extended through full wave modeling. The full caustic structure of the field of ray paths is found and used to determine phase relations between the contributions to the wavetrain from different propagation paths. Finally, comparison with data collected from the 2005 fuel gas depot explosion in Buncefield, England is made. The correspondence between the theoretical results and the observations is shown to be quite good. PMID:25920837
M2 qualify laser beam propagation
International Nuclear Information System (INIS)
One of the most important properties of a laser resonator is the highly collimated or spatially coherent nature of the laser output beam. Laser beam diameter and quality factor M2 are significant parameters in a wide range of laser applications. This is because the spatial beam quality determines how closely the beam can be focused or how well the beam propagates over long distances without significant dispersion. In the present paper we have used three different methods to qualify the spatial structure of a laser beam propagating in free space, the results are obtained and discussed, and we have found that the Wigner distribution function is a powerful tool which allows a global characterization of any kind of beam
Information Propagation in Clustered Multilayer Networks
Zhuang, Yong
2015-01-01
In today's world, individuals interact with each other in more complicated patterns than ever. Some individuals engage through online social networks (e.g., Facebook, Twitter), while some communicate only through conventional ways (e.g., face-to-face). Therefore, understanding the dynamics of information propagation among humans calls for a multi-layer network model where an online social network is conjoined with a physical network. In this work, we initiate a study of information diffusion in a clustered multi-layer network model, where all constituent layers are random networks with high clustering. We assume that information propagates according to the SIR model and with different information transmissibility across the networks. We give results for the conditions, probability, and size of information epidemics, i.e., cases where information starts from a single individual and reaches a positive fraction of the population. We show that increasing the level of clustering in either one of the layers increas...
Scout trajectory error propagation computer program
Myler, T. R.
1982-01-01
Since 1969, flight experience has been used as the basis for predicting Scout orbital accuracy. The data used for calculating the accuracy consists of errors in the trajectory parameters (altitude, velocity, etc.) at stage burnout as observed on Scout flights. Approximately 50 sets of errors are used in Monte Carlo analysis to generate error statistics in the trajectory parameters. A covariance matrix is formed which may be propagated in time. The mechanization of this process resulted in computer program Scout Trajectory Error Propagation (STEP) and is described herein. Computer program STEP may be used in conjunction with the Statistical Orbital Analysis Routine to generate accuracy in the orbit parameters (apogee, perigee, inclination, etc.) based upon flight experience.
Embryo culture and rapid propagation of Syringa
Institute of Scientific and Technical Information of China (English)
ZHOU Li; DAI Li-min; SU Bao-ling
2003-01-01
Embryo of lilacs (Syringa L) culture in vitro and the rapid propagation were studied. The orthogonal experiments, including the selection of basal medium, embryo age and other factors such as sugar, benzyladenine (BA), naphthalene acetic acid (NAA) and glutamine (Gln), were carried out. The results indicated that the optimal medium for embryo culture was Monnier medium supplemented with NAA (0.001 mg@L-1), BA (0.1 mg@L-1), sugar (50 g@L-1), and Gln (400 mg@L-1), with a germination rate of 91.7% at least; the optimal embryo age was 50 d; and Gln had significant effects on the germination rate of embryo. Moreover, the optimal medium for subculture was MS+BA (2 mg@L-1)+NAA (0.001 mg@L-1)+Gln (0.5 mg@L-1), with the propagation coefficient of 3.6 at least.
Light propagation in inhomogeneous and anisotropic cosmologies
Fleury, Pierre
2015-01-01
The standard model of cosmology is based on the hypothesis that the Universe is spatially homogeneous and isotropic. When interpreting most observations, this cosmological principle is applied stricto sensu: the light emitted by distant sources is assumed to propagate through a Friedmann-Lema\\^itre spacetime. The main goal of the present thesis was to evaluate how reliable this assumption is, especially when small scales are at stake. After having reviewed the laws of geometric optics in curved spacetime, and the standard interpretation of cosmological observables, the dissertation reports a comprehensive analysis of light propagation in Swiss-cheese models, designed to capture the clumpy character of the Universe. The resulting impact on the interpretation of the Hubble diagram is quantified, and shown to be relatively small, thanks to the cosmological constant. When applied to current supernova data, the associated corrections tend however to improve the agreement between the cosmological parameters inferre...
International Conference on Dynamic Crack Propagation
1973-01-01
The planning meeting for a conference on Dynamic Crack Propagation was held at M.LT. in February 1971 and attended by research workers from several industrial, governmental and academic organizations. It was felt that a more specialized meeting would provide a better opportunity for both U.S. and foreign researchers to exchange their ideas and views on dynamic fracture, a subject which is seldom emphasized in national or international fracture conferences. Dynamic crack propagation has been a concern to specialists in many fields: continuum mechanics, metallurgy, geology, polymer chemistry, orthopedics, applied mathematics, as well as structural design and testing. It impinges on a wide variety of problems such as rock breaking and earthquakes, pressure vessels and line pipes, comminution and the per formance of armament and ordnance, etc. Advances have been numerous, covering theories and experiments from both the microscopic and macro scopic points of view. Hence, the need for comparing the theoretical ...
Inferring network topology via the propagation process
Zeng, An
2013-01-01
Inferring the network topology from the dynamics is a fundamental problem with wide applications in geology, biology and even counter-terrorism. Based on the propagation process, we present a simple method to uncover the network topology. The numerical simulation on artificial networks shows that our method enjoys a high accuracy in inferring the network topology. We find the infection rate in the propagation process significantly influences the accuracy, and each network is corresponding to an optimal infection rate. Moreover, the method generally works better in large networks. These finding are confirmed in both real social and nonsocial networks. Finally, the method is extended to directed networks and a similarity measure specific for directed networks is designed.
Propagating Qualitative Values Through Quantitative Equations
Kulkarni, Deepak
1992-01-01
In most practical problems where traditional numeric simulation is not adequate, one need to reason about a system with both qualitative and quantitative equations. In this paper, we address the problem of propagating qualitative values represented as interval values through quantitative equations. Previous research has produced exponential-time algorithms for approximate solution of the problem. These may not meet the stringent requirements of many real time applications. This paper advances the state of art by producing a linear-time algorithm that can propagate a qualitative value through a class of complex quantitative equations exactly and through arbitrary algebraic expressions approximately. The algorithm was found applicable to Space Shuttle Reaction Control System model.
Low Frequency Sound Propagation in Lipid Membranes
Mosgaard, Lars D; Heimburg, Thomas
2012-01-01
In the recent years we have shown that cylindrical biological membranes such as nerve axons under physiological conditions are able to support stable electromechanical pulses called solitons. These pulses share many similarities with the nervous impulse, e.g., the propagation velocity as well as the measured reversible heat production and changes in thickness and length that cannot be explained with traditional nerve models. A necessary condition for solitary pulse propagation is the simultaneous existence of nonlinearity and dispersion, i.e., the dependence of the speed of sound on density and frequency. A prerequisite for the nonlinearity is the presence of a chain melting transition close to physiological temperatures. The transition causes a density dependence of the elastic constants which can easily be determined by experiment. The frequency dependence is more difficult to determine. The typical time scale of a nerve pulse is 1 ms, corresponding to a characteristic frequency in the range up to one kHz. ...
Unidirectional propagation of designer surface acoustic waves
Lu, Jiuyang; Ke, Manzhu; Liu, Zhengyou
2014-01-01
We propose an efficient design route to generate unidirectional propagation of the designer surface acoustic waves. The whole system consists of a periodically corrugated rigid plate combining with a pair of asymmetric narrow slits. The directionality of the structure-induced surface waves stems from the destructive interference between the evanescent waves emitted from the double slits. The theoretical prediction is validated well by simulations and experiments. Promising applications can be anticipated, such as in designing compact acoustic circuits.
Thermodynamic Cycle Analysis for Propagating Detonations
Wintenberger, E.; Shepherd, J. E.
2006-01-01
Propagating detonations have recently been the focus of extensive work based on their use in pulse detonation engines [1]. The entropy minimum associated with Chapman–Jouguet (CJ) detonations [2] and its potential implications on the thermal efficiency of these systems [3] has been one of the main motivations for these efforts. The notion of applying thermodynamic cycles to detonation was considered first by Zel’dovich [4], who concluded that the efficiency of the detonation cycle is slightly...
Photon propagation in slowly varying electromagnetic fields
Karbstein, Felix
2016-01-01
We study the effective theory of soft photons in slowly varying electromagnetic background fields at one-loop order in QED. This is of relevance for the study of all-optical signatures of quantum vacuum nonlinearity in realistic electromagnetic background fields as provided by high-intensity lasers. The central result derived in this article is a new analytical expression for the photon polarization tensor in two linearly polarized counter-propagating pulsed Gaussian laser beams. As we treat ...
Signal Propagation in Drosophila Central Neurons
Gouwens, Nathan W.; Wilson, Rachel I.
2009-01-01
Drosophila is an important model organism for investigating neural development, neural morphology, neurophysiology, and neural correlates of behaviors. However, almost nothing is known about how electrical signals propagate in Drosophila neurons. Here we address these issues in antennal lobe projection neurons (PNs), one of the most well-studied classes of Drosophila neurons. We use morphological and electrophysiological data to deduce the passive membrane properties of these neurons and to b...
Space Propagation of Instabilities in Zakharov Equations
Metivier, Guy
2007-01-01
39 p International audience In this paper we study an initial boundary value problem for Zakharov's equations, describing the space propagation of a laser beam entering in a plasma. We prove a strong instability result and prove that the mathematical problem is ill-posed in Sobolev spaces. We also show that it is well posed in spaces of analytic functions. Several consequences for the physical consistency of the model are discussed.
Wave propagation in fractured porous media
Tuncay, Kağan; Çorapçıoplu, M. Yavuz
1996-01-01
A theory of wave propagation in fractured porous media is presented based on the double-porosity concept. The macroscopic constitutive relations and mass and momentum balance equations are obtained by volume averaging the microscale balance and constitutive equations and assuming small deformations. In microscale, the grains are assumed to be linearly elastic and the fluids are Newtonian. Momentum transfer terms are expressed in terms of intrinsic and relative permeabilities assuming the vali...
Asymmetric propagation of airblast from bench blasting
Segarra Catasús, Pablo; Sanchidrián Blanco, José Angel; López Sánchez, Lina María; Domingo, Jesús Felix
2011-01-01
This paper investigates the propagation of airblast from quarry blasting. Peak overpressure is calculated as a function of blasting parameters (explosive mass per delay and velocity at which the detonation sequence proceeds along the bench) and polar coordinates of the point of interest (distance to the blast and azimuth with respect to the free face of the blast). The model is in the form of the product of a classical scaled distance attenuation law times a directional correction factor. The...
Collaborative multiagent reinforcement learning by payoff propagation
Kok, Jelle R.; Vlassis, Nikos
2006-01-01
In this article we describe a set of scalable techniques for learning the behavior of a group of agents in a collaborative multiagent setting. As a basis we use the framework of coordination graphs of Guestrin, Koller, and Parr (2002a) which exploits the dependencies between agents to decompose the global payoff function into a sum of local terms. First, we deal with the single-state case and describe a payoff propagation algorithm that computes the individual actions that approximately maxim...
Propagation aspects of frequency hopping spread spectrum
Fitton, MP; Nix, AR; Beach, MA
1997-01-01
Frequency hopping spread spectrum (FH-SS) has found a number of applications in both CDMA and TDMA cellular systems, wireless local loop, and wireless local area networks. The effect of FH-SS on mobile channel characteristics is evaluated. Employing propagation studies, statistical analysis and simulation models, it is shown that the frequency-hopped channel displays improved characteristics when compared to the non-hopped case. The short term fading statistics are improved, which can be expl...
Efficient Peer-to-Peer Belief Propagation
Schmidt, Roman; Aberer, Karl
2006-01-01
In this paper, we will present an efficient approach for distributed inference. We use belief propagation's message-passing algorithm on top of a DHT storing a Bayesian network. Nodes in the DHT run a variant of the spring relaxation algorithm to redistribute the Bayesian network among them. Thereafter correlated data is stored close to each other reducing the message cost for inference. We simulated our approach in Matlab and show the message reduction and the achieved load balance for rando...
Quantum Graphical Models and Belief Propagation
Leifer, Matthew; Poulin, David
2007-01-01
Belief Propagation algorithms acting on Graphical Models of classical probability distributions, such as Markov Networks, Factor Graphs and Bayesian Networks, are amongst the most powerful known methods for deriving probabilistic inferences amongst large numbers of random variables. This paper presents a generalization of these concepts and methods to the quantum case, based on the idea that quantum theory can be thought of as a noncommutative, operator-valued, generalization of classical pro...
Propagation, structural similarity and image quality
Pérez Rodríguez, Jorge; Mas Candela, David; Espinosa Tomás, Julián; Vázquez Ferri, Carmen; Illueca Contri, Carlos
2012-01-01
Natural images usually show a strong dependency between one point and its neighbourhood. This fact helps to the image interpretation and should be considered when determining the final image quality. The aim of this work is to propose an objective index which allows comparing natural images on the retina and, from them, to obtain relevant information abut the visual quality of a particular subject. The morphological data of the subject's eye are considered and the light propagation through th...
Chaotic ray propagation in corrugated layers
Directory of Open Access Journals (Sweden)
M. Bottiglieri
2005-01-01
Full Text Available The aim of this paper is to study the effects of a corrugated wall on the behaviour of propagating rays. Different types of corrugation are considered, using different distributions of the corrugation heights: white Gaussian, power law, self-affine perturbation. In phase space, a prevalent chaotic behaviour of rays, and the presence of a lot of caustics, are observed. These results entail that the KAM theorem is not fulfilled.
Faraday Pilot-Waves: Generation and Propagation
Galeano-Rios, Carlos; Milewski, Paul; Nachbin, André; Bush, John
2015-11-01
We examine the dynamics of drops bouncing on a fluid bath subjected to vertical vibration. We solve a system of linear PDEs to compute the surface wave generation and propagation. Waves are triggered at each bounce, giving rise to the Faraday pilot-wave field. The model captures several of the behaviors observed in the laboratory, including transitions between a variety of bouncing and walking states, the Doppler effect, and droplet-droplet interactions. Thanks to the NSF.
Block Algorithms for Quark Propagator Calculation
Pickles, S M
1998-01-01
Computing quark propagators in lattice QCD is equivalent to solving large, sparse linear systems with multiple right-hand sides. Block algorithms attempt to accelerate the convergence of iterative Krylov-subspace methods by solving the multiple systems simultaneously. This paper compares a block generalisation of the quasi-minimal residual method (QMR), Block Conjugate Gradient on the normal equation, Block Lanczos and ($\\gamma_5$-symmetric) Block BiConjugate Gradient.
Wave propagation retrieval method for chiral metamaterials
DEFF Research Database (Denmark)
Andryieuski, Andrei; Malureanu, Radu; Lavrinenko, Andrei
2010-01-01
In this paper we present the wave propagation method for the retrieving of effective properties of media with circularly polarized eigenwaves, in particularly for chiral metamaterials. The method is applied for thick slabs and provides bulk effective parameters. Its strong sides are the absence...... of artificial branches of the refractive index and simplicity in implementation. We prove the validity of the method on three case studies of homogeneous magnetized plasma, bi-cross and U-shaped metamaterials....
Block Algorithms for Quark Propagator Calculation
Pickles, Stephen M.; Collaboration, UKQCD
1997-01-01
Computing quark propagators in lattice QCD is equivalent to solving large, sparse linear systems with multiple right-hand sides. Block algorithms attempt to accelerate the convergence of iterative Krylov-subspace methods by solving the multiple systems simultaneously. This paper compares a block generalisation of the quasi-minimal residual method (QMR), Block Conjugate Gradient on the normal equation, Block Lanczos and ($\\gamma_5$-symmetric) Block BiConjugate Gradient.
Electron Propagation in Orientationally Disordered Fullerides
Mele, E. J.; Erwin, S. C.
1994-01-01
We study the electronic spectrum for doped electronic states in the orientationally disordered M3C60 fullerides. Momentum-resolved Green's functions are calculated within a cluster-Bethe-lattice model, and compared with results from calculations on periodically repeated supercells containing quenched orientational disorder. Despite the relatively strong scattering from orientational fluctuations, the electronic states near the Fermi energy are well described by propagating states characterize...
Propagation and excitation of graphene plasmon polaritons
DEFF Research Database (Denmark)
Zhu, Xiaolong; Yan, Wei; Jeppesen, Claus;
2013-01-01
We theoretically investigate the propagation of graphene plasmon polaritons in graphene nanoribbon waveguides and experimentally observe the excitation of the graphene plasmon polaritons in a continuous graphene monolayer. We show that graphene nanoribbon bends do not induce any additional loss...... and nanofocusing occurs in a tapered graphene nanoriboon, and we experimentally demonstrate the excitation of graphene plasmon polaritonss in a continuous graphene monolayer assisted by a two-dimensional subwavelength silicon grating....
VLF propagation measurements in the Canadian Arctic
Lauber, Wilfred R.; Bertrand, Jean M.
1993-05-01
For the past three years, during a period of high sun spot numbers, propagation measurements were made on the reception of VLF signals in the Canadian Arctic. Between Aug. and Dec. 1989, the received signal strengths were measured on the Canadian Coast Guard icebreaker, John A. MacDonald in the Eastern Canadian Arctic. Between Jul. 1991 and Jun. 1992, the received signal strengths were measured at Nanisivik, Baffin Island. The purposes of this work were to check the accuracy and estimate variances of the Naval Ocean Systems Center's (NOSC) Long Wave Propagation Capability (LWPC) predictions in the Canadian Arctic and to gather ionospheric storm data. In addition, the NOSC data taken at Fort Smith and our data at Nanisivik were used to test the newly developed Longwave Noise Prediction (LNP) program and the CCIR noise predictions, at 21.4 and 24.0 kHz. The results of the work presented and discussed in this paper show that in general the LWPC predicts accurate values of received signal strength in the Canadian Arctic with standard deviations of 1 to 2 dB over several months. Ionospheric storms can gauge the received signal strengths to decrease some 10 dB for a period of several hours or days. However, the effects of these storms are highly dependent on the propagation path. Finally the new LNP atmospheric noise model predicts lower values of noise in the Arctic than the CCIR model and our limited measurements tend to support these lower values.
Cosmic ray propagation with CRPropa 3
Alves Batista, R.; Erdmann, M.; Evoli, C.; Kampert, K.-H.; Kuempel, D.; Mueller, G.; Sigl, G.; Van Vliet, A.; Walz, D.; Winchen, T.
2015-05-01
Solving the question of the origin of ultra-high energy cosmic rays (UHECRs) requires the development of detailed simulation tools in order to interpret the experimental data and draw conclusions on the UHECR universe. CRPropa is a public Monte Carlo code for the galactic and extragalactic propagation of cosmic ray nuclei above ∼ 1017 eV, as well as their photon and neutrino secondaries. In this contribution the new algorithms and features of CRPropa 3, the next major release, are presented. CRPropa 3 introduces time-dependent scenarios to include cosmic evolution in the presence of cosmic ray deflections in magnetic fields. The usage of high resolution magnetic fields is facilitated by shared memory parallelism, modulated fields and fields with heterogeneous resolution. Galactic propagation is enabled through the implementation of galactic magnetic field models, as well as an efficient forward propagation technique through transformation matrices. To make use of the large Python ecosystem in astrophysics CRPropa 3 can be steered and extended in Python.
Propagating Synchrony in Feed-Forward Networks
Directory of Open Access Journals (Sweden)
Sven eJahnke
2013-11-01
Full Text Available Coordinated patterns of precisely timed action potentials (spikes emerge in a variety of neural circuits but their dynamical originis still not well understood. One hypothesis states that synchronous activity propagating through feed-forward chains of groups of neurons (synfire chains may dynamically generate such spike patterns. Additionally, synfire chains offer the possibility to enable reliable signal transmission. So far, mostly densely connected chains, often with all-to-all connectivity between groups, have been theoretically and computationally studied. Yet, such prominent feed-forward structures have not been observed experimentally. Here we analytically and numerically investigate under which conditions diluted feed-forward chains may exhibit synchrony propagation. In addition to conventional linear input summation, we study the impact of nonlinear, non-additive summation accounting for the effect of fast dendritic spikes. The non-linearities promote synchronous inputs to generate precisely timed spikes. We identify how non-additive coupling relaxes the conditions on connectivity such that it enables synchrony propagation at connectivities substantially lower than required for linearly coupled chains. Although the analytical treatment is based on a simple leaky integrate-and-fire neuron model, we show how to generalize our methods to biologically more detailed neuron models and verify our results by numerical simulations with, e.g., Hodgkin Huxley type neurons.
Wave propagation in spatially modulated tubes.
Ziepke, A; Martens, S; Engel, H
2016-09-01
We investigate wave propagation in rotationally symmetric tubes with a periodic spatial modulation of cross section. Using an asymptotic perturbation analysis, the governing quasi-two-dimensional reaction-diffusion equation can be reduced into a one-dimensional reaction-diffusion-advection equation. Assuming a weak perturbation by the advection term and using projection method, in a second step, an equation of motion for traveling waves within such tubes can be derived. Both methods predict properly the nonlinear dependence of the propagation velocity on the ratio of the modulation period of the geometry to the intrinsic width of the front, or pulse. As a main feature, we observe finite intervals of propagation failure of waves induced by the tube's modulation and derive an analytically tractable condition for their occurrence. For the highly diffusive limit, using the Fick-Jacobs approach, we show that wave velocities within modulated tubes are governed by an effective diffusion coefficient. Furthermore, we discuss the effects of a single bottleneck on the period of pulse trains. We observe period changes by integer fractions dependent on the bottleneck width and the period of the entering pulse train. PMID:27608990
Intergalactic Propagation of UHE Cosmic Rays
Achterberg, A; Norman, C A; Melrose, D B; Achterberg, Abraham; Gallant, Yves A.; Norman, Colin A.; Melrose, Donald B.
1999-01-01
We discuss the intergalactic propagation of ultra-high-energy cosmic rays (UHECRs) with energies E \\geq 10^{18.5} eV. We consider the propagation of UHECRs under the influence of the energy-dependent deflection by a weak random magnetic field in the intergalactic medium and energy losses by photo-pion and pair production. We calculate arrival spectra taking full account of the kinematics of photo-pion production and the Poisson statistics of the photo-pion interaction rate. We give estimates for the deflection of UHECRs from the line of sight to the source, time delays with respect to photons from the same source, arrival spectra and source statistics. These estimates are confirmed by numerical simulations of the propagation in energy evolution of UHECRs. These simulations demonstrate that the often-used continuous approximation in the treatment of energy losses due to photo-pion production on the cosmic microwave background (CMWB) cannot be justified for UHECRs. We discuss the implications of these results f...
Intense relativistic electron beam: generation and propagation
International Nuclear Information System (INIS)
A general review of relativistic electron beam extracted from explosive field emission diode has been presented here. The beam current in the diode gap taking into account cathode and anode plasma expansion velocity and excluding the self magnetic field effect is directly proportional to gap voltage V3/2 and inversely proportional to the square of the effective diode gap (d-vt). In the limit of high current, self magnetic field focusing effect comes into play and results in a critical current at which pinching will take place. When the diode current exceeds the critical current, the electron flow is in the para-potential regime. Different diode geometries such as planner, coaxial, rod-pinched, reflex triode are discussed qualitatively. When the beam is injected into a vacuum drift tube the propagation of the beam is only possible in presence of a strong axial magnetic field which prevents the beam expansion in the radial direction. If the beam is injected in the drift tube filled with dense plasma, then the redistribution of the plasma electrons effectively neutralizes the beam space charge, resulting subsequent propagation of the beam along the drift tube. The beam propagation through neutral gas is similar to the plasma filled drift tube. In this case both the neutral gas pressure and the beam current regulate the transmission of the REB. (author)
Wave propagation in spatially modulated tubes
Ziepke, A.; Martens, S.; Engel, H.
2016-09-01
We investigate wave propagation in rotationally symmetric tubes with a periodic spatial modulation of cross section. Using an asymptotic perturbation analysis, the governing quasi-two-dimensional reaction-diffusion equation can be reduced into a one-dimensional reaction-diffusion-advection equation. Assuming a weak perturbation by the advection term and using projection method, in a second step, an equation of motion for traveling waves within such tubes can be derived. Both methods predict properly the nonlinear dependence of the propagation velocity on the ratio of the modulation period of the geometry to the intrinsic width of the front, or pulse. As a main feature, we observe finite intervals of propagation failure of waves induced by the tube's modulation and derive an analytically tractable condition for their occurrence. For the highly diffusive limit, using the Fick-Jacobs approach, we show that wave velocities within modulated tubes are governed by an effective diffusion coefficient. Furthermore, we discuss the effects of a single bottleneck on the period of pulse trains. We observe period changes by integer fractions dependent on the bottleneck width and the period of the entering pulse train.
Wave propagation in metamaterial lattice sandwich plates
Fang, Xin; Wen, Jihong; Yin, Jianfei; Yu, Dianlong
2016-04-01
This paper designed a special acoustic metamaterial 3D Kagome lattice sandwich plate. Dispersion properties and vibration responses of both traditional plate and metamaterial plate are investigated based on FEA methods. The traditional plate does not have low-frequency complete bandgaps, but the metamaterial plate has low-frequency complete bandgap (at 620Hz) coming from the symmetrical local cantilever resonators. The bandgap frequency is approximate to the first-order natural frequency of the oscillator. Complex wave modes are analyzed. The dispersion curves of longitudinal waves exist in the flexural bandgap. The dispersion properties demonstrate the metamaterial design is advantageous to suppress the low-frequency flexural wave propagation in lattice sandwich plate. The flexural vibrations near the bandgap are also suppressed efficiently. The longitudinal excitation stimulates mainly longitudinal waves and lots of low-frequency flexural vibration modes are avoided. Furthermore, the free edge effects in metamaterial plate provide new method for damping optimizations. The influences of damping on vibrations of the metamaterial sandwich plate are studied. Damping has global influence on the wave propagation; stronger damping will induce more vibration attenuation. The results enlighten us damping and metamaterial design approaches can be unite in the sandwich plates to suppress the wave propagations.
Force propagation and force generation in cells.
Jonas, Oliver; Duschl, Claus
2010-09-01
Determining how forces are produced by and propagated through the cytoskeleton (CSK) of the cell is of great interest as dynamic processes of the CSK are intimately correlated with many molecular signaling pathways. We are presenting a novel approach for integrating measurements on cell elasticity, transcellular force propagation, and cellular force generation to obtain a comprehensive description of dynamic and mechanical properties of the CSK under force loading. This approach uses a combination of scanning force microscopy (SFM) and Total Internal Reflection Fluorescence (TIRF) microscopy. We apply well-defined loading schemes onto the apical cell membrane of fibroblasts using the SFM and simultaneously use TIRF microscopy to image the topography of the basal cell membrane. The locally distinct changes of shape and depth of the cytoskeletal imprints onto the basal membrane are interpreted as results of force propagation through the cytoplasm. This observation provides evidence for the tensegrity model and demonstrates the usefulness of our approach that does not depend on potentially disturbing marker compounds. We confirm that the actin network greatly determines cell stiffness and represents the substrate that mediates force transduction through the cytoplasm of the cell. The latter is an essential feature of tensegrity. Most importantly, our new finding that, both intact actin and microtubule networks are required for enabling the cell to produce work, can only be understood within the framework of the tensegrity model. We also provide, for the first time, a direct measurement of the cell's mechanical power output under compression at two femtowatts. PMID:20607861
From guided to optical microvave propagation
International Nuclear Information System (INIS)
A wide theoretical study on quasi-optical microwave propagation has been carried out in the range 3 GHz - 300 GHz. A high power TEMOO Gaussian beam can be propagated for long distances with low losses if a nearly-confocal system of mirrors is used as phase corrector. The theory of beam waveguides using elliptic paraboloidal reflectors has been critically revisited and developed. All the kind of losses (diffraction, matching, truncation, divergence, ohmic, atmospheric, depolarization, misalignment) have been examinated into detail. Criteria to find the best design parameters of a quasi-optical transmission line are given once the frequency, the power and the available room are known. In general, a well designed Reflecting Beam Waveguide should permit the propagation of several MW in CW without a sensible beam shape deformation, and with total losses of about a fraction of % in 10 meters. Several examples at different frequencies are herein reported, and applications to high power Electron Cyclotron Heating and Lower Hybrid Heating of a plasma find a good solution using quasi-optical schemes. The wide bandwidth, the fact of having a single line needing no cooling and without requirements of high mechanical precision (as in certain waveguide components at high frequency), are other advantages of the Reflecting Beam Waveguide System (RBWS) which have been examined in this work
In Vitro Propagation of Ardisia mamillata Hance
Institute of Scientific and Technical Information of China (English)
Bihua CHEN; Juan ZHANG; Zhuoxi WU; Huihua FAN; Qianzhen LI
2015-01-01
Ardisia mamil ata Hance is a rare plant with highly ornamental and medic-inal value. The traditional propagation methods for A. mamil ata by seeds or cutting provided low proliferation rate. This study is to optimize the propagation technique of A. mamil ata by tissue culture and set up an industrial production system to provide plenty of A. mamil ata seedlings for the human demand. The optimal initiation medi-um for A. mamil ata is MS+2.0 mg/L BA+0.1 mg/L NAA+30 g/L sugar, providing 76.4% initiation rate. The optimal shoot proliferation medium for A. mamil ata is MS+1.0 mg/L BA+0.1 mg/L NAA+30 g/L sugar, providing 4.56 fold proliferation rate and 3.10 cm shoot in height. The optimal shoot elongation medium for A. mamil ata is MS+0.5 mg/L BA+0.1 mg/L NAA+30 g/L sugar, providing 2.77 fold proliferation rate and 4.27 cm shoot in height. The optimal rooting medium for A. mamil ata is 1/2MS+0.1 mg/L IBA+15 g/L sugar, providing 99.7% rooting rate, 4.0 roots per individual, 7.53 cm root in length and 3.94 cm shoot in height. This provides a reliable mass propagation method for A. mamil ata.
Modified Wide-angle Beam Propagation Method Using Douglas Operators①
Institute of Scientific and Technical Information of China (English)
无
1997-01-01
A modified wide-angle beam propagation based on the Douglas operators is presented .The truncation error in the modified wide-angle beam propagation is reduced to o(△x)4in the transverse direction nearly without any increase of the computation time,whereas the error in the ordinary wide-angle beam propagation method is typically o(△x)2.With trivial programming changes,the accuracy is higher,especially in wide-angle propagation.
What causes the superluminal propagation of light pulses
Institute of Scientific and Technical Information of China (English)
ShiYao Zhu(朱诗尧); LiGang Wang(王立刚)
2003-01-01
In this paper, we discuss what causes the superluminal propagation of a pulse through dispersion by solving Maxwell's equations without any approximation. The coherence of the pulse plays an important role for superluminal propagation. When the pulse becomes partially coherent, the propagation changes from superluminal to subluminal. The energy velocity is always less than the vacuum velocity. The shape of the pulse is changed during the propagation.
Propagation Mechanism Analysis Before the Break Point Inside Tunnels
Guan, Ke; Zhong, Zhangdui; Bo, Ai; Briso Rodriguez, Cesar
2011-01-01
There is no unanimous consensus yet on the propagation mechanism before the break point inside tunnels. Some deem that the propagation mechanism follows the free space model, others argue that it should be described by the multimode waveguide model. Firstly, this paper analyzes the propagation loss in two mechanisms. Then, by conjunctively using the propagation theory and the three-dimensional solid geometry, a generic analytical model for the boundary between the free space mechanism and the...
Boolean Equi-propagation for Optimized SAT Encoding
Metodi, Amit; Lagoon, Vitaly; Stuckey, Peter J
2011-01-01
We present an approach to propagation based solving, Boolean equi-propagation, where constraints are modelled as propagators of information about equalities between Boolean literals. Propagation based solving applies this information as a form of partial evaluation resulting in optimized SAT encodings. We demonstrate for a variety of benchmarks that our approach results in smaller CNF encodings and leads to speed-ups in solving times.
EFFECT OF CREVICE FORMER ON CORROSION DAMAGE PROPAGATION
Energy Technology Data Exchange (ETDEWEB)
J.H. Payer; U. Landau; X. Shan; A.S. Agarwal
2006-03-01
The objectives of this report are: (1) To determine the effect of the crevice former on the localized corrosion damage propagation; (2) FOCUS on post initiation stage, crevice propagation and arrest processes; (3) Determine the evolution of damage--severity, shape, location/distribution, damage profile; and (4) Model of crevice corrosion propagation, i.e. the evolution of the crevice corrosion damage profile.
Coherence approach to neutron polarization propagation in instruments
De Haan, V.O.; Van Well, A.A.; Plomp, J.
2008-01-01
The propagation of the mutual coherence function is a well known method to describe the effects of neutron’s propagation through scattering instruments. This method is extended with the description of the coherence matrix to account for neutron polarization effects and its propagation through an ins
Wave propagation through an electron cyclotron resonance layer
Westerhof, E.
1997-01-01
The propagation of a wave beam through an electron cyclotron resonance layer is analysed in two-dimensional slab geometry in order to assess the deviation from cold plasma propagation due to resonant, warm plasma changes in wave dispersion. For quasi-perpendicular propagation, N-parallel to x upsilo
Jochmann, A; Irman, A; Bussmann, M; Couperus, J P; Cowan, T E; Debus, A D; Kuntzsch, M; Ledingham, K W D; Lehnert, U; Sauerbrey, R; Schlenvoigt, H P; Seipt, D; Stöhlker, Th; Thorn, D B; Trotsenko, S; Wagner, A; Schramm, U
2013-09-13
Thomson backscattering of intense laser pulses from relativistic electrons not only allows for the generation of bright x-ray pulses but also for the investigation of the complex particle dynamics at the interaction point. For this purpose a complete spectral characterization of a Thomson source powered by a compact linear electron accelerator is performed with unprecedented angular and energy resolution. A rigorous statistical analysis comparing experimental data to 3D simulations enables, e.g., the extraction of the angular distribution of electrons with 1.5% accuracy and, in total, provides predictive capability for the future high brightness hard x-ray source PHOENIX (photon electron collider for narrow bandwidth intense x rays) and potential gamma-ray sources.
The effect of duct surface character on methane explosion propagation
Institute of Scientific and Technical Information of China (English)
LIN Bai-quan; YE Qing; JIAN Cong-guang; WU Hai-jin
2007-01-01
The effect of duct surface character on methane explosion propagation was experimentally studied and theoretically analyzed. The roughness has effect on methane explosion propagation. The flame propagation velocity and the peak value pressure of methane explosion in rough duct are larger than the parameters in smooth duct. The heat exchange of the surface has effect on methane explosion propagation. The propagation velocity of flame and strength of explosion wave in the duct covered by heat insulation material are larger than those in duct with good heat transmittability.
Free Propagation of Wave in Viscoelastic Cables with Small Curvature
Institute of Scientific and Technical Information of China (English)
邹宗兰
2003-01-01
The coupled longitudinal-transverse waves propagating freely along a viscoelastic cable was studied. The frequency-spectrum equation governing propagating waves and the formulations of the phase velocities and the group velocities characterizing propagating waves were derived. The effects of viscosity parameters on the phase velocities and the group velocities were investigated with numerical simulation. The analyses show that viscosity has a strong influence on the phase velocity and the group velocity of propagating waves and attenuation waves for longitudinal-dominant waves, but the phase velocities of propagating waves of transverse-dominant waves do not change with viscosity.
On analytic formulas of Feynman propagators in position space
Institute of Scientific and Technical Information of China (English)
ZHANG Hong-Hao; FENG Kai-Xi; QIU Si-Wei; ZHAO An; LI Xue-Song
2010-01-01
We correct an inaccurate result of previous work on the Feynman propagator in position space of a free Dirac field in(3+1)-dimensional spacetime; we derive the generalized analytic formulas of both the scalar Feynman propagator and the spinor Feynman propagator in position space in arbitrary(D+1)-dimensional spacetime; and we further find a recurrence relation among the spinor Feynman propagator in(D+l)-dimensional spacetime and the scalar Feynman propagators in(D+1)-,(D-1)-and(D+3)-dimensional spacetimes.
Can Electron Propagator Methods Be Used To Improve Polarization Propagator Methods?
DEFF Research Database (Denmark)
Jensen, Hans Jørgen Aagaard
2008-01-01
Calculations of Rydberg excitation energies with the second-order polarization propagator approximation (SOPPA) often produce results which are more in error than the random phase approximation (RPA), which formally is the first-order model. This is obviously because of cancellation of errors at...... the RPA level. On the other hand, valence excitation energies behave as expected, and they are systematically improved in SOPPA compared to RPA. Note that a Rydberg series is related to one of the ionization thresholds of the molecule, and it is thus obvious that a good description of the ionization...... limits is necessary in order to calculate good values for the Rydberg excitations. From perturbative electron propagator methods it is well-known that the second-order level is inadequate to obtain good ionization energies. It is also known from electron propagator methods that partial inclusion of...
DNA motif elucidation using belief propagation
Wong, Ka-Chun
2013-06-29
Protein-binding microarray (PBM) is a high-throughout platform that can measure the DNA-binding preference of a protein in a comprehensive and unbiased manner. A typical PBM experiment can measure binding signal intensities of a protein to all the possible DNA k-mers (k = 8 ?10); such comprehensive binding affinity data usually need to be reduced and represented as motif models before they can be further analyzed and applied. Since proteins can often bind to DNA in multiple modes, one of the major challenges is to decompose the comprehensive affinity data into multimodal motif representations. Here, we describe a new algorithm that uses Hidden Markov Models (HMMs) and can derive precise and multimodal motifs using belief propagations. We describe an HMM-based approach using belief propagations (kmerHMM), which accepts and preprocesses PBM probe raw data into median-binding intensities of individual k-mers. The k-mers are ranked and aligned for training an HMM as the underlying motif representation. Multiple motifs are then extracted from the HMM using belief propagations. Comparisons of kmerHMM with other leading methods on several data sets demonstrated its effectiveness and uniqueness. Especially, it achieved the best performance on more than half of the data sets. In addition, the multiple binding modes derived by kmerHMM are biologically meaningful and will be useful in interpreting other genome-wide data such as those generated from ChIP-seq. The executables and source codes are available at the authors\\' websites: e.g. http://www.cs.toronto.edu/?wkc/kmerHMM. 2013 The Author(s).
Crack propagation modeling using Peridynamic theory
Hafezi, M. H.; Alebrahim, R.; Kundu, T.
2016-04-01
Crack propagation and branching are modeled using nonlocal peridynamic theory. One major advantage of this nonlocal theory based analysis tool is the unifying approach towards material behavior modeling - irrespective of whether the crack is formed in the material or not. No separate damage law is needed for crack initiation and propagation. This theory overcomes the weaknesses of existing continuum mechanics based numerical tools (e.g. FEM, XFEM etc.) for identifying fracture modes and does not require any simplifying assumptions. Cracks grow autonomously and not necessarily along a prescribed path. However, in some special situations such as in case of ductile fracture, the damage evolution and failure depend on parameters characterizing the local stress state instead of peridynamic damage modeling technique developed for brittle fracture. For brittle fracture modeling the bond is simply broken when the failure criterion is satisfied. This simulation helps us to design more reliable modeling tool for crack propagation and branching in both brittle and ductile materials. Peridynamic analysis has been found to be very demanding computationally, particularly for real-world structures (e.g. vehicles, aircrafts, etc.). It also requires a very expensive visualization process. The goal of this paper is to bring awareness to researchers the impact of this cutting-edge simulation tool for a better understanding of the cracked material response. A computer code has been developed to implement the peridynamic theory based modeling tool for two-dimensional analysis. A good agreement between our predictions and previously published results is observed. Some interesting new results that have not been reported earlier by others are also obtained and presented in this paper. The final objective of this investigation is to increase the mechanics knowledge of self-similar and self-affine cracks.
Synaptic Contacts Enhance Cell-to-Cell Tau Pathology Propagation
Directory of Open Access Journals (Sweden)
Sara Calafate
2015-05-01
Full Text Available Accumulation of insoluble Tau protein aggregates and stereotypical propagation of Tau pathology through the brain are common hallmarks of tauopathies, including Alzheimer’s disease (AD. Propagation of Tau pathology appears to occur along connected neurons, but whether synaptic contacts between neurons are facilitating propagation has not been demonstrated. Using quantitative in vitro models, we demonstrate that, in parallel to non-synaptic mechanisms, synapses, but not merely the close distance between the cells, enhance the propagation of Tau pathology between acceptor hippocampal neurons and Tau donor cells. Similarly, in an artificial neuronal network using microfluidic devices, synapses and synaptic activity are promoting neuronal Tau pathology propagation in parallel to the non-synaptic mechanisms. Our work indicates that the physical presence of synaptic contacts between neurons facilitate Tau pathology propagation. These findings can have implications for synaptic repair therapies, which may turn out to have adverse effects by promoting propagation of Tau pathology.
Synaptic Contacts Enhance Cell-to-Cell Tau Pathology Propagation.
Calafate, Sara; Buist, Arjan; Miskiewicz, Katarzyna; Vijayan, Vinoy; Daneels, Guy; de Strooper, Bart; de Wit, Joris; Verstreken, Patrik; Moechars, Diederik
2015-05-26
Accumulation of insoluble Tau protein aggregates and stereotypical propagation of Tau pathology through the brain are common hallmarks of tauopathies, including Alzheimer's disease (AD). Propagation of Tau pathology appears to occur along connected neurons, but whether synaptic contacts between neurons are facilitating propagation has not been demonstrated. Using quantitative in vitro models, we demonstrate that, in parallel to non-synaptic mechanisms, synapses, but not merely the close distance between the cells, enhance the propagation of Tau pathology between acceptor hippocampal neurons and Tau donor cells. Similarly, in an artificial neuronal network using microfluidic devices, synapses and synaptic activity are promoting neuronal Tau pathology propagation in parallel to the non-synaptic mechanisms. Our work indicates that the physical presence of synaptic contacts between neurons facilitate Tau pathology propagation. These findings can have implications for synaptic repair therapies, which may turn out to have adverse effects by promoting propagation of Tau pathology.
Propagation equation for tight-focusing by a parabolic mirror.
Couairon, A; Kosareva, O G; Panov, N A; Shipilo, D E; Andreeva, V A; Jukna, V; Nesa, F
2015-11-30
Part of the chain in petawatt laser systems may involve extreme focusing conditions for which nonparaxial and vectorial effects have high impact on the propagation of radiation. We investigate the possibility of using propagation equations to simulate numerically the focal spot under these conditions. We derive a unidirectional propagation equation for the Hertz vector, describing linear and nonlinear propagation under situations where nonparaxial diffraction and vectorial effects become significant. By comparing our simulations to the results of vector diffraction integrals in the case of linear tight-focusing by a parabolic mirror, we establish a practical criterion for the critical f -number below which initializing a propagation equation with a parabolic input phase becomes inaccurate. We propose a method to find suitable input conditions for propagation equations beyond this limit. Extreme focusing conditions are shown to be modeled accurately by means of numerical simulations of the unidirectional Hertz-vector propagation equation initialized with suitable input conditions.
Target & Propagation Models for the FINDER Radar
Cable, Vaughn; Lux, James; Haque, Salmon
2013-01-01
Finding persons still alive in piles of rubble following an earthquake, a severe storm, or other disaster is a difficult problem. JPL is currently developing a victim detection radar called FINDER (Finding Individuals in Emergency and Response). The subject of this paper is directed toward development of propagation & target models needed for simulation & testing of such a system. These models are both physical (real rubble piles) and numerical. Early results from the numerical modeling phase show spatial and temporal spreading characteristics when signals are passed through a randomly mixed rubble pile.
Hole-hole propagation and saturation
International Nuclear Information System (INIS)
Ladder contributions to the effective interaction are calculated with inclusion of hole-hole (hh) propagation to all orders. For a correct calculation of the self-energy resulting from the ladder-summed effective interaction, ΓL, dispersion relations are used numerically. The single-particle (sp) energy is calculated self-consistently from the real on-shell self-energy. The contribution of the hh terms leads to a repulsive contribution to the energy per particle which increases with density. This saturation mechanism has not been identified previously and results are presented for the ν2 homework potential. (orig.)
Infrared propagator corrections for constant deceleration
Energy Technology Data Exchange (ETDEWEB)
Janssen, T M; Miao, S P; Prokopec, T [Institute for Theoretical Physics and Spinoza Institute, Utrecht University, Leuvenlaan 4, Postbus 80.195, 3508 TD Utrecht (Netherlands); Woodard, R P [Department of Physics, University of Florida Gainesville, FL 32611 (United States)], E-mail: T.M.Janssen@uu.nl, E-mail: S.Miao@uu.nl, E-mail: T.Prokopec@uu.nl, E-mail: woodard@phys.ufl.edu
2008-12-21
We derive the propagator for a massless, minimally coupled scalar on a D-dimensional, spatially flat, homogeneous and isotropic background with arbitrary constant deceleration parameter. Our construction uses the operator formalism by integrating the Fourier mode sum. We give special attention to infrared corrections from the nonzero lower limit associated with working on finite spatial sections. These corrections eliminate infrared divergences that would otherwise be incorrectly treated by dimensional regularization, resulting in off-coincidence divergences for those special values of the deceleration parameter at which the infrared divergence is logarithmic. As an application we compute the expectation value of the scalar stress-energy tensor.
Uncertainty propagation within the UNEDF models
Haverinen, T
2016-01-01
The parameters of the nuclear energy density have to be adjusted to experimental data. As a result they carry certain uncertainty which then propagates to calculated values of observables. In the present work we quantify the statistical uncertainties on binding energies for three UNEDF Skyrme energy density functionals by taking advantage of the knowledge of the model parameter uncertainties. We find that the uncertainty of UNEDF models increases rapidly when going towards proton or neutron rich nuclei. We also investigate the impact of each model parameter on the total error budget.
Symmetry-constrained electron vortex propagation
Clark, L; Béché, A; Lubk, A; Verbeeck, J
2016-01-01
Electron vortex beams hold great promise for development in transmission electron microscopy, but have yet to be widely adopted. This is partly due to the complex set of interactions that occur between a beam carrying orbital angular momentum (OAM) and a sample. Herein, the system is simplified to focus on the interaction between geometrical symmetries, OAM and topology. We present multiple simulations, alongside experimental data to study the behaviour of a variety of electron vortex beams after interacting with apertures of different symmetries, and investigate the effect on their OAM and vortex structure, both in the far-field and under free-space propagation.
Symmetry-constrained electron vortex propagation
Clark, L.; Guzzinati, G.; Béché, A.; Lubk, A.; Verbeeck, J.
2016-06-01
Electron vortex beams hold great promise for development in transmission electron microscopy but have yet to be widely adopted. This is partly due to the complex set of interactions that occur between a beam carrying orbital angular momentum (OAM) and a sample. Herein, the system is simplified to focus on the interaction between geometrical symmetries, OAM, and topology. We present multiple simulations alongside experimental data to study the behavior of a variety of electron vortex beams after interacting with apertures of different symmetries and investigate the effect on their OAM and vortex structure, both in the far field and under free-space propagation.
Directional crack propagation of granular water systems.
Mizuguchi, Tsuyoshi; Nishimoto, Akihiro; Kitsunezaki, So; Yamazaki, Yoshihiro; Aoki, Ichio
2005-05-01
Pattern dynamics of directional crack propagation phenomena observed in drying process of starch-water mixture is investigated. To visualize the three-dimensional structure of the drying-fracture process two kinds of experiments are performed, i.e., resin solidification planing method and real-time measurement of water content distribution with MR instruments. A cross section with polygonal structure is visualized in both experiments. The depth dependency of cell size is measured. The phenomenological model for water transportation is also discussed. PMID:16089617
Neutrino wave packet propagation in gravitational fields
Energy Technology Data Exchange (ETDEWEB)
Singh, Dinesh [Department of Physics, University of Regina, Regina, SK, S4S 0A2 (Canada)]. E-mail: singhd@uregina.ca; Mobed, Nader [Department of Physics, University of Regina, Regina, SK, S4S 0A2 (Canada)]. E-mail: nader.mobed@uregina.ca; Papini, Giorgio [Department of Physics, University of Regina, Regina, SK, S4S 0A2 (Canada) and Prairie Particle Physics Institute, Regina, SK, S4S 0A2 (Canada) and International Institute for Advanced Scientific Studies, 89019 Vietri sul Mare (SA) (Italy)]. E-mail: papini@uregina.ca
2006-03-13
We discuss the propagation of neutrino wave packets in a Lense-Thirring metric using a gravitational phase approach. We show that the neutrino oscillation length is altered by gravitational corrections and that neutrinos are subject to helicity flip induced by stellar rotation. For the case of a rapidly rotating neutron star, we show that absolute neutrino masses can be derived, in principle, from rotational contributions to the mass-induced energy shift, without recourse to mass generation models presently discussed in the literature.
PROPAGATING COLLECTIVE EXCITATIONS IN MOLTEN SALTS
Directory of Open Access Journals (Sweden)
T.Bryk
2003-01-01
Full Text Available Longitudinal as well as transverse dynamics of a molten salt beyond the hydrodynamic region is studied within the generalized collective modes (GCM approach. An analytical three-variable model is applied to the treatment of the coupled long- and short-time charge fluctuations. Dispersion laws of propagating kinetic collective excitations such as optic phonon-like modes, heat and shear waves are obtained and analyzed for the case of molten NaCl within the eight-variable GCM scheme, combining the analytical methods and molecular dynamics simulations.
An Empirical Study of Infrasonic Propagation
Energy Technology Data Exchange (ETDEWEB)
J. Paul Mutschlecner; Rodney W. Whitaker; Lawrence H. Auer
1999-10-01
Observations of atmospheric nuclear tests carried out at the Nevada Test Site from 1951 to 1958 provided data for an empirical investigation of how infrasonic signals are propagated to distances of about 250 km. Those observations and the analysis documented in this report involved signal amplitudes and average velocities and included three classes of signals: stratospheric, thermospheric, and tropospheric/surface. The authors' analysis showed that stratospheric winds have a dominant effect upon stratospheric signal amplitudes. The report outlines a method for normalizing stratospheric signal amplitudes for the effects of upper atmospheric winds and presents equations for predicting or normalizing amplitude and average velocity for the three types of signals.
Parton Propagation and Fragmentation in QCD Matter
Energy Technology Data Exchange (ETDEWEB)
Alberto Accardi, Francois Arleo, William Brooks, David D' Enterria, Valeria Muccifora
2009-12-01
We review recent progress in the study of parton propagation, interaction and fragmentation in both cold and hot strongly interacting matter. Experimental highlights on high-energy hadron production in deep inelastic lepton-nucleus scattering, proton-nucleus and heavy-ion collisions, as well as Drell-Yan processes in hadron-nucleus collisions are presented. The existing theoretical frameworks for describing the in-medium interaction of energetic partons and the space-time evolution of their fragmentation into hadrons are discussed and confronted to experimental data. We conclude with a list of theoretical and experimental open issues, and a brief description of future relevant experiments and facilities.
Propagation of light in area metric backgrounds
Energy Technology Data Exchange (ETDEWEB)
Punzi, Raffaele; Wohlfarth, Mattias N R [Zentrum fuer Mathematische Physik und II. Institut fuer Theoretische Physik, Universitaet Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany); Schuller, Frederic P, E-mail: raffaele.punzi@desy.d, E-mail: fps@aei.mpg.d, E-mail: mattias.wohlfarth@desy.d [Max Planck Institut fuer Gravitationsphysik, Albert Einstein Institut, Am Muehlenberg 1, 14467 Potsdam (Germany)
2009-02-07
The propagation of light in area metric spacetimes, which naturally emerge as refined backgrounds in quantum electrodynamics and quantum gravity, is studied from first principles. In the geometric-optical limit, light rays are found to follow geodesics in a Finslerian geometry, with the Finsler norm being determined by the area metric tensor. Based on this result, and an understanding of the nonlinear relation between ray vectors and wave covectors in such refined backgrounds, we study light deflection in spherically symmetric situations and obtain experimental bounds on the non-metricity of spacetime in the solar system.
Scattering effect on entanglement propagation in RCFTs
Numasawa, Tokiro
2016-01-01
In this paper we discuss the scattering effect on entanglement propagation in RCFTs. In our setup, we consider the time evolution of excited states created by the insertion of many local operators. Our results show that because of the finiteness of quantum dimension, entanglement is not changed after the scattering in RCFTs. In this mean, entanglement is conserved after the scattering event in RCFTs, which reflects the integrability of the system. Our results are also consistent with the free quasiparticle picture after the global quenches.
Fractional Dynamics of Computer Virus Propagation
Directory of Open Access Journals (Sweden)
Carla M. A. Pinto
2014-01-01
Full Text Available We propose a fractional model for computer virus propagation. The model includes the interaction between computers and removable devices. We simulate numerically the model for distinct values of the order of the fractional derivative and for two sets of initial conditions adopted in the literature. We conclude that fractional order systems reveal richer dynamics than the classical integer order counterpart. Therefore, fractional dynamics leads to time responses with super-fast transients and super-slow evolutions towards the steady-state, effects not easily captured by the integer order models.
Propagation of heavy cosmic-ray nuclei
International Nuclear Information System (INIS)
Techniques for modeling the propagation of heavy cosmic-ray nuclei, and the required atomic and nuclear data, are assembled in this paper. Emphasis is on understanding nuclear composition in the charge range 3< Z<83. Details of the application of ''matrix methods'' above a few hundred meV per nucleon, a new treatment of electron capture decay, and a new table of cosmic-ray-stable isotopes are presented. Computation of nuclear fragmentation cross sections, stopping power, and electron stripping and attachment are briefly reviewed
Propagation of gnetum by tissue culture technique
Directory of Open Access Journals (Sweden)
Te-chato, S.
2002-07-01
Full Text Available Plantlet regeneration from tissue culture of gnetum could be induced using two pathways depending upon explant types. Leaf lamina yielded somatic embryos through somatic embryogenesis in basal MS supplemented with the same concentration of BA and TDZ at 0.5 mg/l. Using cluster of flowers or ovules in the same medium formula, however, callus formation took place and developed into meristemoid structures. These calli are called meristematic nodular calli and the pathway was organogenesis. Both pathways of plantlet regeneration could be applied for mass propagation of gnetum on a commercial scale in the future.
Elastic Wave Propagation and Generation in Seismology
Lees, Jonathan M.
The majority of mature seismologists of my generation were introduced to theoretical seismology via classic textbooks written in the early 1980s. Since this generation has matured and taken the mantle of teaching seismology to a new generation, several new books have been put forward as replacements, or alternatives, to the original classical texts. The target readers of the new texts range from beginner through intermediate to more advanced, although all have been attempts to improve upon what is now considered standard convention in quantitative seismology. To this plethora of choices we now have a new addition by Jose Pujol, titledElastic Wave Propagation and Generation in Seismology.
Botnet Propagation Via Public Websited Detection Algorithm
Directory of Open Access Journals (Sweden)
Jonas Juknius
2011-08-01
Full Text Available The networks of compromised and remotely controlled computers (bots are widely used in many Internet fraudulent activities, especially in the distributed denial of service attacks. Brute force gives enormous power to bot masters and makes botnet traffic visible; therefore, some countermeasures might be applied at early stages. Our study focuses on detecting botnet propagation via public websites. The provided algorithm might help with preventing from massive infections when popular web sites are compromised without spreading visual changes used for malware in botnets.Article in English
NLO error propagation exercise data collection system
International Nuclear Information System (INIS)
A combined automated and manual system for data collection is described. The system is suitable for collecting, storing, and retrieving data related to nuclear material control at a bulk processing facility. The system, which was applied to the NLO operated Feed Materials Production Center, was successfully demonstrated for a selected portion of the facility. The instrumentation consisted of off-the-shelf commercial equipment and provided timeliness, convenience, and efficiency in providing information for generating a material balance and performing error propagation on a sound statistical basis
[In vitro propagation of Clematis filamentosa].
Shao, Ling; Yu, Ganxin
2005-05-01
The rapid propagation of Clematis filamentosa Dumn by tissue cluture showed that the best explant was young stem. It also showed that the callus can be easily induced in MS + NAA 0.1 mg/L + 6-BA 0.5 mg/L, the medium for the buds differentiation and proliferation was MS + NAA 0.05 mg/L + 6-BA 0.5 mg/L, and the medium for the root growth was MS + NAA 0.1 mg/L. The survival tube seedling can be successfully transplant. PMID:16131027
Belief propagation in genotype-phenotype networks.
Moharil, Janhavi; May, Paul; Gaile, Daniel P; Blair, Rachael Hageman
2016-03-01
Graphical models have proven to be a valuable tool for connecting genotypes and phenotypes. Structural learning of phenotype-genotype networks has received considerable attention in the post-genome era. In recent years, a dozen different methods have emerged for network inference, which leverage natural variation that arises in certain genetic populations. The structure of the network itself can be used to form hypotheses based on the inferred direct and indirect network relationships, but represents a premature endpoint to the graphical analyses. In this work, we extend this endpoint. We examine the unexplored problem of perturbing a given network structure, and quantifying the system-wide effects on the network in a node-wise manner. The perturbation is achieved through the setting of values of phenotype node(s), which may reflect an inhibition or activation, and propagating this information through the entire network. We leverage belief propagation methods in Conditional Gaussian Bayesian Networks (CG-BNs), in order to absorb and propagate phenotypic evidence through the network. We show that the modeling assumptions adopted for genotype-phenotype networks represent an important sub-class of CG-BNs, which possess properties that ensure exact inference in the propagation scheme. The system-wide effects of the perturbation are quantified in a node-wise manner through the comparison of perturbed and unperturbed marginal distributions using a symmetric Kullback-Leibler divergence. Applications to kidney and skin cancer expression quantitative trait loci (eQTL) data from different mus musculus populations are presented. System-wide effects in the network were predicted and visualized across a spectrum of evidence. Sub-pathways and regions of the network responded in concert, suggesting co-regulation and coordination throughout the network in response to phenotypic changes. We demonstrate how these predicted system-wide effects can be examined in connection with
Neutrino propagation in a weakly magnetized medium
Indian Academy of Sciences (India)
Sushan Konar; Subinoy Das
2004-06-01
Neutrino—photon processes, forbidden in vacuum, can take place in the presence of a thermal medium and/or an external electro-magnetic field, mediated by the corresponding charged leptons (real or virtual). Such interactions affect the propagation of neutrinos through a magnetized plasma. We investigate the neutrino—photon absorptive processes, at the one-loop level, for massless neutrinos in a weakly magnetized plasma. We find that there is no correction to the absorptive part of the axial-vector—vector amplitude due to the presence of a magnetic field, to the linear order in the field strength.
Semidirect algorithms in electron propagator calculations
Energy Technology Data Exchange (ETDEWEB)
Zakrzewski, V.G.; Ortiz, J.V. [Univ. of New Mexico, Albuquerque, NM (United States)
1994-12-31
Electron propagator calculations have been executed with a semi-direct algorithm that generates only a subset of transformed electron repulsion integrals and that takes advantage of Abelian point group symmetry. Diagonal self-energy expressions that are advantageous for large molecules are employed. Illustrative calculations with basis sets in excess of 200 functions include evaluations of the ionization energies of C{sup 2{minus}}{sub 7} and Zn(C{sub 5}H{sub 5}){sub 2}. In the former application, a bound dianion is obtained for a D{sub 3h} structure. In the latter, many final states of the same symmetry are calculated without difficulty.
Interplanetary Propagation of Coronal Mass Ejections
Gopalswamy, Nat
2011-01-01
Although more than ten thousand coronal mass ejections (CMEs) are produced during each solar cycle at the Sun, only a small fraction hits the Earth. Only a small fraction of the Earth-directed CMEs ultimately arrive at Earth depending on their interaction with the solar wind and other large-scale structures such as coronal holes and CMEs. The interplanetary propagation is essentially controlled by the drag force because the propelling force and the solar gravity are significant only near the Sun. Combined remote-sensing and in situ observations have helped us estimate the influence of the solar wind on the propagation of CMEs. However, these measurements have severe limitations because the remote-sensed and in-situ observations correspond to different portions of the CME. Attempts to overcome this problem are made in two ways: the first is to model the CME and get the space speed of the CME, which can be compared with the in situ speed. The second method is to use stereoscopic observation so that the remote-sensed and in-situ observations make measurements on the Earth-arriving part of CMEs. The Solar Terrestrial Relations Observatory (STEREO) mission observed several such CMEs, which helped understand the interplanetary evolution of these CMEs and to test earlier model results. This paper discusses some of these issues and updates the CME/shock travel time estimates for a number of CMEs.
Damage Propagation Modeling for Aircraft Engine Prognostics
Saxena, Abhinav; Goebel, Kai; Simon, Don; Eklund, Neil
2008-01-01
This paper describes how damage propagation can be modeled within the modules of aircraft gas turbine engines. To that end, response surfaces of all sensors are generated via a thermo-dynamical simulation model for the engine as a function of variations of flow and efficiency of the modules of interest. An exponential rate of change for flow and efficiency loss was imposed for each data set, starting at a randomly chosen initial deterioration set point. The rate of change of the flow and efficiency denotes an otherwise unspecified fault with increasingly worsening effect. The rates of change of the faults were constrained to an upper threshold but were otherwise chosen randomly. Damage propagation was allowed to continue until a failure criterion was reached. A health index was defined as the minimum of several superimposed operational margins at any given time instant and the failure criterion is reached when health index reaches zero. Output of the model was the time series (cycles) of sensed measurements typically available from aircraft gas turbine engines. The data generated were used as challenge data for the Prognostics and Health Management (PHM) data competition at PHM 08.
Front Propagation in Stochastic Neural Fields
Bressloff, Paul C.
2012-01-01
We analyze the effects of extrinsic multiplicative noise on front propagation in a scalar neural field with excitatory connections. Using a separation of time scales, we represent the fluctuating front in terms of a diffusive-like displacement (wandering) of the front from its uniformly translating position at long time scales, and fluctuations in the front profile around its instantaneous position at short time scales. One major result of our analysis is a comparison between freely propagating fronts and fronts locked to an externally moving stimulus. We show that the latter are much more robust to noise, since the stochastic wandering of the mean front profile is described by an Ornstein-Uhlenbeck process rather than a Wiener process, so that the variance in front position saturates in the long time limit rather than increasing linearly with time. Finally, we consider a stochastic neural field that supports a pulled front in the deterministic limit, and show that the wandering of such a front is now subdiffusive. © 2012 Society for Industrial and Applied Mathematics.
Three dimensional modeling of CR propagation
Gaggero, Daniele; Di Bernardo, Giuseppe; Evoli, Carmelo; Grasso, Dario
2013-01-01
We present here a major upgrade of DRAGON, a numerical package that computes the propagation of a wide set of CR species from both astrophysical and exotic origin in the Galaxy in a wide energy range from tens of MeV to tens of TeV. DRAGON takes into account all relevant processes in particular diffusion, convection, reacceleration, fragmentation and energy losses. For the first time, we present a full 3D version of DRAGON with anisotropic position-dependent diffusion. In this version, the propagation is calculated within a 3D cartesian grid and the user is able to implement realistic and structured three dimensional source, gas and regular magnetic field distributions. Moreover, it is possible to specify an arbitrary function of position and rigidity for the diffusion coefficients in the parallel and perpendicular direction to the regular magnetic field of the Galaxy. The code opens many new possibilities in the study of CR physics. In particular, we can study for the first time the impact of the spiral arm ...
Material vibration propagation in floor pan
Directory of Open Access Journals (Sweden)
R. Burdzik
2013-01-01
Full Text Available Purpose: The article provides a discussion on the studies on material vibration propagation in floor pan of the passenger car. The purpose was to analyse the vibration signals in multiple measuring points. The time-frequency distribution of the signals allows to identification the dominant component of the signal useful for material natural frequency calculation.Design/methodology/approach: The investigations were conducted based on the modified method of experimental and operating modal analysis. The investigation comprised 3 steps: research and measurements of vibration accelerations in a vertical direction perpendicular to the horizontal surface of vehicle in four selected points (impact excitation, analysis of the time courses of the vibration response, signal processing and analysis of the time-frequency distribution of the vibrationFindings: The distribution of the signal allows to identify the dominant frequency band. For the floor pan it is low frequencies, between 20 and 40 Hz. In this band the natural frequencies of the floor pan material can be identificationResearch limitations/implications: Number of the acceleration sensors and impossibility of the impact excitation signal recorded.Originality/value: Application of the modified method of experimental and operating modal analysis for the vehicle frame and car body. Research on the material properties influence on the vehicle vibration research. Comparison of the vibration structure at floor pan under the place of the driver and passengers feet as the vibration propagation path from frame and car body to the human body
Propagation characteristics of magnetostatic waves: A review
Parekh, J. P.
1983-01-01
This paper reviews the propagation characteristics of guided magnetostatic waves (MSW's) in a YIG film magnetized beyond saturation. There exist three guided magnetostatic wave-types, viz., magnetostatic surface waves (MSSW's) and magnetostatic forward and backward volume waves (MSFVW's and MSBVW's). The orientation of the internal bias field determines the particular wave-type that can be supported by the YIG film. The frequency spectrum of the volume waves coincides with that over which magnetostatic plane waves are of the homogeneous variety. The frequency spectrum of the MSSW's is located immediately above the MSVW spectrum. MSW's are dispersive, with the dispersion properties alterable through modification in boundary conditions. The most explored dispersion control technique employs the placement of a ground plane somewhat above the YIG film surface. This dispersion control technique, which provides one method of realizing nondispersive MSW propagation, raises the upper bound of the MSSW spectrum but does not affect the bounds of the MSVW spectrum. Numerical computations illustrating the dispersion and polarization characteristics of MSW's are presented.
Wave propagation in random granular chains.
Manjunath, Mohith; Awasthi, Amnaya P; Geubelle, Philippe H
2012-03-01
The influence of randomness on wave propagation in one-dimensional chains of spherical granular media is investigated. The interaction between the elastic spheres is modeled using the classical Hertzian contact law. Randomness is introduced in the discrete model using random distributions of particle mass, Young's modulus, or radius. Of particular interest in this study is the quantification of the attenuation in the amplitude of the impulse associated with various levels of randomness: two distinct regimes of decay are observed, characterized by an exponential or a power law, respectively. The responses are normalized to represent a vast array of material parameters and impact conditions. The virial theorem is applied to investigate the transfer from potential to kinetic energy components in the system for different levels of randomness. The level of attenuation in the two decay regimes is compared for the three different sources of randomness and it is found that randomness in radius leads to the maximum rate of decay in the exponential regime of wave propagation. PMID:22587093
Nonlinear transient wave propagation in homgeneous plasmas
International Nuclear Information System (INIS)
The transient phenomena associated with the propagation of nonlinear high frequency waves in homogeneous and isotropic or anisotropic plasma are considered. The basic equation for the different wave types included in this analysis are derived by using a two-fluid description of the plasma. Before discussing the importance of different nonlinearities the main results from a linear treatment are given. Generation of harmonic and local changes in the plasma frequency caused by ponderomotive forces are the nonlinear phenomena which are included in the nonlinear treatment. Generation of harmonics is only important for extraordinary waves and this case is discussed in detail. The density perturbations are described either as forced non-dispersive or as forced dispersive low frequency electrostatic waves. The differences between these two descriptions are first considered analytically then by a numerical analysis of the problem with the influence of the density variations on the propagation of the high frequency wave included. A one-dimensional description is used in all cases. (Auth.)
Wave propagation in random granular chains.
Manjunath, Mohith; Awasthi, Amnaya P; Geubelle, Philippe H
2012-03-01
The influence of randomness on wave propagation in one-dimensional chains of spherical granular media is investigated. The interaction between the elastic spheres is modeled using the classical Hertzian contact law. Randomness is introduced in the discrete model using random distributions of particle mass, Young's modulus, or radius. Of particular interest in this study is the quantification of the attenuation in the amplitude of the impulse associated with various levels of randomness: two distinct regimes of decay are observed, characterized by an exponential or a power law, respectively. The responses are normalized to represent a vast array of material parameters and impact conditions. The virial theorem is applied to investigate the transfer from potential to kinetic energy components in the system for different levels of randomness. The level of attenuation in the two decay regimes is compared for the three different sources of randomness and it is found that randomness in radius leads to the maximum rate of decay in the exponential regime of wave propagation.
Edit propagation using geometric relationship functions
Guerrero, Paul
2014-03-01
We propose a method for propagating edit operations in 2D vector graphics, based on geometric relationship functions. These functions quantify the geometric relationship of a point to a polygon, such as the distance to the boundary or the direction to the closest corner vertex. The level sets of the relationship functions describe points with the same relationship to a polygon. For a given query point, we first determine a set of relationships to local features, construct all level sets for these relationships, and accumulate them. The maxima of the resulting distribution are points with similar geometric relationships. We show extensions to handle mirror symmetries, and discuss the use of relationship functions as local coordinate systems. Our method can be applied, for example, to interactive floorplan editing, and it is especially useful for large layouts, where individual edits would be cumbersome. We demonstrate populating 2D layouts with tens to hundreds of objects by propagating relatively few edit operations. © 2014 ACM 0730-0301/2014/03- ART15 $15.00.
EPIC: an Error Propagation/Inquiry Code
International Nuclear Information System (INIS)
The use of a computer program EPIC (Error Propagation/Inquiry Code) will be discussed. EPIC calculates the variance of a materials balance closed about a materials balance area (MBA) in a processing plant operated under steady-state conditions. It was designed for use in evaluating the significance of inventory differences in the Department of Energy (DOE) nuclear plants. EPIC rapidly estimates the variance of a materials balance using average plant operating data. The intent is to learn as much as possible about problem areas in a process with simple straightforward calculations assuming a process is running in a steady-state mode. EPIC is designed to be used by plant personnel or others with little computer background. However, the user should be knowledgeable about measurement errors in the system being evaluated and have a limited knowledge of how error terms are combined in error propagation analyses. EPIC contains six variance equations; the appropriate equation is used to calculate the variance at each measurement point. After all of these variances are calculated, the total variance for the MBA is calculated using a simple algebraic sum of variances. The EPIC code runs on any computer that accepts a standard form of the BASIC language. 2 refs., 1 fig., 6 tabs
Dynamical Models for Computer Viruses Propagation
Directory of Open Access Journals (Sweden)
José R. C. Piqueira
2008-01-01
Full Text Available Nowadays, digital computer systems and networks are the main engineering tools, being used in planning, design, operation, and control of all sizes of building, transportation, machinery, business, and life maintaining devices. Consequently, computer viruses became one of the most important sources of uncertainty, contributing to decrease the reliability of vital activities. A lot of antivirus programs have been developed, but they are limited to detecting and removing infections, based on previous knowledge of the virus code. In spite of having good adaptation capability, these programs work just as vaccines against diseases and are not able to prevent new infections based on the network state. Here, a trial on modeling computer viruses propagation dynamics relates it to other notable events occurring in the network permitting to establish preventive policies in the network management. Data from three different viruses are collected in the Internet and two different identification techniques, autoregressive and Fourier analyses, are applied showing that it is possible to forecast the dynamics of a new virus propagation by using the data collected from other viruses that formerly infected the network.
Cosmic propagators at two-loop order
Bernardeau, Francis; Nishimichi, Takahiro
2014-01-01
We explore the properties of two-point cosmic propagators when Perturbation Theory (PT) loop corrections are consistently taken into account. We show in particular how the interpolation scheme proposed in arXiv:1112.3895 can be explicitly used up to two-loop order introducing the notion of regular parts for the contributing terms. Extending the one-loop results, we then derive and give semi analytical forms of the two-loop contributions for both the cosmic density and velocity propagators. These results are tested against numerical simulations and shown to significantly improve upon one-loop results for redshifts above 0.5. We found however that at lower redshift two-loop order corrections are too large partly due to a strong sensitivity of those terms to the small scale modes. We show that this dependence is expected to be even larger for higher order loop corrections both from theoretical investigations and numerical tests, the latter obtained with Monte Carlo evaluations of the three-loop contributions. Th...
Crack propagation directions in unfilled resins.
Baran, G; Sadeghipour, K; Jayaraman, S; Silage, D; Paul, D; Boberick, K
1998-11-01
Posterior composite restorative materials undergo accelerated wear in the occlusal contact area, primarily through a fatigue mechanism. To facilitate the timely development of new and improved materials, a predictive wear model is desirable. The objective of this study was to develop a finite element model enabling investigators to predict crack propagation directions in resins used as the matrix material in composites, and to verify these predictions by observing cracks formed during the pin-on-disc wear of a 60:40 BISGMA:TEGDMA resin and an EBPADMA resin. Laser confocal scanning microscopy was used to measure crack locations. Finite element studies were done by means of ABAQUS software, modeling a cylinder sliding on a material with pre-existing surface-breaking cracks. Variables included modulus, cylinder/material friction coefficient, crack face friction, and yield behavior. Experimental results were surprising, since most crack directions were opposite previously published observations. The majority of surface cracks, though initially orthogonal to the surface, changed direction to run 20 to 30 degrees from the horizontal in the direction of indenter movement. Finite element modeling established the importance of subsurface shear stresses, since calculations provided evidence that cracks propagate in the direction of maximum K(II)(theta), in the same direction as the motion of the indenter, and at an angle of approximately 20 degrees. These findings provide the foundation for a predictive model of sliding wear in unfilled glassy resins.
Axion-photon propagation in magnetized universe
Wang, Chen; Lai, Dong
2016-06-01
Oscillations between photons and axion-like particles (ALP) travelling in intergalactic magnetic fields have been invoked to explain a number of astrophysical phenomena, or used to constrain ALP properties using observations. One example is the anomalous transparency of the universe to TeV gamma rays. The intergalactic magnetic field is usually modeled as patches of coherent domains, each with a uniform magnetic field, but the field orientation changes randomly from one domain to the next (``discrete-varphi model''). We show in this paper that in more realistic situations, when the magnetic field direction varies continuously along the propagation path, the photon-to-ALP conversion probability P can be significantly different from the discrete-varphi model. In particular, P has a distinct dependence on the photon energy and ALP mass, and can be as large as 100%. This result can affect previous constraints on ALP properties based on ALP-photon propagation in intergalactic magnetic fields, such as TeV photons from distant Active Galactic Nucleus.
Designing microcapsule arrays that propagate chemical signals
Bhattacharya, Amitabh; Balazs, Anna C.
2010-08-01
Using analysis and simulation, we show how ordered arrays of microcapsules in solution can be harnessed to propagate chemical signals in directed and controllable ways, allowing the signals to be transmitted over macroscopic distances. The system encompasses two types of capsules that are localized on an adhesive surface. The “signaling” capsules release inducer molecules, which trigger “targets” to release nanoparticles. The released nanoparticles can bind to the underlying surface and thus, create adhesion gradients, which then propel the signaling capsules to shuttle between neighboring targets. This arrangement acts like a relay, so that triggering target capsules at a particular location in the array also triggers target capsules in adjacent locations. For an array containing two target columns, our simulations and analysis show that steady input signal leads to a sustained periodic output. For an array containing multiple target columns, we show that by introducing a prescribed ratio of nanoparticle release rates between successive target columns, a chemical signal can be propagated along the array without dissipation. We also demonstrate that similar signal transmission cannot be performed via diffusion alone.
Propagation style controls lava-snow interactions
Edwards, B. R.; Belousov, A.; Belousova, M.
2014-12-01
Understanding interactions between volcanic eruptions and the cryosphere (a.k.a. glaciovolcanism) is important for climate reconstructions as well as for hazard mitigation at ice-clad volcanoes. Here we present unique field observations of interactions between snowpack and advancing basaltic lava flows during the 2012-13 eruption at Tolbachik volcano, Kamchatka, Russia. Our observations show that lava-snow heat transfer is slow, and that styles of lava propagation control snowpack responses. ‧A‧a and sheet lava flows advance in a rolling caterpillar-track motion on top of the rigid, snowpack substrate with minor lava-snow interaction. In contrast, pahoehoe lava propagates by inflation of lobes beneath/inside the snowpack, producing rigorous lava-snow interaction via meltwater percolation down into the incandescent lava causing production of voluminous steam, rapid surface cooling and thermal shock fragmentation. The textures produced by pahoehoe-snowpack interactions are distinctive and, where observed at other sites, can be used to infer syn-eruption seasonality and climatic conditions.
Solitary Wave Propagation Influenced by Submerged Breakwater
Institute of Scientific and Technical Information of China (English)
王锦; 左其华; 王登婷
2013-01-01
The form of Boussinesq equation derived by Nwogu (1993) using velocity at an arbitrary distance and surface elevation as variables is used to simulate wave surface elevation changes. In the numerical experiment, water depth was divided into five layers with six layer interfaces to simulate velocity at each layer interface. Besides, a physical experiment was carried out to validate numerical model and study solitary wave propagation.“Water column collapsing”method (WCCM) was used to generate solitary wave. A series of wave gauges around an impervious breakwater were set-up in the flume to measure the solitary wave shoaling, run-up, and breaking processes. The results show that the measured data and simulated data are in good agreement. Moreover, simulated and measured surface elevations were analyzed by the wavelet transform method. It shows that different wave frequencies stratified in the wavelet amplitude spectrum. Finally, horizontal and vertical velocities of each layer interface were analyzed in the process of solitary wave propagation through submerged breakwater.
Mapping surface plasmon polariton propagation via counter-propagating light pulses
DEFF Research Database (Denmark)
Lemke, Christoph; Leißner, Till; Jauernik, Stephan;
2012-01-01
In an interferometric time-resolved photoemission electron microscopy (ITR-PEEM) experiment, the near-field associated with surface plasmon polaritons (SPP) can be locally sensed via interference with ultrashort laser pulses. Here, we present ITR-PEEM data of SPP propagation at a gold vacuum...
Pathogen Propagation Model with Superinfection in Vegetatively Propagated Plants on Lattice Space
Sakai, Yuma; Takada, Takenori
2016-01-01
Many clonal plants have two reproductive patterns, seed propagation and vegetative propagation. By vegetative propagation, plants reproduce the genetically identical offspring with a low mortality, because resources are supplied from the other individuals through interconnected ramets at vegetative-propagated offspring. However, the ramets transport not only resources but also systemic pathogen. Pathogens evolve to establish and spread widely within the plant population. The superinfection, which is defined as the ability that an established pathogen spreads widely by infecting to already-infected individuals with other strains of a pathogen, is important to the evolution of pathogens. We examine the dynamics of plant reproduction and pathogen propagation considering spatial structure and the effect of superinfection on genetic diversity of pathogen by analysis of several models, 1-strain and multiple-strain models, on two-dimensional square lattice. In the analysis of 1-strain model, we derive equilibrium value by mean-field approximation and pair approximation, and its local stability by Routh-Hurwitz stability criterion. In the multiple-strain models, we analyze the dynamics by numerical simulation of mean-field approximation, pair approximation and Monte Carlo simulation. Through the analyses, we show the effect of parameter values to dynamics of models, such as transition of dominant strain of pathogen, competition between plants and pathogens and density of individuals. As a result, (i) The strain with intermediate cost becomes dominant when both superinfection rate and growth rate are low. (ii) The competition between plants and pathogens occurs in the phase of coexistence of various strains by pair approximation and Monte Carlo simulation. (iii) Too high growth rate leads to the decrease of plant population in all models. (iv) Pathogens are easy to maintain their genetic diversity with low superinfection rate. However, if they do not superinfect, the
Pathogen Propagation Model with Superinfection in Vegetatively Propagated Plants on Lattice Space.
Sakai, Yuma; Takada, Takenori
2016-01-01
Many clonal plants have two reproductive patterns, seed propagation and vegetative propagation. By vegetative propagation, plants reproduce the genetically identical offspring with a low mortality, because resources are supplied from the other individuals through interconnected ramets at vegetative-propagated offspring. However, the ramets transport not only resources but also systemic pathogen. Pathogens evolve to establish and spread widely within the plant population. The superinfection, which is defined as the ability that an established pathogen spreads widely by infecting to already-infected individuals with other strains of a pathogen, is important to the evolution of pathogens. We examine the dynamics of plant reproduction and pathogen propagation considering spatial structure and the effect of superinfection on genetic diversity of pathogen by analysis of several models, 1-strain and multiple-strain models, on two-dimensional square lattice. In the analysis of 1-strain model, we derive equilibrium value by mean-field approximation and pair approximation, and its local stability by Routh-Hurwitz stability criterion. In the multiple-strain models, we analyze the dynamics by numerical simulation of mean-field approximation, pair approximation and Monte Carlo simulation. Through the analyses, we show the effect of parameter values to dynamics of models, such as transition of dominant strain of pathogen, competition between plants and pathogens and density of individuals. As a result, (i) The strain with intermediate cost becomes dominant when both superinfection rate and growth rate are low. (ii) The competition between plants and pathogens occurs in the phase of coexistence of various strains by pair approximation and Monte Carlo simulation. (iii) Too high growth rate leads to the decrease of plant population in all models. (iv) Pathogens are easy to maintain their genetic diversity with low superinfection rate. However, if they do not superinfect, the
Seismic Wave Propagation on the Tablet Computer
Emoto, K.
2015-12-01
Tablet computers widely used in recent years. The performance of the tablet computer is improving year by year. Some of them have performance comparable to the personal computer of a few years ago with respect to the calculation speed and the memory size. The convenience and the intuitive operation are the advantage of the tablet computer compared to the desktop PC. I developed the iPad application of the numerical simulation of the seismic wave propagation. The numerical simulation is based on the 2D finite difference method with the staggered-grid scheme. The number of the grid points is 512 x 384 = 196,608. The grid space is 200m in both horizontal and vertical directions. That is the calculation area is 102km x 77km. The time step is 0.01s. In order to reduce the user waiting time, the image of the wave field is drawn simultaneously with the calculation rather than playing the movie after the whole calculation. P and S wave energies are plotted on the screen every 20 steps (0.2s). There is the trade-off between the smooth simulation and the resolution of the wave field image. In the current setting, it takes about 30s to calculate the 10s wave propagation (50 times image updates). The seismogram at the receiver is displayed below of the wave field updated in real time. The default medium structure consists of 3 layers. The layer boundary is defined by 10 movable points with linear interpolation. Users can intuitively change to the arbitrary boundary shape by moving the point. Also users can easily change the source and the receiver positions. The favorite structure can be saved and loaded. For the advance simulation, users can introduce the random velocity fluctuation whose spectrum can be changed to the arbitrary shape. By using this application, everyone can simulate the seismic wave propagation without the special knowledge of the elastic wave equation. So far, the Japanese version of the application is released on the App Store. Now I am preparing the
Detection of subcritical crack propagation for concrete dams
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
Subcritical propagation of cracks is a warning sign of fracture.If such propagation is detected at an early stage,timely maintenance measures can be taken to prevent the failure of structures.To detect the subcritical propagation of a crack,the crack needs to be monitored continuously in a long term, which is not realistic under certain conditions.However,cracks in concrete dams can be monitored continuously by dam monitoring to offer possible detection for subcritical propagation.In this paper, with measured crack openings from dam monitoring,a state equation for characterizing crack development is established based on the grey system theory.The relation between the stability of the equation and the subcritical crack propagation is investigated,then a criterion is proposed for detecting subcritical propagation.An example demonstrates the validity of the criterion and its potential for practical application.
Applicability of Parametrized Form of Fully Dressed Quark Propagator
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
According to extensive study of the Dyson-Schwinger equations for a fully dressed quark propagator in the "rainbow" approximation with an effective gluon propagator, a parametrized fully dressed confining quark propagator is suggested in this paper. The parametrized quark propagator describes a confined quark propagation in hadron, and is analytic everywhere in complex p2-plane and has no Lehmann representation. The vector and scalar self-energy functions [1 - Af(p2)] and [Bf(p2) - mf], dynamically running effective mass of quark Mf(p2) and the structure of non-local quark vacuum condensates as well as local quark vacuum condensates are predicted by use of the parametrized quark propagator. The results are compatible with other theoretical calculations.
Breit-Wigner approximation for propagators of mixed unstable states
Fuchs, Elina
2016-01-01
For systems of unstable particles that mix with each other, an approximation of the fully momentum-dependent propagator matrix is presented in terms of a sum of simple Breit-Wigner propagators that are multiplied with finite on-shell wave function normalisation factors. The latter are evaluated at the complex poles of the propagators. The pole structure of general propagator matrices is carefully analysed, and it is demonstrated that in the proposed approximation imaginary parts arising from absorptive parts of loop integrals are properly taken into account. Applying the formalism to the neutral MSSM Higgs sector with complex parameters, very good numerical agreement is found between cross sections based on the full propagators and the corresponding cross sections based on the described approximation. The proposed approach does not only technically simplify the treatment of propagators with non-vanishing off-diagonal contributions, it is shown that it can also facilitate an improved theoretical prediction of ...
Research on Trust Propagation Models in Reputation Management Systems
Directory of Open Access Journals (Sweden)
Zhiyuan Su
2014-01-01
Full Text Available Feedback based reputation systems continue to gain popularity in eCommerce and social media systems today and reputation management in large social networks needs to manage cold start and sparseness in terms of feedback. Trust propagation has been widely recognized as an effective mechanism to handle these problems. In this paper we study the characterization of trust propagation models in the context of attack resilience. We characterize trust propagation models along three dimensions: (i uniform propagation and conditional propagation, (ii jump strategies for breaking unwanted cliques, and (iii decay factors for differentiating recent trust history from remote past history. We formally and experimentally show that feedback similarity is a critical measure for countering colluding attacks in reputation systems. Without feedback similarity guided control, trust propagations are vulnerable to different types of colluding attacks.
Detection of subcritical crack propagation for concrete dams
Institute of Scientific and Technical Information of China (English)
BAO TengFei; YU Hong
2009-01-01
Subcritical propagation of cracks is a warning sign of fracture.If such propagation is detected at an early stage,timely maintenance measures can be taken to prevent the failure of structures.To detect the subcritical propagation of a crack,the crack needs to be monitored continuously in a long term,which is not realistic under certain conditions.However,cracks in concrete dams can be monitored continuously by dam monitoring to offer possible detection for subcritical propagation.In this paper,with measured crack openings from dam monitoring,a state equation for characterizing crack development is established based on the grey system theory.The relation between the stability of the equation and the subcritical crack propagation is investigated,then a criterion is proposed for detecting subcritical propagation.An example demonstrates the validity of the criterion and its potential for practical application.
Front propagation and rejuvenation in flipping processes
Energy Technology Data Exchange (ETDEWEB)
Ben-naim, Eli [Los Alamos National Laboratory; Krapivsky, P I [BOSTON UNIV; Antal, T [HARVARD UNIV; Ben - Avrahm, D [HARVARD UNIV
2008-01-01
We study a directed flipping process that underlies the performance of the random edge simplex algorithm. In this stochastic process, which takes place on a one-dimensional lattice whose sites may be either occupied or vacant, occupied sites become vacant at a constant rate and simultaneously cause all sites to the right to change their state. This random process exhibits rich phenomenology. First, there is a front, defined by the position of the leftmost occupied site, that propagates at a nontrivial velocity. Second, the front involves a depletion zone with an excess of vacant sites. The total excess {Delta}{sub k} increases logarithmically, {Delta}{sub k} {approx_equal}ln k, with the distance k from the front. Third, the front exhibits ageing -- young fronts are vigorous but old fronts are sluggish. We investigate these phenomena using a quasi-static approximation, direct solutions of small systems and numerical simulations.
Asymmetric morphology of the propagating jet
Hardee, Philip E.; Norman, Michael L.
1990-12-01
Simulations of slab jets propagating in constant atmospheres are reported for a range of jet velocities and Mach numbers. At early times, the jet maintains approximate axisymmetry within a backflowing cocoon. When the jet has penetrated farther into the external medium, the symmetry is broken by sideways oscillation and the leading edge of the jet moves about within a growing lobe. The oscillation results from nonlinear resonant amplification of the initial perturbation by the Kelvin-Helmholtz instability. Finally, the jet flaps chaotically within the growing lobe. The flapping is driven by turbulent vortices in the lobe. The basic picture of Scheuer's (1982) 'dentist's drill' model of the physical processes underlying asymmetric morphologies in radio galaxies is confirmed. The fluid motions in the lobe are found to govern the location of the drill bit. The morphology is time-dependent on relatively short time scales.
Asymmetric Wave Propagation Through Saturable Nonlinear Oligomers
Directory of Open Access Journals (Sweden)
Daniel Law
2014-10-01
Full Text Available In the present paper we consider nonlinear dimers and trimers (more generally, oligomers embedded within a linear Schrödinger lattice where the nonlinear sites are of saturable type. We examine the stationary states of such chains in the form of plane waves, and analytically compute their reflection and transmission coefficients through the nonlinear oligomer, as well as the corresponding rectification factors which clearly illustrate the asymmetry between left and right propagation in such systems. We examine not only the existence but also the dynamical stability of the plane wave states. Lastly, we generalize our numerical considerations to the more physically relevant case of Gaussian initial wavepackets and confirm that the asymmetry in the transmission properties also persists in the case of such wavepackets.
Heat pulse propagation studies in JET
International Nuclear Information System (INIS)
Heat pulse propagation (HPP) studies in JET have been carried out using a twelve-channel electron cyclotron emission grating (ECE) polychromator. Emphasis is placed on the behaviour of the heat pulse under strong auxiliary heating. The conventional diffusive model for the data-interpretation has been extended so as to take into account the source- and sink terms in the electron power balance equation. It is concluded that the heat pulse is governed by an 'incremental' heat diffusivity, which is related to the incremental confinement time. Experimental results which were obtained during operation of JET are presented, including values of HPP during ohmic heating and HPP during auxiliary heating. These experimental results are discussed with respect to the incremental heat diffusivity. Finally the results of this work are considered in relation to the study of anomalous transport in tokamaks. (U.K.)
Sound propagation in heavy fermion compounds
International Nuclear Information System (INIS)
Sound propagation experiments are used to investigate the superconducting (sc) phases of Heavy Fermion (HF) compounds. Velocity measurements lead to accurate B-T phase diagrams and results for the temperature dependent attenuation of all modes in UPt3 are presented. In addition to the strain-order parameter interaction for longitudinal modes there is a Lorentz force coupling of transverse modes to the normal electrons. It leads to a B-dependence of velocity and attenuation from which information about both London and skin penetration depth in URu2Si2 and UBe13 may be obtained. In UBe13 magnetoacoustic quantum oscillations are observed which prove the coexistence of light and heavy electrons in this compound. (orig.)
Safe Laser Beam Propagation for Interplanetary Links
Wilson, Keith E.
2011-01-01
Ground-to-space laser uplinks to Earth–orbiting satellites and deep space probes serve both as a beacon and an uplink command channel for deep space probes and Earth-orbiting satellites. An acquisition and tracking point design to support a high bandwidth downlink from a 20-cm optical terminal on an orbiting Mars spacecraft typically calls for 2.5 kW of 1030-nm uplink optical power in 40 micro-radians divergent beams.2 The NOHD (nominal ocular hazard distance) of the 1030nm uplink is in excess of 2E5 km, approximately half the distance to the moon. Recognizing the possible threat of high power laser uplinks to the flying public and to sensitive Earth-orbiting satellites, JPL developed a three-tiered system at its Optical Communications Telescope Laboratory (OCTL) to ensure safe laser beam propagation through navigational and near-Earth space.
Detonation Propagation through Nitromethane Embedded Metal Foam
Lieberthal, Brandon; Maines, Warren R.; Stewart, D. Scott
2015-11-01
There is considerable interest in developing a better understanding of dynamic behaviors of multicomponent systems. We report results of Eulerian hydrodynamic simulations of shock waves propagating through metal foam at approximately 20% relative density and various porosities using a reactive flow model in the ALE3D software package. We investigate the applied pressure and energy of the shock wave and its effects on the fluid and the inert material interface. By varying pore sizes, as well as metal impedance, we predict the overall effects of heterogeneous material systems at the mesoscale. In addition, we observe a radially expanding blast front in these heterogeneous models and apply the theory of Detonation Shock Dynamics to the convergence behavior of the lead shock.
In vitro propagation of endangered Dianthus taxa
Directory of Open Access Journals (Sweden)
Marković Marija
2015-01-01
Full Text Available The review of recent researches regarding the in vitro culture of 30 endangered Dianthus taxa is presented in this paper. Various in vitro protocols developed for selected rare and threatened Dianthus taxa are analysed in order to provide a useful synthesis of the data obtained with the main principles, techniques and recommendations for futher research and practice. The recapitulated data presented in this review can be used as a tool for the micropropagation of other endangered Dianthus taxa, enabling their propagation and obtaining a sufficient amount of plants for reintroduction. In addition, the obtained results represent the basis for ex situ conservation of the investigated taxa, especially for medium-term and long-term conservation (cryopreservation. [Projekat Ministarstva nauke Republike Srbije, br. 43007
Influence of plasma turbulence on microwave propagation
Köhn, Alf; Leddy, Jarrod; Thomas, Matthew B; Vann, Roddy G L
2016-01-01
It is not fully understood how electromagnetic waves propagate through plasma fluctuations when the size of the fluctuations is comparable with the wavelength of the incident radiation. In this paper, the perturbing effect of a turbulent plasma density layer on a traversing microwave beam is simulated with full-wave simulations. The deterioration of the microwave beam is calculated as a function of the characteristic turbulence structure size, the turbulence amplitude, the depth of the interaction zone and the size of the waist of the incident beam. The maximum scattering is observed for a structure size on the order of half the vacuum wavelength. The scattering and beam broadening was found to increase linearly with the depth of the turbulence layer and quadratically with the fluctuation strength. Consequences for experiments and 3D effects are considered.
Anisotropy and sound propagation in glass wool
DEFF Research Database (Denmark)
Tarnow, Viggo
1999-01-01
computed by regarding it as a continuous medium described by its elastic moduli and mass density. The computed attenuation of sound waves, for frequencies 50–5000 Hz, will be compared with experimental results for glass wool with fiber diameters of 6.8 micrometers, mass density of 15 and 30 kg/m3, and...... be considered. The computations are based on the geometry of the glass wool that is decribed by the density of fibers and their diameters. The air drags viscously on the fibers, and movements of the fiber skeleton are important at low frequencies. Propagation of elastic waves in the skeleton is...... elastic moduli of 2000 and 16 000 Pa (sound wave vector perpendicular to fibers)....
Effective propagation in a perturbed periodic structure
International Nuclear Information System (INIS)
In a recent paper [D. Torrent, A. Hakansson, F. Cervera, and J. Sanchez-Dehesa, Phys. Rev. Lett. 96, 204302 (2006)] inspected the effective parameters of a cluster containing an ensemble of scatterers with a periodic or a weakly disordered arrangement. A small amount of disorder is shown to have a small influence on the characteristics of the acoustic wave propagation with respect to the periodic case. In this Brief Report, we inspect further the effect of a deviation in the scatterer distribution from the periodic distribution. The quasicrystalline approximation is shown to be an efficient tool to quantify this effect. An analytical formula for the effective wave number is obtained in one-dimensional acoustic medium and is compared with the Berryman result in the low-frequency limit. Direct numerical calculations show a good agreement with the analytical predictions
Quantum teleportation of propagating quantum microwaves
Energy Technology Data Exchange (ETDEWEB)
Di Candia, R.; Felicetti, S.; Sanz, M. [University of the Basque Country UPV/EHU, Department of Physical Chemistry, Bilbao (Spain); Fedorov, K.G.; Menzel, E.P. [Bayerische Akademie der Wissenschaften, Walther-Meissner-Institut, Garching (Germany); Technische Universitaet Muenchen, Physik-Department, Garching (Germany); Zhong, L.; Deppe, F.; Gross, R. [Bayerische Akademie der Wissenschaften, Walther-Meissner-Institut, Garching (Germany); Technische Universitaet Muenchen, Physik-Department, Garching (Germany); Nanosystems Initiative Munich (NIM), Muenchen (Germany); Marx, A. [Bayerische Akademie der Wissenschaften, Walther-Meissner-Institut, Garching (Germany); Solano, E. [University of the Basque Country UPV/EHU, Department of Physical Chemistry, Bilbao (Spain); Basque Foundation for Science, IKERBASQUE, Bilbao (Spain)
2015-12-15
Propagating quantum microwaves have been proposed and successfully implemented to generate entanglement, thereby establishing a promising platform for the realisation of a quantum communication channel. However, the implementation of quantum teleportation with photons in the microwave regime is still absent. At the same time, recent developments in the field show that this key protocol could be feasible with current technology, which would pave the way to boost the field of microwave quantum communication. Here, we discuss the feasibility of a possible implementation of microwave quantum teleportation in a realistic scenario with losses. Furthermore, we propose how to implement quantum repeaters in the microwave regime without using photodetection, a key prerequisite to achieve long distance entanglement distribution. (orig.)
Nonlinear ultrasound wave propagation in thermoviscous fluids
DEFF Research Database (Denmark)
Sørensen, Mads Peter
Traditional ultrasound theory is based on linear theory, however, for strongly focused sound beams, the pressure levels are sufficiently high to generate nonlinear waves. In thermoviscous fluids nonlinearity arises as a result of a nonlinear equation of state together with nonlinear advection....... Furthermore, dissipation and dispersion is included in a combined third order term in the velocity potential. We shall report on solitary pulse propagation with generation of higher harmonics of the emitted carrier wave frequency. The envelopes of the carrier wave and its first higher harmonics satisfy two...... is interpreted as a shock wave formation, similar in nature to those of the simple Burgers equation. The results are relevant for medical ultrasound imaging....
Single-photon propagation through dielectric bandgaps.
Borjemscaia, Natalia; Polyakov, Sergey V; Lett, Paul D; Migdall, Alan
2010-02-01
Theoretical models of photon traversal through quarter-wave dielectric stack barriers that arise due to Bragg reflection predict the saturation of the propagation time with the barrier length, known as the Hartman effect. This saturation is sensitive to the addition of single dielectric layers, varying significantly from sub-luminal to apparently super-luminal and vice versa. Our research tests the suitability of photonic bandgaps as an optical model for the tunneling process. Of particular importance is our observation of subtle structural changes in dielectric stacks drastically affecting photon traversal times, allowing for apparent sub- and super-luminal effects. We also introduce a simple model to link HOM visibility to wavepacket distortion that allows us to exclude this as a possible cause of the loss of contrast in the barrier penetration process. PMID:20174056
Learning Topic Models by Belief Propagation
Zeng, Jia; Liu, Jiming
2011-01-01
Latent Dirichlet allocation (LDA) is an important class of hierarchical Bayesian models for probabilistic topic modeling, which attracts worldwide interests and touches many important applications in text mining, computer vision and computational biology. This paper proposes a novel tree-structured factor graph representation for LDA within the Markov random field (MRF) framework, which enables the classic belief propagation (BP) algorithm for exact inference and parameter estimation. Although two commonly-used approximation inference methods, such as variational Bayes (VB) and collapsed Gibbs sampling (GS), have gained great successes in learning LDA, the proposed BP is competitive in both speed and accuracy validated by encouraging experimental results on four large-scale document data sets. Furthermore, the BP algorithm has the potential to become a generic learning scheme for variants of LDA-based topic models. To this end, we show how to learn two typical variants of LDA-based topic models, such as autho...
In situ fatigue-crack-propagation experiment
International Nuclear Information System (INIS)
An in-reactor fatigue experiment was conducted in the Oak Ridge Research Reactor to determine the effects of dynamic irradiation on fatigue crack propagation. Eight 20% cold-worked 316 stainless steel specimens were precracked to various initial crack lengths, linked together to form a chain, and inserted into a specially designed in-reactor fatigue machine. Test conditions included a maximum temperature of 4600C, an environment of sodium, a frequency of 1 cycle/min, and a stress ratio of 0.10. Results indicated that (1) no effects of dynamic irradiation were observed for a fluence of 1.5 x 1021 n/cm2 (E > 0.1 MeV); and (2) crack growth rates in elevated temperature sodium were a factor of 3 to 4 lower than in room temperature air
Charmonium propagation through a dense medium
Directory of Open Access Journals (Sweden)
Kopeliovich B.Z.
2015-01-01
Full Text Available Attenuation of a colourless c̄c dipole propagating with a large momentum through a hot medium originates from two sources, Debye screening (melting, and inelastic collisions with surrounding scattering centres (absorption. The former never terminates completely production of a bound charmonium in heavy ion collisions, even at very high temperatures. The latter, is controlled my the magnitude of the dipole cross section, related to the transport coefficient, which is the rate of transverse momentum broadening in the medium. A novel procedure of Lorentz boosting of the Schrödinger equation is developed, which allows to calculate the charmonium survival probability employing the path-integral technique, incorporating both melting and absorption. A novel mechanism of charmonium regeneration in a dense medium is proposed.
Improving the algorithm of temporal relation propagation
Shen, Jifeng; Xu, Dan; Liu, Tongming
2005-03-01
In the military Multi Agent System, every agent needs to analyze the temporal relationships among the tasks or combat behaviors, and it"s very important to reflect the battlefield situation in time. The temporal relation among agents is usually very complex, and we model it with interval algebra (IA) network. Therefore an efficient temporal reasoning algorithm is vital in battle MAS model. The core of temporal reasoning is path consistency algorithm, an efficient path consistency algorithm is necessary. In this paper we used the Interval Matrix Calculus (IMC) method to represent the temporal relation, and optimized the path consistency algorithm by improving the efficiency of propagation of temporal relation based on the Allen's path consistency algorithm.
Computer Simulations of the Fatigue Crack Propagation
Directory of Open Access Journals (Sweden)
A. Materna
2000-01-01
Full Text Available The following hypothesis for design of structures based on the damage tolerance philosophy is laid down: the perpendicular fatigue crack growth rate v in a certain point of a curved crack front is given by the local value of stress intensity factor per unit of nominal stress K' and the local triaxiality T which describes the constraint. The relationship v = f (K', T is supposed to be typical for a given loading spectrum and material. Such relationship for a 2024 Al alloy and the flight-simulation spectrum was derived from the fatigue test of the rectangular panel with the central hole and used for three-dimensional simulation of the corner fatigue crack propagation in the model of the wing spar flangeplate. Finite element and boundary element methods were used for these computations. The results of the simulation are in good agreement with the experiment.
Skewon field and cosmic wave propagation
Ni, Wei-Tou
2014-03-01
We study the propagation of the Hehl-Obukhov-Rubilar skewon field in weak gravity field/dilute matter or with weak violation of the Einstein Equivalence Principle (EEP), and further classify it into Type I and Type II skewons. From the dispersion relation we show that no dissipation/no amplification condition implies that the additional skewon field must be of Type II. For Type I skewon field, the dissipation/amplification is proportional to the frequency and the CMB spectrum would deviate from Planck spectrum. From the high precision agreement of the CMB spectrum with 2.755 K Planck spectrum, we constrain the Type I cosmic skewon field |χijkl(SkI)| to ⩽ a few ×10-35. The skewon part of constitutive tensor constructed from asymmetric metric is of Type II, hence it is allowed. This study may also be applied to macroscopic electrodynamics in the case of laser pumped medium or dissipative medium.
Data Stream Clustering With Affinity Propagation
Zhang, Xiangliang
2014-07-09
Data stream clustering provides insights into the underlying patterns of data flows. This paper focuses on selecting the best representatives from clusters of streaming data. There are two main challenges: how to cluster with the best representatives and how to handle the evolving patterns that are important characteristics of streaming data with dynamic distributions. We employ the Affinity Propagation (AP) algorithm presented in 2007 by Frey and Dueck for the first challenge, as it offers good guarantees of clustering optimality for selecting exemplars. The second challenging problem is solved by change detection. The presented StrAP algorithm combines AP with a statistical change point detection test; the clustering model is rebuilt whenever the test detects a change in the underlying data distribution. Besides the validation on two benchmark data sets, the presented algorithm is validated on a real-world application, monitoring the data flow of jobs submitted to the EGEE grid.
Robust object tracking using linear neighborhood propagation
Gong, Chen; Fu, Keren; Tu, Enmei; Yang, Jie; He, Xiangjian
2013-01-01
Object tracking is widely used in many applications such as intelligent surveillance, scene understanding, and behavior analysis. Graph-based semisupervised learning has been introduced to deal with specific tracking problems. However, existing algorithms following this idea solely focus on the pairwise relationship between samples and hence could decrease the classification accuracy for unlabeled samples. On the contrary, we regard tracking as a one-class classification issue and present a novel graph-based semisupervised tracker. The proposed tracker uses linear neighborhood propagation, which aims to exploit the local information around each data point. Moreover, the manifold structure embedded in the whole sample set is discovered to allow the tracker to better model the target appearance, which is crucial to resisting the appearance variations of the object. Experiments on some public-domain sequences show that the proposed tracker can exhibit reliable tracking performance in the presence of partial occlusions, complicated background, and appearance changes, etc.
Feynman propagator for spin foam quantum gravity.
Oriti, Daniele
2005-03-25
We link the notion causality with the orientation of the spin foam 2-complex. We show that all current spin foam models are orientation independent. Using the technology of evolution kernels for quantum fields on Lie groups, we construct a generalized version of spin foam models, introducing an extra proper time variable. We prove that different ranges of integration for this variable lead to different classes of spin foam models: the usual ones, interpreted as the quantum gravity analogue of the Hadamard function of quantum field theory (QFT) or as inner products between quantum gravity states; and a new class of causal models, the quantum gravity analogue of the Feynman propagator in QFT, nontrivial function of the orientation data, and implying a notion of "timeless ordering".
MICROWAVE PROPAGATION IN TOOTH AND DENTAL DEFECT
Directory of Open Access Journals (Sweden)
Maria Papezova
2016-09-01
Full Text Available INTRODUCTION:The most common method of conventional dental diagnosisinvolves X-rays, such as Radio Tomography (RT or Computer Tomography (CT. Such methods are used for diagnosing pores in dental material that can lead to premature failure of dental material. Diagnosis by X-ray provides an objective analysis. However, repeated radiation from X-rays can cause biological damage to human tissues. From this point of view, there is a significant need to progress to quantitative non-invasive and non-destructive testing (NDT methods to measure dental material and improve treatment options. This article focuses on applying microwave technology to characterize teeth and teeth replacements. Knowledge of microwave propagation in biomaterial with no defects, using a defined microwave frequency range, and subsequently comparing the result with defective material could provide a means of dental diagnosis without the risk of radiation for the patient, i.e. without X-ray. OBJECTIVES: The primary objective of this study was to examine microwave technology in the field of dental medical diagnosis as a new NDT method. METHODS: The basic concept of applying microwave technology to characterize teeth in dental diagnosis was examined using a basic algorithm designed in the MATLAB programming language. Tests used dielectric properties of tooth and tooth decay and propagated electromagnetic (EM waves to show different characteristics of chosen materials.RESULTS: The analyses of frequency dependent reflection and transmission coefficients of the chosen material, specificallyteeth, atfrequency range 0 GHz to 30 GHz, computed differences between healthy and defective dental material.CONCLUSION: Thus, this could be used in providing a dental diagnosis without exposing patients to radiation, i.e. without X-ray. The next stage will involve creating a complete model of a jaw with teeth, and designing a sensor for crack detection for comparisons using this basic algorithm.
Seismic wave propagation in granular media
Tancredi, Gonzalo; López, Francisco; Gallot, Thomas; Ginares, Alejandro; Ortega, Henry; Sanchís, Johnny; Agriela, Adrián; Weatherley, Dion
2016-10-01
Asteroids and small bodies of the Solar System are thought to be agglomerates of irregular boulders, therefore cataloged as granular media. It is a consensus that many asteroids might be considered as rubble or gravel piles.Impacts on their surface could produce seismic waves which propagate in the interior of these bodies, thus causing modifications in the internal distribution of rocks and ejections of particles and dust, resulting in a cometary-type comma.We present experimental and numerical results on the study of propagation of impact-induced seismic waves in granular media, with special focus on behavior changes by increasing compression.For the experiment, we use an acrylic box filled with granular materials such as sand, gravel and glass spheres. Pressure inside the box is controlled by a movable side wall and measured with sensors. Impacts are created on the upper face of the box through a hole, ranging from free-falling spheres to gunshots. We put high-speed cameras outside the box to record the impact as well as piezoelectic sensors and accelerometers placed at several depths in the granular material to detect the seismic wave.Numerical simulations are performed with ESyS-Particle, a software that implements the Discrete Element Method. The experimental setting is reproduced in the numerical simulations using both individual spherical particles and agglomerates of spherical particles shaped as irregular boulders, according to rock models obtained with a 3D scanner. The numerical experiments also reproduces the force loading on one of the wall to vary the pressure inside the box.We are interested in the velocity, attenuation and energy transmission of the waves. These quantities are measured in the experiments and in the simulations. We study the dependance of these three parameters with characteristics like: impact speed, properties of the target material and the pressure in the media.These results are relevant to understand the outcomes of impacts in
Azimuthal Spoke Propagation in Hall Effect Thrusters
Sekerak, Michael J.; Longmier, Benjamin W.; Gallimore, Alec D.; Brown, Daniel L.; Hofer, Richard R.; Polk, James E.
2013-01-01
Spokes are azimuthally propagating perturbations in the plasma discharge of Hall Effect Thrusters (HETs) that travel in the E x B direction and have been observed in many different systems. The propagation of azimuthal spokes are investigated in a 6 kW HET known as the H6 using ultra-fast imaging and azimuthally spaced probes. A spoke surface is a 2-D plot of azimuthal light intensity evolution over time calculated from 87,500 frames/s videos. The spoke velocity has been determined using three methods with similar results: manual fitting of diagonal lines on the spoke surface, linear cross-correlation between azimuthal locations and an approximated dispersion relation. The spoke velocity for three discharge voltages (300, 400 and 450 V) and three anode mass flow rates (14.7, 19.5 and 25.2 mg/s) yielded spoke velocities between 1500 and 2200 m/s across a range of normalized magnetic field settings. The spoke velocity was inversely dependent on magnetic field strength for low B-field settings and asymptoted at B-field higher values. The velocities and frequencies are compared to standard drifts and plasma waves such as E x B drift, electrostatic ion cyclotron, magnetosonic and various drift waves. The empirically approximated dispersion relation yielded a characteristic velocity that matched the ion acoustic speed for 5 eV electrons that exist in the near-anode and near-field plume regions of the discharge channel based on internal measurements. Thruster performance has been linked to operating mode where thrust-to-power is maximized when azimuthal spokes are present so investigating the underlying mechanism of spokes will benefit thruster operation.
Error propagation with R-matrix model fitting
Institute of Scientific and Technical Information of China (English)
CHEN; Zhenpeng(陈振鹏); ZHANG; Rui(张瑞); SUN; Yeying(孙业英); LIU; Tingjin(刘廷进)
2003-01-01
The error propagation features with R-matrix model fitting 7Li, 11B and 17O systems have been researched systematically. Some laws of error propagation have been revealed, an experience formula for describing standard error propagation has been established, and the most possible error range for evaluated standard cross section of 6Li (n, α), 10B (n, α) and 10B (n, α1) has been determined.
On the diffusive propagation of warps in thin accretion discs
LODATO G; Price, D.
2010-01-01
In this paper we revisit the issue of the propagation of warps in thin and viscous accretion discs. In this regime warps are know to propagate diffusively, with a diffusion coefficient approximately inversely proportional to the disc viscosity. Previous numerical investigations of this problem (Lodato & Pringle 2007) did not find a good agreement between the numerical results and the predictions of the analytic theories of warp propagation, both in the linear and in the non-linear case. Here,...
Numerical simulation methods for wave propagation through optical waveguides
International Nuclear Information System (INIS)
The simulation of the field propagation through waveguides requires numerical solutions of the Helmholtz equation. For this purpose a method based on the principle of orthogonal collocation was recently developed. The method is also applicable to nonlinear pulse propagation through optical fibers. Some of the salient features of this method and its application to both linear and nonlinear wave propagation through optical waveguides are discussed in this report. 51 refs, 8 figs, 2 tabs
Synaptic Contacts Enhance Cell-to-Cell Tau Pathology Propagation
Sara Calafate; Arjan Buist; Katarzyna Miskiewicz; Vinoy Vijayan; Guy Daneels; Bart de Strooper; Joris de Wit; Patrik Verstreken; Diederik Moechars
2015-01-01
Accumulation of insoluble Tau protein aggregates and stereotypical propagation of Tau pathology through the brain are common hallmarks of tauopathies, including Alzheimer’s disease (AD). Propagation of Tau pathology appears to occur along connected neurons, but whether synaptic contacts between neurons are facilitating propagation has not been demonstrated. Using quantitative in vitro models, we demonstrate that, in parallel to non-synaptic mechanisms, synapses, but not merely the close dista...
How much laser power can propagate through fusion plasma?
Lushnikov, Pavel M.; Rose, Harvey A.
2005-01-01
Propagation of intense laser beams is crucial for inertial confinement fusion, which requires precise beam control to achieve the compression and heating necessary to ignite the fusion reaction. The National Ignition Facility (NIF), where fusion will be attempted, is now under construction. Control of intense beam propagation may be ruined by laser beam self-focusing. We have identified the maximum laser beam power that can propagate through fusion plasma without significant self-focusing and...
Theoretical tools for atom-laser-beam propagation
Riou, Jean-Félix; Le Coq, Yann; Impens, François; Guerin, William; Bordé, Christian,; Aspect, Alain; Bouyer, Philippe
2008-01-01
We present a theoretical model for the propagation of non self-interacting atom laser beams. We start from a general propagation integral equation, and we use the same approximations as in photon optics to derive tools to calculate the atom laser beam propagation. We discuss the approximations that allow to reduce the general equation whether to a Fresnel-Kirchhoff integral calculated by using the stationary phase method, or to the eikonal. Within the paraxial approximation, we also introduce...
Enhancing propagation characteristics of truncated localized waves in silica
Salem, Mohamed
2011-07-01
The spectral characteristics of truncated Localized Waves propagating in dispersive silica are analyzed. Numerical experiments show that the immunity of the truncated Localized Waves propagating in dispersive silica to decay and distortion is enhanced as the non-linearity of the relation between the transverse spatial spectral components and the wave vector gets stronger, in contrast to free-space propagating waves, which suffer from early decay and distortion. © 2011 IEEE.
Decomposition During Search for Propagation-Based Constraint Solvers
Mann, Martin; Tack, Guido; Will, Sebastian
2007-01-01
We describe decomposition during search (DDS), an integration of And/Or tree search into propagation-based constraint solvers. The presented search algorithm dynamically decomposes sub-problems of a constraint satisfaction problem into independent partial problems, avoiding redundant work. The paper discusses how DDS interacts with key features that make propagation-based solvers successful: constraint propagation, especially for global constraints, and dynamic search heuristics. We have impl...
Efficient algorithms for constraint propagation and for processing tree descriptions
Thiel, Sven
2004-01-01
This thesis consists of two parts. In the first part we present propagation algorithms, which to solve a CSP is based on interleaving constraint progagation and search. The task of a propagation alogrithm is to prune portions of the search space which do not contain a solution so that the search does not have to explore them. We present propagation alogrithms for the following constraints: Sortedness, Alldiff, WeightedPartialAlldiff and NonOverlapping (of two convex polygons). The second part...
Using Boolean Constraint Propagation for Sub-clause Deduction
Darras, Sylvain; Dequen, Gilles; Devendeville, Laure; Mazure, Bertrand; Ostrowski, Richard; Sais, Lahkdar
2005-01-01
Boolean Constraint Propagation (BCP) is recognized as one of the most use- ful technique for efficient satisfiability checking. In this paper a new extension of the scope of boolean constraint propagation is proposed. It makes an original use of BCP to achieve further reduction of boolean formulas. Considering the impli- cation graph generated by the constraint propagation process as a resolution tree, sub-clauses from the original formula can be deduced. Then, we show how such extension can ...
Uniformly Reweighted Belief Propagation: A Factor Graph Approach
Wymeersch, Henk; Penna, Federico; Savic, Vladimir
2011-01-01
Tree-reweighted belief propagation is a message passing method that has certain advantages compared to traditional belief propagation (BP). However, it fails to outperform BP in a consistent manner, does not lend itself well to distributed implementation, and has not been applied to distributions with higher-order interactions. We propose a method called uniformly-reweighted belief propagation that mitigates these drawbacks. After having shown in previous works that this method can substan...
Nonparaxial propagation of phase-flipped Gaussian beams
Institute of Scientific and Technical Information of China (English)
Gao Zeng-Hui; Lü Bai-Da
2008-01-01
This paper derives the closed-form expressions for nonparaxial phase flipped Gaussian (PFG) beams propagating in free space, through a knife edge and an aperture, which enable us to study nonparaxial propagation properties of PFG beams and to compare nonparaxial results with paraxial ones. It is found that the f parameter, offsetting distance of the knife edge and truncation parameter affect the nonparaxial beam propagation properties. Only under certain conditions the paraxial approximation is applicable. The results are illustrated by numerical examples.
Against dogma: On superluminal propagation in classical electromagnetism
Weatherall, James Owen
2014-11-01
It is deeply entrenched dogma that relativity theory prohibits superluminal propagation. It is also experimentally well-established that under some circumstances, classical electromagnetic fields propagate through a dielectric medium with superluminal group velocities and superluminal phase velocities. But it is usually claimed that these superluminal velocities do not violate the relativistic prohibition. Here I analyze electromagnetic fields in a dielectric medium within a framework for understanding superluminal propagation recently developed by Geroch (1996, 2011) and elaborated by Earman (2014). I will argue that for some parameter values, electromagnetic fields do propagate superluminally in the Geroch-Earman sense.
Against Dogma: On Superluminal Propagation in Classical Electromagnetism
Weatherall, James Owen
2014-01-01
It is deeply entrenched dogma that relativity theory prohibits superluminal propagation. It is also experimentally well-established that under some circumstances, classical electromagnetic fields propagate through a dielectric medium with superluminal group velocities and superluminal phase velocities. But it is usually claimed that these superluminal velocities do not violate the relativistic prohibition. Here I analyze electromagnetic fields in a dielectric medium within a framework for understanding superluminal propagation recently developed by Geroch(1996, 2011) and elaborated by Earman(2014). I will argue that for some parameter values, electromagnetic fields do propagate superluminally in the Geroch-Earman sense.
Hollow Gaussian Schell-model beam and its propagation
Wang, Li-Gang
2007-01-01
In this paper, we present a new model, hollow Gaussian-Schell model beams (HGSMBs), to describe the practical dark hollow beams. An analytical propagation formula for HGSMBs passing through a paraxial first-order optical system is derived based on the theory of coherence. Based on the derived formula, an application example showing the influence of spatial coherence on the propagation of beams is illustrated. It is found that the beam propagating properties of HGSMBs will be greatly affected by their spatial coherence. Our model provides a very convenient way for analyzing the propagation properties of partially coherent dark hollow beams.
Modeling Passive Propagation of Malwares on the WWW
Chunbo, Liu; Chunfu, Jia
Web-based malwares host in websites fixedly and download onto user's computers automatically while users browse. This passive propagation pattern is different from that of traditional viruses and worms. A propagation model based on reverse web graph is proposed. In this model, propagation of malwares is analyzed by means of random jump matrix which combines orderness and randomness of user browsing behaviors. Explanatory experiments, which has single or multiple propagation sources respectively, prove the validity of the model. Using this model, people can evaluate the hazardness of specified websites and take corresponding countermeasures.
Micro-seismic wave's propagation law and its numerical simulation
Institute of Scientific and Technical Information of China (English)
PANG Huan-dong; JIANG Fu-xing; LIN Pei-lan
2006-01-01
Deduced the propagation rule of longitudinal and transverse wave. On the basis of this, propagation rules in attenuated visco-elastic media and varied Lame coefficient were put forward as well. The subsequent numerical analysis found that in a small scope longitudinal and transverse wave could be considered as homogeneously propagating when faultages and joints were not taken into account. The existence of lane hindered the wave's propagation, and it made the velocity gradient change in a local vicinity area.Therefore velocity varied in different direction.
Dependence of Quark Effective Mass on Gluon Propagators
Institute of Scientific and Technical Information of China (English)
HE Xiao-Rong; ZHOU Li-Juan; MA Wei-Xing
2005-01-01
Based on Dyson-Schwinger Equations (DSEs) in the "rainbow" approximation, the dependence of quark effective mass on gluon propagator is investigated by use of three different phenomenological gluon propagators with two parameters, the strength parameter x and range parameter △. Our theoretical calculations for the quark effective mass Mf(p2), defined by the self-energy functions Af(p2) and Bf(p2) of the DSEs, show that the dynamically running quark effective mass is strongly dependent on gluon propagator. Therefore, because gluon propagator is completely unknown,the quark effective mass cannot be exactly determined theoretically.
On the propagation of truncated localized waves in dispersive silica
Salem, Mohamed
2010-01-01
Propagation characteristics of truncated Localized Waves propagating in dispersive silica and free space are numerically analyzed. It is shown that those characteristics are affected by the changes in the relation between the transverse spatial spectral components and the wave vector. Numerical experiments demonstrate that as the non-linearity of this relation gets stronger, the pulses propagating in silica become more immune to decay and distortion whereas the pulses propagating in free-space suffer from early decay and distortion. © 2010 Optical Society of America.
Electromagnetic Wave Propagation Models for Multiple-Diffraction Scenarios
Directory of Open Access Journals (Sweden)
Mehmet Barış TABAKCIOĞLU
2014-04-01
Full Text Available Electromagnetic wave propagation models have been used for coverage estimation and field prediction at the receiver to make more reliable and efficient digital broadcasting systems. Propagation models can be classified into two groups as numerical and ray tracing based models. There is a tradeoff between computation time and accuracy of field prediction among electromagnetic wave propagation models. Although numerical models predict accurately, it requires more computation times. Ray tracing based models predicts the field strength less accurately with lower computation time. Many propagation models have been developed to provide optimum solution for accuracy and computation time
Robust Kalman tracking and smoothing with propagating and non-propagating outliers
Ruckdeschel, Peter; Pupashenko, Daria
2012-01-01
A common situation in filtering where classical Kalman filtering does not perform particularly well is tracking in the presence of propagating outliers. This calls for robustness understood in a distributional sense, i.e.; we enlarge the distribution assumptions made in the ideal model by suitable neighborhoods. Based on optimality results for distributional-robust Kalman filtering from Ruckdeschel[01,10], we propose new robust recursive filters and smoothers designed for this purpose as well as specialized versions for non-propagating outliers. We apply these procedures in the context of a GPS problem arising in the car industry. To better understand these filters, we study their behavior at stylized outlier patterns (for which they are not designed) and compare them to other approaches for the tracking problem. Finally, in a simulation study we discuss efficiency of our procedures in comparison to competitors.
Robust Kalman tracking and smoothing with propagating and non-propagating outliers
Ruckdeschel, Peter; Spangl, Bernhard; Pupashenko, Daria
2012-01-01
A common situation in filtering where classical Kalman filtering does not perform particularly well is tracking in the presence of propagating outliers. This calls for robustness understood in a distributional sense, i.e.; we enlarge the distribution assumptions made in the ideal model by suitable neighborhoods. Based on optimality results for distributional-robust Kalman filtering from Ruckdeschel[01,10], we propose new robust recursive filters and smoothers designed for this purpose as well...
Fujita, Fuminori; Mizuno, Katsunori; Matsukawa, Mami
2013-12-01
Wave propagation in a trabecular bone was experimentally investigated using an acoustic tube. For the purposes of this study, a cubic sample was gradually filed so the waveform change due to the sample thickness could be observed. The initial sample showed clear two-wave separation. As the sample became thinner, the fast and slow waves gradually overlapped. The apparent frequencies and amplitudes of the fast waves obtained from the time domain data decreased significantly for the smaller thicknesses. This indicates an increase in the apparent attenuation at the initial stage of the propagation. Next the authors investigated the distribution of the ultrasonic field after the transmission through the cancellous bone sample. In addition to a large aperture receiver, a needle-type ultrasonic transducer was used to observe the ultrasonic field. Within an area of the same size of the large transducer, the waveforms retrieved with the needle sensor exhibited high spatial variations; however, the averaged waveform in the plane was similar to the waveform obtained with the large aperture receiver. This indicates that the phase cancellation effect on the surface of the large aperture receiver can be one of the reasons for the strong apparent attenuation observed at the initial stages of the propagation. PMID:25669289
Volcanotectonic earthquakes induced by propagating dikes
Gudmundsson, Agust
2016-04-01
Volcanotectonic earthquakes are of high frequency and mostly generated by slip on faults. During chamber expansion/contraction earthquakes are distribution in the chamber roof. Following magma-chamber rupture and dike injection, however, earthquakes tend to concentrate around the dike and follow its propagation path, resulting in an earthquake swarm characterised by a number of earthquakes of similar magnitudes. I distinguish between two basic processes by which propagating dikes induce earthquakes. One is due to stress concentration in the process zone at the tip of the dike, the other relates to stresses induced in the walls and surrounding rocks on either side of the dike. As to the first process, some earthquakes generated at the dike tip are related to pure extension fracturing as the tip advances and the dike-path forms. Formation of pure extension fractures normally induces non-double couple earthquakes. There is also shear fracturing in the process zone, however, particularly normal faulting, which produces double-couple earthquakes. The second process relates primarily to slip on existing fractures in the host rock induced by the driving pressure of the propagating dike. Such pressures easily reach 5-20 MPa and induce compressive and shear stresses in the adjacent host rock, which already contains numerous fractures (mainly joints) of different attitudes. In piles of lava flows or sedimentary beds the original joints are primarily vertical and horizontal. Similarly, the contacts between the layers/beds are originally horizontal. As the layers/beds become buried, the joints and contacts become gradually tilted so that the joints and contacts become oblique to the horizontal compressive stress induced by a driving pressure of the (vertical) dike. Also, most of the hexagonal (or pentagonal) columnar joints in the lava flows are, from the beginning, oblique to an intrusive sheet of any attitude. Consequently, the joints and contacts function as potential shear
Wave Propagation in Fractured Anisotropic Media
Shao, S.; Pyrak-Nolte, L. J.
2012-12-01
Discontinuities such as fractures, joints and faults occur in the Earth's crusts in a variety of rock types. While much theoretical, experimental and computational research have examined seismic wave propagation in fractured isotropic rock, few experimental studies have investigated seismic wave propagation in fractured anisotropic media. The co-existence of fractures and layers can complicate the interpretation of seismic properties because of the discrete guided modes that propagate along or are confined by the fractures. In this study, we use seismic arrays and acoustic wavefront imaging techniques to examine the competing sources of seismic anisotropy from fractures and from layers. Samples with textural anisotropy (100 mm x 100 mm x 100 mm) were fabricated from garolite, an epoxy - cloth laminate, with layer thickness 0f ~ 0.5 mm. Two sets of fractured samples were fabricated: (1) two single fractured samples with one fracture either parallel or (and) perpendicular to layers, and (2) four multi-fractured samples with 5 parallel fractures oriented either parallel, 30 degrees, 60 degrees or perpendicular to the layers. An intact sample containing no fractures was used as a standard orthorhombic medium for reference. Seismic arrays were used on the first set of samples to measure bulk waves and fracture interface waves as a function of stress. The seismic array contained two compressional and five shear-wave source-receiver pairs with a central frequency of 1 MHz. Shear wave transducers were polarized both perpendicular and parallel to the layering as well as to the fracture. Measurements were made for a range of stresses (0.4 - 4MPa). From these measurements it was observed that a fractured layered medium appears more isotropic or anisotropic than the orthorhombic background, depending on the orientation of the fracture relative to layers. The matrix anisotropy was recovered by increasing the normal stress on a fracture (i.e., by closing the fracture). For the
Propagation and stability of expanding spherical flames
Jomaas, Grunde
High-fidelity experiments were conducted to determine the laminar flame speeds of various fuels, to define the transition boundaries of both cellular and spiral flame front instabilities that develop over the flame surface, and to determine the cellular flame acceleration constants for outwardly propagating spherical flames in a near-constant pressure environment up to 60 atmospheres. The flame front movement was monitored using schlieren cinematography and recorded with a high-speed digital camera. Experiments were conducted for a wide range of pressures and equivalence ratios to yield flame speed data for acetylene, ethylene, ethane, propylene, propane, dimethyl ether, and hydrogen/carbon monoxide in air. These data were post-processed in order to account for stretch effects, yielding laminar, unstretched flame speeds and Markstein lengths. The results were compared with existing chemical kinetics mechanisms and used to suggest improvements. The instant of transition to cellularity was experimentally determined for various fuels and fuel mixtures and subsequently interpreted on the basis of hydrodynamic and diffusional-thermal instabilities. Experimental results show that the transition Peclet number, Pec = Rc/ℓL, assumes an almost constant value for the near-equidiffusive acetylene and ethylene flames with wide ranges in the mixture stoichiometry, oxygen concentration, and pressure, where Rc is the flame radius at transition and ℓL the laminar flame thickness. However, for the non-equidiffusive hydrogen and propane flames, Pec respectively increases and decreases somewhat linearly with the mixture equivalence ratio. Evaluation of Pec using the theory of Bechtold and Matalon show complete qualitative agreement and satisfactory quantitative agreement, demonstrating the insensitivity of Pec to all system parameters for equidiffusive mixtures, and the dominance of the Markstein number, Ze(Le-1), in destabilization for non-equidiffusive mixtures, where Ze is the
Refractive analysis of the human cornea through propagated fields
Illueca Contri, Carlos; Mas Candela, David; Pérez Rodríguez, Jorge; Pons Moreno, Álvaro Máximo; Artigas Verde, José María
2000-01-01
A new technique for analysing the optical quality of the human cornea is presented. Corneal maps are obtained through keratographies and then converted into phase maps. The propagated fields generated from this surface are plotted and studied. It is shown that any irregularity in the cornea affects the propagated field and the energy distribution at the focal plane. Simple applications are also indicated.
Cosmic ray propagation and interactions in the Galaxy
Zirakashvili, V N
2014-01-01
Cosmic ray propagation in the Galaxy is shortly reviewed. In particular we consider the self-consistent models of CR propagation. In these models CR streaming instability driven by CR anisotropy results in the Alfv\\'enic turbulence which in turn determines the scattering and diffusion of particles.
Teaching Wave Propagation and the Emergence of Viete's Formula
Cullerne, J. P.; Goekjian, M. C. Dunn
2012-01-01
The well-known result for the frequency of a simple spring-mass system may be combined with elementary concepts like speed = wavelength x frequency to obtain wave propagation speeds for an infinite chain of springs and masses (masses "m" held apart at equilibrium distance "a" by springs of stiffness "gamma"). These propagation speeds are dependent…
Numerical simulation of the gas driven fracture propagation
International Nuclear Information System (INIS)
The process of the gas driven fracture propagation has been studied. The mathematical model of this physical process has been proposed. The numerical algorithm has been developed and the mathematical simulation of the process of the gas driven fracture propagation has been performed
Error Propagation Made Easy--Or at Least Easier
Gardenier, George H.; Gui, Feng; Demas, James N.
2011-01-01
Complex error propagation is reduced to formula and data entry into a Mathcad worksheet or an Excel spreadsheet. The Mathcad routine uses both symbolic calculus analysis and Monte Carlo methods to propagate errors in a formula of up to four variables. Graphical output is used to clarify the contributions to the final error of each of the…
Models for seismic wave propagation in periodically layered porous media
Kudarova, A.; Van Dalen, K.N.; Drijkoningen, G.G.
2014-01-01
Several models are discussed for seismic wave propagation in periodically layered poroelastic media where layers represent mesoscopic-scale heterogeneities that are larger than the pore and grain sizes but smaller than the wavelength. The layers behave according to Biot’s theory. Wave propagation no
A local-ether model of propagation of electromagnetic wave
International Nuclear Information System (INIS)
It is pointed out that the classical propagation model can be in accord with the Sagnac effect due to earth's rotational and orbital motions in the high-precision GPS (global positioning system) and interplanetary radar, if the reference frame of the classical propagation medium is endowed with a switchability according to the location of the wave. Accordingly, it is postulated that, as in the obsolete theory, electromagnetic waves propagate via a medium like the ether. However, the ether is not universal. It is proposed that in the region under sufficient influence of the gravity due to the earth, the sun, or another celestial body, there forms a local ether, which in turn is stationary with respect to the gravitational potential of the respective body. For earthbound and interplanetary propagation, the medium is stationary in a geocentric and a heliocentric inertial frame, respectively. An electromagnetic wave propagates at a constant speed with respect to the associated local ether, independent of the motions of source and receiver. Based on this local-ether model of wave propagation, a wide variety of earthbound, interplanetary, and interstellar propagation phenomena are accounted for. Strong evidence of this new classical model is its consistent account of the Sagnac effect due to earth's motions among GPS, the intercontinental microwave link, and the interplanetary radar. Moreover, as examined within the present precision, this model is still in accord with the Michelson-Morley experiment. To test the local-ether propagation model, a one-way-link rotor experiment is proposed. (orig.)
Unified formalism for TE and TM beam propagators
Poladian, Leon; Ladouceur, Francois J.
1998-07-01
The unification of transverse electric (TE) and transverse magnetic (TM) beam propagation algorithms is made possible through a transformation which converts the wave equation for TM fields in planar waveguides into a form identical to the corresponding TE wave equation. The transformation can be applied to any smoothly varying waveguide. This transformation can be made independently of any paraxial or other approximations. Thus, any TE propagation algorithm can also be applied immediately to TM fields without additional approximations. This includes the classical fast Fourier transform beam propagator, which has not previously been applied successfully to TM propagation. We also specifically develop a Finite Difference Beam Propagation Method that applies to both TE and TM propagation in 1D (planar) geometry. Previous implementations for the TM case involve an approximation that in certain circumstances leads to severe errors (including the totally unphysical occurrence of field amplification). This is the first TM propagator which exactly conserves power. We also investigate the role of the reference background wavenumber (or index) and clarify its role as it is dynamically adapted. The algorithms proposed are easily adaptable to wide-angle beam propagators and to modern transparent boundary conditions. The extension of these ideas to rapidly varying structures (such as Bragg gratings) is also briefly discussed.
Laser-Based Instrument Measures Propagation Of Cracks
Lee, Rupert U.; Cox, Robert B.; Youngquist, Robert C.; Sentz, John T.; Rose, Kenneth A.
1995-01-01
Report describes use of commerical laser displacement meter to measure propagation of cracks in stainless-steel specimens in stress tests in corrosive (salt-spray) environment. Measurements directed toward determining time from beginning of each test until onset of propagation of crack.
Topology Optimization in wave-propagation and flow problems
DEFF Research Database (Denmark)
Sigmund, Ole; Jensen, Jakob Søndergaard; Gersborg-Hansen, A.;
2004-01-01
We discuss recent extensions of the topology optimization method to wave-propagation and flow problems. More specifically, we optimize material distribution in scalar wave propagation problems modelled by Helmholtz equation. Moreover, we investigate the influence of the inertia term on the optima...
Short comment about the lattice gluon propagator at vanishing momentum
Boucaud, P; Leroy, J P; Le Yaouanc, A; Lokhov, A Y; Micheli, J; Pène, O; Rodríguez-Quintero, J; Roiesnel, C; Boucaud, Ph.; Br\\"untjen, Th.
2006-01-01
We argue that all evidences point towards a finite non-vanishing zero momentum renormalised lattice gluon propagator in the infinite volume limit. We argue that different simulations with different lattice setups end-up with fairly compatible results for the gluon propagator at zero momentum, with different positive slopes as a function of the inverse volume.
Propagation of positional error in 3D GIS
Biljecki, Filip; Heuvelink, Gerard B.M.; Ledoux, Hugo; Stoter, Jantien
2015-01-01
While error propagation in GIS is a topic that has received a lot of attention, it has not been researched with 3D GIS data. We extend error propagation to 3D city models using a Monte Carlo simulation on a use case of annual solar irradiation estimation of building rooftops for assessing the eff
Near vertical incidence skywave: interaction of antenna and propagation mechanism
Witvliet, Benjamin Axel
2015-01-01
In areas where no telecommunication infrastructure exists, or when that infrastructure is destroyed by a natural disaster, Near Vertical Incidence Skywave (NVIS) radio wave propagation may provide a lifeline to the outside world. In NVIS propagation, radio waves are transmitted straight up; the iono
Characteristic wave diversity in near vertical incidence skywave propagation
Witvliet, Ben A.; Maanen, van Erik; Petersen, George J.; Westenberg, Albert J.; Bentum, Mark J.; Slump, Cornelis H.; Schiphorst, Roel
2015-01-01
In Near Vertical Incidence Skywave (NVIS) propagation, effective diversity reception can be realized using a dual channel receiver and a dual polarization antenna with polarization matched to the (left hand and right hand) circular polarization of the characteristic waves propagating in the ionosphe
Word of Mouth Propagation in Online Social Networks
Directory of Open Access Journals (Sweden)
Xiaoting Han
2012-10-01
Full Text Available Online social networks (OSNs are becoming an important propagation platform for Word of mouth (WOM. Therefore, it is of great significance to study the propagation of WOM in OSNs. A WOM propagation model named N-P-N is proposed in this paper, and some simulation experiments are carried out to investigate the mechanism of WOM propagation. From the sensitivity analysis of degree of initial information source node, it can be seen that the degree of initial information source node determines the scope and speed of the propagation of WOM in OSNs in some extent. Then the sensitivity analysis of number of initial information source nodes shows that the initial source nodes are crucial for controlling the propagation of negative information in OSNs. Moreover, from the user behavior respect, it is found that different user behavior in OSNs causes different propagation results, the more users who are willing to diffuse WOM, the more scope WOM can propagate and the faster the information diffuses. Findings in this paper are helpful for enterprises to form an effective WOM.
Modeling paraxial wave propagation in free-electron laser oscillators
Karssenberg, J.G.; Slot, van der P.J.M.; Volokhine, I.V.; Verschuur, J.W.J.; Boller, K.J.
2006-01-01
Modeling free-electron laser (FEL) oscillators requires calculation of both the light-beam interaction within the undulator and the light propagation outside the undulator. We have developed a paraxial optical propagation code that can be combined with various existing models of gain media, for exam
Effect of Wind on Long Range Propagation in Shallow Water
Ainslie, M.A.
2004-01-01
Long range acoustic propagation in isothermal conditions is considered, involving multiple reflections from the sea surface. If the sea is calm there is almost perfect reflection and hence low loss. The effect of wind is to increase propagation loss due to the interaction with near-surface bubble cl
The role of sound propagation in concentrated colloidal suspensions
Bakker, A.F.; Lowe, C.P.
2002-01-01
In a suspension, the hydrodynamic interactions between particles can propagate by two mechanisms: relatively slowly, by the diffusion of transverse momentum, or relatively rapidly, by the propagation of sound waves. Here we describe computer simulation results for the collective and single particle
Time-domain Wave Propagation in Dispersive Media①
Institute of Scientific and Technical Information of China (English)
无
1997-01-01
The equation of time-domain wave propagation in dispersive media and the explicit beam propagation method are presented in this paper.This method is demonstrated by the short optical pulses in a directional coupler with second order dispersive effect and shows to be in full agreement with former references.This method is simple,easy and practical.
Applicability of deterministic propagation models for mobile operators
Mantel, O.C.; Oostveen, J.C.; Popova, M.P.
2007-01-01
Deterministic propagation models based on ray tracing or ray launching are widely studied in the scientific literature, because of their high accuracy. Also many commercial propagation modelling tools include ray-based models. In spite of this, they are hardly used in commercial operations by cellul
In-plane propagation of electromagnetic waves in planar metamaterials
Yi, Changhyun; Rhee, Joo Yull; Kim, Ki Won; Lee, YoungPak
2016-08-01
Some planar metamaterials (MMs) or subwavelength antenna/hole arrays have a considerable amount of in-plane propagation when certain conditions are met. In this paper, the in-plane propagation caused by a wave incident on a MM absorber was studied by using a finite-difference time-domain (FDTD) technique. By using a FDTD simulation, we were able to observe a nonnegligible amount of in-plane propagation after the incident wave had arrived at the surface of the planar structure and gradually decreased propagation of the electromagnetic wave in the planar direction gradually decreased. We performed the FDTD simulation carefully to reproduce valid results and to verify the existence of in-plane propagation. For verification of the in-plane propagation explicitly, Poynting vectors were calculated and visualized inside the dielectric substrate between the metallic back-plate and an array of square patches. We also investigated several different structures with resonators of various shapes and found that the amount of facing edges of adjacent metallic patches critically determined the strength of the in-plane propagation. Through this study, we could establish the basis for the existence of in-plane propagation in MMs.
Sound wave propagation in weakly polydisperse granular materials
Mouraille, O.; Luding, S.
2008-01-01
Dynamic simulations of wave propagation are performed in dense granular media with a narrow polydisperse size-distribution and a linear contact-force law. A small perturbation is created on one side of a static packing and its propagation, for both P- and S-waves, is examined. A size variation compa
Propagation of a constant velocity fission wave
Deinert, Mark
2011-10-01
The ideal nuclear fuel cycle would require no enrichment, minimize the need fresh uranium, and produce few, if any, transuranic elements. Importantly, the latter goal would be met without the reprocessing. For purely physical reasons, no reactor system or fuel cycle can meet all of these objectives. However, a traveling-wave reactor, if feasible, could come remarkably close. The concept is simple: a large cylinder of natural (or depleted) uranium is subjected to a fast neutron source at one end, the neutrons would transmute the uranium downstream and produce plutonium. If the conditions were right, a self-sustaining fission wave would form, producing yet more neutrons which would breed more plutonium and leave behind little more than short-lived fission products. Numerical studies have shown that fission waves of this type are also possible. We have derived an exact solution for the propagation velocity of a fission wave through fertile material. The results show that these waves fall into a class of traveling wave phenomena that have been encountered in other systems. The solution places a strict conditions on the shapes of the flux, diffusive, and reactive profiles that would be required for such a phenomenon to persist. The results are confirmed numerically.
Propagation characteristics of thunderstorms in southern Germany
Energy Technology Data Exchange (ETDEWEB)
Hagen, M.; Bartenschlager, B.; Finke, U.
1998-05-01
The propagation of thunderstorms in southern Germany was investigated. The thunderstorms were observed by a lightning position system during the summer months of the years 1992 to 1996. On average every second day thunderstorms were observed anywhere in southern Germany. In general thunderstorms approach from westerly and south-westerly directions. The average speed is 13 m/s. No significant relation between the occurrence of thunderstorms and the large scale synoptic pattern described by the Grosswetterlagen (large scale weather pattern) was found. Thunderstorms were observed during almost all Grosswetterlagen. The reduction to 8 weather pattern based on the low-level flow in southern Germany showed that thunderstorms are likely when the flow has westerly directions (43%) or easterly directions (20%). Three distinct groups of different lightning patterns could be identified; stationary, moving thunderstorms and thunderstorm lines. The convective available potential energy (CAPE) and the wind shear were retrieved from the radio soundings from Muenchen and Stuttgart. On average CAPE was 583 J/kg for stationary, 701 J/kg for moving thunderstorms, and 876 J/kg for thunderstorm lines. The average bulk Richardson numbers are 152, 80 and 52 for stationary, moving thunderstorms and thunderstorm lines, respectively. The steering level was found to be at about 3 and 6 km m.s.l. However, it should be noted, that in most cases the soundings do not completely describe the local environment of thunderstorms, since radio soundings are only available twice a day. (orig.)
Propagation of Disturbances in Degenerate Quantum Systems
Chancellor, Nicholas
2011-01-01
Disturbances in gapless quantum many-body models are known to travel an unlimited distance throughout the system. Here, we explore this phenomenon in finite clusters with degenerate ground states. The specific model studied here is the one-dimensional J1-J2 Heisenberg Hamiltonian at and close to the Majumdar-Ghosh point. Both open and periodic boundary conditions are considered. Quenches are performed using a local magnetic field. The degenerate Majumdar-Ghosh ground state allows disturbances which carry quantum entanglement to propagate throughout the system, and thus dephase the entire system within the degenerate subspace. These disturbances can also carry polarization, but not energy, as all energy is stored locally. The local evolution of the part of the system where energy is stored drives the rest of the system through long-range entanglement. We also examine approximations for the ground state of this Hamiltonian in the strong field limit, and study how couplings away from the Majumdar-Ghosh point aff...
Skewon field and cosmic wave propagation
Ni, Wei-Tou
2013-01-01
For the study of the gravitational coupling of electromagnetism and the equivalence principle, we have used the spacetime constitutive tensor density {chi}ijkl, and discovered the nonmetric (axion) part (A){chi}ijkl (equal to {phi}eijkl) of {chi}ijkl worthy investigation. Since we have used Lagrangian formalism, {chi}ijkl is effectively symmetric under the interchange of index pairs, ij and kl, and has 21 independent degrees of freedom. Hehl, Obukhov and Rubilar have started from charge-flux formalism to study electromagnetism, discovered the antisymmetric part (Sk){chi}ijkl (15 degrees of freedom) of {chi}ijkl under the interchange of index pairs ij and kl worthy investigation, and called it skewon field. In this paper, we study the propagation of the Hehl-Obukhov-Rubilar skewon field in weak gravity field/dilute matter or with weak violation of the Einstein Equivalence Principle (EEP), and further classify it into Type I and Type II skewons. From the dispersion relation we show that no dissipation/no amplif...
Error propagation in energetic carrying capacity models
Pearse, Aaron T.; Stafford, Joshua D.
2014-01-01
Conservation objectives derived from carrying capacity models have been used to inform management of landscapes for wildlife populations. Energetic carrying capacity models are particularly useful in conservation planning for wildlife; these models use estimates of food abundance and energetic requirements of wildlife to target conservation actions. We provide a general method for incorporating a foraging threshold (i.e., density of food at which foraging becomes unprofitable) when estimating food availability with energetic carrying capacity models. We use a hypothetical example to describe how past methods for adjustment of foraging thresholds biased results of energetic carrying capacity models in certain instances. Adjusting foraging thresholds at the patch level of the species of interest provides results consistent with ecological foraging theory. Presentation of two case studies suggest variation in bias which, in certain instances, created large errors in conservation objectives and may have led to inefficient allocation of limited resources. Our results also illustrate how small errors or biases in application of input parameters, when extrapolated to large spatial extents, propagate errors in conservation planning and can have negative implications for target populations.
Broken discs: warp propagation in accretion discs
Nixon, Christopher J.; King, Andrew R.
2012-04-01
We simulate the viscous evolution of an accretion disc around a spinning black hole. In general, any such disc is misaligned, and warped by the Lense-Thirring effect. Unlike previous studies, we use effective viscosities constrained to be consistent with the internal fluid dynamics of the disc. We find that non-linear fluid effects, which reduce the effective viscosities in warped regions, can promote breaking of the disc into two distinct planes. This occurs when the Shakura & Sunyaev dimensionless viscosity parameter α is ≲0.3 and the initial angle of misalignment between the disc and hole is ≳45°. The break can be a long-lived feature, propagating outwards in the disc on the usual alignment time-scale, after which the disc is fully co-aligned or counter-aligned with the hole. Such a break in the disc may be significant in systems where we know the inclination of the outer accretion disc to the line of sight, such as some X-ray binaries: the inner disc, and so any jets, may be noticeably misaligned with respect to the orbital plane.
Numerical Investigation of Fracture Propagation in Geomaterials
Newell, P.; Borowski, E.; Major, J. R.; Eichhubl, P.
2015-12-01
Fracture in geomaterials is a critical behavior that affects the long-term structural response of geosystems. The processes involving fracture initiation and growth in rocks often span broad time scales and size scales, contributing to the complexity of these problems. To better understand fracture behavior, the authors propose an initial investigation comparing the fracture testing techniques of notched three-point bending (N3PB), short rod (SR), and double torsion (DT) on geomaterials using computational analysis. Linear softening cohesive fracture modeling (LCFM) was applied using ABAQUS to computationally simulate the three experimental set-ups. By applying material properties obtained experimentally, these simulations are intended to predict single-trace fracture growth. The advantages and limitations of the three testing techniques were considered for application to subcritical fracture propagation taking into account the accuracy of constraints, load applications, and modes of fracture. This work is supported as part of the Geomechanics of CO2 Reservoir Seals, a DOE-NETL funded under Award Number DE-FOA-0001037. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Resonance propagation in heavy-ion scattering
Indian Academy of Sciences (India)
Bijoy Kundu; B K Jain
2001-06-01
The formalism developed earlier by us for the propagation of a resonance in the nuclear medium in proton–nucleus collisions has been modiﬁed to the case of vector boson production in heavy-ion collisions. The formalism includes coherently the contribution to the observed di-lepton production from the decay of a vector boson inside as well as outside the nuclear medium. The medium modiﬁcation of the boson is incorporated through an energy dependent optical potential. The calculated invariant mass distributions are presented for the -meson production using optical potentials estimated within the VDM and the resonance model. The shift in the invariant mass distribution is found to be small. To achieve the mass shift (of about 200 MeV towards lower mass) as indicated in the high energy heavy-ion collision experiments, an unusually strong optical potential of about -120 MeV is required. We also observe that, for not so heavy nuclear systems and/or for fast moving resonances, the shape, magnitude and peak position of the invariant mass distribution is substantially different if the contributions from the resonance decay inside and outside are summedup at the amplitude level (coherently) or at the cross section level (incoherently).
Transionospheric VLF Propagation as an Ionospheric Diagnostic
Worthington, E. R.; Cohen, M.
2015-12-01
Very Low Frequency (VLF, 3-30 kHz) radio waves emitted from ground-based sources, such as VLF transmitters or lightning strokes, are attenuated as they travel through the D-region of the ionosphere, making measurements taken of the VLF energy that has escaped this region useful in estimating the electron density. It has been also been suggested that F-region irregularities may contribute additional attenuation to the VLF signal. Additionally, energy at these frequencies that escapes the ionosphere altogether strongly impacts the radiation belts, driving electron precipitation via whistler-electron gyroresonance, and contributes to the formation of the slot region. We present an analysis of measurements captured by the DEMETER satellite over VLF transmitters. During its six-year mission, DEMETER completed hundreds of passes above well-characterized VLF transmitters while recording electric and magnetic field strengths. Statistically significant (daytime and nighttime) seasonal variations were observed in this data set. We compare observations with estimates obtained using a sophisticated full wave model of trans-ionospheric propagation, and discuss the viability of the International Reference Ionosphere in correctly predicting transionospheric VLF energy.
Experimental studies of lower hybrid wave propagation
International Nuclear Information System (INIS)
Experimental measurements of the dispersion and damping of externally excited lower hybrid waves are presented. A multiple-ring slow-wave antenna, having 2π/k/sub z/ = 23 cm, is used to excite these waves in the Princeton L3 or L4 linear devices (B = 0.5 -- 2.8 kG uniform to +- 1 percent for 1.6 m, n approximately 1010, T/sub e/ approximately 3-5 eV, T/sub i/ less than or equal to 0.1 eV, He gas, plasma diameter approximately 10 cm). The waves are localized in a spatial wave packet that propagates into the plasma along a conical trajectory which makes a small angle with respect to the confining magnetic field. Measurements of the dependence of wavelength on frequency are in good agreement with the cold plasma dispersion relation. Measured values of the wave damping are in good agreement with Landau damping by the combination of the main body of the electron distribution and a approximately 30 percent high energy (T/sub e/ approximately 15-30 eV) electron tail
In Vitro Propagation of Citrus Rootstocks
Directory of Open Access Journals (Sweden)
Suneel SHARMA
2009-06-01
Full Text Available Present investigation was conducted to standardize a protocol for in-vitro propagation of citrus rootstocks viz. Rough lemon, Cleopatra mandarin Pectinifera and Troyer citrange. The shoot tip explant was found better for callus induction of these rootstocks than the nodal segment. Maximum callus formation (40.0% and 23.3% of shoot tip explants was obtained in Cleopatra mandarin, Pectinifera, and Rough lemon and Troyer citrange, respectively in treatment MS basal media + 0.5mg/l Kin, 2.0mg/l NAA, and 2.0mg/l 2, 4-D. Furthermore, the maximum number of shoots per explant was obtained through the callus in Pectinifera, Rough lemon and Cleopatra mandarin in MS basal media + BAP 1mg/l. Maximum rooting of shoots (1.11% was noted in rootstock Rough lemon followed by Cleopatra mandarin for the � MS media supplemented with 10mg/l IBA. Although the callus development and bud proliferation was recorded in rootstock Troyer citrange however, shoot and root formation did not occur. The potting media consisting of soil, sand and FYM in the ratio of 1:1:1 by volume was better with maximum survival rate of hardened plants six weeks after transferring to the pots under greenhouse for Rough lemon followed by Pectinifera and Cleopatra mandarin rootstock.
Propagation phasor approach for holographic image reconstruction
Luo, Wei; Zhang, Yibo; Göröcs, Zoltán; Feizi, Alborz; Ozcan, Aydogan
2016-01-01
To achieve high-resolution and wide field-of-view, digital holographic imaging techniques need to tackle two major challenges: phase recovery and spatial undersampling. Previously, these challenges were separately addressed using phase retrieval and pixel super-resolution algorithms, which utilize the diversity of different imaging parameters. Although existing holographic imaging methods can achieve large space-bandwidth-products by performing pixel super-resolution and phase retrieval sequentially, they require large amounts of data, which might be a limitation in high-speed or cost-effective imaging applications. Here we report a propagation phasor approach, which for the first time combines phase retrieval and pixel super-resolution into a unified mathematical framework and enables the synthesis of new holographic image reconstruction methods with significantly improved data efficiency. In this approach, twin image and spatial aliasing signals, along with other digital artifacts, are interpreted as noise terms that are modulated by phasors that analytically depend on the lateral displacement between hologram and sensor planes, sample-to-sensor distance, wavelength, and the illumination angle. Compared to previous holographic reconstruction techniques, this new framework results in five- to seven-fold reduced number of raw measurements, while still achieving a competitive resolution and space-bandwidth-product. We also demonstrated the success of this approach by imaging biological specimens including Papanicolaou and blood smears. PMID:26964671
Propagation behavior of acoustic wave in wood
Institute of Scientific and Technical Information of China (English)
Huadong Xu; Guoqi Xu; Lihai Wang; Lei Yu
2014-01-01
We used acoustic tests on a quarter-sawn poplar timbers to study the effects of wood anisotropy and cavity defects on acoustic wave velocity and travel path, and we investigated acoustic wave propagation behavior in wood. The timber specimens were first tested in unmodified condition and then tested after introduction of cavity defects of varying sizes to quantify the transmitting time of acoustic waves in laboratory conditions. Two-dimensional acoustic wave contour maps on the radial section of specimens were then simulated and analyzed based on the experimental data. We tested the relationship between wood grain and acoustic wave velocity as waves passed in various directions through wood. Wood anisotropy has significant effects on both velocity and travel path of acoustic waves, and the velocity of waves passing longitudinally through timbers exceeded the radial velocity. Moreover, cavity defects altered acoustic wave time contours on radial sections of timbers. Acous-tic wave transits from an excitation point to the region behind a cavity in defective wood more slowly than in intact wood.
Synchronization with propagation - The functional differential equations
Rǎsvan, Vladimir
2016-06-01
The structure represented by one or several oscillators couple to a one-dimensional transmission environment (e.g. a vibrating string in the mechanical case or a lossless transmission line in the electrical case) turned to be attractive for the research in the field of complex structures and/or complex behavior. This is due to the fact that such a structure represents some generalization of various interconnection modes with lumped parameters for the oscillators. On the other hand the lossless and distortionless propagation along transmission lines has generated several research in electrical, thermal, hydro and control engineering leading to the association of some functional differential equations to the basic initial boundary value problems. The present research is performed at the crossroad of the aforementioned directions. We shall associate to the starting models some functional differential equations - in most cases of neutral type - and make use of the general theorems for existence and stability of forced oscillations for functional differential equations. The challenges introduced by the analyzed problems for the general theory are emphasized, together with the implication of the results for various applications.
Propagation of sound waves in drill strings
Drumheller, D. S.; Knudsen, S. D.
1995-04-01
Deep wells are commonly drilled while steering the drill bit. The steering process is completely controlled by the drilling-rig operator. A key element of this procedure is the measurement and communication of navigation information from the bottom of the well to the operator. Pressure pulses modulated onto the flow of the drill fluid are now employed in some cases to communicate this information. However, data rates are only a few binary bits per second with this method. This drastically limits the quantity of data available to the operator. As an alternative method, elastic waves generated within the steel drill string can be used as a carrier signal to transmit data. The drill string is commonly assembled from 10-m segments of threaded pipe and forms a periodic structure. The elastic wavelengths of interest are shorter than this periodic length. Consequently, these waves undergo significant dispersion. This paper presents new data for the propagation of elastic waves in a 2-km drill string. The influence of aperiodicity in the drill string, rotation of the drill string, and noise levels are studied in detail. The data verify a method for reducing the attenuation of a carrier signal by a factor of 2.
Mathematical problems in wave propagation theory
1970-01-01
The papers comprising this collection are directly or indirectly related to an important branch of mathematical physics - the mathematical theory of wave propagation and diffraction. The paper by V. M. Babich is concerned with the application of the parabolic-equation method (of Academician V. A. Fok and M. A, Leontovich) to the problem of the asymptotic behavior of eigenfunc tions concentrated in a neighborhood of a closed geodesie in a Riemannian space. The techniques used in this paper have been föund useful in solving certain problems in the theory of open resonators. The topic of G. P. Astrakhantsev's paper is similar to that of the paper by V. M. Babich. Here also the parabolic-equation method is used to find the asymptotic solution of the elasticity equations which describes Love waves concentrated in a neighborhood of some surface ray. The paper of T. F. Pankratova is concerned with finding the asymptotic behavior of th~ eigenfunc tions of the Laplace operator from the exact solution for the surf...
Effect of Resolution on Propagating Detonation Wave
Energy Technology Data Exchange (ETDEWEB)
Menikoff, Ralph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2014-07-10
Simulations of the cylinder test are used to illustrate the effect of mesh resolution on a propagating detonation wave. For this study we use the xRage code with the SURF burn model for PBX 9501. The adaptive mesh capability of xRage is used to vary the resolution of the reaction zone. We focus on two key properties: the detonation speed and the cylinder wall velocity. The latter is related to the release isentrope behind the detonation wave. As the reaction zone is refined (2 to 15 cells for cell size of 62 to 8μm), both the detonation speed and final wall velocity change by a small amount; less than 1 per cent. The detonation speed decreases with coarser resolution. Even when the reaction zone is grossly under-resolved (cell size twice the reaction-zone width of the burn model) the wall velocity is within a per cent and the detonation speed is low by only 2 per cent.
Simulation of MAD Cow Disease Propagation
Magdoń-Maksymowicz, M. S.; Maksymowicz, A. Z.; Gołdasz, J.
Computer simulation of dynamic of BSE disease is presented. Both vertical (to baby) and horizontal (to neighbor) mechanisms of the disease spread are considered. The game takes place on a two-dimensional square lattice Nx×Ny = 1000×1000 with initial population randomly distributed on the net. The disease may be introduced either with the initial population or by a spontaneous development of BSE in an item, at a small frequency. Main results show a critical probability of the BSE transmission above which the disease is present in the population. This value is vulnerable to possible spatial clustering of the population and it also depends on the mechanism responsible for the disease onset, evolution and propagation. A threshold birth rate below which the population is extinct is seen. Above this threshold the population is disease free at equilibrium until another birth rate value is reached when the disease is present in population. For typical model parameters used for the simulation, which may correspond to the mad cow disease, we are close to the BSE-free case.
Propagation, structural similarity, and image quality
Pérez, Jorge; Mas, David; Espinosa, Julián; Vázquez, Carmen; Illueca, Carlos
2012-06-01
Retinal image quality is usually analysed through different parameters typical from instrumental optics, i.e, PSF, MTF and wavefront aberrations. Although these parameters are important, they are hard to translate to visual quality parameters since human vision exhibits some tolerance to certain aberrations. This is particularly important in postsurgery eyes, where non-common aberration are induced and their effects on the final image quality is not clear. Natural images usually show a strong dependency between one point and its neighbourhood. This fact helps to the image interpretation and should be considered when determining the final image quality. The aim of this work is to propose an objective index which allows comparing natural images on the retina and, from them, to obtain relevant information abut the visual quality of a particular subject. To this end, we propose a individual eye modelling. The morphological data of the subject's eye are considered and the light propagation through the ocular media is calculated by means of a Fourier-transform-based method. The retinal PSF so obtained is convolved with the natural scene under consideration and the obtained image is compared with the ideal one by using the structural similarity index. The technique is applied on 2 eyes with a multifocal corneal profile (PresbyLasik) and can be used to determine the real extension of the achieved pseudoaccomodation.
Field Theory for Coherent Optical Pulse Propagation
Park, Q H
1997-01-01
We introduce a new notion of "matrix potential" to nonlinear optical systems. In terms of a matrix potential $g$, we present a gauge field theoretic formulation of the Maxwell-Bloch equation that provides a semiclassical description of the propagation of optical pulses through resonant multi-level media. We show that the Bloch part of the equation can solved identically through $g$ and the remaining Maxwell equation becomes a second order differential equation with reduced set of variables due to the gauge invariance of the system. Our formulation clarifies the (nonabelian) symmetry structure of the Maxwell-Bloch equations for various multi-level media in association with symmetric spaces $G/H$. In particular, we associate nondegenerate two-level system for self-induced transparency with $G/H=SU(2)/U(1)$ and three-level $\\L $- or V-systems with $G/H = SU(3)/U(2)$. We give a detailed analysis for the two-level case in the matrix potential formalism, and address various new properties of the system including so...
Propagation of realistic beams in underdense plasma
International Nuclear Information System (INIS)
The effect of beam structure on propagation through underdense plasma is examined in two different examples. First, it is shown that the distribution of intensities within a laser beam affects how the beam deflects in the presence of transverse plasma flow. A detailed analysis of beam deflection shows that the rate scales linearly with intensity and plasma density, and inversely with plasma temperature. When the plasma flow is subsonic, the deflection rate is proportional to the ion damping decrement, and scales as M/(1 - M2)3/2, where M is the transverse flow Mach number. When the plasma flow is supersonic, the deflection rate scales as 1/[M(M2 - 1)1/2]. Next, the effect of beam structure on channel formation by very intense laser beer is studied. A diffraction-limited beam with 40 TW of input power forms a channel through 4OOpm of plasma, whereas when this beam is phase aberrated, channel formation does not occur
Myxoma virus: propagation, purification, quantification, and storage.
Smallwood, Sherin E; Rahman, Masmudur M; Smith, Dorothy W; McFadden, Grant
2010-05-01
Myxoma virus (MYXV) is a member of the Poxviridae family and prototype for the genus Leporipoxvirus. It is pathogenic only for European rabbits, in which it causes the lethal disease myxomatosis, and two North American species, in which it causes a less severe disease. MYXV replicates exclusively in the cytoplasm of the host cell. Although not infectious in humans, its genome encodes proteins that can interfere with or modulate host defense mechanisms; it is able to productively infect a number of human cancer cell lines, but not normal human cells, and has also been shown to increase survival time in mouse models of human glioma. These characteristics suggest that MYXV could be a viable therapeutic agent, e.g., in anti-inflammatory or anti-immune therapy, or as an oncolytic agent. MYXV is also an excellent model for poxvirus biology, pathogenesis, and host tropism studies. It is easily propagated in a number of cell lines, including adherent cells and suspension cultures, and minimal purification is required to provide a stock for in vivo and in vitro studies. PMID:20440681
Propagation of Axially Symmetric Detonation Waves
Energy Technology Data Exchange (ETDEWEB)
Druce, R L; Roeske, F; Souers, P C; Tarver, C M; Chow, C T S; Lee, R S; McGuire, E M; Overturf, G E; Vitello, P A
2002-06-26
We have studied the non-ideal propagation of detonation waves in LX-10 and in the insensitive explosive TATB. Explosively-driven, 5.8-mm-diameter, 0.125-mm-thick aluminum flyer plates were used to initiate 38-mm-diameter, hemispherical samples of LX-10 pressed to a density of 1.86 g/cm{sup 3} and of TATB at a density of 1.80 g/cm{sup 3}. The TATB powder was a grade called ultrafine (UFTATB), having an arithmetic mean particle diameter of about 8-10 {micro}m and a specific surface area of about 4.5 m{sup 2}/g. Using PMMA as a transducer, output pressure was measured at 5 discrete points on the booster using a Fabry-Perot velocimeter. Breakout time was measured on a line across the booster with a streak camera. Each of the experimental geometries was calculated using the Ignition and Growth Reactive Flow Model, the JWL++ Model and the Programmed Burn Model. Boosters at both ambient and cold (-20 C and -54 C) temperatures have been experimentally and computationally studied. A comparison of experimental and modeling results is presented.
Laser beam propagation in atmospheric turbulence
Murty, S. S. R.
1979-01-01
The optical effects of atmospheric turbulence on the propagation of low power laser beams are reviewed in this paper. The optical effects are produced by the temperature fluctuations which result in fluctuations of the refractive index of air. The commonly-used models of index-of-refraction fluctuations are presented. Laser beams experience fluctuations of beam size, beam position, and intensity distribution within the beam due to refractive turbulence. Some of the observed effects are qualitatively explained by treating the turbulent atmosphere as a collection of moving gaseous lenses of various sizes. Analytical results and experimental verifications of the variance, covariance and probability distribution of intensity fluctuations in weak turbulence are presented. For stronger turbulence, a saturation of the optical scintillations is observed. The saturation of scintillations involves a progressive break-up of the beam into multiple patches; the beam loses some of its lateral coherence. Heterodyne systems operating in a turbulent atmosphere experience a loss of heterodyne signal due to the destruction of coherence.
Surface waves propagating on a turbulent flow
Gutiérrez, Pablo; AumaÃ®tre, Sébastien
2016-02-01
We study the propagation of monochromatic surface waves on a turbulent flow of liquid metal, when the waves are much less energetic than the background flow. Electromagnetic forcing drives quasi-two-dimensional turbulence with strong vertical vorticity. To isolate the surface-wave field, we remove the surface deformation induced by the background turbulent flow using coherent-phase averaging at the wave frequency. We observe a significant increase in wavelength, when the latter is smaller than the forcing length scale. This phenomenon has not been reported before and can be explained by multiple random wave deflections induced by the turbulent velocity gradients. The shift in wavelength thus provides an estimate of the fluctuations in deflection angle. Local measurements of the wave frequency far from the wavemaker do not reveal such systematic behavior, although a small shift is visible. Finally, we quantify the damping enhancement induced by the turbulent flow and compare it to the existing theoretical predictions. Most of them suggest that the damping increases as the square of the Froude number, whereas our experimental data show a linear increase with the Froude number. We interpret this linear relationship as a balance between the time for a wave to cross a turbulent structure and the turbulent mixing time. The larger the ratio of these two times, the more energy is extracted from the wave. We conclude with possible mechanisms for energy exchange.
HANDWRITTEN TEXT IMAGE AUTHENTICATION USING BACK PROPAGATION
Directory of Open Access Journals (Sweden)
A S N Chakravarthy
2011-10-01
Full Text Available Authentication is the act of confirming the truth of an attribute of a datum or entity. This might involveconfirming the identity of a person, tracing the origins of an artefact, ensuring that a product is whatit’s packaging and labelling claims to be, or assuring that a computer program is a trusted one. Theauthentication of information can pose special problems (especially man-in-the-middle attacks, and isoften wrapped up with authenticating identity. Literary can involve imitating the style of a famous author.If an original manuscript, typewritten text, or recording is available, then the medium itself (or itspackaging - anything from a box to e-mail headers can help prove or disprove the authenticity of thedocument. The use of digital images of handwritten historical documents has become more popular inrecent years. Volunteers around the world now read thousands of these images as part of theirindexing process. Handwritten text images of old documents are sometimes difficult to read or noisy dueto the preservation of the document and quality of the image [1]. Handwritten text offers challenges thatare rarely encountered in machine-printed text. In addition, most problems faced in reading machineprintedtext (e.g., character recognition, word segmentation, letter segmentation, etc. are more severe, inhandwritten text. In this paper we Here in this paper we proposed a method for authenticating handwritten text images using back propagation algorithm..
Error propagation in open respirometric assays
Directory of Open Access Journals (Sweden)
C. C. Lobo
2014-06-01
Full Text Available This work deals with the calculation of the uncertainty of the exogenous respiration rate (Rex and the total oxygen consumed (OCT derived from a single open respirometric profile. Uncertainties were evaluated by applying a linear error propagation method. Results show that standard deviations (SD of Rex and OCT depend not only on the SD of the dissolved oxygen (σC and kLa (σkLa, but also on the SD of the derivative term (dC/dt of the oxygen mass balance equation (σb. A Monte Carlo technique was employed to assess σb; a power law expression for the dependence of σb as a function of σC, the time window (t w and the sampling rate (Δt was proposed. The equations obtained in the present work are useful to calculate suitable conditions (e.g., biomass concentration, kLa that minimize the coefficient of variation corresponding to Rex and OCT.
SOURCE RADIATION AND RESPONSES OF WAVE PROPAGATION
Institute of Scientific and Technical Information of China (English)
CHEN; Sheng-zao; Gail; M; Atkinson
2001-01-01
Recordings of seismic waves propagating from earthquake source to a station at the earth's surface are a system response function.The convolution operator in time domain can be simplified as a multiplication operator in frequency domain.We discuss in frequency domain the separation of source,path and site effects for global scaling of earthquake source radiation.Also discussed are source scaling model,faulting mechanism,and the H/V inversion problems with crustal and near surface structures.Gross features of apparent source spectra appear to be not much region-dependent although there may be difference between tectonic styles within a region of tectonic mixture for which we need further study as data accumulate.Vertical spectra may be a better approach to approximate source radiation,as it has less crustal amplification effects than horizontal spectra.The H/V ratio is evidently a comprehensive indicator of amplification effects from near surface to deep structure.This gives it potential as an inversion tool to deduce site crustal structure.
Propagation phasor approach for holographic image reconstruction
Luo, Wei; Zhang, Yibo; Göröcs, Zoltán; Feizi, Alborz; Ozcan, Aydogan
2016-03-01
To achieve high-resolution and wide field-of-view, digital holographic imaging techniques need to tackle two major challenges: phase recovery and spatial undersampling. Previously, these challenges were separately addressed using phase retrieval and pixel super-resolution algorithms, which utilize the diversity of different imaging parameters. Although existing holographic imaging methods can achieve large space-bandwidth-products by performing pixel super-resolution and phase retrieval sequentially, they require large amounts of data, which might be a limitation in high-speed or cost-effective imaging applications. Here we report a propagation phasor approach, which for the first time combines phase retrieval and pixel super-resolution into a unified mathematical framework and enables the synthesis of new holographic image reconstruction methods with significantly improved data efficiency. In this approach, twin image and spatial aliasing signals, along with other digital artifacts, are interpreted as noise terms that are modulated by phasors that analytically depend on the lateral displacement between hologram and sensor planes, sample-to-sensor distance, wavelength, and the illumination angle. Compared to previous holographic reconstruction techniques, this new framework results in five- to seven-fold reduced number of raw measurements, while still achieving a competitive resolution and space-bandwidth-product. We also demonstrated the success of this approach by imaging biological specimens including Papanicolaou and blood smears.
Skewon field and cosmic wave propagation
Energy Technology Data Exchange (ETDEWEB)
Ni, Wei-Tou, E-mail: weitou@gmail.com
2014-03-01
We study the propagation of the Hehl–Obukhov–Rubilar skewon field in weak gravity field/dilute matter or with weak violation of the Einstein Equivalence Principle (EEP), and further classify it into Type I and Type II skewons. From the dispersion relation we show that no dissipation/no amplification condition implies that the additional skewon field must be of Type II. For Type I skewon field, the dissipation/amplification is proportional to the frequency and the CMB spectrum would deviate from Planck spectrum. From the high precision agreement of the CMB spectrum with 2.755 K Planck spectrum, we constrain the Type I cosmic skewon field |{sup (SkI)}χ{sup ijkl}| to ⩽ a few ×10{sup −35}. The skewon part of constitutive tensor constructed from asymmetric metric is of Type II, hence it is allowed. This study may also be applied to macroscopic electrodynamics in the case of laser pumped medium or dissipative medium.
Stable propagation of `selfish' genetic elements
Indian Academy of Sciences (India)
Soundarapandian Velmurugan; Shwetal Mehta; Dina Uzri; Makkuni Jayaram
2003-09-01
Extrachromosomal or chromosomally integrated genetic elements are common among prokaryotic and eukaryotic cells. These elements exhibit a variety of `selfish’ strategies to ensure their replication and propagation during the growth of their host cells. To establish long-term persistence, they have to moderate the degree of selfishness so as not to imperil the fitness of their hosts. Earlier genetic and biochemical studies together with more recent cell biological investigations have revealed details of the partitioning mechanisms employed by low copy bacterial plasmids. At least some bacterial chromosomes also appear to rely on similar mechanisms for their own segregation. The 2 m plasmid of Saccharomyces cerevisiae and related yeast plasmids provide models for optimized eukaryotic selfish DNA elements. Selfish DNA elements exploit the genetic endowments of their hosts without imposing an undue metabolic burden on them. The partitioning systems of these plasmids appear to make use of a molecular trick by which the plasmids feed into the segregation pathway established for the host chromosomes.
Dynamic system uncertainty propagation using polynomial chaos
Institute of Scientific and Technical Information of China (English)
Xiong Fenfen; Chen Shishi; Xiong Ying
2014-01-01
The classic polynomial chaos method (PCM), characterized as an intrusive methodology, has been applied to uncertainty propagation (UP) in many dynamic systems. However, the intrusive polynomial chaos method (IPCM) requires tedious modification of the governing equations, which might introduce errors and can be impractical. Alternative to IPCM, the non-intrusive polynomial chaos method (NIPCM) that avoids such modifications has been developed. In spite of the frequent application to dynamic problems, almost all the existing works about NIPCM for dynamic UP fail to elaborate the implementation process in a straightforward way, which is important to readers who are unfamiliar with the mathematics of the polynomial chaos theory. Meanwhile, very few works have compared NIPCM to IPCM in terms of their merits and applicability. Therefore, the mathematic procedure of dynamic UP via both methods considering parametric and initial condition uncertainties are comparatively discussed and studied in the present paper. Comparison of accuracy and efficiency in statistic moment estimation is made by applying the two methods to several dynamic UP problems. The relative merits of both approaches are discussed and summarized. The detailed description and insights gained with the two methods through this work are expected to be helpful to engineering designers in solving dynamic UP problems.
Liouvillian propagators, Riccati equation and differential Galois theory
International Nuclear Information System (INIS)
In this paper a Galoisian approach to building propagators through Riccati equations is presented. The main result corresponds to the relationship between the Galois integrability of the linear Schrödinger equation and the virtual solvability of the differential Galois group of its associated characteristic equation. As the main application of this approach we solve Ince’s differential equation through the Hamiltonian algebrization procedure and the Kovacic algorithm to find the propagator for a generalized harmonic oscillator. This propagator has applications which describe the process of degenerate parametric amplification in quantum optics and light propagation in a nonlinear anisotropic waveguide. Toy models of propagators inspired by integrable Riccati equations and integrable characteristic equations are also presented. (paper)
The refractive propagation factor and the rough evaporation duct experiment
Doss-Hammel, Stephen M.; Tsintikidis, Dimitris; Davidson, Kenneth L.; Frederickson, Paul A.
2003-03-01
The Rough Evaporation Duct Experiment (RED) assessed the effects of the air-sea boundary layer on microwave and infrared (IR) signal propagation near the sea surface. The experiment was designed around the Floating Instrument Platform (FLIP) research platform, which was moored 10 kilometers off the northeast shore of Oahu, Hawaii. A 10-kilometer infrared propagation path was created from FLIP to a shore-based receiver and both scintillation and transmission measurements were made around the clock for a two-week period. An accurate model for the propagation of infrared signals in the marine atmospheric surface layer remains an elusive goal. Within the first tens of meters of elevation above the sea surface there are substantial vertical gradients of mass and temperature, and this has a strong effect on the prediction of extinction of the infrared signal. The effectiveness of the propagation models will be investigated and the results from the infrared signal propagation study during RED will be shown.
Frustrated total internal reflection and the illusion of superluminal propagation
Brudny, Vera L
2008-01-01
We analyze the propagation of a pulse across a vacuum gap separating opposite flat parallel faces of two transparent dielectrics by means of an explicitly causal and retarded propagator constructed directly from the free-space wave equation. Nevertheless, our approach yields apparently superluminal propagation for the case of frustrated total internal reflection (FTIR), that is, a transmitted wave packet appears on the far side of the gap at the same time that the corresponding incident packet crosses the front one. Thus, in this example superluminality is just an illusion, being consistent with both casuality and classical electrodynamics. We study the origin of the apparent superluminality in this case, which is inherent to light pulse propagation in free space and does not depend on the particulars of light-matter interaction, and find that it is due to propagation from the lateral wings of the incident pulse to the central part of the transmitted pulse. Thus, notwithstanding their similarities, FTIR is no...
Lunar Surface Propagation Modeling and Effects on Communications
Hwu, Shian U.; Upanavage, Matthew; Sham, Catherine C.
2008-01-01
This paper analyzes the lunar terrain effects on the signal propagation of the planned NASA lunar wireless communication and sensor systems. It is observed that the propagation characteristics are significantly affected by the presence of the lunar terrain. The obtained results indicate that the terrain geometry, antenna location, and lunar surface material are important factors determining the propagation characteristics of the lunar wireless communication systems. The path loss can be much more severe than the free space propagation and is greatly affected by the antenna height, operating frequency, and surface material. The analysis results from this paper are important for the lunar communication link margin analysis in determining the limits on the reliable communication range and radio frequency coverage performance at planned lunar base worksites. Key Words lunar, multipath, path loss, propagation, wireless.
Non-perturbative Power Corrections to Ghost and Gluon Propagators
Boucaud, P; Le Yaouanc, A; Lokhov, A Y; Micheli, J; Pène, O; Rodríguez-Quintero, J; Roiesnel, C; Boucaud, Ph.
2006-01-01
We study the dominant non-perturbative power corrections to the ghost and gluon propagators in Landau gauge pure Yang-Mills theory using OPE and lattice simulations. The leading order Wilson coefficients are proven to be the same for both propagators. The ratio of the ghost and gluon propagators is thus free from this dominant power correction. Indeed, a purely perturbative fit of this ratio gives smaller value ($\\simeq 270$MeV) of $\\Lambda_{\\ms}$ than the one obtained from the propagators separately($\\simeq 320$MeV). This argues in favour of significant non-perturbative $\\sim 1/q^2$ power corrections in the ghost and gluon propagators. We check the self-consistency of the method.
Variation of Quench Propagation Velocities in YBCO Cables
Härö, E.; Stenvall, A.; 10.1007/s10948-015-2976-y
2015-01-01
changes during the quench. Due to the large temperature margin between the operation and the current sharing temperatures, the normal zone does not propagate with the temperature front. This means that the temperature will rise in a considerably larger volume when compared to the quenched volume. Thus, the evolution of the temperature distribution below current sharing temperature Tcs after the quench onset affects the normal zone propagation velocity in HTS more than in LTS coils. This can be seen as an acceleration of the quench propagation velocities while the quench evolves when margin to Tcs is high. In this paper we scrutinize quench propagation in a stack of YBCO cables with an in-house finite element method software which solves the heat diffusion equation. We compute the longitudinal and transverse normal zone propagation velocities at various distances from the hot spot to demonstrate the distance-variation...
HF propagation via the ionosphere over Africa. Science or art?
International Nuclear Information System (INIS)
Complete text of publication follows. The development of HF propagation in Africa is still of concern and further studies need to be carried out to ensure the continued improvement of HF communication over Africa. This paper concentrate on the accuracy of HF propagation prediction over Africa. The paper will present the validation of HF propagation conditions using two models : Ionospheric Communication Enhanced Profile Analysis and Circuit (ICEPAC) and Advanced Stand Alone Prediction Systems (ASAPS). The real-time data is obtained from monitoring stations of the international beacon project. The results will show the signal-to-noise ratio (SNR) for different paths. The potential of the two models as compared to real-time data in terms of the propagation condition prediction is illustrated. An attempt to draw conclusions for future improvement of HF propagation models is also presented.
Liouvillian propagators, Riccati equation and differential Galois theory
Acosta-Humánez, Primitivo; Suazo, Erwin
2013-11-01
In this paper a Galoisian approach to building propagators through Riccati equations is presented. The main result corresponds to the relationship between the Galois integrability of the linear Schrödinger equation and the virtual solvability of the differential Galois group of its associated characteristic equation. As the main application of this approach we solve Ince’s differential equation through the Hamiltonian algebrization procedure and the Kovacic algorithm to find the propagator for a generalized harmonic oscillator. This propagator has applications which describe the process of degenerate parametric amplification in quantum optics and light propagation in a nonlinear anisotropic waveguide. Toy models of propagators inspired by integrable Riccati equations and integrable characteristic equations are also presented.
An investigation into Voigt wave propagation for optical sensing
Mackay, Tom G.
2013-09-01
In the nonsingular case of optical propagation in a linear, homogeneous, anisotropic, dielectric material, two independent plane waves, with orthogonal polarizations and different phase speeds, can propagate in a given direction. However, in certain dissipative biaxial materials there are particular directions along which these two waves coalesce to form a single plane wave. This coalescent Voigt wave represents the singular case. Most conspicuously, the amplitude of Voigt waves are linearly dependent upon propagation direction. A porous nanostructured thin film which supports Voigt wave propagation was investigated, with a view to possible optical sensing applications. The directions along which Voigt waves propagate can be highly sensitive to the refractive index of a fluid which infiltrates this porous material. Indeed, in our theoretical studies sensitivities which compare favourably to those of surface-plasmon-polariton-based optical sensors were found.
Spatio-temporal propagation of cascading overload failures
Zhao, Jichang; Sanhedrai, Hillel; Cohen, Reuven; Havlin, Shlomo
2015-01-01
Different from the direct contact in epidemics spread, overload failures propagate through hidden functional dependencies. Many studies focused on the critical conditions and catastrophic consequences of cascading failures. However, to understand the network vulnerability and mitigate the cascading overload failures, the knowledge of how the failures propagate in time and space is essential but still missing. Here we study the spatio-temporal propagation behavior of cascading overload failures analytically and numerically. The cascading overload failures are found to spread radially from the center of the initial failure with an approximately constant velocity. The propagation velocity decreases with increasing tolerance, and can be well predicted by our theoretical framework with one single correction for all the tolerance values. This propagation velocity is found similar in various model networks and real network structures. Our findings may help to predict and mitigate the dynamics of cascading overload f...
Investigation into stress wave propagation in metal foams
Directory of Open Access Journals (Sweden)
Li Lang
2015-01-01
Full Text Available The aim of this study is to investigate stress wave propagation in metal foams under high-speed impact loading. Three-dimensional Voronoi model is established to represent real closed-cell foam. Based on the one-dimensional stress wave theory and Voronoi model, a numerical model is developed to calculate the velocity of elastic wave and shock wave in metal foam. The effects of impact velocity and relative density of metal foam on the stress wave propagation in metal foams are explored respectively. The results show that both elastic wave and shock wave propagate faster in metal foams with larger relative density; with increasing the impact velocity, the shock wave propagation velocity increase, but the elastic wave propagation is not sensitive to the impact velocity.
Sythesis of MCMC and Belief Propagation
Energy Technology Data Exchange (ETDEWEB)
Ahn, Sungsoo [Korea Advanced Institute of Science and Technology, Daejeon (South Korea); Chertkov, Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Shin, Jinwoo [Korea Advanced Institute of Science and Technology, Daejeon (South Korea)
2016-05-27
Markov Chain Monte Carlo (MCMC) and Belief Propagation (BP) are the most popular algorithms for computational inference in Graphical Models (GM). In principle, MCMC is an exact probabilistic method which, however, often suffers from exponentially slow mixing. In contrast, BP is a deterministic method, which is typically fast, empirically very successful, however in general lacking control of accuracy over loopy graphs. In this paper, we introduce MCMC algorithms correcting the approximation error of BP, i.e., we provide a way to compensate for BP errors via a consecutive BP-aware MCMC. Our framework is based on the Loop Calculus (LC) approach which allows to express the BP error as a sum of weighted generalized loops. Although the full series is computationally intractable, it is known that a truncated series, summing up all 2-regular loops, is computable in polynomial-time for planar pair-wise binary GMs and it also provides a highly accurate approximation empirically. Motivated by this, we first propose a polynomial-time approximation MCMC scheme for the truncated series of general (non-planar) pair-wise binary models. Our main idea here is to use the Worm algorithm, known to provide fast mixing in other (related) problems, and then design an appropriate rejection scheme to sample 2-regular loops. Furthermore, we also design an efficient rejection-free MCMC scheme for approximating the full series. The main novelty underlying our design is in utilizing the concept of cycle basis, which provides an efficient decomposition of the generalized loops. In essence, the proposed MCMC schemes run on transformed GM built upon the non-trivial BP solution, and our experiments show that this synthesis of BP and MCMC outperforms both direct MCMC and bare BP schemes.
Algorithms for propagating uncertainty across heterogeneous domains
Energy Technology Data Exchange (ETDEWEB)
Cho, Heyrim; Yang, Xiu; Venturi, D.; Karniadakis, George E.
2015-12-30
We address an important research area in stochastic multi-scale modeling, namely the propagation of uncertainty across heterogeneous domains characterized by partially correlated processes with vastly different correlation lengths. This class of problems arise very often when computing stochastic PDEs and particle models with stochastic/stochastic domain interaction but also with stochastic/deterministic coupling. The domains may be fully embedded, adjacent or partially overlapping. The fundamental open question we address is the construction of proper transmission boundary conditions that preserve global statistical properties of the solution across different subdomains. Often, the codes that model different parts of the domains are black-box and hence a domain decomposition technique is required. No rigorous theory or even effective empirical algorithms have yet been developed for this purpose, although interfaces defined in terms of functionals of random fields (e.g., multi-point cumulants) can overcome the computationally prohibitive problem of preserving sample-path continuity across domains. The key idea of the different methods we propose relies on combining local reduced-order representations of random fields with multi-level domain decomposition. Specifically, we propose two new algorithms: The first one enforces the continuity of the conditional mean and variance of the solution across adjacent subdomains by using Schwarz iterations. The second algorithm is based on PDE-constrained multi-objective optimization, and it allows us to set more general interface conditions. The effectiveness of these new algorithms is demonstrated in numerical examples involving elliptic problems with random diffusion coefficients, stochastically advected scalar fields, and nonlinear advection-reaction problems with random reaction rates.
Analysis of Blast Wave Propagation Inside Tunnel
Institute of Scientific and Technical Information of China (English)
LIU Jingbo; YAN Qiushi; WU Jun
2008-01-01
The explosion inside tunnel would generate blast wave which transmits through the longi tudinal tunnel.Because of the close-in effects of the tunnel and the reflection by the confining tunnel structure,blast wave propagation inside tunnel is distinguished from that in air.When the explosion happens inside tunnel,the overpressure peak is higher than that of explosion happening in air.The continuance time of the biast wave also becomes longer.With the help of the numerical simu lation finite element software LS-DYNA.a three-dimensional nonlinear dynamic simulation analysis for an explosion experiment inside tunnel was carried out.LS-DYNA is a fully integrated analysis program specifically designed for nonlinear dynamics and large strain problems.Compared with the experimental results.the simulation results have made the material parameters of numerical simulation model available.By using the model and the same material parameters,many results were adopted by calculating the model under different TNT explosion dynamites.Then the method of dimensional analysis was Used for the Simulation resufts.AS Overpressures of the explosion biast wave are the governing factor in fhe tunnel responses.a formula for the explosion biast wave overpressure at a certain distance from the detonation center point inside the tunnel was de rived by using the dimensional analysis theory.By cornparing the results computed by the fromula with experimental results which were obtained before.the formula was proved to be very applicable at some instance.The research may be helpful to estimate rapidly the effect of internal explosion of tunnel on the structure.
Wave propagation in predator-prey systems
Fu, Sheng-Chen; Tsai, Je-Chiang
2015-12-01
In this paper, we study a class of predator-prey systems of reaction-diffusion type. Specifically, we are interested in the dynamical behaviour for the solution with the initial distribution where the prey species is at the level of the carrying capacity, and the density of the predator species has compact support, or exponentially small tails near x=+/- ∞ . Numerical evidence suggests that this will lead to the formation of a pair of diverging waves propagating outwards from the initial zone. Motivated by this phenomenon, we establish the existence of a family of travelling waves with the minimum speed. Unlike the previous studies, we do not use the shooting argument to show this. Instead, we apply an iteration process based on Berestycki et al 2005 (Math Comput. Modelling 50 1385-93) to construct a set of super/sub-solutions. Since the underlying system does not enjoy the comparison principle, such a set of super/sub-solutions is not based on travelling waves, and in fact the super/sub-solutions depend on each other. With the aid of the set of super/sub-solutions, we can construct the solution of the truncated problem on the finite interval, which, via the limiting argument, can in turn generate the wave solution. There are several advantages to this approach. First, it can remove the technical assumptions on the diffusivities of the species in the existing literature. Second, this approach is of PDE type, and hence it can shed some light on the spreading phenomenon indicated by numerical simulation. In fact, we can compute the spreading speed of the predator species for a class of biologically acceptable initial distributions. Third, this approach might be applied to the study of waves in non-cooperative systems (i.e. a system without a comparison principle).
Cosmic axion background propagation in galaxies
Directory of Open Access Journals (Sweden)
Francesca V. Day
2016-02-01
Full Text Available Many extensions of the Standard Model include axions or axion-like particles (ALPs. Here we study ALP to photon conversion in the magnetic field of the Milky Way and starburst galaxies. By modelling the effects of the coherent and random magnetic fields, the warm ionized medium and the warm neutral medium on the conversion process, we simulate maps of the conversion probability across the sky for a range of ALP energies. In particular, we consider a diffuse cosmic ALP background (CAB analogous to the CMB, whose existence is suggested by string models of inflation. ALP–photon conversion of a CAB in the magnetic fields of galaxy clusters has been proposed as an explanation of the cluster soft X-ray excess. We therefore study the phenomenology and expected photon signal of CAB propagation in the Milky Way. We find that, for the CAB parameters required to explain the cluster soft X-ray excess, the photon flux from ALP–photon conversion in the Milky Way would be unobservably small. The ALP–photon conversion probability in galaxy clusters is 3 orders of magnitude higher than that in the Milky Way. Furthermore, the morphology of the unresolved cosmic X-ray background is incompatible with a significant component from ALP–photon conversion. We also consider ALP–photon conversion in starburst galaxies, which host much higher magnetic fields. By considering the clumpy structure of the galactic plasma, we find that conversion probabilities comparable to those in clusters may be possible in starburst galaxies.
Directory of Open Access Journals (Sweden)
Skjaerpe Terje
2003-04-01
Full Text Available Abstract Background Strain Rate Imaging shows the filling phases of the left ventricle to consist of a wave of myocardial stretching, propagating from base to apex. The propagation velocity of the strain rate wave is reduced in delayed relaxation. This study examined the relation between the propagation velocity of strain rate in the myocardium and the propagation velocity of flow during early filling. Methods 12 normal subjects and 13 patients with treated hypertension and normal systolic function were studied. Patients and controls differed significantly in diastolic early mitral flow measurements, peak early diastolic tissue velocity and peak early diastolic strain rate, showing delayed relaxation in the patient group. There were no significant differences in EF or diastolic diameter. Results Strain rate propagation velocity was reduced in the patient group while flow propagation velocity was increased. There was a negative correlation (R = -0.57 between strain rate propagation and deceleration time of the mitral flow E-wave (R = -0.51 and between strain rate propagation and flow propagation velocity and there was a positive correlation (R = 0.67 between the ratio between peak mitral flow velocity / strain rate propagation velocity and flow propagation velocity. Conclusion The present study shows strain rate propagation to be a measure of filling time, but flow propagation to be a function of both flow velocity and strain rate propagation. Thus flow propagation is not a simple index of diastolic function in delayed relaxation.
Velocity and directionality of the electrohysterographic signal propagation.
Directory of Open Access Journals (Sweden)
Lasse Lange
Full Text Available OBJECTIVE: The initiation of treatment for women with threatening preterm labor requires effective distinction between true and false labor. The electrohysterogram (EHG has shown great promise in estimating and classifying uterine activity. However, key issues remain unresolved and no clinically usable method has yet been presented using EHG. Recent studies have focused on the propagation velocity of the EHG signals as a potential discriminator between true and false labor. These studies have estimated the propagation velocity of individual spikes of the EHG signals. We therefore focus on estimating the propagation velocity of the entire EHG burst recorded during a contraction in two dimensions. STUDY DESIGN: EHG measurements were performed on six women in active labor at term, and a total of 35 contractions were used for the estimation of propagation velocity. The measurements were performed using a 16-channel two-dimensional electrode grid. The estimates were calculated with a maximum-likelihood approach. RESULTS: The estimated average propagation velocity was 2.18 (±0.68 cm/s. No single preferred direction of propagation was found. CONCLUSION: The propagation velocities estimated in this study are similar to those reported in other studies but with a smaller intra- and inter-patient variation. Thus a potential tool has been established for further studies on true and false labor contractions.
Noise propagation in two-step series MAPK cascade.
Directory of Open Access Journals (Sweden)
Venkata Dhananjaneyulu
Full Text Available Series MAPK enzymatic cascades, ubiquitously found in signaling networks, act as signal amplifiers and play a key role in processing information during signal transduction in cells. In activated cascades, cell-to-cell variability or noise is bound to occur and thereby strongly affects the cellular response. Commonly used linearization method (LM applied to Langevin type stochastic model of the MAPK cascade fails to accurately predict intrinsic noise propagation in the cascade. We prove this by using extensive stochastic simulations for various ranges of biochemical parameters. This failure is due to the fact that the LM ignores the nonlinear effects on the noise. However, LM provides a good estimate of the extrinsic noise propagation. We show that the correct estimate of intrinsic noise propagation in signaling networks that contain at least one enzymatic step can be obtained only through stochastic simulations. Noise propagation in the cascade depends on the underlying biochemical parameters which are often unavailable. Based on a combination of global sensitivity analysis (GSA and stochastic simulations, we developed a systematic methodology to characterize noise propagation in the cascade. GSA predicts that noise propagation in MAPK cascade is sensitive to the total number of upstream enzyme molecules and the total number of molecules of the two substrates involved in the cascade. We argue that the general systematic approach proposed and demonstrated on MAPK cascade must accompany noise propagation studies in biological networks.
The influence of mesoscale eddies on shallow water acoustic propagation
Deferrari, Harry; Olson, Donald
2003-10-01
Acoustic propagation measurements in 150 m depth on the Florida escarpment observe the effects of the passage of a cyclonic eddy. As the stream core of the Florida Current meanders, the eddy is formed and propagates along the shelf edge. The sequence over a roughly a fortnight is as follows: ahead of the eddy, warm surface water and cold bottom water are swept onto the terrace forming a steep thermocline and corresponding strong downward refracting C(z). The gradient produce intense, focused RBR arrivals and the thermocline becomes a duct for internal waves to propagate shoreward. At first, the internal wave energy is minimal and propagation is stable and coherent. As the internal tides attempt to propagate on shelf, the sound speed field and the acoustic signals become increasingly variable. The variability reaches a crescendo as the 200 m long internal tide is blocked from propagating on to the narrower shelf and begins to break and overturn producing small-scale variability. As the eddy passes, nearly iso-thermal conditions are restored along with quiescent internal wave fields and reduced signal variability. Here, the effects are quantized with data from fixed-system acoustic and oceanographic measurements demonstrating that the mesoscale determines acoustic propagation conditions days in advance.
Modeling the propagation of mobile phone virus under complex network.
Yang, Wei; Wei, Xi-liang; Guo, Hao; An, Gang; Guo, Lei; Yao, Yu
2014-01-01
Mobile phone virus is a rogue program written to propagate from one phone to another, which can take control of a mobile device by exploiting its vulnerabilities. In this paper the propagation model of mobile phone virus is tackled to understand how particular factors can affect its propagation and design effective containment strategies to suppress mobile phone virus. Two different propagation models of mobile phone viruses under the complex network are proposed in this paper. One is intended to describe the propagation of user-tricking virus, and the other is to describe the propagation of the vulnerability-exploiting virus. Based on the traditional epidemic models, the characteristics of mobile phone viruses and the network topology structure are incorporated into our models. A detailed analysis is conducted to analyze the propagation models. Through analysis, the stable infection-free equilibrium point and the stability condition are derived. Finally, considering the network topology, the numerical and simulation experiments are carried out. Results indicate that both models are correct and suitable for describing the spread of two different mobile phone viruses, respectively.
Energy model for rumor propagation on social networks
Han, Shuo; Zhuang, Fuzhen; He, Qing; Shi, Zhongzhi; Ao, Xiang
2014-01-01
With the development of social networks, the impact of rumor propagation on human lives is more and more significant. Due to the change of propagation mode, traditional rumor propagation models designed for word-of-mouth process may not be suitable for describing the rumor spreading on social networks. To overcome this shortcoming, we carefully analyze the mechanisms of rumor propagation and the topological properties of large-scale social networks, then propose a novel model based on the physical theory. In this model, heat energy calculation formula and Metropolis rule are introduced to formalize this problem and the amount of heat energy is used to measure a rumor’s impact on a network. Finally, we conduct track experiments to show the evolution of rumor propagation, make comparison experiments to contrast the proposed model with the traditional models, and perform simulation experiments to study the dynamics of rumor spreading. The experiments show that (1) the rumor propagation simulated by our model goes through three stages: rapid growth, fluctuant persistence and slow decline; (2) individuals could spread a rumor repeatedly, which leads to the rumor’s resurgence; (3) rumor propagation is greatly influenced by a rumor’s attraction, the initial rumormonger and the sending probability.
A Workflow-Oriented Approach To Propagation Models In Heliophysics
Directory of Open Access Journals (Sweden)
Gabriele Pierantoni
2014-01-01
Full Text Available The Sun is responsible for the eruption of billions of tons of plasma andthe generation of near light-speed particles that propagate throughout the solarsystem and beyond. If directed towards Earth, these events can be damaging toour tecnological infrastructure. Hence there is an effort to understand the causeof the eruptive events and how they propagate from Sun to Earth. However, thephysics governing their propagation is not well understood, so there is a need todevelop a theoretical description of their propagation, known as a PropagationModel, in order to predict when they may impact Earth. It is often difficultto define a single propagation model that correctly describes the physics ofsolar eruptive events, and even more difficult to implement models capable ofcatering for all these complexities and to validate them using real observational data.In this paper, we envisage that workflows offer both a theoretical andpractical framerwork for a novel approach to propagation models. We definea mathematical framework that aims at encompassing the different modalitieswith which workflows can be used, and provide a set of generic building blockswritten in the TAVERNA workflow language that users can use to build theirown propagation models. Finally we test both the theoretical model and thecomposite building blocks of the workflow with a real Science Use Case that wasdiscussed during the 4th CDAW (Coordinated Data Analysis Workshop eventheld by the HELIO project. We show that generic workflow building blocks canbe used to construct a propagation model that succesfully describes the transitof solar eruptive events toward Earth and predict a correct Earth-impact time
Millimetre-wave propagation in the evaporation duct
Levy, M. F.; Craig, K. H.
1990-03-01
Recent developments in propagation modeling based on the Parabolic Equation Method allow the forecasting of two-dimensional antenna coverage diagrams at millimeter wavelengths, in a dispersive atmosphere with arbitrary two-dimensional variation of the refractive index. The model was applied successfully to mm-wave propagation in the evaporation duct. The evaporation duct height is not sufficient to characterize mm-wave propagation, and information on the water vapor content is essential for the correct modeling of atmospheric absorption. Turbulence simulations were carried out, showing marked scintillation, effects in the evaporation duct. The method can be applied to arbitrary refractivity spectra, and gives a complete numerical description of the field statistics.
Influence of queue propagation and dissipation on route travel times
DEFF Research Database (Denmark)
Raovic, Nevena
into account (Bliemer, 2008). Yperman (2007) indicates that there is a significant difference in queue-propagation and queue-dissipation between the LTM and DQM. This results in different route travel times, and can further affect route choice. In this paper, different approaches to represent queue propagation...... and dissipation through the CTM, LTM and DQM are studied. A simple network allows to show how these approaches influence route travel time. Furthermore, the possibility of changing the existing DQM is considered in order to more realistically represent queue propagation and dissipation, which would lead to more...... accurate route travel times....
Subspace model identification of guided wave propagation in metallic plates
International Nuclear Information System (INIS)
In this study, a data-driven subspace system identification approach is proposed for modeling guided wave propagation in plate media. In the data-driven approach, the subspace system identification estimates a mathematical model fitted to experimentally measured data, but the black-box model identified captures the dynamics of wave propagation. To demonstrate the versatility of the black-box model, wave motions in various shapes of aluminum plates are investigated in the study. In addition, a waveform predictor and temperature change indicator are proposed as applications of the black-box models, to further promote the modeling approach to guided wave propagation. (paper)
Propagation of Gauss-Bessel beams in turbulent atmosphere
Institute of Scientific and Technical Information of China (English)
Chen Bao-Suan; Pu Ji-Xiong
2009-01-01
This paper studies the propagation properties of Gauss鈥擝essel beams in a turbulent atmosphere. Based on the extended Huygens-Fresnel principle, it derives the intensity distribution expression for such beams propagating in a turbulent atmosphere. Then the influence of turbulence and source beam parameters on the beam propagation is studied in great detail. It finds that the intensity distribution of Gauss-Bessel beams will change into Gaussian profile in a turbulent atmosphere, and that stronger turbulence and smaller topological charges will lead to a faster changing.
The Propagation Characteristics of the Electron Beam with Initial Modulation
Institute of Scientific and Technical Information of China (English)
Zhang Jun(张军); Zhong Huihuang(钟辉煌)
2003-01-01
The propagation characteristics of the beam under various initial conditions are investigated by means of PIC method. The influences of density modulation and velocity modulation on the propagation characteristics are discussed and compared. The results reveal that by changing the amplitude of the two kinds of modulations and the phase difference between them, the distribution property of the first harmonic of the current density can be adapted along the beam propagating path, which is a feasible method to enhance the beam-wave interaction efficiency in Cerenkov HPM devices.
Strong and Coherent Coupling between Localized and Propagating Phonon Polaritons
Gubbin, Christopher R.; Martini, Francesco; Politi, Alberto; Maier, Stefan A.; De Liberato, Simone
2016-06-01
Following the recent observation of localized phonon polaritons in user-defined silicon carbide nanoresonators, here we demonstrate strong and coherent coupling between those localized modes and propagating phonon polaritons bound to the surface of the nanoresonator's substrate. In order to obtain phase matching, the nanoresonators have been fabricated to serve the double function of hosting the localized modes, while also acting as a grating for the propagating ones. The coherent coupling between long lived, optically accessible localized modes, and low-loss propagative ones, opens the way to the design and realization of phonon-polariton based coherent circuits.